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Abstract

In-vehicle communication which refers to the communication and exchange of data between

embedded automotive devices plays a crucial role in the development of intelligent transportation

systems (ITS), which aim to improve the efficiency, safety, and sustainability of transportation

systems. The proliferation of embedded sensor-centric communication and computing devices

connected to the in-vehicle network (IVN) has enabled the development of safety and convenience

features including vehicle monitoring, physical wiring reduction, and improved driving experience.

However, with the increasing complexity and connectivity of modern vehicles, the expanding

threat landscape of the IVN is raising concerns. A range of potential security risks can

compromise the safety and functionality of a vehicle putting the life of drivers and passengers in

danger.

Numerous approaches have thus been proposed and implemented to alleviate this issue

including firewalls, encryption, and secure authentication and access controls. As traditional

mechanisms fail to fully counterattack intrusion attempts, the need for a complementary defensive

countermeasure is necessary. Intrusion Detection Systems (IDS) have been thus considered as

a fundamental component of every network security infrastructure, including IVN. Intrusion

detection can be particularly useful in detecting threats that may not be caught by other security

measures, such as zero-day vulnerabilities or insider attacks. It can also provide an early warning

of a potential attack, allowing car manufacturers to take preventive measures before significant

damage occurs.

The main objective of this thesis is to investigate the capability of deep learning techniques

in detecting in-vehicle intrusions. Deep learning algorithms have the ability to process large

amounts of data and recognize complex patterns that may be difficult for humans to discern,

making them well-suited for detecting intrusions in IVN. However, since the E/E architecture

of a vehicle is constantly evolving as new technologies and requirements emerge, we propose

different deep learning-based methods for different E/E architectures and for various tasks

including anomaly detection and classification. Overall, the thesis’ contributions fall into two

topics.
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Firstly, we propose an application of deep learning-based language models for natural language

processing tasks mainly in-vehicle intrusion detection. Inspired by the outstanding performance

of bidirectional encoder representations from transformers (BERT) for improving many natural

language processing tasks, we develop “CAN-BERT", a deep learning-based network intrusion

detection system, to detect cyber-attacks on CAN bus protocol. We show that the BERT model

is able to learn the sequence of identifiers (IDs), on the CAN bus for anomaly detection, using

the “masked language model" - an unsupervised learning method. Drawing on the remarkable

detection results, we ask whether a BERT-based multi-agent IDS can detect attacks that affect

the inter-dependencies between asynchronous signals carried by distinct CAN IDs.

Secondly, we propose IDSs for anomaly detection and attack classification for the Ethernet-

based protocol - a recent network protocol for vehicles, gaining increasing momentum in standards

for connected vehicles. We have thus considered two safety-critical application layer protocols

namely the Scalable-service Oriented Middleware Protocol (SOME/IP) and the Audio-

Video Transport Protocol (AVTP). The first contribution consists in generating a labeled

dataset for the SOME/IP protocol - as no standard public dataset is available. The generated

dataset includes different types of attacks, and a range of normal activity to provide a baseline

for comparison. Once available, we leverage the dataset to devise offline and real-time IDS

using a supervised learning approach that is particularly useful for attack classification, as

it allows the trained model to learn the characteristics of different types of attacks and to

accurately predict the type of attack based on these characteristics. Our second contribution lies

in detecting attacks on the AVTP protocol used to transmit audio, video, and other multimedia

data over Ethernet networks. We thus compare several unsupervised learning algorithms that

can potentially be used to identify unknown anomalous or suspicious behavior in AVTP traffic

logs.

In summary, our thesis provides an evaluation of different deep learning techniques for

different intrusion detection tasks, i.e., classification and detection. In addition, we show their

effectiveness in improving the security of in-vehicle networks including Automotive Ethernet

and CAN. With respect to the IVN environment, the proposed IDSs are effective at detecting

and responding to potential security automotive threats, due to their low false positive and miss

detection rates, and their ability to operate both in offline and real-time constraints.
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Résumé
La communication embarquée, qui fait référence à la communication et à l’échange de

données entre les dispositifs automobiles embarqués, joue un rôle crucial dans le développement

des systèmes de transport intelligents (ITS), qui visent à améliorer l’efficacité, la sécurité et

la durabilité des systèmes de transport. La prolifération des dispositifs informatiques et de

communication embarqués centrés sur les capteurs et connectés au réseau embarqué (IVN) a

permis le développement de fonctions de sécurité et de commodité, notamment la surveillance

du véhicule, la réduction du câblage physique et l’amélioration de l’expérience de conduite.

Cependant, avec la complexité et la connectivité croissantes des véhicules modernes, l’expansion

du paysage des menaces du RVI suscite des inquiétudes. Une série de risques de sécurité

potentiels peuvent compromettre la sécurité et la fonctionnalité d’un véhicule, mettant en danger

la vie des conducteurs et des passagers.

De nombreuses approches ont donc été proposées et mises en œuvre pour pallier ce problème,

notamment les pare-feu, le cryptage, l’authentification sécurisée et les contrôles d’accès. Comme

les mécanismes traditionnels ne parviennent pas à contrer complètement les tentatives d’intrusion,

il est nécessaire de mettre en place une contre-mesure défensive complémentaire. Les systèmes

de détection d’intrusion (IDS) ont donc été considérés comme un élément fondamental de

toute infrastructure de sécurité réseau, y compris le RVI. La détection d’intrusion peut s’avérer

particulièrement utile pour détecter les menaces qui ne sont pas forcément prises en compte par

d’autres mesures de sécurité, comme les vulnérabilités de type "zero-day" ou les attaques de

l’intérieur. Elle peut également fournir une alerte précoce d’une attaque potentielle, permettant

aux constructeurs automobiles de prendre des mesures préventives avant que des dommages

importants ne se produisent.

L’objectif principal de cette thèse est d’étudier la capacité des techniques d’apprentissage

profond à détecter les intrusions à bord des véhicules. Les algorithmes d’apprentissage profond

ont la capacité de traiter de grandes quantités de données et de reconnaître des modèles complexes

qui peuvent être difficiles à discerner pour les humains, ce qui les rend bien adaptés à la détection

des intrusions dans les IVN. Cependant, étant donné que l’architecture E/E d’un véhicule évolue

constamment avec l’apparition de nouvelles technologies et exigences, nous proposons différentes

méthodes basées sur l’apprentissage profond pour différentes architectures E/E et pour diverses

tâches, notamment la détection d’anomalies et la classification. Globalement, les contributions

de la thèse se répartissent en deux thèmes.
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Premièrement, nous proposons une application des modèles de langage basés sur l’apprentissage

profond pour des tâches de traitement du langage naturel, principalement la détection d’intrusion

dans les véhicules. Inspirés par les performances exceptionnelles des représentations d’encodeurs

bidirectionnels à partir de transformateurs (BERT) pour améliorer de nombreuses tâches de traite-

ment du langage naturel, nous développons “CAN-BERT”, un système de détection d’intrusion

réseau basé sur l’apprentissage profond, pour détecter les cyber-attaques sur le protocole du bus

CAN. Nous montrons que le modèle BERT est capable d’apprendre la séquence d’identifiants

(IDs), sur le bus CAN pour la détection d’anomalies, en utilisant le "modèle de langage masqué"

- une méthode d’apprentissage non supervisée. En s’appuyant sur les résultats remarquables

de détection, nous nous demandons si un IDS multi-agent basé sur BERT peut détecter des

attaques qui affectent les interdépendances entre les signaux asynchrones transportés par des ID

CAN distincts.

Deuxièmement, nous proposons des IDS pour la détection des anomalies et la classification

des attaques pour le protocole basé sur Ethernet - un protocole réseau récent pour les véhicules,

qui prend de plus en plus d’ampleur dans les normes pour les véhicules connectés. Nous avons

ainsi considéré deux protocoles de couche d’application critiques pour la sécurité : le Scalable-

service Oriented Middleware Protocol (SOME/IP) et le Audio-Video Transport

Protocol (AVTP). La première contribution consiste à générer un jeu de données étiquetées

pour le protocole SOME/IP, car aucun jeu de données public standard n’est disponible. Le

jeu de données généré comprend différents types d’attaques et une gamme d’activités normales

afin de fournir une base de comparaison. Une fois disponible, nous exploitons le jeu de données

pour concevoir des IDS hors ligne et en temps réel à l’aide d’une approche d’apprentissage

supervisé particulièrement utile pour la classification des attaques, car elle permet au modèle

formé d’apprendre les caractéristiques des différents types d’attaques et de prédire avec précision

le type d’attaque en fonction de ces caractéristiques. Notre deuxième contribution réside dans la

détection des attaques sur le protocole AVTP utilisé pour transmettre des données audio, vidéo et

autres données multimédia sur les réseaux Ethernet. Nous comparons ainsi plusieurs algorithmes

d’apprentissage non supervisés qui peuvent potentiellement être utilisés pour identifier des

comportements anormaux ou suspects inconnus dans les journaux de trafic AVTP.

En résumé, notre thèse fournit une évaluation de différentes techniques d’apprentissage

profond pour différentes tâches de détection d’intrusion, c’est-à-dire la classification et la

détection. En outre, nous montrons leur efficacité dans l’amélioration de la sécurité des réseaux

embarqués, notamment Automotive Ethernet et CAN. En ce qui concerne l’environnement IVN,

v



les IDS proposés sont efficaces pour détecter et répondre aux menaces potentielles de sécurité

automobile, en raison de leur faible taux de faux positifs et de détection manquée, et de leur

capacité.
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“The inability to predict outliers implies the inability to predict the course of history”

— Nassim Nicholas Taleb, The Black Swan: The Impact of the Highly Improbable
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CHAPTER 1

Introduction and Motivation

This chapter provides an introduction to the thesis by first discussing the background and
context of the research work. We highlight the worst-case in-vehicle intrusions caused by
malicious attackers manipulating diverse automotive functionalities. Striving to build defensive
techniques generally applicable to a variety of in-vehicle networks, we present our research aim
and corresponding research contributions.

Contents
1.1 Context: Can we trust modern vehicles? . . . . . . . . . . . . . . 3

1.1.1 Background on IVNs . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.1.2 Automotive Attacks . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.2 Achieving adequate cybersecurity . . . . . . . . . . . . . . . . . . . 8
1.3 Deep learning for Cybersecurity . . . . . . . . . . . . . . . . . . . 9

1.3.1 Deep learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.3.2 Can deep learning address cybersecurity concerns? . . . . . . . . . . 11

1.4 Deep learning for robust in-vehicle systems . . . . . . . . . . . . . 12
1.5 Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.6 Thesis Contributions and Outline . . . . . . . . . . . . . . . . . . . 14

1.6.1 Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

1.1 Context: Can we trust modern vehicles?

The automotive industry is undergoing rapid technological change as vehicles are becoming

intelligent computers on wheels. In pursuit of autonomy, modern vehicles witnessed a proliferation

3



1. INTRODUCTION AND MOTIVATION

Figure 1.1: Available ECUs in modern vehicles.

in the number of embedded controllers known as Electronic Control Unit (ECU) networked

throughout the body of a car (presented in Figure 1.1), in the complexity of their accompanying

software, and in the number of short-range (e.g. Wi-Fi, Bluetooth, NFC, etc.) and long-range

(e.g. Vehicle-to-Vehicle (V2V), Vehicle-to-Infrastructure (V2I), Vehicle-to-Everything (V2X),

etc.) communication interfaces to the external world. Moreover, the integration of IVN has led

to intricate electronic orchestration between various components (e.g. sensors, actuators, ECU)

as well as software choreography, thereby arising advanced functionalities. Ten years ago, only

premium cars contained 100 microprocessor-based ECU networked throughout the body of a

car, executing 100 million lines of code or more. Today, high-end cars like the BMW 7-series

with advanced technology like advanced driver-assist systems (ADAS) may contain 150 ECU or

more, while pick-up trucks like Ford’s F-150 top 150 million lines of code. Even low-end vehicles

are quickly approaching 100 ECU and 100 million lines of code as more features that were once

considered luxury options, such as adaptive cruise control and automatic emergency braking,

are becoming standard [1].
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1.1.1 Background on IVNs

Historically, vehicle manufacturers have leveraged dedicated wires between sensors and actuators

to deliver automotive functions. However, as more and more electronics are taking over the

driver functions, the vehicle would choke in wiring and several problems will arise in production,

in finding space, and for both reliability and troubleshooting, [100]. For an average well-

tuned vehicle, every extra 50 kilograms of wiring—or extra 100 watts of power—increases fuel

consumption by 0.2 liters for every 100 kilometers traveled [89]. Several IVN (e.g. Controller

Area Network (CAN), FlexRay, MOST, Automotive Ethernet) with different communication

mechanisms and protocols have thus been proposed to counter the problems of point-to-point

wiring mass. Their main role lies in interconnecting various components (e.g., including ECU,

gateways, sensors, and actuators) leading to weight, space, and cost reduction. By being a

fundamental technical resource for innovativeness, they allow the real-time exchange of data

(e.g., sensor measurements, diagnostic messages, etc) and resources among the distributed

application. As depicted in Figure. 1.2, a variety of communication technologies prevail in

Figure 1.2: Overview of the overall IVN technologies, Source [135].

modern vehicles and exchange information through a central gateway. As presented in Table.1.1,

these technologies differ in terms of supported data rate, adopted communication mechanism,

and robustness methods. A survey performed in 2015 showed that major car manufacturers
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Technology Multiple Access Scheme Data rate Robustness Target use case
CAN(FD) Priority-based messages Generally 500 kbps Differential signal, Robust ECU control

(2 Mbps) shared comparably small data rate
LIN Master-Slave and 19.2 kbps shared Small data rate Low-cost control

schedule tables
MOST Priority-based, TDMA, ≤ 25,50,150 Mbps Optical for Complex, high-end

token shared MOST25/150 audio
FlexRay (Flexible) TDMA ≪ 10 Mbps shard Differential signal Real-time control,

X-by-Wire
Automotive Switched, for each link 100/1000 Mbs per Differential signal, High data rates,
Ethernet on the network, queuing link and direction intelligent modulation, case-independent

and filtering packets

Table 1.1: Comparison of existing in-vehicle technologies, Source [100]

use on average 8 different digital communication systems inside their cars today [100]. A more

detailed discussion regarding the role of each technology is presented in Chapter 2. The central

gateway and/or other ECUs interact seamlessly with the external world (e.g., other vehicles,

infrastructure, and pedestrians) through communication interfaces. A network-enabled vehicle

has thus become a node in the Intelligent Transportation System which contributes to improving

the safety, efficiency, and mobility of the transportation system. However, with the increasing

connectivity, exploiting the vulnerabilities of the IVN and conducting cyberattacks against

vehicles has become an understandable concern. If an attacker succeeds in tampering with the

driving functions (e.g., acceleration, braking, steering), the in-vehicle network is impacted and

traffic safety is thus compromised. We present in the following section major attacks against

vehicles.

1.1.2 Automotive Attacks

As depicted in Figure. 1.3, there are numerous examples demonstrating the success of hackers in

conducting attacks against modern vehicles. At the Black Hat security conference, automotive

cybersecurity researchers presented novel attacks that target the Jeep Cherokee through Wi-Fi

connection [103]. Additionally, they have achieved the invasion of the Toyota Prius and Ford

Escape. In 2017 and again in 2018, whitehat hackers from the Keen Security Lab achieved the

remote control on Tesla Model S in both Parking and Driving Mode [107]. The hack involved

remote attacks which compromised CAN Bus to achieve remote control on Tesla cars. In

2019, Cai et al. [35] revealed the vulnerabilities that existed in three vehicle components of

BMW cars: NBT Head Unit, Telematic Communication Box, and Central Gateway. These

vulnerabilities could have been exploited by an attacker via the vehicle’s external-facing I/O
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1.1 Context: Can we trust modern vehicles?

Figure 1.3: Timeline of major threats discovered and attacks launched between 2015 and 2020,
Source [121].

interfaces, including USB, OBD-II, and cellular network. In particular, with the Telematic

Communication Box that could have been compromised without any user interaction, an attacker

could have triggered or controlled vehicular functions remotely over long distances by combining

multiple vulnerabilities and thereby sending unsolicited UDS messages via the BMW vehicle’s

internal CAN bus, whenever the car would have been parked or driven. Furthermore, as vehicles

are being progressively equipped with multiple sensors (LiDAR, radar, camera, etc.) enabling

local awareness of their surroundings, hackers are also launching attacks against them to lower

their data quality [112]. By exploiting a vulnerability caused by software bugs, configuration

errors, and weak network design, a hacker can control desired automotive functionalities. Thus,

we can classify attacks against modern vehicles into the following categories:

• Physical attacks: These attacks aim to modify the normal behavior of the vehicle by

targeting its sensors (LiDAR, radar, camera, etc.) including blinding, jamming, and

spoofing attacks. In fact, a fully automated vehicle highly depends on its sensors’ measures

to make short-term (i.e. safety-related) and long-term (i.e. planning) driving decisions

[112]. Indeed, any attack that degrades sensor data can cause a false driving reaction.

By attacking a camera, it might falsely interpret a speed limit sign, leading to unsafe

driving conditions for the vehicle’s passengers. If a LiDAR detects a fake obstacle due to

an attack and activates an emergency brake, it will seriously modify traffic efficiency if

done extensively.

• Cyberattacks: Assuming that an attacker has physical or logical access to the in-

vehicle network (LIN, CAN, MOST, FlexRay, Ethernet), these attacks aim to circumvent,
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completely or partially, their connected safety-critical systems while ignoring completely

the driver input. In fact, they are achieved through the transmission of malicious command

injections via the in-vehicle network via a broad range of attack surfaces (including CD

players, Bluetooth, and cellular radio). In this case, the attacker is either willing to

compromise an in-vehicle component such as the telematic controlling unit, or willing to

interact with the in-vehicle network.

Despite the proliferation of several attacks that target various automotive devices, we are mainly

interested in cyberattacks that depend on IVNs’ vulnerabilities to be achieved. Physical attacks

are also important and need to be urgently prohibited. However, they are addressed using

specific techniques which are out of the thesis’ scope.

1.2 Achieving adequate cybersecurity

Due to the intrinsic vulnerabilities of IVN of modern vehicles, a copious amount of attacks are

conducted against modern vehicles. Mitigating this emergent risk has thus become a major

objective of the UN Economic Commission for Europe (UNECE) which announced in June 2020

the regulations WP.29 R155 [22] and R156 [23] that need to be adopted by the automotive

industry, including OEMs and Tier suppliers. These guidelines, combined with the ISO/SAE

21434 standard [118], hold the automotive industry responsible for ensuring the prioritization of

cybersecurity throughout the vehicle development, delivery, and entire lifetime while staying

away from outlining specific solutions and exact processes. Consequently, a wide array of security

controls, (e.g. authentication, encryption, firewalls, and secure updates) have been proposed to

guarantee IVN security, mitigate, and prohibit attacks from growing substantially. Through our

thesis, we consider developing an IVN-specific Intrusion Detection System (IDS) that is able

to monitor suspicious network traffic behavior and detect potential intrusions. However, the

circumstances in the IT industry vary from those found in the car. In fact, the implementation of

security measures in an IVN is challenging as it has a fixed topology of limited size and resources

(memory, computing power,..), is heterogeneous, is mass-produced, and is safety-critical. The

characteristics of IDS IVN are thus dependent on the target IVN type and its corresponding

constraints. As previously discussed in Section 1.1.1, a vehicle is composed of several IVN

types due to automotive function diversification. Hence, to guarantee the overall detection of

automotive cyberattacks, the IVN IDS must monitor several network traffic transmitted through

various automotive protocols.

8



1.3 Deep learning for Cybersecurity

1.3 Deep learning for Cybersecurity

Artificial Intelligence (AI) is concerned with building systems that can handle tasks that require

intelligence. It covers a large array of methods, including those based on logic, search, and

probabilistic reasoning. Machine learning (ML) is an approach to AI that learns from observed

data to tackle various tasks by providing statistical estimations of complicated mathematical

models. This area has seen spectacular success and is sometimes interchangeably used with AI,

however as seen in Figure 1.4 it is just one way to achieve AI systems. A deep neural network is

a subset of ML models that have powered several complex tasks and which will be the scope of

our work in this thesis.

1.3.1 Deep learning

Figure 1.4: A Venn-diagram of artificial intelligence: link between artificial intelligence, machine
learning and deep learning.

Deep learning is an approach to Artificial Intelligence (AI) that has become wildly successful

over the years due to its ability to reach human performance on numerous complex tasks

including computer vision, natural language processing, speech recognition, and others. As

illustrated in Figure 1.4, it is also a particular kind of machine learning that enables multi-layered

processing models to learn and represent raw sensory input data with hierarchical levels of

abstraction emulating the brain’s multi-modal information perception and understanding, thus

implicitly capturing complex structures of high-dimensional data [51]. It is a large and diverse

group of techniques that includes, but is not limited to, neural networks, probabilistic hierarchies,

and other algorithms for learning features, both in an unsupervised and supervised setting. The
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Milestone/contribution Contributor,year

MCP model, regarded as the ancestor of the Artificial Neural Network McCulloch & Pitts, 1943
Hebbian learning rule Hebb, 1949
First perceptron Rosenblatt, 1958
Backpropagation Werbos, 1974
Neocognitron, regarded as the ancestor of the Convolutional Neural Network Fukushima, 1980
Boltzmann Machine Ackley, Hinton & Sejnowski, 1985
Restricted Boltzmann Machine (initially known as Harmonium) Smolensky, 1986
Recurrent Neural Network Jordan, 1986
Autoencoders Rumelhart, Hinton & Williams, 1986

Ballard, 1987
LeNet, starting the era of Convolutional Neural Networks LeCun, 1990
LSTM Hochreiter & Schmidhuber, 1997
Deep Belief Network, ushering the “age of deep learning" Hinton, 2006
Deep Boltzmann Machine Salakhutdinov & Hinton, 2009
AlexNet, starting the age of CNN used for ImageNet classifcation Krizhevsky, Sutskever, & Hinton, 2012
Transformer Vaswani, 2017

Table 1.2: Important milestones in the history of neural networks and machine learning, leading
up to the era of deep learning, Source [51]

deep learning research field dates back to the 1940s when researchers were highly motivated to

build computational models that simulate how the biological brain learns. In 1943, McCulloch

and Pitts [101] tried to build the first computational model that mimics the functionality of a

biological neuron which in turn led to important contributions to the development of artificial

neural networks (ANNs). In 2006, Geoffrey Hinton’s deep belief network algorithm efficiently

trained using greedy layer-wise pretraining [32] for unsupervised learning techniques brought a

series of developments also for supervised learning algorithms presented in Table 1.2, including

LeNet [87], Long Short-Term Memory [64], and Transformers [127].

Despite being known in the 1940s, deep learning algorithms have only recently seen tremen-

dous growth in their popularity and usefulness due to several factors that enabled training deeper

networks including the abundance of large, high-quality, publicly available labeled datasets and

the advent of parallel GPU computing for fast and efficient training. Additionally, other factors

have also played a key role in the application of deep learning to a broader and broader set

of applications, such as the alleviation of the vanishing gradient problem owing to the disen-

gagement from saturating activation functions (such as a hyperbolic tangent and the logistic

function), the development of new regularization techniques (e.g., dropout, batch normalization,

and data augmentation), and the advent of supportive software libraries for important research

projects or commercial products like Tensorflow [19], Pytorch [13], etc.
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1.3.2 Can deep learning address cybersecurity concerns?

Due to the massive amount of cyberattacks, the cybersecurity field is becoming an arms race —

attackers are increasingly creating attacks, and defenders are constantly reacting to new attacks

while determining how to enhance defenses against new vulnerabilities. With the unprecedented

volume of daily network traffic and malware, security companies and research laboratories have

thus decided to devise accurate automated systems able to guarantee the security of computer

devices, networks, and software applications against network intrusions and malware infections.

Problem Definition Solution
Phishing Digital theft that disguises itself as legitimate or genuine sources Detection [44]

to steal uses’ private and confidential information.
Malware Programs that are designed to have undesirable or harmful Detection [142]

effects on a computer system
Intrusion A security event, or a combination of multiple security events, that constitutes Detection [26]

a security incident in which an intruder gains, or attempts to gain, access
to a system or system resource without having the authorization to do so.

Vulnerability A weakness, flaw, or error found within a security system that has the potential to Fuzzing [146]
be leveraged by a threat agent in order to compromise a secure network.

Table 1.3: Deep learning utility for cybersecurity

Inspired by their tremendous success in solving complex tasks for large-data volumes, deep

learning techniques have also been proposed to solve existing cybersecurity concerns namely

intrusion detection, malware detection, phishing/spam detection, and website defacement

detection (presented in Table 1.3). The application of deep learning techniques to cybersecurity

has become prominent due to their advantages listed as follows:

• Simplicity: In contrast to conventional machine learning (ML) techniques, deep learning

significantly simplifies feature handcrafting by replacing brittle, complex, engineering-

heavy pipelines with straightforward, end-to-end trainable models, therefore, offloading a

substantial amount of labor. In the context of intrusion detection, the ever-changing and

expanding cyberthreat environment necessitates exceptional human effort for the custom

design of attack-specific features. Deep learning techniques, on the other hand, can be

trained for learning the features, making them an attractive option for this task.

• Scalability: Traditional ML learning algorithms often require storing all data points

in memory, which is computationally infeasible under big data scenarios. In addition,

traditional ML algorithms lack scalability since they do not considerably improve their

performance with a massive volume of data. In contrast, deep learning models can be
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trained on datasets of varying sizes, since they can iterate over small batches of data

(e.g., using Stochastic Gradient Descent-SGD). In fact, using a large amount of data when

training deep learning techniques prevents model over-fitting.

• Reusability: Deep learning models, unlike many traditional ML approaches, can be

trained on additional data without starting again from scratch. Consequently, they are

suited for continual online training, a desirable property for huge production models.

Moreover, trained deep learning models are repurposable and, therefore, reusable via

transfer learning, allowing reinvesting of previous work into increasingly sophisticated and

robust models. This is crucial in the intrusion detection domain because it reduces the

computational and memory requirements of intrusion detection systems when performing

multi-task learning applications.

1.4 Deep learning for robust in-vehicle systems

As traditional mechanisms fail to fully counterattack intrusion attempts, the need for a com-

plementary defensive countermeasure is necessary. Intrusion Detection Systems (IDS) have

been thus considered as a fundamental component of every network security infrastructure [42],

including IVN [135]. The goal of embedded intrusion detection software implemented in any

in-vehicle network communication system is to intercept network packets exchanged between

interconnected ECUs. Once captured, the packets are analyzed in numerous ways and anomalies

are detected. Some IDS devices will detect intrusions simply by comparing the packets and

their corresponding network activity to pre-determined attack patterns known as signatures,

while others will look for anomalous packet activity representing suspicious behavior. grows

stronger with every attack and becomes steadily smarter thanks to a constantly expanding

attack signature database. The results are then used by the security experts in deciding the

suitable countermeasure to be updated and the IDS, considered as the car’s immune system,

grows stronger with every attack and becomes steadily smarter thanks to a constantly expanding

attack signature database.

Since the proposition of the first IDS [42], numerous approaches have been adopted and thus

advanced intrusion detection to its current state for various network infrastructures. Regarding

IVN, as the number of ECUs inside vehicles is dramatically increasing, the detection of intrusions

occurring on large, and high-dimensional exchanged in-vehicle network traffic is becoming more

and more difficult. This is where deep learning techniques come into play and converge with
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the IDS realm. As previously mentioned, deep learning has brought tremendous advantages to

the cybersecurity field and has proven outstanding performance for the intrusion detection task.

Therefore, it would be interesting to check the efficiency of these models in detecting in-vehicle

intrusions when faced with the corresponding automotive challenges and constraints from the

IVN environment:

• When deployed on available ECUs that are mainly powered by a 32-bit embedded processor,

the IDS is constrained by computing power, memory size, and communication capability.

• The E/E architecture is always evolving and new automotive protocols are gaining mo-

mentum to enhance the driving experience. Therefore, an IDS must be able to detect

intrusions for different kinds of automotive network traffics.

• The cost of automotive manufacturing will increase once the IVN IDS design methodology

requires hardware modifications to all ECUs. Therefore, IVN IDS design is subject to cost

constraints.

• The IDS must fulfill the high-precision requirements of vehicles such as high attack

Detection Rate (DR), a low False Alarm Rate (FAR), and also a high ability to detect

unknown attacks.

By respecting the mentioned constraints and overcoming the aforementioned challenges, we can

put forward deep learning algorithms to perform timely feature extraction and classification

tasks together for IVN intrusion detection.

1.5 Challenges

Monitoring and intrusion detection using deep learning techniques for the existing and novel

IVN protocols is challenging for various reasons including the following:

• Lack of datasets that represent attacks on the recently deployed automotive protocols,

particularly Automotive Ethernet. The ethernet-based protocols Scalable service-Oriented

MiddlewarE Protocol (SOME/IP) and Audio Video Transport Protocol (AVTP) protocols

are specifically designed for applications in the automotive domain. The benchmark

datasets including CIC-IDS2017 [9], CSE-CIC-IDS2018 on AWS [6], CIC DoS dataset

(2017) [5] are geared toward typical enterprise networks’ protocols like TCP and HTTP

and, thus, do not cover attacks on the Automotive Ethernet application layer protocols.

13
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The lack of these datasets and applications providing even basic monitoring and detection

support for these protocols requires investigating the optimum features to be learned and

thereby the design of the corresponding IDS functionality from scratch.

• Lack of labels which are required for the training and evaluation of supervised learning

and also for the assessment of semi-supervised and unsupervised intrusion detection tasks.

Most of the datasets that are available for IVN intrusion detection are not well labeled

and some are not labeled at all. Although some developers provide metadata regarding

the generated IVN datasets, they do not label it themselves which can potentially lead to

uncertainty in the ground-truth.

• Imbalanced dataset problem is a common cybersecurity issue that must be addressed

particularly if supervised learning techniques,i.e., for attack detection and classification,

will be leveraged. As supervised learning techniques can be advantageous for the detection

of specific types of attacks, it is important to find solutions if the dataset cannot be

balanced.

• Challenging structure of IVN data As different IVN protocols have different com-

munication mechanisms, the proposed deep learning techniques must naturally handle

their high dimensional data structure. In the case of CAN, different messages are sent at

different times, and thus complex interrelations and physical dependencies between signals

of multiple CAN identifiers must be well learned by deep learning techniques.

1.6 Thesis Contributions and Outline

The contributions of this thesis deepen our understanding of the utility of deep learning

technologies for in-vehicle intrusion detection along three main axes: attack detection using

anomaly-based and signature-based approaches, attack classification using signature-based ap-

proaches, and non-Natural Language Processing (NLP) for intrusion detection. The overarching

research questions that we address are:�
�

�
�

How effective are deep learning algorithms when detecting attacks and classifying
them for different types of IVN protocols, and what kind of features should we
consider w.r.t each network type?

In this first part, we introduce the main topic and in Chapter 2 we cover some necessary
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background and theoretical fundamentals. This section shortly outlines the individual contribu-

tions that tackle our previously mentioned concerns in Section 1.5.

• In Part II, we study the efficiency of language models when detecting different types

of intrusions on CAN bus. Inspired by the outstanding performance of Bidirectional

Encoder Representations From Transformers (BERT) for improving many natural language

processing tasks, we propose in Chapter 3 “CAN-BERT", a deep learning-based network

intrusion detection system, to detect attacks that result in the unusual disappearance of

CAN identifiers and the appearance of novel ones on the CAN bus. We show that the

BERT model can learn the sequence of arbitration identifiers (IDs) in the CAN bus for

anomaly detection using the “masked language model" unsupervised training objective.

Drawing on the prominent results, we further investigate in Chapter 4 the ability of a

BERT-based multi-agent intrusion detection system to detect stealthier attacks that do

not change the timing of CAN identifiers, but rather their carried asynchronous signals.

The numerical findings, which were obtained using the benchmark dataset “SynCAN"

demonstrate that our proposed model can be leveraged for both frequency-based and

payload-based intrusion detection.

• In Part III, we tackle the detection of intrusions on the recently adopted in-vehicle network

protocol“Automotive Ethernet". One of the main driving forces behind the adoption of this

technology is that it allows the development of new automotive protocols for specific layers

within the ISO/OSI models while allowing the reuse of protocols for the remaining others.

Hence, in Chapter 5, we investigate the capability of deep learning-based models for offline

intrusion detection on SOME/IP application layer protocol. SOME/IP is an automotive

middleware protocol that operates at the higher layers of the ISO/OSI layer model. Its

key advantages lie in the complexity reduction of the Ethernet-based in-vehicle network

by providing serialization, Remote Procedure Call (RPC), and service discovery, among

other features. However, no security measures, such as authentication or encryption, are

defined in the SOME/IP protocol specification which set the ground for an attacker to

exploit a legitimate automotive system and initiate attacks from inside the network. To

evaluate the performance of deep learning-based intrusion detection, we construct and

label a dataset composed of SOME/IP network packets that mimic both normal and

malicious behavior - a significant contribution in the SOME/IP intrusion detection field,

as there are no datasets available.
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• Next, in Chapter 6, we eschew recurrence in favor of adapting Vaswani’s transformer model

[127], which permits significantly more parallelization and is, therefore, suitable for the

real-time intrusion detection for SOME/IP protocol. Although we use the transformer’s

model “self-attention" mechanism to enable modeling of the interdependencies between

different elements of the input network sequence regardless of their distance, our proposed

attention-based architecture “SAID" is considerably simpler as it is not built on the

typical Encoder-Decoder architecture format for language translation. For this purpose,

we evaluate our proposed approach with two simulated and manually annotated SOME/IP

datasets, with different attack ratios, built from the SOME/IP generator tool and which are

bigger than the dataset generated in Chapter 5. The results of the extensive experiments

indicate that our technique efficiently detects the majority of SOME/IP’s protocol violations

(AUC = 0.8) within 0.3 ms. A comparative study with various deep learning algorithms is

performed to show the outstanding performance of our proposed detector in quality while

being more parallelizable and requiring significantly less time to detect intrusions.

• In Chapter 7, we present a comparative analysis of different deep and machine learning-

based intrusion detection systems for real-time detection of anomalies on the ethernet-based

protocol AVTP. Regarding deep learning-based models, we leverage different types of

autoencoders which reconstruct a sequence of exchanged AVTP packets over the in-vehicle

network. Anomalies in AVTP packet stream, which may lead to critical interruption of

media streams, are therefore detected by computing the corresponding reconstruction

error. These models are compared with other state-of-the-art anomaly detection models

such as One-class SVM (OCSVM),Local Outlier Factor (LOF), and Isolation Forest (IF).

The numerical results, conducted on the recently published “Automotive Ethernet

Intrusion Dataset” , show that deep learning-based models outperform other baselines

under different experimental settings.

• Finally, in Chapter 8 we give concluding remarks and we point out open questions for

future research.

1.6.1 Publications

Parts of this thesis contain material previously published in the publications referenced in Table

1.4. Each publication is associated with a project page where you can find additional matters

such as the original publication, code, data, presentation slides, and posters.
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Ch. Ref. Paper context Conference Project Page
3 [1] Self-supervised realtime IDS for CAN AICCSA /canbert/
4 [2] Multi-agent IDS for CAN NDSS VehicleSec /amica/
5 [3] Supervised offline IDS for SOME/IP IEMCON /offline_ids_someip/
6 [4] Supervised realtime IDS for SOME/IP ICUFN /realtime_ids_someip/
7 [5] Self-supervised realtime IDS for AVTP IV /realtime_ids_avtp/

Table 1.4: List of own publications on which this thesis was based including the respective chapter.
Each publication is associated with a project page: https://github.com/Alkhatibnatasha

We also present the full list of publications that are published or submitted to conferences

during the Ph.D.:

1. N. Alkhatib, et al. "CAN-BERT do it? Controller Area Network Intrusion Detection

System based on BERT Language Model." 2022 IEEE/ACS 19th International Conference

on Computer Systems and Applications (AICCSA). IEEE, 2022.

2. N. Alkhatib, M. Mushtaq, H. Ghauch and J. -L. Danger, "AMICA:Attention-based

Multi-Identifier model for asynchronous intrusion detection on Controller Area networks",

VehicleSec NDSS 2023.

3. N. Alkhatib, H. Ghauch and J. -L. Danger, "SOME/IP Intrusion Detection using Deep

Learning-based Sequential Models in Automotive Ethernet Networks," 2021 IEEE 12th

Annual Information Technology, Electronics and Mobile Communication Conference (IEM-

CON), 2021, pp. 0954-0962, doi: 10.1109/IEMCON53756.2021.9623129.

4. N. Alkhatib, M. Mushtaq, H. Ghauch and J. -L. Danger, "Here comes SAID: A SOME/IP

Attention-based mechanism for Intrusion Detection" , The 14th International Conference

on Ubiquitous and Future Networks.

5. N. Alkhatib, M. Mushtaq, H. Ghauch and J. -L. Danger, "Unsupervised Network Intrusion

Detection System for AVTP in Automotive Ethernet Networks," 2022 IEEE Intelligent

Vehicles Symposium (IV), 2022, pp. 1731-1738, doi: 10.1109/IV51971.2022.9827285.
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CHAPTER 2

Background: Deep Learning and IDS

This chapter provides the fundamentals that are used as a basis for the explanations in the later
chapters of this work. We give a concise summary of the most widely used in-vehicle networks
such as CAN and Automotive Ethernet. Furthermore, intrusion detection systems are briefly
discussed. This chapter also highlights the necessary deep-learning algorithms that have been
used throughout the thesis.
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2.1 In-vehicle networks

This section provides an overview of the different in-vehicle networks relevant to the work at

hand as well as the terms that will be used in later chapters.

2.1.1 Controller Area Network (CAN)

Point-to-point connections were the standard for in-vehicle communication until the early 1990s.

However, this strategy quickly failed due to concerns regarding cost, weight, complexity, and

reliability as increasingly more ECUs were being integrated into the vehicle. To address this

problem, shared communication resources, so-called busses, were devised for message exchange

between numerous end-nodes along with a set of rules outlining the access to the bus, namely

the communication protocol. Many communication protocols have thus been established for

bus-based communication including Local Interconnect Network (LIN), CAN,Media Oriented

System Transport (MOST), or FlexRay. In this thesis, we mainly focus on the CAN bus.

2.1.1.1 CAN Technology

CAN is the primary and the most widely adopted in-vehicle networking technology that was

developed at Bosch in 1983 and standardized in 1993 for Low-Speed [10] and High-Speed PHY

layers [10]. Unlike other in-vehicle networking technologies, it remains in use. As previously

Figure 2.1: CAN-based in-vehicle communication system, Source [100].

mentioned, CAN is a bus system where, as seen in Fig. in 2.1, all attached ECUs share the same

wiring for data transmission. This protocol allows numerous ECUs to constantly broadcast data

frames consisting of information about the current state of the vehicle. A standard CAN data

frame (or packet), featured in Figure 2.2, consists of several fields. The most important fields

are described as follows:
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Figure 2.2: CAN frame structure

• The Arbitration ID: It is the message header that provides frame identification and

is used to perform arbitration, the process by which frames are prioritized when several

ECUs are transmitting - the lower the ID, the higher the priority.

• RTR bit: If this bit is activated (set to 1), the dataframe must be considered as a remote

frame. It is possible for any ECU to request for ID information by transmitting the ID

and the RTR bit. In response to this remote frame, the requested identifier and data

would be sent back immediately.

• Data field: consists of the actual contents of the message, up to 8 bytes, where each piece

of distinct information being carried in the message is called a signal. CAN frames with

the same ID encode the same set of signals in the same format and are typically sent at a

fixed frequency to relay updated signal values. Generally, each ECU is assigned a set of

identifiers that only it can transmit. For instance, the PCM can send: ID 0x102 which

consists of engine speed, vehicle speed, and odometer signals every 0.05s, and ID 0x45D

with signals encrypting the gas pedal and brake pedal angle every 0.01s.

Nonetheless, the CAN protocol lacks security mechanisms and thus needs urgent monitoring

which will be discussed in Part II. Additionally, it provides relatively low bandwidths and is not

well-suited for the development of upcoming ADAS applications, which rely on large-scale data

transmission over the in-vehicle network in order to make crucial driving decisions. To address

this bandwidth requirement, while adhering to the stringent cost and weight limits imposed by

the automotive industry, attention has turned to Ethernet, a communication protocol that was

pioneered for different purposes.

2.1.2 Automotive Ethernet

2.1.2.1 History

The development of Ethernet started between 1973 and 1974 at Xerox PARC in Palo Alto,

California by Dr.Bob Metcalfe and Dr.David Boggs [20]. It was commercially introduced in 1980

and was first standardized in 1983 as IEEE 802.3 [24]. This family of wired computer network
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technologies represented the primary high-speed technology for the connection of personal

computers in local, metropolitan, and wide area networks. The discovery of Ethernet and its

subsequent widespread adoption has been a technological triumph, particularly when used for

the exchange of information such as the World Wide Web. As a matter of fact, practically every

personal computer in the world today communicates over Ethernet.

The word ”Ethernet" is commonly used as a general term that refers to a wide broad range

of networking technologies and is mostly applied to both the communication protocol and the

Ethernet-specific hardware components such as Profinet, Avionics Full-Duplex Switched Ethernet

(AFDX), Ethernet Audio Video Bridging (AVB), or Ethernet TSN were developed for usage in

certain application domains. They offer industry-specific add-ons and differ in the nuances of

the protocol, the hardware used, or the arbitration schemes. Nevertheless, certain features are

typically found in Ethernet technology, specifically the frame format, the bandwidths delivered,

and the ability to define virtually separate subnets.

2.1.2.2 Towards Automotive Ethernet

1. Generation 1: Diagnostics over IP If the in-vehicle network is connected to the

diagnostic tester via a 500 kbps high-speed CAN (HS CAN) network, a total software

update of a well-equipped, high-end vehicle would have required more than 16 hours [100].

The advent of vehicle Ethernet was thus crucial as car manufacturers desired software

updates that required no more than 15 minutes to complete. Connecting the on-board

network to the diagnostic tester via 100Base-TX Ethernet over CAT-5 was considered

appropriate for timely data reading and software updates, as it delivers sufficient data

throughput, is readily available in computers and laptops, and is cost-effective [57].

2. Generation 2: Driver Assistance Systems and Infotainment Information and

entertainment systems, as well as camera systems, were also studied as potential uses for

Ethernet alongside the more common programming and diagnostics use cases. Powered

by 100Base-T1 Ethernet technology, Ethernet packets were thus sent at 100 MBps over

a single pair of unshielded cables (UTSP), paving the way for sophisticated automotive

features which require the deployment of multiple cameras fused with sensor data, such

as short and long-range radar. An object detection task that necessitates high-speed

communication for the transfer of uncompressed data, for example, can be performed

efficiently.
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3. Generation 3: Ethernet as network backbone In parallel to its advantages for certain

vehicle applications, Ethernet can also be employed as a network backbone. In other

words, various communication systems can be connected using the switched Ethernet

system through its existing and proven IP routing concepts, which allow the transport of

a message across domain boundaries to its destination.

2.1.2.3 Advantages of Ethernet in Automotive

With the emergence of sophisticated automotive applications and advanced data-driven func-

tionalities, the communication and bandwidth requirements handled by in-vehicle networks

are increasing exponentially. Companies are actually implementing advanced in-car digital

entertainment platforms to meet their customer’s expectations of video streaming, on-demand

content, interactive experiences, local video programming, sports, news, gaming, and much

more. Despite their efficiencies, traditional in-vehicle networking technologies,i.e., CAN, FlexRay,

and MOST, are considered as limiting factors for innovative automotive functions in terms

of bandwidth, packet size, costs, weight, and higher layer protocols. Thus, a migration to a

cost-efficient high-speed switched network in modern vehicles that lifts these restrictions is

necessary.

Established by the OPEN Alliance, Automotive Ethernet - or more correctly ”Ethernet-based

communications" - was since then adopted by different car manufacturers thereby bringing in

itself a number of fundamental benefits, such as:

• Enabling the exchange of different kinds of data,i.e., videos, images, graphic data, at

high data rate (up to 1 Gbps) between interrelated electronic control units (ECU) and

which in turn allows automated and autonomous driving functionalities (advanced driving

assistance system (ADAS), adaptive cruise control), infotainment services as well as speedy

diagnosis and Flash updates.

• Allowing the development of new automotive protocols for specific layers within the

ISO/OSI model while enabling the reuse of protocols for the remaining others.

• Changing the in-vehicle networking topologies from decentralized domain-specific architec-

tures to hierarchical with backbone.

• Providing scalability and flexibility for next-generation in-vehicle networking architectures.
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Figure 2.3: Vehicular network

As shown in Fig. 2.3, in vehicular applications, Ethernet is deployed in switched networks that

are composed of end nodes and Ethernet switches. End nodes are typically the electronic control

units (ECUs) that function as the source(s) and destination(s) of messages transmitted over the

network. The primary function that Ethernet switches serve is to transmit data; they do not

generate nor process messages of any kind. Ethernet links are used to establish communication

between the end nodes and the switches. Each Ethernet link, in contrast to the conventional

bus-based communication that is used, for example in CAN networks, functions as a dedicated

point-to-point connection between two nodes. Each link consists of a pair of cables that have

been twisted together and are attached to the network interfaces of the connection’s endpoints.

2.1.2.4 Frame format

Ethernet provides a packet-based transmission, akin to CAN and FlexRay protocols. When

a message is considered too large in size, it is thus split into a number of packets. In this

case, the separate packets are sent individually in the network and are then merged by the

message receiver. As seen in Fig. 2.4, on the physical layer, each packet is composed of a

7-byte preamble, followed by a 1-byte start-of-frame delimiter. The rest of the packet consists

of the Ethernet frame itself, which ranges in size from 64 to 1522 bytes, and the 12 bytes of

inter-packet space. The structure of the Ethernet frame, which corresponds to the data link

layer, is composed of entries consisting of the frame’s source and destination addresses (6 bytes
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each), the 802.1Q tag (often known as the virtual local area network (VLAN) tag) depicting the

VLAN and message priority information, the actual payload, and the 32-bit checksum featuring

the cyclic redundancy check. The payload (which also consists of headers and trailers for higher

layer protocols such as, for example, the User Datagram Protocol (UDP)) of an Ethernet frame

varies between 46 and 1,500 bytes.

Figure 2.4: Ethernet frame

2.1.2.5 Bandwidth

Ethernet was first conceived using a shared coaxial cable and was used for transmitting 2.94

Megabits of data per second. Ethernet has steadily grown to accommodate more advanced

transmission mediums and greater connection lengths as it has risen to become the de-facto

network technology. However, the major goal of the Ethernet upgrades was to provide the

additional capacity required to deal with the doubling of the world’s network bandwidth needs

every 18 months. It is unusual to come across anything other than the three most common

Ethernet transfer rates of 10 Megabits, 100 Megabits, or 1 Gigabit per second in the realm

of consumer electronics. These transfer rates are the prominent ones. However, specialized

contexts such as high-performance computing or data centers now function at Ethernet speeds

of 10 Gigabits per second, and it is anticipated that they will begin utilizing 100 Gigabits per

second in the not-too-distant future.

2.1.2.6 Virtual Local Area Networks

The Ethernet protocol can be used to set up so-called VLANs within the network. Each

individual VLAN is a specialized subsection of the overall network. In a network with the

configured VLANs, the VLAN tag of an Ethernet frame can be used to provide rules for this
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frame w.r.t the VLAN areas. In fact, it is possible to make a certain area of the network

accessible only to frames within a certain tag, or even to virtually isolate individual areas of the

(physically still connected) network from each other by completely preventing frame exchange

between them.

2.1.2.7 Network protocols

The deployment of Ethernet-based communication in in-vehicle network systems has several

other benefits than the previously listed ones, such as the ability to reuse the associated OSI

layers’ protocols built and tested in other industries [100] (seen in Fig. 2.5). Furthermore, this

cutting-edge technology enables the invention of new protocols for individual layers while reusing

protocols for the rest such as the development of the automotive application layer protocol

covered in this section.

Figure 2.5: Automotive Ethernet protocols, Source [100].

• Scalable service-Oriented MiddlewarE Protocol (SOME/IP): The SOME/IP

[17], is commonly used for relevant automotive applications due to its service-based

communication approach and its adaptability to different automotive operating systems

(e.g., QNX, OSEK, and Linux) [100]. In other words, SOME/IP is increasingly adopted

to coordinate the exchange of various services between disjoint applications on distinct

ECUs.

• Audio Video Transport Protocol (AVTP): To ensure low-latency and high-quality

transmission of time-critical and prioritized streaming data for high-end infotainment
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and ADAS systems, the IEEE 1722 audio-video transport protocol, so-called AVTP [4] is

adopted. It is used for the transmission of audio, video, and control data transportation

on a Time-Sensitive Networking (TSN) capable network [102].

• Diagnostic communication over Internet Protocol (DoIP): Remote diagnostics

refers to the establishment of automotive diagnostic services that can be carried out

remotely, over the air, without the need of connecting a cable directly to a port in the

car. As its name implies, the aim of the Diagnostic communication over Internet Protocol

(DoIP) protocol is to be able to use existing IP-based networks to carry the diagnostic

messages between repair shops and vehicles [7].

• User Data Protocol Network Management (UDP-NM): [21] provides the best op-

tion to manage the network between ECUs for Ethernet connectivity including performance

management, fault analysis, and maintaining the quality of service. It is intended to work

together with a TCP/IP Stack, independent of the physical layer of the communication

system used.

The introduction of Ethernet into the vehicle also presents new security challenges that are

discussed in Part III of the thesis. We specifically focus on the and protocols to provide

appropriate security countermeasures. The other protocols listed are equally important but are

outside the scope of this work.

2.2 Intrusion Detection System (IDS)

2.2.1 Definition and Role

Firewalls, access control systems, and authentication devices belong to the multi-level security

mechanism that must be deployed in modern vehicles in order to successfully secure vehicles

against unauthorized access. The detection of intrusions is an additional layer of security, and it

has been the primary focus of many recent research investigations. An IDS for IVN is a software

program that monitors network traffic packet by packet and analyzes network, transport, and

application protocols to detect possible security intrusions. We define a security intrusion as an

unauthorized act of bypassing the security mechanisms of a system. If responsive components

have been installed in the vehicle’s security system, as soon as an intrusion is detected, an alert

is triggered and appropriate countermeasures respond to the attack.
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2.2.2 Automotive-specific IDS

It is noteworthy that IDSs cannot simply be adopted from the IT environment. On the contrary,

automotive-specific requirements, such as restricted computing power, tight memory capacity,

and real-time performance, must be taken into consideration [2]. Consequently, a considerable

amount of work has been devoted to its standardization in order to facilitate the sharing of

information between various development systems. This includes the ISO/SAE 21434 (Road

vehicles - Cybersecurity Engineering) [11] which is widely regarded as the future security standard

for motor vehicles. Besides other aspects, it requires that vehicle manufacturers must implement

a well-defined procedure for handling incidents due to security breaches that have arisen in their

vehicles. Yet this can only be accomplished once the vulnerabilities have been identified. This is

where the automotive IDS comes into play. The IDS identifies incoming attacks on the vehicle’s

ECUs and networks, documents them, and then transmits them to a backend at the vehicle

manufacturer, known as the . The vehicle manufacturer assesses the data and then determines

the appropriate course of action to be taken in response to the attack attempts.

2.2.3 Categories of attacks

We can split IDSs based on their corresponding location and analysis approaches during intrusion

detection.

2.2.3.1 Categories of IDSs

The location features where the detection takes place. In this case, we distinguish two types

of IDS: network-based IDS, and host-based IDS. A Network-based IDS (NIDS) is placed at a

point in the network to monitor packets moving across the network and to check for potential

malicious activity. In contrast, a Host-based IDS (HIDS) runs individually at each network

component by monitoring the corresponding incoming and outgoing traffic for suspicious activity.

One key difference between HIDS and NIDS is the scope of their coverage. HIDS are limited to

a single host, while NIDS can monitor traffic across an entire network. Another difference is the

type of data each system monitors. HIDS typically monitors system and application logs, as

well as system files and resources, while NIDS monitors network traffic, including packets and

data streams. Overall, HIDS and NIDS serve complementary roles in a security system. HIDS

are effective at protecting individual devices and systems, while NIDS are effective at detecting

and responding to threats that span multiple devices or systems. Through our thesis, we mainly

devise NIDS for the detection of intrusions on diverse IVN.
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2.2.3.2 Detection methods

Depending on the detection method, IDSs typically use one of the following alternative approaches

to analyze data during intrusion detection: anomaly-based detection and signature-based

detection. Anomaly detection involves monitoring the system or network for unusual or suspicious

activity that deviates from previously collected legitimate behavior over a period of time.

Typically, these systems use machine learning algorithms to learn what normal behavior entails,

then send out notifications to administrators if the system or network represents anomalous

activity. Signature-based detection or misuse detection, on the other hand, involves identifying

specific data patterns (signatures) that are associated with known threats. In addition, some of

these systems compare the current behavior to a set of known attack rules (heuristics) in order

to determine whether or not it is malicious. Signature-based detection systems are effective

at detecting known intrusions. However, they may not be able to detect novel threats that

do not have a matching signature in a previously collected database. Overall, anomaly-based

detection is generally considered to be a more proactive approach to detecting threats, as it

allows administrators to identify and respond to unusual or suspicious activity before it causes

harm. Signature-based detection, on the other hand, is generally considered to be a more

reactive approach, as it relies on the existence of known threats and their associated signatures

in order to identify and block them. Given this advantage, clearly, anomaly detection would

be the preferred approach, were it not for the difficulty in collecting and analyzing the data

required, and the high level of false alarms.

2.3 In-vehicle intrusion detection

2.3.1 Problem statement

Given a stream of in-vehicle network packets or data records, the goal of this thesis is to determine

network intrusions related to various network protocols, i.e. CAN and Ethernet, efficiently

and to overcome corresponding challenges. The temporal relationships between data records

are crucial as the sequential ordering of network packets is critical in identifying intrusions.

Moreover, each individual record, in this case, is multidimensional and contains the features

extracted from the unit of network data (e.g., packet). Thus, this problem can be modeled as a

multidimensional stream of records. Both signature-based and anomaly-based approaches have

their advantages and disadvantages, which are detailed in 2.2. Using a signature-based method

is suitable when constructing an IDS to categorize threats and is even useful when detecting
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existing intrusions and repetitive attacks. As new intrusions arise over time, anomaly detection,

however, seems to be the best strategy if we want to identify them without categorization. Since

the intrusion detection task can be formulated as either an attack detection or classification

problem, we investigate the performance of deep learning techniques in addressing both tasks

that are considered to be complementary.

With the increasing dimensionality of the considered data instances, many of the traditional

attack detection methods become less effective. This is an artifact of the well-known curse of

dimensionality. In a high-dimensional space, data becomes sparse, and true attack cases are

obscured by the noise effects of multiple irrelevant dimensions when analyzed in full dimensionality.

To mitigate this issue, we leverage deep learning techniques that are known to be effective for

processing high-dimensional datasets.

Additionally, in comparison to the in-vehicle CAN network and other application areas,

Ethernet-based embedded network data was not available at the beginning of this thesis 1. The

absence of data, which we regard to be of fundamental relevance for creating up-to-date deep

learning models that handle intrusions on modern in-vehicle protocols, was a major challenge

that needed to be mitigated as well.

2.3.2 Attack detection

In order to detect attacks or intrusions, we can leverage both signature-based and anomaly-

based approaches, as discussed earlier. We consider attack detection as a binary classification

(attack/no attack), as opposed to attack classification in which a classifier must classify data

instances according to their attack type. From a data-driven perspective, several levels of

supervision are possible for the detection of attacks and which we associate with the following

two methods:

2.3.2.1 Signature-based approaches

In numerous scenarios, existing examples of in-vehicle network attacks may be available. A

subset of the data may be labeled as attacks, while the remainder of the data is regarded as

normal. In such cases, the attack detection process is referred to as supervised attack detection,

because labels are leveraged for training a model that can determine specific types of attacks.

However, it is regarded as a difficult classification problem since labels are extremely unbalanced.

1After publishing our SOME/IP dataset, the “Automotive Ethernet" and “TOW-IDS" datasets became
accessible for the purpose of intrusion detection on different Automotive Ethernet protocols
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Essentially, because attacks are less frequent than normal points, it is possible for standard

classifiers to predict that all test points are normal points while achieving excellent accuracy.

2.3.2.2 Anomaly-based approaches

By definition, anomaly detection is the process of identifying patterns that do not conform to

the expected normal pattern, these patterns are called anomalies or outliers. For example, in

networked systems, we consider the network traffic as anomalous if it shows unusual behavior

because of malicious activity. There are various models that have been used to distinguish normal

patterns from abnormal data. From a data-driven perspective, we tend to use semi-supervised

approaches when only normal data examples are available. However, if the dataset consists of

normal data but is contaminated by anomalies that are not known, this problem lends itself to

unsupervised techniques.

When leveraging an outlier detection algorithm to a set of data, we can obtain one of the

two possible outcomes:

• Outlier scores: An outlier score is representative of the “outlierness" level of each data

point. Applied to a set of data points, this score can indicate the probability that each of

them is an outlier.

• Binary labels: A binary label indicates whether or not a data point is an outlier. Although

there are techniques for obtaining binary labels directly, it is also possible to transform

outlier scores into binary labels. In most cases, this is done by applying thresholds to the

outliers; these thresholds are chosen based on the statistical distribution of the scores.

While a scoring method provides more information, binary labeling provides only half of

it, but the end result is what is often required for decision-making in practical situations.

2.3.3 Attack Classification

In order to classify attacks, we commonly use a signature-based IDS that aims to categorize data

instances into their corresponding attack type (multiclass classifier), rather than just two (binary

classification). Several binary classifiers have thus been extended to solve multi-class classification

problems and are based on neural networks, decision trees, k-nearest neighbors, naive Bayes, and

support vector machines. These types of techniques are referred to as adaptation techniques.
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2.4 Background: Deep learning

To help flag novel and existing malicious uses of the in-vehicle network, deep learning architectures

are leveraged for multiple intrusion detection tasks. These techniques are used to improve

detection methods, by creating new rules automatically for signature-based IDS or adapting

the detection patterns of anomaly-based IDS. Hence, in this section, we cover the deep learning

techniques associated with each task, along with the different learning approaches and the

performance metrics used to evaluate the developed systems.

Figure 2.6: Deep learning-based IDS for IVN

To train an anomaly detector, a dataset of normal inputs is sufficient. A classifier, on the

other hand, requires a labeled dataset of normal and attack inputs in order to be trained. After

training, it can be used to perform intrusion prediction on new incoming network data. As

seen in Fig. 2.6, the preprocessed in-vehicle network is fed to the trained IDS, e.g., anomaly

detector or attack classifier, which in turn generates a label or an attack score for each input or

a sequence of inputs. The label can be binary: normal and attack, or multi-valued indicating

various types of attacks. To that end, we distinguish between supervised and unsupervised deep

learning methods, next.

2.4.1 Supervised deep learning IDS

Here, we provide a formal description of related supervised deep learning methods, for IDS. The

considered supervised learning methods are all characterized by a labeled training set:

{ ( xt , yt ) }Tt=1
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where the pair ( xt , yt ) is sample t ∈ {1, .., T} of the training set, xt is feature vector (of

appropriate dimension), yt is the binary label vector (of appropriate dimension).

• Feedforward Neural Networks (FFN): FFN (a.k.a, multi-layer percepteron, deep

neural network) consist of a cascade/composition of the multiple layers of computational

units, usually interconnected in a feed-forward way, as shown in Fig. 2.7. Each neuron in

one layer has directed connections to the neurons of the subsequent layer.

Figure 2.7: Deep neural network.

We consider a genera FFN, as a mathematical compositing of J layers. The equation

describing the operation of layer indexed as j ∈ {1, .., J}, as follows:

zj = σj( Wjzj−1 ) , ∀j ∈ {0, ..., J − 1} (2.1)

Note that, the bias term bj is already absorbed in the matrix, Wj . In the above, Wj

denotes the matrix of weights (of a appropriate dimension) for layer j ∈ {1, .., J}, zj the

vector (of a appropriate dimension) representing the input for for layer j ∈ {0, .., J − 1},

zj+1 the output of layer j that is fed into as input to the next layer j + 1, and σj( ) is the

vector-valued vector function (an element-by-element operator) modeling the activation

function for layer j ∈ {1, .., J}. By recursively substituting the expression in the above

equation, we can write the overall input-output equation the FNN, as follows,

zJ = σJ(WJ · · · σ1( W1z0 ) ) (2.2)
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Since we are dealing with classification tasks, we choose the activation for the last layer

σJ (−), as a softmax function. Then, each of the feature vectors xt , ∀t ∈ {1, ..., T}, are fed

to the FFN input z0. Moreover, the FFN output ŷt, resulting from sample xt is expressed

as,

ŷt = σJ(WJ · · · σ1( W1xt ) ) , ∀t ∈ {1, ..., T}

Next, a loss function is defined for sample t, that compares the FFN output (ŷt) to the

actual value/label (yt), i.e.,

ℓt(yt, ŷt) = ℓt(yt , σJ(WJ · · · σ1( W1xt ) ))∀t ∈ {1, ..., T}

Note that, ℓt(−) is a general loss function. However, ℓt reduces to the binary cross-entropy

(if yt is a binary scalar), and a multi-class cross entropy loss (if yt is binary vector).

Training the FFN amounts to finding the optimal weight matrices W⋆
1, ..,W

⋆
J , which

minimize the empirical risk (training error) problem, i.e.,

W⋆
1, ..,W

⋆
J = argminW1,..,WJ

T−1
T∑

t=1

ℓt(yt , σJ(WJ · · · σ1( W1xt ) )) (2.3)

Looking at the above problem, while W1, ..,WJ are the weights/parameters (to be

trained/optimized), all the other quantities are hyper-parameters (not to be optimized).

Solving the optimization problem, is done using the backpropagation algorithm. Essentially,

a gradient descent algorithm is used to adjust the weights, layer-by-layer. This approach

implicitly assumes all the training/testing are sampled in a independent and identically

distributed manner.

• Recurrent Neural Networks (RNN): RNN are sequence-based models of key impor-

tance for natural language understanding, language generation, video processing, and

many other tasks [134].

In contrast to FFN, a RNN assumes the existence of a hidden temporal or causal relation,

among the training/test data. Hence, it belongs to a class of deep learning named sequential

models. As seen in Fig. 2.8, the model’s input is a sequence of symbols, where at each

time step a simple neural network (RNN unit) is applied to the current sample, as well as

to the network’s output from the previous time step. RNN are powerful models, showing
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Figure 2.8: Recurrent neural network.

promising performance on many tasks. We will restrict our presentation to a single-layer

RNN model. Given the feature vector for sample t xt as input to the RNN, a repeated

application of function fh is performed . With that in mind, the equation describing hidden

layer ht for sample t,and resulting from feeding xt to the RNN input, is

ht = fh(xt,ht−1) = σ(Whxt +Uhht−1 + bh) , ∀t ∈ {1, .., T − 1} (2.4)

where σ(−) an vector-valued vector function applied element-wise. The model output can

be defined, for example, as:

ŷT = WyhT−1 + by (2.5)

With that in mind, the rest of the method is similar to the FNN: a loss function is defined

(multi-label cross entropy), to from the empirical risk problem. Moreover, for the RNN

the weights that are optimized/trained are Wh,Uh,Wy. In general, RNNs are more

challenging to train than other types of neural networks due to the fact that gradients can

easily vanish or explode [? ]. Training is typically done using the backpropagation through

time (BPTT) algorithm. However, recent developments in training and architecture have

enabled the development of a variety of RNNs that are simpler to train [64]. In fact, Long

Short-Term Memory Units (Long short-term memory neural networks (LSTM)s) were

introduced to allow RNNs to handle problems that necessitate long-term memories [65].

• Long short-term memory neural networks (LSTM): Each LSTM unit consists of

three gate structures: an input gate, a forget gate, and an output gate. The input and

output gates regulate the memory cell’s input and output activation, respectively, whilst

the forget gate updates the cell’s state. The following equations govern the behavior of an

LSTM unit:

ft = σ(Wxf · xt +Whf · ht−1 + bf ) (2.6)
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it = σ(Wxi · xt +Whi · ht−1 + bi) (2.7)

C̃t = th(Wxa · xt +Wha · ht−1 + ba) (2.8)

ot = σ(Wxo · xt +Who · ht−1 + bo) (2.9)

Ct = ft ⊗ Ct−1 + it ⊗ C̃t (2.10)

ht = ot ⊗ tanh(Ct) (2.11)

where ht−1 and Ct−1 are output and cell state at the previous moment, respectively, xt

represents the current input, f represents the forget gate, ft is a forget control signal which

determines if the prior unit’s state Ct−1 should be reserved, ft ⊗ Ct−1 represents the

information retained at the previous moment, i represents the input gate, C̃t is considered as

the candidate cell state at time t, it represents the control signal for C̃t, ht is regarded as the

final output, ot represents the output control signal. Moreover, {Wx,i , Wx,f , Wx,a , Wx,o}

represents the { input, forget, active, output }-layer connection matrices (all of which

to be learned), and {Wh,i , Wh,f , Wh,a , Wh,o} indicate the { input, forget, active,

output }-hidden layer recurrent connection matrices (all to be optimized), σ is the sigmoid

activation function and ⊗ represents element-wise (Hadamard) product.

• Convolutional Neural Networks (CNN) CNNs are popular deep learning techniques

used where there is spatial or temporal ordering [86] including a two-dimensional (2D)

array of pixels representing a color or grayscale image, three-dimensional (3D) arrays

representing videos, and volumetric images.

Figure 2.9: Convolutional neural network.
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As shown in Fig. 2.9, the architecture of a CNN includes three distinct types of layers:

convolution layers, pooling layers, and the classification layer. The convolution layers

represent the center core of the CNN. The weights define a convolution kernel applied

to the original input, a small window at a time, called the receptive field. The result of

applying these filters across the entirety of the input is then passed through a non-linearity,

typically a ReLU, and is called a feature map. These convolution kernels, named after the

mathematical convolution operation, allow close physical or temporal relationships within

the data to be accounted for and help reduce memory by applying the same kernel across

the entirety of the image. Pooling layers are used to perform non-linear downsampling by

implementing a particular function, such as the maximum, over non-overlapping subsets

of the feature map. In addition to reducing the size of the feature maps, and thus the

memory needed, pooling layers also reduce the number of parameters, and thus overfitting.

Typically, these layers are inserted periodically between convolution layers and then fed

into a traditional fully connected DNN. The following equation governs the behavior of

both convolutional (also deconvolutional layers):

h
[l+1]
k = f(

∑
j∈J

x
[l]
j ◦ w[l]

k + bk), (2.12)

where h[l+1]
k is the latent representation of k− th feature map in layer l+1, f is a non-linear

activation function, x[l]j is the j − th feature map of the output layer in layer l, w[l]
k is the

k − th filter weight for the layer l and bk is the bias parameter, and ◦ represents a 2D

convolution operation.

2.4.2 Unsupervised and Self-supervised deep learning: anomaly detec-
tion

A wide range of classical detection algorithms has been considered, such as the probabilistic

method, the distance-based approach, the one-class classification method, etc. Nevertheless,

these traditional algorithms often have a tendency to concentrate on lower-dimensional data

and struggle when confronted with high-dimensional data, such as images or texts. Additionally,

the extraction of features from data in traditional algorithms often involves the use of manual

engineering, a process that may be both costly and time-consuming. Recently, deep learning-

enabled anomaly detection, so-called deep anomaly detection, has emerged as a critical direction

that bypasses manual feature engineering and aims at learning feature representations or anomaly

scores via neural networks for the sake of anomaly detection [108]. Numerous deep anomaly
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detection methods have been introduced, outperforming conventional anomaly detection in

addressing challenging detection problems, particularly for the intrusion detection of networked

systems. Some of the proposed methods in the thesis fall under the category of unsupervised

deep learning. Recall that unsupervised learning consists of unlabeled training/test set,

{ xt }Tt=1

where xt is feature vector (of appropriate dimension) without having any label.

• Autoencoders (AE): This type of approach attempts to learn a low-dimensional feature

representation space on which the given instances can be well reconstructed. They are

commonly used for data compression or dimension reduction. The heuristic for using this

technique in anomaly detection is that the learned feature representations are enforced to

learn noteworthy regularities of the data to minimize reconstruction errors; anomalies are

difficult to be reconstructed from the compressed space and thus have large reconstruction

errors.

Figure 2.10: Deep autoencoder network.

As seen in Fig. 2.10, an AE is composed of an encoding network and a decoding network.

The encoder compresses the original data and projects it to a lower-dimensional feature

space, while the decoder attempts to recover the data from the compressed space. The

parameters of these two networks are learned with a reconstruction loss function. In

order to create low-dimensional representations of the data, a bottleneck network design is

often utilized. This architecture requires the model to save the information necessary to

construct the data instances. The retained information must be as relevant to the dominant

cases, i.e. the normal examples, to reduce the total reconstruction error. Therefore, data

examples like anomalies that differ from the norm are not reconstructed as well as they

may be. Hence, the inaccuracy in reconstructing the data may be utilized as a direct

anomaly score.
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The AE may be seen as a composition/cascade of an encoder and decoder. Let ϕe be a

function modeling the encoding network and ϕd is the decoding network. We denote by Θe

and Θd the all the weights parameters/weights of the encoder and decoder, respectively,

both of which to be optimized/trained. When sample xt, ∀t{1, ..., T} is fed to the AE,

the encoder and encoder are governed by the following equations [108]:

zt = ϕe(xt,Θe) , x̂t = ϕd(zt,Θd),∀t{1, ..., T} (2.13)

where zt for sample t ∈ {1, ..., T} is the output of the encoder, that is fed to decoder,

and x̂t, t ∈ {1, ..., T} the AE output. Then, the mean-squared error loss function ℓt

, for sample t ∈ {1, ..., T} is defined comparing the true feature vector (xt) with the

corresponding AE output (x̂t), as

ℓt = ∥xt − x̂t∥22 = ∥xt − ϕd(zt,Θd)∥22 = ∥xt − ϕd(ϕe(xt; Θe); Θd))∥22 , t ∈ {1, ..., T}

Finally, training is performed by optimizing Θe,Θd, i.e., minimizing the empirical risk:

{Θe∗,Θd∗} = argmin
Θe,Θd

(T )−1
T∑

t=1

∥xt − ϕd(ϕe(xt; Θe); Θd)∥22, (2.14)

Given the optimal AE weights, Θe∗,Θd∗ , we compute the anomaly score of each sample

t ∈ {1, ..., T}, as

sxt
= ∥xt − ϕd(ϕe(xt; Θ

∗
e); Θ

∗
d)∥22,∀t ∈ {1, ..., T} (2.15)

AEs also power the detection of anomalies in data other than tabular data, such as sequence

data, graph data, and image/video data by adapting the network to the type of input data,

such as CNN-AE, LSTM-AE, Conv-LSTM-AE, and graph convolutional network-AE.

• Convolutional-based autoencoder (CAE): Researchers have been widely using CAE

for the anomaly detection of concrete defects [39], in automated video surveillance [114],

on system logs [41], and on network application protocols such as HTTP [110]. In fact,

CAE is composed of convolutional and deconvolutional layers leveraged in the encoder

and decoder parts, respectively. In order to use such architecture, input samples must be

reshaped into images.

• Long short-term memory-based autoencoder (LSTM-AE): Long short-term

memory-based Autoencoder (LSTM-AE), widely used for anomaly detection [117][95], is

an implementation of autoencoders that uses LSTM as learning layers both in encoder

and decoder components, explained earlier.

39



2. BACKGROUND: DEEP LEARNING AND IDS

• Transformer-based models: Transformer [127] is a sequence-to-sequence model and

Figure 2.11: Overview of vanilla Transformer architecture

consists of an encoder and a decoder, each of which is a stack of L identical blocks. Each

encoder block is mainly composed of a multi-head self-attention module and a position-wise

FFN. For building a deeper model, a residual connection is employed around each module,

followed by the Layer Normalization module. Compared to the encoder blocks, decoder

blocks additionally insert cross-attention modules between the multi-head self-attention

modules and the position-wise FFNs. Furthermore, the self-attention modules in the

decoder are adapted to prevent each position from attending to subsequent positions. The

overall architecture of the vanilla Transformer is depicted in Fig. 2.11.

2.4.3 Performance Metrics for supervised learning

2.4.3.1 Classification error

When it comes to intrusion detection, deep learning models may be evaluated using a variety

of metrics. These measures evaluate several features of an IDS. For (supervised learning)

classification methods, the primary metric from which all the other metrics are derived is the

confusion matrix. We distinguish between two cases:

i) the confusion matrix of scalar binary label, i.e., yt ∈ {0 , 1}

ii) the confusion matrix of D-dimensional binary label, i.e., yt ∈ {0 , 1}D

We define first the follow: True Positive (TP) is the number of intrusions correctly classified

as an attack, True Negative (TN) is the number of normal instances correctly classified as
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benign, False Negative (FN) is the number of intrusions incorrectly classified as benign, and

False Positive (FP) is the number of normal instances incorrectly classified as an attack.

We start with the confusion matrix of a scalar label. The confusion matrix is a tabulation of

classifications made by a model, typically with the actual class (ground truth) on rows and the

predicted class on columns (displayed in Table 2.1 and Table 2.2). It shows the “classification

distribution" of a model and helps identify the properties of the model, such as when it is

constantly misclassifying one class as another.

Predicted
Normal Attack

A
ct

ua
l Normal TN FP

Attack FN TP

Table 2.1: Confusion matrix: scalar binary label

Predicted
Class A Class B Class C

A
ct

ua
l Class A TPA EBA ECA

Class B EAB TPB ECB

Class C EAC EBC TPC

Table 2.2: Confusion matrix for multiclass classification

Several other important metrics are calculated to measure the ability of an IDS to correctly

identify and classify cyberattacks. Common metrics include accuracy (Acc), DR, false alarm

rate (FAR), Precision, and F1 score. Acc shows the overall effectiveness of an algorithm. DR,

also known as Recall, refers to the number of attacks detected among the total number of

attack instances. Unlike Recall, Precision counts the number of attacks detected among the

total number of instances classified as an attack. The F1 score measures the harmonic mean of

Precision and Recall. FPR is the number of normal instances classified as an attack divided

by the total number of normal instances in the test dataset, while FNR shows the number of

attack instances that are unable to be detected. Intuitively, the goal is to achieve a high Acc,

DR, Precision, F1 score and, at the same time, maintain low FAR.

These measures are defined by the following equations:

Accuracy =
TP + TN

TP + TN + FP + FN
(2.16)

DR(Recall) =
TP

TP + FN
(2.17)
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Precision =
TP

TP + FP
(2.18)

FPR =
FP

TN + FP
(2.19)

FNR =
FN

FN + TP
(2.20)

F1 =
2TP

2TP + FP + FN
(2.21)

These metrics may be computed separately for each class in a multi-class problem. There

are three possible techniques to average the per-class indicators to get the final measure.

• Micro average: calculate the metrics using the sum of each type of classification (eg:

TP = TPclass1 + TPclass2 + · · ·

• Macro average: calculate the per-class metrics and average them (sum and divide by the

no. of classes).

• Weighted macro average: similar to a macro average, except the per-class metrics are

weighted by the number of instances in each class to obtain the final average.

It’s noteworthy to mention that a natural trade-off exists between sensitivity (recall) and false

positive rate (FPR). In fact, a highly sensitive model to attacks is likely to have a high false

positive rate which is regarded as undesirable. The Receiver Operating Characteristic (ROC)

curve illustrates this trade off. The FPR values are drawn on the horizontal axis and, sensitivity

(recall) values are drawn on the vertical axis. The ROC curve is obtained by changing the

threshold for classification into the positive class (attacks), and recording the corresponding

FPR and recall. The specifics of the intended use case determine which ROC curve point must

be selected. Moreover, Area Under Curve (AUC) is another metric for classifiers that reflects

the ability of the model to distinguish between the two classes.

2.4.3.2 Computational Complexity

In addition to the metrics that evaluate the classification performance of a model, several other

important metrics reflect model complexity by measuring the ability of an IDS to perform its

tasks without being resource-intensive. Common computational metrics include:

• Time to predict (inference time): this can be measured as the time taken to make a

prediction on a fixed-size batch of input instances. Since predictions in intrusion detection

are made online (real-time), low latency figures are preferred.
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• Number of parameters: this measure can help us infer the model size. In our case,

small neural networks have a significant benefit as they are feasible to be deployed on

ECUs and other in-vehicle hardware with limited memory. Additionally, small neural

networks require less bandwidth to export a new model from the cloud to the vehicle.

Overall, the performance of an IDS can be evaluated by considering a combination of efficiency

and computational metrics. A well-performing IDS should have a low false positive rate, a low

miss detection rate, low processing time, and be low resource-intensive.

2.5 Conclusion

In this chapter, we provided a summary of the key concepts and the notation we use regarding

in-vehicle networks, deep learning, and IDS, but it is not intended to be a representative overview.

In the next chapters, we investigate the usefulness of different unsupervised and supervised

neural network architectures when detecting and classifying attacks on various IVNs.
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Controller Area Network
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CHAPTER 3

CAN-IDS based on BERT Language Model

To protect modern vehicles against malicious attacks or malfunctions, it is crucial to detect

anomalous messages transmitted in the CAN bus. In this chapter, we propose CAN-BERT, a self-

supervised framework for CAN anomaly detection based on Bidirectional Encoder Representations

from Transformers (BERT). CAN-BERT learns the patterns of normal CAN ID sequences by the

novel masking self-supervised training task and is able to detect anomalies where the underlying

patterns deviate from normal CAN ID sequences.
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3.1 Introduction

To fulfill automotive features, the Controller Area Network (CAN) bus is widely used as the

de-facto standard for message communication between different electronic control units (ECUs)

in today’s vehicles. It is sometimes referred to as a "message-based" system since it focuses on

the transmission of diagnostic, informative, and controlling data through messages, also known

as CAN data frames. In fact, while developing a vehicle, all conceivable CAN bus messages

and their respective priority, encoded into an identifier called “CAN ID", must be determined

beforehand.

Due to the lack of authentication, any device can connect physically or wirelessly to the

CAN bus, and broadcast CAN data frames, and all the participants on the CAN bus can receive

it without verifying its source. Consequently, since CAN security was not a design priority,

many message injection attacks have become widely implemented. These attacks can interfere

with the desired function of the system, shut down some connected nodes, and make the vehicle

behave abnormally, putting at risk the safety of the driver and the passengers.

To address these security flaws, researchers have proposed intrusion detection as a supple-

mentary layer of protection to specialized security solutions. By monitoring the communication

between different ECUs within a CAN bus system, a network intrusion detection system (N-

IDS) can detect deviations from the normal message exchange behavior and, thereby, identify

both anticipated and novel cyberattacks. The adoption of deep neural networks for in-vehicle

intrusion detection has lately proliferated, with impressive results. Since a message injection

attack can alter the normal order of occurrence of several CAN IDs, researchers have deployed

deep learning-based sequential models, to model the CAN ID sequences. Some studies have

proposed the use of autoregressive models that are trained to capture the patterns of regular

CAN ID sequences by predicting the future CAN ID sequence based on the preceding one, such

as recurrent neural network (RNN) models and their variants and the generative pretrained

transformer (GPT). However, these models identify malicious network intrusions on CAN ID

traffic by focusing primarily on the exchange of CAN ID messages from earlier steps rather

than integrating the left and right context of a CAN ID sequence, limiting the model’s capacity

to grasp the whole context information representation. Additionally, these algorithms focus

largely on the correlation between CAN ID messages in normal sequences, which would result in

false alarms for intrusion detection whenever the correlation is breached. Hence, due to these
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limitations, the autoregressive models do not adequately depict the natural communication

behavior between the various ECUs.

To address these challenges, we propose CAN-BERT, an intrusion detection system based on

a language representation model called BERT. CAN-BERT, in contrast to autoregressive models,

is a self-supervised model which can successfully depict deep bidirectional representations from

CAN ID sequences by conditioning on both left and right context in its various layers. By using

the “masked language model" unsupervised training objective, CAN-BERT model masks some

of the CAN IDs in the input at random, with the goal of predicting the conventional ID of the

masked word based on its left and right context.

We evaluate our approach using the recently published “Car Hacking: Attack & Defense

Challenge 2020" collected from three different cars, Chevrolet Spark, Hyundai Sonata, and Kia

Soul and which contain diverse types of message injection attacks.

Our contributions are summarized below:

• Inspired by the outstanding performance of BERT model for improving many natural

language processing tasks, we propose “CAN-BERT", a novel BERT-based intrusion

detection system architecture that can detect known and unprecedented cyberattacks in

CAN ID sequences.

• We evaluate the performance of our approach with the recently published “Car Hacking:

Attack & Defense Challenge 2020" collected from three different cars, Chevrolet Spark,

Hyundai Sonata, and KIA Soul and which contain diverse types of message injection

attacks. We also compare our model with other baseline models.

This chapter is structured as follows. In Section 3.2, we present the security weaknesses of

the Controller Area Network (CAN) and the Bidirectional Encoder Representations from the

Transformers model (BERT). In Section 3.3, we present an overview of our proposed framework

“CAN-BERT". Section 3.4 discusses the launched experiments with the corresponding dataset.

In Section 3.5, we discuss the obtained results showing the proposed model’s accuracy and

complexity.
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3.2 Preliminaries

3.2.0.1 CAN’s Security Weaknesses

CAN does not prohibit several ECUs from sharing the same IDs. Moreover, CAN messages

are broadcast and do not contain any sender’s address. Consequently, any device linked to

the CAN bus can use any pre-defined ID, communicate its message without authentication or

encryption, and all associated ECUs can receive it. The receiver defines whether or not a message

identification causes the receiving ECU to retain and process the given data. Consequently,

an attacker is able to broadcast spoofed CAN message, eavesdrop on all the CAN traffic, and

collect detailed information about it, resulting in Fuzzing and Malfunction attacks.

Additionally, as previously mentioned, the CAN bus leverages the arbitration method which

discerns between "dominant" (0) and "recessive" (1) bits in the message identifiers. Therefore, if

several ECUs begin transmitting simultaneously, the ECU whose message begins with a greater

number of dominant "0" bits will take over the CAN bus. As soon as a unit detects that the

message on the bus is no longer the message it is transmitting, it halts its transmission, waits for

the real transmission to conclude, then waits for the inter-frame gap to expire and retransmits

its message. This phenomenon carries the risk that a message with a lower priority will never

be delivered if the network is very congested and can be exploited by attackers to launch denial

of service (DoS)/ flooding attacks.

3.2.1 BERT

Bidirectional Encoder Representations from Transformers (BERT), proposed by Devlin et al.

[43], is a state-of-the-art language representation model which is designed to pretrain bidirectional

representations from the unlabeled text by jointly conditioning on both left and right context in

all layers. Regarding its architecture, it is a multi-layer bidirectional Transformer encoder based

on the original implementation proposed by Vaswani et al. [127].

Inspired by its outstanding performance in modeling sequential data, BERT is recently

employed for sequence anomaly detection [90] [52] [88] [85] [140]. To the best of our knowledge,

none of the previous works have evaluated the performance of the BERT model for in-vehicle

intrusion detection on CAN protocol.

In order to detect anomalies in sequences, it’s crucial to incorporate context from both left

and right directions of the sequence. Sequential anomalies may be misdetected by traditional

unidirectional models, such as OpenAI GPT and RNNs, where every token can only attend to
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context to its left. To solve this significant constraint, some researchers have proposed a shallow

concatenation of both left-to-right and right-to-left architecture of the autoregressive models,

such as Bi-RNN and Bi-GPT [104]. However, these approaches aren’t as powerful as BERT

which adopts a "masked language model" (MLM) training objective, in which input sequence

tokens are randomly masked and the goal is to predict the original vocabulary id of the masked

word based on its context. In contrast to denoising auto-encoders, BERT predicts the masked

words instead of reconstructing the whole sequence [129].

3.3 Proposed framework: CAN-BERT

We propose "CAN-BERT", a pattern-based anomaly detection algorithm, which leverages a

BERT-based architecture to detect message injection intrusions in the CAN bus. As seen in

Figure. 3.1, our model is composed of a multi-layer bidirectional Transformer encoder and

is trained using the ”masked language model" self-supervised task to model normal CAN ID

sequences. The following subsections elaborately describe the suggested framework.

Figure 3.1: CAN-BERT model architecture

3.3.1 Model description

Note that S = [id1, ..., idt, ..., idT ] is an observed sequence of T CAN identifiers, arranged

in their order of transmission in the CAN bus network, where an identifier idt ∈ ID is an

M-dimensional vector which denotes the CAN ID transmitted at time t by an ECU, ID indicates

the set of CAN IDs extracted from CAN message, and M is the size of the ID set.
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Since anomaly detection is an unsupervised learning-based technique in which only normal

data are used for training, a collection of N CAN ID sequences, represented as Dtraining =

{S1, ...,Sj , ...,SN}, is solely used as a training dataset.

Identifier Embeddings To feed the appropriate input to the BERT model, each identifier idj
t

with size (M,1) in a CAN sequence Sj is firstly projected into a d-dimensional space using a

single linear layer, i.e.:

ejt = Weidj
t + be,∀i ∈ {1..T},∀j ∈ {1..N} (3.1)

where ejt represents the identifier embedding with size (d,1), We ∈ Rd×M is the input embedding

weight matrix, and be ∈ Rd denotes the bias. Both We and be are trainable parameters.

Subsequently, the identifier’s position is encoded into a d-dimensional positional embedding

pj
t using a sinusoidal function. To this end, the CAN ID, fed into the CAN-BERT model, is a

summation of both the positional encoding and the input embedding :

xj
t = ejt + pj

t (3.2)

where xj
t is the total embedding j-th identifier in the t-th CAN ID sequence idj

t , thereby the

convergence of the input sequence Sj into Xj = [xj
1, ..x

j
t ..,x

j
T ]

T with Xj a matrix with size

T × d.

Transformer Encoder The encoded input Xj is then delivered into a stack of L transformer

encoder layers, each of which has two sub-layers: a multi-head self-attention mechanism and

a position-wise feed-forward network [127]. A residual connection is employed around each of

these two sub-layers, followed by layer normalization [29], as follows:

E(j,l) = g(X(j,l)) + f(X(j,l) + g(X(j,l)))

H(j,l) = z(E(j,l)) + f(E(j,l) + z(E(j,l)))

X(j,l+1) = H(j,l),∀l < L

(3.3)

where E(j,l) represents the output of the first sublayer for the l-th transformer encoder layer

with size T × d, H(j,l) represents the output of the second sublayer for the l-th transformer

encoder layer with size T × d, g is the multi-head attention function, z is the position wise feed

forward function, and f is the layer normalization function.

Attention We use the scaled dot-product attention proposed by [127], requiring query

Q(j,l), key K(j,l), and value V(j,l) representations, and which are projections of the embedded

sequence X(j,l) ∈ RT×d. In fact, we leverage the dot-product similarity to compare the query
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representation of a given CAN identifier to all other keys. Hence, if the query and key are

comparable and have a high attention weight, the matching value is deemed to be relevant. The

output is therefore computed as a weighted sum of the values V:

Attn(Q(j,l),K(j,l),V(j,l)) = σ(
Q(j,l)K(j,l)T

√
d

)V(j,l)

Attn(Q(j,l),K(j,l),V(j,l)) = AV(j,l)

(3.4)

where σ is the softmax function, A ∈ RT×T denotes the attention weight matrix containing

attention weights, and d is the dimension of the Q(j,l), K(j,l),V(j,l) vectors.

As described by [127], the multiple heads of attention allows the model to concurrently

capture diverse aspect of data at distinct CAN IDs. Hence, we adopt a multi-head attention

(MHA) mechanism in which the d-dimensional CAN identifers are projected into subspaces

calculated by different attention heads n ∈ {1, ..,H}:

Q(j,n,l) = X(j,l)W(Q,n),Q(j,n,l) ∈ RT×F

K(j,n,l) = X(j,l)W(K,n),K(j,n,l) ∈ RT×F

V(j,n,l) = X(j,l)W(V,n),V(j,n,l) ∈ RT×F

(3.5)

where Q(j,n,l), K(j,n,l) and V(j,n,l) are the query, key and value vectors, respectively of the

j − th CAN ID sequence for the l-th transformer encoder layer and which are calculated using

the n-th attention head. The W(Q,n), W(K,n) and W(V,n) are their corresponding trainable

weight matrices ∈ Rd×F , and F is set to D/H. The results are then concatenated and projected

back into representation space using the weight matrix Wo ∈ RHF×D as follows:

head(j,l)
n = Attn(Q(j,n,l),K(j,n,l),V(j,n,l)) (3.6)

X
(j,l)

= [head
(j,l)
1 , ..head(j,l)

n , ..,head
(j,l)
H ]WO (3.7)

where X
(j,l) ∈ R(T,d).

Position-wise feed-forward A position-wise feed-forward network with a ReLU activation

is thereby applied to each representation in each of the layers of our encoder, in addition to

attention sub-layers, using the following equation:

z(E(j,l)) = [W1E
(j,l)]+ ◦W2 (3.8)

where E(j,l) is previously defined in (3.3), W1 and W2 are trainable projection matrices, where

◦ is the hadarmard product, and []+ is the element-wise maximum.
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After passing through different transformer layers, the L-th contextual embedding vectors

of the CAN IDs, denoted as h
(j,L)
t with size (d, 1) ∈ H(j,L) = [h

(j,L)
1 , ..,h

(j,L)
T ]T , are fed into a

single linear layer which projects them back to the M -dimensional layer, as follows:

mj
t = Wmh

(j,L)
t + bm,∀i ∈ {1..T},∀j ∈ {1..N} (3.9)

where mj
t represents the projected output with size (M ,1), Wm ∈ RM×d is the input embedding

weight matrix, and be ∈ RM denotes the bias. Both Wm and bm are trainable parameters.

3.3.2 Training and Inference

We use the masked language model training method to train the CAN-BERT model on capturing

the patterns of normal CAN ID sequences. Hence, CAN sequences with random mask as inputs,

where we randomly replace a ratio of CAN IDs in a sequence with a specific MASK token, are

fed into CAN-BERT. The purpose of training is to reliably anticipate the CAN IDs that have

been randomly masked.

To achieve that, we feed the contextual embedding vector of the u-th MASK in the j-th

CAN ID sequence mj
MASKu

to a softmax function, which will return a probability distribution

for the whole set of CAN IDs ID:

ŷj
[MASKu]

= σ(Wcmj
[MASKu]

+ bc) (3.10)

where ŷj
[MASKu]

is an m-dimensional vector, σ is the softmax function, mj
[MASKu]

and bc are

trainable parameters.

CAN-BERT is trained to minimize the cross entropy loss over a batch of I sequences ( with

I ≤ N), for masked CAN ID prediction, which is defined as:

LMASK = − 1

IR

N∑
j=1

R∑
u=1

yj
[MASKu]

logŷj
[MASKu]

(3.11)

where the ground-truth u-th CAN ID in the j-th sequence is denoted as yj
[MASKu]

, R is the

total number of masked tokens in the j-th sequence, and N is the number of training samples.

By modeling the normal exchange of messages through CAN bus using CAN-BERT, our

model is expected, after training, to predict a candidate set with the normal CAN IDs having

the highest likelihood for each masked token. Hence, for a randomly masked testing sequence, we

calculate the probability distribution represented in (3.10), for each masked CAN ID. Therefore,

if the actual CAN ID is among the anticipated candidates, the corresponding CAN ID sequence

is considered as normal. Otherwise, it is deemed abnormal.
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3.4 Experimental Settings

3.4.1 Dataset

To assess the proposed CAN-BERT, we leverage the “In-Vehicle Network Intrusion Detection

Challenge" dataset [77] (presented in Table 3.2), which was used at the “In-vehicle Network

Intrusion Detection track’ of ‘Information Security R&D Data Challenge 2019.

Vehicle
Dataset # Normal # Abnormal Size

packets packets (MB)
Attack Free 136,933 N/A 6.2

CHEVROLET Flooding 70,001 14,999 4.2
Spark Fuzzy 37,957 3,043 2.0

Malfunction 47,005 3,995 2.5
Attack Free 117,172 N/A 5.8

HYUNDAI Flooding 78,907 17,093 4.9
Sonata Fuzzy 78,905 9,095 4.5

Malfunction 78,798 8,202 4.5
Attack Free 192,515 N/A 9.3

KIA Flooding 103,928 16,072 6.2
Soul Fuzzy 122,387 21,613 7.4

Malfunction 108,230 4,770 5.8

Table 3.1: In-Vehicle Network Intrusion Detection Dataset

The dataset includes normal and abnormal in-vehicle network traffic data of HYUNDAI

Sonata, KIA Soul, and CHEVROLET Spark vehicles collected during their stationary state.

We have mainly used its preliminary dataset, which includes three types of attacks (Flooding,

Fuzzy, and Malfunction). The dataset is labeled and each sample is represented by the following

features: “Timestamp" representing the logging time, “CAN ID" representing the CAN Identifier,

“DLC" indicating the Data length code, and the Payload indicating the “CAN data" field.

3.4.1.1 Attacks

The dataset contains the following attacks:

• Flooding Attack The flooding attack was carried out by injecting many messages with

the CAN ID set to 0x000 into the CAN network. Consequently, an ECU that transmits

CAN data frames with such CAN ID dominates the CAN bus, which could restrict the

communications among the ECU nodes and impair normal in-vehicle functions.

• Fuzzy Attack To implement fuzzy attacks, the attacker injected every 0.0003 seconds

random CAN packets, for both the ID field and the Data field. This process lead to
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abnormal automotive functionalities behavior such as short beeping sound repeatedly

occurring, the heater turning on, etc.

• Malfunction Attack The malfunction attack was carried out by injecting messages with

a specified CAN ID from among the extractable CAN IDs of a particular vehicle in order

to disable relevant automotive functions, such as IDs 0×316, 0×153 and 0×18E for the

HYUNDAI YF Sonata, KIA Soul, and CHEVROLET Spark vehicles, respectively.

c(x) =

{
0 (normal) sx < β

1 (abnormal) sx > β
(3.12)

where c(x) is the classification function for input sample x and β is the pre-defined anomaly

detection threshold.

Vehicle
Dataset # Normal # Abnormal Size

packets packets (MB)
Attack Free 136,933 N/A 6.2

CHEVROLET Flooding 70,001 14,999 4.2
Spark Fuzzy 37,957 3,043 2.0

Malfunction 47,005 3,995 2.5
Attack Free 117,172 N/A 5.8

HYUNDAI Flooding 78,907 17,093 4.9
Sonata Fuzzy 78,905 9,095 4.5

Malfunction 78,798 8,202 4.5
Attack Free 192,515 N/A 9.3

KIA Flooding 103,928 16,072 6.2
Soul Fuzzy 122,387 21,613 7.4

Malfunction 108,230 4,770 5.8

Table 3.2: In-Vehicle Network Intrusion Detection Dataset

As mentioned in Section 3.3, we aim to detect if a sequence of ordered CAN ID contains

injected messages. Hence, in order to represent CAN ID sequences, we use the Feature-based

Sliding Window (FSW) to group CAN IDs which belong to the dataset into subsequences

with fixed window size T, where T ∈ {16, 32, 64, 128, 256} and the slide size is 1. Moreover,

each CAN ID sequence S = [id1, ..., idt, ..., idT ] has its corresponding labels represented by

Y = [y1, ...,yt, ...,yT ] wherein each identifier idt ∈ S is labeled as yt = 1 if idt is an injected

identifier in S or as yt = 0 otherwise. However, to identify the state of each sequence, we have

used the following criteria:

z =

{
1 (abnormal) if ∃yt = 1,∀t ∈ {1, .., T}
0 (normal) otherwise

where z is the CAN ID sequence’s label.
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3.4.2 Benchmark Models

We chose the PCA, IF, and autoencoder models (described in Chapter 2), which are regarded as

the benchmark models for evaluating the performance of different CAN ID sequences. For the

autoencoder model, we have tested Long short-term based memory (LSTM) and Bidirectional

LSTM (BiLSTM)-based models with different network hyperparameters: BiLSTM-AE-4 (with 4

layers), LSTM-AE-4 (with 4 layers), and LSTM-AE-8 (with 8 layers).

3.5 Results

For measuring the performance of different anomaly-based IDS, we use the F1-score metric

described in Chapter 2. To evaluate our model, we leverage the Python deep learning framework

Pytorch [13]. We train and evaluate them on NVIDIA® Tesla® V100S with 32 GB HBM2

memory.

3.5.1 Model Configuration & Hyperparameter tuning

Parameter Value
N 4
dmodel 256
dff 512
h 1
Pdrop 0.1
m 0.45
# Candidates 5
Optimizer Adam
Adam β1 0.9
Adam β2 0.999
Learning rate 0.001
Batch size 32
# Epochs 200
Patience 10

Table 3.3: CAN-BERT model configuration

As presented in Table 3.3, for CAN-BERT, we have chosen the total number of transformer

encoder layers as 4. In each transformer layer, the position-wise feed-forward network is composed

of two dense layers where the first one projects d=256 dimensional CAN identifier embedding

into dff= 512-dimensional space, followed by a ReLU activation. The second dense layer maps

back the 512-dimensional vector into the d-dimensional space.
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For training, we use a batch size of 32, a learning rate of 0.001, and the Adam optimizer [80]

with its default parameters β1 = 0.9 and β2 = 0.999. To avoid overfitting, we employ the same

dropout of Pdrop=0.1 for all dropout layers in our network. Moreover, we apply early stopping

for a total number of 200 epochs and a patience of 10 epochs as a form of regularization used to

avoid overfitting.
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Figure 3.2: Hyperparameter tuning the mask ratio m and the number of attention heads h on
the “CHEVROLET Spark" dataset for T=32. We have obtained similar behavior pattern for the
results w.r.t other sequence length and car types.

The hyperparameters, including the ratio of masked CAN IDs in a sequence m, and h the

number of attention heads are tuned based on a validation set for the three car types and the

different message injection attacks. As seen in Figure 3.2, raising the ratios of masked CAN IDs

in the sequences from 0.1 to 0.45 somewhat improves F1 scores, however increasing the ratios

further degrades performance, as is the case for m=0.65. Furthermore, the model performance

is relatively stable by setting different attention head h ∈ {1, 2, 4, 8} values for each mask ratio

m ∈ {0.15, 0.3, 0.45, 0.6}. Therefore, in our in-vehicle intrusion detection use case, a single

attention head is sufficiant to detect different types of intrusions. Note that, in our experiments,

we use the same ratio of masked CAN IDS m=0.45 and h=1 for both training and inference

phases.

3.5.2 Model Accuracy

As seen in Figure 3.3, we compare performance of the CAN-BERT model with other baselines

approaches for different sequence length T using the F1-score metric. In fact, we varied

the sequence length among values of 16, 32, 64, 128 and 256 CAN IDs per sequence in the

experiments. If our approaches could identify a message injection attack in a shorter sequence
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length, it would be more advantageous in a practical situation. The traditional machine learning
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Figure 3.3: Comparision of the CAN-BERT model with other anomaly detection baselines using
the F1-score percentage metric, for different message injection attacks applied on different car
models w.r.t sequence length T .

algorithms such as Isolation Forest (iForest), and Principal Component Analysis (PCA) perform

poorly and maintain the same F1-score metric w.r.t sequence length. Because these models

presume small datasets with a limited number of features, they fail to discover abnormalities

in high-dimensional datasets. Because of this, a significant fraction of irrelevant features may

effectively disguise the underlying abnormalities in the input data, resulting in poor anomaly

identification performance when dealing with large input dimensions. Meanwhile, both deep

learning-based models autoencoder (AE) and CAN-BERT outperformed the traditional anomaly

detection models over different window sizes. However, when the length of the CAN ID sequence

is increased, both models performed oppositely. In contrast to the baseline models, our suggested

59



3. CAN-BERT DO IT?

model, CAN-BERT, significantly outperforms them by huge margins and obtains respectable

F1 scores ∈ [0.85, 0.99], demonstrating the usefulness of using BERT-based models to capture

the patterns of CAN ID sequences when T ≥ 32. However, on short sequence length, as is

the case for T = 16, the model performs modestly with F1-score ∈ [0.6, 0.9] for different kinds

of attacks. These experiments, therefore, reveal that by using self-supervised training tasks,

CAN-BERT can effectively model medium to long normal CAN ID sequences and accurately

detect anomalous sequences.

3.5.3 Model Complexity

From a practical point of view, we must assess not only the classification performance but also

the model complexity to check if the model’s ability for real-time in-vehicle intrusion detection

in CAN networks. Therefore, we assessed the inference time per sample as well as the number

of parameters for the CAN-BERT model w.r.t different car types.

Vehicle Features Values

CHEVROLET Spark
Number of Parameters 2,937,422
Model Size (MB) [20, 70]

Inference Time (ms) [0.8, 3.1]

HYUNDAI Sonata
Number of Parameters 3,149,291
Model Size (MB) [20, 70]

Inference Time (ms) [0.8, 3.5]

KIA Soul
Number of Parameters 3,163,142
Model Size (MB) [20, 70]

Inference Time (ms) [0.8, 3.8]

Table 3.4: CAN-BERT model complexity

As depicted in Table 3.4, the intrusion detection inference time varies between 0.8 and 3.1 ms

w.r.t CAN ID sequence length. Hence, when considering a sequence length of 32 CAN IDs, our

model detects an intrusion in 0.9 to 1 ms, which is suitable for real-time detection. Furthermore,

having a size between 20MB and 70 MB and a number of parameters ranging between 2 to

3 million, our model can be either deployed in a performant ECU or even on a cloud server

wirelessly connected to the vehicle.

3.6 Conclusion

We proposed CAN-BERT, a self-supervised intrusion detection system based on the BERT

model, for in-vehicle intrusion detection and is, therefore, able to capture the contextual relations

between CAN IDs. The strength of the proposed model has been demonstrated for different
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sequence lengths of CAN messages and by its ability to surpass state-of-the-art techniques for

efficient real-time detection. Moreover, as previously discussed, the introduction of Automotive

Ethernet as an IVN does not indicate that it completely replaces existing IVNs, particularly the

CAN bus. In fact, the aim of Automotive Ethernet is to unify the in-vehicle communication

network technology. Since CAN protocol will certainly be used in Automotive Ethernet networks

for specific automotive functionalities, the proposed BERT-based model must also be evaluated

for representative datasets of the heterogeneous networks. Moreover, it would be interesting to

see if the intrusion detection performance of the BERT model could be enhanced by correlating

security events across many diverse IVN protocols [147]. Han et al. [55] have recently proposed

a framework that detects and identifies corresponding abnormalities based on wavelet transform

and customized DCNN. Three protocols were covered including AVTP, generalized Precision

Time Protocol (gPTP) 1, and CAN protocol. As they have recently published their dataset, we

would leave our research question open.

In the next chapter, we assess the performance of BERT-based models in detecting timing

opaque attacks,i.e., attacks that do not affect the normal sequencing of CAN ID but rather alter

the carried signal values. We thus develop a model which predicts stealthier intrusions that

affect interdependencies between several CAN signals transmitted by distinct IDs.

1gPTP performs precision, time synchronization of all endpoints included in the AVB network and provides
the time information required for audio or video stream transmission
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CHAPTER 4

BERT-based multi-agent IDS for CAN

Predicting sophisticated intrusions that affect interdependencies between several CAN signals

transmitted by distinct IDs requires modeling the temporal relationships between signals carried

by each ID separately along with the interaction between CAN IDs. In this chapter, we propose a

novel deep learning-based multi-agent intrusion detection system, AMICA, that uses an attention-

based self-supervised learning technique to detect stealthy in-vehicle intrusions, i.e., those that

not only disturb normal timing or ID distributions but also carried data values by multiple IDs,

along with others.
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4.1 Introduction

Despite being widely deployed in cars today, the Controller Area Network (CAN) technology,

responsible for delivering reliable communication between several ECUs lacks important security

mechanisms mainly authentication and encryption. To mitigate the severe aftermath, numerous

intrusion detection approaches have been proposed to detect attacks against IVN. In such

settings, observations of CAN network packets are sent sequentially to a detector that is tasked

with detecting threats, particularly those that may not be caught by other security measures,

such as zero-day vulnerabilities or insider attacks.

Unfortunately, most available approaches for intrusion detection don’t handle the challenging

structure of the CAN protocol. A suitable IDS for CAN must take into consideration its

challenging message transmission mechanism, i.e only a single message can be transmitted at any

point in time. In fact, some intrusions can only be detected by monitoring the interdependencies

of several transmitted signals asynchronously. To overcome the shortcomings of previous

approaches in the context of CAN IDS, we present AMICA, an attention-based IDS, that

monitors asynchronously transmitted signals carried by several CAN Identifiers (ID) in the CAN.

Inspired by the success of BERT model in detecting in-vehicle intrusions and the outstanding

performance of Transformers in addressing multi-agent problems, we propose a BERT-based

IDS that predicts intrusions on CAN by modeling two key dimensions:

1. time dimension , where we model the temporal relationships between signals carried by

each ID separately

2. interaction dimension where we model the interaction between IDs, i.e., how the state

of each CAN ID affects the others.

4.2 Related Work

Techniques based on unsupervised deep learning have been widely used for detecting known

and unknown intrusions on the CAN bus [96, 106]. Despite their efficiency, most of these works

consider detecting intrusions on signals transmitted by each ID separately without taking into

consideration their interdependencies, thus incapable of detecting sophisticated attacks. Few

works have addressed this challenging problem such as [59] who introduced separate LSTM

modules for each CAN ID followed by a shared autoencoder-based module “CANet" tailored to

work on the signal space of CAN data. However, there are still some limitations to using LSTM
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for modeling sequential data. First, although LSTM can capture the sequential information

by the recurrence formula, it cannot make each element in a sequence encoding the context

information from both the left and right context. However, it is crucial to observe the complete

context information instead of only the information from previous steps when detecting malicious

attacks based on CAN messages.

To address the existing limitations of LSTM-based models, researchers have started to

leverage the Bidirectional Encoder Representations from Transformers (BERT) [43] for anomaly

detection. Recently, Alkhatib et al. [27] proposed CAN-BERT, an IDS based on the BERT

model tasked with monitoring the sequence of transmitted IDs through time and detecting

intrusions on CAN bus by explicitly encoding the common patterns shared by all CAN ID

normal sequences. However, their proposed model only regards the timing of each ID and/or

the sequential nature of IDs and cannot detect attacks that do not disrupt normal timing or ID

distributions.

Devising a multi-agent intrusion detection system is challenging since the interrelations

between asynchronous CAN signals transmitted by distinct agents (IDs) are complex. To

overcome the challenges of building such systems, Transformers have been widely adopted

[127]. In fact, Arnab et al. [28] and Gedas et al. [33] proposed a spatio-temporal model for

video classification tasks. Achaji et al. [25] and Ye et al. [141] proposed a transformer-based

multi-agent model that takes into account the interactions between several agents with respect

to time and space for multi-agent trajectory prediction.

4.3 Proposed framework: AMICA

In this section, we describe our proposed model, AMICA, which tackles the asynchronous nature

of the CAN protocol, in which messages are sent by various identifiers at different times. The

different elements of the model are described as follows:

4.3.1 Input Formulation

Let I = {A1, A2, . . . , AN} be the set of all possible CAN IDs. The input to the model, denoted by

X, is composed of all the messages sent by different IDs in a temporal window of horizon T . We

define the input as X = {X1, X2, . . . , XN}, where Xi = {xi,t1 , . . . , xi,tj , . . . , xi,tM } represents

Ai’s ordered set of message payloads, i.e. signals, transmitted during the horizon T , tj < T is

the message global timestamp with respect to T , and N is the total number of IDs.
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Figure 4.1: Overview of the AMICA model architecture. A sequence of ordered CAN messages
(signals) Mt are fed to their corresponding temporal ID encoder. In each sequence, a pre-defined
ratio of the input messages is masked (colored in red). After being processed by their corresponding
temporal ID encoder, the Delta encoder receives them and outputs the encodings of the previously
masked messages in a fixed time window.

4.3.2 Temporal Module

4.3.2.1 Temporal Embedding

Message xi,t ∈ Rdi transmitted at time t and carried by ID Ai is fed into its corresponding

Temporal-based module TMi. Each module TMi has a different set of weights that will be

optimized separately. Since different IDs can transmit various amounts of signals, all messages

will be projected into a d−dimensional space via a single linear layer where xi,t =Wixi,t + bi.

xi,t represents the projected signal, Wi ∈ Rd×di are the weights, and bi ∈ Rd represents the bias.

Transformer models have no notion of time when computing attention for each of the input’s

elements. Usually, Transformer embedding layers are coupled with a positional encoding layer

that will inject the timestamp of each input message xi,t when fed to its associated module TMi.

However, since messages are sent through asynchronous transmission, the input X composed

of ordered Xi sets is an unordered set of xi,t signals. Thus, we employ a global positioning

encoding layer that will encode the relative position of a message xi,t with respect to the input

set X. The global positional encoding will follow the same sinusoidal formulation as in [? ] and

will be a function of the global timestamp t, τ(t). As opposed to the local positional encoding,
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a global positional encoding layer can be helpful to make the model learn the relative temporal

dependencies between signals transmitted by different CAN IDs. The temporal embedding xi,t

will be aggregated by τ(t), xi,t = xi,t + τ(t).

4.3.2.2 Temporal Encoder

The Temporal encoder is a bidirectional model that uses the scaled dot-product self-attention

layer proposed by [1]. Unlike, LSTM-based solutions [59] that leverage left-to-right temporal

conditioning, bidirectional models are strictly more powerful [43]. The self-attention layer is an

operation over the queries (Q), keys (K), and values (V) vectors:

Attention(Q,K,V) = softmax( QKT /
√
D +M)V = AV

Q, K, and V are the parametric linear projections of the input embedding vector Xi. In

the Temporal Encoder case, the attention weights A denote the relative score given to each

time step compared to the other time steps for each ID Ai. Since the number of transmitted

messages carried by each ID is dynamic over time, we padded the input sequence to a fixed

number of messages and then applied a corresponding padding mask M to the Softmax function

presented in (4.3.2.2). In addition to the attention layer, the temporal encoder is also composed

of a point-wise feed-forward (Pff) and normalization layers (LN) presented by the following

equations:

Xi = LN(Xi +Attention(Xi, Xi, Xi)) (4.1)

Xi = LN(Pff(Xi) +Xi) (4.2)

4.3.3 Interaction Module

The interaction module is responsible for encoding the inter-dependencies of signals carried by

different IDs. In contrast to the spatio-temporal and multi-agent systems [25, 28], the signals

are transmitted asynchronously in the CAN bus, i.e., it is not possible to catch the correlations

between signals with different IDs at the same time. Thus, we build an encoder that takes

as input an ordered set of signals, denoted as X∆, and which correspond to a set of encoded

signals with different IDs in a range of horizon ∆T , where ∆T is a hyperparameter ∈ [1, T ].

The ratio R∆ = T/∆T represents a trade-off between the model interaction capabilities and

the model complexity. For instance, R∆ = 1 means that the model can calculate a correlation

between all signals transmitted during T timestamps. However, since the complexity of attention-

based modules is quadratic in terms of sequence length, increasing R∆ can decrease the model
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complexity from c = O(T 2) in the ultimate case to c = O(R∆ ·∆T 2) = O(T ·∆T ) ≤ O(T 2) in

general cases.

4.3.3.1 Delta Embedding

Similar to the temporal embedding in Section (4.3.2.1), we have applied temporal encoding

with the purpose of injecting a notion of time to the later attention modules. However, the

temporal encoding in this module is a local temporal encoding τ(p) representing the relative

position p of a signal w.r.t the local X∆ input. Additionally, a second encoding that reflects

the ID encoding is implemented in this module. It injects an encoding τ(i) based on the

message carried by the Ai for each message in X∆. The output embedding will be formulated

as x∆i,p
=Wx∆i,p

+ τ(i) + τ(p), where W are the weights of the linear projection layer.

4.3.3.2 Delta Encoder

The delta encoder has the same architecture and associated equations of the temporal encoder

presented in section (4.3.2.2) following equations (4.1), (4.2). Contrary to the Temporal Module

that has N separate Temporal Encoders, the Delta encoders will all share the same trainable

weights independently of the temporal window to which X∆ belongs.

4.4 Training Procedure

4.4.1 Forward Pass

The detection of stealthy attacks against CAN necessitates monitoring large window sizes of

CAN messages (signals). However, large input sequences have always been a major problem

for various deep learning models resulting in vanishing gradient for LSTMs and quadratic time

increase for Transformers. To mitigate this issue, for each time window w, we first feed the

signals that are handled by their respective ID to their corresponding temporal encoder, i.e.,

although if a huge time lapse occurs between same-ID signals, the generated temporal encodings

contain the signals’ contextual representations. Once all encodings are obtained, they are fed to

the delta encoder which iteratively processes and outputs the masked inputs for each interval

∆T << w.
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4.4.2 Backward Pass

Although the iterative process handled by the delta encoder is time-consuming when training, it

is advantageous for model optimization during backpropagation. In fact, after each ∆T , the

model’s loss is backpropagated and the model’s learnable parameters are updated. For instance,

if ∆T = 250 and w = 5000, we will perform 20 backpropagations per batch.

To train the AMICA model using self-supervised learning techniques, we leverage the masked

language modeling (MLM) objective function, proposed originally for training BERT [43]. The

MLM objective consists in masking a percentage of the input sequence at random, and then

predicting the masked signals using the output representations. The masked signals will be

forecasted by leveraging contextual representation from non-masked input signals, thus the

bi-directional capabilities of the model. For the AMICA model, we did not embed the input

payload values into a discrete vocabulary. Therefore, the masked signals are replaced by a

predefined mask-value that is chosen empirically. In addition, we consider the mean squared

error loss function (depicted in Equation 4.3) as the regression-based function for training:

L =

M∑
i

MSE(ŷ[Maski], x[Maski]) (4.3)

where M is total number of masked signals, ŷ is the prediction of the i− th masked signal, and

x is the original value of the i− th masked signal.

4.5 Anomaly Score

The quadratic error between the overall masked inputs and their reconstruction are used to

predict whether or not the sequence of CAN IDs with their respective signals is anomalous. The

sequence is considered anomalous if the total sum of the masked signals’ reconstruction error

is above a fixed threshold. It’s noteworthy to mention that the threshold is determined based

on normal data as we are considering a self-supervised learning problem. We thus consider the

following formulated labeling criteria:

Y =

{
1 (abnormal) if

∑w
t=1 E(st) ≥ ϕ

0 (normal) otherwise

where Y is the CAN sequence’s label, E is the reconstruction error function, st is a corresponding

masked signal, w is the considered sequence length, and ϕ is the determined threshold.
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4.6 Experiment & Results

To evaluate our proposed method, we used the benchmark synthetic CAN dataset SynCAN

[18]. The dataset is composed of 10 different message IDs, each with different amounts of signals

per ID and different noisy time frequencies. The data contains signals that are dependent on one

or multiple other signals. The test data is composed of 6 subsets of equal time length: plateau,

continuous change, playback, flooding, suppress and normal. We refer readers to [18] for further

information.

Parameter Value
N 1
dmodel 256
dff 512
h 8
Pdrop 0.1
m 0.15
Optimizer Adam
Adam β1 0.9
Adam β2 0.999
Learning rate 0.0001
Batch size 16
Sequence window 5000
∆T 250
# Epochs 100
# Workers 32

Table 4.1: AMICA model hyperparameters

For training and evaluation, we use the pyTorch framework [13]. All computations are

performed on a Tesla V100 with 32 GB of installed physical memory (RAM). We train the

network for 80 iterations with batch size 16. Every element in a batch is a series of 5000

consecutive messages. During a single iteration, a back-propagation is performed every 250 time

steps (∆T = 250) in order to update the network weights. The model’s hyperparameters are

depicted in Table 4.1.

Figure 4.2: Histogram of reconstruction losses for normal CAN data.

Since our approach is self-supervised, we use the normal validation set to compute the
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anomaly detection threshold ϕ. As previously discussed, we first calculate the histogram of

reconstruction errors for the normal CAN data sequences (seen in Fig. 4.2) and choose empirically

ϕ. We thus set ϕ to µ+ 1.5σ = 0.001 where µ is the mean reconstruction loss on normal data

and σ is the standard deviation.

Table 4.2: Performance of AMICA for different attack types

Attack Recall Precision F1-score AUC

Plateau 0.97 0.81 0.88 0.89
Continuous 0.74 0.85 0.79 0.85
Playback 0.96 0.78 0.86 0.91
Suppress 0.98 0.82 0.89 0.90
Flooding 0.99 0.87 0.93 0.92

We present our results in Table 4.2, Fig. 4.3, and Fig. 4.4. We conclude several performance

metrics from the visualized confusion matrices (seen in Fig. 4.3) to assess the performance of

AMICA given the threshold ϕ including precision, recall, F1-score (depicted in Table 4.2), in

addition to the ROC curve along with AUC value (shown in Fig. 4.4).

Figure 4.3: Normalized confusion matrices representing the performance of AMICA when
detecting diverse attacks on CAN bus for a given threshold ϕ.

Our proposed approach is most prominent when detecting Timing Transparent (T.T.) [128]

attacks such as suppress (F1-score ≈ 0.9, AUC ≈ 0.9) and flooding (F1-score ≈ 0.93, AUC ≈

0.92), as these attacks can hypothetically be identified by monitoring the frequency of the CAN

IDs, i.e., the appearance of new IDs or disappearance of usually present IDs, irrespective of

the values of their carried signals. The Timing Opaque (T.O.) [128] attacks including plateau

(F1-score ≈ 0.88, AUC ≈ 0.89), continous (F1-score ≈ 0.79, AUC ≈ 0.85), and playback (F1-score

≈ 0.86, AUC ≈ 0.91) attacks are slightly less detectable as they are considered to be stealthier,

i.e., they do not disrupt normal timing or ID distributions, and thus would not be detected by

simply monitoring the frequency of the CAN IDs. In fact, these attacks solely manipulate the

signal values and affect their correlations by overwriting the transmitted signals with constant

values (plateau), slowly drifted values from their true value (continuous), or by playback of
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recorded time series of values of that same signal over a period of time (playback). Interestingly,

our proposed model AMICA excelled in detecting both T.T. and T.O. attacks, whereas the

other methods in the literature only fit in frequency-based IDSs or payload-based IDSs.

Figure 4.4: ROC curves for diverse types of attack on CAN bus. As the corresponding AUC
values approach 1, the AMICA model is thus assumed have a good measure of separability between
the normal class and the different attack types.

4.7 Conclusion

We presented a novel deep learning-based multi-agent system, AMICA, for detecting intrusions

on the widely deployed in-vehicle communication network CAN bus. As most of the intrusions

can only be detected by monitoring long sequences of ordered CAN messages, we develop

a model that overcomes this challenge by incorporating information from different relation

types between asynchronous signals and IDs, respectively in each stage of the model due to

the attention mechanism, and by devising a suitable training process. Additionally, unlike the

best-known methods so far, our approach is designed to detect all types of attacks on the CAN

bus, particularly those that affect the interrelations between asynchronous signals of distinct

CAN IDs. To evaluate our method, we leverage the SynCAN dataset and obtain promising

results. Our model excels in detecting T.T. attacks, but it is also able to detect stealthier

attacks with slightly less performance. The obtained results open many avenues for future

research. It would be interesting to compute an anomaly threshold for each signal separately

and to study whether this can lead to better model performance, particularly when detecting

T.T. attacks. Moreover, it is important to explicitly perform an ablation study on the model

architecture along with an exhaustive hyperparameter tuning to enhance its effectiveness and
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complexity. Additionally, in both Chapters 3 and 4, we leverage the BERT’s model for the

detection of attacks on the CAN bus. The devised models have shown remarkable ability in

detecting timing opaque and timing transparent attacks. However, the anomaly score for the

transmitted network packets offers no information about the cause of the attack. Recently, Li et

al. [91] investigated whether language models employ separate mechanisms for different types of

linguistic anomalies including morphosyntactic, semantic, and commonsense. They have thus

used Gaussian models for density estimation at intermediate layers of three language models

(BERT, RoBERTa, and XLNet) and evaluated their method on gathered datasets for anomalies

from psycholinguistic studies. They find out that RoBERTa model exhibits surprisal in earlier

layers when the anomaly is morphosyntactic than when it is semantic, while commonsense

anomalies do not exhibit surprisal at any intermediate layer. Inspired by their work, a current

straightforward work objective is to study how our proposed BERT-based models are able to

discriminate between attacks that affect the frequency of transmitted IDs and those which affect

the value of transmitted signals solely.

Despite CAN’s efficiency, it is regarded as a limiting factor for innovative automotive functions

in terms of bandwidth, packet size, costs, weight, and higher layer protocols. As the bandwidth

requirements in automotive keep increasing, a migration to a cost-efficient high-speed switched

network in automotive that lifts these restrictions is necessary. In the next part of this thesis, we

study the security of the Automotive Ethernet protocol which is currently adopted by different

car manufacturers. to enable the exchange of different kinds of data,i.e., videos, images, graphic

data, at a high data rate (up to 1 Gbps) between interrelated electronic control units (ECU).

We investigate the vulnerabilities of its application layer protocols SOME/IP and AVTP and

propose suitable deep learning-based techniques for intrusion detection and classification.
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Automotive Ethernet
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CHAPTER 5

Supervised IDS for the classification of SOME/IP sessions

In this chapter, we present a deep learning-based sequential model for offline intrusion detection

on SOME/IP application layer protocol. To assess our intrusion detection system, we have

generated and labeled a dataset with several classes representing realistic intrusions, and a

normal class - a significant contribution due to the absence of such publicly available datasets.

Furthermore, we also propose a recurrent neural network (RNN), as an instance of the deep

learning-based sequential model, that we apply to our generated dataset. The numerical results

show that RNN excels at predicting in-vehicle intrusions, with F1 Scores and AUC values greater

than 0.8 depending on each intrusion type.
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5. SUPERVISED APPROACH FOR THE CLASSIFICATION OF SOME/IP
SESSIONS

5.1 Introduction

Automobiles are no longer solely made up of mechanical systems. In fact, mechanical components

have been taken over by electronics called “Electronic Control Units" ECUs. These connected

ECUs through various in-vehicle network infrastructures (CAN, FlexRay, MOST, and LIN) are

in charge of making various car functions possible. However, these traditional in-vehicle networks

have many limitations in terms of bandwidth and higher-layer protocols. An adaptable and

scalable in-vehicle network technology is thus required to realize sophisticated and innovative

customer functions such as Adaptive cruise control, Collision avoidance, Driver drowsiness

detection, Lane departure warning, and others. To fulfill these automotive requirements,

Automotive Ethernet technologies have been developed and standardized.

The deployment of Ethernet-based communication in in-vehicle network systems has several

other benefits, such as the ability to reuse the associated OSI layers’ protocols built and tested

in other industries [100]. Furthermore, this cutting-edge technology enables the invention of

new protocols for individual layers while reusing protocols for the rest such as the development

of the automotive application layer protocol Scalable service-Oriented Middle-warE over

IP (SOME/IP) [17].

Figure 5.1: Configured Network - Different SOME/IP clients and servers exchanging SOME/IP
services over Automotive Ethernet Bus. Besides, a Client ECU is being compromised by a MITM
Attacker.

SOME/IP is commonly used for relevant automotive applications due to its service-based

communication approach and its adaptability to different automotive operating systems (e.g.,

QNX, OSEK and Linux) [100]. In other words, SOME/IP is increasingly adopted to coordinate
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the exchange of various services between disjoint applications on distinct ECUs. These services

cover notifications about in-vehicle events, as well as Remote Procedure Call (RPC) functions that

enable an ECU client to request information from an ECU server. However, no security measures,

such as authentication or encryption, are defined in the SOME/IP protocol specification [62]. In

fact, the absence of SOME/IP security protocols may set the ground for an attacker to exploit a

legitimate automotive system and initiate attacks from inside the network, such as intercepting

and manipulating messages between two ECUs and other significant threats. To reduce the risk

of the various inherent security threats, a robust defense plan is needed, which first requires

detecting and analyzing these vulnerabilities.

Due to their large approximation capacity, deep learning-based approaches are well-suited to

detect network intrusions in various network types [122] [78]. In this work, we have developed a

deep learning-based sequential model to detect network intrusions on the SOME/IP protocol.

Sequential models are a category of deep learning model, where the training set is known

(a-priori) to have a dominant temporal or causal component: indeed, packets in a session of the

SOME/IP protocol exhibit a strong temporal correlation, as each packet depends on previous

ones. In the current work, we will contribute to the development of a sequence-based SOME/IP

dataset, as no public SOME/IP dataset exists. Specifically, we generate and label a SOME/IP

dataset, with four classes of general intrusion packets, as well as a class of normal packets.

Moreover, our proposed deep learning-based model, a recurrent neural network (RNN) is able

to classify these four intrusions on packets’ sequences and the normal ones, with very large

accuracy and F1 score. Furthermore, we will evaluate our deep learning-based sequential model

using the generated dataset.

Towards this end, this chapter is organized into six sections. Section 5.2 discusses the main

publications that are related to SOME/IP intrusion detection. In section 5.3, we present an

overview of the SOME/IP protocol. In section 5.4, we present our dataset and the different

considered attacks. The suggested sequential model is presented in 5.5. In section 5.6, we

present the different evaluation metrics used for performance evaluation. The experimental

results discussion is provided in section 5.7.

5.2 Related Work

Deep Learning approaches were highly used in previous works to detect network intrusions on

the traditional in-vehicle network protocol CAN [49] [71] [120] [78]. However, no previous work
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has been addressed to detect intrusions on Automotive Ethernet especially SOME/IP protocol

using Deep Learning due to the following reasons.

• Lack of Automotive Ethernet dataset: The existence of large CAN databases

[54] containing both normal and abnormal network traffic behaviour has resulted in

extensive research into deep learning applications on CAN. However, SOME/IP application

layer protocol does not have well-known dataset available. Despite the fact that a new

Automotive Ethernet dataset is recently published [73], it is not helpful for our current

work since it covers normal and abnormal streams of audio-video transport protocol

(AVTP) which is different than SOME/IP protocol. Thus, the generation of the labeled

dataset (and its publication) is one (but not the only) contribution of the current paper.

• Automotive Ethernet Standard gaining momentum: Automotive Ethernet, a

recent network protocol for vehicles, is gaining increasing momentum in standards for

connected vehicles.

In terms of SOME/IP’s latest security vulnerability investigations, researchers have begun to

investigate its key vulnerabilities that could lead to cyberattacks on the in-vehicle network, as well

as to develop IDS using different approaches. Gehrmann et al. [48] addressed specific problems

and opportunities for intrusion detection in SOME/IP, as well as suggested an architecture for a

SOME/IP intrusion detection scheme and discussed its security features. Iorio et al. [69] [68]

proposed a novel architecture to enhance the security of evolving SOME/IP middleware. Li

at al. [93] developed Ori, a Greybox Fuzzer that can efficiently detect breaches in SOME/IP

applications. Lauser et al. [84] have discussed how formal models can be used to verify the

security of protocols used in modern vehicles. Rumez et al. [116] explained various security

countermeasures in the fields of firewalls, intrusion detection systems (IDSs), and identity and

access management. Herold et al. [62] proposed a rule-based IDS for SOME/IP protocol.

To the best of our knowledge, none of the previous works have applied deep learning-based

sequential models for intrusion detection on SOME/IP protocol. That is a main contribution of

this work, in addition to the generation of the labeled dataset (with multiple classes of intrusions

and a normal class).

5.3 Overview of SOME/IP

A “Middleware" refers to a connective tissue between different software applications. In other

words, it handles all functions that are needed for a “service" to allow data exchange between
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several ECUs[100]. Due to the growing amount of software [34] in automobiles, as well as the

spread of functions within their in-vehicle network and the deployment of a variety of software

architectures and operating systems inside vehicles, the implementation of a middleware software

within in-vehicle networks is essential in bridging the gap between them. Hence, after being

proposed by the BMW Group in 2011 and standardized by AUTOSAR, SOME/IP was chosen as

the standard middleware for IP-based service-oriented communication in cars. The middleware

SOME/IP runs at top levels of the OSI model [48].

Figure 5.2: SOME/IP packet

The structure of its header layout is as shown in Figure 5.2. Some of the fields presented in

the header of the SOME/IP packet will be considered in our work as the input features for the

deep learning based IDS (Table 5.4).

5.3.1 SOME/IP Remote Procedure Calls

Since SOME/IP is a service-based communication approach, it allows the exchange of different

types of remote procedure calls. In general, a remote procedure call RPC is an inter-process

communication technique that is used for client-server based applications [17]. In this current

work, we have considered three main types of SOME/IP RPC :

• Request/Response: a method with Request and Response messages. The Request is

a message sent by the client when it invokes a method. The Response is a message sent

from the server to the client that contains the method invocation’s outcome.

• Fire and Forget: a procedure that only uses Request messages. As in the Request/Re-

sponse scenario, the client calls a server method. However, unlike in the Request/Response

instance, the client does not anticipate a response.
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• Events: In this method, the server sends messages to the client with particular information

either periodically or whenever there is a change (event). The server expects no response

from the client.

.

5.4 Generating Labeled Dataset

5.4.1 Dataset Generation

5.4.1.1 SOME/IP packet generator

Class Training Dataset Testing Dataset
Normal 2533 2471
Error on Error 39 54
Error on Event 60 54
Missing Response 92 81
Missing Request 83 111

Total 2807 2771

Table 5.1: Training and Testing Dataset classes

In order to generate SOME/IP libpcap dump files, we have used the SOME/IP Generator

developed by [62], implemented in Python 3 and available in Github [16]. The generator models

the behavior of different clients and servers assumed to behave according to the AUTOSAR

standard specification, as well as an attacker carrying out a variety of attacks depicted in Figure

5.3 and described in section 5.4.1.3. As seen in Figure 5.4 and Table 6.1, we have tuned the

different parameters for generating different attack scenarios such as the network architecture

configuration depicted in Figure 5.1, the SOME/IP services to be exchanged, and the attack

to be implemented along with its frequency of execution. For training and testing our deep

learning based IDS, we have generated several pcap files corresponding to different attack types,

concatenated them and processed them as described in section 5.4.1.4. The distributions of

both datasets are shown in Table 5.1, and their corresponding features are described in Table

5.4. The training dataset comprises about 274 attacks, is 132 MB in size, and contains 2807

packets. Regarding the testing dataset, it contains around 300 attacks, has a size of 130 MB and

composed of 2771 packets. Readers can get our SOME/IP intrusion dataset by referring to [14].
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Parameters to configure Description Chosen Value

Devices
Contains information like name, type, mac, ip 8 Servers, 8 Clients and
sender port and receiving port of each Client, Server and Attacker 1 Attacker

Services Contains information about offered and requested services 3 Services
Number of packets to generate per Client, Method and Service Defines the number of packets generated per client 50
Number of attacks to execute Defines the rate an attack will be performed 10
Minimum Response Time of Attacker Defines the minimum response time of the attacker in ms 1
Maximum Response Time of Attacker Defines the maximum response time of the attacker in ms 3

Implemented Attack

Error On Error
Defines which attacks can be used Error On Event

Missing Request
Missing Response

Output File Location Describes the location where to store the resulting pcap output.pcap

Table 5.2: Tuned Parameters for Dataset Generation (represents first step in Figure 5.4)

5.4.1.2 Dataset Imbalance

As seen in table 5.1, the distribution of samples across the different classes is biased. In fact,

the attack classes frequency is highly imbalanced, i.e., there is a bias or skewness towards the

majority class (Normal class) present in the target. It is reasonable to have such a skewed dataset

since it represents an anomaly problem. However, we do not aim changing the nature of the

data and make it balanced even though this problem poses a challenge for predictive modeling

as most of the supervised deep learning algorithms used for classification were designed around

the assumption of an equal number of examples for each class. An alternative solution would

be the adoption of specialized techniques such as Adaptive Weighting [67]. This technique,

implemented in our work, is considered as a popular approach for imbalance learning since it

weighs samples in rare classes with high cost and then applies cost-sensitive learning methods to

deal with imbalance in classes. Table 5.3 presents the weights assigned for each class, for the

dataset considered in this work.

Class Class Weight
Normal 0.16
Error on Event 6.68
Error on Error 10.35
Missing Response 4.33
Missing Request 4.86

Table 5.3: Class Weight

5.4.1.3 SOME/IP intrusions

The SOME/IP attacker is able to compromise a known device within the system. Thus, it has a

valid MAC address, IP address, and service ID. It eavesdrops on all traffic within the network
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and send packets to all clients and all servers, and thus impersonates other SOME/IP devices

and services [62]. Through our work, we are interested in cyberattacks which lead to deviations

from the protocol specifications in a communication session between two devices (as seen in

Figure 5.3) and which can be detected using deep learning based sequential Models. These four

intrusion types considered in this work are detailed below (illustrated also in Figure 5.3):

• Requests without Response: Requests have to be answered with either a response or

an error message. If a request was never answered, it means that an attacker has relayed

the communication between the client and the server who believe that they are directly

communicating with each other.

• Response without Request: A response should only be delivered in response to an

open, previous request. As a result, a normal request with message type 0x00 should be

answered by a single response with message type 0x80. Two replies to a single request

break the protocol and may indicate the existence of an attacker attempting to impersonate

the server and injecting extra packets.

• Error on Error: Based on AUTOSAR standard specification, an error message should

not be answered with another error message. Hence an incoming error which doesn’t have

a corresponding request (or other packet) with the same settings indicates the presence of

a network intrusion.

• Error on Event: Notifications should not be answered with an error message. Thus, a

notification replied to with an error depicts a network intrusion between the client and

the server.

Figure 5.3: Attacks on SOME/IP protocol
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Figure 5.4: Dataset Generation

5.4.1.4 Data Preparation

This section describes the different steps (seen in Figure 5.4) achieved for our dataset to be fed

to our deep learning based IDS for training and testing.

1. Packets generation and labeling: The SOME/IP packet generator is able to generate

pcap files composed of unlabeled packets gathered from the whole network. Since we are

using a supervised learning approach, we had to label each packet. Hence, a packet is

labeled by 0 if it behaves according to the AUTOSAR standard specification. Otherwise,

it is labeled by 1,2,3 or 4 if it represents error on event, error on error, request without

response or response without request attacks respectively.

2. Packets Feature Extraction and One-Hot Encoding: Each packet is represented

by 16 categorical features, described in Table 5.4. However, these features had to be

converted to binary vectors using one-hot encoding technique. In fact, many deep learning

algorithms cannot work with categorical data directly. Hence, the categories must be

converted into numbers. This is required for both input and output variables that are

categorical. After encoding, the 15 features that represented input variables were extended

to 195 features and the output variable (Label) was extended to 5 classes.
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Feature Description
Service ID A unique identifier for a service

Method ID
A unique identifier of a method,
an event or a field that belong to the service

Client ID
Allows a server to differentiate
calls from multiple clients to the same method

Message Type
Used to differentiate different types of messages
such as : request,request no return,
notification, response and error

Session Id
Allows a subscriber to differentiate multiple
calls to the same method

Interface Version Contains the Major Version of the Service Interface
Protocol Version Contains the SOME/IP protocol version

Return Code
Used to signal whether a request
was successfully processed

IP source IP of the sending device
IP destination IP of the receiving device
Protocol Application layer protocol
Source Port Port number of the sending device
Destination Port Port number of the receiving device
Mac source MAC Address of the sending device
Mac destination MAC Address of the receiving device

Label
Specifies the class of each packet such as normal,
error on error, error on event, request without
response, response without request

Table 5.4: Dataset Features

3. Grouping Packets into Sequences: In order to detect intrusions affecting the

communication behavior between two devices, we had to group packets that belong to

each communication in their appropriate sequence. Hence, each sequence represents a

series of ordered packets exchanged between a client and a server with the same session

identifier. As seen in Figure 5.4, we have grouped packets in their corresponding sequences.

Thus, our IDS will detect the presence of an intrusion in a communication between a client

and a server by inspecting each sequence of packets. However, since we are dealing with

variable length sequence prediction problems, our data had be transformed such that each

sequence has the same length. Hence, after transformation, each sequence contains 60

packets which is the maximum number of packets per sequence, i.e, a sequence is padded

by zeros if it contains less than 60 packets per session. Our dataset was generated with

the constraint that only one type of attack can occur between two devices. Therefore,
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sequences are either labeled as normal or by a number corresponding to only one of the

(four) possible intrusions. Furthermore, an attack begins and ends in the same session

between a client and a server. Hence, an attack cannot be executed in different sessions at

the same time.

4. Sequences Concatenation: Finally, after labeling the different sequences that represent

diverse attacks, we have concatenated them into a single dataset that will be used for

training and testing the deep learning-based IDS.

5.5 Proposed Sequential Model

Figure 5.5: RNN-based IDS architecture

Deep Learning based sequential models have been widely adopted to detect intrusions and

anomalies in various type of computer networks [139] [113] [66]. Our proposal in this section

is to employ Recurrent Neural Networks (RNNs) as a sequential model to the labeled dataset

generated in the previous section. The proposed RNN is presented in Figure 5.5. Furthermore,

its resulting hyperparameters are shown in Table 5.5. The input to the RNN consists of 60

ordered packets with 195 features each. It passes to two stacked RNN layers which have recurrent

connections between hidden units. The two RNN layers read the entire input sequence of 60

packets and feed their output to a dense layer which produces 5 outputs (corresponding to
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Hyperparameters Values

Number of layers 3
Number of Neurons per layer (50,10,5)
Activation Function per layer (tanh,tanh,softmax)

Optimizer Adam
Loss Categorical Cross Entropy

Learning Rate 0.001
Batch size 100
Epoch size 50

Table 5.5: Hyperparameters

each the 5 classes) using softmax function. We denote the training set, {(xt, yt)}Tt=1, where

xt is the feature vector (a vector of dimension 195) for sample t ∈ {1, ..., T}, yt represents the

corresponding label for sample t ∈ {1, ..., T}, and T the number of samples in the training set.

Moreover, each label in the training set is such that, yt is a binary vector of dimension 5, i.e.,

yt ∈ B5, where element i ∈ {1, ..., 5} of the vector yt is a binary variable representing whether

the corresponding feature vector, xt, belongs, i.e., corresp entry = 1 (or does not belong, i.e.,

corres entry = 0 ) to class i ∈ {1, ..., 5}. Furthermore, yt may only have one non-zero entry,

which follows from our previous assumption that only one intrusion is possible in each sample.

The equations describing the operation for the RNN are the following :

at =Wht−1 + Uxt + b , ∀t ∈ {1, ..., T}. (5.1)

ht = ψ(at) (5.2)

ot = V ht + c (5.3)

ŷt = ϕ(ot) (5.4)

where the vector at is a linear combination between xt, the feature vector for sample t, and

the hidden layer output of the RNN for sample t− 1, ht−1. ht is a vector modeling the hidden

layer output of the RNN for a sample t. ot (a vector of dimension 5) is a linear combination

of the output hidden layer ht. ŷt is the prediction that RNN outputs for sample xt , and has

the same properties as yt. W , U , V , are the shared weights matrices that will be optimized

in training. ψ and ϕ are non-linear activation functions, applied element-by-element on their

respective inputs.
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5.6 Evaluation Metrics

We use the Area Under The Curve (AUC) values, Receiver Operating Characteristics (ROC)

curves and F1 scores and calculate them for each class to assess our IDS performance.

We also present the multi-class confusion matrices, which contains information about the

actual and prediction classifications done by the classifier, to describe the performance of the

multi-classifier models. The training samples corresponding to the label (ground truth) yt, are

represented by each row of the matrix, whereas the occurrences in a predicted label ŷt (RNN

output), are represented by each column. Specifically, for the task at hand, the confusion matrix

will be a 5× 5, where element (i, j) ∈ {1, ..., 5} × {1, ..., 5} denotes the normalized number of

occurrences , where the true label is from class i ∈ {1, ..., 5}, and the predicted label is from

class j ∈ {1, ..., 5}. Thus, for an ideal multi-class classifier all the diagonal entries should be 1,

while the off-diagonal entries should be 0.

In addition to the confusion matrix, we use the F1-score metric explained in Chapter 2.

In the experiments, we use the Python library Keras [12] to implement our RNN model. We

train and evaluate our model on an Intel(R) Core(TM) i5-6440HQ CPU @ 2.60GHz.

5.7 Results

Using the generated dataset, we ran a three-fold cross-validation with early stopping to ensure

large statistical confidence for our model’s prediction performance. In each cross-validation,

67% and 33% of the data are chosen at random as the training and validation sets, respectively.

The training set is used for model fitting and the validation set is used for model evaluation

for each of the hyperparameter sets. Furthermore, they have the same proportion of classes in

each validation fold. After cross-validation, we got three trained RNN models. To assess the

overall performance of our approach, we ran three experiments on the testing dataset, one for

each trained model.

The classification results for three-fold cross-validation are shown in Table 5.6. The ex-

perimental results demonstrated that the model performed well, with acceptable F1-score

values for each class of the validation folds. Thus, the models can classify almost all type of

attacks on sequences correctly. Moreover, no significant difference in performance metrics exists

across the three cross-validations. As a result, the training process is robust with the selected

hyperparameters.
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Figure 5.6: Confusion matrices for three different models on Validation dataset

Figure 5.7: Confusion matrices for three different models on Testing dataset

Figure 5.8: ROC Curves and AUC values of each class of the Validation datasets

Figure 5.9: ROC Curves and AUC values of each class of the Testing dataset
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Validation Testing
Fold Class Recall Precision F1-Score Recall Precision F1-Score

1

Normal 0.99 0.99 0.99 0.99 0.99 0.99
Error on Event 1 0.87 0.93 0.98 0.93 0.95
Error on Error 0.61 0.61 0.61 0.67 0.97 0.79
Missing Response 0.93 0.93 0.93 0.81 0.88 0.84
Missing Request 0.93 1 0.96 0.94 0.93 0.93

2

Normal 0.99 0.99 0.99 0.99 0.99 0.99
Error on Event 1 0.95 0.97 1 0.93 0.96
Error on Error 0.77 0.91 0.83 0.81 0.81 0.81
Missing Response 0.90 0.93 0.91 0.79 0.79 0.79
Missing Request 0.93 0.96 0.95 0.88 0.96 0.92

3

Normal 0.99 0.99 0.99 0.99 0.99 0.99
Error on Event 0.9 1 0.95 0.98 0.98 0.98
Error on Error 1 0.87 0.93 0.91 0.82 0.86
Missing Response 0.97 0.88 0.93 0.78 0.84 0.81
Missing Request 0.77 0.87 0.82 0.86 0.89 0.87

Table 5.6: Results on Validation and Testing Data

Figure 5.6 show a summary of prediction results on the 3 folds for the multi-classification

intrusion detection problem during cross-validation. The models have few prediction errors as

values outside the diagonal of the confusion matrices approach zero. Hence, the models have

well performed since most of the samples are located in the diagonal of the confusion matrices.

Figure 5.8 presents the ROC curves and AUC values for each attack type and for each model

(micro-ROC and macro-ROC curves) during the three-fold cross-validation. The displayed

figures has AUC values near 1 which means the 3 models have a good measure of separability

for the different attack types. Furthermore, the different roc curves have a point in the upper

left corner or coordinate (0,1) of the ROC space for each model, representing the ability of the

model to have a huge sensitivity (no false negatives) and an outstanding specificity (no false

positives). We then performed three tests using the three models that were trained during the

cross-validation on the testing dataset. Based on the results shown in Table 5.6, Figure 5.7 and

5.9, we found that the overall performance of the models is outstanding. In fact, the trained

models were able to generalize to data that they haven’t seen before and did not merely learn

to model the training data. On average, the model has well predicted the normal behavior

of packets in a sequence (F1-score =0.99). It is also able to predict several other types of

attack since the F1-score value varies between 0.8 and 0.96. Moreover, the models’ outstanding

performance is depicted in Figure 5.9 since the ROC curves of each class are closer to the top-left

corner and the AUC values for the different classes approach 1.
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5.8 Conclusion

In this chapter, we proposed a RNN-based IDS that detects SOME/IP protocol violations such

as communication patterns that are not SOME/IP-compliant by spanning an entire SOME/IP

session. It thus classifies the session based on the intrusion type. As our proposed IDS entails two

phases: a training phase to learn normal and attack patterns on SOME/IP and an observation

and classification phase, we thus generated and labeled a dataset that covers normal and

abnormal SOME/IP sessions. Our experiments have shown that the proposed model can be

successfully implemented to detect multiple types of intrusions, with very large F1-Scores

and AUC values for each class. We believe that the proposed solution for SOME/IP session

monitoring is advantageous particularly if the attack patterns include malicious packets that

are potentially difficult for a per-packet detection algorithm to distinguish from normal packets.

Compared to [81], our solution won’t be resource-intensive once deployed on an ECU as the

inspected features for each SOME/IP packet in its corresponding SOME/IP service session

are directly collected from the packets’ headers. However, despite being lightweight, this may

potentially lead to a decrease in its ability to detect sophisticated attacks that require monitoring

specific features that are in turn resource-intensive once stored for the whole SOME/IP session.

Thus, if the ECU that will be equipped with the proposed IDS doesn’t have sufficient storage

capacity, a trade-off between the selected features and the attack detection robustness will occur.

Additionally, our proposed solution was only tested for protocol violation attacks as no tools

were at the time of the experiments provided for launching stealthier attacks on SOME/IP. We

believe that the devised IDS would potentially be more robust and thus better at detecting

sophisticated attacks on SOME/IP sessions if the following features are recorded for each packet

[81]:

• The number of concurrent service sessions, that is, the number of concurrent service

subscription ECUs.

• The communication interval between packets: such as the communication interval between

present Response and previous Request, and present Response and previous Request.

• The difference in payloads between present Response and previous Response, and present

Request and previous Request.

In the next chapter, we eschew recurrence in favor of adapting Vaswani’s transformer model

[127], which permits significantly more parallelization and is, therefore, suitable for real-time
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intrusion detection. In contrast to our contributions in this chapter, rather than monitoring the

end-to-end session between the SOME/IP clients and the servers, we seek to detect if there is

any attacked message on the SOME/IP protocol for a period of time.

93



5. SUPERVISED APPROACH FOR THE CLASSIFICATION OF SOME/IP
SESSIONS

94



CHAPTER 6

SAID: A SOME/IP Attention-based mechanism for Intrusion Detection

In this chapter, we address the challenge of detecting attacks on SOME/IP protocol by
monitoring high dimensional in-vehicle network traffic. To overcome the limitations of
specification-based and conventional machine learning-based techniques, we present “SAID", a
novel attention-based technique for the detection of anomalies from a large sequence of
exchanged SOME/IP network packets. For this purpose, we generate two simulated and
manually annotated SOME/IP datasets, with different attack ratios, built from the SOME/IP
generator tool 1 and which are bigger than the dataset covered in Chapter 5. A comparative
study with various deep learning algorithms is performed to show the outstanding performance
of our proposed detector in quality while being more parallelizable and requiring significantly less
time to detect intrusions.
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6.1 Introduction

Despite their efficiencies, traditional in-vehicle networking technologies,i.e., CAN, FlexRay,

and MOST, are regarded as limiting factors for innovative automotive functions in terms of

bandwidth, packet size, costs, weight, and higher layer protocols. As the bandwidth requirements

in automotive keep increasing, a migration to a cost-efficient high-speed switched network

in automotive that lifts these restrictions is necessary. Established by the OPEN Alliance,

Automotive Ethernet - or more correctly "Ethernet-based communications" - was since then

adopted by different car manufacturers. It enables the exchange of different kinds of data,i.e.,

videos, images, graphic data, at a high data rate (up to 1 Gbps) between interrelated electronic

control units (ECU), thus allowing automated and autonomous driving functionalities (advanced

driving assistance system (ADAS), adaptive cruise control), infotainment services as well as

speedy diagnosis and flash updates. Additionally, another driving force behind the adoption

of this technology is that it allows the development of new automotive protocols for specific

layers within the ISO/OSI models while allowing the reuse of protocols for the remaining others.

However, the increasing automotive software complexity necessitates switching to service-based

in-vehicle communication. The Scalable service-Oriented MiddlewarE over IP (SOME/IP) is an

automotive middleware protocol that operates at the higher layers of the ISO/OSI layer model.

Its key advantages lie in the complexity reduction of the Ethernet-based in-vehicle network

by providing serialization, remote procedure call (RPC), and service discovery, among other

features. In fact, it organizes and controls data exchange over the in-vehicle network between

decoupled software components spread over various processes in different ECUs which support

different operating systems (POSIX, QNX), thereby enabling distributed functions development.

Unfortunately, as in-vehicle software becomes more sophisticated and vehicles get increasingly

connected, automobiles will inevitably encounter stealthy cyberattacks that can have severe

consequences on personal safety and privacy. More importantly, the attack can be spread to

all vehicles of the same type. Researchers [47] have recently found relevant vulnerabilities in

SOME/IP protocol which in turn can lead to exploitation and car hacking,i.e., man-in-the-

middle (MITM) attack [143] in which an attacker can intercept, manipulate, and interrupt the

communication between different ECUs. To mitigate these risks, the international regulation UN

R-155 mandates cybersecurity monitoring to assess vehicle data and records for vulnerabilities and

cyberattacks. Consequently, a wide array of security controls, (e.g. authentication, encryption,

firewalls, and secure updates) have been proposed to guarantee the security of SOME/IP protocol,
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and mitigate, and prohibit targeted attacks from growing substantially [69] [68][93] [84] [116]. In

this paper, we consider developing a SOME/IP-specific Intrusion Detection System (IDS) that

is able to monitor suspicious SOME/IP network traffic behavior and detect potential intrusions.

While the proposed state-of-the-art solutions leverage specification-based techniques [48][62]

[82] which in turn require substantial human effort for crafting suitable specification rules

or features, our research overcomes this key challenge by leveraging suitable deep learning

techniques that extract high-level, abstract features, from raw sequences of exchanged SOME/IP

packets and which in turn facilitate the real-time intrusion detection task. More importantly,

given the problems of the large volume of SOME/IP network traffic due to the emergent

dynamical structure of the in-vehicle network, the deep learning approaches are regarded as a

good candidate for intrusion detection owing to their ability to process high-dimensional data.

In contrast to our previous work [14], which employs a Recurrent Neural Network (RNN) for

offline classification attacks on SOME/IP protocol, we eschew recurrence in favor of adapting

Vaswani’s transformer model [127], which permits significantly more parallelization and is,

therefore, suitable for the real-time intrusion detection. Although we use the transformer’s

model “self-attention" mechanism to enable modeling of the interdependencies between different

elements of the input network sequence regardless of their distance, our proposed neural network

architecture is considerably simpler as it is not built on the typical Encoder-Decoder architecture

format for language translation.

Hence, the contribution of this work is three-fold. For one, we introduce “SAID", a neural

network-based approach that leverages attention-based mechanisms for identifying anomalies in

long sequences of exchanged network packets. Moreover, we simulate and manually annotate

two SOME/IP datasets, with different attack ratios, to evaluate our proposed detector. Finally,

we compare “SAID" with other deep learning algorithms to validate its outstanding performance,

particularly when the attack ratio increases.

This chapter is organized as follows. Section 6.2 discusses main publications that are related

to SOME/IP security countermeasures. In Section 6.3, we present the leveraged threat model

and the different considered attacks. The generated and labeled dataset is presented in Section

6.4. In Section 6.5, we present our proposed attention-based detector “SAID". We discuss our

experimental results in Section 6.6, followed by a conclusion that summarizes our study.
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6.2 Related Work

Recent studies have focused on the security investigation of the SOME/IP protocol and the

corresponding security countermeasures. Iorio et al. [68] [69] presented a novel mechanism to

provide improved security to the emerging SOME/IP middleware, without introducing at the

same time limitations in the communication patterns available. Zelle et al. [143] present a formal

and practical security analysis of SOME/IP, the identified Man-in-the-Middle (MITM) attacks,

and propose two security extensions for authentication and authorization of service provisioning

and usage protect against these attacks. Ma et al. [99] designed an efficient secure scheme,

including an authentication scheme using the SOME/IP protocol and a secure communication

scheme modifying the payload field of the original SOME/IP data frame. Du et al. [47] uses the

model building method based on the Colored Petri Net (CPN) theory to model the SOME/IP

protocol of the vehicle Ethernet. The security protocol is formally verified and analyzed by

combining it with the Dolev–Yao adversary model detection method. After verification, the

protocol is subject to three attack vulnerabilities: replay, tampering, and deception. They

introduced timestamps and random numbers to strengthen the protocol security. After the final

analysis and verification, their improved scheme can effectively improve the security performance

of the protocol. Li et al. [93] propose Ori — a greybox fuzzer for SOME/IP applications, which

features two key innovations: the attach fuzzing mode and structural mutation. Their evaluation

shows that Ori can detect vulnerabilities in SOME/IP applications effectively and efficiently.

Koyama et al. [82] proposed an IDS that achieves high accuracy by combining two whitelist-

based anomaly detection algorithms: a real-time algorithm that compares received SOME/IP

packets with a normal communication model to determine whether they are anomalies and a

retroactive algorithm which performs retroactive detection by determining whether packets are

anomalous from long-term time characteristics spanning an entire SOME/IP session. Alkhatib

et al. [14] presented a deep learning-based sequential model for offline intrusion detection on

SOME/IP application layer protocol. Tobias et al. [48] propose an architecture for a SOME/IP

intrusion detection system, discuss its security properties and report preliminary experimental

results. Heo et al. [61] introduced a new type of intrusion detection system (IDS) leveraging on

SOME/IP packet’s header information and packet reception time to deal with SOME/IP-related

network attacks. Casparsen et al. [36] proposed a host-based IDS for SOME/IP that detects

where the detection is based on arrival time, payload values, and packet contradictions. Herold
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et al. [62] presented an anomaly detection system using the Esper complex event processing

engine, thus applying a domain-specific rule set to a stream of SOME/IP packets.

Numerous researchers are leveraging attention-based models for intrusion detection. Wu et

al. [136] proposed RTIDS, a robust transformer-based approach for Intrusion Detection System,

which leverages self-attention mechanism to facilitate network traffic type classifications. Tan et

al. [123] present a new technique based on the neural attention mechanism for real-time attack

detection since it uses time slot-based features. Wang et al. [131] designed a hybrid neural

network DDosTC structure, combining efficient and scalable transformers and a convolutional

neural network (CNN) to detect distributed denial-of-service (DDoS) attacks on Software Defined

Networks (SDN). Yang et al. [138] proposed an intrusion detection model based on an improved

vision transformer (ViT) and evaluated using the NSL-KDD dataset to show its outstanding

performance over existing intrusion detection models. Ho et al. [63] have also proposed a new

intrusion detection method that uses image conversion from network data flow to produce an

RGB image that can be classified using the Vision Transfomer (ViT) model [46]. Nam et al.

[105] proposed an intrusion detection model that combines two GPT networks in a bi-directional

manner which is trained to minimize the negative log-likelihood (NLL) value for a normal

sequence. When the NLL value for a CAN ID sequence is larger than a prespecified threshold,

it is deemed an intrusion. Alkhatib et al. [27] proposed “CAN-BERT", a BERT-based network

intrusion detection system that can learn the sequence of arbitration identifiers (IDs) in the CAN

bus for anomaly detection using the “masked language model" unsupervised training objective.

6.3 Threat model

While SOME/IP has useful features, it is lacking essential security properties like authentication

and encryption. As a result, we’ve used a threat model previously implemented by [62] in which

an adversary behaves as a man-in-the-middle attacker and does not follow the SOME/IP protocol

definition. Consequently, we explored a SOME/IP-based network without service discovery

characteristics in our study. Clients are aware of all information about the servers, including

their MAC and IP addresses. Each client is only authorized to use a restricted number of

services and approaches. Some servers transmit notifications to certain clients on a regular basis.

The precise intervals utilized for these services, as well as the services and methods associated

with them, are known ahead of time. As [62] specified, an attacker can do the following:
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• Compromises a known device within the system. Thus, the attacker has a legitimate MAC

address, IP address, and service ID.

• Sniffs SOME/IP network traffic exchanged in the in-vehicle network

• Transmits packets to all network participants,i.e., clients and servers, and thereby imper-

sonates other SOME/IP devices and services.

6.3.1 Attacks

We have considered four intrusion types in this work, detailed below :

• Requests without Response: Requests have to be answered with either a response or

an error message. If a request was never answered, it means that an attacker has relayed

the communication between the client and the server who believe that they are directly

communicating with each other.

• Response without Request: A response should only be delivered in response to an

open, previous request. As a result, a normal request with message type 0x00 should be

answered by a single response with message type 0x80. Two replies to a single request

break the protocol and may indicate the existence of an attacker attempting to impersonate

the server and inject extra packets.

• Error on Error: Based on AUTOSAR standard specification, an error message should

not be answered with another error message. Hence an incoming error that doesn’t have a

corresponding request (or another packet) with the same settings indicates the presence of

a network intrusion.

• Error on Event: Notifications should not be answered with an error message. Thus, a

notification replied to with an error depicts a network intrusion between the client and

the server.

6.4 Dataset Generation

Given a sequence of SOME/IP packets, we aim to detect whether this sequence is normal or

anomalous, i.e., a SOME/IP sequence is anomalous if it contains at least one abnormal (i.e.,

injected/out of order/replayed) packet. Hence, we have generated and labeled a dataset that
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Table 6.1: Tuned Parameters for Datasets Generation

Parameters Network Network
Configuration 1 Configuration 2

Devices
8 Servers 8 Servers
8 Clients 8 Clients
1 Attacker 1 Attacker

Services 3 Services 3 Services
Number of packets to generate per Client and method/service 500 500
Minimum Response Time of Attacker 1 1
Maximum Response Time of Attacker 3 3

Implemented Attack (Attack Ratio)

Error On Error(4.63%) Error On Error (9.95%)
Error On Event (4.41%) Error On Event (9.39%)
Missing Request (8.12 %) Missing Request (24.8%)
Missing Response (6.60 %) Missing Response (18.28 %)

contains benign and malicious SOME/IP packets using the SOME/IP Generator developed

by [62], implemented in Python 3 and available in Github [16]. The generator models the

behavior of different clients and servers assumed to behave according to the AUTOSAR standard

specification, as well as an attacker carrying out a variety of protocol violation attacks described

in Section 6.3.

Figure 6.1: Low attack ratio dataset

The datasets are recorded in the PCAP file format and, therefore, are viewed using prevalent

programming libraries and packet analyzers (such as Wireshark). As seen in Table 6.1, we have

tuned the different parameters for generating different attack scenarios, the SOME/IP services

to be exchanged, and the attacks to be implemented along with their frequency of execution.

For training and testing our deep learning-based IDS, we have generated several PCAP files

corresponding to different attack types with the attack ratio depicted in Table 6.1. The ratio

represents the percentage of attacks for a single PCAP file. We have balanced the dataset for
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Figure 6.2: High attack ratio dataset

training to avoid any biased learning by the deep learning models. In fact, we considered the

same amount of normal and abnormal SOME/IP sequences for training the different approaches.

When training, the abnormal set contains different attack types. During testing, we evaluated

the performance of SAID for each attack separately. The dataset statistics are represented in

Figures 6.1 and 6.2.

Since the IDS will be monitoring the SOME/IP network traffic each 100ms, we collect

sequences composed of 128 SOME/IP packets using the Feature-based Sliding Window

(FSW), where T represents the window size or the total number of packets per window and

the slide size is 1. Hence, each sequence of ordered packets is defined as S = {p1, ...,pt, ...,pT },

where pt indicates a transmitted SOME/IP packet at time t and yt ∈ {0, 1} its corresponding

label, with 1 indicating a malicious packet and 0 otherwise. Each packet pt in the SOME/IP

network traffic is represented by 58 features, each of which has an integer value between 0 and

255. Moreover, we label each SOME/IP sequence using the following criteria:

y =

{
0 (normal) if yt = 0,∀t ∈ {1, .., w}
1 (abnormal) otherwise

y ∈ {0, 1} is the SOME/IP sequence’s label, which is labeled as anomalous if there is at least

one anomalous packet.

6.5 Proposed framework: SAID

We now thoroughly explain the architecture of the SOME/IP Attention-based IDS (SAID)

which is inspired by the transformer’s ability to handle ordered sequences of data [127]. For

an overview please refer to Figure 6.3. In contrast to Vaswani’s model [127] which leverages
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an encoder-decoder structure for machine translation, our proposed detector employs only the

encoder network followed by a sigmoid activation layer for binary classification of SOME/IP

packets’ sequences.

Figure 6.3: The overall structure of our proposed SOME/IP intrusion detector “SAID". We first
project every SOME/IP packet into an embedding space and then inject positional encodings and
apply dropout. Next, the embeddings are fed to L = 4 stacked attention layers. Finally, we detect
intrusions by feeding the resulting output into the sigmoid activation function.

The SOME/IP packets’ sequence X = {x1, · · · ,xT } ∈ RT×d, is fed firstly into the SAID’s

“Input Embedding” module. xt denotes a d-dimensional SOME/IP packet transmitted in

the Ethernet-based in-vehicle network at time t. The Input embedding projects X into a

h-dimensional space using a single linear linear XI = X ·W0 + b0. Note that, the weights are

represented as W0 ∈ Rd×h, b0 is the bias, h is the hidden size. W is randomly initialized and

updated with the other parameters of the model during the training phase.

We additionally inject a notion of ordering by adding sinusoidal positional encoding to the

SOME/IP packets’ embeddings following [127]. The tth SOME/IP packet’s position embedding

can be represented by the following equations:

PEt,2i = sin(t/100002i/d), (6.1)

PEt,2i+1 = cos(t/100002i/d), (6.2)

where i is in the range of [0, d/2], and d is in the input dimension.
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The resulting embedding XE = XI +XP is thus fed into the next module with XP ∈ RT×h

is the positional embeddings of the SOME/IP packets’ sequence.

The output XE ∈ RT×h obtained from the previous module is passed to a stack of L attention

blocks where we apply the “self-attention" attention to update the embeddings. Similarly to

[123, 127], we use the scaled dot-product attention, requiring a matrix of keys K ∈ RT×h, a

matrix of values Q ∈ RT×h, and a matrix of “queries" Q ∈ RT×h. The attention operation

yields a weighted sum of values V:

Attn(Q,K,V) = τ(
Q ·KT

√
h

) ·V = AV (6.3)

where τ is the softmax function. The resulting output context contains information about

the intrinsic dependencies between latent representations of a sequence of SOME/IP network

packets X within a data sample. It will subsequently be used to assist in the predictions of ŷ.

Additionally, a residual connection is applied around the attention mechanism, followed by a

layer normalization:

XA = Norm(Q+AV) (6.4)

After the layer normalization, we pass the output to a fully connected Feed Forward (FF)

network and a subsequent layer normalization with the residual connection. Following [123? ],

the feed-forward block consists of two linear projections separated by a ReLU activation:

FFN(XA) = ReLU(XA ·W1 + b1) ·W2 + b2 (6.5)

XFF = Norm(XA + FFN(XA)) (6.6)

The variables W1 ∈ Rh×p, W2 ∈ Rp×h, b1 ∈ Rp, and b2 ∈ Rh are shared parameters across

inputs from various sequential positions. The output of Equation 6.6 is finally transmitted to

the classification( output) layer.

The output XFF given by the Encoder module passes through a final fully connected layer

with the sigmoid activation function which outputs the binary class ŷ ∈ {0, 1} of the SOME/IP

sequence, with the value 1 representing the possibility of intrusion in a sequence of SOME/IP

packets and 0 otherwise.

6.6 Experimental Results

In this experiment, we evaluate the attack detection capabilities of SAID on the high attack

ratio and low attack ratio datasets and perform a comparative analysis with other deep learning
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techniques including convolutional neural network (CNN), recurrent neural network (RNN), long

short-term memory network (LSTM), and convolutional LSTM network (CNN-LSTM). The

models have been implemented using Python programming language and Pytorch framework

on the Tesla V100S-PCIE-32GB machine. For each dataset, we train the algorithms using the

balanced training data and the depicted parameters in Table 7.2. Additionally, we use early

stopping to avoid overfitting. We set the window size as 128 throughout our experiment, which

considers the temporal and contextual information between SOME/IP packets, memory, and

computation efficiency. The deep learning models will fail if the window size is smaller for

intrusion detection. Note that, although a larger window size makes the model learn complex

contextual interdependencies, it results in larger memory costs for the embedded systems.

Table 6.2: DL Models Parameters

Parameter Value
Learning Rate 0.0001
Optimizer Adam
Adam β1 0.9
Adam β2 0.999
Batch Size 32
Early stopping Yes
Loss Binary Cross Entropy

After hyperparameter tuning, we consider the depicted parameters in Table 6.3 for SAID.

We consider the following configurations for other deep learning models:

• The RNN (LSTM) model used here consists of 2 layers, with the first layer’s hidden size

set at 16 and the second layer’s hidden size set at 8. After each RNN (LSTM) layer, an

activation function based on the hyperbolic tangent is applied.

• For the CNN model, we convert each sequence into 128× 58 size of images. The input is

thereby fed to the CNN model composed of 2 convolutional layers, having each a number

of channels of 8 and 4 respectively. The kernel size is set to 3 and the stride size is set to

2. Additionally, we choose ReLU as an activation function for each convolutional layer.

• For the CNN-LSTM model, a sequence of packets converted to an image of size (128,58)

is fed to the CNN model composed of three convolutional layers with 3, 6, and 3 as their

number of channels. Their kernel size is set to 3 and their stride size is 1. After that, the
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output of the CNN is fed to an LSTM neural network composed of three layers with 16, 8,

and 4 as their number of features in the hidden states. We also use ReLU as an activation

function for each convolutional and LSTM layer. Finally, a "sigmoid" activation function

is used to classify network traffic based on the output of the last layer.

Table 6.3: SAID model configuration

Parameter Value
L 4
dmodel(h) 8
dff (p) 32
# heads 1
Pdrop 0.1
Optimizer Adam
Adam β1 0.9
Adam β2 0.999
Learning rate 0.001
Batch size 32
# Epochs 200
Patience 10
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Figure 6.4: Low attack ratio dataset

Figures 7.3 and 7.4 provide the TPR, FPR, and AUC scores for SAID and other deep learning

models for both low and high-attack ratio datasets. For the low-attack ratio dataset (seen in 7.3),

all models have comparable performance and perform relatively well on the “Missing Request"
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Figure 6.5: High attack ratio dataset

Table 6.4: Models Complexity

Model
Time (ms) Size (MB) # Parameters

SAID 0.30± 0.30 0.12 1,329
CNN 0.07± 0.05 0.16 1,985
LSTM 4.583± 0.60 0.08 11,401
RNN 4.786± 0.13 0.06 2,857

CNN-LSTM 0.37± 0.34 15.53 3,750,896

(AUC ≈ 0.80), “Missing Response" (AUC ≈ 0.83), and “Error on Error" (AUC ≈ 0.72) in

terms of average AUC score. However, their performance drop significantly when identifying

the “Error on Event" intrusion (AUC ≈ 51.6) due to the fact that its behavioral pattern is

analogous to normal SOME/IP network traffic, which increases the difficulty for our model and

other techniques to correctly identify it. Nevertheless, SAID performs slightly better than the

average for all attacks on SOME/IP that we consider in this work (Missing Request AUC ≈

0.81, Missing Response AUC ≈ 0.84, Error on Error AUC ≈ 0.78, Error on Event AUC ≈ 0.65).

It means that our model performs well in the false-positive and true-positive rates under various

pre-selected thresholds. For the high-attack ratio dataset (seen in Figure 7.4), SAID (Missing

Request AUC ≈ 0.80, Missing Response AUC ≈ 0.89, Error on Error AUC ≈ 0.72) outperforms

other deep learning algorithms for all attacks in terms of AUC scores (Missing Request AUC ≈
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0.62, Missing Response AUC ≈ 0.75, Error on Error AUC ≈ 0.69). Our proposed detector goes

beyond the point-wise representation learned by the conventional deep learning techniques and

models the more informative interdependencies between SOME/IP packets. However, although

the “Error on Event" attack ratio has increased, all models also perform poorly when detecting

this protocol violation (AUC ≈ 0.42). A general comparison of the results from both datasets

implies that SAID not only improves the AUC and recall rate of SOME/IP intrusion detection

but also decreases the false positive rate for the majority of intrusions.

Eventually, as our solution will be deployed on Electronic Control Units (ECUs) which

have tight resource constraints including computing, memory, and important power budget, we

assessed their computational performance. The results are listed in Table 6.4. As depicted, while

the LSTM and RNN-based models take longer time to detect attacks on SOME/IP protocol, the

CNN, CNN-LSTM, and SAID detect intrusions between 0.07 and 0.4 ms. Using SAID allows

much faster detection than recurrent methods by parallelizing inference on GPUs. Despite

CNN’s suitability for real-time detection in terms of inference time, it poorly detects attacks

when compared to both CNN-LSTM and SAID. Hence, the experiments testify to the advantage

of the proposed framework and verify its effectiveness against the majority of intrusions. It

provides the benefit of being able to encode large sequences with accuracy and small inference

times.

6.7 Conclusion

As the in-vehicle network is increasingly scaling due to the emerging SOME/IP protocol, the

specification-based techniques and conventional machine learning techniques can no longer be

adopted as they require substantial human effort for crafting suitable specification rules or

features, respectively. Additionally, due to scaling, the high-dimensional nature of transmitted

interdependent SOME/IP network packets is particularly challenging for intrusion detection,

as many corresponding dimensions may be noisy and irrelevant for anomaly detection. Our

research aims to overcome these challenges by the deployment of effective security solutions that

adapt to the recent dynamic in-vehicle environment. More concretely, we present a novel deep

learning-based IDS for SOME/IP able to learn features with different levels of abstraction at

different processing layers without human intervention. Additionally, using the self-attention

mechanism, our approach can model the contextual dependencies between SOME/IP packets and

which are crucial for the detection of contextual intrusions. The tests performed on SOME/IP
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datasets show that our proposed model is computationally efficient and achieves an overall

superior performance than the prevailing sequential models, particularly when the attack ratio

increases. For future work, we aim to develop novel strategies to further amplify the difference

between normal and abnormal SOME/IP network traffic and to investigate the effectiveness

of the attention mechanism in improving our model’s interpretability. Moreover, as mentioned

earlier, SOME/IP can be roughly divided into three parts: Service Discovery (SD), Remote

Procedure Call (RPC), and access to process data. Throughout this chapter and the previous one

(Chapter 5), we only considered attacks on SOME/IP due to RPC’s vulnerabilities. However, the

SD feature must be addressed primarily - before the subsequent RPC - since its security will lead

to restricted service provisioning and usage, thus, limiting the damage an attacker can cause by

compromising an ECU [144]. In fact, the SD feature allows entities to dynamically find services

and determine their corresponding IP addresses and port numbers on which these services can be

accessed. Using the Publish/Subscribe mechanism of SOME/IP, the clients can then subscribe

to services to obtain the data published by these services whenever necessary. In SOME/IP’s

parlance, a server offers a service instance that a client can subscribe to. Consequently, SOME/IP

security mainly revolves around the question of who is allowed to offer which service and who is

allowed to subscribe to which services. Our contributions regarding SOME/IP protocol could

be improved by the development of a deep learning-based IDS that is not only limited to its

RPC feature (as in our case) but rather takes into consideration the SD and Publish/Subscribe

features to monitor which services are being offered and subscribed to.

In the next chapter, we seek to detect cyberattacks that cause the interruption media streams

which are carried by the Ethernet-based protocol IEEE 1722. In contrast to [74] which aim

to detect replay packets using supervised learning techniques, we seek to detect whether a

sequence of AVTP packets contains one or several injected packets. Notably, keeping this goal

in mind, our proposed study is more general and thus covers models which can be further

used for the detection of stealthier cyberattacks. We thereby provide a comparative analysis

between different unsupervised deep learning and machine learning methods for the detection of

audio-video transport protocol (AVTP) stream injection attacks in automotive Ethernet-based

networks.
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CHAPTER 7

Real-time unsupervised intrusion detection on AVTP

In this chapter, we compare the performance of different unsupervised deep and machine

learning-based anomaly detection algorithms, for real-time detection of anomalies on the Audio

Video Transport Protocol (AVTP), an application layer protocol implemented in the recent

Automotive Ethernet-based in-vehicle network. The numerical results, conducted on the recently

published “Automotive Ethernet Intrusion Dataset” , show that deep learning models

significantly outperform other state-of-the-art traditional anomaly detection models in machine

learning under different experimental settings.
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7.1 Introduction

Since the advent of power electronic components such as sensors and actuators as well as a

robust in-vehicle infrastructure for efficient data exchange between them, driving has become

safer (i.e. 360- degree surround view parking assistance and collision avoidance systems) [97] and

more pleasant (i.e. infotainment features)[109] [124] during the last several decades. Ethernet, a

flexible and scalable networking technology in communication systems, is recently standardized

and adopted for in-vehicle communication [58][31] between different Electronic Component Units

(ECU). In fact, it fulfills basic automotive requirements which existing in-vehicle protocols LIN,

CAN, and FlexRay are not designed to cover, including reduced connectivity costs, cabling

weight, and support for high data bandwidth.

To ensure low-latency and high-quality transmission of time-critical and prioritized streaming

data for high-end infotainment and ADAS systems, the IEEE 1722 audio-video transport protocol

(AVTP)[4] is adopted. In fact, AVTP specifies a protocol for audio, video, and control data

transportation on a Time-Sensitive Networking (TSN) capable network [102]. As a result, we

believe that AVTP protocol will be a critical protocol for Automotive Ethernet-based in-vehicle

network in motor vehicles.

Despite the advantages of Automotive Ethernet, the drive toward connectivity has significantly

expanded the attack surfaces of automobiles, making Automotive Ethernet-based in-vehicle

networks increasingly susceptible to cyberattacks, posing significant security and safety issues

[79]. In fact, Automotive Ethernet can be attacked by exploiting its vulnerabilities [15][130].

These security breaches can affect protocols working on top of it, including AVTP protocol, and

might therefore lead to the interruption of critical media streams.

To address this, intrusion detection systems (IDS) should be used in addition to specific

security measures as an extra layer of protection. These systems can be classified based on their

analyzed activity (i.e., monitoring a network or a host activity logs) and their detection approach

(i.e., signature-based or anomaly-based detection). Deep learning models, usually referred to as

anomaly-based intrusion detection techniques, are in general neural network models with a large

number of hidden layers. These models can learn extremely complicated non-linear functions,

and their hierarchical layer structure allows them to acquire meaningful feature representations

from incoming data. Researchers have explored deep learning techniques for in-vehicle intrusion

detection on Controller Area Network (CAN) bus protocol since 2015 [125]. However, due to
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the lack of relevant and public datasets, few studies have been conducted to study the intrusion

detection performance of deep learning based IDS for automotive systems using Automotive

Ethernet-based network. Among them, Alkhatib et al. [14] proposed a deep learning-based

sequential model for offline intrusion detection on Scalable Service-Oriented Middleware over

IP (SOME/IP) application layer protocol on top of Automotive Ethernet. Moreover, Jeong et

al [74] presented an intrusion detection method for detecting audio-video transport protocol

(AVTP) stream injection attacks in Automotive Ethernet-based networks.

In this chapter, we compare the performance of different deep and machine learning based

intrusion detection systems for real-time detection of anomalies on the AVTP protocol. Regard-

ing deep learning based models, we leverage different types of autoencoders which reconstructs

a sequence of exchanged AVTP packets over the in-vehicle network. Anomalies in AVTP packet

stream, which may lead to critical interruption of media streams, are therefore detected by

computing the corresponding reconstruction error. These models are compared with other

state-of-the-art anomaly detection models such as One-class SVM (OCSVM), Local Outlier

Factor (LOF), and Isolation Forest. The numerical results, conducted on the recently pub-

lished “Automotive Ethernet Intrusion Dataset” , show that deep learning based models

outperform other baselines under different experimental settings.

The main contributions of this paper are as follows:

• We compare the performance of different unsupervised anomaly detection methods to detect

unknown cyberattacks in real-time on AVTP protocol used in Automotive Ethernet-based

in-vehicle network for media streaming.

• We evaluate their performance by using the recently published "Automotive Ethernet

Intrusion Detection" dataset [72] and which contains replay attacks.

This chapter is organized as follows. In Section 7.2, we present an overview of media stream

transportation using AVTP network protocol. In Section 7.3, we present an overview of the

considered AVTP dataset, the covered threat model along with the engendered cyberattacks.

Section 7.4 discusses the detection of in-vehicle network anomalies using unsupervised anomaly

detection algorithms. We discuss our experimental results in Section 7.5.

7.2 Transmission of Media Streams using AVTP

Traditional in-vehicle networks are mostly based on bus technology that can not keep up with

the growing communication demands of self-driving cars. In fact, they cannot meet the in-vehicle
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network requirements for high bandwidth, reliability, and real-time communication expectations.

Automotive Ethernet, a novel in-vehicle network communication technology, is implemented

to ensure an appropriate level of quality of service (QoS) which is essential for time-critical

automotive applications.

Audio Video Bridging (AVB) over Ethernet, a set of technical standards, provides improved

synchronization, low latency, and reliability for switched Ethernet networks between multimedia

devices. Recently, a lot of automotive products such as end-nodes devices (i.e., speakers, cameras,

digital signal processors) and a network hub (i.e., AV Bridges) support it. In fact, end nodes

can be a talker, a listener or both. A talker is the transmitter of a data stream or the source of

the AVB stream and a listener is the receiver or the destination of the AVB stream. These end

nodes are connected by an AVB Bridge which acts as a switch that receives time-critical data

from the AVB talker and forwards it to the AVB listener. This interconnection between these

three components, as presented in Fig.7.1, is called AVB Ethernet Local Area Network (LAN).

Figure 7.1: Typical AVB Ethernet Local Area Network (LAN).

As previously mentioned, AVB has diverse sub-standards to support time-critical in-vehicle

applications such as IEE 802.1 Qav, IEEE 802.1 Qat, IEEE 802.1 AS, and IEEE 1722. Due to

the lack of publicly available datasets which cover attacks on diverse AVB protocols, we are only

considering published ones that are composed of captured automotive cyberattacks on IEEE

1722, a stream transmission protocol in charge of transporting control data and audio and video

streams. Unfortunately, datasets which cover attacks on other AVB protocols aren’t publicly

available. As depicted in Fig. 7.2, the IEEE 1722 packet and its content are sent through an

Ethernet frame. The IEEE 802.1Q header is also included in the Ethernet packet. Furthermore,

the priority information encapsulated within is critical for the functioning of the AVB QoS
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concept. Moreover, only AVB listener members that share the same AVB talker’s VLAN tag

can receive the audio/video stream. In the case of IEEE 1722, the ethertype field’s hexadecimal

value is 0X22F0.

Figure 7.2: IEEE 1722 packet format. Source: [100]

In terms of IEEE 1722 streaming packets, the header, the stream ID, the "Presentation

time," payload information, and the payload itself are all included therein. The data type of

the A/V stream is specified in the header which also includes its sequence number needed by

AVB listeners to detect missing packets. The MAC address of the talker is used to produce the

stream ID, which identifies a single data stream. The format of the data within the payload

is directly related to the field of the payload information. The AVBTP timestamp is a time

presentation which specifies when a received packet should be delivered to the AVB listener

application [100].

We will provide in Section 7.3 the threat model and the corresponding replay attacks on

AVTP protocol, created by Jeong et al. [74], and list also the relevant AVTP features to be

leveraged for anomaly detection.

7.3 AVTP Dataset Description

Given a sequence of AVTP packets, we aim to detect whether this sequence is normal or

anomalous, i.e., an AVTP sequence is anomalous if it contains at least one abnormal (i.e.,

injected/out of order/replayed) packet. Hence, we have used the “Automotive Ethernet
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Intrusion Dataset” dataset [72] created by Jeong et al. [74] and which contains benign and

malicious AVTP packet captures from their physical Automotive Ethernet testbed.

Dataset
# Normal # Abnormal Size

packets packets (MB)
R 0 36 0.0164

Dnormal 139,440 N/A 63.3
D1

injected 139,440 65,988 93.3
D2

injected 307,020 130,906 198.8

Table 7.1: Automotive Ethernet Intrusion Dataset

The datasets are recorded in the PCAP file format and, therefore, are viewed using prevalent

programming libraries and packet analyzers (such as Wireshark). In fact, the dataset contains four

benign (attack-free) packet captures and four malicious ones collected in different environments.

The malicious packet captures represent replay cyberattack. In fact, they contain message

injection of arbitrary stream AVTP data units (AVTPDUs) into the IVN since the attacker’s

goal is to output a single video frame, at a terminal application connected to the AVB listener,

by injecting previously generated AVTPDUs during a certain period. For our experiment, we

have only considered the AVTP packets collected indoor, presented in Table 7.1. We refer

readers to [74] for further information.

In order to represent AVTP sequences, we use the Feature-based Sliding Window

(FSW)[145] to group packets which belong to an AVTP dataset into subsequences with fixed

window size w, where w ∈ {8, 16, 24, 32, 40} and the slide size is 1. Hence, each sequence of

ordered packets is defined as S = {p1, ...,pt, ...,pT }, where pt ∈ D indicates a transmitted

AVTP packet at time t, and D indicates the original AVTP Dataset. Each packet pt in the

AVTP dataset has 438 bytes/features, each of which has a integer value between 0 and 255,

where pt ∈ Z58 (since the most suitable number of bytes used to detect anomalies is the first 58

bytes of each AVTP packet,[74]). Hence, to achieve our previously mentioned goal, we train our

model using the dataset Dtraining composed of normal AVTP sequences with each packet. The

normal sequences are extracted from dataset Dnormal, depicted in Table 7.1. However, when

testing, we have preprocessed packets into sequences from both datasets D1
injected and D2

injected,

and which contain replayed packets from dataset R . Moreover, we label each AVTP sequence

using the following criteria:

Y =

{
0 (normal) if (pt ∈ S)&(pt /∈ R),∀t ∈ {1, .., w}
1 (abnormal) otherwise
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where Y is an AVTP sequence’s label, and R is a set of replayed AVTP packets, collected during

a legitimate AVTP media transmission.

It’s worth noting that we do not follow [74] labeling criteria. In fact, [74] aim to detect

packets which are replayed. However, we aim to detect whether a sequence contains one or

several injected packets. Notably, using this labeling criteria, more suitable for self-supervised

learning, our model can be further used for the detection of cyberattacks different than replay

attacks in future work and which are detected by inspecting a series of ordered packets.

Moreover, we have reshaped our dataset to suit different types of models. Hence, since

convolutional autoencoders, presented in Section 7.4, deal with image samples we had to reshape

each sequence S into 2D images using the following mapping

Im(Sk) =


ak,1 ak,2 · · · ak,58
ak+1,1 ak+1,2 · · · ak+1,58

...
...

. . .
...

ak+w,1 ak+w,2 · · · ak+w,58

 (7.1)

where Im(Sk) denotes the k-th reshaped sequence of S (corresponding to training sample

k ∈ {1, ..., N}), w is the total sequence length, am,n is an AVTP packet feature (byte) such that

0 ≤ am,n ≤ 255, k ≤ m ≤ k + w, and 1 ≤ n ≤ 58. Hence, an AVTP dataset, represented as

D = {Im(Sk)}Nk=1, is ready to be fed into the CAE model. It’s worth noting, that when fed

into LSTM models, we use D = {Sk}Nk=1, where Sk is defined as the kth AVTP sequence.

7.4 Unsupervised Intrusion Detection Systems

Intrusion Detection Systems (IDSs) are considered as an efficient tool to guarantee the confiden-

tiality, integrity and availability of network data. In fact, network intrusions can be detected

and identified by comparing their attack signatures to a dataset which contains a pre-defined list

of cyberattack patterns. This approach is called signature-based intrusion detection. However,

a regular updating of signature databases is not practicable because of the constant evolution of

innovative attack tactics. An alternative solution could be the adoption of anomaly-based IDSs

which find pattern in the data that deviates from other observations and indicates the presence

of malicious activities in the network traffic. In this work, we will compare the performance

of deep learning based intrusion detecton systems especially autoencoders based models with

state-of-the-art machine learning models.
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7.4.1 Deep Learning-based IDS

Deep learning techniques are increasingly used to address the development of complex anomaly

detection based IDSs [37]. One of the most commonly studied feature learning techniques

is the use of autoencoder (AE) neural networks which can be used to detect anomalies in

high-dimensional data and for different data types including images/videos, sequence data and

graph data.

The autoencoder AE, introduced by Rumelhart et al. [115], seeks to learn a low-dimensional

feature representation space suitable for reconstructing the provided data instances, as explained

in Chapter 2. Essentially, only data with normal instances are used to train the AE. Hence,

since normal samples in the test dataset have likewise normal profile of training samples, the

corresponding reconstruction error is alike. However, compared to the anomalous testing samples,

the reconstruction error is much higher. As a result, we can simply classify samples by defining

a threshold for reconstruction error:

c(x) =

{
0 (normal) sx < β

1 (abnormal) sx > β
(7.2)

where c(x) is the classification function for input sample x and β is the pre-defined anomaly

detection threshold.

Parameter Value
Learning Rate 0.0001
Optimizer Adam
Batch Size 16
Early stopping Yes

Table 7.2: AE Models Configuration

Through our work, we will investigate the performance of two types of autoencoders:

Convolutional based autoencoder (CAE), and Long Short Term Memory based autoencoder

(LSTMAE), covered in 2. To implement these models, we leverage the Python deep learning

framework Pytorch [13]. We train and evaluate them on NVIDIA® Tesla® V100S with 32 GB

HBM2 memory. After hyperparameter tuning, we use the commonly chosen hyperparameters

depicted in Table 7.2.
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7.4.1.1 Convolutional based Autoencoder (CAE)

For different sequence lengths w, we have developed different CAE architectures. Our CAE

architecture, depicted in Table. 7.3, is composed of three convolutional layers on the encoder

side, flatten and unflatten layers, one embedding layer, and three deconvolutional layers on the

decoder side. For the encoding module, we first stack three convolution layers with 36, 64, and

128 feature maps, respectively. We have chosen 3x3 kernel sizes for the different convolutional

layers and set the padding and the stride is set to (1,1) and (2,2), respectively. Then we flatten

the output of the encoder and feed it to a dense layer that represents the latent space and which

is composed of 64 * w neurons (chosen after tuning the correspondent number of neurons). The

embedded vector is then unflattened and fed into the decoder. As for the decoding module, we

flip the architecture of the encoder, i.e., the corresponding feature maps from bottom to up are

128, 64,32, and 1, and the kernel sizes are 3×3. We set the stride to (1,1), the padding to (2,2),

and the output padding to (1,0), (1,0), and (1,1) for the three deconvolutional layers.

Block Layer Dimensions Act. Function Filter Size Stride Padding Output Padding
- Input (1,w,58) - - - - -

Encoder

Conv1 (32,w/2,29) ReLU (3,3) (1,1) (2,2) -
Conv2 (64,w/4,15) ReLU (3,3) (1,1) (2,2) -
Conv3 (128,w/8,8) ReLU (3,3) (1,1) (2,2) -
Flatten (128*w) ReLU (3,3) - - -

Embedding Linear (128*w/2) ReLU - - - -

Decoder

Unflatten (128,w/8,8) ReLU - - - -
Deconv1 (64,w/4,15) ReLU (3,3) (1,1) (2,2) (1,0)
Deconv2 (32,w/2,29) ReLU (3,3) (1,1) (2,2) (1,0)
Deconv3 (1,w,58) ReLU (3,3) (1,1) (2,2) (1,1)

Table 7.3: CAE’s Model Architecture

7.4.1.2 Long Short Term Memory based Autoencoder

For each sequence length w, we create a different LSTMAE. As shown in Table 7.4, for the

LSTM based encoding module, we firstly stack two LSTM layers which output an embedding

vector of size 10 (chosen after tuning). Then we repeat the embedding vector w times, and

feed it into the decoder. As for the decoding module, we flip the architecture of encoder, i.e.

the repeated vector passes through two LSTM layers with a number of features 10 and 20

respectively and a dense layer, to be finally reconstructed.
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Block Layer Output Activation
Dimensions Function

- Input (w,58) -
Encoder LSTM1 (w,20) ReLU
Embedding LSTM2 (1,10) ReLU

Decoder
Repeat (w,10) ReLU
LSTM1 (w,10) ReLU
LSTM2 (w,20) ReLU
Linear (w,58) -

Table 7.4: LSTMAE’s Model Architecture

7.4.1.3 Anomaly Detection using AE models

As previously mentioned, we will classify AVTP sequence samples by defining a threshold β.

Hence, after training our AE models for each window size w, we vary β between µ− αminσ and

µ+ αmaxσ where µ is the mean reconstruction error of normal samples used for training, σ is

the standard deviation of normal samples’ reconstruction errors, α ∈ {−2, 2} with a step size

δ = 0.5, αmax = max(α) and αmin = min(α) to select the best threshold.

7.4.2 Machine Learning-based IDS

Through our work, we compare the autoencoder-based models to state-of-the-art machine

learning-based anomaly detection algorithms: One-Class SVM (OCSVM), Local Outlier Factor

(LOF) and Isolation Forest (IF), explained earlier in Chapter 2. We have implemented these

algorithms using the Scikit-learn python library, and have trained and evaluated them on a 3.3

GHz AMD EPYC™ 7402.

7.5 Results

To assess the performance of different anomaly-based IDS, we use the F1-score metric explained

in Chapter 2. Figures 7.3 and 7.4 shows the performance of different anomaly based IDS on

both datasets D1
injected and D2

injected. As seen, conventional machine learning algorithms such

as OCSVM, Isolation Forest, and Local Outlier Factor perform poorly on both datasets when

recognizing anomalous AVTP sequences for different sequence length. In fact, these traditional

anomaly detection models are inefficient at detecting anomalies in large, high-dimensional

datasets since these methods assume small datasets with low numbers of features. Hence, when

dealing with a huge input dimensionality, a high proportion of irrelevant features can effectively
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Figure 7.3: Comparision of different unsupervised machine learning anomaly detection perfor-
mance under different window sizes w on D1

injected

creates noise in the input data, which masks the true anomalies and engenders poor anomaly

detection performance.

To overcome the limitations of these approaches in high-dimensional datasets, the deep

learning models CAE and LSTMAE, are considered as a better alternative for anomaly detection.

As demonstrated in Figures 7.3 and 7.4, they significantly outperform the benchmark anomaly

detection models and achieve reasonbale F1-scores on both datasets. After tuning the threshold

β for various sequence length and for different datasets and AE models, the CAE and LSTMAE

reached their highest performance when β = µ+ 0.5σ. Moreover, the CAE model achieves an

overall better performance in terms of F1-score scores than LSTMAE model which indicates

that LSTMAE is not able to encode the context information of an AVTP sequence from both

the left and right context especially when working on long sequences (w ≥ 16). Despite the fact

that a Bidirectional LSTMAE is commonly used nowadays to represent contextual information,

they suffer from the vanishing or exploding gradients. In other words, the model hardly captures

the long-term dependency and which is critical for the detection of anomalies in large sequences.

When varying the AVTP sequence length between 16 and 40, CAE has outperformed LSTMAE

by exploiting significant correlations in a sequence of AVTP packets. The performance of both

models proportionally increases when increasing window length on both datasets, since AVTP

sequences will contain more injected packets, thus it becomes easier to differentiate between
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Figure 7.4: Comparison of different unsupervised machine learning anomaly detection performance
under different window sizes w on D2

injected

normal and abnormal AVTP sequences. We also assess the performance of the best models, more

Conv-AE LSTM-AE

Window Inference Time #Parameters Model Size Inference Time #Parameters Model Size
(ms) (MB) (ms) (KB)

8 0.49± 0.53 1,235,329 4.8 1.17± 0.90 12,338 52
16 0.48± 0.52 4,382,593 17 1.58± 0.96 12,338 52
24 0.38± 0.33 9,627,009 37 1.91± 0.95 12,338 52
32 0.43± 0.28 16,968,577 65 2.31± 1.02 12,338 52
40 0.45± 0.14 26,407,297 101 2.70± 0.99 12,338 52

Table 7.5: AutoEncoder-based Models’ Characteristics & Computational Resources

specifically AE models, by measuring their computational power and their memory requirements.

As depicted in Table 7.5, although the CAE model has a bigger number of parameters and a

larger model size than LSTMAE, it stays speedier when detecting anomalies in AVTP sequences

for different window sizes. Hence, CAE is more suitable for real-time intrusion detection than

LSTMAE. Although it has a larger model size, the CAE models can either be deployed on

a cloud server connected to the in-vehicle network or can be embedded inside an ECU with

suitable memory characteristics. In the future, we plan to examine the implementation of both

ideas.
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7.6 Conclusion

We compared the performance of different deep and machine learning algorithms for learning

normal AVTP communication behavior and thus identifying cyberattacks on this protocol.

Our experimental results confirmed the prominence of autoencoder-based IDS over traditional

machine learning models for different AVTP sequence lengths. For real-time detection, we

suggested convolutional-based AE, whose model complexity is more suitable than LSTM-AE.

However, as the evaluation dataset only covered replay attacks, our current comparison of

semi-supervised deep learning and unsupervised machine learning needs further assessment

once the different types of cyberattacks on the AVTP protocol are available. Additionally,

the compared techniques modeled normal communications between two AVB Talkers, i.e., the

legitimate talker and the attacker, and a single AVB listener. Therefore, it’s crucial to evaluate

if the proposed deep learning techniques - already trained - can generalize to new test datasets

in which AVTP traffic for a larger in-vehicle network with more AVB listeners and talkers is

exchanged. Finally, this problem also motivates us to design more powerful neural network

structures. Recently, researchers are addressing similar issues using dynamic neural networks

[56]. Compared to static models which have fixed computational graphs and parameters at the

inference stage, dynamic networks can adapt their structures or parameters to different inputs,

leading to notable advantages in terms of accuracy, computational efficiency, adaptiveness, etc.

Considering the dynamic nature of the AVB network, different representative inputs may have

diverse computational demands for the devised IDS. Hence, it is natural to perform inference

with dynamic architectures conditioned on each sample. Specifically, one can adjust the network

depth and width. Networks with dynamic architectures not only save redundant computation

for canonical (“easy") samples, but also, preserve their representation power when recognizing

non-canonical (“hard") samples.
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CHAPTER 8

Conclusions and Perspectives

8.1 Conclusion

The problem of in-vehicle intrusion detection needs to be urgently addressed, where it is desirable

to determine known and novel automotive attacks. As the E/E architecture of the vehicle is

always evolving to meet the consumers’ demands, hackers are always finding ways to attack

existing and recently deployed automotive protocols. Throughout this thesis, we investigate

Deep Learning as a solution to build different intrusion detection techniques that are mapped to

various protocols including CAN and Automotive Ethernet, and for different intrusion tasks such

as classification and anomaly detection. For the CAN-based IVN, we particularly investigated

the ability of the attention-based model “BERT" to detect targeted in-vehicle intrusions in

chapters 3 and 4. Inspired by BERT’s success in numerous natural language processing tasks

(NLP) and its powerful expressive capability, we leverage its attention-based architecture to

model non-NLP tasks, particularly when modeling the normal exchange of CAN packets between

ECUs and the detection of sequential intrusions on the CAN bus. In Chapter 3, we investigate

whether BERT can be regarded as a frequency-based method and thus able to detect attacks

that result in fast message timing or the new appearance of new CAN IDs, and slow message

timing or the disappearance of usually present IDs. Drawing on the prominent findings, we

further investigate in Chapter 4 its potential in detecting also stealthier attacks that do not

disrupt normal timing or ID distributions, but rather the interrelations between asynchronously
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transmitted CAN signals. However, since securing CAN isn’t enough to ensure in-vehicle network

security as different automotive protocols have been developed, we have further studied other

critical networking systems. Particularly, we focused on the Automotive Ethernet protocol as

it is a flexible and scalable networking technology in communication systems and is recently

standardized and adopted for in-vehicle communication. For the classification task, as presented

in Chapter 5, we have successfully contributed to developing an offline RNN-based model that

monitors the transmitted SOME/IP network packets between different clients and servers and

classifies the network traffic into corresponding attack types or the normal class. As there

is a lack of available datasets for the SOME/IP protocol, we generated and labeled our own

which was thus used to train the proposed model using supervised learning techniques and for

its evaluation. The main purpose behind our contribution is to assess the RNN’s ability in

discovering specific intrusions on the SOME/IP protocol (anomalies of interest). Concerning

the detection of attacks, we leveraged both signature-based and anomaly-based approaches. In

Chapter 6, we tackle the high dimensionality challenge of the in-vehicle network traffic. We have

thus considered the problem of intrusion detection for SOME/IP protocol and presented “SAID"

a novel technique for the detection of anomalies from a large sequence of exchanged SOME/IP

network packets. The proposed detector leverages a self-attention-based neural network to model

the contextual dependencies between SOME/IP packets. A comparative study with various deep

learning algorithms is performed to show the outstanding performance of our proposed detector

in quality while being more parallelizable and requiring significantly less time to detect intrusions.

In Chapter 7, we leveraged self-supervised and unsupervised learning techniques for anomaly

detection for the ethernet-based protocol AVTP as the previously conducted research studies

were only dedicated to the detection of replay attacks using supervised learning techniques. By

studying the performance of several autoencoders and comparing their efficiency to classical

machine learning techniques, we contributed to building a comprehensive and real-time IDS

that is not limited to the detection of specific attacks but rather leveraged for the detection of

zero-day AVTP attacks also.

8.2 Contribution improvements

In Chapters 5 and 6, we presented two supervised learning-based techniques for the detection of

intrusions on SOME/IP protocol. An improvement of this contribution consists of developing

a complementary unsupervised learning-based technique for the detection of novel attacks
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once a richer dataset with a richer representation of the normal SOME/IP communication

behavior is publicly available. Additionally, since all our contributions regarding in-vehicle

intrusion detection are conducted on different datasets, we seek to group them in one general

framework that monitors the automotive protocols altogether. Finally, we have considered the

development of in-vehicle IDS without taking into consideration the availability of other security

countermeasures including authentication protocols, firewalls, honeypots, etc. To eventually

improve our contribution, we should also detect stealthier automotive intrusions against a more

secure in-vehicle environment.

8.3 Further perspectives

8.3.1 Distributed IDS (dIDS)

Within the scope of this thesis, we have suggested the implementation of a centralized IDS for

several in-vehicle network protocols. However, we believe that there are significant advantages

to devising a distributed IDS system over a centralized one. In fact, as the E/E architecture of

the vehicle is regarded as a distributed system, no central ECU is knowledgeable of all security

events on the other ECUs making the establishment of a distributed IDS necessary. Several

other factors are decisive for this proposal including the avoidance of a single point of failure

from a security perspective and the automotive-specific constraints of the ECUs, such as limited

computing power and low memory capacity. In this case, in-vehicle network IDS sensors monitor

data traffic for specific network segments and stay alert for any suspicious activity in network,

transport, and application protocols [8].

8.3.2 Neural network Quantization

Recent research on Neural Networks (NNs) models for in-vehicle intrusion detection has mostly

focused on enhancing the intrusion detection rate while simultaneously reducing the number of

false alarms (false positive rate). Although the performance of these over-parameterized (and

therefore very large) neural network models has considerably improved, the sheer size of these

models prohibits their deployment on resource-constrained electronic control units (ECUs) [53].

For future work, it’s necessary to devise a deep learning-based intrusion detection system (IDS)

that predicts attacks on the in-vehicle network in real-time while providing an optimal trade-off

between accuracy and resource consumption. Thus, an investigation regarding “Quantization",

an approach that has shown great and consistent success in both training [30, 38] and inference
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of NN models, must be considered. In quantization, the goal is to reduce the precision of both

the model’s learnable parameters - stored in floating point precision - as well as the intermediate

activation values to low precision, with minimal impact on the generalization power/accuracy

of the model. Several quantization methods have thus been proposed to map the floating

point value to a quantized one including simulated and integer-only [70], mixed-precision [45],

hardware aware [60], distillation-assisted [76], extreme [75], and vector quantization [50].

By conducting a comparative analysis between the aforementioned quantization methods,

future work must be concerned about checking which method respects mostly the tight resource

constraints of ECUs including compute, memory, and power budget without significantly impact-

ing the intrusion detection accuracy of the IDS. Additionally, although there are several hardware

platforms in the context of quantization, no previous research work has been conducted to study

the quantization approach for NN-based IDS on specific types of automotive microcontrollers

or ECUs [3] including the 32-bit SPC5 family built on Power Architecture, the 8-bit STM8A

family as well as 16-bit ST10 legacy MCUs and others. For general use cases, the STM32

(32-bit RISC ARM processor cores), a family of microcontrollers based on the ARM Cortex-M

cores, was used for NN inference at the edge. Because some of the ARM Cortex-M cores do not

include dedicated floating-point units, the models should first be quantized before deployment.

CMSIS-NN [83] is a library from ARM that helps quantize and deploy NN models onto the ARM

Cortex-M cores. Specifically, the library leverages fixed-point quantization with power-of-two

scaling factors so that quantization and dequantization processes can be carried out efficiently

with bit-shifting operations. Inspired by this success, a study must be focused on the comparison

of the throughput of different commercial automotive ECUs for NN inference based on the

adopted quantization approach.

8.3.3 Explainable IDS (X-IDS) for IVNs

Automotive security analysts heavily rely on the IDS systems to make decisions about the

detected IVN threats for a variety of purposes including alert escalation, threat and attack

mitigation, intelligence gathering, and forensic analysis among others. However, IDSs designed

using deep learning techniques are often treated as black box models and do not provide a

justification for their prediction. This creates a barrier for security analysts, as they are unable

to improve their decisions based on the model’s predictions. To address this issue, researchers

have started to design explainable IDS (X-IDS) by leveraging explainable artificial intelligence

(XAI) techniques for IDS [119]. Researchers have started recently to build such trustworthy IDS
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8.3 Further perspectives

using XAI techniques for IVNs [98]. We believe that these techniques can build operator trust

and allow for more control of autonomous AI systems.

8.3.4 Adversarial Robust IDS for IVNs

Despite the tremendous advantage of deep learning techniques in learning underlying threat

patterns and features, they are susceptible to attacks, i.e., attacks wherein slight perturbations

of the input features cause misclassifications. Hence, as soon as the proposed IDS models

are deployed in today’s modern vehicles or their dedicated vehicular security operation center

(V-SOC), they become targets of attacks that severely undermine their capability, and even turn

them into unconventional attack tools. In fact, several attacks can exploit the IDS vulnerabilities

and thereby be conducted against deep learning-based IDS including evasion, overstimulation,

poisoning, Denial Of Service (DoS), response hijacking and reverse engineering [40]. Although

numerous research studies are investigating the adversarial attacks against deep learning-based

techniques [94, 132, 133, 137] and the corresponding defensive methods in IDS [94, 111, 126] for

computer networks, few research work is achieved particularly for the IVN domain [92].
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Titre : Détection d’intrusion avec les techniques d’apprentissage en profondeur pour les réseaux automobiles
embarqués

Mots clés : Détection d’intrusion, Apprentissage en profondeur, Controller Area Network, Automotive Ethernet

Résumé : La communication automobile embarquée,
qui désigne la communication et l’échange de
données entre les calculateurs embarqués, joue un
rôle crucial dans le développement des systèmes
de transport intelligents (STI), qui visent à améliorer
l’efficacité, la sécurité et la durabilité des systèmes
de transport. La prolifération des dispositifs infor-
matiques et de communication embarqués, centrés
sur des capteurs connectés à un réseau embarqué
(IVN), a permis le développement de fonctions de
sécurité et de commodité, notamment la surveillance
du véhicule, la réduction du câblage physique et
l’amélioration de l’expérience de conduite. Cepen-
dant, la complexité et la connectivité croissantes des
véhicules modernes suscitent des inquiétudes quant
à l’évolution des menaces liées aux réseaux em-
barqués. Une série de risques de sécurité poten-
tiels peuvent compromettre la sécurité et la fonction-
nalité d’un véhicule, mettant en danger la vie des
conducteurs et des passagers. De nombreuses ap-
proches ont donc été proposées et mises en œuvre
pour pallier ce problème, notamment les pare-feu, le
cryptage, l’authentification sécurisée et les contrôles

d’accès. Comme les mécanismes traditionnels ne
parviennent pas à contrer complètement les tenta-
tives d’intrusion, il est nécessaire de mettre en place
une contre-mesure défensive complémentaire. Les
systèmes de détection d’intrusion (IDS) sont donc
considérés comme un élément fondamental de toute
infrastructure de sécurité réseau, y compris le RVI.
L’objectif principal de cette thèse est d’étudier la
capacité des techniques d’apprentissage profond à
détecter les intrusions à bord des véhicules. Les al-
gorithmes d’apprentissage profond ont la capacité de
traiter de grandes quantités de données et de re-
connaı̂tre des modèles complexes qui peuvent être
difficiles à discerner pour les humains, ce qui les
rend bien adaptés à la détection des intrusions dans
les IVN. Cependant, comme l’architecture E/E d’un
véhicule évolue constamment avec l’apparition de
nouvelles technologies et exigences, nous proposons
différentes solutions basées sur l’apprentissage pro-
fond pour différentes architectures E/E et pour di-
verses tâches, notamment la détection d’anomalies et
la classification.

Title : Intrusion Detection with deep learning for in-vehicle networks

Keywords : Intrusion Detection, Deep learning, Controller Area Networks, Automotive Ethernet

Abstract : In-vehicle communication which refers to
the communication and exchange of data between
embedded automotive devices plays a crucial role in
the development of intelligent transportation systems
(ITS), which aim to improve the efficiency, safety, and
sustainability of transportation systems. The prolifera-
tion of embedded sensor-centric communication and
computing devices connected to the in-vehicle net-
work (IVN) has enabled the development of safety
and convenience features including vehicle monito-
ring, physical wiring reduction, and improved driving
experience. However, with the increasing complexity
and connectivity of modern vehicles, the expanding
threat landscape of the IVN is raising concerns. A
range of potential security risks can compromise the
safety and functionality of a vehicle putting the life
of drivers and passengers in danger. Numerous ap-
proaches have thus been proposed and implemen-
ted to alleviate this issue including firewalls, encryp-
tion, and secure authentication and access controls.
As traditional mechanisms fail to fully counterattack
intrusion attempts, the need for a complementary de-

fensive countermeasure is necessary. Intrusion De-
tection Systems (IDS) have been thus considered a
fundamental component of every network security in-
frastructure, including IVN. Intrusion detection can be
particularly useful in detecting threats that may not
be caught by other security measures, such as zero-
day vulnerabilities or insider attacks. It can also pro-
vide an early warning of a potential attack, allowing
car manufacturers to take preventive measures be-
fore significant damage occurs. The main objective
of this thesis is to investigate the capability of deep
learning techniques in detecting in-vehicle intrusions.
Deep learning algorithms have the ability to process
large amounts of data and recognize complex pat-
terns that may be difficult for humans to discern, ma-
king them well-suited for detecting intrusions in IVN.
However, since the E/E architecture of a vehicle is
constantly evolving as new technologies and require-
ments emerge, we propose different deep learning-
based solutions for different E/E architectures and for
various tasks including anomaly detection and classi-
fication.
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