
HAL Id: tel-04199411
https://theses.hal.science/tel-04199411

Submitted on 7 Sep 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Handling domain knowledge in system design models.
An ontology based approach.

Kahina Hacid

To cite this version:
Kahina Hacid. Handling domain knowledge in system design models. An ontology based approach..
Distributed, Parallel, and Cluster Computing [cs.DC]. Institut National Polytechnique de Toulouse -
INPT, 2018. English. �NNT : 2018INPT0018�. �tel-04199411�

https://theses.hal.science/tel-04199411
https://hal.archives-ouvertes.fr

En vue de l'obtention du

DOCTORAT DE L'UNIVERSITÉ DE TOULOUSE
Délivré par :

Institut National Polytechnique de Toulouse (INP Toulouse)
Discipline ou spécialité :

Sureté de Logiciel et Calcul à Haute Performance

Présentée et soutenue par :
Mme KAHINA HACID
le mardi 6 mars 2018

Titre :

Unité de recherche :

Ecole doctorale :

Handling domain knowledge in system design models. An ontology based
approach.

Mathématiques, Informatique, Télécommunications de Toulouse (MITT)

Institut de Recherche en Informatique de Toulouse (I.R.I.T.)
Directeur(s) de Thèse :
M. YAMINE AIT AMEUR

Rapporteurs :
M. ANTOINE BEUGNARD, TELECOM BRETAGNE CAMPUS DE BREST

Mme REGINE LALEAU, UNIVERSITE PARIS 12

Membre(s) du jury :
M. DOMINIQUE MERY, UNIVERSITÉ LORRAINE, Président

M. LAURENT ZIMMER, DASSAULT AVIATION, Membre
M. YAMINE AIT AMEUR, INP TOULOUSE, Membre

Abstract

Complex systems models are designed in heterogeneous domains and this heterogene-
ity is rarely considered explicitly when describing and validating processes. Moreover,
these systems usually involve several domain experts and several design models cor-
responding to different analyses (views) of the same system. However, no explicit
information regarding the characteristics neither of the domain nor of the performed
system analyses is given.

In our thesis, we propose a general framework for complex systems models strength-
ening and multi-view analysis. We offer first, means for the formalization of domain
knowledge using ontologies and second, the capability to strengthen design models by
making explicit references to the domain knowledge formalized in these ontology. Fi-
nally, this framework provides resources for making explicit the features of an analysis
by formalizing them within models qualified as "points of view".

We have set up two deployments of our approach: a Model Driven Engineering
(MDE) based deployment and a formal methods one based on proof and refinement.

The general framework has been applied to several case studies issued from en-
gineering domain. Prototypes corresponding to the deployment of our approach in
the MDE and Formal methods settings have been developed, and deployed. Experi-
ments with MDE based techniques have been conducted on the particular engineering
domain of avionic systems.

The work presented in this thesis has been developed as part of the AME Corac-
Panda project and ANR-IMPEX project.

i

Acknowledgments

I would like to address my thanks to all the people who have helped me and have
contributed to the completion of this thesis.

First, I would like to thank my PhD director Yamine Aït-Ameur for offering me
a PhD position on such an interesting research issues. His guidance helped me in the
time of research and writing of this thesis. I would also like to thank him for leading
and connecting me with ANR-IMPEX and AME-CORAC PANDA research projects
that dealt with issues of high scientific interest which undoubtedly enriched my work
and my research.

I would like to sincerely thank Regine Laleau and Antoine Beugnard who have
reviewed this thesis. Thank you for having carefully examined my work and pro-
vided valuable feedback and constructive suggestions. I also thank them as well as
Dominique Méry and Laurent Zimmer for accepting to be part of my defense com-
mittee.

I would like to thank the colleagues with whom I was pleased to daily evolve and
work with. To the PhD students colleagues I would like to say that work would just
not have been same without all the good times we spent together. I thank Guillaume
in particular for his guidance during my first months as a PhD student. I sincerely
thank Soukayna, Mathieu, Sarah and Alexandra for their kindness, support and help.
I am very grateful to you four.

Many thanks to Sylvie Armengaud and Annabelle Sansus. Thanks to their efficient
and scrupulous work, I have been able to enjoy my work at ENSEEIHT without
worrying about scholar administrative problems.

I want to express my deep gratitude to my family for their support and the con-
stant encouragement I have received from them over the years. Especially my parents
who always have been extremely supportive of me and who have made countless sac-
rifices all along my life to help me get to this point. Thank you all for your faith in
me. I undoubtedly could not have done this without you and words cannot express
how grateful I am to you.

iii

Last but not least, I would like to thank Adel for his unfailing support. He has
been on my side all along my PhD. I deeply value his implication and his belief in
me. I can not thank you enough for your constant encouragement, your patience and
all the precious advice that helped me getting through so many difficult and stressful
times.

iv

1

Contents

I Context

Introduction 3
Problem statement . 4
Research goals . 4
Complex systems design methods . 5

Model Driven Engineering . 5
State-based formal methods . 6
Event-B formal method . 6

Contributions . 8
Publications . 8
Associated projects . 9

1 Ontologies and domain knowledge 11
1.1 Domain ontologies . 11

1.1.1 Some fundamental characteristics 12
1.1.2 An example of ontology . 13

1.2 Ontology modeling languages . 13
1.2.1 Main ontology modeling languages characteristics 14

1.3 Ontologies in engineering . 16
1.4 Ontologies v.s. design models . 17
1.5 Ontologies and annotations . 17
1.6 Ontologies and multi-view modeling 19
1.7 Thesis outline . 20

23II Contributions

2 General framework 25

v

CONTENTS

2.1 Handling domain knowledge in design and analysis of engineering mod-
els: global approach . 25

2.2 Ontologies formalization . 26
2.3 Strengthening design models using domain models: an annotation

based approach . 27
2.4 Multi-view modeling . 29
2.5 The Diplomas case study . 31

2.5.1 Additional requirements for students registration 31
2.5.2 Application of the general framework on the Diplomas case study 32

2.6 Conclusion . 33

3 General framework: MDE setting 35
3.1 Ontologies formalization . 35
3.2 Strengthening design models using domain models: an annotation

based approach . 38
3.2.1 Step 1. Domain knowledge formalization 38

3.2.1.1 An ontology for the Diplomas case study 38
3.2.2 Step 2. Model specification and design 40

3.2.2.1 A design model for the Diploma case study 40
3.2.3 Step 3. Model annotation . 41

3.2.3.1 Core classes for model annotation 42
3.2.3.2 Model annotation: three identified cases 43
3.2.3.3 The Diploma case study annotation 44

3.2.4 Step 4. Properties verification 45
3.2.4.1 The Diplomas case study verification 46

3.3 Multi-view modeling . 47
3.3.1 The core model elements . 47

3.3.1.1 Step 1. Model of point of view definition 48
3.3.1.2 Step 2. System design model definition 50
3.3.1.3 Step 3. Building the view 50

543.4 Conclusion .

4 General framework: Event-B formal method setting 55
4.1 Ontologies formalization . 55

4.1.1 Shallow modeling . 56
4.1.2 Deep modeling: ontology language formalization within a context 57
4.1.3 Our ontologies formalization: deep modeling 57

vi

CONTENTS

4.1.3.1 Canonical concepts 58
4.1.3.2 Non-canonical concepts 60
4.1.3.3 Ontological relationships composition 63

4.1.4 An example of ontologies . 64
4.1.4.1 Ontology for diplomas: Is_a and equivalence 64
4.1.4.2 Ontology for diplomas: use of the restriction operator 65

4.1.5 Deduction rules and theorems 67
4.2 Strengthening design models using domain models: an annotation

based approach . 68
4.2.1 Step 1. Domain knowledge formalization 68

An ontology for the Diplomas case study 69
4.2.2 Step 2. Model specification and design 69

A design model for the Diplomas case study 70
4.2.3 Step 3. Model annotation . 72

The Diploma case study annotation 73
4.2.4 Step 4. Properties verification 74

The Diploma case study verification 74
4.3 Multi-view modeling . 74

4.3.1 Step 1. Model of point of view 74
A point of view for the Diplomas case study 75

4.3.2 Step 2. System design model 76
A design model for the Diplomas case study 77

4.3.3 Step3. View . 77
Diplomas factory view . 78

4.4 An overview of the global Event-B deployment 79
804.5 Conclusion .

5 Tools implementation 83
5.1 MDE context . 83

5.1.1 Eclipse Modeling Framework 83
5.1.2 Sirius . 84
5.1.3 MDE based tool creation workflow 84

5.2 MDE based implementation . 85
5.2.1 Overview of the global architecture 85
5.2.2 Implementation detail . 85
5.2.3 The Ecore meta-model . 86

vii

CONTENTS

5.2.3.1 Implementation of the model annotation tool 87
5.2.3.2 Implementation of the multi-view analysis tool . . . 90

5.3 Extension 1. Handling model annotation 90
5.3.1 Creating an annotation project 90
5.3.2 The annotation editor . 92
5.3.3 Annotation by association . 92
5.3.4 Annotation by Case_of . 93

5.4 Extension 2. Handling multi-analyses of models 95
5.4.1 View editor . 95
5.4.2 Building a view . 96

5.5 The Event-B context . 97
5.6 Conclusion . 97

6 Validation on embedded systems 99
6.1 Avionic real-time case study . 99
6.2 Annotation of the Avionic real-time meta-model 100

6.2.1 Step 1. Domain knowledge formalization 100
6.2.2 Step 2. Model specification and design 102
6.2.3 Step 3. Model annotation . 103
6.2.4 Avionic real-time enriched meta-model 106

6.3 Multi-view analysis . 109
6.3.1 Real-time point of view . 109
6.3.2 Building the avionic real-time view. 110
6.3.3 The exchange process . 112

6.4 Conclusion . 112

113III Conclusion

Conclusion 115
Conclusion . 115

116Perspectives .

Bibliography 119

viii

List of Figures

1 Basic definitions: contexts, machines and proof obligations. 7

1.1 The Pizza ontology . 14

2.1 General framework for design and analysis of engineering models. . . 26
2.2 A four steps methodology for handling domain knowledge in models. 28
2.3 A generic approach for multi-view modeling. 30
2.4 General workflow of the student information system. 32

3.1 Ontology modeling language meta-model. 36
3.2 Equivalence relationship: Transitivity property expressed in OCL. . . 37
3.3 The Diplomas ontology. 39
3.4 Engineering student model. 40
3.5 Formalization of phdInscritpion constraint. 41
3.6 Core classes for model annotation. 42
3.7 Annotations mechanisms . 43
3.8 Annotation of Student model. 45
3.9 Algorithm of the verification process 46
3.10 The OCL constraint phdInscritpion after annotation. 47
3.11 Student information system model instance. 47
3.12 Core classes for multi-view modeling 48
3.13 The diplomas factory point of view. 49
3.14 Diplomas factory view. 52
3.15 Diplomas factory view instance. 53

4.1 Global Event-B deployment process. 80

5.1 Workflow of the creation of a tool based on EMF and Sirius. 84
5.2 Implementation of the solution based on EMF and Sirius. 85
5.3 Implementation of the solution with Eclipse EMF. 86
5.4 Ecore meta-model . 87

ix

LIST OF FIGURES

5.5 Annotation meta-model . 88
5.6 The View meta-model to select the required concepts. 90
5.7 Create an annotation project. 91
5.8 Annotation project repertories. 91
5.9 Annotation diagram. 92
5.10 An example of annotation: Association. 92
5.11 Annotation by Association: A property mapping. 93
5.12 An example of annotation: Case_of. 94
5.13 Case_of properties editor. 94
5.14 Overview of the view editor. 96
5.15 Required properties selection in the view editor. 96

6.1 Global integrated approach for real-time analysis 99
6.2 Avionic platform ontology. 101
6.3 Avionic RealTime meta-model. 104
6.4 An extract of annotation of the Corac meta-model. 105
6.5 Enriched avionic real-time meta-model. 107
6.6 An example instance of the enriched Corac metamodel. 108
6.7 Real-time point of view. 109
6.8 Importing realTimePDV class. 110
6.9 View model built with the required properties imported from Corac

meta-model . 111
6.10 Obtained view instance. 111

x

Part I

Context

1

Introduction

As part of the system engineering and complex system design, the models designed
by engineers are placed at the center of the development process of the understudied
system. Engineers use them to describe, reason, analyze, simulate, animate, validate,
verify, etc. systems operating in different environments, domains and contexts. In
addition, these models correspond to partial views of the studied system (e.g. func-
tional, real-time, energy, mechanics, reliability, architecture, etc.). This engineering
development process leads to the production of several heterogeneous models address-
ing the same system. These models are designed to handle specific analyses. They
are qualified as "design models".

In this context, the most important heterogeneity factors, in addition to the one of
the modeling languages, are those related to information, knowledge and assumptions
of the underlying studied domain (environment and context of implementation and
execution of the designed systems) that are implicitly considered by this engineering
development process. Indeed, domain knowledge information is usually not explicitly
handled and therefore not explicitly included in the models associated to the system
under design that may be a critical system.

Moreover, modeling languages are not equipped with operators (or mechanisms)
that may support domain knowledge modeling. In fact, although these models are
developed in accordance with standards and good practices, an important amount
of knowledge, required for model interpretation and validation, remain implicit. As
a consequence, a system may be considered as correct with respect to the initial
requirements but, it can miss some of its relevant properties if the information related
to its application domain are not handled in the design model. A simple illustrative
example would be considering a system which allows the execution of an addition of
two integer variables X and Y (i.e X+Y), which can be invalidated if information
from its application domain states that X is measured in meters and Y in miles is
made explicit.

3

Finally, in most of the developments, there is no explicit information regarding the
characteristics of the performed system analyses. In fact, the system developer usually
uses only part of the system model for a specific activity (an analysis to be performed
on the model) and thus, some concepts of the design model may be not useful for
a given analysis. For example, real-time analysis does not require all the functional
concepts of the analyzed system. There is no explicit definition of the concepts of a
given model required by a given model analysis. Moreover, when performing model
analysis, the system developer does not explicitly describe the analysis that he/she
used. In order to take design decisions, another system developer needs the whole
information and hypotheses related to the realized system model analyses. Indeed, the
result of an analysis may interfere with the input and the results of another analysis.
Thus information regarding the used method, tool, properties for an analysis may be
needed to best evaluate its corresponding output result. The system developer needs
to know for example: what are the performed model analyses (tool, method, input,
output, etc.)? What are the hypotheses made by the other analyses? And what are
the parts of the system that have been analyzed?

Problem statement

Based on our observation outlined previously, our general research problem issued
from engineering design processes can be formulated as:

How to make explicit domain knowledge in design and multi-view
analysis of system design models?

Research goals

Taking into account the previous discussion, the objective of our thesis research work
is to propose a sound and operationalized approach for design models strengthening
and multi-view analysis. Decomposing this overall research objective, we formulate
three research goals addressed in our thesis work.

1. Provide a formal framework supporting the explicit modeling of domain knowl-
edge. [RG1]

2. Establish an explicit link or reference between domain knowledge models and
the design models and thus, express the properties entailed by the domain
knowledge reference on the enriched design models. [RG2]

4

3. Make explicit the information regarding the characteristics of system analyses
in a multi-view analysis context and report multi-view analyses results in the
whole system development. [RG3]

Complex systems design methods

Design models are expressed in different heterogeneous modeling languages (textual,
graphical, semi-formal, formal, etc.) and are analyzed using different verification and
validation methods (some methods being more formal than others). MDE is a promis-
ing approach for the design of complex systems, it allows the modular representation
of the system and thus the separation of concerns.

In the following we recall some notions and concepts related to modeling, model-
ing languages in the context of both MDE and formal methods that we have made
extensive use of in our thesis work.

Model Driven Engineering

MDE brought several significant improvements to the development cycle of complex
systems allowing system developers to focus on more abstract levels than classical
programming level. MDE is a form of generative engineering [87] in which all or part
of an information system is generated from models. A system can be described by
several models corresponding to several views or abstraction levels. These models are
often described using either graphical or textual notations supported by semi-formal
modeling languages. These languages support the description and representation
of both structural, descriptive and behavioral aspects of a system. The capability
to define constraints that limit the interpretation domain of models is offered using
constraints definition languages. In this context, UML[77], the MOF[75] and OCL[78]
play the role of standard, they are widely and commonly used by the MDE community.

Moreover, MDE handles models at different development stages of a system devel-
opment life-cycle. MDE offers several techniques to automate different development
steps. Indeed, model operationalization for code generation, documentation, testing,
validation, verification, implementation and model analysis are available. These tech-
niques use the capability to transform source models either to other target models in
order to get benefits from the available analysis techniques offered by the target mod-
eling technique or to source code in a given programming language. Transformations
are defined by means of transformation rules describing the correspondences between
the entities in the source model and those of the target model. This transformation

5

process is automated as much as possible by means of processing programs, which
are in most cases developed in general purpose languages (e.g Java) or in dedicated
transformation modeling languages (e.g ATL1, Kermeta2, QVT [76]).

State-based formal methods

[94] defines formal methods as " mathematically-based techniques for describing sys-
tem properties. They provide frameworks within which people can specify, develop and
verify systems in a systematic rather than ad hoc manner". In [18] formal methods
"provide a notation for the formal specification of a system whereby the desired proper-
ties are described in a way that can be reasoned about, either formally in mathematics
or informally but rigorously".

State-based formal methods is a category of formal methods where a system is
specified in terms of states and transitions between states. States are explicitly de-
scribed using a set of variables and their possible range of values and transitions
are defined by events formalizing the operations on the system states. Pre and post-
conditions [52] [31] are usually associated to these events. State-based formal methods
can be associated to a refinement mechanism to support an incremental description
of a system leading from an abstract level to a more concrete one.

State-based formal methods are usually used to guarantee safety, security reach-
ability, etc. properties within critical systems. Many examples can be found in the
literature, we can cite Z[86], VDM[62], TLA[66], B[5], EVENT-B[6]. These methods
are associated to tools supports like PROMELA/Spin[53] and Rodin[58], TINA[11],
ProB[67] offering formal modeling, verification, animation and model-checking capa-
bilities.

In this thesis, we choose to use the Event-B state-based formal method to model
and prove the correctness of our systems. The Event-B method is considered as an
evolution of the B method. It is based on set theory and first order logic and its
details are given is the next section.

Event-B formal method

The Event-B method [6] is a stepwise formal correct-by-construction development
method. It is based on the refinement of an initial model, a machine, by gradu-
ally adding design decisions. A set of proof obligations (PO), based on the weakest

1ATLAS Transformation Language: http://www.eclipse.org/atl/
2Kermeta: http://www.kermeta.org/

6

CONTEXT MACHINE
ctxt_id_2 machine_id_2

EXTENDS REFINES
ctxt_id_1 machine_id_1

SETS SEES
s ctxt_id_2

CONSTANTS VARIABLES
c v

AXIOMS INVARIANTS
A(s, c) I(s, c, v)

THEOREMS THEOREMS
Tc(s, c) Tm(s, c, v)

END VARIANT
V (s, c, v)

EVENTS
Event evt =
any x
where G(s, c, v, x)
then
v : |BA(s, c, v, x, v′)

end
END

(a) Contexts and machines.

Theorems A(s, c)⇒ Tc(s, c)
A(s, c) ∧ I(s, c, v)⇒ Tm(s, c, v)

Invariant preservation A(s, c) ∧ I(s, c, v) ∧G(s, c, v, x)
∧BA(s, c, v, x, v′)⇒ I(s, c, v′)

Event feasibility A(s, c) ∧ I(s, c, v) ∧G(s, c, v, x)
⇒∃v′.BA(s, c, v, x, v′)

Variant progress A(s, c) ∧ I(s, c, v)
∧G(s, c, v, x) ∧BA(s, c, v, x, v′)
⇒V (s, c, v′) < V (s, c, v)

(b) Generated proof obligations for a model.

Figure 1: Basic definitions: contexts, machines and proof obligations.

precondition calculus[31], is associated to each machine. Development correctness is
guaranteed by proving these PO.

An Event-B model [6] (see figure 1(a)) is defined by a MACHINE. It encodes a
state transitions system which consists of: the variables declared in the VARIABLES
clause to represent the state; and the events declared in the EVENTS clause to rep-
resent the transitions (defined by a Before-After predicate BA) from one state to
another.

The model holds also INVARIANTS and THEOREMS to represent relevant prop-
erties of the defined model. Then a decreasing VARIANT may introduce convergence
properties when needed. An Event-B machine is related, through the SEES clause
to a CONTEXT which contains the relevant sets, constants axioms, and theorems
needed for defining an Event-B model. The refinement capability [7], introduced by
the REFINES clause, decomposes a model (thus a transition system) into another
transition system with more design decisions while moving from an abstract level to a
less abstract one. New variables and new events may be introduced at the refinement
level. In a refinement, the invariants shall link the variables of the refined machine
with the ones of the refining machine. A gluing invariant is introduced for this pur-
pose. It preserves the proved properties and supports the definition of new ones.
Once an Event-B machine is defined, a set of proof obligations is generated. They
are submitted to the embedded prover in the RODIN [6] platform. Here the prime

7

notation is used to denote the value of a variable after an event is triggered. More
details on proof obligations and on the Event-B method can be found in [6].

Contributions

Our research method is inspired by practice and the modularity decomposition prin-
ciple has been followed.

1. To address RG1, we have described domain knowledge as theories. Domain
ontologies are used for this purpose. Indeed, we believe that ontologies are
good candidates for describing and making explicit a domain knowledge[10].

2. A formal explicit link between design models and domain ontologies has been
established to addressRG2. In fact, annotation of model resources by references
to ontologies makes it possible to handle domain knowledge in design models.

3. RG3 is reached through the definition of explicit models that describes the
whole features of an analysis, and uses the contribution associated to RG2 to
link these analyses to design models.

Publications

This section gives an overview of the published papers related on thesis work.

• Paper A. [44] Strengthening MDE and formal design models by references
to domain ontologies. A model annotation based approach. Kahina HACID,
Yamine Ait-Ameur. 7th International Symposium On Leveraging Applications
of formal methods, verification and validation, Corfu, Greece, Springer, Octo-
ber 2016.

• Paper B. [41] Handling Domain Knowledge in Formal Design Models: An
Ontology Based Approach. Kahina HACID, Yamine Ait-Ameur. 7th Interna-
tional Symposium On Leveraging Applications of formal methods, verification
and validation, Corfu, Greece, Springer, October 2016.

• Paper C. [45] Annotation of engineering models by references to domain on-
tologies. Kahina HACID, Yamine Ait-Ameur. 6th International Conference
on Model and Data Engineering , Almeria, Spain, Springer, September 2016.

8

• Paper D. [43] Handling Domain Knowledge in Design and Analysis of De-
sign Models. Kahina HACID, Yamine Ait-Ameur. 7th International Sympo-
sium On Leveraging Applications of formal methods, verification and validation,
Corfu, Greece, EASST, journal paper.

Associated projects

Our thesis work has been conducted in the context of two research projects : The
AME-CORAC project and ANR-IMPEX project.

• AME-CORAC project. 3 Avionic Modular Elements - COnseil pour la
Recherche Aéronautique Civile. addresses design and validation of an in-
novative architecture for embedded avionic systems.

• ANR-IMPEX project. 4 Agence Nationale de la Recherche - IMplicitExplicit.
is about integration of implicit and explicit semantics of knowledge domains in
a proof based environment. It is based on the use of state-based formal methods
and ontologies.

3http://aerorecherchecorac.com/
4http://www.agence-nationale-recherche.fr/Projet-ANR-13-INSE-0001

9

Chapter 1

Ontologies and domain knowledge

Ontologies have drawn a lot of efforts and interest within the computer-science com-
munity. First, a lot of efforts have been devoted to the study of ontologies and their
applications in the area of semantic web and information retrieval. Several approaches
for describing, designing and formalizing ontologies for these application domains have
been proposed by many authors.

In this chapter, we give an overview of domain ontologies , their characteristics
and their different domains of use.

1.1 Domain ontologies

Gruber defines an ontology as an explicit specification of a conceptualization [37]. We
consider a domain ontology as a formal and consensual dictionary of categories and
properties of entities of a domain and the relationships that hold among them [61].
By entity we mean being, i.e, any concept that can be said to be in the domain. The
term dictionary emphasizes that any entity of the ontology and any kind of domain
relationship described in the domain ontology may be referenced directly, for any
purpose and from any context, independently of other entities or relationships, by a
symbol. This identification symbol may be either a language independent identifier,
or a language-specific set of words. But, whatever this symbol is, and unlike in a
linguistic dictionary, this symbol denotes directly a domain entity or relationship,
the description of which is formally stated providing for (automatic) reasoning and
consistency checking.

Ontologies have drawn a lot of efforts and interest within the computer-science
community. First a lot of efforts have been devoted to the study of ontologies and their
applications in the area of semantic web and information retrieval. Several approaches
for describing, designing and formalizing ontologies for these application domains

11

CHAPTER 1. ONTOLOGIES AND DOMAIN KNOWLEDGE

have been proposed by many authors. Models [24, 19, 79, 51, 84, 82], browsers
like Protege1 [65, 1] or PlibEditor2, reasoners [14, 39, 40, 74], annotators [29, 46],
XML-based translators [20, 91] have been developed to engineer such ontologies and
establish formal links with the studied domain objects like texts, images, videos,
signals, . . .Most of these approaches paid a lot of attention to the use of ontologies
to interpret these objects and/or provide classifications of these interpreted objects.

1.1.1 Some fundamental characteristics

A domain ontology is an explicit conceptualization of domain entities and relation-
ships. As mentioned in [54] [10], ontology definitions will fulfill four fundamental
criteria [60].

1. Formality. An ontology is a conceptualization with an underlying formal se-
mantics and equipped with reasoning capabilities. It is expressed within a
modeling language equipped with a satisfaction relationship (|=O) offering in-
terpretation capabilities (e.g. checking that an instance belongs to the model
defined by the ontology) and an entailment relationship (`O) to handle proofs
(e.g. proving that a statement can be derived from axioms and theorems de-
fined by the ontology). As a consequence, checking properties expressed over
the ontology-defined concepts and individuals becomes possible thanks to the
associated theory, either by automatic or semi-automatic reasoning techniques.

2. Consensuality. Agreement on the conceptualization defined by an ontology
will be reached for a large community of users. This community is not restricted
to users or to developers of a specific application: it gathers all the potential
users and developers of other applications related to the conceptualized domain.
Consequently, an ontology will be shared by several applications and design
models. For example, ISO13584-compliant (PLIB) [82, 84] product ontologies
are defined according to a formal standardization process. They are published
as ISO and/or IEC international standards. This criterion excludes conceptual
models defined for a specific application.

3. Capability to be referenced. As stated in the previous definition, each
concept defined in an ontology is associated to an identifier or URI (Uniform
Resource Identifier) provided to allow applications to refer this concept from any

1http://protege.stanford.edu/
2http://www.plib.ensma.fr/

12

1.2 Ontology modeling languages

environment. Moreover, this concept can be referenced whatever the ontology
model is set up to describe this concept.

4. Canonical and non canonical. One other important characteristic is related
to the design process. In the case of the engineering domain, ontologies are built
from canonical (primitive) concepts, then non canonical (derived) concepts are
defined from canonical ones by composition of derivation operators (restriction,
union, intersection, algebraic operators, etc.) available in the ontology modeling
language. Note that terms are associated to each concept.

1.1.2 An example of ontology

Figure 1.1 depicts an extract of the well-known Pizza domain ontology example which
was developed by the University of Manchester for educational purposes. It formalizes
all the domain information related to the Pizzas and their topping. Thing is the root
ontology concept from which every other pizzas concepts (and any other ontology)
are subsumed using a is_a relationship (inheritance or subsumption relationship).
This kind of relationship is used to construct a hierarchy and organize the domain
concepts.

The domain knowledge can be split to two abstract concepts: Pizzas and Topping
respectively representing all the existing pizzas and all their possible topping. Domain
properties and relationships are also formalized. hasTopping property is defined (as
a Restriction relationship) for example on the Margherita pizza to describe that this
kind of pizza is only composed of some Tomato and some Mozzarella topping.

Domain instances are attached to the formalized pizza classes. For example, Mar-
garita_domino’s and Margharita_Hut are defined as instances of Margharita. In the
same way, instances of other type of pizzas can be formalized.

Ontologies are descriptive models of a given domain. Thus, they can always evolve.
For the Pizza ontology example, new kind of pizzas, topping and instances (if new
pizza stores open, etc) can be added and described in this ontology.

1.2 Ontology modeling languages

Several ontology modeling languages were developed during last ten years, as for
example, Ontolingua [33] for artificial intelligence applications, DAML+OIL [24],
RDFS [19] and OWL [79, 51] for Web applications, and PLIB [84, 82] for engineering

13

CHAPTER 1. ONTOLOGIES AND DOMAIN KNOWLEDGE

Thing

Topping
Pizza

Veggie
Pizza

Mushroom
Pizza

Seafood
Pizza

Margharita

Veggie
Topping

Cheese
Topping

Seafood
Topping

Mushroom Tomato Mozarella Roquefort

Meat
Topping

hasToppinghasTopping

hasTopping

Is_a

Margharita
Domino’s

Margharita
Hut

Is_a

Is_a Is_a

Is_
a

Is_a
Is_a

Is_
aIs_a

Is
_a

Is_a

Is_a

Is_a

Is
_a

ins
tan
ce
Of

in
st
an
ce
O
f

Figure 1.1: The Pizza ontology

applications. [73] have developed the OntoEventB plug-in to automatically support
the translation of ontologies models, described using ontology description languages
such as OWL, PLIB or RDFS, into Event-B Contexts. The shallow modeling ap-
proach has been chosen to describe translated ontologies in Event-B.

1.2.1 Main ontology modeling languages characteristics

In [32] [54], authors have identified some relevant characteristics associated to ontol-
ogy modeling languages. These characteristics have been extended with new ones in
order to handle the system engineering aspects.

• Words and concepts. Ontology modeling languages offer the capability to
describe words and concepts. Various relationships are offered by these lan-
guages: between words, between concepts and between words and concepts.
The presence of such relationships leads to two ontologies design processes [60]:
from words to concepts (e.g. semantic web) or from concepts to words (e.g.
engineering catalogues).

• Strong typing. Ontology modeling languages are equipped with a type system
characterizing classes, properties, relationships and domain values. According
to the modeling language, this type system may be more or less a strong type
system. For example, the PLIB ontology modeling language uses a strong typing
system (e.g. unit types are built-in types) while description logics do not require

14

1.2 Ontology modeling languages

strong typing. Types are useful for indexation, and thus for the definition of
persistent frameworks like semantic databases [21, 28, 80, 49, 81, 89] to store
both ontologies and their instances.

• Algebraic operators may be associated to the types available in the ontology
language. Operators on classes like union, intersection, etc. are available in
most of the ontology modeling languages. For example, operators on reals,
are available in the PLIB ontology model. They make it possible to express
property derivation (e.g. diameter equals two times a radius). These defined
algebraic operators define abstract data types and give complete definition of
the data types discussed above.

• Constraints description constructs are offered by the ontology modeling lan-
guage to define constraints on classes, properties or on whole ontology. In the
engineering domain, the more the constraint description language is rich, the
more the expressed concepts of the ontologies are precisely described. Checking
these constraints depends on the used constraint solving techniques associated
to the ontology modeling language.

• CWA v.s. OWA. Closed world assumption (CWA) implies that a complete
knowledge is known and, if a fact is not a consequence of the ontology model,
then its negation is, while in open world assumption (OWA) this reasoning is no
longer available. In general, CWA is used in system engineering, while semantic
web considers OWA.

• Context modeling. In the engineering domain, the context in which a prop-
erty is defined is important [83]. At the ontology level, the domain of a context
dependent property is not only its class, but it is also a context description
(usually a class). For example, the definition of the lifetime (property) of a tyre
(class) depends on the average temperature of use (context of use). Note that
PLIB offers built-in constructs for such properties.

• Inheritance and instantiation. Classes may be linked by single or multiple
inheritance relationships. Inheritance helps to factorize objects with the same
properties, it also contributes to the definition of the subsumption relationship.
Instances of a class represent the individuals, and an individual may belong to a
single class (mono-instantiation) or to several classes (multi-instantiation). On-
tology modeling languages offer different forms of inheritance and instantiation.

15

CHAPTER 1. ONTOLOGIES AND DOMAIN KNOWLEDGE

For example OWL supports multiple inheritance and multi-instantiation while
PLIB supports single inheritance and mono-instantiation.

• Reasoning. In ontology engineering, reasoning essentially concerns subsump-
tion (e.g. to link ontologies classes in case of integration), class membership
checking (e.g. for migration of instances from one ontology class to another
one) and classification (e.g. to build new class hierarchies according to some
criteria). Other logical aspects of reasoning concern the specific properties of
the underlying logic like symmetry, reflexivity, equivalence etc are useful for
knowledge inference. Different reasoning techniques and tools have been de-
fined [14, 39, 40, 74]. Like for model checking, these approaches may face the
problems of memory saturation or space exploration. Other reasoning tech-
niques more commonly used by formal methods have also been set up to handle
proof of properties in ontologies. These approaches, which proved scalable, use
theorem provers like COQ [12, 27] or Event-B [8] to infer ontologies properties.

• Exchange formats. All the ontology modeling languages offer exchange for-
mats based on the XML language. When expressed in this exchange format,
classes and their instances can be interpreted in different contexts of use.

1.3 Ontologies in engineering

Our work does not address semantic web applications. Our thesis is involved in the
engineering area. Thus, we focus on domain ontologies where the whole knowledge
on the domain is described in the provided ontology. Due to the system engineering
targeted application domain, we use ontologies conforming to the PLIB ontology
model [9, 38, 85, 56]. This ontology model advocates the use of strong typing with
a rich type system (similar to the one of a programming language specific types
like units), property derivation with algebraic operators corresponding to the defined
types, first order logic and set theory as a constraint language, CWA and context
dependent properties.

Like in usual engineering practices and unlike OWL, additional models may be
added to a technical object description. Indeed, a set of different functional mod-
els, each one representing a particular view or discipline-specific representation (e.g.,
safety, real time, energy consumption, geometry procurement, simulation, etc.) can
be associated to a given technical object described within the PLIB ontology model.

16

1.4 Ontologies v.s. design models

Finally, a number of domain ontologies based on this model already exist. Ex-
amples are the ISO 13584 and ISO 15926 (e.g. mechanical fasteners, measure in-
struments, cutting tools) and IEC 61360 (e.g. electronic components, process instru-
ments) series of ontologies developed within international standardization organiza-
tions (e.g. ISO, IEC) or national ones (e.g. JEMIMA3 CNIS4) that cover progressively
all the technical domain.

1.4 Ontologies v.s. design models

Ontologies and design models define a conceptualization of a part of the world through
the definition of models within modeling languages. From this point of view, an
ontology seems similar to a design model [50]. Below we compare design models with
respect to the criteria we have identified for ontologies.

Design models respect the formal criterion. Indeed, a design model is based on a
rigorously formalized logical theory and reasoning is provided by view mechanisms.
However, a design model is application requirement driven: it prescribes and imposes
which information will be represented in a particular application (logical model).
Indeed, two different information systems have always at least slightly different appli-
cation requirements, and design models are different from systems to systems. Thus,
design models do not fulfill the consensual criterion. Moreover, an identifier of a de-
sign model defining a concept is a name that can only be referenced unambiguously
inside the context of an information system based on this particular design model.
Thus, design models also do not fulfill the capability to be referenced criterion. Ef-
forts have to be devoted for explicit references to model entities, hence annotations
mechanisms are defined. They are discussed in the next section.

1.5 Ontologies and annotations

One of the main usage of ontologies is annotation. Let us consider a set of entities
available in a given corpus. These entities may be words or sentences in a document,
images or videos, entities of a design model, etc. By annotation, we denote the link
that may exist between an ontology concept (class, instance, property, etc.) and
an entity of the considered corpus. The annotation process consists in defining and
running a set of rules leading to the production of annotations. This process may be

3Japan Electric Measuring Instruments Manufacturers Association,
4Chinese Institute for Standardization

17

CHAPTER 1. ONTOLOGIES AND DOMAIN KNOWLEDGE

completely automated, semi-automatic with user validation or completely interactive.
Automatic annotation proved powerful in the area of the semantic web and natural
language processing where the entities of the corpus are words appearing in texts.
In [15, 25, 30, 47], the authors use ontologies for raw data annotation in an informal
context. Web pages and documents are annotated with semantic information formal-
ized within linguistic ontologies. Once annotations are achieved, formal reasoning is
performed. Several tools (or annotators) have been developed for various ontologies
and different natural languages [16, 26, 29, 46, 48]. Other approaches to annotate
images and multi-media documents have also been developed [23].

In the area of system design, the objective of model annotation is to increase model
interoperability. Consensual domain ontologies are shared by different system models
corresponding to different engineering views. Annotations allow the designer to link
different entities of different system models to ontology concepts. Reasoning at the
ontology level makes it possible to check some domain properties. Model annotations
have been produced in a semi-formal context using interactive and/or semi-automatic
annotation. [13] propose an automated technique for integrating heterogeneous data
sources called "ontology-based database". This approach assumes the existence of a
shared ontology and guarantees the autonomy of each source by extending the shared
ontology to define its local ontology. In [17, 93, 69, 70, 95] annotations are made
in an interoperable context and aim to improve the reading, common understanding
and re-usability of the models and thus enabling unambiguous exchange of models.
In [68], a reasoning phase is performed based on the output of the annotation phase.
The reasoning rules produce inference results : (1) Suggestion of semantic annota-
tion, (2) Detection of inconsistencies between semantic annotations and (3) Conflict
identification between annotated objects. These approaches addressing interoperabil-
ity issues focused on improving the common understanding of models. They do not
deal with the formal correctness of models with respect to domain properties and
constraints.

In the context of formal methods, approaches for semantic enrichment of design
models related to an application domain using formal annotations are defined. An-
notations are directly set up inside the models. Examples of such approaches are the
classical pre and post-conditions of Hoare pre-conditions [52] or program annotation
tools like Why3[34]. In [64], the authors introduce real-world types to document
the programs with relevant characteristics and constraints of the real-world entities.
Real-world types are connected to entities of the programs (variables, functions, etc).
The reasoning and checking of the correctness of programs in regards to real-world

18

1.6 Ontologies and multi-view modeling

types becomes possible by type checking. These approaches seem close to ours, but,
to the best of our knowledge, they do not use explicitly modeled ontologies.

Always in the context of formal methods, other approaches use annotations with
expressions that make explicit references to ontologies. Indeed, in [8, 71, 22], the au-
thors argue that many problems in the development of correct systems could be better
addressed through the separation of concerns. [8, 71] advocate the re-definition of
design models correctness as a ternary relation linking the requirements, the system
and application domains. Domain concepts are then explicitly modeled as first-class
objects as we did in our approach. Furthermore, similarly to our approach, they pro-
pose the formalization of ontologies by Event-B contexts. The formalized information
can then be integrated incrementally and directly in the behavioral requirements us-
ing refinements. In [22] a DSL abstract syntax and references to domain ontologies
are axiomatized into logic theories. These two models are related using a third logical
theory. The authors use the Alloy[57] formal method to check the consistency of the
unified theory.

1.6 Ontologies and multi-view modeling

Several studies on the issue of multi-view modeling have been realized. Sirius [4], a
part of EMF, proposes a multi-view approach which allows users to manipulate sub-
parts of a model and focus on specific view of a design model. [63] presents the RAM
approach, an aspect-oriented modeling approach that provides scalable multi-view
modeling and however faces the global view consistency challenge. It focuses on the
composition of UML class, state and sequence diagrams.

[35] presents an approach based software development with multiple viewpoints.
Viewpoint templates are used to encapsulate the style (representation) and the work-
plan (specification method) corresponding to the different domain views of a system.
A viewpoint framework, corresponding to the developed approach, and a logic-based
approach to consistency handling are proposed later in [36].

[88] and [90] are the closest approaches to our work. [90] deals with the integration
of viewpoints (points of view) in the development of mechatronic products. The
vocabulary, assumptions and constraints of a specific domain are defined as Viewpoint
contracts and dependency models (shared models) are used to capture the existing
relations between the different views of a system. [88] proposes a framework for multi-
view modeling to support Embedded systems Engineering. A common shared model,
that consists of a combination of relevant knowledge from the domain-specific views, is

19

CHAPTER 1. ONTOLOGIES AND DOMAIN KNOWLEDGE

defined in SysML. The domain-specific views are directly generated from this common
model which makes extensive use of SysML profiles and model transformations. [92]
discuss the requirements for multi-view modeling and several approaches and tools
are compared with regards to the defined requirements.

Compared to our approach, none of the work cited above, highlights the necessity
of defining descriptive models and none of them makes use of explicit analysis models
(points of view). Our approach improves these approaches. First, it defines explicit
models that describes the whole features of an analysis. Second, it separates the
descriptive domain information (ontologies) and the prescriptive system information
(system’s design model), it proposes a fully developed annotation methodology in or-
der to strengthen system’s design models by making explicit references to the domain
knowledge. Both modularity and annotations insures that all the models we have
defined (ontology, design model, point of view) can evolve asynchronously without
impacting on the setted interactions with the other models.

1.7 Thesis outline

The outline of the rest of our dissertation is as follows. Next Chapter (Chapter 2)
presents the defined general framework integrating our contributions. A general
framework fulfilling the research goals RG1, RG2 and RG3 is defined through
the definition of a stepwise generic approach.

Two deployments of our general framework are proposed. Chapter 3 gives the
details of the first deployment of our framework in a MDE setting. A stepwise model
oriented approach is proposed. Then, meta-models are defined to support system’s
modeling, strengthening and multi-view analysis capabilities. Chapter 4 describes the
second deployment of our general framework within the Event-B proof and refinement
formal method. The involved models for design models strengthening and multi-
analysis are formalized using set theory and predicate logic.

Chapter 5 describes the implementation of the approach in the context of a MDE
setting. A Model Driven Engineering tool-chain supporting domain knowledge for-
malization, design models strengthening and multi-view analyses of design models is
developed. The obtained prototype is provided as a set of plug-ins for Eclipse based
on EMF[3] and Sirius[4].

We have validated our general framework on several non trivial case studies. Chap-
ter 6 gives the particular details of the application of our framework on a Real-Time
avionic system.

20

1.7 Thesis outline

Finally, a conclusion closes our dissertation and proposes some perspectives on
the future works.

21

Part II

Contributions

23

Chapter 2

General framework

Our proposed approach promotes strengthening complex systems design models and
multi-analyses of these models by explicitly handling domain knowledge. This ap-
proach aims to define an engineering generic process that can be deployed in any
setting to increase the quality of design models and multi-analyses by handling new
hypotheses and properties entailed by making explicit the domain knowledge.

Thus, the main objective of this chapter is to reach RG1, RG2 and RG3 by
defining the general framework supporting strengthening and analysis of complex
systems design models. Here, we give the definitions of the main steps and main
artifacts involved in our approach. First, we discuss the formalization of domain
knowledge within ontologies RG1. Then we present in details the defined stepwise
methodology to allow design models to explicitly handle domain knowledge formalized
in domain ontologies RG2. The stepwise methodology to handle explicit multi-
analyses of systems is also described here RG3.

Finally, this Chapter gives an introduction of the illustrative Diplomas case study
we use along this thesis.

2.1 Handling domain knowledge in design and anal-
ysis of engineering models: global approach

Our global approach is composed of three main parts. The first one (RG1), deals with
the explicit formalization of the domain knowledge, domain ontologies are dedicated
for this purpose. This part is addressed in section 2.2.

The second part, represented on the left hand side of Figure 2.1 (RG2), addresses
strengthening of design models. Design models are linked by references to domain
ontologies that describe the knowledge associated to the concepts occurring in the

25

CHAPTER 2. GENERAL FRAMEWORK

system model. A model based annotation methodology is developed for this purpose
and its details are given in section 2.3.

The last part concerns the analysis of models through the definitions of points of
view and views, it is depicted on the right hand side of Figure 2.1 (RG3). The model
analysis methodology makes extensive use of the model annotation one. Indeed,
a model annotation step is recommended in order to strengthen the quality of the
system design model. Thus, the model analysis methodology will be triggered on the
new enriched design model (output of the model annotation step) and the quality
of the obtained analyses (views) will be increased. The model analysis approach is
addressed in section 2.4.

Result

Domain
ontology

System design
model

Point of view

Built view External
analysis tool

for the built view

Result

results integration

input output

classes
import

classes
import

model
annotation

RG1

RG2

RG3

Figure 2.1: General framework for design and analysis of engineering models.

2.2 Ontologies formalization

The first step of our approach concerns the description of the domain knowledge.
Information of the domain must be explicitly formalized before it can be integrated
into design models and strengthen them. We use ontologies for this purpose Domain
ontologies are, in fact, a simple and effective mean for representing the domain knowl-
edge independently and in an asynchronous manner with the design models that are
linked to it.

26

2.3 Strengthening design models using domain models: an annotation
based approach

Ontologies formalization step plays a key role in the general framework process
depicted in Figure 2.1. In fact, domain ontologies are required in order to strengthen
system design models (gray box - Figure 2.1).

Different modeling languages may be used for building ontologies, design models
and annotation models, leading to heterogeneous models. In order to integrate all
models in a single setting, two solutions have been envisaged. The first one consists in
using a single modeling language where all the models are described. The second one
consists in using a single modeling language supporting meta-modeling capabilities.
Then, each modeling language is described as a specific meta-model. We consider the
second solution in our approach.

2.3 Strengthening design models using domain mod-
els: an annotation based approach

The second step of our approach concerns strengthening system design models with
domain properties. We have defined a stepwise methodology in order to allow model
designers to handle explicitly domain knowledge formalized in domain ontologies (sec-
tion 2.2). The proposed approach consists in associating a domain ontology (concepts,
properties and associated constraints) to entities of the design model. This associa-
tion, is performed thanks to a defined annotation mechanism. Figure 2.2 highlights
the annotation process depicted in Figure 2.1 and shows the overall schema of the
model annotation approach. It involves four steps.

The defined annotation mechanism entails a loosely coupling of the ontology and
of the annotated models. Indeed, no modification nor evolution of the design models
is required. Moreover, ontologies and models may evolve asynchronously.

1. Formalization of Domain Knowledge. The information of the domain
(concepts, links between these concepts, properties or these concepts and rules
and constraints) are explicitly described and formalized in a knowledge model.
Ontologies are used for this purpose and an ontology modeling language can be
used to describe this model. The choice of this modeling language depends on
the kind of reasoning to be performed. Note that this ontology shall be described
independently of any context of use. It may also be built from already existing
ontologies (e.g. standard ontologies).

27

CHAPTER 2. GENERAL FRAMEWORK

Design ModelDomain Ontology

Annotated Model

Enriched Design
Model

“use”“use”

Model Specification and
Design2Domain Knowledge

Formalization 1

Model Annotation3

Property Verification4

Figure 2.2: A four steps methodology for handling domain knowledge in models.

2. Model Specification and Design. Specific design models corresponding to
a given specification are defined. They are formalized within a specific model-
ing language supporting different analyses, classically performed at the design
modeling level.

3. Model Annotation. In this step, the relationships between design model
entities and the corresponding domain knowledge concepts are identified. They
correspond to model annotation. These relationships are themselves described
with a modeling language. Different kinds of annotations relationships have
been identified. Their explicit definition and details are given in the next chap-
ters.

4. Property Verification. The annotated model obtained at the previous step
is enriched by domain properties borrowed from the ontology. The annotated
model is then analysed to determine whether, on the one hand, the properties
and/or the constraints expressed on the annotated model are still valid and, on
the other hand, new properties entailed by the annotation are valid.

At the end of this process, a new design model enriched with new domain infor-
mation is obtained. Verification and validation of this model (step 4) are required

28

2.4 Multi-view modeling

to check if the former properties and/or domain ones, resulting from annotation still
hold.

Some remarks

1. The languages used to model ontologies, design models and annotation relation-
ships may differ. Semantic alignment between these modeling languages may
be required. This topic is not addressed in our approach, we consider that these
languages have the same ground semantics.

2. The engineering application we studied uses modeling languages with classical
semantics using closed world assumption (CWA) [10].

3. It is important that the defined and used ontologies are related to the domain
of the design model, and consensually defined by different stakeholders.

4. Steps 1 and 2 are independent. They may be performed in parallel. Ontologies
may be predefined ones.

5. The definition of the annotations shall be realized either by manual, semi-
automatic or automatic processes. However, only manual annotations are con-
sidered in our work and the guarantee of their soundness is left to the expert
achieving the annotation.

6. Reasoning at ontology level shall be extendable as much as possible at the design
model level thanks to the defined annotations mechanisms.

2.4 Multi-view modeling

In this section, we describe the work we have introduced in section 2.1 (right hand
side of Figure 2.1) and achieved in order to make explicit the analysis of system design
models.

A stepwise methodology to handle the multi-analyses of systems has been de-
veloped. The definition of this methodology comes from the observation of several
experiments conducted by system developers. It is based on making explicit the
knowledge related to the know-how associated to the performed analysis.

Figure 2.3 highlights the multi-view analysis process depicted in Figure 2.1 and
details the defined methodology. This triptych describes what a system or model
analysis is. We have identified three steps detailed in the following.

29

CHAPTER 2. GENERAL FRAMEWORK

Figure 2.3: A generic approach for multi-view modeling.

1. Model of point of view. This step is related to the definition of a cat-
alogue of system model analysis. It defines the notion of point of view which
corresponds to the kind of analysis to be performed independently of any spe-
cific system or model. By catalogue, we mean an ontology describing all the
relevant characteristics related to an analysis. This ontology shall mention all
the required properties, the constraints, the algorithm and/or method used for
a given analysis. An ontology modeling language is then required. It is de-
fined as a meta-model in chapter 3 and formalized in an Event-B context using
a deep modeling approach in chapter 4. It shall also organize these analyses
with respect to the kind or type of analysis (following an ontological hierarchy
classification based on the subsumption relationship - inheritance).

2. System design model. It consists in defining the model of the system to be
analyzed. The choice of the right abstraction level is a key point. Indeed, if the
chosen abstraction level leads to models that do not contain or represent the re-
sources required by the analysis, then the chosen analysis cannot be performed.
Refinement of the considered model is required to meet these requirements. Our
approach is able to check this feasibility condition.

3. View. The integration of both analysis description obtained at Step 1 and
the system model obtained at Step 2 is performed at the final Step 3. Here,
the view corresponding to the definition of the point of view (obtained at Step
1) on the system model (obtained at Step 2) is built. Checking the availability

30

2.5 The Diplomas case study

of all the information required by the analysis is performed at this level (i.e.
checking the feasibility of the analysis).

We obtain at the end of this process a specific view model corresponding to the
defined analysis. Instances of the view model are generated and the external tool in
charge of the specific analysis (and described within the point of view) is triggered
on this set of instances.

Finally, notice that although the above defined methodology relies on the definition
of an integration of both point of view and system model, these two models are defined
independently in an asynchronous manner. Second, our defined multi-view analysis
methodology uses a single and shared modeling language for the description of the
three involved models (point of view, design model and view model).

2.5 The Diplomas case study

In order to illustrate our proposal, we have chosen a didactic case study describing
a simple information system. This information system results from requirements
and is described through a set of concepts, actions and constraints as it is the case
for applications in the engineering domain. The defined case study deals with the
management of students diplomas and registration in the European higher education
system. This system offers two kinds of curricula: first the Bachelor (Licence), Master
and Phd , LMD for short, and second the Engineer curriculum.

Each diploma of the LMD curricula corresponds to a given level: Bachelor/Li-
cence (high school degree + 6 semesters/180 ECTS credits), Master (Bachelor + 4
semesters/120 credits) and PhD (Master + 180 credits). Engineer curricula offers
the engineer diploma five years after high school degree. Both Master and Engineer
diplomas are obtained five years after high school degree.

2.5.1 Additional requirements for students registration

In the studied information system, students register to prepare their next expected
diploma. This registration action takes into account the last hold academic degree
(or last diploma) as a pre-requisite to register for the next diploma. Constraints on
the registration action require that the information system does not allow a student
to register for a new diploma if he/she does not have the necessary qualifications.

31

CHAPTER 2. GENERAL FRAMEWORK

Therefore, the designed information system must check the logical sequence of ob-
tained diplomas before allowing a student to register. For example, Phd degree regis-
tration is authorized only if the last obtained degree corresponds to a Master degree.
The studied information system prescribes the necessary conditions for registering
students for preparing diplomas.

Furthermore, the chosen case study is also concerned with the management of
students diplomas. It offers, among other services, the printing of the diplomas of
graduated students service (i.e. a specific view on the diploma information system).
Some required information, carried out by the studied information system, are ex-
ploited to trigger this service.

2.5.2 Application of the general framework on the Diplomas
case study

The deployment of our approach, presented in section 2.1, on the Diploma case study
is described bellow.

Result

Diplomas
 ontology

model

point of view

View instance

Result

results integration

input output
instanciation

classes
import

classes
import

model
annotation

External
printing

tool

Diplomas
factory view

Diplomas factory

Students

Figure 2.4: General workflow of the student information system.

Figure 2.4 depicts the overall schema of the analysis we have achieved on the
Diploma case study. First, an annotation step is performed in order to enrich,
strengthen and ensure the well definition (through the verification step - section
2.3) of the model. Then the diploma factory analysis is performed. The goal of
the diploma factory analysis is to build a set of valid printing instances carrying all
the necessary information required to trigger the external printing tool and to print
student diplomas. These printing instances are directly extracted from the student
information system instances.

32

2.6 Conclusion

We obtain at the end of the process a set of required instances (instances of the
obtained diploma factory view) to trigger the external printing tool in charge of print-
ing the students diplomas.

2.6 Conclusion

In this chapter, we have presented our general framework for models strengthening
and multi-view analysis. Its deployment in the case Models driven engineering and
formal methods one based on proof and refinement along with their illustration on
the Diplomas case study is detailed through chapter 3 and 4.

First, ontologies are used to formalize domain knowledge and ontology modeling
languages unifying their notations are proposed in both MDE and Formal setting.
Second, our stepwise general approach for model strengthening has been detailed.
Design models are enriched by making explicit references to domain ontologies. An-
notation mechanisms are defined in both MDE and formal setting. They are powerful
and allows a developer to map any entity of a design model to another one of an on-
tology without changing or modifying the original models. Third, the multi-view
analyses approach has been presented. It defines explicit models that describe the
whole features of an analysis. This approach makes an extensive use of the model
strengthening one. Indeed, a model annotation step is recommended in order to
strengthen the quality of the system design models to analyze. To the best of our
knowledge, our approach is the only one that focuses on the importance of the explicit
definition of a point of view.

We only considered, in this thesis, the case where the different involved models
(ontologies, design models, analysis models) are described in the same modeling lan-
guage thus, share a common ground semantics. The case of semantic mismatch where
ontologies, design models and points of view are not described in the same modeling
language should be considered as further extension of our work.

Our global proposed approach is based on the separation of the descriptive do-
main information (ontologies, points of view) and the prescriptive system information
(system’s design models). Hence, both modularity and annotations ensure that all
the models we have defined (ontology, design model, point of view) can evolve asyn-
chronously without impacting on the interactions set with the other models.

Finally, the work achieved in this thesis has been done as part of ANR-IMPEX
and AME CORAC-PANDA projects. Prototypes corresponding to the deployment

33

CHAPTER 2. GENERAL FRAMEWORK

of our approach in the MDE and Formal setting have been developed and presented
in chapter 5.

The developed approach has been applied on several use cases.

34

Chapter 3

General framework: MDE setting

In this chapter, we show how the framework defined in chapter 2 can be deployed
in a Model Driven Engineering (MDE) setting. We propose an incremental, model
oriented approach, for strengthening design models and their multi-view analyses.
Model-Driven Engineering (MDE) allows the modular representation of our solution
and provides a very useful contribution for the design of trusted systems, since it
bridges the gap between design issues and implementation concerns.

In what follows, we first discuss the ontology formalization step, an ontology mod-
eling language is set for this purpose. The deployment of the model strengthening
approach based of four steps is detailed. An annotation meta-model as well as dif-
ferent types of annotation mechanisms are set. Then multi-view analyses approach
is deployed. The details of the integration of the information coming from both the
design model and the point of view to build a specific view in an MDE setting are
formalized in a specific meta-model.

Finally, the Diplomas case study is used for illustrative matter at each step of the
presented MDE deployment.

3.1 Ontologies formalization

Ontologies can be expressed using different modeling languages. We propose, for the
purposes of our study, and in order to unify these notations, a meta-model to describe
ontologies (pivot). It is a generic meta-model independent of other ontology modeling
languages. Its definition comes from a deep observation and detailed analysis of
different ontology modeling languages.

35

CHAPTER 3. GENERAL FRAMEWORK: MDE SETTING

F
igure

3.1:
O
ntology

m
odeling

language
m
eta-m

odel.

36

3.1 Ontologies formalization

Thus, it gathers the main concepts available in various ontology modeling lan-
guages and can be extended with more ontology concepts. Moreover, this meta-model
plays the role of a pivot ontology modeling language. It is shown in Figure 3.1 and
its key concepts are described in the following.

- OntologyModel is the entry point of the model. An ontology model is composed of
classes, datatypes, properties, relationships and constraints.

- Class represents an ontology class. A Class has properties, relationships, con-
straints and can be inherited from another Class. Different kinds of ontology
concepts are defined as classes at meta level: Data type classes, point of view
classes, view classes, etc.

- Property represent the properties of a Class. Note that each property has a type.

- DataType is a specific abstract Class referring to all the properties types. Con-
straints are defined at the meta-model level to restrict the DataType to their
allowed value. For example, an OntologyClass can not contain Viewpoint prop-
erties.

- String, Int, Float and Boolean are all the basic types properties can be associated
to.

- Constraint represent the classes or model constraints that can be formalized.

- The abstract concept Relationship represents the different relationships that may
exist between the ontological concepts. A relationship links a source Class (left)
to a target Class (right). A relationship may be of many types, we formalized
four of them: Equivalence, Restriction, Union, Intersection.

The properties related to the semantics of the defined relationships are formalized
as OCL constraints (e.g. properties related to symmetry, reflexivity and transitivity
of the equivalence relationship). For example, Figure 3.2 gives the formalization of
the transitivity property of the Equivalence relationship.

∀ x,y,z | x 7→y ∈ Eq ∧ y7→z
∈ Eq
⇒

x7→z ∈ Eq

EQ_transitivity: Equivalence.allInstances()-> forAll(eq1, eq2|
eq1.right = eq2.left implies Equivalence.allInstances()->
exists(eq3|eq2.right = eq3.right and eq1.left = eq3.left));

Figure 3.2: Equivalence relationship: Transitivity property expressed in OCL.

37

CHAPTER 3. GENERAL FRAMEWORK: MDE SETTING

3.2 Strengthening design models using domain mod-
els: an annotation based approach

We show in this section how the proposed stepwise annotation methodology, presented
in section 2.3 can be deployed in an MDE setting.

Figure 2.2 (presented in chapter 2 and recalled below for each step of the defined
methodology) shows the overall schema of the approach involving four steps. Con-
cepts, properties and constraints of the studied domain are represented and formalized
within a knowledge model (domain ontologies) at step 1. Specific design models are
defined at step 2. At step 3, relationships between design model entities and the cor-
responding knowledge concepts are identified. Three different kinds of relationships
can be set up, they are discussed in section 3.2.3.2. Finally, at step 4, the annotated
model is checked to determine whether the constraints associated to the knowledge
domain, carried out by the annotations, can be expressed in the new enriched design
model. The diplomas case study is used for illustrative purpose.

3.2.1 Step 1. Domain knowledge formalization

The deployment of our methodology requires, in its
first step, the availability of an ontology formalizing
the domain knowledge. The ontology is designed to
integrate all the relevant properties of the domain,
including its constraints.

Concepts and properties are modeled as classes
and attributes of the ontology and the ontological con-
straints are added as OCL constraints. The obtained
ontology model conforms to the ontology meta-model defined in section 3.1.

3.2.1.1 An ontology for the Diplomas case study

The defined ontology for diplomas is depicted on Figure 3.3.
Diplomas and their characteristics represent a central knowledge for the previ-

ously defined Diplomas case study (but for other possible applications as well). A
model to describe the diploma knowledge through diplomas characteristics, rules and
constraints defines an ontology. It represents a shared knowledge model that can be
used beyond the described application. The defined ontology contains a set of inter-
related classes and relevant properties as follows.
- A subsumption relationship (represented by the is_a relationship on Figure 3.3) is

38

3.2 Strengthening design models using domain models: an annotation
based approach

Figure 3.3: The Diplomas ontology.

used to define hierarchies between categories of diplomas. LMDDiploma and Classi-
calDiploma describe respectively the Bachelor, Master and PhD diplomas and other
diplomas (e.g. Engineer).
- Several descriptive properties, like title, degree, uri of the Diploma class describe the
name, the uri, the degree and the degree (level) of a given diploma. nbCredit defines
the credit number required for each diploma.
- An ontological constraint on the model states that Master is equivalent to Engineer.
It is written in the ontology modeling language as EQo(Master, Engineer) where
EQo is an instance of the Equivalent_Class of the ontology meta-model.

In the ontology, this constraint is represented by an equivalent class linking the left:
Master and right: Engineer classes of the same ontology. Another constraint defined
as thesisRequirement carried by the requiredDiploma relationship (requiredDiplomi

property) is added to assert that any master (or any equivalent diploma) is required
to prepare a PhD.

Note that the presented Diplomas ontology is only one of the possible ontologies
for describing the diplomas domain knowledge. A final domain ontology needs to be
consensually defined.

39

CHAPTER 3. GENERAL FRAMEWORK: MDE SETTING

3.2.2 Step 2. Model specification and design

The design models are defined by the designer accord-
ing to a given specification. Several design models cor-
responding to particular designs for a problem require-
ment may be produced (these models may correspond
to descriptive models, structural models or behavioral
models). The designed models include specific design
constraints expressed using a constraints language.

3.2.2.1 A design model for the Diploma case
study

Figure 3.4: Engineering student model.

Figure 3.4 shows one possible UML class diagram representing the information
system related to the management of students and their diplomas. It is composed of
institutes and diplomas as follows.

- An institute (a university or an engineering school) is composed of its students to
whom it delivers diplomas.

- A student is represented by Student class with the name, dateOfBirth, iDStudent
(for student number), address, securityNumber (for social security number) and
dateOfRegistration properties.

40

3.2 Strengthening design models using domain models: an annotation
based approach

Student.nextDiploma.iD = "p"
⇒

Student.obtainedDiploma.iD =
"m"

phdInscritpion: self.NextDiploma.iD = ’p’ implies
self.obtainedDiploma.iD = ’m’

Figure 3.5: Formalization of phdInscritpion constraint.

- A student is related to his/her institute and his/her Diplomas.

- A Student holds an ObtainedDiploma representing the last obtained diploma (ob-
tainedDiploma relationship) and a NextDiploma referring to the next diploma
in preparation (nextDiploma relationship).

- An institute is represented by the Institute Class with properties name, address,
phoneNumber and openingDate.

- The ObtainedDiploma is characterized by the dateOfObtention (for date when the
diploma was obtained by a student) and the obtainedCredits (for the number of
credits a student obtained for his last diploma) properties.

- nextDiploma is characterised by the requiredCredits and requiredDiploma (for the
number of credits and the grade of diploma required in order to register for a
specific next diploma) properties.

Finally, a constraint named phdInscription on the student nextDiploma is defined.
It asserts that a student registering for a PhD diploma needs to hold a master diploma
to be allowed to register for a PhD. It represents a model invariant and it is defined
by the OCL constraint of Figure 3.5.

Observe that, even though this design model uses concepts (classes, properties,
data types, etc.) that are semantically close to those of the ontology defined in section
3.2.1.1, no explicit reference nor link to this ontology is offered.

3.2.3 Step 3. Model annotation

In step 3, relations are set up between the design model entities and the ontology
concepts. The annotation relationships are explicitly defined in an annotation model
to keep trace of the annotation process and to ensure asynchronous evolution of both
the design model and the ontology.

41

CHAPTER 3. GENERAL FRAMEWORK: MDE SETTING

3.2.3.1 Core classes for model annotation

The relevant information and entities required to set
up the methodology depicted on Figure 2.2 (section
2.3) are summarized in a simplified class diagram on
Figure 3.6.

In step 3 of the model annotation approach rela-
tions defining the annotation model are established
between the design model entities and the ontology
concepts. These annotation relationships link between
design model entities (classes, properties, datatypes, associations, etc.) and ontology
concepts (classes, properties, associations, etc.).

Figure 3.6 depicts an extract of the annotation meta-model where the annota-
tion relationships are formalized. This meta-model is defined as an extension of the
meta-models of both the ontology and design models. It integrates the annotation
mechanism at a meta-modeling level.

The annotation class ClassAnnotation is defined to link (annotate) a design model
class (ex. ModelClass) with an explicit reference to an ontology concept (ex. On-
tologyClass). Other types of annotation classes, like InstanceAnnotation and Prop-
ertyAnnotation, etc. are also defined. They are used to annotate other entities of the
design model (instances, properties, etc.).

Figure 3.6: Core classes for model annotation.

The annotation step described above requires the definition of specific annotation
mechanisms. Different kinds of annotation mechanisms have been set up: inheritance,
partial inheritance and algebraic relationships [44, 45]. Other annotation mechanisms
can be defined for specific cases if required. The details and choice of the right
mechanism are given in the next subsection.

42

3.2 Strengthening design models using domain models: an annotation
based approach

(a) Anno-
tation by
inheritance

(b) Annotation by partial in-
heritance

(c) Annotation by association

Figure 3.7: Annotations mechanisms

3.2.3.2 Model annotation: three identified cases

At step 3, model annotations formalized as relations, are established between de-
sign model entities and ontology concepts. We have identified three annotation
mechanisms[42] which link design model entities (classes, properties, datatypes, as-
sociations, etc.) and ontology concepts (classes, properties, associations, etc.).

Annotation by inheritance is defined by the Is_a relationship (subsumption re-
lationship [59]) . In this case, a concept of the ontology subsumes an entity
of the design model. The mapping relationship is the subsumption (is_a) re-
lationship. All properties, attributes, rules and constraints that apply to the
ontological concept become also applicable to the design model entity.
The annotation by inheritance maintains the ontological reasoning and preserves
it at the design model level. But, note that due to the inheritance of all the re-
sources issued from an ontological concept, all these resources are expressible at
the model level. However, it may happen that some of these properties are not
valuable at instance level (after annotation). This relationship is usually set up
in an a priori setting where the ontology is designed before the design models are
defined. Figure 3.7(a) depicts an illustration of the annotation by inheritance
where ModelClass is subsumed by (inherited from) OntologyClass. Thus, the
attribute1 ontological property becomes directly available in ModelClass thanks
to the inheritance mechanism.

Annotation by partial inheritance is defined by the Is_case_of relationship. It
is also a subsumption relationship. It defines a partial inheritance relationship
[59]. This relation behaves like the Is_a relationship, except that it does not
require the inheritance of all the ontological class properties. In fact, only some

43

CHAPTER 3. GENERAL FRAMEWORK: MDE SETTING

of the relevant properties and constraints of the ontology class are imported
(inherited). The annotation mechanism is in charge of selecting which proper-
ties and constraints are imported. Here again, some of the domain restrictions
(constraints) formalized in the ontological classes participating to the annota-
tion may not be expressible at design model level if the properties they are
related to are not valuables within this model.
The main advantage of this approach is flexibility, it can be set up in any
situation (a priori and a posteriori). An illustration of the annotation by par-
tial inheritance is depicted in Figure 3.7(b) where ModelClass is annotated by
OntologyClass using partial inheritance mechanism. ontologyAttr ontological
property is selected to be inherited in ModelClass and an algebraic expression
makes explicit the existing correspondence between ontologyAttr ontological
property and modelAttr2 model property.

Annotation by association Is_a and Is_case_of relationships are based on re-
lationships available in the ontology model. It may happen that an annotation
needs specific relationships defined by the users to define specific mappings.
These relationships are themselves described in ontologies. This annotation en-
ables the connection of ontological classes with model classes by association.
In this case, subsumption reasoning contained the ontology is not preserved
at the annotated design model. But, the properties borrowed from the asso-
ciation to the design model can be used to express model properties. Figure
3.7(c) depicts a generic illustration of an annotation by association. ModelClass
is annotated by OntologyClass using the association mechanism. ontologyAttr
ontological property is associated to modelAttr2 model property and an alge-
braic expression defines the exact correspondence between these two properties
(ontologyAttr = modelAttr2 + 1).

3.2.3.3 The Diploma case study annotation

Figure 3.8 shows how the annotation relationships between the students design model
entities and the Diplomas ontology concepts are set up. The annotation by association
mechanism is used for this purpose.

The ObtainedDiploma class of the students design model instantiates ModelClass
(Figure 3.6) and theMaster class of the diplomas ontology instantiates OntologylClass
(Figure 3.6). The ObtainedDiploma class is annotated by making explicit references to
the Master class using a ClassAnnotation class. Similarly, NextDiploma is annotated

44

3.2 Strengthening design models using domain models: an annotation
based approach

Figure 3.8: Annotation of Student model.

by PhD of the Diplomas ontology. The non-structural property Equivalent_Class and
the thesisRequirement constraint can now be accessed and exploited. So, the equiva-
lence between Master and Engineer classes is expressed and made explicit within the
design model.

3.2.4 Step 4. Properties verification

The last step of the approach analyses the obtained annotated design models through
formally established links with the ontology. The defined annotation process leads to
the enrichment of the original design model with new relations, properties, constraints
and rules. Ontological properties and classes are considered to be available in the
enriched model if they have been explicitly selected or linked to model properties
during the annotation process (third step of the approach).

It may happen that these relations, properties and
constraints could not be expressed at the design model
level and thus not evaluable at instantiation level due
to the absence of attributes to express them and of
the values of these attributes (instances). These con-
straints become meaningless. At this level, an analysis
of the obtained relations, properties, constraints and
rules issued from the annotation is necessary after an
annotation by Is_Case_Of or by association because these two types of annotation
offer the possibility of having only certain ontological properties in the enriched de-
sign model. The annotation by Is_a does not suffer from this drawback since all
ontological constraints in the design model can be expressed (all the properties of the
annotating ontological classes are inherited in the design model). The proposed anal-
ysis procedure is depicted on figure 3.9. It illustrates the execution of the verification
step using an algorithm.

The process begins by selecting an annotated class in the design model and ana-
lyzes it to retrieve the ontological class that annotates it. Each constraint, property

45

CHAPTER 3. GENERAL FRAMEWORK: MDE SETTING

BEGIN

For (an annotated model)
begin

Select a new annotated class;
Select the corresponding ontology class;
For (all ontology class constraints)
begin

Select a new constraint;
if (constraint is expressible in the domain model) then

integrate to the domain model;
else

add an error message;
end;

end;
END;

Figure 3.9: Algorithm of the verification process

and relation of the annotating class is then checked to decide of its expressiveness in
the design model. The expressible entities are integrated into the model, the other
ones are returned to the user for information purpose.

The new enriched model is then finally validated by (re-)checking all the con-
straints (the existing and the new added ones) on the model and all its instances.

3.2.4.1 The Diplomas case study verification

The equivalence property and the thesisRequirement constraint are now explicit on
the annotated student model.

The verification process ends with integrating the equivalence domain constraint
into the enriched design model since all the properties it is related to are available. At
this level, it becomes possible to conclude that a student can apply for preparing a Phd
thesis if he holds an engineer diploma. Thus, the phdInscritpion constraint depicted
in Figure 3.5 is rewritten (manually) and its formalization is given in Figure 3.10.
The new phdInscritpion property integrates the result of the set up annotation (blue
color) and thus, became explicit after handling domain knowledge (by annotation)
expressed in the ontology.

At the end, the obtained model together with its instances are now ready to be
analysed. Figure 3.11 shows an example of instance for the enriched student informa-
tion system model. Instances of Student, School, ObtainedDiploma and NextDiploma
classes (bullet 1 of Figure 3.11) with all their associated attributes are defined. For

46

3.3 Multi-view modeling

Student.nextDiploma.iD="P"
⇒

annotation(Student.obtainedDiploma)
∈ eq(Master)

phdInscritpion: self.nextDiploma.iD = ’p’ implies
let c: ecore::EClass = ClassAnnotation.allInstances()-

select(inst|inst.annotatedClass =
self.obtainedDiploma)- at(0).annotatingClass

in Equivalence.allInstances()- exists(eq|
eq.left.uri = ’Master_uri’ and eq.right = c);

Figure 3.10: The OCL constraint phdInscritpion after annotation.

Figure 3.11: Student information system model instance.

example, the values of Student instance properties are shown in bullet 2 of Figure
3.11.

Next section shows how the diplomas factory analysis is performed on these model
and its instances.

3.3 Multi-view modeling

We show below how the proposed stepwise multi-view modeling methodology can be
deployed in an MDE setting. The Diplomas case study is used for illustrative purpose.

3.3.1 The core model elements

The relevant information and concepts required to set up the methodology depicted on
Figure 2.3 are summarized in a simplified class diagram on Figure 3.12. The following
relevant properties are required in order to obtain the integrated view corresponding
to a system model analysis. Their details are given in the next subsections.

47

CHAPTER 3. GENERAL FRAMEWORK: MDE SETTING

Figure 3.12: Core classes for multi-view modeling

3.3.1.1 Step 1. Model of point of view definition

The deployment of our model analysis method-
ology requires, in its first step, the description
of a point of view. To make this description
explicit, we have used a simple class diagram
(Figure 3.12) to express the different properties
required to perform the analysis.

The PointOfViewClass of figure 3.12 corre-
sponds to the description of an analysis defined at step 1 of Figure 2.3. The following
properties are defined.

- The viewProperties property is associated to the view. It characterizes the descrip-
tive and specific properties of an analysis. Thus, it gathers all the additional
information. For example, it allows keeping trace of the view details by adding
information to view like the name of the analysis author (ie. analysis expert),
view version, analysis launching date, etc.

- The requiredProperties property defines the set of properties of the system model
needed in order to trigger the described analysis. Mappings (exploiting the pre-
viously defined annotation methodology) may be required to map the properties
defined in the point of view with those defined in the system model.

48

3.3 Multi-view modeling

- The computedProperties property describes the output of the analysis corresponding
to the currently described point of view or analysis.

- The usedMethod property defines the specific technique, method or program that
supports the defined analysis. It may be characterized by a function taking the
requiredProperties as input and returning computedProperties as output.

- The constraints property defines the constraints imposed by the method to be
executed. It concerns constraints related to space or processor or any other
required hypotheses.

A point of view for the Diplomas case study. The defined Diplomas factory
point of view for printing students diplomas from the Student information system
is depicted in Figure 3.13. The external printing function to be triggered and its
required input parameters are described. The printingMethod property characterises
the external printing function to be used and the printingTool property makes ref-
erences to the external tool (encoding the printing function) that will be called for
printing students diplomas.

Point of view’s (PoV) requiredproperties and viewproperties make references to
the needed input parameters of the diploma printing function: name of a student,
dateOfObtention of a diploma, iDStudent (for student identification number), etc.
are described as required properties. Thus, they shall be imported directly from
the design model. The paperSize and the logo of the university are defined as view
properties and are directly imported from the corresponding ontologies. The Result
class defining the url property is used to store the output results of the printing
function. The model of Figure 3.13 is obtained.

Figure 3.13: The diplomas factory point of view.

49

CHAPTER 3. GENERAL FRAMEWORK: MDE SETTING

Notice that the semantics of these properties (required properties and view ones)
are defined in the corresponding domain ontologies (diplomas ontology, students on-
tology, printing ontology, etc.). Moreover, not all the design model properties are
required for the construction of a Diplomas factory view, thus only the required
properties, specified within the point of view model, are imported for each specific
analysis.

3.3.1.2 Step 2. System design model definition

DesignModelClass of Figure 3.12 corresponds to
the information model describeing the models
to be analyzed (step 2 of Figure 2.3). It is for-
malized within a modeling language that sup-
ports different analyses. We may find at least
what follows.

- The applicableProperties property corresponds to all properties associated to the
classes of the design model to be analyzed. Thus, the required properties (re-
quiredProperties of PointOfViewClass) for building a specific view are selected
from these model properties.

- The constraints property corresponds to the domain constraints that are defined on
a design model. These constraints characterize the correct construction of the
design model to be analyzed and its set of instances. They may be imported
into a specific view to preserve and guarantee the correctness of the obtained
view.

A design model for the Diplomas case study. The design model supporting
multi-analyses is defined at this level. It corresponds, in this case study, to the new
strengthened student information system model and its instances obtained at the end
of the model annotation step (subsection 3.2.4.1).

3.3.1.3 Step 3. Building the view

Finally, at step 3 of the approach, the inte-
grated view is built by composing the resources
issued from both concepts of step 1 and step
2. The defined view is characterized in Figure

50

3.3 Multi-view modeling

3.12 by the ViewModelClass class and its cor-
responding properties as follows.

- The importedPropertiesFromModel property corresponds to the set of properties
imported from the design model to be analyzed. It defines the properties needed
from the model (requiredProperties) to build the view and perform the analysis.

- The importedView property refers to the description of analysis to be performed
on the considered model. Information about the selected point of view, name of
the analysis, the used method, the tool to be triggered, etc. are imported into
the view to make explicit and keep trace of all the choices made by the analysis
expert in order to build the specific view.

- The constraints property defines the new constraints (PointOfViewClass constraints
and DesignModelClass ones) that apply on the integrated view once imported
in it. They guarantee the correct construction of the the view model and its
corresponding instances.

- The analysisResult property defines the property containing the results of the anal-
ysis. In fact once an analysis is completed, the corresponding result is made
explicit and integrated into the view model using this property. The result can
then be interpreted treated by the analysis expert.

Building the Diplomas factory view. A specific Diplomas factory view is built
by integrating the resources issued from both the student information system model
and the Diplomas factory point of view. Thus, both the required properties and the
view properties are imported in the Diplomas factory view. Figure 3.14 depicts the
resulting view.

- PrintingPoV, Viewproperties and Result classes are directly imported from the
Diplomas factory point of view. They contain the specific properties Diploma
factory view.

- Student, ObtainedDiploma, Institute classes are directly imported from the design
model (Figure 3.4). They contain all (and only) the required properties refer-
enced by the Diplomas factory point of view (Figure 3.13).

51

CHAPTER 3. GENERAL FRAMEWORK: MDE SETTING

Figure 3.14: Diplomas factory view.

The instances corresponding to these classes and properties are generated to build
the Diplomas factory view instances. Figure 3.15 depicts such a Diplomas factory view
instance. It is built (extracted) from the enriched student information system model
instance shown in Figure 3.11. Only the relevant information for diplomas factory
view are defined.

- Instances of ObtainedDiploma(bullet 1 of Figure 3.15), Institute (bullet 3 of Fig-
ure 3.15) and Student (bullet 4 of Figure 3.15) classes containing -only- the the
values of the required properties are imported. For example, Date Of Birth,
Date Of Inscription, ID Student, Institute, Name and Obtaineddiploma prop-
erties values of the Student class instance (depicted in bullet 7 of Figure 3.15)
are imported into the view instance since they explicitly described as required
properties from the model in the Diploma printing point of view depicted in
Figure 3.13.

- The usedMethod, usedTool properties are valued within the PrintingPoV class
instance (bullet 5) to describe the suited analysis to be triggered on the view
instances.

- The view properties like paperSize, logo and author are also valued within the
View Properties class instance (bullet 6). The additional user choices are made
explicit.

52

3.3 Multi-view modeling

Figure 3.15: Diplomas factory view instance.

- An instance of the Result class is generated for each instance of the Diplomas
factory view, it contains the url (address) of the output of the triggered external
printing tool. In this case the location of each printed diploma can be accessed.

- Finally, instances of NextDiploma class are not imported in the view instance since
they are not relevant for this view (not described within the Diplomas factory
point of view).

At the end, the external printing tool is triggered on the set of Diplomas factory
view instances. Students diplomas are printed and their corresponding storing url
are given as output results of the printing tool.

Some remarks

The previous resources represent the concepts of a meta-model describing the inte-
gration of a point of view and a design model in order to obtain a specific view. Note
that the list of the given properties is not exhaustive, other properties to describe
configuration information, analysis expert comments, etc. can be added.

The presented meta-model (Figure 3.12) also defines the constraints that guaran-
tee the correct integration of a point of view and a design model. These constraints
define the correct correspondence between applicableProperties of the design model
and the requiredProperties of the point of view. They are checked in order to guar-
antee the correct construction of the view. Thus, a construction is considered correct
only if all the required properties (requiredProperties) can be retrieved within the

53

CHAPTER 3. GENERAL FRAMEWORK: MDE SETTING

defined design model properties (applicableProperties). These properties correspon-
dences are made possible through the explicit references to ontologies. In fact, if two
properties refer to the same uri of an ontological property, then they are considered
to be semantically equivalent (identical).

3.4 Conclusion

In this chapter, we have presented the Model Driven Engineering setting of our general
framework for handling domain knowledge in design and analysis of design Models.
First, we have defined an ontology modeling language in order to be able to express
ontologies formalizing domain knowledge. The proposed ontology modeling language
has been set by analyzing different existing modeling languages and can be extended.
Second, we have presented the MDE setting for strengthening design models. An
annotation meta-model has been defined and three annotation mechanisms have been
set: annotation by inheritance, partial inheritance and by association. Third, we
have given the details of the multi-view analysis approach. The core model elements
linking a design model and a point of view in order to extract a specific view have
been described.

Notice that the models involved in our approach (ontology, point of view, anno-
tation model) are associated with domain constraints (or algebraic constraints for
properties annotation in case of annotation by partial inheritance and by associa-
tion). Thus, the defined meta-models for ontology formalization, model annotation
and multi-view analysis should be extended to define and integrate a language for
constraints description together with a procedure to solve and verify them.

A prototype built on the EMF Eclipse platform has been produced and its details
are given in chapter 5. Moreover, this approach has been applied on different case
studies among which the avionic embedded systems case study presented in chapter
6.

Finally, the presented MDE setting does not offer any formal proof context to
guarantee the correctness of all the models involved in the presented approach. Thus,
this is done by defining domain constraints expressed in a constraints description
language (for instance OCL) and checked on all and each instance of these models.

Next, we present the Event-B formal method setting based on proof and refinement
for handling domain knowledge in design and analysis of system Models.

54

Chapter 4

General framework: Event-B formal
method setting

According to the stepwise methodology defined in the general framework (chapter 2
for domain knowledge handling in design and multi-analysis of models, we propose in
this chapter a general formal setting in which such a methodology can be deployed
for specific formal methods. The involved models are correct by construction. The
Event-B proof and refinement formal method is used. The models are formalized
using axioms and strengthened with proved theorems that are directly deduced from
these axioms.

First, a generic Event-B context for ontologies is proposed. It formalizes the main
ontology relationships and thus, is extended to formalize specific domain ontologies.
The model strengthening approach is set and a generic annotation relationship is
defined in a generic annotation Event-B context. The multi-view analysis methodol-
ogy is also deployed in the Formal Event-B setting. Points of view are described in
Event-B contexts and views are formalized within Event-B machines.

As for the MDE deployment, the Diplomas case study is used for illustrative
matter.

4.1 Ontologies formalization

In this section, we give the details of the formalization of the ontology language in
formal setting.

We have identified that specific modeling languages support the definition of on-
tologies. The availability of such languages means that specific semantic constructs
are associated to these languages. Therefore, the need to explicitly represent such
semantic constructs when reasoning formally on ontologies appears. One way to

55

CHAPTER 4. GENERAL FRAMEWORK: EVENT-B FORMAL
METHOD SETTING

model such ontology constructs is to use the constructs offered by Event-B language
to explicitly model the ontology modeling language constructs.

In the context of the IMPEX project, we have identified two mechanisms to de-
fine ontologies as formal theories. These two approaches use two different modeling
approaches: shallow and deep modeling.

4.1.1 Shallow modeling

The shallow modeling approach consists in formalizing the ontology concepts directly
in the target modeling language without keeping trace of the structure of the ontology
modeling language concepts [72].

This formal modeling of ontologies is based on existing ontologies models expressed
into languages such as OWL, which are formalized as an Event-B specification (con-
text) by means of transformations rules. The transformation rules describe the cor-
responding sets, constants, axioms to each ontological source construct. More detail
about shallow modeling of ontologies developed in the context of IMPEX Project can
be found in [72].

Listing 4.1 presents an extract of the diplomas ontology formalized using the
developed transformation rules into an Event-B context. It illustrates the use of the
subsumption (Is_a) and equivalence relationships as follows.

Listing 4.1: Formalization of the Diplomas ontology using Shallow modeling.
Context Diplomas_Ontology

Sets Thing

Constants Phd, Master, Engineer, Diploms, Bachelor

Axioms
axm1: Diploms ⊆ Thing
axm2: Phd ⊆ Diploms
axm3: Master ⊆ Diploms
axm4: Engineer ⊆ Diploms
axm5: Bachelor ⊆ Diploms
axm6: Engineer = Master
. . .

End

- A global set Thing is defined, it refers to the root ontology class Thing ;

- Diploms is defined as a subset of Thing ;

- Phd, Master, Engineer and Bachelor ontology classes are formalized as subsets of
Diploms (axm1, axm2, axm3 and axm4).

56

4.1 Ontologies formalization

- The equivalence relationship between Engineer and Master diplomas is defined by
means of an equality between the sets Engineer and Master in axm6.

Using shallow modeling, the information related to the modeling language are not
explicitly defined in the target formal modeling language. Reasoning on ontologies is
performed using the underlying proof system of Event-B. Next, we present the deep
modeling deployment of domain ontologies which allows the explicit formalization of
ontological entities and its semantic constructs.

4.1.2 Deep modeling: ontology language formalization within
a context

Deep modeling considers explicit modeling of both ontology modeling concepts and
ontologies. Thus, ontologies are defined as instances of ontology models. The interest
of this approach is that the ontology model is explicitly described and reasoning on
ontologies is performed using the proof system described in the ontology model and
the underlying proof system of Event-B.

To model ontologies in deep modeling, two steps are required. First, an ontology
model is formalized and then ontologies are defined as specific models (instances)
corresponding to the defined ontology model.

The deployment of our approach in a formal method setting is based on deep
modeling.

4.1.3 Our ontologies formalization: deep modeling

In the following, we show how semantic ontological constructs (types, relationships,
etc.) are modeled as Event-B contexts and then how specific ontologies can be de-
scribed using the Diplomas case study. We also show how reasoning rules available
in ontology reasoners can be formally expressed and proved.

According to the characteristics of the modeling languages reported in [54], we
have described a formal Event-B context for canonical concepts and non-canonical
ones. We have collected the main constructs available in the OWL[79] and Plib[55].
Their semantics is specified within the event-B axioms associated to each ontological
construct.

57

CHAPTER 4. GENERAL FRAMEWORK: EVENT-B FORMAL
METHOD SETTING

4.1.3.1 Canonical concepts

Canonical concepts represent the core entities of an ontology. Among these concepts,
we find classes, properties, types and instances. The subsumption relationship offers
the capability to define a hierarchy of concepts.

Formalization of basic concepts. The basic resources are described in an Event-
B context. Listing 4.2 gives an extract of the Ontology_Relations Event-B context. It
defines through relations the whole basic and canonical concepts available in an ontol-
ogy modeling language. Sets represent the unique carrier to describe such concepts.
The set of axioms of the AXIOMS clause is completed by the relevant properties,
definitions associated to the defined sets and relations. The concepts are described
as follows.

Listing 4.2: Canonical concepts of an ontology language.
Context Ontology_Relations

Sets
CLASS,
PROPERTY ,
INSTANCE,
V ALUES,
. . .

Axioms
axm1: HAS_PROPERTIES = CLASS ↔ PROPERTY

axm2: HAS_INSTANCES = CLASS ↔ INSTANCE

axm3: HAS_V ALUES = INSTANCE × PROPERTY ↔ V ALUES

. . .

- CLASS, PROPERTY , INSTANCE and V ALUE carrier sets define classes,
properties, instances and values entities of an ontology. These sets are abstractly
defined, they will be populated when defining specific ontologies.

- HAS_PROPERTIES relationship is defined to associate properties to classes
and explicitly set a class properties. This is achieved using the Event-B relation
operator ↔. This notation is used to combine two sets (i.e. CLASS and
PROPERTY) in order to create a new set of ordered pairs
(i.e. HAS_PROPERTIES).

- HAS_INSTANCES relationship is defined to attach each class to its sets of
instances. The relation operator ↔ is used create the new set of ordered pairs
HAS_INSTANCES.

58

4.1 Ontologies formalization

- HAS_V ALUES relationship associates a value to a pair (instance, property) using
the↔ relation operator. This pair is formalized using Cartesian product Event-
B notation × which allows the definition of a set of pairs whose first part is in
INSTANCE and second part is in PROPERTY .

Formalization of the Is_a relationship. The Is_a relationship is a funda-
mental relation that links the classes together in a class hierarchy. More precisely, it
defines the subsumption relationship provided by the inheritance relation classically
defined in object oriented languages.

• XML-OWL description of the Is_a relationship.

The OWL description of the Is_a relationship is given by the XML description
below. It defines the fundamental class constructor subClassOf which relates a
specific class to a more general one (here defines the current class as a subclass
of MotherClass) and hence allows classes subsumption.

<owl:Class rdf:ID="SubClass">
<rdfs:subClassOf rdf:resource="MotherClass" />

</owl:Class>

• Event-B formalization of the Is_a relationship.

Listing 4.3 depicts the Event-B formalization of the Is_a relationship (sub-
sumption) in axm4. First, a set IS_A gathers all the possible IsA relations
(subsets) and IsA is modeled as a relation between classes using the↔ relation
Event-B operator. A second part of this definition precises the semantic of an
IsA relationship by formalizing a constraint associated to inheritance i.e. inclu-
sion of sets of instances. Indeed, axm1 explicitly states that the set of instances
of a class x such that x IsA y is included in the set of instances of a class y.
The Event-B notation x 7→ y ∈ IsA is used to characterize a pair belonging to
an IsA relation (7→ being the operator associating for combining two elements
to form an ordered pair).
The instances of x and y classes are cached using the Event-B notation ran(x/r).
/ refers to a domain restriction of a relation r on x (restrict r so that it only
contains pairs whose first part is x) and ran refers to the range of the restricted
set r i.e. the set of second parts of all the pairs in restricted set r.

59

CHAPTER 4. GENERAL FRAMEWORK: EVENT-B FORMAL
METHOD SETTING

Listing 4.3: The Is_a relationship.
Context Ontology_Relations

. . .

Axioms

axm4: IS_A ={IsA | IsA ∈ CLASS ↔ CLASS ∧

(∀ x, y·(x ∈ CLASS ∧ y ∈ CLASS ∧ x7→y ∈ IsA
⇔
union({r· r ∈ HAS_INSTANCES| ran({x}/r)})
⊆ union({r· r ∈ HAS_INSTANCES|
ran({y}/r)})))
}

4.1.3.2 Non-canonical concepts

Once the canonical concepts are defined, ontology modeling languages of the literature
like OWL or Plib offer the possibility to define (derive) other ontological concepts from
the canonical ones. These concepts are defined as non canonical concepts.

To define such non canonical concepts, ontology languages offer various derivation
operators. Below, we review the main operators studied in the context of this thesis.

Equivalence.

• XML-OWL description of the equivalence relationship.

The following XML description gives the OWL definition of the equivalence
relationship between two classes. It depicts the equivalentClass property which
is formalized to specify that two classes has the exact same set of instances.

<owl:Class rdf:about="Class">
<equivalentClass rdf:resource="EquivalentClass"/>

</owl:Class>

• Event-B formalization of the equivalence relationship.

Listing 4.4 gives the formalization of the Equivalence relationship. As for the
Is_a relationship, the equivalence is defined as a relation between classes (i.e.
CLASS↔CLASS). Its semantics is defined in axm5 first, at CLASS level to
state that the defined relation is reflexive, symmetric and transitive and second,
at instance level to state that two equivalent classes have the exact same set of
instances.

60

4.1 Ontologies formalization

Listing 4.4: The Equivalence relationship.
Context Ontology_Relations

. . .

Axioms
axm5: EQUIVALENCE = { EQo| EQo ∈ CLASS ↔ CLASS

∧
(∀ x· (x ∈ CLASS ⇒ x7→ x ∈ EQo))
∧
(∀ x, y· (x ∈ CLASS ∧ y ∈ CLASS ∧ x7→ y ∈ EQo ⇒ y7→ x ∈ EQo))
∧
(∀ x, y, z· (x ∈ CLASS ∧ y ∈ CLASS ∧ z ∈ CLASS ∧ x7→ y ∈ EQo ∧ y 7→ z ∈ EQo

⇒ x7→ z ∈ EQo))
∧
(∀ x, y· (x ∈ CLASS ∧ y ∈ CLASS ∧ x7→ y ∈ EQo
⇔

union({r· r ∈ HAS_INSTANCES| ran({x}/r)})
= union({r· r ∈ HAS_INSTANCES|
ran({y}/r)})))

}

Restriction. The restriction operator is applied on a class or on a class expression.
It defines a filter on the population (instances) of a class using a logical property.

• XML-OWL description of the restriction operator.

The restriction operator considers a class, a property and defines a restricted
population for a class. Three kinds of restrictions on a property are defined
in OWL: allValuesFrom, someValuesFrom and cardinality. We focused on all-
ValuesFrom restriction and its OWL description is given in the following XML
description. It states that for each instance of the restricted class that valu-
ates the specified property (using onProperty OWL construct), the value of this
property has to be one of those specified in the restriction (using the allValues-
From OWL construct).

<owl:Restriction>
<owl:onProperty rdf:resource="..." />
<owl:allValuesFrom rdf:resource="..." />
</owl:Restriction>

• Event-B formalization of the restriction operator.

Listing 4.5 shows the formalization of the restriction operator. It is defined as a
filter on the set of instances. First, the filtering property is defined as a higher
order functional parameter on the instances using the Property_V erification

function on instances in axm6. This function is then instantiated and param-
eterized regarding a specific ontological property and its possible values (same
as onProperty construct in OWL) using a lambda function.

61

CHAPTER 4. GENERAL FRAMEWORK: EVENT-B FORMAL
METHOD SETTING

Listing 4.5: The restriction operator.
Context Ontology_Relations

. . .

Axioms
. . .
axm6: Property_Verification = INSTANCE −→ BOOL
axm7: RESTRICTION = {rest| rest ⊆ INSTANCE ∧

(∃ p. (p ∈ Property_Verification ∧ rest= p−1[{TRUE}]))
}

axm7 states that the obtained restriction is defined as the set of instances
whose value, by the function Property_V erification, equals to TRUE. The
inverse function is used for this purpose, it returns a set of INSTANCE that
are defined as first part of the Property_V erification pairs and for which the
second part of the pair is TRUE. Thus, only the instances that satisfied the
property restriction (parametrized in an instance of Property_V erification)
are contained in a rest set.

Union. OWL provides additional constructors with which to form classes. Thus,
the binary union class is defined to collect the instances of two classes using the
unionOf OWL construct.

• XML-OWL description of the union relationship.

The XML-OWL definition for the union relationship is defined on two classes
as follows.

<owl:Class rdf:ID="UnionClass">
<owl:unionOf rdf:parseType="Collection">

<owl:Class rdf:about="Class1" />
<owl:Class rdf:about="Class2" />

</owl:unionOf>
</owl:Class>

• Event-B formalization of the union relationship.

Like for the restriction operator, the union relationship builds explicitly the set
of instances as the union of the sets of instances of the two classes.

62

4.1 Ontologies formalization

Listing 4.6: The union relationship.
Context Ontology_Relations

. . .

Axioms
axm8: UNION_OF = {unionOf|

(unionOf ∈ CLASS × CLASS ↔ CLASS))
∧
(∀ x, y, z·(x ∈ CLASS ∧ y ∈ CLASS ∧ z ∈ CLASS ∧ x 7→ y 7→ z ∈ unionOf
⇒
∀ instance· (instance ∈ INSTANCE
⇒
∃ hasInstance· (hasInstance ∈ HAS_INSTANCES ∧ (x 7→ instance ∈ hasInstance
∨ y 7→ instance ∈ hasInstance))
⇒
z 7→ instance ∈ hasInstance))))

) }

Listing 4.6 shows the formalization of the union relationship. The UnionOf

relationship is defined as a relation between two classes. The defined logical
property states that if an instance belongs to a class x or an instance belongs
to a class y then it belongs to the class z belonging to the UnionOf relation.

4.1.3.3 Ontological relationships composition

Ontological relationships composition is not handled in the ontological relationships
defined above. However, a track to introduce such a composition operator in our
Event-B ontology modeling language is possible by handling sets of CLASS rather
than a single CLASS. As example, we show on listing 4.7 the formalization of the
union relationship which handles relationships composition. Thus, this unionOf is
defined as a binary relationship between two sets of classes using the Powerset P
Event-B operator (bold in Listing 4.7 instead of between two classes as in listing 4.6).
Therefore, the left side of unionOf can be obtained by applying another ontological
relation on the ontological classes. For example, we can define a union between a
equivalence relationship and a subsumption relationship similar to

EQo[{x}] 7→ Isa[{n}] ∈ unionOf
Assuming that EQo[{x}] = {y / x 7→ y ∈ EQo} ∈ P (CLASS)

and Isa[{n}] = {z/ n 7→ z ∈ Isa} ∈ P (CLASS).

63

CHAPTER 4. GENERAL FRAMEWORK: EVENT-B FORMAL
METHOD SETTING

Listing 4.7: The union relationship.
Context Ontology_Relations

. . .

Axioms
axm8: UNION_OF = {unionOf|

(unionOf ∈ (P(CLASS) × P(CLASS)↔ CLASS))
∧
(∀ x, y, z·(x ∈ P(CLASS) ∧ y ∈ P(CLASS) ∧ z ∈ CLASS ∧ x7→y7→z ∈ unionOf
⇒
∀ instance· (instance ∈ INSTANCE
⇒
∃ hasInstance· (hasInstance ∈ HAS_INSTANCES ⇒
(∀ n, m· (n ∈ x ∧ m ∈ y ∧ (n7→instance ∈ hasInstance ∨ m 7→instance ∈ hasInstance))
⇒
z 7→instance ∈ hasInstance))))

) }

Remark. Above, we have shown the event-B formalization of the ontological con-
structs we focused on in our thesis but, in the same manner, the Ontological_Relations
Event-B context can be extended and other ontological constructs can be formalized.

Our work focuses on engineering application domain that uses modeling languages
with a classical semantics using Closed World Assumption (CWA). Thus, the corre-
sponding ontologies are defined in a CWA. The proposed ontology language has been
formalized using only the Event-B constructs and the corresponding set theory. How-
ever, a full deep modeling approach where the mathematical constructs are rewritten
and Open World Assumption (OWA) introduced can be handled. This last topic is
out of scope of our work.

4.1.4 An example of ontologies

Once the ontology concepts are defined at a generic level, it is possible to define specific
ontologies as instances of the generic concepts. Hence, the Event-B context defining
the specific ontology is defined as an extension of the previous context defining the
ontology modeling concepts.

4.1.4.1 Ontology for diplomas: Is_a and equivalence

Listing 4.8 gives an extract of the Diplomas ontology we have formalized as instances
of the generic concepts previously introduced. The defined ontology illustrates the
Is_a and equivalence relationships. Two parts compose this definition.

- an axiomatization part defined by the axioms clauses (axm1, axm2, axm3). It
defines the extension of the sets corresponding to instances of the concepts
defined in the generic context;

64

4.1 Ontologies formalization

- a theorem part (thm1, thm2), which represents properties to be proved. The the-
orems guarantee that the defined relations at the instance level are conform to
their definition at the generic level.

Listing 4.8: An ontology example.
Context Diplomas_Ontology
Extends Ontology_Relations

Constants IsA, EQ, Diploms, Bachelor, Master, Engineer, Phd

Axioms
axm1: partition(CLASS,

{Diploms},
{Bachelor},
{Master},
{Engineer},
{Phd}
)

axm2: isA = {
Master 7→ Diploms,
Bachelor7→ Diploms,
Engineer7→ Diploms, Phd7→ Diploms

}
axm3: EQ ={

Bachelor7→Bachelor, Master7→Master,
Engineer7→Engineer, Phd7→Phd,
Master 7→Engineer, Engineer7→Master

}

// Relevant Theorems

thm1: isA ∈ IS_A
thm2: EQ ∈ EQUIVALENCE

The above ontology defines classes for diplomas. Other classes subsumed by the
diploma class are defined: Bachelor, Master, Phd. The subsumption is materialized
by the definition of the isA set. An equivalence relation EQ is also defined. It states
first, that each defined class is equivalent to itself (reflexivity property) and second,
that Master and Engineer diplomas are equivalent.

Proving the theorems guarantees that the defined instances is correct regarding
their generic definitions in the Ontology_Relations context.

4.1.4.2 Ontology for diplomas: use of the restriction operator

As depicted in Listing 4.9, we use the Diplomas case study to illustrate how the
restriction operator is applied for a specific ontology.

We want to define a filtered set of engineers students whose level of study (level
property)equals 5. A restriction is used for this purpose.

65

CHAPTER 4. GENERAL FRAMEWORK: EVENT-B FORMAL
METHOD SETTING

Listing 4.9: An example of ontology.
Context Diplomas_Ontology
Extends Ontology_Relations

Constants
Bachelor, Master, Engineer, PhD,
Diplom, LMDDiplom, ClassicalDiplom, // Classes
SI, SRLC, ENSEEIHT, ISAE, Person
BachelorStudent, MasterStudent, // Instances
level, age, name, // Properties

hasInstances, hasValues, LevelEng, RestrictionEngineer5 // Instances of Generic concepts

Axioms

axm1: partition(CLASS,
{Bachelor},
{PhD},
{Master},
{Engineer},
{Diplom},
{LMDDiplom},
{ClassicalDiplom}

)
axm2: partition(INSTANCE,

{SI},
{SRLC},
{ENSEEIHT},
{ISAE},
{BachelorStudent},
{MasterStudent}

)
axm3: partition(PROPERTY,

{level},
{age},
{name}

)
axm4: hasInstances = {

Master 7→SI,
Master 7→SRLC,
Engineer 7→ENSEEIHT,
Engineer 7→ISAE,
Diplom7→ENSEEIHT,
Person7→BachelorStudent,
Person7→MasterStudent

}
axm5: hasValues = {

SI 7→level7→5,
ENSEEIHT 7→level7→5

}
axm6: LevelEng = (

λi. i ∈ INSTANCE ∧ hasInstances−1[{i}]={Engineer} |
bool(hasValues(i7→level)=5))

axm7: RestrictionEngineer5 = LevelEng−1[{TRUE}]

\\Relevant theorems

thm1: hasInstances ∈ HAS_INSTANCES
thm2: hasValues ∈ HAS_VALUES
thm3: LevelEng ∈ Property_Verification
thm4: RestrictionEngineer5 ∈ RESTRICTION
. . .

The previous context extends the generic context as follows.

66

4.1 Ontologies formalization

- CLASS, PROPERTY and INSTANCE abstract carrier sets are populated in
axm1, axm2 and axm3;

- A lambda function is introduced in axm6 to parametrize a property restriction
and formalize restriction on the instances i that valuated the level property. It
states that level value has o be equal to 5;

- RestrictionEngineer5 set defined in axm7 gathers the instances that satisfy the
property restriction defined in axm6;

- thm3 asserts that this instantiation produces an instance of the Property_verification

parameter of the restriction operator defined at the generic level (thm3);

- thm4 states that we have defined a restriction corresponding to the definition of
the abstract level.

Finally, discharging thm3 and thm4 will guarantee the correctness of this restric-
tion regarding its generic definition in the Ontology_Relations context.

4.1.5 Deduction rules and theorems

In practice, when ontologies are defined, users set up reasoners in order to infer
knowledge from the canonical and non-canonical reasoning. These reasoners apply
deduction rules in order to infer new facts or to define classification trees (placement).
The application of these rules is performed within reasoning engines.

However, the correctness of the applied deduction rules as well as the inferred
facts (regarding the applied deduction rules) can be questioned. The validation of
the correctness of these rules is mandatory in order to guarantee the correctness of
the performed reasoning and thus of the reasoners.

The definition of these deduction rules corresponds to theorems in Event-B. The
work we have achieved by formalizing deduction rules as theorems led us to the
capability to prove, in the defined Event-B generic context, theorems corresponding
to deduction rules used by reasoners.

As example, we consider the theorem used by reasoners to build class hierarchy in
order to make explicit the subsumption relationship (placement in the subsumption
hierarchy) for non-canonical classes. The following theorem thmx deals with the
restriction operation on classes. It states that if two restriction classes C1 and C2
are defined on the same class C and P1 property implies P2 property (P1⇒P2) then
a new Is_a relation can be inferred between C1 and C2.

67

CHAPTER 4. GENERAL FRAMEWORK: EVENT-B FORMAL
METHOD SETTING

Thmx : (C1 : Restriction(C,P1) ∧ C2 : Restriction(C,P2) ∧ P1⇒P2)
⇒ C2 Is_a C1

Listing 4.10: Deduction theorems.
thm1: ∀ x, p1, p2· (x ∈ INSTANCE ∧ p1 ∈ Property_Verification ∧ p2 ∈ Property_Verification

∧ (p1(x)=TRUE ⇒ p2(x)=TRUE)
⇒

p2−1[{TRUE}] ⊆ p1−1[{TRUE}]))

thm2: ∀ x, p1, p2· (x ∈ INSTANCE ∧ p1 ∈ Property ∧ p2 ∈ Property ∧ (p1(x) ⇒ p2(x))
⇒

(∀ y, z, hasInstances, isA· (y ∈ CLASS ∧ z ∈ CLASS ∧ hasInstances ∈ HAS_INSTANCES
∧ isA ∈ IS_A ∧ hasInstances[{y}] = p1−1[{TRUE}] ∧ hasInstances[{z}] = p2−1[{TRUE}]

⇒
y7→z ∈ isA)))

Listing 4.10 depicts the formalization of Thmx in Event-B. Theorem Thmx is split
into two sub-theorems. A first lemma, thm1 states that if two sets of instances satisfy
properties P1 and P2 respectively such that P1⇒P2 then the former set of instances
is included in the later. Theorem thm2 defines the suited theorem. Lemma thm1 is
used to prove this theorem.

Finally, note that the proof of this theorem can be used to justify or assert that
the rule implemented by the reasoners is valid.

4.2 Strengthening design models using domain mod-
els: an annotation based approach

In this section, we show how the proposed stepwise methodology for design models
strengthening can be deployed in the case of formal modeling. The refinement and
proof Event-B formal method has been chosen for this purpose. It applies the four
defined steps (chapter 2 - section 2.3) and gives the root Event-B models for the
diplomas case study.

4.2.1 Step 1. Domain knowledge formalization

As discussed above, all the basic ontological con-
cepts and relationships are formally described within
a generic Event-B context. This context can be ex-
tended to be specialized for a specific ontology.

68

4.2 Strengthening design models using domain models: an annotation
based approach

An ontology for the Diplomas case study

The Diplomas ontology has been already given in pre-
vious section, an extract of it is depicted in Listing
4.11 to show the end-to-end application of our global
design models strengthening approach. The Ontology_Relations context (defined in
section 4.1) is extended by Diplomas_Ontology. Diplomas are defined as classes. The
equivalences between the different classes are explicitly formalized using the specific
equivalence relation EQo belonging to the set EQUIVALENCE of equivalence rela-
tionships. The correct definition of EQo relationship is guaranteed by proving the
theorem in thm3. This proof requirement entailed by the use of formal methods guar-
antees that used specification relationships like EQo formally fulfill the equivalence
relationship properties.

Listing 4.11: Diplomas ontology.
Context Diplomas_Ontology
Extends Ontology_Relations

Constants Master, Engineer, Bachelor, PhD

Axioms
axm1: partition(CLASS, {Master}, {PhD}, {Bachelor}, {Engineer})
axm2: EQo = {Bachelor7→Bachelor, Engineer7→Engineer, PhD7→PhD,
Master 7→Master, Master7→Engineer, Engineer7→Master}
thm3: EQo ∈ EQUIVALENCE Theorem

End

In addition, the Diplomas_Ontology context describes Master, Bachelor, PhD,
Engineer as specific diplomas classes. It also states that an Engineer diploma is
equivalent to a Master diploma.

4.2.2 Step 2. Model specification and design

Design models are formalized as classical Event-B
models with contexts and machines. Static part (con-
stants, types and data) of the design models is defined
within contexts and the dynamic part is referred to
as a machine which sees the defined contexts (static
part). Listing 4.12 depicts the generic design model
context as follows.

- CONCEPT, ATTRIBUTE, MODEL_INSTANCE and TYPE relevant sets char-
acterize the concepts, attributes, instances and data types involved in the defi-
nition of a design model.

69

CHAPTER 4. GENERAL FRAMEWORK: EVENT-B FORMAL
METHOD SETTING

Listing 4.12: Generic design model context.
Context Generic_Design_Model

Sets CONCEPT, ATTRIBUTE, MODEL_INSTANCE, TYPE

Constants HAS_ATTRIBUTES, NATURAL, BOOLEAN, INTEGER, STRING,
HAS_VALUE_FOR_TYPE_BOOLEAN,HAS_VALUE_FOR_TYPE_INTEGER,
HAS_VALUE_FOR_TYPE_NATURAL, HAS_VALUE_FOR_TYPE_STRING, one, two, three, four, five, . . .

Axioms
axm1: HAS_ATTRIBUTES = CONCEPT ↔ ATTRIBUTE
axm2: TYPE = NATURAL ∪ BOOLEAN ∪ INTEGER ∪ STRING
axm3: NATURAL = {one, two, three, four, five}
axm4: HAS_VALUE_FOR_TYPE_INTEGER = HAS_ATTRIBUTES → INTEGER
axm5: HAS_VALUE_FOR_TYPE_BOOLEAN = HAS_ATTRIBUTES → BOOLEAN
axm6: HAS_VALUE_FOR_TYPE_NATURAL = HAS_ATTRIBUTES → NATURAL
axm7: HAS_VALUE_FOR_TYPE_STRING = HAS_ATTRIBUTES → STRING
. . .

End

- HAS_ATTRIBUTES relationship (axm1) is defined to link each concept with its
attributes.

- Four possible data types are defined: NATURAL, BOOLEAN, INTEGER or STRING
their formalization is given in axm2 and axm3.

- HAS_VALUE_FOR_TYPE_INTEGER,HAS_VALUE_FOR_TYPE_BOOLEAN,
HAS_VALUE_FOR_TYPE_NATURAL andHAS_VALUE_FOR_TYPE_STRING
are defined in axm4, axm5, axm6 and axm7 to associate each concept’s at-
tribute with its data type.

Note that the above defined context is generic and needs to be extended to define
specific applicative contexts. The explicit definition of these generic entities (at a meta
level) allows the definition of generic annotation mechanisms. These mechanisms are
then used to strengthen design models as shown in the next section.

A design model for the Diplomas case study

The static part associated to the students information system case study is given in
the student_Model context (Listing 4.13) as follows.

70

4.2 Strengthening design models using domain models: an annotation
based approach

Listing 4.13: Student design model context.
Context Student_Model Extends Generic_Design_Model

Constants m, p, e, b, titi, toto, DIPLOMS, STUDENTS, PREVIOUS_DIPLOMA
//Master, PhD, Engineer and Bachelor diplomas

Axioms
axm1 : CONCEPT = DIPLOMS ∪ STUDENTS
axm2 : DIPLOMS ∩ STUDENTS = ∅
axm3 : partition(DIPLOMS, {e},{m},{p},{b})
axm4 : partition(STUDENTS, {toto},{titi})
axm5 : PREVIOUS_DIPLOMA = STUDENTS ↔ DIPLOMS
axm6 : finite(CONCEPT)

End

- DIPLOMS and STUDENTS concepts are introduced as subsets of the generic
carrier set CONCEPT in axm1 and axm2;

- e, b, m, p constants are defined as DIPLOMS (elements of DIPLOMS set) in
axm3. These constants respectively refer to Engineer, Bachelor, Master, PhD
diplomas;

- toto and titi are defined as STUDENTS in axm4;

- Finally, axm6 asserts that the CONCEPT carrier set is a finite one.

Once the different concepts are described, it becomes possible to describe the
behavioral part of the model. Indeed, the model considers the case of a student
willing to register for a PhD. For the case study, the dynamic part (Listing 4.14)
defines the Register event within an Event-B machine to allow a student to register
for a PhD. An invariant inv1 ensures that a student can register for a PhD only if
he/she holds a master degree.

Listing 4.14: Student design model machine.
Machine Student_Register

Invariants
inv1 : ∀ x· (x ∈ STUDENTS ∧ x7→ p ∈ phd_register ⇒ (previousDiplom[{x}] ⊆ {m}) ∧

previousDiplom[{x}] ∩ {m} 6= ∅)

Events

Phd_Register , Any Dip

Where
grd1: dip ∈ {m}
grd2: previousDiplom[{student}]={dip}

Then
act1: phd_register = phd_resgiter ∪ {student 7→ p}

End

71

CHAPTER 4. GENERAL FRAMEWORK: EVENT-B FORMAL
METHOD SETTING

4.2.3 Step 3. Model annotation

Listing 4.15 depicts the formal definition of generic
annotation relationships within an Event-B context as
follows.

- An ANNOTATION_CLASS linking concepts of de-
sign models to classes of ontologies is formalized
in axm1;

- ANNOTATION_PROPERTIES relation is defined
in axm2 to link properties of an ontology to at-
tributes of a design model;

- In the same way, axm3 formalizesANNOTATION_INSTANCES
relation in order to annotate design model in-
stances with ontology instances.

- Finally, theAnnotation_Relationship can be extended
to define other kinds of annotation relationships,
for example to link constraints, data types etc.

Listing 4.15: Annotation relationship formalization context.
Context Annotation_Relationship
Extends Ontology_Relations, Generic_Design_Model

Axioms
axm1: ANNOTATION_CLASS =

CLASS↔CONCEPT
axm2: ANNOTATION_PROPERTIES = PROPERTY ↔ ATTRIBUTE
axm3: ANNOTATION_INSTANCES = INSTANCE ↔ MODEL_INSTANCE
. . .

End

The above Annotation_Relationship context is extended to define specific design
model annotations. Once these annotations are defined, they can be integrated into
the design model and enrich it. Thus, annotations are exploited to access the on-
tological concepts and properties in design models. Moreover, note that using the
defined annotation relationships will link only the specified model concepts to the
ontology (when instantiating the annotation relationship). In this way, models are
separated from the domain model and thus both ontologies and design models can
evolve separately and asynchronously.

72

4.2 Strengthening design models using domain models: an annotation
based approach

Remark. Note that the above presented generic annotation relationship could
be parameterized and constrained using axioms to define a more specific kind of
annotations (like Case_of, inheritance, etc.).

The Diploma case study annotation

Listing 4.16 defines annotations for the m and e concepts manipulated at the design
model level. axm1 states that m and e are annotated by the Master and Engineer

ontological classes respectively. Theorem thm1 is added to ensure that the formalized
annotation relation is indeed an instance of ANNOTATION_CLASS.

Listing 4.16: Annotation model context.
Context Diplomas_Annotations
Extends Annotation_Relationship

Axioms
axm1: annotation = {Master7→m, Engineer7→e}
thm1: annotation ∈ ANNOTATION_CLASS Theorem

End

When the annotation relation is established on the design model (Listing 4.14) the
annotated student design model is obtained. It becomes possible to borrow, in the
design model, the reasoning obtained from the equivalence of Master and Engineer

concepts (or any other ontological relationship that may exist between Master and
Engineer classes).

Listing 4.17 depicts the Student_Register machine after the annotation process.
The invariant inv1 is rewritten (in bold) to integrate the annotations. Indeed, it
states that any student holding a previous diploma that is equivalent to the inverse
annotation of m can be registered for preparing a PhD (here Engineer but the on-
tology can evolve and other kind of diplomas equivalent to Master can be formalized
in the ontology and thus available at the design model level - even after annotation).
Using the annotation relationship, it becomes possible to borrow knowledge from the
domain ontology and explicit the implicit relationship that may exists between design
model concepts (here the equivalence between m and e).

Thus, the equivalence ontological relationship can now be exploited to enrich the
design model.

Listing 4.17: Annotated Student_Register machine.
Machine Student_Register

Invariants inv1 : ∀ x· (x ∈ STUDENTS ∧ x7→ p ∈ phd_register ⇒ ((previousDiplom[{x}] ⊆ {m})
∨ (previousDiplom[x] ⊆ annotation[EQo[annotation−1[m]]])))

73

CHAPTER 4. GENERAL FRAMEWORK: EVENT-B FORMAL
METHOD SETTING

Events

Phd_Register , Any Dip

Where
grd1: dip ∈ {m,e}
grd2: previousDiplom[{student}]={dip}

Then
act1: phd_register = phd_resgiter ∪ {student 7→ p}

End

4.2.4 Step 4. Properties verification

The property verification step is achieved trough dis-
charging all the proof obligations (PO). In fact, once
the annotation step is achieved new information (and
reasoning) becomes available in the design model.
Thus, new PO may be generated and the old ones my
become no longer valid regarding the new imported
domain information. A verification step where all the
required proofs are (re)-checked is mandatory to en-
sure the correctness of the design model.

The Diploma case study verification

The new definition of invariant inv1 of Listing 4.17 uses explicitly the defined an-
notation relationship. Invariants similar to inv1 are defined using the annotation
relationship. For our case study, the correctness of the new enriched model is proven.
The new POs generated by the annotation are discharged by proving that invariant
inv1 still holds after the Phd_Register event is triggered. All the POs associated
to the Student_Register machine have been proved for all values of dip that are
equivalent to Master.

4.3 Multi-view modeling

We show below how the proposed stepwise multi-view modeling methodology can be
deployed in the context of Event-B formal method setting. The Diplomas case study
is used at each step of the deployment for illustrative purpose.

4.3.1 Step 1. Model of point of view

74

4.3 Multi-view modeling

The different concepts describing the main fea-
tures of a point of view model are defined. All
the required properties and relationships for
building a point of view are formally described
within a generic Event-B context. This context
can be extended to be specialized for a specific
point of view. Listing 4.18 gives an extract of
the Event-B Generic_POV context defined as follows.

Listing 4.18: Generic point of view context.
Context Generic_POV
Extends Ontology_Relations
Sets POV_CLASS, VIEW_PROPERTY, USED_METHOD, CONSTRAINTS, CONFIG_INFO
Constants REQUIRED_PROPERTY, POV_CONSTRAINTS, POV_PROPERTIES, POV_CONFIGURATION
Axioms
axm1: REQUIRED_PROPERTY ⊆ PROPERTY
axm2: POV_PROPERTIES = POV_CLASS ↔ REQUIRED_PROPERTY
axm3: POV_CONSTRAINTS = POV_CLASS ↔ P(CONSTRAINTS)
axm4: POV_CONFIGURATION = POV_CLASS ↔ CONFIG_INFO
. . .

End

- POV_CLASS,VIEW_PROPERTY,USED_METHOD, CONSTRAINTS and CON-
FIG_INFO relevant finite sets are defined. They respectively refer to the point
of view class, view properties, used method constraints and additional configu-
ration information (as described in section 3.3.1.1).

- REQUIRED_PROPERTY constant is defined as a subset of the ontological set
PROPERTY to refer the set of properties of the system model required in order
to trigger the described analysis (note that all the REQUIRED_PROPERTY
set elements reference explicitly system model properties through annotation
relationships).

- The POV_CONSTRAINTS, POV_PROPERTIES and POV_CONFIGURATION
relationships link explicitly the point of view class POV_CLASS to its con-
straints, properties and configuration respectively.

A point of view for the Diplomas case study

The defined point of view for the Diplomas factory analysis for printing students
diplomas from the Student information system is depicted in Listing 4.19 as follows.

Listing 4.19: Diplomas factory point of view.
Context Diplomas_Factory_POV
Extends Generic_POV, Diplomas_Annotations

75

CHAPTER 4. GENERAL FRAMEWORK: EVENT-B FORMAL
METHOD SETTING

Constants reqProperties, pov_properties, pov_constraints, printingDiploma, PRINT_DIPLOMA,
const1, const2, const3

Axioms
axm1: partition(POV_CLASS, {PRINT_DIPLOMA})
axm2: printingDiploma = annotation[{STUDENT}] → annotation[{DIPLOMA}]
axm3: partition(CONSTRAINTS, {const1}, {const2}, {const3})
axm4: REQUIRED_PROPERTY = {nb_credits}
axm5: pov_properties = {PRINT_DIPLOMA 7→ reqProperties}
axm6: pov_constraints = {PRINT_DIPLOMA 7→ {const1, const2, const3}}
axm7: ∀ c,k· (c ∈ pov_constraints[{PRINT_DIPLOMA}] ∧
k ∈ ATTRIBUTE ∧ k ∈ annotation_properties[{nb_credits}] ∧

(∃a· (a ∈ CONCEPT ∧ a ∈ annotation[{STUDENT}] ∧ a 7→ k ∈ has_attributes
⇒

projNat(hasValueForNat({a 7→ k})) ≥ 12)))
thm1: pov_properties ∈ POV_PROPERTIES
thm2: pov_constraints ∈ POV_CONSTRAINTS

End

- Diplomas factory point of view context extends the Generic_POV context to
define a specific diplomas printing point of view. It also extends the Diplo-
mas_Annotations context that formalizes the annotation relationships between
the design model and the Diplomas ontology. Indeed, the point of view rela-
tionships are defined on the Ontology entities and their annotations rather than
directly on the design model elements. Thus, both the point of view and the
design model remain independent and evolve separately in an asynchronous
manner.

- PRINT_DIPLOMA is defined as specific point of view class for the Diplomas fac-
tory point of view in axm1.

- printingDiploma is defined as an Event-B function (axm2) with students as input
and it returns their printed diploma as output. It characterizes the external
function to trigger in order to print students diplomas.

- Three POV constraints are defined in axm3. They are labeled as const1, const2
and const3. In the same way, a required property id defined in axm4.

- A POV constraint is formalized in axm7. It states that a student diploma can
be printed using this point of view only if the student has at least 12 credits
(obtained by validating enough courses).

- Theorems in thm1 and thm2 guarantee the well definition of the specified relation-
ships regarding to the ones defined in the generic context.

4.3.2 Step 2. System design model

76

4.3 Multi-view modeling

The relevant entities for the definition of a de-
sign model are formalized in a generic con-
text as presented in Listing 4.12. This context
is then extended to define specific applicative
contexts.

A design model for the Diplomas case
study

The design model supporting multi-analyses is defined at this level. It corresponds, in
this case study, to the new strengthened student information system model obtained
at the end of the model annotation step (subsection 4.2.4).

4.3.3 Step3. View

The specific view is built by integrating the re-
sources issued from both concepts of the point
of view (step 1) and the design model (step 2).
The obtained view is formalized within an event-
B machine. Listing 4.20 depicts such a generic
system view as follows.

Listing 4.20: Generic abstract view machine.
Machine Generic_View

Sees a specific point of view

Variables . . .

Invariants
inv1: . . .

Events

INITIALISATION ,
Then

act1: Initialisation of model static variables
act2: Initialisation of view variables
. . .

End

SpecificViewEvent ,
Then

act1: trigger the view method
act2 get the method result

End
. . .

End

77

CHAPTER 4. GENERAL FRAMEWORK: EVENT-B FORMAL
METHOD SETTING

- Generic_View machine sees a specific point of view to trigger the corresponding
analysis.

- View properties and required properties (together with the model variables) have
to be first initialized in the INITIALISATION Event-B event.

- The specific behavioral view (ie. triggering the external method and gathering the
obtained results) is formalized within the SpecificViewEvent event (act1 and
act2).

Diplomas factory view

A specific Diplomas factory view can be built by integrating the resources issued
from both the student information system model and the Diplomas factory point of
view. PrintingView abstract machine is depicted in listing 4.21. Since it sees the
Diplomas_Factory_POV, both the required properties and the view properties are
imported in the Diplomas factory view machine and can be exploited. A boolean
variable printed is defined. It states whether a diploma is printed or not. It is
initialized to FALSE and changed to TRUE once the diploma is printed by triggering
the PrintingDiploma Event.

Listing 4.21: The Diplomas factory abstract view.
Machine PrintingView

Sees Diplomas_Factory_POV

Variables printed

Invariants
inv1: printed ∈ BOOL

Events

INITIALISATION ,
Then
act1: printed := FALSE

End

PrintingDiploma ,
Then

act1: printed := TRUE
End

End

PrintingView machine is refined to specify the actions corresponding to diplomas
printing using the PrintingDiploma Event. The obtained result is depicted in Listing
4.22. The act2 adds a student-diploma pair to the printing queue. The guarantee

78

4.4 An overview of the global Event-B deployment

of the correctness of act2 (choosing the right student, right diploma and the right
association student-diploma) is ensured by grd1 and grd2 using annotation.

Listing 4.22: The Diplomas factory refined view.
Machine PrintingView_refinement
Refines PrintingView

Sees Diplomas_Factory_POV

Variables printed, printingDip

Invariants
inv1: printingDip ∈ printingDiploma

Events

INITAILISATION ,
Then
act1: printed := FALSE
act2: printingDip := ∅

End

PrintingDiploma , Refines PrintingDiploma
Any x, y
Where

grd1: x ∈ annotation[{STUDENT}]
grd2: y ∈ annotation[{DIPLOMA}]

Then
act1: printed := TRUE
act2: printingDip := printingDip ∪ {x 7→ y}

End

End

4.4 An overview of the global Event-B deployment

Figure 4.1 gives a global overview of the general Event-B deployment process of our
general framework.

As presented in the previous sections, generic Event-B contexts for ontologies rela-
tionships (Ontology_Relations Context), generic design models (Generic_Design_Model
Context) and annotation relationships (Annotation_Relationships Context) are de-
fined. These generic contexts are extended to define specific domain ontologies (Do-
main ontology Context), design models (Specific Design Model Context) and design
model annotations (Design Model Annotations Context) which explicitly link design
models entities to the domain ontologies concepts. The design model machine (Spe-
cific Design Model machine) sees the Design Model Annotations context to exploit
and integrate the annotations.

A generic point of view (Generic_POV Context) is also defined. It formalizes
all the properties and relationships that characterize a point of view. Both the De-
sign Model Annotations context and Generic_POV Context are extended to define

79

CHAPTER 4. GENERAL FRAMEWORK: EVENT-B FORMAL
METHOD SETTING

Figure 4.1: Global Event-B deployment process.

a specific point of view (Specific POV Context). The required properties of a point
of view are defined as a subset of ontological properties (i.e. selected from a domain
ontology and associated to a design model properties through annotations). The used
method is defined as a function that borrows information both from the point of view
and from the design model (through annotations processing). A specific view (Design
Model View machine) sees the obtained point of view.

4.5 Conclusion

In this chapter, we gave the details of the Event-B formal method setting of our
approach. The involved models (ontology, design model and point of view) are
formalized using set theory and predicate logic.

First we present the event B formalization of domain ontologies. Two modeling
approaches have been identified and illustrated through examples. The first one is
based on a shallow modeling where the concepts of ontologies are directly encoded in
the target theory. In this case, the information related to the modeling language is
not explicitly defined in the target formal modeling language. The second approach
consists in formalizing ontology models within an Event-B context and then ontolo-
gies are defined as specific instances of the generic ontology model. The interest of
the approach is that the ontology model is explicitly described and reasoning on on-
tologies is performed using the proof system described in the ontology model and the

80

4.5 Conclusion

underlying proof system of Event-B. In this work, we also showed an application to
the validation of ontology reasoners through the definition and proof of theorems that
correspond to reasoning rules in such ontology reasoners.

Our deployment of model strengthening and analysis approaches in formal method
is based on deep modeling. A generic annotation relation is set to explicitly link
design model entities to ontological ones. Then the domain information can be in-
tegrated incrementally and directly in the behavioral parts of the system (Event-B
machine) using refinements. As result of this annotation step, the design models can
be questioned, verified or checked with regards to new properties (expressed by richer
invariants) exploiting annotations that borrow ontology concepts and properties to
the design models.

The deployment of the multi-view analysis approach is set using Event-B contexts
and machines as well. A generic point of view context is defined at a meta-level. It sets
the required description to build a point of view. It can be extended to define specific
point of view. Specific views are defined in Event-B machines that sees specific points
of view. The obtained views can be refined to set more than one specific analysis in
the same machine, view composition linked different interconnected views can then
be defined. This case is not addressed in our thesis.

Finally, the deployed approach exploits multi-level modeling and refinement of-
fered by the Event-B method. Thus, the asynchronous evolution of both the ontology,
the design models and points of view is preserved.

81

Chapter 5

Tools implementation

This chapter describes the prototypes we have developed and the main resources used
for their implementation in both MDE and formal Event-B settings.

First, we propose a Model Driven Engineering tool-chain supporting ontologies
formalization, design models strengthening and multi-view analyses of design models.
The MDE implementation requires the definition of the different model concepts
involved in our approach at a meta-modeling level. Thus, the ontology meta-model
defined in section 3.1, the annotation meta-model presented in section 3.2.3 along with
the annotation mechanisms (except for inheritance that is usually offered in modeling
language) and multi-view analysis meta-model of section 3.3.1 are implemented to
deploy the defined approach.

Next sections present the architecture and the functionalities of the tool-chain
we developed in the case of MDE setting. We also recall the different models we
developed for both annotating design models by references to domain ontologies and
for handling multi-view model analyses.

5.1 MDE context

Our approach makes an extensive use of model driven engineering techniques. To
address this need, we have developed a prototype as a set of plug-ins for Eclipse
based on EMF[3] and Sirius[4]. The developed tool provides graphical syntax and
transformation techniques to support and ease model manipulation.

5.1.1 Eclipse Modeling Framework

Eclipse Modeling Framework (EMF) offers strong and large capabilities for modeling
and model manipulation. Indeed, the EMF modeling platform provides editors and

83

CHAPTER 5. TOOLS IMPLEMENTATION

code generation infrastructures. Models are built in a modular manner with refer-
encing capabilities between models. This modularity allows a developer to use EMF
with other Eclipse projects.

5.1.2 Sirius

Sirius is an Eclipse open source framework built on top of EMF and GMF. It provides
techniques for constructing and maintaining graphical designers by specifying various
model representations such as diagrams, tables and tools to edit the model. Sirius
has been used in this work in order to support the whole graphical tool development
we have set up as prototype.

5.1.3 MDE based tool creation workflow

Figure 5.1 illustrates a workflow for the construction of an MDE based tool using
the Eclipse Modeling Framework, from meta-models specification to the platform
integration. The workflow consists of the following steps.

Step 1:
Metamodel

specification
(Ecore)

Step 2:
Editor code
generation

 (GenModel)

.ecore

Step 3:
Graphical
designer

specification
(Sirius)

.odesign +
External
services Step 4:

Eclipse
integration

(customization,
wizards, ...)

EMF editor

java
eclipse
plugin

java

Figure 5.1: Workflow of the creation of a tool based on EMF and Sirius.

• Step 1. The domain meta-model is specified using EMF Ecore tool. It defines
the concepts that will be created and specified in the generated editor.

• Step 2. Using Ecore generator (GenModel), the Java code of the EMF editor
is generated.

84

5.2 MDE based implementation

• Step 3. The graphical representation of the meta-model concepts is specified
using Sirius (oDesign file). In addition, tools for model edition, manipulation
and transformation are implemented thanks to the external Java services.

• Step 4. The created tool can be customized to fit specific needs. Wizards
for the creation of the project are specified to ease the integration in Eclipse
platform. The created tool is distribute as an Eclipse plugin.

5.2 MDE based implementation

5.2.1 Overview of the global architecture

The prototype is implemented as a set of plug-ins for Eclipse; its architecture is il-
lustrated in Figure 5.2. It consists of several modules grouped into four categories
based on their functionality: meta-models with their EMF editors, graphical design-
ers, model-to-model transformation (external Java services), and integration plug-ins
(project wizards).

Eclipse

EMF

Sirius

Annotation
metamodel
and editor

Multi-view designer

Ecore designer

Annotation designer

Ecore
metamodel
and editor

View
metamodel
and editor

Eclipse
integration

(Project
wizards)

External
java

services

Figure 5.2: Implementation of the solution based on EMF and Sirius.

5.2.2 Implementation detail

Figure 5.3 describes the overall architecture of our implementation. It is composed
of two main parts: first the implementation of the model annotation tool and second
the implementation of the multi-view modeling tool.

85

CHAPTER 5. TOOLS IMPLEMENTATION

Figure 5.3: Implementation of the solution with Eclipse EMF.

5.2.3 The Ecore meta-model

Figure 5.4 shows the main concepts of the Ecore meta-model. The concept of classifier
appears as a meta-concept allowing the definition of manipulated model concepts.
From this concept, the concept of class is defined.

All the defined extensions (annotation and view meta-models) use these concepts.
Relationships using references or inheritance will be set up in order to introduce the
concepts relevant for our approach.

86

5.2 MDE based implementation

Figure 5.4: Ecore meta-model

The Ecore Meta-model is composed of the different meta-concepts allowing a
developer to define classical Ecore models. Since the models we used in this thesis
work and brought by the associated projects are described as UML[77] class diagrams
only, we rely on the part of the Ecore Meta-model that supports the definition of the
concepts involved in UML class diagrams. Classes, properties, types, references etc.
are defined in the model depicted in Figure 5.4.

Note that this is not a restriction of our approach, all the concepts manipulated in
the studied models can be processed in the same manner as for the concepts occurring
in a class diagram.

The concepts of EClassifier and EClass are at the root of all the extensions we
introduce in the next sections.

Next sections show how we proceeded for implementing our framework in a MDE
setting based on the EMF tool chain.

5.2.3.1 Implementation of the model annotation tool

The implementation of the model annotation tool starts with the definition of an
annotation meta-model and the generation of the annotation editors. As depicted in
Figure 5.2 the Ontology model (Domain ontology) and design model (Domain model)

87

CHAPTER 5. TOOLS IMPLEMENTATION

are described within Ecore, therefore they conform to the Ecore meta-model. The
annotation meta-model is defined as an extension of the Ecore meta-model (extends
Ecore meta-model) in order to enable the annotation by Is_case_of and by Asso-
ciation. The integration of domain knowledge brought by the annotations into the
design models is achieved through model to model (M2M) Java transformation . As
result, we obtain an enriched design model as an output of this process.

Annotation meta-model
This section recalls the first extension of the Ecore meta-model we have defined

to handle model annotation. An annotation meta-model is necessary in order to
introduce and to identify, through typing, the concepts of annotation.

Figure 5.5: Annotation meta-model

As mentioned above, the concept of annotation is required at the meta-level in order
to be manipulated through explicit typing and associated operators. The concepts

88

5.2 MDE based implementation

related to annotation are depicted on Figure 5.5. The following concepts have been
introduced

- AnnotationModel is the entry point of the annotation model. It allows to traverse
the annotation model. This class refers to two different resources, one for defin-
ing specific AnnotationClass and the other for defining the particular CaseOf
annotation relationship.

- Annotation is inherited from EClassifier and allows to define specific annotations.
It is an abstract class from which two different kinds of annotations are derived:
CaseOf and AnnotationClass which respectively implement the annotation by
partial inheritance and by association (see chapter 3 - section 3.2.3.2).

- CaseOf implements the annotation by Is_case_of mechanism. Model classes are
explicitly annotated by ontology classes using partial inheritance relationship.
Thus, the selection of ontological properties to be inherited in the annotated
design model can be performed using selectedProperties reference.

- AnnotationClass implements the annotation by association mechanism. A model
class is explicitly associated to an ontology class using this relationship. This
type of annotation is directly parameterized by the user. Properties mapping to
link model properties with ontology properties can be defined at this level us-
ing the properties composition relation (between Annotation and PropertyMap-
ping).

- PropertyMapping is introduced to define properties correspondences (mapping).
It handles the definition of correspondences between properties of two classes
linked with an annotation (i.e. correspondences between annotated class proper-
ties and annotating class ones). This constraint is expressed using the expression
property. Three expressionType can be set: constraint, algebraic and discrete.
The property mapping is particularly useful when using the Is_case_of and
association (i.e. AnnotationClass) relationships in an a posteriori setting.

The annotation meta-model introduces the relevant resources and concepts re-
quired to describe annotations and thus model annotation. It will be set up in next
sections to define different kinds of model annotations.

Next step shows how code of annotations editors is generated from the imple-
mented annotation meta-model described above. Part of these editors is automati-
cally generated using the EMF GenModel. Moreover, some part of it is extended to
integrate costumed behavior and functionalities.

89

CHAPTER 5. TOOLS IMPLEMENTATION

Finally, the annotation editors are now ready to be exploited for the description
of annotation models

5.2.3.2 Implementation of the multi-view analysis tool

In the same manner, the view meta-model is defined and the editors for the construc-
tion of a specific analysis view are generated. The view meta-model is implemented
as an extension of the Ecore meta-mode. The design model (ideally the enriched de-
sign model obtained at the end of the annotation process) and the point of view are
described within Ecore and thus conform to the Ecore meta-model. The construction
of a specific view and its instances is done through Java transformations.

The View meta-model
The view meta-model is built following the model depicted on Figure 3.12. First,

the meta-model of Figure 5.6 describes the generic pattern for building a view model
and what are the resources (EClass) needed for a given analysis. We have used a
composition relationship for this purpose.

Figure 5.6: The View meta-model to select the required concepts.

The defined meta-model corresponds to the classes appearing on the right and bottom
parts of Figure 3.12.

5.3 Extension 1. Handling model annotation

5.3.1 Creating an annotation project

The first step of model annotation process consists in creating an annotation project
along with the different models implied in the annotation.

Figure 5.7 shows the selection wizard (File >New >Other) for creating a new anno-
tation project (bullet 1), Ecore Model (bullet 2) or EcoreAnnotation Model (bullet
3).

90

5.3 Extension 1. Handling model annotation

Figure 5.7: Create an annotation project.

Once an annotation project is created, four directories are automatically created
in the project as depicted in Figure 5.8. An annotated_models directory to store
the annotation models, a domain_models directory to store the design models to
be annotated, an ontologies directory to store the ontologies models and finally an
enriched_models directory to store the automatically generated new enriched design
models.

Figure 5.8: Annotation project repertories.

91

CHAPTER 5. TOOLS IMPLEMENTATION

5.3.2 The annotation editor

Figure 5.9 depicts the annotation editor (bullet (1)). It allows graphical annotation
of design models with explicit references to domain ontologies. First, the annotating
classes along with the design model classes to be annotated need to be imported
in the editor. This is achieved using the Import EClass button (bullet (2)). Then,
annotation by case_of or by association can be performed using respectively the
CaseOf or the Annotation Class buttons (bullet (3)). At the end of the annotation
step, a transformation can be trigged to integrate the annotations into a new enriched
design model, this is performed using the transformation button (bullet (4)).

Figure 5.9: Annotation diagram.

5.3.3 Annotation by association

Figure 5.10: An example of annotation: Association.

Figure 5.10 shows an example of annotation that uses the association mechanism to
link OntologyClass to ModelClass. This annotation operation consists in establish-
ing an association relationship (bullet 1) between two concepts (classes): an ontology

92

5.3 Extension 1. Handling model annotation

concept and a design model one. This type of annotation can be trigged by select-
ing the AnnotationClass button in the Annotation toolbox of the annotation editor
(bullet 2).

Figure 5.11 shows the annotation by association property editor (accessible by
double-click on the Annotation Class relation - bullet 1 of Figure 5.10). Properties
issued from the two different concepts linked by Annotation Class relation (ontolo-
gyProperty from the OntologyClass and modelProperty from the design model) are
available.

Figure 5.11: Annotation by Association: A property mapping.

This figure shows the particular case where the property ontologyProperty is
mapped to the property modelProperty using a propertyMapping relation (bullet 1).
An algebraic constraint explicit the exact relationship that exist between the two
properties. Thus an algebraic constraint (bullet 3) states that ontologyProperty is
equal to modelProperty (bullet 4).

The property mapping is achieved using the PropertyMapping button (bullet 2).
Remark. Observe that such a property mapping with algebraic constraint can also
be set up in the case of the case_of annotation.

5.3.4 Annotation by Case_of

The second type of annotation is the annotation by partial inheritance. It is defined
by instantiating the CaseOf class of the annotation meta-model (Figure 5.5).

93

CHAPTER 5. TOOLS IMPLEMENTATION

Figure 5.12 shows an example of Case_of annotation (bullet 1) in the annota-
tion editor. This annotation is achieved by selecting the CaseOf annotation in the
Annotation toolbox of the annotation editor (bullet 2).

Figure 5.12: An example of annotation: Case_of.

Figure 5.13: Case_of properties editor.

Figure 5.13 shows the property editor of the Case_of annotation (appears by double-
click on the Case_of annotation relationship - bullet 1 of Figure 5.12). Following
the Case_of partial inheritance principle, the Import Ontological Property button
(bullet 1) allows the selection of the Ontological properties of the OntologicalClass
(here ontologyProperty) to be inherited and added to the ModelClass properties (here

94

5.4 Extension 2. Handling multi-analyses of models

modelProperty). Thus, we observe that the ontologyProperty ontological property
has been inherited and added to ModelClass properties using the Import Ontological
Property. Moreover, the Create Property Mapping button (bullet 2) allows to link
ontological properties with design model ones by explicitly defining the correspon-
dences that may exists between them. This functionality has been discussed in the
Annotation by association previous section.

5.4 Extension 2. Handling multi-analyses of models

The second step of the proposed methodology consists in handling multi-analyses of
design models. This step is depicted on the right hand part of Figure 2.1 presented
in chapter 2.

In order to handle such analyses, it is required to supply to the analyzer with the
relevant resources for describing the

• analysis to be performed on the design model

• concepts of the design model required by the analysis i.e. input of the analysis

• concepts of the design model or of the defined analysis that shall be returned
as a result of the performed analysis i.e. output of the analysis

From a technical point of view, in a model driven engineering setting, the approach
is similar to the one deployed for annotating design models.

5.4.1 View editor

Figure 5.14 depicts the view editor (bullet (1)). Design model classes can be imported
into the view using the Import toolbox buttons (bullet (2)). Once the view is built,
a view instances generation is needed, this can be performed automatically using the
instance generation button (bullet (3)). View instances are then given as input of an
analysis tool. The result of an analysis can be caught using the Get result button
(bullet (4)).

95

CHAPTER 5. TOOLS IMPLEMENTATION

Figure 5.14: Overview of the view editor.

5.4.2 Building a view

Figure 5.15: Required properties selection in the view editor.

A view model is constructed by importing relevant properties to the specific view from
a design model (Figure 5.15). For instance, importing a point of view class using
the CopyEClass button will automatically import all the design model properties
referenced by the point of view into the view (directly imported from the design
model). Other relevant properties (and not referenced by the point of view) may be
needed. Thus, the Copy EClass with IsA allows to importation of a Class with all
its properties (even the inherited ones) and the Copy Properties allows a Case_of
inheritance (ie. selecting only some properties of a design model Class to import into
the view).

96

5.5 The Event-B context

5.5 The Event-B context

The Rodin platform has been used for the Event-B setting implementation side. It
offers a high level of abstraction and allows the definition of all concepts presented in
chapter 4. Thus, no extra tool support is required.

Rodin tool

The Rodin Platform is an Eclipse-based IDE for Event-B that provides effective sup-
port for refinement and mathematical proof. The platform is open source, contributes
to the Eclipse framework and is further extendable with plugins [58].

The Rodin tool is intended to support construction and verification of Event-B
models. The focus is very much on verifying models rather than on verifying pro-
grams. No assumptions are made about finiteness of structures and the main verifi-
cation method is deductive proof; model checking can be used when structures are
finite[58] tool is integrated to the Rodin platform for this purpose). Both automatic
and interactive proof is provided. The main properties verified of models are well-
definedness of expressions, invariant preservation and refinement between models[58].

5.6 Conclusion

In this chapter, we detailed the tool-chain implementation of our general framework
in the case of MDE and formal setting.

We have developed a Model Driven Engineering tool-chain based on Eclipse tech-
nology and more specifically on Eclipse Modeling Framework (EMF) technologies.
The Ecore meta-model has been extended in order to integrate the model annotation
and multi-view analyses techniques. Graphical syntax and transformation techniques
have been provided to support and to ease manipulation models.

The Rodin platform offers a fully supported environment for the deployment of our
general framework using Event-B proof and refinement method. Thus, no additional
tool support is required.

97

Chapter 6

Validation on embedded systems

In this Chapter, we present the application of our approach on the CORAC-PANDA
case study.

This case study deals with an avionic architecture described within static design
models. It shows the how our approach improves the quality of this kind of design
model when domain knowledge is integrated and taken into account.

We show how the avionic architecture design models described as UML models
are enriched and strengthened with new domain knowledge.

In the context of the CORAC-PANDA project, we have studied the particular
case of real-time analysis of an avionic system.

6.1 Avionic real-time case study

Result

Avionic
ontology

Corac design
model

Real-time
point of view

Real-time
view

View
instances

analysis tool
for real-time

schedulability

Result

results integration

input output
instanciation

classes
import

classes
import

model
annotation

Figure 6.1: Global integrated approach for real-time analysis

Figure 6.1 shows how the global approach defined in chapter 2 can be instantiated
for the particular case of real-time analysis.

99

CHAPTER 6. VALIDATION ON EMBEDDED SYSTEMS

First, our defined model annotation (section 2.3) is exploited to strengthen the
avionic design model with new domain properties. Thus, the initial avionic design
model is annotated and enriched by explicit references to avionic domain ontologies.

Second, the RealTime view is defined by importing all the required properties
from the RealTime point of view and the design model. Corresponding RealTime
view instances are extracted from the instances of the design model in order to create
RealTime view instances.
The output instances can then be used as input of an Analysis tool for RealTime
Schedulability. The ouput results of the analysis tool are integrated within the result
class of the RealTime view.

6.2 Annotation of the Avionic real-time meta-model

Next subsections shows the end-to-end application of our model annotation method-
ology on the Avionic Real-Time case study.

6.2.1 Step 1. Domain knowledge formalization

The defined ontology for avionic systems is depicted on Figure 6.2 in a simple class
diagram. The avionic platform ontology contains a set of inter-related classes and
relevant properties as follows.

- Thing is the root concept of all ontologies concepts. It is composed of: Avionic-
FunctionalPlatform for the functional aspects of an avionic platform, Avionic-
SoftwarePlatform for the software aspects of an avionic platform and Avionic-
PhysicalPlatform for the physical aspects of an avionic platform.

- AvionicFunctionalPlatform refers to the set of Function formalized to perform
specific calculi. Each Function is characterized with its name, input and output
attributes.

- AvionicSoftwarePlatform refers to the software aspect of an avionic platform as
follows.

• Partition describes the available partitions in a software resource. It is
described with properties like SchedulingAlgorithm referring the algorithms
uses used for distributing resources among different tasks, intervalStart and
intervalEnd which respectively indicate the time where a partition starts
and the time it finishes , etc.

100

6.2 Annotation of the Avionic real-time meta-model

F
ig
ur
e
6.
2:

Av
io
ni
c
pl
at
fo
rm

on
to
lo
gy
.

101

CHAPTER 6. VALIDATION ON EMBEDDED SYSTEMS

• Task for the different tasks that may be trigged in a partition. It is char-
acterized with properties like worstCaseExecTime for maximum length of
time the task could take to be executed, priority referring to the priority
level that is set for a given task, responseTime describing the time elapsed
between the dispatch of a task to the time it finishes its job, etc.

• Network, Route, VirtualLink and Connection describe the different soft-
ware network entities of a platform.

- AvionicPhysicalPlatform describes the physical components that are integrated in
an avionic platform like Switch, Module, Processor, Port, etc. These physical
components are characterized with a unique id.

Finally, this avionic platform ontology formalize domain properties and constraints.
They are depicted in Figure 6.2 as boxes attached to the ontology classes (green
boxes).

6.2.2 Step 2. Model specification and design

The system’s design model is defined according to a given specification. The sec-
ond step of our approach for model strengthening concerns the definition of avionic
platform design model. Figure 6.3 depicts the formalized design model as follows.

- System is entry point of the design model. It represents the corresponding avionic
platform system and is composed of HardwareResource, SoftwareResource and
Function for the functional resource part of the platform.

- HardwareResource is of Module and Network (for the network part of the avionic
platform). A Module is composed of Processor and EndSystemPort (ports of a
module). The network part of the platform is composed of Switch and physical
connections Connection.

- SoftwareResource is composed of Task representing the system’s tasks that can be
executed, Partition for the software partitions of the system contained in the
modules (Module) and virtualLink for the virtual links that are defined to map
between hardware resources Module.

102

6.2 Annotation of the Avionic real-time meta-model

6.2.3 Step 3. Model annotation

Figure 6.4 shows the obtained annotated avionic design model. The different con-
cepts are annotated using the defined domain ontology and the defined annotation
operators. An extract of this annotation process is depicted. Left, the ontological
concepts are used to annotate the right concepts belonging to the avionic design
model. case_of and annotation by association are set up into the annotation editor.
They allow strengthening the avionic design model through Class annotations and
properties mapping.

Note that the defined annotations are manual and set by a domain expert. Thus,
the guarantee of their soundness is left to the expert achieving the annotation step.

103

CHAPTER 6. VALIDATION ON EMBEDDED SYSTEMS

F
igure

6.3:
Avionic

R
ealT

im
e
m
eta-m

odel.

104

6.2 Annotation of the Avionic real-time meta-model

Figure 6.4: An extract of annotation of the Corac meta-model.

105

CHAPTER 6. VALIDATION ON EMBEDDED SYSTEMS

6.2.4 Avionic real-time enriched meta-model

At the end of the annotation process, Figure 6.5 shows the obtained model. This
model is enriched by new properties and constraints borrowed from the domain on-
tologies. Among the resulting constraints (imported from the ontology through the
annotation relationships) two categories can be distinguished.

1. Expressible constraints (represented in green color on Figure 6.5) corresponds
to the constraints imported from the domain ontology that are expressible and
evaluated at the enriched model level since all the properties they are referring
to are available at the design model level.

2. Non evaluable expressible constraints (represented in orange color on Figure
6.5) are the constraints that are borrowed from the ontology but which can not
be valuated. This is due to the fact that the properties or the values (at the
instance level) of some of the properties required to evaluate these constraints
at the model level are not available (due to the set up annotation relationship).

106

6.2 Annotation of the Avionic real-time meta-model

F
ig
ur
e
6.
5:

E
nr
ic
he
d
av
io
ni
c
re
al
-t
im

e
m
et
a-
m
od

el
.

107

CHAPTER 6. VALIDATION ON EMBEDDED SYSTEMS

Figure 6.6: An example instance of the enriched Corac metamodel.

When the model is annotated and thus enriched, valid instances can be built. Figure
6.6 shows an example of a valid instance of the enriched CORAC model where in-
stances of hardware, software and functional parts of the new enriched avionic model
are instantiated.

The instances of Module, Processor, Switch and Connection models classes de-
scribing hardware resources are defined. The software resources represented in Task,
Partition and VirtualLink instances are also defined. Finally, two instances of Func-
tion fun1 and fun2 are introduced. They refer to the functional aspect of the avionic
platform.

The obtained model together with its instances are now ready for analysis. Next
steps show how real-time analysis can be performed on these model and instances.

108

6.3 Multi-view analysis

6.3 Multi-view analysis

Next sections show how the multi-view model analysis approach presented in section
3.3 is applied to the strengthened avionic platform design model in order to build a
real-time view of this design model and trigger the corresponding real-time analysis.

6.3.1 Real-time point of view

Figure 6.7: Real-time point of view.

Figure 6.7 shows the class that describes what a real-time analysis is. This class
defines properties like network information, latency, partition, response time, delay,
bag, priority, task identification, end to end delay, etc. It also describes the method
used to compute a specific real time property. The semantics of these properties are
defined in the corresponding domain ontologies.

Notice that not all the design model properties are required for performing a real-
time analysis. The identified specific properties are imported for each specific analysis

109

CHAPTER 6. VALIDATION ON EMBEDDED SYSTEMS

thanks to the requiredProperties attribute of the meta-model defined in section 3.3.

6.3.2 Building the avionic real-time view.

In order to build a real-time analysis, it is required to import its description. Figure
6.8 shows the screen capture that defines the importation of the RealT imePDV and
Result resources describing the real-time analysis (bullet 1 of Figure 6.8) thanks to
the Copy EClass tool (bullet 2 of Figure 6.8) that is defined to import all the required
properties (and the view ones) by selecting selecting the corresponding point of view
class in the selection wizard (bullet 1 of Figure 6.8).

Figure 6.8: Importing realTimePDV class.

Once the CORAC model is annotated by references to domain ontologies and the
real time analysis (or view) is defined, the two models can be integrated to define the
notion of integrated view as modeled in the global approach of Figure 3.12.

For the specific case of real time scheduling analysis, Figure 6.9 shows the obtained
view after the integration of relevant concepts for performing the real-time analysis.
All the required properties referenced by the RealTimePDV point of view (Figure 6.7)
are imported from the enriched design model (Figure 6.5). These required properties
are imported along with the design model classes containing them. The imported
classes refer to the hardware (Connection, Module, etc.) and software aspects (task,
Partition, etc.) of the avionic platform design model only since the functional
properties of the design model are not set as required in the real-time point of view.

110

6.3 Multi-view analysis

Figure 6.9: View model built with the required properties imported from Corac meta-
model

At this stage, all the resources to trigger a real-time analysis are available.

Figure 6.10: Obtained view instance.

In the same manner, the view instances that will be used as input parameters of
the real-time analysis resulting from the integration are also obtained. Figure 6.10

111

CHAPTER 6. VALIDATION ON EMBEDDED SYSTEMS

shows the view instances for the real-time analysis, they are directly extracted from
the enriched design model instances depicted in Figure 6.6. Thus, the enriched design
model instance is filtered and the obtained view instance does not integrate Function
instances since the functional aspect of the avionic platform are not required for this
kind of analysis.

6.3.3 The exchange process

When the instances are obtained the analysis can be performed. This analysis is
triggered with these instances as values for the input parameters of the analysis.

Once the analysis ends, the instance of the Result class of Figure 6.7 is returned
to the integrated model.

At this level, the system engineer possesses the results of different analysis, he/she
is able to take design decisions in order to increase the quality of the defined system
models.

6.4 Conclusion

In this chapter, we have shown how our approach has been operationally deployed
in the engineering domain of embedded systems. We have validated our defined
methodology in the case of avionic systems and we particularly studied the real-time
analysis of such systems. The design model involved in this case study is directly
borrowed from the core model defined by the CORAC-PANDA project consortium.

We have demonstrated, relying on the MDE tool-chain we developed and pre-
sented in chapter 5 how a real scale design model is, strengthened using the defined
annotation mechanisms (on classes and properties). The new obtained avionic design
model is enriched with domain properties and constraints directly imported from the
proposed avionic platform ontology. This enrichment revealed some design model
inconsistencies related to the lack of domain knowledge properties. In fact, some
domain constraints could not be integrated in the enriched design model due to the
absence of explicit reference to the properties they are related to at design model
level. As a second step, this new design model was used to build a Real-Time view.
Real-Time view instances have been generated as well. They are used as an exchange
format handling all the required properties necessary to trigger a Real-Time analysis
on the avionic design model using an external analysis tool.

Finally, our general framework has been validated on several non trivial case
studies from the engineering application domain.

112

Part III

Conclusion

113

Conclusion and perspectives

Conclusion

The work presented in this thesis shows the interest of model strengthening and han-
dling of multi-view model analyses by exploiting explicit modeling of domain knowl-
edge through domain domain property expression. A general framework gathering
the contributions of our thesis work satisfying RG1, RG2 and RG3 research goals
has been defined and set up. The details of its deployment in a Model Driven En-
gineering setting and in the Event-B formal method based on proof and refinement
setting have been shown.

The first part of our work addressed RG1 i.e. the formalization of domain knowl-
edge. We used ontologies for this purpose. We also proposed the core of a unified
ontology modeling languages gathering the notations of usual ontology modeling lan-
guages. Depending on the chosen modeling language setting, these ontologies are
modeled through concepts, relationships between concepts and associated constraints
on the one hand and domain axioms and theorems on the other hand.

In the second part, we have proposed a stepwise methodology to fulfill RG2. The
defined methodology allows system designers to explicitly handle domain knowledge
expressed within ontologies in their design models. The integration of domain knowl-
edge and information during the system specification and design phases allows the
developers to handle axioms, hypotheses, theorems or properties mined from the ap-
plication domain. This requirement is a major concern in system engineering where
different standards provide system designers with relevant domain knowledge infor-
mation but this information is usually not explicitly handled by the design models.
To make this information explicit, annotation mechanisms have been defined in both
the MDE and formal methods settings. They proved powerful and allowed system
designers to map any entity of a design model to another one in an ontology without
requiring any change nor modification in the original models. In this way, design

115

models are separated from the domain model and thus, ontologies and models can
evolve separately and asynchronously meeting the separation of concerns objective.

The third contribution of our work fulfilled RG3. It shows the capability to han-
dle model analyses. This idea is not new, but, the novelty of our approach consists
in two main improvement. The first one consists in making explicit model analy-
ses through the definition of a descriptive model (point of view) that describes the
whole features of a specific model analysis. Ontologies describing the characteristics
of model analyses are built and used for this purpose. The second improvement con-
cerns the explicit definition of the required concepts and properties borrowed from
a design model to trigger a given model analysis. Indeed, similarly to our process
for annotation, when performing a model analysis, our approach keeps trace of the
process that allowed a system designer to build its model analysis.

A stepwise methodology for multi-view model analyses has been proposed and
deployed for non trivial case studies. This approach makes an extensive use of the
model strengthening one. Indeed, a model annotation step is recommended in order
to strengthen the quality of the system design models to be analyzed.

Moreover, we have shown in this thesis that ontologies, points of view and design
models can be integrated in a unified modeling language. The interest of such inte-
gration is semantic alignment where both ontologies, annotations and design models
are described in a common shared modeling language.

The work presented in this thesis has been developed as part of the AME Corac-
Panda project [2] and ANR-IMPEX project. It has been applied to several case
studies issued from engineering domain. Prototypes corresponding to the deployment
of our approach in the MDE and Formal methods settings have been developed, and
deployed. Experiments with MDE based techniques have been conducted on the
particular engineering domain of avionic systems.

Perspectives

The work presented in this thesis opens several new research directions. Below, we
have identified the main issues from both technical and methodological points of view.

From a technical point of view first, the proposed ontology modeling language can
be extended and more ontological modeling concepts can be formalized in order to
enrich the expressiveness of our approach. Furthermore, the Event-B development

116

considers ontologies as theories expressed in Event-B contexts. The case where ontolo-
gies are defined at an upper level using event-B theories should be studied. Indeed,
the use of Event-B theories offers the capability to define built in ontology modeling
language concepts and deduction rules. Then, the annotation meta-model should
be extended regarding these new formalized ontology concepts and new annotation
relationships should be formalized to link new types of ontological concepts.

The annotation mechanisms themselves can be enhanced if automatic annotations
techniques are provided. Indeed, inference rules could be added to our developed
method and tool in order to detect and deduce automatically possible annotations.
Due to the critical aspects of the models we address, an approval from the system
designers would still be required before integrating these annotations to the design
model.

Moreover, the different models involved in our approach (ontology, point of view,
annotation model) are associated with domain constraints and/or algebraic con-
straints - defined within properties annotation in case of annotation by partial in-
heritance and by association. Thus, the defined meta-models for ontology formaliza-
tion, model annotation and multi-view analysis and associated tool-chain should be
extended to define and integrate a language for constraints description along with a
procedure to solve and verify them at model and instance levels. The points of view
meta-concepts should also be extended and a meta-model for points of view should
be defined.

From a methodological point of view first, the case of semantic mismatch, where
ontologies, points of view and design models are not described in the same modeling
language, needs to be addressed. Semantic alignment shall be studied in the resulting
heterogeneous models. Moreover, the engineering application domain we studied
relies on modeling languages with classical semantics using closed world assumption
(CWA). We are interested in deploying our general framework on other application
domains like the semantic web which involves Open World assumption (OWA).

Currently, the developed approach allows a designer to perform a single analysis at
a time. We are interested in offering the capability to integrate and ideally compose
several model analyses. Allowing such integration will offer different analysis patterns.
Furthermore, we are interested in deploying our general framework for other formal
methods offering other techniques for the expression, verification and validation of
properties different from the ones offered by Event-B.

117

Finally, our defined general framework deals with static design models only. Its
application on dynamic models should be discussed. The formalization of dynamic
models including pre and post conditions associated to actions together with their
composition at ontological level shall then be studied in the future.

118

Bibliography

[1] A free, open-source ontology editor and framework for building intelligent sys-
tems, howpublished = http://protege.stanford.edu.

[2] Ame-corac: Avionique modulaire etendue ? conseil pour la recherche aéronau-
tique civile. http://aerorecherchecorac.com/.

[3] Eclipse modeling framework. https://www.eclipse.org/modeling/emf/.

[4] Sirius. http ://www.eclipse.org/sirius/.

[5] J. R. Abrial, A. Hoare, and Pierre Chapron. The B-Book: Assigning Programs
to Meanings. Cambridge University Press, 1996.

[6] Jean-Raymond Abrial. Modeling in Event-B - System and Software Engineering.
Cambridge University Press, 2010.

[7] Jean-Raymond Abrial and Stefan Hallerstede. Refinement, decomposition, and
instantiation of discrete models: Application to event-b. Fundam. Inf., 77(1-2),
2007.

[8] J. Paul Gibson Aït Ameur, Yamine and Dominique Méry. On implicit and
explicit semantics: Integration issues in proof-based development of systems. In
ISOLA, 2014.

[9] Y. Ait-Ameur and H.U. Wiedmer. General resources. ISO-IS 13584-20. ISO
Genève, 88 pages, 1998.

[10] Yamine Ait-Ameur and Dominique Méry. Making explicit domain knowledge in
formal system development. volume 121. Elsevier, 2016.

[11] P.-O. Ribet B. Berthomieu and F. Vernadat. The tool TINA ? construction of
abstract state spaces for petri nets and time petri nets. Taylor and Francis, 2004.

119

http://aerorecherchecorac.com/

BIBLIOGRAPHY

[12] Patrick Barlatier and Richard Dapoigny. A type-theoretical approach for ontolo-
gies: The case of roles. Applied Ontology, 7(3):311–356, 2012.

[13] Ladjel Bellatreche, Guy Pierra, Dung Nguyen Xuan, Dehainsala Hondjack, and
Yamine Aït Ameur. An a priori approach for automatic integration of heteroge-
neous and autonomous databases. In Database and Expert Systems Applications.
Springer, 2004.

[14] S. Evren P. Bijan. Pellet: An owl dl reasoner. In International Workshop on
Description Logics (DL2004), pages 6–8, 2004.

[15] Kalina Bontcheva, Valentin Tablan, Diana Maynard, and Hamish Cunningham.
Evolving gate to meet new challenges in language engineering. NLE, 10(3-4),
2004.

[16] Kalina Bontcheva, Valentin Tablan, Diana Maynard, and Hamish Cunningham.
Evolving GATE to Meet New Challenges in Language Engineering. Natural
Language Engineering, 10(3/4):349–373, 2004.

[17] N. Boudjlida and H. Panetto. Annotation of enterprise models for interoperability
purposes. In CAISE, April 2008.

[18] J. P. Bowen, R. W. Butler, D. L. Dill, R. L. Glass, D. Gries, and A. Hall. An
invitation to formal methods. volume 29, pages 16–, April 1996.

[19] D. Brickley and R. V. Guha. RDF vocabulary description language
1.1: RDF schema. W3C Recommendation 10, 25 February 2014.
http://www.w3.org/TR/rdf-schema/.

[20] Jeen Broekstra and Arjohn Kampman. SeRQL: An RDF query and transfor-
mation language. In SWAD Europe Workshop on Semantic Web Storage and
Retrieval, 2004.

[21] Jeen Broekstra, Arjohn Kampman, and Frank van Harmelen. Sesame: A generic
architecture for storing and querying rdf and rdf schema. In Proceedings of the
First International Semantic Web Conference on The Semantic Web, ISWC ’02,
pages 54–68, London, UK, UK, 2002. Springer-Verlag.

[22] Victorio A Carvalho, João Paulo A Almeida, and Giancarlo Guizzardi. Using
reference domain ontologies to define the real-world semantics of domain-specific
languages. In CAISE, 2014.

120

BIBLIOGRAPHY

[23] Artem Chebotko, Yu Deng, Shiyong Lu, Farshad Fotouhi, and Anthony Aris-
tar. An ontology-based multimedia annotator for the semantic web of language
engineering. Int. J. Semantic Web Inf. Syst., 1(1):50–67, 2005.

[24] D. Connolly, I. Horrocks, D. McGuinness, F. Patel-Schneider, and A. Stein.
Daml+oil reference description. World Wide Web Consortium, 2001.

[25] Hamish Cunningham, Diana Maynard, and Kalina Bontcheva. Text processing
with gate. Gateway Press CA, 2011.

[26] Hamish Cunningham, Diana Maynard, Kalina Bontcheva, Valentin Tablan, Ni-
raj Aswani, Ian Roberts, Genevieve Gorrell, Adam Funk, Angus Roberts, Danica
Damljanovic, Thomas Heitz, Mark A. Greenwood, Horacio Saggion, Johann Pe-
trak, Yaoyong Li, and Wim Peters. Text Processing with GATE (Version 6).
2011.

[27] Richard Dapoigny and Patrick Barlatier. Modeling ontological structures with
type classes in coq. In Conceptual Structures for STEM Research and Education,
20th International Conference on Conceptual Structures, ICCS 2013, Mumbai,
India, January 10-12, 2013. Proceedings, volume 7735 of Lecture Notes in Com-
puter Science, pages 135–152. Springer, 2013.

[28] Hondjack Dehainsala, Guy Pierra, and Ladjel Bellatreche. Ontodb: An ontology-
based database for data intensive applications. In Proc. of the 12th Int. Conf.
on Database Systems for Advanced Applications (DASFAA’07). LNCS. Springer,
2007.

[29] Sylvie Desprès and Sylvie Szulman. Terminae method and integration process for
legal ontology building. In Moonis Ali and Richard Dapoigny, editors, Advances
in Applied Artificial Intelligence, 19th International Conference on Industrial,
Engineering and Other Applications of Applied Intelligent Systems, IEA/AIE
2006, Annecy, France, June 27-30, 2006, Proceedings, volume 4031 of Lecture
Notes in Computer Science, pages 1014–1023. Springer, 2006.

[30] Sylvie Despres and Sylvie Szulman. Terminae method and integration process for
legal ontology building. In Advances in Applied Artificial Intelligence. Springer,
2006.

[31] Edsger-Wybe Dijkstra. A Discipline of Programming. Prentice Hall PTR, 1977.

121

BIBLIOGRAPHY

[32] Chimène Fankam, Yamine Aït-Ameur, and Guy Pierra. Exploitation of ontol-
ogy languages for both persistence and reasoning purposes - mapping plib, OWL
and flight ontology models. In WEBIST 2007 - Proceedings of the Third Interna-
tional Conference on Web Information Systems and Technologies, Volume WIA,
Barcelona, Spain, March 3-6, 2007., pages 254–262. INSTICC Press, 2007.

[33] Adam Farquhar, Richard Fikes, and James Rice. The Ontolingua Server: a
Tool for Collaborative Ontology Construction. International Journal of Human
Computer Studies (IJHCS), 46(6):707–727, 1997.

[34] Jean-Christophe Filliâtre and Andrei Paskevich. Why3 — where programs meet
provers. In ESOP.

[35] Anthony Finkelstein, Jeff Kramer, and Michael Goedicke. Viewpoint oriented
software development. University of London, Imperial College of Science and
Technology, Department of Computing, 1991.

[36] Anthony CW Finkelstein, Dov Gabbay, Anthony Hunter, Jeff Kramer, and
Bashar Nuseibeh. Inconsistency handling in multiperspective specifications.
IEEE Transactions on Software Engineering, 20(8):569–578, 1994.

[37] Thomas R. Gruber. A translation approach to portable ontology specifications.
Knowl. Acquis., 5(2):199–220, June 1993.

[38] Pierra Guy, Aït-Ameur Yamine, and Sardet Eric. ISO (660p), Geneve, 2003.

[39] Volker Haarslev and Ralf Möller. Description of the RACER system and its
applications. In Working Notes of the 2001 International Description Logics
Workshop (DL-2001), Stanford, CA, USA, August 1-3, 2001, volume 49 of CEUR
Workshop Proceedings. CEUR-WS.org, 2001.

[40] Volker Haarslev and Ralf Möller. RACER system description. In Automated
Reasoning, First International Joint Conference, IJCAR 2001, Siena, Italy, June
18-23, 2001, Proceedings, volume 2083 of Lecture Notes in Computer Science,
pages 701–706. Springer, 2001.

[41] Kahina Hacid. Handling domain knowledge in formal design models: An ontology
based approach. In Leveraging Applications of Formal Methods, Verification and
Validation: Discussion, Dissemination, Applications - 7th International Sympo-
sium, ISoLA 2016, Imperial, Corfu, Greece, October 10-14, 2016, Proceedings,
Part II, pages 747–751, 2016.

122

BIBLIOGRAPHY

[42] Kahina Hacid. Explicitation de propriétés par annotation de modèles. Technical
report, INPT-ENSEEIHT/IRIT, Toulouse, France, Septembre 2014.

[43] Kahina Hacid and Yamine Aït Ameur. Handling domain knowledge in design
and analysis of design models. In Isola Post-Proceedings - 7th International
Symposium, ISoLA 2016.

[44] Kahina Hacid and Yamine Aït Ameur. Strengthening MDE and formal de-
sign models by references to domain ontologies. A model annotation based ap-
proach. In Leveraging Applications of Formal Methods, Verification and Vali-
dation: Foundational Techniques - 7th International Symposium, ISoLA 2016,
Proceedings, Part I.

[45] Kahina Hacid and Yamine Aït Ameur. Annotation of engineering models by ref-
erences to domain ontologies. In Model and Data Engineering - 6th International
Conference, MEDI 2016, Almería, Spain, September 21-23, 2016, Proceedings,
pages 234–244, 2016.

[46] Siegfried Handschuh and Steffen Staab. CREAM: creating metadata for the
semantic web. volume 42, pages 579–598, 2003.

[47] Siegfried Handschuh, Raphael Volz, and Steffen Staab. Annotation for the deep
web. IEEE, (5), 2003.

[48] Siegfried Handschuh, Raphael Volz, and Steffen Staab. Annotation for the deep
web. IEEE Intelligent Systems, 18(5):42–48, 2003.

[49] Stephen Harris and Nicholas Gibbins. 3store: Efficient bulk RDF Storage. In
Proceedings of the 1st International Workshop on Practical and Scalable Semantic
Systems (PPP’03), pages 1–15, 2003.

[50] Brian Henderson-Sellers. On the Mathematics of Modelling, Metamodelling, On-
tologies and Modelling Languages. Springer Berlin Heidelberg, 2012.

[51] Pascal Hitzler, Markus Krötzsch, Bijan Parsia, Peter F. Patel-Schneider, and
Sebastian Rudolph, editors. OWL 2 Web Ontology Language: Primer. W3C
Recommendation, 27 October 2009. http://www.w3.org/TR/owl2-primer/.

[52] Charles-Antony-Richard Hoare. An axiomatic basis for computer programming.
ACM, 12, 1969.

123

BIBLIOGRAPHY

[53] Gerard Holzmann. Spin Model Checker, the: Primer and Reference Manual.
Addison-Wesley Professional, first edition, 2003.

[54] IMPEX Consortium. Formal models for ontologies, 2015.

[55] ISO. Industrial automation systems and integration - parts library - part 42:
Description methodology: Methodology for structuring parts families. ISO
ISO13584-42, International Organization for Standardization, Geneva, Switzer-
land, 1998.

[56] ISO13584-42. Industrial automation systems and integration parts library part
42 : Description methodology : Methodology for structuring parts families. Tech-
nical report, International Standards Organization, 1998.

[57] Daniel Jackson. Software Abstractions - Logic, Language, and Analysis. MIT
Press, 2006.

[58] Michael Jastram and Prof Michael Butler. Rodin User’s Handbook: Covers Rodin
V.2.8. CreateSpace Independent Publishing Platform, USA, 2014.

[59] Stéphane Jean. OntoQL, an exploitation language for ontology-based databases.
Theses, Université de Poitiers, December 2007.

[60] Stéphane Jean, Guy Pierra, and Yamine Ait-Ameur. Domain Ontologies: A
Database-Oriented Analysis. In Web Information Systems and Technologies, In-
ternational Conferences, WEBIST 2005 and WEBIST 2006. Revised Selected Pa-
pers, Lecture Notes in Business Information Processing, pages 238–254. Springer
Berlin Heidelberg, 2007.

[61] Stéphane Jean, Guy Pierra, and Yamine Aït Ameur. Domain ontologies: A
database-oriented analysis. In Joaquim Filipe, José Cordeiro, and Vitor Pedrosa,
editors, WEBIST (Selected Papers), volume 1 of Lecture Notes in Business In-
formation Processing. Springer, 2006.

[62] Clifford B. Jones. Systematic software development using VDM (2. ed.). Prentice
Hall International Series in Computer Science. Prentice Hall, 1991.

[63] Jörg Kienzle, Wisam Al Abed, and Jacques Klein. Aspect-oriented multi-view
modeling. In Proceedings of the 8th ACM International Conference on Aspect-
oriented Software Development, AOSD ’09, pages 87–98, New York, NY, USA,
2009. ACM.

124

BIBLIOGRAPHY

[64] John Knight, Jian Xiang, and Kevin Sullivan. A rigorous definition of cyber
physical systems. In Trustworthy Cyber Physical Systems Engineering. To ap-
pear, 2016.

[65] Holger Knublauch, Ray W. Fergerson, Natalya F. Noy, and Mark A. Musen.
The protege owl plugin: An open development environment for semantic web
applications. pages 229–243. Springer, 2004.

[66] Leslie Lamport. The temporal logic of actions. In ACM Trans. Program. Lang.
Syst., volume 16, New York, NY, USA, 1994.

[67] Michael Leuschel and Michael J. Butler. Prob: A model checker for B. In FME
2003: Formal Methods, International Symposium of Formal Methods Europe,
Pisa, Italy, September 8-14, 2003, Proceedings, pages 855–874, 2003.

[68] Yongxin Liao, Mario Lezoche, Hervé Panetto, Nacer Boudjlida, and Ed-
uardo Rocha Loures. Formal semantic annotations for models interoperability in
a plm environment. arXiv, 2014.

[69] Yun Lin and Darijus Strasunskas. Ontology-based semantic annotation of process
templates for reuse. In Proc. of the CAiSE, volume 5. Citeseer, 2005.

[70] Yun Lin, Darijus Strasunskas, Sari Hakkarainen, John Krogstie, and Arne
Solvberg. Semantic annotation framework to manage semantic heterogeneity
of process models. In CAISE, 2006.

[71] Dominique Méry, Rushikesh Sawant, and Anton Tarasyuk. Integrating domain-
based features into event-b: A nose gear velocity case study. In MEDI, 2015.

[72] Linda Mohand-Oussaïd and Idir Aït-Sadoune. Formal modelling of domain con-
straints in event-b. In Model and Data Engineering - 7th International Con-
ference, MEDI 2017, Barcelona, Spain, October 4-6, 2017, Proceedings, pages
153–166, 2017.

[73] Linda Mohand Oussaïd and Idir Ait-Sadoune. OntoEventB : Un outil pour la
modélisation des ontologies dans B Événementiel. In AFADL 2017, pages 117–
121, Montpellier, France, June 2017.

[74] Boris Motik. KAON2 - scalable reasoning over ontologies with large data sets.
ERCIM News, 2008(72), 2008.

125

BIBLIOGRAPHY

[75] OMG. Meta Object Facility (MOF) Core Specification Version 2.0, 2006.

[76] OMG. Meta Object Facility (MOF) 2.0 Query/View/Transformation Specifica-
tion, Version 1.1, January 2011.

[77] OMG. OMG Unified Modeling Language (OMG UML), Superstructure, Version
2.4.1, 2011.

[78] OMG. OMG Object Constraint Language (OCL), Version 2.3.1, January 2012.

[79] W3C OWL Working Group. OWL 2 Web Ontology Language:
Document Overview. W3C Recommendation, 27 October 2009.
http://www.w3.org/TR/owl2-overview/.

[80] Zhengxiang Pan and Jeff Heflin. Dldb: Extending relational databases to support
semantic web queries. In In PSSS, pages 109–113, 2003.

[81] M Jae Park, Ji Hyun Lee, Chun Hee Lee, Jiexi Lin, Olivier Serres, and Chin Wan
Chung. An efficient and scalable management of ontology. In Proceedings of the
12th International Conference on Database Systems for Advanced Applications
(DASFAA’07), volume 4443 of Lecture Notes in Computer Science. Springer,
2007.

[82] G. Pierra. Context-explication in conceptual ontologies: the plib approach. In
Proceedings of the 10th ISPE International Conference on Concurrent Engineer-
ing (CE 2003), Vol. Enhanced Interoperable Systems, volume 26, page 2003,
2003.

[83] G. Pierra. Context representation in domain ontologies and its use for semantic
integration of data. Journal on Data Semantics, 10:174–211, 2008.

[84] G. Pierra and H.U. Wiedmer. Industrial automation systems and integration
parts library part 42: methodology for structuring part families. Technical re-
port, Technical Report ISO DIS 13584-42, International Organization for Stan-
dardization, 30 May 1996. ISO/TC 184/SC4/WG2, 1996.

[85] Guy Pierra and Eric Sardet. ISO 13584-32 Industrial automation systems and
integration Parts library Part 32: Implementation resources: OntoML: Product
ontology markup language. ISO, 2010.

126

BIBLIOGRAPHY

[86] Ben Potter, David Till, and Jane Sinclair. An Introduction to Formal Specifi-
cation and Z. Prentice Hall PTR, Upper Saddle River, NJ, USA, 2nd edition,
1996.

[87] Douglas C. Schmidt. Model-driven engineering. IEEE Computer, 39(2), February
2006.

[88] Aditya A. Shah, Aleksandr A. Kerzhner, Dirk Schaefer, and Christiaan J. J. Pare-
dis. Multi-view Modeling to Support Embedded Systems Engineering in SysML,
pages 580–601. Springer Berlin Heidelberg, Berlin, Heidelberg, 2010.

[89] M. Stocker and M. Smith. Owlgres: A scalable owl reasoner. In The Sixth
International Workshop on OWL: Experiences and Directions, 2008.

[90] Martin Törngren, Ahsan Qamar, Matthias Biehl, Frederic Loiret, and Jad El-
Khoury. Integrating viewpoints in the development of mechatronic products.
Mechatronics, 24(7):745–762, 2014.

[91] J. Trinkunas and Q. Vasilecas. A graph oriented model for ontology transforma-
tion into conceptual data model. Information Technology and Control, 36(1A),
December 2007.

[92] Martin Verlage. Multi-view modeling of software processes. Software Process
Technology, pages 123–126, 1994.

[93] Yuxin Wang and Hongyu Li. Adding semantic annotation to uml class diagram.
In ICCASM, 2010.

[94] Jeannette M. Wing. A specifier’s introduction to formal methods. volume 23,
pages 8–23, Los Alamitos, CA, USA, September 1990. IEEE Computer Society
Press.

[95] Nabila Zouggar, Bruno Vallespir, and David Chen. Semantic enrichment of
enterprise models by ontologies-based semantic annotations. In EDOC. IEEE,
2008.

127

	Abstract
	Acknowledgments
	Contents
	I Context
	Introduction
	Problem statement
	Research goals
	Complex systems design methods
	Model Driven Engineering
	State-based formal methods
	Event-B formal method

	Contributions
	Publications
	Associated projects

	1 Ontologies and domain knowledge
	1.1 Domain ontologies
	1.1.1 Some fundamental characteristics
	1.1.2 An example of ontology

	1.2 Ontology modeling languages
	1.2.1 Main ontology modeling languages characteristics

	1.3 Ontologies in engineering
	1.4 Ontologies v.s. design models
	1.5 Ontologies and annotations
	1.6 Ontologies and multi-view modeling
	1.7 Thesis outline

	II Contributions
	2 General framework
	2.1 Handling domain knowledge in design and analysis of engineering models: global approach
	2.2 Ontologies formalization
	2.3 Strengthening design models using domain models: an annotation based approach
	2.4 Multi-view modeling
	2.5 The Diplomas case study
	2.5.1 Additional requirements for students registration
	2.5.2 Application of the general framework on the Diplomas case study

	2.6 Conclusion

	3 General framework: MDE setting
	3.1 Ontologies formalization
	3.2 Strengthening design models using domain models: an annotation based approach
	3.2.1 Step 1. Domain knowledge formalization
	3.2.1.1 An ontology for the Diplomas case study

	3.2.2 Step 2. Model specification and design
	3.2.2.1 A design model for the Diploma case study

	3.2.3 Step 3. Model annotation
	3.2.3.1 Core classes for model annotation
	3.2.3.2 Model annotation: three identified cases
	3.2.3.3 The Diploma case study annotation

	3.2.4 Step 4. Properties verification
	3.2.4.1 The Diplomas case study verification

	3.3 Multi-view modeling
	3.3.1 The core model elements
	3.3.1.1 Step 1. Model of point of view definition
	3.3.1.2 Step 2. System design model definition
	3.3.1.3 Step 3. Building the view

	3.4 Conclusion

	4 General framework: Event-B formal method setting
	4.1 Ontologies formalization
	4.1.1 Shallow modeling
	4.1.2 Deep modeling: ontology language formalization within a context
	4.1.3 Our ontologies formalization: deep modeling
	4.1.3.1 Canonical concepts
	4.1.3.2 Non-canonical concepts
	4.1.3.3 Ontological relationships composition

	4.1.4 An example of ontologies
	4.1.4.1 Ontology for diplomas: Is_a and equivalence
	4.1.4.2 Ontology for diplomas: use of the restriction operator

	4.1.5 Deduction rules and theorems

	4.2 Strengthening design models using domain models: an annotation based approach
	4.2.1 Step 1. Domain knowledge formalization
	4.2.2 Step 2. Model specification and design
	4.2.3 Step 3. Model annotation
	4.2.4 Step 4. Properties verification

	4.3 Multi-view modeling
	4.3.1 Step 1. Model of point of view
	A point of view for the Diplomas case study

	4.3.2 Step 2. System design model
	4.3.3 Step3. View

	4.4 An overview of the global Event-B deployment
	4.5 Conclusion

	5 Tools implementation
	5.1 MDE context
	5.1.1 Eclipse Modeling Framework
	5.1.2 Sirius
	5.1.3 MDE based tool creation workflow

	5.2 MDE based implementation
	5.2.1 Overview of the global architecture
	5.2.2 Implementation detail
	5.2.3 The Ecore meta-model
	5.2.3.1 Implementation of the model annotation tool
	5.2.3.2 Implementation of the multi-view analysis tool

	5.3 Extension 1. Handling model annotation
	5.3.1 Creating an annotation project
	5.3.2 The annotation editor
	5.3.3 Annotation by association
	5.3.4 Annotation by Case_of

	5.4 Extension 2. Handling multi-analyses of models
	5.4.1 View editor
	5.4.2 Building a view

	5.5 The Event-B context
	5.6 Conclusion

	6 Validation on embedded systems
	6.1 Avionic real-time case study
	6.2 Annotation of the Avionic real-time meta-model
	6.2.1 Step 1. Domain knowledge formalization
	6.2.2 Step 2. Model specification and design
	6.2.3 Step 3. Model annotation
	6.2.4 Avionic real-time enriched meta-model

	6.3 Multi-view analysis
	6.3.1 Real-time point of view
	6.3.2 Building the avionic real-time view.
	6.3.3 The exchange process

	6.4 Conclusion

	III Conclusion
	Conclusion and perspectives
	Conclusion
	Perspectives

	Bibliography

