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He deals the cards as a meditation
And those he plays never suspect
He doesn’t play for the money he wins
He don’t play for respect

He deals the cards to find the answer
The sacred geometry of chance
The hidden law of a probable outcome
The numbers lead a dance

Shape of my heart, Sting - 1993
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Résumé en français

Ce manuscrit contient le travail que j’ai effectué pendant mon doctorat à l’Ecole Normale Supérieure
de Paris, principalement sous la direction du Pr.Florent Krzakala. Le coeur de ce texte est con-
stitué d’une introduction et de trois parties, qui proposent une approche analytique rigoureuse à la
théorie de l’apprentissage automatique supervisé en grande dimension sous l’hypothèse de données
aléatoires. Ce résumé, dont la version en anglais, plus complète, peut être trouvée après la table
des matières sous la forme d’un avant-propos, suppose que le lecteur possède des notions de proba-
bilités en grandes dimensions, de théorie des verres de spins ainsi que de l’apprentissage statistique
supervisé. Le lecteur ne possédant pas ces notions peut se référer à l’introduction (Chapitre 1, en
anglais), puis revenir à ce résumé.

Organisation du manuscrit et aperçu des contributions

Le chapitre 1 propose une introduction courte à l’apprentissage automatique ainsi qu’à la théorie
de l’apprentissage statistique, qui permet de mieux motiver le besoin d’approches basées sur les
probabilités en grandes dimensions et la physique mathématique, ainsi que de proposer un point
de vue cohérent pour ces thèmes. Nous donnons ensuite un aperçu de la physique statistique des
milieux désordonnés ainsi que des outils analytiques non rigoureux qui sont utilisés dans ce domaine,
tel que la méthode de la cavité et la méthode des répliques, ou bien des relaxations asymptotiques de
l’algorithme de propagation de convictions. Ceci nous amène naturellement aux pendants rigoureux
de ces méthodes, qui peuvent être globalement comprises comme des procédures de découplage de
mesures de probabilités compliquées, de manière à les décomposer en des produits de mesures plus
simples pour lesquelles les résultats de concentration sont plus faciles à établir et, d’un point de vue
pratique, qui peuvent être simulées en un temps et avec des ressources raisonnables. Après avoir
fourni une description brève des résultats existants sur des modèles de données i.i.d. Gaussiennes,
nous soulignons les difficultés principales qui apparaissent lorsque l’on tente de pousser la théorie
plus proche des scénarios réalistes, des algorithmes qui constituent l’état de l’art, et des résultats
correspondant venant de la physique statistique :

• les données structurées mènent naturellement à des problèmes non séparables, là où de nom-
breuses preuves existentes ne sont valables que pour des problèmes séparables,

• les algorithmes d’agggrégation de prédicteurs, machines à comités et problèmes multiclasses
nécessitent des méthodes de preuves qui donnent les distributions asymptotiques jointes d’un
nombre fini d’estimateurs, plutôt que d’un seul,

• tous les problèmes sont à température zéro, aus ens de la physique statistique, ce qui empèche
l’utilisation d’identités simplificatrices issues de la Bayes-optimalité tel que l’identité de Nishi-
mori,
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• les prédictions existantes issues de la physique statistique montrent que les résultats
d’asymptotiques exactes pour les algorithmes de passage de messages approximés peuvent
être obtenus pour des modèles bien plus complexes que les modèles linéaires généralisés, en
particulier pour des modèles multicouches à poids aléatoires ou d’a priori génératifs,

• sous réserve que l’on puisse obtenir des prédictions asymptotiquement exactes sur les modèles
présentant des données structurées, à quel point ces résultats peuvent être utilisés sur des
données réelles ?

La section 1.7 présente ensuite un aperçu des outils mathématiques principaux qui seront utilisés
dans ce manuscrit, notamment les inégalités de comparaison Gaussienne et les méthodes de con-
ditionnement itératif Gaussien dans le contexte de l’étude des algorithmes de passage de message
approximé (AMP). Nous illustrons aussi ces techniques sur des problèmes simples, de manière à
fournir une intuition claire sur les résultats qui sont présentés pour des modèles plus complexes dans
les chapitres qui suivent. Les raisons principales qui sous-tendent le succès des approches proposées
en vue des objectifs présentés ci-avant sont les suivantes :

• les modèles non-séparables peuvent être traités en utilisant des inégalités de comparaison
Gaussiennes dans le cas convexe ainsi qu’une décomposition du prolème appropriée à l’aide
de multilicateurs de Lagrange. Cette approche échoue, en revanche, pour les ensembles
d’estimateurs,

• les itérations AMP peuvent être étudiées rigoureusement avec à la fois des effets non-séparables
et des estimateurs matriciels, mais pour caractériser une solution précise, il faut réaliser un
contrôle de la trajectoire de l’itération vers cette solution,

• les itérations AMP peuvent être construites et leurs trajectoires contrôlées précisément dans
le cas convexe de manière systématique,

• en ce qui concerne les problèmes de dynamique, le schéma de conditionnement itératif au
coeur des preuves reliées aux algorithmes AMP peut être étendus aux cas multicouches et
aux problèmes composites impliquant plusieurs matrices aléatoires, des perturbations de rang
faibles, entre autres,

• des modèles de référence exactement solvables (au sens de la physique statistique, voir le
chapitre 1) dont les courbes d’apprentissage correspondent exactement à des scenarios réalistes
peuvent être définis à partir de données Gaussiennes corrélées.

Ce manuscrit s’articule autour de ces idées, commençant par les résultats les plus généraux, avant
de les utiliser dans des cas plus spécifiques correspondant à une famille de problèmes convexes qui
définissent des estimateurs utilisés en apprentissage supervisé.

A cet égard, la Partie I est focalisée sur la dynamique en grandes dimensions des algorithmes AMP
pour une classe de modèles large ainsi que sur l’application des idées de conditionnement Gaussien
itératif pour l’étude des algorithmes de descentes de gradients stochastiques. Nous commençons,
dans les chapitres 2 et 3, avec des résultats publiés dans l’article

[110] C. Gerbelot and R. Berthier, Graph-based approximate message passing iterations,
arXiv preprint arXiv:2109.11905, (2021)
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actuellement en revue. Ce travail étend les preuves d’équations d’évolution d’état (state evolu-
tion (SE) equations) de [41, 28, 42] à des itérations AMP composites en les indexant sur un graphe
orienté pouvant être étendu arbitrairement pourvu que des conditions structurelles simples soient
vérifiées. Nous prouvons que toute itération AMP pouvant être indéxée sur un tel graphe admet
des équations SE rigoureuses, et nous donnons la forme de ces équations. Le graphe orienté peut
être composé arbitrairement pour fournir de nouvelles itérations AMP ainsi que leurs équations
SE, atteignant une flexibilité proche de celle des approches heuristiques basées sur des équations de
type Thouless-Anderson-Palmer (TAP) pour les problèmes multicouhces, notamment [194, 188, 13],
qui sont rendues rigoureuses par notre résultat. Nous montrons aussi comment des extensions ren-
contrées souvent dans les problèmes d’inférence, comme les modèles plantés, des matrices spikées
ou encore du couplage spatial, peuvent être inclues dans notre approche.

Une première application de ces résultats est proposée dans les chapitres 4 et 5, où nous étudions les
dynamiques d’algorithmes AMP multicouches (MLAMP), initialement proposés dans [188], lorsque
les matrices Gaussiennes denses de mélange sont remplacées par des matrices de convolutions
aléatoires. Ces chapitres sont basés sur la publication, acceptée dans Advances in Neural Infor-
mation Processing Systems (NeurIPS) 2022,

[70] M. Daniels, C. Gerbelot, F. Krzakala, and L. Zdeborová, Multi-layer state evolu-
tion under random convolutional design, arXiv preprint arXiv:2205.13503, (2022)

La méthode de preuve repose sur l’incorporation de l’itération AMP avec les matrices convolu-
tionnelles au sein d’une itération plus large possédant des matrices denses pour laquelle la preuve
rigoureuse des équations d’évolution d’états peut être conduite. La structure convolutionnelle est
conservée en l’encodant dans des non-linéaritées circulantes de l’itération plus large, maintenant
définie avec des variables à valeurs matricielles.

Dans le chapitre 6, nous continuons la discussion démarrée dans la section 1.7 de l’introduction qui
présente la dynamique en grandes dimensions des méthodes de descente de gradient. Nous montrons
que le conditionnement itératif Gaussien utilisé pour les preuves d’AMP de notre contribution [110]
peut être utilisé pour prouver les équations de théorie dynamique à champ moyen (dynamical mean
field theory (DMFT)), adaptées à la descente de gradient stochastique dans [198], et récemment
prouvées dans un cadre plus restreint en utilisant une itération AMP à mémoire dans [56]. La
contribution principale de ce travail est de montrer que l’incorporation implicite de la descente de
gradient stochastique dans une itération de type AMP peut être évitée, fournissant ainsi une preuve
complètement explicite dans laquelle l’apparition des noyaux de corrélations à deux temps de la
dynamique DMFT de fait en suivant un raisonnement de récurrence. Nos résultats bénéficient aussi
de la généralité des lemmes intermédiaires prouvés dans notre contribution précédente [110]. Ce
chapitre est basé sur la publication suivante, actuellement en revue,

[111] C. Gerbelot, E. Troiani, F. Mignacco, F. Krzakala, and L. Zdeborova, Rigorous
dynamical mean field theory for stochastic gradient descent methods, arXiv preprint arXiv:2210.06591,
(2022)
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Nous avançons alors vers la Partie II qui concerne des modèles exactement solvables pour
l’apprentissage supervisé avec des transformations de prédicteurs réalistes ainsi que des modèles de
données structurées. Nous commençons par l’analyse d’un modèle convexe linéaire généralisé avec
une matrice de design présentant une structure corrélée par blocs, dans les chapitres 7 et 8, basés
sur les résultats proposés dans la publication

[176] B. Loureiro, C. Gerbelot, H. Cui, S. Goldt, F. Krzakala, M. Mezard, and
L. Zdeborová, Learning curves of generic features maps for realistic datasets with a teacher-
student model, Advances in Neural Information Processing Systems, 34 (2021), pp. 18137–18151

La structure corrélée par blocs de la matrice de données représente des transformations de prédicteurs
différentes pour le modèle génératif planté et le modèle d’apprentissage. La méthode de preuve est
basée sur le cadre des inégalités de comparaisons Gaussiennes proposé dans [281, 204, 57], et ob-
tient des formules qui correspondent aux prédictions effectuées à l’aide de la méthode des répliques.
Nous montrons alors empiriquement que, pour une classe large de transformation de prédicteurs,
le modèle Gaussien synthétique dont les matrices de covariance sont les mêmes que les matrices de
covariance empiriques du jeu de données réel capture exactement les courbes d’apprentissage réelles
pour les tâches de regressions, ce qui nous amène à la conjecture dite ”d’équivalence Gaussienne”
(Gaussian equivalence conjecture) pour ces modèles. La conjecture ne semble pas tenir aussi bien
pour les problèmes de classification, ce qui motive le besoin d’un modèle de référence supplémentaire.

Nous nous tournons donc vers l’étude de problèmes de classification multiclasse dans les chapitres
9 and 10, que nous modélisons par l’apprentissage d’un nombre fini d’hyperplans séparateurs d’une
mixture de Gaussiennes arbitraire en utilisant un modèle linéaire généralisé convexe. Ces résultats
ont été publiés dans l’article

[178] B. Loureiro, G. Sicuro, C. Gerbelot, A. Pacco, F. Krzakala, and L. Zdeborová,
Learning gaussian mixtures with generalized linear models: Precise asymptotics in high-dimensions,
Advances in Neural Information Processing Systems, 34 (2021), pp. 10144–10157

La méthode de preuve utilise une trajectoire convergente [29, 82] d’une itération AMP construite
spécifiquement pour la résolution de ce problème. Cette construction repose sur une représentation
de la classification de la mixture de Gaussiennes corrélées comme un problème d’optimisation
couplé en espace [154, 135] sur une variable matricielle, et présentant des effets non-séparables.
Les équations rigoureuses d’évolution d’état de cette itération AMP sont établis avec les résultats
de note contribution précédente [110]. Les résultats rigoureux sont une fois de plus en accord avec les
prédictions obtenues par des calculs de répliques. Les simulations montrent alors que, pour des jeux
de données simples comme MNIST ou Fashion-MNIST, les courbes d’apprentissages exactes pour
des tâches de classification peuvent être obtenues exactement en utilisant un modèle synthétique de
mixture de Gaussiennes dont les moyennes et les covariances sont estimées empiriquement à partir
du jeu de données réel. Pour des données plus structurées ou des tâches plus complexes, le nombre
de composants de la mixture de Gaussienne peut être augmenté pour amener la prédiction proposée
par les formules obtenues pour le modèle synthétique plus proche de la courbe réelle.

Motivés par l’importance des méthodes d’agrégation d’estimateurs en apprentissage automatique
ainsi que des informations que ces méthodes peuvent donner sur les réseaux de neurones [72], nous



8

nous tournons aux chapitres 11 and 12 vers l’apprentissage d’ensembles de prédicteurs, chacun
desquels est défini par un modèle convex linéaire généralisé avec un modèle de données Gaussi-
ennes corrélées par blocs similaire à celui proposé précédemment dans notre contribution [176]. Ces
résultats sont basés sur la publication

[177] B. Loureiro, C. Gerbelot, M. Refinetti, G. Sicuro, and F. Krzakala, Fluctua-
tions, bias, variance & ensemble of learners: Exact asymptotics for convex losses in high-dimension,
International Conference on Machine Learning (ICML), (2022)

La preuve repose sur une itération AMP à variables matricielles et à non-linéarités non-séparables
pour laquelle nous utilisons le même contrôle de trajectoire que dans nos études précédentes des
problèmes de classification multitâches [178], et où la validité des équations d’évolution d’état est
guarantie par les résultats de notre contribution [110]. Ici encore, nous observons que les prédictions
obtenues par les méthodes de répliques sont correctes. Nous utilisons ces formules pour étudier les ef-
fets de l’agrégation de prédicteurs, notamment en terme de réduction de variance et de régularisation
implicite, sur des tâches usuelles comme la régression logistique ou l’apprentissage avec des car-
actéristiques aléatoires [238], ainsi que l’alignement des prédicteurs.

Enfin, la partie III présente des résultats publiés dans les articles

[108] C. Gerbelot, A. Abbara, and F. Krzakala, Asymptotic errors for high-dimensional
convex penalized linear regression beyond gaussian matrices, in Conference on Learning Theory,
PMLR, 2020, pp. 1682–1713
[109] C. Gerbelot, A. Abbara, and F. Krzakala, Asymptotic errors for teacher-student
convex generalized linear models (or: How to prove kabashima’s replica formula), arXiv preprint
arXiv:2006.06581, (2020)

L’apparition du second dans IEEE Transactions on Information Theory est prévue. Ces résultats
sont des preuves de formules de répliques qui ont été obtenues par Y. Kabashima [138, 140, 277] dans
le cas de modèles convexes linéaires généralisés pour lesquels la matrices de données est invariante par
rotations à gauche et à droite, et dont les valeurs singulières sont issues i.i.d. d’une distribution arbi-
traire à support compact. Le résultat du deuxième article [109] est plus général que celui du premier
[108], qui n’est donc pas reproduit dans cette thèse. Le lecteur intéressé peut néanmoins consulter
l’article [108] pour des formules plus simples ainsi que des exemples d’applications supplémentaires,
notamment concernant l’acquisition compressée. La méthode de preuve est basée sur la construc-
tion de trajectoires convergentes de l’algorithme de passage de message approximé vectoriel à deux
couches (2-MLVAMP) [242, 97], qui propose des équations d’évolution d’état rigoureuses pour des
itérations optimisant des modèles linéaires généralisés convexes dont les matrices de données sont
invariantes par rotations à gauche et à droite, et dont les valeurs singulières sont issues i.i.d. d’une
distribution arbitraire à support compact. Etant donnée la structure des algorithmes de passage de
message approximé vectoriel, l’étude des trajectoires est différente de celles menées précedemment
pour des itération d’AMP classiques (à matrices denses Gaussiennes ou sub-Gaussiennes) : nous
reformulons l’algorithme de passage de message approximé vectoriel à deux couches en un système
dynamique, pour lequel nous déterminons une fonction de Lyapunov adaptée au problème, en util-
isant des résultats de théorie du controle optimal, et plus particulièrement des système dynamiques
sous contraintes intégrales quadratiques [166]. Nos résultats prouvent des guaranties de convergence



9

algorithmique pour des problèmes suffisemment fortement convexes, et ces guaranties ne dépendent
pas de la haute dimensionalité du problème. Sous une hypothèse de concentration, nous montrons
qu’un prolongement analytique du résultat peut être mené afin d’étendre la validité de la formule
de réplique à tout problème convexe. Nous proposons des simulations pour la formule de répliques
prouvées sur une grande variété de problèmes ainsi que pour les guaranties de convergence algorith-
miques de 2-MLVAMP.

Nous proposons finalement une conclusion ainsi que des persepctives de travaux futurs, notam-
ment en ce qui concerne les problèmes non-convexes, les résultats d’universalités ainsi que les taux
de convergence de taille finies dans le chapitre IV.



Some notations and abbreviations

x,x,X scalar, vector, matrix
〈., .〉 inner product
N set of natural numbers
R real numbers
S+
d set of semi positive definite matrices

S++
d set of positive definite matrices
‖.‖p lp norm
‖.‖F Frobenius norm
‖.‖op operator norm
a.s. almost surely
w.h.p. with high probability
∂f subdifferential operator of a (convex) function f
zer(A) zeroes of an operator A
ker(M) the null-space of a matrix M
Tr(M) trace of the matrix M
E mathematical expectation
EX expectation with respect to a single random variable X
E [X|Y ] conditional expectation of X given Y
X|Y conditional distribution of X given Y

σ(X1, X2, ..., Xt) sigma-algebra generated by the random variables X1, X2, ..., Xt

µ,µ Lebesgue measure, mean of a random vector
x ∼ p the random variable x is distributed according to p
x

d= y the random variable x has the same distribution as y
P−→ convergence in probability
a.s.−−→ almost sure convergence
Plk−−→ convergence in the Plk sense (will be used for informal statements)
Xn

P' Yn for two sequences of random variables Xn, Yn, Xn − Yn
P−→ 0

Id identity matrix of dimension d
F will usually denote a Hilbert space
X input space of a given function or operator, almost always euclidian
proxγf proximal operator of a convex function f with parameter γ
Mγf Moreau envelope of a convex function f with parameter γ
span(M) the subspace spanned by the columns of M
PM,P⊥M the orthogonal projector on span(M) and the orthogonal projector on its complement
N (µ,Σ) the Gaussian distribution with mean µ and covariance Σ
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f t,Ft vector valued, matrix valued functions
div(f) divergence of a differentiable function f
Jf Jacobian of a differentiable function f
Hf Hessian of a twice differentiable function f
SE state evolution
AMP approximate message passing
GLM generalized linear model
MLAMP multilayer approximate message passing
V AMP vector approximate message passing
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Foreword

This manuscript contains the work I did during my PhD at Ecole Normale Supérieure de Paris,
mainly under the supervision of Pr. Florent Krzakala. The main body of the text consists in an
introduction and three parts, which propose a rigorous analytical approach to the theory of high-
dimensional supervised machine learning with random data. This summary assumes the reader is
familiar with the field of high-dimensional probability, spin glass theory and supervised machine
learning. The reader unfamiliar with these topics may go through the introduction (Chapter 1),
and come back to this summary.

Organization of the manuscript and overview of contributions

Chapter 1 proposes a short introduction to machine learning and statistical learning theory, in order
to better motivate the need for approaches rooted in high-dimensional probability and mathematical
physics, as well as put them into perspective. We then give an overview of statistical physics of
disordered systems along with a few of the non-rigorous tools used in this field, such as the cavity and
replica method, or asymptotic relaxations of the belief-propagation algorithm. This naturally leads
us to the rigorous counterparts of those methods, which can be broadly understood as decoupling
procedures for complex probability measures, in order to decompose them into simple product
measures for which concentration results are easier to establish and, on a more practical side,
numerical evaluation becomes tractable and efficient. After providing a brief description of existing
results with i.i.d. Gaussian data, we highlight the main difficulties of bringing theory closer to
realistic scenarios, state of the art algorithms and the predictions from statistical physics :

• structured data naturally leads to non-separable problems, whereas a number of existing proof
methods dealt with separable ones,

• ensembling algorithms, committee machines and multiclass problems require proofs that give
the joint asymptotic distribution of finitely many estimators, rather than single ones,

• all problems are, in the statistical physics sense, at zero temperature, which impedes simpli-
fications given by Bayes-optimality such as the Nishimori identity,

• existing predictions in statistical physics show that exact asymptotics of approximate message
passing algorithms may be obtained far beyond generalized linear models, in particular for
multilayer problems with random weights or generative priors

• provided one can obtain the exact asymptotics for models with structured data, can we quan-
tify how realistic they are ?

17
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Section 1.7 then provides a glimpse of the main mathematical tools that will be used in this
manuscript, namely convex Gaussian comparison inequalities and most importantly, iterative Gaus-
sian conditioning in the context of approximate message passing algorithms. We also illustrate those
techniques on simple problems, in order to provide intuition on the results that will be obtained on
more complex models. The main reasons for which the goals listed above may be reached can be
summarized as follows :

• non-separable models can be handled using convex Gaussian comparison inequalities and
appropriate problem decompositions, but they break down for matrix-valued estimators,

• AMP iterations can be rigorously studied with both non-separable effects and matrix-valued
iterates, but to study a given estimator one needs to design an iteration converging to this
estimator,

• appropriate design and control of the trajectories of AMP iterations may be achieved system-
atically in the convex case,

• regarding dynamics, the iterative conditioning scheme at the heart of AMP proofs can be
extended to multilayer or composite problems involving several random matrices, low-rank
perturbations and more,

• benchmark, exactly solvable models that exactly match learning curves obtained on realistic
scenarios can be designed with synthetic correlated Gaussian data.

The manuscript is articulated around those ideas, starting with the most general results, before
specializing them to the family of convex problems defining estimators found in supervised learning.

In this regard, Part I focuses on the high-dimensional dynamics of AMP iterations for a wide
range of models and application of iterative Gaussian conditioning ideas to the study of stochastic
gradient descent. We start, in Chapter 2 and Chapter 3, with results that were published in the
preprint

[110] C. Gerbelot and R. Berthier, Graph-based approximate message passing iterations,
arXiv preprint arXiv:2109.11905, (2021)

currently under review. This work extends the proofs of state evolution (SE) equations from
[41, 28, 42] to composite AMP iterations by indexing them on an oriented graph and proving
that any AMP iteration supported by such a graph admits rigorous SE equations. The graph may
be composed arbitrarily to provide new AMP iterations and their SE equations, matching the flex-
ibility of heuristic approaches based on TAP equations for multilayer problems, e.g. [194, 188, 13],
which are made rigorous by our result. We show how many of the refinements often encountered in
inference problems, such as planted models, spiked matrices or spatial coupling, can be accounted
for in our framework.
A first application of those results is proposed in Chapter 4 and 5, where we study the dynamics of
multilayer approximate message passing (MLAMP) [188] when the random, dense Gaussian matri-
ces are replaced with random convolutional ones. It is based on the preprint, currently under review,

[70] M. Daniels, C. Gerbelot, F. Krzakala, and L. Zdeborová, Multi-layer state evolu-
tion under random convolutional design, arXiv preprint arXiv:2205.13503, (2022)
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The proof method relies on an embedding of the AMP iteration with convolutional matrices into a
larger, matrix-valued one with dense Gaussian matrices where the convolutions are accounted for by
designing appropriate circulant non-linearities. In Chapter 6, we continue the discussion started in
section 1.7 of the introduction regarding the high-dimensional dynamics of gradient descent meth-
ods. We show that the Gaussian iterative conditioning ideas used for the AMP proof in [110] can
be used to prove dynamical mean field theory (DMFT) equations, adapted to gradient descent in
[198], and recently proven under a more restrictive setup using AMP iterations with memory in [56].
The main contribution is to show that the implicit embedding of gradient descent into an AMP
iteration of [56] may be avoided, providing a completely explicit proof were memory kernels of the
DMFT prediction build up along the induction. Our result also benefits from the generality of the
intermediate lemmas of [110]. This Chapter is based on the following work accepted at Advances
in Neural Information Processing Systems (NeurIPS) 2022,

[111] C. Gerbelot, E. Troiani, F. Mignacco, F. Krzakala, and L. Zdeborova, Rigorous
dynamical mean field theory for stochastic gradient descent methods, arXiv preprint arXiv:2210.06591,
(2022)

We then move to Part II that is concerned with exactly solvable models for supervised learning
with realistic feature maps and data models. We start with the analysis of a Gaussian covariate
convex generalized linear model, in Chapter 7 and 8 proposed in the published paper

[176] B. Loureiro, C. Gerbelot, H. Cui, S. Goldt, F. Krzakala, M. Mezard, and
L. Zdeborová, Learning curves of generic features maps for realistic datasets with a teacher-
student model, Advances in Neural Information Processing Systems, 34 (2021), pp. 18137–18151

where the design matrix has a block covariance structure, representing different feature maps for
the teacher and student model. The proof method is based on the convex Gaussian comparison
inequalities framework of [281, 204, 57], and matches the replica prediction performed by coauthors.
We empirically show that, for a wide range of feature maps, the synthetic Gaussian model with
matching covariances exactly captures realistic learning curves for regression tasks, leading to the
so called Gaussian equivalent conjecture for those models. The conjecture does not seem to hold as
well for classification tasks, prompting the need for another benchmark model.
We thus turn to the study of a multiclass classification problem in Chapter 9 and 10, modelled
by the task of learning a finite number of separating hyperplanes of a Gaussian mixture using a
matrix-valued convex generalized linear model. The results have been publihsed in the paper

[178] B. Loureiro, G. Sicuro, C. Gerbelot, A. Pacco, F. Krzakala, and L. Zdeborová,
Learning gaussian mixtures with generalized linear models: Precise asymptotics in high-dimensions,
Advances in Neural Information Processing Systems, 34 (2021), pp. 10144–10157

The proof method uses a converging trajectory [29, 82] of a carefully designed AMP iteration,
involving a representation of the correlated Gaussian mixture as a matrix-valued, spatially coupled
[154, 135] problem with non-separable effects. The rigorous state evolution equations are established
using our previous results from [110]. The proof result matches the replica computation performed
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by coauthors. Simulations then show that, for simple datasets such as MNIST or Fashion-MNIST,
the exact learning curves of classification tasks may be predicted using a synthetic Gaussian mix-
ture model where the means and covariances of each cluster is estimated from the data. For more
structured tasks, augmenting the number of clusters makes the prediction more accurate.
Motivated by the importance of ensembling methods in machine learning and the insight they pro-
vide for neural networks [72], we turn in Chapter 11 and 12 to learning an ensemble of predictors,
each of which is defined according to a Gaussian covariate model similar to the one of [176]. The
results are based on the published paper

[177] B. Loureiro, C. Gerbelot, M. Refinetti, G. Sicuro, and F. Krzakala, Fluctua-
tions, bias, variance & ensemble of learners: Exact asymptotics for convex losses in high-dimension,
International Conference on Machine Learning (ICML), (2022)

The proof is based on a non-separable, matrix-valued AMP iteration for which we use the same
trajectory control as in our previous study [178], and [110] for the rigorous state evolution equations.
Once again, the proof matches the replica prediction performed by coauthors. We use the formulas
to study the effect of ensembling on usual tasks such as logistic regression, random feature learning
and the alignment of different learners.

Finally, Part III presents results published in the papers

[108] C. Gerbelot, A. Abbara, and F. Krzakala, Asymptotic errors for high-dimensional
convex penalized linear regression beyond gaussian matrices, in Conference on Learning Theory,
PMLR, 2020, pp. 1682–1713
[109] C. Gerbelot, A. Abbara, and F. Krzakala, Asymptotic errors for teacher-student
convex generalized linear models (or: How to prove kabashima’s replica formula), arXiv preprint
arXiv:2006.06581, (2020)

the second of which is currently in review. These results are proofs of replica formulas that were
obtained by Y. Kabashima [138, 140, 277], for the specific case of convex generalized linear models,
where the design matrix is left- and right-rotationally invariant with a spectrum sampled i.i.d. from
an arbitrary distribution with compact support. The result of the second paper [109] is more general
than the first one [108], thus the latter is not reproduced here. The reader may nevertheless consult
the paper [108] for simpler formulas and more examples of applications. The proof method is based
on the construction of converging trajectories of the 2-layer vector approximate message passing
(VAMP) algorithm [242, 97] which proposes rigorous state evolution equations for iterations solv-
ing generalized linear models with rotationally invariant matrices. Due to the structure of VAMP
algorithms, the study of trajectories is different from those of the AMP sequences discussed before
: we reformulate 2-layer VAMP as a dynamical system, for which we find an appropriate Lyapunov
function, using results from control theory [166]. Our result provides algorithmic convergence guar-
antees for sufficiently strongly convex problems that do not depend on the high-dimensional nature
of the problem. We provide numerical simulations for both the proven replica formula on a variety
of generalized linear models and the algorithmic convergence of 2-layer VAMP.

We conclude with a brief discussion on future directions and the bibliography in Chapter IV.
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Remark For the papers [108, 109, 110], the author was the main contributor to all aspects of the
work (writing, simulations, figures, technical statements and proofs). For the papers [176, 178, 177,
70] the author’s contributions were the technical statements/results and related rigorous proofs of
formulas obtained using the replica method, which were part of the litterature for [70], and were
performed by collaborators B. Loureiro, G. Sicuro and H. Cui for [176, 178, 177]. The author also
contributed to the writing of non-technical statements and discussions of those papers. The proofs
of the technical results are constructive in that the replica results are not required in advance.
Nevertheless, having access to the replica prediction was helpful to understand how the problems
could be decomposed to fit the rigorous frameworks of convex Gaussian comparison inequalities
and approximate message passing iterations. The replica computations are not reproduced in this
thesis and can be found in the original papers, along with simplifications that were used in specific
cases for examples and figures. In [70], M. Daniels presented discussions and related works for deep
generative models that are not reproduced in this thesis. The interested reader may consult the
original paper for further details.

Work not included in this thesis We did not include the following preprint under review

[65] E. Cornacchia, F. Mignacco, R. Veiga, C. Gerbelot, B. Loureiro, and L. Zde-
borová, Learning curves for the multi-class teacher-student perceptron, arXiv preprint, (2022)

which provides a proof of the replica formula for the convex multiclass perceptron. The author
only provided the rigorous proof and did not contribute to the main body of the paper outside
of the technical statement. The proof is also based on a converging trajectory of a matrix-valued
AMP algorithm and constitutes a simpler instance of the proofs from the aforementioned works
[178, 177]. It extends the Bayes-optimal results of [15] proven using the Guerra interpolation to the
zero-temperature, convex case.



Chapter 1

Introduction

Although machine learning is now an established field with firm theoretical grounding in opti-
mization, probability and statistics, the recent empirical success of deep learning often challenges
the usual knowledge of statistical learning theory. From self-driving cars to numerical solvers for
high-dimensional systems of partial differential equations, the possibilities offered by the variety
of methods encompassed by artificial intelligence go well beyond problem-specific combinations of
statistical estimators. This has prompted a surge of interest into new theoretical approaches to
bridge the gap between the fast paced empirical progress and slower paced theoretical one. The
goal of this chapter is to briefly present the core concepts in machine learning, statistical physics
and probability that motivate the family of problems investigated in the present work as well as the
theoretical approach that is chosen. Naturally, the presentation is far from exhaustive and pointers
to appropriate references are provided throughout.

1.1 Artificial intelligence

One way to approach the field of artificial intelligence is through the formalization of physiological
concepts. For instance learning to perform a given task from examples, defining notions of similarity
to organize a set of unknown objects into groups or adapting a behaviour to an environment for an
organism to thrive. The mathematical formulation of these notions leads to the three main method-
ologies of modern machine learning, see e.g. [206], respectively : supervised learning, unsupervised
learning and reinforcement learning. In supervised learning, one seeks to reconstruct a function,
or probability distribution, the output of which we observe through a given set of samples, the
training set. Unsupervised learning consists in defining a notion of similarity in order to separate
a given set of elements into groups where members of each group approximately have the same
measure of similarity. Reinforcement learning relies on the optimization of a reward function with
a sequence of decisions based on a time varying interaction with an unknown environment. Those
three problems have close ties to existing fields with extensive litterature. Statistical inference [292]
and signal processing [185] are both concerned with the reconstruction of quantities (codes, images,
...) based on available measurements, while kernel density estimation in nonparametric statistics
[293] can be used on a non-labeled dataset to estimate the underlying density that generated the
samples. Finally, the optimization of a desired outcome from a time-dependent process is at the
core of control theory [146]. We may therefore wonder what makes machine learning different, and
more precisely, given the variety of theoretical results in the existing fields discussed above, what
technical challenges are brought by the practical goals of artificial intelligence.

22
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A first difficulty is the absence or lack of knowledge about the ground truth operating behind
either labels, data points or the environment. Indeed, while in control theory one seeks to optimize
a strategy given a known system, reinforcement learning adds the process of discovering the envi-
ronment. A second difficulty comes from the high-dimensional nature of the problem, brought by
the increasing amount of available data for a number of tasks and large number of parameters in
state-of-the-art models. Classical statistics result for instance, where the number of predictors is
usually assumed to be much smaller than the number of data points, are known to break down when
the dimension becomes comparable or larger than the number of samples [292]. Finally, machine
learning aspires to be ”intelligent” : not only do we want to solve the aforementioned problems, but
we want the methods to adapt to whatever structure is present in each instance, without having to
manually tailor them to those structures. For instance any high-dimensional problem intrinsically
depending on a latent space of lower dimension should be identified as such by the algorithm, which
would then learn an optimal approximation of the target function on this latent space.

1.2 Supervised learning

Let us now focus on supervised learning, which will be the motivation for the problems considered
in this work. Our main reference for this part is [206].

1.2.1 Empirical risk minimization

Consider a given set of n points (x1, ...,xn) in Rd, labeled according to a hidden joint density
p∗(x, y). The set (x1, ...,xn,y), where the vector y ∈ Rn contains the available labels, is referred
to as the training set. The goal is to find a candidate function f̂ : Rd → R belonging to a chosen
candidate functional space F in order to best reproduce the joint density p∗(x, y). To do so, the
usual approach is to minimize an error measure defined by a cost function C : R2 → R, leading to
the following optimization problem over the expected risk

f̂ ∈ inf
f∈F

E(x,y)∼p∗ [C(f(x), y)] . (1.1)

However, since we only have access to a finite set of realisations of p∗, the expected risk is replaced
by the empirical risk, leading to

f̂ ∈ inf
f∈F

1
n

n∑
i=1

C(f(xi), yi) (1.2)

which, assuming the samples are drawn independently, should be a logical proxy for problem (1.1)
according to the law of large numbers. The difference in performance between the estimators
obtained from the expected and empirical risk is the generalization error, i.e. the ability of a
model trained on a finite number of samples to predict new labels reliably. The complexity of the
probability distribution p∗ and dimensionality of the problem will govern how well the empirical
risk approximates the expected one for a given number of samples. We can thus expect that these
quantities will directly appear in theoretical predictions for the performance of a given estimator.
Then, the expressivity of the functional space F , that is the variety of functions it can express,
also plays a key role. A typical example of this is polynomial regression of a sinusoidal function in
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one dimension, see e.g. [40]. On the one hand, if no limitations are placed on the degree of the
polynomial, any finite set of pairs (x, y) sampled from the ground-truth can be interpolated by the
corresponding Lagrange polynomial, which can vary greatly for different realisations of the dataset,
even if it captures complex behavior on a single dataset : the estimator is overfitting the dataset.
On the other hand, if we restrict the candidate functional space to linear or quadratic functions, the
model will be too simple and present a high bias with respect to the ground truth. This dilemma
is referred to as the bias-variance tradeoff in machine learning. The common approach is then to
choose a fairly expressive set of functions and add a regularization term to the problem (1.2) by
constraining the norm of f :

f̂ ∈ inf
f∈F

1
n

n∑
i=1

C(f(xi), yi) + λ‖f‖2F (1.3)

where λ is a positive scalar parameter. For a concrete example, if F is a Sobolev space, the
regularization term will constrain the total variation of higher order derivatives and impose a degree
of smoothness depending on the value of λ. The main practical challenges of supervised learning
can thus be summarized as follows

• the choice of the candidate functional space F

• the choice of the loss function (and regularisation)

• the choice of the optimization algorithm to solve problem (1.3)

The main theoretical challenge is to have mathematical justifications for these choices.

1.2.2 Choosing the candidate functional space

The appropriate transformation of data can lead to drastic simplification of a problem. For instance,
consider a 2-dimensional task of separating datapoints distributed according to two noisy concentric
circles. Parametrizing the boundary between the two sets for classification purposes can seem
difficult when adopting a naive approach. A simple change of parametrization from the initial
(x1, x2) to polar-like coordinates (x2

1,
√

2x1x2, x
2
2) leads to a linear boundary [265]. In this example

however, the human eye spots the circular geometry of the data, which may be much harder to do
in high-dimension, with structures that go well beyond concentric circles !

Linear models Following the statistics litterature, e.g. [292], the most common estimators are
linear ones, parametrized by a weight vector denoted w ∈ Rd. Concatenating the samples (x1, ...,xn)
into a design matric X ∈ Rn×d, the optimization problem defining a linear estimator then reads

inf
w∈Rd

1
n

n∑
i=1

C(w>xi, yi) + λr(w) (1.4)

where the the function r : Rd → R is typically a norm, and we consider any intercept as included in
the dimension of the input space d, without loss of generality. Although linear models have weak
expressive power, they are both simple to implement and to analyze theoretically. In the case of
convex cost and regularization functions, they form the family of generalized linear models (GLM),
the basis of many machine learning algorithms such aas least-squares regression or max-margin
classification. Finding an appropriate functional space can then be seen as finding a mapping
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φ : Rd → Rp, that should be tailored to each problem instance. Such mappings are often referred
to as feature maps in the machine learning litterature, leading to the formulation :

inf
w∈Rp

1
n

n∑
i=1

C(w>φ(xi), yi) + λr(w) (1.5)

where r is now defined on Rp. Refining linear models then resides in finding the good feature map.

Kernel methods The originally predominent method to choose feature maps were kernel methods
[258, 265], which is a form of non-parametric regression. The idea is to use a reproducing kernel
Hilbert space (RKHS) [10], as the candidate functional space, and use its reproducing property to
find a tractable form of the optimization problem now defined over a potentially infinite dimensional
feature space. The target RKHS is defined by a reproducing kernel, i.e. a bilinear symmetric function
K : X × X → R, and is composed of all linear combinations of the functions K(xi, .) supported
by the points in X along with the pointwise limits of the corresponding Cauchy sequences. The
reproducing property then states that for any function f in the RKHS, its value at any point
xi can be expressed through the inner product f(xi) = 〈f,Kxi〉F . Provided the cost function is
increasing in ‖f‖F , which is easily enforced with the regularisation, an orthogonal decomposition
shows that the predictor can be expressed as a linear combination of the kernel functions supported
by the points in the dataset, i.e. there exists a vector α ∈ Rn such that f = ∑n

j=1 αiK(xi, .). The
optimization problem (1.3) can then be expressed as

inf
α∈Rn

1
n

n∑
i=1

C((Kα)i , yi) + λr(α>Kα) (1.6)

effectively reducing the search to an n−dimensional linear regression, where the kernel matrix
K ∈ Rn×n is defined by Ki,j = K(xi,xj) for any 1 6 i, j 6 n, and is positive definite, see e.g.
[265]. This result is called the representer theorem and spawns a wide range of models which can
be analyzed theoretically using functional analysis combined with the framework of linear models.
Reproducing kernels can then be manually tailored depending on the different tasks at hand, rang-
ing from polynomial kernels K(x,x′) =

(
1 + x>x′

)k
for vector-valued data to the Fisher score of

probabilistic models for strings (sentences, DNA sequences, etc ...). Despite their elegance, firm
theoretical grounding and apparent limitless expressive power, kernel methods are not adaptative :
each reproducing kernel has to be chosen manually and tuned for each problem, and linear combi-
nations or products of usual kernels hardly solve this issue. Finding a correct basis to decompose a
function on is also a long standing problem in harmonic analysis, with Fourier and wavelet decom-
positions [185] being the most widely used examples in statistics, signal processing and machine
learning. As is the caase with kernel methods, Fourier or wavelet decompositions still rely on a fixed
set of basis functions. Although adaptative methods using wavelet decompositions can achieve im-
pressive performance on complex tasks such as image recognition [52], the family of feature maps
now holding the state of the art in close to all applied fields are neural networks.

Neural networks Inspired by biological neurons, the perceptron was proposed by Rosenblatt
[245] as a model of information storage in the brain. It is simply defined as a sigmoidal activation
function, a hyperbolic tangent for instance, taking as input a scalar product.

f(x) = σ(w>x) (1.7)
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where w ∈ Rd are the trainable parameters of the model. Compositions of linear combinations of
perceptrons led to the the multilayer perceptron (MLP), the first deep learning model, along with
its gradient-based optimization [249], with the notable application of document recognition [157].
Neural networks keep breaking benchmarks on tasks of increasing complexity in computer vision
[150], natural language processing [201], etc ..., and routinely solve NP-hard problems for reasons
that are still unclear. A neural network with L layers is thus a parametric model with parameters
W1, ...,WL where, for any 1 6 i 6 L, Wi ∈ Rni×ni−1 with n0 = d, the input dimension.

f(x) = σL (WLσL−1 (WL−1..σ1 (W1x))) (1.8)

From an approximation point of view, multilayer perceptrons are known to be able to approxi-
mate any continuous functions, when sufficiently wide, under mild conditions [69, 20], while being
completely parametric. The empirical risk minimization problem now reads

inf
{Wi}i=1,...,L

1
n

n∑
i=1

C(σL (WLσL−1 (WL−1..σ1 (W1xi))) , yi) + λr (W1, ...,W2) , (1.9)

which can be optimized explicitly using gradient based methods. Empirically, neural networks seem
to adapt and learn automatically the appropriate representation from data, and therefore solve the
problem of finding the appropriate basis change we are looking for. An entire bestiary of network
architectures now exists [119], with a variety of practical tricks to improve generalization, trainability
or interpretability. One can naively interpret the success of deep learning with the fact that neural
networks are a heavily parametrized and completely tunable way to represent arbitrary functions.
However, this intuition does not answer the questions of choosing the aactivation functions, the
width and depth, how to regularize, etc ... Finding the appropriate functional analysis framework
to describe neural networks and their adaptative properties is an active research topic, see e.g.
[234, 275, 16, 179] and is beyond the scope of this thesis. As advocated by approaches inspired by
statistical physics, we will focus on simpler models that capture some of the empirical behaviours of
neural networks, and that can be studied exactly. But for now, let us continue with our description
of supervised learning.

1.2.3 Loss functions and optimization

Supervised learning tasks are usually separated into two types : regression and classification. Re-
gression aims at reconstructing a function with continuous output, while classification is concerned
with finding a discrete valued function that best separates object into groups labeled by the output
of the function. For regression, the square loss appears as a natural choice : the further away we
are from the available output, the larger the cost. For classification however, the cost should be the
same for all predictions falling into the wrong class, and zero for the correct ones. This prompts
the use of the 0− 1 loss, whose discontinuity makes it difficult to optimize. The most widely used
method is to use convex surrogates, such as the hinge or logistic losses, which approximate the 0−1
behaviour in a smoother manner and benefit from the optimization guarantees of convexity [244].
Once a convex objective is formulated, a wide variety of optimization algorithms can provably reach
the estimator of interest in polynomial time, such as gradient descent [212, 49] or proximal based
methods [50, 224]. We will give more background on proximal operators later on, as they will play
a key role in some of our results. As mentioned above, a kernel regression problem can be reduced
to a linear model, thus, once a convex loss and regularisation are chosen, methods from convex
optimization also apply to kernel methods. For neural networks however, the objective function is
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highly non-convex and the number of parameters can be quite large. The methods of choice for
deep learning are stochastic gradient descent (backpropagation in deep learning) [249] along with a
variety of landscape and data adaptative variants [87, 144]. Theoretical guarantees for non-convex
landscapes are much harder to obtain that for convex ones, and consitute an active research topic
in optimization [134]. Controlling high-dimensional trajectories of a certain class of algorithms will
turn out to be crucial in this thesis, and we will also study algorithmic convergence properties
that do not depend on the dimensionality of the problem. While exact asymptotics for stochastic
gradient descent methods that do not depend on convexity will also be proven, we will not study
converging trajectories in non-convex settings.

1.3 Statistical learning theory

The goal of statistical learning theory [48, 206] is to provide robust bounds to estimate the per-
formance of a given estimator f̂ defined by (1.3) for a given task. Robustness is at the heart of
the approach, in order for the predictions to hold in a wide range of practical cases which may in-
volve complex underlying functions or data distributions. The aforementioned bias-variance tradeoff
can be formalized by introducing the Bayes error, i.e. the minimum achievable error for a given
cost function if we assume the distribution p∗(x, y) is known, leading to the Bayesian decision
fBayes(x′) = infz E [C(z, y)|x = x′]. Defining the cost Rf = E [C(f(x, y))], the excess risk for an
estimator f̂ can then be decomposed as∣∣∣Rf̂ −RfBayes∣∣∣ =

∣∣∣∣Rf̂ − inf
f∈F

Rf

∣∣∣∣︸ ︷︷ ︸
E1

+
∣∣∣∣ inf
f∈F

Rf −RfBayes
∣∣∣∣︸ ︷︷ ︸

E2

. (1.10)

The term E1 represents the error coming from the approximation of the expected risk by the em-
pirical risk, and will become larger as overfitting becomes predominent. The term E2 represents
the approximation error, that is the ability of the candidate functional class F to approximate the
Bayesian decision fB. We thus recover the dilemma of expressivity described in section 1.2.1. The-
oretical analysis of the approximation error often involves the decomposition of the target function
on a suitable basis of the candidate functional space, for instance spherical harmonics if we assume
the data points to have bounded norm, enabling direct comparisons of the coefficients. This usually
gives rates of approximation mainly depending on regularity assumptions of the underlying truth
(smoothness, etc ...). The litterature on function approximation is quite extensive, notably in nu-
merical methods for partial differential equations, harmonic analysis and non-parametric statistics,
and approximation error proofs are often based on related methods. Bounding the generalization
error term E1 is more characteristic of machine learning, and rests on the notion of uniform bounds,
i.e. the convergence of the empirical risk to the expected one over all functions in the class. Such
control may be achieved using the Rademacher complexity, which represents the ability of a given
function class to fit random noise, and reads

RX(f) = Ex,σ

[
sup
f∈F
| 2
n

n∑
i=1

σif(xi)
]

(1.11)

where the σi’s are i.i.d. Rademacher variables and x is the data distribution. We give an example
from [48] for d = 1
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Theorem 1. For all δ > 0, with probability at least 1− δ

∀ f ∈ F E [f(x, y)] 6 1
n

n∑
i=1

f(xi, yi) +

√
2Rx(f) + log(1/δ)

n
(1.12)

The game of bounding the generalization error then consists in accounting for higher dimen-
sionality d, and explicit evaluation of the Rademacher complexity using structural assumptions on
the functional class F , see e.g. [22]. Uniform bounds in statistical learning theory can also be
understood from the point of view of upper and lower bounds of random processes, which we will
use for a family of Gaussian processes, which are presented in [288] in a common, succinct and
elegant way in chapter 7 and 8 of [288]. Although these bounds are robust and adaptable to a wide
range of machine learning problems, it can be difficult to control the tightness of the bound or more
intuitively, how far the actual behaviour of an estimator actually is from the upper bound. Also, the
bounds are agnostic to the data distribution and taking the supremum over the functional class, i.e.
considering the worst possible function, may not be the most representative way of what happens
on average. Furthermore, in modern applications both the number of samples and the dimension of
the feature space are very large. Indeed, for a polynomial kernel of degree k on an original feature
space of dimension d, the new feature space is of dimension

(d+k
k

)
, while modern neural networks can

have sevral thousands (even millions) of parameters [150, 201]. It may therefore be interesting to
consider simpler benchmark problems, with explicit data distributions, ground truth and candidate
functional spaces, where exact solutions can be obtained using stronger statements in concentration
of measure and large deviation theory. This is precisely what has been done in statistical physics
for over a century.

1.4 Statistical physics of disordered systems

This section is largely based on the lecture notes [155]. Long before machine learning, extracting
meaningful quantities from a large number of interacting random variables has been at the heart
of statistical physics for over a century. Models in statistical physics aim at understanding the be-
haviour of macroscopic physical systems composed of many microscopic particles through a reduced
number of scalars, often called order parameters. The study of magnetism in solids [295] brought
early versions of notions commonly used in machine learning such as the mean field approximation,
for example. Considering the average number of particles in physical systems, typically Avogadro’s
number of 6.022e23, the application of natural laws from classical, quantum or relativistic mechan-
ics to each individual particle appears unrealistic. Particles are thus described by ensembles, i.e.
probability distributions describing the likeliness for the system to be in a given state.

Equilibrium statistical physics In equilibrium statistical physics, the most commonly used
description is the Boltzmann probability distribution defined over a set of n particles (w1, ..., wn),
where n will be assumed very large. The particles interact according to the potential, or Hamiltonian
H : Rn → R at an inverse temperature β, leading to the joint distribution of particles

pH,β (w1, ..., wn) = 1
Zn(β) exp−βH({wi}i=1,..,n) (1.13)

The partition function Zn(β) =
∫
Xn exp−βH({wi}i=1,..,n)∏

i dwi plays a key role in statistical physics,
in particular in the form of the free energy Φn = log(Zn)

n , which is closely related to the moment
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generating function of the Boltzmann measure. Note that, by taking the zero temperature limit
in Eq.(1.13), the problem reduces to finding the ground state of the Hamiltonian. The Boltzmann
measure formulation thus contains both the sampling and optimization approaches to estimation,
depending on the chosen value of β. This will be discussed further in the next section. One of
the simplest examples is the Curie-Weiss ferromagnet [295], where a systems of d random variables
(s1, ..., sn) (spins) taking values in {−1,+1}n interact according to the potential

Hn(s1, ..., sn) = − 1
2n

∑
16i,j6n

sisj − h
∑
i

si (1.14)

The goal in this problem is to find the asymptotic value of the average magnetisation s̄ = 1
n

∑n
i=1 si,

when the number of particles diverges. A fully rigorous combinatorics argument then shows that,
in the high-dimensional limit, the free energy converges to the optimal value of the one-dimensional
optimization problem

lim
n→∞

Φn = sup
m
φ(m) (1.15)

where φ(m) = H(m) + 1
2βm

2 + βhm (1.16)

and H(m) = −1 +m

2 log
(1 +m

2

)
−
(1−m

2

)
log

(1−m
2

)
(1.17)

whose zero-gradient condition reads

m = tanh(β(m+ h)) (1.18)

. This leads to a large deviation principle for s̄ which shows that, if equation (1.18) has a unique
solution m∗, then s̄ converges with high probability to m∗. This example illustrates the intuition
at the heart of statistical physics : to understand the behaviour of a complex, high-dimensional
system with an asymptotically exact relation involving only low dimensional quantities and simple
functions. Models admitting asymptotic characterizations of this flavour are called exactly solvable,
and the related low dimensional equations form the mean field description of these systems. An
entire bestiary of exactly solvable models can be found in the statistical physics litterature, going well
beyond the equilibirum Boltzmann measure, notably out-of-equilibrium problems and disordered
systems, which we will now describe.

Disordered systems Disordered systems are sets of particles whose interactions are parametrized
by additional random variables. A notable example are spin glasses, originally models to under-
stand magnetism in solids. The simplest instance is the random field Ising model, for which the
Hamiltonian reads

Hn(s1, ..., sn) = − 1
2n

∑
16i,j6n

sisj −
∑
i

hisi (1.19)

where the h is a vector with i.i.d. N (0,∆) elements. In similar fashion to the Curie-Weiss model,
the average magnetisation obeys a large deviation principle governed by the fixed point equation

m = E [tanh(β (h+m))] (1.20)

Beyond the actual phenomenology of the model, introducing the disorder h leads to a key technical
difference : the rigorous combinatorics argument leading to the solution of the Curie-Weiss model
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does not go through for the random field Ising model. Various non-rigorous methods were developed
in theoretical physics to tackle problems involving disordered Hamiltonians, notably the replica
method [196]. Based on the identity logZ = limn→0

Zn−1
n , the replica method allows to compute

the moments of a Boltzmann measure by decoupling the powers in the integral defining Zn using
field-theoretic arguments and heuristic central-limit like results. The final step of taking the limit
n → 0 is also heuristic. The replica method was famously used by recent Nobel Prize recipient
Giorgio Parisi [225, 226] to study the landscape of the Sherrrington-Kirkpatrick Hamiltonian [266],
defined by the optimization problem

sup
s∈{−1,+1}n

s>As (1.21)

where A is an element of the Gaussian orthogonal ensemble GOE(n). The variational principle
governing the set of solutions to this problem is far more complicated than that of the Curie-Weiss
or random field Ising model, and still motivates research to this day [279, 221, 207]. Replicas and
other theoretical physics inspired methods, although originally meant for spin glasses, have been
successfully applied to a variety of problems such as coding theory, combinatorial optimization and
more recently, machine learning [215, 195, 196, 154]. The reader familiar with the probabilistic
approach to machine learning will recognize some of the concepts inherent to statistical physics :
approximating a distribution with a simpler one for optimization and tractability purposes is one
of the main goals of variational inference [290], where the term mean field is often used as well. A
common relative to those fields can be found in the belief-propagation [100, 227] algorithm, which
is mainly known as an iterative marginalization procedure exploiting the conditional independence
structure of probability distributions supported by graphical models. The intermediate, partially
integrated marginals that are transmitted in the algorithm are often called messages. An early
instance can be found in physics, once again in a model to study magnetism in solids, in the
theory of superlattices [38]. A limitation of belief-propagation is the restriction of its exactness and
convergence to tree graphical models, and generalizations of the algorithm to loopy graphs have been
the subject of intense scrutiny both in statistical physics [195] and machine learning, see e.g. [299]
and references therein for the machine learning part. For disordered systems, the asymptotic analysis
of belief propagation and the approximation of complex probability distributions by locally tree-
like graphs has led to the so-called cavity method and Thouless-Anderson-Palmer (TAP) equations
[196], which reduce the problem of computing a complex partition function to solving a set of
scalar, non-linear equations. The intuition underlying those methods is once again a heuristic form
of concentration of measure : messages in the BP algorithm, or consistency conditions of individual
marginals can lead to simple, asymptotically exact low-dimensional descriptions in the large system
limit. Spin glasses have thus provided a true cornucopia [8] of methods to obtain large deviation
principles and concentration results on a priori intractable problems. Since these results are heuristic
but in most cases extensively verified through simulation and surprisingly robust, it appears quite
natural to attempt to understand the mathematical reasons operating behind them.

The rigorous approach : high-dimensional probability The description of statistical physics
given above highlights the value of its insights for probability theory : a wide range of a priori highly
non-trivial probability distributions exhibit large deviations principles and concentration properties
that enable to characterize new phenomena in probability theory and random geometry, for instance
the asymptotic volume of the intersection of a discrete cube {−1,+1}d with a number p = αd of
i.i.d. random half-spaces [102]. An entire branch of probability theory is therefore devoted to
the rigorous mathematical study of spin-glass like systems [279, 221], and has given birth to an
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extensive mathematical toolbox whose main purpose can be summarized in the following way : for
a given probability measure involving a large number of interacting, high-dimensional particles, find
a decomposition as a product measure of simple components, typically independent, parametrized
by a finite set of low-dimensional parameters, that captures the exact asymptotic behaviour of the
original measure. Once this decomposition is found, it becomes much easier to study concentration
properties using existing results for independent random variables, see e.g. [47, 288]. Concentration
of measure [160] and large deviations [286] are thus omnipresent in this field, with ties to extrema
of random processes [161], random matrices [7] and applied mathematics, notably in optimization
[147] and sampling [149]. The need to make predictions obtained with statistical physics methods
rigorous and ground them in concrete mathematical concepts is particularly relevant for machine
learning, where robustness holds a central place. The litterature on rigorous results inspired by
statistical physics thus extends to the machine learning setup, joining high-dimensional statistics
and applied probability. This thesis is a contribution to this field, and proves results in the context
of the statistical physics approach to supervised learning, which we now describe.

1.5 Statistical physics of supervised learning

The benefit of the statistical physics methodology, along with the corresponding rigorous mathe-
matics, is quite clear : obtaining an exact description in terms of simple distributions allows to
compute all the quantities a statistician would be interested in : reconstruction error, confidence
intervals, rates, etc . . . The typical framework studied in this field is the teacher-student scenario,
see, e.g., [300] where the performance of a given learning method (the student) is studied in the
recovery of a given generative model (the teacher). The usual formulation is that of probabilistic
inference : consider a ground truth vector w0 ∈ Rd ditributed according to a probability den-
sity p0,w(w0). We then observe an output of n observations y ∈ Rn from a transition probability
p0,y = p0,y(y|w0), which may include other sources of randomness such as noise. The goal is to
reconstruct the ground truth vector w0 and transition probability p0,y. The minimum mean squared
error estimator (MMSE) then reads, using Bayes rule

ŵ = E [w|y] = 1
Z(y)

∫
Rd

wp0,w(w)p0,y(y|w)dµ(w) (1.22)

where µ is the Lebesgue measure on Rd. Here we assume that the probability distributions defining
the ground truth are known, which means we may study the actual MMSE : this is the Bayes-
optimal scenario. It is particularly relevant for signal processing, or to evaluate fundamental limits
of inference such as recovery thresholds from noisy measurements. Indeed, for square integrable
random variables, the conditional expectation represents the best possible approximation in `2 norm
of a random variable given the sigma-algebra of the observed one. In the non-Bayes optimal scenario,
the ground truth distributions are not available, and we postulate a model p1,w(w), p1,y(y|w) to
estimate w0 with

ŵ = E [w|y] = 1
Z(y)

∫
Rd

wp1,w(w)p1,y(y|w)dµ(w) (1.23)

where y is observed. To recover the optimization problems usually found in supervised learning,
consider the postulated densities

p1,w ∝ exp(−βr(w)) p1,y(y|w) ∝ exp(−βL(w,y)) (1.24)
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where L, r are usually positive functions, and β a positive scalar parameter. We thus recover a
Boltzmann measure

ŵβ = E [w|y] = 1
Z(y)

∫
Rd

w exp(−βr(w)) exp(−βL(w,y))dµ(w) (1.25)

As mentioned in section 1.2.1, the transition probability corresponding to supervised learning will
depend on a design matrix X ∈ Rn×d through the product Xw for linear models. Here, by linear
model, we also mean with respect to a feature map such as a kernel or a learnt neural network. The
estimator then reads

ŵβ = E [w|y] = 1
Z(y)

∫
Rd

w exp(−β (L(Xw,y) + r(w)))dµ(w) (1.26)

In order for this model to be exactly solvable, an assumption on the design matrix should be
made, the most classical one being i.i.d. normal elements with variance 1

d . The Boltzmann density
1

Z(y)w exp(−β (L(Xw,y) + r(w)))w may then be studied using tools from disordered systems, in
the proportional limit n, d→∞ with n/d = α for finite values of α, leading to asymptotically exact,
closed form expressions for key quantities such as the average mean-squared error 1

d‖ŵ−w0‖22 or
the average test error between the output of the postulated model with respect to the ground truth
on a fresh data sample. At strictly positive temperatures, i.e. finite β, the problem of estimating
ŵ boils down to the evalutation of a posterior mean, for which the belief-propagation algorithm
is particularly suited. Although the graph representing the Boltzmann distribution Eq.(1.26) is
dense, the corresponding BP equations can be simplified in the high-dimensional limit, showing
that the messages are asymptotically Gaussian in the case of independent elements (not necessarily
identically distributed), with appropriately scaled variance, leading to the family of approximate
message passing algorithms [280, 196]. These algorithms have then been sucessfully used in statis-
tical inference with random design, notably starting with the LASSO [83, 84, 85]. AMP iterations
and the related proofs will be one of the central subjects of the work that follows, thus we postpone
further background to the next sections. Assuming the minimum of the cost L(Xw,y) + r(w) is
well-defined, we may take the β → +∞ limit and use Laplace’s approximation to recover the setup
of empirical risk minimization :

lim
β→+∞

ŵβ ∈ inf
wd

L(Xw,y) + r(w) (1.27)

which is indeed the typical supervised learning setup for a linear model. Now that the link between
statistical physics and empricial risk minimization has been provided, we will put aside the prob-
abilistic formulation of supervised learning leading to Boltzmann-like measures and focus on the
high-dimensional optimization problem :

ŵ ∈ inf
w∈Rd

L(Xw,y) + r(w) (1.28)

such that y = f0(Xw0), (1.29)

where f0 : Rn → Rn represents a label generating function, which may include additional sources of
randomness such as noise, and is generally separable across lines. In the case where the functions
L, r are convex, the minimization problem (1.28) represents the class of convex generalized linear
models, the building block of modern machine learning. These estimators include the most basic
and most widely used models in statistics and machine learning, notably the ridge regression,
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logistic regression and the LASSO. One can also consider the ensembling of a finite number K of
predictors, which represents the simplest instance of a neural network, for which the optimization
problem becomes

Ŵ ∈ inf
W∈Rd×K

L(XW,y) + r(W) (1.30)

such that y = f0(XW0) (1.31)

where W0 is now in Rd×K , and f0 is typically a function of the form f0(XW0)i = φ( 1
K

∑K
k=1 w>k xi)

for some function φ : R → R representing the action of f0 on each sample. Numerous works
characterized the asymptotic properties of such estimators for different instances of Eq.(1.28) in
the case where X has i.i.d. N (0, 1

d) elements, see [29, 282, 82, 281, 204] for instance, and the
related works sections of subsequent chapters for more references. Although these results led to a
better understanding of some important building blocks, the restriction to i.i.d. Gaussian matrices
drastically limits their practical usage, notably from the point of view of feature maps, which are
fundamental to understand realistic machine learning scenarios.

1.6 Goal of the present work and technical challenges

How can we add realisic structure to models of empirical risk minimization while keeping exactly
solvable problems ? A natural extension to the i.i.d. Gaussian design case is to add a covariance
matrix Σ ∈ Rd×d, which can represent the covariance operator of a given kernel, learnt features from
a neural network or simply the original data. The simplest instance of exactly solvable empirical
risk minimization is ridge regression with linear ground truth, which reads

ŵ ∈ inf
w∈Rd

1
2‖y−Xw‖+ λ2

2 ‖w‖
2
2 (1.32)

where y = Xw0 + ε (1.33)

where the ground truth w0, and noise vector ε have i.i.d. centered subgaussian coordinates with
respective variance τ0,∆0 and are mutually independent and independent from the design matrix
X. Further assume that the dimensions n, d go to infinity with a finite ratio α. In particular, the
squared elements of w0 and ε are subexponential and we may apply Bernstein’s inequality [287] to
obtain

1
d
‖w0‖22

a.s.−−−→
d→∞

τ0
1
n
‖ε‖22

a.s.−−−→
n→∞

∆0 (1.34)

For strictly positive λ2, the solution is unique and reads

ŵ = (X>X + λ2Id)−1 X>y (1.35)

Let X = USV> be the singular value decomposition of X, where U ∈ On,V ∈ Od are orthogonal
matrices, and S ∈ Rn×d contains the singular values of X. Using the orthogonality of the matrices
U,V and the expression for the response vector y, we may rewrite the solution as

ŵ = V
((

S>S + λ2Id
)−1

S>SV>w0 +
(
S>S + λ2Id

)−1
S>U>ε

)
(1.36)
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The average mean-squared error can then be written

1
d
‖ŵ−w0‖22 =

1
d

(((
S>S + λ2Id

)−1
S>S− Id

)
V>w0 +

(
S>S + λ2Id

)−1
S>U>ε

)>
(((

S>S + λ2Id
)−1

S>S− Id
)

V>w0 +
(
S>S + λ2Id

)−1
S>U>ε

)
(1.37)

Assuming the eigenvalues and eigenvectors of X verify the required conditions for the quadratic
forms to concentrate, see [78] and references therein, using the distributional assumptions on w0
and ε, we may expect a result of the form

1
d
‖ŵ−w0‖22

w.h.p.−−−−−→
n,d→∞

E
[

∆0λS>S + τ0λ
2
2

(λS>S + λ2)2

]
(1.38)

where λS>S = λX>X is a random variable distributed according to the limiting spectral density
limd→∞

1
d

∑d
i=1 δ(λ−λX>X,i). The study of sample covariance matrices X>X and more specifically

their eigenvalue distributions is the core objective of random matrix theory, which is one way to study
random design machine learning problems. In particular, the limiting spectral density of Gaussian
covariate matrices of the form ZΣZ> where Z has i.i.d. Gaussian elements with variance 1

d and
Σ ∈ S++

d is positive definite, with a spectral density that converges to a distribution with compact
support has been the subject of intense srcutiny since the seminal work of Marcenko and Pastur [189].
The concentration properties of related quadratic forms appearing in ridge regression problems have
been studied in [123, 159, 78] among others. The problem of ridge regression presented above is
solved using tools from random matrix theory in [78], where the MSE and average test error are
expressed in terms of the Stieltjes transform of X. Further derivations, using the replica method,
and comparisons with real data scenarios are given in [45], showing that adding a covariance matrix
to the initial i.i.d. Gaussian design is meaningful and gives insight into realistic scenarios. Note that
here, we have only provided an expression for a single observable of the estimator ŵ, rather than
a complete description of its asymptotic distribution in terms of simpler, decoupled components.
We will show how to do so on all models studied in the subsequent chapters, notably revisiting the
present ridge-regression with arbitrary bounded covariance in part II and III.

The problem of moving beyond the ridge regression setting is that there is no closed form for the
estimator ŵ. Indeed, the optimality condition of problem (1.28) reads, for differentiable loss and
regularisation,

X>∇L(Xŵ,y) +∇r(ŵ) = 0. (1.39)

Which does not seem, at first sight, solvable using tools from random matrix theory. One of the great
benefits of the replica method is that non-linearities going beyond ridge regression can be treated
straighforwardly, see e.g. [154, 13, 188] among other examples which will be given throughout this
manuscript. In that sense, what are the corresponding rigorous mathematical tools that enable
to study the asymptotic behaviour of optimization problems beyond ridge regression ? Let us
briefly describe four of these methods. The first one is the Guerra-Toninelli interpolation which
is based on building an interpolating path between the initial Hamiltonian and the decoupled one
initially obtained from the replica prediction. Although this method is quite powerful and has
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led to groundbreaking results on complex models such as the Sherrington-Kirkpatrick hamiltonian
[279, 221], it appears restricted to the Bayes-optimal setting for inference problems [18]. Adaptations
of this method have been applied to various inference problems but, to the best of our knowledge, no
results for empirical risk minimization have been obtained. Another method is the cavity method,
which has been described in section 1.4 from the theoretical physics viewpoint and can be made
rigorous on various models. It rests on the comparison of a system with n particles to a system with
n+ 1 particles, which leads to self-consistent equations in the large n limit. Here again this method
has been applied sucessfully to Bayes-optimal problems [163] but also to convex generalized linear
models [89]. Extending the results of this method to non-separable problems however, notably those
obtained by introducing covariance matrices, is not always straightforward. This leads us to the two
methods that will be discussed and used in this thesis. The first one is based on convex Gaussian
comparison inequalities, in the form which appeared in the study of penalized linear regression
[273, 282]. The second one is based on iterative Gaussian conditioning arguments, in the form that
initially appeared in the context of the rigorous study of approximate message-passing algorithms
[28, 42]. Now that enough context and motivation has been given, showing the importance of the
high-dimensional asymptotics approach to machine learning along with the main technical challenges
that the current endeavor brings, we dive into the mathematics that are necessary to move forward.

1.7 Overview of the technical tools

The purpose of this section is to provide insights into the core technical tools that underly the
results presented in this thesis. We start with notions in concentration of measures and convex
analysis that will be used repeatedly in the following chapters, before presenting convex Gaussian
comparison inequalities, and illustrating their use on a simple example. We will then move to
Gaussian iterative conditioning, which enables to obtain asymptotically exact decoupled models for
optimization algorithms involving random matrices, and describe how they can be used to study
convex generalized linear estimators. We stress that this section is not meant to be exhaustive :
several notions will not be reminded (subdifferentials, conjugate of a convex function, subgaussian
random variables, ...), and intermediate steps that do not carry significant importance will not be
detailed. The material presented here is intended to provide the core objects and proof ideas that we
will build upon, and why they ultimately allow us to reach our goals. Complete and fully rigorous
proofs on more complex models will be given in the subsequent chapters.

1.7.1 Elements of concentration of measure

As is common in disordered systems and statistics, we will mainly consider Gaussian design matrices
with different variations for their covariance structures. Most of the other quantities, such as noise
or ground truth vectors will be assumed to have fast decaying tails, typically subGaussian random
variables. The different functions involved such as loss, regularization or observables describing the
performance of an estimator such as the mean-squared error, will be assumed to be pseudo-Lipschitz
[28, 37] :

Definition 1 (Pseudo-Lipschitz function). For k ∈ N∗ and any N,m, q ∈ N∗ where k, q do not
depend on N,m, a function Φ : RN×q → Rm×q is said to be pseudo-Lipschitz of order k if there
exists a constant L, independent on N,m such that for any x,y ∈ RN×q,

‖Φ(x)− Φ(y)‖F√
m

6 L

(
1 +

(‖x‖F√
N

)k−1
+
(‖y‖F√

N

)k−1) ‖x− y‖F√
N

(1.40)
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For a scalar (or low-dimensional) valued observable of iterates of an algorithm or an estimator,
we will typically have m = 1, arbitrary N (which will ultimately be taken to infinity) and q < +∞,
while an update function of an algorithm will usually have artbitrary m = N and q < ∞. The
parameter q is introduced such that our framework is fit to deal with the ensembling of a finite
number of predictors or any embedding that requires a matrix valued variable, as will often be
the case. The definition of pseudo-Lipschitz function originally proposed in [28], which studies the
dynamics of a class of approximate message passing algorithms, does not include the scaling by√
m,
√
N of definition 1, where the property is defined for q = 1 as

‖Φ(x)− Φ(y)‖2 6 L
(
1 + ‖x‖k−1

2 + ‖y‖k−1
2

)
‖x− y‖2, (1.41)

All concentration statements in [28] are presented for separable functions, and the following propo-
sition is a consequence of their lemma 5, whose proof is based on a truncature argument.

Proposition 1 (Concentration of separable, pseudo-Lipschitz function [28]). Let z ∈ Rn be a
random vector with i.i.d. coordinates from a distribution pz with bounded k-th moments. Then, for
any pseudo-Lipschitz function ψ : R→ R

lim
n→∞

1
d

n∑
i=1

ψ(zi)
a.s.= E[ψ(z)] (1.42)

However, since we will consider non-separable functions, we will follow the framework of [37]
which includes the scaling in the definition for q = 1. Combined with the Gaussian-Poincaré
inequality, definition 1 allows to prove the concentration of non-linear transforms for Gaussian
random vectors quite straightforwardly. Let’s look at a simple example to better understand the
procedure.

Proposition 2 (Gaussian Poincaré inequality [47]). Let z ∈ Rn be a N(0, In) random vector. Then
for any continuous, weakly differentiable ϕ:

Var[ϕ(z)] 6 cE
[
‖∇ϕ(z)‖22

]
(1.43)

We then have the following concentration result, a straightforward extension to q > 1 of lemma
C.8 from [37]

Lemma 1. Let Z ∼ N(0,κ⊗IN ) where κ ∈ S+
q has bounded operator norm. Let ΦN : RN×q → R be

a sequence of random functions, independent of Z, such that P(EN )→ 1 as N →∞, where EN is the
event that ΦN is pseudo-Lipschitz of (deterministic) order k with (deterministic) pseudo-Lipschitz
constant L. Then ΦN (Z) P' E[ΦN (Z)].

Proof. First, it is straightforward to see that

ΦN (Z) = ΦN (Z̃κ1/2) = Φ̃N (Z̃) (1.44)

where Z̃ ∈ RN×q is an i.i.d. standard normal matrix, and Φ̃N = ΦN (.κ1/2). Since ‖κ‖op is bounded
for all N, Φ̃ is also pseudo-Lipschitz of order k, with constant Lmax(‖κ‖1/2op , ‖κ‖

k/2
op ). Since q is

finite and independent on N,m, Φ̃N can be considered as a pseudo-Lipschitz function acting on
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a vector of size Nq with i.i.d. standard normal components. Under EN , using the definition of
pseudo-Lipschitz functions and proposition 2:

EZ
[
‖∇ΦN (Z)‖22

]
6

L2

Nq
EZ

(1 + 2
( 1√

Nq
‖Z‖2

)k−1
)2
 6

L2

Nq
C(k) (1.45)

for a constant C(k) that only depends on k. Then for any ε > 0, there exists a constant c > 0,
independent of N , such that:

P{|ΦN (Z)− EZ[ΦN (Z)]| > ε} 6 E{P{|ΦN (Z)− EZ[ΦN (Z)]| > ε}IEN }+ P(ĒN )

6
Var [ΦN (Z)]

ε2
+ P(ĒN )

6
L2C(k)
Nqε2

+ P(ĒN ) (1.46)

where the second and third line are obtained by applying Chebyshev’s inequality and proposition 2
with the variance bound evaluated at Eq.(1.45).

The cost of the generality of this result is a weak control over the rate at which the concentration
happens : we will give little interest to finite size rates in this thesis, and will generally prefer
asymptotic statements. For Lipschitz functions of i.i.d. Gaussian random vectors, (not necessarily
separable), usual Gaussian concentration results give an exponential tail, see e.g. [47], while [251]
also provides an exponential tail for separable, pseudo-Lipschitz functions of order 2 and subgaussian
inputs. Note that the proof of lemma 1 is valid for any distribution verifying a log-Sobolev inequality.
A benefit of including the scaling in the definition of the pseudo-Lipschitz function is that it does
not require writing the dimension explicitly each time, which will be useful in tedious derivations.
However, it may not be obvious to check this property each time. Machine learning losses and
regularisations are usually pseudo-Lipschitz of order 2, with losses being separable. In this regard,
it is useful to note that for a scalar, pseudo-Lipschitz of order 2 function ψ : R → R, the function
1
n

∑n
i=1 ψ(.) is pseudo-Lipschitz of order 2 in the sense of definition 1. The mean-squared error

1
n‖ŵ−w0‖22 of instance, is pseudo-Lipschitz of order 2. Further useful results about Lipschitz
functions are contained in appendix Graph-AMP and Gordon.

For a given estimator or any related quantity on which we wish to prove statements regarding its
asymptotic distribution, we will write it in terms of the concentration of pseudo-Lipschitz observ-
ables of this quantity. Owing to the definition of pseudo-Lipschitz functions, two random matrices
X,Z ∈ Rn×q will have the same behaviour in the Plk sense if we can control their higher order
moments and the quantity 1√

N
‖X− Z‖F converges to zero with high probability. For comparison,

proving the convergence of the empirical distribution of an estimator can be done by studying the
convergence of the empirical mean of bounded continuous functions of this estimator towards an
expectation over a mean-field model. Convergence in the pseudo-Lipschitz sense is thus a similar
statement but can be adapted to non-separable functions and includes non bounded observables
commonly used in machine learning such as the mean squared error. In informal statements, we
will sometimes denote Plk−−−−−→

n,d→∞
the fact that two random variables asymptotically have the same

behaviour.
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1.7.2 Elements of convex analysis

In this paragraph, we introduce functions that appear in convex analysis and will be used repeatedly
in all the proofs regarding convex empirical risk minimization. Indeed, we will see that the cost
functions and estimators defined by convex generalized linear models can be expressed using well
defined objects with convenient regularity properties, the Moreau envelope and proximal operator
[25, 224]. All the results presented here can be found in [25].

Definition 2 (Moreau envelope and proximal operator). Consider a proper, closed, lower semicon-
tinuous convex function f : Rd → R. Its Moreau envelope is defined by the optimization problem

∀ τ > 0, Mτf (x) = min
z∈Rd

{
f(z) + 1

2τ ‖x− z‖22
}

(1.47)

and its proximal operator

∀ γ > 0, proxγf (x) = arg min
z∈Rd

{
f(z) + 1

2γ ‖x− z‖22
}

(1.48)

Owing to the convexity of f , the strong convexity and supercoercivity of the quadratic term, the
optimization problem defining the Moreau envelope has a unique solution [25]. Thus the proximal
operator is the unique point realizing the minimum of the Moreau envelope:

Mτf (x) = f(proxτf (x)) + 1
2τ
∥∥∥x− proxτf (x)

∥∥∥2

2
(1.49)

Moreau envelopes have the same set of minimizers as the original function and are continuously
differentiable on their domain, with derivatives:

∇xMτf (x) = 1
τ

(x− proxτf (x)) (1.50)
∂

∂τ
Mτf (x) = − 1

2τ2

∥∥∥x− proxτf (x)
∥∥∥2

2
(1.51)

They can be understood as a smoothed version of the original function f , which may be non-
differentiable, such as the l1 norm in machine learning, while the proximity operator can be un-
derstood as a projection on the level sets of the function f . Indeed, replacing f with the indicator
function of an ensemble recovers the othogonal projector on this ensemble. The expression for the
gradient Eq.(1.50) shows that the proximal operator with parameter τ is also equivalent to taking a
gradient step with step-size τ on the Moreau envelope with parameter τ . Furthermore, the optimal-
ity condition of the optimization problem Eq.(1.48) gives the following alternate characterization of
proximity operators

proxγf (x) = (Id+ γ∂f)−1 (x) (1.52)

where ∂f is the subdifferential of f . This formulation is the resolvent of the subdifferential operator
of f . This shows, in turn, the following equivalence

proxγf (x) = x ⇐⇒ x ∈ zer(∂f) (1.53)

Additionally, proximal operators are firmly non-expansive, i.e.

∀γ > 0, ∀x,y ∈ X ,
∥∥∥proxγf (x)− proxγf (y)

∥∥∥2

2
6 〈x− y,proxγf (x)− proxγf (y)〉, (1.54)
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which is a useful property to control the trajectories of proximal based optimization algorithms.
These properties motivate the use of these operators to optimize convex functions in stable and
efficient fashion, and proximal algorithms are one of the cornerstones of convex optimization, see
e.g. [50, 224], with the simplest instance being the proximal-point algorithm

xt+1 = proxγf (xt) (1.55)

We will further discuss related algorithms in part III. Thus, even if they are defined with optimization
problems, we will consider a problem to be solved once we have reached expressions involving the
Moreau envelopes and proximal operators of sums of independent random variables/vectors/low-
rank matrices. For example, the proximity operators of quadratic form reads

f(x) = 1
2x>Ax + b>x + c A ∈ S+

d ,b, c ∈ Rd

proxγf (x) = (γA + Id)−1 (x− γb) (1.56)

and the proximal operator for the `1 norm is an element-wise application of the soft-thresholding
operator

∀1 6 i 6 n
[
proxγ‖.‖1

(x)
]
i

= sign(xi)max (0, |xi| − γ) . (1.57)

More generally, proximal operators of usual convex functions (logistic loss, log-barrier, hinge loss,
...) are straightforward to compute and stable to evaluate numerically.

1.7.3 Gaussian comparison inequalities

We now turn to the description of a first method that can be used to decouple the measure implied
by equation (1.28). Recall that by decoupling, we mean replacing the random (with extensive
dimensions) matrix X by simpler, independent objects. We start by introducing a comparison
inequality for Gaussian random processes indexed on compact sets [121, 161]:

Proposition 3. (Gordon’s inequality [121, 161]) Let Du ⊂ Rn and Dv ⊂ Rm be two compact
sets. Let (X(u,v))(u,v)∈Du×Dv and (Y (u,v))(u,v)∈Du×Dv be two centered Gaussian processes with
continuous sample paths. Assume that

E
[
X(u,v)2] = E

[
Y (u,v)2] for all (u,v) ∈ Du ×Dv

E [X(u,v)X(u,v′)] > E [Y (u,v)Y (u,v′)] for all u ∈ Du,v,v′ ∈ Dv

E [X(u,v)X(u′,v′)] 6 E [Y (u,v)Y (u′,v′)] for all u,u′ ∈ Du,v,v′ ∈ Dv s.t. u 6= u′

Then for all t ∈ R

P
(

min
u∈Du

max
v∈Dv

Y (u,v) 6 t

)
6 P

(
min
u∈Du

max
v∈Dv

X(u,v) 6 t

)
(1.58)

The inequality is rather intuitive : the fluctuations of Gaussian processes are governed by their
covariance functions, and comparing the covariances leads to comparisons on their maxima and
minima. It can then be used to obtain tight inequalitites on convex-concave minmax problems
[282, 281].
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Corollary 1. (Convex Gaussian minmax theorem [273, 282, 281]) Let Du ⊂ Rn and Dv ⊂ Rm be
two compact sets and let Q : Du×Dv → R denote a continuous function. Let G ∈ Rn×m i.i.d∼ N (0, 1),
g ∼ N (0, In) and h ∼ N (0, Im) be independent standard Gaussian vectors. Define the functions{

C∗(G) = minu∈Du maxv∈Dv vTGu +Q(u,v)
L∗(g,h) = minu∈Du maxv∈Dv ‖v‖gTu + ‖u‖hTv +Q(u,v)

Then we have:

• For all t ∈ R
P (C∗(G) 6 t) 6 2P (L∗(g,h) 6 t)

• If Du, Dv are convex sets and Q is convex-concave, then for all t ∈ R

P (C∗(G) > t) > 2P (L∗(g,h) > t)

In particular, for all µ ∈ R, t > 0,

P (|C∗(G)− µ| > t) 6 2P (|L∗(g,h)− µ| > t) (1.59)

This corollary, obtained by verifying the covariance conditions of proposition 3 for the Gaussian
processes defining C(G), L(g,h) allows to study the concentration properties of convex-concave
problems involving a dense random matrix by means of a simpler problem involving only two
independent random vectors. In what follows, we will present a variant of the core derivation of
the result from [281] which studies convex penalized generalized regression. Several technical steps
are not reproduced, and pointers to the original paper will be given for their proofs and the full
set of assumptions. We focus instead on the actual ”algebra” that corollary 1 enables, and where
ommited steps can be made rigorous for intuitive reasons.

An example : convex penalized regression

Consider the following regression problem

ŵ = arg min
w∈Rd

1
d
{L(y−Aw) + r(w)} (1.60)

where y = Aw0 + ε (1.61)

where L, r are convex functions, A ∈ Rn×d has i.i.d. N (0, 1/d) elements, ε ∼ N (0,∆In) and w0 is
sampled i.i.d. from a subgaussian distribution. Omitting the 1

d scaling for now, we may equivalently
wirte the optimization problem as

min
x
L(y−Aw) + r(w)

= min
w

L(A(w0 −w) + ε) + r(w)

= min
e
L(ε−

√
dAe) + r(w0 +

√
de)
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where in the last lign we introduced the variable e = w−w0√
d

. Reformulating the problem with an
auxiliary variable z = ε−

√
dAe, we can rewrite the objective cost with the corresponding Lagrange

multiplier λ

min
e,z

L(z) + r(w0 +
√
de) s.t. z = ε−

√
dAe

⇐⇒ min
e,z

max
λ

L(z) + r(ε+
√
de) + λT

(
z− ε+

√
dAe

)
Under appropriate growth conditions on the functions L, r (see assumption 1(b) from [281]), the
compactness requirements to apply corollary 1 can be met (along with the convexity-concavity re-
quirements which are straightforwardly verified), and we way now write the corresponding decoupled
optimization problem:

min
e,z

max
λ
‖λ‖2g

Te + ‖e‖2h
Tλ+ L(z) + r(w0 +

√
de) + λT (z− ε) (1.62)

where g ∈ Rd and h ∈ Rn are independent vectors with i.i.d. standard normal coordinates. Intro-
ducing the convex conjugate of r with dual variable µ, r(w0+

√
de) = maxµ{µT (w0+

√
de)−r∗(µ)},

which gives, reintroducing the scaling by 1
n :

min
e,z

max
λ,µ

1
d

(
‖λ‖2g

Te + ‖e‖2h
Tλ+ L(z) + λT (z− ε) + µT (w0 +

√
ne)− r∗(µ)

)
Here, due to the fact that g,h may be negative, the problem is not convex-concave anymore.
However, it is shown in [281] that, since this optimization problem is equivalent to a convex one,
we may invert the order of minimization as if strong duality appplied. Then, letting α = ‖e‖2 =∥∥∥w−w0√

d

∥∥∥
2
, and performing the optimization step on e which is now a linear optimization problem,

we reach

max
λ,µ

min
α,z
−α
d

∥∥∥‖λ‖2g +
√
dµ
∥∥∥

2
+ α

d
hTλ+ 1

d
L(z) + 1

d
λT (z− ε) + 1

d
µTw0 −

1
d
r∗(µ).

letting β = 1√
d
‖λ‖2 (the problem is now convex so we may invert the order of minimization) and

performing the linear optimization on λ gives the equivalent problem:

max
β,µ

min
α,z
− α√

d
‖βg + µ‖2 + β√

d
‖αh + z− ε‖2 + 1

d
L(z) + 1

d
µTw0 −

1
d
r∗(µ)

We then introduce the following representation of the norm ‖t‖2 = infτ>0
τ
2 + ‖t‖2

2
2 , reaching

max
β,µ,τ2>0

min
α,z,τ1>0

−ατ2
2 + βτ1

2 + 1
d

(
− α

2τ2
‖βg + µ‖22 + β

2τ1
‖αh + z− ε‖22 + g(z) + µTw0 − f∗(µ)

)
Completing the squares in µ and w0, inverting the sign in front of g (centered Gaussian) for
convenience yields:

− α

2τ2
‖µ− βg‖22 = − α

2τ2

∥∥∥∥µ− (τ2
α

w0 + βg
)∥∥∥∥2

2
− xT0 (µ− βg) + τ2

2α‖w0‖22 (1.63)
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which gives

max
β,τ2>0

min
α,τ1>0

−ατ2
2 + βτ1

2 + β

d
gTw0 + τ2

2dα‖w0‖22

+ 1
d

min
z

{
β

2τ1
‖z− ε− αh‖22 + g(z)

}
− 1
d

min
µ

{
α

2τ2

∥∥∥∥µ− (τ2
α

w0 + βg)
∥∥∥∥2

2
+ f∗(µ)

}

Using the definition of Moreau envelopes and expression for Moreau envelopes of conjugate pairs
(see [25] or the proofs for chapter 7):

max
β,τ2>0

min
α,τ1>0

−ατ2
2 + βτ1

2 + αβ2

2dτ2
gTg + 1

d
M τ1

β
g(.)(ε+ αh) + 1

d
M α

τ2
f(.)

(
w0 + βα

τ2
g
)

Assuming the loss and regularization functions f, g are separable and pseudo-Lipschitz of order 2,
the following pointwise convergence occurs when n, d→∞ with n/d = γ > 0 for finite γ:

− ατ2
2 + βτ1

2 + αβ2

2dτ2
gTg + 1

d
M τ1

β
g(.)(ε+ αh) + 1

d
M α

τ2
f(.)

(
w0 + βα

τ2
g
)

a.s.−−−−−→
n,d→∞

− ατ2
2 + βτ1

2 + αβ2

2τ2
+ γE

[
M τ1

β
g(.)(ε+ αh)

]
+ E

[
M α

τ2
f(.)

(
w0 + βα

τ2
g

)]
Uniform convergence can be proven using the convexity assumption, leading to the convergence of
the extremum as well. In the high-dimensional proportional limit, the optimal cost function thus
reduces to the scalar optimization problem.

max
β,τ2>0

min
α,τ1>0

−ατ2
2 + βτ1

2 + αβ2

2τ2
+ γE

[
M τ1

β
g(.)(ε+ αh)

]
+ E

[
M α

τ2
f(.)

(
w0 + βα

τ2
g

)]
(1.64)

The replica method, when applied to the same problem, gives the same result [12]. Using the differ-
entiability results for Moreau envelopes presented in section 1.7.2, we can write the self-consistent
system of non-linear equations, involving the proximal operators of f, g, solving the optimization
problem (1.64). Once again using the properties of Moreau envelopes, the optimization problem
(1.64) can be shown to be strictly convex-concave [281], proving the uniqueness of the optimal
quarduplet α∗, β∗, τ∗1 , τ∗2 . Corollary 3 then gives the following result

lim
d→∞

1
d
‖ŵ−w0‖

a.s.= α∗ (1.65)

Using a stronger version of corollary 1 [204, 57, 176], one can actually prove a statement regarding
the asymptotic distribution of ŵ. Recall that the proximal operator is the unique solution to the
minimization problem defining the Moreau envelope. In the case presented here, for any pseudo-
Lipschitz function of order 2 ψ : R→ R

lim
n,d→∞

1
d

d∑
i=1

ψ(ŵi) = E
[
ψ

(
proxα∗

τ∗2
f(.)

(
w0 + β∗α∗

τ∗2
g

))]
(1.66)

where w0 ∼ pw0 and g ∼ N (0, 1). The result thus becomes very concrete : the estimator is asymptot-
ically distributed as the ground truth w0 with an added noise β∗α∗

τ∗2
g, to which the proximal operator

of the regularisation is applied. In the case of an `1 penalty, we see that the soft-thresholding oper-
ator will put to zero coefficients that are smaller than a value uniquely prescribed by the solution
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of the scalar optimization problem (1.64), on a noisy vector centred arount the ground-truth. The
Gordon comparison theorem approach allows to straightforwardly turn the study of the asymptotic
mean-squared error into a scalar optimization problem obtained by simplifying a decoupled problem
with convenient convex optimization results. Moreover, several of the intermediate technical steps,
such as verifying the compactness of the feasibility set or inverting the order of minimization when
the problem presents negative weighted norms, remain similar for a variety of convex problems
going beyond generalized regression. This makes this framework quite appealing, and we will use
this approach in chapter 7 to study a more complex model.

Three main hurdles can be found to this approach : although we obtain the asymptotic value
of the mean squared error, we do not obtain a full characterisation of asymptotic distribution of
ŵ. In [204], further inequalities are proven to obtain the full characterization of the asymptotic
distribution of the LASSO with i.i.d. Gaussian matrices as discussed above, along with the finite
size rates. The approach is quite tedious, and we will sketch in chapter 7 how to use it for a more
complex problem. The other issue is that, for matrix valued estimators, the optimization problem
involving the dense random matrix G ∈ Rn×d cannot be decoupled in the same form as in corollary
1. This prevents the Gordon approach to be used for ensembling or multiclass problems, which are
formulated in terms of a (low-rank) matrix estimator. Finally, we mentioned in the introduction that
the dynamics of several descent algorithms would be of interest, for which the Gordon approach
is not well-suited. We thus turn to the method that we will use the most : iterative Gaussian
conditioning.

1.7.4 Iterative Gaussian conditioning

The method that we will now present arose in the rigorous study of approximate message passing
algorithms, notably [28, 42], and rests on a fundamental property of the Gaussian distribution :
orthogonality and independence are equivalent for Gaussian random variables, and independence
can be entirely characterized by their covariance matrices. Thus, in the Gaussian case, computing
conditional expectations that are initially defined as orthogonal projections on an infinite dimen-
sional space, becomes possible with finite dimensional projections. Intuitively, consider an n × d
random matrix A with i.i.d. standard normal entries and a deterministic d-dimensional vector w.
We can then decompose A as

A d= APx + ÃP⊥x (1.67)

where Ã is an independent copy of A, Px = xx>
‖x‖2

2
is the orthogonal projector on x and P⊥x = Id−Px.

A more generic statement can be found in [28] :

Lemma 2 (Gaussian matrices under linear constraints). Consider an n× d random matrix A with
i.i.d. standard normal elements, and deterministic matrices Q ∈ Rd×k, M ∈ Rn×k, such that the
projectors PM = M

(
M>M

)−1
M> and PQ = Q

(
Q>Q

)−1
Q> onto the subspaces spanned by

the columns of Q and M exist. Then the conditional distribution of A given the random variables
AQ,A>M may be written

A|AQ,A>M = PMA + APQ −PMAPQ + P⊥MÃP⊥Q (1.68)

where P⊥M = In −PM, P⊥Q = Id −PQ, and Ã is an independent copy of A.



CHAPTER 1. INTRODUCTION 44

As an example, let us study the dynamics of the gradient descent corresponding to the mini-
mization problem

ŵ ∈ inf
w∈Rd

f(Aw) (1.69)

We will start with a sample splitting assumption, and then move to the generic case.

Gradient descent with sample splitting We start with sample splitting, i.e. a new batch of
data is used at each iteration:

∀t ∈ N∗ wt+1 = wt − γt(At)>∇f(Atwt) (1.70)

where, for any t ∈ N, At ∈ Rn×d is a matrix with i.i.d. Gaussian elements and variance 1/d indepen-
dent on all other

{
Ai
}
i 6=t, γt ∈ R is a scalar step-size and f is a twice differentiable, deterministic

function with pseudo-Lipschitz gradient ∇f : Rn → Rn. We also assume that f is separable, with an
elementwise operation f . The iteration is initialized with w0 ∈ Rd, a random vector independent
on A with i.i.d. subGaussian elements. Finally, assume that, when the dimensions of the problem
are taken to infinity, we do so with finite ratio α = n/d. Starting at t = 0, we condition equation
(1.70) on (the sigma algebra generated by) w0,A0w0, and obtain

w1|w0,A0w0 = w0 − γ0
(
A0Pw0 + Ã0P⊥w0

)>
∇f(A0w0) (1.71)

= w0 − γ0w0 1
‖w0‖22

(
A0w0

)>
∇f(A0w0)− γ0P⊥w0Ã>∇f(A0w0) (1.72)

Owing to the sample splitting assumption, the vector A0w0 has i.i.d. entries distributed according
to N (0, 1

d

∥∥w0∥∥2
2). We can then write

1
‖w0‖22

(
A0w0

)>
∇f(A0w0) = 1

1
d‖w0‖22

1
d

(
A0w0

)>
∇f(A0w0) (1.73)

The term 1
d

(
A0w0)>∇f(A0w0) is a scalar valued, pseudo-Lipschitz function of A0w0, and the

subgaussian assumption on w0 ensures that the quantity 1
d

∥∥w0∥∥2
2 converges almost surely to a

finite, deterministic quantity. We can thus use lemma 1, the continuous mapping theorem (in the
form of Slutsky’s lemma), and Stein’s lemma to show that

1
‖w0‖22

(
A0w0

)>
∇f(A0w0) P' αE

[
f ′′(z0)

]
(1.74)

where z0 ∼ N (0, ρ0) and we introduced ρ0 = limd→∞
1
d

∥∥w0∥∥2
2. Turning to the part orthogonal to

w0 and using the fact that the projector Pw0 is of rank 1, the elements of Ã have variance 1
d and∥∥w0∥∥2

2 is of order d, lemma 21 shows that
1√
d

∥∥∥P⊥w0Ã>∇f(A0w0)− (Ã0)>∇f(A0w0)
∥∥∥

2

P' 0 (1.75)

where (Ã0)>∇f(A0w0) is a vector with i.i.d elements distributed as N (0, 1
d

∥∥∇f(A0w0)
∥∥2

2). Once
again, the function 1

d

∥∥∇f(A0w0)
∥∥2

2 is scalar valued and pseudo-Lipschitz, thus lemma 1 and the
continuous mapping theorem show that, for any pseudo-Lipschitz function ψ : R→ R of order 2,

1
d

d∑
i=1

ψ(
(
P⊥w0Ã>∇f(A0w0)

)
i
) P' E

[
ψ(u0)

]
(1.76)
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where u0 ∼ N (0, τ0) and we have introduced τ0 = limn,d→∞
1
d

∥∥∇f(A0w0)
∥∥2

2 = αE
[
(f ′(z0))2]. Using

these results, we may now lift the conditioning and use the definition of pseudo-Lipschitz function
to recover the scalar equation describing the high-dimensional behaviour of w1. A straightforward
induction shows that, for any t ∈ N, the quantity 1

d

∥∥wt
∥∥2

2 is almost surely bounded, and the same
conditioning argument can be applied along the sample splitting assumption to reach the following
theorem

Theorem 2. (High-dimensional dynamics of gradient descent with sample splitting) Consider the
iteration Eq. (1.70) with its set of assumptions described above. Define the following discrete-time
one-dimensional stochastic process, initialized with a subgaussian random variable ω0 with variance
ρ0:

ωt+1 =
(
1− γtαE

[
f ′′(zt)

])
ωt + γtut (1.77)

where zt ∼ N (0, ρt) and ut ∼ N (0, τ t) are independent, and ρt = E
[
(ωt)2], τ t = αE

[
(f ′(zt))2].

Then, for any t ∈ N and any pseudo-Lipschitz function of order 2 ψ : R→ R , the following holds

1
d

d∑
i=1

ψ(wti)
P' E

[
ψ(ωt)

]
(1.78)

We have obtained a full description of the asymptotic distribution of wt in terms of a scalar
equation. The sample splitting assumption however, is unrealistic. Let us move to the generic case
that corresponds to the usual gradient descent.

Gradient descent without sample splitting The proof becomes much more complicated with-
out the sample splitting assumption, and the full result along with its proof, which recovers a result
known as dynamical mean-field theory in physics, will be given in chapter 6, in which we also dis-
cuss the related litterature, both in theoretical physics and mathematics. Here we will only do the
first few steps, to give a flavour of the problem, and to motivate the introduction of a stochastic
correction at each time step, leading to approximate message passing algorithms. Let us rewrite the
dynamics without the sample splitting assumption in the following way

vt+1 = −γtA>mt (1.79)
mt = ∇f(rt) (1.80)

rt = A
t∑

k=0
vk (1.81)

where vt = wt−wt−1 and w−1 = 0. Then v0 = w0, assumed to be independent from A and sampled
i.i.d. from a sub-gaussian distribution. Let’s try to use Gaussian conditioning to decompose the
different contributions at each time step, and see if concentration of measure allows to simplify
independent terms. Starting at t = 0:

v0 = w0 (1.82)

r0 = Av0 ∼ N (0, 1
d

∥∥∥w0
∥∥∥2

2
In) (1.83)

v1 = −γ0A>∇f(r0) (1.84)
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Since v0 is assumed to be independent of the rest, we can consider the whole proof as done con-
ditioned on the distribution of v0. Focusing on v1, conditioning on r0 and using the Gaussian
conditioning lemma 2

v1|r0 = v1|Av0 (1.85)
= −γ0 (A|Av0)>∇f(r0) (1.86)

= −γ0
(
APv0 + ÃP⊥v0

)>
∇f(r0) (1.87)

= −γ0 v0(v0)>

‖v0‖22
A>∇f(r0)− γ0P⊥v0Ã>∇f(r0) (1.88)

= −γ0 v0(r0)>

‖v0‖22
∇f(r0)− γ0P⊥v0Ã>∇f(r0) (1.89)

using similar arguments as before (see e.g. the chapter 2), we will reach a similar statement as for
the first step of the gradient descent with sample splitting. Moving to r1, we condition on (the
sigma algebra generated by) v1, r0 to reach

r1|r0,v1 = r1|Av0,A>m0 (1.90)

= A
(
v0 + v1

)
|Av0,A>m0 (1.91)

= Av0 + A|Av0,A>m0v1 (1.92)

= Av0 +
(
Pm0A + APv0 −Pm0APv0 + P⊥m0ÃP⊥v0

)
v1 (1.93)

= Av0 +
(
Pm0AP⊥v0 + APv0 + P⊥m0ÃP⊥v0

)
v1 (1.94)

= Av0 + APv0v1 + P⊥m0ÃP⊥v0v1︸ ︷︷ ︸
I1

+ Pm0AP⊥v0v1︸ ︷︷ ︸
I2

(1.95)

We will show that the term I1 constitutes an additive Gaussian process with correlation across all
time steps, while the term I2 will build up a memory kernel. Starting with I1:

I1
Pl2−−−−−→

n,d→∞
Av0 + Av0 (v0)>v1

‖v0‖22
+ ÃP⊥v0v1 (1.96)

where Ã is independent on A,v0, r0,v1, and we remind that the notation Pl2−−−−−→
n,d→∞

informally denotes
that two random variables asymptotically give the same value for any pseudo-Lipschitz function of
order 2. It is straightforward to check that this term converges to a Gaussian process with cross
correlations equal to the inner product of successive iterates w (recall that the v are the increments
in w). The term I2 can be rewritten

I2 = m0
(
(m0)>m0

)−1
(m0)>AP⊥v0v1 (1.97)

= −m0
(
(m0)>m0

)−1
( 1
γ0 v1

)>
P⊥v0v1 (1.98)

(1.99)

where, using the result for v1 at Eq.(1.89), we have that

(v1)>P⊥v0v1 P−−−−−→
n,d→∞

(γ0)2 1
d
E
[∥∥∥∇f(r0)

∥∥∥2

2

]
(1.100)
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which leads to, using the definition of m0 and Eq.(1.83),

I2
Plk−−−−−→

n,d→∞
m0γ0 = −γ0∇f(r0) (1.101)

which is the first term of a memory kernel. We will show in chapter 6 how to continue this proof
using an induction. The curious reader may have a look at Theorem 9 from chapter 6, and see that
the full result is somewhat impractical. In the introduction, we mentioned approximate message
passing algorithms : we will now show how a stochastic correction at each time step may define an
iteration with much simpler dynamics, while retaining all the relevant information for a wide family
of problems.

1.7.5 Approximate message-passing

As discussed in subsection 1.4, AMP iterations first originate in statistical physics as Gaussian
relaxation of belief-propagation on dense graphs, see e.g. [154], and their derivation is usually
presented by formulating an inference problem as a factor graph and simplifying the messages in
the high-dimensional limit using heuristic arguments. The set of non-linear equations describing the
dynamics of messages in this limit is called state evolution equations, and have been the subject of
mathematical proofs, notably by Erwin Bolthausen [41], and subsequently in [28, 135, 37]. Our proof
in chapters 2 and 3 is based on similar ideas. The main benefit of these equations is that they track
the exact asymptotic distribution of the iterates of the algorithm with a simple Markovian recursion
at each time step, and this without any sample splitting assumption. From the mathematical point
of view, if one is willing to forget about the physical intuition, AMP iterations can thus be seen
as a family of sequence with an ”appropriate” correction that considerably simplifies the dynamics
without losing relevant information. We stress that this is not the standard way of presenting AMP
iterations, but it is more in tune with the results presented in this thesis.

Recall the equation (1.89) we had for v1 on the first step of the natural gradient descent

v1|r0 = −γ0 v0(r0)>

‖v0‖22
∇f(r0)− γ0P⊥v0Ã>∇f(r0) (1.102)

where we have seen that the term −γ0 v0(r0)>
‖v0‖2

2
∇f(r0) converges in the pseudo-Lipschitz sense to a

previous iterate v0 with asymptotically deterministic prefactor −γ0E
[
f ′′(z0)

]
where the distribu-

tion of z0 may be evaluated from the previous iteration. The second term is simply an additive
independent Gaussian. The idea is thus to remove, at each time step, a term of the form btvt that
cancels the first part, the so-called Onsager correction. This way, we only keep the information that
is ”new”. Note that the conditional expectation elegantly captures this intuition : at each iteration,
we only keep the part that is not measurable according to the σ-algebra generated by previous
iterates. We now move to the proof of state evolution equations for the simplest instance of an
AMP iteration, in the form it originally took to generate solutions of the Sherrington-Kirkpatrick
problem at high-temperature in [41, 42].

Let G ∈ GOE(n),
{
f t
}
t∈N a sequence of separable, pseudo-Lipschitz functions of order 2. The

iterates xt then take the form

xt+1 = Amt − btmt−1 (1.103)
mt = ft(xt) (1.104)
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with initialization at x0 ∈ Rn, for instance with i.i.d. subGaussian coordinates.

bt = 1
n

div
(
f t(xt)

)
(1.105)

Definition 3 (state evolution iterates). The state evolution iterates are composed of one infinite-
dimensional array (κs,r)r,s>0 of scalars. This array is generated as follows. Define the first state
evolution iterate

κ1,1 = E
[
(f0(x0))2

]
(1.106)

Recursively, once κs,r, 0 6 s, r 6 t are defined for some t > 1, take z0 = x0 and (z1, . . . , zt) ∈ Rt a
centered Gaussian vector of covariance (κs,r)s,r6t. We then define new state evolution iterates

κt+1,s+1 = κs+1,t+1 = E
[
fs(zs)f t(zt)

]
, s ∈ {0, . . . , t} .

The following property then holds for the AMP iteration (1.103)-(1.104).

Theorem 3. Define, as above, z0 = x0 and (z1, . . . , zt) ∈ Rt a centered Gaussian vector of covari-
ance (κs,r)s,r6t. Then for any pseudo-Lipschitz function Φ : Rt+1 → R of order 2,

1
n

n∑
i=1

Φ
(
(x0,x1, . . . ,xt)i

) P' E
[
Φ
(
x0, z1, . . . , zt

)]
.

Define the σ-algebra St = σ(x1,x2, ...,xt). We then have :

xt+1|St = A|Stmt − btmt−1 (1.107)

because mt,mt−1, bt are St-measurable.
A straightforward induction shows that conditioning on St is equivalent to conditioning on the
gaussian space generated by Am0,Am1, ...,Amt−1. We may then apply lemma 2 for a symmetric
matrix (GOE(n)), to obtain :

A|St = E [A|St] + Pt(A) (1.108)
= A−P⊥Mt−1AP⊥Mt−1 + P⊥Mt−1ÃP⊥Mt−1 (1.109)

where Mt−1 =
[
m0|...|mt−1] and Ã is an independent copy of A. Using this on symmetric AMP

iteration, we get :

xt+1|St =
(
A−P⊥Mt−1AP⊥Mt−1 + P⊥Mt−1ÃP⊥Mt−1

)
mt − btmt−1 (1.110)

=
(
A−

(
Id−PMt−1

)
A
(
Id−PMt−1

))
mt + P⊥Mt−1ÃP⊥Mt−1m

t − btmt−1 (1.111)

=
(
APMt−1 + PMt−1APT

Mt−1

)
mt + P⊥Mt−1ÃP⊥Mt−1m

t − btmt−1 (1.112)

= APMt−1mt + P⊥Mt−1ÃP⊥Mt−1m
t + PMt−1Amt

⊥ − btmt−1. (1.113)

The proof of the state evolutione equations is then done by induction, so we assume (after proving
the initialization), that Theorem 3 is true up to time t. Assuming Mt−1 has full rank (we will
handle rigorously the existence of projectors in the proofs of chapter 3), we may define αt as the
coefficients of the projection of mt onto the columns of Mt−1, αt =

(
M>

t−1Mt−1
)−1

M>
t−1mt, which

gives:

xt+1|St = AMt−1αt + P⊥Mt−1ÃP⊥Mt−1m
t + PMt−1Amt

⊥ − btmt−1. (1.114)
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Using the definition of the symmetric AMP iteration, we have AMt−1 = Xt−1 + [0|Mt−2] Bt where
Xt−1 =

[
x1|...|xt

]
and Bt is a diagonal matrix containing the Onsager terms up to time t. Then:

xt+1|St = (Xt−1 + [0|Mt−2] Bt)αt + P⊥Mt−1ÃP⊥Mt−1m
t + PMt−1Amt

⊥ − btmt−1 (1.115)
= Xt−1αt + P⊥Mt−1ÃP⊥Mt−1m

t︸ ︷︷ ︸
I1

+ [0|Mt−2] Btαt + PMt−1Amt
⊥ − btmt−1︸ ︷︷ ︸

I2

(1.116)

The term I1 in the above expression is a combination of previous terms with an additional new
Gaussian one, coming from the independent copy Ã. Checking the covariance of this term matches
the state evolution equation for t+ 1. The term I2 cancels out in the high-dimensional limit, which
is the main benefit of the Onsager correction. Let us sketch out how to cancel I2. We shall focus
on the term

A = PMt−1Amt
⊥ (1.117)

= Mt−1(MT
t−1Mt−1)−1MT

t−1Amt
⊥ (1.118)

= Mt−1(MT
t−1Mt−1)−1(AMt−1)Tmt

⊥ (1.119)

Then (AMt−1)T = (Xt−1 − [0|Mt−2] Bt)T so that

(AMt−1)Tmt
⊥ = (XT

t−1 −BT
t [0|Mt−2]T )mt

⊥
Plk−−−→
n→∞

XT
t−1mt

⊥ (1.120)

Note that here, we have used an orthogonal decomposition of random vectors as if they were
deterministic. Here however, using the induction hypothesis we can precisely write down what
projections converge to, and deterministic limits are obtained for projection coefficients due to
concentration of measure. In the case of AMP iterations, inner products of iterates essentially
converge to their covariances due to the state evolution equations. For the proof of the DMFT
equations however, we will see in chapter 6 that one must pay extra attention to the deterministic
limits of projection coefficients. Back to the AMP sketch of proof, we obtain

A = Mt−1(MT
t−1Mt−1)−1XT

t−1mt
⊥ (1.121)

= Mt−1(MT
t−1Mt−1)−1XT

t−1(mt −mt
‖) (1.122)

= Mt−1(MT
t−1Mt−1)−1XT

t−1(f t(xt)−Mt−1αt) (1.123)

= Mt−1( 1
n

MT
t−1Mt−1)−1 1

n
XT
t−1(f t(xt)−Mt−1αt) (1.124)

where we have made the 1
n appear to highlight the two averaged inner-products of pseudo-Lipschitze

functions. We will now use the induction hypothesis to simplify these terms,

1
n

XT
t−1f

t(xt) =


1
n

∑
i x

(1)
i f(x(t)

i )
1
n

∑
i x

(2)
i f(x(t)

i )
. . .

1
n

∑
i x

(t)
i f(x(t)

i )

 (1.125)

P'


E[z1f(z(t))]
E[z2f(z(t))]

. . .

E[ztf(z(t))]

 (1.126)
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which, using Stein’s lemma yields

1
n

XT
t−1f

t(xt) P'


κ1,tE[f ′(z(t))]
κ2,tE[f ′(z(t))]

. . .

κt,tE[f ′(z(t))]

 = bt


κ1,t
κ2,t
. . .
κt,t

 (1.127)

Then, the state evolution equations also give that

1
n

ms−1mt−1 P' κs,t (1.128)

and therefore

1
n

XT
t−1f

t(xt) P' 1
n
bt


(m0)Tmt−1

(m1)Tmt−1

. . .
(mt−1)Tmt−1

 = 1
N
btMT

t−1mt−1 (1.129)

We can deal in a similar way with the term 1
nX>t−1Mt−1αt, such that

1
n

X>t−1Mt−1αt
P' 1

n
MT

t−1 [0|Mt−2] Btαt (1.130)

and finally

A =
(
Mt−1(MT

t−1Mt−1)−1N
)( 1

N
XT
t−1(f t(xt)−Mt−1αt)

)
(1.131)

Plk−−−→
n→∞

Mt−1(MT
t−1Mt−1)−1MT

t−1

(
btmt−1 − [0|Mt−2] Btαt

)
︸ ︷︷ ︸

∈ span(Mt−1)

(1.132)

Plk−−−→
n→∞

btmt−1 − [0|Mt−2] Btαt (1.133)

where the last line is obtained by explicitly writing the projection coefficients again. This is precisely
the part needed to cancel I2, concluding the sketch of proof. The benefit of this proof method is
that it directly gives the asymptotic equivalent of the distribution of each iterate, and the iterative
projection argument can be extended to matrix-valued variables [135] and non-separaable non-
linearities [37]. There are many more AMP iterations in the litterature, which we will discuss in the
next chapter, where we will present an extension of a similar proof to problems that may involve
several random matrices, in particular multilayer models [194, 188], and beyond.

Converging trajectories Now that we have presented the main dynamical tools to analyze the
high-dimensional asymptotics, how do we use them to obtain resuls on a given estimator ? The idea
is to design an AMP iteration whose fixed point matches the optimality condition of the optimization
problem defining the estimator of interest, which, for strictly convex feasible problems, is enough
to characterize the unique solution of the problem. This proof idea was pioneered in [29, 82] for
the LASSO and unregularized logistic regression with i.i.d. Gaussian data, and in parts II and
III we will build upon this method to study problems with generic convex loss and regularization,
structured data and ensembles of estimators.



CHAPTER 1. INTRODUCTION 51

Adding a planted model In all the derivations presented above, we have neglected the presence
of a teacher model that depends on a product Aw∗ for a given ground-truth w∗. As we will see
in the next chapters, any low-rank perturbation such as a spike in the matrix A or a dependency
of a non-linearity on the teacher output Aw∗ can be accounted for by introducing additional order
parameters and further conditioning arguments. We make this quantitative for a wide range of cases
We can also deal with such dependencies with further orthogonal decompositions and Lagrange
multipliers on the cost function of interest, which we will do in part II when studying convex
problems, where strong duality allows to freeze cumbersome order parameters and optimize on the
remaining variables.



Part I

High-dimensional dynamics :
graph-based AMP iterations

and first order methods
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Chapter 2

Graph-based AMP iterations

This chapter presents the results of a joint work with R. Berthier, published in [110]. In the
introduction, we sketched the main steps of proof for SE equations of AMP iterations based on iter-
ative conditioning, which becomes quite tedious when all the steps are made rigorous. The papers
[28, 135, 37] use this proof method to rigorously obtain the SE equations for the symmetric AMP
iteration Eq.(1.103-1.103), and the asymmetric AMP iteration originally obtained in [83, 240, 154]
for the probabilistic formulation of generalized linear models, respectively for separable functions
and vector-valued iterates; block-separable functions and matrix valued iterates; and non-separable
functions with matrix-valued iterates. However, many new AMP iterations along with their SE
equations were heuristically derived for problems going well-beyond generalized linear models, no-
tably in [194, 188, 13] where composite iterations involving a finite number of different random
matrices are proposed to evaluate marginals from Hopfield models, multilayer neural networks with
random weights and low-rank matrix estimation with deep generative priors. Here we propose to
index AMP iterations on an oriented graph which may be composed arbitrarily, provided a cer-
tain structure is respected. We then prove SE equations for any AMP iteration indexed on such a
graph, using an embedding argument based on a symmetric iteration with matrix-valued iterates
and non-separable update functions, for which we prove the SE equations using the iterative condi-
tioning scheme of Erwin Bolthausen. Extensions of the main theorem, such as spatial coupling or
low-rank perturbations of the Gaussian random matrices, are finally proposed along with examples
of applications.

AMP algorithms are iterative equations solving inference problems involving high-dimensional
random variables with random interactions [83, 300]. For the typical case in which AMP iterations
were initially studied, the interactions involve an i.i.d. Gaussian matrix. These algorithms are
inspired from Bolthausen’s iterative solution of the celebrated Thouless-Anderson-Palmer (TAP)
equations of spin glass theory [196, 42, 43]. However, they are usually derived as heuristic relaxations
of the belief propagation equations [227] on dense factor graphs in a manner often encountered in
the context of statistical physics of disordered systems. A central property of AMP iterations is
that the distribution of their outputs can be tracked rigorously in the high-dimensional limit by
low-dimensional equations called state evolution (SE). This property can be seen as similar to the
concept of density evolution from coding theory [243], but in the case of dense factor graphs.

In recent years, the growing interest in high-dimensional inference and learning problems has mo-
tivated the introduction of approximate-message passing algorithms as solutions to many inference
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problems, and as analytical tools—thanks to the SE equations—to study the statistical properties
of learned estimators, notably starting with the LASSO [28, 153, 83]. A number of extensions were
then proposed for inference problems of growing complexity: generalized linear modelling and robust
m-estimators [240, 82, 300], low-rank matrix reconstruction [241, 165], principal component analysis
(PCA) [75, 164], inference in deep multilayer networks with random weights [188], matrix-valued
inference problems [15] or matrix recovery under generative priors [14], among others. Interestingly,
AMP algorithms can be composed with one another to solve inference problems obtained by com-
bining factor graphs, as demonstrated in [14], where each part of the factor graph represents an
elaborate prior and inference process. This demonstrates the adaptability of such iterations, even
more so as the state evolution equations are shown to hold, often heuristically, for these composite
structures.

Contributions. As the diversity of inference problems and AMP iterations increases, it is im-
portant to identify a common structure underlying the known AMP algorithms. Such a partial
unification was done in [135, 37]: symmetric and asymmetric AMP iterations are treated in a com-
mon framework. However, these results do not apply to the more recent AMP iterations designed
for more complex problems presenting multilayered structures or ones obtained by combining factor
graphs.

Our first contribution is to show how AMP algorithms are naturally indexed by a graph that
determines its form. Seeing AMP algorithms as supported by this graph helps understanding
the iterations, especially the multi-layer ones, in a unified way. In this regard, we hope that our
framework will be used as a tool to generate new AMP iterations. Roughly speaking, the graph
underlying the AMP iteration represents the interaction of the high-dimensional variables of the
associated inference problem. However, this graph is not the factor graph representing the inference
problem that sometimes appears in the derivation of AMP equations, see [153] for example. The
factor graph is microscopic, in the sense that it disappears when taking the dense limit leading to
the AMP equations. On the contrary, the graph that we consider here is macroscopic: it structures
the AMP iteration itself. It is insensitive to the underlying inference problem that has generated the
AMP equation; for instance, it can be used in both Bayes optimal or non-Bayes optimal scenarios.

The second contribution of this chapter is to use the graph framework to show that all graph-
based AMP iterations admit a rigorous SE description. This generalizes the previous works of
[28, 135, 37] on SE to more complex iterations. Using our result, writing and proving the state
evolution equations is reduced to the identification of a specific structure in the AMP iteration,
instead of heuristically deriving or reproducing the rigorous proof entirely for problems of increasing
complexity. In particular, it gives a theoretical grounding for the analysis of AMP on recent multi-
layer structures [188, 15, 14]. Related to [188], this chapter proves that AMP algorithms are a
rigorously grounded approach to understanding multi-layer neural networks, albeit only when the
weights are random and when we perform inference with an AMP algorithm. Still, in a context
where theory struggles to explain the behavior of multi-layered neural networks, it is interesting to
see that this particular case can be rigorously studied, even for deep architectures.

We illustrate the flexibility of our framework by applying it to diverse inference problems men-
tioned above, notably multilayer generalized linear estimation problems and low-rank matrix re-
covery with deep generative priors. We also show how our results can be extended to handle
matrix-valued variables, combined with the spatial coupling framework introduced in [153, 135],
and how low-rank perturbations such as spikes in the random matrices or additional dependencies
of the non-linearities on linear observations change the state evolution equations.
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Related work. There is a rich literature of proofs of state evolution equations, notably starting
with Bolthausen’s iterative scheme [42, 43] based on Gaussian conditioning. The technique was
then adapted and extended to the case of a more generic AMP iteration related to the LASSO
problem in [28], where it is mentioned that Gaussian conditioning methods also appear in [79]
to tackle fundamental random convex geometry problems. The analysis was then extended to
matrix-valued variables with block-separable non-linearities in [135] and for vector-valued variables
with non-separable non-linearities in [37], which also show that symmetric AMP and asymmetric
AMP can be treated in the same framework. Our proof is partly based on the same iterative
Gaussian conditioning method but is additionally combined with an embedding specific to the
graph framework. To the best of our knowledge, the latter part of the proof is novel.

Another line of work—called VAMP (vector approximate message passing) algorithms—handles
rotationnally invariant matrices [242] with generic spectrum. This family of VAMP iterations is ob-
tained using a Gaussian parametrization of expectation propagation [202, 219], a variational inference
algorithm based on iterative moment-matching between a chosen form of probability distribution
(e.g., Gaussian nodes on a factor graph) and a target distribution observed through empirical data.
These iterations also verify SE equations proven with a similar conditioning method [278, 242],
handling a different kind of randomness than i.i.d. Gaussian matrices. The SE proof for VAMP
iterations was then extended to multilayer inference problems and their matrix-valued counterparts
in [97, 222]. In these works, the conditioning method is applied in a sequential manner to each layer
of the problem, making it specific to multilayer inference problems. On the contrary, our proof
method is not restricted to sequential multilayer estimation as mentioned in the contributions, and
does not rely on iterating through the graph. However, our proof does not apply to all rotationnally
invariant matrices. We handle mostly Gaussian or GOE matrices, with extensions to correlated
Gaussian matrices, products of Gaussian matrices and spatially coupled Gaussian matrices. This is
discussed in greater detail in Sections 2.2 and 2.3.

Outline of the chapter. The chapter is organised as follows: we start by presenting the in-
dexation of AMP iterations by an oriented graph in Section 2.1. Several conceptual examples are
provided. We present the state evolution equations on any graph-supported AMP iteration in Sec-
tion 2.2, along with its proof, which constitutes the main technical contribution of this chapter.
We then move to applications to inference problems in Section 2.3 and conclude on related open
problems in Section 2.4. All proofs of auxiliary results are deferred to the Appendix.

Notations. We adopt similar notations to those of [37]. Differences are mainly due to the matrix
variables framework.

We denote scalars with lowercase letters, vectors with bold lowercase letters and matrices with
bold uppercase ones. Inner products are denoted by brackets 〈., .〉, and the canonical inner products
are chosen for vectors and matrices, i.e., 〈x,y〉 = x>y, 〈X,Y〉 = Tr

(
X>Y

)
. The associated norms

are respectively denoted ‖.‖2 and ‖.‖F for the Frobenius norm.
For two random variables X and Y , and a σ-algebra S, we use X|S

d= Y to mean that for any
integrable function φ and any S-measurable bounded random variable Z, E [φ(X)Z] = E [φ(Y )Z].
For two sequences of random variables Xn, Yn, we write Xn

P' Yn when their difference converges
in probability to 0, i.e., Xn − Yn

P−→ 0.
We use IN to denote the N ×N identity matrix, and 0N×N the N ×N matrix with zero entries.

We use σmin(Q) and σmax(Q) = ‖Q‖op to denote the minimum and maximum singular values of
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a given matrix Q. For two matrices Q and P with the same number of rows, we denote their
horizontal concatenation with [P|Q]. The orthogonal projector onto the range of a given matrix M
is denoted PM, and let P⊥M = I−PM.

Let S+
q denote the space of positive semi-definite matrices of size q× q. For any matrix κ ∈ S+

q

and a random matrix Z ∈ RN×q we write Z ∼ N(0,κ⊗ IN ) if Z is a matrix with jointly Gaussian
entries such that for any 1 6 i, j 6 q, E[Zi(Zj)>] = κi,jIN , where Zi,Zj denote the i-th and j-th
columns of Z. The i-th line of the matrix Z is denoted Zi.

If f : RN×q → RN×q is an function and i ∈ {1, . . . N}, we write fi : RN×q → Rq the component
of f generating the i-th line of its image, i.e., if X ∈ RN×q,

f(X) =

 f1(X)
...

fN (X)

 ∈ RN×q .

We write ∂fi
∂Xi

the q × q Jacobian containing the derivatives of fi with respect to (w.r.t.) the i-th
line Xi ∈ Rq:

∂fi
∂Xi

=


∂(fi(X))1
∂Xi1

. . . ∂(fi(X))1
∂Xiq

...
...

∂(fi(X))q
∂Xi1

. . .
∂(fi(X))q
∂Xiq

 ∈ Rq×q . (2.1)

2.1 Graph-based AMP iterations

We start by defining the class of graphs indexing AMP iterations.

Definition 4 (graph notions). A finite directed graph—also simply called graph in the following—
is a pair G = (V,−→E ) where V is a finite set, called the vertex set, and −→E is a subset of V × V ,
called the edge set. This definition of graphs uses directed edges and allows loops.

A graph G = (V,−→E ) is said to be symmetric if for all v, w ∈ −→E , (v, w) ∈ −→E if and only if
(w, v) ∈ −→E .

The degree deg v of a node v ∈ V is the number of edges of which it is the end-node. In
symmetric graphs, it is also the number of edges of which v is the starting-node.

Graph notations. Given a symmetric graph G = (V,−→E ), the following notations are useful. We
sometimes write v → w to mean that −→e = (v, w) is an edge of the graph. We say that v is the
starting-node of −→e and w the end-node of −→e . We denote ←−e = (w, v) ∈ −→E the symmetric edge
of −→e . If −→e is a loop, then ←−e = −→e . We write −→e → −→e ′ as a shorthand to say that the end-node of
−→e ∈

−→
E is the starting-node of −→e ′ ∈ −→E . Note that for any −→e ∈ −→E , ←−e → −→e .

Iteration. We now fix a symmetric finite directed graph G = (V,−→E ). We associate an AMP
iteration supported by the graph G as follows.

• The variables xt−→e of the AMP iteration are indexed by the iteration number t ∈ N and the
oriented edges of the graph −→e ∈ −→E .
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v w

−→e
xt−→e ∈ Rnw

←−e
xt←−e ∈ Rnv

• All variables associated to edges −→e = (v, w) with end-node w ∈ V have a same dimension
nw ∈ N>0, i.e., xt−→e ∈ Rnw . We define N = ∑

(v,w)∈−→E nw the sum of the dimensions of all
variables.

• Matrices of the AMP iteration are also indexed by the edges of the graph. If −→e = (v, w) ∈ −→E ,
A−→e ∈ Rnw×nv . These matrices must satisfy the symmetry condition A(v,w) = A>(w,v). In
particular, this implies that matrices A(v,v) ∈ Rnv×nv associated to loops (v, v) ∈ −→E must be
symmetric.

v w

A−→e
−→e

A←−e = A>−→e

←−e

• Non-linearities of the AMP iteration are also indexed by the edges of the graph (and possibly
by the iteration number t). If t > 0 and −→e = (v, w) ∈ −→E , f t(v,w)

((
xt−→e ′

)
−→e ′:−→e ′→−→e

)
is a function

of all the variables of the edges whose end-node is the starting-node v of −→e , as denoted by
the condition −→e ′ → −→e . It is a function from (Rnv)deg v to Rnv .

v w

−→e
f t−→e

←−ext←−e−→e ′

xt−→e ′

Once these parameters (A−→e )−→e ∈−→E and
(
f t−→e

)
t>0,−→e ∈−→E

are given, we can choose an arbitrary initial

condition x0−→e ∈ Rnw for all oriented edges −→e ∈ −→E of the graph. We define recursively the AMP
iterates

(
xt−→e
)
t>0,−→e ∈−→E

, by the iteration: for all t > 0,−→e ∈ −→E ,

xt+1−→e = A−→e mt−→e − b
t−→e mt−1←−e , (2.2)

mt−→e = f t−→e

((
xt−→e ′

)
−→e ′:−→e ′→−→e

)
, (2.3)
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where bt−→e is the so-called Onsager term

bt−→e = 1
N

Tr
∂f t−→e
∂x←−e

((
xt−→e ′

)
−→e ′:−→e ′→−→e

)
∈ R . (2.4)

The above partial derivative makes sense as ←−e → −→e , thus x←−e is a variable of f t−→e . Note that in
(2.2), the Onsager term multiplies the vector mt−1←−e indexed by the symmetric edge ←−e of −→e .

Let us derive some simple particular cases of this framework, first to recover the classical asym-
metric and symmetric AMP iterations, and second to cover multi-layer AMP iterations.

Asymmetric AMP. The asymmetric AMP iteration appeared first in the literature to solve the
compressed sensing problem [83] and then more generally to tackle generalized linear estimation,
see, e.g., [240, 255, 82]. It corresponds to a simple underlying graph composed of two nodes and
two symmetric directed edges between them.

v w

f t−→e
A−→e
−→e

xt−→e

f t←−eA>−→e

←−ext←−e

In this case, the graph AMP equations (2.2)-(2.3) give

xt+1−→e = A−→e mt−→e − b
t−→e mt−1←−e ,

mt−→e = f t−→e

(
xt←−e
)
,

xt+1←−e = A>−→e mt←−e − b
t←−e mt−1−→e ,

mt←−e = f t←−e

(
xt−→e
)
.

(2.5)

The corresponding state evolution (SE) property was proved in [28] for the separable case and in
[37] in the non-separable case. Note that the time indices proposed here are different from the
ones appearing in these works. The time index convention adopted here generalizes better to more
elaborate graphs. We show how to recover the usual time indices in Appendix 3.1.

Symmetric AMP. The symmetric AMP iteration is central to our discussion as we show that all
graph AMP iterations can be reduced to this case (with matrix-valued iterates, as detailed below).
It is already known that the asymmetric case can be reduced to this case [135]. The symmetric AMP
iteration appears, e.g., when solving the low-rank matrix recovery problem [241, 75], or community
detection in graphs [74]. It corresponds to the degenerate graph with only one node and one loop.

v

f t−→e

A−→e −→e

xt−→e
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Recall that ←−e = −→e as −→e is a loop. In this case, the graph AMP equations (2.2)-(2.3) give

xt+1−→e = A−→e mt−→e − b
t−→e mt−1−→e ,

mt−→e = f t−→e

(
xt−→e
)
,

(2.6)

Here, as there is a single edge −→e , the indexes are superfluous and could be dropped. For these
equations, the SE property was proved in [135] for the separable case and in [37] in the non-separable
case. Note that the results of [135] allow matrix-valued variables.

Multi-layer AMP. The multi-layer AMP iteration appears when considering inference problems
through a multi-layer random neural network, see [188]. They correspond to a line graph whose
length l is the number of layers.

v0 v1 v2 · · · vl

f t−→e1

A−→e1

−→e1

xt−→e1

f t←−e1A>−→e1

←−e1
xt←−e1

f t−→e2

A−→e2

−→e2

xt−→e2

f t←−e2A>−→e2

←−e2
xt←−e2

In this case, the graph AMP equations (2.2)-(2.3) give

xt+1−→e1
= A−→e1mt−→e1

− bt−→e1
mt−1←−e1

,

mt−→e1
= f t−→e 1

(
xt←−e1

)
,

xt+1←−e1
= A>−→e1

mt←−e1
− bt←−e1

mt−1−→e1
,

mt←−e1
= f t←−e1

(
xt−→e1

,xt←−e2

)
,

xt+1−→e2
= A−→e2mt−→e2

− bt−→e2
mt−1←−e2

,

mt−→e2
= f t−→e 2

(
xt−→e1

,xt←−e2

)
,

xt+1←−e2
= A>−→e2

mt←−e2
− bt←−e2

mt−1−→e2
,

mt←−e2
= f t←−e2

(
xt−→e2

,xt←−e3

)
,

...

(2.7)

Note that the non-linearities now take several variables as inputs when there are several incoming
edges at a node.

Spiked matrix model under generative multi-layer priors. Of course, the structures de-
scribed above can be combined to tackle new AMP iterations. For instance, the paper [15] studies
the recovery of noisy symmetric rank-1 matrix when the spike comes from a known multi-layer
generative prior. The associated AMP iteration corresponds to the following graph, where the loop
corresponds to the spike recovery and the other edges correspond to multi-layer prior on the spike.



CHAPTER 2. GRAPH-BASED AMP ITERATIONS 60

v0 v1 v2 · · · vl

f t−→e0

A−→e0
−→e0

xt−→e0

f t−→e1

A−→e1

−→e1

xt−→e1

f t←−e1A>−→e1

←−e1
xt←−e1

f t−→e2

A−→e2

−→e2

xt−→e2

f t←−e2A>−→e2

←−e2
xt←−e2

In this case, the graph AMP equations (2.2)-(2.3) give

xt+1−→e0
= A−→e0mt−→e0

− bt−→e0
mt−1−→e0

,

mt−→e0
= f t−→e0

(
xt−→e0

,xt←−e1

)
,

xt+1−→e1
= A−→e1mt−→e1

− bt−→e1
mt−1←−e1

,

mt−→e1
= f t−→e 1

(
xt−→e0

,xt←−e1

)
,

xt+1←−e1
= A>−→e1

mt←−e1
− bt←−e1

mt−1−→e1
,

mt←−e1
= f t←−e1

(
xt−→e1

,xt←−e2

)
,

...

(2.8)

2.2 State evolution for graph-based AMP iterations

In this section, we start by presenting the most straightforward form of our result, and show
afterwards how several refinements can be added.

2.2.1 Main theorem

AMP algorithms admit a state evolution description under two major assumptions: that the interac-
tions matrices A−→e are sufficiently random—in our case Gaussian or GOE—and that the dimensions
n = (nv)v∈V of all the variables converge to infinity with fixed ratios.

Assumptions. We make the following assumptions:

(A1) The matrices (A−→e )−→e ∈−→E are random and independent, up to the symmetry condition A←−e =
A>−→e . Moreover, if (v, w) ∈ −→E is not a loop in G, i.e., v 6= w, then A(v,w) has independent
centered Gaussian entries with variance 1/N . If (v, v) ∈ −→E is a loop in G, then A(v,v) has
independent entries (up to the symmetry A(v,v) = A>(v,v)), centered Gaussian with variance
2/N on the diagonal and variance 1/N off the diagonal.

(A2) For all v ∈ V , nv → ∞ and nv/N converges to a well-defined limit δv ∈ [0, 1]. We denote by
n→∞ the limit under this scaling.

(A3) For all t ∈ N and −→e ∈ −→E , the non-linearity f t−→e is pseudo-Lipschitz of finite order, uniformly
with respect to the problem dimensions n = (nv)v∈V (see Definition 1 in Appendix 3.5).
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(A4) For all −→e ∈ E,
∥∥∥x0−→e

∥∥∥
2
/
√
N converges to a finite constant as n→∞.

(A5) For all −→e ∈ E, the following limit exists and is finite:

lim
n→∞

1
N

〈
f0−→e

((
x0−→e ′

)
−→e ′:−→e ′→−→e

)
, f0−→e

((
x0−→e ′

)
−→e ′:−→e ′→−→e

)〉
(A6) Let (κ−→e )−→e ∈E be an array of bounded non-negative reals and Z−→e ∼ N(0, κ−→e Inw) independent

random variables for all −→e . For all −→e ∈ E, for any t ∈ N>0, the following limit exists and is
finite:

lim
n→∞

1
N

E
[〈
f0−→e

((
x0−→e ′

)
−→e ′:−→e ′→−→e

)
, f t−→e

((
Zt−→e ′

)
−→e ′:−→e ′→−→e

)〉]
.

(A7) Consider any array of 2× 2 positive definite matrices (S−→e )−→e ∈E and the collection of random
variables (Z−→e ,Z

′
−→e ) ∼ N(0,S−→e ⊗ Inw)) defined independently for each edge −→e . Then for any

−→e ∈ E and s, t > 0, the following limit exists and is finite:

lim
n→∞

1
N

E
[〈
fs−→e

((
Zs−→e ′

)
−→e ′:−→e ′→−→e

)
, f t−→e

((
Z̃t−→e ′

)
−→e ′:−→e ′→−→e

)〉]
.

Remark on the assumptions. In the literature, the random matrices A(v,w) of AMP iterations
are often scaled with variances 1/nw. To recover the desired scaling, it is sufficient to rescale the
non-linearity on which a given matrix acts with the corresponding aspect ratio δw.

Definition 5 (State evolution iterates). The state evolution iterates are composed of one infinite-
dimensional array (κs,r−→e )r,s>0 of real values for each edge −→e ∈ −→E . These arrays are generated as
follows. Define the first state evolution iterates

κ1,1
−→e = lim

n→∞
1
N

∥∥∥f0−→e

((
x0−→e ′

)
−→e ′:−→e ′→−→e

)∥∥∥2

2
, −→e ∈

−→
E .

Recursively, once (κs,r−→e )
s,r6t,−→e ∈

−→
E

are defined for some t > 1, define independently for each −→e ∈
−→
E , Z0−→e = x0−→e and (Z1−→e , . . . ,Z

t−→e ) a centered Gaussian random vector of covariance (κr,s−→e )r,s6t⊗ Inw .
We then define new state evolution iterates

κt+1,s+1
−→e = κs+1,t+1

−→e = lim
n→∞

1
N

E
[〈
fs−→e

((
Zs−→e ′

)
−→e ′:−→e ′→−→e

)
, f t−→e

((
Zt−→e ′

)
−→e ′:−→e ′→−→e

)〉]
for all s ∈ {1, . . . , t} ,−→e ∈ −→E .

Theorem 4. Assume (A1)-(A7). Define, as above, independently for each −→e = (v, w) ∈ −→E ,
Z0−→e = x0−→e and (Z1−→e , . . . ,Z

t−→e ) a centered Gaussian random vector of covariance (κr,s−→e )r,s6t ⊗ Inw .
Then for any sequence of uniformly (in n) pseudo-Lipschitz function Φ : R(t+1)N → R,

Φ
((

xs−→e
)
06s6t,−→e ∈−→E

) P' E
[
Φ
((

Zs−→e
)
06s6t,−→e ∈−→E

)]
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2.2.2 Reduction of graph-based AMP iterations to the matrix-valued, non-
separable symmetric case

The core strategy in the proof of Theorem 4 is to reduce the graph AMP iteration (2.2)-(2.4) into
a symmetric AMP iteration with matrix-valued iteration, i.e., an iteration of the form

Xt+1 = AMt −Mt−1(bt)> ∈ RN×q , (2.9)
Mt = f t(Xt) ∈ RN×q , (2.10)

bt = 1
N

N∑
i=1

∂f ti
∂Xi

(Xt) ∈ Rq×q . (2.11)

Here, A is a N×N GOE matrix, the iterates Xt,Mt are N×q matrices, and f t : RN×q → RN×q are
non-separable non-linearities. A rigorous SE description for this iteration is established in Appendix
3.2; it is an extension of the results of [135, 37].

In this section, we show that the graph AMP iteration (2.2)-(2.4) can be formulated as a sym-
metric AMP iteration (2.9)-(2.11) with matrix iterates. In Appendix 3.2.2, this reduction is used
to show that Theorem 4 follows from its equivalent on symmetric iterations.

Let q = |−→E |, −→e 1, . . . ,
−→e l be the loops of G and −→e l+1,

←−e l+1, . . . ,
−→e m,←−e m be the other edges of

the graph. Define

X0 =



x0−→e 1
. . . ∗

x0−→e l

x0−→e l+1

x0←−e l+1

. . .
∗ x0−→e m

x0←−e m


∈ RN×q .

where ∗ denotes entries whose values do not matter for what follows. Let A be a N × N GOE
matrix such that

A =



A−→e 1
. . . ∗

A−→e l

∗ A−→e l+1

A←−e l+1 ∗
. . .

∗ ∗ A−→e m

A←−e m
∗


.
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Finally, define the non-linearities ft : RN×q → RN×q as

f t



x−→e 1
. . . ∗

x−→e l

x−→e l+1

x←−e l+1

. . .
∗ x−→e m

x←−e m


(2.12)

=



f t−→e 1

(
(x−→e )−→e :−→e→−→e 1

)
. . . 0

f t−→e l
(. . . )

0 f t←−e l+1
(. . . )

f t−→e l+1
(. . . ) 0

. . .
0 0 f t←−e m

(. . . )
f t−→e m

(. . . ) 0


Lemma 3. Define X0, A and f t as above. Then the iterates Xt of the symmetric AMP iteration
(2.9)-(2.11) are of the form

X =



xt−→e 1
. . . ∗

xt−→e l

xt−→e l+1

xt←−e l+1

. . .
∗ xt−→e m

xt←−e m


∈ RN×q ,

where xt−→e denote the iterates of the graph-AMP iteration (2.2)-(2.4).

Proof. We proceed by induction. Assume that Xt and Xt−1 are indeed of this form and we show
the claim for Xt+1. We use equations (2.9)-(2.11) to compute Xt+1; we start by computing the
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Onsager term bt = 1
N

∑N
i=1

∂f ti
∂Xi

(Xt) ∈ Rq×q. From the formula for f t, we compute

bt = 1
N



Tr
∂ft
−→e 1

∂x−→e 1
(. . . )

. . . 0
Tr

∂ft
−→e l

∂x−→e l

(. . . )

0 Tr
∂ft
−→e l+1

∂x←−e l+1
(. . . )

0 Tr
∂ft
←−e l+1

∂x−→e l+1
(. . . ) 0

. . .



=



bt−→e 1
. . . 0

bt−→e l

0 bt−→e l+1

0 bt←−e l+1
0

. . .


.

Then we can now compute

Xt+1 = AMt −Mt−1b>t .

First,

AM =



A−→e 1
. . .

A−→e l

∗ A−→e l+1

A←−e l+1 ∗
. . .





f t−→e 1
(.)

. . .
f t−→e l

(.)
0 f t←−e l+1

(.)
f t−→e l+1

(.) 0
. . .



=



A−→e 1f
t−→e 1

((
xt−→e
)
−→e :−→e→−→e1

)
. . . ∗

A−→e l
f t−→e l

(.)
A−→e l+1f

t−→e l+1
(.)

∗ A←−e l+1f
t←−e l+1

(.)
. . .


.
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Second,

Mt−1bt =



f t−1
−→e 1

(.)
. . .

f t−1
−→e l

(.)
0 f t−1

←−e l+1
(.)

f t−1
−→e l+1

(.) 0
. . .





bt−→e 1
. . .

bt−→e l

0 bt←−e l+1

bt−→e l+1
0

. . .



=



bt−→e 1
f t−1
−→e 1

((
xt−→e
)
−→e :−→e→−→e1

)
. . . 0

bt−→e l
f t−1
−→e l

(.)
bt−→e l+1

f t−1
←−e l+1

(.)
0 bt←−e l+1

f t−1
−→e l+1

(.)
. . .


.

Thus, combining the above equations, we obtain

Xt+1 = AM−Mt−1b>t

=



A−→e 1f
t−→e 1

(.)− bt−→e 1
f t−1
−→e 1

(.)
. . . ∗

A−→e l
f t−→e l

(.)− bt−→e l
f t−1
−→e l

(.)
A−→e l+1f

t−→e l+1
(.)− bt−→e l+1

f t−1
←−e l+1

(.)
. . .



=



xt+1
−→e 1

. . . ∗
xt+1
−→e l

∗ xt+1
−→e l+1

. . .


.

This proves the induction.

2.2.3 Useful extensions

Here we present several refinements of Theorem 4 that can be obtained in a straightforward fashion
and appear often in statistical inference problems.

Matrix-valued variables. The variables x−→e ,m−→e initially defined as vectors can be extended
to matrices with a finite number of columns, and the non-linearities f t−→e are then matrix-valued
functions of matrix-valued variables.

• nv ∈ N>0 is now the number of lines of the variables coming in node v ∈ V . The definition
N = ∑

(v,w)∈−→E nw remains the same.

• Let q−→e ∈ N>0 be the number of columns of xt−→e . We assume that, for all −→e ∈ E, q−→e = q←−e ,
and the q−→e remain constant, independently of n→∞.
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• The initial condition becomes x0
(v,w) ∈ Rnw×q(v,w) , for all edges −→e = (v, w).

• Non-linearities ft indexed by the edge −→e = (v, w) ∈ −→E , f t(v,w)((xt−→e ′)−→e ′:−→e ′→−→e ) are now func-
tions from ×−→e ′→−→e Rnv×q−→e ′ to Rnv×q(v,w) .

The AMP iterates are then recursively defined with:

xt+1−→e = A−→e mt−→e −mt−1←−e (bt−→e )> ∈ Rnw×q−→e , (2.13)

mt−→e = f t−→e

((
xt−→e ′

)
−→e ′:−→e ′→−→e

)
, (2.14)

where each Onsager term is now a matrix given by:

bt−→e = 1
N

nv∑
i=1

∂f t−→e ,i
∂x←−e ,i

((
xt−→e ′

)
−→e ′:−→e ′→−→e

)
∈ Rq−→e ×q−→e .

where we used the notation from Eq.(2.1). The state evolution equations then read

κ1,1
−→e = lim

n→∞
1
N
f0−→e (x0−→e ′)−→e ′:−→e ′→−→e )>f0−→e (x0−→e ′)−→e ′:−→e ′→−→e ) ∈ Rq−→e ×q−→e , −→e ∈

−→
E .

κt+1,s+1
−→e = κs+1,t+1

−→e = lim
n→∞

1
N

E
[
fs−→e ((Zs−→e ′)−→e ′:−→e ′→−→e )>f t−→e ((Zt−→e ′)−→e ′:−→e ′→−→e )

]
∈ Rq−→e ×q−→e

for all 1 6 s 6 t ,−→e ∈
−→
E .

where the Gaussian fields generalize straightforwardly to Zt−→e ∼ N(0,κt,t−→e ⊗ Inw) ∈ Rnw×q−→e for each
edge. Using these generalized definitions, the above statement of Theorem 4 and its proof can be
adapted easily. We give examples throughout Section 2.3.

Additional random variables in the non-linearities. Many inference problems are formulated
with a “planted” signal, i.e., a ground truth signal parametrizing the function the statistician tries
to reconstruct, sometimes called teacher in statistical physics. This often leads to the dependence
of certain non-linearities on additional random variables. As long as they appropriately concentrate
and are independent on the rest of the problem, they can be treated in straightforward fashion
with an additional average in the SE equations as done in [135], where the summability is reduced
to second-order moments conditions due to the separability of the update functions. However it
is not always straightforward to isolate the independent contribution in the teacher which is often
generated using the matrices found in the AMP algorithm, effectively introducing a correlation
between the matrices and non-linearities. In appendix 3.4, we propose a generic way to deal with
such dependencies with two additional results in the form of Lemmas 15 and Lemma 16. These two
lemmas may be combined at will to deal with a wide range of perturbations relevant to inference
problems. We now give an example of graph to which we apply those results, recovering the full SE
equations of [188, 14]: consider any instance of the family of AMP iterations presented in Section
2.1, indexed on a given oriented graph G = (V,E), i.e.

xt+1−→e = Â−→e mt−→e − b
t−→e mt−1←−e , (2.15)

mt−→e = f̃ t−→e

((
xt−→e ′

)
−→e ′:−→e ′→−→e

)
, (2.16)
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where, in the notation of Lemma 3, for any symmetric edge −→e from the set {−→e 1, ...,
−→e l}, Â−→e =

A−→e + 1
N v−→e v>−→e , and f̃ t−→e (.) = f t−→e (.). Furthermore, for any asymmetric edge −→e from the set

{−→e l+1, ...,
−→e m}, Â−→e = A−→e and f̃ t−→e (.) = f t(ϕ−→e (A−→e w−→e ), .). The following lemma then gives

the SE equations for this iteration:

Lemma 4. Assume that (A1)-(A7) are verified. Further assume that, for any −→e ∈ −→E , 1√
N
‖v−→e ‖F

and 1√
N
‖w−→e ‖F converge to finite constants as N → ∞. For any symmetric edge −→e from the set

{−→e 1, ...,
−→e l}, define the following SE recursion:

µ0−→e , κ
1,1
−→e = lim

N→∞

1
N
f0−→e (

(
µ0−→e ′v−→e ′ + x0−→e ′

)
−→e ′:−→e ′→−→e

)>f0−→e (
(
µ0−→e ′v−→e ′ + x0−→e ′

)
−→e ′:−→e ′→−→e

) (2.17)

µs+1−→e = lim
N→+∞

1
N

E
[
(v−→e )>fs−→e (

(
µs−→e ′v−→e ′ + Zs−→e ′

)
−→e ′:−→e ′→−→e )

]
(2.18)

κt+1,s+1
−→e = κs+1,t+1

−→e = lim
N→∞

1
N

E
[
f s−→e (

(
µs−→e ′v−→e ′ + Zs−→e ′

)
−→e ′:−→e ′→−→e )>f t−→e (

(
µt−→e ′v−→e ′ + Zt−→e ′

)
−→e ′:−→e ′→−→e

)
]
,

s ∈ {0, . . . , t} . (2.19)

where (Z1−→e , . . . ,Z
t−→e ) is a centered Gaussian random vector of covariance (κr,s−→e )r,s6t ⊗ Inw . Then,

for any sequence of uniformly (in n) pseudo-Lipschitz function Φ : R(t+1)nw → R :

Φ
((

xs−→e
)
06s6t,−→e ∈−→E sym

) P' E
[
Φ
(
(µs−→e v−→e + Zs−→e )06s6t,−→e ∈−→E sym

)]
(2.20)

For any asymmetric edge −→e from the set {−→e l+1, ...,
−→e m}, define the following SE recursion :

ν0−→e , ν̂
0−→e ,κ

1,1
−→e = 1

N
f0−→e ((x0−→e ′)−→e ′:−→e ′→−→e )>f0−→e ((x0−→e ′)−→e ′:−→e ′→−→e ) (2.21)

νt+1−→e = lim
N→∞

1
N

E
[
w>−→e f

t−→e

(
ϕ−→e (zw−→e ),

(
zw−→e ′ρ

−1
w−→e ′ν

t−→e ′ + w←−e ′ ν̂t−→e ′ + Zt−→e ′
)
−→e ′:−→e ′→−→e

)]
(2.22)

ν̂t+1−→e = lim
N→∞

1
N

E
[
N∑
i=1

∂f t−→e ,i
∂zw−→e ,i, ϕ−→e

(
ϕ−→e (zw−→e ),

(
zw−→e ′ρ

−1
w−→e ′ν

t−→e ′ + w←−e ′ ν̂t−→e ′ + Zt−→e ′
)
−→e ′:−→e ′→−→e

)]
(2.23)

κt+1,s+1
−→e = κs+1,t+1

−→e =

lim
N→∞

1
N

E
[ (
fs−→e

(
ϕ−→e (zw−→e ),

(
zw−→e ′ρ

−1
w−→e ′ν

s−→e ′ + w←−e ′ ν̂s−→e ′ + Zs−→e ′
)
−→e ′:−→e ′→−→e

)
−w−→e ρ−1

w−→e ν
s+1−→e

)>
(
f t−→e

(
ϕ−→e (zw−→e ),

(
zw−→e ′ρ

−1
w−→e ′ν

t−→e ′ + w←−e ′ ν̂t−→e ′ + Zt−→e ′
)
−→e ′:−→e ′→−→e

)
−w−→e ρ−1

w−→e ν
t+1−→e

) ]
(2.24)

where (Z1−→e , . . . ,Z
t−→e ) is a centered Gaussian random vector of covariance (κr,s−→e )r,s6t ⊗ Inw . Then,

for any sequence of uniformly (in n) pseudo-Lipschitz function Φ : R(t+1)nw → R :

Φ
((

xs−→e
)
06s6t,−→e ∈−→E asym

) P' E
[
Φ
(
(zw−→e ρ

−1
w−→e ν

s−→e + w←−e ν̂s−→e + Zs−→e )06s6t,−→e ∈−→E asym

)]
(2.25)

Note the dependence on w←−e of the SE quantities indexed by −→e , which comes from evaluating
the matrix products defining the terms in mt, m̂t. In the AMP litterature, non-linearities often take
the form f̃ t−→e (.) = f t(ϕ−→e (A←−e w−→e ), .), i.e. with a dependence on the random matrix of the opposite
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edge. This only changes the arrows in W0 i.e.

W0 =



0
. . . 0

0
0 w−→e l+1

w←−e l+1 0
. . .

0 0 w−→e m
w←−e m 0


, (2.26)

and the corresponding arrows in the SE equations above. It is indeed what is observed in, e.g.
[240, 188, 14]. Examples are given throughout Section 2.3.

Structured and correlated matrices. Products of Gaussian matrices can be considered by
choosing identities as non-linearities on given edges of the graph. This was done heuristically in
[188] to study structured inference problems. Gaussian matrices with generic covariances can also be
considered, i.e., A = ZΣ1/2 where Z is an i.i.d. N(0, 1

d) matrix and Σ ∈ Rd×d is a positive definite
matrix. Indeed, the covariance matrix can be absorbed in the non-linearity as a non-separable
component. Depending on the non-linearity, expressions may simplify as functions of the spectral
distribution of Σ. Examples are given in Section 2.3.5.

Spatial coupling. Spatial coupling was introduced and studied in [153, 153, 135, 80] as a mean
to reach information theoretic limits in compressed sensing. The idea is to write the state evolution
equations when the random matrices have a block structure of the form

A =


A11 A12 . . . A1l
A21 A22 . . . A2l

...
... . . . ...

Ak1 Ak2 . . . Akl

 ∈ RN×d ,

each Aij ∈ RNi×dj has i.i.d. N(0, σijd ) entries and Ni/N, dj/d are constant aspect ratios, where∑
iNi = N and ∑j dj = d. The proof of SE equations with this kind of matrices was proposed in

[135] and relies on a matrix-valued symmetric AMP iteration similar to the one used in our proof,
with a family of non-linearities acting on blocks of variables, with a separable effect on each block.
Since our proof extends the matrix-valued, symmetric AMP iteration to the fully non-separable case,
the same ideas can be applied to our framework to include spatially coupled matrices on each edge
of the oriented graph presented in the previous section (with the added possibility of non-separable
effects on each block). We now give an example in Section 2.3.6.

2.3 Applications to inference problems

In this section we illustrate our main theorem by showing how several AMP iterations established
heuristically in the literature are included in our framework, in particular [188, 15, 14, 178], and
how straightforward generalizations can be considered. We adopt an optimization viewpoint for
each problem, omitting the probabilistic inference formulation at the origin of these iterations for
simplicity.
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2.3.1 A building block: AMP for generalized linear models

We start with a known AMP iteration for which the state evolution equations were already proven,
and build upon the intuition it gives to present more elaborate iterations. Consider the task of
optimizing a penalized cost functions of the form

x̂ ∈ min
x∈Rd

g(Ax,y) + f(x) (2.27)

where the vector of labels y is typically assumed to be generated from another process as

y = φ(Ax0),

with x0 ∈ Rd generated from a given distribution px0 independent from the matrix A, A ∈ RN×d
is a matrix with i.i.d. N(0, 1

d) elements, and φ a given function. The goal is then to reconstruct
the vector x0. This formulation is at the basis of many of the fundamental estimation methods
in machine learning: least-squares, LASSO, logistic regression, etc. Approximate-message passing
algorithms were proposed for this task, notably in [83, 28, 240, 153, 135], and take the generic
form of the asymmetric AMP iteration (2.5) where A−→e = A. Intuitively, the functions f t−→e , f

t←−e
each correspond to one of the functions g, f from (2.27) and respectively output an estimate of the
quantities Ax̂, x̂. As prescribed by the form of the generative model, we expect the update function
associated to the loss g(.,y) to be correlated with the matrix A, thus preventing a direct application
of the SE equations of Theorem 4, and requiring the results of Lemma4.

2.3.2 Multilayer generalized linear estimation

Consider now the problem of recovering a vector x0 from a more complex generative model involving
a multilayer neural network with random weights:

y = φL(ALφL−1 (AL−1(...φ1(A1x0)))

where one has access to the final output y and would like to reconstruct the intermediate ones and
input x0. For each layer 1 6 l 6 L the matrix Al ∈ RNl+1×Nl has i.i.d. N(0, 1

Nl
) with Nl+1/Nl = δl.

The idea is to solve this sequentially using asymmetric AMP iterations similar to the one presented
in the previous section. This approach was originally proposed in [188] under the name multilayer
AMP (MLAMP). For any 1 6 l 6 L+ 1, define

xl = φl−1(Al−1φl−2(..φ1(A1x0))),
such that xl+1 = φl(Alxl) and xL+1 = y

The intuition is the following : each xl is then estimated using the asymmetric AMP corresponding
to the problem

x̂l = arg min
x∈RNl

gl(Alx,yl) + fl(x)

the output of which is used to estimate the next, i.e., yl = x̂l+1, whose statistical properties are given
by the SE equations. The complete derivation of the iteration involves writing the belief-propagation
(BP) equations on the factor graph corresponding to the multilayer inference problem, capturing
all the interactions between the different iterates. These SE equations were derived heuristically in
[188] for Bayes-optimal inference, and this paper proves them in the generic case.
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2.3.3 Spiked matrix with generative prior

In the same spirit as the composition of generalized linear models defining MLAMP, different tasks
can be composed to obtain richer instances of inference problems. For instance in [15], the recon-
struction of a low-rank matrix under a generative prior is considered using an AMP iteration. A
rank-one matrix is observed, blurred by Gaussian noise:

Y =
√
λ

d
v0v>0 + W

where W ∈ GOE(N), and the vector v0 ∈ RN is assumed to be generated from a multilayer neural
network with random weights

v0 = φL(ALφL−1 (AL−1(...φ1(A1x0)))

for a given ground truth vector x0 ∈ RN1 , matrices {Al ∈ RNl+1×Nl}16l6L and non-linearities
{φl}16l6L. The AMP iteration to estimate v0 from Y was first proposed in [241, 75], and takes
the form of a symmetric AMP (2.6). Similarly to MLAMP, the output of this iteration can then
be used as input, leading to the AMP iteration proposed in [14], which corresponds to the AMP
iteration (2.8). This paper proves the state evolution equations for this iteration.

2.3.4 An example with matrix-valued variables

Matrix valued variables are encountered in scenarios such as committee machines [15] or multiclass
learning problems [178], or more generically when a finite ensemble of predictors is learned. Consider
the matrix-valued extension of the generalized linear estimation problem Eq.(2.27).

X̂ ∈ arg min
X∈RN×q

g(AX,Y) + f(X)

where Y = φ(AX0))

where X0 ∈ RN×q and q ∈ N is kept finite. The SE equations for the asymmetric AMP with matrix
valued-variables are included in the result of [135]. This can be directly generalized to a multilayer
matrix inference problem by considering a generative model of the form

Y = φL(ALφL−1 (AL−1(...φ1(A1X0)))

and successive application of the matrix-valued asymmetric AMP as proposed for MLAMP in
Section 2.3.2. The state evolution equations for this problem is included in our framework using
the results from Section 2.2.3.

2.3.5 An example with structured random matrices

Consider a generalized linear inference task where the data is now represented by a Gaussian matrix
with a covariance Σ 6= Id. This can be dealt with using the non-separable framework. Assuming
the covariance matrix is full-rank, we can equivalently work with the variable x̃ = Σ1/2x, and solve

arg min
x̃

g(Ãx̃,y) + f(Σ−1/2x̃).

where Ã is now ana i.i.d. Gaussian matrix. This will modify the update function associated to
f , becoming f(Σ−1/2.), which is non-separable, even if the function f is initially assumed to be
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separable. The validity of the SE equations for this case follows from the results of [37]. This
manipulation can also be done on any layer of MLAMP, for a given set of covariance matrices
Σ1, ...,ΣL associated to each random matrix A1, ...,AL, with vector or matrix-valued variables.
The validity of the SE equations in this case follows from the results of this paper. In the convex
GLM case (2-layer), the fixed point of the state evolution equations with a generic covariance gives
the same result as (a particular case of) the exact asymptotics recently proposed in [176] to study
different feature maps in generalized linear models.

2.3.6 An example of spatial coupling with non-separable non-linearities

Here we briefly describe an inference problem recently studied in [178] that can be solved using
spatial coupling on a non-separable AMP iteration. Consider the problem of classifying a high-
dimensional Gaussian mixture with a finite number K of clusters, described by the joint density

P (x|y) =
K∑
k=1

ykπkN(µk,Σk)

where x ∈ Rd is a sample, y ∈ RK is a binary label vector, {πk}k are the cluster probabilities such
that ∑K

k=1 πk = 1, {µk}16k6K are the means and {Σk}16k6K are positive definite covariances, using
a convex generalized linear model, i.e.,

X ∈ arg min
X∈Rd×K

g(AX,Y) + f(X)

where Y ∈ RN×K is the concatenated matrix of one-hot encoded labels. The matrix A representing
N samples of the Gaussian mixture can be written as a block diagonal matrix

A =


Z1Σ1/2

1
Z2Σ2

1/2

...

ZKΣK
1/2

 ∈ RN×Kd

where the Zk ∈ RNk×d are i.i.d. N(0, 1
d) independent matrices, with Nk the number of samples

coming from each cluster. This type of matrix can be embedded into an AMP iteration using the
spatial coupling technique to handle the block structure and the non-separable framework to deal
with the covariances on each block. The validity of the SE equations for the combination of spatial
coupling and non-separable effects is proven by this paper. This is also an example where the teacher
distribution is independent of the Gaussian matrices that will appear in the AMP iteration, as the
multinomial distribution prescribing cluster membership is independent of the Gaussian cloud of
each cluster.

2.4 Perspectives

We have shown that AMP algorithms can be unified in an intuitive way by means of an ori-
ented graph, and that this representation leads to a modular, effective and extended proof of state
evolution equations. Several problems follow from the results presented here.
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Connecting back to the factor graph. We do not relate our proposed graphical representation
of the AMP iterations with the factor graphs of the probabilistic inference problems that generated
them. Understanding this relation would clarify the statistical inference problems that can be solved
using AMP iterations. The applications that motivated this paper use our framework with only
very simple graphs—line graphs, sometimes with a loop. However, the framework accepts much
more complicated graphs, potentially with more loops. In future work, we hope to explore the new
statistical problems and AMP iterations that can be analyzed using these graphs.

Rotationally invariant matrices. As shown in [242, 97, 222, 95], the Gaussian conditioning
method at the core of AMP proofs can be reproduced with right rotationally invariant matrices
with generic spectrum. Extending the results of the present paper to this family of matrices requires
finding the appropriate form of the graph iteration and is an open problem.

Universality and finite size corrections. State evolution proofs are amenable to both finite
size analysis [251, 180] and universality proofs [27, 62]. Although both problems were tackled in
simpler settings in these papers, their techniques could be combined with the embedding proposed in
the proof of Theorem 4 to prove finite size rates and universality properties for any graph supported
AMP.



Chapter 3

Proofs for the Graph-based AMP
iterations

3.1 Changing time indices

Here we show how the time index convention usually encountered in earlier instances of the asym-
metric AMP iteration can be recovered from the one used in this proof. Consider two successive
iterations of the asymmetric AMP (2.5):

xt+1−→e = A−→e mt−→e − b
t−→e mt−1←−e , xt−→e = A−→e mt−1−→e − b

t−1−→e mt−2←−e ,

mt−→e = f t−→e

(
xt←−e
)
, mt−1−→e = f t−1−→e

(
xt−1←−e

)
,

xt+1←−e = A>−→e mt←−e − b
t←−e mt−1−→e , xt←−e = A>−→e mt−1←−e − b

t−1←−e mt−2−→e ,

mt←−e = f t←−e

(
xt−→e
)

mt−1←−e = f t−1←−e

(
xt−1−→e

) (3.1)

which requires initializing both x−→e and x←−e , and updates them simultaneously at each iteration.
We see that to evaluate xt+1−→e (resp. xt+1←−e ), we only need the previous value of xt←−e (resp. xt−→e ) and
x−→e t−1 (resp. xt−1←−e ). Thus only half of the iterates can be computed, independently of the other
half, using the following formulae (setting the other update functions to zero):

x2t+1←−e = A>−→e m2t←−e − b
2t←−e m2t−1−→e ,

m2t←−e = f2t←−e

(
x2t−→e

)
,

x2t−→e = A−→e m2t−1−→e − b2t−1−→e m2t−2←−e ,

m2t−1−→e = f2t−1−→e

(
x2t−1←−e

) (3.2)

which only requires one value at initialization and at each iteration. The usual time indices found
in , e.g., [37] are then recovered with the following mapping:

x2t+1←−e = ut+1

x2t−→e = vt

f2t←−e (.) = gt(.)
f2t−1−→e (.) = et(.)

Note that this simplification is specific to the graph structure underlying the asymmetric AMP
iteration.

73
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3.2 Matrix-valued symmetric AMP iterations with non-separable
non-linearities

3.2.1 State evolution description

In this section, we present the state evolution equations for a symmetric AMP iteration with non-
separable non-linearities and matrix-valued variables. This is an extension of the results of [135, 37].
This result underlies the proof of state evolution equations for graph-based AMP iterations.

Consider an initial (deterministic) matrix X0 ∈ RN×q and a sequence of deterministic functions
{f t : RN×q → RN×q}t∈N. For the reader’s convenience, we recall here the symmetric AMP iteration
(2.9)-(2.11).

Symmetric AMP iteration. Let X0 ∈ RN×q and define recursively,

Xt+1 = AMt −Mt−1(bt)> ∈ RN×q , (3.3)
Mt = f t(Xt) ∈ RN×q , (3.4)

bt = 1
N

N∑
i=1

∂f ti
∂Xi

(Xt) ∈ Rq×q . (3.5)

where bt is the Onsager correction term. We now list the necessary assumptions.

Assumptions.

(B1) A ∈ RN×N is a GOE(N) matrix, i.e., A = G + G> for G ∈ RN×N with i.i.d. entries
Gij ∼ N(0, 1/(2N)).

(B2) For each t ∈ N, f t : RN×q → RN×q is pseudo-Lipschitz of order k, uniformly in N .

(B3)
∥∥X0∥∥

F /
√
N converges to a finite constant as N →∞.

(B4) The following limit exists and is finite:

lim
N→∞

1
N
f0(X0)>f0(X0) ∈ Rq×q (3.6)

(B5) For any t ∈ N>0 and any κ ∈ S+
q , the following limit exists and is finite:

lim
N→∞

1
N

E
[
f0(X0)>f t(Z)

]
∈ Rq×q (3.7)

where Z ∈ RN×q, Z ∼ N (0,κ⊗ IN ).

(B6) For any s, t ∈ N>0 and any κ ∈ S+
2q, the following limit exists and is finite:

lim
N→∞

1
N

E
[
fs(Zs)>f t(Zt)

]
∈ Rq×q (3.8)

where (Zs,Zt) ∈ (RN×q)2,(Zs,Zt) ∼ N(0,κ⊗ IN ).

Under these assumptions, we define the state evolution iteration related to the AMP iteration (3.3)-
(3.5).
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Definition 6 (state evolution iterates). The state evolution iterates are composed of one infinite-
dimensional array (κs,r)r,s>0 of real matrices. This array is generated as follows. Define the first
state evolution iterate

κ1,1 = lim
N→∞

1
N
f0(X0)>f0(X0) (3.9)

Recursively, once κs,r, 0 6 s, r 6 t are defined for some t > 1, take Z0 = X0 and (Z1, . . . ,Zt) ∈
(Rn×q)t a centered Gaussian vector of covariance (κs,r)s,r6t⊗IN . We then define new state evolution
iterates

κt+1,s+1 = κs+1,t+1 = lim
N→∞

1
N

E
[
fs(Zs)>f t(Zt)

]
, s ∈ {0, . . . , t} .

The following property then holds for the AMP iteration (3.3)-(3.5).

Theorem 5. Assume (B1)-(B6). Define, as above, Z0 = X0 and (Z1, . . . ,Zt) ∈ (RN×q)t a centered
Gaussian vector of covariance (κs,r)s,r6t ⊗ IN . Then for any sequence ΦN : (RN×q)t+1 → R of
pseudo-Lipschitz functions,

ΦN

(
X0,X1, . . . ,Xt

) P' E
[
ΦN

(
Z0,Z1, . . . ,Zt

)]
.

Given the above result, we can expect the Onsager correction bt to verify

bt P' 1
N

E
[
N∑
i=1

∂f ti
∂Zi

(Zt)
]
∈ Rq×q . (3.10)

where Zt ∼ N(0,κt,t⊗ In). In fact, similarly to [37], Theorem 5 can be shown to hold for the AMP
iteration ((3.3)-(3.5)) with any estimator b̂t satisfying

b̂t(X0, M̂0, ..., M̂t−1, X̂t) P' 1
N

E
[
N∑
i=1

∂f ti
∂Zi

(Zt)
]
∈ Rq×q . (3.11)

. The state evolution actually hold for the AMP Eq.(2.9-2.11) with any estimator b̂t converging
in probability to the expectation on the r.h.s. of Eq.((3.10)). This is formalized in the following
corollary:

Theorem 6. Consider the AMP iteration

X̂t+1 = AM̂t − M̂t−1b̂>t ∈ RN×q (3.12)
M̂t = f t(X̂t) ∈ RN×q (3.13)

initialized with X0 as Eq. (2.9-2.11), and where b̂t(X0, M̂0, ..., M̂t−1, X̂t) is an estimator of bt.
Under the set of assumptions (A1-A6), and provided the estimator b̂t verifies

b̂t(X0, M̂0, ..., M̂t−1, X̂t) P' 1
N

E
[
N∑
i=1

∂f it
∂Zi

(Zt)
]
∈ Rq×q . (3.14)

then for any t ∈ N

lim
N→∞

1√
N

∥∥∥X̂t+1 −Xt+1
∥∥∥
F

P' 0, lim
N→∞

1√
N

∥∥∥M̂t −Mt
∥∥∥
F

P' 0 (3.15)

and the iterates M̂t, X̂t verify the state evolution equations.

The proof of this corollary is also provided in Appendix 3.3.



CHAPTER 3. PROOFS FOR THE GRAPH-BASED AMP ITERATIONS 76

3.2.2 Application: proof of Theorem 4

In Section 2.2.2, we have seen that the graph AMP iteration (2.2)-(2.4) can be rewritten as a
symmetric AMP iteration of the form (2.9)-(2.11). Here, we check that applying Theorem 5 on the
symmetric iteration after performing the reduction indeed gives Theorem 4.

Define the state evolution iterates as in Definition 6. Here, due to the expression (2.12) of the
non-linearities, the state evolution iterates are diagonal:

κ1,1 = lim
N→∞

1
N


∥∥∥f0−→e 1

((x0−→e )−→e :−→e→−→e 1)
∥∥∥2

0
. . .

0
∥∥∥f0←−e m((x0−→e )−→e :−→e→←−e m)

∥∥∥2

 (3.16)

and

κt+1,s+1 = κs+1,t+1 = lim
N→∞

1
N


Efs−→e 1

(. . . )>f t−→e 1
(. . . ) 0

. . .
0 Efs←−e m(. . . )>f t←−e m(. . . )

 .

Let Zt ∈ RN×q be the variable from Definition 6. Decompose

Zt =


Zt−→e 1

∗
. . .

∗ Zt←−e m

 .

where Zt(v,w) ∈ Rnw . The diagonal structure of the state evolution iterates means that Zt−→e and Zt−→e ′
are independent when −→e 6= −→e ′. We thus find that

κs,t =


κs,t−→e 1

0
. . .

0 κs,t←−e m ,


where the κs,t−→e are those defined in Section 2.2 and the variables Zt−→e are the same as those defined
in Section 2.2.

These elements show that Theorem 4 follows from the application of Theorem 5.

3.3 Proof of Theorem 5

Once the concentration lemmas of Appendix 3.5 are established for matrix valued-variables, the
proof follows closely that of [37]. We include the main steps (with minor changes) for completeness
nonetheless.
As an intermediate step, we introduce the following AMP iteration initialized with X0 ∈ RN×q :

Xt+1 = AMt −Mt−1(bt)> ∈ RN×q (3.17)
Mt = f t(Xt) ∈ RN×q , (3.18)

bt = 1
N

E
[
N∑
i=1

∂f ti
∂Zi

(Zt)
]

∈ Rq×q . (3.19)
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where the Onsager term has been replaced by the expectation in Eq.(3.10) using the state evolution
recursion, i.e., Zt ∈ RN×q ∼ N(0,κt,t ⊗ IN ).
We denote this recursion with the shorthand {Xt,Mt|f t,X0}. The following lemma is an analog of
Theorem 5 for the iteration (3.17)-(3.19).
Lemma 5. Define, as above, Z0 = X0 and (Z1, . . . ,Zt) ∈ (RN×q)t a centered Gaussian vector of

covariance

κ
1,1 · · · κ1,t

... . . . ...
κt,1 · · · κt,t

⊗IN . Then for any sequence ΦN : (RN×q)t+1 → R of pseudo-Lipschitz

functions, the iterates of (3.17)-(3.19) satisfy

ΦN

(
X0,X1, . . . ,Xt

) P' E
[
ΦN

(
Z0,Z1, . . . ,Zt

)]
.

3.3.1 Proof outline and intermediate lemmas

The main idea is to analyze an iteration that behaves well under Gaussian conditioning and that
asymptotically approximates (3.17)-(3.19).

Matrix LoAMP. We consider the following iteration, a matrix-valued version of the LoAMP
iteration introduced in [37]. The sequence of functions f t and initialization X0 are the same as for
the AMP orbit {Xt,Mt|f t,X0}. Initialize Q0 = f0(X0), and recursively define

Ht+1 = P⊥Qt−1AP⊥Qt−1Q
t + Ht−1α

t ∈ RN×q , (3.20)
Qt = f t(Ht) ∈ RN×q , (3.21)

where at each step, the matrices Qt−1,α
t,Ht−1 are defined as

Qt−1 =
[
Q0|Q1|...|Qt−1

]
∈ RN×tq , (3.22)

αt = (Q>t−1Qt−1)−1Q>t−1Qt ∈ Rtq×q , (3.23)

Ht−1 =
[
H1|H2|...|Ht

]
∈ RN×tq , (3.24)

PQt−1 = Qt−1(Q>t−1Qt−1)−1Q>t−1 is the orthogonal projector on the subspace spanned by the
columns of Qt−1, and P⊥Qt−1

= IN −PQt−1 .
We denote this recursion with the shorthand {Ht,Qt|f t,X0}. The inverse (Q>t−1Qt−1)−1 in the pro-
jector may not always be properly defined if Qt−1 is either rank-deficient or has vanishing singular
values. We thus introduce the following assumption as in [37], which ensures the proper definition
of the projector.

Assumption 1 (Non-degeneracy). We say that the LoAMP iterates satisfy the non-degeneracy
assumption if :

• almost surely, for all t and all N > t, Qt−1 has full column rank.

• for all t, there exists some constant ct > 0—independent of N—such that almost surely, there
exists N0 (random) such that, for N > N0, σmin(Qt−1)/

√
N > ct > 0.

We now study the LoAMP iteration, starting with the non-degenerate case.
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The non-degenerate case. The following lemma gives the distribution of the Long-AMP iterates
when conditioned on the previous ones.

Lemma 6. Consider the LoAMP iteration {Ht,Qt|ft,X0} and assume it satisfies the non-degeneracy
assumption. For any t ∈ N, let St be the σ-algebra generated by the collection of random variables
H1,H2, ...,Ht. Then

Ht+1|St
d= P⊥Qt−1ÃP⊥Qt−1Q

t + Ht−1α
t (3.25)

where Ã is a copy of A independent of St.

The next lemma characterizes the high-dimensional geometry and distribution of the LoAMP
iterates, notably that they verify the state evolution equations.

Lemma 7. Consider the LoAMP recursion {Ht,Qt|ft,X0} and suppose it satisfies the non-degeneracy
assumption. Then

a) for all 0 6 s, r 6 t ,
1
N

(Hs+1)>Hr+1 P' 1
N

(Qs)>Qr ∈ Rq×q , (3.26)

b) for any t ∈ N, for any sequence of uniformly order-k pseudo-Lipschitz functions {φN :
(RN×q)t+2 → R},

ΦN (X0,H1, ...,Ht+1) P' E[ΦN (X0,Z1, ...,Zt+1)] (3.27)

where
(Z1, ...,Zt+1) ∼ N(0, (κs,r)s,r6t ⊗ IN ) (3.28)

The next two lemmas show that the iterates of the Long-AMP recursion are arbitrary close to
those of the original symmetric AMP in the high-dimensional limit.

Lemma 8. For each iteration t of the LoAMP iteration {Ht,Qt|f t,X0}, consider the recursion

Ĥt+1 = AQt −Qt−1(bt)> where bt = 1
N

E
[
N∑
i=1

∂f ti
∂Zi

(Zt)
]
∈ Rq×q (3.29)

Qt = f t(Ht) (3.30)

where we take Ĥ1 = AQ0 and Zt ∼ N(0,Kt,t ⊗ IN )with Kt,t defined by the state evolution. Then
for any t ∈ N, 1√

N

∥∥∥Ht+1 − Ĥt+1
∥∥∥
F

P−−−−→
N→∞

0.

Lemma 9. Consider the symmetric AMP iteration {Xt,Mt|ft,X0} and the LongAMP iteration
{Ht,Qt|ft,X0}. Suppose that LongAMP satisfies the non-degeneracy assumption. Then for any
t ∈ N,

1√
N

∥∥∥Ht+1 −Xt+1
∥∥∥
F

P−−−−→
N→∞

0 and 1√
N

∥∥∥Qt −Mt
∥∥∥
F

P−−−−→
N→∞

0 (3.31)

Combining the previous results, and assuming the non-degeneracy is verified, Lemma 5 holds
true.
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Relaxing the non-degeneracy hypothesis This paragraph shows how the non-degeneracy
assumption is relaxed using a perturbative argument as done in [37]. Define the randomly perturbed
functions

f tεYt = f t(.) + εYt (3.32)
where Yt ∈ RN×q is a matrix with i.i.d. N(0, 1) entries independent of the original matrix A. We
denote Y the set of random matrices (Y0,Y1, ...,Yt) ∈ (RN×q)t+1.

Lemma 10. The AMP iteration defined with the functions f tεY and initialized with X0 verifies As-
sumptions (B4)− (B6). Furthermore, define the associated state evolution iteration {κs,tε |f tεY,X0},
initialized with

κ1,1
ε = lim

N→∞

1
N

(f0
eY(X0))>(f0

eY(X0)) (3.33)

and
κs+1,t+1
ε = lim

N→∞

1
N

E
[
(fsεY(Zε,s)>f tεY(Zε,t)

]
(3.34)

where (Zε,1, ...,Zε,t) ∼ N(0, (κs,r)εs,r6t ⊗ IN ) and the expectations are taken w.r.t. Zε,1, ...,Zε,t but
not on Y. Then the state evolution {κs,tε |f tεY,X0} is almost surely non-random.

Lemma 11. Denote QεY
t−1 the N × tq matrix associated with the LoAMP iterates

{HεY,t,QεY,t|f tεY,X0}. Assume ε > 0. Then for N > t, the matrix QεY
t−1 almost surely has full

column-rank. Furthermore, there exists a constant ct,ε, independent of n, such that, almost surely,
there exists N0 (random) such that, for N > N0, σmin(QεY

t−1)/
√
N > ct,ε > 0.

The next two lemmas show uniform convergence of the perturbed state evolution averages to
the original one when the perturbation vanishes.

Lemma 12. Let {ΦN : RN×tq → Rq×q}N>0 be a sequence of uniformly pseudo-Lipschitz functions
of order k. Let κ, κ̃ be two tq × tq covariance matrices and Z ∼ N(0,κ ⊗ IN ), Z̃ ∼ N(0, κ̃ ⊗ IN ).
Then

lim
κ̃→κ

sup
N>1

E[ΦN (Z)]− E[ΦN (Z̃)] = 0 . (3.35)

Lemma 13. For any s, t > 1, κs,tε −−→
ε→0

κs,t.

This last lemma shows that the iterates of the AMP orbit defined with the randomly perturbed
functions (3.32), denoted {XεY,t,MεY,t|f tεY,X0}, is arbitrarily close to the original AMP orbit
{Xt,Mt|f t,X0} when the perturbation is taken to zero.

Lemma 14. Consider the symmetric AMP orbit defined by {Xt,Mt|f t,X0} and the corresponding
perturbed orbit defined by {XεY,t,MεY,t|f tεY,X0}. Assume that, for some t ∈ N. Then there exist
functions ht(ε), h′t(ε), independent of N , such that

lim
ε→0

ht(ε) = lim
ε→0

h′t(ε) = 0 (3.36)

and for all ε 6 1, with high probability,
1√
N

∥∥∥MεY,t −Mt
∥∥∥
F
6 h′t(ε) , (3.37)

1√
N

∥∥∥XεY,t+1 −Xt+1
∥∥∥
F
6 ht(ε) . (3.38)

Combining these lemmas, we now prove Lemma 5.
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3.3.2 Proof of Lemma 5 and Theorem 5

Theorem 5 follows from Lemma 5 similarly to the proof of Corollary 2 from [37].

Proof of Lemma 5. The lemmas presented in the previous section ensure the following:

• Lemma 11 and 5 ensure the AMP iteration defined with randomly perturbed functions verifies
the non-degeneracy assumptions and the perturbed state evolution equations, i.e.,

ΦN

(
X0,Xε,1, . . . ,XεY,t

) P' E
[
ΦN

(
Zε,0,Zε,1, . . . ,Zε,t

)]
.

for any sequence of pseudo-Lispchitz functions ΦN , where
(
Zε,0,Zε,1, . . . ,Zε,t

)
are defined as

in Eq.(3.33).

• We have shown that the perturbed state evolution converges to the original one for vanishing
perturbations, i.e.,

sup
N>1

∣∣∣E [ΦN

(
Z0,Z1, . . . ,Zt

)]
− E

[
ΦN

(
Zε,0,Zε,1, . . . ,Zε,t

)]∣∣∣ −−→
ε→0

0

using Lemma 12 and 13.

• Lemma 14 ensures the AMP orbit {XεY,t,MεY,t|f tεY,X0} uniformly approximates the
{Xt,Mt|f t,X0} one.

In light of these results, consider the following decomposition: for any η > 0:

P
(∣∣∣ΦN

(
X0,X1, ...,Xt

)
− E

[
ΦN

(
X0,Z1, ...,Zt

)]∣∣∣ > η
)

6 P
(∣∣∣ΦN

(
X0,X1, ...,Xt

)
− ΦN

(
X0,XεY,1, ...,XεY,t

)∣∣∣ > η

3

)
+ P

(∣∣∣ΦN

(
X0,XεY,1, ...,XεY,t

)
− E

[
ΦN

(
X0,Zε,1, ...,Zε,t

)]∣∣∣ > η

3

)
+ P

(∣∣∣E [ΦN

(
X0,Zε,1, ...,Zε,t

)]
− E

[
ΦN

(
X0,Z1, ...,Zt

)]∣∣∣ > η

3

)
Starting with the first term of the r.h.s., the pseudo-Lipschitz property and the triangle inequality
give ∣∣∣ΦN (X0,X1, ...,Xt)− ΦN (X0,XεY,1, ...,XεY,t)

∣∣∣ 6
L

(
1 + 2

∥∥X0∥∥k−1
F

nk−1 +
t∑
i=1

∥∥Xi
∥∥k−1
F

n(k−1)/2 +
t∑
i=1

∥∥Xε,i
∥∥k−1
F

N (k−1)/2

) t∑
i=1

∥∥Xε,i −Xi
∥∥
F√

N

6 L

(
1 + 2

∥∥X0∥∥k−1
F

n(k−1)/2 +
t∑
i=1

∥∥Xi −Xε,i + Xε,i
∥∥k−1
F

n(k−1)/2 +
t∑
i=1

∥∥Xε,i
∥∥k−1
F

n(k−1)/2

) t∑
i=1

∥∥Xε,i −Xi
∥∥
F√

N

6 L

(
1 + 2

∥∥X0∥∥k−1
F

n(k−1)/2 +
t∑
i=1

∥∥Xi −Xε,i
∥∥k−1
F

n(k−1)/2 + 2
t∑
i=1

∥∥Xε,i
∥∥k−1
F

n(k−1)/2

) t∑
i=1

∥∥Xε,i −Xi
∥∥
F√

N

6 L

(
1 + 2Ck−1

0 +
t∑
i=1

hi(ε)k−1 + 2
t∑
i=1

Ck−1
εY,t

) t∑
i=1

hi(ε) w.h.p.
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where we used assumption (B3) for the convergence of ‖X0‖F /
√
N to a finite constant, the well-

defined state evolution of the perturbed orbit {XεY,t,MεY,t|f tεY,X0} for convergence of
∥∥Xε,i

∥∥/√N
to finite constants CεY,t and Lemma 14 to replace the differences

∥∥Xε,i −Xi
∥∥
F by the functions

hi(ε) with high probability. This gives, for any η > 0:

lim
ε→0

lim sup
N→∞

P
(∣∣∣ΦN

(
X0,X1, ...,Xt

)
− ΦN

(
X0,XεY,1, ...,XεY,t

)∣∣∣ > η

3

)
= 0 (3.39)

The state evolution for the perturbed AMP then gives

lim
ε→0

lim sup
N→∞

P
(∣∣∣ΦN

(
X0,XεY,1, ...,XεY,t

)
− E

[
ΦN

(
X0,Zε,1, ...,Zε,t

)]∣∣∣ > η

3

)
= 0 (3.40)

and Lemma 12 guarantees:

lim
ε→0

P
(∣∣∣E [ΦN

(
X0,ZεY,1, ...,ZεY,t

)]
− E

[
ΦN

(
X0,Z1, ...,Zt

)]∣∣∣ > η

3

)
= 0 (3.41)

for all N. From this we deduce

P
(∣∣∣ΦN

(
X0,X1, ...,Xt

)
− E

[
ΦN

(
X0,Z1, ...,Zt

)]∣∣∣ > η
)
−−−−→
N→∞

0 (3.42)

which is the desired result.

We now turn to the proof of Theorem 6.

Proof of Theorem 6. The property is verified at t = 0 straightforwardly from the initial conditions
: X̂0 = X0 and M̂0 = M0 = f0(X0).
Consider now that Corollary 6 is verified up to time t−1. Then, using the pseudo-Lipschitz property:

1√
N

∥∥∥M̂t −Mt
∥∥∥
F

= 1√
N

∥∥∥ft(X̂t)− ft(Xt)
∥∥∥
F
6

1 +

∥∥∥X̂t
∥∥∥k−1

F

n(k−1)/2 +
∥∥Xt

∥∥k−1
F

n(k−1)/2


∥∥∥X̂t −Xt

∥∥∥
F√

N
(3.43)

Xt verifies a well-defined state evolution using Theorem 5, thus limN→∞
‖Xt‖k−1

F

n(k−1)/2 6 Ct for a given
bounded constants Ct. To bound

∥∥∥X̂t
∥∥∥
F
/
√
N , we can write:∥∥∥X̂t

∥∥∥
F√

N
=

∥∥∥X̂t + Xt −Xt
∥∥∥
F√

N
6

∥∥Xt
∥∥
F√

N
+

∥∥∥X̂t −Xt
∥∥∥
F√

N
(3.44)

where the large n limit of the first term of the r.h.s. is bounded and the second term vanishes from
the induction hypothesis, which gives

∥∥∥X̂t −Xt
∥∥∥
F
/
√
N −−−−−→

n→+∞
0. Combining these steps, we get∥∥∥M̂t −Mt

∥∥∥
F
/
√
N −−−−−→

n→+∞
0. Moving to X̂t+1, we write :

1√
N

∥∥∥X̂t+1 −Xt+1
∥∥∥
F
6 ‖A‖op

1√
N

∥∥∥M̂t −Mt
∥∥∥
F

+ 1√
N

∥∥∥M̂t−1b̂>t −Mt−1b>t

∥∥∥
F

6 ‖A‖op
1√
N

∥∥∥M̂t −Mt
∥∥∥
F

+ 1√
N

∥∥∥M̂t−1b̂>t −Mt−1b̂>t + Mt−1b̂>t −Mt−1b>t

∥∥∥
F

6 ‖A‖op
1√
N

∥∥∥M̂t −Mt
∥∥∥
F

+ 1√
N

∥∥∥M̂t−1b̂>t −Mt−1b̂>t

∥∥∥
F

+ 1√
N

∥∥∥Mt−1b̂>t −Mt−1b>t

∥∥∥
F

6 ‖A‖op
1√
N

∥∥∥M̂t −Mt
∥∥∥
F

+ 1√
N

∥∥∥M̂t−1 −Mt−1
∥∥∥
F
‖bt‖F + 1√

N

∥∥∥b̂>t − b>t ∥∥∥
F

∥∥∥Mt−1
∥∥∥
F

(3.45)
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and handle each quantity using similar arguments as before: the quantities
∥∥Mt−1∥∥

F /
√
N and ‖bt‖F

are bounded for large n using the state evolution from Theorem 5, the quantities
∥∥∥M̂t −Mt

∥∥∥
F
/
√
N

and
∥∥∥M̂t−1 −Mt−1

∥∥∥
F
/
√
N vanish for large n using the first part of this proof and the induction

hypothesis. The operator norm of A may be bounded using Proposition (5). This proves the
induction and concludes the proof of Theorem 6.

3.3.3 Proof of intermediate lemmas

Those proofs which are too close to the ones appearing in [37] are not reminded.

Proof of Lemma 6. Recall the σ-algebra St = σ(H1,H2, ...,Ht). The LongAMP iteration verifies:

Ht+1 = (Id−PQt−1)AP⊥Qt−1Q
t + Ht−1α

t (3.46)
= AQt

⊥ −PQt−1AQt
⊥ + Ht−1α

t (3.47)

where Qt
⊥ = P⊥Qt−1

Qt. We now show by an induction that conditioning on St is equivalent to
conditioning on the linear observations AQ0,AQ1, ...,AQt, and thus to conditioning on AQt−1.
Consider the first iteration which initializes the induction:

H1 = AQ0 (3.48)

thus H1 is σ(AQ0)-measurable. Suppose now that Ht−1 is σ(AQt−1)-measurable. The LongAMP
iteration then gives, remembering that Qt

‖ = PQt−1Qt :

Ht+1 = AQt −AQt
‖ −PQt−1AQt

⊥ + Ht−1α
t︸ ︷︷ ︸

σ(AQt−1)−measurable

(3.49)

where the highlighted term is σ(AQt−1)−measurable by definition of Qt
‖ and the induction hypoth-

esis. This gives that Ht is σ(AQt)-measurable. We can now condition on the linear observation
AQt−1 at each iteration. We thus have:

Ht+1|St
d= A|StQt

⊥ −PQt−1AQt
⊥ + Ht−1α

t (3.50)

which amounts to condition the Gaussian space generated by the entries of A on its subspace defined
by the linear combinations AQt−1. Conditioning in Gaussian spaces amounts to doing orthogonal
projections, which gives

A|St = E [A|St] + Pt(Ã) (3.51)
as shown in [28],[135], where Ã is a copy of A, independent of St and Pt is the projector onto the
subspace {Â ∈ RN×N |ÂQt−1 = 0, Â = Â>} :

E [A|St] = A−P⊥Qt−1AP⊥Qt−1 (3.52)
Pt(Ã) = P⊥Qt−1ÃP⊥Qt−1 (3.53)

where Ã is an independent copy of A. Replacing in the original LongAMP iteration, we get :

Ht+1|St
d= P⊥Qt−1ÃP⊥Qt−1Q

t + Ht−1α
t (3.54)

where we used P⊥Qt−1
E [A|St] P⊥Qt−1

= 0.

Proof of Lemma 7. We proceed by induction over t. Let St be the property at time t.
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Initialization.

a) We have H1 = AQ0. Then:

1
N

(H1)>H1 = 1
N

(AQ0)>(AQ0)
P' 1

N
(Q0)>Q0 (3.55)

using Lemma 21. We then define κ1,1 = 1
N (Q0)>Q0.

b) We want to show that ΦN (X0,H1) P' E
[
ΦN (X0,Z1)]

]
where Z1 ∼ N(0,κ1,1), where

κ1,1 = 1
N

(Q0)>Q0 = 1
N

(
f0(X0)

)>
f0(X0) (3.56)

For any sequence {ΦN}N∈N of order k pseudo-Lipschitz function∥∥∥ΦN (X0,AQ0)− E[ΦN (Z1)]
∥∥∥

2
6
∥∥∥ΦN (AQ0)− ΦN (Z1)

∥∥∥
2

+
∥∥∥ΦN (Z1)− E[ΦN (Z1)]

∥∥∥
2

6 Ln

1 +
(∥∥AQ0∥∥

2√
N

)k−1

+
(∥∥Z1∥∥
√
N

)k−1
 ∥∥AQ0 − Z1∥∥

2√
N

+
∥∥∥ΦN (Z1)− E[ΦN (Z1)]

∥∥∥
2

(3.57)

where the large n limit of
(
‖AQ0‖2√

N

)k−1
+
(
‖Z1‖√
N

)k−1
being bounded, ‖AQ0−Z1‖2√

N

a.s−−−→
n→∞

0

and
∥∥ΦN (Z1)− E[ΦN (Z1)]

∥∥
2

P−−−→
n→∞

0 follow from Lemmas 1 and 21 .

Induction. Here we assume that S0, S1, ..., St−1 are verified, and we prove St.

a) Consider the case s < t. Since Hs+1 and 〈Qs,Qr〉 are St measurable, using the conditioning
lemma, we have :(

(Hs+1)>Ht+1 − (Qs)>Qt
)
|St

d=
(
(Hs+1)>Ht+1|St − (Qs)>Qt

)
= (Hs+1)>(P⊥Qt−1ÃP⊥Qt−1Q

t + Ht−1α
t)− (Qs)>Qt

= (Hs+1)>P⊥Qt−1ÃQt
⊥ + (Hs+1)>Ht−1α

t − (Qs)>Qt (3.58)

We thus have :
1
N

∥∥∥((Hs+1)>Ht+1 − (Qs)>Qt
)
|St
∥∥∥
F
6

1
N

∥∥∥(Hs+1)>P⊥Qt−1ÃQt
⊥

∥∥∥
F

+ 1
N

∥∥∥(Hs+1)>Ht−1α
t − (Qs)>Qt

∥∥∥
F

(3.59)

Starting with the term

1
N

∥∥∥(Hs+1)>P⊥Qt−1ÃQt
⊥

∥∥∥
F

= 1
N

∥∥∥(P⊥Qt−1H
s+1)>ÃQt

⊥

∥∥∥
F

(3.60)

the induction ensires that 1√
N

∥∥Hs+1∥∥
F ,

1√
N

∥∥Qt
⊥
∥∥
F concentrate to finite values. Furthermore,∥∥∥P⊥Qt−1

Hs+1
∥∥∥
F
6
∥∥Hs+1∥∥

F , so according to Lemma 21, the first term on the right-hand-side



CHAPTER 3. PROOFS FOR THE GRAPH-BASED AMP ITERATIONS 84

will concentrate to zero.
Moving to the second term, since s < t, PQt−1Qs = Qs. Then:

1
N

∥∥∥(Hs+1)>Ht−1α
t − (Qs)>Qt

∥∥∥
F

= 1
N

∥∥∥(Hs+1)>Ht−1α
t − (PQt−1Q

s)>Qt
∥∥∥
F

= 1
N

∥∥∥(Hs+1)>Ht−1α
t − (Qs)>Qt−1(Q>t−1Qt−1)−1Q>t−1Qt

∥∥∥
F

= 1
N

∥∥∥(Hs+1)>Ht−1α
t − (Qs)>Qt−1αt

∥∥∥
F

6
1
N

∥∥∥(Hs+1)>Ht−1 − (Qs)>Qt−1
∥∥∥
F
‖αt‖F (3.61)

Here we consider s < t thus s+ 1 6 t. Hence the induction hypothesis includes the concentra-
tion properties of Hs+1 and αt. We then have limN→∞

1
N

∥∥∥(Hs+1)>Ht−1 − (Qs)>Qt−1
∥∥∥
F
→ 0

and ‖αt‖F has a finite and well-defined limit using the non-degeneracy assumption. Indeed:

‖αt‖F =
∥∥∥(Q>t−1Qt−1)−1Q>t−1Qt

∥∥∥
F

6
1
Nc2

t

Q>t−1Qt (3.62)

using the induction hypothesis, limn→+∞
1
NQ>t−1Qt is finite. This proves the property for

s < t. Now consider the case s = t. We then have:(∥∥∥Ht+1
∥∥∥2

F
−
∥∥∥Qt

∥∥∥2

F

)
|St =

(∥∥∥Ht+1|St
∥∥∥2

F
−
∥∥∥Qt

∥∥∥2

F

)
=
∥∥∥P⊥Qt−1ÃQt

⊥

∥∥∥2

F
+ 2Tr

((
P⊥Qt−1ÃQt

⊥

)>
Ht−1α

t
)

+
∥∥∥Ht−1α

t
∥∥∥2

F
−
∥∥∥Qt

∥∥∥2

F
(3.63)

We then have
1
N

∥∥∥P⊥Qt−1ÃQt
⊥

∥∥∥2

F
= 1
N

∥∥∥ÃQt
⊥

∥∥∥2

F
− 1
N

∥∥∥PQt−1ÃQt
⊥

∥∥∥2

F

P' 1
N

∥∥∥Qt
⊥

∥∥∥2

F
(3.64)

where we used
1
N

∥∥∥ÃQt
⊥

∥∥∥2

F

P' 1
N

∥∥∥Qt
⊥

∥∥∥2

F
and 1

N

∥∥∥PQt−1ÃQt
⊥

∥∥∥2

F

P−−−→
n→∞

0 (3.65)

which follows from Lemma 21 and the independence of Ã. The second term then reads(
P⊥Qt−1ÃQt

⊥

)>
Ht−1α

t = (Qt
⊥)>ÃP⊥Qt−1Ht−1α

t (3.66)

From the induction hypothesis, we know that αt has finite norm when N → ∞. Moreover,∥∥∥P⊥Qt−1
Ht−1α

t
∥∥∥
F

6
∥∥Ht−1α

t
∥∥
F , and

∥∥Qt
⊥
∥∥
F 6

∥∥Qt
∥∥
F . Also 1√

N
‖Ht−1‖F and 1√

N

∥∥Qt
∥∥
F

converge to finite constants, again according to the induction hypothesis. Using Lemma 21,
we get

1
N

Tr
((

P⊥Qt−1ÃQt
⊥

)>
Ht−1α

t
)

P−−−→
n→∞

0 (3.67)
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Finally the third term can be decomposed∥∥∥Ht−1α
t
∥∥∥2

F
= Tr(

(
Ht−1α

t
)>

Ht−1α
t)

= Tr((αt)>H>t−1Ht−1α
t)

= Tr((αt)>
(
H>t−1Ht−1 −Q>t−1Qt−1

)
αt) + Tr

(
(αt)>Q>t−1Qt−1α

t
)

6
∥∥∥H>t−1Ht−1 −Q>t−1Qt−1

∥∥∥
F
‖αt‖F + ‖Qt−1αt‖F (3.68)

Using the induction hypothesis and the non-degeneracy assumption, limN→∞
∥∥αt∥∥F is a fi-

nite constant, and 1
N

∥∥∥H>t−1Ht−1 −Q>t−1Qt−1
∥∥∥
F

P−−−→
n→∞

0. Furthermore, by definition of αt,

Qt−1αt = Q‖t .
Grouping all the terms, we get

1
N

(∥∥∥Ht+1
∥∥∥2

F
−
∥∥∥Qt

∥∥∥2

F

)
|St

P' 1
N

∥∥∥Qt
⊥

∥∥∥2

F
+ 1
N

∥∥∥Qt
‖

∥∥∥2

F
− 1
N

∥∥∥Qt
∥∥∥2

F

= 0 (3.69)

b) Using the conditioning lemma :

ΦN

(
X0,H1, ...,Ht,Ht+1

)
|St

d= ΦN

(
X0,H1, ...,Ht,P⊥Qt−1ÃP⊥Qt−1Q

t + Ht−1α
t
)

= ΦN

(
X0,H1, ...,Ht, ÃQt

⊥ − PQt−1ÃQt
⊥ + Ht−1α

t
)

(3.70)

Let Φ′N
(
ÃQt

⊥ − PQt−1ÃQt
⊥ + Ht−1α

t
)

= ΦN

(
X0,H1, ...,Ht, ÃQt

⊥ − PQt−1ÃQt
⊥ + Ht−1α

t
)

as a shorthand. Then, from the pseudo-Lipschitz property:∣∣∣Φ′N (ÃQt
⊥ − PQt−1ÃQt

⊥ + Ht−1α
t
)
− Φ′N

(
ÃQt

⊥ + Ht−1α
t
)∣∣∣

6 LNC(k, t)
(

1 +
(∥∥X0∥∥

F√
N

)k−1

+
t∑

s=1

(‖Hs‖F√
N

)k−1

+
(∥∥Ht+1∥∥

F√
N

)k−1

+


∥∥∥ÃQt

⊥

∥∥∥
F√

N

k−1

+
(∥∥Ht−1α

t
∥∥
F√

N

)k−1 )∥∥∥PQt−1ÃQt
⊥

∥∥∥
F√

N
(3.71)

where C(k, t) is a constant depending only on k and t. The induction hypothesis ensures that(
‖X0‖

F√
N

)k−1
+∑t

s=1

(
‖Hs‖F√

N

)k−1
converges to a finite constant. Furthermore,

1√
N

∥∥∥Ã∥∥∥
F
6

1√
N

∥∥∥Ã∥∥∥
op

∥∥∥Qt
∥∥∥
F

(3.72)

which, using Proposition 5 and the induction hypothesis, converges to a finite constant. Also,
using the fact that rank(PQt−1) 6 tq with t, q finite, and the independence of Ã, Lemma 21
gives

1√
N

∥∥∥PQt−1ÃQt
⊥

∥∥∥
F

P−−−→
n→∞

0 . (3.73)
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Ultimately, we obtain

Φ′N
(
ÃQt

⊥ − PQt−1ÃQt
⊥ + Ht−1α

t
) P' Φ′N

(
ÃQt

⊥ + Ht−1α
t
)

P' Φ′N
(
ÃQt

⊥ + Ht−1α
t,∗
)

(3.74)

where α∗t = limN→∞αt which are finite matrices, and α∗t ∈ Rtq×q. We write :(α∗t )1
...

(α∗t )t

 (3.75)

where ∀1 6 i 6 t, (α∗t )i ∈ Rq×q. Then

Φ′N
(
ÃQt

⊥ + Ht−1α
t,∗
) P' Φ′N

(
ÃQt

⊥ + Ht−1α
t,∗
)

P' Φ(X0,H1, ...,Ht, ÃQt
⊥ + Ht−1α

t,∗) (3.76)

Using Lemma 1, there exists Zt+1
⊥ ∼ N(0,κt+1

⊥ ⊗ IN ) independent of St, where κt+1
⊥ =

limN→∞
1
N (Qt

⊥)>Qt
⊥, such that:

Φ(X0,H1, ...,Ht, ÃQt
⊥ + Ht−1α

t,∗) P' EZ
[
Φ(X0,H1, ...,Ht,Zt+1

⊥ + Ht−1α
t,∗)
]

P' E
[
ΦN (X0,Z1, ...,Zt,Zt+1

⊥ +
t∑
i=1

Zi(αt,∗)i)
]

(3.77)

We now need to match the covariance matrices defined by the prescription of Zt+1 we obtained
with the ones from the state evolution. Let Zt+1 = Zt+1

⊥ +∑t
i=1 Zi(αt,∗)i) ∈ Rq×q. We then

write Zt+1 ∼ N(0,κt+1,t+1 ⊗ IN ) where κt+1,t+1 = limN→∞
1
N (Zt+1)>Zt+1. Then, using the

isometry proved above and remembering that, for any 1 6 i 6 t,Qt = f t(Ht):

1
N

(Zt+1)>Zt+1 P' 1
N

(Ht+1)>Ht+1 P' 1
N

(Qt)>Qt P−−−→
n→∞

κt+1,t+1 (3.78)

similarly, for s > 2:

κs = 1
N

(Zs)>Zt+1 P' 1
N

(Hs)>Ht+1 P' 1
N

(Qs−1)>Qt P−−−→
n→∞

κs,t+1 (3.79)

and for s = 1:

κs = 1
N

(Z1)>Zt+1 P' 1
N

(H1)>Ht+1 P' 1
N

(Q0)>Qt P−−−→
n→∞

κ1,t+1 (3.80)

Proof of Lemma 8. This lemma is proven by induction.

Initialization. The first iterates read H1 = AQ0 and Ĥ1 = AQ0. This concludes the initializa-
tion.
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Induction. Assume the proposition is true up to time t. Define the (t+1)q×(t+1)q block-diagonal
matrix Bt = diag

(
0q×q,b1, ...,bt

)
and Ĥt−1 =

[
Ĥ1|Ĥ2|...|Ĥt

]
. We then have :

Ht+1 = P⊥Qt−1AP⊥Qt−1Q
t + Ht−1α

t

= AQt
⊥ −PQt−1AQt

⊥ + Ht−1α
t (3.81)

and

Ĥt+1 = AQt −Qt−1(bt)>

= AQt
⊥ + AQt

‖ −Qt−1(bt)>

where AQt
‖ = AQt−1(Q>t−1Qt−1)−1Q>t−1Qt

= AQt−1α
t (3.82)

which gives

Ĥt+1 −Ht+1 = PQt−1AQt
⊥ −Qt−1(bt)> + AQt−1α

t −Ht−1α
t (3.83)

using the definition of iteration (3.29), we have:

AQt−1 = Ĥt−1 +
[
0N×q|Q0|...|Qt−2

]
B>t−1 (3.84)

Ĥt+1 −Ht+1 = PQt−1AQt
⊥ −Qt−1(bt−1)> + [0N×q|Qt−2] B>t−1α

t +
(
Ĥt−1 −Ht−1

)
αt

= Qt−1(Q>t−1Qt−1)−1Q>t−1AQt
⊥ −Qt−1(bt−1)> + [0N×q|Qt−2] B>t−1α

t

+
(
Ĥt−1 −Ht−1

)
αt (3.85)

and

Q>t−1A = (AQt−1)>

= ((Ĥt−1 + [0N×q|Qt−2] B>t ))>

= Ĥ>t−1 + Bt [0N×q|Qt−2]> (3.86)

since Qt
⊥ = P⊥Qt−1

Qt, it holds that:

Q>t−1AQt
⊥ =

(
Ĥ>t−1 + Bt [0N×q|Qt−2]>

)
P⊥Qt−1Q

t

P' Ĥ>t−1P⊥Qt−1Q
t (3.87)

which in turn gives:

Ĥt+1 −Ht+1 P'Qt−1(Q>t−1Qt−1)−1Ĥ>t−1Qt
⊥ −Qt−1(bt−1)> + [0N×q|Qt−2] B>t−1α

t

+
(
Ĥt−1 −Ht−1

)
αt

= Qt−1(Q>t−1Qt−1)−1H>t−1Qt
⊥ −Qt−1(bt−1)> + [0N×q|Qt−2] B>t−1α

t

+
(
Ĥt−1 −Ht−1

)
αt + Qt−1(Q>t−1Qt−1)−1

(
Ĥt−1 −Ht−1

)>
Qt
⊥ (3.88)
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We now study the limiting behaviour of this quantity, starting with:

C = Qt−1(Q>t−1Qt−1)−1H>t−1Qt
⊥ −Qt−1(bt−1)> + [0N×q|Qt−2] B>t−1α

t (3.89)

We have :

Qt
⊥ = Qt −Qt

‖

= Qt −Qt−1αt (3.90)

and :

C = Qt−1(Q>t−1Qt−1)−1H>t−1(Qt −Qt−1αt)−Qt−1(bt−1)> + [0N×q|Qt−2] B>t−1α
t (3.91)

Using Lemma 17, the state evolution, and the concentration properties of pseudo-Lipschitz
functions Lemma 1, we get, for all 1 6 j 6 t− 1 and 1 6 i 6 t:

1
N

(Hi)>f j(Hj) P' E
[ 1
N

(Zi)>f j(Zj)
]

= Ki,jE
[ 1
N

divf j(Zj)
]

P' 1
N

(Qi−1)>Qj−1(bj)> (3.92)

and for j = 0 :
1
N

(Hi)>f(X0) P' E
[ 1
N

(Zi)>f0(X0)
]

= 0 (3.93)

which in turn gives
1
N

(H>t−1Qt) = 1
N

[
H1|...|Ht

]>
ft(Ht) P' 1

N
(Qt−1)>Qt−1(bt−1)> (3.94)

and
1
N

H>t−1Qt−1 = 1
N

[
H1|...|Ht

]> [
Q0|f1(H1)...|ft−1(Ht−1)

] P' 1
N

Q>t−1[0N×q|Qt−2]B>t−1 (3.95)

Furthermore, note that

Qt−1(Q>t−1Qt−1)−1H>t−1Qt
⊥ = Qt−1( 1

N
Q>t−1Qt−1)−1 1

N
H>t−1Qt

⊥ (3.96)

where the limit limN→∞( 1
NQ>t−1Qt−1)−1 is well-defined owing to the non-degeneracy assumption.

We can then write :

C P'Qt−1(Q>t−1Qt−1)−1Q>t−1(Qt−1(bt−1)> − [0N×q|Qt−2] B>t−1α
t) (3.97)

−Qt−1(bt−1)> + [0N×q|Qt−2] B>t−1α
t

= Qt−1(Q>t−1Qt−1)−1Q>t−1 (Qt−1(bt−1)> − [0N×q|Qt−2] B>t−1α
t)︸ ︷︷ ︸

∈ span(Qt−1)

(3.98)

−Qt−1(bt−1)> + [0N×q|Qt−2] B>t−1α
t

= 0 (3.99)
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At this point, we have :
1√
N

∥∥∥Ĥt+1 −Ht+1
∥∥∥
F
6

1√
N
‖C‖F + 1√

N
‖
(
Ĥt−1 −Ht−1

)
αt

+ Qt−1(Q>t−1Qt−1)−1
(
Ĥt−1 −Ht−1

)>
Qt
⊥‖F (3.100)

Where
1√
N

∥∥∥(Ĥt−1 −Ht−1
)
αt
∥∥∥
F
6

1√
N

∥∥∥Ĥt−1 −Ht−1
∥∥∥
F

∥∥∥αt∥∥∥
F

(3.101)

As previously discussed,
∥∥αt∥∥F has a finite limit, and according to the induction hypothesis,

1√
N

∥∥∥Ĥt−1 −Ht−1
∥∥∥
F

P−−−−→
N→∞

0. Then

1√
N

∥∥∥∥Qt−1(Q>t−1Qt−1)−1
(
Ĥt−1 −Ht−1

)>
Qt
⊥

∥∥∥∥
F
6

1√
N

∥∥∥Ĥt−1 −Ht−1
∥∥∥
F

1
Nc2

t

‖Qt−1‖F
∥∥∥Qt

∥∥∥
F

(3.102)

where 1
Nc2

t
‖Qt−1‖F

∥∥Qt
∥∥
F converges to a finite limit due to the state evolution proved above. This

ultimately shows that
1√
N

∥∥∥Ĥt+1 −Ht+1
∥∥∥
F

P−−−−→
N→∞

0 (3.103)

and concludes the induction.

Proof of Lemma 9. This one is another induction. Let St be the statement 1√
N

∥∥Qt −Mt
∥∥
F

P−−−−→
N→∞

0

and 1√
N

∥∥Ht+1 −Xt+1∥∥
F

P−−−−→
N→∞

0.

Initialization. We have Q0 = f0(X0) = M0 and H1 = AQ0,X1 = AM0.

Induction We assume St−1 is true, and we prove St. We have
1√
N

∥∥∥Qt −Mt
∥∥∥
F

= 1√
N

∥∥∥f t(Ht)− f t(Xt)
∥∥∥
F

6 Lt

1 +
(∥∥Ht

∥∥
F√

N

)k−1

+
(∥∥Xt

∥∥
F√

N

)k−1
 ∥∥Ht −Xt

∥∥
F√

N
(3.104)

which goes to zero as n goes to infinity from the induction hypothesis. We then prove that
1√
N

∥∥∥Ĥt+1 −Xt+1
∥∥∥
F

P−−−−→
N→∞

0.

Ĥt+1 −Xt+1 = AQt −Qt−1(bt)> −AMt + Mt−1(bt)> (3.105)

and
1√
N

∥∥∥Ĥt+1 −Xt+1
∥∥∥
F
6 ‖A‖op

1√
N

∥∥∥Qt −Mt
∥∥∥
F

+ 1√
N

∥∥∥Qt−1 −Mt−1
∥∥∥
F

∥∥∥bt∥∥∥
F

(3.106)

using Proposition 5, ‖A‖op
P−−−−→

N→∞
2. Using the induction hypothesis, 1√

N

∥∥Qt −Mt
∥∥
F

P−−−−→
N→∞

0, 1√
N

∥∥Qt−1 −Mt−1∥∥
F

P−−−−→
N→∞

0, and
∥∥bt∥∥F is finite. This concludes the induction step.
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Proof of Lemma 10. In this proof, we will consider the 2q × 2q covariance matrix κ =
[
κ1,1 κ1,2

κ1,2 κ2,2

]
and two matrices Z1,Z2 ∈ (RN×q)2 following the distribution N (0,κ⊗ IN ) , and we study the
corresponding state evolution when the perturbed functions f tεY are considered. We drop the ε
exponent on the covariance matrices since we are just studying the well-definiteness of the perturbed
SE as an induction. The link with the original SE will be studied in subsequent lemmas.

EZ

[ 1
N

(fsεY(Zs)>f tεY(Zt)
]

= EZ

[ 1
N

(fs(Zs)>f t(Zt)
]

+ εEZ

[ 1
N

(fs(Zs))>Yt
]

+ εEZ

[ 1
N

(f t(Zt))>Ys
]

+ ε2
1
N

(Ys)>Yt

= EZ

[ 1
N

(fs(Zs)>f t(Zt)
]

+ ε

N
EZ [fs(Zs)]>Yt

+ ε

N
EZ
[
f t(Zt)

]>
Ys + ε2

N
(Ys)>Yt

• the first term does not depend on the perturbation and is deterministic. Using assumptions
(A6), this quantity has a finite limit.

• second term is a q × q matrix where each element have zero mean and variance

Var
[ 1
N

(
E
[
fs(Zs)>Yt

]i
j

)]
= 1
N2 ‖E [fs(Zs)]‖22 6

C

N
(3.107)

Using the Gaussian tail and the Borel-Cantelli lemma, this term converges almost surely to
zero.

• the third term is treated in the same way as the second one

• the last term follows from the strong law of large numbers:

lim
N→∞

1
N

(Ys)>Yt a.s.−−−→
n→∞

Iq×qδs=t (3.108)

Putting things together, we get, almost surely:

lim
N→∞

EZ

[ 1
N

(fsεY(Zs))>f tεY(Zt)
]

= lim
N→∞

EZ

[ 1
N

(fs(Zs))>f t(Zt)
]

+ ε2Iq×qδs=t (3.109)

Verifying the initialization assumptions (A4-A5) is very similar to the previous steps, thus we
directly give the result. The initialization reads:

lim
N→∞

1
N

(f0
εY(X0))>f0

εY(X0) = lim
N→∞

1
N

(f0(X0))>f0(X0) + ε2Iq×q (3.110)

lim
N→∞

1
N

E
[
(f0
εY(X0))>f tεY(Zt)

]
= lim

N→∞

1
N

E
[
(f0(X0))>f t(Zt)

]
(3.111)

It follows straightforwardly from these equations and a short induction that the resulting state
evolution is almost surely non-random.
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Proof of Lemma 11. By definition, for any t ∈ N :

Qt,εY = Qt + εYt (3.112)

Then
QεY,t
⊥ = P⊥QεY

t−1
f t(HεY,t) + εP⊥QεY

t−1
Yt (3.113)

with the parallel term a linear combination of the previous ones. Denote Ft the σ-algebra generated
by HεY,1, ...,HεY,t,Y1, ...,Yt−1. Since Yt is generated independently of Ft, each column j of QεY,t

obeys the distribution:

(QεY,t
⊥ )j |Ft ∼ N(P⊥QεY

t−1
(f t(HεY,t))j , ε2P⊥QεY

t−1
) (3.114)

the variance of which is almost surely non-zero whenever N > tq. Thus, when N > tq, the matrix
Qt−1 has full column rank. We now need to control the minimal singular value of Qt−1. Following
[28], Lemma 9, we only need to check that, for any column j, almost surely, for N sufficiently large,
there exists a constant cε > 0 such that:

1
N

∥∥∥(QεY,t
⊥ )j

∥∥∥2
> cε (3.115)

which follows in almost identical fashion to [37], Lemma 9 using the moments of a N − tq chi-square
variable, instead of N − t in the original proof, which extends straightforwardly since q is kept
finite.

Proof of Lemma 12. This result is proven for q = 1 in [37] and the proof for the case of finite,
integer q is identical.

Proof of Lemma 13. This lemma is proven by induction.

Initialization. From equation (3.110), it holds that

Kε
1,1 = K1,1 + ε2 −−→

ε→0
K1,1 (3.116)

Induction. Let t be a non-negative integer. Assume that, for any r, s 6 t, κr,sε → κr,s. Then:

κs+1,t+1
ε = lim

N→∞
E
[ 1
N

(fsεY(ZsεY))>f tεY(ZtεY)
]

(3.117)

where ZsεY,ZtεY are n× q Gaussian random matrices whose distributions are specified by κs,sε ,κt,tε
and κs,tε which are q × q deterministic matrices. Then, from equation (3.109), we have

κs+1,t+1
ε = lim

N→∞

1
N

EZ

[ 1
N

(fs(Zε,s))>ft(Zε,t)
]

+ ε2Iq×qδs=t (3.118)

From Lemma 18, the function (Zs,Zt)→ 1
N fs(Zs)>ft(Zt) is uniformly pseudo-Lipschitz. Moreover,

from the induction hypothesis, we have :

lim
ε→0

κs,tε = κs,t (3.119)
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thus, using the uniform convergence Lemma 12, we get :

lim
ε→0

lim
N→∞

1
N

E
[
fs(Zε,s)>ft(Zε,t)

]
= lim

N→∞

1
N

E
[
fs(Zs)>ft(Zt)

]
= κs+1,t+1 (3.120)

where (Zs,Zt) ∼ N(0,κ⊗ In) and κ =
[
κs,s,κs,t

κt,s,κt,t

]
. This shows that

κs+1,t+1
ε −−→

ε→0
κs+1,t+1 (3.121)

which concludes the induction. Similar reasoning proves the convergence of correlations with the
initial vector

κ1,t+1
ε −−→

ε→0
κ1,t+1 (3.122)

.

Proof of Lemma 14. This Lemma is proven by induction.

Initialization.
1√
N

∥∥∥MεY,0 −M0
∥∥∥
F

= f0
εY(X0)− f0(X0) = 1√

N
ε
∥∥∥Y0

∥∥∥
F

(3.123)

Using the bound from Lemma 4, there exists an absolute constant CY independent of N such that,
with high probability:

ε√
N

∥∥∥Y0
∥∥∥
F
6 CYε (3.124)

Note that CY is the same for all Yt. We thus choose h′0(ε) = CYε. Then
1√
N

∥∥∥XεY,1 −X1
∥∥∥
F
6 ‖A‖op

ε√
N

∥∥∥Y0
∥∥∥
F
6 2CYε (3.125)

using the bound on the operator norm of GOE matrices Proposition 5, and we can choose h0(ε) =
2CYε.

Induction Assume the property is verified up to time t, i.e., the functions h0(ε), h′0(ε), ..., ht−1(ε),
h′t−1(ε) exist and are known. We now need to show ht(ε), h′t(ε) exist. By definition of the iteration:

1√
N

∥∥∥MεY,t −Mt
∥∥∥
F

= 1√
N

∥∥∥f tεY(XεY)− f t(Xt)
∥∥∥
F

= 1√
N

∥∥∥f t(XεY)− f t(Xt) + εYt
∥∥∥
F

6 Lt

1 +
(∥∥XεY,t∥∥

F√
N

)k−1

+
(∥∥Xt

∥∥
F√

N

)k−1
 ∥∥XεY,t −Xt

∥∥
F√

N
+ 1√

N
ε
∥∥∥Yt

∥∥∥
F

6 Lt

1 +
(∥∥XεY,t∥∥

F√
N

)k−1

+
(∥∥Xt

∥∥
F√

N

)k−1
ht−1(ε) + CYε

6 Lt

1 + CεY(k) +
(∥∥XεY,t∥∥

F√
N

+
∥∥XεY,t −Xt

∥∥
F√

N

)k−1
ht−1(ε) + CYε

6 Lt
(
1 + CεY(k) + 2k−2CεY(k)k−1 + 2k−2hk−1

t−1 (ε)
)
ht−1(ε) + CYε

(3.126)
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where we used the state evolution of the perturbed AMP orbit to show that ‖X
εY,t‖

F√
N

has a finite
limit and Hölder’s inequality. We can thus choose

h′t(ε) = Lt
(
1 + CεY(k) + 2k−2CεY(k)k−1 + 2k−2hk−1

t−1 (ε)
)
ht−1(ε) + CYε (3.127)

which goes to zero when ε goes to zero. Then

1√
N

∥∥∥XεY,t+1 −Xt+1
∥∥∥
F
6 ‖A‖op

1√
N

∥∥∥MεY,t −Mt
∥∥∥
F

+ 1√
N

∥∥∥MεY,t−1(btεY)> −Mt−1(bt)>
∥∥∥
F

6 2h′t(ε) + 1√
N

∥∥∥MεY,t−1(bεYt )> −Mt−1(bt)>
∥∥∥
F

6 2h′t(ε) + 1√
N

∥∥∥MεY,t−1 −Mt−1
∥∥∥
F

∥∥∥bt∥∥∥
F

+ 1√
N

∥∥∥btεY − bt
∥∥∥
F

∥∥∥Mt−1
∥∥∥
F

(3.128)

and

∥∥∥bt∥∥∥
F

=
∥∥∥∥∥E
[

1
N

N∑
i=1

∂f ti
∂Zi

(Zt)
]∥∥∥∥∥

F

6 E
[

1
N

N∑
i=1

∥∥∥∥∥∂f ti∂Zi
(Zt)

∥∥∥∥∥
F

]
(3.129)

where Zt ∼ N(0,κt,t ⊗ In). Since the function f t : RN×q → RN×q is pseudo-Lipschitz of order
k, the components f ti : RN×q → Rq are pseudo-Lipschitz of order k as well. So are the functions
f ti,j : RN×q → R for 1 6 j 6 q generating each component of f ti (Zt) ∈ Rq and their Rq → R
restrictions to the i− th line of Zt. Then

∥∥∥bt∥∥∥
F
6

1
N

N∑
i=1

qmax
j

{
E
∥∥∥∇Zti

f ti,j(Zt)
∥∥∥

2

}
(3.130)

where maxj
{
E
∥∥∥∇Zti

f ti,j(Zt)
∥∥∥

2

}
is bounded using the pseudo-Lipschitz property and a similar argu-

ment to the proof of lemma 1. Let CJ be this upper bound, then

1√
N

∥∥∥MεY,t−1(btεY)> −Mt−1(bt)>
∥∥∥
F
6 qCJh

′
t−1(ε) + 1√

N

∥∥∥Mt−1
∥∥∥
F

∥∥∥btεY − bt
∥∥∥
F

(3.131)

Using the same decomposition as before

1√
N

∥∥∥Mt−1
∥∥∥
F

∥∥∥btεY − bt
∥∥∥
F
6
( 1√

N

∥∥∥MεY,t−1 −Mt−1
∥∥∥+ 1√

N

∥∥∥MεY,t−1
∥∥∥) ∥∥∥btεY − bt

∥∥∥
F

6
(
h′t−1(ε) + CεY,t−1

) ∥∥∥btεY − bt
∥∥∥
F

(3.132)

The definition of the Onsager correction terms gives

∥∥∥btεY − bt
∥∥∥
F

=
∥∥∥∥∥E
[

1
N

N∑
i=1

∂f ti

∂Z̃εY,ti

(Z̃εY,t)
]
− E

[
1
N

N∑
i=1

∂f ti
∂Z̃ti

(Z̃t)
]∥∥∥∥∥

F

(3.133)
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where Z̃εY,t = Z(κεYt,t )1/2 where Z ∈ RN×q is an i.i.d. standard normal matrix. Similarly Z̃t =
Z(κt,t)1/2. Using the positive definiteness of κt,t along with Lemma 17, we can write, keeping in
mind that the perturbation εY doesn’t change the derivatives in the Onsager correction:∥∥∥btεY − bt

∥∥∥
F

=
∥∥∥∥(κt,tεY)−1E

[ 1
N

(Z̃εY,t)>f t(Z̃εY,t)
]
− (κt,t)−1E

[ 1
N

(Zt)>f t(Zt)
]∥∥∥∥
F

6
∥∥∥(κt,tεY)−1 − (κt,t)−1

∥∥∥
F
E
[ 1
N

(Z̃εY,t)>f t(Z̃εY,t)
]

+

((κt,t)−1)
∥∥∥∥E [ 1

N
(Z̃εY,t)>f t(Z̃εY,t)

]
− E

[ 1
N

(Zt)>f t(Zt)
]∥∥∥∥
F

The function RN×q → Rq×q,Z → Z>f t(Z) is pseudo-Lipschitz of order k + 1. Moreover, from
Lemma 8, κt,tεY −−→ε→0

κt,t. Thus using Lemma 12, we get

lim
ε→0

∥∥∥∥E [ 1
N

(Z̃εY,t)>ft(Z̃εY,t)
]
− E

[ 1
N

(Zt)>ft(Zt)
]∥∥∥∥
F

= 0 (3.134)

and Lemma 13 gives limε→0
∥∥∥(κεYt,t )−1 − (κt,t)−1

∥∥∥
F

= 0, which concludes the induction.

3.4 Low-rank perturbations and projections

As mentioned in Section 2.2.3, AMP iterations associated to inference problems often present non-
trivial dependencies between the non-linearities and the random matrices of the corresponding
graph. These dependencies typically take the form of low-rank linear perturbations, or an additional
argument in the non-linearities composed of a non-linear transform involving the random matrices
of the graph, see the examples of Section 2.3. In this appendix, we propose a generic way of dealing
with these dependencies by leveraging on the matrix-valued iteration Eq.(2.9-2.11), in the form of
two lemmas.

3.4.1 Additive low-rank perturbation

Lemma 15. Let V0 ∈ RN×q be a given matrix such that the quantity 1√
N
‖V0‖F converges to a

finite constant as N →∞. Define the matrix

Â = A + 1
N

V0V>0 ∈ RN×N , (3.135)

consider the AMP iteration initialized with X0 ∈ RN×q

Xt+1 = ÂMt −Mt−1(bt)> ∈ RN×q , (3.136)
Mt = f t(Xt) ∈ RN×q , (3.137)

bt = 1
N

N∑
i=1

∂f ti
∂Xi

(Xt) ∈ Rq×q . (3.138)
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and the following state evolution recursion, initialized with µ0 = 0q×q,

µ0, κ
1,1 = lim

N→∞

1
N
f0(V0µ0 + X0)>f0(V0µ0 + X0) (3.139)

µs+1 = lim
N→+∞

1
N

E
[
(V0)>fs (V0µ

s + Zs)
]

(3.140)

κt+1,s+1 = κs+1,t+1 = lim
N→∞

1
N

E
[
fs(V0µ

s + Zs)>f t(V0µ
t + Zt)

]
, s ∈ {0, . . . , t} . (3.141)

where (Z1, ...,Zt) ∼ N
(
0, (κs,r)s,r6t ⊗ IN

)
. Assume (B1)−(B6) and that for any t ∈ N, any 1 6 i 6

N , the derivative ∂f ti
∂Xi

is pseudo-Lipschitz of order k. Then for any sequence φN : (RN×q)t+1 → R
of pseudo-Lipschitz functions

φN
(
X0,X1, ...,Xt

) P' E
[
φN

(
V0µ

0 + Z0,V0µ
1 + Z1, ...,V0µ

t + Zt
)]

(3.142)

Proof of Lemma 15. The proof follows a similar argument to that of Lemma 3.4 from [74]. Consider
the following iteration

St+1 = AM̃t − m̃t−1(b̃t)> ∈ RN×q , (3.143)
M̃t = f t(V0µ

t + St) ∈ RN×q , (3.144)

b̃t = 1
N

N∑
i=1

∂f ti
∂Si

(V0µ
t + St) ∈ Rq×q . (3.145)

initialized with S0 = X0 − µ0V0. Under assumptions (B1) − (B6), the iterates St obey the state
evolution equations Eq.(3.139) owing to Theorem 5. We now prove the following statement by
induction.

∀t ∈ N
1√
N

∥∥∥Xt − St −V0µ
t
∥∥∥
F

P−−−−→
N→∞

0 (3.146)

The statement is true at t = 0 owing to the initialization of the sequences. Assume the statement
is true up to time t. We can then write

Xt+1 − St+1 −V0µ
t+1 = ÂMt −Mt−1(bt)> −AM̃t + m̃t−1(b̃t)> −V0µ

t+1 (3.147)

= A
(
f t(Xt)− f t

(
V0µ

t + St
))

+ 1
N

V0V>0 f t
(
Xt
)
−V0µ

t+1

+
(
f t−1(V0µ

t−1 + St−1)− f t−1(Xt−1))
)

(b̃t)> + f t−1(Xt−1)(b̃t − bt)> (3.148)

The triangle inequality then gives

1√
N

∥∥∥Xt+1 − St+1 −V0µ
t+1
∥∥∥
N

6
1√
N
‖A‖op

∥∥∥f t(Xt)− f t
(
V0µ

t + St
)∥∥∥

F

+ 1√
N

∥∥∥∥ 1
N

V0V>0 f t
(
Xt
)
−V0µ

t+1
∥∥∥∥
F

+ 1√
N

∥∥∥(f t−1(V0µ
t−1 + St−1)− f t−1(Xt−1))

)
(b̃t)>

∥∥∥
F

+ 1√
N

∥∥∥f t−1(Xt−1)(b̃t − bt)>
∥∥∥
F

(3.149)
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and, owing to the pseudo-Lipschitz property
1√
N

∥∥∥f t(Xt)− f t
(
V0µ

t + St
)∥∥∥

F
6

L

1 +
(∥∥Xt

∥∥
F√

N

)k−1

+
(∥∥V0µ

t + St
∥∥
F√

N

)k−1
 ∥∥Xt −V0µt − St

∥∥
F√

N
,

(3.150)

where the state evolution verified by iteration Eq.(3.143) ensures that ‖V0µt+St‖
F√

N
is bounded with

high probability. The induction hypothesis then gives that ‖X
t−V0µt−St‖

F√
N

P−−−−→
N→∞

0, which, together

with the previous statement ensures that ‖X
t‖
F√

N
is also bounded with high probability. Combining

this with proposition 5 shows that
1√
N
‖A‖op

∥∥∥f t(Xt)− f t
(
V0µ

t + St
)∥∥∥

F

P−−−−→
N→∞

0. (3.151)

Then
1√
N

∥∥∥∥ 1
N

V0V>0 f t
(
V0µ

t + St
)
−V0µ

t+1
∥∥∥∥
F
6
‖V0‖F√

N

∥∥∥∥ 1
N

V>0 f t
(
Xt
)
− µt+1

∥∥∥∥
F

(3.152)

where ‖V0‖F /
√
N is bounded with high probability by assumption. Since the function V>0 f t(.) is

pseudo-Lipschitz, we can use the induction hypothesis and SE equations together with the definition
of µt show that the r.h.s. goes to zero with high probability. The third term of the sum in the
r.h.s. of Eq.(3.149) can be bounded in similar fashion to the first one using the pseudo-Lipschitz
property, the induction hypothesis and the boundedness of the norm of the Onsager term b̃t, which
can be expressed as a pseudo-Lipschitz function of St using the SE property of iteration Eq.(3.143)
and Lemma 17. The last term then verifies

1√
N

∥∥∥f t−1(Xt−1)(b̃t − bt)>
∥∥∥
F
6

1√
N

∥∥∥f t−1(Xt−1)
∥∥∥
F

∥∥∥b̃t − bt
∥∥∥
F

(3.153)

where 1√
N

∥∥f t−1(Xt−1)
∥∥
F is bounded w.h.p. owing to the induction hypothesis, pseudo-Lipschitz

property of f t−1 and the SE equations of iteration Eq.(3.143), and the difference in Onsager terms
verifies ∥∥∥b̃t − bt

∥∥∥
F

= 1
N

∥∥∥∥∥
N∑
i=1

(
∂f ti
∂Si

(V0µ
t + St)− ∂f ti

∂Xi
(Xt)

)∥∥∥∥∥
F

6 sup
16i6N

∥∥∥∥∥∂f ti∂Si
(V0µ

t + St)− ∂f ti
∂Xi

(Xt)
∥∥∥∥∥
F

(3.154)

where we remind that f ti : RN×q → Rq and is therefore a low-dimensional observable, for which the
pseudo-Lipschitz assumption implies that there exists a constant L such that∥∥∥b̃t − bt

∥∥∥
F
6 L

1 +
(∥∥Xt

∥∥
F√

N

)k−1

+
(∥∥V0µ

t + St
∥∥
F√

N

)k−1
 ∥∥Xt −V0µt − St

∥∥
F√

N
(3.155)

which converges to zero with high probability for large N using the induction hypthesis and the SE
equations of iteration (3.143). This concludes the induction and proves the statement Eq.(3.146).
The proof of Lemma 15 follows immediately from the pseudo-Lipschitz property, the property
Eq.(3.146) and the SE equations of iteration Eq.(3.143).
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3.4.2 Dependence on an additional linear observation

Lemma 16. Let W0 ∈ RN×q be a matrix such that 1
N

∥∥∥W>
0 W0

∥∥∥
F

converges to a finite constant
as N → ∞, and a given pseudo-Lipschitz function ϕ : RN×q → RN . Consider the AMP iteration
initialized with X0 ∈ RN×q

Xt+1 = AMt −Mt−1(bt)> ∈ RN×q , (3.156)
Mt = f t(ϕ (AW0) ,Xt) ∈ RN×q , (3.157)

bt = 1
N

N∑
i=1

∂f ti
∂Xi

(ϕ (AW0) ,Xt) ∈ Rq×q . (3.158)

where the functions f t : RN×(q+1) → RN×q are pseudo-Lipschitz. Consider the following state
evolution recursion, initialized with ν0, ν̂0 = 0q×q,

ν0, ν̂0,κ1,1 = 1
N
f0(X0)>f0(X0) (3.159)

νt+1 = lim
N→∞

1
N

E
[
W>

0 f
t
(
ϕ(ZW0),ZW0ρ

−1
W0
νt + W0ν̂

t + Zt
)]

(3.160)

ν̂t+1 = lim
N→∞

1
N

E
[
N∑
i=1

∂f ti
∂ZW0,i, ϕ

(
ϕ(ZW0),ZW0ρ

−1
W0
νt + W0ν̂

t + Zt
)]

(3.161)

κt+1,s+1 = κs+1,t+1 =

lim
N→∞

1
N

E
[ (
f s
(
ϕ(ZW0),ZW0ρ

−1
W0
νs + W0ν̂

s + Zs
)
−W0ρ

−1
W0
νs+1

)>
(
f t
(
ϕ(ZW0),ZW0ρ

−1
W0
νt + W0ν̂

t + Zt
)
−W0ρ

−1
W0
νt+1

) ]
(3.162)

where the notation ∂ZW0,i,ϕ denotes a derivatives w.r.t. the argument of ϕ, ρW0 = 1
NW>

0 W0,
and ZW0 ∼ N(0, ρW0 ⊗ IN ) is independent from the (Z1, ...,Zt) ∼ N

(
0, (κs,r)s,r6t ⊗ IN

)
. Assume

(B1)− (B6) and that for any t ∈ N, any 1 6 i 6 N , the derivative ∂f ti
∂Xi

is pseudo-Lipschitz of order
k. Then for any sequence φN : (RN×q)t+1 → R of pseudo-Lipschitz functions

φN
(
X0,X1, ...,Xt

) P' E
[
φN

(
ZW0ρ

−1
W0
ν0 + W0ν̂

0 + Z0, ...,ZW0ρ
−1
W0
νt + W0ν̂

t + Zt
)]

(3.163)

Proof of lemma 16. Consider the following iteration

St+1 = ÃM̃t − m̃t−1(b̃t)> ∈ RN×q , (3.164)

M̃t = f t
(
ϕ(AW0),AW0ρ

−1
W0
νt + W0ν̂

t + St
)
−W0ρ

−1
W0
νt+1 ∈ RN×q , (3.165)

b̃t = 1
N

N∑
i=1

∂f ti
∂Si

(
ϕ(AW0),AW0ρ

−1
W0
νt + W0ν̂

t + St
)

∈ Rq×q . (3.166)

where Ã is a copy of A independent on ZW0 . Under assumptions (B1) − (B6) and conditionally
on AW0, the iterates St obey the state evolution equations Eq.(3.159) where the ZW0 are replaced
by fixed AW0, owing to Theorem 5. For any t, the composition of f t and ϕ is pseudo-Lipschitz
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of order k, and owing to Lemma 21, 1√
N
‖AW0 − ZW0‖F

P−−−−−→
N→+∞

0. Using the pseudo-Lipschitz

property, the assumption on W0 to bound the norms of 1√
N

AW0 and 1√
N

W0 w.h.p., and Lemma 1,
we obtain that iteration Eq.(3.164) verifies the SE equations Eq.(3.159), where the expectations are
taken w.r.t. ZW0 and all the Zs for 0 6 s 6 t. We now prove the following statement by induction

∀t ∈ N
1√
N

∥∥∥Xt −AW0ρ
−1
W0
νt −W0ν̂

t − St
∥∥∥
F

P−−−−→
N→∞

0 (3.167)

The property is true at t = 0 owing to the initialization of both sequences. Assume the property is
verified up to time t. Then, denoting the increment ∆t = Xt −AW0ρ

−1
W0
νt −W0ν̂

t − St

∆t = AMt −Mt−1(bt)> −
(
ÃM̃t − m̃t−1(b̃t)>

)
−AW0ρ

−1
W0
νt+1 −W0ν̂

t+1 (3.168)

Consider then the iteration Eq.(3.156), where we condition on the value of AW0 at each iteration.
A straightforward induction starting from the initialization then shows that, for any t ∈ N

Xt+1
|AW0

= A|AW0f
t(ϕ (AW0) ,Xt

|AW0
)

− f t−1(ϕ (AW0) ,Xt−1
|AW0

)
(

1
N

N∑
i=1

∂f ti
∂Xi

(ϕ (AW0) ,Xt
|AW0

)
)>

(3.169)

Using the same lemma from [28, 135] used in the proof of Lemma 6, we may write

A|AW0 = A−PW0APW0 + P⊥W0ÃP⊥W0 (3.170)
= APW0 + PW0A−PW0APW0 + P⊥W0ÃP⊥W0 (3.171)

where Ã is an independent copy of A and PW0 = W0
(
W>

0 W>
0

)−1
W>

0 = 1
NW0ρ

−1
W0

W>
0 is

always well-defined for n > q. We can then lift the conditioning by considering the distribution of
AW0 (which is straightforward since there is no correlation between A and W0) in all subsequent
expressions. The increment Eq.(3.168) becomes(

APW0 + PW0A−PW0APW0 + P⊥W0ÃP⊥W0

)
Mt −Mt−1(bt)> −

(
ÃM̃t − m̃t−1(b̃t)>

)
−AW0ρ

−1
W0
νt+1 −W0ν̂

t+1 (3.172)

where we chose the matrix Ã coming from the decomposition of A to define the iteration Eq.(3.164),
and

∆t = APW0f
t
(
ϕ(AW0),Xt

)
+ PW0Af t

(
ϕ(AW0),Xt

)
−PW0APW0f

t
(
ϕ(AW0),Xt

)
+ P⊥W0ÃP⊥W0f

t
(
ϕ(AW0),Xt

)
− f t−1

(
ϕ(AW0),Xt−1

)
(bt)> −AW0ρ

−1
W0
νt+1 −W0ν̂

t+1

− Ã
(
f t
(
ϕ(AW0),AW0ρ

−1
W0
νt + W0ν̂

t + St
)
−W0ρ

−1
W0
νt+1

)
+
(
f t−1

(
ϕ(AW0),AW0ρ

−1
W0
νt−1 + W0ν̂

t−1 + St−1
)
−W0ρ

−1
W0
νt
) (

b̃t
)>

(3.173)

= APW0f
t
(
ϕ(AW0),Xt

)
−AW0ρ

−1
W0
νt+1 + PW0Af t

(
ϕ(AW0),Xt

)
−W0ν̂

t+1 −W0ρ
−1
W0
νt(b̃t)>

− f t−1
(
ϕ(AW0),Xt−1

)
(bt)> + f t−1

(
ϕ(AW0),AW0ρ

−1
W0
νt−1 + W0ν̂

t−1 + St−1
) (

b̃t
)>

− Ã
(
f t
(
ϕ(AW0),AW0ρ

−1
W0
νt + W0ν̂

t + St
)
−W0ρ

−1
W0
νt+1

)
+ P⊥W0ÃP⊥W0f

t
(
ϕ(AW0),Xt

)
−PW0APW0f

t
(
ϕ(AW0),Xt

)
(3.174)
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where, the second equality is only a reorganization of the terms. We now study the asymptotic
behaviour of each component of the previous sum. We have

1√
N

∥∥∥APW0f
t
(
ϕ(AW0),Xt

)
−AW0ρ

−1
W0
νt+1

∥∥∥
F
6

‖A‖op
1√
N

∥∥∥W0ρ
−1
W0

∥∥∥
F

∥∥∥∥ 1
N

W>
0 f

t
(
ϕ(AW0),Xt

)
− νt+1

∥∥∥∥
F

(3.175)

where ‖A‖op is bounded w.h.p. owing to lemma 5 and 1√
N

∥∥∥W0ρ
−1
W0

∥∥∥
F

is bounded w.h.p. by
assumption. Then, using the pseudo-Lipschitz property, the induction hypothesis and Lemma 1, it
holds that

1√
N

∥∥∥f t (φ(AW0,Xt)
)
− f t

(
ϕ(ZW0),ZW0ρ

−1
W0
νt + W0ν̂

t + St
)∥∥∥

F

P−−−−→
N→∞

0 (3.176)

The triangle inequality then gives∥∥∥∥ 1
N

W>
0 f

t
(
ϕ(AW0),Xt

)
− νt+1

∥∥∥∥
F
6
∥∥∥∥ 1
N

W>
0 f

t
(
ϕ(ZW0),ZW0ρ

−1
W0
νt + W0ν̂

t + St
)
− νt+1

∥∥∥∥
F
×

1√
N
‖W0‖F

1√
N

∥∥∥f t (ϕ(AW0,Xt)
)
− f t

(
ϕ(ZW0),ZW0ρ

−1
W0
νt + W0ν̂

t + St
)∥∥∥

F
. (3.177)

Using the definition of µt+1, the assumption on W0 and Eq.(3.176), we conclude that, with high
probability

1√
N

∥∥∥APW0f
t
(
ϕ(AW0),Xt

)
−AW0ρ

−1
W0
νt+1

∥∥∥
F
−−−−→
N→∞

0 (3.178)

The term
1√
N

∥∥∥∥f t−1
(
ϕ(AW0),AW0ρ

−1
W0
νt−1 + W0ν̂

t−1 + St−1
) (

b̃t
)>
− f t−1

(
ϕ(AW0),Xt−1

)
(bt)>

∥∥∥∥
F

6
1√
N

∥∥∥∥(f t−1
(
ϕ(AW0),AW0ρ

−1
W0
νt−1 + W0ν̂

t−1 + St−1
)
− f t−1

(
ϕ(AW0),Xt−1

)) (
b̃t
)>∥∥∥∥

F

+ 1√
N

∥∥∥f t−1
(
ϕ(AW0),Xt−1

) (
b̃t − bt

)∥∥∥
F
, (3.179)

is similar to the third term of Eq.(3.149) in the proof of Lemma 15 and converges to zero with high
probability for large N using similar arguments. Then, letting

∆t
1 = Ã

(
f t
(
ϕ(AW0),AW0ρ

−1
W0
νt + W0ν̂

t + St
)
−W0ρ

−1
W0
νt+1

)
−P⊥W0ÃP⊥W0f

t
(
ϕ(AW0),Xt

)
,

(3.180)

the defintion of P⊥W0
= I−PW0 and the triangle inequality yield

1√
N

∥∥∥∆t
1

∥∥∥
F
6
∥∥∥Ã∥∥∥

op

1√
N

∥∥∥PW0f
t
(
ϕ(AW0),Xt

)
−W0ρ

−1
W0
νt+1

∥∥∥
F

+
∥∥∥Ã∥∥∥

op

1√
N

∥∥∥f t (ϕ(AW0),AW0ρ
−1
W0
νt + W0ν̂

t + St
)
− f t

(
ϕ(AW0),Xt

)∥∥∥
F

+ 1√
N

∥∥∥PW0ÃP⊥W0f
t
(
ϕ(AW0),Xt

)∥∥∥
F

(3.181)
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where the first term converges to zero w.h.p. using the same argument as the one used for
Eq.(3.175). For the second term, the operator norm of Ã is bounded w.h.p. using Lemma 5,
and the diffence goes to zero w.h.p. using the pseudo-Lipschitz property, the induction hypothesis
and the SE equations Eq.(3.159) of iteration Eq.(3.164). Finally, since PW0 has finite rank and

1√
N

∥∥∥P⊥W0
f t
(
ϕ(AW0),Xt

)∥∥∥
F

is bounded w.h.p. using the induction hypothesis and SE equations
of iteration Eq.(3.164),the last term goes to zero w.h.p. using Lemma 21.
Moving to the term PW0Af t

(
ϕ(AW0),Xt

)
−W0ν̂

t+1 −W0ρ
−1
W0
νt(b̃t)>, which we denote ∆t

2, we
may write

PW0Af t
(
ϕ(AW0),Xt

)
= 1
N

W0ρ
−1
W0

(AW0)>f t
(
ϕ (AW0) ,Xt

)
(3.182)

since the function AW0,Xt → (AW0)>f t
(
ϕ (AW0) ,Xt

)
is pseudo-Lipschitz, Lemma 21 and the

induction hypothesis give∥∥∥∥ 1
N

(AW0)> f t
(
ϕ (AW0) ,Xt

)
− 1
N

Z>W0f
t
(
ϕ (ZW0) ,ZW0ρ

−1
W0
νt + W0ν̂

t + St
)∥∥∥∥

F

P−−−−→
N→∞

0,
(3.183)

where the SE equations for iteration Eq.(3.164) yield

1
N

Z>W0f
t
(
ϕ (ZW0) ,ZW0ρ

−1
W0
νt + W0ν̂

t + St
) P'

1
N

E
[
Z>W0f

t
(
ϕ (ZW0) ,ZW0ρ

−1
W0
νt + W0ν̂

t + Zt
)]

(3.184)

An application of Lemma 17 and the chain rule gives

1
N

E
[
Z>W0f

t
(
ϕ (ZW0) ,ZW0ρ

−1
W0
νt + W0ν̂

t + Zt
)]

=

1
N
ρW0E

[
N∑
i=1

∂f ti
∂ZW0,i, ϕ

(
ϕ(ZW0),ZW0ρ

−1
W0
νt + W0ν̂

t + Zt
)]

+ 1
N

mtE
[
N∑
i=1

∂f ti
∂Zi

(
ϕ(ZW0),ZW0ρ

−1
W0
νt + W0ν̂

t + Zt
)]
. (3.185)

The SE equations of iteration Eq.(3.164) and the pseudo-Lipschitz assumptions on the Jacobians
of the f t then show that

b̃> P' 1
N

E
[
N∑
i=1

∂f ti
∂Zi

(
ϕ(ZW0),ZW0ρ

−1
W0
νt + W0ν̂

t + Zt
)]
, (3.186)

which, combined with the definition of ν̂t, shows that

1
N

E
[
Z>W0f

t
(
ϕ (ZW0) ,ZW0ρ

−1
W0
νt + W0ν̂

t + Zt
)] P' ρW0 ν̂

t+1 + νt
(
b̃t
)>

(3.187)

combining this with Eq.(3.182) and Eq.(3.183), a straightforward application of the triangle in-
equality allows to show that

1√
N

∥∥∥∆t
2

∥∥∥
F

P−−−−→
N→∞

0. (3.188)
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The only remaining term in ∆t is PW0APW0f
t
(
ϕ(AW0),Xt

)
. Expanding the projectors, we obtain

1√
N

∥∥∥PW0APW0f
t
(
ϕ(AW0),Xt

)∥∥∥
F

= 1√
N

∥∥∥∥ 1
N

W0ρ
−1
W0

W>
0 A 1

N
W0ρ

−1
W0

W>
0 f

t
(
ϕ(AW0),Xt

)∥∥∥∥
F

6
1√
N

∥∥∥W0ρ
−1
W0

∥∥∥
F

1
N

∥∥∥W>
0 AW0

∥∥∥
F

1
N

∥∥∥W>
0 f

t
(
ϕ(AW0),Xt

)∥∥∥
F

∥∥∥ρ−1
W0

∥∥∥
F
. (3.189)

Lemma 21 then shows that 1
N

∥∥∥W>
0 AW0

∥∥∥
F

P−−−−→
N→∞

0, and the other terms are bounded w.h.p. We
have now treated all the terms in ∆t, and the triangle inequality gives

1√
N

∥∥∥∆t
∥∥∥
F

P−−−−→
N→∞

0. (3.190)

which concludes the induction. Combining this with the pseudo-Lipschitz property and the SE
equations to ensure all iterates have bounded scaled norms, we conclude the proof of Lemma 16.

Application to graph-based AMP iterations : proof of Lemma 4 Consider the AMP
iteration (2.15)-(2.16).To obtain the SE equations for this iteration, we follow a similar argument
as the proof of Theorem 4 and embed the iteration indexed on the graph G = (V,E) into a large,
symmetric iteration of the form of that of Lemma 15 and Lemma 16. We may then write the N×N
GOE matrix corresponding to the symmetric AMP iteration

Â =



Â−→e 1
. . . ∗

Â−→e l
∗ Â−→e l+1

Â←−e l+1 ∗
. . .

∗ ∗ Â−→e m
Â←−e m ∗
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where, using the definition of each Â−→e , we may write

=



A−→e 1
. . . ∗

A−→e l
∗ A−→e l+1

A←−e l+1 ∗
. . .

∗ ∗ A−→e m
A←−e m ∗



+



1
N v−→e 1v

>−→e 1
. . . 0

1
N v−→e lv

>−→e l
0 0
0 0

. . .
0 0 0

0 0


where the second term gives the form of the matrix V0 from Lemma 15, i.e.

V0 =



v−→e 1
. . . 0

v−→e l
0 0
0 0

. . .
0 0 0

0 0


(3.191)
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.
Furthermore, we may write the update function of the symmetric AMP iteration as

f̃ t



x−→e 1
. . . ∗

x−→e l
x−→e l+1

x←−e l+1
. . .

∗ x−→e m
x←−e m


(3.192)

=



f̃ t−→e 1

(
(x−→e )−→e :−→e→−→e 1

)
. . . 0

f̃ t−→e l
(. . . )

0 f̃ t←−e l+1
(. . . )

f̃ t−→e l+1
(. . . ) 0

. . .
0 0 f̃ t←−e m(. . . )

f̃ t−→e m(. . . ) 0



= f t


Φ (AW0) ,



x−→e 1
. . . ∗

x−→e l
x−→e l+1

x←−e l+1
. . .

∗ x−→e m
x←−e m




(3.193)

where

W0 =



0
. . . 0

0
0 w←−e l+1

w−→e l+1 0
. . .

0 0 w←−e m
w−→e m 0


(3.194)
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and the function Φ contains the functions ϕ−→e

Φ



0
. . . 0

0
A−→e l+1w−→e l+1

A←−e l+1w←−e l+1

. . .
0 A−→e m

w−→e m

A←−e m
w←−e m


=



0
. . . 0

0
ϕ−→e l+1

(
A−→e l+1w−→e l+1

)
ϕ←−e l+1

(
A←−e l+1w←−e l+1

)
. . .

0 ϕ−→e m

(
A−→e m

w−→e m

)
ϕ←−e m

(
A←−e m

w←−e m

)


(3.195)

Under the condition that the matrices V0,W0 and the function Φ verify the assumptions of Lemma
15 and Lemma 16, we may use those results to obtain the SE equations for the iteration Eq.(2.15)-
(2.16). Evaluating the matrix products defining the parameters µt,νt, ν̂t then leads to the SE
equations of Lemma 4.

3.5 Useful definitions and probability lemmas

In this section, we compile useful definitions and lemmas that appear throughout the proof. Most
of those results are finite-width matrix generalizations of those appearing in [37] and some are the
same.

Proposition 4. (Norm of matrices with Gaussian entries [288]) Let Y be an M×N random matrix
with independent N(0, 1) entries. Then, for any t > 0, we have:

P
(
‖Y‖F 6 C

(√
M +

√
N + t

))
> 1− 2 exp

(
−t2

)
(3.196)

where C is an absolute constant.

Proposition 5. (Operator norm of GOE(N) [47])
Consider a sequence of matrices A ∼ GOE(N). Then ‖A‖op → 2 almost surely as N →∞.

Proposition 6. (Gaussian Poincaré inequality [47])
Let Z ∈ RN be a N(0, IN ) random vector. Then for any continuous, weakly differentiable ϕ, there

exists a constant c > 0 such that:

Var[ϕ(Z)] 6 cE
[
‖∇ϕ(Z)‖22

]
(3.197)

The next result is a matrix version of Gaussian integration by parts, or Stein’s lemma.
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Lemma 17. (Stein’s lemma, matrix version) Let (Z1,Z2) ∈
(
RN×q

)2
be two N(0,κ⊗ IN ) random

vectors, where κ ∈ R(2q)×(2q).

κ =
[
κ11 κ12
κ12 κ22

]
(3.198)

Consider an almost everywhere differentiable function f : RN×q → RN×q. For any Z ∈ RN×q we
can write:

f


Z11, ...,Z1q

...
Zn1, ...,Znq


 =

f1(Z)
...

fn(Z)

 =

 f1
1 (Z), ...f q1 (Z)

...
f1
n(Z), ..., f qn(Z)

 (3.199)

Then

E
[
(Z1)>f(Z2)

]
= κ1,2

(
N∑
k=1

E
[
∂fk(Z2)
∂Zk

])>
(3.200)

where ∂fk(Z2)
∂Zk ∈ Rq×q is the Jacobian containing the partial derivatives of fk w.r.t. the line Zk ∈ Rq.

Proof.

E
[
(Z1)>f(Z2)

]
ij

=
N∑
k=1

E [((Z1)kifkj(Z2)]

=
N∑
k=1

q∑
l=1

E[Z1
kiZ2

kl]E
[
∂fkj

∂(Z2)kl
(Z2)

]
since (Z1,Z2) ∼ N(0,κ⊗ IN )

=
q∑
l=1

(κ12)il
N∑
k=1

E
[
∂fkj

∂(Z2)kl
(Z2)

]

=
q∑
l=1

(κ12)il
(

N∑
k=1

E
[
∂fk(Z2)
∂Zk

])
jl

=

κ12

(
N∑
k=1

E
[
∂fk(Z2)
∂Zk

])>
ij

(3.201)

where the second step is obtained by iteratively conditioning on the entries of Z2 and applying one
dimensional Gaussiaan integration by parts, see e.g. [288] Lemma 7.2.5.

Definition 7 (pseudo-Lipschitz function). For k ∈ N∗ and any N,m ∈ N∗, a function Φ : RN×q →
Rm×q is said to be pseudo-Lipschitz of order k if there exists a constant L such that for any x,y ∈
RN×q,

‖Φ(x)− Φ(y)‖F√
m

6 L

(
1 +

(‖x‖F√
N

)k−1
+
(‖y‖F√

N

)k−1) ‖x− y‖F√
N

(3.202)

A family of pseudo-Lipschitz functions is said to be uniformly pseudo-Lipschitz if all functions
of the family are pseudo-Lipschitz with the same order k and the same constant L. We now remind
useful properties of pseudo-Lipschitz functions from [37].

Lemma 18. Let k be any positive integer. Consider two sequences f : RN → RN , N > 1 and
g : RN → RN , N > 1 of uniformly pseudo-Lipschitz functions of order k. The sequence of functions
ΦN : RN × RN → R, N > 1 such that ΦN (x,y) = 〈f(x), g(y)〉 is uniformly pseudo-Lipschitz of
order 2k.
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Lemma 19. Let t,s and k be any three positive integers. Consider a sequence (in N) of x1,x2, ...,xs ∈
RN such that 1√

N
‖xj‖ 6 cj for some constant cj independent of N, for j = 1, ..., s and a sequence

of order-k uniformly pseudo-Lipschitz functions ϕN : (RN )t+s → R. The sequence of functions
φN (.) = ϕN (.,x1,x2, ...,xs) is also uniformly pseudo-Lipschitz of order k.

Lemma 20. Let t be any positive integer. Consider a sequence of uniformly pseudo-Lipschitz
functions ϕN : (RN )t → R of order k. The sequence of functions ΦN : (RN )t → R such that
ΦN (x1,x2, ...,xt) = E [ϕN (x1, ...,xt−1,xt + Z)], in which Z ∼ N(0, aIN ) and a 6 0, is also uni-
formly pseudo-Lipschitz of order k.

We now state a result on Gaussian concentration of matrix-valued pseudo-Lipschitz functions.
This is an extension to the matrix case (of finite width) of Lemma C.8 from [37].

The next lemmas are matrix generalizations of the ones used in [37].

Lemma 21. Consider a sequence of matrices A ∼ GOE(N) and two sequences of non-random
matrices, U,V ∈ RN×q such that the columns of U and V verify

∥∥Ui
∥∥

2 =
∥∥Vi

∥∥
2 =
√
N . Under

this hypothesis, define the finite quantity G = limN→∞
1
NU>U, the limiting Gram matrix of the

columns of U. We then have:

a) 1
NV>AU P−−−−→

N→∞
0q×q and 1

N

∥∥∥V>AU
∥∥∥
F

P−−−−→
N→∞

0.

b) Let P ∈ RN×N be a sequence of non-random projection matrices such that there exists a
constant t that satisfies, for all N, k=rank(P)6 t. Then 1

N ‖PAU‖2F
P−−−−→

N→∞
0.

c) There exists a sequence of random matrices Z ∈ RN×q, such that 1
N ‖AU− Z‖2F

P−−−−→
N→∞

0
where Z ∼ N(0,G⊗ IN ).

d) 1
N (AU)>AU P−−−−→

N→∞
G.

Proof. In this proof, the i-th line of a given matrix Z is denoted Zi and its j-th column Zj .

a) For any 1 6 i, j 6 q, the i-th element of the j-th column verifies:
1
N

(V>AU)ji = 1
N

(Vi)>AUj

= 1
N

(Vi)>HUj + 1
N

(Vi)>H>Uj (3.203)

where H is a matrix with i.i.d. N(0, 1
2N ) elements. The random variable 1

N (Vi)>HUj is
centered Gaussian with variance

1
N2

N∑
k,l=1

(Vi
k)2(Uj

l )
2 1
2N =

∥∥Vi
∥∥2

2
∥∥Uj

∥∥2
2

2N3 = 1
2N → 0 (3.204)

which shows that 1
N (Vi)>HUj converges in probability to zero. A similar argument shows

that 1
N (Vi)>H>Uj also converges in probability to zero. The union bound then immediately

gives that 1
N (V>AU)ji

P−−−−→
N→∞

0. Thus each element of the finite size q × q matrix 1
NV>AU

goes to zero. Since q is finite, the union bound then gives the desired result on the Frobenius
norm.
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b) For any 1 6 i 6 q:
1
N

(PAU)i = 1
N

(PAUi) (3.205)

Now let v1, ...,vk be an orthogonal basis of the image of P, such that ‖v1‖ = ... = ‖vk‖ =
√
N ,

and V ∈ RN×t the matrix of concatenated v. Note that k can depend on N, but k is uniformly
bounded by t. Then, using point (a) and the fact that q and k are finite for all N :

1
N
‖PAU‖2F = 1

N

∥∥∥V>AU
∥∥∥ P−−−−→

N→∞
0 (3.206)

This proves point (b).

c) The matrix AU is a RN×q correlated Gaussian matrix. For any two columns Ul,Um, the vec-
tor (AUl,AUm) is a Gaussian vector with zero mean, whose covariance matrix has elements:

E
[(

AUl
)

(AUm)>
]j
i

= E
[(

AUl
)
i
(AUm)j

]
= E

[
N∑
k=1

Ak
iUl

k

N∑
k′=1

Ak′
j Um

k′

]

= E
[∑
k,k′

Hk
iHk′

j Ul
kUm

k′ + Hk
iH

j
k′U

l
kUm

k′ + Hi
kHk′

j Ul
kUm

k′ + Hi
kH

j
k′U

l
kUm

k′

]

= 1
N

(
δij
∑
k

Ul
kUm

k + Ul
iUm

j

)
(3.207)

which gives the block

E
[(

AUl
)

(AUm)>
]

= 1
N

(Ul)>UmIN + 1
N

Ul(Um)> (3.208)

and the covariance matrix

Σ =
[

IN + 1
NUl(Ul)> (Ul)>Um

N IN + 1
NUl(Um)>

(Ul)>Um

N IN + 1
NUm(Ul)> IN + 1

NUm(Um)>

]
(3.209)

and in turn the following covariance matrix for the joint law of the q vectors AU1, ...,AUq.

Σ = 1
N

U>U⊗ IN + 1
N


U1(U1)> ... ... ... U1(Uq)>

... ... ... ... ...

... Ui(Ui−1)> Ui(Ui)> Ui(Ui+1)> ...

... ... ... ... ...
Uq(U1)> ... ... ... Uq(Uq)>


= 1
N

U>U⊗ IN + 1
N

ŨŨ> (3.210)

where Ũ ∈ RNq is the vector of vertically concatenated columns of U. Now consider two
independent N(0, INq) vectors Z̃1, Z̃2 and Ṽ ∈ RNq the vector of vertically concatenated
columns of AU. We can write that the quantity:∥∥∥∥Ṽ− ( 1

NU>U⊗ IN
)1/2

Z̃1
∥∥∥∥

2√
N

(3.211)
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is distributed as∥∥∥( 1
NU>U⊗ IN )1/2Z̃1 + ( 1

N ŨŨ>)1/2Z̃2 − ( 1
NU>U⊗ IN )1/2Z̃1

∥∥∥
2√

N
= 1
N
√
N

∥∥∥ŨŨ>Z̃2
∥∥∥

2

=
√
q

N

∣∣∣Ũ>Z̃2
∣∣∣ P−−−−→
N→∞

0
(3.212)

where the last convergence follows from the fact that 1
N Ũ>Z̃2 is a centered Gaussian random

variable with variance
∥∥∥Ũ∥∥∥2

2
/N2 = q/N , where q is kept finite. This concludes the proof of

point (c).

d) The function Φ : RN×q → R,X → 1
NX>X is pseudo-Lipschitz of order 2. A straightforward

calculation shows that, for any Z ∼ N(0,G⊗ IN ), we have E[φ(Z)] = G. Then :

P (‖Φ(AU)− E[Φ(Z)]‖F > ε) 6 P (‖Φ(AU)− Φ(Z)‖F > ε) + P (‖Φ(Z)− E[Φ(Z)]‖F > ε)
(3.213)

the second term on the right-hand side vanishes as N →∞ using the Gaussian concentration
of matrix-valued pseudo-Lipschitz functions Lemma 1, and the first term vanishes using the
definition of pseudo-Lipschitz function and the statement (c) proven above. This concludes
the proof of statement (d).



Chapter 4

Multi-layer State Evolution Under
Random Convolutional Design

The results presented in this chapter were published in [70].

Motivated by the multilayer iteration -MLAMP- proposed in [188], we seek further models of deep
neural networks with random weights for which marginals can be computed using AMP iterations,
and for which SE equations can be made rigorous using the framework proposed in Chapters 2 and
3. We show that the MLAMP iteration corresponding to multilayer neural networks with random
convolutional matrices, which we define in 4.1, admit rigorous SE equations that exactly match
those of the usual case with dense matrices, up to a rescaling. Further discussions on the litterature
of generative models in deep learning, computational benefits of random convolutional matrices over
dense ones and future directions can be found in the original paper [70].

In a typical signal recovery problem, one seeks to recover a data signal x0 given access to measure-
ments y0 = Gθ(x0), where the parameters θ of the signal model are known. In many problems, it is
natural to view the measurement generation process as a composition of simple forward operators,
or ‘layers.’ In this work, we are concerned with multi-layer signal models of the form

Gθ(h) = φ(1)(W (1)φ(2)(W (2) . . . φ(L)(W (L)h)))). (4.1)

where W (l) ∈ Rnl−1×nl are linear sensing matrices and where φ(l)(z) are separable, possibly non-
linear channel functions. In the L = 1 case, this signal model naturally generalizes problems such
as phase retrieval φ(z) = |z| or compressive sensing φ(z) = z, and for multi-layer models L > 1,
Gθ(h) may be viewed as a deep neural network.

Recently, convolutional Generative Neural Networks (GNNs) have shown promise as generaliza-
tions of sparsity priors for a variety of signal processing applications [44]. Motivated by this success,
we take interest in a variant of the recovery problem (4.1) in which some of the sensing matrices
W (l) may be multi-channel convolutional (MCC) matrices, having a certain block-sparse circulant
structure which captures the convolutional layers used by many modern generative neural network
architectures [142, 143].

In this work, we develop an asymptotic analysis of the performance of an Approximate Message
Passing (AMP) algorithm [83] for recovery from multichannel convolutional signal models. This
family of algorithms originates in statistical physics [195, 300] and allows to compute the marginals
of an elaborate posterior distribution defined by an inference problem involving dense random
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Figure 4.1: Agreement between the performance of the AMP algorithm run with random multi-
channel convolutional matrices and its state evolution as proven in this paper. (left) Compressive
sensing y0 = Wx0 + ζ for noise ζi ∼ N (0, 10−4) and signal prior x0 ∼ ρN (0, 1) + (1 − ρ)δ(x),
where W ∈ RDq×Pq has varying aspect ratio β = D/P . Crosses correspond to AMP evaluations for
W ∼ MCC(D,P, q, k) according to Definition 9, averaged over 10 independent trials. Lines show
the state evolution predictions when Wij ∼ N (0, 1/Pq). The system size is P = 1024, q = 1024,
k = 3, where β and D = βP vary. While our theorem treats the limit P,D → ∞, q, k = O(1), we
observe strong empirical agreement even when q ∼ P . (right) AMP iterates at ρ = 0.25 and β near
the recovery transition.

matrices. A number of AMP iterations have been proposed for various inference problems, such as
compressed sensing [83], low-rank matrix recovery [241] or generalized linear modeling [240]. More
recently, composite AMP iterations (ML-AMP) have been proposed to study multilayer inference
problems [188, 13]. Here we consider the ML-AMP proposed in [188] to compute marginals of a
multilayer generalized linear model, however the usual dense Gaussian matrices will be replaced by
random convolutional ones. A major benefit of AMP lies in the fact that the asymptotic distribution
of their iterates can be exactly determined by a low-dimensional recursion: the state evolution
equations. This enables to obtain precise theoretical results for the reconstruction performance of
the proposed algorithm. Another benefit of such iterations is their low computational complexity,
as they only involve matrix-multiplication and, in the separable case, pointwise non-linearities.

Previous works on AMP suggest that the state evolution is not readily applicable to our setting
because its derivation requires strong independence assumptions on the coordinates of the {W (l)}
which are violated by structured multi-channel convolution matrices. Despite this, we use AMP for
our setting and rigorously prove its state evolution. Our main contributions are:

1. We rigorously prove state evolution equations for models of the form (4.1), where weights are
allowed to be either i.i.d. Gaussian or random structured MCC matrices, as in Definition 9.

2. For separable channel functions φ(l) and separable signal priors, we show that the original
ML-AMP of [188] used with dense Gaussian matrices or random convolutional ones admits
the same state evolution equations, up to a rescaling. Multi-layer MCC signal models can
therefore simulate dense signal models while making use of fast structured matrix operations
for convolutions.
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3. The core of our proof shows how an AMP iteration involving random convolutional matrices
may be reduced to another one with dense Gaussian matrices. We first show that random
convolutional matrices are equivalent, through permutation matrices, to dense Gaussian ones
with a (sparse) block-circulant structure. We then show how the block-circulant structure
can be embedded in a new, matrix-valued, multilayer AMP with dense Gaussian matrices,
the state evolution equations of which are proven using the results of [110], with techniques
involving spatially coupled matrices [154, 135].

4. We validate our theory numerically and observe close agreement between convolutional AMP
iterations and its state evolution predictions, as shown in Figure 4.1 and in Section 4.3. Our
code can be used as a general purpose library to build compositional models and evaluate
AMP and its state evolution. We make this code publically available on Github.

Further discussion on related works can be found in the original paper [70].

4.1 Definition of the problem

4.1.1 Multi-channel Convolutional Matrices

We consider block structured signal vectors x ∈ RPq of the form x = [x(i)]Pi=1, and we refer to
the blocks x(i) ∈ Rq as ‘channels.’ For any vector of dimension d, we denote by Pd ∈ Rd×d the
cyclic coordinate permutation matrix of order d, whose coordinates are 〈ei,Pdej〉 = 1[i = j + 1].
For a block-structured vector x ∈ RPq, we denote by PP,q ∈ RPq×Pq the block cyclic permutation
matrix satisfying (PP,qx)(i) = x(i+1) for 1 6 i < P , and (PP,qx)(P ) = x(1). Similarly, we denote
by Si,j ∈ RPq×Pq the swap permutation matrix which exchanges blocks i, j: [Si,jx](i) = x(j),
[Si,jx](j) = x(i), and [Si,jx](k) = x(k) for k 6= i, j. Last, given a vector ω ∈ Rk for k 6 q, denote by
Zero-Padq,k(ω) the vector whose first k coordinates are ω, and whose other coordinates are zero.

Zero-Padq,k(ω) =
[
ω1 ω2 . . . ωk 0 . . . 0

]
∈ Rq.

We define the following ensemble for random multi-channel convolution matrices.

Definition 8 (Gaussian i.i.d. Convolution). Let q > k be integers. The convolutional ensemble
C(q, k) contains random circulant matrices C ∈ Rq×q whose first row is given by C1 = Zero-padq,k[ω]
where ω ∈ Rk has i.i.d. Gaussian coordinates ωi ∼ N (0, 1/k). The remaining rows Ci are deter-
mined by circulant structure, ie. Ci = P i−1

q Zero-padq,k[ω].

Random multi-channel convolutions are block-dense matrices with independent C(q, k) blocks.

Definition 9 (Multi-channel Gaussian i.i.d. Convolution). Let D,P > 1 and q > k > 1 be
integers. The random multi-channel convolution ensemble M(D,P, k, q) contains random block
matrices M ∈ RDq×Pq of the form

M = 1√
P


C1,1 C1,2 . . . C1,P

C2,1
. . . ...

...
CD,1 . . . CD,P


where each Ci,j ∼ C(q, k) is sampled independently.

https://github.com/mdnls/conv-ml-amp
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P D

k

q

Figure 4.2: MCC matrices operate on Pq dimensional input data, composed of q-dimensional signals
for each of P separate channels. The i-th output channel is a linear combination of convolutional fea-
tures extracted from input channels, where k is the convolutional filter size: y(i) = ∑

j=1...P Cijx
(j).

Blue boxes show linear dependencies between signal coordinates.

Fig. 4.2 gives a graphical explanation of the link between these matrices and the convolutional
layers. The parameter P (D) is the number of input (output) channels, q is the dimension of the
input and k the filter size.

4.1.2 Multi-layer AMP

In this section, we define a class of probabilistic graphical models (PGMs) that captures the inference
problems of interest, and we state the Multi-layer Approximate Message Passing (ML-AMP) [188]
iterations, which can be used for inference on these PGMs. We consider the following signal model.

Definition 10 (Multi-layer Signal Model). Let {W (l)}16l6L be matrices of dimension W (l) ∈
Rnl−1×nl. Let {φ(l)

ζ (z)}16l6L be scalar channel functions φ
(l)
ζ : R → R for which z is the esti-

mation quantity and ζ represents channel noise. We write φ(l)
ζ (z) for vectors z ∈ Rnl−1 to indicate

the coordinatewise application of φ(l). The multi-layer GLM signal model is given by

y = φ
(1)
ζ (W (1)φ

(2)
ζ (W (2)(. . . φ(L)

ζ W (L)x))).

We assume x ∈ RnL follows a known separable prior, xi ∼ PX(x) i.i.d., and that ζ ∼ N (0, 1).

The full estimation quantities of the model are the coordinates of the vectors {h(l)}16l6L,
{z(l)}16l6L, which are related by

yµ = φ
(1)
ζ (z(1)) z(1)

µ =
∑
i

W
(1)
µi h

(1)
i , (4.2)

h
(1)
i = φ

(2)
ζ (z(2)) z(2)

µ =
∑
i

W
(2)
µi h

(2)
i ,

...

h
(L−1)
i = φ

(L)
ζ (z(L)) z(L)

µ =
∑
i

W
(L)
µi xi

and the corresponding conditional probabilities, which define the factor nodes of the underlying
PGM, are given by

P (l)(h | z) =
∫
dζ e−

1
2 ζ

2
δ(h− φζ(z)) .
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To compute the posterior marginals, ML-AMP iteratively updates the parameters of independent 1D
Gaussian approximations to each marginal. Each coordinate h(l)

i (t) has corresponding parameters
{A(l)

i (t), B(l)
i (t)} and each z

(l)
µ (t) has corresponding {V (l)

µ (t), ω(l)
µ (t)}, where t > 1 indexes the ML-

AMP iterations. The recursive relationship between these parameters is defined in terms of scalar
denoising functions, ĥ(l) and g(l), which compute posterior averages of the estimation quantities
given their prior parameters.

In general, these denoising functions can be chosen (up to regularity assumptions) to adjust
ML-AMP’s performance in applied settings, such as in [192], and in these cases the denoisers may
be nonseparable vector valued functions. However, in the separable, Bayes-optimal regime where
Px(x) and P (l)(h | z) are known, the optimal denoisers are given by,

ĥ
(l)
i (t+ 1) := ∂B logZ(l+1)(A(l)

i , B
(l)
i , V

(l+1)
i , ω

(l+1)
i ) (4.3)

σ
(l)
i (t+ 1) := ∂Bĥ

(l)
i (t+ 1)

g(l)
µ (t) := ∂ω logZ(l)(A(l−1)

µ , B(l−1)
µ , V (l)

µ , ω(l)
µ )

η(l)
µ (t) := ∂ωg

(l)
µ (t)

Z(l)(A,B, V, ω) := 1√
2πV

∫
P (l)(h | z) exp

(
Bh− 1

2Ah
2 − (z − ω)2

2V

)
dh dz

where 2 6 L 6 L− 1, t > 2 and the prior parameters on the right hand side are taken at iteration
t > 2. The corresponding ML-AMP iterations are given by,

V (l)
µ (t) =

∑
i

[W (l)
µi ]2 σ(l)

i (t) ω(l)
µ (t) =

∑
i

W
(l)
µi ĥ

(l)
i (t)− V (l)

µ (t) g(l)
µ (t− 1) (4.4)

A
(l)
i (t) = −

∑
µ

[W (l)
µi ]2 η(l)

µ (t) B
(l)
i (t) =

∑
µ

W
(l)
µi g

(l)
µ (t) +A

(l)
i (t)ĥ(l)

i (t).

For the boundary cases t = 1, l = 1, and l = L, the iterations (4.3), (4.4) are modified as follows.

1. At t = 1, we initialize B
(l)
i ∼ P

(l)
B0

and ω
(l)
µ ∼ P

(l)
ω0 , where P

(l)
B0

, P (l)
ω0 are the distributions

of the signal model parameters (4.2) when xi ∼ PX . We take (A(l)
i )−1 = Var(B(l)

i ) and
V

(l)
µ = Var(ω(l)

µ ).

2. At l = 1, the denoiser g(1)
µ (t) = ∂ω logZ(1)(y, V (1)

µ , ω
(1)
µ ), where

Z(1)(y, V (1)
µ , ω(1)

µ ) = 1√
2πV

∫
P (1)(y | z) exp

(
−(z − ω(1)

µ )2

2V (1)
µ

)
dz.

3. At l = L, the denoiser ĥ(L)(t) = ∂B logZ(L)(A(L)
i , B

(L)
i ), where

Z(L)(A(L)
i , B

(L)
i ) =

∫
PX(h) exp

(
B(L)
µ h− 1

2A
(L)
µ h2

)
dh .

4.2 Main result

We now state our main technical result, starting with the set of required assumptions.
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(A1) for any 1 6 l 6 L, the function φl is continuous and there exists a polynomial b(l) of finite
order such that, for any x ∈ R, |φ(l)(x)| 6 |b(l)(x)|

(A2) for any 1 6 l 6 L, the matrix W(l) is sampled from the ensemble M(Dl, P l, kl, ql) where
P lql = Dl−1ql−1

(A3) the iteration 4.4 is initialized with a random vector independent of the mixing matrices veri-
fying 1

N ‖h0‖22 < +∞ almost surely

(A4) for any 1 6 l 6 L, Dl, Pl →∞ with constant ratio βl = Dl/Pl, with finite ql.

Under these assumptions, we may define the following state evolution recursion

Definition 11 (State Evolution). Consider the following recursion,

m̂(l)(t) = −β(l)E(l)[∂ωg(m̂(l−1), m̂b, τ1 −m(l), h)] (4.5)
m(l−1)(t+ 1) = E(l)[h ĥ(l−1)(m̂(l−1), m̂b, τ1 −m(l), h)], (4.6)

where τ (l) is the second moment of P (l)
B0

, where the right hand side parameters are taken at time t,
and the expectations E(l) are taken with respect to

P (l)(w, z, h, b) = P
(l)
out(h | z)N (z;w, τ (l) −m(l))N (w; 0,m(l))N (b; m̂(l−1)h, m̂(l−1)).

At t = 1, the state evolution is initialized at κ(l) = 0 and (κ̂(l))−1 = τ (l). At the boundaries
l = 1, L, the expectations are modified analogously to the ML-AMP iterations as described by [188].
We then have the following asymptotic characterization of the iterates from the convolutional ML-
AMP algorithm

Theorem 7. Under the set of assumptions (A1)-(A4), for any sequences of uniformly pseudo-
Lipschitz functions ψN1 , ψN2 of order k, for any 1 6 l 6 L and any t ∈ N, the following holds

1
Dlql

Dlql∑
i=1

ψ1(ω(l)
i (t)) P' E

[
ψ1
(
Z l(t)

)]
(4.7)

1
Plql

Plql∑
i=1

ψ2(B(l)
i (t)) P' E

[
ψ2
(
Ẑ l(t)

)]
(4.8)

where Z l(t) ∼ N (0, κl(t)), Ẑ l(t) ∼ N (0, κ̂l(t)) are independent random variables.

4.2.1 Proof Sketch

The proof of Theorem 7, which is given in Appendix 5.1, has two key steps. First, we construct
permutation matrices U, Ũ such that for W ∼ MCC(D,P, q, k), the matrix W̃ = UWŨT is a block
matrix whose blocks either have i.i.d. Gaussian elements or are zero valued, and has a block-circulant
structure. The effect of the permutation is that entries of W̃ which are correlated due to circulant
structure of W are relocated to different blocks. Once these permutation matrices are defined,
we define a new, matrix-valued AMP iteration involving the dense Gaussian matrices obtained
from the permutations, and whose non-linearities account for the block-circulant structures and the
permutation matrices. The state evolution of this new iteration is proven using the results of [110].
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This provides an explicit example of how the aforementioned results can be used to obtain rigorous,
non Bayes-optimal SE equations on a composite AMP iteration. The separability assumption is
key in showing that the AMP iterates obtained with the convolutional matrices can be exactly
embedded in a larger one. Note that this is a stronger result than proving SE equations for an
algorithm that computes marginals of a random convolutional posterior: we show the SE equations
are the same as in the dense case. We finally invoke the Nishimori conditions, see e.g. [154], to
simplify the generic, non Bayes-optimal SE equations to the Bayes-optimal ones.

The idea of embedding a non-separable effect such as a block-circulant structure or different
variances in a mixing matrix is the core idea in the proofs of SE equations for spatially coupled
systems, notably as done in [135, 80]. We note that in the numerical experiments shown at Figure
4.1, the parameter q, considered finite in the proof, is actually comparable to the number of channel,
considered to be extensive. Empirically we observe that this does not hinder the validity of the
result, something that was also observed in the spatial coupling literature, e.g. [154], where large
number of different blocks in spatially coupled matrices were considered, with convincing numerical
agreement.

The existence of permutations matrices verifying the property described above is formalized in
the following lemma:

Lemma 22 (Permutation Lemma). Let W ∼M(D,P, k, q) be a multi-channel convolution matrix.
There exist row and column permutation matrices U ∈ RDq×Dq, Ũ ∈ RPq×Pq such that W̃ = UWŨT

is a block-convolutional matrix with dense, Gaussian i.i.d. blocks. That is,

W̃ = 1√
k



A(1) A(2) . . . A(k)

A(1) A(2) . . . A(k)

... A(2) . . . A(k)

. . . ...
A(2) A(3) . . . A(k) A(1)


where each A(s) ∈ RD,P , 1 6 s 6 k has i.i.d. N (0, 1/P ) coordinates.

Proof. Consider the elements of the matrix M which are non-zero and sampled i.i.d. as opposed to
exact copies of other variables. They are positioned on the first line of each block of size q× q, and
thus the indexing for their lines and columns can be written as Maq+1,bq+c where a, b, c are integers
such that 0 6 a 6 D − 1, 0 6 b 6 P − 1 and 1 6 c 6 k. The integers a, b describe the position of
the q× q block the variable is in, and c describes, for each block, the position in the initial random
Gaussian vector of size k that is zero-padded and circulated to generate the block. The goal is to
find the mapping that groups these variables into k dense blocks of extensive size D × P . To do
so, one can use the following bijection M̃γ,αP+β = Maq+1,bq+c where γ = a + 1, α = c − 1 and
β = b+1. By doing this, c becomes the block index and a, b become the position in the dense block.
This mapping can be represented by left and right permutation matrices which also prescribe the
permutation for the rest of the elements of M . A graphical sketch of this coordinate permutation
is shown in Figure 4.3.
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Figure 4.3: A sketch of the permutation lemma applied to matrix W ∼ MCC(4, 3, 3, 2). Left: W
before permutation. Right: after permutation, UWŨT .
.

4.3 Numerical Experiments

In this section, we compare state evolution predictions from Theorem 7 with a numerical imple-
mentation of the ML-AMP algorithm described in Section 4.1.2.

Our first experiment, shown in Figure 4.1, is a noisy compressive sensing task under a sparsity
prior PX(x) = ρN (x; 0, 1)+(1−ρ)δ(x), where ρ is the expected fraction of nonzero components of x0.
Measuremements are generated y0 = Wx0+η for noise η ∼ N (0, 10−4), whereW ∼ MCC(D,P, q, k).
We show recovery performance at sparsity levels ρ ∈ {0.25, 0.5, 0.75} as the measurement ratio
β = D/P varies, averaged over 10 independent AMP iterates. Additionally, we show convergence of
the (averaged) AMP iterates for sparsity ρ = 0.25 at a range of β near the recovery threshold. We
observe strong agreement between AMP empirical performance and the state evolution prediction.
The system sizes are P = 1024, q = 1024, with D = βP varying.

In Figure 4.4, we show two examples of L = 2, 3, 4 layer models following Equation (4.2). In
both, the output channel l = 1 generates noisy, compressive linear measurements y = z(1) + ζ for
ζi ∼ N (0, σ2) and for dense couplings W (1)

ij ∼ N (0, 1/n(1)). Layers 2 6 l 6 4 use MCC couplings
W (l) ∼ MCC(Dl, Pl, q, k), where qPl = nl and Dl = βPl = qnl−1. Channel functions {φ(l)} vary
across the two experiments. The input prior is PX(x) = N (x; 0, 1) and model has q = 10 channels,
filter size k = 3, noise level σ2 = 10−4, input dimension n(L) = 5000, layerwise aspect ratios β(L) = 2
and β(l) = 1 for 2 6 l < L. The channel aspect ratio β(1) varies in each experiment.

We compare the state evolution equations to empirical AMP results in two cases. In the left
panel, we show multilayer models with identity channel functions, and in the right panel, we show
models with ReLU channel functions. The latter model captures a simple but accurate example of
a convolutional generative neural network.
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Figure 4.4: ML-AMP compressive sensing recovery under multichannel convolutional designs
(crossed) and the corresponding state evolution for the corresponding fully connected model (lined).
Left: For 2 6 l 6 L, the channel functions are φ(l)(z) = z + ζ where ζi ∼ N (0, σ2). Right: For
2 6 l 6 L, the channel functions are φ(l)(z) = max(z, 0) where the maximum is applied coordinate-
wise.



Chapter 5

Proofs for the multi-layer random
convolutional model

5.1 Proof of the main theorem

The proof of the main theorem is presented in this section. We start with a generic result on a
family of AMP iterations including the (non Bayes-optimal) MLAMP one, using the framework of
[110], from which we remind the required notions.

5.1.1 State evolution for generic multilayer AMP iterations with matrix valued
variables and dense Gaussian matrices

In the notations of [110], consider the AMP iteration indexed by the following directed graph
G = (V,−→E ), where the set of vertices is denoted V = {v0, v1, ..., vL}, and the set of edges −→E =
{−→e 1, ...,

−→e l,←−e 1, ...,
←−e L}. For any edge −→e l, the corresponding matrix A−→e l has dimensions Rnl×nl−1

with A←−e l = A>−→e l , and the variables x−→e l ∈ Rnl×q,x←−e l ∈ Rnl−1×q for some finite q ∈ N, with
N = ∑L

l=1 nl. Finally, we define the non-linearities of the iteration by specifying the variables they
are acting on as follows:

• f t−→e 1
: Rn0×q → Rn0×q,xt←−e 1

7→ f t−→e 1

(
xt←−e1

)
,

• for any 2 6 l 6 L, f t−→e l : (Rnl−1×q)2 → Rnl−1×q, (xt−→e l−1
,xt←−e l) 7→ f t−→e l

(xt−→e l−1
,xt←−e l),

• for any 1 6 l 6 L− 1, f t←−e l : (Rnl×q)3 → Rnl×q, (xt−→e l ,x
t←−e l+1

) 7→ f t←−e l
(A−→e lw−→e l ,x

t−→e l
,xt←−e l+1

)

• f t←−e L : (RnL×q)2 → RnL×q,xt←−e L → f t←−e L

(
A−→e Lw−→e L ,x

t←−eL

)
where w−→e 1 , ...,w−→e L are low-rank matrices respectively in Rn0×q, ...,RnL−1×q, whose rows are sam-
pled i.i.d. from subgaussian probability distributions in Rq. The graph indexing the iteration then
reads:

118
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v0 v1 v2 · · · vL

f t−→e1

A−→e1

−→e1

xt−→e1

f t←−e1A>−→e1

←−e1
xt←−e1

f t−→e2

A−→e2

−→e2

xt−→e2

f t←−e2A>−→e2

←−e2
xt←−e2

with the corresponding iteration:

xt+1−→e1
= A−→e1mt−→e1

−mt−1←−e1

(
bt−→e1

)>
,

mt−→e1
= f t−→e 1

(
xt←−e1

)
,

xt+1←−e1
= A>−→e1

mt←−e1
−mt−1−→e1

(
bt←−e1

)>
,

mt←−e1
= f t←−e1

(
A−→e 1w−→e 1 ,x

t−→e1
,xt←−e2

)
,

xt+1−→e2
= A−→e2mt−→e2

−mt−1←−e2

(
bt−→e2

)>
,

mt−→e2
= f t−→e 2

(
xt−→e1

,xt←−e2

)
,

xt+1←−e2
= A>−→e2

mt←−e2
−mt−1−→e2

(bt←−e2
)> ,

mt←−e2
= f t←−e2

(
A−→e 2w−→e 2 ,x

t−→e2
,xt←−e3

)
,

...

xt+1−→eL
= A−→eLmt−→eL −mt−1←−eL

(
bt−→eL

)>
,

mt−→eL = f t−→e L

(
xt−→e L−1

,xt←−eL
)
,

xt+1←−eL
= A>−→eLmt←−eL −mt−1−→eL

(bt←−eL)> ,

mt←−eL = f t←−eL

(
A−→e Lw−→e L ,x

t−→eL

)

(5.1)

and Onsager terms, for the right oriented edges

bt−→e l = 1
N

nl−1∑
i=1

∂f t−→e l,i
∂x←−e l,i

((
xt−→e ′

l

)
−→e ′
l
:−→e ′

l
→−→e l

)
∈ Rq×q .

and left oriented edges

bt←−e l = 1
N

nl∑
i=1

∂f t←−e l,i
∂x−→e l,i

(
A−→e lw−→e l ,

(
xt←−e ′

l

)
←−e ′
l
:←−e ′

l
→←−e l

)
∈ Rq×q .

We now make the following assumptions

(A1) The matrices (A−→e )−→e ∈−→E are random and independent, up to the symmetry condition A←−e =
A>−→e . Moreover A−→e has independent centered Gaussian entries with variance 1/N .
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(A2) For all 1 6 l 6 L, nl → ∞ and nl/N converges to a well-defined limit δl ∈ [0, 1]. We denote
by n→∞ the limit under this scaling.

(A3) For all t ∈ N and −→e ∈ −→E , the non-linearity f t−→e is pseudo-Lipschitz of finite order, uniformly
with respect to the problem dimensions (nl)06l6L

(A4) For all −→e ∈ E, the lines of x0−→e ,w−→e are sampled from subgaussian probability distributions
in Rq.

(A5) For all −→e ∈ E, the following limit exists and is finite:

lim
n→∞

1
N

〈
f0−→e

((
x0−→e ′

)
−→e ′:−→e ′→−→e

)
, f0−→e

((
x0−→e ′

)
−→e ′:−→e ′→−→e

)〉
(A6) Let (κ−→e )−→e ∈E be an array of bounded non-negative reals and Z−→e ∼ N(0, κ−→e Inw) independent

random variables for all −→e . For all −→e ∈ E, for any t ∈ N>0, the following limit exists and is
finite:

lim
n→∞

1
N

E
[〈
f0−→e

((
x0−→e ′

)
−→e ′:−→e ′→−→e

)
, f t−→e

((
Zt−→e ′

)
−→e ′:−→e ′→−→e

)〉]
.

(A7) Consider any array of 2× 2 positive definite matrices (S−→e )−→e ∈E and the collection of random
variables (Z−→e ,Z

′
−→e ) ∼ N(0,S−→e ⊗ Inw)) defined independently for each edge −→e . Then for any

−→e ∈ E and s, t > 0, the following limit exists and is finite:

lim
n→∞

1
N

E
[〈
fs−→e

((
Zs−→e ′

)
−→e ′:−→e ′→−→e

)
, f t−→e

((
Z̃t−→e ′

)
−→e ′:−→e ′→−→e

)〉]
.

Under these assumptions, we define the following state evolution recursion:

• for l = 1 :

ν0−→e 1
= lim

N→∞

1
N

w>−→e 1
f0−→e 1

(x0←−e 1
), κ1,1

−→e 1
= lim

N→∞

1
N
f0−→e 1

(x0←−e 1
)>f0−→e 1

(x0←−e 1
) (5.2)

νt+1−→e 1
= lim

N→+∞

1
N

E
[
w>−→e 1

f t−→e 1

(
w−→e 1 ν̂

t←−e 1
+ Zt←−e 1

)]
(5.3)

κs+1,t+1
−→e 1

= κt+1,s+1
−→e 1

= lim
N→+∞

1
N

E
[ (
fs−→e 1

(
w−→e 1 ν̂

s←−e 1
+ Zs←−e 1

)
−w−→e 1ρ

−1
w−→e 1

νs+1−→e 1

)>
(
f t−→e 1

(
w−→e 1 ν̂

t←−e 1
+ Zt←−e 1

)
−w−→e 1ρ

−1
w−→e 1

νt+1−→e 1

) ]
(5.4)

ν̂0←−e 1
,κ1,1
←−e 1

= lim
n→∞

1
N
f0←−e 1

(
zw−→e 1

,x0−→e 1
,x0←−e 2

)>
f0←−e 1

(
zw−→e 1

,x0−→e 1
,x0←−e 2

)
(5.5)

ν̂t+1←−e 1
= lim

N→∞

1
N

E
[ N∑
i=1

∂f t←−e 1,i

∂zw←−e 1 ,i
, ϕ←−e 1

(
zw−→e 1

, zw−→e 1
ρ−1

w−→e 1
νt−→e 1

+ Zt−→e 1
,w−→e 2 ν̂

t←−e 2
+ Zt←−e 2

) ]
(5.6)

κs+1,t+1
←−e 1

= lim
n→∞

1
N

E
[
fs←−e 1

(
zw−→e 1

, zw−→e 1
ρ−1

w−→e 1
νs−→e 1

+ Zs−→e 1
,w−→e 2 ν̂

s←−e 2
+ Zs←−e 2

)>
f t←−e 1

(
zw−→e 1

, zw−→e 1
ρ−1

w−→e 1
νt−→e 1

+ Zt−→e 1
,w−→e 2 ν̂

t←−e 2
+ Zt←−e 2

) ]
(5.7)
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• for any 2 6 l 6 L− 1

ν0−→e l = lim
N→∞

1
N

w>−→e lf
0−→e l(x

0←−e l), κ
1,1
−→e l

= lim
N→∞

1
N
f0−→e l(x

0←−e l)
>f0−→e l(x

0←−e l) (5.8)

νt+1−→e l
= lim

N→+∞

1
N

E
[
w>−→e lf

t−→e l

(
zw−→e l−1

ρ−1
w−→e l−1

νt−→e l−1
+ Zt−→e l−1

,w−→e l ν̂
t←−e l + Zt←−e l

)]
(5.9)

κs+1,t+1
−→e l

= κt+1,s+1
−→e l

= lim
N→+∞

(5.10)

1
N

E
[(

fs−→e l

(
zw−→e l−1

ρ−1
w−→e l−1

νs−→e l−1
+ Zs−→e l−1

,w−→e l ν̂
s←−e l + Zs←−e l

)
−w−→e lρ

−1
w−→e l

νs+1−→e l

)>
(
f t−→e l

(
zw−→e l−1

ρ−1
w−→e l−1

νt−→e l−1
+ Zt−→e l−1

,w−→e l ν̂
t←−e l + Zt←−e l

)
−w−→e lρ

−1
w−→e l

νt+1−→e l

)]
(5.11)

ν̂0←−e l ,κ
1,1
←−e l

= lim
n→∞

1
N
f0←−e l

(
zw−→e l

,x0−→e l ,x
0←−e l+1

)>
f0←−e l

(
zw−→e l

,x0−→e l ,x
0←−e l+1

)
(5.12)

ν̂t+1←−e l
= lim

N→∞

1
N

E
[ N∑
i=1

∂f t←−e l,i
∂zw←−e l ,i

, ϕ←−e l

(
zw−→e l

, zw−→e l
ρ−1

w−→e l
νt−→e l + Zt−→e l ,w−→e l+1 ν̂

t−→e l+1
Zt←−e l+1

) ]
(5.13)

κs+1,t+1
←−e l

= lim
n→∞

1
N

E
[
fs←−e l

(
zw−→e l

, zw−→e l
ρ−1

w−→e l
νs−→e l + Zs−→e l ,w−→e l+1 ν̂

s−→e l+1
Zs←−e l+1

)>
f t←−e l

(
zw−→e l

, zw−→e l
ρ−1

w−→e l
νt−→e l + Zt−→e l ,w−→e l+1 ν̂

t−→e l+1
Zt←−e l+1

) ]
(5.14)

• for l=L

ν0−→e L = lim
N→∞

1
N

w>−→e lf
0−→e L(x0←−e L), κ1,1

−→e L
= lim

N→∞

1
N
f0−→e L(x0←−e L)>f0−→e L(x0←−e L) (5.15)

νt+1−→e L
= lim

N→+∞

1
N

E
[
w>−→e Lf

t−→e L

(
zw−→e L−1

ρ−1
w−→e L−1

νt−→e L−1
+ Zt−→e L−1

,w−→e L ν̂
t←−e L + Zt←−e L

)]
(5.16)

κs+1,t+1
−→e L

= κt+1,s+1
−→e L

= lim
N→+∞

(5.17)

1
N

E
[(

f s−→e L

(
zw−→e L−1

ρ−1
w−→e L−1

νs−→e L−1
+ Zs−→e L−1

,w−→e L ν̂
s←−e L + Zs←−e L

)
−w−→e Lρ

−1
w−→e L

νs+1−→e L

)>
(
f t−→e L

(
zw−→e L−1

ρ−1
w−→e L−1

νt−→e L−1
+ Zt−→e L−1

,w−→e L ν̂
t←−e L + Zt←−e L

)
−w−→e Lρ

−1
w−→e L

νt+1−→e L

)]
(5.18)

ν̂0←−e L ,κ
1,1
←−e L

= lim
n→∞

1
N
f0←−e L

(
zw−→e L

,x0−→e L

)>
f0←−e L

(
zw−→e L

)
(5.19)

ν̂t+1←−e L
= lim

N→∞

1
N

E
[ N∑
i=1

∂f t←−e L,i
∂zw←−e L ,i

, ϕ←−e L

(
zw−→e L

, zw−→e L
ρ−1

w−→e L
νt−→e L + Zt−→e L

) ]
(5.20)

κs+1,t+1
←−e L

= lim
n→∞

1
N

E
[
fs←−e L

(
zw−→e L

, zw−→e L
ρ−1

w−→e L
νs−→e L + Zs−→e L

)>
f t←−e L

(
zw−→e L

, zw−→e L
ρ−1

w−→e L
νt−→e L + Zt−→e L

) ]
(5.21)

where, for any 1 6 l 6 L, the symbol ∂zw−→e ,i, ϕ−→e denotes the partial derivative w.r.t. the argument
of ϕ−→e , (Z1−→e , . . . ,Z

t−→e ) is a centered Gaussian random vector with covariance (κr,s−→e )r,s6t ⊗ Inw (and
similarly for left-oriented edges), and zw−→e is distributed according to N(0,ρw−→e ).
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Theorem 8. Assume (A1)-(A7). Define, as above, independently for each −→e l, Z0−→e l = x0−→e l and
(Z1−→e l , . . . ,Z

t−→e l
) a centered Gaussian random vector of covariance (κr,s−→e l)r,s6t ⊗ Inl−1. Then for any

sequence of uniformly (in n) pseudo-Lipschitz function Φ : (Rnl−1×(t+1)q)2 → R, for any 1 6 l 6 L

Φ
((

xs−→e l
)

06s6t
,
(
xs←−e l−1

)
06s6t

)
P'

E
[
Φ
((

zw−→e l
ρ−1

w−→e l
νs−→e l + Zs−→e l−1

)
06s6t

,
(
w−→e l−1 ν̂

s←−e l−1
+ Zs←−e l−1

)
06s6t

]
In summary, at each time step, the variables associated with right oriented edges x−→e l asymp-

totically behave as the sum of the ground truth w−→e l reweighted by a q × q matrix coefficient ν̂←−e l
and a nl−1 × q random matrix with i.i.d. lines Z−→e l with q × q covariance κ←−e l determined by the
function associated to the corresponding left-oriented arrow f t←−e l

. Similarly, the variables associated
with left oriented edges x←−e l asymptotically behave as the sum of the linear response to the ground
truth zw−→e l

(asymptotic equivalent of A−→e lw−→e l) reweighted by a q × q matrix coefficient ν←−e l and a
nl × q random matrix with i.i.d. lines Z←−e l with q × q covariance κ−→e l determined by the function
associated to the corresponding right-oriented arrow f t−→e l

.

Proof. This result is a special case of Lemma 2 from [110], with a perturbation where only the
left-oriented edges involve an additional dependence on A−→e w−→e . The required conditions are the
same as in [110], barring the subgaussian assumption (A3) which ensures the scaled norm of the
x0−→e ,w−→e are finite with high-probability as n→∞.

5.1.2 State evolution for multilayer AMP iterations with random convolutional
matrices

The following lemma proves the state evolution equations for a multilayer AMP iteration where
the dense Gaussian matrices are replaced with random convolutional ones (MCC from Def.9) with
variance 1

N , with a vector valued variables, i.e. q=1, and separables non-linearities. We choose
the variance as 1

N to follow the notations of [110] for more convenience, recovering the variances
of iteration Eq.(4.4) is a straightforward rescaling as done in [37] and will be discussed in the next
section. Assume q = 1 and that, for any t ∈ N and 1 6 l 6 L, the functions f t−→e l , f

t←−e l
are separable

in all their arguments, i.e there exists scalar valued, pseudo-Lipschitz functions σt−→e l : R2 → R, σt←−e l :
R3 → R (where σt−→e 1

: R→ R, σt←−e L : R2 → R) such that:

for l = 1, for any 1 6 i 6 n0 :
f t←−e 1

(xt←−e 1
)i = σt←−e 1

(xt←−e 1,i
)

for any 1 6 l 6 L− 1, for any 1 6 i 6 nl:

f t←−e l

(
A−→e lw−→e l ,x

t−→e l ,x
t←−e l+1

)
i

= σt←−e l

(
(A−→e lw−→e l)i, x

t−→e l,i, x
t←−e l+1,i

)
for any 2 6 l 6 L, 1 6 i 6 nl−1:

f t−→e l

(
xt−→e l−1

,xt←−e l
)
i

= σt−→e l

(
xt−→e l−1,i

, xt←−e l,i

)
for l=L, any 1 6 i 6 nL:

f t←−e L(A−→e Lw←−e L ,x
t−→e L)i = σt←−e L((A−→e Lw←−e L)i, xt−→e L,i)

Define the following scalar SE equations
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• for l = 1:

ν0−→e 1
= δ0E

[
w−→e 1σ

0−→e 1
(x0←−e 1

)
]
, κ1,1
−→e 1

= δ0E
[
σ0−→e 1

(x0←−e 1
)σ0−→e 1

(x0←−e 1
)
]

(5.22)

νt+1−→e 1
= δ0E

[
w−→e 1σ

t−→e 1

(
w−→e 1 ν̂

t←−e 1
+ Zt←−e 1

)]
(5.23)

κs+1,t+1
−→e 1

= κt+1,s+1
−→e 1

= δ0E
[ (
σs−→e 1

(
w−→e 1 ν̂

s←−e 1
+ Zs←−e 1

)
− w−→e 1ρ

−1
w−→e 1

νs+1−→e 1

)
(
σt−→e 1

(
w−→e 1 ν̂

t←−e 1
+ Zt←−e 1

)
− w−→e 1ρ

−1
w−→e 1

νt+1−→e 1

) ]
(5.24)

ν̂0←−e 1
, κ1,1
←−e 1

= δ1E
[
σ0←−e 1

(
zw−→e 1

, x0−→e 1
, x0←−e 2

)
σ0←−e 1

(
zw−→e 1

, x0−→e 1
, x0←−e 2

) ]
(5.25)

ν̂t+1←−e 1
= δ1E

[ ∂σt←−e 1,i

∂zw←−e 1 ,i
, ϕ←−e 1

(
zw−→e 1

, zw−→e 1
ρ−1
w−→e 1

νt−→e 1
+ Zt−→e 1

, w−→e 2 ν̂
t←−e 2

+ Zt←−e 2

) ]
(5.26)

κs+1,t+1
←−e 1

= δ1E
[
σs←−e 1

(
zw−→e 1

, zw−→e 1
ρ−1
w−→e 1

νs−→e 1
+ Zs−→e 1

, w−→e 2 ν̂
s←−e 2

+ Zs←−e 2

)
σt←−e 1

(
zw−→e 1

, zw−→e 1
ρ−1
w−→e 1

νt−→e 1
+ Zt−→e 1

, w−→e 2 ν̂
t←−e 2

+ Zt←−e 2

) ]
(5.27)

• for any 2 6 l 6 L− 1

ν0−→e l = δnl−1E
[
w−→e lσ

0−→e l(x
0←−e l)

]
, κ1,1
−→e l

= δnl−1E
[
σ0−→e l(x

0←−e l)σ
0−→e l(x

0←−e l)
]

(5.28)

νt+1−→e l
= δnl−1E

[
w−→e lσ

t−→e l

(
zw−→e l−1

ρ−1
w−→e l−1

νt−→e l−1
+ Zt−→e l−1

, w−→e l ν̂
t←−e l + Zt←−e l

)]
(5.29)

κs+1,t+1
−→e l

= κt+1,s+1
−→e l

= (5.30)

δnl−1E
[(

σs−→e l

(
zw−→e l−1

ρ−1
w−→e l−1

νs−→e l−1
+ Zs−→e l−1

, w−→e l ν̂
s←−e l + Zs←−e l

)
− w−→e lρ

−1
w−→e l

νs+1−→e l

)
(
σt−→e l

(
zw−→e l−1

ρ−1
w−→e l−1

νt−→e l−1
+ Zt−→e l−1

, w−→e l ν̂
t←−e l + Zt←−e l

)
− w−→e lρ

−1
w−→e l

νt+1−→e l

)]
(5.31)

ν̂0←−e l , κ
1,1
←−e l

= δnlE
[
σ0←−e l

(
zw−→e l

, x0−→e l , x
0←−e l+1

)
σ0←−e l

(
zw−→e l

, x0−→e l , x
0←−e l+1

) ]
(5.32)

ν̂t+1←−e l
= δnlE

[ ∂σt←−e l,i
∂zw←−e l ,i

, ϕ←−e l

(
zw−→e l

, zw−→e l
ρ−1
w−→e l

νt−→e l + Zt−→e l , w
−→e l+1 ν̂

t−→e l+1
Zt←−e l+1

) ]
(5.33)

κs+1,t+1
←−e l

= δnlE
[
σs←−e l

(
zw−→e l

, zw−→e l
ρ−1
w−→e l

νs−→e l + Zs−→e l , w
−→e l+1 ν̂

s−→e l+1
Zs←−e l+1

)
σt←−e l

(
zw−→e l

, zw−→e l
ρ−1
w−→e l

νt−→e l + Zt−→e l , w
−→e l+1 ν̂

t−→e l+1
Zt←−e l+1

) ]
(5.34)
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• for l=L

ν0−→e L = δnL−1E
[
w−→e lσ

0−→e L(x0←−e L)
]
, κ1,1
−→e L

= δnL−1E
[
σ0−→e L(x0←−e L)σ0−→e L(x0←−e L)

]
(5.35)

νt+1−→e L
= δnL−1E

[
w−→e Lσ

t−→e L

(
zw−→e L−1

ρ−1
w−→e L−1

νt−→e L−1
+ Zt−→e L−1

, w−→e L ν̂
t←−e L + Zt←−e L

)]
(5.36)

κs+1,t+1
−→e L

= κt+1,s+1
−→e L

= (5.37)

δnL−1E
[(

σs−→e L

(
zw−→e L−1

ρ−1
w−→e L−1

νs−→e L−1
+ Zs−→e L−1

, w−→e L ν̂
s←−e L + Zs←−e L

)
− w−→e Lρ

−1
w−→e L

νs+1−→e L

)
(
σt−→e L

(
zw−→e L−1

ρ−1
w−→e L−1

νt−→e L−1
+ Zt−→e L−1

, w−→e L ν̂
t←−e L + Zt←−e L

)
− w−→e Lρ

−1
w−→e L

νt+1−→e L

)]
(5.38)

ν̂0←−e L , κ
1,1
←−e L

= δnLE
[
σ0←−e L

(
zw−→e L

, x0−→e L

)
σ0←−e L

(
zw−→e L

) ]
(5.39)

ν̂t+1←−e L
= δnLE

[ ∂σt←−e L,i
∂zw←−e L ,i

, ϕ←−e L

(
zw−→e L

, zw−→e L
ρ−1
w−→e L

νt−→e L + Zt−→e L

) ]
(5.40)

κs+1,t+1
←−e L

= δnLE
[
σs←−e L

(
zw−→e L

, zw−→e L
ρ−1
w−→e L

νs−→e L + Zs−→e L

)
σt←−e L

(
zw−→e L

, zw−→e L
ρ−1
w−→e L

νt−→e L + Zt−→e L

) ]
(5.41)

Lemma 23. Under the assumptions of section 5.1.2, define, as above, independently for each −→e l,
Z0−→e l = x0−→e and (Z1−→e l , . . . , Z

t−→e l
) a centered Gaussian random vector of covariance (κr,s−→e l)r,s6t (and

similarly for left-oriented edges). Then for any 1 6 l 6 L, for any sequence of uniformly (in n)
pseudo-Lipschitz function Φl : (Rnl−1×(t+1))2 → R

Φ
((

xs−→e l
)

06s6t
,
(
xs←−e l

)
06s6t,←−e l−1∈

←−
E

)
P'

E
[
Φ
((

zw−→e l
ρ−1
w−→e l

νs−→e l + Zs−→e l

)
06s6t,←−e l∈

←−
E
,
(
w−→e l−1 ν̂

s←−e l−1
+ Zs←−e l−1

)
06s6t

)]
Proof. Consider the following iteration, corresponding to the algorithm presented in the previous
section Eq.(5.1) with q = 1 indexed on the same graph as above, but where the matrices A−→e l are
replaced with random convolutional ones, denoted Â−→e l such that

∀ −→e ∈
−→
E Â−→e l ∼M(D−→e l , P−→e l , k−→e l , q−→e l) (5.42)

where A−→e l ∈ RD−→e lq−→e l×P−→e lq−→e l , and we remind that we chose variances of 1/N . Since we assume
that q = 1, thus the Onsager terms are scalars, which we denote with lowercase letters bt−→e . The
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corresponding iteration then reads:

xt+1−→e1
= Â−→e1mt−→e1

− bt−→e1
mt−1←−e1

,

mt−→e1
= f t−→e 1

(
xt←−e1

)
,

xt+1←−e1
= Â>−→e1

mt←−e1
− bt←−e1

mt−1−→e1
,

mt←−e1
= f t←−e1

(
Â−→e 1w−→e 1 ,x

t−→e1
,xt←−e2

)
,

xt+1−→e2
= Â−→e2mt−→e2

− bt−→e2
mt−1←−e2

,

mt−→e2
= f t−→e 2

(
xt−→e1

,xt←−e2

)
,

xt+1←−e2
= Â>−→e2

mt←−e2
− bt←−e2

mt−1−→e2
,

mt←−e2
= f t←−e2

(
Â−→e 2w−→e 2 ,x

t−→e2
,xt←−e3

)
,

...

xt+1−→eL
= Â−→eLmt−→eL − b

t−→eLmt−1←−eL
,

mt−→eL = f t−→e L

(
xt−→e L−1

,xt←−eL
)
,

xt+1←−eL
= Â>−→eLmt←−eL − b

t←−eLmt−1−→eL
,

mt←−eL = f t←−eL

(
Â−→e Lw−→e L ,x

t−→eL

)

(5.43)

Then, according to Lemma 22, for any 1 6 l 6 L, there exists a pair of orthogonal matrices
U−→e l ∈ RD−→e lq−→e l×D−→e lq−→e l ,V−→e l ∈ RP−→e lq−→e l×P−→e lq−→e l such that Â−→e l = U−→e lÃ−→e lV

>−→e l
and Ã−→e l =[(

PP−→e l ,q−→e l
)i−1

Q−→e l
]q−→e l
i=1

, where Q−→e l ∈ RD−→e l×P−→e lq−→e l is composed of q−→e l blocks of size D−→e l × P−→e l ,

denoted Qj
−→e l

, verifying

• for any 1 6 j 6 k−→e , Qj
−→e has i.i.d. N (0, 1

N ) elements

• for any k−→e < j 6 q−→e , all elements of Qj
−→e are zero.

In the preceding definition of Ã−→e l , Q−→e l is understood as a vector of size RP−→e q−→e with elements in
RD−→e , such that the permutation matrix PP−→e ,q−→e shifts blocks of size D−→e × P−→e , yielding

Ã−→e =



Q(1)
−→e l

Q(2)
−→e l

. . . Q(k−→e )
−→e l

Q(1)
−→e l

Q(2)
−→e l

. . . Q(k−→e )
−→e l

Q(1)
−→e l

Q(2)
−→e l

. . . Q(k−→e )
−→e l

...
...

... . . .
Q(2)
−→e l

Q(3)
−→e l

. . . Q(k−→e )
−→e l

Q(1)
−→e l


(5.44)
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The iteration then reads

xt+1−→e1
= U−→e 1Ã−→e 1V

>−→e 1
mt−→e1

− bt−→e1
mt−1←−e1

,

mt−→e1
= f t−→e 1

(
xt←−e1

)
,

xt+1←−e1
= V−→e 1Ã

>−→e 1
U>−→e 1

mt←−e1
− bt←−e1

mt−1−→e1
,

mt←−e1
= f t←−e1

(
U−→e 1Ã−→e 1V

>−→e 1
w−→e 1 ,x

t−→e1
,xt←−e2

)
,

xt+1−→e2
= U−→e 2Ã−→e 2V

>−→e 2
mt−→e2

− bt−→e2
mt−1←−e2

,

mt−→e2
= f t−→e 2

(
xt−→e1

,xt←−e2

)
,

xt+1←−e2
= V−→e 2Ã

>−→e U>−→e 2
mt←−e2

− bt←−e2
mt−1−→e2

,

mt←−e2
= f t←−e2

(
U−→e 2Ã−→e 2V

>−→e 2
w−→e 2 ,x

t−→e2
,xt←−e3

)
,

...

xt+1−→eL
= U−→e LÃ−→e LV>−→e Lmt−→eL − b

t−→eLmt−1←−eL
,

mt−→eL = f t−→e L

(
xt−→e L−1

,xt←−eL
)
,

xt+1←−eL
= V−→e LÃ>−→e LU>−→e Lmt←−eL − b

t←−eLmt−1−→eL
,

mt←−eL = f t←−eL

(
U−→e LÃ−→e LV>−→e Lw−→e L ,x

t−→eL

)

(5.45)

Since we will not be making any change of variable on the w−→e l , we will keep the Â−→e l notation for
the quantities related to the planted model. Define, for any 1 6 l 6 L and any t ∈ N:

x̃−→e l = U>−→e lx−→e l x̃←−e l = V>−→e lx←−e l
m̃t−→e l = V>−→e lm

t−→e l m̃t←−e l = U>−→e lm
t←−e l

f̃ t−→e 1
(x̃t←−e1

) = V>−→e 1
f t−→e 1

(
V−→e 1 x̃

t←−e1

)
f̃ t←−e1

(
Â−→e 1w−→e 1 , x̃

t−→e1
, x̃t←−e2

)
= U>−→e 1

f t←−e1

(
Â−→e 1w−→e 1 ,U−→e 1 x̃

t−→e1
,V−→e 2 x̃

t←−e2

)
f̃ t−→e 2

(
x̃t−→e1

, x̃t←−e2

)
= V>−→e 2

f t−→e 2

(
U−→e 1 x̃

t−→e1
,V−→e 2 x̃

t←−e2

)
f̃ t←−e2

(
Â−→e 2w−→e 2 , x̃

t−→e2
, x̃t←−e3

)
= U>−→e 2

f t←−e2

(
Â−→e 2w−→e 2 ,U−→e 2 x̃

t−→e2
,V−→e 3 x̃

t←−e3

)
...

f̃ t−→e L

(
x̃t−→e L−1

, x̃t←−eL
)

= V>−→e Lf
t−→e L

(
U−→e L−1 x̃

t−→e L−1
,V−→e L x̃t←−eL

)
f̃ t←−eL

(
Â−→e Lw−→e L , x̃

t−→eL

)
= U>−→e Lf

t←−eL

(
U−→e LÃ−→e LV−→e Lw−→e L ,U−→e L x̃t−→eL

)
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Using the orthogonality of the permutation matrices U−→e ,V−→e , the iteration may be rewritten

x̃t+1−→e1
= Ã−→e 1m̃

t−→e1
− bt−→e1

m̃t−1←−e1
,

m̃t−→e1
= f̃ t−→e 1

(x̃t←−e1
) ,

x̃t+1←−e1
= Ã>−→e 1

m̃t←−e1
− bt←−e1

m̃t−1−→e1
,

m̃t←−e1
= f̃ t←−e1

(
Â−→e 1w−→e 1 , x̃

t−→e1
, x̃t←−e2

)
,

x̃t+1−→e2
= Ã−→e 2m̃

t−→e2
− bt−→e2

m̃t−1←−e2
,

m̃t−→e2
= f̃ t−→e 2

(
x̃t−→e1

, x̃t←−e2

)
,

x̃t+1←−e2
= Ã>−→e m̃t←−e2

− bt←−e2
m̃t−1−→e2

,

m̃t←−e2
= f̃ t←−e2

(
Â−→e 2w−→e 2 , x̃

t−→e2
, x̃t←−e3

)
,

...

x̃t+1−→eL
= Ã−→e Lm̃t−→eL − b

t−→eLm̃t−1←−eL
,

m̃t−→eL = f̃ t−→e L

(
x̃t−→e L−1

, x̃t←−eL
)
,

x̃t+1←−eL
= Ã>−→e Lm̃t←−eL − b

t←−eLm̃t−1−→eL
,

m̃t←−eL = f̃ t←−eL

(
Â−→e Lw−→e L , x̃

t−→eL

)

(5.46)

Recall, for any 1 6 l 6 L, the dimensions Ã−→e l ∈ RD−→e lq−→e l×P−→e lq−→e l and f̃ t−→e l(...) ∈ RP−→e lq−→e l . Consider
then

f̃ t−→e l(...) =


(
f̃ t−→e l

)(1)
(...)

...(
f̃ t−→e l

)(q−→e l ) (...)

 (5.47)

where, for any 1 6 k 6 q−→e l , (f̃ t−→e l)
(k)(...) ∈ RP−→e . The product Ã−→e l f̃

t−→e l
(...) ∈ RD−→e lq−→e l then reads,
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using the circulant structure of Ã−→e l

Q(1)
−→e l

Q(2)
−→e l

. . . Q(k−→e )
−→e l

Q(1)
−→e l

Q(2)
−→e l

. . . Q(k−→e )
−→e l

Q(1)
−→e l

Q(2)
−→e l

. . . Q(k−→e )
−→e l

...
...

... . . .
Q(2)
−→e l

Q(3)
−→e l

. . . Q(k−→e )
−→e l

Q(1)
−→e l




(
f̃ t−→e l

)(1)
(...)

...(
f̃ t−→e l

)(q−→e l ) (...)

 (5.48)

=
[((
PP−→e l ,q−→e l

)i−1
Q−→e l

)
f̃ t−→e l(...)

]q−→e l
i=1

(5.49)

=

k−→e l∑
j=1

Q(j)
−→e l

(f̃ t−→e l)
(bj+n−2cq−→e l

+1)(...)

q−→e l
n=1

(5.50)

where the notation b.cq−→e l denotes the modulo q−→e l , i.e. the remainder of the euclidian division by
q−→e l . Now define

F̃ t−→e l(...) =


[(
PP−→e l ,q−→e l

)1−i [
(f̃ t−→e l)

(1) . . . (f̃ t−→e l)
(q−→e l )

]]k−→e l
i=1
∈ RP−→e lk−→e l×q−→e l[

0P−→e l . . . 0P−→e l
]q−→e l−k−→e l
j=1

 ∈ RP−→e lq−→e l×q−→e l (5.51)

and the matrix Q̃−→e l ∈ RD−→e lq−→e l×P−→e lq−→e l is a dense Gaussian matrix with i.i.d. elements. Then

Q̃−→e lF̃
t−→e l(...) =


∑k−→e l
j=1 Q(j)

−→e l
(f̃ t−→e l)

bj−1cq−→e l
+1(...) . . .

∑k−→e l
j=1(Q(j)

−→e l
)(f̃ t−→e l)

bj+q−→e l−2cq−→e l
+1(...)

. . .

. . .


∈ RD−→e lq−→e l×q−→e l

where each . . . is an identical copy of the first D−→e l × q−→e l block, for a total of k−→e l blocks. This
means the D−→e lq−→e l output of the product Ã−→e lf

t−→e l
(...) may be rewritten as a D−→e l × q−→e l matrix

(copied k−→e l times) resulting from the product of a dense Gaussian matrix with i.i.d. elements and a
matrix valued function F̃ t−→e l

which verifies the same regularity conditions as f t−→e l . Note that, owing
to the separability assumption, we may use any permutation of the (f̃ t−→e l)

(i), 1 6 i 6 q−→e l and will
thus drop the permutations to write

F̃ t−→e l(...) =


[
(f̃ t−→e l)

(1) . . . (f̃ t−→e l)
(q−→e l )

]k−→e l
i=1
∈ RP−→e lk−→e l×q−→e l[

0P−→e l . . . 0P−→e l
]q−→e l−k−→e l
j=1

 ∈ RP−→e lq−→e l×q−→e l (5.52)
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Similarly, for products of the form
(
Ã−→e l

)>
f̃ t←−e l

(...) ∈ RP−→e lq−→e l , we may write:



Q(1)
−→e l

Q(2)
−→e l

. . . Q
(k−→e l )−→e l

Q(1)
−→e l

Q(2)
−→e l

. . . Q
(k−→e l )−→e l

Q(1)
−→e l

Q(2)
−→e l

. . . Q
(k−→e l )−→e l

...
...

... . . .
Q(2)
−→e l

Q(3)
−→e l

. . . Q
(k−→e l )−→e l

Q(1)
−→e l



> 
(
f̃ t←−e l

)(1)
(...)

...(
f̃ t←−e l

)(q−→e l ) (...)

 (5.53)

=
[((
PP−→e l ,q−→e l

)i−1
[
(Q(1)
−→e l

)>(0 . . . 0)(Q
(k−→e l )−→e l

)> . . . (Q(2)
−→e l

)>
])

f̃ t←−e l(...)
]q−→e l
i=1

(5.54)

Then, using once again the separability assumption, we may define:

F̃ t←−e l(...) =

[(f̃ t←−e l)(1) . . . (f̃ t←−e l)
(q←−e l )

]k−→e l
i=1
∈ RD−→e lk−→e l×q−→e l[

0D−→e l . . . 0D−→e l
]

 ∈ RD−→e lq−→e l×q−→e l (5.55)

such that the term Q̃>−→e lF̃
t←−e l

(...) also contains k−→e l copies of a P−→e l × q−→e l block containing the q−→e l
blocks of size P−→e l of the original P−→e lq−→e l vector Ã>−→e l f̃←−e l(...). The iterates of the sequences defined
by Eq.(5.46) may then be rewritten as a subset of the lines of the following matrix valued iteration,
i.e.:

X̃t+1−→e1
= Q̃−→e 1m̃

t−→e1
− bt−→e1

m̃t−1←−e1
,

m̃t−→e1
= F̃ t−→e 1

(X̃t←−e1
) ,

X̃t+1←−e1
= Q̃>−→e 1

m̃t←−e1
− bt←−e1

m̃t−1−→e1
,

m̃t←−e1
= F̃ t←−e1

(
Q̃−→e 1W−→e 1 , X̃

t−→e1
, X̃t←−e2

)
,

X̃t+1−→e2
= Q̃−→e 2m̃

t−→e2
− bt−→e2

m̃t−1←−e2
,

m̃t−→e2
= F̃ t−→e 2

(
X̃t−→e1

, X̃t←−e2

)
,

X̃t+1←−e2
= Q̃>−→e m̃t←−e2

− bt←−e2
m̃t−1−→e2

,

m̃t←−e2
= F̃ t←−e2

(
Q̃−→e 2W−→e 2 , X̃

t−→e2
, X̃t←−e3

)
,

...

X̃t+1−→eL
= Q̃−→e Lm̃t−→eL − b

t−→eLm̃t−1←−eL
,

m̃t−→eL = F̃ t−→e L

(
X̃t−→e L−1

, X̃t←−eL

)
,

X̃t+1←−eL
= Q̃>−→e Lm̃t←−eL − b

t←−eLm̃t−1−→eL
,

m̃t←−eL = F̃ t←−eL

(
Q̃−→e LW−→e L , X̃

t−→eL

)

(5.56)
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where each W−→e l contains k−→e l copies of the initial w−→e l reorganised into matrices as described above.
The dimensions of the variables are Note that at this point we have almost reached an iteration
verifying the structure of that appearing in Theorem 8, except the Onsager term isn’t, a priori, the
correct one. Consider the following iteration, where we replaced the original, scalar Onsager terms
with the correct, matrix-valued ones:

X̃t+1−→e1
= Q̃−→e 1m̃

t−→e1
− m̃t−1←−e1

(
b̃t−→e1

)>
,

m̃t−→e1
= F̃ t−→e 1

(X̃t←−e1
) ,

X̃t+1←−e1
= Q̃>−→e 1

m̃t←−e1
− m̃t−1−→e1

(
b̃t←−e1

)>
,

m̃t←−e1
= F̃ t←−e1

(
Q̃−→e 1W−→e 1 , X̃

t−→e1
, X̃t←−e2

)
,

X̃t+1−→e2
= Q̃−→e 2m̃

t−→e2
− m̃t−1←−e2

(
b̃t−→e2

)>
,

m̃t−→e2
= F̃ t−→e 2

(
X̃t−→e1

, X̃t←−e2

)
,

X̃t+1←−e2
= Q̃>−→e m̃t←−e2

− m̃t−1−→e2

(
b̃t←−e2

)>
,

m̃t←−e2
= F̃ t←−e2

(
Q̃−→e 2W−→e 2 , X̃

t−→e2
, X̃t←−e3

)

(5.57)

...

X̃t+1−→eL
= Q̃−→e Lm̃t−→eL − m̃t−1←−eL

(
b̃t−→eL

)>
,

m̃t−→eL = F̃ t−→e L

(
X̃t−→e L−1

, X̃t←−eL

)
,

X̃t+1←−eL
= Q̃>−→e Lm̃t←−eL − m̃t−1−→eL

(
b̃t←−eL

)>
,

m̃t←−eL = F̃ t←−eL

(
Q̃−→e LW−→e L , X̃

t−→eL

)

(5.58)

where, for any −→e ∈ −→E and any t ∈ N for the right oriented edges

bt−→e l = 1
N

nl−1∑
i=1

∂F̃ t−→e l,i
∂X←−e l,i

((
Xt−→e ′

l

)
−→e ′
l
:−→e ′

l
→−→e l

)
∈ Rq−→e l×q−→e l .

and left oriented edges

bt←−e l = 1
N

nl∑
i=1

∂F̃ t←−e l,i
∂X−→e l,i

(
Q̃−→e lW−→e l ,

(
Xt←−e ′

l

)
←−e ′
l
:←−e ′

l
→←−e l

)
∈ Rq←−e l×q←−e l .

Using the separability assumption, we can simplify this expression. To take a concrete example,
consider F̃ t−→e 2

(
X̃t−→e1

, X̃t←−e2

)
. Let’s start with the dimensions. Recall

f̃ t−→e 2

(
x̃t−→e 1

, x̃t←−e 2

)
∈ RP−→e 2q

−→e 2 = V>−→e 2
f t−→e 2

(
U−→e 1 x̃

t−→e1
,V−→e 2 x̃

t←−e2

)
(5.59)

where x̃t−→e 1
∈ RD−→e 1q

−→e 1 = RP−→e 2q
−→e 2 and x̃t←−e 2

∈ RP−→e 2q
−→e 2 (5.60)
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using the separability assumption, we may write

∀ 1 6 i 6 P−→e 2q−→e 2 (5.61)(
f t−→e 2

(
U−→e 1 x̃

t−→e1
,V−→e 2 x̃

t←−e2

))
i

= σt−→e 2

((
U−→e 1 x̃

t−→e1

)
i
,
(
V−→e 2 x̃

t←−e2

)
i

)
(5.62)

And

F̃ t−→e 2

(
X̃t−→e 1

, X̃t←−e 2

)
∈ RP−→e 2q

−→e 2×q−→e 2 (5.63)

where X̃t−→e 1
RP−→e 2q

−→e 2×q−→e 2 and X̃t←−e 2
∈ RP−→e 2q

−→e 2×q−→e 2 (5.64)

F̃ t−→e 2

(
X̃t−→e 1

, X̃t←−e 2

)
=


[
(f̃ t−→e l)

(1)(x̃t,(1)
−→e 1

, x̃t,(1)
←−e 2

) . . . (f̃ t−→e l)
(q−→e l )(x̃

t,(q−→e l )−→e 1
, x̃

t,(q−→e l )←−e 2
)
]k−→e 2

i=1
0P−→e 2 (q−→e 2−k−→e 2 )×q−→e 2

 (5.65)

=
[
(g̃t−→e l)

(1)(x̃t,(1)
−→e 1

, x̃t,(1)
←−e 2

) . . . (g̃t−→e l)
(q−→e l )(x̃

t,(q−→e l )−→e 1
, x̃

t,(q−→e l )←−e 2
)
]q−→e 2

i=1
(5.66)

where each x̃t,(i)←−e 2
∈ RP−→e 2q

−→e 2 . Recall that, for any 1 6 i 6 Pk, F̃ t−→e 2,i
: Rq−→e 2 → Rq−→e 2 . Then, for any

1 6 k, l 6 q−→e 2

(
b̃t−→e 2

)
k,l

= 1
N

P−→e 2q
−→e 2∑

i=1

∂F̃ t−→e 2,i,k

∂X←−e 2,i,l

(
X̃t−→e 1

, X̃t←−e 2

)
(5.67)

= 1
N

P−→e 2q
−→e 2∑

i=1

∂(g̃t−→e 2,i
)(k)

∂x̃(l)
←−e 2,i

(x̃t,(k)
−→e 1

, x̃t,(k)
←−e 2

) (5.68)

= 1
N

P−→e 2q
−→e 2∑

i=1

∂

∂x̃t,(l)←−e 2

V>−→e 2
(gt−→e 2

)(k)
(
U−→e 1 x̃

t,(l)
−→e1

,V−→e 2 x̃
t,(l)
←−e2

)
(5.69)

= 1
N

Tr
(

V>−→e 2
J(gt−→e 2

)(k)

(
U−→e 1 x̃

t,(l)
−→e1

,V−→e 2 x̃
t,(l)
←−e2

)
V−→e 2

)
δk,l (5.70)

= 1
N

Tr
(
J(gt−→e 2

)

(
U−→e 1 x̃

t−→e1
,V−→e 2 x̃

t←−e2

))
δk,l (5.71)

= 1
N

P−→e 2q
−→e 2∑

i=1
(σt)′−→e 2

((
U−→e 1 x̃

t−→e1

)
i
,
(
V−→e 2 x̃

t←−e2

)
i

)
δk,l (5.72)

where we wrote J(gt−→e 2
)(k) the N ×N Jacobian matrix of the function (gt−→e 2

)(k) : RN → RN . Using
[37] corollary 2, the Onsager term can be replaced by any estimator based on the asymptotically
Gaussian iterates converging, in the high-dimensional limit, to the correct expectation. Using the
permutation invariance of the Gaussian distribution, we can therefore replace each element of the
matrix the Onsager term with

1
P−→e 2q−→e 2

P−→e 2q
−→e 2∑

i=1
(σt)′−→e 2

((
x̃t−→e1

)
i
,
(
x̃t←−e2

)
i

)
δk,l (5.73)

which amounts to
b̃t−→e 2

= bt−→e 2
Iq−→e 2×q−→e 2

(5.74)
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We therefore obtain an exact reformulation of the initial MLAMP iteration with convolutional
matrices in terms of a subset (first line of size P−→e l × q−→e l for right oriented edges and D−→e l × q−→e l for
left-oriented variables) of the variables of a matrix-valued iteration with dense Gaussian matrices
verifying the SE equations. Isolating the aforementioned first lines, recalling that the SE equations
prescribes i.i.d. lines in the asymptotically Gaussian fields, we recover that, for any 1 6 l 6 L, the
variable x−→e l ∈ RP−→e lq−→e l is composed of q−→e l copies of block of size P−→e l with i.i.d. Gaussian elements
distributed according to the SE equations (5.1.2). The distribution of the variables associated to
left-oriented edges is obtained similarly. Note that, from a finite size point of view, the effect
of D−→e l , P−→e l is different from that of q−→e l : the former results in subGaussian concentration i.e.
exponential in the dimension, while the latter only represents copies (and not i.i.d. samples), and
thus only has an averaging effect. This is observed in simulations.

5.1.3 Bayes-optimal MLAMP with random convolutional matrices

In this section, we specialize the equations obtained in the previous section to the Bayes-optimal
MLAMP iteration of the main body of the paper. Several functions are reminded for convenience.
Consider the MLAMP iteration outlined in section 4.1.2. The scalar updates described in Eq.(4.4)
can be rewritten as vector-valued updates as follows, for any t ∈ N, and any 0 6 l 6 L:

ω(l)(t) = W(l)ĥ(l)(t)− V (l)(t)g(l)(t− 1) (5.75)

B(l)(t) =
(
W(l)

)>
g(l)(t)− V̂ (l)(t)ĥ(t). (5.76)

To define the update functions and terms V (l), V̂ (l), the following partition functions were in-
troduced.

• for l = 1

Z(1)
(
y, V (1), ω(1)

)
= 1√

2πV (1)

∫
dzP

(1)
out(y|z)e

− (z−ω(1))2

2V (1) (5.77)

• for any 2 6 l 6 L− 1 :

Z(l)
(
A(l−1), B(l−1), V (l), ω(l)

)
=

1√
2πV (l)

∫
dhdzP

(l)
out(h|z)e−

1
2A

(l−1)h2+B(l−1)he
− (z−ω(l))2

2V (l) (5.78)

• for l = L

Z(L)(A(L), B(L)) =
∫
dhPX(h)e−

1
2A

(L)h2+B(L)h (5.79)

We then define the layer-dependent, time-dependent, scalar update functions f (l),t, f̃ (l),t

∀ (B,ω) ∈ R2

f (1),t(ω) = ∂ωlogZ(1)
(
y, V (1)(t), ω

)
(5.80)

f (l),t(B,ω) = ∂ωlogZ(l)
(
A(l−1)(t), B, V (l)(t), ω

)
2 6 l 6 L (5.81)

f̃ (l),t(B,ω) = ∂BlogZ(l+1)
(
A(l)(t− 1), B, V (l+1)(t− 1), ω

)
1 6 l 6 L− 1 (5.82)

f̃ (L,t)(B) = ∂BlogZ(L+1)
(
A(L)(t− 1), B

)
, (5.83)
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and their corresponding separable, vector valued counterparts f (l), f̃ (l), which leads to the following
iteration

ω(l)(t) = W(l)f̃ (l),t(B(l),t−1,ω(l+1),t−1)− V (l)(t)f (l),t−1(B(l−1),t−1,ω(l),t−1) (5.84)

B(l)(t) =
(
W(l)

)>
f (l),t(B(l−1),t,ω(l),t)− V̂ (l)(t)f̃ (l),t(B(l),t−1,ω(l+1),t−1), (5.85)

where the Onsager terms V (l),t and V̂ (l),t reduce to, using the separability of the update functions,

V (l),t = 1
nl

nl−1∑
i=1

∂B f̃
(l),t(B(l),t−1

i , ω
(l+1),t−1
i ) (5.86)

V̂ (l),t = 1
nl

nl∑
j=1

∂ωf
(l),t(B(l−1),t

j , ω
(l),t
j ) = −A(l),t (5.87)

We now show that the update functions defined above are Lipschitz continuous and increasing,
thus ensuring that the integrals are well defined through positivity of the parameters V, V̂ .

Lemma 24. For any 1 6 l 6 L, and any t ∈ N, the functions f (l),t, f̃ (l),t are Lipschitz continuous
in B,ω. Furthermore, the functions f (l),t, f̃ (l),t are respectively decreasing in ω and increasing in
B. As a consequence, the variance terms A(l),t and V (l),t are strictly positive.

Proof. Recall the partition function, omitting the layer index since all regularity assumptions are
the same for all layers and time indices,

Z(A,B, V, ω) := 1√
2πV

∫
P (h | z) exp

(
Bh− 1

2Ah
2 − (z − ω)2

2V

)
dh dz (5.88)

recalling p(h|z) =
∫
p(ξ)δ(h− fξ(z))dξ, integrating in h yields

Z(A,B, V, ω) := 1√
2πV

∫
P (ξ) exp

(
Bfξ(z)−

1
2Afξ(z)

2 − (z − ω)2

2V

)
dξ dz (5.89)

Starting with f̃ , we can straightforwardly verify the conditions to apply the dominated convergence
theorem and differentiate under the integral to obtain

∂B f̃(B,ω) = ∂2
B log (Z(A,B, V, ω))

= 1
(
√

2πV Z(A,B, V, ω))2

(∫
P (ξ)f2

ξ (z) exp
(
Bfξ(z)−

1
2Afξ(z)

2 − (z − ω)2

2V

)
dξ dz×

∫
P (ξ) exp

(
Bfξ(z)−

1
2Afξ(z)

2 − (z − ω)2

2V

)
dξ dz−(∫

P (ξ)fξ(z) exp
(
Bfξ(z)−

1
2Afξ(z)

2 − (z − ω)2

2V

)
dξ dz

)2 )
> 0 (5.90)

where the positivity comes from the Cauchy-Schwarz inequality and positivity of the term
P (ξ) exp

(
Bfξ(z)− 1

2Afξ(z)2 − (z−ω)2

2V

)
. Turning to f , we complete the square in the variable h to

obtain

Z(A,B, V, ω) :=
exp

(
B2

2A

)
√

2πV

∫
P (ξ) exp

(
−A2

(
fξ(z)−

B

A

)2
)

exp
(
−(z − ω)2

2V

)
dξ dz (5.91)
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and differentiating under the integral yields

f(B,ω) = ∂ω log (Z(A,B, V, ω)) (5.92)

= 1
V


∫
P (ξ)z exp

(
−A

2

(
fξ(z)− B

A

)2
)

exp
(
− (z−ω)2

2V

)
dξ dz(∫

P (ξ) exp
(
−A

2

(
fξ(z)− B

A

)2
)

exp
(
− (z−ω)2

2V

)
dξ dz

) − ω
 (5.93)

where the term
∫
P (ξ)z exp

(
−A2 (fξ(z)−BA )2

)
exp
(
− (z−ω)2

2V

)
dξ dz(∫

P (ξ) exp
(
−A2 (fξ(z)−BA )2

)
exp
(
− (z−ω)2

2V

)
dξ dz

) is the conditional mean of the distribu-

tion with density
∫
P (ξ) exp

(
−A2 (fξ(z)−BA )2

)
exp
(
− (z−ω)2

2V

)
dξ(∫

P (ξ) exp
(
−A2 (fξ(z)−BA )2

)
exp
(
− (z−ω)2

2V

)
dξ dz

) . The Lipschitz property is straight-

forward to verify using the polynomial bound assumption on the activation functions and the inverse
exponential factors.

In the Bayes-optimal MLAMP, see [188], the planted vectors w−→e l are chosen as independently
distributed as the asymptotic SE representation of the output of the previous layer, and are therefore
Lipschitz transforms of subGaussian random variables, and thus are also subgaussian. Using the
permuation invariance of the Gaussian distribution, the quantities z−→e l = Â−→e l remain Gaussian.
We can therefore apply the result of Lemma 23 to this iteration and obtain that iterates of Eq.(4.4)
verify the SE equations from Lemma 23 with the corresponding update functions. Furthermore, in
the Bayes optimal case, the Nishimori conditions, see e.g. [154], allow to only keep the parameters
ν−→e l , ν̂←−e l to describe the distribution of of the iterates, recovering the equations of Theorem 7.
Finally, the rescaling of the variances to go from the factors δl to the βl of the main can be done
by rescaling each non-linearity f t−→e l by

√
N/nl−1 (and similary for the f t←−e l with

√
N/nl) as done in

[135, 37].



Chapter 6

Asymptotics of stochastic gradient
descent

The results presented in this chapter are unpublished and part of a work currently in preparation.

We prove closed-form equations for the exact high-dimensional asymptotics of a family of first
order gradient-based methods, learning an estimator (e.g. M-estimator, shallow neural network,
...) from observations on Gaussian data with empirical risk minimization. This includes widely
used algorithms such as stochastic gradient descent (SGD) or Nesterov acceleration. We show
that the obtained equations match those resulting from the discretization of dynamical mean-field
theory (DMFT) equations from statistical physics when applied to gradient flow. Our proof method
has the benefit of being quite streamlined, notably with respect to previous literature which often
involves a rather high level of technicality. Notably, we give an explicit description of how memory
kernels build up in the effective dynamics, and include non-separable update functions, allowing
datasets with non-identity covariance matrices. Finally, we provide numerical implementations of
the equations for SGD with varying batch-sizes and learning rates.

6.1 Introduction

Stochastic gradient descent methods are one of the cornerstones of optimization and thus, modern
machine-learning. Notably, stochastic gradient descent and its variants have become the method of
choice for the optimization of large deep learning architectures, see e.g. [157, 144, 249]. Gradient
based dynamics are, however, not restricted to the field of machine learning and computational
mathematics, as they are also at the center of out-of-equilibrium statistical mechanics through the
notion of Langevin dynamics, see e.g. [196]. Obtaining an exact understanding of these procedures
has been a long-standing problem, notably for spin glasses where a significant set of results has
been obtained, first using heuristic, theoretical physics [268, 269, 67, 68] methods and then rigorous
probability theory [11, 35, 56, 168]. In theoretical physics, the effective dynamics describing the high-
dimensional behavior of gradient flow is called dynamical mean-field theory (DMFT), in reference
to the reduction of a system of strongly correlated degrees of freedom to low-dimensional order
parameters whose evolution can be tracked analytically by a set of self-consistent equations. In
the continuous time limit, those equations take the form of a stochastic integro-differential system
involving memory kernels and additive Gaussian processes, whose parameters are all related to the
form of the gradient, temperature (of the thermal noise), or other characteristics of the original

135
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system. In recent years, DMFT equations have been used by physicists to study a wide variety of
high-dimensional disordered dynamical systems (see, e.g., [184, 276, 186, 248]), including constraint
satisfaction and learning problems [5, 198, 200, 187, 260, 199].

While the recent work of [56] provides game-changing progress into the rigorous establishment
of the DMFT, it does not account for stochasticity of the gradient descent algorithms and their
proof is limited to the data matrix to be random, with i.i.d. centered subgaussian entries. In the
present work we remove these two limitations and establish the DMFT equations for a broad class
of stochastic algorithms (including SGD, various momentum methods or Langevin algorithms), and
for a broader class of data (including Gaussian with a rather generic covariance).

Theoretical physics works on DMFT aim to describe the continuous time dynamics, because the
physical dynamics simply is continuous. When gradient based methods are used as algorithms they
are always run in discrete time and thus for algorithmic purposes analysis of the discrete dynamics
is of larger interest. In previous theoretical physics works the DMFT is always presented for the
continuous (flow) limit of the dynamics. In this paper we prove that the discrete DMFT equations
provide exact asymptotic analysis for the discrete gradient descent methods as well. This has been
noticed empirically in [198]. While a larger part of [56] is devoted to proving the continuous-time
equations, they also establish the discrete time DMFT. In the present paper we will only consider the
discrete version because (a) our main motivation is analysis of actual algorithms, (b) the exactness
of the discrete DMFT is not discussed in the literature and we thus want to rectify that.

Our proof of dynamical mean-field theory equations applies to a wide range of supervised learning
problems, where an estimator is learned using stochastic gradient descent on a cost function defined
by empirical risk minimization. In this regard, consider the following optimization problem

ŵ ∈ inf
w∈Rd×q

L(Xw,y) + F(w) (6.1)

where y = Φ0 (Xw∗) , (6.2)

where X ∈ Rn×d is the design matrix, the observed labels y ∈ Rn are generated according to a
ground truth parametrized by a continuous, separable function Φ0 : Rn×q → Rn and ground-truth
vector w∗ ∈ Rd×q, and the loss and regularization L,F are differentiable functions. The number of
samples n and dimension of the inputs d will be taken to infinity (the high-dimensional limit), while
the number of weight vectors q will remain finite. We will consider a generic family of discrete-time
dynamics in Theorem 9, which includes stochastic gradient descent methods widely used in practice:
a candidate ŵ is estimated using gradient descent by producing the following sequence of iterates

wt+1 = wt − γt
(
X>∇Lt(Xwt,y) +∇F(wt)

)
(6.3)

where γt is the scalar learning rate, and the time-dependent gradient represents potential modi-
fications of the gradient descent, for instance mini-batch sampling with batch-size being a finite
fraction of d in the high-dimensional limit.

Our main result is an asymptotically (i.e. in the high-dimensional limit) exact characterization
of the distribution of the iterates wt and preactivations Xwt at each time step, in the weak sense.
In particular, our results encompass the following special cases:

1. an exact asymptotic characterization of discrete-time (multi-pass) stochastic gradient descent
with mini-batch sizes proportional to the data dimension;
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2. a data matrix X with any positive definite covariance Σ ∈ Rd×d with bounded spectral norm;

3. a finite number q of learners;

4. time dependent update functions which may include stochastic effects such as mini-batch
sampling, learning rate schedules and thermal noise (i.e., Langevin equation), and any differ-
entiable regularization;

5. momentum methods such as Polyak’s heavy ball and Nesterov accelerated gradient.

6.2 Related works

Rigorous proofs of dynamical mean-field theory equations first appeared in the context of spin glasses
in the works [11, 35], who applied large deviation theory to the paths generated by the Langevin
dynamics corresponding to the Hamiltonians of the Sherrington-Kirkpatrick and spherical p-spin
models.

More recently, [56] proposed a different proof for the DMFT of the high-dimensional asymptotics
of first order flows for the empirical risk minimization problem (6.2). This new approach was
based on an approximate message passing (AMP) iteration with memory, building upon an implicit
mapping between the AMP iterates and the discretized gradient flow, and using the high-dimensional
concentration properties of AMP iterations, the state evolution (SE) equations. Our proof instead is
based on iterative Gaussian conditioning, and as a consequence is simpler and more direct. Iterative
Gaussian conditioning is a technique introduced in the study of SE equations for AMP iterations
[28, 135, 42, 37, 110]. In AMP iterations, the so-called Onsager correction applied at each time step
drastically simplifies the high-dimensional effective dynamics, leading to a Markovian Gaussian
process. Since gradient descent has no Onsager correction, one key aspect of the proof is to show
how the dynamics may be decomposed and reformulated into asymptotically tractable memory
terms and additive Gaussian processes. As a result, our proof is completely explicit and we provide
intuition on how the different terms appear in subsections 6.4.1 before moving to the general case
in Appendix 6.6.

Our proof technique based on the iterative conditioning has important benefits as it becomes
straightforward to account for additional stochastic effects that are independent on the design
matrix, notably mini-batch sampling or thermal noise, as well as potential momentum terms. Addi-
tionally, we allow non-separable, time-dependent update functions, which enables to handle design
matrices with arbitrary well-conditioned covariance and bounded spectral norm. We do not study
the continuous time limit, provided in [56] for gradient flow on separable cost functions. Notably,
they prove the existence and uniqueness of the solution to the stochastic integro-differential system
describing the high-dimensional gradient flow dynamics under suitable conditions. They also benefit
from the universality results for AMP iterations, [27, 62], allowing design matrices with independent
sub-Gaussian entries and identity covariance.

Finally, it is interesting to note that, although methods from theoretical physics are often not
rigorous, a direct parallel can be drawn between our proof and derivation of the dynamical cavity
method as formulated in [172], [196] and references therein for earlier appearances. Indeed, the
dynamical cavity method relies on a orthogonal decomposition of the samples and iterates along
a chosen direction, resulting in approximately independent Gaussian terms with different scalings.
As a low dimensional projection, the term aligned with the chosen direction is of finite order, while
the orthogonal component contains a number of directions proportional to the dimension and thus
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remains of extensive order. A Taylor expansion then allows to simplify the dynamics and obtain
the DMFT equations with some algebra. In the present rigorous proof, we also perform orthogonal
decompositions, but in the direction of previous iterates. For a finite number of iterations and
width q of the iterates, the component resulting from this projection is also of low-order, while
the orthogonal component remains extensive. The proof, done by induction, then boils down to a
precise control of the correlations of the different terms and concentration of various inner products
appearing due to the projections using the induction hypothesis.

6.3 Main result

Our main result characterizes the high-dimensional dynamics of a family of iterations that includes
gradient descent iteration Eq. (6.3), and takes the generic form

vt+1 = ht
({

vk
}t
k=0

)
+ X>gt(rt) (6.4)

rt = X
t∑

k=0
vk (6.5)

The update functions gt,ht will belong to the regularity class of pseudo-Lipschitz functions, which
will also be used to characterize the (weak) convergence of random matrices (of finite width) in the
rest of the paper. This family of functions is commonly used in the AMP literature, see e.g. [37],
and is reminded in Appendix 6.5. Note that, when considering a planted model as in Eq. (6.2)
and the corresponding gradient based dynamics will involve a sequence of functions gt implicitly
depending on the data matrix X through the observed labels y. Following [56], this additional
dependence can be dealt with by considering an augmented variable [w|w∗] and a corresponding
update function involving the gradient step on w0, which is made possible by the validity of the
result for matrix-valued variables of finite width. It can also be dealt with using an orthogonal
decomposition in the direction of w∗, see e.g. [110], however we will use the former formulation to
avoid redundant derivations.

6.3.1 Examples of algorithms belonging to the considered family

Stochastic gradient-descent Consider the following stochastic gradient-descent dynamics with
constant step-size γ

wt+1 = wt − γ
(1
b
X>st �∇L(Xwt) +∇F(wt)

)
. (6.6)

where st ∈ Rn is a random vector with i.i.d. elements sampled at each time step according to a
Bernoulli distribution with parameter b, and � is the Hadamard product. Now define the increment
variable vt = wt −wt−1 such that, for any t ∈ N, wt = ∑t

k=0 vt with the convention v−1 = 0; the
preactivation term rt = Xwt ∈ Rn×q, such that the stochastic gradient-descent iteration may be
rewritten

vt+1 = −γ∇F
(

t∑
k=0

vt
)
− γX>st �∇L(rt) (6.7)

rt = X
t∑

k=0
vt (6.8)
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which fits the form of Eq. (6.4-6.5) by choosing gt(rt) = −γst � ∇L(rt), ht(wt) = −γ∇F(wt).
Notice that our characterization requires that the size of the training mini batch is a finite fraction
of the full dataset.

Langevin algorithm The discretized Langevin algorithm amounts to adding independent Gaus-
sian noise to the gradient descent, leading to the following iteration

wt+1 = wt − γ
(
X>st �∇L(Xwt) +∇F(wt)

)
+ γ
√
Tzt (6.9)

where zt ∈ Rd has i.i.d. standard normal elements and is independent from all other problem
parameters and zt′ for all t′ 6= t. It is then straightforward to redefine the function ht(wt) =
−γ∇F(wt) +

√
Tzt, which will simply lead to an additive noise with variance T at each time step

in the Gaussian process ut of the field νt+1 in Corollary 2. This modification is also observed when
discretizing the DMFT equations obtained from theoretical physics methods [198].

Polyak momentum Polyak momentum [236] (or heavy-ball method) reads

wt+1 = wt − γ
(
X>∇L(Xwt) +∇F(wt)

)
+ β

(
wt −wt−1

)
(6.10)

with gradient step size α and momentum parameter β. Using the same intermediate variables
as those introduced for the reformulation of the stochastic gradient-descent iteration Eq.(6.6) into
dynamics of the form of Eq. (6.4-6.5), we obtain

vt+1 = −γ∇F(
t∑

k=0
vt)− γX>∇L(rt) + βvt (6.11)

rt = X
t∑

k=0
vt (6.12)

which fits the form of Eq. (6.4-6.5) by choosing gt(rt) = −γ∇L(rt), and
ht(
{
vk
}t
k=0

) = −γ∇F(∑t
k=0 vk) + βvt.

Nesterov accelerated gradient Nesterov accelerated gradient [213] is defined as an iteration of
three sequences parametrized by stepsizes τ t, γt, νt, αt and initialized with w0, z0, taking the form

yt = wt + τ t(zt −wt) (6.13)

wt+1 = yt − γt
(
X>∇L(Xyt) +∇F(yt)

)
(6.14)

zt+1 = zt + µt
(
yt − zt

)
− αt

(
X>∇L(Xyt) +∇F(yt)

)
(6.15)

Defining the variables ut+1 = wt+1 − wt ∈ Rd, ũt+1 = zt+1 − zt ∈ Rd,vt =
[
ut|ũt

]
∈ Rd×2,xt =[

wt|zt
]

= ∑t
k=0 vk ∈ Rd×2, rt = X

∑t
k=0 vk, we may fit these equations to the form of Eq. (6.4-6.5)
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by defining

ht : Rd×2(t+1) → Rd×2 (6.16){
vk
}t
k=0
→
[

t∑
k=0

vk
[
−τ t
τ t

]
|
t∑

k=0
vk
[
µt(1− τ t)
µt(τ t − 1)

]]
(6.17)

+
[
−γt∇F

(
t∑

k=0
vk
[
1− τ t
τ t

])
| − αt∇F

(
t∑

k=0
vk
[
1− τ t
τ t

])]
(6.18)

gt : Rn×2 → Rn×2 (6.19)

rt →
[
−γt∇L

(
rt
[
1− τ t
τ t

])
| − αt∇L

(
rt
[
1− τ t
τ t

])]
(6.20)

The details of this mapping are given in Appendix 6.7.

6.3.2 Statement of the main theorem

We now state the required assumptions for our main result to hold.

Assumptions

(A1) the dimensions of the problem n, d go to infinity with finite ratio n/d = α;

(A2) the matrix X has i.i.d. N (0, 1
d) elements;

(A3) for any t ∈ N, the functions gt : Rn×q → Rn×q,ht : Rd×q → Rd×q are pseudo-Lipschitz
continuous of order k (in their arguments), and may involve random effects (accounted for by
random variables, not considered as arguments) independent of the matrix X, initialization w0

and ground truth w∗. If these functions contain said additional random effects, the pseudo-
Lipschitz property is assumed to be verified with high probability as the dimensions go to
infinity;

(A4) the columns of the initalization w0 and planted model w∗ are drawn from distributions in
Rd verifying dimension-free log-Sobolev inequalities and are independent of other random
parameters of the dynamics;

(A5) for any time t ∈ N, for any arguments verifying a dimension-free log-Sobolev inequality, the
inner products of the expectations of the functions gs,gt and hs,ht, for any t ∈ N, for any
0 6 s 6 t, converge with high probability to finite constants.

The last condition is a short reformulation of the stability conditions (A5-A7) of [37, 110]. The log-
Sobolev assumption may be replaced with slower decaying distributions (e.g. subGaussian) if more
regular, for instance separable and/or Lipschitz, are used. We keep the log-Sobolev assumption for
simplicity and clarity of presentation in the non-separable case. Our main result is presented in the
following theorem:
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Theorem 9. (High-dimensional dynamics of gradient-based methods) Consider the following dis-
crete time stochastic process

νt+1 = θtΓt + ht
({
νk
}t
k=0

)
+

t−1∑
k=0

θkRg(t, k) + ut ∈ Rd×q (6.21)

θt =
t∑

k=0
νk ∈ Rd×q (6.22)

ηt =
t−1∑
k=0

gk(ηk)Rθ(t, k) + ωt ∈ Rn×q (6.23)

Rθ(t, s) = lim
d→∞

1
d

d∑
i=1

E
[
∂θti
∂usi

]
∈ Rq×q (6.24)

Rg(t, s) = lim
d→∞

1
d

n∑
i=1

E
[
∂gti
∂ωsi

(ηt)
]
∈ Rq×q (6.25)

Γt = lim
d→∞

1
d

n∑
i=1

E
[

dgti
dηti

(ηt)
]
∈ Rq×q (6.26)

Cθ(t, s) = lim
d→∞

1
d
E
[(
θt
)>

θs
]
∈ Rq×q (6.27)

Cg(t, s) = lim
d→∞

1
d
E
[
gs(ηs)>gt(ηt)

]
∈ Rq×q (6.28)

initialized with ν0 = v0, where ut, ωt have i.i.d. lines in Rq which are Gaussian processes with
covariances Cs,tg , Cs,tθ . Consider the iteration Eq. (6.4-6.5). Then, under assumptions (A1)-(A5),
for any t ∈ N, and any pseudo-Lipschitz functions Ψ : Rd×q(t+1) → R and Φ : Rn×qt → R:

Ψ(w0, ...,wt) w.h.p.−−−−−→
n,d→∞

E
[
Ψ(θ0, ..., θt)

]
; and

Φ(r0, ..., rt−1) w.h.p.−−−−−→
n,d→∞

E
[
Φ(η0, ..., ηt−1)

]
.

(6.29)

The following corollary gives the high-dimensional dynamics for the SGD iteration described
at Eq.(6.6) with separable functions. Assume that the loss function L and regularization F are
separable with the respective component-wise scalar functions l, f , and that L is twice differentiable.
The non-linearities gt,ht are then also separable with component-wise functions gt(rt) = −γstl′(rt)
and ht(wt) = −γf ′(wt). Since the variables νt,ηt, respectively in Rd×q and Rn×q.

Corollary 2. Consider the SGD iteration of Eq.(6.6) and assume that the loss function L is twice
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differentiable. Consider the following discrete-time stochastic process

νt+1 = Γtθt − γf ′(θt) +
t−1∑
k=0

Rg(t, k)θk + ut ∈ Rq (6.30)

θt =
t∑

k=0
νt ∈ Rq (6.31)

ηt = −γ
t−1∑
k=0

Rθ(t, k)skl′(ηk) + ωt ∈ Rq (6.32)

Rθ(t, s) = E
[
∂θt

∂us

]
∈ Rq×q (6.33)

Rg(t, s) = −αγE
[
st
∂l
′

∂ωs
(ηt)

]
∈ Rq×q (6.34)

Γt = −αγE
[
stl
′′(ηt)

]
∈ Rq×q (6.35)

Cθ(t, s) = E
[
θs
(
θt
)>]
∈ Rq×q (6.36)

Cg(t, s) = αγ2E
[
ssstl

′(ηs)l′(ηt)>
]
∈ Rq×q (6.37)

initialized with ν0 = v0, where ut, ωt are Gaussian processes in Rq with covariances Cg(s, t), Cθ(s, t).
Then, under assumptions (A1)-(A5), for any t ∈ N, and any pseudo-Lipschitz functions ψ :
Rq(t+1) → R and φ : Rqt → R:

1
d

d∑
i=1

ψ((w0, ...,wt)i)
w.h.p.−−−−−→
n,d→∞

E
[
ψ(θ0, ..., θt)

]
, (6.38)

1
n

n∑
j=1

φ((r0, ..., rt−1)i)
w.h.p.−−−−−→
n,d→∞

E
[
φ(η0, ..., ηt−1)

]
(6.39)

We remind that, to obtain the correlation with a planted vector w∗ as in problem 6.2, we may
use the same mapping from section 4.1 from [56].

6.4 Proof

In the next two subsections, we provide intuition on our proof method. Subsection 6.4.1 gives
the exact asymptotic characterization of a gradient descent iteration with no regularization and a
sample splitting assumption, where a fresh data matrix is sampled at each time step. This drastically
simplifies the analysis and gives a simple result. We then move to the generic case, proving Theorem
9 using an induction on the variables rt,ut+1. The full induction step for rt is given in the main
text, while the induction step on ut+1, similar in spirit, is deferred to Appendix 6.6. Notations and
useful lemmas are gathered in Appendix 6.5. We note that gradient-descent with sample-splitting
was recently studied in [58] using Gaussian comparison inequalities.

6.4.1 A first example: gradient descent with sample splitting

Under the sample splitting assumption, the gradient descent iteration reads (for q = 1):

∀t ∈ N∗ wt+1 = wt − γt(At)>∇f(Atwt) (6.40)
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where, for any t ∈ N, At ∈ Rn×d is a matrix with i.i.d. Gaussian elements and variance 1/d
independent on all other

{
Ai
}
i 6=t, γt ∈ R is a scalar step-size and f is a twice differentiable,

deterministic function with pseudo-Lipschitz gradient ∇f : Rn → Rn. We also assume that f is
separable, with an elementwise operation f . The iteration is initialized with w0 ∈ Rd, a random
vector independent on A with i.i.d. subGaussian elements. Starting at t = 0, we condition equation
(6.40) on (the sigma algebra generated by) w0,A0w0, and obtain, using lemma 2:

w1|w0,A0w0 = w0 − γ0
(
A0Pw0 + Ã0P⊥w0

)>
∇f(A0w0) (6.41)

= w0 − γ0w0 1
‖w0‖22

(
A0w0

)>
∇f(A0w0)− γ0P⊥w0Ã>∇f(A0w0) (6.42)

Owing to the sample splitting assumption, the vector A0w0 has i.i.d. entries distributed according
to N (0, 1

d

∥∥w0∥∥2
2). We can then write

1
‖w0‖22

(
A0w0

)>
∇f(A0w0) = 1

1
d‖w0‖22

1
d

(
A0w0

)>
∇f(A0w0) (6.43)

The term 1
d

(
A0w0)>∇f(A0w0) is a scalar valued, pseudo-Lipschitz function of A0w0, and the

subgaussian assumption on w0 ensures that the quantity 1
d

∥∥w0∥∥2
2 converges almost surely to a

finite, deterministic quantity. We can thus use lemma 1, the continuous mapping theorem (in the
form of Slutsky’s lemma), and Stein’s lemma to show that

1
‖w0‖22

(
A0w0

)>
∇f(A0w0) P' αE

[
f ′′(z0)

]
(6.44)

where z0 ∼ N (0, ρ0) and we introduced ρ0 = limd→∞
1
d

∥∥w0∥∥2
2. Turning to the part orthogonal to

w0 and using the fact that the projector Pw0 is of rank 1, the elements of Ã have variance 1
d and∥∥w0∥∥2

2 is of order d, lemma 21 shows that

1√
d

∥∥∥P⊥w0Ã>∇f(A0w0)− (Ã0)>∇f(A0w0)
∥∥∥

2

P' 0 (6.45)

where (Ã0)>∇f(A0w0) is a vector with i.i.d elements distributed as N (0, 1
d

∥∥∇f(A0w0)
∥∥2

2). Once
again, the function 1

d

∥∥∇f(A0w0)
∥∥2

2 is scalar valued and pseudo-Lipschitz, thus lemma 1 and the
continuous mapping theorem show that, for any pseudo-Lipschitz function ψ : R→ R of order 2,

1
d

d∑
i=1

ψ(
(
P⊥w0Ã>∇f(A0w0)

)
i
) P' E

[
ψ(u0)

]
(6.46)

where u0 ∼ N (0, τ0) and we have introduced τ0 = limn,d→∞
1
d

∥∥∇f(A0w0)
∥∥2

2 = αE
[
(f ′(z0))2]. Using

these results, we may now lift the conditioning and use the definition of pseudo-Lipschitz function
to recover the scalar equation describing the high-dimensional behaviour of w1. A straightforward
induction shows that, for any t ∈ N, the quantity 1

d

∥∥wt
∥∥2

2 is almost surely bounded, and the same
conditioning argument can be applied along the sample splitting assumption to reach the following
theorem
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Figure 6.1: Gradient descent with sample splitting where f ′(z) = tanh(z) Due to the regularity of
the update function and sample splitting assumption, the concentration is very fast and . almost
perfect matching is obtained between the theoretical and empirical curves with low dimensions
(n=50,d=100) and no averaging.

Theorem 10. (High-dimensional dynamics of gradient descent with sample splitting) Consider the
iteration Eq. (6.40) with its set of assumptions described above. Define the following discrete-time
one-dimensional stochastic process, initialized with a subgaussian random variable ω0 with variance
ρ0:

ωt+1 =
(
1− γtαE

[
f ′′(zt)

])
ωt + γtut (6.47)

where ρt = E
[
(ωt)2], τ t = αE

[
(f ′(zt))2]. zt, ut are independent normal random variables with zero

mean and respective variances ρt, τ t. Then, for any t ∈ N and any pseudo-Lipschitz function of
order 2 ψ : R→ R , the following holds

lim
d→∞

1
d

d∑
i=1

ψ(wti)
w.h.p.= E

[
ψ(ωt)

]
(6.48)

We have obtained a full description of the asymptotic distribution of wt in terms of a scalar
equation. The sample splitting assumption however, is unrealistic. Let us move to the generic case
that corresponds to the usual gradient descent.

6.4.2 The general case

Without the sample splitting assumption, the iterates xt and the design matrix X are correlated
at each time step and thus there is no simple concentration towards a markovian model. We need
to account for the correlation beyond the previous time step, leading to the appearance of memory
kernels. Recall the dynamics (6.4-6.5), where we introduce an additional intermediate variable
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mt = g(rt):

vt+1 = ht(
{
vk
}t
k=0

) + X>mt (6.49)

mt = gt(rt) (6.50)

rt = X
t∑

k=0
vt (6.51)

The proof is done by induction on t.

Initialization At initialization, we have

v0 = w0 ∼ Pv0 by definition v0 = ν0 (6.52)

r0 = Xv0 Plk−−−−−→
n,d→∞

η0 ∼ N (0, Cθ(0, 0)⊗ In) where Cθ(0, 0) = lim
d→∞

1
d
E
[
(v0)>v0

]
(6.53)

Where the second line is a direct consequence of the independence of the initialization with the data
matrix and the continuous mapping theorem. Note that

η0 = ω0 ∼ N (0, Cθ(0, 0)⊗ In) (6.54)

Let’s do the step for v1.

v1 = h0
(
v0
)

+ X>m0 (6.55)

conditioning on the σ−algebra S0 = σ
(
v0, r0) and using Lemma 2, we obtain

v1|S0 = h0(v0) + (X|S0)>m0 (6.56)

= h0(v0) +
(
Pv0X> + P⊥v0X̃>

)
m0 (6.57)

= h0(v0) + v0
(
(v0)>v0

)−1
(v0X)>g0(r0) + P⊥v0X̃>m0 (6.58)

Plk−−−−−→
n,d→∞

h0(v0) + v0
(1
d

(v0)>v0
)−1 1

d
(η0)>g0(η0) + u0 (6.59)

Plk−−−−−→
n,d→∞

h0(v0) + v0 (Cθ(0, 0))−1Cθ(0, 0)1
d

n∑
i=1

E
[
∂g0

i

∂η0
i

(η0)
]

+ u0 (6.60)

Plk−−−−−→
n,d→∞

h0(v0) + v0Γ0 + u0 (6.61)

where Cg(0, 0) = limd→∞
1
dE
[
g0(η0)>g0(η0)

]
, u0 ∼ N (0, Cg(0, 0) ⊗ Id) and we remind Γ0 =

limd→∞
1
d

∑n
i=1 E

[
∂g0
i

∂η0
i
(η0)

]
. The convergence of the term P⊥v0X̃>m0 to u0 comes from lemma

21 while the appearance of Γ0 is due to Stein’s lemma 17. This concludes the initialization.

Induction Assume that Theorem 9 is verified up to time t, i.e. for all iterates up to rt−1,vt. We
prove the property for rt,vt+1.
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We shall condition on the σ-algebra generated by v0, ...,vt, r0, ..., rt−1, denoted St. A short in-
duction and application of the Doob-Dynkin Lemma show that this σ-algebra is the same as that
generated by v0,X>m0, ...,X>mt−1,Xw0, ...,Xwt−1, where we remind that ws = ∑s

k=0 v0 with
w0 = v0. We define the matrices

Mt−1 =
[
m0|m1|...|mt−1

]
,Wt−1 =

[
w0|w1|...|wt−1

]
(6.62)

Starting with rt, we may write

rt|St =
(

X
t∑

k=0
vk
)
|St (6.63)

= rt−1 + X|Stvt (6.64)

= rt−1 +
(
PMt−1X + XPWt−1 −PMt−1XPWt−1 + P⊥Mt−1X̃P⊥Wt−1

)
vt (6.65)

= rt−1 +
(
PMt−1XP⊥Wt−1 + XPWt−1 + P⊥Mt−1X̃P⊥Wt−1

)
vt (6.66)

(6.67)

where X̃ is a copy of X independent on St.
At this point, we introduce an assumption guaranteeing the projectors are well-defined, in similar
fashion to [37, 110]. It will be relaxed at the end of the proof, in Appendix 6.6.1.

Non-degeneracy assumption We say that the iteration SGD satisfies the non-degeneracy as-
sumption if :

• almost surely, for all t and all N > t, Mt−1,Wt−1 have full column rank.

• for all t, there exists some constant cM,t, cW,t > 0—independent of n—such that almost
surely, there exists n0 (random) such that, for n > n0, σmin(Mt−1)/

√
N > cM,t > 0 and

σmin(Wt−1)/
√
N > cW,t > 0.

Let’s look at each term separately, starting with

XPWt−1vt = XWt−1
(
W>

t−1Wt−1
)−1

W>
t−1vt (6.68)

=
[
r0|r1|...|rt−1

]
αt (6.69)

where

αt =
(
W>

t−1Wt−1
)−1

W>
t−1vt ∈ Rtq×q

=
(1
d
W>

t−1Wt−1

)−1 1
d
W>

t−1vt (6.70)

which is a low-dimensional (tq × q) pseudo-Lipschitz function of v0, ...,vt. Thus, owing to the
induction hypothesis, non-degeneracy assumption and lemma, αt converges to a determinstic limit
αt,∗ ∈ Rtq×q representing the coefficients of the projection of the columns of vt onto the subspace
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spanned by the columns of Wt−1. Using the induction hypothesis and non-degeneracy assumption,
we also have

αt,∗ = lim
n→∞

(1
d
Θ>t−1Θt−1

)−1 1
d
Θ>t−1

(
θt − θt−1

)
(6.71)

P' lim
n→∞

E
[(1

d
Θ>t−1Θt−1

)−1 1
d
Θ>t−1

(
θt − θt−1

)]
(6.72)

where we defined the matrix Θt−1 =
[
θ0|θ1...|θt−1

]
. We may then write

XPWt−1vt
P lk−−−−−→

n,d→∞

t−1∑
k=0

ηkαt,∗k (6.73)

where each αt,∗k ∈ Rq×q and ηk ∈ Rn×q are defined in Theorem 9.

Moving to the next term,

PMt−1XP⊥Wt−1v
t = Mt−1

(
M>

t−1Mt−1
)−1

M>
t−1XP⊥Wt−1v

t (6.74)

= Mt−1

(1
d
M>

t−1Mt−1

)−1 1
d
M>

t−1XP⊥Wt−1v
t (6.75)

where, using the definition of iteration Eq. (6.4-6.5)

1
d
M>

t−1XP⊥Wt−1v
t = 1

d

[
v1 − h0(v0)|...|vt − ht−1(

{
vk
}t−1

k=0
)
]>

vt

− 1
d

[
v1 − h0(v0)|...|vt − ht−1(

{
vk
}t−1

k=0
)
]>

PWt−1vt (6.76)

and

1
d

[
v1 − h0(v0)|...|vt − ht−1(

{
vk
}t−1

k=0
)
]>

PWt−1vt = (6.77)

= 1
d

[
v1 − h0(v0)|...|vt − ht−1(

{
vk
}t−1

k=0
)
]>

Wt−1

(1
d
W>

t−1Wt−1

)−1 1
d
W>

t−1vt (6.78)

Using the induction hypothesis and pseudo-Lipschitz convergence lemma 1,

1
d

[
v1 − h0(w0)|...|vt − ht−1(

{
vk
}t−1

k=0
)
]>

Wt−1
P'

1
d

[
Γ0θ0 + u0|...|Γt−1θt−1 +

t−2∑
k=0

θkRl(t− 1, k) + ut−1
]>

Θt−1 (6.79)

= 1
d

[
Γ0θ0|...|Γt−1θt−1 +

t−2∑
k=0

θkRl(t− 1, k)
]>

︸ ︷︷ ︸
∈ span(Θt−1)

Θt−1 + 1
d

[
u0|...|ut−1

]>
Θt−1 (6.80)

and
1
d
W>

t−1vt
P' 1

d
Θ>t−1

(
θt − θt−1

)
(6.81)
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where we also have
1
d
W>

t−1Wt−1
P' 1

d
Θ>t−1Θt−1 � 0tq×tq w.h.p. (6.82)

We thus reach
1
d

[
v1 − h0(w0)|...|vt − ht−1(wt−1)

]>
vt P'

1
d

[
Γ0θ0 + u0|...|Γt−1θt−1 +

t−2∑
k=0

θkRl(t− 1, k) + ut−1
]> (

θt − θt−1
)

(6.83)

and 1
d

[
v1 − h0(w0)|...|vt − ht−1(wt−1)

]>
PWt−1vt

P'

1
d

[
Γ0θ0 + u0|...|Γt−1θt−1 +

t−2∑
k=0

θkRl(t− 1, k) + ut−1
]>

(6.84)

Θt−1

(1
d
Θ>t−1Θt−1

)−1 1
d
Θ>t−1

(
θt − θt−1

)
(6.85)

which, when combined, leads to

1
d
M>

t−1XP⊥Wt−1v
t P' 1

d

[
u0|...|ut−1

]> (
θt − θt−1

)
− 1
d

[
u0|...|ut−1

]>
PΘt−1

(
θt − θt−1

)
(6.86)

P' 1
d
E
[[

u0|...|ut−1
]> (

θt − θt−1
)]
− 1
d
E
[[

u0|...|ut−1
]>

Θt−1

]
αt,∗ (6.87)

Now, remembering the equation defining θs for any 0 6 s 6 t, we may use Stein’s lemma 17 to
obtain

∀ 0 6 r, s 6 t
1
d

(ur)>θs(u0,u1, ...,us−1) P' 1
d

s−1∑
i=0

Cg(i, r)
d∑
j=1

E
[
∂θsj
∂uij

]

P'
s−1∑
i=0

Cg(i, r)Rθ(s, i) (6.88)

Letting Cg,t be the tq × tq covariance matrix of the lines of
[
u0|...|ut−1] ∈ Rd×tq for any t, we can

write

1
d

[
u0|...|ut−1

]>
θt

P' Cg,t


1
d

∑d
j=1 E

[
∂θtj
∂u0

j

]
...

1
d

∑d
j=1 E

[
∂θtj
∂ut−1

j

]
 (6.89)

= Cg,t

 Rθ(t, 0)
...

Rθ(t, t− 1)

 = Cg,tRθ,t (6.90)
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where we defined the tq × q matrix Rθ,t =

 Rθ(t, 0)
...

Rθ(t, t− 1)

.

Similarly, for any 0 6 s 6 t

1
d

[
u0|...|ut−1

]>
θs

P' Cg,t



1
d

∑d
j=1 E

[
∂θsj
∂u0

j

]
...

1
d

∑d
j=1 E

[
∂θsj
∂us−1

j

]
0
...
0


= Cg,tRθ,s (6.91)

where the zeroes come from the fact that θs is not an algebraic function of the ul for l > s, which
is coherent with the causality from the physics approach, even though the Gaussian process ul is
correlated across all 0 6 l 6 t− 1. Also, due to the induction hypothesis

1
d
M>

t−1Mt−1
P' Cg,t (6.92)

We then have, using the non-degeneracy assumption

PMt−1XP⊥Wt−1v
t P lk−−−−−→
n,d→∞

(6.93)

Mt−1

(1
d
M>

t−1Mt−1

)−1
Cg,t

(
Rθ,t −Rθ,t−1 − [Rθ,0|Rθ,1|...|Rθ,t−1]αt,∗

)
(6.94)

Plk−−−−−→
n,d→∞

Mt−1
(
Rθ,t −Rθ,t−1 − [Rθ,0|Rθ,1|...|Rθ,t−1]αt,∗

)
(6.95)

Combining this with the induction hypothesis and lemma 1 and 21 , we may write

rt|St
Plk−−−−−→

n,d→∞
rt−1 +

t−1∑
k=0

rkαt,∗k + Mt−1
(
Rθ,t −Rθ,t−1 − [Rθ,0|Rθ,1|...|Rθ,t−1]αt,∗

)
(6.96)

+ X̃P⊥Wt−1v
t

P lk−−−−−→
n,d→∞

t−2∑
l=0

gl(ηl)Rθ(t− 1, l) + ωt−1 +
t−1∑
k=0

(
k∑

l′=0
gl′(ηl′)Rθ(k, l′) + ωk

)
αt,∗k

+ Mt−1
(
Rθ,t −Rθ,t−1 − [Rθ,0|Rθ,1|...|Rθ,t−1]αt,∗

)
+ X̃P⊥Wt−1v

t (6.97)

where we used lemma 21 to remove the projector P⊥Mt−1
in the term P⊥Mt−1

X̃P⊥Wt−1
vt. Recalling

the definition of ms = gs(rs), the induction hypothesis gives, for any 0 6 s 6 t,

Mt−1Rθ,s
P lk−−−−−→

n,d→∞

s−1∑
l=0

gl(ηl)Rθ(s, l) (6.98)

All memory terms associated to Rθ,s for s 6 t− 1 thus simplify in Eq.(6.97), leading to

rt|St
Plk−−−−−→

n,d→∞

t−1∑
k=0

gk(ηk)Rθ(t, k) +
t−1∑
k=0

ωkαt,∗k + ωt−1 + ω̃t (6.99)
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where ω̃t ∼ N (0,C⊥v,t ⊗ In), and C⊥v,t = limd→∞
1
d

(
P⊥Wt−1

vt
)> (

P⊥Wt−1
vt
)
. We thus recover the

correct memory term. We are left with checking that the Gaussian process term has the right
covariance. Define

ωt =
t−1∑
k=0

ωkαt,∗k + ωt−1 + ω̃t. (6.100)

Which is indeed a Gaussian random vector (with elements in Rq). To check that this is the correct
covariance, we start by noticing that, for any s < t Theorem 9 states that:

1
d

(ws)>wt = 1
d

(ws)>wt−1 + 1
d

(ws)>vt (6.101)

Plk−−−−−→
n,d→∞

Cθ(s, t− 1) + 1
d

(ws)>vt (6.102)

Then, using the induction hypothesis and the fact that ω̃t is independent from any ωs,∀s < t:

1
d
E
[
(ωs)>ωt

]
= 1
d

t−1∑
k=0

E
[
(ωs)>ωs

]
αt,∗k + 1

d
E
[
(ωs)>ωt−1

]
(6.103)

=
t−1∑
k=0

Cθ(s, k)αt,∗k + Cθ(s, t− 1) (6.104)

Plk−−−−−→
n,d→∞

1
d

(ws)>Wt−1
(
W>

t−1Wt−1
)−1

W>
t−1vt + Cθ(s, t− 1) (6.105)

= 1
d

(
PWt−1ws)> vt + Cθ(s, t− 1) (6.106)

Plk−−−−−→
n,d→∞

1
d

(ws)>vt + Cθ(s, t− 1) (6.107)

We then check for s = t, noticing that
1
d

(wt)>wt = 1
d

(
wt−1 + vt

)> (
wt−1 + vt

)
(6.108)

Plk−−−−−→
n,d→∞

Cθ(t− 1, t− 1) + 1
d

(vt)>
(
wt−1 + vt

)
(6.109)

1
d
E
[
(ωt)>ωt

]
= 1
d
E

(t−1∑
k=0

ωkαt,∗k + ωt−1 + ω̃t
)>(t−1∑

k=0
ωkαt,∗k + ωt−1 + ω̃t

) (6.110)

= Cθ(t− 1, t− 1) +
t−1∑

k,k′=0
(αt,∗k′ )

>Cθ(k, k′)αt,∗k + 2
t−1∑
k=0

Cθ(t− 1, k)αt,∗k + C⊥v,t (6.111)

Plk−−−−−→
n,d→∞

1
d

(wt−1)>wt−1 + 1
d

(
PWt−1vt

)> (
PWt−1vt

)
+ 1
d

(
P⊥Wt−1v

t
)> (

P⊥Wt−1v
t
)

(6.112)

+ 21
d
w>t−1vt (6.113)

Plk−−−−−→
n,d→∞

1
d

(
wt−1 + vt

)> (
wt−1 + vt

)
(6.114)

We thus recover the correct covariance and the statement is proven for rt. The rest of the proof
consists in completing the induction on ut+1, in similar fashion to what has been presented for rt,
and relaxing the non-degeneracy assumption using an existing argument from [37, 110]. The detail
is given in appendix 6.6.
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6.5 Useful definitions and probability results

Here we reproduce some definitions and useful intermediate lemmas from [28, 110] without proof.

Notations We adopt the same notations as in [110]. We introduce the folowing notion of conver-
gence to lighten notations.
Definition 12 (pseudo-Lipschitz convergence). We say that the sequence of random matrices Xn ∈
Rd×q converges in the pseudo-Lipschitz sense of order k to Z ∈ Rn×q and denote Xn

P lk−−−−−→
n,d→∞

Z if,

for any sequence of uniformly pseudo-Lipschitz functions φn : Rd×q → R of order k, the following
holds

lim
n→∞

|φn(Xn)− φn(Z)| w.h.p.= 0 (6.115)

where both n, d→∞ with fixed ratio α, and q remains finite.

Definition 1 shows that, if for all k
(
‖Xn‖F√

d

)k
,
(
‖Z‖F√

d

)k
are bounded and the following holds

1√
N
‖Xn − Z‖F

w.h.p.−−−−−→
n,d→∞

0, we have pseudo-Lipschitz convergence of order k of Xn towards Z. It
is also straightforward to show that pseudo-Lipschitz convergence is stable under addition and
multiplication by deterministic matrices. Note that, when separable test functions φn are used,
pseudo-Lipschitz convergence is equivalent to convergence in the Wasserstein space of order k [289].
We now state the necessary assumptions for our main result to hold.

6.6 Proof of Theorem 9

This appendix provides the details for the second part of the induction proving Theorem 9, the first
part of which we presented in section 6.4.2. At this point we completed the induction step for the
variable rt. Moving to vt+1, we now need to condition on St but also on rt for which we just proved
the statement, which amounts to conditioning on the values of v0,X>m0, ...,X>mt−1

Xw0, ...,Wt. We will then perform orthogonal decomposition on the subspaces spanned by the
matrices

Mt−1 =
[
m0|m1|...|mt−1

]
,Wt =

[
w0|w1|...|wt−1|wt

]
(6.116)

where Mt−1 ∈ Rn×tq and Wt ∈ Rd×tq We obtain

vt+1|St,rt = ht(
{
vk
}t
k=0

) + X|>St,rtm
t (6.117)

= ht(
{
vk
}t
k=0

) +
(
X>PMt−1 + PWtX> −PWtX>PMt−1 + P⊥WX̃>P⊥Mt−1

)
mt (6.118)

= ht(
{
vk
}t
k=0

) + X>PMt−1mt + PWtX>P⊥Mt−1m
t + P⊥Wt

X̃>P⊥Mt−1m
t (6.119)

As before, we treat each term separately, starting with

X>PMt−1mt = X>Mt−1
(
M>

t−1Mt−1
)−1

M>
t−1mt (6.120)

=
[
v1 − h0(w0)|...|vt − ht−1(

{
vk
}t−1

k=0
))
]>
βt (6.121)

=
t−1∑
k=0

(
vk+1 − ht(

{
vl
}k
l=0

))
)
ηtk (6.122)
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where

βt =
(
M>

t−1Mt−1
)−1

M>
t−1mt (6.123)

=
( 1
n

M>
t−1Mt−1

)−1 1
n

M>
t−1mt (6.124)

P' βt,∗ ∈ Rtq×q (6.125)

with deterministic βt,∗, where we used the non-degeneracy assumption and the induction hypothesis,
in similar fashion to the claim for αt,∗. And

PWtX>P⊥Mt−1m
t = Wt−1

(
W>

t Wt

)−1
W>

t X>P⊥Mt−1m
t (6.126)

= Wt

(
W>

t Wt

)−1 [
r0|...|rt

]>
P⊥Mt−1m

t (6.127)

Using a similar argument as in the proof for rt, we may use the induction hypothesis and non-
degeneracy assumption to write the limiting behaviour of the projectors to obtain

1
n

[
r0|...|rt−1

]>
P⊥Mt−1m

t P' 1
d

[
ω0|...|ωt

]>
P⊥Mt−1m

t (6.128)

= 1
n

[
ω0|...|ωt

]>
mt − 1

d

[
ω0|...|ωt

]>
PMt−1mt (6.129)

P' 1
n
E
[[
ω0|...|ωt

]>
mt
]
− 1
n
E
[[
ω0|...|ωt

]>
Mt−1

]
βt,∗ (6.130)

where, for any 0 6 s 6 t, Stein’s lemma gives

1
n
E
[
(ωs)>mt

]
= 1
n
E
[
(ωs)> gt

(
ηt
(
ω0, ...,ωt−1,ωt

))]
= 1
n

t∑
i=0

Cθ(s, i)
n∑
j=1

E
[
∂gtj
∂ωij

(ηt)
]

(6.131)

From the definition of ηt in Theorem 9, the dependence on ωt in ηt is the identity. We may then
write

1
n
E
[
∂gtj
∂ωtj

(ηt)
]

= 1
n

n∑
j=1

E
[
dgtj
dηtj

(ηt)
]

= Γt (6.132)

We now define Cθ,t the (t+1)q×(t+1)q covariance matrix of the lines of
[
ω0|...|ωt−1|ωt

]
∈ Rn×(t+1)q,

and

Rg,t =



1
n

∑n
j=1 E

[
∂gtj
∂ω0

j
(ηt)

]
...

1
n

∑n
j=1 E

[
∂gtj
∂ωt−1

j

(ηt)
]

1
n

∑n
j=1 E

[
dgtj
dηtj

(ηt)
]


∈ R(t+1)q×q (6.133)

and write
1
n
E
[[
ω0|...|ωt−1

]>
mt
]

= Cθ,tRg,t (6.134)
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and, for any 0 6 s < t

1
n
E
[[
ω0|...|ωt−1

]>
ms
]

= Cθ,t



1
n

∑n
j=1 E

[
∂gsj
∂ω0

j
(ηs)

]
...

1
n

∑n
j=1 E

[
∂gsj
∂ωs−1

j

(ηs)
]

1
n

∑n
j=1 E

[
dgsj
dηsj

(ηs)
]

0
...
0


= Cθ,tRg,s (6.135)

where the zeroes come from the fact that ηs is not an algebraic function of the ωl for l > s which
is, again, coherent with notions of causality. We thus reach the following equality

1
n
E
[[
ω0|...|ωt

]>
mt
]
− 1
n
E
[[
ω0|...|ωt

]>
Mt−1

]
βt,∗ (6.136)

= Cθ,t

(
Rg,t − [Rg,0|Rg,1|...|Rg,t−1]βt,∗

)
(6.137)

Also, due to the induction hypothesis
1
n

WT
t Wt

P' Cθ,t (6.138)

which leads to

PWtX>P⊥Mt−1m
t P lk−−−−−→
n,d→∞

Wt

(
Rg,t − [Rg,0|Rg,1|...|Rg,t−1]βt,∗

)
(6.139)

Combining these results leads to

vt+1|St,rt
Plk−−−−−→

n,d→∞
ht(wt) +

t−1∑
k=0

(
vk+1 − hk(

{
vl
}k
l=0

)
)
β∗,tk (6.140)

+ Wt

(
Rg,t − [Rg,0|Rg,1|...|Rg,t−1]βt,∗

)
+ X̃>P⊥Mt−1m

t (6.141)

where we used Lemma 21 to remove the projector P⊥Wt−1
in the term P⊥Wt−1

X̃>P⊥Mt−1
mt. We now

use the induction hypothesis to write
t−1∑
k=0

(
vk+1 − hk(wk)

)
β∗,tk

P lk−−−−−→
n,d→∞

t−1∑
k=0

(
θkΓk +

k−1∑
l=0

θlRg(k, l) + uk
)
β∗,tk (6.142)

and to write

Wt [Rg,0|Rg,1|...|Rg,t−1]βt,∗ Plk−−−−−→
n,d→∞

t−1∑
k=0

(
θkΓk +

k−1∑
l=0
θlRg(k, l)

)
β∗,tk (6.143)

where we remind that, for any s < t, the elements of the last q× q block of Rg,s are all zeroes, and
thus wt does not appear in this sum. We reach

vt+1|St,rt
Plk−−−−−→

n,d→∞
ht(ωt) + θtΓt +

t−1∑
k=0

θkRg(t, k) +
t−1∑
k=0

ukβ∗,tk + X̃>P⊥Mt−1m
t (6.144)
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Owing to lemma 21
X̃>P⊥Mt−1m

t P lk−−−−−→
n,d→∞

ũt (6.145)

where ũt ∈ Rd×q has i.i.d. Gaussian lines with covariance

C⊥m,t = lim
n,d→∞

1
n

(
P⊥Mt−1m

t
)>

P⊥Mt−1m
t (6.146)

and is independent from all other random parameters of the problem. We recover a additive
Gaussian process term

ut =
t−1∑
k=0

ukβ∗,tk + ũt (6.147)

To check it has the correct covariance profile, we evaluate, for any s < t

1
d
E
[
(us)>ut

]
=

t−1∑
k=0

E
[
(us)>uk

]
β∗,tk (6.148)

= Cg,tβ
∗,t (6.149)

P' 1
d

(ms)>Mt−1
(
M>

t−1Mt−1
)−1

M>
t−1mt (6.150)

= 1
d

(ms)>mt (6.151)
P' 1

d
E
[
gs(ηs)>gt(ηt)

]
(6.152)

and for s = t

1
d
E
[
(ut)>ut

]
=

t−1∑
k=0

t−1∑
k′=0

(β∗,tk )> 1
d
E
[
(uk)>uk′

]
β∗,tk′ + 1

d
E
[
(ũt)>ũt

]
(6.153)

P' 1
d

(mt)>Mt−1
(
M>

t−1Mt−1
)−1

M>
t−1mt + 1

d
mtP⊥Mt−1m

t (6.154)

= 1
d

(mt)>mt (6.155)
P' 1

d
E
[
gt(ηt)>gt(ηt)

]
(6.156)

which concludes the induction.

6.6.1 Relaxing the non-degeneracy assumption

The non-degeneracy assumption is relaxed using the same method as in [37, 110]. We can define
an auxiliary, randomly perturbed iteration with

v̂t+1 = ĥt
({

v̂k
}t
k=0

)
+ X>ĝt(r̂t) (6.157)

r̂t = X
t∑

k=0
v̂k (6.158)
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initialized with the same v0 as the original dynamics Eq.(6.4)-(6.5), and where the update functions
are defined as

ĥt
({

v̂k
}t
k=0

)
= ht

({
v̂k
}t
k=0

)
+ εYt

h (6.159)

ĝt(r̂t) = gt(r̂t) + εYt
r (6.160)

where, at each time step, Yt
h ∈ Rd×q and Yt

r ∈ Rn×q have i.i.d. standard normal elements and
are independent from one another and from all other parameters from the problems. Since n, d
are much larger than tq by assumption, standard results on Gaussian matrices [288] show that the
Gram matrices being inverted in the projectors are almost surely full rank with smallest eigenvalue
bounded away from 0 when n, d go to infinity. We thus have the rigorous system of equations for
the perturbed iteration. Using inductions, one can then show that the iterates of the perturbed
iterations uniformly converge to the original ones when taking ε to zero. Similarly, uniform conver-
gence of the asymptotic Gaussian model of the perturbed iteration towards the one of the original
iteration can be shown. Taking the limits on both sides concludes the proof. Since the procedure
and technical steps are almost identical to those presented in [37, 110], we do not reproduce them
here.

6.7 Detailed mapping for Nesterov acceleration

Recall the equations for Nesterov accelerated gradient

yt = wt + τ t(zt −wt) (6.161)

wt+1 = yt − γt
(
X>∇L(Xyt) +∇F(yt)

)
(6.162)

zt+1 = zt + µt
(
yt − zt

)
− αt

(
X>∇L(Xyt) +∇F(yt)

)
(6.163)

Replacing yt using its definition leads to

wt+1 = wt + τ t(zt −wt)− γt
(
X>∇L(X

(
wt + τ t(zt −wt)

)
) +∇F(wt + τ t(zt −wt))

)
zt+1 = zt + µt

(
wt + τ t(zt −wt)− zt

)
− αt

(
X>∇L

(
X
(
wt + τ t(zt −wt)

))
+∇F

(
wt + τ t(zt −wt)

))
Define the variables ut+1 = wt+1 − wt ∈ Rd, ũt+1 = zt+1 − zt ∈ Rd,vt =

[
ut|ũt

]
∈ Rd×2,xt =[

wt|zt
]

= ∑t
k=0 vk ∈ Rd×2. Using these variables, we may write

τ t(zt −wt) =
t∑

k=0
vk
[
−τ t
τ t

]

X
(
wt + τ t(zt −wt)

)
=
(

X
t∑

k=0
vk
)[

1− τ t
τ t

]

µt(wt + τ t(zt −wt)− zt) =
t∑

k=0
vk
[
µt(1− τ t)
µt(τ t − 1)

]
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Defining rt = X
∑t
k=0 vk, we obtain

vt+1 =
[

t∑
k=0

vk
[
−τ t
τ t

]
|
t∑

k=0
vk
[
µt(1− τ t)
µt(τ t − 1)

]]
(6.164)

+
[
−γt∇F

(
t∑

k=0
vk
[
1− τ t
τ t

])
| − αt∇F

(
t∑

k=0
vk
[
1− τ t
τ t

])]
(6.165)

+ X>
[
−γt∇L

(
rt
[
1− τ t
τ t

])
| − αt∇L

(
rt
[
1− τ t
τ t

])]
(6.166)

rt = X
t∑

k=0
vk (6.167)

which fits the form of Eq. (6.4-6.5) by defining

ht : Rd×2(t+1) → Rd×2 (6.168){
vk
}t
k=0
→
[

t∑
k=0

vk
[
−τ t
τ t

]
|
t∑

k=0
vk
[
µt(1− τ t)
µt(τ t − 1)

]]
(6.169)

+
[
−γt∇F

(
t∑

k=0
vk
[
1− τ t
τ t

])
| − αt∇F

(
t∑

k=0
vk
[
1− τ t
τ t

])]
(6.170)

gt : Rn×2 → Rn×2 (6.171)

rt →
[
−γt∇L

(
rt
[
1− τ t
τ t

])
| − αt∇L

(
rt
[
1− τ t
τ t

])]
(6.172)



Part II

Exact asymptotics for convex models :
feature maps, ensembling
and multiclass problems

157



Chapter 7

Learning curves of generic features
maps for realistic datasets with a
Gaussian covariate model

The results in this chapter are based on the paper [176].

Teacher-student models provide a framework in which the typical-case performance of high-
dimensional supervised learning can be described in closed form. The assumptions of Gaussian
i.i.d. input data underlying the canonical teacher-student model may, however, be perceived as too
restrictive to capture the behaviour of realistic data sets. In this paper, we introduce a Gaussian
covariate generalisation of the model where the teacher and student can act on different spaces,
generated with fixed, but generic feature maps. While still solvable in a closed form, this general-
ization is able to capture the learning curves for a broad range of realistic data sets, thus redeeming
the potential of the teacher-student framework. Our contribution is then two-fold: First, we prove
a rigorous formula for the asymptotic training loss and generalisation error. Second, we present
a number of situations where the learning curve of the model captures the one of a realistic data
set learned with kernel regression and classification, with out-of-the-box feature maps such as ran-
dom projections or scattering transforms, or with pre-learned ones - such as the features learned
by training multi-layer neural networks. We discuss both the power and the limitations of the
framework.

7.1 Introduction

Teacher-student models are a popular framework to study the high-dimensional asymptotic perfor-
mance of learning problems with synthetic data, and have been the subject of intense investigations
spanning three decades [263, 294, 94, 83, 90, 300, 82]. In the wake of understanding the limitations
of classical statistical learning approaches [301, 30, 33], this direction is witnessing a renewal of
interest [190, 125, 33, 53, 12, 253]. However, this framework is often assuming the input data to be
Gaussian i.i.d., which is arguably too simplistic to be able to capture properties of realistic data. In
this paper, we redeem this line of work by defining a Gaussian covariate model where the teacher
and student act on different Gaussian correlated spaces with arbitrary covariance. We derive a
rigorous asymptotic solution of this model generalizing the formulas found in the above mentioned
classical works.

158



CHAPTER 7. THE GAUSSIAN COVARIATE MODEL 159

We then put forward a theory, supported by universality arguments and numerical experiments,
that this model captures learning curves, i.e. the dependence of the training and test errors on the
number of samples, for a generic class of feature maps applied to realistic datasets. These maps can
be deterministic, random, or even learnt from the data. This analysis thus gives a unified framework
to describe the learning curves of, for example, kernel regression and classification, the analysis of
feature maps – random projections [239], neural tangent kernels [130], scattering transforms [9] –
as well as the analysis of transfer learning performance on data generated by generative adversarial
networks [120]. We also discuss limits of applicability of our results, by showing concrete situations
where the learning curves of the Gaussian covariate model differ from the actual ones.

Model definition — The Gaussian covariate teacher-student model is defined via two vectors
u ∈ Rp and v ∈ Rd, with correlation matrices Ψ ∈ Rp×p,Ω ∈ Rd×d and Φ ∈ Rp×d, from which we
draw n independent samples:[

uµ

vµ

]
∈ Rp+d ∼

i.i.d.
N
(

0,
[

Ψ Φ
Φ> Ω

])
, µ = 1, · · · , n. (7.1)

The labels yµ are generated by a teacher function that is only using the vectors uµ:

yµ = f0

(
1
√
p
θ>0 u

µ

)
, (7.2)

where f0 : R → R is a function that may include randomness such as, for instance, an additive
Gaussian noise, and θ0 ∈ Rp is a vector of teacher-weights with finite norm which can be either
random or deterministic. Learning is performed by the student with weights w via empirical risk
minimization that has access only to the features vµ:

ŵ = arg min
w∈Rd

 n∑
µ=1

g

(
w>vµ√

d
, yµ

)
+ r(w)

 , (7.3)

where r and g are proper, convex, lower-semicontinuous functions of w ∈ Rd (e.g. g can be a logistic
or a square loss and r a `p (p=1, 2) regularization). The key quantities we want to compute in this
model are the averaged training and generalisation errors for the estimator w,

Etrain.(w) ≡ 1
n

n∑
µ=1

g

(
w>vµ√

d
, yµ

)
and Egen.(w) ≡ E

[
ĝ

(
f̂

(
v>neww√

d

)
, f0

(
u>newθ0√

p

))]
. (7.4)

where g is the loss function in eq. (7.3), f̂ is a prediction function (e.g. f̂ = sign for a classification
task), ĝ is a performance measure (e.g. ĝ(ŷ, y) = (ŷ − y)2 for regression or ĝ(ŷ, y) = P(ŷ 6= y) for
classification) and (unew,vnew) is a fresh sample from the joint distribution of u and v.

Our two main technical contributions are:
(C1) In Theorems 11 & 12, we give a rigorous closed-form characterisation of the properties of
the estimator ŵ for the Gaussian covariate model (7.1), and the corresponding training and gen-
eralisation errors in the high-dimensional limit. We prove our result using Gaussian comparison
inequalities [121];
(C2) We show how the same expression can be obtained using the replica method from statistical
physics [196]. This is of additional interest given the wide range of applications of the replica
approach in machine learning and computer science [195]. In particular, this allows to put on a
rigorous basis many results previously derived with the replica method.
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Figure 7.1: Left: Given a data set {xµ}nµ=1, teacher u = ϕt(x) and student maps v = ϕt(x), we
assume [u,v] to be jointly Gaussian random variables and apply the results of the Gaussian covariate
model (7.1). Right: Illustration on real data, here ridge regression on even vs odd MNIST digits,
with regularisation λ=10−2. Full line is theory, points are simulations. We show the performance
with no feature map (blue), random feature map with σ = erf & Gaussian projection (orange), the
scattering transform with parameters J = 3, L = 8 [9] (green), and of the limiting kernel of the
random map [296] (red). The covariance Ω is empirically estimated from the full data set, while
the other quantities appearing in the Theorem 11 are expressed directly as a function of the labels,
see Section 7.2.4. Simulations are averaged over 10 independent runs.
Towards realistic data — In the second part of our paper, we argue that the above Gaussian
covariate model (7.1) is generic enough to capture the learning behaviour of a broad range of realistic
data. Let {xµ}nµ=1 denote a data set with n independent samples on X ⊂ RD. Based on this input,
the features u,v are given by (potentially) elaborated transformations of x, i.e.

u = ϕt(x) ∈ Rp and v = ϕs(x) ∈ Rd (7.5)

for given centred feature maps ϕt : X → Rp and ϕs : X → Rd, see Fig. 7.1. Uncentered features
can be taken into account by shifting the covariances, but we focus on the centred case to lighten
notation.

The Gaussian covariate model (7.1) is exact in the case where x are Gaussian variables and
the feature maps (ϕt,ϕs) preserve the Gaussianity, for example linear features. In particular, this
is the case for u = v = x, which is the widely-studied vanilla teacher-student model [103]. The
interest of the model (7.1) is that it also captures a range of cases in which the feature maps ϕt
and ϕs are deterministic, or even learnt from the data. The covariance matrices Ψ, Φ, and Ω then
represent different aspects of the data-generative process and learning model. The student (7.3)
then corresponds to the last layer of the learning model. These observation can be distilled into the
following conjecture:
Conjecture 1. (Gaussian equivalent model) For a wide class of data distributions {xµ}nµ=1, and
features maps u = ϕt(x),v = ϕs(x), the generalisation and training errors of estimator (7.3) are
asymptotically captured by the equivalent Gaussian model (7.1), where [u,v] are jointly Gaussian
variables, and thus by the closed-form expressions of Theorem 11.

The second part of our main contributions are:
(C3) In Sec. 7.2.3 we show that the theoretical predictions from (C1) captures the learning curves in
non-trivial cases, e.g. when input data are generated using a trained generative adversarial network,
while extracting both the feature maps from a neural network trained on real data.
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(C4) In Sec. 7.2.4, we show empirically that for ridge regression the asymptotic formula of Theo-
rem 11 can be applied directly to real data sets, even though the Gaussian hypothesis is not satisfied.
This universality-like property is a consequence of Theorem 13 and is illustrated in Fig. 7.1 (right)
where the real learning curve of several features maps learning the odd-versus-even digit task on
MNIST is compared to the theoretical prediction.

Related work — Rigorous results for teacher-student models: The Gaussian covariate model
(7.1) contains the vanilla teacher-student model as a special case where one takes u and v identical,
with unique covariance matrix Ω. This special case has been extensively studied in the statistical
physics community using the heuristic replica method [103, 217, 263, 294, 94]. Many recent rigorous
results for such models can be rederived as a special case of our formula, e.g. refs. [190, 125, 113,
33, 53, 281, 208, 12, 253, 57]. Numerous of these results are based on the same proof technique as
we employed here: the Gordon’s Gaussian min-max inequalities [121, 273, 220]. The asymptotic
analysis of kernel ridge regression [45], of margin-based classification [129] also follow from our
theorem. Other examples include models of the double descent phenomenon [205]. Closer to our
work is the recent work of [76] on the random feature model. For ridge regression, there are also
precise predictions thanks to random matrix theory [78, 125, 297, 170, 173, 21, 133]. A related set
of results was obtained in [108] for orthogonal random matrix models. The main technical novelty
of our proof is the handling of a generic loss and regularisation, not only ridge, representing convex
empirical risk minimization, for both classification and regression, with the generic correlation
structure of the model (7.1).

Gaussian equivalence: A similar Gaussian conjecture has been discussed in a series of recent
works, and some authors proved partial results in this direction [125, 190, 208, 106, 117, 116, 76, 128].
Ref. [116] analyses a special case of the Gaussian model (corresponding to ϕt = id here), and proves
a Gaussian equivalence theorem (GET) for feature maps ϕs given by single-layer neural networks
with fixed weights. They also show that for Gaussian data x ∼ N (0, ID), feature maps of the form
v = σ(Wx) (with some technical restriction on the weights) led to the jointly-Gaussian property
for the two scalars (v ·w,u · θ0) for almost any vector w. However, their stringent assumptions on
random teacher weights limited the scope of applications to unrealistic label models. A related line
of work discussed similar universality through the lens of random matrix theory [92, 230, 174]. In
particular, Seddik et al. [261] showed that, in our notations, vectors [u,v] obtained from Gaussian
inputs x ∼ N (0, ID) with Lipschitz feature maps satisfy a concentration property. In this case,
again, one can expect the two scalars (v ·w,u · θ0) to be jointly Gaussian with high-probability
on w. Remarkably, in the case of random feature maps, [128] could go beyond this central-limit-
like behavior and established the universality of the Gaussian covariate model (7.1) for the actual
learned weights ŵ.

7.2 Main technical result

Our main technical result is a closed-form expression for the asymptotic training and generalisation
errors (7.4) of the Gaussian covariate model introduced above. We start by presenting our result
in the most relevant setting for the applications of interest in Section 11.3, which is the case of
the `2 regularization. Next, we briefly present our result in larger generality, which includes non-
asymptotic results for non-separable losses and regularizations.

We start by defining key quantities that we will use to characterize the estimator ŵ. Let
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Ω = S>diag(ωi)S be the spectral decomposition of Ω. Let:

ρ ≡ 1
d
θ>0 Ψθ0 ∈ R, θ̄ ≡ SΦ>θ0√

ρ
∈ Rd (7.6)

and define the joint empirical density µ̂d between (ωi, θ̄i):

µ̂d(ω, θ̄) ≡
1
d

d∑
i=1

δ(ω − ωi)δ(θ̄ − θ̄i). (7.7)

Note that Φ>θ0 is the projection of the teacher weights on the student space, and therefore θ̄ is the
rotated projection on the basis of the student covariance, rescaled by the teacher variance. Together
with the student eigenvalues ωi, these are relevant statistics of the model, encoded here in the joint
distribution µ̂d.

Assumptions — Consider the high-dimensional limit in which the number of samples n and the
dimensions p, d go to infinity with fixed ratios:

α ≡ n

d
, and γ ≡ p

d
. (7.8)

Assume that the covariance matrices Ψ,Ω are positive-definite and that the Schur complement of the
block covariance in equation (7.1) is positive semi-definite. Additionally, the spectral distributions
of the matrices Φ,Ψ and Ω converge to distributions such that the limiting joint distribution µ is
well-defined, and their maximum singular values are bounded with high probability as n, p, d→∞.
Finally, regularity assumptions are made on the loss and regularization functions mainly to ensure
feasibility of the minimization problem. We assume that the cost function F + g is coercive, i.e.
lim‖w‖2→+∞(F+g)(w) = +∞ and that the following scaling condition holds : for all n, d ∈ N, z ∈ Rn
and any constant c > 0, there exist a finite, positive constant C, such that, for any standard normal
random vectors h ∈ Rd and g ∈ Rn:

‖z‖2 6 c
√
n =⇒ sup

x∈∂g(z)
‖x‖2 6 C

√
n,

1
d
E [F(h)] < +∞, 1

n
E [g(g)] < +∞ (7.9)

The relevance of these assumptions in a supervised machine learning context is discussed in Ap-
pendix 8.1. We are now in a position to state our result.

Theorem 11. (Closed-form asymptotics for `2 regularization) In the asymptotic limit defined above,
the training and generalisation errors (7.4) of the estimator ŵ ∈ Rd solving the empirical risk
minimisation problem in eq. (7.3) with `2 regularization r(w) = λ

2 ||w||
2
2 verify:

Etrain.(ŵ) P−−−→
d→∞

Es,h∼N (0,1)

g
proxV ?g(.,f0(√ρs))

m?

√
ρ
s+

√
q? − m?2

ρ
h

 , f0(√ρs)


Egen.(ŵ) P−−−→

d→∞
E(ν,λ)

[
ĝ
(
f̂(λ), f0(ν)

)]
(7.10)

where prox stands for the proximal operator defined as

proxV g(.,y)(x) = arg min
z
{g(z, y) + 1

2V (x− z)2} (7.11)
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and where (ν, λ) are jointly Gaussian scalar variables:

(ν, λ) ∼ N
(

0,
[
ρ m?

m? q?

])
, (7.12)

and the overlap parameters (V ?, q?,m?) are prescribed by the unique fixed point of the following set
of self-consistent equations:

V = E(ω,θ̄)∼µ

[
ω

λ+V̂ ω

]
m = m̂√

γE(ω,θ̄)∼µ

[
θ̄2

λ+V̂ ω

]
q = E(ω,θ̄)∼µ

[
m̂2θ̄2ω+q̂ω2

(λ+V̂ ω)2

] ,

V̂ = α

V (1− Es,h∼N (0,1)[f ′g(V,m, q)])
m̂ = 1√

ργ
α
V Es,h∼N (0,1)

[
sfg(V,m, q)− m√

ρf
′
g(V,m, q)

]
q̂ = α

V 2Es,h∼N (0,1)

[(
m√
ρs+

√
q−m2

ρ h−fg(V,m, q)
)2] (7.13)

where we defined the scalar random functions fg(V,m, q) = proxV g(.,f0(√ρs))(ρ−1/2ms+
√
q − ρ−1m2h)

and f ′g(V,m, h) = prox′V g(.,f0(√ρs))(ρ−1/2ms+
√
q − ρ−1m2h) as the first derivative of the proximal

operator.

Proof : This result is a consequence of Theorem 12, whose proof can be found in the chapter 8.
The parameters of the model (θ0,Ω,Φ,Ψ) only appear trough ρ, eq. (7.6), and the asymptotic

limit µ of the joint distribution eq. (7.7) and (f0, f̂ , g, λ). One can easily iterate the above equations
to find their fixed point, and extract (q∗,m∗) which appear in the expressions for the training and
generalisation errors (E?train, E?gen), see eq. (7.4). Note that (q?,m?) have an intuitive interpretation
in terms of the estimator ŵ ∈ Rd:

q? ≡ 1
d
ŵ>Ωŵ, m? ≡ 1√

dp
θ>0 Φŵ (7.14)

Or in words: m? is the correlation between the estimator projected in the teacher space, while
q? is the reweighted norm of the estimator by the covariance Ω. The parameter V ∗ also has a
concrete interpretation : it parametrizes the deformation that must be applied to a Gaussian field
specified by the solution of the fixed point equations to obtain the asymptotic behaviour of ẑ. It
prescribes the degree of non-linearity given to the linear output by the chosen loss function. This
is coherent with the robust regression viewpoint, where one introduces non-square losses to deal
with the potential non-linearity of the generative model. V̂ ∗ plays a similar role for the estimator
ŵ through the proximal operator of the regularisation, see Theorem 14 and 15 in the Appendix.
Two cases are of particular relevance for the experiments that follow. The first is the case of ridge
regression, in which f0(x) = f̂(x) and both the loss g and the performance measure ĝ are taken to
be the mean-squared error mse(y, ŷ) = 1

2(y− ŷ)2, and the asymptotic errors are given by the simple
closed-form expression:

E?gen = ρ+ q? − 2m?, E?train =
E?gen

(1 + V ?)2 , (7.15)

The second case of interest is the one of a binary classification task, for which f0(x) = f̂(x) = sign(x),
and we choose the performance measure to be the classification error ĝ(y, ŷ) = P(y 6= ŷ). In the
same notation as before, the asymptotic generalisation error in this case reads:

E?gen = 1
π

cos−1
(
m?

√
ρq?

)
, (7.16)
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while the training error E?train depends on the choice of g - which we will take to be the logistic loss
g(y, x) = log (1 + e−xy) in all of the binary classification experiments.

As mentioned above, this paper includes stronger technical results including finite size corrections
and precise characterization of the distribution of the estimator ŵ, for generic, non-separable loss
and regularization g and r. This type of distributional statement is encountered for special cases of
the model in related works such as [204, 57, 208]. Define V ∈ Rn×d as the matrix of concatenated
samples used by the student. Informally, in high-dimension, the estimator ŵ and ẑ = 1√

d
Vŵ

roughly behave as non-linear transforms of Gaussian random variables centered around the teacher
vector θ0 (or its projection on the covariance spaces) as follows:

w∗ = Ω−1/2 prox
1
V̂ ∗

F(Ω−1/2.)

( 1
V̂ ∗

(m̂∗t+
√
q̂∗g)

)
, z∗ = prox

V ∗g(.,z)

m∗√
ρ
s+

√
q∗ − (m∗)2

ρ
h

 .

where s,h ∼ N (0, In) and g ∼ N (0, Id) are random vectors independent of the other quantities,
t = Ω−1/2Φ>θ0, y = f0

(√
ρs
)
, and (V ∗, V̂ ∗, q∗, q̂∗,m∗, m̂∗) is the unique solution to the fixed point

equations presented in Lemma 36 of Chapter 8. Those fixed point equations are the generalization
of (7.13) to generic, non-separable loss function and regularization. The formal concentration of
measure result can then be stated in the following way:

Theorem 12. (Non-asymptotic version, generic loss and regularization) Under Assumption (8.1),
consider any optimal solution ŵ to 7.3. Then, there exist constants C, c, c′ > 0 such that, for any
Lipschitz function φ1 : Rd → R, and separable, pseudo-Lipschitz function φ2 : Rn → R and any
0 < ε < c′:

P
(∣∣∣∣φ1

(
ŵ√
d

)
− E

[
φ1

(
w∗√
d

)]∣∣∣∣ > ε

)
6
C

ε2
e−cnε

4
,P
(∣∣∣∣φ2

(
ẑ√
n

)
− E

[
φ2

(
z∗√
n

)]∣∣∣∣ > ε

)
6
C

ε2
e−cnε

4
.

Note that in this form, the dimensions n, p, d still appear explicitly, as we are characterizing
the convergence of the estimator’s distribution for large but finite dimension. The clearer, one-
dimensional statements are recovered by taking the n, p, d→∞ limit with separable functions and
an `2 regularization. Other simplified formulas can also be obtained from our general result in the
case of an `1 penalty, but since this breaks rotational invariance, they do look more involved than the
`2 case. From Theorem 12, one can deduce the expressions of a number of observables, represented
by the test functions φ1, φ2, characterizing the performance of ŵ, for instance the training and
generalization error. A more detailed statement, along with the proof, is given in Chapter 8.

We now discuss how the theorems above are applied to characterise the learning curves for
a range of concrete cases. We present a number of cases – some rather surprising – for which
Conjecture 1 seems valid, and point out some where it is not. An out-of-the-box iterator for all
the cases studied hereafter is provided in the GitHub repository for this manuscript at https:
//github.com/IdePHICS/GCMProject.

7.2.1 Random kitchen sink with Gaussian data

If we choose random feature maps ϕs(x) = σ (Fx) for a random matrix F and a chosen scalar
function σ acting component-wise, we obtain the random kitchen sink model [239]. This model has
seen a surge of interest recently, and a sharp asymptotic analysis was provided in the particular
case of uncorrelated Gaussian data x ∼ N (0, ID) and ϕt(x) = x in [190, 125] for ridge regression

https://github.com/IdePHICS/GCMProject
https://github.com/IdePHICS/GCMProject
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and generalised by [106, 128] for generic convex losses. Both results can be framed as a Gaussian
covariate model with:

Ψ = Ip, Φ = κ1F>, Ω = κ2
01d1>d + κ2

1
FF>
d

+ κ2
?Id, (7.17)

where 1d ∈ Rd is the all-one vector and the constants (κ0, κ1, κ?) are related to the non-linearity σ:

κ0 = Ez∼N (0,1) [σ(z)] , κ1 = Ez∼N (0,1) [zσ(z)] , κ?=
√
Ez∼N (0,1) [σ(z)2]− κ2

0 − κ2
1 . (7.18)

In this case, the averages over µ in eq. (7.13) can be directly expressed in terms of the Stieltjes
transform associated with the spectral density of FF>. Note, however, that our present framework
can accommodate more involved random sinks models, such as when the teacher features are also
a random feature model or multi-layer random architectures.

7.2.2 Kernel methods with Gaussian data

Another direct application of our formalism is to kernel methods. Kernel methods admit a dual
representation in terms of optimization over feature space [257]. The connection is given by Mercer’s
theorem, which provides an eigen-decomposition of the kernel and of the target function in the
feature basis, effectively mapping kernel regression to a teacher-student problem on feature space.
The classical way of studying the performance of kernel methods [272, 55] is then to directly analyse
the performance of convex learning in this space. In our notation, the teacher and student feature
maps are equal, and we thus set p = d,Ψ = Φ = Ω = diag(ωi) where ωi are the eigenvalues of the
kernel and we take the teacher weights θ0 to be the decomposition of the target function in the
kernel feature basis.

There are many results in classical learning theory on this problem for the case of ridge regression
(where the teacher is usually called ”the source” and the eigenvalues of the kernel matrix the
”capacity”, see e.g. [272, 235]). However, these are worst case approaches, where no assumption
is made on the true distribution of the data. In contrast, here we follow a typical case analysis,
assuming Gaussianity in feature space. Through Theorem 11, this allows us to go beyond the
restriction of the ridge loss. An example for logistic loss is in Fig. 7.2.

For the particular case of kernel ridge regression, Th. 11 provides a rigorous proof of the formula
conjectured in [45]. Hard-margin Support Vector Machines (SVMs) have also been studied using
the heuristic replica method from statistical physics in [77, 218]. In our framework, this corresponds
to the hinge loss g(x, y) = max(0, 1 − yx) when λ → 0+. Our theorem thus puts also these works
on rigorous grounds, and extends them to more general losses and regularization.

7.2.3 GAN-generated data and learned teachers

To approach more realistic data sets, we now consider the case in which the input data x ∈ X is
given by a generative neural network x = G(z), where z is a Gaussian i.i.d. latent vector. Therefore,
the covariates [u,v] are the result of the following Markov chain:

z 7→
G
x ∈ X 7→

ϕt
u ∈ Rp, z 7→

G
x ∈ X 7→

ϕs
v ∈ Rd. (7.19)

With a model for the covariates, the missing ingredient is the teacher weights θ0 ∈ Rp, which
determine the label assignment: y = f0(u>θ0). In the experiments that follow, we fit the teacher
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weights from the original data set in which the generative model G was trained. Different choices for
the fitting yield different teacher weights, and the quality of label assignment can be accessed by the
performance of the fit on the test set. The set (ϕt,ϕs,G,θ0) defines the data generative process.
For predicting the learning curves from the iterative eqs. (7.13) we need to sample from the spectral
measure µ, which amounts to estimating the population covariances (Ψ,Φ,Ω). This is done from the
generative process in eq. (7.19) with a Monte Carlo sampling algorithm. This pipeline is explained
in detail in Appendix of the original paper. An open source implementation of the algorithms used
in the experiments is available online at https://github.com/IdePHICS/GCMProject.
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Figure 7.3: Left: generalisation classification error (top) and (unregularised) training loss (bottom)
vs the sample complexity α = n/d for logistic regression on a learned feature map trained on
dcGAN-generated CIFAR10-like images labelled by a teacher fully-connected neural network (see
Appendix of the original paper), with vanishing `2 regularisation. The different curves compare
featured maps at different epochs of training. The theoretical predictions based on the Gaussian
covariate model (full lines) are in very good agreement with the actual performance (points). Right:
Test classification error (top) and (unregularised) training loss, (bottom) for logistic regression
as a function of the number of samples n for an animal vs not-animal binary classification task
with `2 regularization λ = 10−2, comparing real CIFAR10 grey-scale images (blue) with dcGAN-
generated CIFAR10-like gray-scale images (red). The real-data learning curve was estimated, just
as in Figs. 7.4 from the population covariances on the full data set, and it is not in agreement with
the theory in this case. On the very right we depict the histograms of the variable 1√

d
v>ŵ for

a fixed number of samples n = 2d = 2048 and the respective theoretical predictions (solid line).
Simulations are averaged over 10 independent runs.

Fig. 7.3 shows an example of the learning curves resulting from the pipeline discussed above in a
logistic regression task on data generated by a GAN trained on CIFAR10 images. More concretely,
we used a pre-trained five-layer deep convolutional GAN (dcGAN) from [237], which maps 100
dimensional i.i.d. Gaussian noise into k = 32 × 32 × 3 realistic looking CIFAR10-like images:
G : z ∈ R100 7→ x ∈ R32×32×3. To generate labels, we trained a simple fully-connected four-layer
neural network on the real CIFAR10 data set, on a odd (y = +1) vs. even (y = −1) task, achieving
∼ 75% classification accuracy on the test set. The teacher weights θ0 ∈ Rp were taken from the
last layer of the network, and the teacher feature map ϕt from the three previous layers. For the

https://github.com/IdePHICS/GCMProject
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student model, we trained a completely independent fully connected 3-layer neural network on the
dcGAN-generated CIFAR10-like images and took snapshots of the feature maps ϕis induced by the
2-first layers during the first i ∈ {0, 5, 50, 200} epochs of training. Finally, once

(
G,ϕt,ϕis,θ0

)
have

been fixed, we estimated the covariances (Ψ,Φ,Ω) with a Monte Carlo algorithm. Details of the
architectures used and of the training procedure can be found in the Appendix of the original paper.
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Figure 7.2: Learning in kernel space: Teacher and
student live in the same (Hilbert) feature space
v = u ∈ Rd with d � n, and the performance only
depends on the relative decay between the student
spectrum ωi = d i−2 (the capacity) and the teacher
weights in feature space θ2

0iωi = d i−a (the source).
Top: a task with sign teacher (in kernel space), fit-
ted with a max-margin support vector machine (lo-
gistic regression with vanishing regularisation [246]).
Bottom: a task with linear teacher (in kernel space)
fitted via kernel ridge regression with vanishing reg-
ularisation. Points are simulation that matches the
theory (lines). Simulations are averaged over 10 in-
dependent runs.

Fig. 7.3 depicts the resulting learning
curves obtained by training the last layer of
the student. Interestingly, the performance of
the feature map at epoch 0 (random initiali-
sation) beats the performance of the learned
features during early phases of training in this
experiment. Another interesting behaviour
is given by the separability threshold of the
learned features, i.e. the number of sam-
ples for which the training loss becomes larger
than 0 in logistic regression. At epoch 50 the
learned features are separable at lower sample
complexity α = n/d than at epoch 200 - even
though in the later the training and generali-
sation performances are better.

7.2.4 Learning from real data sets

Applying teacher/students to a real
data set — Given that the learning curves
of realistic-looking inputs can be captured by
the Gaussian covariate model, it is fair to ask
whether the same might be true for real data
sets. To test this idea, we first need to cast
the real data set into the teacher-student for-
malism, and then compute the covariance ma-
trices Ω,Ψ,Φ and teacher vector θ0 required
by model (7.1).

Let {xµ, yµ}ntot
µ=1 denote a real data set,

e.g. MNIST or Fashion-MNIST for concrete-
ness, where ntot = 7 × 104, xµ ∈ RD with
D = 784. Without loss of generality, we can
assume the data is centred. To generate the
teacher, let uµ = ϕt(xµ) ∈ Rp be a feature
map such that data is invertible in feature

space, i.e. that yµ = θ>0 u
µ for some teacher weights θ0 ∈ Rp, which should be computed from

the samples. Similarly, let vµ = ϕs(xµ) ∈ Rd be a feature map we are interested in studying. Then,
we can estimate the population covariances (Ψ,Φ,Ω) empirically from the entire data set as:

Ψ =
ntot∑
µ=1

uµuµ>

ntot
, Φ =

ntot∑
µ=1

uµvµ>

ntot
, Ω =

ntot∑
µ=1

vµvµ>

ntot
. (7.20)
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At this point, we have all we need to run the self-consistent equations (7.13). The issue with this
approach is that there is not a unique teacher map ϕt and teacher vector θ0 that fit the true labels.
However, we can show that all interpolating linear teachers are equivalent:

Theorem 13. (Universality of linear teachers) For any teacher feature map ϕt, and for any θ0 that
interpolates the data so that yµ = θ>0 u

µ ∀µ, the asymptotic predictions of model (7.1) are equivalent.

Proof. It follows from the fact that the teacher weights and covariances only appear in eq. (7.13)
through ρ = 1

pθ
>
0 Ψθ0 and the projection Φ>θ0. Using the estimation (7.20) and the assumption

that it exists yµ = θ>0 u
µ, one can write these quantities directly from the labels yµ:

ρ = 1
ntot

ntot∑
µ=1

(yµ)2 , Φ>θ0 = 1
ntot

ntot∑
µ=1

yµvµ . (7.21)

For linear interpolating teachers, results are thus independent of the choice of the teacher.

Although this result might seen surprising at first sight, it is quite intuitive. Indeed, the informa-
tion about the teacher model only enters the Gaussian covariate model (7.1) through the statistics
of u>θ0. For a linear teacher f0(x) = x, this is precisely given by the labels.
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Figure 7.4: Test and training mean-squared errors
eqs. (7.15) as a function of the number of samples
n for ridge regression. The Fashion-MNIST data
set, with vanishing regularisation λ = 10−5. In
this plot, the student feature map ϕs is a 3-layer
fully-connected neural network with d = 2352 hid-
den neurons trained on the full data set with the
square loss. Different curves correspond to the
feature map obtained at different stages of train-
ing. Simulations are averaged over 10 indepen-
dent runs. Further details on the simulations are
described in the original paper.

Ridge Regression with linear teachers —
We now test the prediction of model (7.1)

on real data sets, and show that it is surpris-
ingly effective in predicting the learning curves,
at least for the ridge regression task. We have
trained a 3-layer fully connected neural net-
work with ReLU activations on the full Fashion-
MNIST data set to distinguish clothing used
above vs. below the waist. The student feature
map ϕs : R784 → Rd is obtained by removing
the last layer, see the original paper for a de-
tailed description. In Fig. 7.4 we show the test
and training errors of the ridge estimator on a
sub-sample of n < ntot on the Fashion-MNIST
images. We observe remarkable agreement be-
tween the learning curve obtained from sim-
ulations and the theoretical prediction by the
matching Gaussian covariate model. Note that
for the square loss and for λ� 1, the worst per-
formance peak is located at the point in which
the linear system becomes invertible. Curiously,
Fig. 7.4 shows that the fully-connected network
progressively learns a low-rank representation of
the data as training proceeds. This can be di-
rectly verified by counting the number of zero
eigenvalues of Ω, which go from a full-rank ma-

trix to a matrix of rank 380 after 200 epochs of training.
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Fig. 7.1 (right) shows a similar experiment on the MNIST data set, but for different out-of-
the-box feature maps, such as random features and the scattering transform [52], and we chose the
number of random features d = 1953 to match the number of features from the scattering transform.
Note the characteristic double-descent behaviour [217, 271, 30], and the accurate prediction of the
peak where the interpolation transition occurs.

Why is the Gaussian model so effective for describing learning with data that are not Gaussian?
The point is that ridge regression is sensitive only to second order statistics, and not to the full
distribution of the data. It is a classical property (see the appendix of the original paper or the
derivation for least-square in the introduction) that the training and generalisation errors are only a
function of the spectrum of the empirical and population covariances, and of their products. Random
matrix theory teaches us that such quantities are very robust, and their asymptotic behaviour is
universal for a broad class of distributions of [u,v] [17, 159, 91, 174]. The asymptotic behavior of
kernel matrices has indeed been the subject of intense scrutiny [92, 63, 230, 190, 96, 261]. Indeed, a
universality result akin to Theorem 13 was noted in [133] in the specific case of kernel methods. We
thus expect the validity of model (7.1) for ridge regression, with a linear teacher, to go way beyond
the Gaussian assumption.

Beyond ridge regression — The same strategy fails beyond ridge regression and mean-squared
test error. This suggests a limit in the application of model (7.1) to real (non-Gaussian) data to
the universal linear teacher. To illustrate this, consider the setting of Figs. 7.4, and compare the
model predictions for the binary classification error instead of the `2 one. There is a clear mismatch
between the simulated performance and prediction given by the theory due to the fact that the
classification error does not depends only on the first two moments.

We present an additional experiment in Fig. 7.3. We compare the learning curves of logistic
regression on a classification task on the real CIFAR10 images with the real labels versus the one
on dcGAN-generated CIFAR10-like images and teacher generated labels from Sec. 7.2.3. While the
Gaussian theory captures well the behaviour of the later, it fails on the former. A histogram of the
distribution of the product u>ŵ for a fixed number of samples illustrates well the deviation from
the prediction of the theory with the real case, in particular on the tails of the distribution. The
difference between GAN generated data (that fits the Gaussian theory) and real data is clear. Given
that for classification problems there exists a number of choices of ”sign” teachers and feature maps
that give the exact same labels as in the data set, an interesting open question is: is there a teacher
that allows to reproduce the learning curves more accurately? This question is left for future works.



Chapter 8

Proofs for the Gaussian covariate
model

This section presents the core technical result of this paper in its full generality, along with the
required assumptions and its complete proof. For technical reasons, variables different than the
ones appearing in the replica calculation are introduced. The proof is nonetheless presented in a
self-contained way and the relation with the replica variables are given in section 8.3 , eq.(8.204). We
start by reminding the formulation of the problem. Consider the matrices U ∈ Rn×p of concatenated
vectors u used by the teacher and V ∈ Rn×d the corresponding one for the student. The estimator
may now be defined using potentially non-separable functions:

ŵ = arg min
w∈Rd

[
g

( 1√
d
Vw,y

)
+ r(w)

]
, (8.1)

where the function g : Rn → R. The training and generalization errors are reminded as:

Etrain(w) ≡ 1
n
E
[
g

( 1√
d
Vw,y

)
+ F (w)

]
(8.2)

Egen(w) ≡ E
[
ĝ(f̂

(
v>neww), ynew

)]
≡ E

[
ĝ
(
f̂(v>neww),f0(u>newθ0)

)]
. (8.3)

Intuitively, the variables u>newθ0 and v>neww will play a key role in the analysis. Given an instance
of θ0 and w, the tuple

(
1√
pu
>
newθ0,

1√
d
v>neww

)
is a bivariate Gaussian with covariance:

 1
pθ
>
0 Ψθ0

1√
dp

(Φ>θ0)>w
1√
dp

(Φ>θ0)>w 1
dw
>Ωw

 . (8.4)

We thus define the following overlaps, that will play a fundamental role in the analysis:

ρ = 1
p
θ>0 Ψθ0, m = 1√

dp
(Φ>θ0)>w , q = 1

d
w>Ωw, χ = 1

d
θ>0 ΦΩ−1Φ>θ0 . (8.5)

Note that here, we will not introduce the spectral decomposition 7.7 as it will not simplify the
expressions as in the l2 case. The representations are mathematically equivalent nonetheless. Our
main result is that the distribution of the estimator ŵ can be exactly computed in the weak sense
from the solution to six scalar fixed point equations with a unique solution.
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8.1 Necessary assumptions

We start with a list of the necessary assumptions for the most generic version of the result to hold.
We also briefly discuss how they are relevant in a supervised machine learning context.

(A1) The vector θ0 is pulled from any given distribution pθ0 ∈ Rp (this includes deterministic
vectors with bounded norm), and is independent of the matrices U and V. Additionally, the
signal is non-vanishing and has finite squared norm, i.e. the following holds almost surely:

lim
p→∞

0 < E
[
θ>0 θ0
p

]
< +∞ (8.6)

(A2) The covariance matrices verify:

(Ψ,Ω) ∈ S++
p × S++

d , Ω− Φ>Ψ−1Φ � 0 (8.7)

The spectral distributions of the matrices Φ,Ψ and Ω converge to distributions such that
the overlaps defined by equation (8.5) are well-defined. Additionally, the maximum singular
values of the covariance matrices are bounded with high probability when n, p, d→∞.

(A3) The functions F and g are proper, lower semi-continuous, convex functions. Additionally, we
assume that the cost function F + g is coercive, i.e.:

lim
‖w‖2→+∞

(F + g)(w) = +∞ (8.8)

and that the following scaling condition holds : for all n, d ∈ N, z ∈ Rn and any constant
c > 0, there exist finite, positive constants C1, C2, C3, such that, for any standard normal
random vectors h ∈ Rd and g ∈ Rn:

‖z‖2 6 c
√
n =⇒ sup

x∈∂g(z)
‖x‖2 6 C1

√
n,

1
d
E [F(h)] < +∞, 1

n
E [g(g)] < +∞ (8.9)

(A4) The random elements of the function f0 are independent of the matrices U and V. Additionally
the following limit exists and is finite

lim
n→∞

E
[ 1
n
f0(Uθ0)>f0(Uθ0)

]
< +∞

(A5) When we send the dimensions n, p, d to infinity, they grow with finite ratios α = n/d, γ = p/d.

(A6) Additional assumptions for linear finite sample size rates : the teacher vector θ0 has
sub-Gaussian one dimensional marginals. The functions F, g, φ1, φ2 are pseudo-Lipschitz of
finite order. The eigenvalues of the covariance matrices are bounded with probability one.

(A7) Additional assumptions for exponential finite sample size rates: all of the above, and
the loss function g is separable and pseudo-Lipschitz of order 2, the regularisation is either a
ridge or a Lipschitz function, the functions φ1, φ2 are respectively separable, pseudo-Lipschitz
of order 2, and a square or Lipschitz function.
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The first assumption (A1) ensures that the teacher distribution is non-vanishing. The positive
definiteness in (A2) means the covariance matrices of the blocks U and V are well-specified. Note
that the cross-correlation matrix Φ can have singular values equal to zero. The assumption about the
limiting spectral distribution is essentially a summability condition which is immediately verified if
the limiting spectral distributions have compact support, a common case. The scaling assumptions
from (A3) are natural as they imply that non-diverging inputs result in non-diverging outputs in
the functions f and g, as well as the sub-differentials. Similar scaling assumptions are encountered
in proofs such as [281]. They also allow to show Gaussian concentration of Moreau envelopes, as we
will see in Lemma 29. The coercivity assumption is verified in most common machine learning setups
: any convex loss with ridge regularisation, or any convex loss that is bounded below with a coercive
regularisation (LASSO, elastic-net,...), see Corollary 11.15 from [25]. Assumption (A4) is a classical
assumption of teacher-student setups, where any correlation between the teacher and the student is
modeled by the covariance matrices and not by the label generating function f0. The summability
condition ensures generalization error is well-defined for squared performance measures. Finally,
(A5) is the typical high-dimensional limit used in statistical physics of learning, random matrix
theory and a large recent body of work in high-dimensional statistical learning.

8.2 Main theorem

First, let’s define quantities and a scalar optimization problem that will be used to state the asymp-
totic behaviour of (7.2-7.3):

Definition 13. (Scalar potentials/replica free energy) Define the following functions of the scalar
variables τ1 > 0, τ2 > 0, κ > 0, η > 0, ν,m:

Lg(τ1, κ,m, η) = 1
n
E
[
M τ1

κ
g(.,y)

(
m
√
ρ
s + ηh

)]
, (8.10)

LF(τ2, η, ν, κ) = 1
d
E
[
M η

τ2
F(Ω−1/2.)

(
η

τ2
(νt + κg)

)]
,

where s,h ∼ N (0, In) and g ∼ N (0, Id) are random vectors independent of the other quantities,
t = Ω−1/2Φ>θ0, y = f0

(√
ρs
)
, and M denotes the Moreau envelope of a target function.

From these quantities define the following potential:

E(τ1, τ2, κ, η, ν,m) = κτ1
2 −

ητ2
2 +mν

√
γ − τ2

2η
m2

ρ

− η

2τ2
(ν2χ+ κ2) + αLg(τ1, κ,m, η) + LF(τ2, η, ν, κ) . (8.11)

Under Assumption (8.1), the previously defined quantities all admit finite limits when n, p, d→∞.

Proof : This follows directly from Lemma 29.
The next lemma characterizes important properties of the ”potential” function E(τ1, τ2, κ, η, ν,m):

Lemma 25. (Geometry and minimizers of E) The function E(τ1, τ2, κ, η, ν,m) is jointly convex in
(m, η, τ1) and jointly concave in (ν, κ, τ2), and the optimization problem

min
m,η,τ1

max
κ,ν,τ2

E(τ1, τ2, κ, η, ν,m) (8.12)

has a unique solution (τ∗1 , τ∗2 , κ∗, η∗, ν∗,m∗) on dom(E).
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Proof : see Appendix 8.2.3. The optimality condition of problem (8.12) yields the set of self-
consistent fixed point equations given in Lemma 36 of Chapter 8. Finally, define the following
variables:

w∗ = Ω−1/2prox η∗
τ∗2

F(Ω−1/2.)

(
η∗

τ∗2
(ν∗t + κ∗g)

)
, z∗ = prox τ∗1

κ∗ g(.,y)

(
m∗
√
ρ
s + η∗h

)
. (8.13)

where prox denotes the proximal operator. With these definitions, we can now state our main result:

Theorem 14. (Training loss and generalisation error) Under Assumption (8.1), there exist con-
stants C, c, c′ > 0 such that, for any optimal solution ŵ to (7.3), the training loss and generalisation
error defined by equation verify, for any 0 < ε < c′:

P (|Etrain(ŵ)− E∗train| > ε) 6 C

ε2
e−cnε

4
, (8.14)

P
(∣∣∣Egen(ŵ)− Eω,ξ

[
ĝ(f0(ω), f̂(ξ))

]∣∣∣ > ε
)
6
C

ε2
e−cnε

4
,

where E∗train is defined as follows:

E∗train = 1
n
E [g (z∗,y)] + 1

αd
E [F (w∗)] , (8.15)

and the random variables (ω, ξ) are jointly Gaussian with covariance

(ω, ξ) ∼ N
(

0,
[
ρ m∗

m∗ q∗

])
, q∗=(η∗)2+ (m∗)2

ρ
. (8.16)

Proof : see Appendix 8.2.4. Note that the regularisation may be removed to evaluate the training
loss. A more generic result, aiming directly at the estimator ŵ, can also be stated:

Theorem 15. Under Assumption (8.1), for any optimal solution ŵ to (7.3), denote ẑ = 1√
d
Vŵ.

Then, there exist constants C, c, c′ > 0 such that, for any Lipschitz function φ1 : Rd → R, and
separable, pseudo-Lipschitz function φ2 : Rn → R and any 0 < ε < c′:

P
(∣∣∣∣φ1( ŵ√

d
)− E

[
φ1

(w∗√
d

)]∣∣∣∣ > ε

)
6
C

ε2
e−cnε

4
, (8.17)

P
(∣∣∣∣φ2( ẑ√

n
)− E

[
φ2

( z∗√
n

)]∣∣∣∣ > ε

)
6
C

ε2
e−cnε

4
. (8.18)

Proof : see Appendix 8.2.4. Concentration still holds for a larger class of functions φ1,2, but
exponential rates are lost. This is discussed in Appendix 8.1.

8.2.1 Theoretical toolbox

Here we remind a few known results that are used throughout the proof. We also provide proofs of
useful, straightforward consequences of theses results that do not appear explicitly in the literature
for completeness.
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A Gaussian comparison theorem

We start with the Convex Gaussian Min-max Theorem, as presented in [281], which is a tight
version of an inequality initially derived in [121].

Theorem 16. (CGMT) Let G ∈ Rm×n be an i.i.d. standard normal matrix and g ∈ Rm, h ∈ Rn
two i.i.d. standard normal vectors independent of one another. Let Sw,Su be two compact sets such
that Sw ⊂ Rn and Su ⊂ Rm. Consider the two following optimization problems for any continuous
ψ on Sw × Su :

C(G) := min
w∈Sw

max
u∈Su

u>Gw + ψ(w,u), (8.19)

C(g,h) := min
w∈Sw

max
u∈Su

‖w‖2g
>u + ‖u‖2h

>w + ψ(w,u) (8.20)

then the following holds:

1. For all c ∈ R:
P(C(G) < c) 6 2P(C(g,h) 6 c)

2. Further assume that Sw,Su are convex sets and ψ is convex-concave on Sw × Su. Then, for
all c ∈ R,

P(C(G) > c) 6 2P(C(g,h) > c)

In particular, for all µ ∈ R, t > 0,P(|C(G)− µ| > t) 6 2P(|C(g,h)− µ| > t).

Following [281], we will say that any reformulation of a target problem matching the form of
(8.19) is an acceptable primary optimization problem (PO), and the corresponding form (8.20) is
an acceptable auxiliary problem (AO). The main idea of this approach is to study the asymptotic
properties of the (PO) by studying the simpler (AO).

Proximal operators and Moreau envelopes : differentials and useful functions

Here we remind the definition and some important properties of Moreau envelopes and proximal
operators, key elements of convex analysis. Other properties will be used throughout the proof but
at less crucial stages, thus we don’t remind them explicitly. Our main reference for these properties
will be [25].
Consider a closed, proper function f such that dom(f)⊂ Rn. Its Moreau envelope and proximal
operator are respectively defined by :

Mτf (x) = min
z∈dom(f)

{f(z) + 1
2τ ‖x− z‖22}, proxτf (x) = arg min

z∈dom(f)
{f(z) + 1

2τ ‖x− z‖22} (8.21)

As reminded in [281], the Moreau envelope is jointly convex in (τ,x) and differentiable almost
everywhere, with gradients:

∇xMτf (x) = 1
τ

(x− proxτf (x)) (8.22)
∂

∂τ
Mτf (x) = − 1

2τ2

∥∥∥x− proxτf (x)
∥∥∥2

2
(8.23)
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We remind that proxτf (x) is the unique point which solves the strongly convex optimization problem
defining the Moreau envelope, i.e.:

Mτf (x) = f(proxτf (x)) + 1
2τ
∥∥∥x− proxτf (x)

∥∥∥2

2
(8.24)

We also remind the definition of order k pseudo-Lipschitz function.

Definition 14. Pseudo-Lipschitz function For k ∈ N∗ and any n,m ∈ N∗, a function φ : Rn → Rm
is called a pseudo-Lipschitz of order k if there exists a constant L(k) such that for any x,y ∈ Rn,

‖φ(x)− φ(y)‖2 6 L(k)
(
1 + (‖x‖2)k−1 + (‖y‖2)k−1

)
‖x− y‖2 (8.25)

We now give some further properties that will be helpful throughout the proof.

Lemma 26. (Moreau envelope of pseudo-Lipschitz function) Consider a proper, lower-semicontinuous,
convex, pseudo-Lipschitz function f : Rn → R of order k. Then its Moreau envelope is also pseudo-
Lipschitz of order k.

Proof of Lemma 26: For any x,y in dom(f), we have, using the pseudo-Lipschitz property:∣∣∣f(proxτf (x))− f(proxτf (y))
∣∣∣ 6 L(k)

(
1 +

(∥∥∥proxτf (x)
∥∥∥

2

)k−1
+
(∥∥∥proxτf (y)

∥∥∥
2

)k−1
)

∥∥∥proxτf (x)− proxτf (y)
∥∥∥

2

6 L(k)
(
1 + (‖x‖2)k−1 + (‖y‖2)k−1

)
‖x− y‖2 (8.26)

where the second line follows immediately with the same constant L(k) owing to the firm-
nonexpansiveness of the proximal operator. Furthermore∥∥∥x− proxτf (x)

∥∥∥2

2
−
∥∥∥y− proxτf (y)

∥∥∥2

2
=

τ
∣∣∣∂f(proxτf (x)) + ∂f(proxτf (y))

∣∣∣∣∣∣(x− proxτf (x)− y + proxτf (y)
)∣∣∣

6 τ
∥∥∥∂f(proxτf (x)) + ∂f(proxτf (y))

∥∥∥
2

∥∥∥(x− proxτf (x)− y + proxτf (y)
)∥∥∥

2
(8.27)

due to the pseudo-Lipschitz property, one has

∂f(proxτf (x)) 6 L(k)
(

1 + 2
∥∥∥proxτf (x)

∥∥∥k−1

2

)
(8.28)

This, along with the firm-nonexpansiveness of Id− prox, concludes the proof.

Lemma 27. (Useful functions) For any x ∈ Rn, τ > 0, θ ∈ R and any proper, convex lower semi-
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continuous function f , define the following functions:

h1 : R→ R
θ 7→ xT proxτf(.)(θx) (8.29)

h2 : R→ R

τ 7→ 1
2τ2

∥∥∥x− proxτf(.)(x)
∥∥∥2

2
(8.30)

h3 : R→ R

τ 7→
∥∥∥∥prox f

τ
(.)(

x
τ

)
∥∥∥∥2

2
(8.31)

h4 : R→ R

τ 7→
∥∥∥x− proxτf (x)

∥∥∥2

2
(8.32)

h1 is nondecreasing, and h2, h3, h4 are nonincreasing.

Proof of Lemma 27: For any θ, θ̃ ∈ R:

(θ − θ̃)(h1(θ)− h1(θ̃)) = (θx− θ̃x)>
(
proxτf(.)(θx)− proxτf(.)(θ̃x)

)
>
∥∥∥proxτf(.)(θx)− proxτf(.)(θ̃x)

∥∥∥2

2
> 0 (8.33)

where the inequality comes from the firm non-expansiveness of the proximal operator. Thus h1 is
nondecreasing.
Since the Moreau envelope Mτf (x) is convex in τ , we have, for any τ, τ̃ in R++

(τ − τ̃)
(
∂

∂τ
Mτf (x)− ∂

∂τ̃
Mτ̃ f (x)

)
> 0, ⇐⇒ (τ − τ̃) (h2(τ̃)− h2(τ)) > 0 (8.34)

which implies that h2 is non-increasing.
Using the Moreau decomposition, see e.g. [25], we have:

h2(τ) = 1
2τ2

∥∥∥∥x− (x− τprox f∗
τ

(x
τ

))∥∥∥∥2

2
=
∥∥∥∥prox f∗

τ

(x
τ

)∥∥∥∥2

2
(8.35)

which is a nonincreasing function of τ . Since f is convex, we can restart this short process with the
conjugate of f to obtain the desired result. Thus h3 is nonincreasing and (τ− τ̃)(h3(τ)−h3(τ̃)) 6 0.
Moving to h4, proving that it is nonincreasing is equivalent to proving that the following function
is increasing

h5(τ) = proxτf (x)>
(
2x− proxτf (x)

)
(8.36)

using the Moreau decomposition again

h5(τ) =
(

x− τprox f∗
τ

(x
τ

))> (
x + τprox f∗

τ

(x
τ

))
(8.37)
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then, for any τ, τ̃ in R++:

(τ − τ̃)(h5(τ)− h5(τ̃)) = (τ − τ̃)
(
τ̃2
∥∥∥∥prox f∗

τ̃

(x
τ̃

)∥∥∥∥2

2
− τ2

∥∥∥∥prox f∗
τ

(x
τ

)∥∥∥∥2

2

)
(8.38)

separating the cases τ 6 τ̃ and τ > τ̃ , and using the result on h3 then gives the desired result.
The following inequality is similar to one that appeared in one-dimensional form in [281].
Lemma 28. (A useful inequality) For any proper, lower semi-continuous convex function f , any
x, x̃ in dom(f), and any γ, γ̃ ∈ R++, the following holds:(

proxγ̃f (x̃)− proxγf (x)
)> ( x̃

γ̃
− x
γ
− 1

2

(1
γ̃
− 1
γ

)(
proxγ̃f (x̃) + proxγf (x)

))
>
( 1

2γ̃ + 1
2γ

)∥∥∥(proxγ̃f (x̃)− proxγf (x)
)∥∥∥2

2
(8.39)

Proof of Lemma 28 : the subdifferential of a proper convex function is a monotone operator,
thus: (

proxγ̃f (x̃)− proxγf (x)
)> (

∂f(proxγ̃f (x̃))− ∂f(proxγf (x))
)
> 0 (8.40)

additionally, proxγf (x) = (Id + γ∂f)−1 (x), hence:

∂f(proxγ̃f (x̃))− ∂f(proxγf (x)) =
( x̃
γ̃
− x
γ
− 1
γ̃

proxγ̃(x̃) + 1
γ

proxγf (x)
)

= x̃
γ̃
− x
γ
− 1
γ̃

proxγ̃(x̃) + 1
γ

proxγf (x)− 1
2

(1
γ̃
− 1
γ

)(
proxγ̃f (x̃) + proxγf (x)

)
+ 1

2

(1
γ̃
− 1
γ

)(
proxγ̃f (x̃) + proxγf (x)

)
=
( x̃
γ̃
− x
γ
− 1

2

(1
γ̃
− 1
γ

)(
proxγ̃f (x̃) + proxγf (x)

))
−
( 1

2γ̃ + 1
2γ

)(
proxγ̃f (x̃)− proxγf (x)

)
(8.41)

which gives the desired inequality.

Useful concentration of measure elements

We begin by reminding the Gaussian-Poincaré inequality, see e.g. [47].
Proposition 7. (Gaussian Poincaré inequality)
Let g ∈ Rn be a N (0, In) random vector. Then for any continuous, weakly differentiable ϕ, there

exists a constant c such that:
Var[ϕ(g)] 6 c E

[
‖∇ϕ(g)‖22

]
(8.42)

We now use this previous result to show Gaussian concentration of Moreau envelopes of appro-
priately scaled convex functions.
Lemma 29. (Gaussian concentration of Moreau envelopes)
Consider a proper, convex function f : Rn → R verifying the scaling conditions of Assumptions 8.1

and let g ∈ Rn be a standard normal random vector. Then, for any parameter τ > 0 and any ε > 0,
there exists a constant c such that the following holds:

P
(∣∣∣∣ 1nMτf(.)(g)− E

[ 1
n
Mτf(.)(g)

]∣∣∣∣ > ε

)
6

c

nτ2ε2
(8.43)
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Proof of Lemma 29:

We start by showing that the Moreau envelope of a proper, convex function f : Rn → R veri-
fying the scaling conditions of Assumptions 8.1 is integrable with respect to the Gaussian measure.
Using the convexity of the optimization problem defining the Moreau envelope, and the fact that f
is proper, there exists z0 ∈ Rn and a finite constant K such that :

1
n
Mτf(.)(g) 6 1

n
f(z0) + 1

2nτ ‖z0 − g‖22

6 K + 1
2nτ ‖z0 − g‖22 (8.44)

where the second line is integrable under a multivariate Gaussian measure. Then, using Proposition
7, we get:

Var
[ 1
n
Mτf(.)(g)

]
6

c

n2E
[∥∥∥∇zMτf(.)(g)

∥∥∥2

2

]
(8.45)

= c

n2E
[∥∥∥∥1
τ

(
z− proxτf (g)

)∥∥∥∥2

2

]
(8.46)

Using Proposition 12.27 and Corollary 4.3 from [25], g → z − proxτf (g) is firmly non-expansive
and: ∥∥∥g− proxτf (g)

∥∥∥2

2
6 〈g|g− proxτf (g)〉 which implies (8.47)∥∥∥g− proxτf (g)

∥∥∥2

2
6 ‖g‖22 using the Cauchy-Schwarz inequality (8.48)

then

Var
[ 1
n
Mτf(.)(g)

]
6

c

n2τ2E
[
‖g‖22

]
= c

nτ2 (8.49)

Chebyshev’s inequality then gives, for any ε > 0:

P
(∣∣∣∣ 1nMτf(.)(g)− E

[ 1
n
Mτf(.)(g)

]∣∣∣∣ > ε

)
6

c

nτ2ε2
(8.50)

Gaussian concentration of pseudo-Lipschitz functions of finite order can also be proven using the
Gaussian Poincaré inequality to yield a bound similar to the one obtained for Moreau envelopes.
We thus give the result without proof:

Lemma 30. (Concentration of pseudo-Lipschitz functions) Consider a pseudo-Lipschitz function
of finite order k, f : Rn → R. Then for any vector g ∼ N (0, In) and any ε > 0, there exists a
constant C(k) > 0 such that

P
(∣∣∣∣f( g√

n
)− E

[
f( g√

n
)
]∣∣∣∣ > ε

)
6
L2(k)C(k)

nε2
(8.51)

We now cite an exponential concentration lemma for separable, pseudo-Lipschitz functions of
order 2, taken from [180].
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Lemma 31. (Lemma B.5 from [180]) Consider a separable, pseudo-Lipschitz function of order 2,
f : Rn → R. Then for any vector g ∼ N (0, In) and any ε > 0, there exists constants C, c, c′ > 0
such that

P
(∣∣∣∣ 1nf(g)− E

[ 1
n
f(g)

]∣∣∣∣ > c′ε

)
6 Ce−cnε

2 (8.52)

where it is understood that f(g) = ∑n
i=1 f(gi).

8.2.2 Determining a candidate primary problem, auxiliary problem and its so-
lution.

We start with a reformulation of the problem (7.2-7.3) in order to obtain an acceptable primary
problem in the framework of Theorem 16. Partitioning the Gaussian distribution, we can rewrite
the matrices U and V in the following way, introducing the standard normal vector:[

a
b

]
∈ Rp+d ∼ N (0, Ip+d) (8.53)

We can then rewrite the vectors u,v and matrices U,V as:

u = Ψ1/2a, U = AΨ1/2 (8.54)

v = Φ>Ψ−1/2a +
(
Ω− Φ>Ψ−1Φ

)1/2
b, V = AΨ−1/2Φ +B

(
Ω− Φ>Ψ−1Φ

)1/2
(8.55)

where the matrices A and B have independent standard normal entries and are independent of θ0.
The learning problem then becomes equivalent to :

Generate labels according to : y = f0

(
1
√
p
AΨ1/2θ0

)
(8.56)

Learn according to : arg min
w

g

( 1√
d

(
AΨ−1/2Φ +B

(
Ω− Φ>Ψ−1Φ

)1/2
)

w,y
)

+ F(w) (8.57)

We are then interested in the optimal cost of the following problem

min
w

1
d

[
g

( 1√
d

(
AΨ−1/2Φ +B

(
Ω− Φ>Ψ−1Φ

)1/2
)

w,y
)

+ F(w)
]

(8.58)

Introducing the auxiliary variable z:

min
w

g

( 1√
d

(
AΨ−1/2Φ +B

(
Ω− Φ>Ψ−1Φ

)1/2
)

w,y
)

+ F(w) (8.59)

⇐⇒ min
w,z

g (z,y) + F(w)

s.t. z = 1√
d

(
AΨ−1/2Φ +B

(
Ω− Φ>Ψ−1Φ

)1/2
)

w (8.60)

Introducing the corresponding Lagrange multiplier λ ∈ Rn and using strong duality, the problem is
equivalent to :

min
w,z

max
λ
λ>

1√
d

(
AΨ−1/2Φ +B

(
Ω− Φ>Ψ−1Φ

)1/2
)

w− λ>z + g(z,y) + F(w) (8.61)
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In the remainder of the proof, the preceding cost function will be denoted

C(w, z) = max
λ
λ>

1√
d

(
AΨ−1/2Φ +B

(
Ω− Φ>Ψ−1Φ

)1/2
)

w− λ>z + g(z,y) + F(w) (8.62)

such that the problem reads minw,z C(w, z). Theorem 16 requires working with compact feasibility
sets. Adopting similar approaches to the ones from [281, 76], the next lemma shows that the
optimization problem (8.61) can be equivalently recast as one over compact sets.

Lemma 32. (Compactness of feasibility set) Let w∗, z∗,λ∗ be optimal in (8.61). Then there exists
positive constants Cw, Cz and Cλ such that

P
(
‖w∗‖2 6 Cw

√
d
)

P−−−→
d→∞

1, P
(
‖z∗‖2 6 Cz

√
n
) P−−−→
n→∞

1, P
(
‖λ∗‖2 6 Cλ

√
n
) P−−−→
n→∞

1 (8.63)

Proof of Lemma 32: consider the initial minimisation problem:

ŵ = arg min
w∈Rd

g

( 1√
d
Vw,y

)
+ F(w) (8.64)

From assumption (A3), the cost function g+F is coercive, proper and lower semi-continuous. Since
it is proper, there exists w0 ∈ Rd such that g

(
1√
d
Vw,y

)
+ F(w) ∈ R. The coercivity implies that

there exists η ∈]0,+∞[ such that, for every w ∈ Rd satisfying ‖w−w0‖ > η, g
(

1√
d
Vw,y

)
+F(w) >

g
(

1√
d
Vw0,y

)
+ F(w0). Let S = {w ∈ Rd|‖w−w0‖ 6 η}. Then S ∩ Rd 6= ∅ and S is compact.

Then, there exists w∗ ∈ S such that g
(

1√
d
Vw∗,y

)
+ F(w∗) = infw∈S g

(
1√
d
Vw,y

)
+ F(w) 6

g
(

1√
d
Vw0,y

)
+ f(w0). Thus g

(
1√
d
Vw∗,y

)
+ F(w∗) ∈ infw∈Rd g

(
1√
d
Vw,y

)
+ F(w) and the set

of minimisers is bounded. Closure is immediately checked by considering a sequence of minimisers
converging to w∗.
We conclude that the set of minimisers of problem (8.64) is a non-empy compact set. Then there
exists a constant Cw independent of the dimension d, such that:

‖w‖2 6 Cw
√
d (8.65)

Now consider the equivalent formulation of problem (8.64):

min
w,z

max
λ
λ>

1√
d
Vw− λ>z + g(z,y) + F(w) (8.66)

Its optimality condition reads :

∇λ : 1√
d
Vw = z, ∇z : λ ∈ ∂g(z,y), ∇w : 1√

d
V>λ ∈ ∂F(w) (8.67)

The optimality condition in λ gives:

‖z‖2 6
∥∥∥∥ 1√

d
V
∥∥∥∥
op

‖w‖2

6
∥∥∥∥ 1√

d

(
AΨ−1/2Φ +B

(
Ω− Φ>Ψ−1Φ

)1/2
)∥∥∥∥

op

‖w‖2

6

[∥∥∥Ψ−1/2Φ
∥∥∥
op

∥∥∥∥ 1√
d
A

∥∥∥∥
op

+
∥∥∥∥(Ω− Φ>Ψ−1Φ

)1/2
∥∥∥∥
op

∥∥∥∥ 1√
d
B

∥∥∥∥
op

]
‖w‖2 (8.68)
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According to assumption (A2), the operator norms of the matrices involving the covariance matrices
are bounded with high probability and using known results on random matrices, see e.g. [287], the
operator norms of 1√

d
A and 1√

d
B are bounded by finite constants with high probability when the

dimensions go to infinity. Thus there exists a constant Cz also independent of d such that:

P
(
‖z‖2 6 CZ

√
n
) P−−−→
n→∞

1 (8.69)

Finally, the scaling condition from assumption (A3) directly shows that there exists a constant Cλ
such that

P
(
‖λ‖2 6 Cλ

√
n
) P−−−→
n→∞

1 (8.70)

This concludes the proof of Lemma 32.

Defining the sets Sw = {w ∈ Rd|‖w‖2 6 Cw
√
d},Sz = {z ∈ Rn|‖z‖2 6 Cz

√
n} and Sλ = {λ ∈

Rn|‖λ‖2 6 Cλ
√
n}, the optimization problem can now be reduced to:

min
w∈Sw,z∈Sz

max
λ∈Sλ

λ>
1√
d

(
AΨ−1/2Φ +B

(
Ω− Φ>Ψ−1Φ

)1/2
)

w− λ>z + g(z,y) + F(w) (8.71)

The rest of this section can then be summarized by the following lemma, the proof of which shows
how to find an acceptable (PO) for problem (8.71), the corresponding (AO) and how to reduce
the (AO) to a scalar optimization problem. At this point we will assume the teacher vector θ0 is
deterministic, and relax this assumption in paragraph 8.2.5. For this reason we do not add it to the
initial list of assumptions in section 8.1.

Lemma 33. (Scalar equivalent problem) In the framework of Theorem 16, acceptable (AO)s of
problem (8.71) can be reduced to the following scalar optimization problems

For θ0 /∈ Ker(Φ>) : max
κ,ν,τ2

min
m,η,τ1

En(τ1, τ2, κ, η, ν,m) (8.72)

For θ0 ∈ Ker(Φ>) : max
κ,τ2

min
η,τ1
E0
n(τ1, τ2, κ, η) (8.73)

where

En(τ1, τ2, κ, η, ν,m) = κτ1
2 −

ητ2
2 +mν

√
γ − τ2

2η
m2

ρ

− η

2τ2d
(νv + κΩ1/2g)>Ω−1(νv + κΩ1/2g)− κg>

(
Σ1/2 − Ω1/2

) m√γ
‖ṽ‖22

v

+ 1
d
M τ1

κ
g(.,y)

(
m
√
ρ
s + ηh

)
+ 1
d
M η

τ2
F(Ω−1/2.)

(
η

τ2

(
νΩ−1/2ṽ + κg

))
, (8.74)

E0
n(τ1, τ2, κ, ν) = −ητ2

2 + κτ1
2 + 1

d
M τ1

κ
g(.,y)(ηh) + 1

d
M η

τ2
f(Ω−1/2.)(

η

τ2
κg)− η

2τ2d
κ2g>g (8.75)

and
Σ = Ω− ṽṽT

ρp
ṽ = ΦTθ0 ρ = 1

p
θ>0 Ψθ0 (8.76)

Proof of Lemma 33: We need to find an i.i.d. Gaussian matrix independent from the rest of
the problem in order to use Theorem 16. We thus decompose the mixing matrix A by taking
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conditional expectations w.r.t. y, which amounts to conditioning on a linear subset of the Gaussian
space generated by A. Dropping the feasibility sets for confort of notation in the following lines:

min
w,z

max
λ
λ>

1√
d

(
(E [A|y] +A− E [A|y]) Ψ−1/2Φ +B

(
Ω− Φ>Ψ−1Φ

)1/2
)

w

− λ>z + g(z,y) + F(w) (8.77)

⇐⇒ min
w,z

max
λ
λ>

1√
d

((
E
[
A|AΨ1/2θ0

]
+A− E

[
A|AΨ1/2θ0

])
Ψ−1/2Φ

+B
(
Ω− Φ>Ψ−1Φ

)1/2
)

w− λ>z + g(z,y) + F(w) (8.78)

Conditioning in Gaussian spaces amounts to doing orthogonal projections. Denoting θ̃0 = Ψ1/2θ0
and Ã a copy of A independent of y, the minimisation problem then becomes:

min
w,z

max
λ
λ>

1√
d

((
APθ̃0

+ ÃP⊥
θ̃0

)
Ψ−1/2Φ +B

(
Ω− Φ>Ψ−1Φ

)1/2
)

w− λ>z + g(z,y) + F(w)

(8.79)

⇐⇒ min
w,z

max
λ
λ>

1√
d
APθ̃0

Ψ−1/2Φw + λ> 1√
d
ÃP⊥

θ̃0
Ψ−1/2Φw + λ> 1√

d
B
(
Ω− Φ>Ψ−1Φ

)1/2
w

− λ>z + g(z,y) + F(w) (8.80)

⇐⇒ min
w,z

max
λ
λ>

1√
d
s θ̃

>
0∥∥∥θ̃0
∥∥∥

2

Ψ−1/2Φw + λ> 1√
d
ÃP⊥

θ̃0
Ψ−1/2Φw + λ> 1√

d
B
(
Ω− Φ>Ψ−1Φ

)1/2
w

− λ>z + g(z,y) + F(w) (8.81)

where we used Pθ̃0
= θ̃0θ̃

>
0

‖θ̃0‖2
2

and s = A θ̃0
‖θ̃0‖2

. Knowing that Ã, B are independent standard Gaussian
matrices, and independent from A,y, f0, we can rewrite the problem as :

min
w,z

max
λ
λ>

1√
d
s θ>0∥∥Ψ1/2θ0

∥∥Φw + λ> 1√
d
ZΣ1/2w− λ>z + g(z,y) + F(w) (8.82)

where Σ = Φ>Ψ−1/2P⊥
θ̃0

Ψ−1/2Φ + Ω − Φ>Ψ−1Φ = Ω − Φ>Ψ−1/2Pθ̃0
Ψ−1/2Φ, and Z is a standard

Gaussian matrix independent of A,y, f0. Recall ρ = 1
pθ
>
0 Ψθ0 from the main text. Replacing with

the expression of θ̃0 and letting ṽ = Φ>θ0, we have

Σ = Ω− φ>Ψ−1/2θ̃0θ̃0
>Ψ−1/2Φ 1∥∥∥θ̃0

∥∥∥2

2

= Ω− φ>θ0θ
>
0 Φ

θ>0 Ψθ0
(8.83)

= Ω− ṽṽ>

pρ
(8.84)

The problem then becomes

min
w,z

max
λ
λ>

1√
dp

s ṽ>
√
ρ
w + λ> 1√

d
ZΣ1/2w− λ>z + g(z,y) + F(w) (8.85)

Two cases must now be considered, θ0 /∈ Ker(φ>) and θ0 ∈ Ker(φ>). Another possible case is
Φ = 0p×d, however it leads to the same steps as the case θ0 ∈ Ker(Φ>).
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Case 1: θ0 /∈ Ker(Φ>)

It is tempting to invert the matrix Σ1/2 to make the change of variable w⊥ = Σ1/2w and con-
tinue the calculation. However there is no guarantee that Σ is invertible : it is only semi-positive
definite. Taking identities everywhere gives for examples P⊥

θ̃0
which is non-invertible. We thus

introduce an additional variable:

min
w,z,p

max
λ,µ

λ>
1√
dp

s ṽ>
√
ρ
w + λ> 1√

d
Zp− λ>z + g(z,y) + F(w) + µ>

(
Σ1/2w− p

)
(8.86)

Here the minimisation on f and g is linked by the bilinear form λ>sṽ>w. We wish to separate
them in order for the Moreau envelopes to appear later on in simple fashion. To do so, we introduce
the orthogonal decomposition of w on the direction of ṽ:

w =
(
Pṽ + P⊥ṽ

)
w = ṽ>w

‖ṽ‖22
ṽ + P⊥ṽ w

= ṽ>w
‖ṽ‖22

ṽ + w⊥ where w⊥ ⊥ ṽ

= m
√
dp

‖ṽ‖22
ṽ + w⊥ where m = 1√

dp
ṽ>w (8.87)

where the parameter m corresponds to the one defined in (8.5). This gives the following, after
introducing the scalar Lagrange multiplier ν ∈ R to enforce the constraint w⊥ ⊥ ṽ. Note that
several methods can be used to express the orthogonality constraint, as in e.g. [76], but the one
chosen here allows to complete the proof and match the replica prediction. Reintroducing the
normalization, we then have the equivalent form for (8.58):

min
m,w⊥,z,p

max
λ,µ,ν

1
d

[
λ>

m
√
ρ
s + λ> 1√

d
Zm− λ>z + g(z,y) + F

(
m
√
dp

‖ṽ‖22
ṽ + w⊥

)

+ µ>
(

Σ1/2
(
m
√
dp

‖ṽ‖22
ṽ + w⊥

)
− p

)
− νṽ>w⊥

]
(8.88)

A follow-up of the previous equations shows that the feasibility set now reads :

Sm,w⊥,z,p,λ,µ,ν =
{
m ∈ R,w⊥ ∈ Rd−1, z ∈ Rn,p ∈ Rd,λ ∈ Rn,µ ∈ Rd, ν ∈ R |√
m2 + ‖w⊥‖

2
2

d
6 Cw, ‖z‖2 6 Cz

√
n, ‖p‖2 6 σmax(Σ1/2)Cw

√
d, ‖λ‖2 6 Cλ

√
n

}
(8.89)

where the boundedness of ‖p‖2 follows immediately from the assumptions on the covariance ma-
trices and Lemma 32. We denote Sp = {p ∈ Rd|‖p‖2 6 Cp} for some constant Cp > σmax(Σ1/2)Cw.

The set Sp × Sλ is compact and the matrix Z is independent of all other random quantities of
the problem, thus problem (8.88) is an acceptable (PO). We can now write the auxiliary optimiza-
tion problem (AO) corresponding to the primary one (8.88), dropping the feasibility sets again for
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convenience:

min
m,w⊥,z,p

max
λ,µ,ν

1
d

[
λ>

m
√
ρ
s + 1√

d
‖λ‖2g

>p + 1√
d
‖p‖2h

>λ− λ>z + g(z,y) + F
(
m
√
dp

‖ṽ‖22
ṽ + w⊥

)

+ µ>
(

Σ1/2
(
m
√
dp

‖ṽ‖22
ṽ + w⊥

)
− p

)
− νṽ>w⊥

]
(8.90)

We now turn to the simplification of this problem.

The variable λ only appears in linear terms, we can thus directly optimize over its direction,
introducing the positive scalar variable κ = ‖λ‖2/

√
d:

min
m,w⊥,z,p

max
κ,µ,ν

1
d

[
κg>p + κ

∥∥∥∥∥ m√ρ√ds + ‖p‖2h−
√
dz
∥∥∥∥∥

2
+ g(z,y) + F

(
m
√
dp

‖ṽ‖22
ṽ + w⊥

)

+ µ>
(

Σ1/2
(
m
√
dp

‖ṽ‖22
ṽ + w⊥

)
− p

)
− νṽ>w⊥

]
(8.91)

The previous expression may not be convex-concave because of the term ‖p‖2h. However, it was
shown in [281] that the order of the min and max can still be inverted in this case, because of the
convexity of the original problem. As the proof would be very similar, we do not reproduce it.
Inverting the max-min order and performing the linear optimization on p with η = ‖p‖2/

√
d:

max
κ,µ,ν

min
m,w⊥,z,η

{
− η√

d
‖µ+ κg‖2 + κ√

d

∥∥∥∥∥ m√ρs + ηh− z
∥∥∥∥∥

2
+

+ 1
d

[
g(z,y) + F

(
m
√
dp

‖ṽ‖22
ṽ + w⊥

)
+ µ>Σ1/2

(
m
√
dp

‖ṽ‖22
ṽ + w⊥

)
− νṽ>w⊥

]}
(8.92)

using the following representation of the norm, as in [281], for any vector t, ‖t‖2 = minτ>0
τ
2 + ‖t‖2

2
2τ :

max
κ,µ,ν,τ2

min
m,w⊥,z,η,τ1

{
κτ1
2 −

ητ2
2 −

η

2τ2d
‖µ+ κg‖22 + κ

2τ1d

∥∥∥∥∥ m√ρs + ηh− z
∥∥∥∥∥

2

2

+ 1
d

[
g(z,y) + F

(
m
√
dp

‖ṽ‖22
ṽ + w⊥

)
+ µ>Σ1/2

(
m
√
dp

‖ṽ‖22
ṽ + w⊥

)
− νṽ>w⊥

]}
(8.93)

performing the minimisation over z and recognizing the Moreau envelope of g(.,y):

max
κ,µ,ν,τ2

min
m,w⊥,η,τ1

{
κτ1
2 −

ητ2
2 + 1

d
M τ1

κ
g(.,y)

(
m
√
ρ
s + βh

)
− η

2τ2d
‖µ+ κg‖22

+ 1
d

[
F
(
m
√
dp

‖ṽ‖22
ṽ + w⊥

)
+ µ>Σ1/2

(
m
√
dp

‖ṽ‖22
ṽ + w⊥

)
− νṽ>w⊥

]}
(8.94)
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At this point we have a convex-concave problem. Inverting the min-max order, µ appears in a well
defined strictly convex least-square problem.

max
κ,ν,τ2

min
m,w⊥,η,τ1

κτ1
2 −

ητ2
2 + 1

d
M τ1

κ
g(.,y)

(
m
√
ρ
s + ηh

)
− ν

d
ṽ>w⊥ + 1

d
F
(
m
√
dp

‖ṽ‖22
ṽ + w⊥

)

+ 1
d

max
µ

{
− η

2τ2
‖µ+ κg‖22 + µ>Σ1/2

(
m
√
dp

‖ṽ‖22
ṽ + w⊥

)}
(8.95)

Solving it:

max
µ

{
− η

2τ2
‖µ+ κg‖22 + µ>Σ1/2

(
m
√
dp

‖ṽ‖22
ṽ + w⊥

)}

µ∗ = τ2
η

Σ1/2
(
m
√
dp

‖ṽ‖22
ṽ + w⊥

)
− κg

with optimal cost τ2
2η

∥∥∥∥∥Σ1/2
(
m
√
dp

‖ṽ‖22
ṽ + w⊥

)∥∥∥∥∥
2

2
− κg>Σ1/2

(
m
√
dp

‖ṽ‖22
ṽ + w⊥

)
(8.96)

remembering that Σ = Ω − ṽṽ>/(pρ) and w⊥ ⊥ ṽ, the optimal cost of this least-square problem
simplifies to:

c∗ = τ2
2η

∥∥∥∥∥Ω1/2
(
m
√
dp

‖ṽ‖22
ṽ + w⊥

)∥∥∥∥∥
2

2
− m2

ρ
d

− κg>Σ1/2
(
m
√
dp

‖ṽ‖22
ṽ + w⊥

)
(8.97)

The (AO) then reads :

max
κ,ν,τ2

min
m,w⊥,η,τ1

{
κτ1
2 −

ητ2
2 + 1

d
M τ1

κ
g(.,y)

(
m
√
ρ
s + ηh

)
− τ2

2η
m2

ρ
− ν

d
ṽ>w⊥

+ 1
d
F
(
m
√
dp

‖ṽ‖22
ṽ + w⊥

)
+ τ2

2ηd

∥∥∥∥∥Ω1/2
(
m
√
dp

‖ṽ‖22
ṽ + w⊥

)∥∥∥∥∥
2

2
− κ

d
g>Σ1/2

(
m
√
dp

‖ṽ‖22
ṽ + w⊥

)}
(8.98)

We now need to solve in w⊥. To do so, we can replace F with its convex conjugate and solve
the least-square problem in w⊥. This will lead to a Moreau envelope of F∗ in the introduced dual
variable, which can be linked to the Moreau envelope of F by Moreau decomposition. Intuitively, it
is natural to think that the corresponding primal variable will be m

√
dp

‖ṽ‖2
2

ṽ+w⊥ = w for any feasible
m,w⊥. However, we would like to have an explicit follow-up of the variables we optimize on, as we
had for the Moreau envelpe of g which is defined with z, so we prefer to introduce a slack variable
w′ = m

√
dp

‖ṽ‖2
2

ṽ+w⊥ with corresponding dual parameter η to show that the (AO) can be reformulated
in terms of the original variable w. Note that the feasibility set on w′ is almost surely compact.

max
κ,ν,τ2,η

min
m,w⊥,w′,η,τ1

κτ1
2 −

ητ2
2 + 1

d
M τ1

κ
g(.,y)

(
m
√
ρ
s + ηh

)
+ 1
d
F(w′)− 1

d
ηTw′ − τ2

2η
m2

ρ

− ν

d
ṽ>w⊥ + τ2

2ηd

∥∥∥∥∥Ω1/2
(
m
√
dp

‖ṽ‖22
ṽ + w⊥

)∥∥∥∥∥
2

2
− κ

d
g>Σ1/2

(
m
√
dp

‖ṽ‖22
ṽ + w⊥

)
+ 1
d
η>

(
m
√
dp

‖ṽ‖22
ṽ + w⊥

)
(8.99)
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Isolating the terms depending on w⊥, we get a strictly convex least-square problem, remembering
that Ω ∈ S++

d :

max
κ,ν,τ2,η

min
m,w⊥,w′,η,τ1

κτ1
2 −

ητ2
2 + 1

d
M τ1

κ
g(.,y)

(
m
√
ρ
s + ηh

)
+ 1
d
F(w′)− 1

d
ηTw′ − τ2

2η
m2

ρ
+ η>m

√
κ2

‖ṽ‖22
ṽ

− κg>Σ1/2m
√
γ

‖ṽ‖22
ṽ− ν

d
ṽ>w⊥ + τ2

2ηd

∥∥∥∥∥Ω1/2
(
m
√
dp

‖ṽ‖22
ṽ + w⊥

)∥∥∥∥∥
2

2
− κ

d
g>Σ1/2w⊥ + 1

d
η>w⊥ (8.100)

max
κ,ν,τ2,η

min
m,w′,η,τ1

κτ1
2 −

ητ2
2 + 1

d
M τ1

κ
g(.,y)

(
m
√
ρ
s + ηh

)
+ 1
d
F(w′)− 1

d
ηTw′ − τ2

2η
m2

ρ
+ η>m

√
κ2

‖ṽ‖22
ṽ

− κg>Σ1/2m
√
γ

‖ṽ‖22
ṽ + 1

d

[
min
w⊥

τ2
2η

∥∥∥∥∥Ω1/2
(
m
√
dp

‖ṽ‖22
ṽ + w⊥

)∥∥∥∥∥
2

2
−w>⊥

(
κΣ1/2g− η + νṽ

) ]
(8.101)

The quantity g>Σ1/2w⊥ is a Gaussian random variable with variance
∥∥∥Σ1/2w⊥

∥∥∥2

2
= w>⊥(Ω −

ṽṽ>/(pρ))w⊥ = w⊥Ωw⊥ =
∥∥∥Ω1/2w⊥

∥∥∥2

2
using the expression of Σ and the orthogonality of w⊥ with

respect to ṽ. We can thus change Σ1/2 for Ω1/2 in front of w⊥ combined with g. The least-square
problem, its solution and optimal cost then read:

min
w⊥

τ2
2η

∥∥∥∥∥Ω1/2
(
m
√
dp

‖ṽ‖22
ṽ + w⊥

)∥∥∥∥∥
2

2
−w>⊥

(
κΩ1/2g− η + νṽ

)
(8.102)

w∗⊥ = η

τ2
Ω−1

(
κΩ1/2g− η + νv

)
− m
√
dp

‖ṽ‖22
ṽ (8.103)

with optimal cost − η

2τ2

(
κΩ1/2g− η + νṽ

)>
Ω−1

(
κΩ1/2g− η + νṽ

)
+ m
√
dp

‖ṽ‖22
ṽ>
(
κΩ1/2g− η + νṽ

)
(8.104)

replacing in the (AO) and simplifying :

⇐⇒ max
κ,ν,τ2,η

min
m,w′,η,τ1

κτ1
2 −

ητ2
2 + 1

d
M τ1

κ
g(.,y)

(
m
√
ρ
s + ηh

)
+ 1
d
F(w′)− 1

d
ηTw′ − τ2

2η
m2

ρ

− κg>
(
Σ1/2 − Ω1/2

) m√γ
‖ṽ‖22

ṽ− η

2τ2d

(
κΩ1/2g− η + νṽ

)>
Ω−1

(
κΩ1/2g− η + νṽ

)
+mν

√
γ

(8.105)

Another strictly convex least-square problem appears on η, the solution and optimal value of which
read

η∗ = −τ2
η

Ωw′ + (κΩ1/2g + νṽ) (8.106)

with optimal cost τ2
2ηdw′>Ωw′ −w′>(κΩ1/2g + νṽ) (8.107)

At this point we have expressed feasible solutions of η,w⊥ as functions of the remaining variables.
For any feasible solution in those variables, w and w′ are the same. Replacing in the (AO) and a
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completion of squares leads to

max
κ,ν,τ2

min
m,η,τ1

κτ1
2 −

ητ2
2 +mν

√
γ − τ2

2η
m2

ρ
− η

2τ2d
(νṽ + κΩ1/2g)>Ω−1(νṽ + κΩ1/2g)

− κg>
(
Σ1/2 − Ω1/2

) m√γ
‖ṽ‖22

ṽ + min
w′

{
F(w′) + τ2

2η

∥∥∥∥Ω1/2w′ − η

τ2
(νΩ−1/2ṽ + κg))

∥∥∥∥2

2

}
(8.108)

Recognizing the Moreau envelope of f and introducing the variable w̃ = Ω1/2w′ = Ω1/2w, it follows:

max
κ,ν,τ2

min
m,η,τ1

κτ1
2 −

ητ2
2 +mν

√
γ − τ2

2η
m2

ρ
− η

2τ2d
(νṽ + κΩ1/2g)>Ω−1(νṽ + κΩ1/2g)

− κg>
(
Σ1/2 − Ω1/2

) m√γ
‖ṽ‖22

ṽ + 1
d
M τ1

κ
g(.,y)

(
m
√
ρ
s + ηh

)
+ 1
d
M η

τ2
F(Ω−1/2.)

(
η

τ2

(
νΩ−1/2ṽ + κg

))
(8.109)

where the Moreau envelopes of f and g are respectively defined w.r.t. the variables w′′ and z. At
this point we have reduced the initial high-dimensional minimisation problem (8.90) to a scalar
problem over six parameters. Another follow-up of the feasibility set shows that there exist positive
constants Cm, Cκ, Cη independent of n, p, d such that 0 6 κ 6 Cκ, 0 6 η 6 Cη and 0 6 m 6 Cm.

Case 2: θ0 ∈ Ker(Φ>) In this case, the min-max problem (8.85) becomes:

min
w,z

max
λ
λ>

1√
d
ZΩ1/2w− λ>z + g(z,y) + f(w) (8.110)

Since Ω is positive definite, we can define w̃ = Ω1/2w and write the equivalent problem:

min
w̃,z

max
λ
λ>

1√
d
Zw̃− λ>z + g(z,y) + f(Ω−1/2w̃) (8.111)

where the compactness of the feasibility set is preserved almost surely from the almost sure bound-
edness of the eigenvalues of Ω. We can thus write the corresponding auxiliary optimization problem,
reintroducing the normalization by d:

min
w̃,z

max
λ

1
d

[
‖λ‖2

1√
d
g>w̃ + ‖w̃‖2

1√
d
h>λ− λ>z + g(z,y) + f(Ω−1/2w̃)

]
(8.112)

introducing the convex conjugate of f with dual parameter η:

min
w̃,z

max
λ,η

1
d

[
‖λ‖2

1√
d
g>w̃ + ‖w⊥‖2

1√
d
h>λ− λ>z + g(z,y) + η>Ω−1/2w̃− f∗(η)

]
(8.113)

We then define the scalar quantities κ = ‖λ‖2√
d

and η = ‖w̃‖2√
d

and perform the linear optimization on
λ, w̃, giving the equivalent:

min
z,η>0

max
η,κ>0

− η√
d

∥∥∥κg− Ω−1/2η
∥∥∥

2
+ κ√

d
‖ηh− z‖2 + 1

d
g(z,y)− 1

d
f∗(η) (8.114)

Using the square root trick with parameters τ1, τ2:

min
τ1>0,z,η>0

max
τ2>0,η,κ>0

−ητ2
2 −

η

2τ2d

∥∥∥κg− Ω−1/2η
∥∥∥2

2
+ κτ1

2 + κ

2τ1d
‖ηh− z‖22 + 1

d
g(z,y)− 1

d
f∗(η)

(8.115)
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performing the optimizations on z,η and recognizing the Moreau envelopes, the problem becomes:

min
τ1>0,η>0

max
τ2>0,κ>0

−ητ2
2 + κτ1

2 + 1
d
M τ1

κ
g(.,y)(ηh)− 1

d
M τ2

η
f∗(Ω1/2.)(κg) (8.116)

⇐⇒ min
τ1>0,η>0

max
τ2>0,κ>0

−ητ2
2 + κτ1

2 + 1
d
M τ1

κ
g(.,y)(ηh) + 1

d
M η

τ2
f(Ω−1/2.)(

η

τ2
κg)− η

2τ2d
κ2g>g

(8.117)

This concludes the proof of Lemma 33.

8.2.3 Study of the scalar equivalent problem : geometry and asymptotics.

Here we study the geometry, solutions and asymptotics of the scalar optimization problem (8.109).
We will focus on the case θ0 /∈ Ker(Φ>) as the other case simply shows that no learning is performed
(see the remark at the end of this section). The following lemma characterizes the continuity and
geometry of the cost function En.

Lemma 34. (Geometry of En) Recall the function:

En(τ1, τ2, κ, η, ν,m) = κτ1
2 −

ητ2
2 +mν

√
γ − τ2

2η
m2

ρ
− η

2τ2d
(νṽ + κΩ1/2g)>Ω−1(νṽ + κΩ1/2g)

− κg>
(
Σ1/2 − Ω1/2

) m√γ
‖ṽ‖22

ṽ + 1
d
M τ1

κ
g(.,y)

(
m
√
ρ
s + ηh

)
+ 1
d
M η

τ2
F(Ω−1/2.)

(
η

τ2

(
νΩ−1/2ṽ + κg

))
(8.118)

Then En(τ1, τ2, κ, η, ν,m) is continuous on its domain, jointly convex in (m, η, τ1) and jointly concave
in (κ, ν, τ2).

Proof of Lemma 34 : En(τ1, τ2, κ, η, ν,m) is a linear combination of linear and quadratic terms
with Moreau envelopes, which are all continuous on their domain. Remembering the formulation

En(τ1, τ2, κ, η, ν,m) = κτ1
2 −

ητ2
2 +mν

√
γ − τ2

2η
m2

ρ
− κg>

(
Σ1/2 − Ω1/2

) m√γ
‖ṽ‖22

ṽ

+ 1
d
M τ1

κ
g(.,y)

(
m
√
ρ
s + ηh

)
− 1
d
M τ2

η
f∗(Ω1/2.)

(
Ω−1/2

(
νṽ + κΩ1/2g

))
(8.119)

and using the properties of Moreau envelopes,M τ1
κ
g(.,y)

(
m√
ρs + ηh

)
is jointly convex in (κ, τ1,m, η)

as a composition of convex functions of those arguments. The same applies for

M τ2
η
f∗(Ω1/2.)

(
Ω−1/2

(
νṽ + κΩ1/2g

))
(8.120)

jointly convex in (τ2, η, ν, κ) and its opposite is jointly concave in those parameters. The remaining
terms being linear in τ1, τ2, ν, we conclude that En(τ1, τ2, κ, η, ν,m) is jointly concave in (ν, τ2) and
convex in τ1 whatever the values of (κ, η,m). Going back to equation (8.93), we can write

En(τ1, τ2, κ, η, ν,m) = max
µ

min
z,w⊥

κτ1
2 −

ητ2
2 −

η

2τ2d
‖µ+ κg‖22 + κ

2τ1d

∥∥∥∥∥ m√ρs + ηh− z
∥∥∥∥∥

2

2

+ 1
d

[
g(z,y) + f

(
m
√
dp

‖ṽ‖22
ṽ + w⊥

)
+ µ>Σ1/2

(
m
√
dp

‖ṽ‖22
ṽ + w⊥

)
− νṽ>w⊥

]
(8.121)
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The squared term in m, η, z can be written as

κ

2τ1d

∥∥∥∥∥ m√ρs + ηh− z
∥∥∥∥∥

2

2
= τ1

κ

2d

∥∥∥∥∥ m

τ1
√
ρ
s + η

τ1
h− z

τ1

∥∥∥∥∥
2

2
(8.122)

which is the perspective function with parameter τ1 of a function jointly convex in (z,m, η). Thus
it is jointly convex in (τ1, z,m, η). Furthermore, the term f

(
m
√
dp

‖ṽ‖2
2

ṽ + w⊥
)

is a composition of
a convex function with a linear one, thus it is jointly convex in (m,w⊥). The remaining terms in
τ1, η,m are linear. Since minimisation on convex sets preserves convexity, minimizing with respect
to z,w⊥ will lead to a jointly convex function in (τ1, η,m). Similarly, the term − η

2τ2d
‖µ+ κg‖22

is jointly concave in τ2, κ,µ, and maximizing over µ will result in a jointly concave function in
(τ2, ν, κ). We conclude that En(τ1, τ2, κ, η, ν,m) is jointly convex in (τ1,m, η) and jointly concave in
(κ, ν, τ2).

The next lemma then characterizes the infinite dimensional limit of the scalar optimization problem
(8.109), along with the consistency of its optimal value.

Lemma 35. (Asymptotics of En) Recall the following quantities:

Lg(τ1, κ,m, η) = 1
n
E
[
M τ1

κ
g(.,y)

(
m
√
ρ
s + ηh

)]
where y = f0(√ρps), s ∼ N (0, In) (8.123)

LF(τ2, η, ν, κ) = 1
d
E
[
M η

τ2
F(Ω−1/2.)

(
η

τ2

(
νΩ−1/2ṽ + κg

))]
where ṽ = Φ>θ0 (8.124)

χ = 1
d
θ>0 ΦΩ−1Φ>θ0 (8.125)

ρ = 1
p
θ>0 Ψθ0 (8.126)

and the potential:

E(τ1, τ2, κ, η, ν,m) = κτ1
2 −

ητ2
2 +mν

√
γ − τ2

2η
m2

ρ
− η

2τ2
(ν2χ+ κ2) + αLg(τ1, κ,m, η) + LF(τ2, η, ν, κ)

(8.127)

Then:
max
κ,ν,τ2

min
m,η,τ1

En(τ1, τ2, κ, η, ν,m) P−−−−−−→
n,p,d→∞

max
κ,ν,τ2

min
m,η,τ1

E(τ1, τ2, κ, η, ν,m) (8.128)

and E(τ1, τ2, κ, η, ν,m) is continuously differentiable on its domain, jointly convex in (m, η, τ1) and
jointly concave in (κ, ν, τ2).

Proof of Lemma 35: The strong law of large numbers, see e.g. [88] gives 1
dg
>g a.s.−−−→

d→∞
1.

Additionally, using assumption (A2) on the summability of θ0 and (A3) on the boundedness of the
spectrum of the covariance matrices, the quantity χ = limd→∞

1
dθ
>
0 ΦΩ−1Φ>θ0 exists and is finite.

Since θ0 /∈ Ker(Φ>) and using the non-vanishing signal hypothesis, the quantity ρṽ = limd→∞
1
d ṽ
>ṽ

exists, is finite and strictly positive. Then κg>
(
Σ1/2 − Ω1/2

)
m
√
γ

‖ṽ‖2
2
v is a centered Gaussian random
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variable with variance verifying:

Var
[
κg>

(
Σ1/2 − Ω1/2

) m√γ
‖ṽ‖22

ṽ
]
6 κ2σ2

max

(
Σ1/2 − Ω1/2

) m2γ

‖ṽ‖22

= κ2σ2
max

(
Σ1/2 − Ω1/2

) m2γ

dρṽ
(8.129)

Using lemma 32, κ andm are finitely bounded independently of the dimension d. γ, σmax
(
Σ1/2 − Ω1/2

)
are finite. Thus there exists a finite constant C such that the standard deviation of

κg>
(
Σ1/2 − Ω1/2

) m√γ
‖ṽ‖22

ṽ (8.130)

is smaller than
√
C/
√
d. Then, for any ε > 0:

P
(∣∣∣∣∣κg>

(
Σ1/2 − Ω1/2

) m√γ
‖ṽ‖22

ṽ
∣∣∣∣∣ > ε

)
6 P

(
|N (0, 1)| > ε

√
d/
√
C
)

6

√
C

ε
√
d

1√
2π

exp
(
−1

2
ε2d

C

)
(8.131)

using the Gaussian tail. The Borel-Cantelli lemma and summability of this tail gives

κg>
(
Σ1/2 − Ω1/2

) m√γ
‖ṽ‖22

ṽ a.s.−−−→
d→∞

0 (8.132)

Concentration of the Moreau envelopes of both f and g follows directly from lemma 29.
We thus have the pointwise convergence:

En(τ1, τ2, κ, η, ν,m) P−−−−−−→
n,p,d→∞

E(τ1, τ2, κ, η, ν,m) (8.133)

Since pointwise convergence preserves convexity, E(τ1, τ2, κ, η, ν,m) is jointly convex in (m, η, τ1)
and jointly concave in (κ, ν, τ2).
Now recall the expression of E

E(τ1, τ2, κ, η, ν,m) = κτ1
2 −

ητ2
2 +mν

√
γ − τ2

2η
m2

ρ
− η

2τ2
(ν2χ+ κ2) + αLg(τ1, κ,m, η) + Lf (τ2, η, ν, κ)

(8.134)

The feasibility sets of κ, η,m are compact from Lemma 32 and the subsequent follow-up of the
feasibility sets. Then, using Proposition 12.32 from [25], for fixed (τ2, κ, η, ν,m), we have:

lim
τ1→+∞

1
d
M τ1

κ
g(.,y)

(
m
√
ρ
s + ηh

)
= 1
d

inf
z∈Rn

g(z,y) (8.135)

which is a finite quantity since g(.,y) is a proper, convex function verifying the scaling assumptions
8.1. Then, since κ > 0, we have:

lim
τ1→+∞

En(τ1, τ2, κ, η, ν,m) = +∞ (8.136)
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Similarly, for fixed (τ1, κ, η, ν,m) and noting that composing f with the positive definite matrix
Ω−1/2 does not change its convexity, or it being proper and lower semi-continuous, we get:

lim
τ2→+∞

1
d
M η

τ2
f(Ω−1/2.)

(
η

τ2

(
νΩ−1/2ṽ + κg

))
= 1
d
f(0d) (8.137)

which is also a bounded quantity from the scaling assumptions made on f . Since β > 0, we then
have:

lim
τ2→+∞

En(τ1, τ2, κ, η, ν,m) = −∞ (8.138)

Finally, the limit limν→+∞ En(τ1, τ2, κ, η, ν,m) needs to be checked for both +∞ and −∞ since
there is no restriction on the sign of ν. From the definition of the Moreau envelope, we can write:

1
d
M η

τ2
f(Ω−1/2.)

(
η

τ2

(
νΩ−1/2ṽ + κg

))
6

1
d
f(0d) + τ2

2η

∥∥∥∥ η

dτ2

(
νΩ−1/2ṽ + κg

)∥∥∥∥2

2
(8.139)

Thus, for any fixed (τ1, τ2,m, κ, η):

En(τ1, τ2, κ, η, ν,m) 6 κτ1
2 −

ητ2
2 +mν

√
γ − κg>

(
Σ1/2 − Ω1/2

) m√γ
‖ṽ‖22

v + 1
d
M τ1

κ
g(.,y)

(
m
√
ρ
s + ηh

)

+ 1
d
f(0d) (8.140)

which immediately gives limν→−∞ En = −∞. Turning to the other limit, remembering that En is
continuously differentiable on its domain, we have:

∂En
∂ν

(τ1, τ2, κ, η, ν,m) = m
√
γ − 1

d
ṽ>Ω−1/2prox η

τ2
f(Ω−1/2.)

(
η

τ2

(
νΩ−1/2ṽ + κg

))
(8.141)

Thus limν→+∞
∂En(τ1,τ2,κ,η,ν,m)

∂ν → −∞. Since En is continuously differentiable in ν on [0,+∞[, and
from the short argument led above, we have shown

lim
|ν|→+∞

En(τ1, τ2, κ, η, ν,m) = −∞ (8.142)

Using similar arguments as in the proof of Lemma 32, we can now reduce the feasibility set of
τ1, τ2, ν to a compact one. Then, using the fact that convergence of convex functions on compact
sets implies uniform convergence [6], we obtain

max
κ,ν,τ2

min
m,η,τ1

En(τ1, τ2, κ, η, ν,m) P−−−−−−−→
n,p,d→+∞

max
κ,ν,τ2

min
m,η,τ1

E(τ1, τ2, κ, η, ν,m) (8.143)

which is the desired result.

At this point, it is necessary to characterize the set of solutions of the asymptotic minimisation
problem (8.12). We start with the explicit form of the optimality condition associated to any
solution.
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Lemma 36. (Fixed point equations) The zero-gradient condition of the optimization problem (8.12)
prescribes the following set of fixed point equations for any feasible solution:

∂κ : τ1 = 1
d
E
[
g>prox η

τ2
f(Ω−1/2.)

(
η

τ2

(
νΩ−1/2ṽ + κg

))]
(8.144)

∂ν : m√γ = 1
d
E
[
ṽ>Ω−1/2prox η

τ2
f(Ω−1/2.)

(
η

τ2

(
νΩ−1/2ṽ + κg

))]
(8.145)

∂η : τ2 = α
κ

τ1
η − κα

τ1n
E
[
h>prox τ1

κ
g(.,y)

(
m
√
ρ
s + ηh

)]
(8.146)

∂τ2 : 1
2d
τ2
η
E
[∥∥∥∥ ητ2

(νΩ−1/2ṽ + κg)− prox η
τ2
f(Ω−1/2.)

(
η

τ2

(
νΩ−1/2ṽ + κg

))∥∥∥∥2

2

]
=

η

2τ2
(ν2χ+ κ2)−mν√γ − κτ1 + ητ2

2 + τ2
2η
m2

ρ
(8.147)

∂m : ν√γ = α
κ

nτ1
E
[
(m
ηρ

h− s
√
ρ

)>prox τ1
κ
g(.,y)

(
m
√
ρ
s + ηh

)]
(8.148)

∂τ1 : τ
2
1
2 = 1

2α
1
n
E

∥∥∥∥∥ m√ρs + ηh− prox τ1
κ
g(.,y)

(
m
√
ρ
s + ηh

)∥∥∥∥∥
2

2

 (8.149)

This set of equations can be converted to the replica notations using the table (8.204).

Proof of Lemma 36: Using arguments similar to the ones in the proof of Lemma 29, Moreau en-
velopes and their derivatives verify the necessary conditions of the dominated convergence theorem.
Additionally, uniform convergence of the sequence of derivatives can be verified in a straightforward
manner as all involved functions are firmly non-expansive and integrated w.r.t. Gaussian measures.
We can therefore invert the limits and derivatives, and invert expectations and derivatives. We can
now write explicitly the optimality condition for the scalar problem (8.127), using the expressions
for derivatives of Moreau envelopes from Appendix 8.2.1. Some algebra and replacing with pre-
scriptions obtained from each partial derivative leads to the set of equations above.

Remark : Here we see that the potential function (8.127) can be further studied using the fixed
point equations (36) and the relation (8.24). For any optimal (τ1, τ2, κ, η, ν,m), it holds that

E(τ1, τ2, κ, η, ν,m)

= α
1
n
E
[
g

(
prox τ1

κ
g(.,y)

(
m
√
ρ
s + ηh

)
,y
)]

+ 1
d
E
[
f

(
Ω−1/2prox η

τ2
f(Ω−1/2.)

(
η

τ2

(
νΩ−1/2ṽ + κg

)))]
(8.150)

Finally, we give a strict-convexity and strict-concavity property of the asymptotic potential E which
will be helpful to prove Lemma 25.

Lemma 37. (Strict convexity and strict concavity near minimisers) Consider the asymptotic poten-
tial function E(τ1, τ2, κ, η, ν,m). Then for any fixed (η,m, τ1) in their feasibility sets, the function

τ2, κ, ν → E(τ1, τ2, κ, η, ν,m) (8.151)
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is jointly strictly concave in (τ2, κ, ν).
Additionally, consider the set S∂ν,τ2

defined by:

S∂ν,τ2
=
{
τ1, τ2, κ, η, ν,m | m

√
γ = 1

d
E
[
ṽTΩ−1/2prox η

τ2
f(Ω−1/2.)

(
η

τ2

(
νΩ−1/2ṽ + κg

))]
,

1
2d

1
η
E
[∥∥∥∥prox η

τ2
f(Ω−1/2.)

(
η

τ2

(
νΩ−1/2ṽ + κg

))∥∥∥∥2

2

]
= η

2 + 1
2η
m2

ρ

}
(8.152)

then for any fixed τ2, κ, ν in S∂ν,τ2
, the function (η,m, τ1) → E(τ1, τ2, κ, η, ν,m) is jointly strictly

convex in (η,m, τ1) on S∂ν,τ2

Proof of Lemma 37: We will use the following first order characterization of strictly convex
functions: f is strictly convex ⇐⇒ 〈x − y|∇f(x) − ∇f(y)〉 > 0 ∀x 6= y ∈ dom(f). To simplify
notations, we will write, for any fixed (m, η, τ1)

(∇κ,ν,τ2E) = ((∂κE , ∂νE , ∂τ2E) (τ1, τ2, κ, η, ν,m))i (8.153)

as the i-th component of the gradient of E(τ1, τ2, κ, η, ν,m) with respect to (κ, ν, τ2) for any fixed
(m, η, τ1) in the feasibility set. Then for any distinct triplets (κ, ν, τ2), (κ̃, ν̃, τ̃2) and fixed (η,m, τ1)
in the feasibility set, determining the partial derivatives of E in similar fashion as is implied in the
proof of Lemma 36, we have:

((κ, ν, τ2)− (κ̃, ν̃, τ̃2))> (∇Eκ,ν,τ2 −∇Eκ̃,ν̃,τ̃2)

= (κ− κ̃)α 1
2τ1

1
n

(
E
[∥∥∥r1 − prox τ1

κ
g(.,y) (r1)

∥∥∥2

2
−
∥∥∥r1 − prox τ1

κ̃
g(.,y) (r1)

∥∥∥2

2

])
+
(

prox η
τ2
f(Ω−1/2.)

(
η

τ2
r2

)
− prox η

τ̃2
f(Ω−1/2.)

(
η

τ̃2
r̃2

))> (
r̃2 − r2

+ τ2 − τ̃2
2ηd

(
prox η

τ2
f(Ω−1/2.)

(
η

τ2
r2

)
+ prox η

τ̃2
f(Ω−1/2.)

(
η

τ̃2
r̃2

)))
6 (κ− κ̃)α 1

2τ1

1
n

(
E
[∥∥∥r1 − prox τ1

κ
g(.,y) (r1)

∥∥∥2

2
−
∥∥∥r1 − prox τ1

κ̃
g(.,y) (r1)

∥∥∥2

2

])
+
(

(τ2 + τ̃2)
2ηd E

[
−
∥∥∥∥prox η

τ2
f(Ω−1/2.)

(
η

τ2
r2

)
− prox η

τ̃2
f(Ω−1/2.)

(
η

τ̃2
r̃2

)∥∥∥∥2

2

])
(8.154)

where the last line follows from the inequality in Lemma 28, and we defined the shorthands,
r1 = m√

ρs + ηh, r2 = νΩ−1/2ṽ + κg, r̃2 = ν̃Ω−1/2v + κ̃g. Using Lemma 27, the first term of
the r.h.s of the last inequality is also negative as an increment of a nonincreasing function. Thus,
both expectations are taken on negative functions. If those functions are not zero almost every-
where with respect to the Lebesgue measure, then the result will be strictly negative. Moreover, the
functional taking each operator T to its resolvent (Id + T)−1 is a bijection on the set of non-trivial,
maximally monotone operators, see e.g. [25] Proposition 23.21 and the subsequent discussion. The
subdifferential of a proper, closed, convex function being maximally monotone, for two different
parameters the corresponding proximal operator cannot be equal almost everywhere. The previ-
ously studied increment ((κ, ν, τ2)− (κ̃, ν̃, τ̃2))> (∇Eκ,ν,τ2 −∇Eκ̃,ν̃,τ̃2) is therefore strictly negative,
giving the desired strict concavity in (κ, ν, τ2). Restricting ourselves to the set S∂ν,τ2 , the increment
in (m, η, τ1) can be written similarly. Note that Id − prox will appear in the expressions instead
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of prox. The appropriate terms can then be brought to the form of the inequality from Lemma
28 using Moreau’s decomposition. Using the definitions of the set S∂ν,τ2 and the increments from
Lemma 27, a similar argument as the previous one can be carried out. The lemma is proved.

What is now left to do is link the properties of the scalar optimization problem (8.12) to the
original learning problem (7.3) using the tight inequalities from Theorem 16.

Remark: in the case θ0 ∈ Ker(ΦT ), the cost function E0
n will uniformly converge to the following

potential:

−ητ2
2 + κτ1

2 −
η

2τ2
κ2 + α

n
E
[
M τ1

κ
g(.,y)(ηh)

]
+ 1
d
E
[
M η

τ2
f(Ω−1/2.)(

η

τ2
κg)

]
(8.155)

As we will see in the next section, this will lead to estimators solely based on noise.

8.2.4 Back to the original problem : proof of Theorem 14 and 15

We begin this part by considering that the ”necessary assumptions for exponential rates” from
the set of assumptions 8.1 are verified. In the end we will discuss how relaxing these assumptions
modifies the convergence speed. We closely follow the analysis introduced in [204] and further
developed in [57]. The main difference resides in checking the concentration properties of generic
Moreau envelopes depending on the regularity of the target function instead of specific instances
such as the LASSO. Since the dimensions n, p, d are linked by multiplicative constants, we can
express the rates with any of the three. Recall the original reformulation of the problem defining
the student.

max
λ

min
w,z

g(z,y) + f(w) + λ>
( 1√

d

(
AΨ−1/2Φ +B

(
Ω− Φ>Ψ−1Φ

)1/2
)

w− z
)

(8.156)

Introducing the variable w̃ = Ω1/2w it can be equivalently written, since Ω is almost surely invertible
and the problem is convex concave with a closed convex feasibility set on w̃, z.

min
w̃,z

max
λ

g(z,y) + f(Ω−1/2w̃) + λ>
( 1√

d

(
AΨ−1/2Φ +B

(
Ω− Φ>Ψ−1Φ

)1/2
)

Ω−1/2w̃− z
)

(8.157)

Recall the equivalent scalar auxiliary problem at finite dimension En and its asymptotic counterpart
E both defined on the same variables as the original problem w̃, z through the Moreau envelopes of
g and r:

E(τ1, τ2, κ, η, ν,m) = κτ1
2 −

ητ2
2 +mν

√
γ − τ2

2η
m2

ρ
− η

2τ2
(ν2χ+ κ2) + αLg(τ1, κ,m, η) + Lf (τ2, η, ν, κ)

(8.158)

En(τ1, τ2, κ, η, ν,m) = κτ1
2 −

ητ2
2 +mν

√
γ − τ2

2η
m2

ρ
− η

2τ2d
(νṽ + κΩ1/2g)>Ω−1(νv + κΩ1/2g)

− κg>
(
Σ1/2 − Ω1/2

) m√γ
‖ṽ‖22

v + 1
d
M τ1

κ
g(.,y)

(
m
√
ρ
s + ηh

)
+ 1
d
M η

τ2
F(Ω−1/2.)

(
η

τ2

(
νΩ−1/2ṽ + κg

))
(8.159)
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Recall the variables:

w̃∗ = prox η∗
τ∗2
f(Ω−1/2.)(

η∗

τ∗2
(ν∗t + κ∗g)), z∗ = prox τ∗1

κ∗ g(.,y)

(
m∗
√
ρ
s + η∗h

)
(8.160)

Denote (τ∗1 , τ∗2 , κ∗, η∗, ν∗,m∗) the unique solution to the optimization problem (8.12) and E∗ the
corresponding optimal cost. E∗ defines a strongly convex optimization problem (due to the Moreau
envelopes) on w̃, z whose solution is given by Eq.(8.160). Similarly, denote (τ∗1,n, τ∗2,n, κ∗n, η∗n, ν∗n,m∗n)
any solution to the optimization problem on En and E∗n the corresponding optimal value. Finally, we
write En(w̃, z) the cost function of the optimization problem on w̃, z defined by E∗n for any optimal
solution (τ∗1,n, τ∗2,n, κ∗n, η∗n, ν∗n,m∗n), such that:

E∗n = min
w̃,z

En(w̃, z) (8.161)

By the definition of Moreau envelopes, we have that En(w̃, z) is κ∗n
2dτ∗1,n

strongly convex in z and
τ∗2,n
2dη∗n

strongly convex in w̃. The following lemma ensures that these strong convexity constants are
non-zero for any finite n.

Lemma 38. Consider the finite size scalar optimization problem

max
κ,ν,τ2

min
m,η,τ1

En(τ1, τ2, κ, η, ν,m) (8.162)

where the feasibility set of (τ1, τ2, κ, η, ν,m) is compact and τ1 > 0, τ2 > 0. Then any optimal values
κ∗, τ∗2 verify:

κ∗ 6= 0 τ∗2 9 0 (8.163)

Proof of Lemma 38: from the analysis carried out in the proof of Lemma 35, the feasibility set
of the optimization problem is compact. Suppose κ∗ = 0. Then the value of m minimizing the cost
function is −∞, which contradicts the compactness of the feasibility set. A similar argument holds
for τ2.

The next lemma characterizes the speed of convergence of the optimal value of the finite dimen-
sional scalar optimization problem to its asymptotic counterpart, which has a unique solution in
τ1, τ2, κ, η, ν,m. The intuition is that, using the strong convexity of the auxiliary problems, we can
show that the solution in w̃, z̃ to the finite size problem E∗n converges to the solution w̃∗, z̃∗ of the
asymptotic problem E∗, with convergence rates governed by those of the finite size cost towards its
asymptotic counterpart.

Lemma 39. For any ε > 0, there exist constants C, c, γ such that:

P (|E∗n − E∗| > γε) 6 C

ε
exp−cnε2 (8.164)

which is equivalent to

P
(∣∣∣∣min

w̃,z
En(w̃, z)− E∗

∣∣∣∣ > γε

)
6
C

ε
exp−cnε2 (8.165)
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Proof of Lemma 39: for any fixed (τ1, τ2, κ, ν, η,m), we can determine the rates of convergence
of all the random quantities in En. The linear terms involving 1

dg
Tv are sub-Gaussian with sub-

Gaussian norm bounded by C/d for some constant C > 0. Thus we can find constants, C, c > 0
such that, for any ε > 0 :

P
(∣∣∣∣1dgT ṽ

∣∣∣∣ > ε

)
6 Ce−cnε

2 (8.166)

The term involving vTΩv is deterministic in this setting. We will see in section 8.2.5 how a random
θ0 affects the convergence rates. The term involving 1

dg
Tg is a weighted sum of sub-exponential

random variables, the tail of which can be determined using Bernstein’s inequality, see e.g. [288]
Corollary 2.8.3, which gives a sub-Gaussian tail for small deviations and a sub-exponential tail for
large deviations. Parametrizing the deviation ε with a scalar variable c′, we thus get the following
bound : for any ε > 0, there exists constants C, c, c′ > 0 such that:

P
(∣∣∣∣1dgTg− 1

∣∣∣∣ > c′ε

)
6 Ce−cnε

2 (8.167)

Since, in this case, we assume that the eigenvalues of the covariance matrices are bounded with
probability one, multiplications by these matrices do not change these two previous rates. The
remaining convergence rates that need to be determined are those of the Moreau envelopes. By
assumption, the function g is separable, and pseudo-Lipschitz of order two. Moreover, the argu-
ment m√

ρs + ηh is an i.i.d. Gaussian random vector with finite variance. The Moreau envelope
1
dM η

τ2
F(Ω−1/2.)

(
η
τ2

(
νΩ−1/2ṽ + κg

))
is therefore a sum of pseudo-Lipschitz functions of order 2

of scalar Gaussian random variables. Using the concentration Lemma 31, we can find constants
C, c, γ > 0 such that, for any ε > 0, the following holds:

P
(∣∣∣∣∣α 1

n
M τ1

κ
g(.,y)

(
m
√
ρ
s + ηh

)
− E

[
α

1
n
M τ1

κ
g(.,y)

(
m
√
ρ
s + ηh

)]∣∣∣∣∣ > γε

)
6 Ce−cnε

2 (8.168)

For the second Moreau envelope, the argument η
τ2

(
νΩ−1/2ṽ + κg

)
is not separable. If the regu-

larization is a square, it is the concentration will reduce to that of the terms 1
dg

Tv and 1
dg

Tg. If
the regularization is a Lipschitz function, then the Moreau envelope is also Lipschitz from Lemma
26. Furthermore, since the eigenvalues of the covariance matrix Ω are bounded with probability
one, the composition with the deterministic term νΩ1/2v does not change the Lipschitz property.
Gaussian concentration of Lipschitz functions then gives an exponential decay independent of the
magnitude of the deviation. Taking the loosest bound, which is the one obtained with the square
penalty, we obtain that, for any ε > 0, there exist constants C, c, γ > 0 such that the event{∣∣∣∣1dM η

τ2
F(Ω−1/2.)

(
η

τ2

(
νΩ−1/2ṽ + κg

))
− E

[1
d
M η

τ2
F(Ω−1/2.)

(
η

τ2

(
νΩ−1/2ṽ + κg

))]∣∣∣∣ > γε

}
(8.169)

has probability at most Ce−cnε2 . Combining these bounds gives the exponential rate for the con-
vergence of En to E for any fixed (τ1, τ2, κ, ν, η,m). An ε-net argument can then be used to obtain
the bound on the minmax values.

The next lemma shows that the function En evaluated at w̃∗, z∗ is close to the optimal value
E∗.
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Lemma 40. For any ε > 0, there exist constants C, c, γ such that:

P (|En(w̃∗, z∗)− E∗| > γε) 6 Ce−cnε
2 (8.170)

Proof of Lemma 40: this Lemma can be proved in similar fashion to [204] Theorem B.1. using
the strong convexity in w̃ and z of En(w̃, z) along with Gordon’s Lemma. We leave the detail of
this part to a longer version of this paper.

Lemma 41. For any ε > 0, there exists constants γ, c, C > 0 such that the event

∃(w̃, z) ∈ Rn+d,
1
d

min( κ∗n
2τ∗1,n

,
τ∗2,n
2η∗n

)‖(w̃, z)− (w̃∗, z∗)‖22 > ε and min
w̃,z

En(w̃, z) 6 En(w̃∗, z∗) + γε

(8.171)

has probability at most C
ε e
−cnε2.

This lemma can be proven using the same arguments as in [204] Appendix B, Theorem B.1.
Intuitively, if two values of a strongly convex function are arbitrarily close, then the corresponding
points are arbitrarily close. Note that we are normalizing the norm of a vector of size (n+ d) with
d, which are proportional. This shows that any solution outside the ball centered around w̃∗, z∗ is
sub-optimal. Now define the set:

Dw̃,z,ε =
{

w̃ ∈ Rd, z ∈ Rn :
∣∣∣∣φ1( w̃√

d
)− E

[
φ1

( w̃∗√
d

)]∣∣∣∣ > ε,

∣∣∣∣φ2( z√
n

)− E
[
φ2

( z∗√
n

)]∣∣∣∣ > ε

}
(8.172)

where φ1 is either a square or a Lipschitz function, and φ2 is a separable, pseudo-Lipschitz function
of order 2. Using the same arguments as in the proof of Lemma 40 and the assumptions on φ1, φ2,
Gaussian concentration will give sub-exponential rates for the event (w̃∗, z∗) ∈ Dw̃,z,ε. A similar
argument to the proof of Lemma B.3 from [57] then shows that a distance of ε in Dw̃,z,ε results in
a distance of ε2 in the event (8.171), leading to the following result:

Lemma 42. For any ε > 0, there exists constants γ, c, C > 0 such that the event

∃(w̃, z) ∈ Rn+d, (w̃∗, z∗) ∈ Dw̃,z,ε and min
w̃,z

En(w̃, z) 6 En(w̃∗, z∗) + γε2 (8.173)

has probability at most C
ε2 e
−cnε4.

which proves Theorem 15 using the fact that ŵ, ẑ are minimizers of the initial cost function.
Theorem 14 is a consequence of Theorem 15.

If the restriction on f, g, φ1, φ2 are relaxed to any pseudo-Lipschitz functions of finite orders, the
exponential rates involving them are lost and become linear following Lemma 29.

8.2.5 Relaxing the deterministic teacher assumption

The entirety of the previous proof has been done with a deterministic vector θ0. Now, if θ0 is
assumed to be a random vector independent of all other quantities, as prescribed in the set of
assumptions 8.1, we can ”freeze” the variable θ0 by conditioning on it. The whole proof can then
be understood as studying the value of the cost conditioned on the value of θ0. Note that, in the
Gaussian case, correlations between the teacher and student are expressed through the covariance
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matrices, thus leaving the possibility to parametrise the teacher with a vector θ0 indeed indepen-
dent of all the rest. To lift the conditioning in the end, one only needs to average out on the
distribution of θ0, the summability conditions of which are prescribed in the set of assumptions 8.1.
Thus, random teacher vectors can be treated simply by taking an additional expectation in the ex-
pressions of Theorem 15, provided θ0 is independent of the matrices A,B and the randomness in f0.

As mentioned at the end of the previous section, the finite size rates will be determined by the
assumptions made on the teacher vector and decay of the eigenvalues of the covariance matrices.
We do not investigate in detail the limiting assumptions under which exponential rates still hold
regarding the randomness of the teacher or tails of the eigenvalue distributions of covariance matri-
ces.

8.2.6 The ’vanilla’ teacher-student scenario

In this section, we give the explicit forms of the fixed points equations and optimal asymptotic
estimators in the case where the teacher and the student are sampled from the same distribution,
i.e. Ω = Φ = Ψ = Σ where Σ is a positive definite matrix with sub-Gaussian eigenvalue decay.
This setup was rigorously studied in [57] for the LASSO and heuristically in [129] for the ridge
regularized logistic regression. In this case, the fixed point equations become

τ1 = 1
d
E
[
g>prox η

τ2
f(Σ−1/2.)

(
η

τ2

(
νΣ1/2θ0 + κg

))]
(8.174)

m
√
γ = 1

d
E
[
v>Σ−1/2prox η

τ2
f(Σ−1/2.)

(
η

τ2

(
νΣ1/2θ0 + κg

))]
(8.175)

τ2 = α
κ

τ1
η − κα

τ1n
E
[
h>prox τ1

κ
g(.,y)

(
m
√
ρ
s + ηh

)]
(8.176)

η2 + m2

ρ
= 1
d
E
[∥∥∥∥prox η

τ2
f(Σ−1/2.)

(
η

τ2

(
νΣ1/2θ0 + κg

))∥∥∥∥2

2

]
(8.177)

ν
√
γ = α

κ

nτ1
E
[
(m
ηρ

h− s
√
ρ

)>prox τ1
κ
g(.,y)

(
m
√
ρ
s + ηh

)]
(8.178)

τ2
1 = α

n
E

∥∥∥∥∥ m√ρs + ηh− prox τ1
κ
g(.,y)

(
m
√
ρ
s + ηh

)∥∥∥∥∥
2

2

 (8.179)

and the asymptotic optimal estimators read:

w∗ = Σ−1/2prox η∗
τ∗2
f(Σ−1/2.)(

η∗

τ∗2
(ν∗Σ1/2θ0 + κ∗g)), z∗ = prox τ∗1

κ∗ g(.,y)

(
m∗
√
ρ
s + η∗h

)
(8.180)

8.3 Equivalence with the replica prediction

In this Appendix, we show that the rigorous result of Theorem 15 can be used to prove the replica
prediction in the case of a separable loss, a ridge penalty. For simplicity, we restrict ourselves to
the case of random teacher weights with θ0 ∼ N (0, Ip). We provide an exact analytical matching
between the replica prediction and the one obtained with Gordon’s theorem. We start by an explicit
derivation of the form presented in Corollary 11 from the main result (13.15).
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8.3.1 Solution for separable loss and ridge regularization

Replacing F with a ridge penalty, we can go back to step (8.98) of the main proof and finish the
calculation without inverting the matrix Ω. The assumption on the invertibility of Ω can thus be
dropped in the case of `2 regularization. Letting G =

(
τ2
η Ω + λ2Id

)−1
, we get

E(τ1, τ2, κ, η, ν,m) = κτ1
2 −

ητ2
2 +mν

√
γ − τ2

2η
m2

ρ
+ α

1
n
E
[
M τ1

κ
g(.,y)

(
m
√
ρ
s + ηh

)]

− 1
2dν

2θ>0 ΦGΦ>θ0 −
1
2dκ

2Tr
(
Ω1/2GΩ1/2

)
(8.181)

using Lemma 29 with a separable function, the expectation over the Moreau envelope converges to:

1
n
E
[
M τ1

κ
g(.,y)

(
m
√
ρ
s + ηh

)]
= E

[
M τ1

κ
g(.,y)

(
m
√
ρ
s+ ηh

)]
(8.182)

where s and h are standard normal random variables and y = f0(√ρs). The corresponding opti-
mality conditions then reads:

∂

∂κ
: τ1

2 + 1
2τ1

αE

( m
√
ρ
s+ ηh− prox τ1

κ
g(.,y)

(
m
√
ρ
s+ ηh

))2
− κ1

d
Tr
(
Ω1/2GΩ1/2

)
= 0 (8.183)

∂

∂ν
: m√γ − 1

d
νθ0Φ>GΦ>θ0 = 0 (8.184)

∂

∂τ2
: −η2 −

m2

2ρη + 1
2
ν2

η

(
Ω1/2Φ>θ0

)>
G2Ω1/2Φ>θ0 + κ2

2ηTr
(
G2Ω2

)
= 0 (8.185)

∂

∂m
: ν√γ − τ2

ρη
m+ αE

[
κ

τ1

s
√
ρ

( m√
ρ
s+ ηh− prox τ1

κ
g(.,y)

(
m
√
ρ
s+ ηh

)
)
]

= 0 (8.186)

∂

∂η
: −τ2

2 + τ2m
2

2ρη2 + αE
[
κ

τ1
h

(
m
√
ρ
s+ ηh− prox τ1

κ
g(.,y)

(
m
√
ρ
s+ ηh

))]

− 1
2
τ2ν

2

η2

(
Ω1/2Φ>θ0

)>
G2Ω1/2Φ>θ0 −

τ2κ
2

2η2 Tr(G2Ω2) = 0 (8.187)

∂

∂τ1
: κ2 −

κ

2τ2
1
αE

( m
√
ρ
s+ ηh− prox τ1

κ
g(.,y)

(
m
√
ρ
s+ ηh

))2
 = 0 (8.188)
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simplifying these equations using Stein’s lemma, we get:
∂

∂κ
: τ1
κ

= 1
d

Tr
(

Ω1/2
(
τ2
η

Ω + λ2Id

)−1
Ω1/2

)
(8.189)

∂

∂ν
: m√γ = 1

d
νθ0Φ

(
τ2
η

Ω + λ2Id
)−1

Φ>θ0 (8.190)

∂

∂τ2
: η2 + m2

ρ
= 1
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ν2
(
Ω1/2Φ>θ0

)> (τ2
η

Ω + λ2Id
)−2 (

Ω1/2Φ>θ0
)

+ 1
d
κ2Tr(

(
τ2
η

Ω + λ2Id

)−2
Ω2)

(8.191)
∂

∂m
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ρτ1
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g(.,f0(√ρs))

(
m
√
ρ

+ ηh
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√
ρ
E
[
prox′κ
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g(.,f0(√ρs))

(
m
√
ρ
s+ ηh
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(8.192)

∂

∂η
: τ2
η
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κ

τ1
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1− E

[
prox′τ1

κ
g(.,f0(√ρs))

(
m
√
ρ
s+ ηh
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∂

∂τ1
: κ2 =

(
κ

τ1

)2
αE

( m
√
ρ
s+ ηh− prox τ1

κ
g(.,f0(√ρs))

(
m
√
ρ
s+ ηh

))2
 (8.194)

8.3.2 Matching with Replica equations

In this section, we show that the fixed point equations obtained from the asymptotic optimality
condition of the scalar minimization problem 11 match the ones obtained using the replica method.
In what follows we will use the same notations as in [106], and an explicit, clear match with the
notations from the proof of the main theorem will be shown. The replica computation, similar to
the one from [106], leads to the following fixed point equations, in the replica notations:

V = 1
p

Tr
(
λV̂ Ip + Ω

)−1
Ω (8.195)

q = 1
p

Tr
[
(q̂Ω + m̂2Φ>Φ)Ω

(
λV̂ Ip + Ω

)−2
]

(8.196)

m = 1
√
γ

m̂

p
Tr
[
Φ>Φ

(
λV̂ Ip + Ω

)−1
]

(8.197)

V̂ = αEξ

[∫
R

dy Z0
y

(
y,
m
√
q
, ρ− m2

q

)
∂ωfg(y,

√
qξ, V )

]
(8.198)

q̂ = αEξ

[∫
R

dy Z0
y

(
y,
m
√
q
, ρ− m2

q

)
fg(y,

√
qξ, V )2

]
(8.199)

m̂ = α
√
γ
Eξ

[∫
R

dy ∂ωZ0
y

(
y,
m
√
q
, ρ− m2

q

)
fg(y,

√
qξ, V )

]
(8.200)

where fg(y, ω, V ) = −∂ωMV g(y,·)(ω) and Z0 is given by:

Z0 (y, ω, V ) =
∫ dx√

2πV
e−

1
2V (x−ω)2

δ(y − f0(x)). (8.201)

In particular we have:

∂ωZ0 (y, ω, V ) =
∫ dx√

2πV
e−

1
2V (x−ω)2

(
x− ω
V

)
δ(y − f0(x)) (8.202)
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To be explicit with the notation, let’s open the equations up. Take for instance the one for m̂.
Opening all the integrals:

m̂ =
∫ dξ√

2π
e−

1
2 ξ

2
∫
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∫ dx√
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2
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q ξ
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∫ dξ√
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x− m√

q ξ
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)
fg(f0(x),√qξ, V )

(8.203)

where in (a) we integrated over y explicitly. A direct comparison between the two sets of equations
suggests the following mapping to navigate between the replica derivation and the proof using
Gaussian comparison theorems. We denote replica quantities with Rep indices:

VRep ⇐⇒
τ1
κ
, V̂Rep ⇐⇒

τ2
η
, qRep ⇐⇒ η2 + m2

ρ

q̂Rep ⇐⇒ κ2, mRep ⇐⇒ m, m̂Rep ⇐⇒ ν (8.204)

with these notations, we get :

∂

∂κ
: V = 1

d
Tr((V̂Ω + λ2Id)−1Ω) (8.205)

∂

∂ν
: m = 1

√
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d
Tr((V̂Ω + λ2Id)−1Φ>Φ) (8.206)

∂

∂τ2
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 (8.210)

The first three equations match the replica prediction, the last three can be exactly matched
using the following change of variable and Gaussian integration:

x̃ = x
√
ρ

ξ̃ =

 ρ

ρ− m2

q

1/2(
m
√
qρ
x̃− ξ

)
(8.211)



Chapter 9

Learning Gaussian mixtures with
convex generalized linear models

The results in this chapter are based oon the publication [178]. Generalised linear models for
multi-class classification problems are one of the fundamental building blocks of modern machine
learning tasks. In this manuscript, we characterise the learning of a mixture of K Gaussians with
generic means and covariances via empirical risk minimisation (ERM) with any convex loss and
regularisation. In particular, we prove exact asymptotics characterising the ERM estimator in
high-dimensions, extending several previous results about Gaussian mixture classification in the
literature. We exemplify our result in two tasks of interest in statistical learning: a) classification
for a mixture with sparse means, where we study the efficiency of `1 penalty with respect to `2; b)
max-margin multi-class classification, where we characterise the phase transition on the existence
of the multi-class logistic maximum likelihood estimator for K > 2. Finally, we discuss how our
theory can be applied beyond the scope of synthetic data, showing that in different cases Gaussian
mixtures capture closely the learning curve of classification tasks in real data sets.

9.1 Introduction

A recurring observation in modern deep learning practice is that neural networks often defy the
standard wisdom of classical statistical theory. For instance, deep neural networks typically achieve
good generalisation performances at a regime in which it interpolates the data, a fact at odds
with the intuitive bias-variance trade-off picture stemming from classical theory [105, 126, 31].
Surprisingly, many of the “exotic” behaviours encountered in deep neural networks have recently
been shown to be shared by models as simple as overparametrised linear classifiers [125, 34], e.g.,
the aforementioned benign over-fitting [21]. Therefore, understanding the generalisation properties
of simple models in high-dimensions has proven to be a fertile ground for elucidating some of the
challenging statistical questions posed by modern machine learning practice [190, 106, 112, 116,
118, 176, 169, 197, 53].

In this manuscript, we pursue this enterprise in the context of a commonly used model for high-
dimensional classification problems: the Gaussian mixture. Indeed, it has been recently argued that
the features learned by deep neural networks trained on the cross-entropy loss “collapse” in a mixture
of well-separated clusters, with the last layer acting as a simple linear classifier [223]. Another
observation put forward in [262] is that data obtained using generative adversarial networks behave
as Gaussian mixtures. Here, we derive an exact asymptotic formula characterising the performance

202
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of generalised linear classifiers trained on K Gaussian clusters with generic covariances and means.
Our formula is valid for any convex loss and penalty, encompassing popular tasks in the machine
learning literature such as ridge regression, basis pursuit, cross-entropy minimisation and max-
margin estimation. This allow us to answer relevant questions for statistical learning, such as: what
is the separability threshold for K-clustered data? How does regularisation affects estimation? Can
different penalties help when the means are sparse? We also extend the observation of [262] showing
that the learning curves of binary classification tasks on real data are indeed well captured by our
asymptotic analysis.

Model definition We consider learning from a d-dimensional mixture of K Gaussian clusters
Ck∈[K]. The data set is obtained by sampling n pairs (xν ,yν)ν∈[n] ∈ Rd+K identically and indepen-
dently. We adopt the one-hot encoded representation of the labels, i.e., if xν ∈ Ck, then yν = ek,
kth basis vector of RK . We will denote the matrix of concatenated samples X ∈ Rd×n. The mixture
density then reads:

P (x,y) =
K∑
k=1

ykρkN (x |µk,Σk ) , (9.1)

where N (x|µ,Σ) is the multivariate normal distribution with mean µ and covariance matrix Σ.
The matrix of concatenated means is denoted M ∈ Rd×K . In Eq. (9.1), ∀k, ρk = P (y = ek) > 0,
µk ∈ Rd and Σk ∈ Rd×d is positive-definite. We will consider the estimator obtained by minimising
the following empirical risk:

R(W,b) ≡
n∑
ν=1

`

(
yν , Wxν√

d
+ b

)
+ λr(W), (9.2)

(W?,b?) ≡ arg min
W∈RK×d,b∈RK

R(W,b) , (9.3)

where W ∈ RK×d and b ∈ RK are the weights and bias to be learned, ` is a convex loss function,
and r is a regularisation function whose strength is tuned by the parameter λ > 0. For example the
loss function ` can represent the composition of a cross-entropy loss with a softmax thresholding
on the linear part of Eq. (9.2). We will characterise the distribution of the estimator (W?,b?), and
we will evaluate the average training loss defined as

ε` = 1
n

n∑
ν=1

`

(
yν , W

?xν√
d

+ b?
)
, (9.4)

as well as the average training error εt and generalisation error εg, defined as the misclassification
rates:

εt = 1
n

n∑
ν=1

I
[
yν 6= ŷ

(W?xν√
d

+ b?
)]

, εg = E(xnew,ynew)

[
I
[
ynew 6= ŷ

(W?xnew
√
d

+ b?
)]]

,

where (xnew,ynew) is a new unseen data point sampled from the distribution in Eq. (9.1). In the
previous equations, we have used the function ŷ : RK → RK , so that ŷk(x) := I(maxκ xκ = xk).

The main contributions in this manuscript are the following:

(C1) In Sec. 9.2 and Chapter 10 we prove closed-form equations characterizing the asymptotic
distribution of the matrix of weights W? ∈ RK×d, enabling the exact computation of key quantities
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such as the training and generalisation error. Our proof method solves shortcomings of previous ap-
proaches by introducing a novel approximate message-passing sequence, building on recent advances
in this framework, that is of independent interest.
(C2) In Sec. 9.3.1 we study the problem of classifying an anisotropic mixture with sparse means,
where the strong or weak directions in the data are correlated with the non-zero components of the
mean as in [81]. We study how learning the sparsity with an `1 penalty improves the classification
performance.
(C3) In Sec. 9.3.2 we study the performance of the cross-entropy estimator in the limit of vanishing
regularisation λ → 0+ for K Gaussian clusters as a function of the sample complexity α = n/d; we
show that a phase transition takes place at a certain value α?K between a regime of complete
separability of the data and a regime in which the correct classification of almost all points in the
data set is not possible. We also investigate the effect of λ > 0 regularisation on the generalisation
error, comparing the K > 2 case with the results given in the literature for K = 2 [197, 283].
(C4) In Sec. 9.3.3 we investigate the applicability of our formula beyond the Gaussian assumption
by applying it to classification tasks on real data. We show that for different tasks and losses, it
closely captures the real learning curves, even when data is mapped through a non-linear feature
map. This further shows that Gaussian mixtures are a good surrogate model for investigating real
classification tasks, as put forward in [262].

Relation to previous work The analysis of Gaussian mixture models in the high-dimensional
regime has been the subject of many recent works. Exact asymptotics has been derived for the
binary classification case with diagonal covariances in [73, 182] for the logistic loss and in [78, 145]
for the square loss, both with `2 penalty. A similar analysis has been performed in [267] for the
hard-margin SVM. These works were generalised to generic convex losses and `2 penalty in [197],
where it has been also shown that the regularisation term can play an important role in reaching
Bayes-optimal performances. Hinge regression with `1 penalty and diagonal covariance was treated
in [169]. Recently, these asymptotic results were generalised to the case in which both clusters
share the same covariance in [291], and finite rate bounds were given in [59, 54] in the case of sub-
Gaussian mixtures. Asymptotic results for the multiclass problem with diagonal covariance were
derived in [283] for the restricted case of the square loss with `2 penalty. Our result unifies all the
aforementioned asymptotic formulas, and extends them to the general case of a multiclass problem
with generic covariances and arbitrary convex losses and penalties.
From a technical standpoint, in [73, 252, 145, 283, 197, 169, 291] the authors use convex Gaussian
comparison inequalities, see e.g. [281, 273], to prove their result. In particular, the proof given in
[283] for the multiclass problem harnesses the geometry of least-squares, and it is then stressed that
this method breaks down for multiclass problems in which the risk does not factorise over the K
clusters (as for the cross-entropy, for example). We solve this problem using an innovative proof
technique which has an interest in its own. Our approach is to capture the effect of non-linearity and
generic covariances via the rigorous study of an approximate message-passing (AMP) sequence, a
family of iterations that admit closed-form asymptotics at each step called state evolution equations
[28]. Our proof relies on several refinements of AMP methods to handle the full complexity of the
problem, notably spatial coupling with matrix valued variables [153, 80, 135] and non-separable
update functions [37], via a multi-layer approach to AMP [188].
The sparse Gaussian mixture model analysed in Section 9.3.1 is closely related to the rare/weak
features model introduced in [81] and widely studied in the context of sparse linear discriminant
analysis [136, 264, 181, 167]. It was recently revisited in [54, 59] in the context of ERM with max-
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margin classifiers. Here, we consider a correlated variation of the model and study the benefit of
using a sparsity inducing `1 penalty.
The separability transition is a classical topic [66, 102] that has recently witnessed a renewal of
interest thanks to its connection to overparametrization. It was studied in [53] in the context
of uncorrelated Gaussian data, in [106] in the random features model and in [73, 197] for binary
Gaussian mixtures.
Recently, [133, 45, 176] showed that the performance of different regression tasks on real data are
well-captured by a teacher-student Gaussian model in high-dimensions for ridge regression, but
this turned not to be true for non-linear problems such as logistic classification [176]. Authors of
[262] showed instead that data from generative adversarial networks behave like Gaussian mixtures,
motivating the modeling of such mixture for real-data in the present paper.

9.2 Technical results

Our main technical result is an exact asymptotic characterization of the distribution of the esti-
mator W?. Informally, the estimator W? and the quantity W?X/

√
d behave asymptotically as

non-linear transforms of multivariate Gaussian distributions. These transforms are directly linked
to the proximal operators [224, 25] associated to the loss and regularisation functions, summarizing
the effect of the cost function landscape on the estimator. The parameters of these Gaussian distri-
butions and proximals can then be computed from the fixed point of a self-contained set of equations.
We start by presenting the most generic form of our result in a concentration of measure-like state-
ment in Theorem 17, and discuss an intuitive interpretation of the different quantities involved.
Theorem 18 then states how the training and generalisation errors can be computed. All results
presented in the experiments section can be obtained from Theorem 17. In Corollary 3 we discuss a
particular case where explicit simplifications can be obtained. But first, let’s summarise the required
assumptions for our result to hold.

(A1) The functions ` (as a function of its second argument) and r are proper, closed, lower semi-
continuous convex functions. We assume additionally that either the cost function `(y, •X) + r(•)
is strictly convex, or that `(y, •) is strictly convex in its second argument and r is the `1 norm. We
also assume that the cost function `(y, •X) + r(•) is coercive.
(A2) The covariance matrices are positive definite and their spectral norms are bounded (with
probability one).
(A3) The mean vectors µk are distributed according to some density Pµ(M) such that the following
quantity is finite

∀d E
[∥∥∥M>M

∥∥∥
F

]
< +∞, (9.5)

where ‖ • ‖F denotes the Frobenius norm.
(A4) The number of samples n and dimension d both go to infinity with fixed ratio α = n/d, called
hereafter the sample complexity. The number of clusters K is finite.
(A5) The fixed point of the set of self-consistent equations Eq.(9.8) exists and is unique.

As specified by assumption (A1), our proof does not apply to any convex problem. We discuss
this assumption further in Appendix 10.4. We also comment on the existence and uniqueness of
the solution to the set of self consistent equations Eq.(9.8) in Appendix 10.4. Before proceeding
further, let us specify a useful notation. Suppose that the matrix G = (Gki)ki ∈ RK×d is given,
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Theorem 17 (Concentration properties of the estimator). Let ξk∈[K] ∼ N (0, IK) be collection of
K-dimensional standard normal vectors independent of other quantities. Let also be {Ξk} a set of K
matrices, Ξk ∈ RK×d, with i.i.d. standard normal entries, independent of other quantities. Under
the set of assumptions (A1–A5), for any pseudo-Lispchitz functions of finite order φ1 : RK×d →
R, φ2 : RK×n → R, the estimator W? and the matrix Z? = 1√

d
W?X verify:

φ1(W?) P−−−−−−→
n,d→+∞

EΞ [φ1(G)] , φ2(Z?) P−−−−−−→
n,d→+∞

Eξ [φ2(H)] , (9.6)

where we have introduced the proximal for the loss:

hk = V1/2
k Prox

`(ek,V
1/2
k
•)

(V−1/2
k ωk) ∈ RK , ωk ≡Mk + b + Q1/2

k ξk , (9.7)

and H ∈ RK×n is obtained by concatenating each hk, ρkn times. We have also introduced the
matrix proximal G ∈ RK×d:

G = A
1
2 � Prox

r(A
1
2�•)

(A
1
2 �B), A−1 ≡

∑
k

V̂k ⊗Σk, B≡
∑
k

(
µkm̂>k +Ξk �

√
Q̂k⊗Σk

)
.

The collection of parameters (Qk,Mk,Vk, Q̂k, m̂k, V̂k)k∈[K] is given by the fixed point of the fol-
lowing self-consistent equations:

Qk= 1
dEΞ[GΣkG>]

Mk= 1√
d
EΞ[Gµk]

Vk= 1
dEΞ

[(
G�

(
Q̂−

1
2

k ⊗Σ
1
2
k

))
Ξ>k
]


Q̂k= αρkEξ

[
fkf>k

]
V̂k= −αρkQ

− 1
2

k Eξ
[
fkξ>

]
m̂k= αρkEξ [fk]

(9.8)

where fk ≡ V−1
k (hk − ωk), and the vector b? is such that ∑k ρkEξ [Vkfk] = 0 holds.

The purpose of this statement is to have an asymptotically exact description of the distribution
of the estimator, where the dimensions going to infinity are effectively summarized as averages over
simple, independent distributions. Those distributions are parametrised by the set of finite-size
parameters (Qk,Mk,Vk, Q̂k, m̂k, V̂k)k∈[K] that can be exactly evaluated and have a clear interpre-
tation. Indeed, the parameters (Mk, m̂k) and (Qk, Q̂k) respectively represent means and covariances
of multivariate Gaussians (combined with the original µk,Σk), and the (Vk, V̂k) parametrise the
deformations that should be applied to these Gaussians to obtain the distribution of W?,Z?. The
distribution is characterized in a weak sense with concentration of pseudo-Lipschitz (i.e., sufficiently
regular) functions, whose definition is reminded in the Chapter 10. From this result one can work
out a number of properties of the weights W?, e.g., training and generalisation error, but also
hypothesis tests as done in [57] for the LASSO. Due to the generality of the statement, no direct
simplification is possible. However, we will see that in certain specific cases all quantities can be
greatly simplified. This is notably the case for diagonal covariance matrices and separable estima-
tors and observables φ1, φ2, where the sums over high-dimensional Gaussians concentrate explicitly
to one-dimensional expectations. For instance the results of [283, 197] can be recovered as special
cases of the present work. Theorem 17 then allows to obtain the asymptotic values of the generali-
sation error, of the training loss and of the training error. Their explicit expression is given in the
following Theorem.
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Theorem 18 (generalisation error and training loss). In the hypotheses of Theorem 17, the training
loss, the training error and the generalisation error are given by

ε` =
K∑
k=1

ρkEξ[`(ek,hk)], εt = 1−
K∑
k=1

ρkEξ [ŷk(hk)] , εg = 1−
K∑
k=1

ρkEξ [ŷk(ωk)] . (9.9)

The case of ridge regularisation and diagonal Σk The general formulas given above can be
remarkably simplified under some assumptions about the choice of the regularisation and about the
structure of the covariance matrices Σk. This is the case for instance for the ridge regularisation
r(W) = ‖W‖2F/2 and jointly diagonalizable covariances. In this case, Theorem 17 simplifies as
follows.

Corollary 3. Under the hypotheses of Theorem 17, let us further assume that a ridge regulari-
sation is adopted, r(W) = ‖W‖2F/2, and that the covariance matrices Σk have a common set of
orthonormal eigenvectors {vi}di=1, so that, for each Σk = ∑d

i=1 σ
k
i viv>i . Let us also introduce,

in the d → +∞ limit, the joint distribution for the K-dimensional vectors σ = (σ1, . . . , σK) and
µ = (µ1, . . . , µK),

1
d

d∑
i=1

K∏
k=1

δ(σk − σki )δ(µk −
√
dµ>k vi) d→+∞−−−−→ p(σ,µ), (9.10)

Then, the first three saddle point equations in eqs. (9.8) take the form

Qk = Eσ,µ
[
σk
(
λIK +∑K

κ=1 σ
κV̂k

)−2 (∑
κκ′ µ

κµκ
′m̂κm̂>κ′ +

∑K
κ=1 σ

κQ̂k

)]
,

Mk = Eσ,µ
[
µk
(
λIK +∑K

κ=1 σ
κV̂k

)−1∑K
κ=1 µ

κm̂κ

]
,

Vk = Eσ,µ
[
σk
(
λIK +∑K

κ=1 σ
κV̂k

)−1
]
.

(9.11)

Narrative of the proof The proof is detailed in Chapter 10. It overcomes problems that existing
methods, notably convex Gaussian comparison inequalities [283], have yet to be adapted to. The first
main technical difficulty resides in the estimator of interest being a matrix learned with non-linear
functions. This makes it impossible to decompose the problem on each row of the estimator, which
must be characterized in a probabilistic sense directly as a matrix. The second main difficulty is
brought by the mixture of arbitrary covariances. Intuitively, the covariances correlate the estimator
with the individual clusters, and therefore the correlation function cannot be represented by a
single quantity. In our proof, these points are handled using the AMP and related state-evolution
techniques [42, 28, 29, 109]. The main idea of the proof is to express the estimator W? as the limit of
a convergent sequence whose structure enables the decomposition of all correlations and distributions
in closed form. AMP iterations can handle matrix valued variables [15, 135], correlations in block-
structure [135], non-separable functions [188, 37] and compositions of the previous three, leaving
a large choice of possibilities in their design. We thus reformulate the problem in a way that
makes the interaction between the estimator and each cluster explicit, effectively introducing a
block structure to the problem, and isolate the overlaps with the means {µk}. We then design a
matrix-valued sequence that obeys the update rule of an AMP sequence, in order to benefit from its
exact asymptotics, and whose fixed point condition matches the optimality condition of the ERM
problem, Eq. (9.2). Our proof builds on the spatial coupling framework in the AMP literature
[154, 135], which shows that the effect of random matrices defined with non-identically distributed
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blocks can be embedded in an AMP iteration while explicitly keeping the effect of each block. The
non-linearities are then obtained by a block decomposition of the proximal operators defined on sets
of matrices, acting on different variables of the AMP sequence and representing the effect of each
cluster. The convergence analysis is made possible by the convexity of the problem: the sequence is
defined with proximal operators of convex functions which are roughly contractions, and results in
converging sequences when combined with the high-dimensional properties of the iteration. It is also
interesting to note that the replica method, although heuristic, yet again gives the correct prediction
without any hindering from the aforementioned main difficulties, as detailed in the Appendix of the
original paper.

Universality AMP-type proofs are amenable to both finite sample size analysis and universality
proofs. For instance, in [251] it is shown that simpler instances of AMP for the LASSO exhibit
exponential concentration in the system size, and the i.i.d. Gaussian assumption can be relaxed to
independently sampled sub-Gaussian distributions, as shown in [27, 62]. Although these results do
not formally encompass our case, their proof method contains most of the required technicalities,
and it should be possible to prove similar results in the present setting. Indeed, recent results
in [262] suggest that the formula of Theorem 17 and 18 should be universal for all mixtures of
concentrated distribution in high-dimension, not only Gaussian ones. As we discuss Sec. 9.3.3, even
real data learning curves are empirically found to follow the behavior of the mixture of Gaussians.

9.3 Results on synthetic and real datasets

In this section we exemplify how Theorem 17 can be employed to compute quantities of interest
in different empirical risk minimisation tasks in high-dimensions. In all cases discussed below,
eqs. (9.8) have been solved numerically. A repository with a polished version of the code we used
to solve the equations is available on GitHub.

9.3.1 Correlated sparse mixtures

As a first example, consider a binary classification problem in which the most relevant features live
in a subspace of Rd, and can be either weaker or stronger with respect to the irrelevant features.
This problem can be modelled with a Gaussian mixture model with sparse means, and where the
strong/weak directions of the covariance matrix are correlated with the non-zero components of the
means. Mathematically, we consider a data set with n independent samples (xν , yν) ∈ Rd×{−1, 1}
drawn from a Gaussian mixture xν ∼ N (yνµ,Σ) with diagonal covariance Σij = σiδij which is
correlated with the sparse means:

P (µ,σ) =
d∏
i=1

{
ρN (µi|0, 1)δσi,∆1 + (1− ρ)δµi,0δσi,∆2

}
(9.12)

where ρ > 0 is the fraction of non-zero entries in µ. This model is closely related to the rare/weak
features model introduced by Donoho and Jin in [81]. Indeed, in the case ∆1 = ∆2 ≡ ∆ the
signal-to-noise ratio of the model is proportional to ρ/

√
∆, with ρ and ∆−1/2 playing the roles of

the parameters ε and µ0 setting the ”rareness” and ”strength” of the features in [81].
The formulas given in Theorem 17 simplify considerably for this model (see Appendix of the

original paper), and therefore can be readily used to characterise the learning performance of dif-
ferent losses and penalties. For instance, one fundamental question we can address is when learning
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Figure 9.1: (Left) Two-dimensional projection of the Gaussian mixture introduced via Eq. (9.12)
in which the sparse directions of the means are correlated with the weak/strong directions in the
data. (Right) Fraction of non-zero elements of the lasso estimator (top) and optimal regularisation
strength (bottom) as a function of the sample complexity α = n/d for different anisotropy ratios and
fixed sparsity ρ = 0.1. Note that for ∆1/∆2 . 1 and for low α the optimal error is achieved for
vanishing regularisation, which corresponds to the basis pursuit algorithm [61].

a sparse solution with the `1 regularization is advantageous over the usual `2. Figure 9.2 compares
the learning curves computed from Theorem 17 for the lasso and ridge estimators, with optimal
regularisation strength λ?(α) = argmin εg(α, λ) at fixed sparsity ρ = 0.1. We can see that lasso
performs considerably better than ridge in the regime where ∆1/∆2 . 1, while it achieves a similar
performance when ∆1/∆2 & 1. This is quite intuitive: the sparse directions are uninformative, and
therefore learning the relevant features is better when they are stronger. Figure 9.1 (right) shows
how the sparsity of the learned estimator W? and the optimal regularisation λ? depends on the
sample complexity α = n/d. Interestingly, for ∆1/∆2 = 0.1 or lower there is a region of small α
in which basis pursuit (λ = 0+) [61] is optimal, and the sparsity of the estimator has a curious
non-monotonic behaviour with α.

9.3.2 Separability transition for the cross-entropy loss

We now consider the problem of classifying points of K Gaussian clusters using a cross-entropy loss

`(y,x) = −
K∑
k=1

yk ln exk∑K
κ=1 e

xκ
. (9.13)

Using the results of Theorem 18, we estimate the dependence of the generalisation error εg on the
sample complexity α and on the regularisation λ. We assume Gaussian means µk ∼ N (0, Id/d) and
diagonal covariances Σk ≡ Σ = ∆Id. Finally, we adopt a ridge penalty, r(W) ≡ ‖W‖2F/2, and we
focus on the case of balanced clusters, i.e., ρk = 1/K for the sake of simplicity.

Separability transition In Fig. 9.3 (left top) we plot the generalisation error εg as function
of α for 2 6 K 6 5 and λ = 10−4. The smooth curve is obtained solving the fixed point
equations in Theorem 17 and plugging the results in the formulas in Theorem 18. The results
of numerical experiments are obtained averaging over 102 instances of the problem solved using
the LogisticRegression module in the Scikit-learn package [229]. An excellent agreement is
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Figure 9.2: Learning curves for the sparse mixture model defined via Eq. (9.12) at fixed sparsity
ρ = 0.1, comparing the performance of the ridge (blue) and the lasso (orange) estimators at optimal
regularisation strength λ∗ and for different anisotropy ratio ∆1/∆2 (here ∆1 = 0.1 and we vary
∆2). Full lines denote the theoretical prediction, and dots denote finite instance simulations with
d = 1000 using the ElasticNet module in the Scikit-learn package [229]. Above a certain sample
complexity α, we can identify two regimes: a) a ∆1/∆2 . 1 regime in which the `1 penalty improves
significantly over `2; b) a ∆1/∆2 & 1 regime in which the performance is similar. Interestingly, even
though the generalisation error of lasso is considerably better in a), the training loss (i.e. the mse
on the labels) is higher, & vice-versa in b).
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Figure 9.3: Classification of K Gaussian clusters in d dimensions, having Gaussian means and
Σk ≡ Σ = ∆Id with ∆ = 1/2. In all presented cases, a quadratic regularisation has been adopted.
Numerical experiments have been performed using d = 103. (Left) Generalisation error εg (top)
and training error εt (bottom) as function of α at λ = 10−4. Theoretical predictions (full lines) are
compared with the results of numerical experiments (dots). Dash-dotted lines of the corresponding
color represent, for comparison, the Bayes-optimal error. The results of numerical experiments are
in agreement with the theoretical predictions in all cases. (Center) Separability transition α?K as a
function of K in the same setting for different values of ∆. (Right) Dependence of the generalisation
error on the regularization λ for K = 3 and ∆ = 1/2 in the balanced case, ρk = 1/K.
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observed. For each pair (K,∆) and for vanishing regularisation λ → 0+ we observe a double-
descent-like behaviour in the generalisation error. Indeed, the cusp α?K(∆) in the generalisation
error corresponds to the point in which the cross-entropy estimator ceases to perfectly interpo-
late the data, revealing the existence of a separability transition of the type discussed in [53] for
Gaussian i.i.d. data. As stressed therein, a phase of perfect separability of the data points cor-
responds to a regime in which the maximum-likelihood estimate does not exist with probability
one. This is visible, in the same figure (left bottom), from the training error εt that is identically
zero for α < α?K , and strictly positive otherwise. Our result extends the observations in [73, 197],
where an analytic expression for α?2 has been given in the case of for K = 2, µ1 = −µ2 Gaus-
sian vector, generalising the classical result of Cover [66]. The separability transition point α?K
decreases with ∆ and increases with K, showing that for larger K it is easier to separate the dif-
ferent clusters: this intuitively follows from the fact that, at fixed α and ∆, each cluster is given
by αd/K points, i.e., fewer for increasing K and therefore easier to classify, see Fig. 9.3 (center).
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Figure 9.4: (Left.) Generalisation error ob-
tained using ridge regression in the case of two
balanced Gaussian clusters having Σ1 = 1

10Id
and Σ2 = 1

100Id as function of λ for different
values of the sample complexity α. (Right)
Generalisation error εg as a function of λ at
fixed α in the binary classification of MNIST
and in the FashionMNIST via logistic regres-
sion (see Sec. 9.3.3 for details).

The role of regularisation In Fig. 9.3 (right)
we compare the performances of the cross-entropy
loss with respect to the Bayes-optimal error (de-
tailed in the appendix of the original paper) for
different strength λ of the regularisation, assuming
all identical diagonal covariances Σk ≡ Σ = ∆Id.
In the case of balanced clusters (i.e., ρk = 1/K for
all k) it is observed that the generalisation error
approaches the Bayes-optimal error for λ → +∞.
The same phenomenology has been observed in
[78, 197] in the K = 2 case with opposite means
and generic loss, and in [283] for K > 2 for
the square loss. Using the concentration results
of Section 9.2, we investigated the robustness of
this result in the case of balanced clusters but
with different covariances and various losses. First,
we considered two opposite balanced clusters with
Σ1 = ∆1Id and Σ2 = ∆2I2, ∆1 6= ∆2, and we
estimated the generalisation error at fixed sample
complexity as function of λ ∈ [10−4, 102] using ridge regression. As shown in Fig. 9.4 (left), the
regularisation strength optimising the error is finite, and in particular depends on the sample com-
plexity. This situation is closer to what is observed in real problems with balanced data analysed
using logistic regression. Indeed, using the covariances from real data sets such as MNIST or
Fashion-MNIST yields a similar behaviour, see Fig. 9.4 (right), with an optimal λ that is found to
be finite.

9.3.3 Binary classification with real data

A recent line of works has reported that the asymptotic learning curves of simple regression tasks
on real data sets can be well approximated by a surrogate Gaussian model matching the first
two moments of the data [45, 133, 176]. However, this analysis was fundamentally restricted to
least-squares regression, and considerable deviation from the Gaussian model was observed for
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Figure 9.5: Generalisation error and training loss for the binary classification using the logistic
loss on MNIST with λ = 0.05 (left) and on Fashion-MNIST with λ = 1 (right). The results
are compared with synthetic data produced from the corresponding Gaussian mixture, and the
theoretical prediction.

classification tasks [176]. Authors of [262] have shown that realistic-looking data from trained
generative adversarial networks behave like Gaussian mixtures. Here, we pursue these observations
and investigate whether Theorem 18 can be used to capture the learning curves of classification
tasks on two popular data sets: MNIST [158] and Fashion-MNIST [298]. Our goal is to compare
the performances of some classification tasks on them with the predictions provided by the theory
for the Gaussian mixture model.

Both data sets consist of ntot = 7× 104 images x̂µ ∈ Rd, d = 784. Each image x̂µ is associated
to a label ŷµ = {0, 1, . . . , 9} specifying the type of represented digit (in the case of MNIST) or item
(in the case of Fashion-MNIST). In both cases, we divided the database into two balanced classes
(even vs odd digits for MNIST, clothes vs accessories for Fashion-MNIST), relabelling the elements
x̂µ with yµ ∈ {−1, 1} depending on their class, and we selected n < ntot elements to perform the
training, leaving the others for the test of the performances. We adopted a logistic loss with `2
regularisation. First, we performed logistic regression on the training real data set, then we tested
the learned estimators on the remaining ntot − n images. At the same time, for each class k of
the training set, we empirically estimated the corresponding mean µk ∈ Rd and covariance matrix
Σk ∈ Rd×d. We then assumed that the classification problem on the real database corresponds
to a Gaussian mixture model of K = 2 clusters with means {µk}k∈[2] and covariances {Σk}k∈[2].
Under this assumption, we computed the generalisation error and the training loss predicted by the
theory inserting the empirical means and covariances in our general formulas. The results are given
in Fig. 9.5, showing a good agreement between the theoretical prediction and the results obtained
on MNIST and Fashion-MNIST. In Fig. 9.5 we also plot, as reference, the results of a classification
task performed on synthetic data, obtained generating a genuine Gaussian mixture with the means
and covariances of the real data set.

Interestingly, this construction can also be used to analyse the learning curves of classification
problems with non-linear feature maps [176], e.g. random features [238]. In this case, we first apply
to our data set a feature map xµ = erf(Fx̂µ), where F ∈ Rp×d has i.i.d. Gaussian entries and the
erf function is applied component wise. The classification task is then performed on the new data
set {(xν , yν)}ν∈[n], the new data points xν living in a p-dimensional space. We denote γ = p/d. We
repeat the analysis described above in this new setting. Our results are in Fig. 9.6 for different
values of γ. Once again, the generalisation error and the training loss are shown to be in a good
agreement with both the theoretical prediction and the synthetic data sets obtained plugging in our
formulas the real data means and the real data covariance matrices.
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Figure 9.6: Generalisation error and training loss for the binary classification using the logistic on
MNIST at λ = 0.05 (left) and on Fashion-MNIST at λ = 1 (right) in the random feature setting,
for different values of γ, ratio between the number of parameters and the dimensionality of the
data. The results are compared with synthetic data produced with the same γ, and the theoretical
prediction.



Chapter 10

Proofs for the Gaussian mixture

This appendix presents the proof of the main technical result, Theorem 17. Throughout the whole
proof, we assume that the set of conditions from Sec. 9.2 is verified.

10.1 Required background

In this Section, we give an overview of the main concepts and tools on approximate message passing
algorithms which will be required for the proof.

We start with some definitions that commonly appear in the approximate message-passing lit-
erature, see e.g. [28, 135, 37]. The main regularity class of functions we will use is that of pseudo-
Lipschitz functions, which roughly amounts to functions with polynomially bounded first derivatives.
We include the required scaling w.r.t. the dimensions in the definition for convenience.

Definition 15 (Pseudo-Lipschitz function). For k,K ∈ N∗ and any n,m ∈ N∗, a function φ : Rn×K →
Rm×K is called a pseudo-Lipschitz of order k if there exists a constant L(k,K) such that for any
x,y ∈ Rn×K ,

‖φ(x)− φ(y)‖F√
m

6 L(k,K)
(

1 +
(‖x‖F√

n

)k−1
+
(‖y‖F√

n

)k−1) ‖x− y‖F√
n

(10.1)

where ‖•‖F denotes the Frobenius norm. Since K will be kept finite, it can be absorbed in any of
the constants.

For example, the function f : Rn → R,x 7→ 1
n‖x‖

2
2 is pseudo-Lipshitz of order 2.

Moreau envelopes and Bregman proximal operators — In our proof, we will also frequently
use the notions of Moreau envelopes and proximal operators, see e.g. [224, 25]. These elements of
convex analysis are often encountered in recent works on high-dimensional asymptotics of convex
problems, and more detailed analysis of their properties can be found for example in [281, 176].
For the sake of brevity, we will only sketch the main properties of such mathematical objects,
referring to the cited literature for further details. In this proof, we will mainly use proximal
operators acting on sets of real matrices endowed with their canonical scalar product. Furthermore,
proximals will be defined with matrix valued parameters in the following way: for a given convex
function f : Rd×K → R, a given matrix X ∈ Rd×K and a given symmetric positive definite matrix

214
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V ∈ RK×K with bounded spectral norm, we will consider operators of the type

arg min
T∈Rd×K

{
f(T) + 1

2tr
(
(T−X)V−1(T−X)>

)}
(10.2)

This operator can either be written as a standard proximal operator by factoring the matrix V−1

in the arguments of the trace:

Prox
f(•V1/2)

(XV−1/2)V1/2 ∈ Rd×K (10.3)

or as a Bregman proximal operator [24] defined with the Bregman distance induced by the strictly
convex, coercive function (for positive definite V)

X 7→ 1
2tr(XV−1X>) (10.4)

which justifies the use of the Bregman resolvent

arg min
T∈Rd×K

{
f(T) + 1

2tr
(
(T−X)V−1(T−X)>

)}
= (Id + ∂f(•)V)−1 (X) (10.5)

Many of the usual or similar properties to that of standard proximal operators (i.e. firm non-
expansiveness, link with Moreau/Bregman envelopes,. . . ) hold for Bregman proximal operators
defined with the function (10.4), see e.g. [24, 26]. In particular, we will be using the equivalent
notion to firmly nonexpansive operators for Bregman proximity operators, called D-firm operators.
Consider the Bregman proximal defined with a differentiable, strictly convex, coercive function
g : X → R, where X is a given input Hilbert space. Let T be the associated Bregman proximal of
a given convex function f : X → R, i.e., for any x ∈ X

T (x) = arg min
y∈X

{f(x) +Dg(x,y)} (10.6)

Then T is D-firm, meaning it verifies

〈Tx− Ty,∇g(Tx)−∇g(Ty)〉 6 〈Tx− Ty,∇g(x)−∇g(y)〉 (10.7)

for any x,y in X .

Gaussian concentration — Gaussian concentration properties are at the root of this proof.
Such properties are reviewed in more detail, for example, in [37, 176].

Notations — For any set of matrices {Ak ∈ Rnk×dk}k∈[K] we will use the following notation:
A1

A2 (∗)
(∗) . . .

AK

 ≡ [Ak]Kk=1 ∈ R(
∑K

k=1 nk)×(
∑K

k=1 dk) (10.8)
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where the terms denoted by (∗) will be zero most of the time.
For a given function φ : Rd×K → Rd×K , we write :

φ(X) =


φ1(X)

...
φd(X)

 ∈ Rd×K (10.9)

where each φi : Rd×K → RK . We then write the K ×K Jacobian

∂φi

∂Xj
(X) =


∂φi1(X)
∂Xj1

· · · ∂φi1(X)
∂XjK

... . . . ...
∂φiK(X)
∂Xj1

· · · ∂φiK(X)
∂XjK

 ∈ RK×K (10.10)

For a given matrix Q ∈ RK×K , we write Z ∈ Rn×K ∼ N (0,Q ⊗ In) to denote that the lines of
Z are sampled i.i.d. from N (0,Q). Note that this is equivalent to saying that Z = Z̃Q1/2 where
Z̃ ∈ Rn×K is an i.i.d. standard normal random matrix. The notation P' denotes convergence in
probability.

Approximate message-passing — Approximate message-passing algorithms are a statistical
physics inspired family of iterations which can be used to solve high dimensional inference problems
[300]. One of the central objects in such algorithms are the so called state evolution equations, a low-
dimensional recursion equations which allow to exactly compute the high dimensional distribution
of the iterates of the sequence. In this proof we will use a specific form of matrix-valued approximate
message-passing iteration with non-separable non-linearities. In its full generality, the validity of
the state evolution equations in this case is an extension of the works of [135, 37] included in [110].
Consider a sequence Gaussian matrices A(n) ∈ Rn×d with i.i.d. Gaussian entries, Aij(n) ∼ N (0, 1/d).
For each n, d ∈ N, consider two sequences of pseudo-Lipschitz functions

{ht : Rn×K → Rn×K}t∈N {et : Rd×K → Rd×K}t∈N (10.11)
initialized on u0 ∈ Rd×K in such a way that the limit

lim
d→∞

1
d

∥∥∥e0(u0)>e0(u0)
∥∥∥

F
(10.12)

exists and it is finite, and recursively define:
ut+1 = A>ht(vt)− et(ut)〈h′t〉> (10.13)
vt = Aet(ut)− ht−1(vt−1)〈e′t〉> (10.14)

where the dimension of the iterates are ut ∈ Rd×K and vt ∈ Rn×K . The terms in brackets are
defined as:

〈h′t〉 = 1
d

n∑
i=1

∂hit
∂vi

(vt) ∈ RK×K 〈e′t〉 = 1
d

d∑
i=1

∂eit
∂ui

(ut) ∈ RK×K (10.15)

We define now the state evolution recursion on two sequences of matrices {Qr,s}s,r>0 and {Q̂r,s}s,r>1
initialized with Q0,0 = limd→∞

1
de0(u0)>e0(u0):

Qt+1,s = Qs,t+1 = lim
d→∞

1
d
E
[
es(Ẑs)>et+1(Ẑt+1)

]
∈ RK×K (10.16)

Q̂t+1,s+1 = Q̂s+1,t+1 = lim
d→∞

1
d
E
[
hs(Zs)>ht(Zt)

]
∈ RK×K (10.17)



CHAPTER 10. PROOFS FOR THE GAUSSIAN MIXTURE 217

where (Z0, . . . ,Zt−1) ∼ N (0, {Qr,s}06r,s6t−1 ⊗ In), (Ẑ1, . . . , Ẑt) ∼ N (0, {Q̂r,s}16r,s6t ⊗ Id). Then
the following holds

Theorem 19. In the setting of the previous paragraph, for any sequence of pseudo-Lipschitz func-
tions φn : (Rn×K × Rd×K)t → R, for n, d→ +∞:

φn(u0,v0,u1,v1, . . . ,vt−1,ut) P' E
[
φn
(
u0,Z0, Ẑ1,Z1, . . . ,Zt−1, Ẑt

)]
(10.18)

where (Z0, . . . ,Zt−1) ∼ N (0, {Qr,s}06r,s6t−1 ⊗ In), (Ẑ1, . . . , Ẑt) ∼ N (0, {Q̂r,s}16r,s6t ⊗ In).

Spatial coupling As a final premise to our proof, we give the intuition on how to handle a specific
form of block random matrix in an AMP sequence. Consider the iteration (10.13), but this time
with a Gaussian matrix defined as:

A =


A1

A2 (0)
(0) . . .

AK

 ∈ Rn×Kd (10.19)

where Ak ∈ Rnk×d and ∑K
k=1 nk = n, which leads to the following form for the products between

matrices and non-linearities:

A>ht(vt) =


A>1 h1,t(vt)
A>2 h2,t(vt)

...
A>KhK,t(vt)

 ∈ RKd×K Aet(ut) =


A1e1,t(ut)
A2e2,t(ut)

...
AKeK,t(ut)

 ∈ Rn×K (10.20)

where the blocks hk,t(vt) ∈ Rnk×K , ek,t(ut) ∈ Rd×K may depend on their full arguments or only the
corresponding blocks depending on their separability. This iteration can be embedded as a subset
of the iterates of a larger sequence defined with the full version of the matrix A and non-linearities
defined as:

et : RKd×K2 → RKd×K
2

generates


e1,t (•)

e2,t (•) (0)
(0) . . .

eK,t (•)

 ∈ RKd×K
2 (10.21)

ht : Rn×K2 → Rn×K
2

generates


h1,t (•)

h2,t (•) (0)
(0) . . .

hK,t (•)

 ∈ Rn×K
2 (10.22)

The original iteration is recovered on the block diagonal of the variables of the iteration. This new
setting, however, introduces a richer correlation structure, since each block will be described by a
different K×K covariance according to the state evolution equations. Formally, the new covariance
will be a K2×K2 block diagonal matrix. Also, the shape of the Onsager term changes from a matrix
of size K ×K to one of size K2 ×K2 with a K × (K ×K) block diagonal structure.
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10.2 Reformulation of the problem

We start by reformulating problem (9.2) in a way that can be treated efficiently using an AMP
iteration. With respect to the main part of this paper, we will consider the estimator W ∈ Rd×K
instead of RK×d. The normalized (so that the cost does not diverge with the dimension) problem
(9.2) then reads:

min
W∈Rd×K ,b∈RK

1
d

(
L

(
Y, 1√

d
XW + b

)
+ r(W)

)
(10.23)

where we have introduced the function L : Rn×K × Rn×K → R acting as(
Y, 1√

d
XW + b

)
7→

n∑
ν=1

`

(
yν , Wxν√

d
+ b

)
, (10.24)

the matrix Y ∈ Rn×K of concatenated one-hot encoded labels, and the matrix of concatenated
means M ∈ RK×d (in the main we took the transpose M ∈ Rd×K). Until further notice, we will
drop the scaling 1

d for convenience and study the problem

min
W∈Rd×K ,b∈RK

L

(
Y, 1√

d
XW + b

)
+ r(W) (10.25)

We will write Lk the application of ` on each row of a sub-block in Rnk×K . Without loss of generality,
we can assume that the samples are grouped by clusters in the data matrix, giving the following
form for X ∈ Rn×d, separating the mean part YM and centered Gaussian part :

X = YM + Z̃Σ ∈ Rn×d (10.26)

where we have introduced the block-diagonal matrix Z̃ and the Kd× d full-column-rank matrix Σ

Z̃ =


Z1

Z2 (0)
(0) . . .

ZK

 ∈ Rn×Kd Σ =


Σ1/2

1
Σ1/2

2
...

Σ1/2
K

 ∈ RKd×d. (10.27)

Here (Z1, . . . ,ZK) ∈ Rn1×d × · · · × RnK×d are independent, i.i.d. standard normal matrices.
The product between the data matrix and the weights W ∈ Rd×K then reads:

XW = YMW + Z̃ΣW =


Y1MW + Z1Σ1/2

1 W
...

YKMW + ZKΣ1/2
K W

 ∈ Rn×K (10.28)

where each Yk ∈ Rnk×d is a nk copy of the same label vector. Defining now W̃ = ΣW, observe
that

W̃ = ΣW =⇒ W = Σ+W̃, (10.29)

where

Σ+ ≡
(

K∑
k=1

Σk

)−1

Σ> (10.30)
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is the pseudo-inverse of the matrix Σ. The optimization problem (9.2) is thus equivalent to

inf
W̃∈RKd×K

b∈RK

K∑
k=1

Lk

( 1√
d
YkMW + 1√

d
ZkW̃k,b

)
+ r

(
Σ+W̃

)
(10.31)

Introducing the order parameter M = 1√
d
MW ∈ RK×K , we reformulate Eq.(10.31) as a constrained

optimization problem :

inf
M,W̃,b

K∑
k=1

Lk

(
YkM + 1√

d
ZkW̃k

)
+ r

(
Σ+W̃

)
(10.32)

s.t. 1√
d
MΣ+W̃ = M

whose Lagrangian form, with dual parameters M̂ ∈ RK×K , reads

inf
M,W̃,b

sup
M̂

K∑
k=1

Lk

(
YkM + 1√

d
ZkW̃k

)
+ r

(
Σ+W̃

)
+ tr

(
M̂>

(
M− 1√

d
MΣ+W̃

))
. (10.33)

This is a proper, closed, convex, strictly feasible optimization problem, thus strong duality holds
and we can invert the order of the inf-sup to focus on the minimization problem in W̃ for fixed
M, M̂,b:

inf
W̃∈RKd×K

L̃

( 1√
d
Z̃W̃

)
+ r̃(W̃) (10.34)

where we defined the loss term

L̃ : Rn×K → R

1√
d
Z̃W̃ 7→

K∑
k=1

Lk

(
YkM + 1√

d
ZkW̃k

)
=

K∑
k=1

nk∑
i=1

`

([
YkM + 1√

d
ZkW̃k

]
i

) (10.35a)

and the regularisation term

r̃ : RKd×K → R

W̃ 7→ r
(
Σ+W̃

)
+ tr

(
M̂>

(
M− 1√

d
MΣ+W̃

)) (10.35b)

where Σ>W̃ = ∑K
k=1 Σ1/2

k Wk and Z̃ = [Zk]Kk=1 ∈ Rn×Kd is an i.i.d. standard normal block diagonal
matrix as in Eq. (10.27).

10.3 Finding the AMP sequence

We now need to find an AMP iteration relating to W̃ that solve the optimization problem in
Eq. (10.34). Although this section is not written as a formal proof, all steps are rigorous. The aim
is to give the reader the core intuition on how the AMP iteration is found, otherwise the solution
may feel “parachuted”. The reader uninterested in the underlying intuition may directly skip to the
next section. In order to find the appropriate sequence two key points must be considered :

• the fixed point of the sequence has to match the optimality condition of Eq. (10.34);
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• the update rule of the sequence should have the form Eq. (10.13) for the state evolution
equations to hold.

These two points completely determine the form of the iteration. In the subsequent derivation, we
absorb the scaling 1√

d
in the matrix Z̃, such that the Zk ∈ Rnk×d have i.i.d. N (0, 1/d) elements.

Resolvent of the loss term — Going back to problem Eq. (10.34), its optimality condition will
look like :

Z̃>∂L̃(ZW̃) + ∂r̃(W̃) = 0 ⇐⇒


Z>1

Z>2 (0)
(0) . . .

Z>K



∂L̃1(Z1W̃1)
∂L̃2(Z2W̃2))

...
∂L̃K(ZKW̃K))

+ ∂r̃(W̃) = 0 (10.36)

where each Zk ∈ Rnk×d, and the subdifferential of L̃ is separable across blocks of size nk × d,
and ∂r̃(W̃) ∈ RKd×K . Following the intuition of spatial coupling, we introduce the full matrix
Z ∈ Rn×Kd, with i.i.d. N (0, 1/d) entries. The optimality condition can then be written on the
diagonal of a Kd×K2 matrix:

Z>


∂L̃1(Z1W̃1)

∂L̃2(Z2W̃2) (0)
(0) . . .

∂L̃K(ZKW̃K)



+


∂r̃(W̃)1

∂r̃(W̃)2 (0)
(0) . . .

∂r̃(W̃)K

 = 0 (10.37)

where ∂r̃(W̃)k represents the k-th block of the subdifferential of r̃ which is non-separable across the
blocks of W̃. To make the resolvents/proximals appear, we add the argument of the subdifferentials
on both sides weighted by a (symmetric) positive definite matrix Sk ∈ RK×K which will be used to
allow for Onsager correction while respecting the fixed point condition. Using the notation defined
in section 10.1[

Z>k ∂L̃k(ZkW̃k)
]K
k=1

+
[
∂r̃(W̃)

]K
k=1

= 0

⇐⇒
[
Z>k ∂L̃k(ZkW̃k) + Z>k ZkW̃kS−1

k

]K
k=1

+
[
∂r̃(W̃)

]K
k=1

=
[
Z>k ZkW̃kS−1

k

]K
k=1

(10.38)

for a given set of positive definite matrices {Sk}k∈[K]. Again, the reason for introducing different
Sk on each block is to match the expected structure of the Onsager term. We can introduce the
resolvent, formally Bregman resolvent/proximal operator:

Uk ≡ ∂L̃k(ZkW̃k)Sk + ZkW̃k ⇐⇒ ZkW̃k = RL̃k,Sk(Uk) (10.39)
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where

RL̃k,Sk(Uk) = (Id + ∂L̃k(•)Sk)−1(Uk)

= arg min
T∈Rnk×K

{
L̃k(T) + 1

2tr
(
(T−Uk)S−1

k (T−Uk)>
)}

= arg min
T∈Rnk×K

{
Lk(T) + 1

2tr
(
(T− (YkM + Uk))S−1

k (T− (YkM + Uk))>
)}
−YkM.

(10.40)

In the previous expressions ∂L̃k ∈ Rnk×K and Vk ∈ RK×K . The following formulation of the
optimality condition is reached:[

Z>k UkS−1
k

]K
k=1

+
[
∂r̃(W̃)k

]K
k=1

=
[
Z>k RL̃k,Sk(Uk)S−1

k

]K
k=1

⇐⇒
[
Z>k

(
Uk −RL̃k,Sk(Uk)

)
S−1
k

]K
k=1

+
[
∂r̃(W̃)k

]K
k=1

= 0 (10.41)

Resolvent of the regularization term Determining the block decomposition of the subdiffer-
ential of the regularization term is less simple. We would like a block expression in the flavour
of: [

∂r̃(W̃)k
]K
k=1

+
[
W̃kŜ−1

k

]K
k=1

=
[
W̃kŜ−1

k

]K
k=1

(10.42)

At this point it becomes clear that we cannot consider the resolvent as acting on W̃ ∈ RKd×K
otherwise there could be only one Ŝ ∈ RK×K and there would be a mismatch with the expected
form of the Onsager terms. As specified by the definitions Eq.(10.35), the subdifferential of r̃ is
acting on the whole block diagonal matrix [W̃k]Kk=1, by way of summation due to the action of the
pseudo-inverse Σ+. We can thus consider its proximal acting on Rd×K2 as [W̃1W̃2...W̃K ] (note
that we could have also worked directly with a block diagonal matrix in RKd×K2). Proceeding in
this way, we can directly write our expression as an application parametrized by another set of
positive definite matrices {Ŝk}k∈[K].

Û =
(
Id + ∂r̃(•)Ŝ

)
(W̃) W̃ = Rr̃,Ŝ(Û) (10.43)

where

Rr̃,Ŝ(Û) =
(
Id + ∂r̃(•)Ŝ

)−1
(Û)

= arg min
T∈Rd×K2

{
r̃(T) + 1

2tr
(
(T− Û)Ŝ−1(T− Û)>

)} (10.44)

where Ŝ ∈ RK2×K2 block diagonal, and Û ∈ Rd×K2 . This would lead to the equivalent optimality
condition for the regularization part:

ÛŜ−1 = Rr̃,Ŝ(Û)Ŝ−1 ⇐⇒
[
ÛkŜ−1

k

]K
k=1

=
[
Rr̃,Ŝ,k(Û)Ŝ−1

k

]K
k=1

(10.45)

We now need to figure out the block structure of this resolvent since we want to spread it across a
block diagonal matrix. Let C = ∑K

k=1 Σk, so that Σ+ = C−1Σ>, and the blocks Tk ∈ Rd×K are
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the solution to the minimization problem

min
{Tk}k∈[K]∈(Rd×K)K

r(C−1
K∑
k=1

Σ1/2
k Tk) + 1

2tr
(
(T− Û)Ŝ−1(T− Û>)

)
+ tr

(
M̂>

(
M− 1√

d
MΣ+T

))
(10.46)

Let T̃ = C−1∑K
k=1 Σ1/2

k Tk ∈ Rd×K , and the equivalent reformulation as a constraint optimization
problem:

min
Tk∈[K]∈Rd×K

T̃∈Rd×K

r(T̃) + 1
2tr

(
(T− Û)Ŝ−1(T− Û>)

)
+ tr

(
M̂>

(
M− 1√

d
MT̃

))
(10.47)

s.t. T̃ = C−1
K∑
k=1

Σ1/2
k Tk

This is a feasible convex problem under convex constraint with a strongly convex term, it thus has
a unique solution and strong duality holds. Introducing the Lagrange multiplier λ ∈ Rd×K , we get
the equivalent representation:

min
Tk∈[K]∈Rd×K

T̃∈Rd×K

max
λ∈Rd×K

r(T̃) +
K∑
k=1

tr
(
(Tk − Ûk)Ŝ−1

k (Tk − Ûk)>
)

+ tr
(
λ>

(
T̃−C−1

K∑
k=1

Σ1/2
k Tk

))
+ tr

(
M̂>

(
M− 1√

d
MT̃

))
. (10.48)

The optimality condition for this problem reads:

∂T̃ : ∂r(T̃) + λ− 1√
d
M>m̂ = 0 (10.49)

∂T : (Tk −Uk)Ŝ−1
k = Σ1/2

k C−1λ ∀k ∈ [K] (10.50)

∂λ : T̃ = C−1
K∑
k=1

Σ1/2
k Tk (10.51)

Using the gradient condition on T, we get
K∑
k=1

Σ1/2
k (Tk − Ûk)Ŝ−1

k = λ (10.52)

The constraint T̃ = C−1∑K
k=1 Σ1/2

k Tk is solved by Tk = Σ1/2
k T̃ which gives the solution for λ

λ =
K∑
k=1

Σ1/2
k (Σ1/2

k T̃− Ûk)Ŝ−1
k =

K∑
k=1

ΣkT̃Ŝ−1
k −

K∑
k=1

Σ1/2
k ÛkŜ−1

k (10.53)

and prescribes the following form for T̃, as solution to the problem

∂r(T̃) +
K∑
k=1

ΣkT̃Ŝ−1
k −

K∑
k=1

Σ1/2
k ÛkŜ−1

k −
1√
d
M>M̂ = 0

⇐⇒ arg min
T̃

r(T̃) + 1
2

K∑
k=1

ΣkT̃Ŝ−1
k T̃−

(
K∑
k=1

Σ1/2
k ÛkŜ−1

k + 1√
d
M>M̂

)
T̃ (10.54)
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We then recover T from T = ΣT̃. Thus, defining the function

η : Rd×K2 → Rd×K

Û 7→ arg min
T̃

r(T̃) + 1
2

K∑
k=1

ΣkT̃Ŝ−1
k T̃−

(
K∑
k=1

Σ1/2
k ÛkŜ−1

k + 1√
d
M>M̂

)
T̃ (10.55)

the block decomposition of the resolvent for the regularizer reads:

Rr̃,Ŝ,k(Û) = Σ1/2
k η(Û) (10.56)

Matching the optimality condition with the AMP fixed point The global optimality
condition then reads:[

Z>k
(
RL̃k,Sk(Uk)−Uk

)
S−1
k

]K
k=1

=
[
(Ûk −Rr̃,Ŝ,k(Û))Ŝ−1

k

]K
k=1

(10.57)[
ZkRr̃,Ŝ,k(Û)

]K
k=1

=
[
RL̃k,Sk(Uk)

]K
k=1

(10.58)

where both equations should be satisfied. We can now define update functions based on the previ-
ously obtained block decomposition. The fixed point of the matrix-valued AMP Eq.(10.13) reads:

Id + e(u)〈h′〉> = Z>h(v) (10.59)
Id + h(v)〈e′〉> = Ze(u) (10.60)

Matching this fixed point with the optimality condition Eq.(10.57) suggests the following mapping:

hk(Uk) =
(
RL̃k,Sk(Uk)−Uk

)
S−1
k ,

ek(Û) = Rr̃,Ŝ,k(ÛŜ),

Sk = 〈e′k〉,
Ŝk = −〈h′k〉−1,

(10.61)

where we redefined Û ≡ ÛŜ in (10.43), and the subscripts on the non-linearities are block indexes.

10.4 Proof of Theorem 17 using the AMP sequence

Following the analysis carried out in the previous section, define the following two sequences of
non-linearities, for fixed values of the parameters M̂,M,b and any u ∈ Rd×K2

,v ∈ Rn×K :

et : RKd×K2 → RKd×K
2

u 7→


e1,t (u)

e2,t (u) (0)
(0) . . .

eK,t (u)

 ∈ RKd×K
2 (10.62)

ht : Rn×K2 → Rn×K
2

v 7→


h1,t (v1)

h2,t (v2) (0)
(0) . . .

hK,tt (vK)

 ∈ Rn×K
2 (10.63)
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where Yk ∈ Rnk×K and

hk,t : Rnk×K → Rnk×K

vk 7→
(
RL̃k,Vk,t(vk)− vk

)
(Vk,t)−1

=
(

arg min
T∈Rnk×K

{
L̃k(T) + 1

2tr
(
(T− vk)(Vk,t)−1(T− vk)>

)}
− vk

)
(Vk,t)−1

=
(
ProxLk(•(Vk,t)1/2)((YkM + vk)(Vk,t)−1/2)(Vk,t)1/2 − (YkM + vk)

)
(Vk,t)−1 (10.64)

ek,t : Rd×K2 → Rd×K

u 7→ Σ1/2
k arg min

T̃∈Rd×K
r(T̃) + 1

2

K∑
k=1

ΣkT̃V̂k,tT̃−
(

K∑
k=1

Σ1/2
k uk + 1√

d
M>M̂

)
T̃

= Σ1/2
k η(u(V̂t)−1) (10.65)

where (Vt, V̂t) ∈ RK2×K2 , are defined as the block diagonal matrices [Vk,t]k∈[K] ,
[
V̂k,t

]
k∈[K]

such
that

Vk,t = 〈(ek,t−1)′〉 V̂k,t = −〈(hk,t)′〉 (10.66)

using the notation from Eq. (10.15). Now define the following sequence, initialized with

u0,h−1 ≡ 0, V̂0 (10.67)

such that lim
d→∞

1
d

∥∥∥e0(u0)>e0(u0)
∥∥∥

F
< +∞ and V̂0 ∈ S++

K

and recursively define
ut+1 = Z>ht(vt)− et(ut)〈h′t〉> (10.68)
vt = Zet(ut)− ht−1(vt−1)〈e′t〉> (10.69)

where Z ∈ Rn×Kd has i.i.d. N (0, 1/d) elements, and in the Jacobians defining V̂,V, we used the
notation from Eq. (10.10).

State evolution equations The results from section 10.3 show that the functions et,ht are prox-
imals operators, and thus are Lipschitz continuous for all t ∈ N, along with their block restrictions.
Therefore the conditions of Theorem 19 are verified and we have the following lemma:

Lemma 43. Consider the sequence defined by Eq.(10.68), for any fixed M, M̂,b. For any sequences
of pseudo-Lipschitz functions φ1,n : Rd×K2 → R, φ2,n : Rn×K2 → R, for any t ∈ N∗:

φ1,n(ut1, . . . ,utK) P' E
[
φ1,n(H1(Q̂1,t)1/2, . . . ,HK(Q̂K,t)1/2)

]
(10.70)

φ2,n(vt1, . . . ,vtK) P' E
[
φ1,n(G1(Q1,t)1/2, . . . ,GK(QK,t)1/2)

]
(10.71)

where the matrices Hk ∈ Rd×K ,Gk ∈ Rnk×K are independent matrices with i.i.d. standard normal
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elements, and at each time step t > 1

Qk,t = lim
d→+∞

1
d
E
[
ek,t({Hk(Q̂k,t)1/2(V̂k,t)−1}k∈[K])>ek,t({Hk(Q̂k,t)1/2(V̂k,t)−1}k∈[K])

]
(10.72)

∈ RK×K

Q̂k,t = lim
d→+∞

1
d
E
[
hk,t−1(Gk(Qk,t−1)1/2)>hk,t−1(Gk(Qk,t−1)1/2)

]
∈ RK×K (10.73)

Vk,t = lim
d→+∞

1
d

d∑
i=1

∂ek,t−1({Hk(Q̂k,t−1)1/2}k∈[K])
∂(Hk(Q̂k,t−1)1/2)i

∈ RK×K (10.74)

V̂k,t = − lim
d→+∞

1
d

nk∑
i=1

∂hk,t(Gk(Qk,t)1/2)
∂(Gk(Qk,t)1/2)i

∈ RK×K (10.75)

where the sequence is initialized with V̂0, e0,Q0,0 = limd→∞
1
d

∥∥∥e0(u0)>e0(u0)
∥∥∥

F
.

Proof. Lemma 43 is a consequence of Theorem 19 whose assumptions have been verified in the
paragraph.

Note that in Lemma 43, we have directly written the block decomposition of the state evolution
corresponding to the iteration Eq. (10.68), which involves the block diagonal matrices Qt, Q̂t,Vt, V̂t

which are all in RK2×K2 . Using the notations introduced in section 10.1

V = [Vk]Kk=1 V̂ =
[
V̂k

]K
k=1

Q = [Qk]Kk=1 Q̂ =
[
Q̂k

]K
k=1

(10.76)

Also note that we do not use the full state evolution giving the correlations across all time steps,
but only use those at equal times t.

Trajectories and fixed point of the AMP sequence Now that we have a sequence with state
evolution equations, the following two lemmas link the fixed points of this iteration to any optimal
solution of problem Eq.(10.34).

Lemma 44. Consider any fixed point V, V̂,Q, Q̂ of the state evolution equations from Lemma 43.
For any fixed point u∗,v∗ of iteration Eq.(10.68), the quantity

Rr̃,V̂−1(u∗V̂−1) =
(
Id + ∂r̃(•)V̂−1

)
(u∗V̂−1) (10.77)

is an optimal solution W̃? of problem Eq.( 10.34). Furthermore

RL̃,V(v∗) = (Id + ∂L̃(•)V)(v∗) = ZW̃? (10.78)

where the block decompositions of each resolvents have been explicitly calculated in section 10.3.

Proof. Lemma 44 is a direct consequence of the analysis carried out in section 10.3.

At this point we know the fixed points of the AMP iteration correspond to the optimal solu-
tions of problem Eq.(10.34). Note that the resolvents/proximals linking the fixed point of the AMP
iteration with the solutions of Eq.(10.34) are Lipschitz continuous, making them acceptable trans-
forms for state evolution observables. However this does not guarantee that the optimal solution is
characterized by the fixed point of the state evolution equations. Indeed, we need to show that a
converging trajectory can be systematically found for any instance of the problem Eq.(10.34). This
is the purpose of the following lemma.
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Lemma 45. Consider iteration Eq.(10.68), where the parameters Q, Q̂,V, V̂ are initialized at any
fixed point of the state evolution equations of Lemma 43. For any sequence initialized with V̂0 = V̂
and u0 such that

lim
d→∞

1
d
e0(u0)>e0(u0) = Q (10.79)

the following holds

lim
t→∞

lim
d→∞

1√
d

∥∥∥ut − u?
∥∥∥

F
= 0 lim

t→∞
lim
d→∞

1√
d

∥∥∥vt − v?
∥∥∥

F
= 0 (10.80)

Proof. The proof of Lemma 45 is deferred to subsection 10.5.

Note that the G defined here is not the same as the G in the replica computation. Combining
the lemmas 43, 44 and 45 with the pseudo-Lipschitz property, we have reached the following lemma

Lemma 46. For any fixed M, M̂,b, consider the fixed point (Q, Q̂,V, V̂) of the state evolution
equations from Lemma. 43. Then, for any sequences of pseudo-Lipschitz functions φ1,n : Rd×K2 →
R, φ2,n : Rn×K → R, for n, d→∞

φ1,n(W̃?) P' E
[
φ1,n

(
Rr̃,V̂−1(HQ̂1/2V̂−1)

)]
(10.81)

φ2,n(ZW̃?) P' E
[
φ2,n

(
RL̃,V(GQ1/2)

)]
(10.82)

where we remind that G = [Gk]Kk=1 ,H = [Hk]Kk=1 are block diagonal i.i.d. standard normal matrices
as in Lemma 43, and Q = [Qk]Kk=1 Q̂ =

[
Q̂k

]K
k=1

are the K2 ×K2 block diagonal covariances.

Proof. Lemma 46 is a consequence of Lemmas 43,44,45 and applying the pseudo-Lipschitz property
along with the fact that the iterates of the AMP have bounded norm using the state evolution and
that the estimator also has bounded norm (feasibility assumption). Note that, for a generically
non-strictly convex problem, being close to the zero gradient condition does not guarantee being
close to the estimator. This is further discussed in Appendix 10.4.

Note that the resolvents are implicitly acting on the block diagonals of their arguments. At this
point we are quite close to Theorem 17(details for the exact matching will be given later), but we
are missing the equations on M, M̂,b.

Fixed point equations for M, M̂,b We drop the dependence on the bias term b as its solution
is very similar to the one for M, M̂. To obtain the equations for M, M̂, we go back to the complete
optimization problem

inf
M,W̃,b

sup
M̂

L(YkM + ZkW̃k) + r
(
Σ+W̃

)
+ tr

(
M̂>

(
M− 1√

d
MΣ+W̃

))
(10.83)

where we can use strong duality to write the equivalent form

inf
M,b

sup
M̂

L(YkM + ZkW̃?
k) + r

(
Σ+W̃

)
+ tr

(
M̂>

(
M− 1√

d
MΣ+W̃?

))
(10.84)
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The gradients w.r.t. M, M̂ then read:

∂M̂ = M− 1√
d
MΣ+W̃? (10.85)

∂M = M̂ + ∂ML(YM + ZW̃?) (10.86)

Uniform convergence of derivatives and conditions for the dominated convergence theorem are ver-
ified using similar arguments as in [176, Lemma 12]. We can thus invert limits and derivatives, and
expectations and derivatives. To facilitate taking the derivative ∂M, we use Lemma 46 (assuming
the normalized loss function is pseudo-Lipschitz, which is a very loose assumption verified by most
machine learning losses) to obtain, reintroducing the scaling 1/d

1
d
L(YM + ZW̃?) P−−−→

d→∞

1
d
E
[
L(YM + RL̃,V(GQ1/2))

]
(10.87)

Using the block decomposition from Eq.(10.40), the blocks (RL̃,V(GQ1/2))k ∈ Rnk×K are given by:

arg min
T∈Rnk×K

{
Lk(T) + 1

2tr
(
(T− (YkM + GkQ

1/2
k ))V−1

k (T− (YkM + GkQ
1/2
k ))>

)}
−YkM

(10.88)
Using a block diagonal representation, we can write:

1
d
L(YM +RL̃,V(GQ1/2)) = 1

d
L(RL,V(YM + GQ1/2))

= 1
d
ML,V(YM + GQ1/2)−

1
2dtr

(
(RL,V(YM + GQ1/2)− (YM + GQ1/2))V−1(RL,V(YM + GQ1/2)− (YM + GQ1/2))>

)
(10.89)

where we have introduced the Bregman-envelope [26] with respect to the distance Eq. (10.4)

ML,V(YM + GQ1/2) =

min
T

{
L(T) + 1

2tr
(
(T− (YM + GQ1/2))V−1(T− (YM + GQ1/2))>

)}
(10.90)

Then, using the state evolution equations from Lemma 43 and Stein’s lemma, we can write:

1
d
L(YM + RL̃,V(GQ1/2)) = 1

d
ML,V(YM + GQ1/2)− 1

2tr(V>Q) (10.91)

Taking the gradient w.r.t. M using the expression for the derivative of a Bregman envelope [26], we
get:

∂ML(YM + RL̃,V(GQ1/2)) = 1
d
Y>

(
YM + GQ1/2 −RL,V(YM + GQ1/2)

)
V−1 (10.92)

which prescribes, using Lemma 46

M̂ P' 1
d
Y>

(
RL,V(YM + GQ1/2)−YM + GQ1/2

)
V−1 (10.93)
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For M, we use the block decomposition from Eq.(10.54), which simplifies the pseudo-inverse Σ+ in
Eq. (10.85) to give, using Lemma 46 again

M P' 1√
d
Mη(HQ̂1/2V̂−1) (10.94)

where the function η acts on the block diagonal and is defined by Eq.(10.55). Using those results
and the definition of W̃, the solution W? and the quantity XW? are characterized, in the pseudo-
Lipschitz sense of Theorem 17, by the fixed point of the system of equations (the first four equations
are meant for all 1 6 k 6 K):

Qk = lim
d→+∞

1
d
E
[
ek({Hk(Q̂k)1/2V̂−1

k }k∈[K])>ek({Hk(Q̂k)1/2V̂−1
k }k∈[K])

]
∈ RK×K (10.95)

Q̂k = lim
d→+∞

1
d
E
[
hk(GkQ

1/2
k )>hk(GkQ

1/2
k )

]
∈ RK×K (10.96)

Vk = lim
d→+∞

1
d

d∑
i=1

E
[
∂ek({Hk(Q̂k)1/2}k∈[K])

∂(Hk(Q̂k)1/2)i

]
∈ RK×K (10.97)

V̂k = − lim
d→+∞

1
d

nk∑
i=1

E
[
∂hk,t(Gk(Qk,t)1/2)
∂(Gk(Qk)1/2)i

]
∈ RK×K (10.98)

M = 1√
d
E
[
Mη(HQ̂1/2V̂−1)

]
∈ RK×K (10.99)

M̂ = 1
d
Y>

(
RL,V(YM + GQ1/2)−YM + GQ1/2

)
V−1 ∈ RK×K (10.100)

Using the explicit form of the different functions given in section 10.3 and Stein’s lemma for the
derivatives, these equations match those of Theorem 17. This completes the proof.

On the strict convexity assumption If the optimization problem defining W? is strictly con-
vex, there is only one minimizer and the provided proof is enough. Additionally it is shown in [284]
that for any loss function that is strictly convex in its argument and penalized with the `1 norm,
provided the data is sampled from a continuous distribution, the solution is unique with probability
one regardless of the rank of the design matrix. Thus finding a point verifying the optimality con-
dition of (10.34) is also enough to complete the proof. For generic convex (non-strictly) problems
a more careful analysis could be performed in the same spirit as the one of [29]. Empirically the
result still holds.

On the uniqueness of the solution to the fixed point equations (10.95) It is possible
to reconstruct Bregman envelopes on problem (10.34) for the loss and regularization as we have
done for the loss in the previous section. We can then show that the fixed point equations (10.95)
are the optimality condition of a convex-concave problem involving both Bregman envelopes and
linear combinations of the order parameters. In the same spirit as [57, 176], this problem should be
asymptotically strictly convex. This is supported by the simulations presented in the experiments
sections but left as an assumption in the main paper.

10.5 Proof of Lemma 45

This proof follows a similar argument to the one used to control the trajectory of the AMP studied
in [42]. Note that, because of the way the AMP is initialized using the fixed point of the state
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evolution equations, for any t > 1 the following holds:

lim
d→+∞

1
d
E
[
e(ut)>e(ut)

]
w.h.p= Q ∈ RK

2×K2 (10.101)

lim
d→+∞

1
d
E
[
h(vt)>h(vt)

]
w.h.p= Q̂ ∈ RK

2×K2 (10.102)

where

e(ut) = (Id+ ∂r̃(•)V̂−1)−1(utV̂−1) h(vt) =
((
Id+ ∂L̃(•)V

)−1
(vt)− vt

)
V−1 (10.103)

then the limit we are looking for reads:

lim
d→∞

1
d

∥∥∥ut − ut−1
∥∥∥2

F
= lim

d→∞
2(Q̂− 1

d
tr((ut)>ut−1)

lim
d→∞

1
d

∥∥∥vt − vt−1
∥∥∥2

F
= 2(Q− 1

d
tr((vt)>vt−1) (10.104)

We thus need to study the correlation between successive iterates. At each time step, denote (Ĉt,Ct)
in RK2×K2 the correlation matrices between iterates at times t, t− 1 describing the Gaussian fields
respectively associated to ut,vt i.e.,

lim
d→∞

1
d

tr((ut)>ut−1 = Ĉt lim
d→∞

1
d

tr((vt)>vt−1 = Ct (10.105)

we can then write the block diagonal Gaussian fields Ẑt, Ẑt−1,Zt,Zt−1 in RKd×K2 and in the fol-
lowing way

Ẑt ∼ H(Ĉt)1/2 + H′(Q̂− Ĉt)1/2 (10.106)
Ẑt−1 ∼ H(Ĉt)1/2 + H′′(Q̂− Ĉt)1/2 (10.107)

Zt ∼ G(Ct)1/2 + G′(Q−Ct)1/2 (10.108)
Zt−1 ∼ G(Ct)1/2 + G′′(Q−Ct)1/2 (10.109)

where the matrices H,H′,H′′ are in RKd×K2 , G,G′,G′′ are in Rn×K2 and all have i.i.d. standard
normal elements. The recursion describing the evolution of these correlations then reads :

Ct+1 = 1
d
E
[
e(HĈ1/2

t + H′(Q̂− Ĉt)1/2)>e(HĈ1/2
t + H′′(Q̂− Ĉt)1/2)

]
(10.110)

Ĉt = 1
d
E
[
h(GC1/2

t + G′(Q−Ct)1/2)>h(GC1/2
t + G′′(Q−Ct)1/2)

]
(10.111)

Integrating out the independent H′ ,H′′ first, we get

Ct+1 =
∫
RKd×K2

dµ(H)I(H)>I(H) (10.112)

where I(H) =
∫
RKd×K2 dµ(H′)e(HĈ1/2

t + H′(Q̂ − Ĉt)1/2). So Ct is symmetric positive definite,
assuming the resolvents aren’t trivial. The same argument applied to Ĉt shows it is also symmetric
positive definite. From [24], the operators

(Id+ ∂r̃(•)V̂−1)−1(•)
(
Id+ ∂L̃(•)V

)−1
(•) (10.113)
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are D-firm w.r.t. the Bregman distances induced by the differentiable, strictly convex functions
1
2tr(XV̂X>) and 1

2tr(XV−1X>) respectively. Recall

e(ut) = (Id+ ∂r̃(•)V̂−1)−1(utV̂−1) h(vt) =
((
Id+ ∂L̃(•)V

)−1
(vt)− vt

)
V−1 (10.114)

Then, using the definition of D-firm

〈e(Ẑt)− e(Ẑt−1),
(
e(Ẑt)− e(Ẑt−1)

)
V̂〉 6 〈e(Ẑt)− e(Ẑt−1), (Ẑt − Ẑt−1)V̂−1V̂〉 (10.115)

Adding the normalization by 1
d , using the representation Eq.(10.106-10.109), taking expectations

and applying the matrix form of Stein’s lemma, see for example [110] Lemma 12, we get:

tr((Q−Ct+1)V̂) 6 tr((Q̂− Ĉt)V) (10.116)

Using a similar argument on h, we get

tr((Q̂− Ĉt)V) 6 tr((Q−Ct)V̂) (10.117)

and
tr(Ct+1V̂) > tr(CtV̂) (10.118)

thus the sequence tr(Ct+1V̂) is a bounded (above) monotone (increasing) sequence, and therefore
converges. Since V̂ is positive definite and given the iteration defining Ct+1 from Ct, any fixed
point of this iteration is a fixed point of tr(CtV̂). Assuming there is only one fixed point to the
set of self-consistent equations Eq.(9.8) (see previous section), the proof is complete. (A similar
argument can be carried out on Ĉt).



Chapter 11

Fluctuations, Bias, Variance &
Ensemble of Learners:
Exact Asymptotics for Convex Losses
in High-Dimension

The results in this chatper are based on the publication [177]. From the sampling of data to
the initialisation of parameters, randomness is ubiquitous in modern Machine Learning practice.
Understanding the statistical fluctuations engendered by the different sources of randomness in
prediction is therefore key to understanding robust generalisation. In this manuscript we develop a
quantitative and rigorous theory for the study of fluctuations in an ensemble of generalised linear
models trained on different, but correlated, features in high-dimensions. In particular, we provide a
complete description of the asymptotic joint distribution of the empirical risk minimiser for generic
convex loss and regularisation in the high-dimensional limit. Our result encompasses a rich set of
classification and regression tasks, such as the lazy regime of overparametrised neural networks, or
equivalently the random features approximation of kernels. While allowing to study directly the
mitigating effect of ensembling (or bagging) on the bias-variance decomposition of the test error,
our analysis also helps disentangle the contribution of statistical fluctuations, and the singular role
played by the interpolation threshold that are at the roots of the “double-descent” phenomenon.

11.1 Introduction

Randomness is ubiquitous in Machine Learning. It is present in the data (e.g., noise in acquisition
and annotation), in commonly used statistical models (e.g., random features [238]), or in the algo-
rithms used to train them (e.g., in the choice of initialisation of weights of neural networks [210], or
when sampling a mini-batch in Stochastic Gradient Descent [46]). Strikingly, fluctuations associ-
ated to different sources of randomness can have a major impact in the generalisation performance
of a model. For instance, this is the case in least-squares regression with random features, where
it has been shown [104, 71, 132] that the variance associated with the random projections matrix
is responsible for poor generalisation near the interpolation peak [4, 270, 32]. As a consequence,
this double-descent behaviour can be mitigated by averaging over a large ensemble of learners, ef-
fectively suppressing this variance. Indeed, considering an ensemble (sometimes also refereed to as

231
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ŷy

x u1

u2

Figure 11.1: Pictorial representation of the model considered in the paper for K = 2. Two learners
with the same architecture (in gray) receive a correlated input generated from the same vector
x ∼ N (0d, Id). The output ŷ is an average of their outputs. While the study of an ensemble of
learners is already interesting per se, it is also pivotal to study the fluctuation between learners,
and the error steaming from the difference in the weights in random features and lazy training.

a committee [86]) of independent learners provide a natural framework to study the contribution
of the variance of prediction in the estimation accuracy. In this manuscript we leverage this idea
to provide an exact asymptotic characterisation of the statistics of fluctuations in empirical risk
minimisation with generic convex losses and penalties in high-dimensional models. We focus on the
case of synthetic datasets, and we apply our results to random feature learning in particular.

11.1.1 Setting

Let (xµ, yµ) ∈ Rd ×Y, µ ∈ [n] := {1, . . . , n}, denote a labelled data set composed of n independent
samples from a joint density p(x, y) (e.g., Y = {−1, 1} for a binary classification problem). In this
manuscript we are interested in studying an ensemble of K parametric predictors, each of them
depending on a vector of parameters wk ∈ Rp, k ∈ [K], and independently trained on the dataset
{(xµ, yµ)}µ∈[n]. Note that even if the vectors of parameters {wk}k∈[K] are trained independently,
they correlate through the training data. Statistical fluctuations in the learnt parameters can then
arise for different reasons. For instance, a common practice is to initialise the parameters randomly
during optimisation, which will induce statistical variability between the different predictors. Al-
ternatively, each predictor could be trained on a subsample of the data, as it is commonly done
in bagging [51]. The statistical model can also be inherently stochastic, e.g., the random features
approximation for kernel methods [238]. Finally, the predictors could also be jointly trained, e.g.,
coupling them through the loss or penalty as it is done in boosting [254].

Our goal in this work is to provide a sharp characterisation of the statistical fluctuations of the
ensemble of parameters {wk}k∈[K] in a particular, mathematically tractable, class of predictors:
generalised linear models,

ŷ(x) = f̂

(
ŵ>1 u1(x)
√
p

, . . . ,
ŵ>KuK(x)
√
p

)
(11.1)

where uk : Rd → Rp, k ∈ [K] is an ensemble of possibly correlated features and f̂ : RK → Y
is an activation function. For most of this work, we discuss the case in which the predictors are
independently trained through regularised empirical risk minimisation:

ŵk = arg min
w∈Rp

 1
n

n∑
µ=1

`

(
yµ,

w>uk(xµ)
√
p

)
+ λ

2 ‖w‖
2
2

 (11.2)
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with a convex loss function ` : Y × R→ R (e.g., the logistic loss) and ridge penalty whose strength
is given by λ ∈ R+. However, our analysis also includes the case in which the learners are jointly
trained with a generic convex penalty. This case will be further discussed in Sec. 11.4.

In what follows we will also concentrate in the random features case where uk(x) = φ (Fkx)
with φ : R → R an activation function acting component-wise and Fk ∈ Rp×d a family of inde-
pendently sampled random matrices. Besides being an efficient approximation for kernels [238],
random features are often studied as a simple model for neural networks in the lazy and neural
tangent kernel regimes of deep neural networks [64, 131], in which case the matrices Fk corre-
spond to different random initialisation of hidden-layer weights. Moreover, the random features
model displays some of the exotic behaviours of high-dimensional overparametrised models, such
as double-descent [191, 107] and benign overfitting [21], therefore providing an ideal playground to
study the interplay between fluctuations and overparametrisation. A broader class of features maps
is also discussed in Sec. 11.4.

To provide an exact characterisation of the statistics of the estimators in eq. (11.2), we shall
assume data is generated from a target

y = f0

(
θ>x√
d

)
, θ ∼ N (0d, ρId), ρ ∈ R+

0 , (11.3)

with f0 : R→ Y and Id d-dimensional identity matrix. The dataset is then constructed generating
i.i.d. n vectors xµ ∼ N (0d, Id), µ ∈ [n].

An illustration summary of the setting considered here in given in Figure 11.1. Note that such
architecture can be interpreted as a two-layer tree neural network, also known in some contexts as
the tree-committee or parity machine [259].

Main contributions — The results in this manuscript can be listed as follows.

• We provide a sharp asymptotic characterisation of the joint statistics of the ensemble of empirical
risk minimisers {ŵk}k∈[K] in the high-dimensional limit where p, n → +∞ with n/p kept constant,
for any convex loss and penalty. In particular, we show that the pre-activations {ŵ>k uk}k∈[K] are
jointly Gaussian, with sufficient statistics obeying a set of explicit closed-form equations. Note
that the analysis of ensembling with non-square losses is out of the grasp of the most commonly
adopted theoretical tools (e.g., random matrix theory). Therefore, our proof method based on
recent progress on Approximate Message Passing techniques [135, 37, 110] is of independent interest.
Different versions of our theorem are discussed throughout the manuscript. First, in Sec. 11.2 for
the particular case of independently trained learners on random features (Theorem 20). Later, in
Sec. 11.4 for the general case of jointly trained learners on correlated Gaussian covariates (Theorem
21).

• We discuss the role played by fluctuations in the non-monotonic behaviour of the generalisation
performance of interpolators (a.k.a. double-descent behaviour). In particular —as discussed in
[104, 72] for the ridge case— the interpolation peak arises from the model overfitting the particular
realisation of the random weights. We show the test error can be decomposed εg(K = 1) = εg + δεg
in terms of a fluctuation-free term εg and a fluctuation term δεg responsible for the double-descent
behavior, see Fig. 11.2 for the case of max-margin classification.

• In the context of classification, we discuss how majority vote and score averaging, two popular
ensembling procedures, compare in terms of generalisation performance. More specifically, we show
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Figure 11.2: Left. Test error for logistic regression with λ = 10−4 and different values of K as
function of p/n = 1/α with n/d = 2 and ρ = 1. Dots represent the average of the outcomes of 103

numerical experiments. Here we adopted φ(x) = erf(x) and estimator f̂(v) = sign(∑k vk). Right.
Decomposition of the K = 1 test error εg = εg + δεg for the estimator (a), with n/d = 2 and
λ = 10−4. We plot also the contribution δεg corresponding to the estimator (b): we numerically
observed that such decomposition coincides in the two cases. Note also the presence of a kink in
δεg at the interpolation transition.

that in the setting we study score averaging consistently outperforms the majority vote predictor.
However, for a large number of learners K � 1 these two predictors agree, see Fig. 11.5 (right).

• Finally, we discuss how ensembling can be used as a tool for uncertainty quantification. In
particular, we connect the correlation between two learners to the probability of disagreement,
and show that it decreases with overparametrisation, see Fig. 11.5 (center). We provide a full
characterisation of the joint probability density of the confidence score between two independent
learners, see Fig. 11.5 (left).

Related works — The idea of reducing the variance of a predictor by averaging over independent
learners is quite old in Machine Learning [124, 233, 232, 152], and an early asymptotic analysis of
the regression case was given in [151]. In particular, a variety of methods to combine an ensemble
of learners appeared in the literature [216]. In a very inspiring work, [104] carried out an extensive
series of experiments in order to shed light on the generalisation properties of neural networks,
and reported many observations and empirical arguments about the role of the variance due to the
random initialisation of the weights in the double-descent curve using an ensemble of learners. This
was a major motivation for the present work. Closest to our setting is the work of [211, 71, 132]
which disentangles the various sources of variance in the process of training deep neural networks.
Indeed, here we adopt the model defined by [71], and provide a rigorous justification of their results
for the case of ridge regression. A slightly finer decomposition of the variance in terms of the



CHAPTER 11. ENSEMBLING GAUSSIAN COVARIATE MODELS 235

different sources of randomness in the problem was later proposed by [2]. [171] show that such
decomposition is not unique, and can be more generally understood from the point of view of the
analysis of variance (ANOVA) framework. Interestingly, subsequent papers were able to identity a
series of triple (and more) descent, e.g., [72, 1, 60].

The Random Features (RF) model was introduced in the seminal work of [238] as an efficient
approximation for kernel methods. Drawing from early ideas of [141], [231] showed that the empirical
distribution of the Gram matrix of RF is asymptotically equivalent to a linear model with matched
second statistics, and characterised in this way memorisation with RF regression. The learning
problem was first analysed by [191], who provided an exact asymptotic characterisation of the
training and generalisation errors of RF regression. This analysis was later extended to generic
convex losses by [107] using the heuristic replica method, and later proved by [76] using convex
Gaussian inequalities.

The aforementioned asymptotic equivalence between the RF model and a Gaussian model with
matched moments has been named the Gaussian Equivalence Principle (GEP) [118]. Rigorous
proofs in the memorisation and learning setting with square loss appeared in [231, 191], and for
general convex penalties in [115, 128]. [115] and [178] provided extensive numerical evidence that
the GEP holds for more generic feature maps, including features stemming from trained neural
networks.

Most of the previously mentioned works deriving exact asymptotics for the RF model in the
proportional limit use either Random Matrix Theory techniques or Convex Gaussian inequalities.
While these tools have been recently used in many different contexts, they ultimately fall short
when considering an ensemble of predictors with generic convex loss and regularisation, along with
structured design matrices. Therefore, to prove the results herein we employ an Approximate
Message Passing (AMP) proof technique [28, 82], leveraging on recently introduced progresses in
[178, 110] which enables to capture the full complexity of the problem and obtain the asymptotic
joint distribution of the ensemble of predictors. [162] studies ensembles of ordinary least-squares
learned from subsamples of a common data matrix, and shows its equivalence to an implicit ridge
regularization.

11.2 Learning with an ensemble of random features

In this section give a first formulation of our main result, namely the exact asymptotic characteri-
sation of the statistics of the ensembling estimator introduced in eq. (11.1). We prove that, in the
proportional high dimensional limit, the statistics of the arguments of the activation function in
eq. (11.1) is simply given by a multivariate Gaussian, whose covariance matrix we can completely
specify. This result holds for any convex loss, any convex regularisation, and for all models of gener-
ative networks uk : Rd → Rp, as we will show in full generality in Sec. 11.4. However, for simplicity,
in this section and in the following we focus on the setting described in Sec. 11.1, in which the
statistician averages over an independent ensemble of random features, i.e., uk(x) = φ(Fkx). In
this case, our result can be formulated as follows:

Theorem 20 (Simplified version). Assume that in the high-dimensional limit where d, p, n→ +∞
with α := n/p and γ := d/p kept Θ(1) constants, the Wishart matrix FFᵀ has a well-defined asymptotic
spectral distribution. Then in this limit, for any pseudo-Lispchitz function of order 2 ϕ : R×RK → R,
we have

E(x,y)

[
ϕ

(
y,

ŵᵀ
1u1√
p
, . . . ,

ŵᵀ
KuK√
p

)]
P−→ E(ν,µ) [ϕ (f0(ν),mu)] , (11.4)
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where (ν,mu) ∈ RK+1 is a jointly Gaussian vector (ν,mu) ∼ N (0K+1,Σ) with covariance

Σ =
(

ρ m1ᵀ
K

m1K Q

)
, Q := (q0 − q1)IK + q11K,K , (11.5)

with 1K,K ∈ RK×K and 1K ∈ RK are a matrix and a vector of ones respectively. The entries of Σ
are solutions of a set of self-consistent equations given in Corollary 5.

As discussed in the introduction, the asymptotic statistics of the single learner has been studied
in [107, 76, 178]. Their result amounts to the analysis of the estimator solving the empirical risk
minimisation problem in eq. (11.2) and it is recovered imposing K = 1 in the theorem above. For
K = 1, (ν, µ) ∈ R2 is jointly Gaussian with zero mean and covariance Σ = ( ρ m

m q0 ).
However, such result is not enough to quantify the correlation between different learners, induced

by the training on the same dataset, which is required to compute, e.g., the test error associated
with an ensembling predictor as in eq. (11.1). For example, in the simple case where f0(u) = u and
f̂(v) = 1

K

∑
k vk, the mean-squared error on the labels is given by εg = E(x,y)[(y− ŷ(x))2] = ρ+(q0−

q1)K−1 + q1 − 2m, which crucially depends on the average correlation between two independent
learners1 q1 := 1

pE[ŵᵀ
1ŵ2]. Our main result is precisely an exact asymptotic characterisation of

this correlation in the proportional limit of the previous theorem. Once m, q0 and q1 have been
determined, the generalisation error can be computed as

εg := E(x,y)[∆ (y, ŷ(x))] n→+∞−−−−−→ E(ν,µ)
[
∆
(
f0(ν), f̂(µ)

)]
(11.6)

for any error measure ∆: Y × Y → R+.
Suppose now that

f̂(v) ≡ f̂0

(
1
K

∑
k

vk

)
(11.7)

for some f̂0 : R → Y activation function of the single learner. In this case we can introduce the
random variable µ̂ d= limK→+∞

1
K

∑
k µk. It is not difficult to see that the joint probability p(ν, µ̂) ∼

N (02, Σ̂) where Σ̂ = ( ρ m
m q1 ). This formally coincides with the joint distribution for the activation

fields for K = 1 [107], but with q0 replaced by q1 6 q0. The smaller variance is due to the fact that
the fluctuations of the activation fields are averaged out by the ensembling process. The test error
in the K → +∞ limit is then

εg := E(ν,µ̂)[∆(f0(ν), f̂0(µ̂))], (11.8)

so that the fluctuation contribution to the test error for K = 1 can be defined as

δεg := E(ν,µ)[∆(f0(ν), f̂0(µ))]− εg. (11.9)

The term δεg is by definition the contribution suppressed by ensembling and corresponds to the
ambiguity introduced by [152] for the square loss. This contribution expresses the variance in the
ensemble and it is responsible for the non-monotonic behaviour in the test error of interpolators,
also known as the double-descent behavior.

1Note that since all learners are here assumed to be statistically equivalent, their pair-wise correlation is the same
on average. In the general case, discussed in Sec. 11.4, the correlation matrix Q ∈ RK×K can have a more complex
structure.
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Figure 11.3: Left. Test error for ridge regression with λ = 10−6 and different values of K as function
of p/n = 1/α with n/d = 2 and ρ = 1. Dots represent the average of the outcomes of 50 numerical
experiments in which the parameters of the neurons are estimated using min(d, p) = 200. Here we
adopted φ(x) = erf(x). Right. Decomposition of εg = εg + δεg in the K = 1 case

11.3 Applications

We will consider now two relevant examples of separable losses, namely a ridge loss and a logistic loss.
In both cases, it is possible to derive the explicit expression of the training loss and generalisation
error in terms of the elements of the correlation matrix introduced above.

11.3.1 Ridge regression

If we assume f0(x) = x, f̂(v) = 1
K

∑
k vk, and a quadratic loss of the type `(y, x) = 1

2(y − x)2, it is
possible to write down simple recursive equations for m, q0 and q1 (see the appendix of the original
paper). Taking ∆(y, ŷ) = (y − ŷ)2, the generalisation error is easily computed as

εg = ρ+ q0 − q1
K

+ q1 − 2m K→+∞−−−−−→ ρ+ q1 − 2m ≡ εg. (11.10)

Note that in this case the λ → 0+ limit gives the minimum `2-norm interpolator. In Fig. 11.3 we
compare our theoretical prediction with numerical results for λ = 10−6 and various values of K. It
is evident that the divergence of the generalisation error at α = 1 is only due to the divergence of
q0, whereas the contribution εg, which is independent on q0, is smooth everywhere. Alongside with
the interpolation divergence, δεg = q0 − q1 has an additional bump at p/n = d/n, which corresponds
to the “linear peak” discussed by [72].

In the plot we present also the so-called kernel limit, corresponding to the limit n/p = α→ 0 at
fixed n/d. An explicit manipulation (see the appendix of the originaal paper) shows that q1 = q0 ≡ q
in this limit. This implies that in the kernel limit εkg does not depend on K, being equal to
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Figure 11.4: Analytical estimation of the covariance parameters characterising the correlation with
the oracle m (left), the norm of the predictor in feature space q0 and the correlation between
learners q1 (right) (see eq. (11.5) for the definition) in a classification task using logistic loss with
ridge penalty with λ = 10−4 at fixed n/d = 2 as function of p/n. In the inset, ratio q1/q0, quantifying
the correlation between two learners. In all parameters the interpolation kink is clearly visible.

εkg ≡ ρ+ q − 2m. The generalisation error obtained in the kernel limit coincides with εg for p > n:
this is expected as in εg the fluctuations amongst learners are averaged out, effectively recovering
the cost obtained in the case of an infinite number of parameters.

11.3.2 Binary classification

Suppose now that we are considering a classification task, such that Y = {−1, 1}. For this task we
consider f0(x) = sign(x). A popular choice of loss in this classification task is the logistic loss,

`(y, x) = ln
(
1 + e−yx

)
, (11.11)

although other choices, e.g, hinge loss, can be considered. Since both the logistic and hinge losses
depend only on the margin ywᵀu, the empirical risk minimiser for λ → 0+ in both cases give the
max-margin interpolator [247]. The explicit saddle-point equations associated to the logistic and
hinge loss can be found in the appendix of the original paper, but we will focus our attention on
the logistic case for the sake of brevity. For this choice of the loss, we obtained the values of m, q0
and q1 showed in Fig. 11.4. Using these values, a number of relevant questions can be addressed.
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Alignment of learners

Assuming that the predictor of the learner k is ŷk(x) = sign(ŵᵀ
kuk(x)), in Fig. 11.5 (center) we

estimate the probability that two learners give opposite classification. This is analytically given by

P[ŷ1(x) 6= ŷ2(x)] = P[µ1µ2 < 0] = 1
π

arccos
(
q1
q0

)
. (11.12)

Note that by definition the ratio q1/q0 is a cosine similarity between two learners in the norm
induced by the feature space. Therefore, this provides an interesting interpretation of these suffi-
cient statistics in terms of the probability of disagreement. In particular, as illustrated in Fig. 11.5
(center) overparametrisation promotes agreement between the learners, therefore suppressing un-
certainty. More generally, ensembling can be used as a technique for uncertainty estimation [156].
In the context of logistic regression, the pre-activation to the sign function is often interpreted as
a confidence score. Indeed, introducing the logistic function ϕk(x) = (1 + exp(−p−1/2ŵᵀ

kuk(x)))−1,
it expresses the confidence of the kth classifier in associating ŷ = 1 to the input x. Therefore, it
is reasonable to ask how reliable is the logistic score as a confidence measure. For instance, what
is the variance of the confidence among different learners? This can be quantified by the joint
probability density ρ(ϕ1, ϕ2) := Ex[δ(ϕ1 − ϕ1(x))δ(ϕ2 − ϕ2(x))], which can be readily computed
using our Theorem 20. Fig. 11.5 (left) shows one example at fixed p/n and vanishing λ.

Ensemble predictors

In the previous two points, we discussed how ensembling can be used as a tool to quantify fluc-
tuations. However, ensembling methods are also used in practical settings in order to mitigate
fluctuations, e.g., [51]. An important question in this context is: given an ensemble of predictors
{ŵk}k∈[K], what is the best way of combining them to produce a point estimate? In our setting,
this amounts to choosing the function f̂ : RK → Y. Let us consider two popular choices for the
estimator f̂ in eq. (11.1) used in practice:

(a) f̂(v) = sign
(∑

k

vk

)
, (11.13a)

(b) f̂(v) = sign
(∑

k

sign(vk)
)
. (11.13b)

In a sense, (a) provides an estimator based on the average of the output fields, whereas (b), which
corresponds to a majority rule if K is odd [124], is a function of the average of the estimators of
the single learners. For both choices of the estimator we use ∆(y, ŷ) = δŷ,y to measure the test
error. In Fig. 11.5 (right) we compare the test error obtained using (a) and (b) for K = 3 with
vanishing regularisation λ = 10−4. It is observed that the estimator (a) has better performances
than the estimator (b). As previously discussed, in this case logistic regression is equivalent to
max-margin estimation, and in this case the error (a) can be intuitively understood in terms of a
robust max-margin estimation obtained by averaging the margins associated to different draws of
the random features. In the case (a) it is easy to show that the generalisation error takes the form

εg = 1
π

arccos
( √

Km√
ρ(q0 − q1 +Kq1)

)
K→∞−−−−→ 1

π
arccos

(
m
√
ρq1

)
≡ εg. (11.14)
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Figure 11.5: Left. Joint probability density of the confidence score ϕi(x) = (1 +
exp(−p−1/2ŵᵀ

iui(x)))−1 of two learners for p/n ' 0.13. Center. Probability that two learners
give discordant predictions using logistic regression as function of p/n = 1/α with n/d = 2, ρ = 1, and
λ = 10−4. Right. Test error for logistic regression using the estimators in eq. (11.13) and K = 3,
with the same parameters. We adopted φ(x) = erf(x). We observe that the test error obtained
using (a) is always smaller than the one obtained using (b). (Center and right) Dots represent the
average of the outcomes of 103 numerical experiments.

This formula is in agreement with numerical experiments, see Fig. 11.2 (left). Unfortunately, we
did not find a similar closed-form expression in case (b). However, we can observe that in the
K → +∞ limit the generalisation error in case (a) coincides with the generalisation error in case
(b), see Fig. 11.2 (right). By comparing with the results in Fig. 11.5 (center), it is evident that the
benefit of ensembling in reducing the test error correlates with the tendency of learners to disagree,
i.e., for small values of p/n, as stressed by [152]. Finally, we observe a constant value of εg beyond
the interpolation threshold, compatibly with the numerical results of [104].

11.4 The case of general loss and regularisation

In this Section we generalise our results in Sec. 11.2 relaxing the hypothesis on the loss, on the
regularisation and on the properties of the feature maps. In the general setting we are going
to consider, we denote P 0

y (y|x) the probabilistic law by which y is generated. For example, in
Sec. 11.2, P 0

y (y|x) = δ(y−f0(x)). In the treatment given here, we allow for more general cases (e.g.,
the presence of noise in the label generation). We make no assumptions on the generative networks
uk, so that the information about the first layer is contained in the following tensors,

Ω := Ex[U(x)⊗U(x)] ∈ Rp×p ⊗ RK×K , (11.15)
Φ̂ := Ex[U(x)xᵀθ] ∈ Rp×K , (11.16)
Θ = Φ̂⊗ Φ̂ ∈ Rp×p ⊗ RK×K . (11.17)

In the equations above, U(x) ∈ Rp×K is the matrix having as concatenated columns uk(x). We
aim at learning a rule as in eq. (11.1), adopting a general convex loss ˆ̀: Y × RK → R, so that the
weights are estimated as

Ŵ = arg min
W∈Rp×K

 1
n

n∑
µ=1

ˆ̀
(
yµ,

diag(WᵀUµ)
√
p

)
+ λr(W)

 (11.18)
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where r : Rp×K → R is a convex regularisation, Uµ ≡ U(xµ) and Ŵ ∈ Rp×K matrix of the
concatenated columns {ŵk}. Here, since the optimization problem defining the estimator may be
non strictly convex, the solution may not be unique. We then denote with Ŵ the unique least `2
norm solution of Eq.(11.18).

In the most general case, the statistical properties of Ŵ are captured by a finite set of finite-
dimensional order parameters, namely V, V̂,Q, Q̂ ∈ RK×K and m, m̂ ∈ RK . These order parame-
ters satisfy a set of fixed-point equations. To avoid a proliferation of indices in our formulas, let us
introduce some notation. Let A = (Aijkk′)

i,j∈[p]
k,k′∈[K] ∈ Rp×p ⊗ RK×K be a tensor, and X = (Xi

k)
i∈[p]
k∈[K],

Y = (Y i
k )i∈[p]
k∈[K], X,Y ∈ Rp×K two matrices. We will denote

〈〈A〉〉 := (
∑
i

Aiikk′)kk′ ∈ RK×K , (11.19a)

〈〈X|A|Y〉〉 := (
∑
ij

Xi
kA

ij
kk′Y

j
k′)kk′ ∈ RK×K , (11.19b)

〈〈X|Y〉〉 := (
∑
ij

Xi
kY

i
k )k ∈ RK , (11.19c)

〈X|A|Y〉 :=
∑
ijk

Xi
kA

ij
kkY

j
k ∈ R (11.19d)

〈X|Y〉 :=
∑
ik

Xi
kY

i
k ∈ R. (11.19e)

Given a second tensor B ∈ Rp×p ⊗ RK×K , we write

AB := (
∑
i′κ

Aii
′

kκB
i′j
κk′)

ij
kk′ ∈ Rp×p ⊗ RK×K , (11.19f)

A ◦B := (
∑
i′

Aii
′

kk′B
i′j
k′k)

ij
kk′ ∈ Rp×p ⊗ RK×K , (11.19g)

A�B := (Aijkk′B
ij
kk′)

ij
kk′ ∈ Rp×p ⊗ RK×K . (11.19h)

We can now state our general result.

Theorem 21. Let us consider the random quantities ξ ∈ RK and Ξ ∈ RK×K with entries distributed
as N (0, 1). Assume that in the high-dimensional limit where d, p, n→ +∞ with α := n/p and γ := d/p
kept Θ(1) constants. Then in this limit, for any pseudo-Lispchitz functions of order 2 ϕ : R×RK → R
and ϕ̃ : RK×p → R, the estimator Ŵ verifies

E(y,x)

[
ϕ

(
y,
〈〈Ŵ|U〉〉
√
p

)]
P−→
∫
Y

dy E(ν,µ)
[
P 0
y (y|ν)ϕ (y,µ)

]
,

1
n

n∑
µ=1

ϕ

(
yµ,
〈〈Ŵ|Uµ〉〉
√
p

)
P−→
∫
Y

dy Eξ
[
Z0 (y, ω0, σ0)ϕ(y,h)

]
,

ϕ̃(Ŵ) P−→ EΞ [ϕ̃(G)] ,

(11.20)

where U ≡ U(x), (ν,µ) ∈ R1+K are jointly Gaussian random variables with zero mean and covari-
ance matrix

(ν,µ) ∼ N
(
01+K ,

(
ρ Mᵀ

M Q

))
, (11.21)
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and we have introduced the proximals for the loss and the regularisation:

h := arg min
u

[
(u− ω)V−1(u− ω)

2 + ˆ̀(y,u)
]
,

G := arg min
U

[
〈U|(1p,p ⊗ V̂)�Ω|U〉

2 − 〈B|U〉+ λr(U)
]
,

(11.22)

with ω := Q1/2ξ and B := (1p ⊗ m̂ᵀ) � Φ̂ + ((1p,p ⊗ Q̂) � Ω) 1
2 Ξ. We have also introduced the

auxiliary function

Z0(y, µ, σ) :=
∫ P 0

y (y|x)dx
√

2πσ
e−

(x−µ)2
2σ . (11.23)

and the scalar quantities ω0 := MᵀQ−1/2ξ and σ0 := ρ−MᵀQ−1M. The order parameters satisfy
the saddle-point equations

V̂ = −α
∫
Y

dy Eξ
[
Z0(y, ω0, σ0) ∂ωf

]
,

Q̂ = α

∫
Y

dy Eξ
[
Z0(y, ω0, σ0) ffᵀ

]
,

m̂ = α
√
γ

∫
Y

dy Eξ
[
∂µZ0(y, ω0, σ0)f

]
,

(11.24)

and

V = 2
p
EΞ
〈
G
∣∣∣D
(
(1p,p ⊗ Q̂)�Ω

)1/2

DQ̂

∣∣∣Ξ〉
Q = 1

p
EΞ〈〈G|Ω|G〉〉,

M = 1
√
γp

EΞ〈〈Φ̂|G〉〉.

(11.25)

In the equation above we have introduced the short-hand notation f := V−1(h− ω).

In the theorem above, for a tensor Â ∈ Rp×p⊗RK×K , then [DÂ
DQ̂ ]kk

′,κκ′

ij ≡ ∂Âkk
′

ij

∂Q̂κκ′
: in the formula,

the contractions involve latin indices only. Eqs. (11.24) are typically called channel equations,
because depend on the form of the loss ˆ̀. Eqs. (11.25), instead, are usually called prior equations,
because of their dependence on the prior, i.e., r. In the following Corollary, we specify their
expression for a ridge regularisation, r(W) = 1

2‖W‖
2
F.

Corollary 4 (Ridge regularisation). In the hypotheses of Theorem 21, if r(W) = 1
2‖W‖

2
F, then the

prior equations are

V = 1
p
〈〈Ω ◦A〉〉,

Q = 1
p
〈〈Ω ◦

(
A
(
(1p,p ⊗ m̂⊗ m̂ᵀ)�Θ + (1p,p ⊗ Q̂)�Ω

)
A
)
〉〉,

M = 1
√
γp
〈〈A ((1p,p ⊗ m̂⊗ 1ᵀ

K)�Θ)〉〉.

(11.26)

In the equation above, we have used the auxiliary tensor A ≡ A(V̂;λ,Ω) := (λIp ⊗ IK + (1p,p ⊗
V̂)�Ω)−1 ∈ Rp×p ⊗ RK×K .
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11.4.1 The random feature case

Theorem 21 is given in a very general setting, and, in particular, no assumptions are made on the
features uk. We have anticipated in Sec. 11.2 that, in the case of random features, the structure
of the order parameters highly simplifies and the covariance matrix Σ is fully specified by only
three scalar order parameters for any K > 1. Here will adapt therefore Theorem 21 to the random
feature setting in Sec. 11.2, using the notation therein. The motivation of this section is to explicitly
present the self-consistent equations that are required to produce the results given in the paper.
Corollary 5. Assume that in the high-dimensional limit where d, p, n→ +∞ with α := n/p and γ :=
d/p kept Θ(1) constants, the Wishart matrix FFᵀ has a well-defined asymptotic spectral distribution.
Then in this limit, for any pseudo-Lispchitz function of finite order ϕ : R×RK → R, the estimator
Ŵ verifies

E(x,y)

[
ϕ

(
y,
〈〈Ŵ|U〉〉
√
p

)]
P−→ E(ν,µ) [ϕ (f0(ν),µ)] , (11.27)

where (ν,µ) ∈ RK+1 is a jointly Gaussian vector with covariance

(ν,µ) ∼ N
(
0K+1,

(
ρ m1ᵀ

K
m1K Q

))
, (11.28)

and Q := (q0 − q1)IK + q11K,K . The collection of parameters (q0, q1,m) is obtained solving a set of
fixed point equations involving the auxiliary variables (q̂0, q̂1, m̂, v, v̂), namely:

v̂ = −α
∫
Y

dy Eω
[
Z0
(
y,
mω

q0
, ρ− m2

q0

)
∂ωf

]
, (11.29a)

m̂ = α
√
γ

∫
Y

dy Eω
[
∂µZ0

(
y,
mω

q0
, ρ− m2

q0

)
f

]
, (11.29b)

q̂0 = α

∫
Y

dy Eω
[
Z0
(
y,
mω

q0
, ρ− m2

q0

)
f2
]
, (11.29c)

q̂1 = α

∫
Y

dyEω,ω′
[
Z0
(
y,m

ω + ω′

q0 + q1
, ρ− 2m2

q0 + q1

)
ff ′

]
, (11.29d)

v =
∫
s%(s)ds
λ+ sv̂

, (11.29e)

m = m̂
√
γ

∫
s− κ2

∗
λ+ v̂s

%(s)ds, (11.29f)

q0 =
∫ (q̂0 + m̂2)s2 − m̂2κ2

∗s

(λ+ v̂s)2 %(s)ds, (11.29g)

q1 =
(

1 + q̂1
m̂2

)
m2. (11.29h)

where ω and ω′ are two correlated Gaussian random variables of zero mean and E[ω2] = E[ω′2] = q0,
E[ωω′] = q1. Moreover, we have introduced the proximals

f =
Proxv`(y,•) (ω)− ω

v
, f ′ =

Proxv`(y,•) (ω′)− ω′

v
, (11.30)

with
Proxv`(y,•)(ω) := arg min

x

[
(x− ω)2

2v + `(y, x)
]
. (11.31)
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Finally, %(s) is the asymptotic spectral density of the features covariance matrix Ω ≡ Var(u) =
κ2

01p,p + κ2
1
d FFᵀ + κ2

∗Ip and the coefficients are given by κ0 := Eζ [φ(ζ)], κ1 := Eζ [ζφ(ζ)], κ∗ :=
Eζ [φ2(ζ)]− κ2

0 − κ2
1 with ζ ∼ N (0, 1).

The previous corollary recovers the results of [107], [76], and [178] when restricted to the K = 1
case by marginalisation.



Chapter 12

Proofs for the ensembling

12.1 Proof of the main theorem

In this section we prove Theorem 21, from which all other analytical results in the paper can be
deduced. We start by reminding the learning problem defining the ensemble of estimators with a
few auxiliary notations, so that this part is self contained. The sketch of proof is one pioneered
in [29, 82] and is the following: the estimator W∗ is expressed as the limit of a carefully chosen
sequence, an approximate message-passing iteration [28, 300], whose iterates can be asymptotically
exactly characterized using an auxiliary, closed form iteration, the state evolution equations. We
then show that converging trajectories of such an AMP iteration can be systematically found.

12.1.1 The learning problem

We start by reminding the definition of the problem. Consider the following generative model

y = f0( 1√
d
X0w0, ε0) (12.1)

where y ∈ Rn,X0 ∼ N (0,Σ00) ∈ Rn×d,w0 ∈ Rd, ε0 ∈ Rd is a noise vector and Σ00 ∈ Rd×d is a
positive definite matrix. The goal is to learn this generative model using an ensemble of predictors
W =

[
w1|w2|...|wK

]
∈ Rp×K where each predictor wk ∈ Rp, k ∈ [1,K] is learned using a sample

dataset Xk ∈ Rn×p, where, for any i ∈ [1, n] and k ∈ [0,K], we have:

E
[
xki (xk′i )>

]
= Σkk′ (12.2)

where each sample is Gaussian and we denote :

Σ =


Σ00 Σ01 ... Σ0K
Σ10 Σ11 ... Σ1K
...

ΣK0 ΣK1 ... ΣKK

 ∈ R(Kp+d)×(Kp+d). (12.3)

The predictors interact with each sample dataset in a linear way, i.e. we will consider a generalized
linear model acting on the ensemble of products {Xkwk}Kk=1:

W∗ ∈ arg min
W∈Rp×K

L

y,
{

1
√
p
Xkwk

}K
k=1

+ r0(W) (12.4)

245
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where L, r0 are convex functions. We wish to determine the asymptotic properties of the estimator
W∗ in the limit where n, p, d → ∞ with fixed ratios α = n/p, γ = d/p. We now list the necessary
assumptions for our main theorem to hold.

Assumptions –
• the functions L, r0 are proper, closed, lower-semicontinuous, convex functions. The loss func-

tion L is pseudo-lipschitz of order 2 in both its arguments and the regularisation r0 is pseudo-
Lipschitz of order 2. The cost function L(X.) + r(.) is coercive.

• for any 1 6 k 6 K, the matrix Σk ∈ Rp×p is symmetric and there exist strictly positive
constants κ0, κ1 such that κ0 6 λmin(Σk) 6 λmax(Σk) 6 κ1. We also assume that the matrix
Σ is positive definite.

• their exists a positive constant Cf0 such that
∥∥∥f0( 1√

d
X0w0, ε0)

∥∥∥
2
6 Cf0

(∥∥∥ 1√
d
X0w0

∥∥∥
2

+ ‖ε0‖2
)

• the dimensions n, p, d grow linearly with finite ratios α = n/p and γ = d/p.

• the ground truth vector w0 ∈ Rd and noise vector ε0 ∈ Rn are sampled from subgaussian
probability distributions independent from each other and from all other random quantities
of the learning problem.

The proof method we will employ involves expressing the estimator W∗ as the limit of a carefully
chosen sequence. In the case of non-strictly convex problems, the estimator may not be unique,
making it unclear what estimator is reached by the sequence (at best we know it belongs to the set
of zeroes of the subgradient of the cost function). We thus start with the following problem

W∗ ∈ arg min
W∈Rp×K

L(y, {Xkwk}Kk=1) + rλ2(W) (12.5)

where, for any W ∈ Rp×K , rλ2(W) = r0(W) + λ2
2 ‖W‖

2
F (12.6)

i.e. we add a ridge regularisation to the initial problem to make it strongly convex. We will relax
this additional strong convexity constraint later on.

12.1.2 Asymptotics for the strongly convex problem

We now reformulate the minimization problem Eq.(12.5) to make it amenable to an approxi-
mate message-passing iteration (AMP). The key feature of this ensembling problem, outside of
the convexity which will be crucial to control the trajectories of the AMP iteration, is the fact
that each predictor only interacts linearly with each design sample, along with the correlation
structure of the overall dataset. We are effectively sampling n vectors of size (Kp + d) from
the Gaussian distribution with covariance Σ, i.e.

[
x0|x1|...|xK

]
∼ N (0,Σ). We then write

{Xkwk}Kk=0 =
[
X0w0|...|XKwK

]
∈ Rn×(K+1), such that

[
X0w0|...|XKwK

]
=
[
X0|...|XK

]
W = ZΣ1/2

[
w0 0
0 W̃

]
(12.7)

where W̃ =


w1 0 ... 0
0 w2 ... 0

...
0 0 ... wK

 ∈ RKp×K (12.8)
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and Z ∈ Rn×(Kp+d) is a random matrix with i.i.d. N (0, 1) elements. Then, any sample
[
x0|x1|...|xK

]
may be rewritten as

x0 = Ψ1/2a and
[
x1|...|xK

]
= Φ>Ψ−1/2a +

(
Ω− Φ>Ψ−1Φ

)1/2
b (12.9)

X0 = AΨ1/2 and
[
X1|...|XK

]
= AΨ−1/2Φ + B

(
Ω− Φ>Ψ−1Φ

)1/2
(12.10)

where a ∈ Rd,b ∈ RKp are vectors with i.i.d. standard normal components, A ∈ Rn×d,B ∈
Rn×Kp are the corresponding design matrices, and the covariance matrices are given by Ψ = Σ00 ∈
Rd×d,Φ =

[
Σ11|Σ12|Σ13...|Σ1K

]
∈ Rd×Kp and

Ω =


Σ11 Σ12 ... Σ1K
Σ21 Σ22 ... Σ2K
...

ΣK1 ΣK2 ... ΣKK

 ∈ RKp×Kp (12.11)

The optimization problem may then be written, introducing the appropriate scalings

W̃∗ ∈ arg min
W̃∈RKp×K

L
(
f0( 1√

d
Aw̃0), 1

√
p

(
AΨ−1/2Φ + B

(
Ω− Φ>Ψ−1Φ

)1/2
)

W̃
)

+ r(W̃) (12.12)

where we let w̃0 = Ψ1/2w0, its scaled norm ρw̃0 = 1
d‖w̃0‖22 and we introduced the function

r : RKp×K → R (12.13)
W̃→ rλ2(W) (12.14)

. In order to isolate the contribution correlated with the teacher, we condition the design matrix A
on the teacher distribution y, we can write

A = E [A|y] + A− E [A|y] (12.15)
= E [A|Aw̃0] + A− E [A|Aw̃0] (12.16)
= APw̃0 + ÃP⊥w̃0 (12.17)

where Ã is an independent copy of A, see [28] Lemma 11. The cost function then becomes

L
(
f0
(√
ρw̃0s

)
,

1
√
p

(
s(Φ>w0)>√

dρw̃0

+ ÃP⊥w̃0Ψ−1/2Φ + B
(
Ω− Φ>Ψ−1Φ

)1/2
)

W̃
)

+ r(W̃) (12.18)

where s = A w̃0
‖w̃0‖2

∈ Rn is an i.i.d. standard normal vector.

The term ÃP⊥w̃0Ψ−1/2Φ+B
(
Ω− Φ>Ψ−1Φ

)1/2
can then be represented as a Rn×Kp Gaussian matrix

with covariance

Φ>Ψ−1/2P⊥w̃0Ψ−1/2Φ + Ω− Φ>Ψ−1Φ = Ω− Φ>Ψ−1/2Pw̃0Ψ−1/2Φ (12.19)

= Ω− Φ>Ψ−1/2 w̃0w̃>0
‖w̃0‖22

Ψ−1/2Φ = Ω− cc>

‖w̃0‖22
(12.20)
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where we introduced c = Φ>w0 ∈ RKp and ρc = 1
p‖c‖

2
2, reaching the cost function

L

f0
(√
ρw̃0s

)
,

1
√
p

s c>√
dρw̃0

+ Z
(

Ω− cc>

‖w̃0‖22

)1/2
W̃

+ r(W̃) (12.21)

Introducing m = 1√
dp

W̃>c ∈ RK ,C = Ω − cc>
‖w̃0‖2

2
∈ RKp×Kp, and the Lagrange multiplier ν

associated to m, the optimization problem can equivalently be written

inf
m∈RK ,W̃∈RKp×K

sup
ν∈RK

L
(
f0
(√
ρw̃0s

)
, s m>
√
ρw̃0

+ 1
√
p
ZC1/2W̃

)
+ r(W̃)− ν>

(
W̃>c−

√
dpm

)
(12.22)

We now look for an explicit expression of the matrix square root C1/2

C = Ω1/2
(
Id− Ω−1/2c(Ω−1/2c)>

‖w̃0‖22

)
Ω1/2 let c̃ = Ω−1/2c (12.23)

= Ω1/2
(
P⊥c̃ + κPc̃

)
Ω1/2 where κ = 1− ‖c̃‖

2
2

‖w̃0‖22
(12.24)

= Ω1/2
(
P⊥c̃ +

√
κPc̃

) (
P⊥c̃ +

√
κPc̃

)
Ω1/2 (12.25)

where the positivity of κ is ensured by the positive-definiteness of Σ. The problem then becomes

inf
m,W̃

sup
ν
L
(
f0
(√
ρw̃0s

)
, s m>
√
ρw̃0

+
√
κ
√
p

ZPc̃Ω1/2W̃ + 1
√
p
Z̃P⊥c̃ Ω1/2W̃

)
+ r(W̃)

− ν>
(
W̃>c−

√
dpm

)
(12.26)

where Z̃ is an independent copy of Z, see [28] Lemma 11. Then
√
κ
√
p

ZPc̃Ω1/2W̃ =
√
κ
√
p

s̃c>W̃
‖c̃‖2

(12.27)

=
√
κs̃c>W̃
p
√
ρc̃

(12.28)

= s̃
√
γκm>
√
ρc̃

(12.29)

where s̃ = Z c̃
‖c̃‖2

is an i.i.d. standard normal vector and ρc̃ = 1
p‖c̃‖

2
2 such that the optimization

problem becomes

inf
m,W̃

sup
ν
L
(
f0
(√
ρw̃0s

)
, s m>
√
ρw̃0

+ s̃
√
γκm>
√
ρc̃

+ 1
√
p
Z̃P⊥c̃ Ω1/2W̃

)
+ r(W̃)− ν>

(
W̃>c−

√
dpm

)
(12.30)
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Now let U = P⊥c̃ Ω1/2W̃, such that W̃ = Ω−1/2
(√

γc̃m>
ρc̃

+ U
)

. The equivalent problem in U reads

inf
m,U

sup
ν
L
(
f0
(√
ρw̃0s

)
, s m>
√
ρw̃0

+ s̃
√
γκm>
√
ρc̃

+ 1
√
p
Z̃U

)
+ r(Ω−1/2

(√
γc̃m>

ρc̃
+ U

)
)− ν>U>c̃

(12.31)

Note that the constraint defining m automatically enforces the orthogonality constraint on U w.r.t.
c̃. The following lemma characterizes properties of the feasibility sets of U,m,ν.

Lemma 47. Consider the optimization problem Eq.(12.31). Then there exist constants CU, Cm, Cν
such that

1
√
p
‖U‖F 6 CU, ‖m‖2 6 Cm, ‖ν‖2 6 Cν (12.32)

with high probability as n, p, d→∞.

Proof. Consider the optimization problem defining W̃∗

W̃∗ ∈ arg min
W̃∈RKp×K

L(y,XW̃) + r̃0(W) + λ2
2
∥∥∥W̃∥∥∥2

F
(12.33)

which, owing to the convexity of the cost function, verifies

1
p

(
L(y,XW̃∗) + r̃0(W̃∗) + λ2

2
∥∥∥W̃∗

∥∥∥2

F

)
6

1
p

(L(y, 0) + r̃0(0)) (12.34)

The functions L and r̃0 are assumed to be proper, thus their sum is bounded below for any value
of their arguments and we may write

1
p

λ2
2
∥∥∥W̃∗

∥∥∥2

F
6

1
p

(L(y, 0) + r̃0(0)) (12.35)

The pseudo-Lipschitz assumption on L and r̃0 then implies that there exist positive constants CL
and Cr̃0 such that

1
p

λ2
2
∥∥∥W̃∗

∥∥∥2

F
6

1
p

(
CL

(
1 + ‖y‖22

))
+ Cr̃0 (12.36)

6
1
p

(
CL

(
1 + Cf0

∥∥∥∥ 1√
d
X0w0

∥∥∥∥2

2
+ Cf0

∥∥∥ε2
0

∥∥∥))+ Cr̃0 (12.37)

where the second line follows from the scaling assumption on the teacher function f0. Hence

1
p

λ2
2
∥∥∥W̃∗

∥∥∥2

F
6 CL

(
1 + Cf0

∥∥∥∥ 1√
d
A
∥∥∥∥2

op

∥∥∥Ψ1/2
∥∥∥2

op

γ

d
‖w‖20 + Cf0

α

n
‖ε0‖22

)
+ Cr̃0 (12.38)

where ‖•‖op denotes the operator norm of a given matrix, and we remind that A has i.i.d. N (0, 1)
elements. By assumption the maximum singular value of Ψ1/2 is bounded. The maximum singular
value of a random matrix with i.i.d. N (0, 1

d) elements is bounded with high probability as n, p, d→
∞, see e.g., [287]. Finally, w0 and ε0 are sampled from subgaussian probability distributions,
thus their scaled norms are bounded with high probability as n, p, d→∞ according to Bernstein’s
inequality, see e.g., [288]. An application of the union bound then leads to the following statement:
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there exists a constant CW̃ such that 1
p

∥∥∥W̃∥∥∥2

2
6 CW̃, with high probability as n, p, d → ∞. Now

using the definition of U

1
p
‖U‖2F = 1

p

∥∥∥P⊥c̃ Ω1/2W̃
∥∥∥2

F
(12.39)

6
∥∥∥P⊥c̃ ∥∥∥2

op

∥∥∥Ω1/2
∥∥∥2

op

1
p

∥∥∥W̃∥∥∥
F

(12.40)

where the singular values of P⊥c̃ and Ω1/2 are bounded with probability one. Therefore there exists
a constant CU such that 1√

p‖U‖ 6 CU with high probability as n, p, d → ∞. Then, by definition
of m and the Cauchy-Schwarz inequality

‖m‖22 6
1
d
‖c‖22

1
p

∥∥∥W̃∥∥∥2

F
(12.41)

6 ‖Φ‖2op
1
d
‖w0‖22

1
p

∥∥∥W̃∥∥∥2

F
(12.42)

combining the results previously established on W̃ and w0 by the fact that the maximum singular
value of Φ is bounded, there exists a positive constant Cm such that ‖m‖2 6 Cm with high
probability as n, p, d → ∞. We finally turn to ν. The optimality condition for m in problem
Eq.(12.22) gives

ν = − 1√
dp

s>
√
ρw̃0

∂L
(

y, sm>
√
ρw̃0

+ 1
√
p
ZC1/2W̃∗

)
(12.43)

The pseudo-Lipschtiz assumption on L implies that we can find a constant C∂L such that

‖ν‖22 = 1
dp

‖s‖22
ρw̃0

CL

1 + ‖y‖22 +
∥∥∥∥∥ sm>
√
ρw̃0

+ 1
√
p
ZC1/2W̃∗

∥∥∥∥∥
2

2

 (12.44)

the last bound then follows from similar arguments as those employed above.

The optimization problem Eq.(12.31) is convex and feasible. Furthermore, we may reduce the
feasibility sets of m,ν to compact spaces, and the function of U is coercive and thus has bounded
lower level sets. Strong duality then implies we can invert the order of minimization to obtain the
equivalent problem

inf
m

sup
ν

inf
U
L
(
f0
(√
ρw̃0s

)
, s m>
√
ρw̃0

+ s̃
√
γκm>
√
ρc̃

+ 1
√
p
Z̃U

)
+ r(Ω−1/2

(√
γc̃m>

ρc̃
+ U

)
)− ν>U>c̃

(12.45)

and study the optimization problem in U at fixed m,ν:

inf
U∈RKp×K

L̃( 1
√
p
Z̃U) + r̃(U) (12.46)
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where we defined the functions

L̃ : Rn×K → R (12.47)
1
√
p
Z̃U→ L

(
f0
(√
ρw̃0s

)
, s m>
√
ρw̃0

+ s̃
√
γκm>
√
ρc̃

+ 1
√
p
Z̃U

)
(12.48)

r̃ : RKp×K → R (12.49)

U→ r(Ω−1/2
(√

γc̃m>

ρc̃
+ U

)
)− ν>U>c̃ (12.50)

and the random matrix Z̃ with i.i.d. N (0, 1) elements is independent from all other random quanti-
ties in the problem. The asymptotic properties of the unique solution to this optimization problem
can now be studied with a non-separable, matrix-valued approximate message passing iteration.
The AMP iteration solving problem Eq.(12.46) is given in the following lemma

Lemma 48. Consider the following AMP iteration

ut+1 = Z̃>ht(vt)− et(ut)〈h′t〉> (12.51)
vt = Z̃et(ut)− ht−1(vt−1)〈e′t〉> (12.52)

where for any t ∈ N

ht(vt) =
(

RL(y,.),St(s
m>
√
ρw̃0

+ s̃
√
γκm>
√
ρc̃

+ vt)−
(

s m>
√
ρw̃0

+ s̃
√
γκm>
√
ρc̃

+ vt
))

(St)−1 (12.53)

et(ut) = Rr(Ω−1/2.),Ŝt

(
utŜt + Ω−1/2cν>Ŝt +

√
γc̃m>

ρc̃

)
−
√
γc̃m>

ρc̃
(12.54)

and St = 〈(et)′〉>, Ŝt = −
(
〈(ht)′〉>

)−1
(12.55)

Then the fixed point (u∞,v∞) of this iteration verifies

Rr(Ω−1/2.),Ŝ∞

(
u∞Ŝ∞ + Ω−1/2cν>Ŝ∞ +

√
γc̃m>

ρc̃

)
−
√
γc̃m>

ρc̃
= U∗ (12.56)

RL(y,.),S∞(s m>
√
ρw̃0

+ s̃
√
γκm>
√
ρc̃

+ v∞)− s m>
√
ρw̃0

+ s̃
√
γκm>
√
ρc̃

= Z̃U∗ (12.57)

where U∗ is the unique solution to the optimization problem Eq.(12.46).

Proof. To find the correct form of the non-linearities in the AMP iteration, we match the optimality
condition of problem Eq.(12.46) with the generic form of the fixed point of the AMP iteration
Eq.(10.13). In the subsequent derivation, we absorb the scaling 1√

d
in the matrix Z̃, such that

its elements are i.i.d. N (0, 1/d), and omit time indices for simplicity. Going back to problem
Eq. (12.46), its optimality condition reads :

Z̃>∂L̃(Z̃U) + ∂r̃(U) = 0 (12.58)

For any pair of K × K symmetric positive definite matrices S, Ŝ, this optimality condition is
equivalent to

Z̃>
(
∂L̃(Z̃U)S + Z̃U

)
S−1 +

(
∂r̃(U)Ŝ + U

)
Ŝ−1 = Z̃>Z̃US−1 + UŜ−1 (12.59)
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where we added the same quantity on both sides of the equality. For the loss function, we can then
introduce the resolvent, formally D-resolvent:

v̂ = ∂L̃(Z̃U)S + ZU ⇐⇒ Z̃U = RL̃,S(v̂) (12.60)

such that

RL̃,S(v̂) = (Id + ∂L̃(•)S)−1(v̂) = arg min
T∈Rn×K

{
L̃(T) + 1

2tr
(
(T− v̂)S−1(T− v̂)>

)}
(12.61)

Similarly for the regularisation, introduce

û ≡
(
Id + ∂r̃(•)Ŝ

)
(U) U = Rr̃,Ŝ(û) (12.62)

where S ∈ RK×K is a positive definite matrix, and

Rr̃,Ŝ(v̂) =
(
Id + ∂r̃(•)Ŝ

)−1
(v̂) = arg min

T∈RKp×K

{
r̃(T) + 1

2tr
(
(T− v̂)Ŝ−1(T− v̂)>

)}
(12.63)

where Ŝ ∈ RK×K is a positive definite matrix, and v̂ ∈ Rd×K . The optimality condition Eq.(12.59)
may then be rewritten as:

Z̃>
(
RL̃,S(v̂)− v̂

)
S−1 = (û−Rr̃,Ŝ(û))Ŝ−1 (12.64)

Z̃Rr̃,Ŝ(û) = RL̃,S(v̂) (12.65)

where both equations should be satisfied. We can now define update functions based on the previ-
ously obtained block decomposition. The fixed point of the matrix-valued AMP Eq.(10.13), omitting
the time indices for simplicity, reads:

u + e(u)〈h′〉> = Z̃>h(v) (12.66)
v + h(v)〈e′〉> = Z̃e(u) (12.67)

Matching this fixed point with the optimality condition Eq.(12.64) suggests the following mapping:

h(v) =
(
RL̃,S(v)− v

)
S−1,

e(u) = Rr̃,Ŝ(uŜ),

S = 〈e′〉>,
Ŝ = −(〈h′〉>)−1,

(12.68)

where we redefined û ≡ ûŜ in (12.62). We are now left with the task of evaluating the resolvents
of L̃, r̃ as expressions of the original functions L, r. Starting with the loss function, we get

RL̃,S(v) = arg min
x∈Rn×K

{
L
(
f0
(√
ρw̃0s

)
, s m>
√
ρw̃0

+ s̃
√
γκm>
√
ρc̃

+ x
)

+ 1
2tr

(
(x− v)S−1(x− v)

)>}
(12.69)
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letting x̃ = s m>√
ρw̃0

+ s̃
√
γκm>√
ρc̃

+ x, the problem is equivalent to

RL̃,S(v) = arg min
x̃∈Rn×K

{
L
(
f0
(√
ρw̃0s

)
, x̃
)

+ 1
2tr

(
(x̃− (s m>

√
ρw̃0

+ s̃
√
γκm>
√
ρc̃

+ v))S−1(x̃− (s m>
√
ρw̃0

+ s̃
√
γκm>
√
ρc̃

+ v))>
)}

− s m>
√
ρw̃0
− s̃
√
γκm>
√
ρc̃

(12.70)

= RL(y,.),S(s m>
√
ρw̃0

+ s̃
√
γκm>
√
ρc̃

+ v)− s m>
√
ρw̃0
− s̃
√
γκm>
√
ρc̃

(12.71)

and the corresponding non-linearity will then be

h(v) =
(
RL(y,.),S(s m>

√
ρw̃0

+ s̃
√
γκm>
√
ρc̃

+ v)−
(

s m>
√
ρw̃0

+ s̃
√
γκm>
√
ρc̃

+ v
))

S−1 (12.72)

Moving to the regularization, the resolvent reads

Rr̃,Ŝ(u) = arg min
x∈RKp×K

{
r

(
Ω−1/2

(√
γc̃m>

ρc̃
+ x

))
− ν>x>Ω−1/2c + 1

2tr
(
(x− u)Ŝ−1(x− u)>

)}
(12.73)

letting x̃ =
√
γc̃m>
ρc̃

+ x, we obtain

Rr̃,Ŝ(u) = arg min
x̃∈RKp×K

{
r
(
Ω−1/2x̃

)
− ν>x̃>Ω−1/2c (12.74)

+ 1
2tr

(
(x̃−

(
u +
√
γc̃m>

ρc̃

)
)Ŝ−1(x̃−

(
u +
√
γc̃m>

ρc̃

)
)>
)}
−
√
γc̃m>

ρc̃
(12.75)

= arg min
x̃∈RKp×K

{
r
(
Ω−1/2x̃

)
(12.76)

+ 1
2tr

(
(x̃−

(
u + Ω−1/2cν>Ŝ +

√
γc̃m>

ρc̃

)
)Ŝ−1(x̃−

(
u + Ω−1/2cν>Ŝ +

√
γc̃m>

ρc̃

)
)>
)}

(12.77)

−
√
γc̃m>

ρc̃
(12.78)

Rr(Ω−1/2.),Ŝ

(
u + Ω−1/2cν>Ŝ +

√
γc̃m>

ρc̃

)
−
√
γc̃m>

ρc̃
(12.79)

Which gives the following non-linearity for the AMP iteration

e(u) = Rr(Ω−1/2.),Ŝ

(
uŜ + Ω−1/2cν>V +

√
γc̃m>

ρc̃

)
−
√
γc̃m>

ρc̃
(12.80)
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The following lemma then gives the exact asymptotics at each time step of the AMP iteration
solving problem Eq.(12.46) : its state evolution equations.

Lemma 49. Consider the AMP iteration Eq.(12.51-12.55). Assume it is initialized with u0 such
that
limd→∞

1
d

∥∥∥e0(u0)>e0(u0)
∥∥∥

F
exists, a positive definite matrix Ŝ0, and h−1 ≡ 0. Then for any t ∈ N,

and any pair of seqeunces of uniformly pseudo-Lipschitz functions φ1,n : RKp×K and φ2,n : Rn×K ,
the following holds

φ1,n
(
ut
)
P' E

[
φ1,n

(
G(Q̂t)1/2

)]
(12.81)

φ2,n
(
vt
)
P' E

[
φ2,n

(
H(Qt)1/2

)]
(12.82)

where G ∈ RKp×K and H ∈ Rn×K are independent random matrices with i.i.d. standard normal
elements, and Qt, Q̂t,Vt, V̂t are given by the equations

Qt = 1
p
E
[(

Rr(Ω−1/2.),(V̂t)−1

(
G(Q̂t)1/2(V̂t)−1 + Ω−1/2cν>(V̂t)−1 +

√
γc̃m>

ρc̃

)
−
√
γc̃m>

ρc̃

)>
(

Rr(Ω−1/2.),(V̂t)−1

(
G(Q̂t)1/2(V̂t)−1 + Ω−1/2cν>(V̂t)−1 +

√
γc̃m>

ρc̃

)
−
√
γc̃m>

ρc̃

)]
(12.83)

Q̂t = 1
p
E
[((

RL(y,.),Vt−1(.)− Id
)(

s m>
√
ρw̃0

+ s̃
√
γκm>
√
ρc̃

+ H(Qt−1)1/2
)

(Vt−1)−1
)>

(12.84)

(
RL(y,.),Vt−1(.)− Id

)(
s m>
√
ρw̃0

+ s̃
√
γκm>
√
ρc̃

+ H(Qt−1)1/2
)

(Vt−1)−1
]

(12.85)

Vt = 1
p
E
[
(Q̂t)−1/2G>Rr(Ω−1/2.),(V̂t)−1

(
G(Q̂t)1/2(V̂t)−1 + Ω−1/2cν>(V̂t)−1 +

√
γc̃m>

ρc̃

)]
(12.86)

V̂t = −1
p
E
[
(Qt−1)−1/2H>

((
RL(y,.),Vt−1(.)− Id

)(
s m>
√
ρw̃0

+ s̃
√
γκm>
√
ρc̃

+ H(Qt−1)1/2
))

(Vt−1)−1
]

(12.87)

Proof. Owing to the properties of Bregman proximity operators [24, 23], the update functions in
the AMP iteration Eq.(12.51-12.55) are Lipschitz continuous. Thus under the assumptions made
on the initialization, the assumptions of Theorem 19 are verified, which gives the desired result.

Lemma 50. Consider iteration Eq.(12.51-12.55), where the parameters Q, Q̂,V, V̂ are initialized
at any fixed point of the state evolution equations of Lemma 49. For any sequence initialized with
V̂0 = V̂ and u0 such that

lim
d→∞

1
d
e0(u0)>e0(u0) = Q (12.88)

the following holds

lim
t→∞

lim
p→∞

1
√
p

∥∥∥ut − u?
∥∥∥

F
= 0 lim

t→∞
lim
d→∞

1
√
p

∥∥∥vt − v?
∥∥∥

F
= 0 (12.89)
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Proof. The proof of this lemma is identical to that of Lemma 7 from [178].

Combining these results, we obtain the following asymptotic characterization of U∗.

Lemma 51. For any fixed m and ν in their feasibility sets, let U∗ be the unique solution to the
optimization problem Eq.(12.46). Then, for any sequences (in the problem dimension) of pseudo-
Lipschitz functions of order 2 φ1,n : Rn×K → R and φ2,n : RKp×K → R, the following holds

φ1,n (U∗) P' E
[
φ1,n

(
Rr(Ω−1/2.),V̂−1

(
GQ̂1/2V̂−1 + Ω−1/2cν>V̂−1 +

√
γc̃m>

ρc̃

)
−
√
γc̃m>

ρc̃

)]
(12.90)

φ2,n

(
1
√
p
Z̃U∗

)
P' E

[
φ2,n

(
RL(y,.),V(s m>

√
ρw̃0

+ s̃
√
γκm>
√
ρc̃

+ HQ̂1/2)− s m>
√
ρw̃0
− s̃
√
γκm>
√
ρc̃

)]
(12.91)

where G ∈ RKp×K and H ∈ Rn×K are independent random matrices with i.i.d. standard normal
elements, and Q, Q̂,V, V̂ are given by the fixed point (assumed to be unique) of the following set of
self consistent equations

Q = 1
p
E
[(

Rr(Ω−1/2.),V̂−1

(
GQ̂1/2V̂−1 + Ω−1/2cν>V̂−1 +

√
γc̃m>

ρc̃

)
−
√
γc̃m>

ρc̃

)>
(12.92)(

Rr(Ω−1/2.),V̂−1

(
GQ̂1/2V̂−1 + Ω−1/2cν>V̂−1 +

√
γc̃m>

ρc̃

)
−
√
γc̃m>

ρc̃

)]
(12.93)

Q̂ = 1
p
E
[((

RL(y,.),V(.)− Id
)(

s m>
√
ρw̃0

+ s̃
√
γκm>
√
ρc̃

+ HQ1/2
)

V−1
)>

((
RL(y,.),V(.)− Id

)(
s m>
√
ρw̃0

+ s̃
√
γκm>
√
ρc̃

+ HQ1/2
)

V−1
)]

(12.94)

V = 1
p
E
[
Q̂−1/2G>Rr(Ω−1/2.),V̂−1

(
GQ̂1/2V̂−1 + Ω−1/2cν>V̂−1 +

√
γc̃m>

ρc̃

)]
(12.95)

V̂ = −1
p
E
[
Q−1/2H>

((
RL(y,.),V(.)− Id

)(
s m>
√
ρw̃0

+ s̃
√
γκm>
√
ρc̃

+ HQ1/2
)

V−1
)]

(12.96)

Proof. Combining the results of the previous lemmas, this proof is close to that of Theorem 1.5 in
[29].

Returning to the optimization problem on m,ν in Eq.(12.45), the solution U∗, at any dimension,
verifies the zero gradient conditions on m,ν:

∂ν = 0 ⇐⇒ (U∗)>c̃ = 0 (12.97)

∂m = 0 ⇐⇒
(

s
√
ρw̃0

+
s̃√γκ
ρc̃

)>
L
(
f0
(√
ρw̃0s

)
, s m>
√
ρw̃0

+ s̃
√
γκm>
√
ρc̃

+ 1
√
p
Z̃U

)

+
√
γṽ>

ρc̃
Ω−1/2∂r(Ω−1/2

(√
γc̃m>

ρc̃
+ U

)
) = 0 (12.98)
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Using Lemma 51 while assuming the subgradients of L, r are pseudo-Lipschitz (we discuss this
assumption in subsection 12.1.4), we obtain for m

1
p
E

(Rr(Ω−1/2.),V̂−1

(
GQ̂1/2V̂−1 + Ω−1/2cν>V̂−1 +

√
γc̃m>

ρc̃

)
−
√
γc̃m>

ρc̃

)>
c̃

 = 0 (12.99)

⇐⇒ m = 1√
dp

E
[
c̃>Rr(Ω−1/2.),V̂−1

(
GQ̂1/2V̂−1 + Ω−1/2cν>V̂−1 +

√
γc̃m>

ρc̃

)]
(12.100)

and for ν

1
p
E
[( s
√
ρw̃0

+
s̃√γκ
ρc̃

)>
∂L
(
f0
(√
ρw̃0s

)
,RL(y,.),V(s m>

√
ρw̃0

+ s̃
√
γκm>
√
ρc̃

+ HQ̂1/2)
)

(12.101)

+
√
γc̃>

ρc̃
Ω−1/2∂r

(
Ω−1/2

(
Rr(Ω−1/2.),V̂−1

(
GQ̂1/2V̂−1 + Ω−1/2cν>V̂−1 +

√
γc̃m>

ρc̃

)))]
= 0

(12.102)

Using the definition of D-resolvents, this is equivalent to

1
p
E
[( s
√
ρw̃0

+
s̃√γκ
ρc̃

)> (
Id−RL(y,.),V (.)

)(
s m>
√
ρw̃0

+ s̃
√
γκm>
√
ρc̃

+ HQ̂1/2
)

V−1 (12.103)

+
√
γc̃>

ρc̃

(
Id−Rr(Ω−1/2.),V̂−1 (.)

)(
GQ̂1/2V̂−1 + Ω−1/2cν>V̂−1 +

√
γc̃m>

ρc̃

)
V̂
]

= 0 (12.104)

which simplifies to

ν> = − 1
√
γp

E
[( s
√
ρw̃0

+
s̃√γκ
ρc̃

)> (
Id−RL(y,.),V (.)

)(
s m>
√
ρw̃0

+ s̃
√
γκm>
√
ρc̃

+ HQ̂1/2
)

V−1
]

(12.105)
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which brings us to the following set of six self consistent equations

Q = 1
p
E
[(

Rr(Ω−1/2.),V̂−1

(
GQ̂1/2V̂−1 + Ω−1/2cν>V̂−1 +

√
γc̃m>

ρc̃

)
−
√
γc̃m>

ρc̃

)>
(12.106)(

Rr(Ω−1/2.),V̂−1

(
GQ̂1/2V̂−1 + Ω−1/2cν>V̂−1 +

√
γc̃m>

ρc̃

)
−
√
γc̃m>

ρc̃

)]
(12.107)

Q̂ = 1
p
E
[((

RL(y,.),V(.)− Id
)(

s m>
√
ρw̃0

+ s̃
√
γκm>
√
ρc̃

+ HQ1/2
)

V−1
)>

((
RL(y,.),V(.)− Id

)(
s m>
√
ρw̃0

+ s̃
√
γκm>
√
ρc̃

+ HQ1/2
)

V−1
)]

(12.108)

V = 1
p
E
[
Q̂−1/2G>Rr(Ω−1/2.),V̂−1

(
GQ̂1/2V̂−1 + Ω−1/2cν>V̂−1 +

√
γc̃m>

ρc̃

)]
(12.109)

V̂ = −1
p
E
[
Q−1/2H>

((
RL(y,.),V(.)− Id

)(
s m>
√
ρw̃0

+ s̃
√
γκm>
√
ρc̃

+ HQ1/2
)

V−1
)]

(12.110)

m = 1√
dp

E
[
c̃>Rr(Ω−1/2.),V̂−1

(
GQ̂1/2V̂−1 + Ω−1/2cν>V̂−1 +

√
γc̃m>

ρc̃

)]
(12.111)

ν> = − 1
√
γp

E
[( s
√
ρw̃0

+
s̃√γκ
ρc̃

)> (
Id−RL(y,.),V (.)

)(
s m>
√
ρw̃0

+ s̃
√
γκm>
√
ρc̃

+ HQ̂1/2
)

V−1
]

(12.112)

This set of equations then characterizes the asymptotic distribution of the estimator U∗ in the
sense of Lemma 51, with the optimal values of m and ν. Using the definition of U∗ and Z̃U∗,
along with the definition of the function r w.r.t. the original regularization function, a tedious
but straightforward calculation allows reconstruct the asymptotic properties of W∗ and of the set
{Xkw∗k}

K
k=1 given in the main text.

12.1.3 Relaxing the strong convexity constraint

Assuming the set of self consistent equations (12.106) have a unique fixed point regardless of the
strong convexity assumption, this solution defines a unique set of six order parameters for the λ2 = 0
case. Furthermore, using Proposition 12, the unique estimator W∗(λ2) solving problem Eq.(12.5) for
strictly positive λ2 converges to the least-norm solution to the convex (but not strongly) Eq.(12.4).
Thus, for any pseudo-Lipschitz observable of U∗(λ2), we have, one the one side a continuous function
of λ2 with a unique continuous extension at λ2 = 0, and on the other side a function of λ2 prescribed
by the expectation taken w.r.t. the asymptotic Gaussian model parametrised by the state evolution
parameters which is defined for all positive values of λ2. Since both functions match for any strictly
positive λ2, continuity implies they also match for λ2 = 0 and we obtain the exact asymptotics of
the least `2 norm solution of problem Eq.(12.4). Regarding the uniqueness of the solution to the
fixed point equations (12.106), it is shown in [176] that a similar set of equations, although for a
vector valued variable, i.e. no ensembling, the solution is unique even if the original problem is
not strictly convex. This is proven by showing that the fixed point equations are the solution of
a strictly convex problem. We expect this to be true here as well, and leave this part for a longer
version of this paper.
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12.1.4 A comment on non-pseudo-Lipschitz subgradients

Provided the subgradients in Eq.(12.97) are pseudo-Lipschitz continuous, the proof goes through.
However some convex functions commonly used in machine learning, such as the hinge loss or
the `1 norm for the penalty, have non-pseudo-Lipschitz gradient. To circumvent this issue, one
can consider the optimization problem where both loss and regularization are replaced by their
Moreau envelopes with strictly positive parameters τ1, τ2, as is done in [57] for the LASSO. Moreau
envelopes are everywhere differentiable and have Lipschitz gradient for strictly positive values of
their parameter [25], thus the asymptotic characterization holds. One can then take the parameters
to zero, using the fact that the limit at zero in the parameters of Moreau envelopes is well defined
[25], recovering the original function. Since proximity operators are defined as strongly convex
problems, the sequence of problems defined by the proximal operator of a Moreau envelope with
decreasing parameter converges to the proximal operator of the original function when the parameter
is taken to zero. Finally, inverting the expectations on random quantities with the limit taking the
parameters of the Moreau envelopes to zero can be done by verifying the dominated convergence
theorem using the firm-nonexpansiveness of proximity operators and the corresponding bounds on
their norms, see [25] Chapter 4, Section 1. We leave the details of this part to a longer version of
this paper.

12.1.5 Toolbox

The required tools for this proof are the same as those given in section 10.1 of Chapter 10, with the
added following lemma :

A useful result from convex analysis Here we remind a result from [25] describing the limiting
behavior of regularized estimators for vanishing regularization.

Proposition 8. (Theorem 26.20 from [25]) Let f and h be proper, lower semi-continuous, convex
functions. Suppose that arg min f ∩ dom(g) 6= ∅ and that h is coercive and strictly convex. Then g
admits a unique minimizer x0 over arg min f and , for every ε ∈]0, 1[, the regularized problem

arg min
x
f(x) + εh(x) (12.113)

admits a unique solution xε. If we assume further that h is uniformly convex on any closed ball of
the input space, then limε→0 xε = x0.
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Chapter 13

How to prove Kabashima’s replica
formula

The results in this chapter are based on the paper [109]. Preliminary results on a simpler models
were published in [108] and are not reproduced since they are included in the more general statement
presented here. The reader curious to see how the formulas reduce on the simpler case of convex
penalized least-squares regression may consult the main theorem and discussion in [108].

There has been a recent surge of interest in the study of asymptotic reconstruction performance
in various cases of generalized linear estimation problems in the teacher-student setting, especially
for the case of i.i.d standard normal matrices. Here, we go beyond these matrices, and prove
an analytical formula for the reconstruction performance of convex generalized linear models with
rotationally-invariant data matrices with arbitrary bounded spectrum, rigorously confirming, un-
der suitable assumptions, a conjecture originally derived using the replica method from statistical
physics. The proof is achieved by leveraging on message passing algorithms and the statistical
properties of their iterates, allowing to characterize the asymptotic empirical distribution of the
estimator. For sufficiently strongly convex problems, we show that the two-layer vector approxi-
mate message passing algorithm (2-MLVAMP) converges, where the convergence analysis is done
by checking the stability of an equivalent dynamical system, which gives the result for such prob-
lems. We then show that, under a concentration assumption, an analytical continuation may be
carried out to extend the result to convex (non-strongly) problems. We illustrate our claim with
numerical examples on mainstream learning methods such as sparse logistic regression and linear
support vector classifiers, showing excellent agreement between moderate size simulation and the
asymptotic prediction.

13.1 Introduction

13.1.1 Background and motivation

In the modern era of statistics and machine learning, data analysis often requires solving high-
dimensional estimation problems with a very large number of parameters. Developing algorithms
for this task and understanding their limitations has become a major challenge. In this paper, we
consider this question in the framework of supervised learning under the teacher-student scenario:
(i) the data is synthetic and labels are generated by a “teacher”rule and (ii) training is done with
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a convex Generalized Linear Model (GLM) . Such problems are ubiquitous in machine learning,
statistics, communications, and signal processing.

The study of asymptotic (i.e. large-dimensional) reconstruction performance of generalized
linear estimation in the teacher-student setting has been the subject of a significant body of work
over the past few decades [263, 294, 94, 29, 90, 82, 300], and is currently witnessing a renewal of
interest, especially for the case of identically and independently distributed (i.i.d.) standard normal
data matrices, see e.g. [274, 125, 190]. The aim of this paper is to provide a general analytical
formula describing the reconstruction performance of such convex generalized linear models, but for
a broader class of more adaptable matrices.

The problem is defined as follows: we aim at reconstructing a given i.i.d. weight vector x0 ∈ RN
from outputs y ∈ RM generated using a training set (fµ)µ=1,...,M and the “teacher” rule:

y = ϕ(Fx0, ω0) (13.1)

where ϕ is a proper, closed, continuous function and ω0 ∼ N (0,∆0Id) is an i.i.d. noise vector. To
go beyond the Gaussian i.i.d. case tackled in a majority of theoretical works, we shall allow matrices
of arbitrary spectrum. We consider the data matrix F ∈ RM×N , obtained by concatenating the
vectors of the training set, to be rotationally invariant: its singular value decomposition reads
F = UDVT where U ∈ RM×M ,V ∈ RN×N are uniformly sampled from the orthogonal groups
O(M) and O(N) respectively. D ∈ RM×N contains the singular values of F on its diagonal. Our
analysis encompasses any singular value distribution with compact support. We place ourselves in
the so-called high-dimensional regime, so that M,N → ∞ while the ratio α ≡ M/N is kept finite.
Our goal is to study the reconstruction performance of the generalized linear estimation method:

x̂ ∈ arg min
x∈RN

{g(Fx,y) + f(x)} (13.2)

where g and f are proper, closed, convex and separable functions. This type of procedure is an
instance of empirical risk minimizationa and is one of the building blocks of modern machine learn-
ing. It encompasses several mainstream methods such as logistic regression, the LASSO or linear
support vector machines. More precisely, the quantities of interest representing the reconstruction
performance are the mean squared error E = E

[
1
N ‖x0 − x̂‖22

]
for regression problems, and the

reconstruction angle θx = arccos xT0 x̂
‖x0‖2‖x̂‖2

for classification problems.

13.1.2 Main contributions

• We provide a set of equations characterizing the asymptotic statistical properties of the estimator
defined by problem (13.2) with data generated by (13.1) in the asymptotic setup, for separable,
convex losses and penalties (including for instance Logistic, Hinge, LASSO and Elastic net),
for rotationally invariant sequences of matrices F. For sufficiently strongly convex problems (in
the sense of Lemma 54), our assumptions are classical with respect to earlier work. To extend
the result to convex problems however, we require a concentration assumption that we discuss
further in section 13.3.

• By doing so, we give, under the aforementioned set of assumptions, a mathematically rigorous
proof, of a replica formula obtained heuristically through statistical physics for this problem,
notably by Y. Kabashima[138]. This is a significant step beyond the setting of most rigorous
work on replica results, which assume matrices to be i.i.d. random Gaussian ones.
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• Our proof method builds on a detailed mapping between alternating directions descent methods
[50] from convex optimization and a set of algorithms called multi-layer vector approximate
message-passing algorithms [188, 256]. This enables us to use convergence results from convex
analysis and dynamical systems to study the trajectories of vector approximate message-passing
algorithms.

• Beyond the high-dimensional result on the estimator defined by the GLM, our convergence
analysis provides a generic condition for the convergence of 2-layer MLVAMP, regardless of the
randomness of the design matrix and of the dimensions of the problem, for sufficiently strongly
convex problems.

13.1.3 Related work

The simplest case of the present question, when both f and g are quadratic functions, can be
mapped to a random matrix theory problem and solved rigorously, as in e.g. [125]. Handling
non-linearity is, however, more challenging. A long history of research tackles this difficulty in the
high-dimensional limit, especially in the statistical physics literature where this setup is common.
The usual analytical approach in statistical physics of learning [263, 294, 94] is a heuristic, non-
rigorous but very adaptable technique called the replica method [196, 195]. In particular, it has
been applied on many variations of the present problem, and laid the foundation of a large number
of deep, non-trivial results in machine learning, signal processing and statistics, e.g. [103, 217, 39,
140, 101, 3, 205, 93]. Among them, a generic formula for the present problem has been conjectured
by Y. Kabashima, providing sharp asymptotics for the reconstruction performance of the signal
x0 [138].

Proving the validity of a replica prediction is a difficult task altogether. There has been recent
progress in the particular case of Gaussian data, where the matrix F is made of i.i.d. standard
Gaussian coefficients. In this case, the asymptotic performance of the LASSO was rigorously derived
in [28], and the existence of the logistic estimator discussed in [274]. A set of papers managed to
extend this study to a large set of convex losses g, using the so-called Gordon comparison theorem
[281]. We broaden those results here by proving the Kabashima formula, valid for the set of
rotationally invariant matrices introduced above and any convex, separable loss g and sufficiently
strongly convex regularizer f under classical conditions. We extend this result to any convex,
separable g and f under stronger assumptions.

Our proof strategy is based on the use of approximate-message-passing [83, 240], as pioneered
in [29], and is similar to a recent work [109] on a simpler setting. This family of algorithms is
a statistical physics-inspired variant of belief propagation [193, 137, 139] where local beliefs are
approximated by Gaussian distributions. A key feature of these algorithms is the existence of the
state evolution equations, a scalar equivalent model which allows to track the asymptotic statistical
properties of the iterates at every time step. A series of groundbreaking papers initiated with
[28] proved that these equations are exact in the large system limit, and extended the method to
treat nonlinear problems [240] and handle rotationally invariant matrices [242, 277]. We shall use
a variant of these algorithms called multi-layer vector approximate message-passing (MLVAMP)
[256, 97]. The key technical point in our approach is an analysis of the convergence of MLVAMP.
This is achieved by phrasing the algorithm as a dynamical system, and then determining sufficient
conditions for convergence with linear rate. Our analysis guarantees converging trajectories above
a threshold value of the strong convexity parameter of the problem, which is sufficient to complete
the proof in that region. We use an analytic continuation to extend the result to convex problems,
at the cost of an additional condition discussed after stating our main set of assumption.
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13.2 Background on MLVAMP

In this section, we present background on the multilayer vector approximate message-passing al-
gorithm developed in [97]. In doing so, we will introduce the key quantities involved in our main
theorem. MLVAMP was initially designed as a probabilistic inference algorithm in multilayer archi-
tectures. Here, we only focus on the 2-layer version for inference in GLMs, and use the notations of
[277]. The algorithm can be derived in several ways, notably from expectation-consistent variational
inference frameworks such as expectation propagation [203], where the target posterior distribution
is approximated by a simpler one with moment matching constraints. In the maximum a posteri-
ori setting (MAP), the frequentist optimization framework is recovered, with additional parameter
prescriptions due to the probabilistic models, as we will see below. The derivation of the algorithm
is, however, not our point of interest. We focus on providing a self-contained interpretation from
the convex optimization point of view, in particular in terms of variable splitting.

13.2.1 Link with variable splitting and proximal descent

A common procedure to tackle nonlinear optimization problems involving several functions is vari-
able splitting, so that each non-linearity may be treated independently. Augmenting the Lagrangian
with a square penalty on the slack variable equality constraint leads to the family of alternating
direction methods of multipliers (ADMM) [50], where the objective is iteratively minimized in the
direction of each initial variable and slack variable. The descent steps then take the form of proximal
operators of the non-linearities. For example, on problem (13.2), adding a slack variable z = Fx
would lead to the augmented Lagrangian:

g(z,y) + f(x) + θT (z− Fx) + α

2 ‖z− Fx‖22 (13.3)

where α > 0 is a free parameter that can enforce strong convexity of the objective if large enough
and θ is a Lagrange multiplier. Updating x from an update on z amounts to a linear estimation
problem, which can be solved by least squares. This is implemented, for example, in linearized
ADMM [50], where the proximal descent steps are coupled to least-square ones.
MLVAMP solves problem (13.2) by introducing the same splitting as in (13.3) with an additional
trivial splitting for each variable: x1,x2, z1, z2 such that x1 = x2, z1 = Fx1, z2 = Fx2. In
the convex optimization framework, parameters like gradient step sizes, or proximal parameters
need to be chosen. In the expectation propagation framework, they are prescribed by expectation-
consistency constraints, which leads to additional steps in the algorithm. MLVAMP thus consists in
four descent steps on x1,x2, z1, z2, and the updates on the parameters of the functions corresponding
to those descent steps. This is shown in the MLVAMP iterations (see (1) further), where x1, z1 are
updated using the proximal operators of the loss and regularizer, while z2 and x2 are obtained
through least-squares. As mentioned above, the parameters of proximal operators (or denoisers
in the signal processing literature) and least-squares are set by probabilistic inference rules (here
moment-matching of marginal distributions). It is shown in [98] that, in the MAP setting, these
updates amount to adapting the parameters to the local curvature of the cost function.

13.2.2 2-layer MLVAMP and its state evolution

We lay out the full iterations of the MLVAMP algorithm from [97] applied to a 2-layer network in
Algorithm 1. For a given operator T : X → Rd where d is M or N in our setting, the brackets
〈T (x)〉 = 1

d

∑d
i=1 T (x)i denote element-wise averaging operations. For a given matrix M ∈ Rd×d, the
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brackets amount to 〈M〉 = 1
dTr(M). For a given function, for example g1x, we use the shorthand

g1x(...) when the arguments have been made clear in a line above and are left unchanged. The

Algorithm 1 2-layer MLVAMP

Require: Initialize h(0)
1x ,h

(0)
2z , Q̂

(0)
1x , Q̂

(0)
2z , number of iterations T.

for t=0,1...,T do

// Denoising x

x̂(t)
1 = g1x(h(t)

1x , Q̂
(t)
1x)

χ
(t)
1x =

〈
∂h(t)

1x
g1x(...)

〉
/Q̂

(t)
1x

Q̂
(t)
2x = 1/χ(t)

1x − Q̂
(t)
1x

h(t)
2x = (x̂(t)

1 /χ
(t)
1x − Q̂

(t)
1xh(t)

1x)/Q̂(t)
2x

// LMMSE estimation of z

ẑ(t)
2 = g2z(h(t)

2x ,h
(t)
2z , Q̂

(t)
2x , Q̂

(t)
2z )

χ
(t)
2z =

〈
∂h(t)

2z
g2z(...)

〉
/Q̂

(t)
2z

Q̂
(t)
1z = 1/χ(t)

2z − Q̂
(t)
2z

h(t)
1z = (ẑ(t)

2 /χ
(t)
2z − Q̂

(t)
2zh(t)

2z )/Q̂(t)
1z

// Denoising z

ẑ(t)
1 = g1z(h(t)

1z , Q̂
(t)
1z ),

χ
(t)
1z =

〈
∂h(t)

1z
g1z(...)

〉
/Q̂

(t)
1z

Q̂
(t+1)
2z = 1/χ(t)

1z − Q̂
(t)
1z

h(t+1)
2z = (ẑ(t)

1 /χ
(t)
1z − Q̂

(t)
1zh(t)

1z )/Q̂(t+1)
2z

// LMMSE estimation of x

x̂(t+1)
2 = g2x(h(t)

2x ,h
(t+1)
2z , Q̂

(t)
2x , Q̂

(t+1)
2z )

χ
(t+1)
2x =

〈
∂h(t)

2x
g2x(...)

〉
/Q̂

(t)
2x

Q̂
(t+1)
1x = 1/χ(t+1)

2x − Q̂(t)
2x

h(t+1)
1x = (x̂(t+1)

2 /χ
(t+1)
2x − Q̂(t)

2xh(t)
2x)/Q̂(t+1)

1x
end for

return x̂1, x̂2

denoising functions g1x and g1z can be written as proximal operators in the MAP setting:

g1x(h(t)
1x , Q̂

(t)
1x) = arg min

x∈RN

{
f(x) + Q̂

(t)
1x
2
∥∥∥x− h(t)

1x

∥∥∥2

2

}
(13.4)

= Prox
f/Q̂

(t)
1x

(h(t)
1x) (13.5)
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and

g1z(h(t)
1z , Q̂

(t)
1z ) = arg min

z∈RM

{
g(y, z) + Q̂

(t)
1z
2
∥∥∥z− h(t)

1z

∥∥∥2

2

}
(13.6)

= Prox
g(.,y)/Q̂(t)

1z
(h(t)

1z ). (13.7)

The LMMSE denoisers g2z and g2x in the MAP setting read (see [256]):

g2z(...) = FM(t)
1 (Q̂(t)

2xh(t)
2x + Q̂

(t)
2zFTh(t)

2z ) (13.8)

g2x(...) = M(t)
2 (Q̂(t)

2xh(t)
2x + Q̂

(t+1)
2z FTh(t+1)

2z ). (13.9)

where we defined the matrices M(t)
1 = (Q̂(t)

2zFTF + Q̂
(t)
2xId)−1, and M(t)

2 = (Q̂(t+1)
2z FTF + Q̂

(t)
2xId)−1.

As mentioned in the previous section, MLVAMP returns at each iteration two sets of estimators
(x̂(t)

1 , x̂(t)
2 ) and (ẑ(t)

1 , ẑ(t)
2 ) which respectively aim at reconstructing the minimizer x̂ and ẑ = Fx̂. At

the fixed point, we have x̂(t)
1 = x̂(t)

2 and ẑ(t)
1 = ẑ(t)

2 , as proven in [222]. The intermediate vectors
h(t)

1x , h(t)
2x , h(t)

1z and h(t)
2z have the key feature that they behave asymptotically as Gaussian centered

around x0 and z0 = Fx0, under the set of assumptions given in appendix 14.5.2. More precisely,
at each iteration, they converge empirically with second order moment (PL2) towards Gaussian
variables:

lim
M,N→∞

Q̂
(t)
1xh(t)

1x − m̂
(t)
1xx0

PL(2)=
√
χ̂

(t)
1xξ

(t)
1x (13.10a)

lim
M,N→∞

VT (Q̂(t)
2xh(t)

2x − m̂
(t)
2xx0) PL(2)=

√
χ̂

(t)
2xξ

(t)
2x (13.10b)

lim
M,N→∞

UT (Q̂(t)
1zh(t)

1z − m̂
(t)
1z z0) PL(2)=

√
χ̂

(t)
1z ξ

(t)
1z (13.10c)

lim
M,N→∞

Q̂
(t)
2zh(t)

2z − m̂
(t)
2z z0

PL(2)=
√
χ̂

(t)
2z ξ

(t)
2z (13.10d)

where ξ(t)
1x , ξ

(t)
2x , ξ

(t)
1z , ξ

(t)
2z are i.i.d standard normal random variables independent of all other quanti-

ties. The definition of PL(2) convergence is reminded in Appendix 14.1, and we use the notation
PL(2)= following [242, 97]. We can roughly say that the Q̂, m̂, χ̂’s parameters characterize the dis-
tributions of the h’s. Using the representation (13.10) in the iterations of MLVAMP results in a
scalar recursion that tracks the evolution of the parameters of the aforementioned Gaussian dis-
tributions. This recursion provides the so-called state evolution equations. The existence of state
evolution equations is the reason why we use 2-layer MLVAMP in our proof. Indeed, they allow
the construction of iterate paths that lead to the solution of problem (13.2), while knowing their
statistical properties.

13.3 Main result

Our main result characterizes the asymptotic empirical distribution of the estimator x̂ defined
in (13.2) with data generated by (13.1), and of ẑ = Fx̂. We start by stating the necessary assump-
tions.

Assumption 2.
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(a) the functions f and g are proper, closed, convex and separable functions.

(b) the cost function g(F.,y) + f(.) is coercive, i.e. lim‖x‖→∞ g(Fx,y) + f(x) = +∞.

(c) there exists a finite constant B1 such that 1
N ‖x̂‖

2
2 6 B1 almost surely as N → ∞. We also

assume that, for any pseudo-Lipschitz function of order 2, if there exists a finite constant B2
such that ∀N ∈ N, 1

N

∑N
i=1 φ(x̂i) 6 B2, then the limit limN→∞

1
N

∑N
i=1 φ(x̂i) exists.

(d) for any x ∈ dom(f) and any x′ ∈ ∂f(x), there exists a constant C such that ‖x′‖2 6 C(1 +
‖x‖2). The same holds for g on its domain.

(e) there exist sequences of real analytic functions gε, fε such that for any x, limε→0 gε(x) = g(x),
limε→0 fε(x) = f(x), and for all ε > 0, g′′ε and f ′′ε belong to the Schwartz space.

(f) the empirical distributions of the underlying truth x0, eigenvalues of FTF, and noise vector
w0, respectively converge empirically with second order moments, as defined in appendix 14.1,
to independent scalar random variables x0, w0, λ with distributions px0, pλ, pw0. We assume
that the distribution pλ is not all-zero and has compact support.

(g) the design matrix F = UDV> ∈ RM×N is rotationally invariant, as defined in the introduc-
tion, where the elements of the Haar distributed matrices U,V are independent of the elements
of the ground truth vector x0, noise ω0 and elements of D.

(h) the solution to the set of fixed point equations (13.13) exists and is unique, for any convex g
and f verifying the assumptions above

(i) finally assume that M,N →∞ with fixed ratio α = M/N .

The coercivity assumption (b) ensures that the minimization problem Eq.(13.2) is feasible and
that the estimator exists. Most machine learning cost functions verify this assumption, including
any convex loss which is bounded below and regularized with a coercive term such as the `1 or `2
norm, see [25] Corollary 11.15. Non-coercive problems include unregularized logistic regression and
unregularized, underspecified least-squares for example. The scaling assumptions (d) are required
for the state evolution equations of the MLVAMP iteration corresponding to the optimization prob-
lem Eq.(13.2) to hold, as discussed in appendix 14.5.2. Such conditions are often encountered in
high dimensional analysis of M-estimators, see, e.g. [281], and are verified by the setups proposed in
the experiments section. The convergence of averaged sumes of PL2 observables in assumption (c)
and the analytic approximation in assumption (e) are required for our analytic continuation to hold,
and we show that any combination of hinge, logistic and square loss with `1 or `2 regularization
verifies the latter in Appendix 14.8, subsection 14.8.6. We show in Lemma 55 that, for sufficiently
strongly convex problems, these two assumptions are not required. The concentration assumption
we require has been proven to hold for a number of convex problems with Gaussian random design
regardless of the strong convexity of the problem (see the related work section), and we believe ro-
tationally invariant matrices do not change this behaviour. However, since we are unable to prove it
below the threshold value of the strong convexity parameter, it remains an assumption. Additional
detail on the notion of empirical convergence is given in appendix 14.1. This analysis framework is
mainly due to [28] and is related to convergence in Wasserstein metric as pointed out in [93]. We
are now ready to state our main theorem.
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Theorem 22 (Fixed point equations). Under assumption 2, consider the ground-truth x0 and let
z0 = Fx0, ρx ≡ ‖x0‖22/N and ρz ≡ ‖z0‖22/M . For a strictly convex instance of problem (13.2), let
x̂ be its unique solution. For a convex (non-strictly) instance of problem (13.2), let x̂ be its unique
least `2 norm solution. Then let ẑ = Fx̂. Then, for any real analytic, pseudo-Lipschitz function of
order 2 φ whose second derivative belongs to the Schwartz space, the following holds :

lim
N→∞

1
N

N∑
i=1

φ(x0,i, x̂i)
a.s.= E[φ(x0,Prox

f/Q̂
(∗)
1x

(Hx))] (13.11)

lim
M→∞

1
M

M∑
i=1

φ(z0,i, ẑi)
a.s.= E[φ(z0,Prox

f/Q̂
(∗)
1z

(Hz))] (13.12)

where Hx = m̂∗1xx0+
√
χ̂∗1xξ1x

Q̂∗1x
, Hz = m̂∗1zz0+

√
χ̂∗1zξ1z

Q̂∗1z
and expectations are taken with respect to the

random variables x0 ∼ px0, z0 ∼ N (0,√ρz), ξ1x, ξ1z ∼ N (0, 1).
The parameters Q̂∗1x, Q̂∗1z, m̂∗1x, m̂∗1z, χ̂∗1x, χ̂∗1z are determined by the fixed point of the system:

Q̂2x = Q̂1x(E
[
η′
f/Q̂1x

(Hx)
]−1
− 1) (13.13a)

Q̂2z = Q̂1z(E
[
η′
g(.,y)/Q̂1z

(Hz)
]−1
− 1) (13.13b)

m̂2x =
E
[
x0ηf/Q̂1x

(Hx)
]

ρxχx
− m̂1x (13.13c)

m̂2z =
E
[
z0ηg(.,y)/Q̂1z

(Hz)
]

ρzχz
− m̂1z (13.13d)

χ̂2x =
E
[
η2
f/Q̂1x

(Hx)
]

χ2
x

(13.13e)

− ρx(m̂1x + m̂2x)2 − χ̂1x (13.13f)

χ̂2z =
E
[
η2
g(.,y)/Q̂1z

(Hz)
]

χ2
z

(13.13g)

− ρz(m̂1z + m̂2z)2 − χ̂1z (13.13h)
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Q̂1x = E
[

1
Q̂2x + λQ̂2z

]−1

− Q̂2x (13.13i)

Q̂1z = αE
[

λ

Q̂2x + λQ̂2z

]−1

− Q̂2z (13.13j)

m̂1x = 1
χx

E
[
m̂2x + λm̂2z

Q̂2x + λQ̂2z

]
− m̂2x (13.13k)

m̂1z = ρx
αχzρz

E
[
λ(m̂2x + λm̂2z)
Q̂2x + λQ̂2z

]
− m̂2z (13.13l)

χ̂1x = 1
χ2
x

E
[
χ̂2x + λχ̂2z + ρx(m̂2x + λm̂2z)2

(Q̂2x + λQ̂2z)2

]
(13.13m)

− ρx(m̂1x + m̂2x)2 − χ̂2x

χ̂1z = 1
αχ2

z

E
[
λ(χ̂2x + λχ̂2z + ρx(m̂2x + λm̂2z)2)

(Q̂2x + λQ̂2z)2

]
(13.13n)

− ρz(m̂1z + m̂2z)2 − χ̂2z,

where χx = (Q̂1x + Q̂2x)−1, χz = (Q̂1z + Q̂2z)−1, and expectations are taken with respect to the
random variables x0 ∼ px0, z0 ∼ N (0,√ρz), y ∼ ϕ(z0, ω0), ξ1x, ξ1z ∼ N (0, 1), and eigenvalues
λ ∼ pλ. η is a shorthand for the scalar proximal operator:

ηγf (z) = arg min
x∈X

{
γf(x) + 1

2(x− z)2
}
. (13.14)

The set of fixed point equations from Theorem 22 naturally stems from the ”replica-symmetric”
free energy commonly used in the statistical physics community [196, 195]. The free energy de-
pends on a set of parameters, and extremizing it with respect to all parameters, i.e. writing the
zero gradient condition for each parameter, provides the set of equations (13.13). We state this
correspondence in the following corollary to Theorem 22 :

Corollary 6 (The Kabashima formula).
The fixed point equations from theorem 22 can equivalently be rewritten as the solution of the

extreme value problem (13.15) defined by the replica free energy from [277].

β is a parameter that corresponds in the physics approach to an inverse temperature. In the
β → ∞ limit (the so-called zero temperature limit), the integrals defining φx and φz concentrate
on their extremal value. Note that they are closely related to the Moreau envelopes M [224, 25] of
f and g, which represent a smoothed form of the objective function with the same minimizers:

φx(m̂1x, Q̂1x, χ̂1x;x0, ξ1x) = Q̂1x
2 H2

x −M f

Q̂1x
(Hx) (13.18)

where ∀ γ > 0, Mγf (z) = infx
{
f(x) + 1

2γ ‖x− z‖
2
2

}
, (13.19)

We provide details on this correspondence in appendix 14.3. In the zero-temperature limit we con-
sider, it is possible to have more precise information on the geometry of the cost function defining
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f = − extr
mx,χx,qx,mz ,χz ,qz

{gF + gG − gS}, (13.15)

gF = extr
m̂1x,χ̂1x,Q̂1x,m̂1z ,χ̂1z ,Q̂1z

{1
2qxQ̂1x −

1
2χxχ̂1x − m̂1xmx − αm̂1zmz + α

2
(
qzQ̂1z − χzχ̂1z

)
+E

[
φx(m̂1x, Q̂1x, χ̂1x;x0, ξ1x)

]
+ αE

[
φz(m̂1z, Q̂1z, χ̂1z; z0, ξ1z)

]}
,

gG = extr
m̂2x,χ̂2x,Q̂2x,m̂2z ,χ̂2z ,Q̂2z

{1
2qxQ̂2x −

1
2χxχ̂2x −mxm̂2x − αmzm̂2z + α

2
(
qzQ̂2z − χzχ̂2z

)
−1

2

(
E
[
log
(
Q̂2x + λQ̂2z

)]
− E

[
χ̂2x + λχ̂2z

Q̂2x + λQ̂2z

]
−E

[
ρx(m̂2x + λm̂2z)2

(Q̂2x + λQ̂2z)

])}
,

gS = 1
2

(
qx
χx
− m2

x

ρxχx

)
+ α

2

(
qz
χz
− m2

z

ρzχz

)
,

where φx and φz are the potential functions

φx(m̂1x, Q̂1x, χ̂1x;x0, ξ1x) = lim
β→∞

1
β

log
∫
e−

βQ̂1x
2 x2+β(m̂1xx0+

√
χ̂1xξ1x)x−βf(x)dx, (13.16)

φz(m̂1z, Q̂1z, χ̂1z; z0, χ1z) = lim
β→∞

1
β

log
∫
e−

βQ̂1z
2 z2+β(m̂1zz0+

√
χ̂1zξ1z)z−βg(y,z)dz. (13.17)

the optimization problem in Corollary 6. Indeed, it is composed of functions whose convexity or con-
cavity are staightforward to establish : linear terms, inverses, logarithms, squares and expectation of
Moreau envelopes. The convexity of the latter is well documented in [281]. First, note that the pa-
rameters χx, χz, χ̂1x, χ̂2x, χ̂1z, χ̂2z, qx, qz, Q̂1x, Q̂2x, Q̂1z, Q̂2z are positive so we may restrict their fea-
sibility set to R+, while mx,mz, m̂1x, m̂1z, m̂2x, m̂2z can take any value in R. Then, q∗x = 1

N ‖x̂‖
2 and

m∗x = 1
N x>0 x̂. The Cauchy-Schwarz inequality thus gives q∗x > (m∗x)2

ρx
. Similarly with ẑ, q∗z > (m∗z)2

ρz
.

We may thus restrict the feasibility sets of qx, qz,mx,mz such that they verify these inequalities.
In these regions, the function gs is convex in χx, χz, linear in qx, qz and concave in mx,mz. The
terms involving qx, qz,mx,mz, χx, χz in gG and gF are all linear. Moving to gg, the cost function
defining it is convex in Q̂2x, Q̂2z (negative logarithm and inverse function on R+), linear in χ̂2x, χ̂2z
and convex in m̂2x, m̂2z. Regarding gF , all terms are linear except for the replica potentials. Using
Moreau’s identity, we may write φx(m̂1x, Q̂1x, χ̂1x;x0, ξ1x) =MQ̂1xf∗

(
m̂1xx0 +

√
χ̂1xξ1x

)
where f∗

is the conjugate of f . Using the properties summarized in [281], the cost function defining gF is
convex in m̂1x, m̂1z, Q̂1x, Q̂1z. The convexity with respect to χ1x, χ1z is harder to characterize due
to the composition of the Moreau envelope with the square root, and should be studied locally for
more information. The extremization may then be rewritten as a maximization over the variables
in which the cost function is concave and minimization over the variables in which the cost function
is convex. Note that this does not give information on the uniqueness of the solution, which would
require joint strict convexity and strict concavity.

As immediate corollaries to Theorem 22, we can determine the asymptotic errors of the GLM
and the optimal value of the loss function. To characterize the asymptotic reconstruction errors and
angles, we can define the norms of the estimators and their overlaps with the ground-truth vectors
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as the limits

m∗x ≡ lim
N→∞

x̂Tx0
N

m∗z ≡ lim
M→∞

ẑT z0
M

(13.20)

q∗x ≡ lim
N→∞

‖x̂‖22
N

q∗z ≡ lim
N→∞

‖ẑ‖22
M

. (13.21)

We then have :

Corollary 7.
Under the set of Assumptions 2, the squared norms m∗x,m∗z of estimator x̂ defined by (13.2) and
ẑ = Fx̂, and their overlaps q∗x, q∗z with ground-truth vectors are almost surely given by:

m∗x = E
[
x0η f

Q̂∗1x

(Hx)
]
, q∗x = E

[
η2

f

Q̂∗1x

(Hx)
]

(13.22)

m∗z = E
[
z0η g(.,y)

Q̂∗1z

(Hz)
]
, q∗z = E

[
η2
g(.,y)
Q̂∗1z

(Hz)
]

(13.23)

with Hx and Hz defined as in Theorem 22.

With the knowledge of the asymptotic overlap m∗x, and squared norms q∗x, ρx, most quantities
of interest can be determined. For instance, the quadratic reconstruction error is obtained from its
definition as E = ρx+q∗x−2m∗x, while the angle between the ground-truth vector and the estimator is
θ = arccos(m∗x/(

√
ρxq∗x)). One can also evaluate the generalization error for new random Gaussian

samples, as advocated in [94], or compute similar errors for the denoising of z0.

13.4 Numerical results

Obtaining a stable implementation of the fixed point equations can be challenging. We provide
simulation details in appendix 14.6 along with a link to the script we used to produce the figures.
Theoretical predictions (full lines) are compared with numerical experiments (points) conducted
using standard convex optimization solvers from [229]. The comparison with finite size (N ≡ a few
hundreds) numerical experiments shows that, despite being asymptotic in nature, the predictions
are accurate even at moderate system sizes. All experimental points were done with N = 200 and
averaged one hundred times.

13.4.1 Validity of the replica prediction

We start with a simple verification of the replica prediction in Figure13.1, on a classification problem
where data is generated as y = sign(Fx0). We consider two types of singular value distributions
for F and three types of losses: a square loss, a linear support vector classification (SVC) loss and a
logistic loss. Technical details and expressions are given in appendix 14.6. We use ridge regulariza-
tion with penalty f = λ2

2 ‖·‖
2
2. We plot the reconstruction angle θ as a function of the aspect ratio of

the problem α in Figure 13.1. A first plot is done with a Marchenko-Pastur eigenvalue distribution
for FTF corresponding to F being i.i.d Gaussian. We then move out of the Gaussian setting and
change the eigenvalue distribution for (14.76), which has a qualitatively similar behaviour: it has
bounded support, and includes vanishing singular values at a given value α = 1 of the aspect ratio.
We recover a result close to the i.i.d. Gaussian one, including the error peak for the square loss
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Figure 13.1: Illustration of Theorem 22 in a binary classification problem with data generated as
y = φ(Fx0) with the data matrix F being Left : a Gaussian i.i.d. matrix and Right : a random
orthogonal invariant matrix with a squared uniform density of singular values. We plot the angle
between the estimator and the ground-truth vector θ = arccos(m∗x/(

√
ρxq∗x)) as a function of the

aspect ratio α = M/N with three different losses: ridge regression, a Support Vector Machine with
linear kernel and a logistic regression. f is a `2 penalty with parameter λ2 = 10−3. The theoretical
prediction (full line) is compared with numerical experiments (points) conducted using standard
convex optimization solvers from [229].

when α = 1. In both cases, the SVC and the logistic regression perform similarly. Note that error
peaks can also be obtained for the max-margin solution as shown in [106], using a more elaborate
teacher.

13.4.2 Sparse logistic regression

We now use the replica prediction to study sparse logistic regression with i.i.d Gaussian and row-
orthogonal data, the latter being ubiquitous in signal processing. Row-orthogonal data gives rise
to a discrete eigenvalue distribution for FTF of zeroes and ones:

λFTF ∼ max(0, 1− α)δ(0) + min(1, α)δ(1) (13.24)

and is often found to outperform Gaussian sensing matrices for recovery tasks, see e.g. [140] or
[109]. In what follows, we define the sparsity ρ of the ground truth vector as the fraction of non-
zero components which are sampled from a standard normal distribution. Labels are generated
with y = sign(Fx0) as for Figure 13.1.

Effect of sparsity

In Figure 13.2, we start by plotting the reconstruction angle against the aspect ratio of the measure-
ment matrix for different values of the sparsity of the teacher vector, for `2 regularization f = λ2

2 ‖·‖
2
2

and `1 regularization f = λ1‖·‖1, and a fixed value of regularization parameters λ1, λ2. In the case
of `2-regularization, we observe that the reconstruction performance remains the same whatever the
sparsity of the original teacher vector as all curves collapse together (top and bottom left). The
ridge regularization is thus unable to differentiate sparse and non-sparse problems. For `1, better
performance is observed when the sparsity increases. Comparing the values for `2 and `1 also shows
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Figure 13.2: Effect of the sparsity of the planted vector. We plot the angle between the estimator and
the ground truth in a binary classification problem with y = sign(Fx0) as a function of α = M/N ,
for different values of sparsity ρ. We use logistic regression. Figures in the top are for F Gaussian
i.i.d., while figures in the bottom are for F row-orthogonal. Left : we use a `2 penalty with
parameter λ2 = 0.1, and notice that the angle is the same for any sparsity. Right : we use a `1
penalty with parameter λ1 = 0.1. The theoretical prediction (full line) is compared with numerical
experiments (points) conducted using standard convex optimization solvers from [229].

that, for a non-sparse signal, `2 and `1 reconstruction perform similarly. The largest difference is
observed at ρ = 0.1, where the `1 penalized logistic regression significantly outperforms the ridge
one. We thus keep this value of the sparsity parameter for the next figures.
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Figure 13.3: Tuning the regularization parameter. We still plot the angle between the estimator and
the ground truth in a binary classification problem with y = sign(Fx0) as a function of α = M/N ,
for a fixed sparsity of planted vector ρ = 0.1, for different values of regularization parameters.
Figures in the top are for F Gaussian i.i.d., while figures in the bottom are for F row-orthogonal.
Left : `2 penalty with different values of regularization parameter λ2. Right : `1 penalty with
different values of regularization parameter λ1.

Varying the regularization parameter at constant sparsity

In Figure 13.3, keeping the sparsity of the teacher constant at ρ = 0.1, we look to tune the regu-
larization strength. An interesting effect appears in the ridge-regularized case with row-orthogonal
measurements : the curves collapse to a single one when the aspect ratio goes below α = 1. We
find that the optimal regularization strength for the `2 penalty lies around λ2 = 0.01, and for the
`1-penalty around λ1 = 0.1, for both types of matrices.
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Figure 13.4: Comparing reconstruction performance for Gaussian i.i.d. and row-orthogonal matri-
ces. In this figure, we compare the reconstruction angles between the estimator and the ground-truth
for binary classification obtained with `1 and `2 penalties. We use logistic regression. The sparsity
of the sparse vector is fixed to ρ = 0.1. For both Gaussian i.i.d. and row-orthogonal data matrices,
we see that `1 penalty with λ1 = 0.1 performs better than the `2 penalty with λ2 = 0.01. For those
two penalties, row-orthogonal matrices allow to obtain smaller reconstruction angles than Gaussian
i.i.d. matrices.

Comparing case

In Figure 13.4, we directly compare the reconstruction performance of logistic regression on a sparse
problem with previously tuned regularization parameter of `2 and `1 penalties, with the two types
of measurement matrices. We naturally observe that the `1 penalty leads to better reconstruction
of the sparse vector. Row-orthogonal matrices outperform the i.i.d. Gaussian ones with both regu-
larization, although the gap is less significant with the `1 penalty.

Discussion

Several non-trivial effects are observed when studying the interplay between eigenvalue distribution
of the design matrix, loss function, regularization and structure of the underlying teacher vector.
Looking for analytical simplifications of the fixed point equations from Theorem 22 in specific cases
would be interesting to understand how the key quantities interact and lead, for example, to the
collapsing observed in `2-penalized problems. This further motivates the use of these equations
to determine reconstruction limits of generalized-linear modeling. Some examples include limits
of sparse recovery for different types of measurement matrices, or finding if optimal losses can be
designed to achieve performances close to Bayes optimal errors.

13.5 Sketch of proof of Theorem 22

Our proof follows an approach pioneered in [29] where the LASSO risk for i.i.d. Gaussian matrices is
determined. The idea is to build a sequence of iterates that provably converges towards the estimator
x̂, while also knowing the statistical properties of those iterates through a set of equations. We
must therefore concern ourselves with three fundamental aspects:
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(i) construct a sequence of iterates with a rigorous statistical characterization that matches their
equations of Theorem 22 at the fixed point,

(ii) verify that the sequence’s fixed point corresponds to the estimator x̂,
(iii) check that this sequence is provably convergent, otherwise the iterates might drift off on a

diverging trajectory, and the fixed point would never be reached. We thus make sure the
statistical characterization indeed applies to the point of interest x̂.

In short, we have a sequence of estimates (xk)k∈N taking values in RN , and their exact asymptotic
(in N) distribution for any k > 0. To show that these statistics extend to x̂, we need to show that
limk→∞ xk = x̂. To do so, we need the sequence to converge (i.e. point iii), and its fixed point to
be x̂ (point ii). As indicated in the introduction, we will use an instance of the 2-layer MLVAMP
algorithm to construct this sequence. Note that, for the sake of brevity, we do not verify that
limiting points of 2-layer MLVAMP trajectories limk→∞ xk converge empirically to the Gaussian
distribution prescribed by the state evolution equations. This point is treated explicitly in [93].

The following lemma establishes the link between the state evolution equations and our main
theorem.

Lemma 52. (Fixed point of 2-layer MLVAMP state evolution equations) The state evolution equa-
tions of 2-layer MLVAMP from [97], reminded in appendix 14.5, match the equations of Theorem
22 at their fixed point.
Proof. See appendix 14.5.

This confirms that 2-layer MLVAMP is a good choice to design the sequences that we seek. We
know that the iterates of 2-layer MLVAMP can be characterized by state evolution equations which
correspond, at their fixed point, to the equations of Theorem 22 by virtue of Lemma 52. The
necessary assumptions for the state evolution equations to hold are verified in appendix 14.5.2. We
must now show that the estimator of interest defined by (13.1) and (13.2) can be reached using
2-layer MLVAMP. We thus continue with point (ii).

Lemma 53. (Fixed point of 2-layer MLVAMP) The fixed point of algorithm (1) matches the opti-
mality condition of the unconstrained convex problem Eq.(13.2)
Proof. See appendix 14.4.

This part is a consequence of the structure of the algorithm and properties of proximal operators.
We now move to point (iii) and seek to characterize the convergence properties of 2-layer MLVAMP.
Instead of directly tackling the convergence of 2-layer MLVAMP on any convex GLM, we take a
detour and focus on a constrained problem, where functions f and g are augmented by a `2 norm
with ridge parameters λ2, λ̃2. The called on intuition is that the algorithm will be more likely to
converge in a strongly convex problem. We start by showing the convergence of MLVAMP in the
constrained strongly convex setting, for values of λ2 larger than a certain threshold, and any strictly
positive λ̃2.
Lemma 54. (Linear convergence of 2-layer MLVAMP for strongly convex problems) Assume f and
g are twice differentiable. Define the constrained problem

x̂(λ2, λ̃2) = arg min
x∈RN

{
g̃(Fx,y) + f̃(x)

}
(13.25)
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where f̃(x) = f(x) + λ2
2 ‖x‖

2
2 and g̃(x,y) = g(x,y) + λ̃2

2 ‖x‖
2
2. Consider 2-layer MLVAMP applied

to find (13.25), from which we extract at each iteration the vector h(t) =
[
h(t)

2z ,h
(t)
1x

]T
. Let h∗ be its

value at the fixed point of algorithm (1). We then have that, for any λ̃2 > 0, there exists a value λ∗2
such that, for any λ2 > λ∗2, there exists a strictly positive constant c verifying 0 < c < λ2, such that
for any t ∈ N: ∥∥∥h(t) − h∗

∥∥∥2

2
6
(
c

λ2

)t ∥∥∥h(0) − h∗
∥∥∥2

2
, (13.26)

The convergence of h(t) implies that estimators x̂(t)
1 and x̂(t)

2 returned by 2-layer MLVAMP also
converge to the desired x̂(λ2, λ̃2), i.e., under the conditions listed above

lim
t→∞

∥∥∥x̂(t) − x̂(λ2, λ̃2)
∥∥∥2

2
= 0. (13.27)

Proof. See appendix 14.7.

For a loss function g̃ with any non-zero strong convexity constant, and a regularization f̃ with a
sufficiently strong convexity, 2-layer MLVAMP converges linearly towards its unique fixed point.
Note that this convergence result is independent from the dimension. We elaborate on this lemma
in the next section. An immediate consequence is the following lemma, which claims that Theorem
22 holds when 2-layer MLVAMP converges. Since this result does not rely on an analytic continu-
ation, the assumptions on the concentration of PL2 observables of x̂, given by the state evolution
property, and approximation of the cost function by analytic functions with fast decaying higher
order derivatives are not required. The result can also be stated for any PL2 observable, with no
restriction on its derivability and decay of higher order derivatives. We summarize the necessary
assumptions in the following list:

Assumption 3.

(a) the functions f and g are proper, closed, convex and separable functions.

(b) the cost function g(F.,y) + f(.) is coercive, i.e. lim‖x‖→∞ g(Fx,y) + f(x) = +∞.

(c) there exists a constant B1 such that 1
N ‖x̂‖

2
2 6 B1 almost surely as N →∞.

(d) for any x ∈ dom(f) and any x′ ∈ ∂f(x), there exists a constant C such that ‖x′‖2 6 C(1 +
‖x‖2). The same holds for g on its domain.

(e) the empirical distributions of the underlying truth x0, eigenvalues of FTF, and noise vector
w0, respectively converge empirically with second order moments, as defined in appendix 14.1,
to independent scalar random variables x0, w0, λ with distributions px0, pλ, pw0. We assume
that the distribution pλ is not all-zero and has compact support.

(f) the design matrix F = UDV> ∈ RM×N is rotationally invariant, as defined in the introduc-
tion, where the elements of the Haar distributed matrices U,V are independent of the elements
of the ground truth vector x0, noise ω0 and elements of D.

(g) the solution to the set of fixed point equations (13.13) exists and is unique for any convex
functions f, g verifying the
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(h) finally assume that M,N →∞ with fixed ratio α = M/N .

Lemma 55. (Asymptotic error for the twice differentiable, sufficiently strongly convex problem)
Consider the strongly convex minimization problem with twice differentiable f and g (13.25). Under

the set of assumptions 3, for any λ̃2 > 0, there exists a λ∗2 such that, for any λ2 > λ∗2, Then, for
any pseudo-Lipschitz function of order 2 φ, the following holds :

lim
N→∞

1
N

N∑
i=1

φ(x0,i, x̂i)
a.s.= E[φ(x0,Prox

f/Q̂
(t)
1x

(Hx))] (13.28)

lim
M→∞

1
M

M∑
i=1

φ(z0,i, ẑi)
a.s.= E[φ(z0,Prox

f/Q̂
(t)
1z

(Hz))] (13.29)

where the scalars Q̂1x, Q̂1z and the random variables Hx, Hz are defined as in Theorem 22.

Proof. Using the result from Lemma 54, we have limt→∞ limN→∞
1
N

∥∥∥x(t) − x̂(λ2, λ̃2)
∥∥∥2

2
= 0. As

proven in [93], the state evolution parameters will converge to those of the fixed point of the state
evolution equations along a converging trajectory of 2-layer MLVAMP. Using the assumption on
the bounded averaged norm of x̂, the state evolution equations to show that the averaged norm of
the iterates are bounded along a converging trajectory, and the state evolution equations to obtain
the exact asymptotics of each iterate along the converging trajectory, an identical argument to that
of the proof of Theorem 1.5 from [28] gives Lemma 55.

We are now left to prove Theorem 22, for any range of parameters (λ2, λ̃2). λ̃2 can already be chosen
arbitrarily small. This means we need to relax the threshold value on λ2 for the validity of the scalar
quantities involved in Theorem 1. To do so, we start by introducing another modification of the
original problem, where the objective functions are assumed to be real analytic. Lemma 55 naturally
holds for real analytic convex functions. Proving Theorem 22 on the real analytic problem then
boils down to performing an analytic continuation on the λ2 parameter, and is detailed in Appendix
14.8. We thus have the following intermediate result :

Lemma 56. (Asymptotics of the real analytic problem) Consider assumption 2 is verified. Suppose
additionally that f and g are real analytic. Then Theorem 1 holds for any λ̃2 > 0 and any λ2 > 0.

Theorem 22 can then be proven from Lemma 56 by showing that the solutions of the original
problem and of its real analytic approximation are arbitrarily close, and by carefully studying the
limits λ̃2 → 0 and λ2 → 0. This is deferred to Appendix 14.8. Note that the proof of the analytic
continuation presented here makes the one from [109], which was incomplete, rigorous.
The remaining technical part is the proof of the convergence Lemma 54. For this purpose, we use a
dynamical system reformulation of 2-layer MLVAMP and a result from control theory, adapted to
machine learning in [166] and more specifically to ADMM in [214].

13.6 Convergence analysis of 2-layer MLVAMP

The key idea of the approach pioneered in [166] is to recast any non-linear dynamical system as
a linear one, where convergence will be naturally characterized by a matrix norm. For a given
non-linearity Õ and iterate v, we define the variable u = Õ(v) and rewrite the initial algorithm
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in terms of this trivial transform. Any property of Õ is then summarized in a constraint matrix
linking v and u. For example, if Õ has Lipschitz constant ω, then for all t:∥∥∥u(t+1) − u(t)

∥∥∥2

2
6 ω2

∥∥∥v(t+1) − v(t)
∥∥∥2

2
, (13.30)

which can be rewritten in matrix form:

UT

[
ω2Idv 0

0 −Idu

]
U > 0 (13.31)

where U =
[
v(t+1) − v(t)

u(t+1) − u(t)

]
(13.32)

where Idv , Idu are the identity matrices with dimensions of v,u, i.e. M or N in our case. Any
co-coercivity property (verified by proximal operators) can be rewritten in matrix form but yields
non block diagonal constraint matrices. We will thus directly use the Lipschitz constants for our
proof, as they lead to simpler derivations and suffice to prove the required result. The main theorem
from [166], adapted to ADMM in [214], then establishes a sufficient condition for convergence with
a linear matrix inequality, involving the matrices defining the linear recast of the algorithm and the
constraints. Let us now detail how this approach can be used on 2-layer MLVAMP.

13.6.1 2-layer MLVAMP as a dynamical system : sketch of proof of Lemma 3

We start by rewriting 2-layer MLVAMP in a more compact form:

Initialize h(0)
1x ,h

(0)
2z

h(t+1)
1x = W(t)

1 Õ
(t)
1 h(t)

1x + W(t)
2 Õ

(t)
2 (W(t)

3 h(t)
2z + W(t)

4 Õ
(t)
1 (h(t)

1x)) (13.33)

h(t+1)
2z = Õ(t)

2 (W(t)
3 h(t)

2z + W(t)
4 Õ

(t)
1 (h(t)

1x)) (13.34)

where

W1
(t) = Q̂

(t)
2x

Q̂
(t+1)
1x

(
1

χ
(t+1)
2x

(Q̂(t+1)
2z FTF + Q̂

(t)
2xId)−1 − Id

)
(13.35)

W2
(t) = Q̂

(t+1)
2z

χ
(t+1)
2x Q̂

(t+1)
1x

(Q̂(t+1)
2z FTF + Q̂

(t)
2xId)−1FT (13.36)

W3
(t) = Q̂

(t)
2z

Q̂
(t)
1z

(
1
χ

(t)
2z

F(Q̂(t)
2zFTF + Q̂

(t)
2xId)−1FT − Id

)
(13.37)

W4
(t) = Q̂

(t)
2x

Q̂
(t)
1zχ

(t)
2z

F(Q̂(t)
2zFTF + Q̂

(t)
2xId)−1 (13.38)

Õ(t)
1 = Q̂

(t)
1x

Q̂
(t)
2x

(
1

χ
(t)
1xQ̂

(t)
1x

Proxf/Q̂(t)
1x

(·)− Id
)

(13.39)

Õ(t)
2 = Q̂

(t)
1z

Q̂
(t+1)
2z

(
1

χ
(t)
1z Q̂

(t)
1z

Proxg(.,y)/Q̂(t)
1z

(·)− Id
)
. (13.40)



CHAPTER 13. HOW TO PROVE KABASHIMA’S REPLICA FORMULA 279

For the linear recast, we then define the variables:

u(t)
1 = Õ(t)

1 (h(t)
1x), v(t) = W(t)

3 h(t)
2z + W(t)

4 u(t)
1 , (13.41)

u(t)
2 = Õ(t)

2 (v(t)), (13.42)

s.t. h(t+1)
2z = u(t)

2 ,h(t+1)
1x = W(t)

1 u(t)
1 + W(t)

2 u(t)
2 . (13.43)

where u1,h1x ∈ RN ; and v,u2,h2z ∈ RM . We then define as new variables the vectors

h(t) =
[
h(t)

2z
h(t)

1x

]
, u(t) =

[
u(t)

2
u(t)

1

]
, (13.44)

w(t)
1 =

[
h(t)

1x
u(t)

1

]
, w(t)

2 =
[
v(t)

u(t)
2

]
. (13.45)

This leads to the following linear dynamical system recast of (13.33)-(13.34):

h(t+1) = A(t)h(t) + B(t)u(t) (13.46)

w(t)
1 = C(t)

1 h(t) + D(t)
1 u(t) (13.47)

w(t)
2 = C(t)

2 h(t) + D(t)
2 u(t) (13.48)

where

A(t) = 0(M+N)×(M+N) B(t) =
[

IM 0M×N
W(t)

2 W(t)
1

]
(13.49)

C(t)
1 =

[
0N×M IN
0N×M 0N×N

]
D(t)

1 =
[
0N×M 0N×N
0N×M IN

]
(13.50)

C(t)
2 =

[
W(t)

3 0M×N
0M×M 0M×N

]
D(t)

2 =
[
0M×M W(t)

4
IM 0M×N

]
. (13.51)

O denotes a matrix with only zeros. The next step is to impose the properties of the non-linearities
Õ(t)

1 , Õ(t)
2 through constraint matrices. The Lipschitz constants ω(t)

1 , ω
(t)
2 of Õ(t)

1 , Õ(t)
2 can be deter-

mined using properties of proximal operators [114] and are directly linked to the strong convexity
and smoothness of the cost function and regularization. The relevant properties of proximal oper-
ators are reminded in appendix 14.2, while the subsequent derivation of the Lipschitz constants is
detailed in appendix 14.7 and yields:

ω
(t)
1 = Q̂

(t)
1x

Q̂
(t)
2x

√√√√1 + (Q̂(t)
2x)2 − (Q̂(t)

1x)2

(Q̂(t)
1x + λ2)2

(13.52)

ω
(t)
2 = Q̂

(t)
1z

Q̂
(t)
2z

√√√√1 + (Q̂(t)
2z )2 − (Q̂(t)

1z )2

(Q̂(t)
1z + λ̃2)2

. (13.53)

We thus define the constraints matrices

M(t)
1 =

[
(ω(t)

1 )2 0
0 −1

]
⊗ IN M(t)

2 =
[
(ω(t)

2 )2 0
0 −1

]
⊗ IM (13.54)

where ⊗ denotes the Kronecker product. We then use a time dependent form of Theorem 4 from
[166] in the appropriate form for 2-layer MLVAMP, as was done in [214] for ADMM.
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Proposition 9. (Time dependent version of Theorem 4 from [166]) Consider, at each time step
t ∈ N, the following linear matrix inequality with τ(t) ∈ [0, 1]:

0 �
[
(A(t))TPA(t) − (τ(t))2P (A(t))TPB(t)

(B(t))TPA(t) (B(t))TPB(t)

]
(13.55)

+
[
C(t)

1 D(t)
1

C(t)
2 D(t)

2

]T [
β

(t)
1 M(t)

1 02N×2M

02M×2N β
(t)
2 M(t)

2

] [
C(t)

1 D(t)
1

C(t)
2 D(t)

2

]

If, at each time step, (13.55) is feasible for some P � 0 and β(t)
1 , β

(t)
2 > 0, then for any initialization

h(0), h(t) converges to h∗, the fixed point of (13.46)-(13.48):

∀t,
∥∥∥h(t) − h∗

∥∥∥ 6 √
κ(P)(τ∗)t

∥∥∥h(0) − h∗
∥∥∥ (13.56)

where κ(P) is the condition number of P and we defined τ∗ = supt τ(t).

Proof. see appendix 14.7.1

We show in appendix 14.7 how the additional ridge penalties from the constrained problem (13.25)
parametrized by λ2, λ̃2 can be used to make (13.55) feasible and prove Lemma 54. The core idea is
to leverage on the Lipschitz constants (13.52), the operator norms of the matrices defined in (13.35)
and the following upper and lower bounds on the Q̂ parameters defined by the fixed point of state
evolution equations:

λmin(Hf ) 6 Q̂
(t)
2x 6 λmax(Hf ) (13.57)

λmin(Hg) 6 Q̂
(t+1)
2z 6 λmax(Hg) (13.58)

Q̂
(t)
2z λmin(FTF) 6 Q̂

(t+1)
1x 6 Q̂

(t)
2z λmax(FTF) (13.59)

Q̂
(t)
2x

λmax(FFT ) 6 Q̂
(t)
1z 6

Q̂
(t)
2x

λmin(FFT ) , (13.60)

whereHf ,Hg are the Hessian of the loss and regularization functions taken at the fixed point. These
bounds are obtained from the definitions of χx, χz in the state evolution equations (or equivalently in
Theorem 22), and the fact that the derivative of a proximal operator reads, for a twice differentiable
function:

Dηγf (x) = (Id + γHf (ηγf (x)))−1. (13.61)

Detail of this derivation can also be found in appendices 14.2 and 14.7. For the constrained problem
(13.25), the maximum and minimum eigenvalues of the Hessians are directly augmented by λ̃2, λ2,
which allows us to control the scaling of the Q̂ parameters. The rest of the convergence proof is then
based on successive application of Schur’s lemma [127] on the linear matrix inequality (13.55); and
translating the resulting conditions on inequalities which can be verified by choosing the appropriate
λ̃2, λ2, β

(t)
1 , β

(t)
2 . Convergence of gradient-based descent methods for sufficiently strongly-convex

objectives is a coherent result from an optimization point of view. This is corroborated by the
symbolic convergence rates derived for ADMM in [214], where a sufficiently strongly convex objective
is also considered.
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13.6.2 Numerical experiments for Lemma 54

Here we provide numerical evidence for the linear convergence condition proved in Lemma 3. We
consider a logistic regression penalized with the `1 norm (λ1 = 0.1) with an ill-conditioned design
matrix, with i.i.d. standard normal elements. This corresponds to the setting of Figure 13.3. Since
the logistic loss is strongly convex on any compact space, we do not need to add λ̃2. We follow the
convergence of 2-layer MLVAMP for this problem for increasing values of an additional ridge penalty
λ2 = 0, 0.01, 0.05, 0.1 and plot the average distance between successive iterates 1

N

∥∥∥h(t+1)
1x − h(t+1)

1x

∥∥∥2

2
and the evolution of the reconstruction angle θ as a function of the number of iterations. We
perform two experiments with aspect ratios α = 1 and α = 0.2. For α = 1, 2-layer MLVAMP con-
verges without any additional ridge penalty, and convergence is accelerated by larger values of λ2.
As a sanity check, note that the reconstruction angle of the estimator returned by the algorithm
for λ2 = 0 (grey line on the lower left plot) converges to the value predicted at Figure 13.3 for
α = 1, λ1 = 0.1 and a Gaussian matrix. For α = 0.2n the design matrix is ill-conditioned and we
see that 2-layer MLVAMP diverges. Adding the ridge penalty leads to converging trajectories for a
sufficiently large value of λ2, as shown on the upper right block. Larger values of λ2 again lead to
faster convergence.
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Figure 13.5: Convergence of 2-layer MLVAMP on a logistic regression with `1 penalty with λ1 = 0.1,
a Gaussian design matrix and two values of the aspect ratio α = 1 (left) and α = 0.2 (right). For
α = 1, the algorithm converges regardless of the additional ridge penalty and we recover the
performance predicted by Theorem 22 for the plain `1 regularization. For α = 0.2, the plain `1
leads to an unstable iteration and a sufficiently large additional ridge indeed leads to convergence.
In both cases, the larger the additional ridge, the faster the algorithm converges.



Chapter 14

Proofs for the Kabashima formula

14.1 Convergence of vector sequences

This section is a brief summary of the framework originally introduced in [28] and used in [97, 242].
We review the key definitions and verify that they apply in our setting. We remind the full set of
state evolution equations from [97] at (14.57), when applied to learning a GLM, in appendix 14.5,
along with the required assumptions for them to hold in appendix 14.5.2.
The main building blocks are the notions of vector sequence and pseudo-Lipschitz function, which
allow to define the empirical convergence with p-th order moment. Consider a vector of the form

x(N) = (x1(N), ...,xN (N)) (14.1)

where each sub-vector xn(N) ∈ Rr for any given r ∈ N∗. For r=1, which we use in Theorem 22,
x(N) is denoted a vector sequence.
Given p > 1, a function f : Rr → Rs is said to be pseudo-Lipschitz continuous of order p if there
exists a constant C > 0 such that for all x1,x2 ∈ Rs:

‖f(x1)− f(x2)‖ 6 C‖x1 − x2‖
[
1 + ‖x1‖p−1 + ‖x2‖p−1

]
(14.2)

Then, a given vector sequence x(N) converges empirically with p-th order moment if there exists a
random variable X ∈ Rr such that:

• E‖X‖pp <∞; and

• for any scalar-valued pseudo-Lipschitz continuous f : Rr → R of order p,

lim
N→∞

1
N

N∑
n=1

f(xn(N)) = E[f(X)] (14.3)

Note that defining an empirically converging singular value distribution implicitly defines a sequence
of matrices F(N) using the definition of rotational invariance from the introduction. This naturally
brings us back to the original definitions from [28]. An important point is that the almost sure con-
vergence of the second condition holds for random vector sequences, such as the ones we consider
in the introduction. Note that the noise vector ω0 must also satisfy these conditions, and naturally
does when it is an i.i.d. Gaussian one. We also remind the definition of uniform Lipschitz continuity.

283
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For a given mapping φ(x, A) defined on x ∈ X and A ∈ R, we say it is uniformly Lipschitz
continuous in x at A = Ā if there exists constants L1 and L2 > 0 and an open neighborhood U of
Ā such that:

‖φ(x1, A)− φ(x2, A)‖ 6 L1‖x1 − x2‖ (14.4)

for all x1,x2 ∈ X and A ∈ U ; and

‖φ(x, A1)− φ(x, A2)‖ 6 L2(1 + ‖x‖)|A1 −A2| (14.5)

for all x ∈ X and A1, A2 ∈ U .

We discuss the required assumptions for the state evolution equations to hold in detail, and why
they are verified in our setting, in appendix 14.5.2.

14.2 Convex analysis and properties of proximal operators

We start this section with a few useful definitions from convex analysis, which can all be found
in textbooks such as [25]. We then remind important properties of proximal operators, which we
use in appendix 14.7 to derive upper bounds on the Lipschitz constants of the non-linear operators
Õ1, Õ2. In what follows, we denote X the Hilbert space with scalar inner product serving as input
and output space, here RN or RM . For simplicity, we will write all operators as going from X to X .

Definition 16. (Strong convexity) A proper closed function is σ-strongly convex with σ > 0 if
f − σ

2 ‖.‖
2 is convex. If f is differentiable, the definition is equivalent to

f(x) > f(y) + 〈∇f(y), x− y〉+ σ

2 ‖x− y‖
2 (14.6)

for all x, y ∈ X .

Definition 17. (Smoothness for convex functions) A proper closed function f is β-smooth with
β > 0 if β

2 ‖.‖
2 − f is convex. If f is differentiable, the definition is equivalent to

f(x) 6 f(y) + 〈∇f(y), x− y〉+ β

2 ‖x− y‖
2 (14.7)

for all x, y ∈ X .

An immediate consequence of those definitions is the following second order condition: for twice
differentiable functions, f is σ-strongly convex and β-smooth if and only if:

σId � Hf � βId. (14.8)

Definition 18. (Co-coercivity) Let T : X → X and β ∈ R∗+. Then T is β co-coercive if βT is
firmly-nonexpansive, i.e.

〈x− y, T (x)− T (y)〉 > β‖T (x)− T (y)‖22 (14.9)

for all x,y ∈ X .

Proximal operators are 1 co-coercive or equivalently firmly-nonexpansive.
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Corollary 8. (Remark 4.24 [25]) A mapping T : X → X is β-cocoercive if and only if βT is
half-averaged. This means that T can be expressed as:

T = 1
2β (Id + S) (14.10)

where S is a nonexpansive operator.

Proposition 10. (Resolvent of the sub-differential [25]) The proximal mapping of a convex function
f is the resolvent of the sub-differential ∂f of f :

Proxγf = (Id + γ∂f)−1. (14.11)

The following proposition is due to [114], and is useful to determine upper bounds on the
Lipschitz constant of update functions involving proximal operators.

Proposition 11. (Proposition 2 from [114]) Assume that f is σ-strongly convex and β-smooth and
that γ ∈]0,∞[. Then Proxγf − 1

1+γβ Id is 1
1

1+γβ−
1

1+γσ
-cocoercive if β > σ and 0-Lipschitz if β = σ.

If f has no smoothness constant, the same holds by taking β = +∞.

We will use these definitions and properties to derive the Lipschitz constants of Õ1, Õ2 in ap-
pendix 14.7.

Lemma 57. Jacobian of the proximal
Using proposition 10, the proximal operator can be written, for any parameter γ ∈ R+ and x in the
input space X :

Proxγf (x) = (Id + γ∂f)−1 (x). (14.12)

For any convex and differentiable function f , we have:

Proxγf (x) + γ∇f(Proxγf (x)) = x (14.13)

For a twice differentiable f , applying the chain rule then yields:

DProxγf (x) + γHf (Proxγf (x))DProxγf (x) = Id (14.14)

where D is the Jacobian matrix and H the Hessian. Since f is a convex function, its Hessian is
positive semi-definite, and, knowing that γ is strictly positive, the matrix (Id + γHf(Proxγf )) is
invertible. We thus have:

DProxγf (x) = (Id + γHf(Proxγf (x)))−1 (14.15)

Lemma 58. Proximal of ridge regularized functions
Since we consider only separable functions, we can work with scalar version of the proximal oper-

ators. The scalar proximal of a given function with an added ridge regularization can be written:

Prox
γ(f+λ2

2 ‖.‖
2
2)(x) = (Id + γ(∂f + λ2))−1(x) (14.16)

= ((1 + γλ2)Id+ γf ′)−1(x) (14.17)

where the second equality is true only for differentiable f . If f is real analytic, we can apply the
analytic inverse function theorem [148] and verify analyticity in λ2 of the proximal.
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Finally, we remind a result from [25] describing the limiting behavior of regularized estimators
for vanishing regularization.

Proposition 12. (Theorem 26.20 from [25]) Let f and h be proper, lower semi-continuous, convex
functions defined on X . Suppose that arg min f ∩ dom(h) 6= ∅ and that h is coercive and strictly
convex. Then h admits a unique minimizer x0 over arg min f and , for every ε ∈]0, 1[, the regularized
problem

arg min
x∈X

f(x) + εh(x) (14.18)

admits a unique solution xε. If we assume further that h is uniformly convex on any closed ball of
the input space, then limε→0 xε = x0.

14.3 From replica potentials to Moreau envelopes

Here we show how the potentials defined for the replica free energy of corollary 6 can be mapped
to Moreau envelopes in the zero temperature limit, i.e. β →∞ where β is the inverse temperature.
We consider the scalar case since the replica expressions are scalar. All functions are separable here,
so any needed generalization to the multidimensional case is immediate. We start by reminding the
definition of the Moreau envelope [25, 224] Mγf of a proper, closed and convex function f for a
given γ ∈ R∗+ and any z ∈ R:

Mγf (z) = inf
x∈R

{
f(x) + (1/2γ)‖x− z‖22

}
(14.19)

The Moreau envelope can be interpreted as a smoothed version of a given objective function with the
same minimizer. For `1 minimization for example, it allows to work with a differentiable objective.
By definition of the proximal operator we have the following identity:

Proxγf (z) = arg min
x∈R

{
f(x) + (1/2γ)‖x− z‖22

}
(14.20)

Mγf (z) = f(Proxγf (z)) + 1
2‖Proxγf (z)− z‖22 (14.21)

We can now match the replica potentials with the Moreau envelope. We start from the definition
of said potentials, to which we apply Laplace’s approximation:

φx(m̂1x, Q̂1x, χ̂1x;x0, ξ1x) = lim
β→∞

...

1
β

log
∫
e−

βQ̂1x
2 x2+β(m̂1xx0+

√
χ̂1xξ1x)x−βf(x)dx (14.22)

= −Q̂1x
2 (x∗)2 + (m̂1xx0 +

√
χ̂1xξ1x)x∗ − f(x∗) (14.23)

where

x∗ = arg min
x

{
−Q̂1x

2 x2 + ...

(m̂1xx0 +
√
χ̂1xξ1x)x− f(x)

}
(14.24)
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This is an unconstraint convex optimization problem, thus its optimality condition is enough to
characterize its set of minimizers:

− Q̂1xx
∗ + (m̂1xx0 +

√
χ̂1xξ1x)− ∂f(x∗) = 0 (14.25)

⇐⇒ x∗ = (Id+ 1
Q̂1x

∂f)−1
(
m̂1xx0 +

√
χ̂1xξ1x

Q̂1x

)
(14.26)

⇐⇒ x∗ = Prox f

Q̂1x

(
m̂1xx0 +

√
χ̂1xξ1x

Q̂1x

)
(14.27)

Replacing this in the replica potential and completing the square, we get:

φx(m̂1x, Q̂1x, χ̂1x;x0, ξ1x) = −f(Proxγf (X))...

− Q̂1x
2 ‖X − Proxγf (X)‖22 + X2

2 Q̂1x (14.28)

= Q̂1x
X2

2 −M 1
Q̂1x

f (X) (14.29)

where we used the shorthand X = m̂1xx0+
√
χ̂1xξ1x

Q̂1x
.

14.4 Fixed point of multilayer vector approximate message passing

Here we show that the fixed point of 2-layer MLVAMP coincides with the optimality condition of
the convex problem 13.2, proving Lemma 53. Writing the fixed point of the scalar parameters of
algorithm (1), we get the following prescriptions on the scalar quantities:

1
χx
≡ 1
χ1x

= 1
χ2x

= Q̂1x + Q̂2x (14.30)

1
χz
≡ 1
χ1z

= 1
χ2z

= Q̂1z + Q̂2z (14.31)

Q̂1xχ1x + Q̂2xχ2x = 1 (14.32)
Q̂1zχ1z + Q̂2zχ2z = 1 (14.33)

and the following ones on the estimates, as proved in [222] section III:

x̂1 = x̂2 ẑ1 = ẑ2 (14.34)
ẑ1 = Fx̂1 ẑ2 = Fx̂2 (14.35)

We would like the fixed point of MLVAMP to satisfy the following first-order optimality condition

∂f(x̂) + FT∂g(Fx̂) = 0, (14.36)

which characterizes the unique minimizer of the unconstraint convex problem (13.2). Replacing
h1x’s expression inside h2x reads

h2x =
( x̂1
χx
− Q̂1xh1x

)
/Q̂2x (14.37)

=
( x̂1
χx
−
( x̂2
χx
− Q̂2xh2x

))
/Q̂2x (14.38)
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and using (14.31) we get x̂1 = x̂2, and a similar reasoning gives ẑ2 = ẑ1. From (13.8) and (13.9),
we clearly find ẑ2 = Fx̂2. Inverting the proximal operators in (13.5) and (13.7) yields

x̂1 + 1
Q̂1x

∂g(x̂1) = h1x (14.39)

ẑ1 + 1
Q̂1z

∂g(ẑ1) = h1z. (14.40)

Starting from the MLVAMP equation on h1x, we write

h1x =
( x̂2
χx
− Q̂2xh2x

)
/Q̂1x (14.41)

=

(
x̂2
χx
− (Q̂2zFTF + Q̂2xId)x̂2 + Q̂2zFTh2z

)
Q̂1x

(14.42)

= −

(
Q̂2zFTF + Q̂2x

(
1− 1

χxQ̂2x

)
Id
)

x̂2

Q̂2x
(14.43)

+ FT

(
Q̂1z

(
1

χzQ̂1z
− 1

)
ẑ1 − ∂g(ẑ1)

)
(14.44)

which is equal to the left-hand term in (14.39). Using this equality, as well as ẑ1 = Fx̂2 and
relations (14.31) and (14.33) yields

∂f(x̂2) + FT∂g(Fx̂2) = 0. (14.45)

Hence, the fixed point of MLVAMP satisfies the optimality condition (14.36) and is indeed the
desired estimator: x̂1 = x̂2 = x̂.

14.5 State evolution equations

This appendix is intended mainly for completeness, to show that the fixed point equations from
Theorem 22, stemming from the heuristic state evolution written in [277] are indeed made rigorous
by the results presented in [97].

14.5.1 Heuristic state evolution equations

The state evolution equations track the evolution of MLVAMP (1) and provide statistical properties
of its iterates. They are derived in [277] taking the heuristic assumption that h1x,h1z,h2x,h2z
behave as Gaussian estimates, which comes from the physics cavity approach:

Q̂
(t)
1xh(t)

1x − m̂
(t)
1xx0

PL2=
√
χ̂

(t)
1xξ

(t)
1x (14.46a)

VT (Q̂(t)
2xh(t)

2x − m̂
(t)
2xx0) PL2=

√
χ̂

(t)
2xξ

(t)
2x (14.46b)

UT (Q̂(t)
1zh(t)

1z − m̂
(t)
1z z0) PL2=

√
χ̂

(t)
1z ξ

(t)
1z (14.46c)

Q̂
(t)
2zh(t)

2z − m̂
(t)
2z z0

PL2=
√
χ̂

(t)
2z ξ

(t)
2z (14.46d)
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where PL2= denotes PL2 convergence. U and V come from the singular value decomposition
F = UDVT and are Haar-sampled; ξ(t)

1x , ξ
(t)
2x , ξ

(t)
1z , ξ

(t)
2z are normal Gaussian vectors, independent

from x0, z0,VTx0 and UT z0. Parameters Q̂(t)
1x , Q̂

(t)
1z , Q̂(t)

2x , Q̂
(t)
2z are defined through MLVAMP’s iter-

ations (1); while parameters m̂(t)
1x , m̂

(t)
1z , m̂

(t)
2x , m̂

(t)
2z and χ̂

(t)
1x , χ̂

(t)
1z , χ̂

(t)
2x , χ̂

(t)
2z are prescribed through SE

equations. Other useful variables are the overlaps and squared norms of estimators, for k ∈ {1, 2}:

m
(t)
kx = x>0 x̂(t)

k

N
q

(t)
kx = ‖x̂

(t)
k ‖22
N

m
(t)
kz = z>0 ẑ(t)

k

M
q

(t)
kz = ‖ẑ

(t)
k ‖22
M

.
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Starting from assumptions (14.46), and following the derivation of [277] adapted to the iteration
order from (1), the heuristic state evolution equations read:

Initialize Q̂
(0)
1x , Q̂

(0)
2z , m̂

(0)
1x , m̂

(0)
2z , χ̂

(0)
1x , χ̂

(0)
2z > 0.

m
(t)
1x = E

x0ηf/Q̂(t)
1x

m̂(t)
1xx0 +

√
χ̂

(t)
1xξ

(t)
1x

Q̂
(t)
1x

 (14.47a)

χ
(t)
1x = 1

Q̂
(t)
1x

E

η′
f/Q̂

(t)
1x

m̂(t)
1xx0 +

√
χ̂

(t)
1xξ

(t)
1x

Q̂
(t)
1x

 (14.47b)

q
(t)
1x = E

η2
f/Q̂

(t)
1x

m̂(t)
1xx0 +

√
χ̂

(t)
1xξ

(t)
1x

Q̂
(t)
1x

 (14.47c)

Q̂
(t)
2x = 1

χ
(t)
1x
− Q̂(t)

1x (14.47d)

m̂
(t)
2x = m

(t)
1x

ρxχ
(t)
1x
− m̂(t)

1x (14.47e)

χ̂
(t)
2x = q

(t)
1x

(χ(t)
1x)2

− (m(t)
1x)2

ρx(χ(t)
1x)2

− χ̂(t)
1x (14.47f)

m
(t)
2z = ρx

α
E
[
λ(m̂(t)

2x + λm̂
(t)
2z )

Q̂
(t)
2x + λQ̂

(t)
2z

]
(14.47g)

χ
(t)
2z = 1

α
E
[

λ

Q̂
(t)
2x + λQ̂

(t)
2z

]
(14.47h)

q
(t)
2z = 1

α
E
[
λ(χ̂(t)

2x + λχ̂
(t)
2z )

(Q̂(t)
2x + λQ̂

(t)
2z )2

]
(14.47i)

+ ρx
α
E
[
λ(m̂(t)

2x + λm̂
(t)
2z )2

(Q̂(t)
2x + λQ̂

(t)
2z )2

]
(14.47j)

Q̂
(t)
1z = 1

χ
(t)
2z
− Q̂(t)

2z (14.47k)

m̂
(t)
1z = m

(t)
2z

ρzχ
(t)
2z
− m̂(t)

2z (14.47l)
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χ̂
(t)
1z = q

(t)
2z

(χ(t)
2z )2

− (m(t)
2z )2

ρz(χ(t)
2z )2

− χ̂(t)
2z (14.47m)

m
(t)
1z = E

z0ηg(y,.)/Q̂(t)
1z

m̂(t)
1z z0 +

√
χ̂

(t)
1z ξ

(t)
1z

Q̂
(t)
1z

 (14.47n)

χ
(t)
1z = 1

Q̂
(t)
1z

E

η′
g(y,.)/Q̂(t)

1z

m̂(t)
1z z0 +

√
χ̂

(t)
1z ξ

(t)
1z

Q̂
(t)
1z

 (14.47o)

q
(t)
1z = E

η2
g(y,.)/Q̂(t)

1z

m̂(t)
1z z0 +

√
χ̂

(t)
1z ξ

(t)
1z

Q̂
(t)
1z

 (14.47p)

Q̂
(t+1)
2z = 1

χ
(t)
1z
− Q̂(t)

1z (14.47q)

m̂
(t+1)
2z = m

(t)
1z

ρzχ
(t)
1z
− m̂(t)

1z (14.47r)

χ̂
(t+1)
2z = q

(t)
1z

(χ(t)
1z )2

− (m(t)
1z )2

ρz(χ(t)
1z )2

− χ̂(t)
1z (14.47s)

m
(t+1)
2x = ρxE

[
m̂

(t)
2x + λm̂

(t+1)
2z

Q̂
(t)
2x + λQ̂

(t+1)
2z

]
(14.47t)

χ
(t+1)
2x = E

[
1

Q̂
(t)
2x + λQ̂

(t+1)
2z

]
(14.47u)

q
(t+1)
2x = E

[
χ̂

(t)
2x + λχ̂

(t+1)
2z

(Q̂(t)
2x + λQ̂

(t+1)
2z )2

]
(14.47v)

+ ρxE
[

(m̂(t+1)
2x + λm̂

(t+1)
2z )2

(Q̂(t)
2x + λQ̂

(t+1)
2z )2

]
(14.47w)

Q̂
(t+1)
1x = 1

χ
(t+1)
2x

− Q̂(t)
2x (14.47x)

m̂
(t+1)
1x = m

(t+1)
2x

ρxχ
(t+1)
2x

− m̂(t)
2x (14.47y)

χ̂
(t+1)
1x = q

(t+1)
2x

(χ(t+1)
2x )2

− (m(t+1)
2x )2

ρx(χ(t+1)
2x )2

− χ̂(t)
2x . (14.47z)

We are interested in the fixed point of these state evolution equations, where χ(t)
1x = χ

(t)
2x = χx,

q
(t)
1x = q

(t)
2x = qx, m(t)

1x = m
(t)
2x = mx, χ(t)

1z = χ
(t)
2z = χz, q(t)

1z = q
(t)
2z = qz, and m

(t)
1z = m

(t)
2z = mz

are achieved. From there we easily recover eq. (13.13). However, these equations are not rigorous
since the starting assumptions are not proven. Therefore, we will turn to a rigorous formalism to
consolidate those results.
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14.5.2 Necessary assumptions for the rigorous state evolution equations

Here we remind the main assumptions needed for the rigorous state evolution equations to hold, as
they are listed for Theorem 1 of [97], and show they are verified in our setting.

Assumption 4.

• the empirical distributions of the underlying truth x0, eigenvalues of FTF, and noise vector
w0, respectively converge with second order moments, as defined in appendix 14.1, to inde-
pendent scalar random variables x0, w0, λ with distributions px0, pλ, pw0. We assume that the
distribution pλ is not all-zero and has compact support.

• the design matrix F = UDV> ∈ RM×N is rotationally invariant, as defined in the introduc-
tion, where the elements of the Haar distributed matrices U,V are independent of the random
variables x0, w0, λ

• assume that M,N →∞ with fixed ratio α = M/N independent of M,N .

• the activation function φ(.,w0) from Eq.(13.1) is pseudo-Lipschitz of order 2.

• the constants
〈
∂h(t)

1x
g1x(h(t)

1x , Q̂
(t)
1x)
〉
,

〈
∂h(t)

1z
g1z(h(t)

1z , Q̂
(t)
1z )
〉
,

〈
∂h(t)

2x
g2x(h(t)

2x ,h
(t+1)
2z , Q̂

(t)
2x , Q̂

(t+1)
2z )

〉
〈
∂h(t)

2x
g2z(h(t)

2x ,h
(t)
2z , Q̂

(t)
2x , Q̂

(t)
2z )
〉

from algorithm (1) are all in [0, 1].

• the component estimation functions g1x(h(t)
1x , Q̂

(t)
1x), g1z(h(t)

1z , Q̂
(t)
1z ), g2x(h(t)

2x ,
h(t+1)

2z , Q̂
(t)
2x , Q̂

(t+1)
2z ), g2z(h(t)

2x ,h
(t)
2z , Q̂

(t)
2x , Q̂

(t)
2z ) from algorithm (1) are uniformly Lipschitz con-

tinuous, at all time steps t, respectively in h(t)
1x at Q̂(t)

1x , in h(t)
1z at Q̂(t)

1z , h(t)
2x at Q̂(t)

2x and in h(t)
2z

at Q̂(t)
2z .

The first four points are included in the set of assumptions 2 and are therefore verified. We need to
check the last two points, starting with the function g1x(h(t)

1x , Q̂
(t)
1x) = Prox

f/Q̂
(t)
1x

(h(t)
1x). Since proxi-

mal operators are firmly nonexpansive, they are 1-Lipschitz and we thus have, using the separability
of the function f :

〈
∂h(t)

1x
g1x(h(t)

1x , Q̂
(t)
1x)
〉

= 1
N

N∑
i=1

Prox′
fi/Q̂

(t)
1x

(h(t)
1x,i) ∈ [0, 1] (14.48)

where each fi : R→ R is the same function applied to each coordinates. Now consider the restriction
of g1x(h(t)

1x , Q̂
(t)
1x) to its second argument. Its gradient w.r.t. Q̂

(t)
1x at a given point h(t)

1x verifies,
assuming the function f is differentiable:∥∥∥∥∇Q̂(t)

1x
Prox

f/Q̂
(t)
1x

(h(t)
1x)
∥∥∥∥

2
=
∥∥∥∥∥(Id+ 1

Q̂
(t)
1x
Hf (Prox

f/Q̂
(t)
1x

(h(t)
1x)))−1∇f(h(t)

1x)
∥∥∥∥∥

2

6
∥∥∥∇f(h(t)

1x)
∥∥∥

2

6 C(1 +
∥∥∥h(t)

1x

∥∥∥
2
) (14.49)
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where the last line is obtained using the scaling conditions on the subdifferential of f from as-
sumption 2. Then, for any Q̂(t)

1x , Q̂
(t′)
1x ,

∥∥∥∥Prox
f/Q̂

(t)
1x
− Prox

f/Q̂
(t′)
1x

∥∥∥∥
2
6 C(1 +

∥∥∥h(t)
1x

∥∥∥
2
)
∣∣∣Q̂(t)

1x − Q̂
(t′)
1x

∣∣∣ and

g1x(h(t)
1x , Q̂

(t)
1x) is uniformly Lipschitz in h(t)

1x at Q̂(t)
1x , at any time index t. The argument is identical

for g1z(h(t)
1z , Q̂

(t)
1z ) = Prox

f/Q̂
(t)
1z

(h(t)
1z ). The functions

g2x(h(t)
2x ,h

(t+1)
2z , Q̂

(t)
2x , Q̂

(t+1)
2z ), g2z(h(t)

2x ,h
(t)
2z , Q̂

(t)
2x , Q̂

(t)
2z ) have explicit expressions and it is straightfor-

ward to check the last two points using linear algebra and the assumptions on the spectrum of
F>F.

14.5.3 Rigorous state evolution formalism

We now look into the state evolution equations derived for MLVAMP in [256]. Those equations are
proven to be exact in the asymptotic limit, and follow the same algorithm as (1). In particular, they
provide statistical properties of vectors h1x,h2x,h1z,h2z. We can read relations from [97] using the
following dictionary between our notations and theirs, valid at each iteration of the algorithm:

Q̂1x, Q̂2x, Q̂1z, Q̂2z ←→ γ−0 , γ
+
0 , γ

+
1 , γ

−
1 (14.50a)

χ1xQ̂1x, χ2xQ̂2x ←→ α−0 , α
+
0 (14.50b)

χ1zQ̂1z, χ2zQ̂2z ←→ α−1 , α
+
1 (14.50c)

x0, z0, ρx, ρz ←→ Q0
0,Q0

1, τ
0
0 , τ

0
1 (14.50d)

h1x,h2x,h1z,h2z ←→ r−0 , r
+
0 , r

+
1 , r

−
1 . (14.50e)

Placing ourselves in the asymptotic limit, [97] shows the following equalities:

r−0 = Q0
0 + Q−0 (14.51a)

r+
0 = Q0

0 + Q+
0 (14.51b)

r−1 = Q0
1 + Q−1 (14.51c)

r+
1 = Q0

1 + Q+
1 (14.51d)

where Q−0 ∼ N (0, τ−0 )N and Q−1 ∼ N (0, τ−1 )N are i.i.d. Gaussian vectors. Q+
0 , Q+

1 have the
following norms and non-zero correlations with ground-truth vectors Q0

0,Q0
1:

τ+
0 ≡

∥∥∥Q+
0

∥∥∥2

2
N

c+
0 ≡

Q0T
0 Q+

0
N

(14.52)

τ+
1 ≡

∥∥∥Q+
1

∥∥∥2

2
M

c+
1 ≡

Q0T
1 Q+

1
M

. (14.53)

With simple manipulations, we can rewrite (14.51) as:

r−0
d= Q0 + Q−0 (14.54a)

VT r+
0

d=
(

1 + c+
0
τ0

0

)
VTQ0

0 + VT Q̃+
0 (14.54b)

r−1
d= Q0

1 + Q−1 (14.54c)

UT r+
1

d=
(

1 + c+
1
τ0

1

)
UTQ0

1 + UT Q̃+
1 (14.54d)
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where for k ∈ {1, 2} vectors

Q̃+
k = −c

+
k

τ0
k

Q0
k + Q+

k (14.55)

and Q−0 ,Q
−
1 have no correlation with ground-truth vectors Q0

0, Q0
1, UTQ0

0, VTQ0
1. Besides, Lemma

5 from [242] states that VT Q̃+
0 and UT Q̃+

1 have components that converge empirically to Gaussian
variables, respectively N (0, τ+

0 ) and N (0, τ+
1 ). Let us now translate this in our own terms, using

the following relations that complete our dictionary with state evolution parameters:

m̂1x

Q̂1x
←→ 1 m̂2z

Q̂2z
←→ 1 (14.56a)

m̂2x

Q̂2x
←→ 1 + c+

0
τ0

0

m̂1z

Q̂1z
←→ 1 + c+

1
τ0

1
(14.56b)

χ̂1x

Q̂2
1x
←→ τ−0

χ̂2z

Q̂2
2z
←→ τ−1 (14.56c)

χ̂2x

Q̂2
2x
←→ τ+

0 −
(c+

0 )2

τ0
0

χ̂1z

Q̂2
1z
←→ τ+

1 −
(c+

1 )2

τ0
1

. (14.56d)

Simple bookkeeping transforms equations (14.54) into a rigorous statement of starting assump-
tions (14.51) from [277]. Since those assumptions are now rigorously established in the asymptotic
limit, the remaining derivation of state evolution equations (14.47) holds and provides a mathemat-
ically exact statement.

14.5.4 Scalar equivalent model of state evolution

For the sake of completeness, we will provide an overview of the explicit matching between the
state evolution formalism from [97] which was developed in a series of papers, and the replica
formulation from [277] which relies on statistical physics methods. Although not necessary to
our proof, it is interesting to develop an intuition about the correspondence between those two
faces of the same coin. We have seen in the previous subsection that [97] introduces ground-truth
vectors Q0

0,Q0
1, estimates r±0 , r

±
1 which are related to vectors Q±0 ,Q

±
1 . Let us introduce a few more

vectors using matrices from the singular value decomposition F = UDVT . Let sν ∈ RN be the
vector containing all square roots of eigenvalues of FTF with pν its element-wise distribution; and
sµ ∈ RM the vector containing all square roots of eigenvalues of FFT with pµ its element-wise
distribution. Note that those two vectors contain the singular values of F, but one of them also
contains max(M,N)−min(M,N) zero values. pµ and pν are both well-defined since pλ is properly
defined in Assumptions 2. We also define

P0
0 = VTQ0

0 P+
0 = VTQ+

0 P−0 = VTQ−0
P0

1 = UQ0
1 P+

1 = UQ+
1 P−1 = UQ−1 .

By virtue of Lemma 5 from [242], the six previous vectors have elements that converge empirically
to a Gaussian variable. Hence, all defined vectors have an element-wise separable distribution,
and we can write the state evolution as a scalar model on random variables sampled from those
distributions. To do so, we will simply write the variables without the bold font: for instance
Z0

0 ∼ px0 , sν ∼ pν , and Q−0 refers to the random variable distributed according to the element-wise
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distribution of vector Q−0 . The scalar random variable state evolution from [97] now reads:

Initialize γ−(0)
1 , γ

−(0)
0 , τ

−(0)
0 , τ

−(0)
1 , (14.57a)

Q
−(0)
0 ∼ N (0, τ−(0)

0 ), Q−(0)
1 ∼ N (0, τ−(0)

1 ), α−(0)
0 , α

−(0)
1

Initial pass (ground truth only)
sν ∼ pν , sµ ∼ pµ, Q0

0 ∼ px0 (14.57b)
τ0

0 = E[(Q0
0)2] P 0

0 ∼ N (0, τ0
0 ) (14.57c)

Q0
1 = sµP

0
0 τ0

1 = E[(sµP 0
0 )2] = E[(sµ)2]τ0

0 (14.57d)
P 0

1 ∼ N (0, τ0
1 ) (14.57e)

Forward Pass (estimation):

α
+(t)
0 = E

[
η′
f/γ
−(t)
0

(Q0
0 +Q

−(t)
0 )

]
(14.57f)

γ
+(t)
0 = γ

(t)
0

α
+(t)
0
− γ−(t)

0 (14.57g)

Q
+(t)
0 = 1

1− α+(t)
0

{
η
f/γ
−(t)
0

(Q0
0 +Q

−(t)
0 )− ...

Q0
0 − α+

0 Q
−(t)
0

}
(14.57h)

K+(t)
0 = Cov

(
Q0

0, Q
+(t)
0

)
(14.57i)(

P 0
0 , P

+(t)
0

)
∼ N

(
0,K+(t)

0

)
(14.57j)
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α
+(t)
1 = E

 s2
µγ
−(t)
1

γ
−(t)
1 s2

µ + γ
+(t)
0

 (14.57k)

γ
+(t)
1 = γ

−(t)
1

α
+(t)
1
− γ−(t)

1 (14.57l)

Q
+(t)
1 = 1

1− α+(t)
1

{
s2
µγ
−(t)
1

γ
−(t)
1 s2

µ + γ
+(t)
0

(Q−(t)
1 +Q0

1) + ...

sµγ
+(t)
0

γ
−(t)
1 s2

µ + γ
+(t)
0

(P+(t)
0 + P 0

0 )−Q0
1 − α

+(t)
1 Q

−(t)
1

}
(14.57m)

K+(t)
1 = Cov

(
Q0

1, Q
+(t)
1

)
(14.57n)(

P 0
1 , P

+(t)
1

)
∼ N

(
0,K+(t)

1

)
(14.57o)

Backward Pass (estimation):

α
−(t+1)
1 = E

[
η
g(y,.)/γ+(t)

1
(P 0

1 + P
+(t)
1 )

]
(14.57p)

γ
−(t+1)
1 = γ

+(t)
1

α
−(t+1)
1

− γ+(t)
1 (14.57q)

P
−(t+1)
1 = 1

1− α−(t+1)
1

{
η
g(y,.)/γ+(t)

1
(P 0

1 + P
+(t)
1 )

− P 0
1 − α

−(t+1)
1 P

+(t)
1

}
(14.57r)

τ
−(t+1)
1 = E

[
(P−(t+1)

1 )2
]

Q
−(t+1)
1 ∼ N (0, τ−(t+1)

1 ) (14.57s)

α
−(t+1)
0 = E

[
γ

+(t)
0

γ
−(t+1)
1 s2

ν + γ
+(t)
0

]
(14.57t)

γ
−(t+1)
0 = γ

+(t)
0

α
−(t+1)
0

− γ+(t)
0 (14.57u)

P
−(t+1)
0 = 1

1− α−(t+1)
0

{
sνγ
−(t)
1

γ
−(t+1)
1 s2

ν + γ
+(t)
0

(Q−(t+1)
1 +Q0

1)

+ γ
+(t)
0

γ
−(t+1)
1 s2

ν + γ
+(t)
0

(P+(t)
0 + P 0

0 )− P 0
0 − α

−(t+1)
0 P

+(t)
0

}
(14.57v)

τ
−(t+1)
0 = E

[
(P−(t+1)

0 )2
]

Q
−(t+1)
0 ∼ N (0, τ−(t+1)

0 ). (14.57w)

14.5.5 Direct matching of the state evolution fixed point equations

To be consistent, we should be able to show that equations (14.57) allow us to recover equa-
tions (14.47) at their fixed point. Although somewhat tedious, this task is facilitated using dictio-
naries (14.50) and (14.56). We shall give here an overview of this matching through a few examples.

• Recovering equation (14.47e)
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Let us start from the rigorous scalar state evolution, in particular equation (14.57h) that defines
variable Q+

0 . We get rid of time indices here since we focus on the fixed point. We first compute
the correlation

c+
0 = E

[
Q0

0Q
+
0

]
(14.58)

= 1
1− α+

0

{
E
[
Q0

0ηf/γ−0
(Q0

0 +Q−0 )
]
− τ0

0

}
(14.59)

where we have used E[(Q0
0)2] = τ0

0 . At the fixed point, we know from MLVAMP or simply translating
equations (14.31), (14.33) that

1− α+
0 = α−0 ,

1
α−0

= γ−0 + γ+
0

γ+
0

, γ+
0 α

+
0 = γ−0 α

−
0 .

Simple manipulations take us to

c+
0 =

E
[
Q0

0ηf/γ−0
(Q0

0 +Q−0 )
]

α−0
− τ0

0 (1 + γ−0
γ+

0
) (14.60)

(
1 + c+

0
τ0

0

)
γ+

0 =
E
[
Q0

0ηf/γ−0
(Q0

0 +Q−0 )
]
γ+

0

τ0
0α
−
0

− γ−0 . (14.61)

Now let us translate this back into our notations. The term E
[
Q0

0ηf/γ−0
(Q0

0 +Q−0 )
]

simply translates
into m1x, and the rest of the terms can all be changed according to our dictionary. (14.61) exactly
becomes

m̂2x = m1x
ρxχx

− m̂1x, (14.62)

hence we perfectly recover equations (14.47e) at the fixed point.

• Recovering equation (14.47f)

We start again from (14.57h) and square it:

E
[
(Q+

0 )2
]

= 1
(1− α+

0 )2

{
E
[
η2
f/γ−0

(Q0
0 +Q−0 )

]
+ ...

(α+
0 )2E

[
(Q−0 )2

]
− 2E

[
Q0

0ηf/γ−0
(Q0

0 +Q−0 )
]

− 2α+
0 E

[
Q−0 η

2
f/γ−0

(Q0
0 +Q−0 ) + E

[
(Q0

0)2
]]}

(14.63)

τ+
0 = 1

(1− α+
0 )2

{
E
[
η2
f/γ−0

(Q0
0 +Q−0 )

]
+ τ0

0 + ...

(α+
0 )2τ−0 − 2E

[
Q0

0ηf/γ−0
(Q0

0 +Q−0 )
]
− ...

2α+
0 E

[
Q−0 η

2
f/γ−0

(Q0
0 +Q−0 )

]}
. (14.64)

Since Q−0 is a Gaussian variable, independent from Q0
0, we can use Stein’s lemma and use equa-

tion (14.57f) to get
E
[
Q−0 η

2
f/γ−0

(Q0
0 +Q−0 )

]
= α+

0 τ
−
0 . (14.65)
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Moreover, from (14.59) we have

(c+
0 )2(α−0 )2 =

(
E
[
Q0

0ηf/γ−0
(Q0

0 +Q−0 )
]
− τ0

0

)2
(14.66)

(c+
0 )2(α−0 )2

τ0
0

−
(E
[
Q0

0ηf/γ−0
(Q0

0 +Q−0 )
]
)2

τ0
0

= ...

− 2E
[
Q0

0ηf/γ−0
(Q0

0 +Q−0 )
]

+ τ0
0 . (14.67)

Replacing (14.65) and (14.67) into (14.64), we reach(
τ+

0 −
(c+

0 )2

τ0
0

)
(α−0 )2 = E

[
η2
f/γ−0

(Q0
0 +Q−0 )

]

−

(
E
[
Q0

0ηf/γ−0
(Q0

0 +Q−0 )
])2

τ0
0

− (α+
0 )2τ−0 (14.68)

(
τ+

0 −
(c+

0 )2

τ0
0

)
(γ+

0 )2 =
E
[
η2
f/γ−0

(Q0
0 +Q−0 )

]
(γ+

0 )2

(α−0 )2

−

(
E
[
Q0

0ηf/γ−0
(Q0

0 +Q−0 )
])2

(γ+
0 )2

τ0
0 (α−0 )2 − (γ−0 )2τ−0 . (14.69)

Notice that E
[
η2
f/γ−0

(Q0
0 +Q−0 )

]
simply translates into our variable q1x from its definition (14.47c),

and our dictionary directly transforms (14.68) into equation (14.47f):

χ̂2x = q1x
χ2

1x
− m2

1x
ρxχ2

1x
− χ̂1x. (14.70)

• Recovering equation (14.47t)
We first note that for any function h,

E[h(sν)] = min(1, α)E[h(sµ)] + max(0, 1− α)h(0). (14.71)

and s2
ν ∼ pλ. Applying this to h(s) = γ−1 s

2

γ−1 s
2 + γ+

0
and starting from (14.57m), we rewrite

α+
1 = E

[
γ−1 s

2
µ

γ−1 s
2
µ + γ+

0

]
(14.72)

= 1
α
E
[

γ−1 λ

γ−1 λ+ γ+
0

]
(14.73)

with λ ∼ pλ, which translates into equation (14.47t):

χ2z = 1
α
E
[

λ

Q̂2x + λQ̂2z

]
. (14.74)

In a similar fashion, we can recover all equations (14.47) by writing variances and correlations be-
tween scalar random variables defined in (14.57), and using the independence properties established
in [97]; thus directly showing the matching between the two state evolution formalisms at their fixed
point.
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14.6 Numerical implementation details

The plots were generated using the toolbox available at https://github.com/cgerbelo/Replica_
GLM_orth.inv.git

Here we give a few derivation details for implementation of the equations presented in Theorem
22. We provide the Python script used to produce the figures in the main body of the paper as an
example. The experimental points were obtained using the convex optimization tools of [229], with
a data matrix of dimension N = 200,M = αN , for α ∈ [0.1, 3]. Each point is averaged 100 times
to get smoother curves. The theoretical prediction was simply obtained by iterating the equations
from Theorem 22. This can lead to unstable numerical schemes, and we include a few comments
about stability in the code provided with this version of the paper. For Gaussian data, the design
matrices were simply obtained by sampling a normal distribution N (0,

√
1/M), effectively yield-

ing the Marchenko-Pastur distribution [285] for averaging on the eigenvalues of FTF in the state
evolution equations :

λFTF ∼ max(0, 1− α)δ(λ− 0) + α

√
(0, λ− a)+(0, b− λ)+

2πλ (14.75)

where a =
√

1−
(

1
α

)2
, b =

√
1 +

(
1
α

)2
, and (0, x)+ = max(0, x). For the example of orthogonally

invariant matrix with arbitrary spectrum, we chose to sample the singular values of F from the uni-
form distribution U(

[
(1− α)2, (1 + α)2]). This leads to the following distribution for the eigenvalues

of FTF:
λFTF ∼ max(0, 1− α)δ(0) + min(1, α)d(λ, α) (14.76)

where d(λ, α) =
(

1
2((1+α)2−(1−α)2)I{√λ∈[(1−α)2,(1+α)2]}

1√
λ

)
, and I is the indicator function.

The only quantities that need additional calculus are the averages of proximals, squared proxi-
mals and derivatives of proximals. Here we give the corresponding expressions for the losses and
regularizations that were used to make the figures. Note that the stability and convergence of the
state evolution equations closely follow the result of Lemma 54. For example, a ridge regularized
logistic regression, which is a strongly convex objective in both the loss (on compact spaces) and
regularization will lead to more stable iterations than a LASSO SVC.

14.6.1 Regularization : elastic net

For the elastic net regularization, we can obtain an exact expression, avoiding any numerical inte-
gration. The proximal of the elastic net reads:

Prox 1
Q̂1x

(λ1|x|1+λ2
2 ‖x‖

2
2)(.) = 1

1 + λ2
Q̂1x

s

(
.,
λ1

Q̂1x

)
(14.77)

where s
(
., λ1
Q̂1x

)
is the soft-thresholding function:

s

(
r1k,

λ1

Q̂1x

)
=


r1k + λ1

Q̂1x
if r1k < − λ1

Q̂1x

0 if − λ1
Q̂1x

< r1k <
λ1
Q̂1x

r1k − λ1
Q̂1x

if r1k >
λ1
Q̂1x

.

(14.78)

https://github.com/cgerbelo/Replica_GLM_orth.inv.git
https://github.com/cgerbelo/Replica_GLM_orth.inv.git
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E[Prox2
f/Q̂1x

(X)]

=

 1
1 + λ2

Q̂1x

2 [
(1− ρ)

λ2
1 + χ̂1x

(Q̂1x)2
erfc

(
λ1√
2χ̂1x

)
−
λ1
√

2χ̂1x exp
(
− λ2

1
2(χ̂1x)

)
√
π

 (14.80)

+ ρ

(
λ2

1 + χ̂1x + σ2m̂2
1x

(Q̂1x)2
erfc

 λ1√
2(χ̂1x + σ2m̂2

1x)



−
λ1
√

2(χ̂1x + σ2m̂2
1x) exp

(
− λ2

1
2(Q̂1x)2(χ̂1x+σ2m̂2

1x)

)
√
π

)]
(14.81)

Similarly, we have

E[Prox′f/Q̂1x
(X)] = 1

1 + λ2
Q̂1x

[
(1− ρ) erfc

(
λ1√
2χ̂1x

)
+ ρ erfc

 λ1√
2(χ̂1x + σ2m̂2

1x)

] (14.82)

and

E[x0Proxf/Q̂1x
(X)] = ρ|σm̂1x|

Q̂1x + λ2
erfc

 λ1√
2(χ̂1x + σ2m̂2

1x)

 (14.83)

We assume that the ground-truth x0 is pulled from a Gauss-Bernoulli law of the form:

φ(x0) = (1− ρ)δ(0) + ρ
1√

2πσ2
exp

{
(−x2

0/(2σ2))
}
. (14.79)

Note that we did our plots with ρ = 1, but this form can be used to study the effect of sparsity in
the model. Writing X = m̂1xx0+

√
χ̂1xξ1x

Q̂1x
, and remembering that ξ1x ∼ N (0, 1), some calculus then

shows that: We now turn to the loss functions.

14.6.2 Loss functions

The loss functions sometimes have no closed form, as is the case for the logistic loss. In that case,
numerical integration cannot be avoided, and we recommend marginalizing all the possible variables
that can be averaged out. In the present model, if the teacher y is chosen as a sign, one-dimensional
integrals can be reached, leading to stable and reasonably fast implementation (a few minutes to
generate a curve comparable to those of Figure 13.1 for the non-linear models, the ridge regression
being very fast). The interested reader can find the corresponding marginalized prefactors in the
code jointly provided with this paper.

Square loss The square loss is defined as:

f(x, y) = 1
2(x− y)2, (14.84)
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its proximal and partial derivative then read:

Prox 1
γ
f (p) = γ

1 + γ
p+ 1

1 + γ
y (14.85)

∂

∂p
Prox 1

γ
f (p) = γ

1 + γ
. (14.86)

Using this form with a plain ridge penalty (elastic net with `1 = 0) leads to great simplification
in the equations of Theorem 22 and we recover the classical expressions obtained for ridge regression
in papers such as [125, 109].

Hinge loss The hinge loss reads:

f(x, y) = max(0, 1− yx). (14.87)

Assuming y ∈ {−1,+1}, its proximal and partial derivative then read:

Prox 1
γ
f (p) =


p+ y

γ if γ(1− yp) > 1
y if 0 6 γ(1− yp) 6 1
p if γ(1− yp) 6 0

(14.88)

∂

∂p
Prox 1

γ
f (p) =


1 if γ(1− yp) > 1
0 if 0 6 γ(1− yp) 6 1
1 if γ(1− yp) 6 0.

(14.89)

Logistic loss
f(x, y) = log(1 + exp(−yx)) (14.90)

Its proximal (at point p) is the solution to the fixed point problem:

x = p+ y

γ(1 + exp(yx)) , (14.91)

and its derivative, given that the logistic loss is twice differentiable, reads:

∂

∂p
Prox 1

γ
f (p) = 1

1 + 1
γ
∂2

∂p2 f(Prox 1
γ
f (p))

(14.92)

= 1
1 + 1

γ
1

(2+2cosh(Prox 1
γ f

(p))
. (14.93)

14.7 Proof of Lemma 54: Convergence analysis of 2-layer ML-
VAMP

In this section, we give the detail of the convergence proof of 2-layer MLVAMP.
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14.7.1 Proof of Proposition 9

This proof is quite straightforward and close to the one of Theorem 4 from [166].

Multiplying Eq.(13.55) on the left and right by [(h(t)−h(t−1))> (u(t)−u(t−1))>] and its transpose
respectively, we get

(A(t)(h(t) − h(t−1)) + B(t)(u(t) − u(t−1)))>P(A(t)(h(t) − h(t−1)) + B(t)(u(t) − u(t−1)))
− (τ(t))2(h(t) − h(t−1))>P(h(t) − h(t−1))

+ β
(t)
1 (C(t)

1 (h(t) − h(t−1)) + D1(u(t) − u(t−1)))>M(t)
1 (C(t)

1 (h(t) − h(t−1)) + D1(u(t) − u(t−1)))

+ β
(t)
2 (C(t)

2 (h(t) − h(t−1)) + D2(u(t) − u(t−1)))>M(t)
2 (C(t)

2 (h(t) − h(t−1)) + D2(u(t) − u(t−1))) 6 0

Using the definition of the iteration (13.46)-(13.48), this simplifies to

(h(t+1) − h(t))>P(h(t+1) − h(t))− (τ(t))2(h(t) − h(t−1))>P(h(t) − h(t−1))

+ β1(w(t)
1 −w(t−1)

1 )>M(t)
1 (w(t)

1 −w(t−1)
1 ) + β2(w(t)

2 −w(t−1)
2 )>M(t)

2 (w(t)
2 −w(t−1)

2 ) 6 0

Owing to the Lipschitz properties of Õ(t)
1 , Õ(t)

2 and the definitions of w(t)
1 ,w(t)

2 , the terms factoring
β1, β2 are both non-negative. We thus have, at each time step t:

(h(t+1) − h(t))>P(h(t+1) − h(t)) 6 τ(t)(h(t) − h(t−1))>P(h(t) − h(t−1)) (14.94)

Letting τ∗ = supt τ(t), an immediate induction concludes the proof.

14.7.2 Bounds on Q̂
(t+1)
1x , Q̂

(t)
1z , Q̂

(t)
2x , Q̂

(t+1)
2z

We remind that, since the functions f and g are separable, their Hessians are diagonal matrices.
For any time index t, the following bounds hold:

Q̂
(t)
2x :

Q̂
(t)
2x = 1/χ(t)

1x − Q̂
(t)
1x where χ

(t)
1x =

〈
∂h(t)

1x
g1x(...)

〉
/Q̂

(t)
1x , (14.95)

then 1
Q̂

(t)
2x + Q̂

(t)
1x

= 1
N

(
Tr
[
(Q̂(t)

1xId+Hf (prox))−1
])
, (14.96)

Q̂
(t)
1x + λmin(Hf ) 6 Q̂

(t)
1x + Q̂

(t)
2x 6 Q̂

(t)
1x + λmax(Hf ). (14.97)

Q̂
(t+1)
2z :

Q̂
(t+1)
2z = 1/χ(t)

1z − Q̂
(t)
1z where χ

(t)
1z =

〈
∂h(t)

1z
g1z(...)

〉
/Q̂

(t)
1z , (14.98)

then 1
Q̂

(t+1)
2z + Q̂

(t)
1z

= 1
M

(
Tr
[
(Q̂(t)

1z Id+Hg(prox))−1
])
, (14.99)

Q̂
(t)
1z + λmin(Hg) 6 Q̂

(t)
1z + Q̂

(t+1)
2z 6 Q̂

(t)
1z + λmax(Hg). (14.100)
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Q̂
(t)
1z :

Q̂
(t)
1z = 1/χ(t)

2z − Q̂
(t)
2z χ

(t)
2z =

〈
∂h(t)

2z
g2z(...)

〉
/Q̂

(t)
2z (14.101)

then 1
Q̂

(t)
1z + Q̂

(t)
2z

= 1
M

Tr
[
FF>

(
Q̂

(t)
2zFF> + Q̂

(t)
2xId

)−1
]

(14.102)

The matrices on the r.h.s. of the previous equation are all diagonalisable in the same basis. Then
each eigenvalue has the form

λmin(FF>)
Q̂

(t)
2z λmin(FF>) + Q̂

(t)
2x

6
λk(FF>)

Q̂
(t)
2z λk(FF>) + Q̂

(t)
2x

6
λmax(FF>)

Q̂
(t)
2z λmax(FF>) + Q̂

(t)
2x
, (14.103)

which leads to the bound

Q̂
(t)
2z + Q̂

(t)
2x

λmax(FF>) 6 Q̂
(t)
1z + Q̂

(t)
2z 6 Q̂

(t)
2z + Q̂

(t)
2x

λmin(FF>) . (14.104)

Q̂
(t+1)
1x :

Q̂
(t+1)
1x = 1/χ(t+1)

2x − Q̂(t)
2x χ

(t+1)
2x =

〈
∂h(t)

2x
g2x(...)

〉
/Q̂

(t)
2x , (14.105)

then 1
Q̂

(t+1)
1x + Q̂

(t)
2x

= 1
N

Tr
[(
Q̂

(t+1)
2z F>F + Q̂

(t)
2xId

)−1
]
, (14.106)

which leads to

Q̂
(t)
2x + λmin(F>F)Q̂(t+1)

2z 6 Q̂
(t+1)
1x + Q̂

(t)
2x 6 Q̂

(t)
2x + λmax(F>F)Q̂(t+1)

2z . (14.107)

14.7.3 Operator norms and Lipschitz constants

Operator norms of matrices W1
(t),W2

(t),W3
(t),W4

(t)

The norms of the linear operators W1
(t),W2

(t),W3
(t),W4

(t) can be computed or bounded with
respect to the singular values of the matrix F. The derivations are straightforward and do not
require any specific mathematical result. Denoting ‖W‖ the operator norm of a given matrix W,



CHAPTER 14. PROOFS FOR THE KABASHIMA FORMULA 304

we have the following:

∥∥∥W1
(t)
∥∥∥ = Q̂

(t)
2x

Q̂
(t+1)
1x

max
( |Q̂(t+1)

1x − Q̂(t+1)
2z λmin(FTF)|

Q̂
(t)
2x + Q̂

(t+1)
2z λmin(FTF)

, (14.108)

|Q̂(t+1)
1x − Q̂(t+1)

2z λmax(FTF)|
Q̂

(t)
2x + Q̂

(t+1)
2z λmax(FTF)

)
(14.109)

∥∥∥W2
(t)
∥∥∥ = Q̂

(t+1)
2z

χ
(t+1)
2x Q̂

(t+1)
1x

√
λmax(FTF)

Q̂
(t)
2x + Q̂

(t+1)
2z λmin(FTF)

(14.110)

∥∥∥W3
(t)
∥∥∥ = Q̂

(t)
2z

Q̂
(t)
1z

max
( |Q̂(t)

2x − Q̂
(t)
1z λmin(FFT )|

Q̂
(t)
2x + Q̂

(t)
2z λmin(FFT )

, (14.111)

|Q̂(t)
2x − Q̂

(t)
1z λmax(FFT )|

Q̂
(t)
2x + Q̂

(t)
2z λmax(FFT )

)
(14.112)

∥∥∥W4
(t)
∥∥∥ = Q̂

(t)
2x

χ
(t)
2z Q̂

(t)
1z

√
λmax(FTF)

Q̂
(t)
2x + Q̂

(t)
2z λmin(FTF)

. (14.113)

Lispchitz constants of Õ(t)
1 , Õ(t)

2

We now derive upper bounds of the Lipschitz constants of Õ(t)
1 , Õ(t)

2 using the convex analy-
sis reminder in appendix 14.2. We give detail for Õ(t)

1 , the derivation is identical for Õ(t)
2 . Let

(σ1, β1) ∈ R∗2+ be the strong-convexity and smoothness constants of f , if they exist. If f has no
strong convexity constant, we set σ1 = 0, and if it holds no smoothness assumption, we set β1 = +∞.
Note that, from the upper and lower bounds obtained in appendix 14.7.2, we have σ1 6 Q̂

(t)
2x 6 β1.

Case 1: 0 < σ1 < β1 Proposition 11 gives the following expression:

Prox 1
Q̂

(t)
1x
f = 1

2

(
1

1 + σ1/Q̂
(t)
1x

+ 1
1 + β1/Q̂

(t)
1x

)
Id (14.114)

+ 1
2

(
1

1 + σ1/Q̂
(t)
1x
− 1

1 + β1/Q̂
(t)
1x

)
S1 (14.115)

where S1 is a non-expansive operator. Replacing in the expression of Õ1 leads to:

Õ(t)
1 = Q̂

(t)
1x

Q̂
(t)
2x

(( 1
2χ(t)

1x

(
1

Q̂
(t)
1x + σ1

+ 1
Q̂

(t)
1x + β1

)
− 1

)
Id (14.116)

+ 1
2χ(t)

1x

(
1

Q̂
(t)
1x + σ1

− 1
Q̂

(t)
1x + β1

)
S1

)
(14.117)
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∥∥∥Õ(t)
1 (x)− Õ(t)

1 (y)
∥∥∥2

2
=
(
Q̂

(t)
1x

Q̂
(t)
2x

)2 ( 1
(Q̂(t)

1x)2(χ(t)
1x)2

∥∥∥∥∥Prox 1
Q̂

(t)
1x
f (x)− Prox 1

Q̂
(t)
1x
f (y)

∥∥∥∥∥
2

2

(14.120)

− 2 1
Q̂

(t)
1xχ

(t)
1x

〈
x− y,Prox 1

Q̂
(t)
1x
f (x)− Prox 1

Q̂
(t)
1x
f (y)

〉
+ ‖x− y‖22

)
(14.121)

6

(
Q̂

(t)
1x

Q̂
(t)
2x

)2 (( 1
(Q̂(t)

1x)2(χ(t)
1x)2

− 2 1
Q̂

(t)
1xχ

(t)
1x

)∥∥∥∥∥Prox 1
Q̂1x

f (x)− Prox 1
Q̂

(t)
1x
f (y)

∥∥∥∥∥
2

2

+ ‖x− y‖22
)

(14.122)

=
(
Q̂

(t)
1x

Q̂
(t)
2x

)2( 1
(Q̂(t)

1x)2(χ(t)
1x)2

− 2 1
Q̂

(t)
1xχ

(t)
1x

)(
1

1 + σ1/Q̂
(t)
1x

)2

+ 1

 ‖x− y‖22 (14.123)

=
(
Q̂

(t)
1x

Q̂
(t)
2x

)2(
(Q̂(t)

2x)2 − (Q̂(t)
1x)2

(Q̂(t)
1x + σ1)2

+ 1
)
‖x− y‖22. (14.124)

which, knowing that Q̂(t)
1x + Q̂

(t)
2x = 1

χ
(t)
1x

, and separating the case where the first term of the sum in

Eq.(14.116) is negative or positive, Õ1 has Lipschitz constant:

ω
(t)
1 = Q̂

(t)
1x

Q̂
(t)
2x

max
(
Q̂

(t)
2x − σ1

Q̂
(t)
1x + σ1

,
β1 − Q̂(t)

2x

Q̂
(t)
1x + β1

)
. (14.118)

Case 2: 0 < σ1 = β1 In this case, we have from Proposition 11:∥∥∥∥∥Prox 1
Q̂

(t)
1x
f (x)− Prox 1

Q̂
(t)
1x
f (y)

∥∥∥∥∥
2

2

=
(

1
1 + σ1/Q̂

(t)
1x

)2

‖x− y‖22 (14.119)

which, with the firm non-expansiveness of the proximal operator gives, for any x, y ∈ R: The upper
bound on the Lipschitz constant is therefore:

ω1 = Q̂
(t)
1x

Q̂
(t)
2x

√√√√1 + ((Q̂(t)
2x)2 − (Q̂(t)

1x)2)
(Q̂(t)

1x + σ1)2
. (14.125)

Case 3: no strong convexity or smoothness assumption This setting is not necessary for
our proof, because we only handle penalty functions which have a strictly positive strong convexity
constant, by adding a ridge term. However, we list it for completeness. In this case, the only
information we have is the firm nonexpansiveness of the proximal operator, which leads us to the
same derivation as the previous one up to (14.122), where the first term in the sum can be positive
or negative. This yields the Lipschitz constant:

ω
(t)
1 = Q̂

(t)
1x

Q̂
(t)
2x

max
(

1, Q̂
(t)
2x

Q̂
(t)
1x

)
. (14.126)
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Recovering (13.52) In our proof, we make no assumption on the strong-convexity or smooth-
ness of the function, but adding the ridge penalties λ2, λ̃2 brings us for both Õ(t)

1 and Õ(t)
2 to either

the first of the second case above. It is straightforward to see that the Lipschitz constant (14.125)
is an upper bound of (14.118). We thus use (14.125) for generality, and recover the expressions
(13.52) shown in the main body of the paper.

ω
(t)
1 = Q̂

(t)
1x

Q̂
(t)
2x

√√√√1 + (Q̂(t)
2x)2 − (Q̂(t)

1x)2

(Q̂(t)
1x + λ2)2

(14.127)

ω
(t)
2 = Q̂

(t)
1z

Q̂
(t)
2z

√√√√1 + (Q̂(t)
2z )2 − (Q̂(t)

1z )2

(Q̂(t)
1z + λ̃2)2

. (14.128)

14.7.4 Dynamical system convergence analysis

We are now ready to prove Lemma 54.

We will use the bounds derived above to prove the convergence lemma. Since we have proved
the required bounds at any time step, we drop the time indices in the remainder of this proof for
simplicity. The choice of additional regularization is λ2 arbitrarily large, and λ̃2 fixed but finite
and non-zero. Q̂2x, Q̂1z can thus be made arbitrarily large, and Q̂2z, Q̂1x remain finite. We write
the corresponding linear matrix inequality (13.55) and expand the constraint term. Some algebra
shows that:

CT
1 M1C1 =

[
0M×M 0M×N
0N×M ω2

1IN×N

]
(14.129)

CT
2 M2C2 =

[
ω2

2WT
3 W3 0M×N

0N×M 0N×N

]
(14.130)

CT
1 M1D1 = 0(M+N)×(M+N) (14.131)

DT
1 M1C1 = 0(M+N)×(M+N) (14.132)

CT
2 M2D2 =

[
0M×M ω2

2WT
3 W4

0N×M 0N×N

]
(14.133)

DT
2 M2C2 =

[
0M×M 0M×N

ω2
2WT

4 W3 0N×N

]
(14.134)

DT
1 M1D1 =

[
0M×M 0M×N
0N×M −IN×N

]
(14.135)

DT
2 M2D2 =

[
−IM×M 0M×N
0N×M ω2

2WT
4 W4

]
(14.136)

where all the matrices constituting the blocks have been defined in section 13.6. This gives the
following form for the constraint matrix: [

H1 H2
HT

2 H3

]
(14.137)
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where

H1 =
[
β1ω

2
2WT

3 W3 0M×N
0N×M β0ω

2
1IN×N

]
(14.138)

H2 =
[
0M×M β1ω

2
2WT

3 W4
0N×M 0N×N

]
(14.139)

H3 =
[
−β1IM×M 0M×N

0N×M −β0IN×N + β1ω
2
2WT

4 W4

]
(14.140)

thus the LMI (13.55) becomes:

0 �
[
−τ2P + H1 H2

HT
2 BTPB + H3

]
. (14.141)

We take P as block diagonal:

P =
[

P1 0M×N
0N×M P2

]
(14.142)

where P1 ∈ RM×M and P2 ∈ RN×N are positive definite (no zero eigenvalues) and diagonalizable
in the same basis as FTF, which is also the eigenbasis of W1,W3,WT

2 W2,WT
4 W4. We then have:

BTPB =
[
P1 + WT

2 P2W2 WT
2 P2W1

WT
1 P2W2 WT

1 P2W1

]
. (14.143)

We are then trying to find the conditions for the following problem to be feasible with 0 < τ < 1:[
τ2P−H1 −H2
−HT

2 −(BTPB + H3)

]
� 0 (14.144)

Schur’s lemma then gives that the strict version of (14.144), which we will consider, is equivalent
[127] to:

− (BTPB + H3) � 0 and (14.145)
τ2P−H1 + H2(BTPB + H3)−1HT

2 � 0 (14.146)

We start with −(BTPB + H3).

Conditions for −(BTPB + H3) � 0

Expanding −(BTPB + H3) � 0 and applying Schur’s lemma again gives the equivalent problem:

β1IN×N − β2ω
2
2WT

4 W4 −WT
1 P2W1 � 0 and (14.147)

β2IM×M −P1 −WT
2 P2W2

−WT
2 P2W1K1WT

1 P2W2 � 0. (14.148)
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where K1 = (β1IN×N−β2ω
2
2WT

4 W4−WT
1 P2W1)−1. We start with (14.147). A sufficient condition

for it to hold true is:

β1 > β2ω
2
2λmax(WT

4 W4) + λmax(P2)λmax(WT
1 W1). (14.149)

Using the bounds from appendix 14.7.3, we have:

λmax(WT
1 W1) 6

(
Q̂2x

Q̂1x

)2

max
(
...

|Q̂1x − Q̂2zλmin(FTF)|
Q̂2x + Q̂2zλmin(FTF)

,
|Q̂1x − Q̂2zλmax(FTF)|
Q̂2x + Q̂2zλmax(FTF)

)2
(14.150)

6 max
((

1− Q̂2z

Q̂1x
λmin(FTF)

)2

,(
1− Q̂2z

Q̂1x
λmax(FTF)

)2 )
= b1 (14.151)

and

ω2
2λmax(WT

4 W4)6
(
Q̂1z

Q̂2z

)2(
Q̂2x

χ2zQ̂1z

)2

× ...(
1 + (Q̂2z)2 − (Q̂1z)2

(Q̂1z + λ̃2)2

)
λmax(FTF)

(Q̂2x + Q̂2zλmin(FTF))2
(14.152)

6 Q̂1z

(
2λ̃2 + λ̃2

2
Q̂1z

+ (Q̂2z)2

Q̂1z

)
× ...(

Q̂1z + Q̂2z

Q̂2z(Q̂1z + λ̃2)

)2

λmax(FTF). (14.153)

For arbitrarily large Q̂1z, the quantity
(

2λ̃2 + λ̃2
2

Q̂1z
+ (Q̂2z)2

Q̂1z

)(
Q̂1z+Q̂2z

Q̂2z(Q̂1z+λ̃2)

)2
λmax(FTF) is trivially

bounded above whatever the value of λ̃2, Q̂2z. Let b2 be such an upper bound independent of
λ2, Q̂2x, Q̂1z. The sufficient condition for (14.147) to hold thus becomes:

β1 > β2Q̂1zb2 + λmax(P2)b1 (14.154)

where b1, b2 are constants independent of λ2, Q̂2x, Q̂1z.

We now turn to (14.148). A sufficient condition for it to hold is:

β2 > λmax(P1) + λmax(WT
2 W2)λmax(P2)

+ (λmax(P2))2λmax(WT
2 W2)λmax(WT

1 W1)
β1 − β2ω2

2λmax(WT
4 W4)− λmax(P2)λmax(WT

1 W1)
(14.155)
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Note that condition (14.147) ensures that the denominator in (14.155) is non-zero. We then have:

λmax(WT
2 W2) 6

(
Q̂2z

χ2xQ̂1x

)2
λmax(FTF)

(Q̂2x + Q̂2zλmin(FTF))2
(14.156)

6

Q̂2z(1 + Q̂1x
Q̂2x

)

Q̂1x


2

λmax(FTF) (14.157)

This quantity can be bounded above by a constant independent of λ2, Q̂2x, Q̂1z for arbitrarily large
Q̂2x. Let b3 be such a constant . Then a sufficient condition for condition (14.148) to hold is:

β2 > λmax(P1) + b3λmax(P2)

+ b1b3(λmax(P2))2

β1 − β2Q̂1zb2 − λmax(P2)b1
(14.158)

we see that β1 must scale linearly with Q̂1z which is one of the parameters that is made arbitrarily
large. Then β1 also needs to become arbitrarily large for the conditions to hold. We choose
β1 = 2β2Q̂1zb2 + λmax(P2)b1 for the rest of the proof. Condition (14.154) is then verified, and β2
needs to be chosen according to condition (14.158), which becomes:

β2 > λmax(P1) + b3λmax(P2) + b1b3λ
2
max(P2)

β2Q̂1zb2
(14.159)

This has a bounded solution for large values of Q̂1z. We now turn to the second part of (14.145).

Conditions for τ2P−H1 + H2(BTPB + H3)−1HT
2 � 0

We need to study the term −H2(BTPB + H3)−1HT
2 (we study it with the − sign since the mid-

dle matrix is negative definite from conditions (14.147,14.148) which are now verified). As we
will see, because of the form of H2, we don’t need to explicitly compute the whole inverse. Let

Z = −(BTPB+H3)−1 =
[
Z1 Z2
ZT2 Z3

]
(Z has the same block dimensions as (BTPB+H3)). We then

have:

−H2(BTPB + H3)−1HT
2 = H2ZHT

2 (14.160)

=
[
β2

2ω
4
2WT

3 W4Z3WT
4 W3 0M×N

0N×M 0N×N

]
. (14.161)

We thus only need to characterize the lower right block of Z. It is easy to see that conditions
(14.147) and (14.148) also enforce that both the Schur complements associated with the upper left
and lower right blocks of −(BTPB + H3) are invertible, thus giving the following form for Z3 using
the block matrix inversion lemma [127]:

Z3 = (β1IN − β2ω
2
2WT

4 W4

−WT
1 P2W1 −WT

1 P2W2K2WT
2 P2W1)−1. (14.162)
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where K2 = (β1IM −P1 −WT
2 P2W2)−1. We thus have the following upper bound on the largest

eigenvalue of Z3:
λmax(Z3) 6 1

β1 − β2Q̂1zb2 − λmax(P2)b1 − k
, (14.163)

where k = b1b3λ2
max(P2)

β2−λmax(P1)−b2λmax(P2) . Using the prescription β1 = 2β2Q̂1zb2 + λmax(P1)b1, we get:

λmax(Z3) = 1
β1Q̂1zb2 − b1b3λ2

max(P2)
β1−λmax(P1)−b2λmax(P2)

6
b4

Q̂1z
(14.164)

where b4 is a constant independent of the arbitrarily large parameters λ2, Q̂2x, Q̂1z. Thus λmax(Z3)
can be made arbitrarily small by making λ2 arbitrarily large.

We now want to find conditions for τ2P−H1 + H2(BTPB + H3)−1HT
2 � 0 which is equivalent to:

τ2P1 − β2ω
2
2WT

3 W3 − β2
2ω

4
2WT

3 W4Z3WT
4 W3 � 0

τ2P2 − β1ω
2
1IN � 0 (14.165)

We start with the upper matrix inequality, for which a sufficient condition is:

τ2λmin(P1)− β2ω
2
2λmax(WT

3 W3)
− β2

2ω
4
2λmax(WT

3 W3)λmax(WT
4 W4)λmax(Z3) > 0 (14.166)

Using the bounds from appendix 14.7.3, we have:

ω2
2λmax(WT

3 W3) 6 ...(
Q̂1z

Q̂2z

)2 (
1 + (Q̂2z)2 − (Q̂1z)2

(Q̂1z + λ̃2)2

)
λmax(WT

3 W3) (14.167)

6
2λ̃2Q̂1z + λ̃2

2 + (Q̂2z)2

(Q̂1z + λ̃2)2
× ...

max((1− Q̂1z

Q̂2x
λmin(FTF))2, (1− Q̂1z

Q̂2x
λmax(FTF))2) (14.168)

6
1
Q̂1z

(2λ̃2 + (λ̃2
2 + (Q̂2z)2)
Q̂1z

)× ...

max((1− Q̂1z

Q̂2x
λmin(FTF))2, (1− Q̂1z

Q̂2x
λmax(FTF))2) (14.169)

Thus there exists a constant b5, independent of λ2, Q̂1z, Q̂2x such that, for sufficiently large Q̂1z:

ω2
2λmax(WT

3 W3) 6 b5

Q̂1z
. (14.170)

Remember that we had:
ω2

2λmax(WT
4 W4) 6 Q̂1zb2, (14.171)

which gives the following sufficient condition for the upper left block in (14.165):

τ2λmin(P1)− β2
b5

Q̂1z
− β2

2
b2b5b4

Q̂1z
> 0. (14.172)
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A sufficient condition for the lower right block in (14.165) then reads:

τ2λmin(P2)− β1ω
2
1 > 0, (14.173)

where we have:

β1ω
2
1 =

(
Q̂1x

Q̂2x

)2(
1 + (Q̂2x)2 − (Q̂1x)2

(Q̂1x + λ2)2

)
× ...

(2β1Q̂1zb2 + λmax(P2)b1) (14.174)

= 1
Q̂2x

(Q̂1x)2
(

1 + (Q̂2x)2 − (Q̂1x)2

(Q̂1x + λ2)2

)
× ...(

2β1
Q̂1z

Q̂2x
b2 + λmax(P2) b1

Q̂2x

)
(14.175)

We remind the reader that Q̂1z, Q̂2x grow linearly with λ2. Thus the dominant scaling at large λ2
is (exchanging Q̂2x with Q̂1z up to a constant):

β1ω
2
1 6

b6

Q̂1z
, (14.176)

where b6 is a constant independent of the arbitrarily large quantities. The final condition becomes:

τ2λmin(P1)− β2
b5

Q̂1z
− β2

2
b2b5b4

Q̂1z
> 0 (14.177)

τ2λmin(P2)− b6

Q̂1z
> 0 (14.178)

where we want τ < 1. We now choose τ2 = c̃/Q̂1z with a constant c̃ independent of λ2, Q̂1z, Q̂2x

that verifies c̃ > max
(
β2b5+β2

2b2b5b4
λmin(P1) , b6

λmin(P2)

)
, such that:

c̃

Q̂1z
λmin(P1)− β2

b5

Q̂1z
− β2

2
b2b5b4

Q̂1z
> 0 (14.179)

c̃

Q̂1z
λmin(P2)− b6

Q̂1z
> 0. (14.180)

Since β2 is bounded for large values of Q̂1z, and the bi and c are constants independent of λ2, Q̂2x, Q̂1z,
we can then enforce c̃ < Q̂1z using the additional ridge penalty parametrized by λ2 on the regu-
larization to obtain τ < 1 and a linear convergence rate proportional to

√
c̃
λ2

. We see that the
eigenvalues of the matrix P are of little importance as long as they are non-vanishing. We choose P
as the identity. In the statement of Lemma 54, we write c the exact constant which comes linking
Q̂1z to λ2.
This proves Lemma 54.

14.8 Analytic continuation

In this section, we prove the validity of the analytic continuation and approximation argument used
to prove Theorem 22, under the required set of assumptions 2. According to Lemma 4, for any
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λ̃2 > 0 and λ2 > λ∗2, any scalar pseudo-Lipschitz observable of order 2 φ, we have almost surely

lim
N→∞

1
N

N∑
i=1

φ(x0,i, x̂i(λ2)) = E[φ(x0,Prox
f/Q̂

(t)
1x

(Hx))] (14.181)

where Hx = m̂∗1xx0+
√
χ̂∗1xξ1x

Q̂1x
is defined in Theorem 22. We would like to show that this equality still

holds for any λ2 > 0. To do so we will show that, for a real analytic approximation of problem
Eq.(13.2), both sides of Eq.(14.181) are real analytic in λ2. We may then use the real analytic
continuation theorem, as given in [148] to extend to any λ2 > 0. We will treat the case λ2 = 0
separately. In what follows, we will write the dependency in λ2 of the estimator explicitly, i.e.,
x̂ = x̂(λ2).

14.8.1 Real analyticity of the left hand side of Eq.(14.181)
We remind a useful characterization of real analytic functions from [148]:

Proposition 13 (Proposition 1.2.10 from [148]). Let f ∈ C∞(I) for some open interval I. The
function f is in fact real analytic on I if and only if, for each α ∈ I, there are an open interval J,
with α ∈ J ⊂ I, and finite constants C > 0 and R > 0 such that the derivatives of f satisfy :∣∣∣f (j)(α)

∣∣∣ 6 C
j!
Rj
, ∀α ∈ J (14.182)

We also remind the formula for the higher order derivatives of a composition of two infinitely
differentiable functions:

Proposition 14. (Faa di Bruno’s formula, [148] Theorem 1.3.2.) Consider two scalar functions
f and g defined on an open interval I ∈ R. Assume that both functions are infinitely differentiable
on I and taking value in I. Then the derivatives of h = g ◦ f are given by

h(n)(t) =
∑ n!

k1!k2!...kn!g
(k) (f(t))

(
f (1)(t)

1!

)k1 (
f (2)(t)

2!

)k2

...

(
f (n)(t)
n!

)kn
(14.183)

where k = k1+k2+...+kn and the sum is taken over all k1, k2, ..., kn for which k1+2k2+...+nkn = n.

The following lemma establishes bounds on the higher order derivatives of x̂(λ2) with respect
to λ2.

Lemma 59. x̂(λ2) is infinitely differentiable w.r.t. λ2 and, for any integer p, there exists a constant
K ′ such that its elementwise p-th derivative, denoted D(p)

λ2
x̂(λ2) verifies, almost surely

1
N

∥∥∥D(p)
λ2

x̂(λ2)
∥∥∥2

2
6 K ′ (14.184)

Furthermore, D(p)
λ2

x̂(λ2) is a Lipschitz function of x̂(λ2).

Proof. Recall the strongly convex problem, for any finite N,

x̂(λ2, λ̃2) = arg min
x∈X

g̃(Fx,y) + f(x) + λ2
2 ‖x‖

2
2 (14.185)
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where we absorbed λ̃2 in g̃ as we are only interested in prolonging on λ2.
The optimality condition then uniquely defines x̂(λ2) of each value of λ2 and reads :

F>∇g̃(Fx̂(λ2),y) +∇f(x̂(λ2)) + λ2x̂(λ2) = 0 (14.186)

The function F>∇g̃(F·,y)+∇f(·)+λ2· is real analytic in RN and its Jacobian F>Hg̃F+Hf +λ2IN
is non singular since f and g̃ are convex. The implicit function theorem [148] then ensures that,
at any finite N > 0, the function x̂(λ2) is elementwise real analytic in λ2. We can now prove the
lemma with an induction.

Initialization Owing to assumption 2, we have almost surely

lim
N→∞

1
N
‖x̂(λ2)‖22 6 K ′ (14.187)

and the identity is a Lipshchitz function of x̂(λ2) The function of λ2 defined by :

λ2 7→ ∇g̃(Fx̂(λ2),y) +∇f(x̂(λ2)) + λ2x̂(λ2) (14.188)

is always zero valued from the definition of x̂(λ2), thus all its derivatives are zero. Taking the first
derivative with respect to λ2 yields:

(FTHg̃(Fx̂(λ2),y)F +Hf (x̂(λ2)) + λ2IN )Dx̂(λ2)
+ x̂(λ2) = 0 (14.189)

where Dp is the (N × 1) dimensional element-wise p-th differential of x̂(λ2). We then define the
operator

O :
{

R→ RN×N
λ2 7→ FTHg̃(Fx̂(λ2),y)F +Hf (x̂(λ2)) + λ2IN .

We obtain a simple expression for Dx̂(λ2)

Dx̂(λ2) = −O−1(λ2)x̂(λ2) (14.190)

Since f and g are convex, the operator norm of O−1(λ2) is bounded with probability one, and
Dx̂(λ2) is a Lipschitz function of x̂(λ2) where 1

N ‖Dx̂(λ2)‖22 is almost surely bounded.

Induction step Assume the property is verified up to p−1. For higher order derivatives, applying
Leibniz’s rule on Eq.(14.189) gives, denoting O(i)(λ2) the i-th derivative of O(λ2), for the (p-1)-th
derivative of (14.189) :

p−1∑
i=0

(
p− 1
i

)
O(i)(λ2)D(p−i)x̂(λ2) +D(p−1)x̂(λ2) = 0, (14.191)

such that
p−1∑
i=1

(
p− 1
i

)
O(i)(λ2)D(p−i)x̂(λ2) +O(λ2)D(p)x̂(λ2)

+D(p−1)x̂(λ2) = 0 (14.192)
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We obtain the recursion on the differentials of x̂(λ2) :

Dpx̂(λ2) = −O−1(λ2)
( p−1∑
i=1

(
p− 1
i

)
O(i)(λ2)D(p−i)x̂(λ2)

+D(p−1)x̂(λ2)
)
. (14.193)

where the matrix inverse O−1(λ2) is well defined for any λ2 > 0 since f and g are convex. Using
proposition 14, the assumption on the fast decay of the higher-order (larger than 2) derivatives of f
and g, the bounded spectrum of the matrix F, and the induction hypothesis, the operator norm of
O(p)(λ2) is bounded with probability one for any p ∈ N, D(p)x̂(λ2) is a Lipschitz function of x̂(λ2)
as a finite sum of Lipschitz functions of x̂(λ2), and its averaged squared norm is bounded almost
surely. This concludes the induction.

Lemma 60. Under assumption 2, the function ψ(λ2) defined as

ψ : R→ R (14.194)

λ2 → lim
N→∞

1
N

N∑
i=1

φ(x0,i, x̂i(λ2)) (14.195)

is real analytic for λ2 > 0.
Proof. Since φ is pseudo Lipschitz of order 2, there exists a constant Cφ such that, for any x ∈ R,
φ(x) 6 Cφ(1 + x2). Thus :

lim
N→∞

|ψ(λ2)| 6 lim
N→∞

Cφ
N

(1 + ‖x̂(λ2)‖22) (14.196)

which is almost surely bounded. By assumption, the boundedness of ψ is enough to obtain its
convergence. For the first derivative, the pseudo-Lipschitz property ensures that there exists a
constant C ′φ such that, for any x ∈ R,

∣∣∣dφdx (x)
∣∣∣ 6 C ′φ(1 + |x|). Then∣∣∣∣ ddλ2

φ(x̂(λ2))
∣∣∣∣ 6 C

′
φ

∣∣∣∣ ddλ2
x̂(λ2)

∣∣∣∣ (1 + |x̂|(λ2)) (14.197)

so there exists a constant C ′ψ such that

lim
N→∞

Dψ(λ2) 6 lim
N→∞

1
N
C ′ψ (‖Dx̂(λ2)‖2 + ‖Dx̂(λ2)‖2‖x̂(λ2)‖2) (14.198)

which is almost surely bounded. We have also proved in the previous lemma that Dx̂(λ2) is a
Lipschitz function of λ2, thus Dψ(λ2) is a PL2 function of x̂(λ2) and its limit exists according
to Assumption 2 (c). For the higher order derivatives, we use proposition 14 to obtain, for any
coordinate 1 6 i 6 n :∣∣∣∣∣ d(p)

dλ
(p)
2
φ(x̂i(λ2))

∣∣∣∣∣ =
∑ p!

k1!k2!...kp!
φ(k) (x̂i(λ2))

(
x̂

(1)
i (λ2)

1!

)k1 (
x̂

(2)
i (λ2)

2!

)k2

...

(
x̂

(p)
i (λ2)
p!

)kp
The assumption on the higher order derivatives of φ from Theorem 22 and Lemma 59 implies that
the term
φ(k) (x̂i(λ2))

(
x̂

(1)
i (λ2)

1!

)k1 (
x̂

(2)
i (λ2)

2!

)k2

...

(
x̂

(p)
i (λ2)
p!

)kp
has bounded absolute value with probability

one, for all coordinates i. Using the characterization of real analytic functions and assumption 2
(c) from proposition 13, this concludes the proof.
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14.8.2 Analytic continuation to (λ̃2, λ2) ∈ R∗+ × R∗+
From assumption 2, the set of fixed point equations from Theorem 22 admit a unique solution
for any λ2, λ̃2. Additionally, the implicit function theorem [148] can also be applied to the set
of fixed point equations from Theorem 22 regarding the dependencies in λ2, λ̃2 to show that each
quantity involved is real analytic in λ2, λ̃2. At this point, we have two analytic functions, the
observable and the one defined by the fixed point of the state evolution equations, that coincide
for any λ2 ∈ [λ∗2,+∞[ and any λ̃2 > 0. We can now use the analytic continuation theorem [148] to
show that these functions remain equal for any λ2 > 0 and for λ̃2 > 0. This concludes the proof of
Lemma 56.

14.8.3 Real analytic approximation of strongly convex problems

Consider

x̂ε(λ2) = arg min
x∈RN

g̃ε(Fx,y) + fε(x) + λ2
2 ‖x‖

2
2 (14.199)

x̂(λ2) = arg min
x∈RN

g̃(Fx,y) + f(x) + λ2
2 ‖x‖

2
2 (14.200)

where gε, fε are real analytic approximations of the loss g and regularizer f verifying assumption
2(e). To relax the analytic approximation, we need to prove the following equality.

lim
ε→0

lim
N→∞

1
N

N∑
i=1

φ(x̂ε,i(λ2)) = lim
N→∞

1
N

N∑
i=1

φ(x̂i(λ2)) (14.201)

Under assumption 2 (c) and owing to the definition of PL2 functions, it is sufficient to prove

lim
ε→0

lim
N→∞

1
N
‖x̂ε(λ2)− x̂(λ2)‖22 = 0 (14.202)

Denote C the cost function g̃(F.,y) + f(.) and its real analytic counterpart Cε the cost function
g̃ε(F.,y) + fε(.).

∀x ∈ Rd lim
ε→0
Cε(x) = C(x) (14.203)

Since minimizers of convex functions are fixed points of the corresponding proximity operators, it
holds that

1
N
‖x̂ε(λ2)− x̂(λ2)‖22 = 1

N

∥∥∥∥proxCε(.)+λ2
2 ‖.‖

2
2
(x̂ε(λ2))− proxC(.)+λ2

2 ‖.‖
2
2
(x̂(λ2))

∥∥∥∥2

2
(14.204)

6
1
N

∥∥∥∥proxCε(.)+λ2
2 ‖.‖

2
2
(x̂ε(λ2))− proxCε(.)+λ2

2 ‖.‖
2
2
(x̂(λ2))

∥∥∥∥2

2

+ 1
N

∥∥∥∥proxCε(.)+λ2
2 ‖.‖

2
2
(x̂(λ2))− proxC(.)+λ2

2 ‖.‖
2
2
(x̂(λ2))

∥∥∥∥2

2
(14.205)

The results from appendix 14.7.3 show that proximity operators of strongly convex functions are
contractions, thus their exists a positive constant Lλ2 < 1 such that for any realisation of F,x0,ω0

1
N
‖x̂ε(λ2)− x̂(λ2)‖22 6

1
N
Lλ2‖x̂ε(λ2)− x̂(λ2)‖22

+ 1
N

∥∥∥∥proxCε(.)+λ2
2 ‖.‖

2
2
(x̂(λ2))− proxC(.)+λ2

2 ‖.‖
2
2
(x̂(λ2))

∥∥∥∥2

2
(14.206)
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Furthermore, the function proxCε(.)+λ2
2 ‖.‖

2
2
(.) converges uniformly to proxC(.)+λ2

2 ‖.‖
2
2
(.) when ε → 0,

and thus

lim
ε→0

lim
N→∞

1
N

∥∥∥∥proxCε(.)+λ2
2 ‖.‖

2
2
(x̂(λ2))− proxC(.)+λ2

2 ‖.‖
2
2
(x̂(λ2))

∥∥∥∥2

2
= 0 (14.207)

which gives

lim
ε→0

lim
N→∞

1
N
‖x̂ε(λ2)− x̂(λ2)‖22 6 Lλ2 lim

ε→0
lim
N→∞

1
N
‖x̂ε(λ2)− x̂(λ2)‖22. (14.208)

Since Lλ2 < 1, this implies
lim
ε→0

lim
N→∞

1
N
‖x̂ε(λ2)− x̂(λ2)‖22 = 0 (14.209)

14.8.4 Continuous extension to λ̃2 = 0
Making the dependence on λ̃2 explicit, define

x̂(λ̃2, λ2) = arg min
x∈RN

g(Fx,y) + f(x) + λ2
2 ‖x‖

2
2 + λ̃2

2 ‖Fx‖22 (14.210)

x̂(0, λ2) = arg min
x∈RN

g(Fx,y) + f(x) + λ2
2 ‖x‖

2
2 (14.211)

Both cost functions defining x̂(λ̃2, λ2), x̂(0, λ2) are strongly convex for any λ2 > 0. We can then use
the same argument as in the previous subsection C to conclude

lim
λ̃2→0

lim
N→∞

1
N

∥∥∥x̂(λ̃2, λ2)− x̂(0, λ2)
∥∥∥2

2
= 0 (14.212)

14.8.5 Continuous extension to λ2 = 0
For λ̃2 = 0, the estimator x̂(λ2) is still unique for any λ2 > 0. We now need to study the limiting
ridgeless estimator

lim
λ2→0

arg min
x∈X

g(Fx,y) + f(x) + λ2
2 ‖x‖

2
2 (14.213)

for functions f, g that may not be strictly convex. To do so we will use Theorem 26.20 from [25],
which is reminded in appendix 14.2, proposition 12. Under assumption 2 and since the l2 norm is
strongly convex thus uniformly convex, we have, denoting x̂0 the unique least l2 norm element in
arg minx∈X g(Fx,y) + f(x),

lim
λ2→0

x̂(λ2) = x̂0 (14.214)

We can therefore uniquely define the continuous extension of any continuous observable φ of x̂(λ2)
such that φ(λ2 = 0) = φ(x̂0). Then this observable and the corresponding function implicitly
defined by the set of fixed point equations are continuous on [0,+∞[ and equal for any λ2 ∈]0,+∞[,
and thus also equal at λ2 = 0 using the definition of continuity and the fact that ]0,+∞[ is dense
in [0,+∞[.
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14.8.6 Real analytic approximation of usual cost functions with fast decaying
higher-order derivatives

In this section, we show that any combination of the square, logistic and hinge loss with `1 or `2
verifies Assumption 2 (e), i.e. they can be approximated with real analytic functions whose second
derivatives have higher-order derivatives that decrease faster than any polynomial. The square loss
and `2 immediately verify these assumptions. Assuming y = 1 without loss of generality, the second
derivative of the logistic loss is given by

g′′(x) = exp(x)
(1 + exp(x)) . (14.215)

All higher order derivatives will be a polynomial in exp(x) divided by a higher order polynomial in
exp(x) plus one. Thus, for any sign of x, higher-order derivatives of the logistic loss will decrease
exponentially fast when the absolute value of x goes to infinity. We now turn to the `1 penalty. Real
analytic approximations of functions may be constructed by considering their convolution with a
Gaussian kernel, which is also known as the Weierstrass transform. DenotingWε [f ] the Weierstrass
transform of a function f with parameter ε > 0, we obtain for the `1 penalty

Wε [|.|] (x) = 1√
2πε

∫ +∞

−∞
|u| exp

(
− 1

2ε(u− x)2
)
du (14.216)

= 1√
2πε

(
2ε exp

(
− 1

2εx
2
)

+ 2x
∫ x

0
exp

(
− 1

2εu
2
)
du

)
(14.217)

whose second derivative reads

d2

dx2Wε [|.|] (x) =
√

2√
πε

exp
(
− 1

2εx
2
)

(14.218)

thusWε [|.|)] is strongly convex and its higher order derivatives all decay faster than any finite order
polynomial. A similar computation shows that, for the hinge loss,

Wε [max(0, 1− .)] (x) = 1√
2πε

∫ +∞

−∞
max(0, 1− u) exp

(
− 1

2ε(u− x)2
)
du

= 1√
2πε

(
(1− x)

√
πε

2 + ε exp
(
− 1

2ε(1− x)2
)

(14.219)

+ (1− x)
∫ x

0
exp

(
− 1

2ε(1− x)2
)
du

)
(14.220)

whose second derivative reads

d2

dx2Wε [max(0, 1− .)] (x) = 1√
2πε

exp
(
− 1

2ε(1− x)2
)

(14.221)

Thus the hinge loss and `1 penalty verify Assumption 2 (e).



Part IV

Future directions and bibliography

318



319

14.9 Future directions

Universality and finite size rate analysis As mentioned in Chapters 2, 9, 11, state evolution
proofs are amenable to both universality proofs [27, 62] and finite-size rates analysis [251, 250].
We therefore expect all our results to hold when the design matrix has independently (but not
necessary identically) distributed subGaussian entries. We also expect that all the asymptotic
statements given for square dominated observables to present exponentially decreasing rates in the
problem dimensions, as proven in [250] or [204]. Such rates are prized in the statistics community
to perform hypothesis testing and confidence interval computations.

Further realistic models We have shown that exactly solvable models that capture realistic
learning curves can be defined by using Gaussian mixtures for the data, and block covariate models
for the features. Exploring further results in Gaussian equivalence, as was done in [116, 128, 261,
209], notably for multilayer models, is a proximsing avenue of research to better describe feature
maps. For data models, any distribution can be approximated by a Gaussian mixture, provided
enough centroids are considered. One of the main limitations of our results is that this number of
centroids should remain finite, while Gaussian kernel dennsity estiamtors [293] would systematically
lead to an extensive number of order parameters, since we a priori don’t know the tail behaviour of
realistic data. It is thus interesting to pursue the deisgn of models that may capture geometrical
properties of probability distributions in ways that are more appropriate than correlated Gaussian
mixtures, and still give exactly solvable models. The problem of dealing with order parameters
of extensive sizes leads us to similar issues as the recently investigated matrix factorization with
extensive rank [19, 183], which is the subject of the next paragraph. We note that the rigorous tools
developed in Chapter 2 allow to obtain Bayes-optimal recovery guarantees for multilayer networks
with dense or convolutional random matrices, which could be combined with a form of convex
regression to model learning of the last layer of a multilayer feature map with random weights.

Extensive rank problems Throughout this thesis, all estimators were low-rank matrices, in
that a finite number of vectors of extensive dimensions were considered to be learned. We have seen
that the convex Gaussian comparison inequalities are only interesting for vector-valued estimators,
while AMP proofs work for matrix-valued estimators with low rank with respect to the extensive
problem dimension d. Indeed, the Gaussian iterative conditoning scheme relies strongly on the
fact that projectors are low-rank, which simplifies error terms as shown in the introduction, section
1.7 and lemma 21 from chapter 3. Equivalent of lemma 2 decomposing random variables into
independent ones are not known in random matrix theory, although a rich litterature now exists
for equivalents of non-linear transforms of products of random matrices with extensive ranks, see
e.g.[92, 231, 175, 96, 36]. An interesting example is the note of Sandrine Péché [228] which proposes a
decomposition of such non-linear transforms into linear information plus independent noise matrices.
Unfortunately, all those approaches are based on linearisation arguments, which is not the case for
lemma 2 and the related proofs. We note that recent results using the replica method have led
to solutions of matrix factorization problems with extensive ranks, where the order parameters are
spectral densities [19, 183], which suggests corresponding mathematical tools could be designed.
Learning in neural networks also requires extensive rank asymptotic tools, since the matrices of a
generic model of deep networks going beyond the committee machine [15] or our ensembling models
of Chapter 11 immediately lead to extensive rank weight matrices.
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Beyond convexity We have seen that convexity is crucial and quite convenient to study the
exact asymptotics of landscapes : it enables to characterize in an intuitive, stable, and algorithmi-
cally reachable way the solution of optimization problems, using Moreau envelopes and proximal
operators. It would be interesting to attempt to study more complex landscapes by finding equiv-
alents of the proximity operators for multi-convex functions [122], where functions are assumed to
be block-convex in their arguments, i.e. convex in one set of variables when the other variables
are fixed. A possible idea would be to consider the corresponding block-proximal operators, which
would solve subproblems defining metastable states for one set of variable at a time while the others
are fixed. We note that defining simpler landscapes by freezing variables and/or order parameters
is reminescent of Franz-Parisi potentials [99].
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The gaussian equivalence of generative models for learning with two-layer neural networks, in
Mathematical and Scientific Machine Learning, 2021.
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[193] M. Mézard, The space of interactions in neural networks: Gardner’s computation with the
cavity method, Journal of Physics A: Mathematical and General, 22 (1989), p. 2181.

[194] , Mean-field message-passing equations in the hopfield model and its generalizations, Phys-
ical Review E, 95 (2017), p. 022117.

[195] M. Mezard and A. Montanari, Information, physics, and computation, Oxford University
Press, 2009.
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MOTS CLÉS

Physique statistique, Apprentissage Statistique, Probabilités en haute dimension, Analyse convexe, Théorie de
l’information, Optimisation

RÉSUMÉ

Les succès pratiques récents de l’apprentissage automatique dans toutes les tâches qui impliquent de l’analyse de données
ont provoqué le besoin d’une théorie allant au-delà des statistiques classiques. A cet égard, le domaine de la physique
statistique des milieux désordonnés propose une littérature conséquente dans l’analyse asymptotique exacte de systèmes
aléatoires en grandes dimensions. Bien qu’ils soient efficaces, de nombreux outils issus de la physique statistique ne sont
pas rigoureux et les modèles auxquels ils sont appliqués manquent de liens avec des scénarios réalistes d’apprentissage
statistique. Cela motive l’introduction de modèles avec des données structurées et des méthodes d’apprentissage plus
proches de l’état de l’art, ainsi que l’extension des méthodes de preuves existantes à ces problèmes. Cette thèse s’intéresse
donc aux propriétés mathématiques d’une famille de fonctions implicites de grandes matrices aléatoires rencontrées en
apprentissage supervisé ainsi qu’en inférence, notamment dans le contexte de la minimisation de risque empirique con-
vexe. Nous établissons tout d’abord une extension des résultats de concentration existants pour la dynamique d’algorithmes
de passage de messages approximés, et illustrons cette théorie sur des problèmes d’inférences dans des modèles prob-
abilistes génératifs convolutionels multicouches. Nous montrons également que des méthodes de preuves similaires
permettent d’obtenir des résultats asymptotiques pour la dynamique de la descente de gradient stochastique avec des
données aléatoires. Nous utilisons ensuite ces résultats pour étudier le comportement statistique d’une famille de modèles
linéaires généralisés convexes sous l’hypothèses de données aléatoires qui incluent des transformations de prédicteurs et
de données allant au-delà de l’hypothèse i.i.d. Gaussienne, l’aggrégation de prédicteurs, les problèmes multiclasses, et
différentes régularisations. Les évaluations numériques des formules établies montrent que, pour de nombreux modèles et
tâches d’apprentissage, les courbes de performance obtenues par les prédictions théoriques correspondant à des modèles
synthétiques Gaussiens corrélés dont les matrices de covariance sont celles des données empiriques, capturent exactement
les courbes des problèmes réels. Les méthodes de preuve sont basées sur les éléments de théorie des probabilités inspirés
de la physique statistique des verres de spin, l’optimisation et l’analyse convexe.

ABSTRACT

The recent empirical success of machine learning in all fields involving data analysis has prompted the need for a quantitative
theory that goes beyond classical statistics. In this regard, the field of statistical physics of disordered systems proposes a
rich litterature in the asymptotically exact study of high-dimensional random systems. Although they are efficient, many of the
tools found in statistical physics are non-rigorous and the models they are applied to lack links with realistic machine learning
scenarios. This motivates the introduction of models with structured data and learning methods that are closer to the state
of the art, as well as the extension of existing proof methods to those problems. With this goal in mind, the present work
deals with the mathematical properties of a family of implicit functions of large random matrices encountered in supervised
learning and inference, notably in the context of convex empirical risk minimization. We first establish an extension of existing
concentration results for the dynamics of approximate message passing algorithms, and illustrate this theory on inference in
probabilistic models with multilayer random convolutional generative priors. We also show how related ideas enable to obtain
the high-dimensional dynamics of stochastic gradient descent with random data. We then use those results to study the
statistical behaviour of a family of convex generalised linear models under the random design hypothesis including feature
maps and data models going beyond the i.i.d. Gaussian setting, ensembling of predictors, multiclass problems and different
regularisations. We also show numerically that for a wide range of tasks and realistic feature maps, the learning curves
obtained from the theoretical prediction corresponding to the synthetic Gaussian models with matching covariances exactly
capture those of the original problems. The proof methods are based on the elements of probability theory inspired by the
statistical physics of spin glasses, optimization and convex analysis.
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