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Résumé

Cette thèse est consacrée aux équations cinétiques de Fokker-Planck, à la stabilité des inégalités fonction-
nelles et aux formes de Dirichlet non linéaires. Des taux de convergence vers l’équilibre sont estimés via un
cadre analytique fonctionnel basé sur les normes faibles des solutions. L’équation de Vlasov-Fokker-Planck,
avec variable de position confinée dans un tore, est analysée comme modèle de référence. La même stratégie
est ensuite etendue à une large classe de modèles cinétiques. Nous considérons également des inégalités de
Gagliardo–Nirenberg sur la sphère qui interpolent entre les inégalités de Poincaré et les inégalités de Sobolev.
Nous prouvons des résultats constructifs de stabilité, dans la norme la plus forte possible, avec des exposants
optimaux. L’estimation de stabilité dégénère sur un sous-espace de dimension finie, ce qui nécessite des pré-
cautions supplémentaires. Notre technique combine des développements de Taylor, l’analyse harmonique
et des methodes parabòliques. Nous prouvons rigoureusement la convergence de la famille de Gagliardo-
Nirenberg sur la sphère vers les inégalités de Beckner gaussiennes dans la limite de grandes dimensions.
Ensuite, nous donnons des résultats constructifs de stabilité, en utilisant des diffusions non linéaires sur
l’espace gaussien. Enfin, nous traitons l’inégalité de Sobolev logarithmique gaussienne comme cas limite.
Nous trouvons des estimations explicites de stabilité pour des densités log-concaves ou à support compact
par un argument de log-concavité deduit du flot d’Ornstein–Uhlenbeck et de la méthode du carré du champ.
Nous contribuons à la théorie des formes de Dirichlet non-linéaires en etendant la propriété de contraction
normale. La preuve adopte une nouvelle stratégie, basée sur l’approximation des fonctions Lipschitz réelles
par des compositions répétées de fonctions linéaires par morceaux simples.
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Sommario

Questa tesi analizza le equazioni cinetiche di Fokker–Planck, la stabilità di disuguaglianze funzionali e le
forme di Dirichlet non lineari. Tassi costruttivi di convergenza all’equilibrio per equazioni cinetiche sono
calcolati all’interno di un quadro analitico funzionale basato sulle norme deboli delle soluzioni. L’equazione
di Vlasov–Fokker–Planck, con la variabile spaziale confinata in un toro, viene analizzata come caso modello.
La stessa strategia viene poi generalizzata a un’ampia classe di modelli cinetici. Si considerano anche le disu-
guaglianze di Gagliardo–Nirenberg sulla sfera, interpolanti tra la disuguaglianza di Poincaré e quella critica
di Sobolev. Si dimostrano risultati di stabilità costruttiva, nella norma più forte possibile, con esponenti otti-
mali nel termine di stabilità. Quest’ultimo termine è, però, degenere su un sottospazio di dimensione finita,
che richiede quindi ulteriore precisione. La tecnica proposta combina sviluppi di Taylor, analisi armonica e
flussi di diffusione (non) lineari. La convergenza della famiglia di Gagliardo–Nirenberg alle disuguaglianze
gaussiane di Beckner, per la dimensione della sfera che tende all’infinito, viene dimostrata in modo rigoro-
so. Vengono poi dati risultati di stabilità costruttiva per tali disuguaglianze di Beckner, utilizzando flussi di
diffusione non lineare sullo spazio gaussiano. Infine si studia la disuguaglianza logaritmica di Sobolev co-
me caso limite. Si danno stime di stabilità esplicite per densità log-concave o a supporto compatto, grazie
all’interazione tra log-concavità e flusso di Ornstein–Uhlenbeck, migliorando il metodo del carré du champ.
Si portano contributi alla teoria delle forme di Dirichlet non lineari, estendendo la proprietà di contrazione
normale al contesto non lineare. La dimostrazione adotta una nuova strategia, basata sull’approssimazione
di funzioni lipschitziane reali mediante composizioni ripetute di funzioni elementari lineari a tratti.
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Abstract

This thesis concerns kinetic Fokker-Planck equations, stability of functionals inequalities, and nonlinear
Dirichlet forms. Constructive convergence rates to equilibrium for kinetic equations are computed via a
functional analytic framework based on weak norms of solutions. The Vlasov-Fokker-Planck equation, with
the space variable confined in a torus, is analysed as a benchmark. Then, the same strategy is generalised to a
wide class of kinetic Fokker-Planck models. We also consider Gagliardo-Nirenberg inequalities on the sphere,
interpolating between the Poincaré and the Sobolev inequalities. We prove constructive stability results, in
the strongest possible norm, with sharp exponents in the distance from optimisers. This term degenerates
on a finite-dimensional subspace requiring additional care. Our technique combines Taylor expansions, har-
monic analysis, and (non)linear diffusion flows. We rigorously prove convergence of the Gagliardo-Nirenberg
family of inequalities, for the dimension of the sphere approaching infinity, to the Gaussian Beckner inequal-
ities. Then, we give constructive stability results for those, using nonlinear diffusion flows on the Gaussian
space. Finally, we treat the Gaussian logarithmic Sobolev inequality as a limit case. We find explicit stability
estimates for log-concave or compactly-supported densities, thanks to the interplay between log-concavity
and the Ornstein-Uhlenbeck flow, using the carré du champ method. We contribute to the theory of nonlin-
ear Dirichlet forms. We extend the normal contraction property to the nonlinear setting. The proof adopts a
new strategy, based on the approximation of real Lipschitz functions with repeated compositions of elemen-
tary piecewise linear functions.
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Chapter 1

Introduction

Introduction en français

Cette thèse traite des équations aux dérivées partielles décrivant l’évolution temporelle de systèmes com-

posés de nombreuses particules, qui sont soumises aux lois de la mécanique comprenant des interactions

entre particules. La dynamique à l’échelle microscopique est réversible en temps, mais l’irréversibilité appa-

raît dans le système à la limite thermodynamique : l’évolution de l’entropie donne une direction au temps.

Dans le langage de la physique, l’entropie augmente avec le temps, conduisant le système à des états d’en-

tropie maximale. Ces états sont stables et donc appelés équilibres. Nous quantifions la vitesse à laquelle

les équilibres sont approchés. Pour ce faire, nous trouvons des entropies adaptées et établissons une inéga-

lité entre l’augmentation de l’entropie et l’entropie elle-même. Lorsque l’inégalité est optimale, le taux de

convergence vers l’équilibre est optimal. Des autres améliorations dans ces inégalités permettent de saisir

des propriétés plus fines de l’évolution temporelle. Ces idées sont appliquées à diverses équations cinétiques

et de diffusion.

Nous considérons des systèmes complexes composés d’un grand nombre de particules ou d’agents interagis-

sant ensemble et avec un espace ambiant, dont l’échelle caractéristique est supposée beaucoup plus grande

que celle d’une particule typique. Ces systèmes apparaissent dans une large variété de phénomènes natu-

rels, qui vont de la dynamique des molécules dans un gaz ou d’une population de bactéries aux interactions

entre étoiles à l’intérieur d’une galaxie, et entre les galaxies elles-mêmes, en passant par les vols d’oiseaux, les

bancs de poissons et les comportements socio-économiques. Ces systèmes, et leur évolution dans le temps,

peuvent être étudiés à trois niveaux de détails différents, généralement appelés niveaux microscopiques, ni-

veau mésoscopique (ou cinétique) et niveau macroscopique (diffusif où déduit par la dynamique des fluides).

Nous renvoyons à [254] pour une discussion beaucoup plus large du sujet.

Le niveau microscopique est le plus détaillé. À ce niveau, toutes les interactions entre les particules sont

prises en compte. Individuellement, chaque particule obéit aux lois élémentaires de la physique, typique-

ment aux lois de Newton ou au principe de moindre action. En outre, nous avons des interactions entre les

différentes particules du système, qui peuvent être à longue portée, comme c’est le cas pour les charges élec-

triques et la gravité, ou à courte portée. Ces dernières sont généralement modélisées comme des collisions,

régies par une loi d’interaction microscopique. À ce niveau, toutes les dynamiques sont réversibles en temps.

3
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En théorie, la description du système est complète, mais elle n’est jamais accessible en pratique. En effet,

dans les systèmes d’intérêt physique, l’ordre de grandeur du nombre de particules est de 109−10 particules

pour les phénomènes biologiques et pour la dynamique stellaire, et 1023 – l’ordre du nombre d’Avogadro –

pour les gaz. Il n’est donc pas possible de suivre toutes les particules et toutes les interactions. Il faut donc

envisager un autre niveau de description, plus facile à traiter, au prix d’une perte d’information.

C’est le cas du niveau mésoscopique ou cinétique, où l’objet d’étude est la fonction de distribution des

particules en fonction de deux variables, généralement la position et la vitesse, et son évolution dans le

temps. L’histoire de chaque particule n’est pas reconstituée et le phénomène est décrit comme l’évolution

d’une densité de probabilité sur un espace de phase. Une équation cinétique est alors écrite pour la fonction

de distribution. Cette approche remonte à Maxwell, voire [205].

Le passage de l’échelle microscopique à l’échelle mésoscopique se fait généralement en prenant la limite

pour un nombre N de particules dans le système qui tend à l’infini, connue sous le nom de limite thermody-

namique. Un choix d’échelles doit être fait, donc resultant en différentes équations cinétiques. Par exemple,

on peut se concentrer sur les interactions faibles et à longue portée, en prenant une limite de champ moyen,

et obtenir une équation de Vlasov, voire [163, 174]. Alternativement, les limites de Boltzmann-Grad peuvent

être considérées, afin de capturer des interactions intenses mais à courte portée, [153]. C’est la façon de dé-

river l’équation de Boltzmann à partir de la dynamique microscopique. Dans cette thèse, nous nous concen-

trerons sur les équations cinétiques de type Boltzmann, avec des noyaux du collision simplifiés.

Dans [62], il est prouvé (de manière formelle) que l’entropie thermodynamique des solutions de l’équa-

tion de Boltzmann augmente, au fur et à mesure que le temps s’écoule. L’irréversibilité apparaît à la limite

thermodynamique, alors même que toutes les dynamiques au niveau microscopique sont réversibles. Grâce

à la monotonie de l’entropie au cours de l’évolution, l’équation de Boltzmann prend en compte l’irréversibi-

lité des grands systèmes dans une description statistique. L’analyse de [62] donne un autre type de résultat.

La production d’entropie le long de l’équation est explicitement calculée, et il est prouvé qu’elle disparaît si et

seulement si la fonction de distribution est une distribution maxwellienne (ou gaussienne). Ce dernier point,

combiné avec la monotonie de l’entropie, prouve que les solutions de l’équation de Boltzmann convergent

vers telles solutions en temps long. Les états d’entropie maximal (mesurés par l’entropie) sont stables et at-

tirent toutes les solutions dans la limite des temps grands, quelles que soient les conditions initiales. Le pro-

blème de l’estimation quantitative du taux de convergence vers les états d’équilibre est un sujet de recherche

majeure en théorie cinétique.

En se concentrant sur un régime spécial de l’équation de Boltzmann, correspondant aux collisions ra-

santes, on peut obtenir l’équation de Landau. Cette thèse traite d’une simplification linéaire de l’équation

de Landau : l’équation de Vlasov–Fokker–Planck. L’équation de Vlasov–Fokker–Planck (VFP) ou équation ci-

nétique de Fokker–Planck s’écrit comme une équation aux dérivées partielles portant sur la fonction de dis-

tribution écrite sur l’espace des phases, typiquement l’espace des positions et des vitesses. Cette équation

est pilotée par un opérateur de collision de type diffusion dans les variables de vitesse uniquement et un

opérateur de transport, reliant les variables de position et de vitesse. L’équation VFP présente un intérêt in-

dépendant. Premièrement, ses solutions sont la loi d’un processus aléatoire appelé dynamique de Langevin,

[44], qui est une description mésoscopique d’un système de particules soumises à une force aléatoire. L’équa-

tion VFP est aussi bien adaptée à la description des plasmas et à la dynamique stellaire, [28, 92]. Certaines de

ses généralisations sont également présentes en statistique, ou encore dans les simulations moléculaires et

divers autres modèles de la physique [243, 152, 44]. Enfin, certaines applications socio-économiques ont èté

proposeés plus rècenement et sont exposeés par exemple dans [228].
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Comme pour l’équation de Boltzmann, les solutions de l’équation VFP convergent vers des fonctions

maxwelliennes en temps long. La différence est que l’équation VFP est beaucoup plus simple et que les taux

de convergence peuvent être quantifiés à l’aide de différentes techniques. Dans le cas le plus simple, une

fonction de Green est disponible et les solutions sont totalement explicites [183], ce qui permet des calculs

directs. Dans des cas plus géneéraux, l’état de l’art consiste à utiliser une technique développée au cours des

vingt dernières années, connue sous le nom d’hypocoercivité. Nous en donnons une brève description, dans

le cas spécifique de l’équation VFP. Le calcul des taux de convergence pour l’équation VFP n’est pas aussi

facile que pour une EDP parabolique, car l’équation VFP est une équation sur une fonctionne inconnue

dependant de deux variables de position et vitesse et la relaxation est induite par un opérateur de diffusion

seulement dans les variables de vitesse. Les variables spatiales sont affectées indirectement par la diffusion,

via l’opérateur de transport. L’opérateur de diffusion a un noyau non trivial, dont les éléments sont appelés

équilibres locaux. Cependant, la fonction de distribution ne peut pas rester dans un état d’équilibre local qui

ne soit pas un équilibre global, du fait de l’opérateur de transport. Cet effet combiné se poursuit jusqu’au

point que l’équilibre global soit atteint.

Le générateur de l’équation VFP appartient à une classe d’opérateurs de diffusion dégénérés de la forme

A⋆A+B , où A et B sont des opérateurs différentiels du premier ordre, et A⋆A n’est pas uniformément ellip-

tique (il n’agit pas sur la position). Ces operateurs A,B ont été analysés dans [169], avec pour objectif príncipal

l’étude des propriétés de régularité (hypoellipticité).

L’intuition de s’inspirer par l’hypoellipticité pour les taux de convergence est utilisée dans [255, 221, 165],

à la suite de [169, 204, 162]. Cette théorie a été baptisée hypocoercivité par Gallay, et améliore les résultats

antérieurs des années 90, concernant le comportement à long terme des EDP cinétiques, en quantifiant les

taux de convergence. Du fait que l’opérateur de diffusion dans l’équation VFP est dégénéré, il ne va pas être

coercif par rapport à des normes standard comme la norme H1. Les techniques d’hypocoercivité résolvent

le problème en considérant des normes tordues équivalentes qui capturent mieux l’effet combiné de la dif-

fusion et du transport. Dans une telle norme modifiée, des taux de décroissance exponentiels peuvent être

calculés. Ils sont ensuite transférés à une norme de référence par équivalence. La même idée a été utilisée

pour la norme L2 dans [127], voir aussi le Chapitre 2. Le cadre de cet article a l’avantage supplémentaire d’être

compatible avec les limites de diffusion, correspondent au passage de l’échelle cinétique à la dynamique des

fluides.

Le niveau de description cinétique est en fait un niveau intermédiaire, et une échelle macroscopique peut

être introduite. Le niveau macroscopique correspond à la dynamique des fluides. Bien que moins détaillée

que l’échelle cinétique, la dynamique des fluides est généralement plus facile à observer et plus pratique

aussi bien pour les simulations numériques et les applications en physique et en ingénierie. Dans le passage

entre les deux échelles, le libre parcours moyen des particules est ramené à zéro, tandis que le nombre moyen

d’interactions par particule et par unité de temps est envoyé à l’infini. Les variables de vitesse convergent vers

l’équilibre à une échelle de temps beaucoup plus rapide que les variables spatiales, de sorte que l’évolution

est décrite dans la limite par un nombre fini des moments en fonction du temps et de la variable spatiale.

Voir [59, 163] pour des résultats de convergence rigoureux dans le contexte des équations de Boltzmann ou

de Vlasov, respectivement. Dans le cas de l’équation VFP, la limite de diffusion donne l’équation de la chaleur

ou de Fokker–Planck au premier ordre, [127].

Les contributions dans cette direction participent du sixième problème d’Hilbert : «Ainsi, les travaux

de Boltzmann sur les principes de la mécanique suggèrent le problème de développer mathématiquement les

processus limites, là simplement indiqués, qui conduisent de la vue atomistique aux lois du mouvement des
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continuums», voir [166, 151]. Dans cette perspective, les taux de convergence à l’échelle cinétique devraient

être cohérents avec ceux que l’on retrouve dans la limite de diffusion. Avec la motivation de contribuer à

cette théorie, nous fournissons de nouvelles techniques pour construire des estimations quantitatives pour

les deux niveaux de description, cinétique et macroscopique.

La deuxième partie de cette thèse étudie en effet les dynamiques de diffusion (parmi lesquels nous trou-

vons l’équation de la chaleur) sur la sphère et dans l’espace gaussien. Le but est de dériver des propriétés

fines des solutions des équations de diffusion et de les relier aux inégalités fonctionnelles.

Certaines inégalités fonctionnelles sont reliées aux EDP de diffusion, voir [128, 63], par la méthode de l’en-

tropie. Cela signifie que ces inégalités fonctionnelles relient une entropie et une information de Fisher, dont

la différence - dans les bons cas seulement - diminue le long du flot d’une EDP d’évolution appropriée. Un

pas en avant consiste à trouver des fonctions optimales (et donc aussi la constante optimale) dans l’inégalité

fonctionnelle. Du point de vue de l’EDP, cela revient à décrire le comportement en temps long des solutions.

Dans les bons cas, ápres avoir recalé les variables, les fonctions optimales deviendront des équilibres et les

solutions convergeront vers eux, avec des taux déterminés par la constante optimale dans l’inégalité fonc-

tionnelle. Cette approche remonte au moins à [24], avec certaines idées déjà présentes dans [220, 106], et elle

a été réinterprétée dans un langage plus proche des EDP dans [19].

À ce stade, on peut se demander si la vitesse de convergence est plus élevée pour des donneés ini-

tiales bien choisies. Une telle amélioration est possible si une inégalité fonctionnelle améliorée est obte-

nue. Ce type de resultat peut être réecrit comme une estimation de stabilité dans le cas des inégalités de

Gagliardo–Nirenberg sur la sphère. En d’autres termes, le déficit associé à l’inégalité contrôlerait une distance

entre n’importe quelle fonction et l’ensemble des optimiseurs. Si le contrôle est explicite, l’amélioration des

taux de convergence l’est également. Les résultats de stabilité sont souvent prouvés en deux étapes. Tout

d’abord, une estimation de la stabilité locale est établie, par le biais d’un développement asymptotique au-

tour des fonctions optimales. Ensuite, un argument est nécessaire pour rendre l’estimation globale. Habituel-

lement, cela se fait de manière non constructive par exemple par la méthode de la concentration-compacité,

[47, 144, 142]. Récemment, une méthode constructive est apparue, dans laquelle un flot symétrisant est uti-

lisé pour se rapprocher des optimiseurs, [119]. Dans [63], et dans cette thèse, la même chose est faite avec des

flots de diffusion non linéaires. Le problème de la stabilité de l’inégalité de Sobolev a été soulevé par Brezis

et Lieb dans [73], et une première réponse non constructive est apparue dans [47]. Cependant, des versions

antérieures de la stabilité (par exemple, le long des séquences) peuvent être retracées dans des travaux anté-

rieurs, par exemple [199].

Les inégalités fonctionnelles que nous considérons sont des inégalités de Gagliardo–Nirenberg–Sobolev

(GNS) sur la sphère, provenant de [240, 147, 222] et explicites dans le cas de la sphere dans [48]. Les inégalités

GNS interpolent les inégalités de Poincaré et les inégalités critiques de Sobolev. En outre, nous couvrons une

famille d’inégalités sur l’espace gaussien, qui ont l’inégalité de Poincaré gaussienne et l’inégalité de Sobolev

logarithmique comme extrémités. Elles ont été introduites par Beckner dans [35]. Les inégalités de Beckner

peuvent être vue comme une version en dimension infinie de GNS, comme nous le montrons dans [P3].

Notre résultat est une version pour les inégalités fonctionnelles du lemme dit de Maxwell–Poincaré, «qui sti-

pule que la limite faible de la séquence des mesures de Lebesgue sur des sphères de dimension finie avec une

normalisation appropriée est la mesure gaussienne standard dans un espace de dimension infinie», voir pour

exemple [252]. Cette affirmation est connue depuis [209], et elle a été telle quelle utilisée très probablement

par Maxwell en mécanique statistique, voir [82]. Les calculs avec les harmoniques sphériques sur des sphères

de grandes dimensions convergeant formellement vers les polynômes d’Hermite gaussiens sont en effet pré-
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sents dans la littérature depuis longtemps, ils ont été revisités par McKean [208]. Le lecteur peut consulter

[252] pour une discussion historique approfondie.

Enfin, nous considérons l’inégalité de Sobolev logarithmique gaussienne, qui est à la fois le point extreme

des inégalités de Beckner et la limite en grande dimension de l’inégalité de Sobolev sur la sphère. Elle trouve

son origine en théorie de l’information, avec les travaux de Shannon [239], et a été explicitement exposée

dans [155, 261]. Voir [53, 241, 253] pour plus de détails et [12, 90] pour un compte-rendu historique détaillé.

L’inégalité de Sobolev logarithmique est également étroitement liée aux problèmes de géométrie convexe et à

l’isopérimétrie dans l’espace gaussien, voire [64, 214, 135, 143]. Notre contribution est de prouver les résultats

de stabilité en information de Fisher relative, avec une approche basée sur le flot de diffusion d’Ornstein–

Uhlenbeck et la méthode du carré du champ.

Les équations de diffusion ont un sens dans des cadres beaucoup plus abstraits que les varietés ou les

espaces euclidiens à poids. On peut considérer le flot de chaleur (ou de diffusion non linéaires) dans des

espaces de mesure métriques à la suite de [8, 238, 94], où une structure différentielle a été établie, [149],

sous conditions pour la courbure de Ricci. Cependant, dans la dérniere partie de ce travail, notre choix est

d’étudier des semigroupes de diffusion non linéaires sur des espaces sans structure métrique ou topologique.

Les équations d’évolutions correspondentes généralisent les semi-groupes de Markov linéaires et la théorie

des formes de Dirichlet qui leur est associé. Les formes de Dirichlet sont des fonctionnelles bilinéaires sa-

tisfaisant une propriété de contraction, voire [46]. De nos jours, les formes de Dirichlet sont un sujet bien

établi, lié à la théorie des processus de Markov linéaires et des semi-groupes, [70, 146, 203], et aux équations

de diffusion linéaires [24, 128]. Parmi les différentes extensions non linéaires, nous suivons celle de [99], qui

contient comme cas particuliers les semi-normes de Sobolev non quadratiques, liées aux géométries de Fins-

ler [223]. Nous étendons les propriétés de contraction qui sont valables dans le cadre bilinéaire aux formes

de Dirichlet non linéaires, et nous les caractérisons en matière d’inégalités fonctionnelles uniquement. Nos

résultats constituent une contribution à la classification des formes de Dirichlet non linéaires et des semi-

groupes de Markov non linéaires.
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English introduction

This thesis deals with partial differential equations describing the time evolution of systems of many parti-

cles, which are subject to the laws of mechanics and mutual interactions. Every interaction is reversible in

time, but irreversibility arises in the system as a whole. Such phenomenon, yielding a direction of time, is

measured via an entropy. Entropy increases along time, driving the system to the states of maximal disorder.

Those states are stable, hence called equilibria. We quantify the speed at which equilibria are approached. To

this extent, we find adapted entropies and establish an inequality between the increment of the entropy and

the entropy itself. When the inequality is optimal, the sharp rate of convergence to equilibrium is found. Fur-

ther improvements in the inequalities capture finer properties of the time evolution. These ideas are applied

to various kinetic and diffusion equations.

We consider complex systems composed by a large numbers of particles or agents interacting together

and with an ambient space, whose physical scale is assumed much larger than that of a typical particle.

These systems arise in a variety of natural phenomena, ranging from the dynamics of molecules in a gas or a

population of bacteria to the interactions between stars inside a galaxy, and between the galaxies themselves,

passing through flock of birds, shoal of fish, and socio-economic behaviours. These systems, and the time

evolution of those, can be investigated at three different levels of detail, usually referred to as the microscopic

level, the mesoscopic (or kinetic) level, and the macroscopic (or fluid dynamics) level. We refer to [254] for a

much broader discussion of the subject.

The microscopic level is the most detailed one. There, the trajectory of every particle is tracked thor-

oughly. To this extent, all interactions between particles are taken into account. Individually, each particle

obeys elementary laws of physics, as Newton’s laws or Hamilton’s least action principle. In addition, we have

interactions between the different particles of the system, which can be long-range, as it happens for elec-

tric charges and gravity, or short-range. The latter are usually modeled as collisions, ruled by a microscopic

interaction law. We highlight that at this level all dynamics are reversible in time. The knowledge of the phe-

nomenon is complete, but it is never accessible in practice. Indeed, in systems of physical interest, the typical

magnitude is 109−10 particles for biological phenomena and for stellar dynamics, and 1023 – in the order of

Avogadro’s number – for gasses. Then, tracking all particles and interactions is unfeasible. Therefore, another

level of description shall be considered, which is more treatable, at the cost of losing some information.

This is the case for the mesoscopic or kinetic level, where the object of study is the distribution function

of particles with respect to two variables, typically position and velocity, and the time evolution of it. The

history of every single particle is not reconstructed, and the phenomenon is described as the evolution of a

probability density over a phase space. A kinetic equation is then written for the distribution function. This

goes back to Maxwell, see [205].

The passage from the microscopic to the mesoscopic scale is usually done by taking a limit for the num-

ber N of particles in the system going to infinity, known as the thermodynamic limit. A choice shall be

made, resulting in different kinetic equations originating from the same system of particles. For example,

one can focus on weak, long-range interactions, by taking a mean-field limit, and obtain a Vlasov equation,

see [163, 174]. On the other hand, Boltzmann-Grad limits can be considered, in order to capture intense and

short-range interactions, [153]. This way one derives Boltzmann’s equation from microscopic dynamics. In

this thesis we will focus on kinetic equations of Boltzmann type, with simplified collision kernels.



9

In [62], the thermodynamic entropy is proved to increase along solutions to the Boltzmann equation,

as the time progresses. Irreversibility appears, while all dynamics at the microscopic level are reversible.

One cause of this phenomenon can be found in the Boltzmann–Grad, where re-collisions of particles are

neglected. Via the monotonicity of the entropy along the evolution, Boltzmann’s equation explains the ir-

reverisbility of large systems in a statistical description. The analysis of [62] yields another outcome. The

entropy production along the equation is explicitly computed, and it is proved to vanish if and only if the

distribution function is a Maxwellian (or Gaussian) distribution. The last point, combined with the mono-

tonicity of the entropy, proves that solutions to Boltzmann’s equation converge to the Maxwellian for long

times. The states of maximal chaos (measured via the entropy) are stable and they attract all solutions in the

limit t →∞, whatever the initial conditions. The problem of deriving quantitative estimates of the rate of

convergence to equilibria (i.e. Maxwellians) is a major research subject in kinetic theory.

By focusing on a special regime of Boltzmann’s equation, corresponding to grazing collisions, one can

find Landau’s equation. This thesis deals with a linear simplification of Landau’s equation: the Vlasov–

Fokker–Planck equation. The Vlasov–Fokker–Planck (VFP) or kinetic Fokker–Planck equation is written as

a partial differential equation on the distribution function of space and velocity of particles, driven by a

diffusion-type collision operator in velocity variables only and a transport operator, linking spatial and veloc-

ity variables. The VFP equation has an independent interest, aside its derivation from Boltzmann’s equation.

Firstly, its solutions are the law of a random process called Langevin dynamics, [44], which is a mesoscopic

description of a system of particles subject to a random background force. Secondly, the VFP equation is

well-suited for describing gas in plasma form, and stellar dynamics, [28, 92]. Some generalisations of it are

also present in statistics, molecular simulations, and physical models [243, 152, 44]. Finally, some recent

socio-economic applications are collected in [228].

Likewise the Boltzmann equation, solutions to the VFP equation converge to Maxwellian functions for

long times. The difference is that the VFP equation is much simpler, and convergence rates can be quantified

with different techniques. In the simplest case, a Green function is available and solutions are fully explicit

[183], allowing for direct computations. More in general, the state of the art is using a technique developed

in the last twenty years, going under the name of hypocoercivity. We give a brief description of it, in the

specific case of the VFP equation. Computing convergence rates for the VFP equation is not as easy as it

would be for a parabolic PDE, as the VFP equation is set in the phase space of positions and velocities, but

relaxation is induced by a diffusion operator in velocity variables only. Spatial variables are affected indirectly

by diffusion, via the transport operator which links them to velocity variables. The diffusion operator has

a nontrivial kernel, whose elements are called local equilibria. However, the distribution function cannot

lie in the space of local equilibria for long, as the transport operator would push it away, turning on again

the dissipation induced by the diffusion operator. This combined effect carries on along solutions the VFP

equation until global equilibrium is reached, which means that the distribution lies in the kernel both of

transport and diffusion operators. Hence, it is forced to be a Maxwellian.

The generator of the VFP equation belongs to a class of degenerate diffusion operators of the form A⋆A+
B , where A,B are first-order differential operators, and A⋆A is not uniformly elliptic. These have been anal-

ysed in [169]. There, they main point is studying regularity properties (in order to prove hypoellipticity).

The intuition of taking inspiration from hypoellipticity for convergence rates is used in [255, 221, 165],

after [169, 204, 162]. This theory was dubbed hypocoercivity by Gallay, and improves on previous results for

the long-time behaviour of kinetic PDEs, which started appearing in the 90s, by quantifying convergence

rates. Due to the fact that the diffusion operator in the VFP equation is degenerate, it will not be coercive in
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standard norms as the H1 norm. Hypocoercivity techniques solve the issue by considering equivalent twisted

norms which better capture the combined effect of diffusion and transport. In the modified norm decay rates

are computed. Then, those are transferred to the reference norm by equivalence. The same idea has been

used for the L2 norm in [127]. The framework of this paper has the additional advantage of being consistent

with diffusion limits from the kinetic to the fluid dynamics scale.

The kinetic level of description is actually an intermediate one, and a macroscopic scale can be intro-

duced. The macroscopic level corresponds to fluid dynamics. Albeit less detailed than the kinetic scale, fluid

dynamics is observable and convenient for numerical simulations, and applications to physics and engi-

neering. In the passage between the two scales, the mean free path of particles is pushed to zero, while the

average number of interactions for a particle in a unit of time is sent to infinity. Velocity variables converge to

equilibrium at a much faster time scale than the spatial variables, so the evolution is described in the limit by

the spatial marginal only, called density function. See [59, 163] for rigorous convergence results in the context

of Boltzmann’s or Vlasov’s equations, respectively. In the case of the VFP equation, the diffusion limit yields

the heat equation as a first-order correction, [127].

Contribution in this direction point towards Hilbert’s sixth problem: «Thus Boltzmann’s work on the prin-

ciples of mechanics suggests the problem of developing mathematically the limiting processes, there merely in-

dicated, which lead from the atomistic view to the laws of motion of continua», see [166, 151]. To this extent,

convergence rates in the kinetic scale should be consistent with those recovered in the diffusion limit. With

the motivation to contribute to this theory, we provide new techniques to construct quantitative estimates

for both levels of description.

The second part of this thesis indeed studies diffusion flows (among which we find the heat equation) on

the sphere and the Gaussian space. The goal is to derive fine properties of solutions to diffusion equations

and to apply them to functional inequalities.

Some functional inequalities are linked with diffusion PDEs, see [128, 63], through the entropy method.

This means that the two sides of a functional inequality are an entropy and a Fisher information, whose

difference – in good cases only – is decreasing along the flow of a certain evolution PDE. One step forward

is finding optimal functions (hence the optimal constant) in the functional inequality. On the PDE side, this

corresponds to the long-time behaviour of solutions. In good cases, after rescaling the variables, optimal

functions will become equilibria and solutions will converge towards them, with sharp rates determined by

the optimal constant in the functional inequality. This approach goes back to [24] at least, with some ideas

already present in [220, 106], and it has been reinterpreted in a language closer to PDEs in [19].

At this point, one can ask whether the speed of convergence is higher for well-chosen initial data. For

GNS inequalities on the sphere, this would correspond to an improved inequality, which can be rewritten as

a stability result. The deficit associated with the inequality would control a distance between any function

and the set of the optimisers. If the control is explicit, also the improvement over the convergence rates is

explicit. Stability results are often proved in two steps. First, a local stability estimate is established, via an

asymptotic expansion around optimisers. Then, an argument is needed to make the estimate global. Usually

this is non-constructively done with concentration-compactness, [47, 144, 142]. Recently, a constructive

method appeared, where a symmetrising flow is used to get close to optimisers, [119]. In [63], and in this

thesis, the same is done with nonlinear diffusion flows. The problem of stability for Sobolev’s inequality

has been raised by Brezis and Lieb in [73], and a first non-constructive answer appeared in [47]. However,

earlier versions of stability (for instance, along sequences) can be traced back to previous works on, e.g. ,

concentration compactness methods [199].
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The functional inequalities we consider are Sobolev–Gagliardo–Nirenberg (GNS) inequalities on the sphere,

originating from [240, 147, 222] and written in [48]. The GNS inequalities interpolate between the Poincaré

and the critical Sobolev inequalities. In addition, we cover a family of inequalities on the Gaussian space,

which have the Gaussian Poincaré and the logarithmic Sobolev inequality as the lower and the upper end-

point. These have been studied by Beckner in [35]. Beckners’s inequalities are indeed an infinite-dimensional

version of the Sobolev–Gagliardo–Nirenberg family, as we show rigorously in [P3]. Our result is a version for

functional inequalities and diffusion flows of the so-called Maxwell–Poincaré Lemma, «which states that the

weak limit of the sequence of Lebesgue measures on finite-dimensional spheres with an appropriate normal-

ization is the standard Gaussian measure in an infinite-dimensional space» [252]. This statement is infor-

mally known since [209], and it has been used by Maxwell in statistical mechanics, see [82]. Computations

with spherical harmonics on large-dimensional spheres converging formally to the Gaussian Hermite poly-

nomials are present in the literature, and were revisited by McKean [208]. The reader can check [252] for a

complete historical discussion.

Finally, we consider the Gaussian logarithmic Sobolev inequality, which is both the critic point of Beck-

ner’s inequalities, and the large dimensional limit of Sobolev’s inequality on the sphere. Its very origin lies

in communication engineering, with the work of Shannon [239], but it has been written out explicitly in

[155, 261]. See [53, 241, 253, 249] for more links with information theory, also in view of log-concavity. See

also [12, 90] for a detailed historical account. The logarithmic Sobolev inequality is also closely related with

convex geometry problems and isoperimetry in the Gaussian space, see [64, 214, 135, 143]. Our contribution

is to prove stability results in relative Fisher information, with an approach purely based on the Ornstein–

Uhlenbeck diffusion flow.

Diffusion equations make sense in much more abstract settings than manifolds or weighted Euclidean

spaces. One can consider the heat flow (or nonlinear diffusion flows) in metric measure spaces after [8, 238,

94], where a differential structure can still be established, [149] under Ricci lower bounds. However, in the

third part of this work, our choice is to study nonlinear diffusion semigroups on spaces without any metric or

topological structure. These evolutions generalise linear Markov semigroup and the related Dirichlet forms

theory. Dirichlet forms are bilinear functionals satisfying a contraction property, [46]. Nowadays, Dirichlet

forms are a well-established topic, related to the theory of linear Markov processes and semigroups, [70, 146,

203], and with linear diffusion equations [24, 128]. Among different nonlinear extension, we follow the one

of [99], which contains as particular cases the key–examples of nonquadratic Sobolev seminorms, related to

Finsler geometries [223]. We extend contraction properties which are valid in the bilinear setting to nonlinear

Dirichlet forms, and we characterise them in terms of functional inequalities only. Our results can contribute

to classify nonlinear Dirichlet forms and nonlinear Markov semigroups.
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Chapter 2

Main results

2.1 Kinetic Equations

This section is devoted to results of Chapters 3-4 about hypocoercivity for kinetic equations.

Our main results are the following. Time averages of the norms of solutions to kinetic Fokker–Planck equa-

tions verify a constructive entropy-entropy production estimate along the flow. The entropy-entropy produc-

tion estimate is based on modified functional inequalities of Lions–Poincaré type, involving weak norms of

solutions. Exponential or polynomial decay rates are derived, according to the shape of local equilibria. In

the case of algebraic decay rates, extra moments must be controlled via a Lyapunov condition.

2.1.1 On the kinetic Fokker–Planck equation

Let x, v be variables designating position, and velocity, respectively. Note that the variable v may correspond

to actual physical velocity or to a momentum in case of Hamiltonian Langevin dynamics. We call X the

space of all positions x, and V the space of all velocities v. The product X ×V is called phase space. Let us

take V =Rd . For the space X our two main examples are X =Rd or X = [0,L]d , for any L > 0, with periodic

boundary conditions (i.e. a flat torus of length L > 0). We introduce a time variable t ≥ 0. Our main object of

study is functions

f = f (t , x, v) ∶ [0,∞)×X ×V →R,

modeling the time evolution of a distribution of particles with respect to space and velocity. Let ϕ ∶X →
R be a smooth function, called spatial potential, which represents potential energy. Let ψ ∶ V → R, be a

smooth function, standing for kinetic energy. The motion of a single particle subject to the action of ϕ,ψ

is modeled by Hamilton dynamics. The same dynamics on a distribution of particles are encoded by the

transport equation

∂t f +∇vψ ⋅∇x f −∇xϕ ⋅∇v f = 0. (2.1)

We introduce a diffusion operator on the velocity variable v ∈ V , corresponding to collisions between parti-

cles. In Chapter 1, we motivate our choice of considering the Fokker-Planck operator (as a simplification of

Boltzmann’s operator) we define below. Let γ(v) = e−ψ(v) and consider the operator

LFP( f ) =∇v ⋅(γ∇v (
f

γ
)) .

13
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Figure 2.1: Hypocoercivity. Consider the ODE system x′ = v, v ′ = −x − 1
4 v , which is a classical toy

model. This system combines a symmetric, dissipative operator on the variable v , with a skew-
symmetric operator in x, v , and these operators are a caricature of the collision and the transport
operators of (VFP), respectively. On the top: decay in time of x2+v2 along a solution to the system.
Note the local equilibrium points, where the slope is zero. These correspond to points where the
dissipative term in the system vanishes. On the bottom: decay in time of x2+ v2 (in blue) vs. decay
of its time average (in brown). Some dissipation is present even at the points of local equilibrium.
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Let f0 = f0(x, v) be any distribution of particles subject to potential energy, kinetic energy and collisions

(modeled with the Fokker-Planck operator). Then, the distribution function of particles evolves in time ac-

cording to the kinetic Fokker-Planck equation

⎧⎪⎪⎪⎨⎪⎪⎪⎩

∂t f +∇vψ ⋅∇x f −∇xϕ ⋅∇v f =∇v ⋅(γ∇v ( f
γ
)) ,

f (t = 0, x, v) = f0(x, v).
(2.2)

Chapters 3 and 4 deal with the long-time behaviour of solutions to (2.2). Note that the well posedness of the

equation is classical. See [169] for regularisation properties of the equation. We assume that the total mass of

the system is finite, which means that

∫∫
X ×V

f0(x, v)d x d v ∈R.

Without loss of generality, since (2.2) is linear and mass-preserving, we will consider only solutions such that

∫∫
X ×V

f (t , x, v)d x d v =∫∫
X ×V

f0(x, v)d x d v = 1.

2.1.2 The kinetic Fokker-Planck equation on the torus

We present the results contained in Chapter 3. Let X = [0,L]d , and let ϕ = 0. Let v ∈Rd . Consider ψ = 1
2 ∣v ∣

2 so

that the kinetic energy of the system is the standard one, [20]. With this choice we have that

γ(v) = e−
∣v ∣2

2 ,

the standard Gaussian. Moreover, (2.2) recasts into

∂t f + v ⋅∇x f =∇v ⋅(∇v f + v f ). (2.3)

One fact is that f = γ is a stationary solution to (2.3), and indeed it is the only one. Our main goal is to prove

that γ is also a global attractive equilibrium. In other words, solutions to (2.3), for well-prepared initial data,

are such that

f (t , ⋅, ⋅)→ γ, as t →∞.

We also aim at making such limit quantitative in a proper functional norm. One standard choice is to consider

∥g∥2L2(d x γ−1) =∫
X ×V

g 2(x, v)γ−1(v)d x d v.

Hence, the term we investigate is

∥ f (t , ⋅, ⋅)−γ∥2L2(d x γ−1), for t →∞.

Computing the evolution of such norm along (2.3) we obtain

d

d t
∥ f (t , ⋅, ⋅)−γ∥2L2(d x γ−1) =−2∫

X ×V
∣∇v( f γ−1 d v)∣2γd x d v. (2.4)

We see that ∥ f (t , ⋅, ⋅)−γ∥2L2(d x γ−1) is non-expansive along (2.3). However, the right-hand side in (2.4) is zero

whenever f = g(x)γ(v), such functions being called local equilibria, for any function g(x). Then, at this
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level we cannot derive a decay estimate for the L2-norm. This led the authors in [127] to twist the usual

L2−norm, to obtain an equivalent one with a better (i.e. non-degenerate) time derivative along (2.3). This

idea was used for H1−norms in [256] and [215].

We adopt the point of view of [5], that is, we study a time average of the usual norm. The heuristics is

that the right-hand side of (2.4) cannot be degenerate too often, so on average it must be strictly negative.

Therefore, on average, some entropy-entropy production estimate should hold. Let τ > 0 be small enough

and consider

Hτ(t) =∫
τ

0
∥ f (t + s, ⋅, ⋅)−γ∥2L2(d x γ−1 d v)

d s

τ
.

The main result of [P1] is the following.

Theorem 1. For any τ > 0, small enough, there exists an explicit and constructive constant λ(τ) such that, for

all solutions to (2.3) with f0 ∈ L2(d xγ−1), we have

1. for all t ≥ 0,

d

d t
Hτ(t) =−2∫

τ

0
∥∇v( f (t + s, ⋅, ⋅)γ−1)∥2L2(d x,γd v)τ

−1 d s ≤−λ(τ)Hτ(t),

2. for all t ≥ 0,

Hτ(t) ≤ ∥ f0−γ∥2L2(d x γ−1 d v) e−λ(τ) t .

Moreover,
1

λ
= 1

τ
(τ+
√

d L2+τ2) c,

for an explicitly determined constant c depending only on the dimension d.

This results makes the strategy of [5] constructive, tracking the dependence of the constants on all pa-

rameters of the model. As a corollary, we have that

∥ f (t , ⋅, ⋅)−γ∥2L2(d x γ−1) ≤ eλ(τ)τ e−λ(τ)t ∥ f0−γ∥2L2(d x γ−1). (2.5)

Let us comment that the estimate of Theorem 1 implies usual hypocoercivity estimates, which – like (2.5) –

are of the form

∥ f (t , ⋅, ⋅)−γ∥2L2(d x γ−1 d v) ≤C e−λ t ∥ f0−γ∥2L2(d x γ−1 d v),

with a constant C > 1 as a pre-factor. We have the parameters λ,τ, while in more standard hypocoercive

approaches λ and C cannot be dealt with at once. In particular, having good values of both is complicated

(see the discussion in [4]). In a special case: d = 1 and L = 2π we see in Table 3.1 that the value of λ we

determine is off by an order 5 from the actual rate, although our method is not tailored on the particular

equation we consider.

The hardest step in our method – which is proved in a simpler and more quantitative way compared to

[5, 79] – is the point 1. of Theorem 1. Heuristically, it means that the average in time of the velocity gradient

controls the average in time of the solution f to (2.3). Of course, this statement cannot hold true point-wise

in time, which is consistent with the degeneracy of λ(τ) as τ becomes very small. Let us rewrite it as

τ−1 ∫
τ

0
∥∇v h(t + s, ⋅, ⋅)∥2L2(d x,γd v) d s ≥ λ(τ)

2
τ−1 ∫

τ

0
∥h(t + s, ⋅, ⋅)∥2L2(d x,γd v) d s, (2.6)
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where h = f /γ. Denote with d s the uniform measure on [0,τ]. Moreover, let

Π f = γ(v)∫
V

f (⋅, ⋅, v)d v,

be the local projection of f over the space of local equilibria of (2.3).

Estimates as (2.6) are achieved after three functional inequalities, which do not use the fact that f is a

solution to (2.3).

1. A Poincaré–Lions inequality in time and space variables:

∥g ∥2H−1(d s d x) ≲ ∥∇t ,x g ∥2H−1(d s d x) (2.7)

for all smooth functions g depending on s, x only, with zero average in d s d x. Here in particular we

take g =Π f −∫
τ

0 ∫X Π f d s d x.

2. A time-space-velocity averaging lemma , [13]:

∥∇t ,xΠh ∥2H−1(d s d x) ≲ ∥h−Πh ∥2L2(d s d x γd v)+∥(∂t + v ⋅∇x)h ∥2L2(d s d x;H−1(γd v)). (2.8)

3. A Poincaré inequality in velocity only:

∥h−Πh ∥2L2(γd v) ≲ ∥∇v h∥2L2(γd v). (2.9)

Then, combining these estimates, and using the equation (2.3), one arrives to (2.6). Note that (2.9) is the

Gaussian Poincaré inequality and it is sharp, see for instance [219].

Indeed, this proof does not use the fact that γ is actually the Gaussian. The same can be done for any

local equilibrium γ which decays fast enough at infinity to admit (2.9). To this extent, in [P1] we studied also

(2.3) in the same setting with

ψ(v) = (
√

1+ ∣v ∣2)
α

, α ≥ 1.

Then, the following holds. We always indicate with γ ∶= e−ψ, which is not necessarily a Maxwellian anymore.

Theorem 2. Let α ≥ 1 and fix ψ = (
√

1+ ∣v ∣2)α. For any τ > 0, small enough, there exists an explicit and

constructive constant λ(τ,α) such that, for all solutions to (2.2) with f0 ∈ L2(d xγ−1), we have

1. for all t ≥ 0,

d

d t
Hτ(t) =−2∫

τ

0
∥∇v( f (t + s, ⋅, ⋅)γ−1)∥2L2(d x,γd v)τ

−1 d s ≤−λ(τ,α)Hτ(t),

2. for all t ≥ 0,

Hτ(t) ≤ ∥ f0−γ∥2L2(d x γ−1 d v) e−λ(τ,α) t .

Moreover,
1

λ
= 1

τ
(τ+
√

d L2+τ2) c,

for an explicitly determined constant c depending only on d ,α.

A natural question is the following: what happens if 0 <α < 1 ? This problem has been considered in [66]

for example.
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The strategy described above works except for step (2.9). Indeed, this type of inequality holds for kinetic

energies of the form ψ(v) = (
√

1+ ∣v ∣2)α exactly if and only if α ≥ 1. However, we can replace (2.9) with the

weighted inequality

∥h−Πh ∥2L2(γd v) ≲ ∥∇v h∥
1

1+σ
L2(γd v) (∫V

(1+ ∣v ∣2)(1−α)σh2γ(d v))
σ

1+σ
, (2.10)

for any σ > 0. The price to pay is twofold. First, we have to bound the term

∫
V
(1+ ∣v ∣2)(1−α)σ f 2γ−1(d v)

uniformly in time along the flow of (2.2), which is possible after [66]. Secondly, the type of control we achieve

is weaker than that of Theorem 2. The entropy-entropy production inequality of Theorem 2, triggering Gron-

wall’s lemma, is replaced by a nonlinear differential inequality. Hence, algebraic decay rates are recovered as

shown.

Theorem 3. Let α ∈ (0,1) and fix ψ = (
√

1+ ∣v ∣2)α. For any τ > 0, small enough, and all σ > 0 there exists an

explicit positive and increasing function Ξ ∶ R→ R with Ξ−1(y) ≈ y + y
σ

σ+1 , such that, for all solutions to (2.2)

with f0 ∈ L2(d xγ−1), we have

1. for all t ≥ 0,
d

d t
Hτ(t) =−2∫

τ

0
∥∇v( f (t + s, ⋅, ⋅)γ−1)∥2L2(d x,γ)τ

−1 d s ≤−Ξ(Hτ(t)) ,

2. for all t ≥ 0,

Hτ(t) ≤ c (1+ t)−
σ

2(1−α) ∫
X
∫

V
(1+ ∣v ∣2)(1−α)σ f 2

0 γ−1(d v)d x.

for an explicitly determined constant c depending only on d ,α.

In this result, as it is common for kinetic equations with sub-exponential local equilibria, we assess the

phenomenon of momentum loss. This means that to control a momentum of the solution to (2.2), we shall

suppose that the initial datum admits some momentum of higher order. Here we need a momentum of order

2(1−α)σ for f0 to ensure a time control of the L2−norm of the corresponding solution to (2.2).

Note that [P1] is the first time where the strategy of [5] is applied to non-Maxwellian local equilibria. Our

result relates with [66], where X = Rd . Our setting is compact in x, and this allows a precise control on the

structure of the constant c in Theorem 3. The strategy is indeed different, as we use time averages instead of

twisting the L2−norm. Finally, in [P1], we notice that the threshold at α = 1 is continuous between Theorem

2 and Theorem 3. So that, the estimates of Theorem 3 for α→ 1− converge to those of Theorem 2 at α = 1.

An alternative to (2.10) is to consider L∞ solutions to (2.2) and apply a weak Poincaré inequality as in

[158]. There, exponential decay rates are recovered. Since we enlarge the space of initial data (having weaker

regularity assumptions), we find a slower decay rate.

A possible question one could deal with is the meaning one can give (and the subsequent theory one

finds) to α = 0. This is the case of ψ growing logarithmically at infinity, and it is covered by the results of the

next section.

2.1.3 General kinetic Fokker-Planck equations

We explain the results of Chapter 4. In this section let X = Rd or [0,L] with periodic boundary conditions.

Unlike [P1], in [P6], we consider a potential ϕ which is nonzero. Indeed, our works [P6] is the first one where
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constructive decay rates are given for (2.2) with general potentials ϕ,ψ. Some structural assumptions on ϕ

are required, let us sketch them and refer to the paper for details. We denote with µ = e−ϕ(x), and we allow a

slight confusion between the density µ and the measure µ(d x).

Assumption 1. Let µ(d x) be a finite measure. In addition, let

liminf
∣x∣→∞

ϕ(x)
∣x∣
> 0.

Our model case is

ϕ(x) = (
√

1+ ∣x∣2)
p

,

for p ≥ 1. On the other hand, we also have some requirements on ψ. As those are complicated, we refer the

reader to the corresponding assumptions in [P6]. For the sake of presentation, we consider three concrete

cases.

• Case A. The function ψ is such that (2.9) holds true. As we have seen, a typical choice is

ψ(v) = (
√

1+ ∣v ∣2)α, α ≥ 1.

• Case B.

ψ(v) = (
√

1+ ∣v ∣2)α, 0 <α < 1.

• Case C.

ψ(v) =β log(
√

1+ ∣v ∣2), d +2 <β.

Let us define

Θ =µ(x)γ(v) = e−(ϕ+ψ).

Our goal is to show that solutions to (2.2) with unitary mass converge to Θ for t →∞. Here we perform a

convenient change of variable, taking h = f Θ−1. Solutions to (2.2) are in one-to-one correspondence with

solutions to the following kinetic Ornstein-Uhlenbeck equation

⎧⎪⎪⎨⎪⎪⎩

∂t h+∇vψ ⋅∇x h−∇xϕ ⋅∇v h =∆v h−∇vψ ⋅∇v h,

h(t = 0, ⋅, ⋅) = h0 ∈ L2(Θ),
(VOU)

In this context, the role of Θ is played by the constant 1. Let us denote by

T h ∶=∇vψ ⋅∇x h−∇xϕ ⋅∇v h.

Following the same strategy as in the previous section, we are able to construct explicit decay rates for solu-

tions to (VOU). However, none of the three steps (2.7)-(2.8)-(2.9) is actually easy. The first result of [P6] is a

version of (2.8), which goes as follows.

Theorem 4. Under suitable hypotheses on ϕ,ψ there exists a constructive constant Kavg(d ,ϕ,ψ) ∈R+ such that

all functions h ∶ [0,τ]×X ×V →R regular enough satisfy

∥∇t ,xΠh ∥2H−1(d sµd x) ≤Kavg(∥h−Πh ∥2L2(d sµd x γd v)+∥(∂t +T )h ∥2L2(d sµd x;H−1(γd v))) . (2.11)
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Both this result and its proof are new, up to the best of our knowledge. Moreover, Theorem 42 is a func-

tional inequality, i.e. it does not depend on (VOU).

The second result is a weighted Poincaré–Lions inequality, in the spirit of (2.7). A similar one is given in

[84], but it is not suitable for a geometry as that of [0,τ]×X . Another related result – implying Theorem 5

– below appears in [117]. However, its proof is not completely constructive and the control on the constant

is not detailed. Another version of Theorem 5 is [79, Lemma 2.6]. We improve on such result, with fully

transparent dimensional dependence in the constants and less restrictive hypotheses on the potential ϕ.

Theorem 5. Let Assumption 1 hold true. Let d s be the measure on the interval [0,τ] for any τ > 0. Then, all

functions g regular enough verify

∥g ∥2L2(d sµd x) ≤C(ϕ) (1+
√

d) (τ2+τ−2)2 ∥∇t ,x g ∥2H−1(d sµd x), (2.12)

for a dimension-free constant C(ϕ) depending only on ϕ in an explicit way.

The proof of Theorem 5 is done in three steps.

1. We prove that (2.12) is equivalent to the following property. For all g regular enough with zero average,

there exists a vector field in d +1 components Z ∶ [0,τ]×X →Rd+1 such that

⎧⎪⎪⎪⎨⎪⎪⎪⎩

(∂t ,∇x −∇xϕ) ⋅Z = g ,

∥Z∥2H1
0(d sµd x) ≲ ∥g∥

2
L2(dsµdx).

(2.13)

2. We solve

−∂2
t t u−∆x u+∇xϕ ⋅∇x u = g ,

with Neumann’s boundary conditions, with the help of Lax-Milgram’s theorem [72]. We pose

W =∇t ,x u.

A standard regularity theory [44] ensures W ∈H1(d sµ).

3. If W ∈H1
0(d sµ), we simply pose Z =W. Otherwise, we build Z by performing a constructive correction

to W , achieved by solving a sort of waves’ equation. Hence, Z is not a gradient vector field in general.

The proof is different from the more general one of [117], but it allows a better control on the constant

for our choice of the space-time cylinder.

We pass to decay estimates, as the necessary functional inequalities are established.

Case A - exponential decay rates. Let γ = e−ψ, be such that (2.9) is satisfied. After Theorems 4 and 5, this case

easily follows. Recall

H (t) =∫
τ

0
∥h(t + s, ⋅, ⋅)−1∥2L2(Θd x d v)τ

−1d s.

Theorem 6. For any τ > 0, small enough, there exists an explicit and constructive constant λ(τ) such that, for

all solutions to (VOU) we have

1. for all t ≥ 0,

d

d t
Hτ(t) =−2∫

τ

0
∥∇v h(t + s, ⋅, ⋅)∥2L2(Θd x d v)τ

−1 d s ≤−λ(ϕ,ψ,d ,τ)Hτ(t),
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2. for all t ≥ 0,

Hτ(t) ≤ ∥h0−1∥2L2(Θd x d v) e−λ(τ) t .

Case B – sub-exponential local equilibria. After Theorems 4 and 5, this case is analogous to Theorem 3, with

the attention that we should consider, for all σ > 0,

∥h−Πh ∥2L2(γd v) ≲ ∥∇v h∥
1

1+σ
L2(γ) (∫V

(1+ ∣v ∣2)(1−α)σh2γ(d v))
σ

1+σ
, (2.14)

The missing point is that we should uniformly control a momentum

∫
X
∫

V
(1+ ∣v ∣2)(1−α)σh2Θ(d x d v)

along the flow of (VOU). This was unknown until a personal communication [69], inspired by [66, 78], proving

that

∫
X ×V

(1+ ∣v ∣2)(1−α)σh(t , x, v)2Θ(d x d v) ≲∫
X ×V

(1+ ∣x∣+ ∣v ∣)ηh2
0 Θ(d x d v), (2.15)

for all t ≥ 0 and for an explicit η >σ, depending only on α,ϕ,σ. A simpler option is taking h0 ∈ L∞ as we do in

Chapter 4. Then, our next theorem goes as follows.

Theorem 7. Let 1 > α > 0 and fix ψ = (
√

1+ ∣v ∣2)α. For any τ > 0, small enough, and all σ > 0 there exists an

explicit positive and increasing function Ξ ∶ R→ R, as in Theorem 2, such that, for all solutions to (VOU), we

have

1. for all t ≥ 0,
d

d t
Hτ(t) =−2∫

τ

0
∥∇v h(t + s, ⋅, ⋅)∥2L2(Θ)τ

−1 d s ≤−Ξ(Hτ(t)) ,

2. for all t ≥ 0,

Hτ(t) ≤ c (1+ t)−
σ

2(1−α) ∫
X
∫

V
(1+ ∣x∣+ ∣v ∣)ηh2

0 Θ(d x d v) ,

for an explicitly determined constant c.

This results compares with [212]. Our choice is to take the largest possible space for initial data at the

cost of having a worse decay rate. On the other hand, the authors in [212] find exponential decay estimates

in a space of the form L2 (µd x, eψ
σ

γd v).
Case C – fat-tail local equilibria. This case is very similar to the previous one. The only difference is that we

consider, for all σ > 0,

∥h−Πh ∥2L2(γd v) ≲ ∥∇v h∥
1

1+σ
L2(γ) (∫V

(1+ ∣v ∣2)σh2γ(d v))
σ

1+σ
, (2.16)

instead of (2.14), as in [54]. The only available option here is taking h0 ∈ L∞, as we lack an analogous of (2.15).

Finally, the decay estimate.

Theorem 8. Let β > d +2 and fix ψ = β log(
√

1+ ∣v ∣2). For any τ > 0, small enough, and all σ > 0 there exists

an explicit positive and increasing function Ξ ∶R→R such that, for all solutions to (VOU) with h0 ∈ L∞(Θ), we

have
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1. for all t ≥ 0,
d

d t
Hτ(t) =−2∫

τ

0
∥∇v h(t + s, ⋅, ⋅)∥2L2(Θd x d v)τ

−1 d s ≤−Ξ(Hτ(t)) ,

2. for all t ≥ 0,

Hτ(t) ≤ c (1+ t)−
σ

2(1−α) ∫
X
∫

V
(1+e∣x∣+ ∣v ∣)ηh2

0 Θ(d x d v) ,

for an explicitly determined constant c.

Theorems 7 and 8 are new up to the best of our knowledge, when∇vψ ≠ v [212]. The same is true for the

estimates (2.15) by [69], achieved via an argument based on nonlinear Lyapunov conditions.

We complete [P6] with a careful analysis of the constants in decay estimates, with respect to d , τ, and a

parameter ξ which is used to tune the intensity of the diffusion operator in (VOU). Those explicit estimates

are useful in molecular dynamics and statistics, [243]. We notice that the ideas collected here are not specific

for the model of interest and could be adapted to other situations.

2.2 Functional inequalities

This section is devoted to the results of Chapters 5-6-7. We start with a brief introduction of the setting in

Section 2.2.1.

Constructive stability estimates, in H1 norms, with sharp exponents and explicit constants, are derived

for Gagliardo–Nirenberg inequalities on the sphere. The proof combines nonlinear diffusion flows to ap-

proach the manifold of optimisers, with a local Taylor expansion. Additional care is paid to low-degree

spherical harmonics, as those of degree one induce a cancellation in the Taylor expansions. In the large

dimensional limit, we find Beckner’s inequalities on the Gaussian space. Stability estimates, based on diffu-

sion flows and local Taylor expansions are derived for these Beckner’s inequalities. The Gaussian logarithmic

Sobolev inequality is the critical case in the large-dimensional limit. Stability in relative Fisher information

(defined below) is discussed. The arguments rely on the Ornstein–Uhlenbeck flow and its interplay with

log-concavity.

2.2.1 Interpolation inequalities on the sphere and the Gaussian space

In Chapters 5, 6, and 7 we deal with some Sobolev-like functional inequalities. The main problem we consider

is their stability, and making the results constructive.

Let d ≥ 3 (actually d = 1,2 is analogous with a slightly different notation), and let Sd be the unitary sphere

of dimension d embedded in Rd+1 ∶

Sd = {x = (x1,⋯, xd+1) ∶ ∣x∣ = 1} .

We denote by ω the intrinsic coordinates on the sphere. Let µd be the uniform probability measure on Sd .

We define also the Laplace-Beltrami operator ∆ as the only self-adjoint operator with respect to µd such that

∫
Sd
∇ f ⋅∇g dµd =∫

Sd
− f ∆g dµd ,

for all regular functions f , g ∶Sd →R. We denote by∇ the intrinsic gradient on Sd . Finally, let 2⋆ = 2d
d−2 .
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We start with a standard fact, known since [240, 147, 222]. The inclusion

H1(Sd ,dµd)↪ Lp(Sd ,dµd),

is continuous if and only if p ∈ [1,2⋆], with

H1(Sd ,dµd) = {F ∈ L2(Sd ,dµd) ∶ ∇F ∈ L2(Sd ,dµd)d} .

Then, a quantitative way to state such inclusion is the following Gagliardo-Nirenberg-Sobolev inequalities.

∫
Sd
∣∇F ∣2 dµd ≥

d

p −2
(∥F∥2Lp(Sd)−∥F∥

2
L2(Sd)) ∀F ∈H1(Sd ,dµd) (GNS)

for any p ∈ [1,2)∪(2,2∗]. For p = 2, (GNS) does not make any sense. However, by taking the derivative with

respect to p, we obtain the logarithmic Sobolev inequality for the measure µd ∶

∫
Sd
∣∇F ∣2 dµd ≥

d

2 ∫Sd
F 2 log

⎛
⎝

F 2

∥F∥2L2(Sd)

⎞
⎠

dµd ∀F ∈H1(Sd ,dµd) (LS)

In this context, the value p = 2 has nothing special. The only distinction is between the critical regime –

i.e. p = 2⋆ – and the subcritical regime p ∈ [1,2⋆), with the attention that for p = 2 we have to refer to (LS)

instead of (GNS). We also note that, for p = 1, (GNS) reduces to Poincaré’s inequality.

All inequalities (LS)–(GNS) are given with optimal constants. Hence, one could hope to find extremal

functions for them (i.e. functions which saturate the inequality).

• For p = 2⋆, (GNS) is equivalent to the Euclidean Sobolev’s inequality via stereographic projection.

Hence, the family of optimisers is given by the Aubin-Talenti family, [21, 248].

• For p ∈ [1,2⋆), the optimisers are constant functions. Note that in this case there is no known corre-

spondence with the Gagliardo-Nirenberg inequalities on the Euclidean space (nor with the Euclidean

logarithmic Sobolev inequality for p = 2).

Henceforth, we focus on the subcritical regime only, as results in the case p = 2⋆ correspond to those al-

ready obtained in [47, 119]. Introduce the deficit functional (i.e. the difference between the two sides of the

inequality) associated with (GNS):

δp,d(F) =∫
Sd
∣∇F ∣2 dµd −

d

p −2
(∥F∥2Lp(Sd)−∥F∥

2
L2(Sd)) ,

and its analogous δ2,d for the logarithmic Sobolev inequality (LS):

δ2,d(F) ∶=∫
Sd
∣∇F ∣2 dµd −

d

2 ∫Sd
F 2 log

⎛
⎝

F 2

∥F∥2L2(Sd)

⎞
⎠

dµd .

We know [49] that

δp,d(F) ≥ 0, δp,d(F) = 0 ⇐⇒ F ≡ c, c ∈R,

for all d , and all p ∈ [1,2⋆).
Having a stability result means that the deficit δp,d(F) is a good measure of how much F is not a constant.

In other words, we would like that the deficit functional controls some distance between F and constant
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functions. Let

F ⋆ = {F ∈H1(Sd) ∶ F ≡ c, c ∈R}.

So, a stability estimate for (GNS)–(LS) would look like

δp,d(F) ≥C inf
F⋆∈F⋆

dθ(F,F⋆), (2.17)

for some constant C > 0, some reference distance d (fixed a priori), and some exponent θ. In [P2] we provide

estimates as (2.17) with the strongest known distance, explicit constant C , and sharp exponent θ. Note that

our strategy differs completely from that of [144, 47], using concentration-compactness arguments [199],

where the constant C is never explicit. The natural distance we consider is the homogeneous Sobolev semi-

norm d = ∥∇F∥L2(Sd) , and variations of it. Chapter 5 deals with the proofs of constructive estimates of the

form (2.17) for (GNS)–(LS).

Let γ be the n−dimensional Gaussian density. It is general understanding, [252], that (Sd ,µd) behaves

like a Gaussian measure space (Rn ,γ) as d →∞. Hence, one question would be how (GNS)–(LS) behave as

the dimension becomes bigger and bigger, and what happens to the stability estimates of Chapter 5 in the

limit. In Chapter 6 we clarify this limit.

Note that 2⋆ → 2 as d →∞. Hence, the range p ∈ [2,2⋆] collapses onto the point 2 as d →∞. As we will

see, for p ∈ [2,2⋆], inequalities (GNS)–(LS) become the Gaussian logarithmic Sobolev inequality, in the limit

d =∞:

δ2,∞(v) = ∥∇v∥2L2(Rn ,dγ)−
1

2 ∫Rn
∣v ∣2 log

⎛
⎝

∣v ∣2

∥v∥2
L2(Rn ,dγ)

⎞
⎠

dγ ≥ 0. (GLS)

Then, the logarithmic Sobolev inequality (corresponding to p = 2) in the large dimensional limit inherits the

role of upper endpoint of the family played by the critical Sobolev inequality (p = 2⋆) in finite dimension.

On the other hand, the range p ∈ [1,2) makes perfectly sense also in the large dimensional limit. For

p ∈ [1,2), (GNS) converges to the family of Beckner’s inequalities

δp,∞(v) = ∥∇v∥2L2(Rn ,dγ)−
1

2−p
(∥v∥2L2(Rn ,dγ)−∥v∥

2
Lp(Rn ,dγ)) ≥ 0, (PLS)

for d →∞. Hence, in the large dimensional limit we are left with a limit family of inequalities, parameterised

by p ∈ [1,2], interpolating between the Gaussian Poincaré inequality, p = 1, and the Gaussian logarithmic

Sobolev inequality, p = 2, which is the upper endpoint of the family. Unlike in finite d , in the large di-

mensional limit, the logarithmic Sobolev inequality is critical and somewhat distinguished from the range

p ∈ [1,2). This makes its analysis more complicated, and we put it off until Chapter 7, where we collect our

partial results. The range p ∈ [1,2) in the large dimensional limit shares many properties with the same range

in finite d . In this case, we have a rather complete theory, see [P3], exposed in Chapter 6.

2.2.2 Stability of functional inequalities on the sphere

We give the main results of Chapter 5. A way to prove (GNS)-(LS), after [145], is the Funk-Hecke formula

we give an account of below. Recall that the Laplace-Beltrami operator −∆ on (Sd ,µd) admits a discrete

spectrum, given by

λ j = j( j +d −1), ∀ j ∈N.
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The eigenfunctions associated with λ j are called spherical harmonics of degree j , and all of them are poly-

nomials of degree j in the coordinates x. We indicate with H j the eigenspace associated with λ j and with

H j ,k a basis of eigenfunctions for H j , for j ∈ N, and k ranging between 1 and the dimension of H j , which

amounts to
⎛
⎝

d + j

j

⎞
⎠

. We have the orthogonal decomposition L2(Sd ,µd) =⊕ jH j . Note thatH0 corresponds

to constant functions andH1 = span(x1,⋯, xd+1). Then, we can write any function F ∈H1(Sd ,µd) as

F =∑
j

F j , F j ∈H j , j ∈N.

The Funk-Hecke formula reads

1

p −2
(∥F∥2Lp(Sd)−∥F∥

2
L2(Sd)) ≤

∞
∑
j=1

ζ j (p)∫
Sd
∣F j ∣2 dµd ∀F ∈H1(Sd ,dµd) (2.18)

for any p ∈ (1,2)∪(2,2∗)with

ζ j (p) ∶=
γ j(d

p )−1

p −2
and γ j (x) ∶=

Γ(x)Γ( j +d −x)
Γ(d −x)Γ(x + j)

.

An analogous formula holds for the logarithmic entropy of (LS):

∫
Sd

F 2 log
⎛
⎝

F 2

∥F∥2L2(Sd)

⎞
⎠

dµd ≤ 2
∞
∑
j=1

ζ j (2)∫
Sd
∣F j ∣2 dµd ∀F ∈H1(Sd ,dµd).

The fact that

ζ j (p) ≤
λ j

d
, ∀ j ∈N,

proves (GNS) and (LS). More precisely, we have that

ζ j (p) <
λ j

d
, p ≠ 2⋆, j ≠ 1.

Exploiting this strict gap, we can improve on (GNS)-(LS), every time that F1 = 0 and p ≠ 2⋆.

Theorem 9. Assume that d ≥ 1 and p ∈ (1,2)∪(2,2∗). For any function F ∈H1(Sd ,dµd) such that

∫
Sd

x F dµd = 0, (2.19)

we have

∫
Sd
∣∇F ∣2 dµd −

d

p −2
(∥F∥2Lp(Sd)−∥F∥

2
L2(Sd)) ≥Cp,d ∫

Sd
∣∇F ∣2 dµd (2.20)

with Cp,d =
2 d−p (d−2)

2(d+p) .

Theorem 10. Let d ≥ 1. For any F ∈H1(Sd ,dµd) such that the orthogonality condition (2.19) holds, we have

∫
Sd
∣∇F ∣2 dµd −

d

2 ∫Sd
F 2 log

⎛
⎝

F 2

∥F∥2L2(Sd)

⎞
⎠

dµd ≥C2,d ∫
Sd
∣∇F ∣2 dµd (2.21)

with C2,d = 2
d+2 .

If we have additional orthogonality constraints, i.e. F j = 0 for 1 ≤ j ≤ k, we have better constants in
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Theorems 9-10.

Estimates (2.20)–(2.21) can be seen as stability results in the spirit of (2.17):

δp,d(F) ≥Cp,d ∥∇F∥2L2(Sd) .

The constants are fully explicit, the distance is the strongest possible one, and the exponent two is sharp, as

one can easily test by taking F = 1+ϵ(x2
1 −(d +1)), as ϵ→ 0.

The next point is describing what happens if a function F has a nonzero component F1, since the Funk-

Hecke formula does not provide any improvement along this component. Rupert Frank in [144] shows that

if p ∈ (2,2⋆), there exists an unknown constant c⋆ > 0 such that

δp,d(F) ≥ c⋆ ∥∇F∥4L2(Sd) N−1(F), ∀F ∈H1(Sd ,µd). (2.22)

In (2.22), the term N(F) ∶= ∥∇F∥2L2(Sd)+∥F∥
2
L2(Sd) is a normalising factor whose role is to preserve the homo-

geneity of the inequality. We have that N(F) ≈ 1 if ∥∇F∥2L2(Sd) is small. Moreover, the exponent four is sharp,

as one can check by taking F = 1+ϵx1, as ϵ→ 0. Note that this sequence is not admissible in Theorems 9-10.

To sum up, we know that the exponent two in the stability estimate is attained as long as the component

F1 of F , given by

F1 =
d+1

∑
i=1

xi
∫Sd F(x)xi dµd

(d +1)2
,

is zero. However, a concrete example of functions F , such that F = 1+F1, provides the degeneracy to exponent

four. So, we conjecture that such kind of functions must be the only responsible for this phenomenon. In

other words, we expect the deficit δp,d to be flatten along the component of F along theH1 subspace. Indeed,

we can prove the following, which answers completely the question.

Theorem 11. Let d ≥ 1 and p ∈ (1,2)∪(2,2∗). For any F ∈H1(Sd ,dµ), we have

∫
Sd
∣∇F ∣2 dµd −

d

p −2
(∥F∥2Lp(Sd)−∥F∥

2
L2(Sd)) ≥Sd ,p

⎛
⎝
∥∇F1∥4L2(Sd)

N(F)
+∥∇(F −F1)∥2L2(Sd)

⎞
⎠

,

for some constructive stability constant Sd ,p > 0.

Theorem 12. Let d ≥ 1. For any F ∈H1(Sd ,dµ), we have

∫
Sd
∣∇F ∣2 dµd −

d

2 ∫Sd
F 2 log

⎛
⎝

F 2

∥F∥2L2(Sd)

⎞
⎠

dµd ≥Sd
⎛
⎝
∥∇F1∥4L2(Sd)

N(F)
+∥∇(F −F1)∥2L2(Sd)

⎞
⎠

,

for some constructive stability constant Sd > 0.

The constants can be tracked along the proofs of the two theorems.

The sequences used above show sharpness of exponents in both components. For completeness, the

normalisation factor is given by

N(F) = ∥∇F∥2L2(Sd)+
d

2
∥F∥2L2(Sd) .

We give some details of the proofs. As it is classical in stability results, the proof is split into two parts:

1. Local regime. We assume that ∥∇F∥2L2(Sd) is small (i.e. F is approximately a constant). Then, a Taylor

expansion with explicit uniform control of the remainders provides the desired result. At this level,

additional care is necessary to deal with the components of F along low-degree spherical harmonics.
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2. Far-away regime. We show that we can always reduce to the local regime via a nonlinear diffusion flow.

The second step replaces usual local-to-global arguments, which are obtained by concentration-compactness

as in [47, 144], and are not constructive.

The strategy we adopt is the following. For all p ∈ (1,2⋆) and all d ≥ 1, there exist 0 <m−(p,d) <m+(p,d),
such that, if m−(p,d) ≤m ≤m+(p,d), then, along the flow of the nonlinear PDE,

⎧⎪⎪⎪⎨⎪⎪⎪⎩

∂u
∂t = u−p (1−m)(∆u+(m p −1) ∣∇u∣2

u ) ,

u0 = F.
(2.23)

we have that
d

d t
δp,d(ut) ≤ 0, ∥∇ut∥2L2(Sd)

t→∞ÐÐÐ→ 0, (2.24)

see [113, 121]. We come back to this point in the next section, while here we just stick to what is necessary

for the purposes of stability. We highlight that, the sphere being a compact manifold, there is no difficulty in

proving global existence of a positive bounded solution. The case of a non-negative solution is also covered

by a standard approximation of the initial datum. See for instance [111, Section 5] for a proof in a similar

setting. The key of the proof is to combine L1-contraction and the Maximum Principle as in the classical the-

ory of nonlinear diffusions: see for instance [251] for a reference in this area. We remark that (2.24) provides

another proof of (GNS)–(LS) after time integration. Indeed, more careful computations prove that

d

d t
δp(ut) ≤−γβ2∫

Sd

∣∇vt ∣4

v2
t

dµd , (2.25)

where v = u
1
β , and γ,β are explicit positive numbers depending only on d ,m. Since (2.25) is an improved

version of (2.24), which proves (GNS)–(LS), we expect that (2.25) provides some improved inequalities. This

is the case, and, after an interpolation argument based on the analysis of an ODE, one can show that (2.25)

entails

δp,d(F) ≥ d ∥F∥2Lp(Sd) ψp,d
⎛
⎝

1

d

∥∇F∥2L2(Sd)

∥F∥2Lp(Sd)

⎞
⎠

, (2.26)

for an explicit convex function ψp,d ∶ R→ R such that ψp,d(0) = 0 =ψ′p,d(0), and ψ′′(0) > 0, given in Chapter

5. Equation (2.26) is a sort of nonlinear stability result for (GNS)–(LS). The convexity of ψp,d proves Theorems

11 and 12 in the far-away regime, as it allows a control of the stability term for ∥∇F∥2L2(Sd) big. Finally, the

actual shape of ψp,d gives a constructive estimate of c⋆ in (2.22).

2.2.3 Subcritical Gaussian inequalities

Here we present the results of Chapter 6. In particular, we are concerned with the behaviour of estimates in

the previous section as d →∞. See Chapter 1 for some historical comments. The setting is the following. Let

n be a positive integer, and let d ≥ n. Let Fd ∶Sd →R be a function depending on the first n coordinates only.

Let γ be the Gaussian density of dimension n. Then, we prove a limit theorem for the deficit functionals δp,d

as d →∞.

Theorem 13. Let n be a positive integer, p ∈ [1,2) and consider a function v ∈H1(Rn ,dγ) with compact sup-

port. For any d ≥ n, large enough, if

Fd(x) = v(x1/
√

d , x2/
√

d , . . . , xn/
√

d)
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where x = (x1, x2, . . . , xd+1) ∈Rd+1 ⊃Sd is such that ∣x∣ = 1, then

lim
d→+∞

d (∥∇Fd∥2L2(Sd ,dµd)−
d

2−p
(∥Fd∥2L2(Sd ,dµd)−∥Fd∥2Lp(Sd ,dµd)))

= ∥∇v∥2L2(Rn ,dγ)−
1

2−p
(∥v∥2L2(Rn ,dγ)−∥v∥

2
Lp(Rn ,dγ)) .

Note that Theorem 13 covers the range [1,2) only and it can be reformulated as

lim
d→∞

d δp,d(Fd) = δp,∞(v).

As we anticipated, the range p ∈ [2,2⋆] for (GNS)–(LS) collapses on the point p = 2 as d →∞, corresponding

to the logarithmic Sobolev inequality.

Proposition 14. In the same setting as Theorem 13, we have that

lim
d→+∞

d δ2,d(Fd) = δ2,∞(v).

Moreover, if (pd)d≥3 is a sequence of real numbers such that pd ∈ (1,2)∪ (2,2∗), with 2⋆ = 2d/(d − 2), and

limd→+∞pd = 2, then

lim
d→+∞

d δpd ,d(Fd) = δ2,∞(v).

We show that this large-dimension limit is compatible with diffusion flows. We introduce the Ornstein–

Uhlenbeck operator ∆γ on H1(Rn ,dγ) defined by

∆γv =∆v −∇v ⋅ x.

The Ornstein-Uhlenbeck operator ∆γ in the large dimensional limit plays the role of the Laplace-Beltrami

operator on Sd .

In the previous Section we considered the nonlinear diffusion flow (2.23) on Sd . We give here a more

precise statement. Let us define

m±(p,d) ∶= 1

(d +2)p
(d p +2±

√
d (p −1)(2d −(d −2)p)) . (2.27)

Proposition 15 ([113, 121]). Assume that d ≥ 1, with either p ∈ [1,2)∪(2,+∞) if d = 2 or p ∈ [1,2)∪(2,2∗] if

d ≥ 3, and let

m ∈ [m−(p,d),m+(p,d)].

If u > 0 solves (2.23), with an initial datum F in L2∩Lp(Sd ,dµd), then

d

d t
(∥∇u∥2L2(Sd ,dµd)−

d

p −2
(∥u∥2Lp(Sd ,dµd)−∥u∥

2
L2(Sd ,dµd))) ≤ 0 ∀ t > 0,

∥∇u∥2L2(Sd ,dµd)→ 0, t →∞.

We established a similar picture in the Gaussian space. The kind of flow we shall consider is

∂vt

∂t
= v
−p (1−m)
t (∆γvt +(m p −1) ∣∇vt ∣2

vt
) . (2.28)
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Figure 2.2: Finite VS infinite dimension interpolation inequalities.
On the left: the Gagliardo-Nirenberg-Sobolev range p ∈ [1,2⋆] on the horizontal axis, and the expo-
nents of nonlinear diffusion flows m(p,d) which are admissible in Proposition 15 on the vertical
axis, for d = 5.
On the right: Beckner’s Gaussian inequalities, for p ∈ [1,2] on the horizontal axis, and the admissi-
ble exponents m(p,∞) of nonlinear diffusion flows in the sense of Theorem 16. The figure on the
left converges to the figure on the right as d →∞, while 2⋆ = 2d/(d −2) → 2.

Then, if we define

m±(p,∞) = 1± 1

p

√
(p −1)(2−p) . (2.29)

we have entropy-entropy production estimates as follows.

Theorem 16. Assume that n ≥ 1, p ∈ [1,2]. If vt > 0 solves (2.28) with

m ∈ [m−(p,∞),m+(p,∞)]

for an initial datum in L2∩Lp(Rn ,dγ), then

d

d t
δp,∞(vt) ≤ 0 ∀ t > 0,

∥∇vt∥L2(Rn ,dγ)→ 0, t →∞.

The result for d =∞ is new. Finally, one can notice the consistency between a finite d and d =∞, as

lim
d→∞

m±(p,d) =m±(p,∞),

for every p ∈ [1,2]. Note that m+(2,∞) =m−(2,∞) = 1, so only this choice – corresponding to the heat flow

acting on v2
t – is compatible with (GLS).

As for the case of finite d we can get some nonlinear improvement for (PLS)–(GLS) via the flow (2.28).

More precise computations along the flow (2.28) show that

d

d t
(δp,∞(vt)) ≤−κ2 ∫

Rn

∣∇w ∣4

w2
dγ ,

for an explicit constant κ. The right-hand-side of the last inequality can be exploited as in the case of the

sphere and produce an analogous of (2.26).
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Proposition 17. Let p ∈ [1,2] and n be a positive integer. For any v ∈H1(Rn ,dγ)we have

δp,∞(v) ≥ ∥v∥2Lp(Rn ,dγ)ψp
⎛
⎝

∥∇v∥2L2(Rn ,dγ)

∥v∥2
Lp(Rn ,dγ)

⎞
⎠

,

for a convex function ψp , such that ψp(0) = 0 =ψ′p(0), and ψ′′p(0) > 0 ∶

ψp(s) = s−(2−p) (1+ s−(1+ s)p−1)−1
.

The last Proposition can be used again in the proof of constructive stability estimates for (PLS).

Let us focus on the subcritical range for d =∞, which is p ∈ (1,2). The critical case p = 2, namely (GLS), is

put off to the next section. The very same strategy as in Section 2.2.2, provides us with constructive stability

results for the Gaussian interpolation inequalities (PLS). The structure is the same as Theorem 11. However,

spherical harmonics are replaced by the eigenfunctions of ∆γ. Indeed, the eigenvalues of −∆γ are given by N.

The corresponding eigenfunctions are the well-known Hermite polynomials. More precisely,

∆γv = 0 ⇐⇒ v ≡ c, −∆γv = v ⇐⇒ v ∈ span(x1,⋯, xn).

We start with an improved inequality under orthogonality constraint, which can be also read as a stability

result (2.17), with optimal exponent two.

Proposition 18. Let n ≥ 1 and p ∈ [1,2). For any v ∈H1(Rn ,dγ), such that

∫
Rn

v x dγ = 0,

we have

∥∇v∥2L2(Rn ,dγ)−
1

p −2
(∥v∥2Lp(Rn ,dγ)−∥v∥

2
L2(Rn ,dγ)) ≥

1

2
(2−p)∥∇v∥2L2(Rn ,dγ) .

The proof is different from that of Theorem 9, as the spectral improvement of the Funk-Hecke formula

(2.18), is replaced by Nelson’s hypercontractivity estimates of the Ornstein-Uhlenbeck flow on the Gaussian

space.

On the first eigenspace of ∆γ, which is excluded in Proposition 18, we have the same degeneracy as in

(2.22). Let vϵ ∶= 1+ϵx1, then

δp,∞(vϵ) ≈ ϵ4, ϵ→ 0,

for all p ∈ (1,2). Then, comparing this fact with Proposition 18, as in Section 2.2.2, we prove a global construc-

tive stability estimate. As in Theorem 11, we have two different orders along the component of the function

which is parallel to x, and the orthogonal one. Let v1 be the projection of v on the subspace of H1(Rn ,dγ)
corresponding to span(x1,⋯, xn).

Theorem 19. For all n ≥ 1, and all p ∈ (1,2), there is an explicit constant cn,p > 0 such that, for all v ∈H1(dγ),
it holds

∥∇v∥2L2(Rn ,dγ)−
1

p −2
(∥v∥2Lp(Rn ,dγ)−∥v∥

2
L2(Rn ,dγ))

≥ cn,p
⎛
⎝
∥∇(v − v1)∥2L2(Rn ,dγ)+

∥∇v1∥4L2(Rn ,dγ)

∥∇v∥2
L2(Rn ,dγ)+∥v∥

2
L2(Rn ,dγ)

⎞
⎠

.
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The strategy of proof goes as in Theorem 11.

1. Local stability. If we assume v to be approximately a constant, then an explicit Taylor expansion, with

uniform control of the remainder terms and careful treatment of low-degree Hermite polynomials

does the job.

2. Far-away regime. If v is far away from the manifold of constants, we can approach it using the heat

flow, as in Theorem 11. Notice that the choice m = 1 is always feasible here. The key-point is the

improved inequality contained in Proposition 17, giving stability in the far-away regime by convexity

of ψp .

The local Taylor expansion and Proposition 17 are not available for the case p = 2. Different strategies

should then be considered. This is the subject of the next section.

2.2.4 The Gaussian logarithmic Sobolev inequality

We end our survey with (partial) results for the critical case in d =∞, collected in Chapter 7. Stability re-

sults for the logarithmic Sobolev inequality are a very active research trend with a huge literature and many

applications in various areas. In particular, obtaining stability in H1−norm for (GLS) is still an open, and

very tricky, question. However, with different methods with respect to the subcritical regime, we are able to

achieve explicit stability estimates for some special classes of measures. A nice feature of our method is that it

is fully flow-based, without any Taylor expansion. The main ingredient is an improvement of entropy-entropy

production inequalities along the heat flow. Let v ∈H1(Rn ,dγ) be such that

∫
Rn
(1, x, ∣x∣2)v2 dγ = (1,0,d), (2.30)

which means that we restrict to functions with the same momenta as the standard Gaussian. Then, by a

careful treatment of the terms given by the carré du champ method, we have the following.

Proposition 20. For all v ∈H1(Rn ,dγ) verifying (2.30), we have

∥∇v∥2L2(Rn ,dγ)−
1

2 ∫Rn
∣v ∣2 log ∣v ∣2 dγ ≥ 1

2n
(∫

Rd
∣v ∣2 log ∣v ∣2 dγ)

2

. (2.31)

One can relax the hypotheses and have the same with ∫Rn ∣x∣2 v2 dγ ≤ d .

Combining equation (2.31) with classical inequalities one can control other distances between v and 1, as

the Wasserstein distance or the L1−norm of the difference. Proposition 20 provides an exponent four in

the stability term (cf (2.17)), which is not fully satisfying, since the results for Sobolev’s inequality in finite

dimension would suggest an optimal exponent equal to two. This is the case for two distinguished families

of functions.

Theorem 21. For all v ∈H1(Rd ,dγ) such that log v is a concave function and

∫
Rd
(1, x, ∣x∣2)∣v ∣2 dγ = (1,0,d) =∫

Rd
(1, x, ∣x∣2) dγ = (1,0,d) , (2.32)

with C = 1+ 1
1728 ≈ 1.0005787 we have

∥∇v∥2L2(Rd ,dγ)−
C

2 ∫Rd
∣v ∣2 log

⎛
⎝

∣v ∣2

∥v∥2
L2(Rd ,dγ)

⎞
⎠

dγ ≥ 0. (2.33)
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Inequality (2.33) with improved constant C > 1 compared to (GLS) can be recast in the form of a stability

inequality of type (2.17) with sharp exponent two. Log-concavity might appear as a rather restrictive assump-

tion, but it is not the case because a function which is compactly supported at time t = 0 evolves through the

heat flow into a logarithmically concave function for some finite time that can be estimated by [192]. This is

enough to produce a stability result with an explicit constant. It turns out that the compact support assump-

tion can be relaxed.

Figure 2.3: Creation of log-concavity in finite time along the heat equation.
The first picture corresponds to the initial datum f0 = 1

2(δ−2+δ2). The others pictures plot the log
of the corresponding solution at t = 0.01, t = 0.1, t = 1, t = 2, t = 8, respectively.

Theorem 22. Let d ≥ 1. For any ϵ > 0, there is some explicit C > 1 depending only on ϵ such that

∥∇v∥2L2(Rd ,dγ) ≥
C

2 ∫Rd
∣v ∣2 log

⎛
⎝
∣v ∣2

∥v∥2L2(Rd)

⎞
⎠

dγ (2.34)

holds for any v ∈H1(Rd ,dγ) satisfying (2.32) with

∫
Rd
∣v ∣2 e ϵ ∣x∣2 dγ <∞ .

2.3 Nonlinear Dirichlet forms

Let (X ,m)be any sigma-finite measure space. Consider the space L2(X ,m) and let (Tt)t≥0 be a one-parameter

family of bounded linear operators over L2(X ,m) such that

1. T0 = Id,

2. the mapping t ↦ Tt( f ) is continuous for all f ∈ L2(X ,m),

3. for all t , s ≥ 0, we have Tt ○Ts = Ts ○Tt = Tt+s ,

4. for all t ≥ 0, the operator Tt is 1-Lipschitz in the L2−norm,

5. for all f ∈ L2(X ,m)we have 0 ≤ f ≤ 1 Ô⇒ 0 ≤ Tt f ≤ 1.

These properties define a classical Markov semigroup. Then, one can consider the generator of Tt , which is

an unbounded operator defined by

A = lim
t→0+

Tt − Id

t
.



2.3. NONLINEAR DIRICHLET FORMS 33

We usually write Tt = et A . In addition, we have

∀t > 0,∀ f ∈ L2(X ,m), ∂t Tt f = A Tt f . (2.35)

The emblematic example of such structure is the semigroup associated with the heat flow, see (2.24) or

(2.28) for m = 1, where A = ∆ or A = ∆γ, respectively. However, such structure adapts to much more general

settings, such as the heat flow on Riemannian manifolds or RCD metric measure spaces, [8]. Also some flows

induced by non-local operators are covered, see [146] for a complete survey.

If the operator A is self-adjoint, then, one can define a symmetric bilinear form

E( f , g) = (A
1
2 f , A

1
2 g) .

Polarising the bilinear form, one can obtain a quadratic form, we always call E . If Tt is a Markov semigroup,

then E is called a Dirichlet form. In the examples above, E is exactly the H1 semi-norm.

A fundamental feature of Dirichlet forms is the normal contraction property. Let ϕ ∶R→R be a 1-Lipschitz

function such that ϕ(0) = 0, also called a normal contraction. Let Φ the collection of all normal contractions

ϕ. It is classical [146, Chapter 1] that if E is a Dirichlet form, then E verifies the following normal contraction

property

E(ϕ( f )) ≤ E( f ), ∀ f ∈ L2(X ,m), ∀ϕ ∈Φ. (2.36)

In [99] the authors consider nonlinear Markov semigroups and nonlinear Dirichlet forms.

Let (St)t be a one-parameter family of 1−Lipschitz (possibly nonlinear) operators over L2(X ,m), verifying

the properties 1.-4. , and, in addition

6. for all f , g ∈ L2(X ,m), and all t ≥ 0, we have f ≤ g Ô⇒ St f ≤ St g ,

7. for all f , g ∈ L2(X ,m), for all t ≥ 0, and for m−almost all x ∈ X , we have ∣St f (x)−St g(x)∣ ≤ ∣ f (x)−g(x)∣.

Then, (St)t is a nonlinear Markov semigroup. Some examples are (2.23) and (2.28), for m ≠ 1. Note that the

last definition generalises that of linear Markov semigroups, as property 5. implies properties 6.-7. for linear

operators. Assume that the semigroup (St)t is also the gradient flow of some lower-semicontinuous (not

necessarily quadratic) functional E on L2(X ,m), i.e. for all f ∈ L2(X ,m), the curve t ↦ St f is the only global

solution to ⎧⎪⎪⎪⎨⎪⎪⎪⎩

∂t St f ∈ −∂E(St f ),

S0 f = f ,
(2.37)

where ∂E is the subdifferential of E :

∂E( f ) = {v ∈ L2(X ,m) ∶ E(g)−E( f ) ≥∫
X

v (g − f )dm, ∀g ∈ L2(X ,m)} .

In this case, according to [99], the functional E is a nonlinear Dirichlet form. As a byproduct, E is necessarily

convex over L2(X ,m). We remark that (2.37) is a generalised version of (2.35) for the linear case, as −∂E = A

if E is a quadratic form.

The first result of our work [P5] is a more efficient characterisation of the nonlinear Dirichlet forms, which

is purely based on functional inequalities.

For all f , g ∈ L2(X ,m), and α ∈ [0,∞)we denote by f ∨g and f ∧g the pointwise maximum and minimum
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and set Hα( f , g) = (g −α)∨ f ∧(g +α) (see Figure 8.1), that is,

Hα( f , g)(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

g(x)−α if f (x)− g(x) <−α,

f (x) if f (x)− g(x) ∈ [−α,α],

g(x)+α if f (x)− g(x) >α.

(2.38)

Theorem 23. Let E ∶ L2(X ,m)→ [0,∞] be a l.s.c. functional. Then, E is a non-bilinear Dirichlet form if and

only if, for all f , g ∈ L2(X ,m), and α ∈ [0,∞), E verifies

E( f ∨ g)+E( f ∧ g) ≤ E( f )+E(g), (2.39)

E(Hα( f , g))+E(Hα(g , f )) ≤ E( f )+E(g). (2.40)

Thanks to Theorem 23, we can prove our main result, that is (2.36) for the nonlinear Dirichlet forms of

[99] under minimal assumptions.

Theorem 24. Let E be a non-bilinear Dirichlet form. Then E has the normal contraction property (2.36) if and

only if

E(− f ) ≤ E( f ) ∀ f ∈ L2(X ,m). (2.41)

The normal contraction property is fundamental for the classification of bilinear Dirichlet forms. Then,

we see Theorem 24 as a first step in this direction for the nonlinear setting.

Let us conclude by giving an account of our methodology for the proof, as it is original.

• The literature on classical Dirichlet forms would suggest to prove (2.36) for indicator functions f and

proceed by linear combination to cover the whole space L2(X ,m). In our context this is unfeasible,

though.

• Our idea is to approximate the normal contraction ϕ instead of f in (2.36).

• We show that it is sufficient to prove (2.36) for piecewise linear contractions ϕ such thatϕ′ =±1 almost-

everywhere in R.

• We prove that (2.36) holds for three-piece piecewise linear contractions ϕ.

• We conclude, by induction, using the lemma below.

Lemma 25. Let G be the set of all normal contractions ϕ ∈Φ such that ∣ϕ′∣ = 1 and ϕ′ has at most two points of

discontinuity. Let ⟨G⟩ be the collection of all finite compositions of elements in G . Then, ⟨G⟩ is dense in Φ for

the pointwise convergence on R.

The last result has a constructive proof of independent interest.

2.4 Open problems

Time averages for more classes of kinetic equations

The approach we develop in [P6] is not equation-specific. For example, it makes very limited use of the

linearity of Vlasov–Fokker–Planck models. Moreover, the functional setting we develop involves general in-

equalities which are later specialised to solutions of the PDEs.



2.4. OPEN PROBLEMS 35

Figure 2.4: A typical irreducible element in the decomposition of Lemma 25.

Problem 26. Compute global constructive decay rates for Generalised Langevin Dynamics [229, 211], Vlasov–

Poisson systems, and Langevin dynamics with periodic forcing in time.

• For the first class of models, our strategy is effective, except for Lemma 4, which should be adapted.

• For Vlasov–Poissons systems, the keypoint should be proving a Poincaré inequality like (4.11) for the

spatial confinement driving the model, which depends on the solution itself.

• For the periodic case, all functional inequalities should be reworked, but the presence of the forc-

ing should make solutions to be close to periodic for long times. Then, functional inequalities would

reduce to spectral problems in time, space, and velocity modes, at least in certain ranges of the param-

eters.

Fully flow-based stability of functional inequalities

In [P2, P3] we provide constructive stability results based on the combinations of nonlinear flows with Taylor

expansions. Still, the information collected from the nonlinear diffusion flows is not completely exploited.

In addition, the knowledge of optimal constants in the stability results (or at least estimates of them scaling

well with the dimension of the problem) would be a decisive advance in the theory.

Problem 27. Compute explicit optimal constants in stability estimates for functional inequalities of Sobolev

type, on Rd and Sd by pure nonlinear diffusion equations and entropy methods.

The technique would rely on diffusion flows, with accurate estimates for the variation of the inequalities’

deficit along solutions. The paradigmatic example to be treated is the critical Sobolev inequality, in view of

the recent results of [119]. However, this is expected to be a very difficult task. As an easier entry point, we

would consider subcritical inequalities on the sphere (or the Gaussian space).

Stability for the logarithmic Sobolev inequality

Many stability results and counterexamples are available for the Gaussian logarithmic Sobolev inequality.

However, the picture is not complete, yet. Sharp exponents in the stability terms are mostly unknown even

for distances inducing the narrow convergence. In the H1−distance, we know stability results of order two for

special classes of functions, but the least restrictive conditions to have those are an open issue. The same is

true for order-four exponents, which hold under more general hypotheses.
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Problem 28. Find minimal hypotheses of stability results for the Gaussian logarithmic Sobolev inequality, in

the distance induced by the H1 norm.

First, one should assess how many finite moments of the density are necessary for a uniform stability

estimate in the square of the Fisher information w.r.t. the standard Gaussian. In [171] the problem is solved

with a fourth-order moment. On the other side, in [P4] a similar estimate is achieved for densities with just

a second-order moment, provided that it is small enough. A natural question is to investigate densities with

an arbitrarily big, yet finite, second order-moment, but with no finite fourth-order moment.

A much more ambitious point is to give necessary and sufficient conditions for order-two stability es-

timates, not only in Fisher information, but in the H1–distance from the set of optimisers for (GLS). The

final (and very difficult) goal would be to have sharp exponents and constructive constants in the stability

estimates.

As an intermediate step, we plan to use the Bianchi–Egnell strategy, which should provide the optimal

exponent in the stability term. Due to the criticality of the problem, Taylor expansions are especially difficult.

Then, we suggest using either an approach based on flows or some selection principle in the fashion of [98].

Gradient flows for kinetic equations

The fruitful connections between diffusion equations, gradient flows, and optimal transport have been a

leading research theme in the last twenty years, after [6, 176, 225]. Such a framework still lacks in the context

of kinetic equations, but diffusion limits, a part of Hilbert’s sixth problem, point in this direction.

Problem 29. Find distances between probability measures, in the spirit of optimal transport capturing the

geometric structure of spatially inhomogeneous kinetic PDEs. Recast dissipative kinetic PDEs as gradient flows

in such distances. The new metric structures shall be consistent with diffusion limits.

The geometric structure behind kinetic models is complicated, due to the asymmetry between positions

and velocities. Diffusion limits are often formal, so more tools and new methods are needed. Results in the

sense of Problem 29 will hopefully contribute to clarify these points. The scientific benefit of any contribution

to this topic would impact various related fields: mathematical physics, probability theory, and applications

of those.

Practically, some steps in this directions are:

1. After the variational schemes of [133, 87] and the splines of [40], provide a right metric setting for

Vlasov-Fokker-Planck equations, which is compatible with diffusion limits.

2. Generalise the work [86] to the spatially inhomogeneous setting.

Nonlinear Dirichlet forms and metric spaces

It is known that all Cheeger’s energies in the sense of [8] are non-bilinear Dirichlet forms. Hence, an abstract

framework to study metric spaces whose Cheeger’s energy is non-quadratic may emerge.

Problem 30. Represent local, non-bilinear Dirichlet forms as non-quadratic Cheeger’s energies.

Study geometric conditions using the formalism of non-bilinear Dirichlet forms.
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Ricci curvature lower bounds are useful for diffusion equations, functional inequalities, and geometric

measure theory. The simplest spaces where the Cheeger’s energy is a non-bilinear Dirichlet form are Finsler

manifolds. After [223, 224], the two approaches towards Ricci curvature bounds discussed in [10] are shown

to be equivalent also in this setting. However, only one of them – namely that of [201, 245] – is well-posed in

the general framework of metric measure spaces. The language of non-bilinear Dirichlet could contribute to

close this gap. The first steps one could envision in the direction of Problem 30:

1. Rewrite [223, 224] with the language of non-bilinear Dirichlet forms.

2. Study the heat flow and its linearised version on metric measure spaces, taking inspiration from [223,

149, 136].

3. Represent abstract non-bilinear Dirichlet forms as non-quadratic Cheeger’s energies, following [10,

51].

2.5 Bibliographical comments

We recall hereby some of the most important references for this thesis, which were not introduced before for

the sake of simplicity.

Kinetic equations and hypocoercivity

• The H1 framework for hypocoercivity has been developed in [255, 256, 115], after [221, 165]. We refer

to [126] for direct applications to the Fokker–Planck equations. See also [33, 34, 32] for a H1 approach

to hypocoercivity reminiscent of [24].

• Hypocoercivity methods based on couplings are used in [134, 116].

• The L2−hypocoercivity framework is due to [127], after [164]. More models are analysed in [67, 65,

66]. An alternative approach based on Lyapunov’s inequality for matrices is established in [18] for

general Fokker–Planck equations. More detailed calculations are carried out in [2, 4, 17], for specific

examples where computations can be done mode-by-mode. An improvement of those is given in [16].

An interpretation in terms of Shur’s complements of [127], with careful computations of the constants,

appears in [44]. For an approach to hypocoercivity based on Lyapunov’s functionals we refer to [78].

See also [243, 68] for hypocoercivity results for a general class of Langevin dynamics, and [45] for recent

developments in presence of boundary conditions. In [212] the authors recover exponential decay

for well-chosen initial data in case of weak confinement. See also [117] for a different point of view

covering most known cases.

• An alternative approach to hypocoercivity, based on negative Sobolev norms of solutions, appeared in

[5]. There, instead of twisting the reference norm as in [256, 127], the strategy is to prove a modified

space-time-velocity Poincaré inequality. Then, the same inequality is used to establish a convergence

rate in the L2 norm for solutions to the equations towards Maxwellians, via a time-integrated estimate.

More quantitative results are given in [79].

• We refer to [11, 117, 79, 84] for up-to-date results on Lions-Poincaré inequalities, inspiring [P6].

• Time integrated functionals of solution to kinetic PDEs have also been considered in [161, 244].
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Functional inequalities

• The family of Gagliardo–Nirenberg (GN) inequalities we consider in Chapter 5, which interpolate be-

tween the Poincaré and the critical Sobolev inequalities for the uniform probability measure on the

unit sphere, are due to [48]. Further historical reference in the subject are [196, 37]. Improved versions

of GN inequalities on the sphere, obtained with the carré du champ technique, are given in [123]. The

extra term found in the last reference has been fruitfully exploited in [112]. In [145] a proof of GN in-

equalities by spectral methods appears, which can be adapted to prove a local stability result. Then, in

[144], a first global stability result for a subfamily of GN inequalities on the sphere is given. The result is

not constructive, but it is optimal in the order of the stability term. For the critical case, corresponding

to Sobolev’s inequality, stability issues have a longer history we discussed above. We mention [119]

and [185] as the latest advances in the subject.

• By taking the large-dimensional limit of spheres equipped with the uniform probability measure, the

Gaussian space is recovered, see [252] for an historic account on the subject. This idea is also used

in [37]. Gaussian subcritical inequalities, interpolating between the Poincaré and the logarithmic

Sobolev inequalities are due to Beckner [37]. Optimal constants for the inequalities we consider are

derived in [14]. See also [187] for an alternative interpolation family. Finally, [220], provides an hy-

percontractivity property we directly use to establish improved inequalities under orthogonality con-

straint.

• As the critical case in the family of Gaussian interpolation inequalities, we find the the Gaussian log-

arithmic Sobolev inequality (LSI). See the previous section and [12] for a complete historical account.

Among the different approaches to LSI, we follow more closely that of [24, 19]. Stability for the LSI is

a research trend under development, whose interest is motivated also by problems in physics, statis-

tics, and engineering. See [138, 61, 172] for an account on recent stability results in Wasserstein-like

distances. Stability in L1−norm is established in [58], and all available results in Lp−norms are col-

lected in [172], except the very delicate L2−estimate of [119]. Some counterexamples, which show that

a control on the second order moment of the distribution in necessary, are given in [182, 135, 171].

In [119] the problem of stability in H1 norm is stated. Two partial contributions in this direction are

[138, 171]. However, a complete solution to the problem is not known, yet. To the extent of our results,

two important instruments are preservation/creation of log-concavity along the heat flow [192, 236],

and isoperimetry for log-concave measures [56].

Nonlinear Dirichlet Forms

• Linear Dirichlet forms are a classical subject, see the references quoted in the previous section. The

first contribution in the sense of a nonlinear extension of the theory is [99]. The theory is continued

in [101, 100], with a nonlinear theory of capacity and a partial result on normal contractions. Impor-

tant examples of nonlinear Dirichlet forms are the Cheeger’s energies of [8] and the Finsler–Sobolev

seminorms in [223].
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Chapter 3

Time averages for kinetic Fokker-Planck

equations

This Chapter corresponds to [P1], published in Kinetic and Related Models (2022).

Abstract

We consider kinetic Fokker-Planck equations on the torus with Maxwellian or fat tail local equilibria. Results

based on weak norms have recently been achieved by S. Armstrong and J.-C. Mourrat in case of Maxwellian

local equilibria. Using adapted Poincaré and Lions-type inequalities, we develop a constructive method for

estimating the decay rate of time averages of norms of the solutions, which covers various regimes corre-

sponding to subexponential, exponential and superexponential (including Maxwellian) local equilibria. As

a consequence, we also derive hypocoercivity estimates, which are compared to similar results obtained by

other techniques.

3.1 Introduction

Let us consider the kinetic Fokker-Planck equation

∂t f + v ⋅∇x f =∇v ⋅(∇v f +α⟨v⟩α−2 v f ) , f (0, ⋅, ⋅) = f0. (3.1)

where f is a function of time t ≥ 0, position x, velocity v, and α is a positive parameter. Here we use the

notation

⟨v⟩ =
√

1+ ∣v ∣2, ∀v ∈Rd .

We consider the spatial domain T ∶= (0,L)d ∋ x, with periodic boundary conditions, and define Ωt ∶= (t , t+τ)×
T, for some τ > 0, t ≥ 0 and Ω =Ω0. The normalized local equilibrium, that is, the equilibrium of the spatially

homogeneous case, is

γα(v) =
1

Zα
e−⟨v⟩

α

, ∀v ∈Rd ,

where Zα is a non-negative normalization factor, so that dγα ∶= γα(v)d v is a probability measure. We shall

distinguish a sublinear regime if α ∈ (0,1), a linear regime if α = 1 and a superlinear regime if α ≥ 1. The

superlinear regime covers the Maxwellian case α = 2. The threshold case α = 1 corresponds to a linear growth

41
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of ⟨v⟩α. The estimates in the linear case are similar to the ones of the superlinear regime. In the literature,

γα is said to be subexponential, exponential or superexponential depending whether the regime is sublinear,

linear or superlinear.

The mass

M ∶=∫
T×Rd

f (⋅, x, v)d x d v

is conserved under the evolution according to the kinetic Fokker-Planck equation (3.1). We are interested in

the convergence of the solution to the stationary solution M L−d γα. By linearity, we can assume from now on

that M = 0 with no loss of generality. The function

h = f

γα

solves the kinetic-Ornstein-Uhlenbeck equation

∂t h+ v ⋅∇x h =∆αh, h(0, ⋅, ⋅) = h0, (3.2)

with

∆αh ∶=∆v h−αv ⟨v⟩α−2 ⋅∇v h,

and zero-average initial datum in the sense that

∫
T×Rd

h0(x, v)d x dγα = 0.

By mass conservation, solutions to (3.2) are zero-average for any t > 0.

Therefore, we consider the time average defined as

⨏
t+τ

t
g(s)d s ∶= 1

τ
∫

t+τ

t
g(s)d s

without specifying the τ dependence when not necessary. Our first result is devoted to the decay rate of

h(t , ⋅, ⋅)→ 0 as t →∞ using time averages.

Theorem 31. Let α ≥ 1. Then, for all L > 0 and τ > 0, there exists a constant λ > 0 such that, for all h0 ∈
L2(d x dγα)with zero-average, the solution to (3.2) satisfies

⨏
t+τ

t
∥h(s, ⋅, ⋅)∥2L2(d x dγα)d s ≤ ∥h0∥2L2(d x dγα) e−λ t , ∀ t ≥ 0. (3.3)

The expression of λ as a function of τ and L is given in Section 3.4. To deal with large-time asymptotics

in kinetic equations, it is by now standard to use hypocoercivity methods. Although not being exactly a

hypocoercive method in the usual sense, Theorem 31 provides us with a hypocoercivity estimate.

Corollary 32. Under the assumptions of Theorem 31, there exists an explicit constant C > 1 such that all solu-

tions h to (3.2) fulfill

∥h(t , ⋅, ⋅)∥2L2(d x dγα) ≤C ∥h0∥2L2(d x dγα) e−λ t , ∀ t ≥ 0. (3.4)

A typical feature of hypocoercive estimates is the factor C > 1 in (3.4). The prefactor C > 1 cannot be

avoided. Otherwise, inequality (3.4) would be equivalent to a Poincaré inequality where the L2−norm of a

function is controlled with the velocity gradient only. We can see explicitly that for α = 2 the Green function
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of (3.1), computed in [183], has a built-in delay. In particular,

∥h0∥2L2(d x dγ2)−∥h(t , ⋅, ⋅)∥2L2(d x dγ2) =O(t 3),

as t → 0+. Note that there is no such a constant in (3.3).

Now, let us turn our attention to the subexponential case 0 <α < 1.

Theorem 33. Let α ∈ (0,1) Then, for all L > 0 and τ > 0, for all σ > 0, there is a constant K > 0 such that all

solutions to (3.2) decay according to

⨏
t+τ

t
∥h(s, ⋅, ⋅)∥2L2(d x dγα)d s ≤ K (1+ t)−

σ
2(1−α) ∫

T×Rd
⟨v⟩σh2

0 d x dγα, ∀ t ≥ 0. (3.5)

Further details will be given in Section 3.5. The constants λ, C in Corollary 32 and K in Theorem 33

depend on L > 0 and τ > 0 and their values are discussed later. The rate of Theorem 33 is the same as in the

spatially-homogeneous case of [67, Proposition 11]. In the spatially-inhomogenous case, rates are known,

see [180, 66]. Finally, see Section 3.5 for a discussion of the limit α→ 1−.

Equation (3.2) is used in physics to describe the distribution function of a system of particles interacting

randomly with some background, see for instance [28]. The kinetic Fokker-Planck equation is the Kolmogorov

forward equation of Langevin dynamics

⎧⎪⎪⎪⎨⎪⎪⎪⎩

d xt = vt d t ,

d vt =−vt +
√

2dWt ,

where Wt is a standard Brownian motion. See [44, Introduction] for further details on connections with prob-

ability theory. The kinetic Fokker-Planck equation (3.1) is a simple kinetic equation which has a long history

in mathematics that we will not retrace in details here. Mathematical results go back at least to [183] and are

at the basis of the theory of L. Hörmander (see, e.g., [169]), at least in the case α = 2. For the derivation of the

kinetic-Fokker-Planck equation from underlying stochastic ODEs, particularly in the context of astrophysics,

we can refer to [92, eq. (328)]. The hypocoercivity theory emerged from [165, 114] and was built up in a fully

developed theory in [256] with important contributions in [164, 215]. Existence theory for solutions to the

Vlasov-Fokker-Planck equation was discussed also in [108, Appendix A].

The word hypocoercivity was coined by T. Gallay, in analogy with the already quoted hypoelliptic theory

of Hörmander in [169]. In [256], C. Villani distinguishes the regularity point of view for elliptic and parabolic

problems driven by degenerate elliptic operators from the issue of the long-time behaviour of solutions,

which is nowadays attached to the word hypocoercivity. The underlying idea is to twist the reference norm,

in order to carry properties (as the coercivity of the operator driving (3.2)) from velocity direction to space

directions, thanks to commutators. Twisting the H1-norm creates equivalent norms, which are exponentially

decaying along the evolution. So works the H1 framework, see [256, 255, 126]. The H1-framework has been

connected to the carré du champ method of D. Bakry and M. Emery in [24] by F. Baudoin, who proved decay

also with respect to the Wasserstein distance, as shown in [32, 33, 34]. We report also the works [134, 116],

where accurate convergence rates in the Wasserstein distance for (3.2) are computed trough a coupling argu-

ment.

The H1 hypocoercivity implies a decay rate for the L2 norm [215], but the corresponding estimates turn

out to be sub-optimal. Moreover, kinetic equations driven by non-regularising operators are not well suited

for the H1−framework. This motivates the development of direct L2 techniques based on a perturbation of
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the L2 norm. Such an approach can be found in [127] and [67], which is consistent with diffusion limits, after

[164]. In [66], the authors extend the technique to the subexponential case. Another possibility is to perform

rotations in the phase space and use a Lyapunov inequality for matrices as in [18]. This approach gives op-

timal rates, but it is less general as it requires further algebraic properties for the diffusion operator and a

detailed knowledge of its spectrum. The core of [18] is a spectral decomposition, that was originally under-

stood via a toy model exposed in [127]. In a domain with periodic boundary conditions and no confining

potential, the problem is reduced to an infinite set of ODEs corresponding to spatial modes. See [2, 3, 16] for

details and extensions. Other techniques related to hypocoercivity – involving time-integrated functionals

and the application of the so called kinetic-fluid decomposition, appear in [244, 161] and subsequent papers.

A new hypocoercivity theory, involving Sobolev norms with negative exponents of the transport oper-

ator, was recently proposed by S. Armstrong and J.-C. Mourrat in [5]. Using space-time adapted Poincaré

inequalities they derive qualitative hypocoercive estimates in the case α = 2. The constants appearing there

are not quantified. One of the difficulties lies in controlling the constant in Lions’ Lemma, which is done in

our Section 3.2. An extension to the whole space in presence of a confining potential can be found in [79].

Note that the strategy of using time-integrated functionals of the solutions to kinetic equations is present also

in [250, 132], after [161].

Adopting the strategy of [5], in this paper we study the convergence to equilibrium of solutions to (3.1)

and (3.2), as it is a simple benchmark in kinetic theory, [127, 255, 5], and a simplified model of the Boltzmann

equation when collisions become grazing, see [109].

Our original contribution lies in making the strategy of [5] effective, and to generalise it to kinetic Fokker-

Planck equations where local equilibria are not necessarily Maxwellians. First, we are able to track the Lions’

constant in terms of the parameters (see Lemma 38). Moreover, we achieve a fully constructive proof of the

averaging Lemma 42. This allows both for an explicit estimate of the constant and for an adaptation to more

general models. One important point is the control in terms of the offset of the solution from the velocity

average, without explicitly using gradients, see Proposition 43. So, we compute explicit and accurate decay

rates of time averages of solutions to (3.2). Hypocoercivity estimates are obtained as a consequence of these

decay rates, see Corollary 32. We perform an analysis for all positive values of α, which is consistent in the

threshold case α = 1. Since the estimates are explicit, we are able to compare the strategy of [5] to other

L2−hypocoercivity methods.

This document is organized as follows. In Section 3.2 we collect some preliminary results: Poincaré and

weighted Poincaré inequalities (Propositions 35 and 36), adapted Lions’ inequality (Lemmas 37 and 38).

In Section 3.3 we introduce an averaging lemma (Lemma 42), which is then used to prove the generalized

Poincaré inequality of Proposition 43, at the core of the method. In Section 3.4 we use Proposition 43 and a

Grönwall estimate to prove Theorem 31 and compute an explicit formula for λ (Proposition 45). Section 3.5

is devoted to the proof of Theorem 33, with additional details, and to the limit α→ 1−. Finally, in Section 3.6,

we derive the hypocoercive estimates of Corollary 32. On the benchmark case α = 2 in one spatial dimension,

we also compare our results with those obtained by more standard methods.

3.2 Preliminaries

Let us start with some preliminary results.
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3.2.1 Weighted spaces

For functions g of the variable v only, that is, of the so-called homogeneous case, we define the weighted

Lebesgue and Sobolev spaces

L2
α ∶= L2(Rd ,dγα) and H1

α ∶= {g ∈ L2
α ∶ ∇v g ∈ (L2

α)
d} .

We equip L2
α with the scalar product

(g1, g2) =∫
Rd

g1(v)g2(v)dγα (3.6)

and consider on H1
α the norm defined by

∥h∥2H1
α
∶= (∫

Rd
h dγα)

2

+∫
Rd
∣∇v h∣2 dγα

as in [5]. The duality product between H−1
α ∋ z and H1

α ∋ g is given by

⟨z, g ⟩ ∶=∫
Rd
∇v wz ⋅∇v g dγα,

where wz is the weak solution in H1
α to

−∆αwz = z −∫
Rd

z dγα, ∫
Rd

w dγα = 0.

Here we write ∫Rd z dγα for functions which are integrable w.r.t. dγα and, up to a little abuse of notations, this

quantity has to be understood in the distribution sense for more general measures. As a consequence and

with the above notations, we define

∥z∥2H−1
α
∶= (∫

Rd
z dγα)

2

+∥wz∥2H1
α

.

With these notation, the key property of the operator ∆α, is

⟨g1,∆αg2⟩ =−∫ ∇v g1 ⋅∇v g2 dγα

for any functions g1, g2 ∈H1
α.

We recall that Ωt = (t , t+τ)×T ⊂R+t ×Rd
x and that x-periodic boundary conditions are assumed. Consider

next functions h of (t , x, v) ∈R+×T×Rd and define the space

Hkin ∶= {h ∈ L2 ((t , t +τ)×T;H1
α) ∶ ∂t h+ v ⋅∇x h ∈ L2 (Ωt ;H−1

α )∀ t ≥ 0} .

The dependence of the space on t ,τ is implicit for readability purposes. We can equip Hkin with the norm

∥h∥2kin ∶= ∥h∥
2
L2(Ωt ;L2

α)+ ∣h∣
2
kin

where the kinetic semi-norm is given by

∣h∣2kin ∶= ∥∇v h∥2L2(Ωt ;L2
α)+∥∂t h+ v ⋅∇x h∥2L2(Ωt ;H−1

α ).
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We refer to [5, Section 6] for the proof of following result.

Proposition 34. The embedding H1
kin↪ L2 (Ωt ×T;L2

α) is continuous and compact for any t ≥ 0.

3.2.2 Poincaré inequalities

In this subsection, we consider functions g depending only on the variable v. Let α ≥ 1. We can state some

Poincaré inequalities.

Proposition 35. If α ≥ 1, there exists a constant Pα > 0 such that, for all functions g ∈H1
α, we have

∫
Rd
∣g −ρg ∣2 dγα ≤ Pα∫

Rd
∣∇v g ∣2 dγα with ρg ∶=∫

Rd
g dγα. (3.7)

With α ≥ 1, the operator ∆α admits a compact resolvent on L2(dγα). Then, (3.7) holds by the standard

results of [71, Chapter 6]. The best constant Pα is such that P−1
α is the minimal positive eigenvalue of −∆α.

See [89] and the references quoted therein for estimates on Pα. In the case of the Gaussian Poincaré inequal-

ity, it is shown in [219] that P2 = 1, although the result was probably known before.

3.2.3 Weighted Poincaré inequalities

Here we consider again functions depending only on v. For α ∈ (0,1), inequality (3.7) has to be replaced by

the following weighted Poincaré inequality.

Proposition 36. If α ∈ (0,1), there exists a constant Pα > 0 such that, for all functions g ∈H1
α, we have

∫
Rd
⟨v⟩2(α−1) ∣g −ρg ∣2 dγα ≤ Pα∫

Rd
∣∇v g ∣2 dγα with ρg ∶=∫

Rd
g dγα. (3.8)

For more details, we refer for instance to [66, Appendix A]. Notice that the average in the l.h.s. is taken

w.r.t. dγα, not w.r.t. ⟨v⟩2(α−1)dγα

3.2.4 Lions’ Lemma

LetO be an open, bounded and Lipschitz-regular subset of Rd+1 ≈Rt ×Rd
x . We recall that

H−1(O) = {w ∈D∗(O) ∶ ∣⟨w,u⟩O ∣ ≤C ∥u∥H1
0(O), C > 0} ,

where D∗(O) denotes the space of distributions over O, equipped with the weak∗ topology, and ⟨w,u⟩O is

the duality product between H−1 and H1
0. The norm on H1

0(O) is as usual u ↦ ∥∇u∥L2(O). On H1(O), we

introduce the norm

∥u∥2H1 = ∣∫O
u d t d x∣

2

+∥∇u∥2L2(O).

The norm induced on H−1(O) is then

∥w∥2H−1(O) = ⟨w,1⟩2O +∥zw∥2H1(O),

where zw is the solution to

−(∂t t +∆x)zw =w − ⟨w,1⟩O , ∫O
zw d t d x = 0.
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Lions’ Lemma gives a sufficient condition for a distribution to be an L2 function. The following statement is

taken from [11] in the case without external potential.

Lemma 37. LetO be a bounded, open and Lipschitz-regular subset in Rd+1. Then, for all u ∈D∗(O), we have

that u ∈ L2(O) if and only if the weak gradient∇u belongs to H−1(O). Moreover, there exists a constant CL(O)
such that

∥u−∫O
u d x d t∥

2

L2(O)
≤CL∥∇u∥2H−1(O),

for any u ∈ L2(O).

According to [77, 60, 104], ifO is star-shaped w.r.t. a ball, then the constant CL has the following structure:

CL = 4 ∣Sd ∣D(O)
d(O)

, (3.9)

where D is the diameter of O, while d(O) is the diameter of the largest ball one can include in O. See in

particular [104, Remark 9.3] and [60, Lemma 1]. As a consequence, we have the following explicit expression

of CL whenO =Ω.

Lemma 38. Let L > 0, τ ∈ (0,L) and Ω = (0,τ)×(0,L)d . Lemma 37 holds with

CL = 4 ∣Sd ∣
√

d L2+τ2

τ
. (3.10)

3.2.5 The kinetic Ornstein-Uhlenbeck equation

We consider solutions to (3.2) in the weak sense, i.e., functions h in the space C(R+;L2(d x dγα)) with initial

datum h0 = h(0, ⋅, ⋅) in L2(d x dγα) such that (3.2) holds in the sense of distributions on (0,∞)×Rd
x ×Rd

v . The

following result is taken from [5] if α = 2. The extension to α ≠ 2 is straightforward as follows from a careful

reading of the proof in [5, Proposition 6.10].

Proposition 39. Let L > 0 andα > 0. WithΩ = (0,τ)×(0,L)d , for all zero-average initial datum h0 ∈ L2(d x dγα),
there exists a unique solution h to (3.2) such that h ∈Hkin for all τ > 0.

Regularity properties for (3.2) are collected in [5, Section 6]. In the special case α = 2, some fractional

regularity along all directions of the phase space are known. Also see [231] for further result on regularity

theory for kinetic Fokker-Planck equations.

3.2.6 A priori estimates

We state two estimates for solutions to (3.2).

Lemma 40. Let L > 0, τ > 0, Ω = (0,τ)×(0,L)d , and α > 0. If h is a solution to (3.2), then we have

∥(∂t + v ⋅∇x)h∥L2(Ω;H−1
α ) ≤ ∥∇v h∥L2(Ω;L2

α). (3.11)

Proof. Take a test function ϕ ∈ L2(H1
α), and write

∫
T
⟨(∂t + v ⋅∇x)h,ϕ⟩d x =∫

T
⟨∆αh,ϕ⟩d x =−∫

T
(∇v h,∇vϕ)d x,

from which (3.11) easily follows, after maximizing over ∥∇vϕ∥L2
α
≤ 1.
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For completeness, let us recall the classical L2 decay estimate for solutions to (3.2).

Lemma 41. Let L > 0, τ > 0, Ω = (0,τ)×(0,L)d , and α > 0. If h is a solution to (3.2), then we have

d

d t
∥h∥2L2(d x dγα) =−2∥∇v h∥2L2(d x dγα).

3.3 An averaging lemma and a generalized Poincaré inequality

For all functions h ∈Hkin, we define the spatial density

ρh ∶=∫
Rd

h(⋅, ⋅, v)dγα.

Notice that ∫Q ρh d x = 0 whenever h is a zero-average function.

3.3.1 Averaging lemma

Inspired by [5, Proposition 6.2], the following averaging lemma provides a norm of the spatial density, as for

instance in [231].

Lemma 42. Let L > τ > 0, Ω = (0,τ)×(0,L)d , and α > 0. For all h ∈Hkin, we have

∥∇t ,xρh∥2H−1(Ω) ≤ dα(∥h−ρh∥2L2(d t d x dγα)+∥∂t h+ v ⋅∇x h∥2L2(Ω;H−1
α )) (3.12)

with

dα = 2 (∥v1∣v ∣2∥2L2
α
+(1+ L2

4π2 )∥∣v ∣2∥2L2
α
+ d 2L2

4π2 ∥v∥2L2
α
) . (3.13)

Inequality (3.12) can be extended to any measure dγ such that ∫Rd ∣v ∣4 dγ <∞ and ∫Rd v dγ = 0. The proof

of Lemma 42 is technical, but follows in a standard way from the time-independent case, as it is common in

averaging lemmas: see [231]. See also the more general Lemma 52 of Chapter 4.

Proof of Lemma 42. Assume that h ∈Hkin does not depend on t . Let ϕ ∈D(T)d be a smooth test-vector field

with zero average on each component. We write

−∫
T
ρh∇x ⋅ϕd x =∫

T
(∇xρh) ⋅ϕd x,

with a slight abuse of notation, since the integral of the r.h.s. is in fact a duality product. Using ∫Rd vi v j dγα =
d−1 ∥v∥2L2

α
δi j , we obtain

∫
T
∇xρh ⋅ϕd x = d ∥v∥−2

L2
α
∫
T×Rd

v ⋅∇xρh ϕ ⋅ v d x dγα.

By adding and subtracting h, and then integrating by parts, still at formal level, we obtain

∫
T×Rd

v ⋅∇xρh ϕ ⋅ v d x dγα

=−∫
T×Rd

v ⋅(h−ρh)∇xϕ ⋅ v d x dγ−∫
T×Rd

v ⋅∇x h v ⋅ϕ d x dγα

≤ ∥h−ρh∥L2(d x dγα) ∥∇xϕ∥L2(d x) ∥v2∥
L2
α

+∥v ⋅∇x h∥L2(H−1
α ) ∥ϕ∥L2(d x) ∥v∥H1

α
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using Cauchy-Schwarz inequalities and duality estimates. By the Poincaré inequality, we know that

4π2

d L2
∥ϕ∥2L2(d x) ≤ ∥∇ϕ∥

2
L2(d x)

Maximizing the r.h.s. on ϕ such that ∥∇xϕ∥L2(d x) ≤ 1 completes the proof of the t-independent case. When h

additionally depends on t , the same scheme can be applied with v ⋅∇x replaced by ∂t+v ⋅∇x . Let Ω ∶= [0,τ]×T.

Let ϕ ∈H1
0(Ω) and compute

∫
τ

0
∫
T
∂tρhϕd x d t =

=∫
τ

0
∫
T
∂tρhϕ∫ ∣v ∣2 dγα d x d t +∫

τ

0
∫

Q
∇xρh ⋅∫ v ∣v ∣2 dγαϕd x d t =

=∫
τ

0
∫
T
ϕ(∫ (∂t + v∇x)ρh ∣v ∣2 dγα) d x d t =

=∫
τ

0
∫
T
ϕ(∫ (∂t + v∇x)h∣v ∣2 dγα) d x d t+

+∫
τ

0
∫
T
ϕ(∫ (∂t + v∇x)(ρh −h)∣v ∣2 dγα) d x d t ≤

≤ ∥(∂t + v∇x)h∥L2(Ω;H−1
α )∥∣v ∣

2∥H1
α
∥ϕ∥L2(Ω)+

+∫
τ

0
∫
T
(∫ (ρh −h)∣v ∣2 dγα)(−∂tϕ)d x d t+

+∫
τ

0
∫
T
(∫ v ⋅∇x(ρh −h)∣v ∣2 dγα)(ϕ)d x d t ≤

≤ ∥(∂t + v∇x)h∥L2(Ω;H−1
α )∥∣v ∣

2∥H1
α
∥ϕ∥L2(Ω)+

+∥h−ρ∥L2(Ω;dγα)∥∣v ∣
2∥L2

α
∥∂tϕ∥L2(Ω)+

+∫
τ

0
∫
T
−∇xϕ ⋅∫ v ∣v ∣2(ρh −h)dγα ≤

≤ ∥(∂t + v∇x)h∥L2(Ω;H−1
α )∥∣v ∣

2∥H1
α
∥ϕ∥L2(Ω)+

+∥h−ρh∥L2(L2
α)∥∣v ∣

2∥L2
α
∥∂tϕ∥L2(Ω)+

+d∥∇xϕ∥L2∥v1∣v ∣2 ∥L2
α
∥h−ρh∥L2(L2

α).

Hence, ∥∂tρh∥H−1(Ω) is controlled by

∥(∂t + v∇x)h∥L2(Ω;H−1
α )∥∣v ∣

2∥H1
α
+∥h−ρh∥L2(L2

α)(∥∣v ∣
2∥L2

α
+d∥v1∣v ∣2 ∥L2

α
).

A very similar argument gives

∥∇xρh∥H−1 ≤ ∥v∥H1
α
+(d 2+1)∥v∥L2

α
∥h−ρh∥L2(Ω;L2

α).

The two estimates together yield the thesis with

dα = (2(d ∥∣v ∣2v1∥L2
α
+∥∣v ∣2∥L2

α
)2+(d +1)2 ∥v∥2L2

α
) .
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3.3.2 A generalized Poincaré inequality

The next a priori estimate is at the core of the method. It is a modified Poincaré inequality in t , x and v which

relies on Lemma 42 and involves derivatives of various orders.

Proposition 43. Let L > 0, τ > 0, Ω = (0,τ)×(0,L)d , and α > 0. Then, for all h ∈Hkin with zero average, we have

that

∥h∥2L2(d t d x dγα) ≤C (∥h−ρh∥2L2(d t d x dγα)+∥∂t h+ v ⋅∇x h∥2L2(Ω;H−1
α )) (3.14)

with C = 1+CL dα, where CL and dα are given respectively by (3.10) and (3.13).

Proof. By orthogonality in L2(Ω;L2
α) and because dγα is a probability measure, we have the decomposition

∥h∥2L2(Ω;L2
α) = ∥h−ρh∥2L2(Ω;L2

α)+∥ρh∥2L2(Ω).

The function ρh has zero average on Ω by construction, so that

∥h∥2L2(Ω;L2
α) ≤ ∥h−ρh∥2L2(Ω;L2

α)+CL ∥∇x,tρ∥2H−1(Ω)

by Lemma 38. Hence

∥h∥2L2(Ω;L2
α) ≤ (1+CL dα)∥h−ρh∥2L2(Ω;dγα)+CL dα ∥∂t h+ v ⋅∇x h∥2L2(Ω;H−1

α )

by Lemma 42. This concludes the proof.

3.4 (Super)linear local equilibria: exponential decay rate

In this Section, we consider the case α ≥ 1 and the domain Ω = (t , t +τ)× (0,L)d , for an arbitrary t ≥ 0. Let

us define κα ∶= (1+CL dα)(Pα+1) where Pα is the Poincaré constant in (3.7) and where CL and dα are given

respectively by (3.10) and (3.13).

Lemma 44. Let L > 0, τ > 0, t ≥ 0, Ωt = (t , t +τ)× (0,L)d , and α ≥ 1. Then, for all h ∈ Hkin with zero average

which solve (3.2), we have that

∥h∥2L2(d t d x dγα) ≤ κα ∥∇v h∥2L2(d t d x dγα). (3.15)

Proof. We know that

∥h∥2L2(d t d x dγα) ≤ (1+CL dα)(Pα ∥∇v h∥2L2(d t d x dγα))+∥∂t h+ v ⋅∇x h∥2L2(H−1
α ))

as a consequence of (3.7) and (3.14). Then (3.15) follows from Lemma 40.

We are ready to prove Theorem 31 with an explicit estimate of the constant λ.

Proof of Theorem 31. Inequality (3.15) – on the interval (t , t +τ) – gives

∫
t+τ

t
∥h(s, ⋅, ⋅)∥2L2(d x dγα)d s ≤ κα∫

t+τ

t
∥∇v h(s, ⋅, ⋅)∥2L2(d x dγα)d s.
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With λ = 2/κα, we deduce from Lemma 41 that

d

d t ∫
t+τ

t
∥h(s, ⋅, ⋅)∥2L2(d x dγα)d s =−2∫

t+τ

t
∥∇v h(s, ⋅, ⋅)∥2L2(d x dγα)d s

≤−λ∫
t+τ

t
∥h(s, ⋅, ⋅)∥2L2(d x dγα)d s.

Grönwall’s Lemma and the monotonicity of t ↦ ∥h(t , ⋅, ⋅)∥2L2(d x dγα) imply

∫
t+τ

t
∥h(s, ⋅, ⋅)∥2L2(d x dγα)d s ≤ ∫

τ

0
∥h(s, ⋅, ⋅)∥2L2(d x dγα)d s e−λ t ≤ τ∥h0∥2L2(d x dγα) e−λ t

for ant t ≥ 0, which proves (3.3), that is, Theorem 31.

Indeed, the estimate for λ is explicit, as we state in the following.

Proposition 45. For any α ≥ 1, Theorem 31 holds true with

1

λ
= 1

τ
(τ+
√

d L2+τ2)(2dα ∣Sd−1∣(Pα+1)).

Notice that the r.h.s. vanishes as τ ↓ 0, which is expected because of the degeneracy of ∆α: an exponential

decay rate of ∥h(t , ⋅, ⋅)∥2L2(d x dγα) cannot hold. The section is concluded showing how the result above yields

the classical hypocoercivity estimate of Corollary 32.

Proof of Corollary 32. For any t ≥ 0, we know from Theorem 31 that

∥h(t +τ, ⋅, ⋅)∥2L2(d x dγα) ≤⨏
t+τ

t
∥h(s, ⋅, ⋅)∥2L2(d x dγα)d s ≤ ∥h0∥2L2(d x dγα) e−λ t ,

as a consequence of the monotonicity of the L2 norm, according to Lemma 41. This proves that

∥h(t , ⋅, ⋅)∥2L2(d x dγα) ≤ C ∥h0∥2L2(d x dγα) e−λ t

with C = eλτ for any t ≥ τ. However, if t ∈ [0,τ), it turns out that C e−λ t ≥ 1 so that the inequality is also true

by Lemma 41. This concludes the proof.

3.5 Sublinear equilibria: algebraic decay rates

3.5.1 Proof of the decay estimate

Assume that α ∈ (0,1). Let us define the parameter β = 2(1−α)/p where p, q > 1 are Hölder conjugate expo-

nents, i.e., 1
p +

1
q = 1 and define

Zh(t) ∶=∫
T×Rd
⟨v⟩βq ∣h−ρh ∣2 d x dγα. (3.16)

The following estimates replace Proposition 43.

Proposition 46. Let L > 0, τ > 0, t ≥ 0, Ωt = (t , t + τ)× (0,L)d , and α ≥ 1. With the above notations, for all

h ∈Hkin with zero average, we have that

∥h∥2L2(d t d x dγα) ≤ C P
1
p
α ∥∇v h∥

2
p

L2(d t d x dγα) (∫
t+τ

t Zh(s)d s)
1
q + C ∥∂t h + v ⋅ ∇x h∥2L2(Ω;H−1

α )
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where C = 1+CL dα is as in Proposition 43 and Pα denotes the constant in the weighted Poincaré inequal-

ity (3.8).

Proof. Using (3.14) and Hölder’s inequality w.r.t. the variable v , we find that

∥h−ρh∥2L2
α
≤ (∫

Rd
⟨v⟩−βp ∣h−ρh ∣2 dγα)

1
p
(∫

Rd
⟨v⟩βq ∣h−ρh ∣2 dγα)

1
q

.

The weighted Poincaré inequality (3.8) with βp = 2(1−α) and an additional Hölder inequality w.r.t. the vari-

ables t and x allow us to complete the proof.

Lemma 47. Let L > 0, τ > 0, t ≥ 0, Ωt = (t , t +τ)× (0,L)d , and α ∈ (0,1). There is a constant W > 0 such that,

for all solution h ∈ Hkin to (3.2) with an initial datum h0 with zero average, using the notation (3.16) as in

Proposition 46, we have

Zh(t) ≤W ∫
T×Rd
⟨v⟩βq h2

0 d x dγα, ∀ t ≥ 0.

Proof. An elementary computation shows that

∫
T×Rd
⟨v⟩βq ∣h−ρh ∣2 d x dγα ≤ 2∫

T×Rd
⟨v⟩βq (h2+ρ2

h) d x dγα

≤ 2(1+∫Rd ⟨v⟩βq dγα)∫
T×Rd
⟨v⟩βq h2 d x dγα

because ρ2
h = (∫Rd h dγα)2 ≤ ∫Rd h2 dγα ≤ ∫Rd ⟨v⟩βq h2 dγα. According to [66, Proposition 4], there is a constant

Kβq > 1 such that

∫
T×Rd
⟨v⟩βq ∣h(t , x, v)∣2 d x dγα ≤Kβq ∫

T×Rd
⟨v⟩βq h2

0 d x dγα, ∀ t ≥ 0.

The result follows with W = 2(1+∫Rd ⟨v⟩βq dγα)Kβq .

Assume that h ∈ Hkin solves (3.2) with an initial datum h0 with zero average and let us collect our esti-

mates. With Proposition 40, Proposition 46, and Lemma 47, the estimate of Lemma 44 is replaced by

∥h∥2L2(d t d x dγα) ≤ A ∥∇v h∥
2
p

L2(d t d x dγα)+C ∥∇v h∥2L2(d t d x dγα) (3.17)

with A =C P
1
p
α (τW )1/q (∫T×Rd ⟨v⟩βq h2

0 d x dγα)
1/q

.

The main result of the section is a technical version of Theorem 33. Let

x(t) ∶=⨏
t+τ

t
∥h(s, ⋅, ⋅)∥2L2(d x dγα)d s and y(t) ∶=⨏

t+τ

t
∥∇v h(s, ⋅, ⋅)∥2L2(d x dγα)d s

where norms are taken on T×Rd . We know from Lemma 41 and (3.17) that

x′ =−2y and x ≤φ(y) ∶= A y1/p +C y.

Finally, let us denote by φ−1 the inverse of y↦φ(y) and consider

ψ(z) ∶=∫
x0

z

d z

2φ−1(z)
with x0 = ∥h0∥2L2(d x dγα).
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Theorem 48. Let L > 0, τ > 0, t ≥ 0, Ωt = (t , t +τ)× (0,L)d , and α ∈ (0,1). With the above notations, for all

solution h ∈Hkin to (3.2) with an initial datum h0 with zero average, we have

x(t) =⨏
t+τ

t
∥h(s, ⋅, ⋅)∥2L2(d x dγα)d s ≤ψ−1(t), ∀ t ≥ 0.

Proof. The strategy goes as in [198, 66]. Everything reduces to the differential inequality

x′ ≤−2φ−1(x)

using the monotonicity of y↦φ(y). From by the elementary Bihari-Lasalle inequality, see [50, 186], which is

obtained by a simple integration, we obtain

x(t) =⨏
t+τ

t
∥h(s, ⋅, ⋅)∥2L2(d x dγα)d s ≤ψ−1(t +ψ(x(0))).

Since, on the one hand

x(0) =⨏
τ

0
∥h(s, ⋅, ⋅)∥2L2(d x dγα)d s ≤ ∥h0∥2L2(d x dγα) = x0

because s↦ ∥h(s, ⋅, ⋅)∥2L2(d x dγα) is nonincreasing according to Lemma 41, andψ is nonincreasing on the other

hand, then

ψ−1(t +ψ(x(0))) ≤ψ−1(t),

which concludes the proof. Notice that the dependence on h0 enters in A and x0, and henceforth in φ and

ψ.

Proof of Theorem 33. Since limt→+∞ y(t) = 0, we have thatφ(y(t)) ∼ A y(t)1/p as t →+∞, which heuristically

explains the role played by p in (3.5). This can be made rigorous as follows. Notice that

φ(y) = A y1/p +C y ≤ A0 y1/p , ∀y ≤ y0, with A0 = A+C y1−1/p
0 .

With A replaced by A0 and C replaced by 0, the computation of the proof of Theorem 48 is now explicit. With

the choice y0 =φ−1(x0), we know that y(t) ≤ y0 for any t ≥ 0 and obtain

x(t) ≤ (x1−p
0 +2(p −1)A−p

0 t)
− 1

p−1 , ∀ t ≥ 0. (3.18)

Using x0 = A y1/p
0 +C y0 ≥C y0, we know that A0 = x0 y−1/p

0 ≤ A+C 1/p x1−1/p
0 , which proves (3.5) with

K =max{1,(2(p −1))1/(1−p)(C P
1/p
α (τW )1−1/p +C 1/p)} .

The conclusion holds using σ =βq = 2(1−α)/(p −1).

3.5.2 The linear threshold: from algebraic to exponential rates

A very natural question arises: is the result Theorem 45 (corresponding to α ∈ (0,1) consistent with the result of

Theorem 48 (which covers any α ≥ 1) ? A first observation is that we can vary α in the assumptions concerning

the initial data.

Lemma 49. If h0 ∈ L2(T;L2
α0
) for some α0 ∈ (0,1), then ⟨v⟩σ/2 h0 ∈ L2(T;L2

α) for any α >α0 and any σ > 0.
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The proof is a simple consequence of the fact that v ↦ ⟨v⟩σ exp⟨v⟩α−α0 is uniformly bounded. For any

α >α0, let us denote the corresponding solution of (3.2) with initial datum h0, of zero average, by h(α).

If α ∈ (α0,1), then (3.18) can be rewritten as

⨏
t+τ

t
∥h(α)(s, ⋅, ⋅)∥2L2(d x dγα)d s ≤ ∥h0∥2L2(d x dγα) (1+(p −1)ℓ(α) t)−

1
p−1 .

By passing to the limit as α→ 1−, we recover (3.3) with

λ = lim
α→1−

ℓ(α),

where ℓ(α) = 2∥h0∥2(p−1)
L2(d x dγα) A−p

0 and A0 = A0(α) as above. The Poincaré constant Pα in inequality (3.8)

admits a limit as α→ 1−, according to [67, Appendix A].

The limit of limα→1− ℓ(α) is certainly not optimal. By working directly on the Bihari-Lasalle estimate of

Theorem 48, we can recover the value of λ in Theorem 45. Notice here that σ > 0 plays essentially no role and

can be taken arbitrarily small, even depending on α, but such that p = 2(1−α)/σ→ 1 as α→ 1−.

As in [85, 180], it is possible to obtain improved decay rates in (3.5) by picking the initial datum in a

smaller space. Typically, the control of additional norms or moments is asked. However, the strategy in the

current paper is in the opposite direction. If α ∈ (0,1) we are interested in taking the initial data in a space

as large as possible so that we can compute decay rates. The additional conditions to be imposed have been

shown to vanish as α→ 1−.

3.6 Hypocoercivity and comparison with some other methods

3.6.1 An explicit hypocoercivity result

Theorem 31 implies an L2−hypocoercivity result in the linear and superlinear regimes α ≥ 1, see Corollary

32. The remainder of this section is devoted to a comparison with earlier hypocoercivity results in a simple

benchmark case: let α = 2, d = 1 and L = 2π. In this case, for the choice τ = 2π, Theorem 31 amounts to

∥h∥2L2(d x dγ2) ≤ e
π

8
√

3 ∥h0∥2L2(d x dγ2) e
− t

8
√

3 , ∀ t ≥ 0.

For sake of comparison, notice that λ = 1/(8
√

3) ≈ 0.0721688. Even if we are aware of explicit or sharp results

in other metrics than L2 for (3.2), as [116, 215], we restrict our discussion to L2 hypocoercivity methods. The

paper [117] covers several cases, but it would be not trivial to extract an explicit rate to compare with our

method.

3.6.2 The L2 hypocoercivity method

The first comparison is with the abstract twisted L2 hypocoercivity method of [127, 67]. Let ∥ ⋅∥ be the norm

of L2(d x dγ2) and (⋅, ⋅) the associated scalar product. We consider the evolution equation

∂t h+T h =Lh. (3.19)

Theorem 50. Let h be a solution of (3.19) with initial datum h0 ∈ L2(Q;L2
2) and assume that T and L are

respectively anti-self-ajoint and self-adjoint operators on L2(Q;L2
2) such that, for some positive constants λm ,
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λM and CM , we have

(A1) (−Lh,h) ≥λm ∥(1−Π)h∥2 for all h ∈D(L),

(A2) ∥T Πh∥2 ≥λM ∥Πh∥2 for all h ∈D(T Π),

(A3) ΠT Πh = 0,

(A4) ∥A T (1−Π)h∥+∥ALh∥ ≤CM ∥(Id−Π)h∥ for all admissible h ∈ L2(Q;L2
2)

where A ∶= (Id+(T Π)∗T Π)−1 (T Π)∗ and Π is the projection in L2
2 onto the kernel of L. Then we have

∥h(t , ⋅, ⋅)∥2 ≤C ∥h0∥2 e−λ t ∀ t ≥ 0

with C = (1+δ)/(1−δ), δ = 1
2 min{1,λm , λm λM

(1+λM)C 2
M
} and λ = 2δλM

3(1+λM) .

This result is taken from [67, Proposition 4]. According to [67, Corollary 9], we have the estimate λ =
1/24 ≈ 0.041667. A minor improvement is obtained as follows. Using Theorem 50 applied with d = 1, L = 2π,

T = v ∂x and L = ∂2
v − v ∂v , in Fourier variables, we obtain λm = λM = 1 and CM = (1+

√
3)/2 according to [16,

Section II.1.3.2], so that λ = 1/(12+ 6
√

3) ≈ 0.0446582. Using Fourier modes, a slightly better estimate is

obtained from [16, Section II.1.2] with λ ≈ 0.176048.

3.6.3 Direct spectral methods

In a series of papers, F. Achleitner, A. Arnold, E. Carlen and several other collaborators use direct spectral

methods. We refer in particular to [18, 2, 3, 4] and also [16] for an introduction to the method, which can be

summarized as follows.

Let us consider (3.19) written after a Fourier transform in x, so that T = i ξ ⋅ v , and acting on L2(d x;L2
2)

now considered as a space of complex valued functions. Assume that for some positive definite bounded

Hermitian operator P and some constant λ ∈ (0,+∞), we have

(L−T )∗P +P (L−T ) ≥ 2λP.

Let us consider the twisted norm ∥ f̂ ∥2P ∶= ∫Q( f̂ ,P f̂ )d x where (⋅, ⋅) is the natural extension of the scalar prod-

uct as defined in (3.6). From

d

d t
∥ f̂ ∥2P =−⟨ f̂ ,((L−T )∗P +P(L−T )) f̂ ⟩ ≤−2λ∥ f̂ ∥2P ,

for some C > 1, we deduce that

C−1∥ f (t , ⋅, ⋅)∥2L2(d x dγα) ≤ ∥ f̂ (t , ⋅, ⋅)∥2P ≤ e−2λ t ∥ f̂0∥2P ∀ t ≥ 0.

To our knowledge, µ has not yet been computed in the case of (3.1). The spectral decomposition

h(t , x, v) = ∑
ξ∈Zd

∑
k∈Nd

aξ,k(t)Hk(v)e−i 2π
L
ξ⋅x

provides an easy framework for finite dimensional approximations using the basis of Hermite functions

(Hk)k∈N and the numerical value µ ≈ 0.4 has been obtained according to [1].
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Proposition 45 λ ≈ 0.07
DMS [127] λ ≈ 0.04
ADSW [16] λ ≈ 0.17

Achleitner (numerics) [1] λ ≈ 0.4

Table 3.1: Comparison among different L2 hypocoercivity methods

3.6.4 Comparison for decay rates in limit regimes

Let α ≥ 1. Corollary 32 provides us with a decay estimate depending on the parameter L, which represents

the length of the spatial domain T. Note that (3.10) is meaningful if 0 < τ < L. We shall now consider two

situations, corresponding to L →∞, where spatial diffusion dominates, and to L → 0, where the dominant

term is the collision operator ∆α. In the first case, we have that the decay exponent

λ ≈ τ

L3
→ 0, as L→∞.

The hypocoercivity constant C ≈ 1. Hence, exponential decay is lost in the limit. On the other hand, for L→ 0,

we have

λ ≈ 1

4(Pα+1)∥v1 ∣v ∣2∥2L2
α

≈ 0.04,

if α = 1. Moreover,

C ≈ 1.

This rate has the wrong order once compared to [16], where the authors recover the value

λ ≈ 1−
√

3/7.

Our inaccuracy is mainly due to the incompatibility between (3.10) and Lemma 42. Moreover, the value of

the Lions constant in (3.10) is just an estimate and it is not expected to be as accurate as something achieved

by a spectral method (even if its scaling is correct).



Chapter 4

How to construct decay rates for kinetic

Fokker-Planck equations?

This chapter corresponds to [P6], in collaboration with Gabriel Stoltz.

Abstract

This is a preliminary work. An update to a definitive version will follow. We study time averages for the norm

of the solution to kinetic Fokker–Planck equations associated with general Hamiltonians. We provide explicit

and constructive decay estimates, allowing fat-tail, sub-exponential and (super-)exponential local equilibria,

which also include the classical Maxwellian case. The evolution is subject to a transport operator induced by

an external space-confining force. The key step in our estimates is a modified Poincaré inequality, obtained

via a Lions–Poincaré inequality and an averaging lemma.

4.1 Introduction

This work presents an extension of the hypocoercive approach studied in [P1] to the case of a non-zero po-

tential energy function, and also considers the case of general kinetic energies beyond the standard quadratic

one. Such generalizations can be relevant to enhance the performance of certain sampling methods in

molecular dynamics and Bayesian statistics; see for instance [243, 200]. The more general framework also

allows to make more transparent the structural assumptions behind the algebraic computations of [79, 5].

Kinetic models describe interacting multi-agent or multi-particle systems at an intermediate level be-

tween full microscopic and macroscopic scales [28]. More precisely, a kinetic partial differential equation

(PDE) encodes the time evolution of the distribution function of particles with respect to position and some

momentum variable. Since the XIXth century, kinetic PDEs are formulated as a coupling between a trans-

port and a collision/relaxation term. This is the case of the celebrated Boltzmann equation, for example. A

general theory for Boltzmann’s equation is still open. However, due to its physical validity, various simpli-

fied versions of it have been studied. A remarkable one is the Vlasov–Fokker–Planck equation, derived from

Boltmann’s equation in a limiting regime corresponding to grazing collisions [109]. Vlasov–Fokker–Planck

equations date back at least to [183], and they are useful models in statistical physics [28] and stellar dynam-

ics [92]. In general, Vlasov–Fokker–Planck equations should be understood as models for the time evolution

of a distribution of particles subject to a potential and random background force inducing relaxation towards

57
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equilibrium. This paper is concerned with a rather general class of Vlasov–Fokker–Planck equations we in-

troduce below.

We consider systems described by their configuration (x, v), where x ∈X is a spatial variable representing

the positions of the particles composing the system, and v ∈V their velocities. Typical choices for the position

space areX =Rd for unconfined systems on the full space, orX = (LT)d (with T =R/Z the unit torus) for sys-

tems enclosed in a cubic box of size L > 0 with periodic boundary conditions, a situation typical in molecular

dynamics. The velocity space usually is V =Rd , but here as well one could consider V =Td . In the latter case,

and more generally when considering non-quadratic kinetic energies, one should rather think of v as being

a momentum variable, the variable conjugated to the positions, rather than a velocity. The Hamiltonian as-

sociated with the system is supposed to be separable, and is therefore the sum ϕ(x)+ψ(v) of the potential

energy function ϕ ∶X →R and the kinetic energy ψ ∶V →R. We introduce the following measures:

µ(d x) ∶= e−ϕ(x)d x, γ(v) = e−ψ(v)d v.

In order to have an invariant Boltzmann–Gibbs probability measure

Θ(d x d v) =µ(d x)γ(d v).

we shall assume that e−ϕ ∈ L1(X ) and e−ψ ∈ L1(V), and, without loss of generality, that e−ϕ and e−ψ integrate

to 1, upon adding a constant to to ϕ,ψ. The Vlasov–Fokker–Planck equation we study reads

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

∂t f +∇vψ ⋅∇x f −∇xϕ ⋅∇v f = ξ∇v ⋅(γ∇v (
f

γ
)) ,

f (t = 0, ⋅, ⋅) = f0 ∈ L2(Θ−1),
(VFP)

where ξ > 0 is a parameter regulating the intensity of the collision/relaxation term. We call

T f ∶=∇vψ ⋅∇x f −∇xϕ ⋅∇v f , S f ∶=∇v ⋅(γ∇v (
f

γ
)) ,

the transport and the collision operator, respectively.

In order to highlight the role of ξ, we briefly discuss a microscopic derivation of (VFP), seen as the PDE

governing the evolution of the law of Langevin dynamics. The Langevin dynamics associated with the Hamil-

tonian ϕ(x)+ψ(v) read
⎧⎪⎪⎨⎪⎪⎩

d X t =∇vψ(Vt)d t ,

dVt =−∇xϕ(X t)d t −ξ∇vψ(Vt)d t +
√

2ξdWt ,
(4.1)

where ξ > 0 is the friction coefficient and (Wt)t≥0 is a standard d-dimensional Brownian motion. Let us

motivate that, as for systems with quadratic kinetic energies, we expect the relaxation time of (4.1) to the

stationary state to be of order max(ξ,ξ−1). In the limit ξ → 0, Langevin dynamics reduce to Hamiltonian

dynamics. For small frictions, the average energy evolves on timescales of order ξ−1 since, by Itô calculus,

d

d t
E[H(X t ,Vt)] = E[(LξH)(X t ,Vt)] = ξE[(SH)(X t ,Vt)] ,

where Lξ = T + ξS is the generator of (4.1). The other limit of interest is the overdamped regime ξ→ +∞,
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where one recovers the overdamped Langevin dynamics upon rescaling time by a factor ξ:

d X t =−∇xϕ(X t)d t +
√

2dBt ,

where (Bt)t≥0 is also a standard d-dimensional Brownian motion. The formal proof of this limit relies on the

observation that solutions of (4.1) satisfy (upon replacing the term −ξ∇vψ(Vt)d t in the second line of (4.1)

by d X t and integrating in time from 0 to ξt )

Xξt −X (0) =
V0−Vξt

ξ
− 1

ξ
∫

ξt

0
∇xϕ(Xs)d s +

√
2

ξ
dWξs

=
V0−Vξ t

ξ
−∫

t

0
∇xϕ(Xξ s)d s +

√
2

ξ
dWξs ,

where (ξ−1/2Wξt)t≥0 still is a standard d-dimensional Brownian motion. This suggests to introduce the lim-

iting process (X t)t≥0 obtained from (Xξt)t≥0 as ξ→+∞, and highlights the fact that the relaxation time is of

order ξ in this regime.

It is in fact more convenient to perform a change of unknown function and write f = hΘ, in which case

we expect h to converge in the longtime limit to the constant function with values 1. The function h satisfies

the following kinetic Ornstein–Uhlenbeck equation:

⎧⎪⎪⎨⎪⎪⎩

∂t h+∇vψ ⋅∇x h−∇xϕ ⋅∇v h =−ξ∇⋆v∇v h,

h(t = 0, ⋅, ⋅) = h0 ∈ L2(Θ),
(VOU)

where A⋆ denotes the adjoint of a closed operator on L2(Θ). Equation (VOU) is linear and mass-preserving,

hence we can assume the initial data to be of average zero with respect to Θ and study the long-time be-

haviour of the corresponding solutions to (VOU). We expect that

lim
t→∞
∥h(t , ⋅, ⋅)∥2L2(Θ) = 0.

The goal of this work is to make this limit quantitative by obtaining effective decay rates.

In the recent literature, the problem of making the last limit quantitative has been widely investigated.

Equations such as (VOU) fall inside the abstract theory of [169]. From this founding paper, a recent theory

originated, specialising on decay rates rather than regularity issues. This approach goes under the name of

hypocoercivity. We briefly review the related literature, see [44] for a much more detailed account. Quanti-

tative decay rates for some degenerate (but still hypoelliptic) diffusion equations appeared in [255, 256, 165].

The strategy there relied on twisting the H1-norm in order to get an equivalent Lyapunov functional showing

exponential decay in time along the flow of the equations under investigation. Then, exponential decay (at

the same rate) could be recovered for the H1-norm, with a pre-factor C > 1 in front arising from the twist

between the reference norm and the Lyapunov functional.

Later, a L2−setting for hypocoercivity was established, [164, 127]. The strategy of [127] was to twist the

standard L2-norm with a well-suited term in order to find an equivalent norm with a better dissipation esti-

mate along kinetic PDEs. In addition, in this setting, one can study consistency with hydrodynamic limits and

non-regularising kinetic PDEs with general initial data. The L2-framework is general enough to treat a large

class of models [67, 65, 66], and it can provide sharp estimates for some specific models [18, 2, 4, 3, 16]. Pre-

cise algebraic features of the framework and estimates with respect to the parameters defining the dynamics
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were studied in [44]. In particular, the scaling with respect to ξ has been also treated in [157, 152].

In order to complete this short review, let us mention also a few other works related to hypocoercive

techniques, namely [134, 116] for an approach based on couplings, [33] for a version of the Bakry–Émery

methods for hypocoercive dynamics, and [117] which recently studied a model with further degeneracy.

In the present paper, we focus on the approach of [5], whose techniques work directly in the standard

L2-norm. This is possible thanks to an adapted space-time-velocity Poincaré inequality. We notice that time-

integrated functionals of the solutions to kinetic equations are in use since [161, 244] at least. The framework

of [5] was qualitative, although, constructive estimates can be derived in special cases [P1, 79]. One idea

common to both references is to exploit a version of a space–time Poincaré-Lions inequality [11, 84, 117],

coupled with an explicit version of the computations in [5, Proposition 6.2].

In this paper we further generalise the techniques of [P1, 79], still keeping all estimates fully constructive.

The main original contributions are:

1. Adapting the Armstrong–Mourrat technique, we get fully explicit convergence estimates for (VOU)

with general potentials ϕ,ψ. In [P1] the spatial variable was confined in a torus with ϕ = 0, while [79]

only considers quadratic kinetic energies. Decay rates are shown to be exponential if ψ grows fast

enough at infinity. Otherwise, algebraic decay rates are obtained.

2. The potentials ϕ we consider are rather general. In particular, we remove the condition that the em-

bedding H1(µ)↪ L2(µ) is compact, see [79, Assumption 3].

3. Our estimates for Theorem 59 should be compared with those of [117]. While performed in a sim-

pler geometry, our result is fully constructive, as we actually build a solution for the elliptic equation

involved to obtain the result .

4. We establish a theory for Lyapunov functionals for (VOU), depending on the behaviour of ψ at infinity.

5. Decay estimates are fully explicit in the fluctuation–collision parameter ξ.

Some key-points of our method are the following.

• We use time averages of the L2-norm of the solutions to (VOU) as entropies. Time averages allow for

an effective entropy-entropy production estimate along the flow of (VOU), where the key step in the

proof is an adapted time-space-velocity Poincaré inequality.

• If ψ grows at least linearly at infinity, the entropy production is strong enough to allow the use of a

Gronwall lemma. Otherwise, the dissipation controls just a power of the time average of the norm.

Then, an algebraic decay is obtained via a Bihari–Lasalle argument, combined with a uniform bound

in time for a momentum of the solution.

• A fundamental ingredient is a space-time weighted Lions’ inequality, whose proof is fully constructive.

Indeed, the problem is reduced to a regularity estimate for some elliptic PDE, which is solved either by

explicit computations or with the Lax–Milgram theorem, depending on the nature of the source term

in the elliptic PDE.

Extensions.

As mentioned earlier, our aim in this work is to present a general methodology to obtain decay rates for

Fokker–Planck type equations which are fully explicit in the various parameters of the dynamics, in par-

ticular the friction and the dimension. Our presentation is as general as possible, so that extensions and
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adaptations to various other dynamics can be worked out. We have in mind here the linear Boltzmann equa-

tion, the linearised Landau equation [232], Fokker–Planck equations with fractional Laplacians, generalized

Langevin dynamics [227], Adaptive Langevin dynamics [193], etc. In fact, as our approach makes only a lim-

ited use of the linearity of the Fokker–Planck equation at hand, generalizations to nonlinear equations can

be envisioned.

Outline of the paper.

This work is organized as follows. We start in Section 4.2 by presenting the problem we consider and stating

the main results we establish. We give in Section 4.3 some preliminary results which are useful for the proofs

of the main results. Section 4.4 is devoted to the proof of exponential decay estimates where the kinetic

energy ψ grows linearly or faster at infinity. Section 4.5 proves algebraic decay rates for solutions to (VOU)

driven by kinetic energies ψ which grow slower than linearly at infinity. Finally, weighted Lions estimates are

proved in Section 4.6. Complementary results are collected in the Appendix.

4.2 Main results

This section contains the main assumptions (Section 4.2.1) and results (Ssections 4.2.2, 4.2.3, 4.2.4, and 4.2.5)

of the paper.

4.2.1 Structural assumptions

In order to present our main convergence result, we introduce a time τ > 0, and the associated uniform

probability measure on the time interval [0,τ]:

Uτ(d t) = 1

τ
1[0,τ](t)d t .

With some abuse of notation we sometimes denote probability measures and their densities with the same

symbol. We state the main assumptions we need for the potentials ϕ,ψ.

Assumption 2. The function ϕ is smooth and e−ϕ ∈ L1(d x), with ∫X e−ϕ d x = 1. Moreover, for any time τ > 0,

there exists a constant C Lions
τ > 0 such that the following Lions inequality holds true:

∀g ∈ L2(Uτ⊗µ), ∥g −∫[0,τ]×X
g(t , x)Uτ(d t)⊗µ(d x)∥

2

L2(Uτ⊗µ)
≤C Lions

τ ∥∇t ,x g∥2H−1(Uτ⊗µ). (4.2)

Sufficient conditions for (4.2) to hold with explicit estimates of C Lions
τ are discussed in Section 4.2.5.

Assumption 3. The function ψ is smooth and e−ψ ∈ L1(d v)with ∫V e−ψ d v = 1. Moreover,

∫V
∣∇vψ(v)∣4γ(d v)+∫V

∣∇2
vψ(v)∣

2
γ(d v) <+∞, limsup

R→∞
∫

V ∖B(0,R)
∣∇ψ∣−2γ(d v) = 0, (4.3)

and the symmetric positive matrix

M =∫V
∇vψ⊗∇vψdγ (4.4)

is definite.
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The condition (4.4) is satisfied when V = Rd , see [243, Appendix A] for a proof. More generally, this con-

dition holds as soon as there is no direction ρ ∈ Rd such that ρ⊺∇ψ(v) = 0 for all v ∈ V . The integrability

conditions (4.3) are rather easy to satisfy. The estimates hold for instance if V is bounded, or ψ increases

polynomially or logarithmically at infinity. In the last case ψ shall grow fast enough so that γ is integrable and

has a finite momentum of order two.

Remark 51. The analysis we perform can straightforwardly be extended, at least from an algebraic viewpoint,

to other types of degenerate symmetric dissipation operators, such as the one appearing in the linear Boltzmann

equation, or involving fractional Laplacians, see [127, 65].

Assumption 4. The Lie algebra generated by ∇v and ∇vψ ⋅ ∇x −∇xϕ ⋅ ∇v is of dimension 2d at all points

(x, v) ∈X ×V .

4.2.2 An averaging lemma

Averaging lemmata are a typical tool in kinetic theory to recover increased regularity on the velocity average

of the distribution function. This is the idea behind our first result, which will be fundamental for the main

theorems in Sections 4.2.3 and 4.2.4.

We make a further assumption on ϕ, which is satisfied (with explicit control on the constant) in many

cases of interest, see [256, Lemma A.24], as well as [79, Lemma 2.2] and [44, Lemma 3.7] for a precise quan-

tification of the dependence of the constant Lϕ on the dimension, under certain structural assumptions on

the potential ϕ. This is recalled in Lemma 61 below.

Assumption 5. There exists a constant Lϕ ∈R+ such that

∥z∇ϕ∥L2(Uτ⊗µ) ≤ Lϕ∥z∥H1(Uτ⊗µ), ∀z ∈H1(Uτ⊗µ). (4.5)

A functional space which will be useful in the proofs is the kinetic space, defined as follows for a positive

time τ > 0:

H1
kin = {h ∈ L2 (Uτ⊗µ,H1(γ)) ∣ (∂t +T )h ∈ L2 (Uτ⊗µ,H−1(γ))} .

We introduce the following projector on L2(Uτ⊗Θ):

Πh =∫V
h(⋅, ⋅, v)γ(d v).

We denote by L2
0(Uτ⊗Θ) the space of functions in L2(Uτ⊗Θ)with zero average. Similar zero-average spaces

are defined in the same way. We are now in position to state the following useful averaging lemma for (VOU).

Lemma 52. Under Assumptions 3 and 5, there exists an explicit constant Kavg ∈ R+ such that, for any h ∈
H1

kin∩L2
0(Uτ⊗Θ),

∥∇t ,xΠh∥2H−1(Uτ⊗µ) ≤Kavg(∥(Id−Π)h∥2L2(Uτ⊗Θ)+∥(∂t +T )h∥2L2(Uτ⊗µ,H−1(γ))) .

An explicit upper bound on Kavg can be obtained, see (4.25).
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4.2.3 Exponential convergence rates

We consider the longtime behaviour of solutions to (VOU). In particular, our main goal is to prove that

h(t , ⋅, ⋅)ÐÐÐ→
t→∞ ∫X ×V

h0(x, v)Θ(d x d v),

for all solutions to (VOU), with quantitative and explicit convergence rates. As explained in Section 4.1, this

reduces to studying the decay to 0 for solutions to (VOU) with initial condition

h0 ∈ L2
0(Θ) = {g ∈ L2(Θ) ∣ ∫X×V

g dΘ = 0} .

Other sub-spaces such as L2
0(γ) are defined in a similar way. In order to achieve exponential decay rates, we

need the following.

Assumption 6. The following Poincaré inequality for γ holds: there exists cψ > 0 such that

∀g ∈H1(γ)∩L2
0(γ), ∥g∥L2(γ) ≤ c

−1/2
ψ ∥∇v g∥L2(γ). (4.6)

A sufficient condition on ψ for the latter inequality to hold is that there exists a constant a ∈ (0,1) such

that

liminf
∣v ∣→∞

(a∣∇vψ(v)∣2−∆vψ(v)) > 0,

see [230, 22]. The inequality (4.8) is always true when V =Td and ψ is smooth.

As in [P1], following up on ideas used in [161, 5] we introduce, for any h ∈ L2([0,∞);L2(Θ)), the following

functional:

Hτ(t) =∫
t+τ

t
∥h(s, ⋅, ⋅)∥2L2(Θ)d s. (4.7)

Then, our main result goes as follows.

Theorem 53. Under Assumptions 2-3-4-5-6, there exists a constant λ > 0 such that all functions h solving

(VOU) satisfy

∀ t ≥ 0, Hτ(t) ≤ e−2λ tHτ(0).

Moreover,

λ ≥ λ̄ ( 1

ξcψ
+ξ)

−1

, λ̄ = (1+C Lions
τ Kavg)

−1
.

Theorem 53 implies a standard hypocoercivity estimate (see [256]) for solutions to (VOU). Note that there

is no prefactor C in the exponential decay estimate of Theorem 53. Pointwise in time decay estimates can be

deduced from Theorem 53 upon adding such a prefactor.

Corollary 54. Under the same assumptions as Theorem 53, all solutions to (VOU) satisfy

∀t ≥ 0, ∥h(t , ⋅, ⋅)∥2L2(Θ) ≤C e−λt ∥h0∥2L2(Θ),

with C = eλτ.
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4.2.4 Algebraic convergence rates

Condition (4.6) is equivalent to the fact that the symmetric part S is coercive, in the following sense:

S ≥ cψId on L2
0(γ). (4.8)

Typical cases where the last condition (i.e. Assumption 6) does not hold correspond to a kinetic energy ψ

growing less than linearly at infinity, such as

ψ = (1+ ∣v ∣2)
α
2 , α ∈ (0,1), (4.9)

or

ψ(v) = β

2
log(1+ ∣v ∣2) , β > d +2, (4.10)

so that γ is heavy tailed at infinity. However, these classes of examples satisfy the following weighted Poincaré

inequality (see [54, 66]) that we state in a general form in Assumption 7 below.

Assumption 7. There exist a constant Pψ ∈R+, and a function G ∈ L1(γ) such that

∀g ∈H1(γ)∩L2
0(γ), ∫

Rd
G −1(v)g 2(v)γ(d v) ≤ Pψ∥∇v g∥2L2(γ). (4.11)

For the classes of examples (4.9)-(4.10), we can respectively consider G (v) = (1+ ∣v ∣2)1−α and G (v) =
1+ ∣v ∣2, see [54, 66].

In the cases covered by Assumption 7, we recover constructive algebraic decay rates for Hτ as follows.

Theorem 55. Suppose that Assumptions 2-3-4-5-7 hold, and consider σ > 0 such that G σ ∈ L1(γ). If all solu-

tions h to (VOU) satisfy

∫
X ×V

G (v)σ h2(t , x, v)Θ(d x d v) ≤ AU (h0), ∀t ≥ 0, (4.12)

for a functional U ∶ L2(Θ) → [0,∞] and a constant A(ψ,σ,ϕ) > 0, then there exist two explicit constants

c1(h0),c2(h0) ∈R+ depending only on ∥h0∥2L2(Θ),U (h0),ϕ,ψ,σ, and d such that

∀ξ > 0, ∀t ≥ 0, Hτ(t) ≤
Hτ(0)

(1+(ξ−
σ

σ+1 c1+ξc2)
− σ+1

σ t)
σ ,

We have that (4.12) holds true if h ∈ L∞(Θ), with U (h0) = ∥h0∥2L∞(Θ).

Explicit expressions for c1,c2 can be obtained, see Section 4.4.2. As in Section 4.2.4, a decay estimate for

H implies a point-wise decay estimate in time. We state a result analogous to the one of Corollary 54 in the

present situation.

Corollary 56. Under the same assumptions as Theorem 55, all solutions to (VOU) satisfy

∀t ≥ 0, ∥h(t , ⋅, ⋅)∥2L2(Θ) ≤
∥h0∥2L2(Θ)

(1+(ξ−
σ

σ+1 c1+ξc2)
− σ+1

σ (t +τ))
σ .

Remark 57. Note that Theorems 53 and 55 are qualitatively consistent. Indeed, the first one can be recovered

from the second one in the regime corresponding to a sequence of sub-exponential local equilibria γ becoming
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exponential in the limit. In this case, (4.11) holds with G → 1, so that the choice σ→∞ is allowed, yielding a

decay which is faster than any inverse power of time, hence no longer algebraic.

Remark 58. An alternative approach to obtaining a convergence result similar to Theorem 55 is that of weak

Poincaré inequalities, see [158], when the initial data of (VOU) are L∞ functions. This works thanks to the

maximum principle for hypoelliptic operators, see [247].

Theorem 55 crucially relies on the weighted L2 bound (4.12), which we now motivate and discuss. When

the local equilibrium γ decays slower than exponentially at infinity, the phenomenon of loss of velocity mo-

ments occurs. This means that the L2−norm of the solution cannot be controlled without assuming the con-

trol of extra velocity moments for the initial data. In addition, we have to ensure that these moments are

propagated by (VOU). Such an issue is present even in the spatially-homogeneous case. This has already

been studied in [66, 85] and [P1]. In order to follow the strategy of proof of [P1], the term we need to bound

along the flow of (VOU) reads

∫
X ×V

G (v)σ h2(t , x, v)Θ(d x d v). (4.13)

However, obtaining a direct uniform control is tricky in practice. Then, our choice is taking h0 ∈ L∞(Θ) and

U (h0) = ∥h0∥2L∞(Θ).
Another strategy is using an argument based on Lyapunov functionals, which would allow more general

initial data. This is possible, after [69].

4.2.5 Weighted Lions’ inequalities

Inequality (4.2) is a generalised version of Lions’ inequality [11]. Such an inequality with a weighted measure

has been first studied in [84]. We give here a simple sufficient condition on the potential ϕ for (4.2) to hold.

We also obtain an explicit estimate of C Lions
τ , under some growth conditions on the spatial potential ϕ.

Theorem 59. Assume that ϕ is a smooth potential such that ∫X e−ϕ d x = 1, that its associated probability

measure µ satisfies the Poincaré inequality:

∥∇x z∥L2(µ) ≥ c
− 1

2
ϕ ∥z∥L2(µ), ∀z ∈H1(µ)∩L2

0(µ), (4.14)

for some cϕ ∈R+, and that

∣∇2ϕ∣2 ≤ (c′ϕ)2 (d + ∣∇xϕ∣2) , ∆ϕ ≤ c′′ϕ (d + ∣∇xϕ∣2) . (4.15)

for some constants c′ϕ,c′′ϕ ∈R+. Then, Assumption 2 is satisfied, with

C Lions
τ =Cϕ (1+

√
d) (τ2+τ−2)2

,

for a constructive constant Cϕ, depending only on cϕ,c′ϕ,c′′ϕ , but not directly on d.

The explicit dependence on d in the estimate of C Lions
τ , which is exactly of order

√
d if the Poincaré con-

stant cϕ does not depend on d , is important for the case of a Boltzmann-Gibbs measure obtained as the

tensorisation of several 1-dimensional ones (as in the context of sampling methods, see [243, 200]). Dimen-

sion independent Poincaré constants can also be obtained for systems with finite number of interactions, see

[44]. The scaling in the second inequality of (4.15) is natural, as it is the correct one for separable potentials

ϕ =∑d
i=1 ϕ̄(xi), with ϕ̄ ∶ R→ R such that ϕ̄′′ ≤ c′′ϕ (1+ ∣ϕ̄′∣2) . Sufficient conditions for (4.14) to hold true are
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given in [230, 22]. A noteworthy case in the theorem above is when the injection H1(µ)↪ L2(µ) is compact.

In this situation, the estimates can be inferred from [79, Lemma 2.6]; in particular C Lions
τ is bounded by the

constant in [79, Equation (27)].

4.3 Notation and preliminary technical results

We denote by A⋆ for the adjoint of a closed operator A on the Hilbert space L2(Θ), which, for any smooth

functions h1,h2 with compact supports, satisfies

∫X×V
(Ah1)h2 dΘ =∫X×V

h1 (A⋆h2)dΘ.

The action of A⋆ is obtained by integration by parts for differential operators. In particular, for 1 ≤ i ≤ d ,

∂⋆xi
=−∂xi +∂xi ϕ, ∂⋆vi

=−∂vi +∂vi ψ. (4.16)

This allows to rewrite the operators appearing in (VOU) as the sum of a skew-symmetric operator

T =∶ ∇vψ ⋅∇x − ∇xϕ ⋅∇v =
d

∑
i=1

∂⋆vi
∂xi −∂

⋆
xi
∂vi ,

and a symmetric one

S =−∇⋆v∇v =−
d

∑
i=1

∂⋆vi
∂vi , (4.17)

so that (VOU) rewrites

∂t h+T h = ξSh.

The right hand side of (4.20) is indeed always finite. Solutions to (VOU) live in the Bochner space

L2(0,∞;L2(µ,H1(γ))),

as we show thanks to the following inequality for solutions to (VOU):

d

d t
∥h(t)∥2L2(Θ) = 2⟨h(t),T h(t)⟩L2(Θ)+2ξ⟨h(t),Sh(t)⟩L2(Θ) =−2ξ∥∇v h∥2L2(Θ) ≤ 0, (4.18)

in view of the skew-symmetry of T and (4.17).

We also denote by H−1(Uτ⊗µ) the dual of the space

H1
DC(Uτ⊗µ) = {h ∈H1(Uτ⊗µ)∣h(0, ⋅) = h(τ, ⋅) = 0} , (4.19)

where the subscript DC stands for Dirichlet conditions. Note that the boundary conditions in time are well

defined because the trace of functions h ∈H1(Uτ⊗µ)makes sense on the boundary {0,τ}×E of the domain.

Under Assumption 4, the operator −T +ξS is hypoelliptic (see [169, 256]), hence the solutions to (VOU) are

smooth.

The first result provides estimates on the skew-symmetric part of the space-time Fokker–Planck opera-

tor ∂t +T in terms of its symmetric part S , for solutions of (VOU).
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Lemma 60. Consider a solution of (VOU). Then,

∥(∂t +T )h∥L2(Uτ⊗µ;H−1(γ)) ≤ ξ∥∇v h∥L2(Uτ⊗Θ). (4.20)

In particular, solutions to (VOU) belong to H1
kin.

Proof. Fix a test function u ∈ L2(Uτ⊗µ;H1(γ)) such that ∥u∥L2(Uτ⊗µ;H1(γ)) ≤ 1. Then, denoting by ⟨ ⋅, ⋅⟩L2(H−1),L2(H1)

the duality bracket between L2(Uτ⊗µ;H−1(γ)) and L2(Uτ⊗µ;H1(γ)),

⟨(∂t +T )h,u⟩L2(H−1),L2(H1) = ξ⟨Sh,u⟩L2(H−1),L2(H1) =−∫
τ

0
∫X×V

∇v h ⋅∇v u dUτ dΘ.

The desired estimate follows from first bounding the right hand side via the Cauchy-Schwarz inequality, and

then taking the supremum over u.

The next lemma, whose proof is omitted, provides estimates similar to [79, Lemma 2.3], obtained with

an adaptation of the approach of [44, Lemma 3.6 and 3.7] to spacetime operators. It provides a fully explicit

dependence of the estimates on the dimension d .

Lemma 61. Assume that ϕ is a smooth potential such that ∫X e−ϕ d x = 1, and (4.14)-(4.15) hold true. Then,

Assumption 5 holds true with

L2
ϕ =max (16,4d c′′ϕ) .

Moreover, for any z ∈H2(Uτ⊗µ) such that∇t ,x z ∈H1
DC(Uτ⊗µ;Rd),

∥∇2
t ,x z∥2L2(Uτ⊗µ) ≤ 2∥∇⋆t ,x∇x z∥2L2(Uτ⊗µ)+2c′ϕ(

√
d +2max(8c′ϕ,

√
c′′ϕ d)) ∥∇t ,x z∥2L2(Uτ⊗µ). (4.21)

It would be possible to have better constants in (4.21) under additional assumptions, for example if ϕ is

strongly convex, see [44, 79].

4.4 Modified Poincaré inequalities and exponential decay rates

We start by proving Lemma 52 in Section 4.4.1, using a Poincaré-type inequality. We turn to the proof of

Theorem 53 in Section 4.4.2. We finally prove Corollary 54 in Section 4.4.3.

4.4.1 Proof of the averaging lemma and of a Poincaré-like inequality

The important Poincaré-type inequality which is used to prove Theorem 53 is the following. Its proof crucially

relies on Lemma 52.

Proposition 62. Under Assumptions 2-3-5, it holds

∀h ∈H1
kin∩L2

0(Uτ⊗Θ), λ̄∥h∥2L2(Uτ⊗Θ) ≤ ∥(∂t +T )h∥2L2(Uτ⊗µ;H−1(γ))+∥(Id−Π)h∥
2
L2(Uτ⊗Θ), (4.22)

with

λ̄ = (1+C Lions
τ Kavg)

−1
,

where Kavg is the constant appearing in Lemma 52.
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Proof of Proposition 62. Since Π is an orthogonal projector,

∥h∥2L2(Uτ⊗Θ) = ∥(Id−Π)h∥
2
L2(Uτ⊗µ)+∥Πh∥2L2(Uτ⊗µ). (4.23)

We apply (4.2) to the second term on the right hand side in (4.23), and then use Lemma 52 to write

∥Πh∥2L2(Uτ⊗µ) ≤C Lions
τ ∥∇t ,xΠh∥2H−1(Uτ⊗µ)

≤C Lions
τ Kavg(∥(Id−Π)h∥2L2(Uτ⊗Θ)+∥(∂t +T )h∥2L2(Uτ⊗µ,H−1(γ))) .

Plugging the last estimate into (4.23) provides the claimed result.

We conclude this section with the proof of Lemma 52.

Proof of Lemma 52. Some integrals in the calculation below are formal and represent duality products. In

order to estimate the H−1 norm of ∇t ,xΠh, we first compute the H−1 norm of ∂tΠh, and then turn to ∇xΠh.

To bound ∥∂tΠh∥H−1(Uτ⊗µ), we fix a test function z ∈H1
DC(Uτ⊗µ) with ∥z∥2H1(Uτ⊗µ) ≤ 1; while the estimation

of ∥∇xΠh∥H−1(Uτ⊗µ) can be performed by considering a test function Z = (Z1, . . . , Zd) ∈ H1(Uτ⊗µ)d with

∥Z∥2H1(Uτ⊗µ) ≤ 1.

For ∂tΠh, we start by noticing that∇vΠh = 0 and

∫V
∇ψ(v)γ(d v) = 0,

so that, using the skew-symmetry of ∂t +T and the Dirichlet boundary conditions for the second term,

∫
τ

0
∫X
(∂tΠh)z dUτ dµ =∫

τ

0
∫X ∫V

((∂t +T )Πh)(t , x, v)z(t , x)Uτ(d t)µ(d x)γ(d v)

=∫
τ

0
∫X ∫V

[(∂t +T )h]z dUτ dΘ+∫
τ

0
∫X ∫V

[(Id−Π)h](∂t +T )z dUτ dΘ

≤ ∥(∂t +T )h∥L2(Uτ⊗µ,H−1(γ))∥z∥L2(Uτ⊗µ,H1(γ))+∥(Id−Π)h∥L2(Uτ⊗Θ)∥(∂t +T )z∥L2(Uτ⊗Θ).

The last factor in the last inequality can be bounded as

∥(∂t +T )z∥L2(Uτ⊗Θ) ≤ ∥∂t z∥L2(Uτ⊗µ)+∥Tz∥L2(Uτ⊗Θ) ≤ 1+∥∇vψ∥L2(γ),

where we used ∥z∥H1(Uτ⊗µ) ≤ 1 and a Cauchy–Schwarz inequality to write

∥Tz∥2L2(Uτ⊗Θ) = ∥∇ψ ⋅∇x z∥2L2(Uτ⊗Θ) ≤ ∥∇x z∥2L2(Uτ⊗µ)∫
τ

0
∫X ∫V

∣∇ψ(v)∣2 Uτ(d t)µ(d x)γ(d v).

By taking the supremum over functions z ∈H1
DC(Uτ⊗µ)with ∥z∥2H1(Uτ⊗µ) ≤ 1, we finally obtain

∥∂tΠh∥H−1(Uτ⊗µ) ≤ ∥(∂t +T )h∥L2(Uτ⊗µ,H−1(γ))+(1+∥∇vψ∥L2(γ))∥(Id−Π)h∥L2(Uτ⊗Θ).

We next turn to the estimation of ∥∇xΠh∥H−1(Uτ⊗µ). We introduce

G = ∇vψ

∥∇vψ∥L2(dγ)
.
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In view of the definition (4.4), it holds by construction that

∫V
G(v)⊗MG(v)γ(d v) = Idd×d , M = ∥∇vψ∥2L2(dγ)M

−1.

The quantity to estimate is

∫
τ

0
∫X
∇xΠh ⋅Z dUτ dµ =∫

τ

0
∫X ∫V

[G(v) ⋅∇xΠh(t , x)][MG(v) ⋅Z(t , x)]Uτ(d t)Θ(d x d v)

= ∥∇vψ∥−1
L2(γ)∫

τ

0
∫X ∫V

[(∂t +T )Πh](t , x, v)[MG(v) ⋅Z(t , x)]Uτ(d t)Θ(d x d v)

= ∥∇vψ∥−1
L2(γ)∫

τ

0
∫X ∫V

[(∂t +T )h](t , x, v)[MG(v) ⋅Z(t , x)]Uτ(d t)Θ(d x d v)

−∥∇vψ∥−1
L2(γ)∫

τ

0
∫X ∫V

(T (1−Π)h)(t , x, v)[MG(v) ⋅Z(t , x)]Uτ(d t)Θ(d x d v)

−∥∇vψ∥−1
L2(γ)∫

τ

0
∫X ∫V

(∂t(1−Π)h)(t , x, v)[MG(v) ⋅Z(t , x)]Uτ(d t)Θ(d x d v),

(4.24)

where the second equality follows from the fact that∇vΠh = 0 and ∫VG dγ = 0. Since

∥M Z∥L2(Uτ⊗µ) ≤ ∥M∥B(ℓ2)∥Z∥L2(Uτ⊗µ) ≤ ∥M∥B(ℓ2)∥Z∥H1(Uτ⊗µ) ≤ ∥M∥B(ℓ2),

where ∥M∥B(ℓ2) denotes the matrix norm induced by the Euclidean norm, and ∥G∥H1(γ) <+∞ (in view of the

second condition in (4.3)), the first integral in the last equality can be bounded by ∥G ⋅M Z∥L2(Uτ⊗µ,H1(γ))∥(∂t+
T )h∥L2(Uτ⊗µ,H−1(γ)) ≤ ∥M∥B(ℓ2)∥G∥H1(γ)∥(∂t +T )h∥L2(Uτ⊗µ,H−1(γ)). Since T is antisymmetric, the second in-

tegral in the last equality can be controlled as

∣∫
τ

0
∫X ∫V

[(1−Π)h][T (MG ⋅Z)]dUτ dΘ∣ ≤ ∥(1−Π)h∥L2(Uτ⊗Θ)∥T (MG ⋅Z)∥L2(Uτ⊗Θ).

Introducing GM = (GM
1 , . . . ,GM

d ) =MG to simplify the notation,

[T (MG ⋅Z)](t , x, v) = T [
d

∑
i=1

GM
i Zi](t , x, v)

=
d

∑
i=1

GM
i (v)∇ψ(v)∇x Zi(t , x)−∇GM

i (v) ⋅∇ϕ(x)Zi(t , x),

where GM
i ∇ψ ∈ L2(γ) and∇GM

i ∈ L2(γ) in view respectively of the first and second condition in (4.3); while Zi∇ϕ ∈
L2(Uτ⊗µ)with ∥Zi∇ϕ∥L2(Uτ⊗µ) ≤ Lϕ∥Zi∥H1(Uτ⊗µ) by Assumption 5. The last integral in (4.24) can be bounded,

after transferring the partial derivative in time to the test function, by ∥(1−Π)h∥L2(Uτ⊗µ)∥MG ⋅∂t Z∥L2(Uτ⊗Θ).

The second factor tensorizes as ∥MG∥L2(γ)∥∂t Z∥L2(Uτ⊗µ) ≤ ∥M∥B(ℓ2)∥G∥L2(γ) = ∥M∥B(ℓ2).

By gathering the above estimates, the desired result follows with the constant

K
1
2

avg =

max
⎛
⎜
⎝

1+∥∇vψ∥L2(γ),
∥M∥B(ℓ2) (1+∥G∥H1(γ))+

√
∑d

i=1 ∥GM
i ∇vψ∥2L2(γ)+Lϕ

√
∑d

i=1 ∥∇GM
i ∥

2
L2(γ)

∥∇vψ∥L2(γ)

⎞
⎟
⎠

,
(4.25)

which concludes the proof.

Remark 63. The choice of G in the previous calculation is natural. Indeed, it yields an orthogonal decomposi-
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tion in L2(Uτ⊗Θ) of the term

[(∂t +T )Πh](t , x, v) = (∂t Πh)(t , x)+G(v) ⋅∫V
G(v)(T Πh)(t , x, v ′)γ(d v ′).

One component lies in the image of Π, while the second one is spanned by G itself. Our result compares with [5,

Lemma 3.1], which is not quantitative at all, since the authors do not provide an explicit expression to terms

like M and G in our proof. We also compare with the estimates at the beginning of [79, Theorem 2]. In spite

of the similarity in the strategy, we make the algebra behind the proof neat and usable also for general kinetic

energies ψ.

4.4.2 Exponential decay rates: proof

The exponential convergence is a direct consequence of (4.22). Indeed, note first that (4.18) implies

dHτ(t)
d t

= d

d t
(∫

τ

0
∥h(t + s, ⋅, ⋅)∥2L2(Θ)d s) =∫

τ

0

d

d t
∥h(t + s, ⋅, ⋅)∥2L2(Θ)d s

=−2ξ∫
τ

0
∥∇v h(t + s, ⋅, ⋅)∥2L2(Θ)d s =−2ξτ∫

τ

0
∥∇v h(t + s, ⋅, ⋅)∥2L2(Θ)Uτ(d s).

(4.26)

On the other hand, the space-time Poincaré inequality (4.22) implies, together with (4.20) and (4.6), that

λ̄∫
τ

0
∥h(t + s, ⋅, ⋅)∥2L2(Θ)Uτ(d s) ≤ ( 1

cψ
+ξ2)∫

τ

0
∥∇v h(t + s, ⋅, ⋅)∥2L2(Θ)Uτ(d s).

The combination of the previous inequality and (4.26) leads to

dHτ(t)
d t

≤−2λ̄( 1

ξcψ
+ξ)

−1

Hτ(t).

from which Theorem 53 follows by a Gronwall inequality.

4.4.3 Hypocoercivity estimates

Decay estimates on Hτ(t) lead to pointwise in time decay estimates on h(t) since t ↦ ∥h(t)∥2L2(Θ) is nonin-

creasing, which is a direct consequence of (4.18). Indeed, for any t ≥ 0,

∥h(t +τ)∥2L2(Θ) ≤
1

τ
Hτ(t) ≤

Hτ(0)
τ

e−2λt ≤ ∥h(0)∥2L2(Θ)e
−2λt ,

so that

∀t ≥ 0, ∥h(t)∥L2(Θ) ≤ ∥h(0)∥L2(Θ)e
−λ(t−τ),

which gives the claimed result.

4.5 Algebraic decay rates

In this section we prove Theorem 55, see Section 4.5.1. Then, we discuss (4.12) and related conditions.
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4.5.1 Algebraic decay rates: proof

The overall strategy of the proof is similar to the one presented in [P1], so that we only sketch the main steps of

the argument. Note however that, compared to [P1] (and various other works, for instance [66]), the transport

part of the evolution now includes an additional term∇xϕ ⋅∇v and∇vψ ⋅∇x replaces v ⋅∇x .

The overall idea for the proof is to rely on the Poincaré-type estimate (4.22), where the second term is

controlled by a combination of the weighted Poincaré inequality (4.11) and a moment bound. More precisely,

consider Hölder conjugate exponents, p, q ≥ 1, with p =σ−1(1+σ) > 1. Note that q
p =σ. Fix t > 0, and define,

for any s ∈ [0,τ], the following moment based on G :

Zt(s) ∶=∫X×V
G (v)σ ∣h(t + s, x, v)−Πh(t + s, x)∣2µ(d x)γ(d v). (4.27)

The first step of the proof is to bound ∥(Id−Π)h(t + ⋅, ⋅, ⋅)∥2L2(Uτ⊗Θ). We start from the following pointwise

bound for a given x ∈X , obtained with a Hölder inequality:

∥h(t + s, x, ⋅)−Πh(t + s, x)∥2L2(γ)

≤ (∫
V

G (v)−1 ∣h(t + s, x, v)−Πh(t + s, x)∣2γ(d v))
1
p

×(∫
V

G (v)
q
p ∣h(t + s, x, v)−Πh(t + s, x)∣2γ(d v))

1
q

.

Via (4.11), the last right-hand side of the above inequality can be bounded as

P
1
p
ψ (∫

V
∣∇v h(t + s, x, v)∣2γ(d v))

1
p
(∫

V
G (v)

q
p ∣h(t + s, x, v)−Πh(t + s, x)∣2γ(d v))

1
q

.

Integrating with respect to the measure Uτ⊗µ, and applying Hölder’s inequality in the variables s, x gives

∫
τ

0
∥h(t + s, ⋅, ⋅)−Πh(t + s, ⋅)∥2L2(Θ)Uτ(d s)

≤ P
1
p
ψ (∫

τ

0
∫

X
∫

V
∣∇v h(t + s, x, v)∣2 Uτ(d s)Θ(d x d v))

1
p

×(∫
τ

0
∫

X
∫

V
G (v)

q
p ∣h(t + s, x, v)−Πh(t + s, x)∣2 Uτ(d s)Θ(d x d v))

1
q

= P
1
p
ψ (∫

τ

0
∥∇v h(t + s, ⋅, ⋅)∥2L2(Θ)Uτ(d s))

1
p
(∫

τ

0
Zt(s)Uτ(d s))

1
q

≤ P
1
p
ψ (∫

τ

0
∥∇v h(t + s, ⋅, ⋅)∥2L2(Θ)Uτ(d s))

1
p

W
1
q (∥h0∥2L2(Θ)+U (h0))

1
q ,

where the last inequality follows from Lemma 65 below. Combining the last bound with (4.22), and then
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using (4.20) gives

λ̄∫
τ

0
∥h(t + s, ⋅, ⋅)∥2L2(Θ)Uτ(d s)

≤∫
τ

0
∥(∂t +T )h(t , ⋅, ⋅)∥2L2(µ;H−1(γ))

+W
1
q (∥h0∥2L2(Θ)+U (h0))

1
q P

1
p
ψ (∫

τ

0
∥∇v h(t + s, ⋅, ⋅)∥2L2(Θ)Uτ(d s))

1
p

≤ ξ2 ∫
τ

0
∥∇v h(t + s, ⋅, ⋅)∥2L2(Θ)Uτ(d s)

+W
1
q (∥h0∥2L2(Θ)+U (h0))

1
q P

1
p
ψ (∫

τ

0
∥∇v h(t + s, ⋅, ⋅)∥2L2(Θ)Uτ(d s))

1
p

.

In view of the definitions (4.7) and (4.26), the latter inequality can be rewritten as

Hτ(t) ≤
ξ

2 λ̄
(− d

d t
Hτ(t))+ξ

− 1
p M0 (−

d

d t
Hτ(t))

1
p

, (4.28)

where

M0 ∶= τ
1

σ+1
1

λ̄
(

Pψ

2
)

1
p

W
1
q (∥h0∥2L2(Θ)+U (h0))

1
q .

The proof can now be concluded using classical arguments, relying on a generalization of the Gronwall

inequality leading to algebraic decay rates. We however carefully keep track of the parameters influencing

the convergence rate, by retaining the largest term in (4.28). In order to make this precise, consider

y ↦ϑ(y) = ξ

2λ̄
y +M0(

y

ξ
)

1
p

,

which is strictly increasing from [0,∞) to [0,∞). Set y0 =ϑ−1(Hτ(0)). Note that

∀y ≤ y0, ϑ(y) ≤ (ξ−
1
p M0+

ξ

2λ̄
y

p−1
p

0 ) y
1
p .

Hence, as t ↦Hτ(t) is nonincreasing, we have

Hτ(t) ≤ (ξ
− 1

p M0+
ξ

2λ̄
y

p−1
p

0 ) (− d

d t
Hτ(t))

1
p

.

Applying the standard Bihari–LaSalle [50, 186] argument, one proves, as in [P1],

Hτ(t) ≤ (Hτ(0)1−p +(p −1)(ξ−
1
p M0+

ξ

2λ̄
y

p−1
p

0 )
−p

t)
− 1

p−1

. (4.29)

Equation (4.29) can be rewritten as

Hτ(t) ≤
Hτ(0)

(1+(ξ−
1
p c1+ξc2)

−p
t)

1
p−1

,

with c1 = (p − 1)−
1
p M0Hτ(0)p (1−p) and c2 = (p − 1)−

1
p ξ

2λ̄
y

p−1
p

0 Hτ(0)
1−p

p . The proof of Theorem 55 is con-

cluded.
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Remark 64. A more accurate estimate could be achieved by rewriting (4.28) as

d

d t
Hτ(t) ≤−ζ(Hτ(t)),

with ζ =ϑ−1, which is indeed invertible, and then integrating the latter inequality.

The proof of Theorem 55 written in Section 4.5.1 relies on moment estimates encoded by Zt(s) intro-

duced in (4.27) (see Lemma 65 below). When h ∈ L∞(Θ), we take

U (h0) = ∥h0∥2L∞(Θ), A = ∥G (v)σ∥L1(dγ) .

We next show how to obtain the control of the moment Z(t) defined in (4.27), which appears in the proof

of Theorem 55. This can be done in general if (4.12) holds.

Lemma 65. There is an explicit constant W > 0 (not depending on d ,ξ), such that, for any solution h ∈ Hkin

to (VOU) with initial datum h0 with average zero with respect to Θ and such that (4.12) holds,

∀ t ≥ 0, Z(t) ≤W (∥h0∥2L2(Θ)+U (h0)) .

Proof. We bound Z(t) as

Z(t) ≤ 2∫ h(t , x, v)2 G (v)σΘ(d x,d v)+2∫ (Πh)2(t , x)G (v)σΘ(d x d v).

The first term in the right-hand side of the previous inequality is bounded with (4.12) as

∫ h(t , x, v)2G (v)σΘ(d x d v) ≤ A U (h0).

On the other hand,

∫
X ×V

(Πh)2(t , x)G (v)σΘ(d x d v) =∫
X
(Πh)2(t , x)G (v)σµ(d x)γ(v)

≤ ∥h0∥2L2(Θ) ∥G (v)
σ∥L1(dγ) ,

where we used a Cauchy–Schwarz inequality in the last step to write

∥Πh(t , ⋅)∥2L2(µ) ≤ ∥h(t , ⋅, ⋅)∥2L2(Θ) ≤ ∥h0∥2L2(Θ).

The result therefore follows with W = 2max(A,∥G (v)σ∥L1(dγ)).

4.6 Weighted Poincaré-Lions inequalities

We present a constructive proof, based on a generalization of the manipulations performed in [79, Lemma 2.6].

We extend the approach to the situation when the operator∇∗x∇x has a spectral gap but not necessarily a dis-

crete spectrum. We also present the argument in a more abstract manner, in order to highlight the key steps

in the construction.
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4.6.1 Reduction to solving a divergence equation

Recall the space H1
DC(Uτ⊗µ), defined in (4.19). The Lions inequality (4.2) is implied by the following property

(in fact, [11] shows the equivalence between the two statements): there exists a positive constant C ′τ such that,

for any f ∈ L2
0(Uτ⊗µ), there exists a solution Z = (Z0, Z1, . . . , Zd) ∈H1

DC(Uτ⊗µ)d+1 to

−∂t Z0+
d

∑
i=1

∂∗xi
Zi = f , (4.30)

which is such that

∥Z∥H1(Uτ⊗µ) =

¿
ÁÁÀ d

∑
i=0

∥Zi∥2H1(Uτ⊗µ) ≤C ′τ ∥ f ∥L2(Uτ⊗µ). (4.31)

Of course, there may be many solutions to the divergence-like equation (4.30). When such a solution exists,

∥ f ∥2L2(Uτ⊗µ) =∫
τ

0
∫X

f (t , x)2 Uτ(d t)µ(d x) =∫
τ

0
∫X
(−∂t Z +

d

∑
i=1

∂∗xi
Z) f dUτ dµ

= ⟨∇t ,x f , Z ⟩H−1(Uτ⊗µ),H 1
DC(Uτ⊗µ) ≤ ∥Z∥H1(Uτ⊗µ)∥∇t ,x f ∥H−1(Uτ⊗µ)

≤C ′τ∥ f ∥L2(Uτ⊗µ)∥∇t ,x f ∥H−1(Uτ⊗µ).

Hence, Lions’ inequality (4.2) is recovered with C Lions
τ ≤ (C ′τ)2. We therefore concentrate in this section on

obtaining solutions to (4.30) which satisfy (4.31).

4.6.2 Solving the divergence equation

We show in this section how to solve (4.30) in order to have estimates such as (4.31). The precise result is the

following.

Theorem 66. Suppose that (4.14) and (4.15) hold. Then, there exists an explicit Cϕ ∈ R+, depending only on

cϕ,c′ϕ,c′′ϕ and not explicitly on d, such that, for any τ > 0 and f ∈ L2
0(Uτ⊗µ), the equation posed on the space-

time domain [0,τ]×X

−∂t Z0+
d

∑
i=1

∂∗xi
Zi = f , (4.32)

admits a solution (Z0, . . . , Zd) ∈H1
DC(Uτ⊗µ)d+1 which satisfies

d

∑
i=0

∥Zi∥2H1(Uτ⊗µ) ≤Cϕ (1+
√

d) ( 1

τ2
+τ2)

2

∥ f ∥2L2(Uτ⊗µ). (4.33)

In fact, considering the positive self-adjoint operator satisfying (in view of (4.14)) the following coercivity

inequality on L2
0(µ):

L =∇∗x∇x ≥ cϕ,

and its square-root denoted by L =L1/2, we construct an explicit solution as follows by generalising the con-

struction in [79]:

ϕ =∇t ,xW
−1PN ⊥ f +

⎛
⎜⎜⎜⎜⎜⎜
⎝

F0(t ,L)
∂x1 F1(t ,L)

⋮
∂xd F1(t ,L)

⎞
⎟⎟⎟⎟⎟⎟
⎠

PN ,+ f +

⎛
⎜⎜⎜⎜⎜⎜
⎝

F0(τ− t ,L)
∂x1 F1(τ− t ,L)

⋮
∂xd F1(τ− t ,L)

⎞
⎟⎟⎟⎟⎟⎟
⎠

PN ,− f , (4.34)
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where we introduced the following objects:

• the operator PN ⊥ is the projector onto the orthogonal of the vector space N ⊂ L2
0(Uτ⊗µ) composed

of linear combinations of forward and backward wave-like functions: g ∈ N if and only if there ex-

ist g+, g− ∈ L2
0(µ) such that

g(t , x) = (e−tL g+)(x)+(e−(τ−t)L g−)(x); (4.35)

• the operatorW = −∂2
t +L is considered on L2

0(Uτ⊗µ) and endowed with Neumann boundary condi-

tions in time;

• the bounded operators F0(t ,L) and F1(t ,L) respectively act as

F0(t ,L) =−L−1 (1+e−τL)(1−e−τL)−2 (1−e−tL)(1−e−(τ−t)L)(e−tL −2e−τL(1+e−τL)−1) ,

F1(t ,L) = 3L−2 (1+e−τL)(1−e−τL)−2 (1−e−tL)(1−e−(τ−t)L) ;

• the projectors P+,P− ∶ L2
0(Uτ⊗µ)→N ⊂ L2

0(µ) are defined as

(PN ,+ f )(t) = e−tL (∫
τ

0
G+(s,L)e−sL Uτ(d s))

−1

∫
τ

0
G+(s,L) f (s)Uτ(d s),

(PN ,− f )(t) = e−(τ−t)L (∫
τ

0
G−(s,L)e−(τ−s)L Uτ(d s))

−1

∫
τ

0
G−(s,L) f (s)Uτ(d s),

(4.36)

with

G+(s,L) =U−1
τ e−(2τ−s)L −e−sL , G−(s,L) =U−1

τ e−(τ+s)L −e−(τ−s)L , Uτ =
1

τ
∫

τ

0
e−2sL d s. (4.37)

The form of this solution is motivated in Section 4.6.3, while the estimates (4.33) are proved in Section 4.6.4.

Note already that PN ,+ and PN ,− are bounded operators since P 2
N ,+ = PN ,+ and P 2

N ,− = PN ,−. To obtain the

estimates (4.33) for the last two terms in (4.34), it is therefore sufficient to obtain uniform-in-time bounds on

the operators

F0(t ,L),∂t F0(t ,L),∂xi F0(t ,L),∂xi F1(t ,L),∂t∂xi F1(t ,L),∂2
xi ,x j

F1(t ,L)

considered on L2(µ).
An inspection of the proof finally shows that the factor τ2 on the right hand side of (4.33) comes from

the first part of the solution (4.34) (it can be traced back to some coercivity estimate based on the Poincaré

inequality for Uτ), while the factor τ−2 arises from the part of the solution arising from PN f , because of the

operator (1−e−τL)−2
in the expressions of F0(t ,L) and F1(t ,L).

4.6.3 Heuristic construction of the solution

To find one possible solution to (4.32), a natural idea is to look for (Z0, . . . , Zd) of the form

(∂t u,∂x1 u, . . . ,∂xd u),

with u the unique solution of the following equation

(−∂2
t +L)u = f , ∂t u(0, ⋅) = ∂t u(τ, ⋅) = 0. (4.38)
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The functions ∂xi u(0, ⋅) and ∂xi u(τ, ⋅) are however not 0 in general. They turn out to vanish provided the

right hand side of (4.32) is restricted to the orthogonal of the vector spaceN . Note that functions g ∈N sat-

isfy (−∂2
t +L)g = 0 in the weak sense. This equality is satisfied in the strong sense when g+, g− are sufficiently

regular, namely g+, g− ∈D(L). The first step in the proof, as done in [79, Lemma 2.4], is to solve (4.32) for the

part of the right hand side f which is inN ⊥, using (4.38) and the Lax–Milgram lemma see [72, Chapter 5] for

instance.

Lemma 67. Suppose (4.15) and (4.14). Fix τ > 0. For any f ∈ L2
0(Uτ⊗µ), there exists a unique weak solution u ∈

H 2(Uτ⊗µ)∩L2
0(Uτ⊗µ) to (4.38): for any w ∈H1(Uτ⊗µ),

∫
τ

0
∫X
[(∂t u)(∂t w)+∇u ⋅∇w]Uτ(d t)µ(d x) =∫

τ

0
∫X

f w Uτ(d t)µ(d x). (4.39)

Moreover,

∥u∥H 2(Uτ⊗µ) ≤ (C
2
P+C 4

P+2c′ϕ(
√

d +2max(8c′ϕ,
√

c′′ϕ d)))
1
2 ∥ f ∥L2(Uτ⊗µ),

with CP =min(cϕ, π
τ
) .

The second step is to construct a solution for the part of the right hand side in N . This is done in two

steps: (i) providing the expression for the orthogonal projection PN = PN ,++PN ,− of L2
0(Uτ⊗µ) ontoN ; and

then (ii) solving the divergence equation (4.30) with right hand side PN ,± f . To identify PN ,±, we write

(PN f )(t , x) = (e−tLQ+ f )(x)+(e−(τ−t)LQ− f )(x). (4.40)

By definition of the orthogonal projection, it holds, for any w+, w− ∈ L2(µ),

∫
τ

0
∫X
[ f (t , x)−(PN f )(t , x)](e−tL w+)(x)Uτ(d t)µ(d x) = 0,

∫
τ

0
∫X
[ f (t , x)−(PN f )(t , x)](e−(τ−t)L w−)(x)Uτ(d t)µ(d x) = 0.

Therefore, using the self-adjointness of L,

∫X
(UτQ+ f )w+dµ+∫X

(e−τLQ− f )w+dµ =∫X
[∫

τ

0
e−tL f (t)Uτ(d t)]w+dµ,

∫X
(e−τLQ+ f )w−dµ+∫X

(UτQ− f )w−dµ =∫X
[∫

τ

0
e−(τ−t)L f (t)Uτ(d t)]w−dµ,

(4.41)

where we recall from (4.37) that

Uτ =∫
τ

0
e−2tL Uτ(d t) = 1−e−2τL

2τ
L−1.

Choosing w+ =U−1
τ e−τL w− and subtracting the second equation of (4.41) from the first one leads to

∫X
[(U−1

τ e−2τL1/2
−Uτ)Q− f ]w−dµ =∫X

[∫
τ

0
(U−1

τ e−(τ+t)L1/2
−e−(τ−t)L1/2

) f (t)Uτ(d t)]w−dµ.

Since the latter equality holds for any w∈L
2(µ), it follows that

Q− f = (U−1
τ e−2τL1/2

−Uτ)
−1

∫
τ

0
(U−1

τ e−(τ+t)L1/2
−e−(τ−t)L1/2

) f (t)Uτ(d t),

which leads to (4.36) in view of (4.40). The formula for Q+ f is obtained in a similar manner. The operators
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Q± are well-defined, since the pre-factor of the integrals reads

(U−1
τ e−2τL1/2

−Uτ)
−1

U−1
τ = L2(L2e−2τL −(1−e−2τL)2)

−1
.

The latter operator is well defined since L2e−2τL −(1−e−2τL)2
is coercive on L2(µ), hence invertible.

Let us next solve the divergence equation (4.30) with right hand side (PN ,+ f )(t) = e−tL f+. The manipu-

lations for the right hand side e−(τ−t)L f− are similar, upon replacing t by τ− t in the operators which appear.

We consider the following ansatz, using a decomposition of the self-adjoint operator L based on functional

calculus, for functionsF0,F1 ∶ [0,τ]× [cϕ,+∞[→R to be determined:

Z0,+(t) =F0(t ,L) f+, Zi ,+(t) = ∂xiF1(t ,L) f+.

Note that these functions satisfy the equation (4.32) with right hand side e−tL1/2
f+ provided

−∂tF0(t ,L)+LF1(t ,L) = e−tL1/2
.

Moreover, in view of establishing the estimates (4.33) and in order to make use of the fact that PN ,+ is

bounded, it is convenient to rewriteF0(t ,L) f+ andF1(t ,L) f+ as the operators on L2(µ)

F0(t ,L) =F0(t ,L)etL , F1(t ,L) =F1(t ,L)etL , (4.42)

applied to the function (PN ,+ f )(t) = e−tL f+. This motivates looking for

F0(t ,L) = P0 (e−tL) , F1(t ,L) = P1 (e−tL) , (4.43)

where P0,P1 are polynomial functions satisfying the operator equation

− d

d t
[P0 (e−tL)]+L2P1 (e−tL) = e−tL , (4.44)

together with the boundary conditions

P0(1) = P0 (e−τL) = P1(1) = P1 (e−τL) = 0. (4.45)

In view of the boundary conditions (4.45), and the presence of the operators L and L2 in (4.44), a natural

ansatz is
⎧⎪⎪⎨⎪⎪⎩

P0 (e−tL) = A1L−1 (1−e−tL)(e−tL −e−τL)(e−tL + A2) ,

P1 (e−tL) = A3L−2 (1−e−tL)(e−tL −e−τL) ,

for operators A1, A2, A3 to be determined.

Note already that the operators P0 (e−tL) and P1 (e−tL) contain a composition with e−tL − e−τL , which

allows to further compose the operators with etL in order to make sense of (4.42). In order to find the opera-

tors A1, A2, A3, which are assumed to be functions of L (and hence commute with all operators at hand), we

evaluate (4.44): denoting by θ⋆ = e−τL ,

A1
d

dθ
[(1−θ)(θ−θ⋆)(θ+ A2)]+ A3(1−θ)(θ−θ⋆) = θ,

where the various functions are evaluated at θ = e−tL . The left hand side of this equation is a second order
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polynomial in θ, so that the operators A1, A2, A3 are obtained by identifying the prefactors of the various

terms θa for a = 0,1,2. More precisely,

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

−(A1+ A3)θ⋆+ A1 A2(1+θ⋆) = 0,

(2A1+ A3)(1+θ⋆)−2A1 A2 = 1,

−3A1− A3 = 0.

The last condition implies that A3 =−3A1. Plugging this equality in the first condition leads to A2 =−2e−τL(1+
e−τL)−1. Finally, the second condition gives A1(1+θ⋆+2A2) =−1, so that

A1 =−[1+e−τL −4e−τL (1+e−τL)−1]
−1
=−(1+e−τL)(1−e−τL)−2

.

Combining (4.42) and (4.43) then leads to the expressions of F0,F1 in (4.34).

4.6.4 Proof of the estimates on the divergence equation

The estimate on the first term in (4.34) is a direct consequence of Lemma 67.

Proof of Lemma 67. The existence and uniqueness of the weak solution satisfying the estimate is established

in [79, Lemma 2.4]. To make the constants precise, we revisit the steps of [79], just highlighting the differ-

ences.

1. There exists a unique solution u ∈H1(Uτ⊗µ) to (4.39), which satisfies

∥u∥L2(Uτ⊗µ) ≤C 2
P ∥ f ∥L2(Uτ⊗µ), (4.46)

∥∇t ,x u∥L2(Uτ⊗µ) ≤CP ∥ f ∥L2(Uτ⊗µ). (4.47)

This is a consequence of Lax-Milgram’s Theorem for the tensorised measure Uτ⊗µ and the Poincaré

inequality (4.14).

2. Thanks to (4.21) we have

∥∇2
t ,x u∥2L2(Uτ⊗µ) ≤ 2∥ f ∥2L2(Uτ⊗µ)+2c′ϕ(

√
d +2max(8c′ϕ,

√
c′′ϕ d))∥∇t ,x u∥2L2(Uτ⊗µ).

3. Hence, by (4.46),

∥u∥2H2(Uτ⊗µ) ≤ (2+C 2
P +C 4

P +2C−2
P c′ϕ(

√
d +2max(8c′ϕ,

√
c′′ϕ d))) ∥ f ∥2L2(Uτ⊗µ).

We conclude by showing that the sought boundary conditions are met, if f ∈ N ⊥. Consider an ele-

ment w ∈N , written as (4.35) for two smooth functions w+, w− ∈ L2
0(µ)with compact support. Recall that (−∂2

t+
L)w = 0. Then, the weak formulation (4.39) and integration by parts give

∫X
(u(τ, ⋅)∂t w(τ, ⋅)−u(0, ⋅)∂t w(0, ⋅)]dµ =∫

τ

0
∫X
[(∂t u)(∂t w)+∇x u ⋅∇x w]Uτ(d t)µ(d x)

=∫
τ

0
∫X

f w Uτ(d t)µ(d x) = 0.
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the latter integral being equal to 0 since f ∈N ⊥ by assumption. Therefore,

∫X
[u(τ, ⋅)L1/2(−e−τL

1/2
w++w−)−u(0, ⋅)L1/2(−w++e−τL

1/2
w−)]dµ = 0.

Fixing w− and choosing w+ = e−τL
1/2

w− leads to

∫X
u(τ, ⋅)L1/2(1−e−2τL1/2

)w−dµ = 0.

Since this equality holds for any smooth w− ∈ L2
0(µ)with compact support, and the operator

L1/2(1−e−2τL1/2
)

is invertible on L2
0(µ), we can conclude that u(τ, ⋅) = 0. A similar reasoning allows to conclude that u(0) =

0.

We next show that the second and third terms in (4.34) satisfy (4.33). Given that the two terms are ex-

tremely similar, we only treat the second one. Note first that the operators Ti = ∂xi L−1 are bounded on L2(µ)
and have an operator norm smaller than 1 since T ∗1 T1+ ⋅ ⋅ ⋅+T ∗d Td = 1. Moreover, the operators ∂xi ∂x j L−2 for

1 ≤ i , j ≤ d are also bounded:

∥∂xi ∂x j L−2∥B(L2(Uτ⊗µ)) ≤

¿
ÁÁÀ2+2

c′ϕ
C 2

P

(
√

d +2max(8c′ϕ,
√

c′′ϕ d)),

by (4.21); see also [127], as well as [79, Lemma 2.3] and [44, Proposition 3.5]. The estimates (4.33) are therefore

satisfied provided there exists Cτ ∈R+ such that

sup
t∈[0,τ]

max(∥F0(t ,L)∥B(L2(µ)) ,∥∂t F0(t ,L)∥B(L2(µ)) ,∥LF0(t ,L)∥B(L2(µ))) ≤Cτ,

sup
t∈[0,τ]

max(∥LF1(t ,L)∥B(L2(µ)) ,∥L∂t F1(t ,L)∥B(L2(µ)) ,∥L2F1(t ,L)∥B(L2(µ))) ≤Cτ.

The explicit expressions of F0,F1 show that Cτ can be chosen of order

∥1−e−τL∥−2

B(L2
0(µ))

= ( 1

1−e−τcϕ
)

2

.

Note that Cτ scales as τ−2 for τ small.
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Part III

Functional inequalities
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Chapter 5

Logarithmic Sobolev and interpolation

inequalities on the sphere: constructive

stability results

This chapter corresponds to [P2], a paper in collaboration with Jean Dolbeault and Nikita Simonov.

Abstract

We consider Gagliardo–Nirenberg inequalities on the sphere which interpolate between the Poin-caré in-

equality and the Sobolev inequality, and include the logarithmic Sobolev inequality as a special case. We

establish explicit stability results in the subcritical regime using spectral decomposition techniques, and en-

tropy and carré du champ methods applied to nonlinear diffusion flows.

5.1 Introduction and main results

Functional inequalities are essential in many areas of mathematics. The knowledge of optimal constants, or

at least good estimates of them, is crucial for various applications. Whether optimality cases are achieved is

a standard issue in analysis. The next natural question is to understand how the deficit, say the difference

of the two sides of the functional inequality, measures the distance to the set of optimal functions. Such a

question has been actively studied in critical Sobolev inequalities, but much less in subcritical interpolation

inequalities. In the case of the sphere, a global stability result based on Bianchi-Egnell type methods was

recently obtained for a family of Gagliardo-Nirenberg inequalities by R. Frank in [144], with the striking ob-

servation that only the power 4 of a natural distance is controlled by the deficit. Here we give a more detailed

picture, which includes the logarithmic Sobolev inequality, and provide explicit estimates.

On the sphere Sd with d ≥ 1, the logarithmic Sobolev inequality can be written as

∫
Sd
∣∇F ∣2 dµd ≥

d

2 ∫Sd
F 2 log

⎛
⎝

F 2

∥F∥2L2(Sd)

⎞
⎠

dµd ∀F ∈H1(Sd ,dµ) (LS)

where dµd denotes the uniform probability measure. The equality case is achieved by constant functions

and d/2 is the optimal constant as shown by taking the test functions Fε(x) = 1+ εx ⋅ν, for some arbitrary

83
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ν ∈ Sd , in the limit as ε → 0. Our first result is an improved inequality under an orthogonality constraint,

which improves upon [122, Proposition 5.4].

Theorem 68. Let d ≥ 1. For any F ∈H1(Sd ,dµ) such that

∫
Sd

x F dµd = 0, (5.1)

we have

∫
Sd
∣∇F ∣2 dµd −

d

2 ∫Sd
F 2 log

⎛
⎝

F 2

∥F∥2L2(Sd)

⎞
⎠

dµd ≥Cd ∫
Sd
∣∇F ∣2 dµd (5.2)

with Cd = 2
d+2 .

Since equality in (LS) is achieved if and only if F is a constant function, the right-hand side in (5.2) is an

estimate of the distance to the set of optimal functions under the constraint ∫Sd x F dµd = 0. Alternatively,

Theorem 68 amounts to the improved logarithmic Sobolev inequality

∫
Sd
∣∇F ∣2 dµd ≥

d +2

2 ∫
Sd

F 2 log
⎛
⎝

F 2

∥F∥2L2(Sd)

⎞
⎠

dµd ∀F ∈H1(Sd ,dµ) s.t. ∫
Sd

x F dµd = 0.

Without Condition (5.1), there is no such inequality as (5.2). With Fε(x) = 1+εx ⋅ν as above, as ε→ 0 one can

indeed check that

∥∇Fε∥2L2(Sd)−
d

2 ∫Sd
F 2
ε log

⎛
⎝

F 2
ε

∥Fε∥2L2(Sd)

⎞
⎠

dµd =O(ε4) =O (∥∇Fε∥4L2(Sd)) .

In absence of an additional constraint, like (5.1), such a behaviour is in fact optimal. The following estimate

arises from the carré du champ method.

Proposition 69. Let d ≥ 1, γ = 1/3 if d = 1 and γ = (4d − 1)(d − 1)2/(d + 2)2 if d ≥ 2. Then, for any F ∈
H1(Sd ,dµ)we have

∫
Sd
∣∇F ∣2 dµd −

d

2 ∫Sd
F 2 log

⎛
⎝

F 2

∥F∥2L2(Sd)

⎞
⎠

dµd ≥
1

2

γ ∥∇F∥4L2(Sd)

γ ∥∇F∥2L2(Sd)+d ∥F∥2L2(Sd)
. (5.3)

With ∥F∥2L2(Sd) = 1, notice that the deficit can be estimated from below by

∫
Sd
∣∇F ∣2 dµd −

d

2 ∫Sd
F 2 log(F 2)dµd ≥

γ

2d
∥∇F∥4L2(Sd)+o (∥∇F∥4L2(Sd))

if ∥∇F∥2L2(Sd) is small enough.

Let Π1F denote the orthogonal projection of a function F ∈ L2(Sd) on the spherical harmonics corre-

sponding to the first eigenvalue on Sd , i.e.,

Π1F(x) = (d +1)x ⋅∫
Sd

y F(y)dµd(y) ∀x ∈Sd .

Our main stability result for the logarithmic Sobolev inequality combines the results of Theorem 68 and

Proposition 69 as follows.
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Theorem 70. Let d ≥ 1. For any F ∈H1(Sd ,dµ), we have

∫
Sd
∣∇F ∣2 dµd −

d

2 ∫Sd
F 2 log

⎛
⎝

F 2

∥F∥2L2(Sd)

⎞
⎠

dµd

≥Sd
⎛
⎝

∥∇Π1F∥4L2(Sd)

∥∇F∥2L2(Sd)+
d
2 ∥F∥

2
L2(Sd)

+∥∇(Id−Π1)F∥2L2(Sd)
⎞
⎠

for some stability constant Sd > 0.

An explicit estimate of Sd is given in Section 5.4.

We also consider the subcritical Gagliardo-Nirenberg inequalities

∫
Sd
∣∇F ∣2 dµd ≥

d

p −2
(∥F∥2Lp(Sd)−∥F∥

2
L2(Sd)) ∀F ∈H1(Sd ,dµ) (GN)

for any p ∈ [1,2)∪(2,2∗). Here dµd again denotes the uniform probability measure onSd , the critical Sobolev

exponent is 2∗ ∶= 2d/(d−2) if d ≥ 3 and we adopt the convention that 2∗ =+∞ if d = 1 or d = 2. Inequality (GN)

with p = 1 is the Poincaré inequality. If d ≥ 3, Inequality (GN) also holds for the critical exponent p = 2∗ and

it is in fact Sobolev’s inequality with optimal constant on Sd , but this is out of the scope of our paper which

focuses on the subcritical regime p < 2∗. The logarithmic Sobolev inequality (LS) is obtained from (GN) by

taking the limit as p → 2 and the counterpart of the above results for p ≠ 2, in the subcritical range p < 2∗,

goes as follows.

Theorem 71. Assume that d ≥ 1 and p ∈ (1,2)∪(2,2∗). For any function F ∈H1(Sd ,dµ) such that the orthog-

onality condition (5.1) holds, we have

∫
Sd
∣∇F ∣2 dµd −

d

p −2
(∥F∥2Lp(Sd)−∥F∥

2
L2(Sd)) ≥Cd ,p ∫

Sd
∣∇F ∣2 dµd (5.4)

with Cd ,p =
2 d−p (d−2)

2(d+p) .

Taking Fε(x) = 1+εx ⋅ν as above shows that (5.1) is needed in Theorem 71. We also have a higher order

estimate of the deficit as a consequence of the carré du champ method.

Proposition 72. Let d ≥ 1 and p ∈ (1,2)∪ (2,2∗). There is a convex function ψ on R+ with ψ(0) = ψ′(0) = 0

such that, for any F ∈H1(Sd ,dµ), we have

∫
Sd
∣∇F ∣2 dµd −

d

p −2
(∥F∥2Lp(Sd)−∥F∥

2
L2(Sd)) ≥ ∥F∥

2
Lp(Sd) ψ

⎛
⎝
∥∇F∥2L2(Sd)

∥F∥2Lp(Sd)

⎞
⎠

.

An explicit expression of ψ will be given in Section 5.3. The two results of Theorem 71 and Proposition 72 can

be combined to prove the analogue of Theorem 70 for p ≠ 2, with an explicit constant: see Section 5.4.

Theorem 73. Let d ≥ 1 and p ∈ (1,2)∪(2,2∗). For any F ∈H1(Sd ,dµ), we have

∫
Sd
∣∇F ∣2 dµd −

d

p −2
(∥F∥2Lp(Sd)−∥F∥

2
L2(Sd))

≥Sd ,p
⎛
⎝

∥∇Π1F∥4L2(Sd)

∥∇F∥2L2(Sd)+∥F∥
2
L2(Sd)

+∥∇(Id−Π1)F∥2L2(Sd)
⎞
⎠
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for some explicit stability constant Sd ,p > 0.

Let us give a brief account of the literature. In this paper, we address the distinction between improved

inequalities (inequalities with improved constants under orthogonality constraints) and quantitative stability

(as a measure of a distance to the set of optimal functions). There are many adjacent directions of research

like, for instance, stability in weaker norms (see for instance [125, 175] for Sobolev’s inequality) or notions

of stability with no explicit notion of distance. To our knowledge, not so much has been done in subcritical

interpolation inequalities (see [63, 144] and some references therein), except for the logarithmic Sobolev

inequality, for which we refer to [130, 138] and [173, 140, 172, 182].

The Gagliardo-Nirenberg inequalities (GN) on the sphere have been established with optimal constant for

any p ∈ (2,2∗) in [48, Corollary 6.1] and in [37]. In dimension d = 2, Onofri’s inequality is obtained from (GN)

in the limit as p→ 2∗ =+∞: see [37, 80]. With p ∈ [1,2) or p > 2 but not too large (if d ≥ 2), Inequality (GN) was

known earlier from [24]. A Markovian point of view is presented in [26], with many more references therein

on related questions. On the Euclidean space, such inequalities go back to [240, 147, 222]. The logarithmic

Sobolev inequality (LS) is a well known limit case as p → 2 and can be considered in a common framework

with (GN). Whenever possible, we will adopt this point of view. For an overview of early results on the sphere,

we refer to [Section 6, (iv)][156]. The literature on (LS) on the circle and on the sphere can be retraced back at

least to [260], [216, Theorem 1, page 268] with computations based on the ultraspherical operator, and [234]

for a more variational approach. The inequality with optimal constant is stated in [24, Inequality (13) page

195] as a consequence of the carré du champ method. Also see [25] and [83, page 342] for related results

and [113, 121, 122] for a PDE approach based on entropy estimates and the carré du champ method. After

symmetrization, the problem is reduced to a simpler family of interpolation inequalities involving only the

ultraspherical operator.

The interest for stability issues was raised by [73] and the stability result of Bianchi and Egnell in [47],

on the Euclidean space. Over the years, various approaches have been developed, based on compactness

methods and contradiction arguments as in [47, 97], spectral analysis and orthogonality conditions as in [122,

Proposition 5.4] and [159], or entropy methods and improved inequalities as in [15, 129, 120, 122, 118]. For

spectral methods, a fruitful strategy relies on the Funk-Hecke formula and the approach of [196, 37], which

applies to the stability result for fractional interpolation inequalities of [97] and [131, Corollary 2.3]. This is

the method we use in Section 5.2. Stability issues for (GN) have recently been discussed in [144] with methods

of Bianchi-Egnell type, with the drawback that no estimate of the stability constant is known. This drawback

can be cured by a carré du champ method as we shall see in Section 5.3. Without entering into details, let us

mention some recent progress on stability in [63, 119, 184, 96] for related critical inequalities.

This paper is organized as follows. Section 5.2 is devoted to the proof by spectral methods of Theorem 74

(see below), which is an extension of Theorems 68 and 71: under orthogonality constraints, these results are

reduced to estimates of improved constants in inequalities (LS) and (GN), with various refinements based

on a decomposition in spherical harmonics. An explicit stability result without constraints corresponding to

Propositions 5.3 and 72 is proved in Section 5.3. The proof of Theorems 70 and 73, in Section 5.4, is based on

the spectral decomposition method developed by R. Frank in [144]. We collect the previous estimates (with

and without orthogonality constraints) in global results, with explicit constants. Various additional results are

stated in two appendices: the extension of the method to interpolation inequalities for the Gaussian measure

on the Euclidean space and a discussion of its limitations in Appendix 5.5, the details of the computations

of the carré du champ method on the sphere and its application in order to establish improved functional

inequalities in Appendix 5.6.
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5.2 Improvements under orthogonality constraints

In this section, we prove Theorems 68 and 71 in the slightly more general framework of Theorem 74 below.

Let us consider the generalized entropy functionals

E2[F ] ∶=
1

2 ∫Sd
F 2 log

⎛
⎝

F 2

∥F∥2L2(Sd)

⎞
⎠

dµd and Ep[F ] ∶=
∥F∥2Lp(Sd)−∥F∥

2
L2(Sd)

p −2
if p ≠ 2.

With these notations, we can rephrase (LS) and (GN) as

∫
Sd
∣∇F ∣2 dµd ≥ d Ep[F ] ∀F ∈H1(Sd ,dµ)

for any p ∈ [1,2∗). The optimality case is achieved by considering the test function Fε = 1+εφ1 in the limit

as ε→ 0, where φ1 is an eigenfunction of the Laplace-Beltrami operator such that −∆φ1 = d φ1, for instance

φ1(x) = x ⋅ν for some ν ∈Sd as in Section 5.1.

Let us consider the decomposition into spherical harmonics of L2(Sd ,dµ)

L2(Sd ,dµ) =
∞
⊕
ℓ=0
Hℓ ,

where Hℓ is the subspace of spherical harmonics of degree ℓ ≥ 0. See for instance [218, 242, 43, 213]. For

any integer k ≥ 1, let us define Πk as the orthogonal projection with respect to L2(Sd ,dµ) onto⊕k
ℓ=1Hℓ. The

following statement extends Theorems 68 and 71.

Theorem 74. Assume that d ≥ 1, p ∈ (1,2∗) and let k ≥ 1 be an integer. For any function F in H1(Sd ,dµ), we

have

∫
Sd
∣∇F ∣2 dµd −d Ep[F ] ≥Cd ,p,k ∫

Sd
∣∇(Id−Πk)F ∣2 dµd (5.5)

for some explicit constant Cd ,p,k ∈ (0,1) such that Cd ,p,k ≤Cd ,p,1 =
2 d−p (d−2)

2(d+p) .

The expression of Cd ,p,k is given below in the proof. Inequality (5.5) can be seen as an improvement of (LS)

and (GN), namely

(1−Cd ,p,k)∫
Sd
∣∇F ∣2 dµd ≥ d Ep[F ]

for any F ∈H1(Sd ,dµ) such that Πk F = 0. With k = 1, this establishes (5.2) and (5.4), thus proving Theorem 68

if p = 2, and Theorem 71 if p ≠ 2.

Proof. Let (F j ) j∈N be the decomposition of F alongH j for any j ∈N. We learn from [37, Ineq. (19)] or [131,

Ineq. (1.6)] that the subcritical interpolation inequalities

Ep[F ] ≤
∞
∑
j=1

ζ j (p)∫
Sd
∣F j ∣2 dµd ∀F ∈H1(Sd ,dµ) (5.6)

hold for any p ∈ (1,2)∪(2,2∗)with

ζ j (p) ∶=
γ j(d

p )−1

p −2
and γ j (x) ∶=

Γ(x)Γ( j +d −x)
Γ(d −x)Γ(x + j)

.

Notice that ζ j (p) ≥ 0 for any p ∈ (1,2)∪ (2,2∗). According to [131, Lemma 2.2], the function ζ j is strictly
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monotone increasing on (1,∞) for any j ≥ 2 and the limits

λ j = d lim
p→2∗

ζ j (p)

are the eigenvalues of the Laplace-Beltrami on the sphere, with λ j = j ( j +d −1). Hence

d Ep[F ] ≤
∞
∑
j=1

λ j ∫
Sd
∣F j ∣2 dµd =∫

Sd
∣∇F ∣2 dµd ,

which is the essence of the proof of (GN) in [37] and also the main idea for the proof of the stability result

for fractional interpolation inequalities of [131, Corollary 2.3]. Here we draw some consequences in stan-

dard norms for non-fractional operators and identify estimates of the stability constant in the corresponding

stability result.

⊳ The case p ≠ 2. Let x = d/p ∈ ((d −2)/2,d] if d ≥ 2 and x ∈ (0,d] if d = 1. We consider

ξ j (x) ∶=
∣γ j (x)−1∣
j ( j +d −1)

and h j (x) =
j ( j +d −1)( j +d −x)
( j +1)( j +d)( j +x)

,

notice that γ j (x) > 1 for x < d/2, while γ j (x) < 1 for x > d/2. An elementary computation shows that 0 <
h j (x) < 1. Since γ j+1(x)λκ = h j (x)λ j+1γ j (x), we obtain

ξ j+1(x) = h j (x)ξ j (x)+(1−h j (x))ξ⋆j (x) (5.7)

where

ξ⋆j (x) ∶=
1

1−h j (x)
∣

h j (x)
λ j
− 1

λ j+1
∣ = ∣d −2 x∣

j ( j +d)(2 x −d +2)+d x
.

Notice that (ξ⋆j (x)) j≥2 is a monotone decreasing sequence for any fixed, admissible value of x. We start

at j = 2 with the observation that ξ⋆2(x) < ξ2(x) if x is admissible. This gives, by using (5.7), the following

estimate

ξ3(x) = h2(x)ξ2(x)+(1−h2(x))ξ⋆2(x) < ξ2(x) .

Using ξ⋆3(x) < ξ⋆2(x), we can iterate and conclude by induction that ξ j (x) < ξ2(x) for all j ≥ 3. As a conse-

quence, we obtain

sup
j≥3

ζ j (p)
j ( j +d −1)

< ζ2(p)
2(d +1)

= p

2(d +p)
< 1

d
∀p ∈ (1,2)∪(2,2∗) .

We deduce from (5.6) that

Ep[F ] ≤∫
Sd
∣F1∣2 dµd +

p

2(d +p)

∞
∑
j=2

j ( j +d −1)∫
Sd
∣F j ∣2 dµd

= 1

d ∫Sd
∣∇F ∣2 dµd +

2d −p (d −2)
2d (d +p) ∫Sd

∣∇(Id−Π1)F ∣2 dµd ,

which proves the result with k = 1 and gives the expression of Cd ,p,1.

Let us consider the case k > 1. We already know that ξ2(x) > ξ⋆2(x). For any j ≥ 2, we deduce from (5.7)

that

ξ j+1(x)−ξ⋆j+1(x) = h j (x)(ξ j −ξ⋆j (x))+ξ
⋆
j (x)−ξ

⋆
j+1(x) ≥ h j (x)(ξ j −ξ⋆j (x))
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because j ↦ ξ⋆j (x) is monotone decreasing. By induction, this proves that ξ j (x) > ξ⋆j (x) for any j ≥ 2. As a

consequence of (5.7), j ↦ ξ j (x) is also monotone decreasing and

sup
j≥k+2

ζ j (p)
j ( j +d −1)

< ζk+1(p)
(k +1)(k +d)

< 1

d
∀p ∈ (1,2)∪(2,2∗) .

Altogether, for any k ≥ 1, we have

d Ep[F ] ≤∫
Sd
∣∇Πk F ∣2 dµd +

d ζk+1(p)
(k +1)(k +d) ∫Sd

∣∇F ∣2 dµd ,

and the stability constant in (5.5) is estimated by

Cd ,p,k = 1− d ζk+1(p)
(k +1)(k +d)

.

In our method, this constant cannot be improved as shown by a test function such that F j = 0 for any j ∈ N
such that j ≠ 0 and j ≠ k +1, but this does not prove the optimality of Cd ,p,k .

⊳ The case p = 2. By taking the limit as p→ 2+ in (5.6), we obtain that

η j ∶=
2

d
lim

p→2+
ζ j (p) = ψ( j +d/2)−ψ(d/2)

where ψ(z) = Γ′(z)/Γ(z) is the digamma function, and

1

2 ∫Sd
F 2 log

⎛
⎝

F 2

∥F∥2L2(Sd)

⎞
⎠

dµd ≤
d

2

∞
∑
j=1

η j ∫
Sd
∣F j ∣2 dµd ∀F ∈H1(Sd ,dµ) .

From ψ(z+1) =ψ(z)+1/z obtained by differentiating the identity Γ(z+1) = zΓ(z)with respect to z, we learn

that

η j+1 = η j +
2

d +2 j
.

We claim that

η2 ≤ η j ≤
2λ j

d (d +2)
∀ j ≥ 2

because there is equality for j = 2 as η2 = 4(d+1)
d (d+2) and λ2 = 2(d +1) on the one hand, and

η j+1−η j =
2

d +2 j
≤ 2(d +2 j)

d (d +2)
=

2(λ j+1−λ j )
d (d +2)

on the other hand, so that the result follows by induction.

Using λ j+1 =λ j +(d +2 j) =λ j +2 z j where z j ∶= j +d/2, we also have

η j+1

λ j+1
=

η j + 1
z j

λ j +2 z j
<
η j

λ j

where the inequality follows from

z2
j >

λ j

2η j
∀ j ≥ 1.

This inequality is indeed true for j = 1 because η1 = 2/d and we obtain the result for any j ≥ 1 by induction
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using

η j+1−η j =
2

d +2 j
≥

λ j+1

2 z2
j+1

−
λ j

2 z2
j

= 2
4 j 2+2(d 2+2) j +d 3

(d +2 j)2 (d +2+2 j)2
.

Altogether, for any k ≥ 1, we have

d E2[F ] ≤∫
Sd
∣∇Πk F ∣2 dµd +

d ηk+1

(k +1)(k +d) ∫Sd
∣∇F ∣2 dµd

and the constant in (5.5) is given by

Cd ,2,k = 1− d ηk+1

(k +1)(k +d)
.

In the framework of our method, this estimate of the constant cannot be improved as shown by a test function

such that F j = 0 for any j ∈ N such that j ≠ 0 and j ≠ k + 1, but again this does not prove the optimality of

Cd ,p,k .

5.3 Improvements by the carré du champ method

We improve upon Frank’s stability result in [144] by giving a constructive estimate based on the carré du

champ method, without assuming any additional constraint. Various computations that are needed for a

complete proof, most of them already known in the literature, are collected in Appendix 5.6.

5.3.1 A simple estimate based on the heat flow, below the Bakry-Emery expo-

nent

Let us consider the constant γ given by

γ ∶= (d −1

d +2
)

2

(p −1)(2#−p) if d ≥ 2, γ ∶= p −1

3
if d = 1, (5.8)

where 2# ∶= 2 d 2+1
(d−1)2 is the Bakry-Emery exponent. Notice that γ = 2−p with 1 ≤ p ≤ 2# means that

d = 1 and p = 7/4 = p∗(1) ,

d > 1 and p = p∗(d) ∶=
3+d +2d 2−2

√
4d +4d 2+d 3

(d −1)2
.

Let us define

s⋆ ∶=
1

p −2
if p > 2 and s⋆ ∶=+∞ if p ≤ 2. (5.9)

For any s ∈ [0, s⋆), let

φ(s) = 1−(p−2) s−(1−(p−2) s)−
γ

p−2

2−p−γ if γ ≠ 2−p and p ≠ 2,

φ(s) = 1
2−p (1+(2−p) s) log(1+(2−p) s) if γ = 2−p ≠ 0,

φ(s) = 1
γ
(eγ s −1) if p = 2.

(5.10)

In [118, Theorem 2.1] (also see [120] and earlier related references therein) the improved Gagliardo-Nirenberg
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inequalities

∥∇F∥2L2(Sd) ≥ d φ
⎛
⎝
Ep[F ]
∥F∥2Lp(Sd)

⎞
⎠
∥F∥2Lp(Sd) ∀F ∈H1(Sd) (5.11)

are stated with γ given by (5.8) under the conditions

d ≥ 1 and 1 ≤ p ≤ 2# if d ≥ 2, p ≥ 1 if d = 1.

Why this estimate is based on the heat flow is explained in Appendix 5.6. Additional justifications and the

discussion of the case p = 2 are also given in Appendix 5.6.

Since φ(0) = 0, φ′(0) = 1, and φ is convex increasing, with an asymptote at s = s⋆ if p ∈ (2,2#), we know

that φ ∶ [0, s⋆)→R+ is invertible and ψ ∶R+→ [0, s⋆), s↦ψ(s) ∶= s −φ−1(s), is convex increasing with ψ(0) =
ψ′(0) = 0, limt→+∞ (t −ψ(t)) = s⋆, and

ψ′′(0) =φ′′(0) = (d −1)2

(d +2)2
(2#−p)(p −1) > 0 ∀p ∈ (1,2#) .

Proposition 75. With the above notations, d ≥ 1 and p ∈ (1,2#), we have

∥∇F∥2L2(Sd)−d Ep[F ] ≥ d ∥F∥2Lp(Sd) ψ
⎛
⎝

1

d

∥∇F∥2L2(Sd)

∥F∥2Lp(Sd)

⎞
⎠
∀F ∈H1(Sd) .

If p = 2, notice that ψ is explicit and given by

ψ(t) ∶= t − 1

γ
log(1+γ t) ∀ t ≥ 0.

The proof of Proposition 69 follows from the observation that ψ(t) ≥ γ
2

t 2

1+γ t for any t ≥ 0.

5.3.2 An estimate based on the fast diffusion flow, valid up to the critical expo-

nent

The subcritical range p ∈ [2#,2∗) corresponding to exponents between the Bakry-Emery exponent and

the critical Sobolev exponent is not covered in Section 5.3.1. In that case, we rely on entropy methods based

on a fast diffusion or porous medium equation of exponent m which are detailed in Section 5.6 (with corre-

sponding references), to establish that an improved inequality (5.11) holds for any φ =φm,p where

φm,p(s) ∶=∫
s

0
exp[−ζ((1 − (p −2)z)1−δ−(1 − (p −2) s)1−δ)] d z (5.12)

provided m ∈Ap ∶=Ap ∶= {m ∈ [m−(d , p),m+(d , p)] ∶ 2
p ≤m < 1 if p < 4}where

m±(d , p) ∶= 1

(d +2)p
(d p +2±

√
d (p −1)(2d −(d −2)p)) (5.13)
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while the parameters δ and ζ are defined by

δ ∶= 1+ (m−1)p2

4(p −2)
,

ζ ∶=
(d +2)2 p2 m2−2 p (d +2)(d p +2)m+d 2 (5 p2−12 p +8)+4d (3−2 p)p +4

(1−m)(d +2)2 p2
.

Let s⋆ ∶= 1/(p −2) as in (5.9) and consider the inverse function φ−1
m,p ∶R+→ [0, s⋆) and ψm,p(s) ∶= s−φ−1

m,p(s).
Exactly as in the case m = 1, we have the improved entropy – entropy production inequality

∥∇F∥2L2(Sd) ≥ d ∥F∥2Lp(Sd) φm,p
⎛
⎝
Ep[F ]
∥F∥2Lp(Sd)

⎞
⎠
∀F ∈H1(Sd) ,

which provides us with the following stability estimate.

Proposition 76. With above notations, d ≥ 1, p ∈ (2,2∗) and m ∈Ap , we have

∥∇F∥2L2(Sd)−d Ep[F ] ≥ d ∥F∥2Lp(Sd) ψm,p
⎛
⎝
∥∇F∥2L2(Sd)

d ∥F∥2Lp(Sd)

⎞
⎠
∀F ∈H1(Sd) .

The function φm,p can be expressed in terms of the incomplete Γ function, while ψm,p is known only

implicitly.

5.3.3 Comparison with other estimates

Let us assume that p ∈ (2,2∗). In [144], R. Frank proves the existence of a positive constant c⋆(d , p) such

that

∥∇F∥2L2(Sd)−d Ep[F ] ≥ c⋆(d , p)
(∥∇F∥2L2(Sd)+∥F −F∥2

L2(Sd))
2

∥∇F∥2L2(Sd)+
d

p−2 ∥F∥
2
L2(Sd)

∀F ∈H1(Sd ,dµ)

where F ∶= ∫Sd F dµd , which in particular implies the existence of a positive constant c(d , p) such that

∥∇F∥2L2(Sd)−d Ep[F ] ≥ c(d , p)
∥∇F∥4L2(Sd)

∥∇F∥2L2(Sd)+
d

p−2 ∥F∥
2
L2(Sd)

∀F ∈H1(Sd ,dµ) (5.14)

for all p ∈ (2,2⋆). The value of the constant c⋆(d , p) found in [144] is unknown as it follows from a compact-

ness argument, in the spirit of [47], but the exponent 4 in the r.h.s. of (5.14) is optimal. With the test functions

Fε(x) = 1+εx ⋅ν for some arbitrary ν ∈Sd , we can indeed check that

lim
ε→0

1

ε4
(∥∇Fε∥2L2(Sd)−d Ep[Fε]) =

(d +p)(p −1)
2d (d +3)

,

which gives the upper bounds

c(d , p) ≤ (p −1)(d +p)
2(p −2)(d +3)

and c⋆(d , p) ≤ d 2

(d +1)2
(p −1)(d +p)

2(p −2)(d +3)
.
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Let us notice that ∥∇F∥2L2(Sd) ≥ d ∥F −F∥2

L2(Sd) by the Poincaré inequality, so that we have

(∥∇F∥2L2(Sd)+∥F −F∥2

L2(Sd))
2
≥ ∥∇F∥4L2(Sd) ≥

d 2

(d +1)2
(∥∇F∥2L2(Sd)+∥F −F∥2

L2(Sd))
2

and, at least if c⋆(d , p) and c(d , p) are the optimal constants

d 2

(d +1)2
c(d , p) ≤ c⋆(d , p) ≤ c(d , p) .

We claim that the carré du champ method provides us with a constructive estimate of c(d , p). Let

ϕc(s) ∶=
d

2(1−c)
(2c s − s⋆+

√
s2
⋆+4c s (s− s⋆)) .

Corollary 77. Let p ∈ (2,2∗). With the notations of Proposition 76, Inequality (5.14) holds with

c = sup{c > 0 ∶ ∃m ∈Ap such that ϕc(s) ≤φm,p(s)∀ s ∈ [0, s⋆)} .

Proof. With no loss of generality, let us assume that ∥F∥Lp(Sd) = 1 and define

i = ∥∇F∥2L2(Sd) and e ∶=
1−∥F∥2L2(Sd)

p −2

so that ∥F∥2L2(Sd) = 1−(p −2)e. With c = c(d , p), we can rewrite (5.14) as

i−d e ≥ c i2

i+ d
p−2 −d e

which amounts to

i−d e ≥ϕc(e) .

Since we know that i−d e ≥ φm,p(e), the conclusion follows for the largest possible c > 0 such that φm,p ≥
ϕc .

5.4 Global stability results

We collect the statements of Theorems 70 and 73 in a single result. The whole Section is devoted to its proof.

Theorem 78. Let d ≥ 1 and p ∈ (1,2∗). For any F ∈H1(Sd ,dµ), we have

∫
Sd
∣∇F ∣2 dµd −d Ep[F ] ≥Sd ,p

⎛
⎝

∥∇Π1F∥4L2(Sd)

∥∇F∥2L2(Sd)+∥F∥
2
L2(Sd)

+∥∇(Id−Π1)F∥2L2(Sd)
⎞
⎠

(5.15)

for some explicit stability constant Sd ,p > 0.

The value of Sd ,p is elementary and explicit but its expression is lengthy. We explain in the proof how to

compute it with all necessary details to obtain a numerical expression of Sd ,p for given p and d , if needed.

Proof. By homogeneity of (5.15), we can assume that ∥F∥L2(Sd) = 1 without loss of generality. For clarity, we

subdivide the proof in various steps. Let us start with the case p > 2.
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● An estimate based on the carré du champ method. If ∥∇F∥2L2(Sd) /∥F∥
2
Lp(Sd) ≥ ϑ0 > 0, we know by the con-

vexity of ψm,p that

∥∇F∥2L2(Sd)−d Ep[F ] ≥ d ∥F∥2Lp(Sd) ψm,p (
1

d

∥∇F∥2
L2(Sd )

∥F∥2
Lp(Sd )

) ≥ d

ϑ0
ψm,p (

ϑ0

d
) ∥∇F∥2L2(Sd) . (5.16)

In that case, we conclude from ∥∇F∥2L2(Sd) = ∥∇Π1F∥2L2(Sd)+∥∇(Id−Π1)F∥2L2(Sd) and

∥∇Π1F∥2L2(Sd) ≥
∥∇Π1F∥4L2(Sd)

∥∇F∥2L2(Sd)+∥F∥
2
Lp(Sd)

.

Let us assume now that ∥∇F∥2L2(Sd) <ϑ0 ∥F∥2Lp(Sd). By taking into account (GN), we obtain

∥∇F∥2L2(Sd) <ϑ0 ∥F∥2Lp(Sd) ≤ϑ0(∥F∥2L2(Sd)+
p −2

d
∥∇F∥2L2(Sd)) .

Using ∥F∥L2(Sd) = 1, and

ϑ = d ϑ0

d −(p −2)ϑ0
> 0

then we know that

∥∇F∥2L2(Sd) <ϑ . (5.17)

Notice that so far the parameter ϑ (or equivalently ϑ0) still has to be chosen.

● An estimate of the average. Let us estimate Π0F ∶= ∫Sd F dµd . By the Poincaré inequality, we have

1 = ∥F∥2L2(Sd) = (∫
Sd

F dµd)
2

+∥(Id−Π0)F∥2L2(Sd) ≤ (∫
Sd

F dµd)
2

+ ϑ

d
,

and on the other hand we know that (∫Sd F dµd)2 ≤ ∥F∥2L2(Sd) = 1 by the Cauchy-Schwarz inequality, so that

d −ϑ
d
< (∫

Sd
F dµd)

2

≤ 1. (5.18)

We assume in the sequel that

ϑ < d . (5.19)

● Partial decomposition on spherical harmonics. With no loss of generality, let us write

F =M (1+εY +ηG) (5.20)

such that M =Π0F and Π1F = εY where Y (x) =
√

d+1
d x ⋅ν for some given ν ∈Sd . Here the functions Y and

G are normalized so that ∥∇Y ∥L2(Sd) = ∥∇G∥L2(Sd) = 1 and

M −2 ∥∇F∥2L2(Sd) = ε
2+η2 and M −2 ∥F∥2L2(Sd) = 1+ 1

d
ε2+η2 ∥G∥2L2(Sd) .

We observe that Π0(F −M ) = 0. Using (GN) and the Poincaré inequality, we have

∥F −M ∥2Lp(Sd) ≤ ∥F −M ∥2L2(Sd)+
p −2

d
∥∇F∥2L2(Sd) ≤

p −1

d
∥∇F∥2L2(Sd) .
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Similarly, by (5.5)
d p

2(d +p)
∥∇G∥2L2(Sd) = (1− 2d −p (d −2)

2(d +p)
)∥∇G∥2L2(Sd) ≥ d Ep[G]

and the improved Poincaré inequality (5.5) written with p = 1 and k = 1

∥G∥2L2(Sd) ≤
1

2(d +1)
∥∇G∥2L2(Sd) =

1

2(d +1)
,

we have

∥G∥2Lp(Sd) ≤ ∥G∥
2
L2(Sd)+

p (p −2)
2(d +p)

∥∇G∥2L2(Sd) ≤Cp,d

using ∥∇G∥L2(Sd) = 1, with Cp,d ∶= 1
2(d+1) +

p (p−2)
2(d+p) . By the Cauchy-Schwarz inequality, we also have

∥G∥L1(Rd) ≤
1√

2(d +1)
,

We recall that the eigenvalues of −∆ on Sd are λk = k (k +d −1) with k ∈N. In preparation for a detailed

Taylor expansion as in [144], let us consider the function

Y (x) ∶=
√

d +1

d
x ⋅ν ,

which is such that −∆Y =λ1 Y with λ1 = d and

∥∇Y ∥2L2(Sd) = 1, ∥Y ∥2L2(Sd) =
1

d
,

∥Y ∥4L4(Sd) =
3(d +1)
(d +3)d 2

, ∥Y ∥6L6(Sd) =
15(d +1)2

(d +3)(d +5)d 2
.

The function Y2 ∶=Y 2− 1
d is such that −∆Y2 =λ2 Y2 with λ2 = 2(d +1) and

∥Y2∥2L2(Sd) =
2

d (d +3)
, ∥∇Y2∥2L2(Sd) =

4(d +1)
d (d +3)

.

The function Y3 ∶=Y 3− 3(d+1)
d (d+3)Y is such that −∆Y3 =λ3 Y3 with λ3 = 3(d +2) and

∥Y3∥2L2(Sd) =
6(d +1)2

(d +5)(d +3)2 d 2
, ∥∇Y3∥2L2(Sd) =

18(d +2)(d +1)2

(d +5)(d +3)2 d 2
.

As a consequence of (5.20), we know that Π0G =Π1G = 0 and ∥∇G∥L2(Sd) = 1. Let

g2 ∶= ∫S
d ∇Y2 ⋅∇G dµd

∥∇Y2∥L2(Sd)
and g3 ∶= ∫S

d ∇Y3 ⋅∇G dµd

∥∇Y3∥L2(Sd)
.

With k = 1, 2, using −∆Yk =λk Yk with λk = ∥∇Yk∥2L2(Sd) /∥Yk∥2L2(Sd), we compute

∫
Sd

Y k G dµd =∫
Sd

Yk G dµd =
∥Yk∥2L2(Sd)

∥∇Yk∥2L2(Sd)
∫
Sd
∇Yk ⋅∇G dµd = gk

∥Yk∥2L2(Sd)

∥∇Yk∥L2(Sd)
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and obtain

∫
Sd

Y 2 G dµd =∫
Sd

Y2 G dµd =
g2√

d (d +1)(d +3)
,

∫
Sd

Y 3 G dµd =∫
Sd

Y3 G dµd = c3 g3 with c3 ∶=
d +1

d (d +3)

√
2

(d +2)(d +5)
.

● Taylor expansions (1). Let us start with elementary estimates of ∥1+εY ∥Lp(Sd). If 2 ≤ p < 3 and ∣s∣ < 1, we

have
1

2
((1+ s)p +(1− s)p) ≤ 1+ p

2
(p −1) s2(1+ 1

12
(p −2)(p −3) s2) .

because all other terms in the series expansion of the l.h.s. around s = 0 correspond to even powers of s and

appear with non-positive coefficients. If either 1 ≤ p < 2 or p > 3 and ∣s∣ < 1/2, let

fp(s) ∶=
1

2
((1+ s)p +(1− s)p)−(1+ p

2
(p −1) s2)

and notice that f ′′p (s) =
p
2 (p −1)((1+ s)p−2+(1− s)p−2−2) ≥ 0 by convexity of the function y ↦ y p−2 so that

c
(+)
p defined as the maximum of s↦ fp(s)/s6 on [−1/2,1/2] ∋ s is finite and we have

1

2
((1+ s)p +(1− s)p) ≤ 1+ p

2
(p −1) s2(1+ 1

12
(p −2)(p −3) s2)+c

(+)
p s6 . (5.21)

We adapt the convention that c
(+)
p = 0 if p ∈ [2,3). Using the fact that Y (−x) =−Y (x),

∥1+εY ∥p
Lp(Sd) =

1

2
(∥1+εY ∥p

Lp(Sd)+∥1−εY ∥p
Lp(Sd)) .

For any ε ∈ (0,1/2)we use (5.21) to write

∥1+εY ∥p
Lp(Sd)−(1+ p

2
(p −1)(∥Y ∥2L2(Sd)+

1

12
(p −2)(p −3) ∥Y ∥4L4(Sd) ε

2) ε2)

≤ c
(+)
p ∥Y ∥6L6(Sd) ε

6 .

For similar reasons, one can prove that there is another constant c
(−)
p which provides us with a lower bound

c
(−)
p ∥Y ∥6L6(Sd) ε

6. Altogether, this amounts to

c
(−)
p,d ε6 ≤ ∥1+εY ∥p

Lp(Sd)−(1+ap,d ε2+bp,d ε4) ≤ c
(+)
p,d ε6 (5.22)

with

ap,d ∶=
p (p −1)

2d
, bp,d ∶=

1

4
(p −2)(p −3) d +1

d (d +3)
ap,d , c

(±)
p,d ∶=

15(d +1)2

(d +3)(d +5)d 2
c
(±)
p .

Estimate (5.22) is valid under the condition that ε < 1/2. We shall therefore request that

ϑ < 1

4
, (5.23)

which is an obvious sufficient condition according to (5.17). Now we draw two consequences of equa-

tion (5.22). First, let us give an upper estimate of ∥1+εY ∥2Lp(Sd). Using

(1+ s)
2
p ≤ 1+2

s

p
−(p −2) s2

p2
+ 2

3
(p −1)(p −2) s3

p3
,
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we obtain

∥1+εY ∥2Lp(Sd) ≤ 1+ 2

p
ap,d ε2+ 1

p2
(2 p bp,d −(p −2)a2

p,d) ε
4+ r (+) ε6 (5.24)

where the remainder term r (+) is explicitly estimated by

96 p3 r (+) = 64 a3
p,d (p

2−3 p +2)+48 a2
p,d (p

2−3 p +2)(2bp,d +cp,d)

+12 ap,d (p −2)(2bp,d +cp,d)(2bp,d (p −1)+cp,d (p −1)−8 p)

+8b3
p,d (p

2−3 p +2)+12b2
p,d (p −2)(cp,d (p −1)−4 p)

+6bp,d cp,d (p −2)(cp,d (p −1)−8 p)

+cp,d (c2
p,d (p

2−3 p +2)−12cp,d (p −2)p +192 p2) .

To do this estimate, we simply write that εα ≤ 26−α ε6 for any α > 6 using the (non-optimal) bound ε2 < 1/2.

Similarly, using

(1+ s)
2
p
−1 ≤ 1−(p −2) s

p
+(p −1)(p −2) s2

p2
− 1

3
(p −1)(p −2)(3 p −2) s3

p3

+ 1

6
(p −1)(p −2)(3 p −2)(2 p −1) s4

p4
,

we obtain

∥1+εY ∥2Lp(Sd) ≤ 1+ p −2

p
ap,d ε2− p −2

p2
(p bp,d −(p −1)a2

p,d) ε
4+ r (−) ε6 (5.25)

where the remainder term r (−) has also an explicit expression in terms of ap,d , bp,d and c
(−)
p,d , which is not

given here.

● Taylor expansions (2). With u ≥ 0, u+ r ≥ 0 and p > 2, we claim that

(u+ r)p ≤ up +p up−1 r + p

2
(p −1)up−2 r 2+ ∑

2<k<p

C p
k up−k ∣r ∣k +Kp ∣r ∣p

for some constant Kp > 0, where the coefficients

C p
k ∶=

Γ(p +1)
Γ(k +1)Γ(p −k +1)

are the binomial coefficients if p is an integer. It is proved in [119] that Kp = 1 if p ∈ (2,4]∪{6}. The proof is

similar to the above analysis and left to the reader. Let us integrate this inequality and raise both sides to the

power 2/p to get

∥u+ r∥2Lp(Sd) ≤ ∥u∥
2
Lp(Sd) (1+ s)

2
p

with

s = 1

∥u∥p
Lp(Sd)

(p∫
Sd

up−1 r dµd +
p

2
(p −1)∫

Sd
up−2 r 2 dµd

+ ∑
2<k<p

C p
k ∫

Sd
up−k ∣r ∣k dµd +Kp ∫

Sd
∣r ∣p dµd

⎞
⎠

.

By assumption 2/p < 1 so that we may use the identity (1+ s)2/p ≤ 1+2 s/p for any s ≥−1. Notice that we can
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assume that u+ r ≥ 0 and deduce from (1) that s ≥−1. As a consequence, we have

∥u+ r∥2Lp(Sd) ≤ ∥u∥
2
Lp(Sd)

+ 2

p
∥u∥2−p

Lp(Sd)(p∫
Sd

up−1 r dµd +
p

2
(p −1)∫

Sd
up−2 r 2 dµd

+ ∑
2<k<p

C p
k ∫

Sd
up−k ∣r ∣k dµd +Kp ∫

Sd
∣r ∣p dµd

⎞
⎠

We apply these computations to u = 1+εY and r = ηG .

M −2 ∥F∥2Lp(Sd)−∥1+εY ∥2Lp(Sd)

≤ 2

p
∥1+εY ∥2−p

Lp(Sd) η(p∫
Sd
(1+εY )p−1 G dµd

+ p

2
(p −1)η∫

Sd
(1+εY )p−2 ∣G ∣2 dµd

+ ∑
2<k<p

C p
k ηk ∫

Sd
(1+εY )p−k ∣G ∣k dµd +Kp η

p ∫
Sd
∣G ∣p dµd

⎞
⎠

.

Let us detail the expansion of each of the terms involving G in the right-hand side of this estimates. For any

s ∈ (−1/2,1/2), using the expansion

(1+ s)p−1 ≤ 1+(p −1) s+ 1

2
(p −1)(p −2) s2+ 1

6
(p −1)(p −2)(p −3) s3+Rp s4

for some constant Rp > 0 applied with s = 1+εY , we obtain

η∫
Sd
(1+εY )p−1 G dµd ≤

1

2
(p −1)(p −2) g2√

d (d +1)(d +3)
ηε2

+ 1

6
(p −1)(p −2)(p −3)c3 g3ηε

3+
Rp ηε

4

√
2(d +1)

.

The other terms admit simpler expansions:

η2∫
Sd
(1+εY )p−2 ∣G ∣2 dµd ≤ η2 (1+ε)p−2 ∥G∥2L2(Sd)

≤ ∥G∥2L2(Sd) η
2+ 1

2(d +1)
η2 ((1+ε)p−2−1)

and

∑
2<k<p

C p
k ηk ∫

Sd
(1+εY )p−k ∣G ∣k dµd +Kp η

p ∫
Sd
∣G ∣p dµd

≤ ∑
2<k<p

C p
k ηk (1+ε)p−k ∥G∥kLp(Sd)+Kp η

p ∥G∥p
Lp(Sd)

≤ ∑
2<k<p

C p
k ηk (1+ε)p−k C

k/p
p,d +Kp η

p Cp,d .
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Collecting (5.24), (5.25), and the above estimates, we arrive at

M −2 ∥F∥2Lp(Sd)

≤ 1+ 2

p
ap,d ε2+ 1

p2
(2 p bp,d −(p −2)a2

p,d) ε
4+ r (+) ε6

+(1+ p −2

p
ap,d ε2− p −2

p2
(p bp,d −(p −1)a2

p,d) ε
4+ r (−) ε6)

⋅[(p −1)(p −2) g2√
d (d +1)(d +3)

ηε2+ 1

3
(p −1)(p −2)(p −3)c3 g3ηε

3

+
2Rp ηε

4

√
2(d +1)

+(p −1)(∥G∥2L2(Sd) η
2+ 1

2(d +1)
η2 ((1+ε)p−2−1))

+ 2

p

⎛
⎝ ∑2<k<p

C p
k ηk (1+ε)p−k C

k/p
p,d +Kp η

p Cp,d
⎞
⎠

⎤⎥⎥⎥⎥⎦
.

Using ∣g2∣ < 1, ∣g3∣ < 1, and 2(d +1) ∥G∥2L2(Sd) < 1, this gives rise to an explicit although lengthy expression for

a positive constantRp,d such that, assuming (5.17), i.e., ε2+η2 <ϑ, we have

M −2(∫
Sd
∣∇F ∣2 dµd −d Ep[F ]) ≥ Aε4−B ε2η+C η2−Rp,d (ϑp +ϑ5/2)

with A ∶= (p−1)(d+p)
2 d (d+3) , B ∶= d (p−1)√

d (d+1)(d+3)
and C ∶= d+2

2(d+1) . The discriminant

B 2−4 A C =− 1

d (d +3)
(p −1)(2d −p (d −2))

is negative if p ∈ (1,2∗), so that we can write

A s2−B s +C = (A−λ) s2−B s +(C −λ)+λ(s2+1) ≥λ(s2+1)

where

λ ∶= 1

2
(A+C +

√
(A−C)2+B 2)

is given by the condition that B 2−4(A−λ)(C −λ) = 0. Altogether, we obtain

M −2(∫
Sd
∣∇F ∣2 dµd −d Ep[F ]) ≥λ(ε4+η2)−Rp,d (ϑp +ϑ5/2) .

● Conclusion if p > 2. We choose ϑ > 0 such that (5.19) and (5.23) are fulfilled and we further assume that it is

taken small enough so that

Rp,d (ϑp +ϑ5/2) ≤ λ

2
(ϑ2+ϑ) .

With

ϑp,d ∶= {ϑ > 0 ∶ Rp,d (ϑp +ϑ5/2) = λ

2
(ϑ2+ϑ)}

this last condition amounts to

ϑ ≤ϑp,d .
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It is elementary to check that under the condition ε2+η2 <ϑ, we have

ε4+η2 ≤ 1

2+ϑ
( ε4

ε2+η2+1
+η2) .

For any F such that ∥∇F∥2L2(Sd) ≤ϑ, we obtain

∫
Sd
∣∇F ∣2 dµd −d Ep[F ] ≥

λM 2

2(2+ϑ)
⎛
⎝

∥∇Π1F∥4L2(Sd)

∥∇F∥2L2(Sd)+∥F∥
2
Lp(Sd)

+∥∇(Id−Π1)F∥2L2(Sd)
⎞
⎠

.

Using (5.16) and (5.18), this completes the proof of Theorem 78 if p > 2 with

ϑ =min{1

2
d ,

1

4
, ϑp,d}

and Sd ,p =min{d +(p −2)ϑ
ϑ

ψm,p (
ϑ

d +(p −2)ϑ
) ,

λ(d −ϑ)
2d (2+ϑ)

} .

● The case p ≤ 2. The strategy is the same, with some simplifications, so we only sketch the proof and empha-

size only the changes compared to the case p > 2. Let us notice that

(1+ s)p ≤ 1+p s+ p

2
(p −1) s2 if 1 ≤ p < 2

and (1+ s)2 log((1+ s)2) ≤ 2 s+2 s2+ 2
3 s3 in the limit case p = 2. The estimates involving 1+εY are therefore

essentially the same if we assume ε < 1/2, while the computation of ∥u+ r∥2Lp(Sd) is in fact simpler, when

applied to u = 1+εY and r = ηG . The estimate on the average is simplified because ∥F∥Lp(Sd) ≤ ∥F∥L2(Sd)
by Hölder’s inequality, since dµ is a probability measure on Sd . Spectral estimates are exactly the same and

the Taylor expansions present no additional difficulty, as we can use (GN) for some exponent q ∈ (2,2∗) to

control the remainder terms if p = 2, so that (1+ s)2 log((1+ s)2) ≤ 2 s + 2 s2 +κq sq for some κq > 0. The

conclusion is the same as for p > 2 except that we have to replace ψm,p by ψ defined as in Proposition 75.

5.5 Appendix: Improved Gaussian inequalities, hypercontractiv-

ity and stability

Whether the results of Theorems 68, 71 and 74 can be extended to the Euclidean case with the Gaussian

measure is a very natural question. Spherical harmonics can indeed be replaced by Hermite polynomials and

there is a clear correspondence for spectral estimates. The answer is yes for a whole family of interpolation

inequalities, but it is no for the logarithmic Sobolev inequality, which is an endpoint of the family.

Let us consider the normalized Gaussian measure on Rd defined by

dσ(x) = (2π)−
d
2 e−

1
2
∣x∣2 d x .

For any p ∈ [1,2), W. Beckner in [35] established the family of interpolation inequalities

∥ f ∥2L2(Rd ,dγ)−∥ f ∥2Lp(Rd ,dγ)

2−p
≤ ∥∇ f ∥2L2(Rd ,dγ) ∀ f ∈H1(Rd ,dσ) . (5.26)

With p = 1, Inequality (5.26) is the Gaussian Poincaré inequality while one recovers the Gaussian logarithmic
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Sobolev inequality of [155] in the limit as p→ 2. For any p ∈ [1,2), the inequality is optimal: using fε ∶= 1+εφ
as a test function, where φ is such that ∫Rd φdγ = 0, we recover the Gaussian Poincaré inequality with optimal

constant in the limit as ε → 0, so that the constant in (5.26) cannot be improved. Based on [187, 14], the

improved version of the inequality

∥ f ∥2L2(Rd ,dγ)−∥ f ∥2Lp(Rd ,dγ)

2−p
≤ p

2
∥∇ f ∥2L2(Rd ,dγ) ∀ f ∈H1(Rd ,dσ) (5.27)

holds under the additional condition

∫
Rd

x f (x)dγ = 0. (5.28)

Let us give a short proof of (5.27). Assume that f =∑k∈N fk is a decomposition on Hermite functions such

thatL fk = k fk whereL =∆−x ⋅∇ is the Ornstein-Uhlenbeck operator, and let ak ∶= ∥ fk∥2L2(Rd ,dγ) for any k ∈N,

so that

∥ f ∥2L2(Rd ,dγ) =∑
k∈N

ak and ∥∇ f ∥2L2(Rd ,dγ) =∑
k∈N

k ak .

Let us consider the solution of
∂u

∂t
=Lu (5.29)

with initial datum u(t = 0, ⋅) = f and notice that

∥u(t , ⋅)∥2L2(Rd ,dγ) =∑
k∈N

ak e−2 k t .

Hence, if (5.28) holds, a1 = 0 and

∥ f ∥2L2(Rd ,dγ)−∥u(t , ⋅)∥2L2(Rd ,dγ) =∑
k≥2

ak (1−e−2 k t)

≤ 1

2
(1−e−4 t)∑

k∈N
k ak =

1

2
(1−e−4 t)∥∇ f ∥2L2(Rd ,dγ)

(5.30)

because k ↦ (1−e−2 k t)/k is monotone nonincreasing for any given t ≥ 0. Next, we use Nelson’s hypercon-

tractivity estimate in [220, Theorem 3] to find t∗ > 0 such that

∥u(t∗, ⋅)∥2L2(Rd ,dγ) ≤ ∥ f ∥2Lp(Rd ,dγ) .

As noted in [155], this estimate can be seen as a consequence of the Gaussian logarithmic Sobolev inequality

∫
Rd
∣v ∣2 log

⎛
⎝

∣v ∣2

∥v∥2L2(Rd ,dγ)

⎞
⎠

dγ ≤ 2∫
Rd
∣∇v ∣2 dγ ∀v ∈H1(Rd ,dσ) , (5.31)

and the argument goes as follows. With h(t) ∶= ∥u(t , ⋅)∥Lq(t)(Rd ,dγ) for some exponent q depending on t and

u solving (5.29), we have

h′

h
= q ′

q2 ∫Rd

∣u∣q

hq
log(∣u∣

q

hq
)dγ− 4

hq

q −1

q2 ∫Rd
∣∇(∣u∣q/2)∣

2
dγ ≤ 0

by (5.31) applied to v = ∣u∣q/2, if t ↦ q(t) solves the ordinary differential equation

q ′ = 2(q −1) .
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With q(0) = p < 2, we obtain q(t) = 1+(p −1)e2t and find that Nelson’s time t∗ is determined by the condition

q(t∗) = 2 which means e−2t∗ = p −1. Replacing t = t∗ in (5.30) completes the proof of (5.27), which can be

recast in the form of a stability result for (5.26).

Theorem 79. Let d ≥ 1 and p ∈ [1,2). For any f ∈H1(Rd ,dσ) such that (5.28) holds,

∥∇ f ∥2L2(Rd ,dγ)−
1

2−p
(∥ f ∥2L2(Rd ,dγ)−∥ f ∥2Lp(Rd ,dγ)) ≥

2−p

2
∥∇ f ∥2L2(Rd ,dγ) .

As a byproduct of the proof, with t = t∗ in (5.30), we have the mode-by mode interpolation inequality

∥ f ∥2L2(Rd ,dγ)−∥ f ∥2Lp(Rd ,dγ)

2−p
≤∑

k≥1

1−(p −1)k

k (2−p)
∥∇ fk∥2L2(Rd ,dγ) ∀ f ∈H1(Rd ,dσ) ,

without imposing the condition (5.28), for any p ∈ [1,2). For any k ≥ 1,

lim
p→2−

1−(p −1)k

k (2−p)
= lim

p→2−

1−(1−(2−p))k

k (2−p)
= 1,

so that no improvement should be expected by this method. This is very similar to the case of the critical

exponent on the sphere of dimension d ≥ 3. In this sense p = 2 is the critical case in presence of a Gaussian

weight, as all modes are equally involved in the estimate of the constant. This is a limitation of the method

which does not forbid a stability result for (5.31), to be established by other methods.

Let us conclude this appendix by some bibliographic comments for the literature on inequality (5.26), for

the Gaussian measure. The analogue of Proposition 72 in the Gaussian case is known from [15]; also see [126,

Section 2.5]). Assuming that not only condition (5.28) is satisfied, but also orthogonality conditions with all

modes up to order k0 ≥ 2, then an improvement of the order of

1−(p −1)k0

k0 (2−p)

can be achieved for Inequality (5.26), which is the counterpart of Theorem 71 in the Gaussian case. This has

been studied in [187] but we can refer to [14] for a more abstract setting and later papers, e.g., to [259, 257]

for results on compact manifolds and generalizations involving weights. For an overview of interpolation

between Poincaré and logarithmic Sobolev inequalities from the point of view of Markov processes, and for

some spectral considerations, we refer to [258, Chapter 6]. Notice that hypercontractivity appears as one of

the main motivation of the founding paper [24] of the carré du champ method.

5.6 Appendix: Carré du champ method and improved inequali-

ties

For sake of completeness, we collect various results of [121, 120, 124, 118] and draw some new consequences.

Computations similar to those of Section 5.6.1 can be found in [48] for the study of rigidity results in elliptic

equations. For nonlinear parabolic flows, also see [112, 113]. Other sections of this appendix collects results

which are scattered in the literature, but additional details needed in Section 5.3 are given, for instance a

sketch of the proof Proposition 83 or the computations in the case p = 2.
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5.6.1 Algebraic preliminaries

Let us denote the Hessian by Hv and define the trace free Hessian by

Lv ∶=Hv − 1

d
(∆v)gd .

We also consider the following trace free tensor

Mv ∶= ∇v⊗∇v

v
− 1

d

∣∇v ∣2

v
gd ,

where (∇v⊗∇v)i j ∶= ∂i v ∂ j v and ∥∇v⊗∇v∥2 = ∣∇v ∣4 = (g i j
d ∂i v ∂ j v)2 using Einstein’s convention. Using

L ∶ gd = 0, M ∶ gd = 0

where a ∶ b denotes ai j bi j and ∥a∥2 ∶= a ∶ a, and

∥Lv∥2 = ∥Hv∥2− 1

d
(∆v)2 ,

∥Mv∥2 = ∥∇v⊗∇v

v
∥

2

− 1

d

∣∇v ∣4

v2
= d −1

d

∣∇v ∣4

v2
,

we deduce from

∫
Sd

∆v
∣∇v ∣2

v
dµd =∫

Sd

∣∇v ∣4

v2
dµd −2∫

Sd
Hv ∶ ∇v⊗∇v

v
dµd

= d

d −1 ∫Sd
∥Mv∥2 dµd −2∫

Sd
Lv ∶ ∇v⊗∇v

v
dµd −

2

d ∫Sd
∆v
∣∇v ∣2

v
dµd

a first identity that reads

∫
Sd

∆v
∣∇v ∣2

v
dµd =

d

d +2
( d

d −1 ∫Sd
∥Mv∥2 dµd −2∫

Sd
Lv ∶ ∇v⊗∇v

v
dµd) . (5.32)

The Bochner-Lichnerowicz-Weitzenböck formula on Sd takes the simple form

1

2
∆(∣∇v ∣2) = ∥Hv∥2+∇(∆v) ⋅∇v +(d −1)∣∇v ∣2

where the last term, i.e., Ric(∇v,∇v) = (d −1)∣∇v ∣2, accounts for the Ricci curvature tensor contracted with

∇v⊗∇v . An integration of this formula on Sd shows a second identity,

∫
Sd
(∆v)2 dµd =

d

d −1 ∫Sd
∥Lv∥2 dµd +d∫

Sd
∣∇v ∣2 dµd . (5.33)

Hence

K [v] ∶=∫
Sd
(∆v +κ ∣∇v ∣2

v
)(∆v +(β−1) ∣∇v ∣2

v
)dµd

=∫
Sd
(∆v)2 dµd +(κ+β−1)∫

Sd
∆v
∣∇v ∣2

v
dµd +κ(β−1)∫

Sd

∣∇v ∣4

v2
dµd
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can be rewritten using (5.32) and (5.33) as

K [v] = d

d −1 ∫Sd
∥Lv∥2 dµd +d∫

Sd
∣∇v ∣2 dµd

+(κ+β−1) d

d +2
( d

d −1 ∫Sd
∥Mv∥2 dµd −2∫

Sd
Lv ∶Mv dµd)

+κ(β−1) d

d −1 ∫Sd
∥Mv∥2 dµd

= d

d −1
(∥Lv∥2−2b Lv ∶Mv +c ∥Mv∥2)+d∫

Sd
∣∇v ∣2 dµd

= d

d −1
(∥Lv − b Mv∥2+(c −b2)∥Mv∥2)+d∫

Sd
∣∇v ∣2 dµd

= d

d −1
∥Lv − b Mv∥2+(c −b2)∫

Sd

∣∇v ∣4

v2
dµd +d∫

Sd
∣∇v ∣2 dµd

where

b = (κ+β−1) d −1

d +2
and c = d

d +2
(κ+β−1)+κ(β−1) .

Let κ =β(p −2)+1. The condition γ ∶= c −b2 ≥ 0 amounts to

γ = d

d +2
β(p −1)+(1+β(p −2))(β−1)−(d −1

d +2
β(p −1))

2

(5.34)

where γ =−(Aβ2−2B β+C)with

A = (d −1

d +2
(p −1))

2

+2−p , B = d +3−p

d +2
and C = 1.

A necessary and sufficient condition for the existence of a β such that γ ≥ 0 is that the reduced discriminant

is nonnegative, which amounts to

B 2− A C = 4d (d −2)
(d +2)2

(p −1)(2∗−p) ≥ 0.

Summarizing, we have the following result, which can be found in [121] for a general manifold.

Lemma 80. With the above notations, for any smooth function v on Sd , we have

K [v] ≥ γ∫
Sd

∣∇v ∣4

v2
dµd +d∫

Sd
∣∇v ∣2 dµd

for some γ > 0 given in terms of β by (5.34) if p ∈ (1,2∗).

Notice that we recover the expression of γ in (5.8) if we take β = 1. The case p = 2 does not add any

difficulty compared to p ≠ 2.

5.6.2 Diffusion flow and monotonicity

Assume that u is a positive solution of

∂u

∂t
= u−p (1−m)(∆u+(m p −1) ∣∇u∣2

u
) . (5.35)
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In the linear case m = 1, up solves the heat equation. Otherwise we deal with the nonlinear case either of a

fast diffusion flow with m < 1 or of a solution of the porous media equation with m > 1. We claim that

d

d t
∥u∥2Lp(Sd) = 0 and

d

d t
∥u∥2L2(Sd) = 2(p −2)∫

Sd
u−p (1−m) ∣∇u∣2 dµd .

Let us assume that the parameters β and m are related by

m = 1+ 2

p
( 1

β
−1) . (5.36)

If v is a function such that u = vβ, then v solves

∂v

∂t
= v2−2β(∆v +κ ∣∇v ∣2

v
)

with κ =β(p −2)+1 and as a consequence we find that

d

d t
∥u∥2L2(Sd) = 2(p −2)β2∫

Sd
∣∇v ∣2 dµd .

Similarly, we find that

d

d t
∥∇u∥2L2(Sd) =−2∫

Sd
(βvβ−1 ∂v

∂t
)(∆vβ)dµd =−2β2 K [v] (5.37)

By eliminating β in (5.34) using (5.36), we obtain

γ =
(d +2)2 p2 m2−2 p (d +2)(d p +2)m+d 2 (5 p2−12 p +8)+4d (3−2 p)p +4

(d +2)2 (2−p (1−m))2 . (5.38)

The condition γ ≥ 0 determines the range m−(d , p) ≤ m ≤ m+(d , p) of admissible parameters m, where

m±(d , p) is given by (5.13). Summarizing, we have the following result (also see [121]).

Lemma 81. Assume that p ∈ (1,2∗) and m ∈ [m−(d , p),m+(d , p)]. If u solves (5.35), then we have

1

2β2

d

d t
(∥∇u∥2L2(Sd)−d Ep[u]) ≤−γ∫

Sd

∣∇v ∣4

v2
dµd (5.39)

where v = u1/β with β and γ given in terms of m respectively by (5.34) and (5.38).

Notice that the case of the linear flow corresponds to the case m =β = 1 and v = u.

Proof. For a smooth solution, the result follows from (5.37) and Lemma 80. The result for a general solution

is obtained by standard regularization procedures.

5.6.3 Interpolation

Depending on the value of p, we shall consider various interpolation inequalities. Let us define

δ ∶= 2− (4−p)β
2β(p −2)

if p > 2, δ ∶= 1 if p ∈ [1,2] . (5.40)

Lemma 82. If one of the following conditions is satisfied:
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(i) p ∈ (1,2#) and β = 1 (so that δ = 1),

(ii) p ∈ (4,2∗) if d ≥ 5,

(iii) p ∈ (2,min{4,2∗}) and 1 <β < 2/(4−p),

then u = vβ is such that

∫
Sd

∣∇v ∣4

∣v ∣2
dµd ≥

1

β2
∫Sd ∣∇u∣2 dµd ∫Sd ∣∇v ∣2 dµd

(∫Sd ∣u∣2 dµd)δ (∫Sd ∣u∣p dµd)
β−1

β(p−2)

. (5.41)

Case (iii) was originally proved in [112, 113] and we refer to [120] for a proof in the case of the ultraspherical

operator.

Proof. In case (i), v = u and Inequality (5.41) is a consequence of the Cauchy-Schwarz inequality

∫
Sd
∣∇v ∣2 dµd =∫

Sd

∣∇v ∣2

v
⋅ v dµd ≤ (∫

Sd

∣∇v ∣4

v2
dµd)

1
2

(∫
Sd
∣u∣2 dµd)

1
2

,

Cases (i) and (ii) follow from two Hölder inequalities.

1) With 1
2 +

β−1
2β +

1
2β = 1, we deduce from

∫
Sd
∣∇v ∣2 dµd =∫

Sd

∣∇v ∣2

v
⋅1 ⋅ v dµd ≤ (∫

Sd

∣∇v ∣4

v2
dµd)

1
2

(∫
Sd

1dµd)
β−1
2β
(∫

Sd
∣u∣2 dµd)

1
2β

,

and the assumption that dµ is a probability measure, the first estimate

(∫
Sd

∣∇v ∣4

v2
dµd)

1
2

≥ ∫Sd ∣∇v ∣2 dµd

(∫Sd ∣u∣2 dµd)
1

2β

.

2) With 1
2 +

β−1
β(p−2) +

2−(4−p)β
2β(p−2) = 1, Hölder’s inequality shows that

1

β2 ∫Sd
∣∇u∣2 dµd =∫

Sd
v2(β−1) ∣∇v ∣2 dµd =∫

Sd

∣∇v ∣2

v
⋅ v

p (β−1)
p−2 ⋅ v2βδ dµd

≤ (∫
Sd

∣∇v ∣4

v2
dµd)

1
2

(∫
Sd
∣u∣p dµd)

β−1
β(p−2)

(∫
Sd
∣u∣2 dµd)

δ

from which we deduce the second estimate

(∫
Sd

∣∇v ∣4

v2
dµd)

1
2

≥ 1

β2
∫Sd ∣∇u∣2 dµd

(∫Sd ∣u∣2 dµd)δ (∫Sd ∣u∣p dµd)
β−1

β(p−2)

.

The combination of our two estimates proves (5.41).

Using (5.36), Condition (iii) in Lemma 82 is changed into the condition that 2
p ≤m < 1 if 2 < p < 4 and we

may notice as in [112, 113] that it is always satisfied if we choose β = 4/(6−p) corresponding to an admis-

sible fast diffusion exponent m = (p +2)/(2 p), for any p ∈ (2,2∗). By the admissible, one has to understand

m−(d , p) ≤m ≤m+(d , p), so that γ is nonnegative. With the choice of m = (p +2)/(2 p), we find δ = 1/4.
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5.6.4 Improved functional inequalities

Let us denote the entropy and the Fisher information respectively by

e ∶= 1

p −2
(∥u∥2Lp(Sd)−∥u∥

2
L2(Sd)) and i ∶= ∥∇u∥2L2(Sd)

and let γ and δ be given respectively by (5.34) and (5.40). Up to the replacement of u by u/∥u∥Lp(Sd), with no

loss of generality, we shall assume that

∥u∥Lp(Sd) = 1.

We learn from (5.39) and (5.41) that

(i− d e)′ ≤ γ ie′

(1−(p −2)e)δ
. (5.42)

Solving the ordinary differential equation in the equality case of (5.42) with e′ =−2β2 i, that is,

(e′+ 2d β2 e)′ = γ(e′)2

(1−(p −2)e)δ
,

is equivalent to solve
d

d t
(i− d φ(e)) = γ

β2

e′

(1−(p −2)e)δ
(i− d φ(e))

where φ solves

φ′(s) = 1+ γ

β2

φ(s)
(1 − (p −2) s)δ

. (5.43)

The reader is invited to check that the solution of (5.43) with initial datum φ(0) = 0 is given by (5.10) if m = 1

and by (5.12) with ζ = 2γ/(β(1−β)) in the nonlinear case. We learn from (5.42) that

(i− d φ(e))′ ≤ γ

β2

e′

(1−(p −2)e)δ
(i− d φ(e)) .

This is enough to prove the following result.

Proposition 83. With the above notations, we claim that

i ≥ d φ(e) .

Proof. Let us give the scheme of a proof. Let γ̃ ∶= γ/β2, in order to simplify notations. We can argue as follows:

1. i′+2d i = (i−d e)′ ≤ 0 shows that

0 ≤ i(t) ≤ i(0)e−2 d t

and in particular lim
t→+∞

i(t) = 0.

2. As t →+∞, e converges to a constant, hence lim
t→+∞

e(t) = 0.

3. From (5.42), we learn that

(i−d e)′ ≤ d γ̃ee′ = 1

2
d γ̃(e2)′

where the inequality follows from 1−(p −2)e ≤ 1 and i ≥ d e.

4. It follows from (i−d e)′ ≤ 0 that i ≥ d e using an integration from any t ≥ 0 to +∞.
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5. Unless u is a constant, we read from (i−d e)′ ≤ 1
2 γ̃d (e2)′ that i−d e > 1

2 γ̃d e2 using again an integration

from any t ≥ 0 to +∞.

6. Take some ϑ ∈ (0,1) and consider the solution of

φ′(s) = 1+ ϑγ̃φ(s)
(1 − (p −2) s)δ

, φ(0) = 0. (5.44)

In the spirit of (5.42), we have a following chain of elementary estimates

(i− d ϑφ(e))′ ≤ (i− d φ(e))′+d (1−ϑ) (φ(e))′ ≤ (i− d φ(e))′

and obtain

(i− d ϑφ(e))′ ≤ γ̃e′

(1−(p −2)e)δ
(i− d ϑφ(e)) . (5.45)

We know that φ(0) = 0 and read from (5.44) that φ′(0) = 1 and φ′′(0) =ϑγ̃φ′(0) =ϑγ̃ so that φ(e)−e ∼
1
2 ϑγ̃e2 as e→ 0. Using i−d e > 1

2 γ̃d e2, we learn that

i− d φ(e) ≥ 1

2
γ̃d (1−ϑ)e2 (1+O(e))

for e = e(t) small enough, i.e, for t > 0 large enough.

7. It is simple to check from (5.45) that i− d ϑφ(e) cannot change sign.

8. We conclude as above that i− d ϑφ(e) ≥ 0 using an integration from any t ≥ 0 to +∞.

9. Finally, we consider the limit as ϑ→ 1−.

Altogether, we conclude that i ≥ d φ(e) where φ solves (5.43). This completes the scheme of the proof of

Proposition 83.



Chapter 6

On Gaussian interpolation inequalities

This chapter corresponds to the paper [P3], accepted in Comptes Rendues Mathématique, in collaboration

with Jean Dolbeault and Nikita Simonov.

Abstract

This paper is devoted to Gaussian interpolation inequalities with endpoint cases corresponding to the Gaus-

sian Poincaré and the logarithmic Sobolev inequalities, seen as limits in large dimensions of Gagliardo-

Nirenberg-Sobolev inequalities on spheres. Entropy methods are investigated using not only heat flow tech-

niques but also nonlinear diffusion equations as on spheres. A new stability result is established for the

Gaussian measure, which is directly inspired by recent results for spheres.

Résumé

Cet article est consacré à des inégalités d’interpolation Gaussiennes, avec comme cas extrêmes l’inégalité de

Poincaré Gaussienne et l’inégalité de Sobolev logarithmique, vues comme limites en grandes dimensions des

inégalités de Gagliardo-Nirenberg-Sobolev sur les sphères.

Les méthodes d’entropie sont abordées en utilisant non seulement des techniques basée sur l’équation

de la chaleur mais aussi sur des équations de diffusion non-linéaires, comme pour les sphères. Un nouveau

résultat de stabilité est établi pour les mesures Gaussiennes, qui s’inspire directement de résultats récents

sur les sphères.

6.1 Introduction and main results

Let us consider the Gagliardo-Nirenberg-Sobolev inequalities on the unit d-dimensional sphere

∥∇u∥2L2(Sd ,dµd) ≥
d

p −2
(∥u∥2Lp(Sd ,dµd)−∥u∥

2
L2(Sd ,dµd)) ∀u ∈H1(Sd ,dµd) (6.1)

for any p ∈ [1,2)∪ (2,+∞) if d = 1, 2, and for any p ∈ [1,2)∪ (2,2∗] if d ≥ 3. Here dµd denotes the uniform

probability measure on Sd ⊂ Rd+1 and, if d ≥ 3, 2∗ = 2d/(d −2) is the critical Sobolev exponent. By conven-

tion, we take 2∗ = +∞ if d = 1 or 2. The purpose of this paper is to clarify the links of these interpolation

109
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inequalities with the family of Gaussian interpolation inequalities

∥∇v∥2L2(Rn ,dγ) ≥
1

2−p
(∥v∥2L2(Rn ,dγ)−∥v∥

2
Lp(Rn ,dγ)) ∀v ∈H1(Rn ,dγ) (6.2)

where the exponent p is taken in the range 1 ≤ p < 2. Inequality (6.2) is intermediate between the Poincaré

inequality corresponding to p = 1 and the Gaussian logarithmic Sobolev inequality

∥∇v∥2L2(Rn ,dγ) ≥
1

2 ∫Rn
∣v ∣2 log

⎛
⎝

∣v ∣2

∥v∥2
L2(Rn ,dγ)

⎞
⎠

dγ ∀v ∈H1(Rn ,dγ)

obtained as a limit case of (6.2) as p→ 2−. Here dγ(y) ∶= (2π)−n/2 e−
1
2
∣y ∣2 d y denotes the centred normalized

Gaussian probability measure and the dimension n is any positive integer.

It is somewhat classical that, if we consider the Sobolev inequality on the sphere, i.e., Inequality (6.1) with

p = 2∗ and d ≥ 3, rescale it to the sphere of radius
√

d and fix a function depending on n variables only on

this sphere, since the curvature tends to 0 at the right order as one takes the limit as d →+∞, then the sphere

tends to the flat space with Gaussian measure. For instance, we read (with adapted notations) from [36,

p. 4818] that if we rescale this inequality so as to be on a sphere of radius
√

d and take the limit d →∞ or p→ 2

we obtain in the Poincaré limit the Gross logarithmic inequality for the Gaussian measure since −(1/d)∆ on

Sd goes to −∆+ x ⋅∇ on the infinite-dimensional limit. The last part of the sentence refers to a result known

as the MaxwellPoincaré lemma : see [208] and [252, Remark 4, p. 254] for some historical comments. The

statement of [36] has been made more precise later in [39, 38] using a slightly different limit. However, to our

knowledge, the infinite-dimensional limit has not been considered in the subcritical range p < 2∗.

On the sphere, Inequality (6.1) follows from [24, 25] for any p ≥ 1 if d = 1 and any p ∈ [1,2#] with 2# ∶=
(2d 2 +1)/(d −1)2 if d ≥ 2. The proof in the range p ∈ (2#,+∞) if d = 2 and p ∈ (2#,2∗] if d ≥ 3 can be found

in [48, Corollary 6.1], [49] and [37]. Also see [196] in the case p = 2∗. In the case of the Gaussian measure,

we refer to [35] (also see [187]) for a first proof of Inequality (6.2). The formal analogy of (6.1) and (6.2) is

striking. Although computations are somewhat standard, our first purpose is to make this point rigorous and

recover (6.2) as a special limit of (6.1) as d →+∞.

Theorem 84. Let n be a positive integer, p ∈ [1,2) and consider a function v ∈H1(Rn ,dγ) with compact sup-

port. For any d ≥ n, large enough, if ud(ω) = v(ω1/
√

d ,ω2/
√

d , . . . ,ωn/
√

d) where ω = (ω1,ω2, . . . ,ωd+1) ∈
Rd+1 ⊃Sd is such that ∣ω∣ = 1, then

lim
d→+∞

d (∥∇ud∥2L2(Sd ,dµd)−
d

2−p
(∥ud∥2L2(Sd ,dµd)−∥ud∥2Lp(Sd ,dµd)))

= ∥∇v∥2L2(Rn ,dγ)−
1

2−p
(∥v∥2L2(Rn ,dγ)−∥v∥

2
Lp(Rn ,dγ)) .

The carré du champ method has frequently been applied to prove Gaussian interpolation inequalities

ranging between the logarithmic Sobolev inequality and the Poincaré inequality like (6.2) using the linear

flow associated with the Ornstein-Uhlenbeck operator; see [24], and [26] for an overview. Still in the case

of the Gaussian measure, we adopt here a new point of view by using nonlinear diffusion equations in or-

der to prove the same inequalities, but with different remainder terms. This is a very natural point of view

when dealing with inequalities like (6.1) on the sphere, as shown for instance in [121] (see earlier references

therein). In that case, linear flows are indeed limited to exponents p ≤ 2# if d ≥ 2. To overcome this difficulty
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if either d = 2 and p > 2# or d ≥ 3 and p ∈ (2#,2∗], one has to consider fast diffusion flows. Before explaining

the results for the Gaussian measure, let us summarize the main known results on the sphere.

On Sd , let us consider a positive solution u of

∂u

∂t
= u−p (1−m)(∆u+(m p −1) ∣∇u∣2

u
) (6.3)

where ∆ denotes the Laplace-Beltrami operator on Sd . In the case m = 1, up solves the heat equation and for

this reason, we shall call it the linear case. Otherwise up solves a nonlinear diffusion equation corresponding

either to a fast diffusion flow with m < 1 or to a porous media equation with m > 1. In any case, we claim that

d

d t
∥u∥2Lp(Sd) = 0 and

d

d t
∥u∥2L2(Sd) = 2(p −2)∫

Sd
u−p (1−m) ∣∇u∣2 dµd .

Let us define

m±(d , p) ∶= 1

(d +2)p
(d p +2±

√
d (p −1)(2d −(d −2)p)) . (6.4)

The following result can be found in [113, 121] with additional details in [122, 118] and [P2].

Proposition 85 ([113, 121]). Assume that d ≥ 1, with either p ∈ [1,2)∪ (2,+∞) if d = 2 or p ∈ [1,2)∪ (2,2∗] if

d ≥ 3, and let m ∈ [m−(d , p),m+(d , p)]. If u > 0 solves (6.3) with an initial datum in L2∩Lp(Sd ,dµd), then

d

d t
(∥∇u∥2L2(Sd ,dµd)−

d

p −2
(∥u∥2Lp(Sd ,dµd)−∥u∥

2
L2(Sd ,dµd))) ≤ 0 ∀ t > 0.

The limit, as t → +∞, of any solution of (6.3) is a constant. This means that the deficit, that is, the difference

of the two sides in Inequality (6.1), converges to 0. Then, by Proposition 85, it follows that the deficit is non-

negative, which directly proves (6.1). The same monotonicity property applies to the deficit of the logarithmic

Sobolev inequality on the sphere

∥∇u∥2L2(Sd ,dµd) ≥
d

2 ∫Sd
∣u∣2 log

⎛
⎝
∣u∣2

∥u∥2L2(Sd)

⎞
⎠

dµd ∀u ∈H1(Sd ,dµd)

in the limit case corresponding to p = 2. The admissible values of the parameters are limited to m−(d , p) ≤
m ≤ m+(d , p) and 1 ≤ p ≤ 2∗ if d ≥ 3. Moreover, at the endpoints, we have m±(d ,1) = 1 and m±(d ,2∗) =
(d − 1)/d if d ≥ 3, while m+(d ,2#) = 1 so that m = 1 is admissible if and only if 1 ≤ p ≤ 2# when d ≥ 2. See

Fig. 6.1. For appropriate initial data, it is shown in [122] that the monotonicity property of the deficit along

the flow of (6.3) is violated for any p ∈ [2,2∗) or p = 2∗ if d ≥ 3 as soon as either m <m−(d , p) or m >m+(d , p).

In view of the results of Theorem 84, it is natural to ask whether there is also a monotonicity property of

the deficit associated to the Gaussian interpolation inequalities (6.2) when we rely on a nonlinear diffusion

flow on Rn . Let m±(p) ∶= limd→+∞m±(d , p) and notice that

m±(p) = 1± 1

p

√
(p −1)(2−p) . (6.5)

The diffusion operator associated to the Gaussian measure is the Ornstein-Uhlenbeck operator L = ∆− x ⋅∇
and we consider now the nonlinear parabolic equation

∂v

∂t
= v−p (1−m)(Lv +(m p −1) ∣∇v ∣2

v
) . (6.6)
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1 2 3 4

0.5

1.0

1.5

Figure 6.1: Case d = 5. The admissible parameters p and m correspond to the grey area. The bound-
ary of the admissible set is tangent to the vertical lines p = 1 at (m, p) = (1,1) and p = 2∗ = 10/3 at
(m, p) = (4/5,10/3). Qualitatively, this figure does not change as d increases but gets squeezed in
the interval 1 ≤ p ≤ 2 as d →+∞.

In the definition of L, ∆ denotes the standard Laplacian on Rn . The following result is new for m ≠ 1 while

the case m = 1 follows from the method of the carré du champ developed by Bakry and Emery in [24].

Theorem 86. Assume that n ≥ 1, p ∈ [1,2). If v > 0 solves (6.6) with m ∈ [m−(p),m+(p)] for an initial datum

in L2∩Lp(Rn ,dγ), then

d

d t
(∥∇v∥2L2(Rn ,dγ)−

1

p −2
(∥v∥2Lp(Rn ,dγ)−∥v∥

2
L2(Rn ,dγ))) ≤ 0 ∀ t > 0.

The limiting case p = 2 corresponding to the Gaussian logarithmic Sobolev inequality is also covered but it is

obtained as a standard application of the linear carré du champ method known from [24] because m±(2) = 1.

See Fig. 6.2.

0.5 1.0 1.5 2.0
0.4

0.6

0.8

1.0
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1.4

Figure 6.2: The admissible parameters p and m correspond to the grey area and are independent of
the dimension n. The boundary of the admissible set is tangent to the vertical lines p = 1 at (m, p) =
(1,1) and p = 2 at (m, p) = (1,2). It is the limit set of the admissible parameters for Proposition 85
as d →+∞.

Said in simple words, the result of Theorem 86 is that the admissible range of exponents of the nonlinear

flow, for which the deficit associated to (6.2) is monotone non-increasing, is obtained as the limit of the range

of the corresponding exponents on the sphere, in the large dimensions limit. Moreover, p = 2 appears as a

critical exponent for the Gaussian measure.

Let us now focus on stability results. The main result of [P2] for the sphere is a constructive stability esti-

mate for Inequality (6.1), limited to the subcritical range p ∈ (1,2∗), which measures the distance to optimal

functions, and distinguishes the subspaces generated by constant functions, spherical harmonic functions

associated to the first positive eigenvalue of the Laplace-Beltrami operator, and the orthogonal directions.

Optimal exponents in the stability estimate measuring the distance to the set of optimal functions differ,
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depending on the directions. Here we have the exact counterpart in the Gaussian case. Let Π1 denote the

orthogonal projection of L2(Rn ,dγ) onto the (n+1)-dimensional function space generated by 1 and xi with

i = 1, 2, . . . ,n.

Theorem 87. For all n ≥ 1, and all p ∈ (1,2), there is an explicit constant cn,p > 0 such that, for all v ∈H1(dγ),
it holds

∥∇v∥2L2(Rn ,dγ)−
1

p −2
(∥v∥2Lp(Rn ,dγ)−∥v∥

2
L2(Rn ,dγ))

≥ cn,p
⎛
⎝
∥∇(Id−Π1)v∥2L2(Rn ,dγ)+

∥∇Π1v∥4L2(Rn ,dγ)

∥∇v∥2
L2(Rn ,dγ)+∥v∥

2
L2(Rn ,dγ)

⎞
⎠

.

Exponents 2 and 4 which appear in the right-hand side of the inequality are sharp and the constant cn,p has

an explicit although complicated expression given in the proof. If p = 1, the last term drops and the distance

to optimal functions is measured only by

∥∇(Id−Π1)v∥2L2(Rn ,dγ) ,

and a decomposition on Hermite polynomials shows that the estimate cannot be improved. If p = 2∗ and n ≥
3, the recent stability result on Sobolev’s inequality on Rn of [119], which quantifies the estimate of Bianchi

and Egnell in [47] can be translated into a stability result for (6.1) on Sd , that can be recast in the form of [P2,

Theorem 6]. By a large dimension argument, a stability on the Gaussian logarithmic Sobolev inequality is

also shown in [119], although the distance is measured only by an L2(Rn ,dγ) norm. Whether a stronger

estimate can be obtained in the limiting case p = 2, eventually under some restriction, is therefore so far an

open question.

This paper is organized as follows. In Section 6.2, we give a new proof of Inequality (6.2) as a consequence

of Inequality (6.1) by taking a large dimensions limit, applied to the inequality written for a function depend-

ing only on a fixed number n of real variables. To our knowledge, this is new except for the limit case p = 2

of the logarithmic Sobolev inequality. Section 6.3 is devoted to the proof of Theorem 86: we characterize

the nonlinear diffusion flows of porous medium or fast diffusion type such that the deficit is monotone non-

increasing and recover the picture known on the sphere in the large dimensions limit. Moreover, by the carré

du champ method, we establish improved inequalities that provide us with first stability results. The stability

result of Theorem 87 for the Gaussian measure is proved in Section 6.4 using a detailed Taylor expansion and

the improved inequalities of Section 6.3.

6.2 From subcritical interpolation inequalities on the sphere to

Gaussian interpolation

In this section we explain how Inequality (6.2) can be seen as the limit of Inequality (6.1) in the large dimen-

sions limit, that is, as d →+∞, and prove Theorem 84. Comments on the limit case p = 2 can be found at the

end of this section.

The unit sphere Sd is parametrized in terms of the stereographic coordinates by

ω j =
2 x j

1+ ∣x∣2
if 1 ≤ j ≤ d and ωd+1 =

1− ∣x∣2

1+ ∣x∣2
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where ω = (ω1,ω2, . . . ,ωd+1) denote the coordinates in Rd+1 ⊃Sd and x = (x1, x2, . . . , xd) are Cartesian coordi-

nates in Rd . To a function u on Sd , we associate a function w on Rd using the stereographic projection such

that

( 2

1+ ∣x∣2
)

d−2
2

u(ω) =w(x) ∀x ∈Rd .

It is a standard result that

∫
Sd
∣u∣p dµd = 2

δ(p)
2 ∣Sd ∣−1

∫
Rd
⟨x⟩−δ(p) ∣w ∣p d x

and that

∫
Sd
∣∇u∣2 dµd + 1

4 d (d −2)∫
Sd
∣u∣2 dµd = ∣Sd ∣−1

∫
Rd
∣∇w ∣2 d x .

where ⟨x⟩ ∶=
√

1+ ∣x∣2 and δ(p) ∶= 2d −p (d −2). Using the stereographic projection, Inequality (6.1) can be

written on the Euclidean space Rd as the weighted interpolation inequality

∫
Rd
∣∇w ∣2 d x + d δ(p)

p −2 ∫Rd

∣w ∣2

⟨x⟩4
d x ≥

Cd ,p

p −2
(∫

Rd

∣w ∣p

⟨x⟩δ(p)
d x)

2
p

with Cd ,p = 2
δ(p)

p d ∣Sd ∣1−
2
p . (6.7)

See [118] for details. Equality is achieved by the Aubin-Talenti function w⋆(x) ∶= ⟨x⟩2−d . Assume that d ≥ 4.

Let us consider f =w/w⋆ and notice that the inequality rewritten in terms of f is

∫
Rd
∣∇ f ∣2 w2

⋆d x + 4d

p −2 ∫Rd
∣ f ∣2 w2∗

⋆ d x ≥
Cd ,p

p −2
(∫

Rd
∣ f ∣p w2∗

⋆ d x)
2
p

.

At this point, we may notice that for any d ≥ 3, we can choose freely any p ∈ [1,2)∪(2,2∗] if d ≥ 3. Since we

are interested in the limit as d → +∞, in order to consider a fixed, given value of p, we have no choice but to

restrict p to the case 1 ≤ p < 2.

With g(x) = f (x/
√

d), we obtain after changing variables that

1

4 ∫Rd
∣∇g ∣2 d x

(1+ 1
d ∣x∣2)

d−2
+ 1

p −2 ∫Rd
∣g ∣2 d x

(1+ 1
d ∣x∣2)

d
≥
Cd ,p d

d p−2
2 p

4d (p −2)
⎛
⎝∫Rd

∣g ∣p d x

(1+ 1
d ∣x∣2)

d

⎞
⎠

2
p

.

Let us assume that n ≥ 1 is a given integer and take d >max{n,3}. With x = (y, z) ∈ Rn ×Rd−n ≈ Rd , we also

assume that the function g depends only on y . In other words, we write g = gd where gd(y, z) = v(y) for

some function v defined on Rn , that is,

gd(y, z) = v(y) ∀(y, z) ∈Rn ×Rd−n (6.8)

Here we use an index d in order to emphasize that gd has to be considered as a function on Rd . Let us define

cd ∶= (d π)
d
2
Γ(d/2)
Γ(d)

.

Lemma 88. Let n be a positive integer, p ∈ [1,2), consider a function v ∈H1(Rn ,dγ)with compact support and
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define gd according to (6.8). Then we have

lim
d→+∞

1

4cd
∫
Rd
∣∇gd ∣2

d x

(1+ 1
d ∣x∣2)

d−2

+ 1

2−p
lim

d→+∞

1

cd

⎛
⎜
⎝

Cd ,p d
d p−2

2 p

4d

⎛
⎝∫Rd

∣gd ∣p
d x

(1+ 1
d ∣x∣2)

d

⎞
⎠

2
p

−∫
Rd
∣gd ∣2

d x

(1+ 1
d ∣x∣2)

d

⎞
⎟
⎠

= ∥∇v∥2L2(Rn ,dγ)−
1

2−p
(∥v∥2L2(Rn ,dγ)−∥v∥

2
Lp(Rn ,dγ)) .

In other words, we prove that the infinite dimensional limit of (6.7), for functions depending only on a finite

number n of real variables, is (6.2). The assumption of compact support can be removed if gd is square

integrable with respect to the measure (1+ 1
d ∣x∣

2)−d
d x and ∇gd is square integrable with respect to the

measure (1+ 1
d ∣x∣

2)2−d
d x, at least for some d ∈N large enough.

Proof. Using

(1+ 1
d ∣x∣

2)2−d = (1+ 1
d (∣y ∣

2+ ∣z∣2))
2−d
= (1+ 1

d ∣y ∣
2)2−d (1+ 1

d ∣ζ∣
2)2−d

with ζ = z
√

1+ 1
d ∣y ∣2

,

we can integrate with respect to z and obtain

∫
Rd−n
(1+ 1

d ∣x∣
2)2−d

d z = (1+ 1
d ∣y ∣

2)2− d+n
2 ∫

Rd−n
(1+ 1

d ∣ζ∣
2)2−d

dζ .

Let dγ(y) ∶= (2π)−n/2 e−
1
2
∣y ∣2 d y be the centred normalized Gaussian probability measure. We recall that

∣Sk−1∣ = 2πk/2/Γ(k/2) for any k ∈N∖{0} and

∫
+∞

0
r a−1 (1+ 1

d r 2)−b
dr = d

a
2
Γ( a

2 ) Γ(b−
a
2 )

2Γ(b)

if 0 < a < 2b. Applying these formulas with a = k = d −n and b = d −2 > 2−n, we find that

∫
Rd−n
(1+ 1

d ∣ζ∣
2)2−d

dζ = (d π)
d−n

2
Γ(d+n

2 −2)
Γ(d −2)

.

Applying these formulas with a = b = k = d ≥ 2, we find that

∫
Rd
(1+ 1

d ∣x∣
2)−d

d x = cd

and, as a consequence

lim
d→+∞

1

cd
∫
Rd−n
(1+ 1

d ∣ζ∣
2)2−d

dζ = 4

(2π)n/2

using Stirling’s formula. Since

lim
d→+∞

(1+ 1
d ∣y ∣

2)2− d+n
2 = e−

1
2
∣y ∣2 ,

we obtain

lim
d→+∞

1

cd
∫
Rd
∣∇gd(y)∣2 (1+ 1

d ∣x∣
2)2−d

d x = 4∫
Rn
∣∇v ∣2 dγ .
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Similar computations show that

∫
Rd
∣gd(y)∣2 (1+ 1

d ∣x∣
2)−d

d x =∫
Rn
∣gd(y)∣2 (1+ 1

d ∣y ∣
2)−

d+n
2 d y∫

Rd−n
(1+ 1

d ∣ζ∣
2)−d

dζ ,

lim
d→+∞

1

cd
∫
Rd
∣gd(y)∣2 (1+ 1

d ∣x∣
2)−d

d x =∫
Rn
∣v ∣2 dγ ,

and

∫
Rd
∣gd(y)∣p (1+ 1

d ∣x∣
2)−d

d x =∫
Rn
∣gd(y)∣p (1+ 1

d ∣y ∣
2)−

d+n
2 d y∫

Rd−n
(1+ 1

d ∣ζ∣
2)−d

dζ ,

lim
d→+∞

Cd ,p d
d p−2

2 p

4d cd
(∫

Rd
∣gd(y)∣p (1+ 1

d ∣x∣
2)−d

d x)
2
p
= (∫

Rn
∣v ∣p dγ)

2
p

.

This completes the proof of Lemma 88.

Proof of Theorem 84. Applied to the function ud , Inequality (6.1) is transformed into Inequality (6.7) applied

to

gd(x) = ud (
2 y

1+ 1
d ∣x∣2

) ∀x = (y, z) ∈Rn ×Rd−n .

Since the right-hand side uniformly converges to v(y) for any smooth and compactly supported function v ,

the same conclusion holds for Theorem 84 as for Lemma 88.

It is a natural question to ask what happens in (6.1) to the marginals depending only on a finite number

n of variables if p = 2 or in the case 2 < p ≤ 2∗ = 2d/(d −2). We may notice that limd→+∞2d/(d −2) = 2 and

it is known, for instance from [36], that one recovers the Gaussian logarithmic Sobolev inequality as a limit

case of Sobolev’s inequality on Sd corresponding to p = 2∗ when d → +∞. This is also true if we consider a

sequence (pd)d∈N with 1 < pd < 2∗, depending on d , if its limit is also 2, as shown next. By convention, when

pd = 2, we consider the Gaussian logarithmic Sobolev inequality instead of (6.2).

Proposition 89. Let n be a positive integer and consider a function v ∈H1(Rn ,dγ)with compact support. For

any d ≥ n, large enough, let

ud(ω) = v(ω1/
√

d ,ω2/
√

d , . . . ,ωn/
√

d),

where ω = (ω1,ω2, . . . ,ωd) ∈Rd+1 ⊃Sd is such that ∣ω∣ = 1, as in Theorem 84. Then we have

lim
d→+∞

d
⎛
⎝
∥∇ud∥2L2(Sd ,dµd)−

d

2 ∫Sd
∣ud ∣2 log

⎛
⎝
∣ud ∣2

∥ud∥2L2(Sd)

⎞
⎠

dµd
⎞
⎠

= ∥∇v∥2L2(Rn ,dγ)−
1

2 ∫Rn
∣v ∣2 log

⎛
⎝

∣v ∣2

∥v∥2
L2(Rn ,dγ)

⎞
⎠

dγ .

If (pd)d≥3 is a sequence of real numbers such that pd ∈ (1,2)∪(2,2∗) and limd→+∞pd = 2, then

lim
d→+∞

d (∥∇ud∥2L2(Sd ,dµd)−
d

2−pd
(∥ud∥2L2(Sd ,dµd)−∥ud∥2Lpd (Sd ,dµd)))

= ∥∇v∥2L2(Rn ,dγ)−
1

2 ∫Rn
∣v ∣2 log

⎛
⎝

∣v ∣2

∥v∥2
L2(Rn ,dγ)

⎞
⎠

dγ .
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Proof. The proof is an adaptation of the proof of Theorem 84 and, in the case pd ≠ 2, relies on the standard

observation that

lim
p→2

∥v∥2Lp(Rn ,dγ)−∥v∥
2
L2(Rn ,dγ)

p −2
= 1

2 ∫Rn
∣v ∣2 log

⎛
⎝

∣v ∣2

∥v∥2
L2(Rn ,dγ)

⎞
⎠

dγ .

As this computation raises no special difficulty, details are omitted.

6.3 Entropy methods and nonlinear flows for Gaussian measures

In this section, we prove the result of Theorem 86 for the Gaussian measure dγ and extend it to the slightly

more general framework of a uniformly strictly log-concave measure dµ, before drawing some consequences.

Most of the results are similar to computations usually done on the sphere, but we are not aware of the use of

nonlinear flows (m ≠ 1) in the context of Gaussian measures. This approach is very natural in the perspective

of spheres in the large-dimensional limit.

6.3.1 Gaussian interpolation inequalities: a proof by carré du champ

On Rn , let us consider the probability measure

dµ = Z−1 e−ϕ d y with Z =∫
Rn

e−ϕ d y (6.9)

and redefine the Ornstein-Uhlenbeck operator by

L ∶=∆−∇ϕ ⋅∇ (6.10)

on L2(Rn ,dµ). This generalizes the case of the harmonic potential ϕ(y) = 1
2 ∣y ∣

2 considered in the introduc-

tion. We assume that ϕ satisfies the Bakry-Emery condition

Hessϕ ≥λ⋆ Id a.e. (6.11)

for some λ⋆ > 0. The harmonic potential corresponds to the equality case with λ⋆ = 1. Under Assump-

tion (6.11), it is well known (see for instance [26, Section 7.6.2]) that, with λ =λ⋆ and for any p ∈ [1,2),

∥∇ f ∥2L2(Rn ,dµ) ≥
λ

2−p
(∥ f ∥2L2(Rn ,dµ)−∥ f ∥2Lp(Rn ,dµ)) ∀ f ∈H1(Rn ,dµ) (6.12)

and also, by taking the limit as p→ 2−, that

∥∇ f ∥2L2(Rn ,dµ) ≥
λ

2 ∫Rn
∣ f ∣2 log

⎛
⎝

∣ f ∣2

∥ f ∥2
L2(Rn ,dµ)

⎞
⎠

dµ ∀ f ∈H1(Rn ,dµ) .

The classical proof by the carré du champ, as in [23, 24, 19], relies on the Ornstein-Uhlenbeck flow ∂tρ =Lρ
applied to the solution with initial datum ρ(t = 0, ⋅) = ∣ f ∣p . Here we consider a more general strategy and

compute as in the carré du champ method using the nonlinear diffusion flow

∂ρ

∂t
= 1

m
Lρm ∀ t ≥ 0, ρ(t = 0, ⋅) = ∣ f ∣p . (6.13)
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Our goal is to understand the range of m for which we have a monotonicity property of the deficit as in the

case m = 1. Let m±(p) be defined as in (6.5).

Theorem 90. Assume that n ≥ 1, p ∈ [1,2) and m ∈ [m−(p),m+(p)]. We consider the measure dµ as in (6.9)

such that (6.11) holds for some λ⋆ > 0. If ρ > 0 solves (6.13) with L defined by (6.10) for an initial datum

ρ(t = 0, ⋅) = ∣ f ∣p in L2/p ∩L1(Rn ,dµ), then

d

d t
(∥∇ρ1/p∥2L2(Rn ,dµ)−

λ⋆
2−p

(∥ρ1/p∥2L2(Rn ,dµ)−∥ρ∥
2/p
L1(Rn ,dµ))) ≤ 0 ∀ t > 0.

The result of Theorem 90 is new for m ≠ 1. Theorem 86 corresponds to the special case of the harmonic po-

tential ϕ(y) = 1
2 ∣y ∣

2 with v = ρ1/p in Theorem 90. The range of the admissible parameters (m, p) is the same

in Theorem 90 and shown in Fig. 6.2. With the additional observation that ρ(t , ⋅) converges to a constant as

t → +∞ so that the limit of the deficit is 0, the monotonicity of the deficit of Theorem 90 provides us with a

proof of (6.12).

Proof of Theorem 90. In order to do computations, a very convenient reformulation is obtained with the flow

∂w

∂t
=w2−2β(Lw +κ ∣∇w ∣2

w
) (6.14)

for any t ≥ 0, with initial datum w(t = 0, ⋅) = ∣ f ∣1/β, where

κ ∶=β(p −2)+1 and β = 2

2−p (1−m)
.

A first computation shows that ∫Rn wβp dµ = ∫Rn ∣ f ∣p dµ is independent of t because

d

d t ∫Rn
wβp dµ =βp∫

Rn
wκ(Lw +κ ∣∇w ∣2

w
)dµ = 0.

A second useful computation goes as follows:

− 1

2β2

d

d t ∫Rn
(∣∇wβ∣2+ λ⋆

p −2
w2β)dµ

=∫
Rn
(Lw +(β−1) ∣∇w ∣2

w
− λ⋆w

β(p −2)
)(Lw +κ ∣∇w ∣2

w
)dµ

=∫
Rn
(Lw)2 dµ+(κ+β−1)∫

Rn
(Lw) ∣∇w ∣2

w
dµ+κ(β−1)∫

Rn

∣∇w ∣4

w2
dµ−λ⋆∫

Rn
∣∇w ∣2 dµ .

The purely technical purpose of introducing the exponent β is to make the last line of the above computation

2-homogeneous in w , which makes the discussion easier to read. Inserting the two following estimates,

∫
Rn
(Lw)2 dµ =−∫

Rn
∇w ⋅∇(Lw)dµ =−∫

Rn
∇w ⋅(L∇w)dµ+∫

Rn
∇w ⋅ [L,∇]w dµ

=∫
Rn
∥Hessw∥2 dµ+∫

Rn
∇w ⋅ [L,∇]w dµ

=∫
Rn
∥Hessw∥2 dµ+∫

Rn
Hessϕ ∶ ∇w ⊗∇w dµ

≥∫
Rn
∥Hessw∥2 dµ+λ⋆∫

Rn
∣∇w ∣2 dµ
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and

∫
Rn
(Lw) ∣∇w ∣2

w
dµ =−2∫

Rn
Hessw ∶ ∇w ⊗∇w

w
dµ+∫

Rn

∣∇w ∣4

w2
dµ ,

we obtain that
d

d t ∫Rn
(∣∇wβ∣2+ λ⋆

p −2
w2β)dµ ≤ 0

if, for any function w , we have

Qβ[w] ∶=∫
Rn
∥Hessw∥2 dµ−2(κ+β−1)∫

Rn
Hessw ∶ ∇w ⊗∇w

w
dµ

+(κ(β−1)+κ+β−1)∫
Rn

∣∇w ∣4

w2
dµ ≥ 0.

A sufficient condition is obtained if the reduced discriminant is negative, that is, if

(κ+β−1)2−(κ(β−1)+κ+β−1) ≤ 0.

Altogether, this gives the condition

β−(p) ≤β ≤β+(p) with β±(p) ∶=
1±
√
(p −1)(2−p)

1−(p −1)(2−p)
. (6.15)

See Fig. 6.3.

0.5 1.0 1.5 2.0
0.5

1.0

1.5

2.0

Figure 6.3: The admissible parameters p and β correspond to the grey area and are independent
of the dimension n. The boundary of the admissible set is tangent to the vertical lines p = 1 at
(β, p) = (1,1) and p = 2 at (β, p) = (1,2). This figure corresponds to Fig. 6.2 up to the transformation
of m→β = 2/(2−p (1−m)).

Equivalently, written in terms of m, the condition is m−(p) ≤m ≤m+(p)with m±(p) defined by (6.5). Sum-

marizing our computations, we learn that

d

d t
(∥∇w∥2L2(Rn ,dµ)−

λ⋆
p −2

(∥w∥2Lp(Rn ,dµ)−∥w∥
2
L2(Rn ,dµ))) =−2β2Qβ[w] ≤ 0

becauseQβ[w] is non-negative under Condition (6.15).

To make these computations rigorous, one has to justify all integrations by parts. This is by now rather

standard and can be done using the following scheme.

1. Let h > 0 be large enough and consider Ωh ∶= {x ∈Rn ∶ ϕ(x) < h}. We can consider the evolution equa-

tion restricted to Ωh , with no flux boundary conditions. Then apply the carré du champ method and

keep track of the boundary terms. Since Ωh is a bounded convex domain, these terms have a sign

due to Grisvard’s lemma: see for instance [148, Lemma 5.2], [197, Proposition 4.2], [154, 128] and [178,
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Lemma A.3].

2. Extend Inequality (6.12) written on Ωh to Rd by taking the limit as h→+∞ and then argue by density.

This completes the proof of Theorem 90.

Remark 91. For any p ∈ [1,2), if the condition m−(p) ≤m ≤m+(p) is not satisfied, then one can find a positive

initial datum such that the solution v of (6.6) is such that

d

d t
(∥∇v∥2L2(Rn ,dµ)−

d

p −2
(∥v∥2Lp(Rn ,dµ)−∥v∥

2
L2(Rn ,dµ)))

∣t=0
> 0.

See [122] for a similar statement on the sphere and its proof.

6.3.2 Improved inequalities based on the carré du champ method

In the proof of Theorem 90, using only Qβ[w] ≥ 0 is a crude estimate. Let us explain how one can obtain

improved estimates by making a better use of Qβ[w] ≥ 0. Under Condition (6.15), we can indeed rewrite

Qβ[w] as an integral of a sum of squares,

Qβ[w] =∫
Rn
∥Hessw −(κ+β−1)∇w ⊗∇w

w
∥

2

dµ+δ∫
Rn

∣∇w ∣4

w2
dµ (6.16)

with

δ ∶= κ(β−1)+κ+β−1−(κ+β−1)2 = (β−β−(p))(β+(p)−β) > 0. (6.17)

As in [15, Theorem 2], let us consider the special case m = β = 1 of the linear flow. Let us define the entropy

and the Fisher information by

E[w] ∶= 1

2−p
(∥w∥2L2(Rn ,dµ)−∥w∥

2
Lp(Rn ,dµ)) and I[w] ∶= ∥∇w∥2L2(Rn ,dµ) .

Inequality (6.12) amounts simply to

I[w]−λ⋆E[w] ≥ 0.

We can now state a first improved entropy–entropy production inequality.

Proposition 92. Let n be any positive integer. We consider the measure dµ as in (6.9) such that (6.11) holds for

some λ⋆ > 0. For any p ∈ (1,2), let φ(s) ∶= 1+ s−(1+ s)p−1. With the above notations, we have

I[ f ] ≥ λ⋆
(2−p)2

∥ f ∥2Lp(Rn ,dµ)φ
⎛
⎝
(2−p)E[ f ]
∥ f ∥2

Lp(Rn ,dµ)

⎞
⎠
∀ f ∈H1(Rn ,dµ) . (6.18)

Since p ∈ (1,2), the function φ is convex with φ(0) = 0 and φ′(0) = 2− p, which implies in particular that

φ(s) ≥ (2−p) s for any s ≥ 0, so that Inequality (6.18) is stronger than (6.12). Inequality (6.18) amounts to

∥∇ f ∥2L2(Rn ,dµ) ≥
λ⋆

(2−p)2
(∥ f ∥2L2(Rn ,dµ)−∥ f ∥2(p−1)

L2(Rn ,dµ) ∥ f ∥2(2−p)
Lp(Rn ,dµ))
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and can also be rewritten as

∥∇ f ∥2L2(Rn ,dµ)−
λ⋆

2−p
(∥ f ∥2L2(Rn ,dµ)−∥ f ∥2Lp(Rn ,dµ))

≥ λ⋆
(2−p)2

((p −1)∥ f ∥2L2(Rn ,dµ)+(2−p)∥ f ∥2Lp(Rn ,dµ)−∥ f ∥2(p−1)
L2(Rn ,dµ) ∥ f ∥2(2−p)

Lp(Rn ,dµ)) . (6.19)

We claim no originality in either Proposition 92 or Inequality (6.19) and refer to [15, Theorem 2] and [14,

Ineq. (3.3)] for earlier results. Also see [118, Theorem 2.1] for an improved inequality like (6.19) in the case of

the sphere. However, let us give a proof for completeness.

Proof. With β = 1, notice that (6.16) holds with δ = (2−p)(p −1). Using the Cauchy-Schwarz inequality, we

obtain

(I[w])2 = (∫
Rn
∣∇w ∣2 dµ)

2

≤∫
Rn
∣w ∣2 dµ∫

Rn

∣∇w ∣4

w2
dµ

and, with M ∶= (∫Rn ∣w ∣p dµ)2/p , we can also write that

∫
Rn
∣w ∣2 dµ = (2−p)E[w]+M .

Altogether, with e(t) ∶= (2− p)M−1E[w(t , ⋅)], if w solves (6.14) with β = 1, then we have the differential

inequality

e′′+2λ⋆ e′−(p −1) (e
′)2

1+e
≥ 0.

We claim that (2−p)e′+2λ⋆ (1+e−(1+e)p−1) ≤ 0, which follows from the observation that the equation

y ′′+a y ′−b (y
′)2

1+ y
= 0

can be solved using the ansatz y ′ = a
b−1 φ(y)with φ(0) = 0 if

φ′−b φ

1+ s
= 1−b . (6.20)

It is straightforward to check that the unique solution is φ(s) = 1+ s −(1+ s)b. With a = 2λ⋆ and b = p −1, we

obtain

(e′+ 2λ⋆
2−p

φ(e))
′
≥ (p −1) e′

1+e
(e′+ 2λ⋆

2−p
φ(e)) .

By integrating from t = 0 to +∞ using the facts that e′ ≤ 0, e′+ 2λ⋆
2−p e ≤ 0 and

lim
t→+∞

e′(t) = lim
t→+∞

e(t) = 0,

we conclude with M = ∥ f ∥2Lp(Rn ,dµ) that

2−p

M
(I[w]− λ⋆M

(2−p)2
φ((2−p)E[w]

M
)) =− 1

2
(e′+ 2λ⋆

2−p
φ(e)) ≥ 0 ∀ t ≥ 0

See [P2, Appendix B.4] for a more detailed proof in the similar case of the sphere.

Inspired once more by the results on the sphere (see [118] and earlier references therein), it is a very

natural question to wonder if improved entropy–entropy production inequalities can be achieved with β ≠ 1.
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The answer goes as follows. Let us consider the function φβ given by

χβ(s) = (1−b(β))(1+ s−(1+ s)b(β)) where b(β) = δ(β)
β2

2−p

λ⋆

and δ(β) is defined by (6.17).

Proposition 93. Let n be any positive integer. We consider the measure dµ as in (6.9) such that (6.11) holds for

some λ⋆ > 0. For any p ∈ (1,2), take β ∈ [1,β+(p)]. With the same notations as in Proposition 92 and χβ as

above, we have

∥ f ∥2Lp(Rn ,dµ)χβ

⎛
⎝
(2−p)E[ f ]
∥ f ∥2

Lp(Rn ,dµ)

⎞
⎠
≤ I[ f ] ∀ f ∈H1(Rn ,dµ) . (6.21)

Proof. With the notations

e ∶=
∥wβ∥2

L2(Rn ,dµ)

∥wβ∥2

Lp(Rn ,dµ)

and i ∶=
∥∇(wβ)∥2

L2(Rn ,dµ)

∥wβ∥2

Lp(Rn ,dµ)

,

we have now to consider the differential inequality

(i′− λ⋆
2−p

e)
′
≤−δβ2∫

Rn

∣∇w ∣4

w2
dµ .

The key ingredient is to replace an estimate due to Demange in the case of the sphere for p > 2 (see [112, 113]

and also [Lemma 15, (iii)]) by its counterpart for log-concave measures and p ∈ (1,2). Compared to the

linear case, the Cauchy-Schwarz inequality in the proof of Proposition 92 has to be replaced by the Hölder

inequalities

∫
Rn
∣∇w ∣2 dµ =∫

Rn
(∣∇w ∣2

w
w 1)dµ ≤ (∫

Rn

∣∇w ∣4

w2
dµ)

1
2

(∫
Rn
∣w ∣2β dµ)

1
2β

1
β−1
2β ,

1

β2 ∫Rn
∣∇wβ∣2 dµ =∫

Rn
(∣∇w ∣2

w
w2β−1 1)dµ ≤ (∫

Rn

∣∇w ∣4

w2
dµ)

1
2

(∫
Rn
∣w ∣2β dµ)

2β−1
2β

1
1

2β ,

after observing that β ≥β−(p) ≥β−(3/2) = 2/3 > 1/2, so that

∫
Rn

∣∇w ∣4

w2
dµ ≥ ∫R

n ∣∇w ∣2 dµ ∫Rn ∣∇wβ∣2 dµ

β2 ∫Rn w2β dµ
=− ie′

β4 (1+e)
.

Hence

(i− λ⋆
2−p

e)
′
≤ δ

β2

ie′

1+e
.

Let us compute

(i− λ⋆
2−p

χ(e))
′
= (i− λ⋆

2−p
e)
′
+ λ⋆

2−p
(e−χ(e))′ ≤ δ

β2

e′

1+e
(i− λ⋆

2−p
χ(e))

on the condition that χ solves

χ′(s) = 1+ δ

β2

2−p

λ⋆

χ(s)
1+ s

, χ(0) = 0.

The solution χ(s) = (1−b)φ(s) is such that φ solves (6.20) with b = δβ−2 (2−p)/λ⋆, which shows that χ =χβ.

The proof then follows from the same considerations as for Proposition 92 (also see [P2, Appendix B.4] for
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details).

If ϕ(y) = ∣y ∣2/2 is the harmonic potential so that dµ = dγ, by testing (6.2) with fε(y) = 1+ε y1 where y1

denotes the first coordinate of y = (y1, y2, . . . , yn) ∈Rn , we find that

∥∇ fε∥2L2(Rn ,dγ)−
1

2−p
(∥ fε∥2L2(Rn ,dγ)−∥ fε∥2Lp(Rn ,dγ)) =

1

2
(p −1)ε4+O(ε5) as ε→ 0. (6.22)

This is the standard computation for checking that λ =λ⋆ = 1 is the optimal constant in (6.2). Since

I[ fε]−
1

(2−p)2
∥ fε∥2Lp(Rn ,dγ)φ

⎛
⎝
(2−p)E[ fε]
∥ fε∥2Lp(Rn ,dγ)

⎞
⎠
= 1

2
(p −1)2 ε4+O(ε5) as ε→ 0,

we also learn that (6.18) involves the optimal exponent at least in the limit as ε → 0. After observing that

∥∇ fε∥2L2(Rn ,dγ) = ε
2, we may wonder whether the deficit

∥∇ f ∥2L2(Rn ,dγ)−
1

2−p
(∥ f ∥2L2(Rn ,dγ)−∥ f ∥2Lp(Rn ,dγ))

measures the distance in terms of ∥∇ f ∥4L2(Rn ,dγ). The detailed answer is not limited to the case µ = γ and goes

as follows. For simplicity, we take β = 1 and consider φ(s) ∶= 1+ s −(1+ s)p−1 as in Proposition 92. We recall

that φ is monotone increasing and convex on R+, such that φ′(0) = 2−p, hence invertible of inverse φ−1 such

that ψ(t) ∶= t −(2−p)φ−1(t) is also a convex, non-negative, monotone increasing function.

Corollary 94. Let p ∈ (1,2) and n be a positive integer. We consider the measure dµ as in (6.9) such that (6.11)

holds for some λ⋆ > 0. With ψ as above, for any f ∈H1(dγ)we have

∥∇ f ∥2L2(Rn ,dµ)−
λ⋆

2−p
(∥ f ∥2L2(Rn ,dµ)−∥ f ∥2Lp(Rn ,dµ)) ≥

λ⋆
2−p

∥ f ∥2Lp(Rn ,dµ)ψ
⎛
⎝

2−p

λ⋆

∥∇ f ∥2L2(Rn ,dµ)

∥ f ∥2
Lp(Rn ,dµ)

⎞
⎠

.

Moreover, there is some κ > 0 such that

∥∇ f ∥2L2(Rn ,dµ)−
λ⋆

2−p
(∥ f ∥2L2(Rn ,dµ)−∥ f ∥2Lp(Rn ,dµ)) ≥

κ∥∇ f ∥4L2(Rn ,dµ)

∥∇ f ∥2
L2(Rn ,dµ)+

λ⋆
2−p ∥ f ∥2

L2(Rn ,dµ)
.

The constant κ depends only on p and its value is estimated in the proof below.

Proof. Let M = ∥ f ∥2Lp(Rn ,dµ). We deduce from Proposition 92 that

i ∶= (2−p)2

λ⋆M
I[ f ] ≥φ(e) where e ∶= (2−p)E[ f ]

∥ f ∥2
Lp(Rn ,dµ)

,

which is equivalent to −e ≥−φ−1(i), so that

i−(2−p)e ≥ i−(2−p)φ−1(i) =ψ(i)

and, as a consequence,

I[ f ]−λ⋆E[ f ] =
λ⋆M

(2−p)2
(i−(2−p)e) ≥ λ⋆M

(2−p)2
ψ(i) = λ⋆M

(2−p)2
ψ( 2−p

λ⋆M
∥∇ f ∥2L2(Rn ,dµ)) .
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Since φ(s) ∼ s as s→+∞, we deduce that ψ(t) ∼ (p −1) t as t →+∞. On the other hand, since

ψ′′(t) = (2−p) φ′′(s)
(φ′(s))3 with s =φ−1(t) ,

we learn thatψ′′(0) = (p−1)/(2−p) > 0 and t ↦ψ′′(t) is non-increasing becauseφ′(s)5ψ′′′(t) =φ′(s)φ′′′(s)−
φ′′(s)2 < 0. This allows us to define

κ ∶= inf
t>0

t−2 (1+ t)ψ(t) .

Using ψ(0) =ψ′(0) = 0, we know that κ > 0 and ψ(t) ≥ κ t 2/(1+ t) concludes the proof using ∥ f ∥Lp(Rn ,dµ) ≤
∥ f ∥L2(Rn ,dµ).

Remark 95. If ϕ(y) = ∣y ∣2/2 is the harmonic potential so that dµ = dγ, then λ =λ⋆ = 1 is the optimal constant

in (6.2) and the results of Proposition 92 and Corollary 94 are both stability estimates. Even in the general case

of a measure dµ as in (6.9) such that (6.11) holds for some λ⋆ > 0, Proposition 92 and Corollary 94 provide

improvements to the basic inequality with a (generically non-optimal) constant λ⋆.

6.3.3 From the carré du champ method to Obata’s theorem

As a side result, we consider an improvement of the carré du champ method as in [195, Theorem 2.1] or [121],

which goes as follows. Let us consider the optimal constant λ1 > 0 in the Poincaré inequality

∫
Rn
∣∇w ∣2 dµ ≥λ1∫

Rn
∣w − w̄ ∣2 dµ ∀w ∈H1(Rn ,dµ) , (6.23)

where w̄ ∶= ∫Rn w dµ. By expanding ∫Rn (Lw +λ1 (w − w̄))2
dµ ≥ 0, we obtain

∫
Rn
(Lw)2 dµ ≥λ1∫

Rn
∣∇w ∣2 dµ .

On the other hand, by the computation of Section 6.3.1 with β = p = 1, we know that

−1

2

d

d t ∫Rn
(∣∇w ∣2+ λ⋆

p −2
w2)dµ =∫

Rn
(Lw)2 dµ−λ⋆∫

Rn
∣∇w ∣2 dµ =Q1[w] ≥ 0,

which proves that

λ1 ≥λ⋆ .

Lemma 96. Assume that n ≥ 1, p ∈ [1,2) and consider the measure dµ as in (6.9) such that (6.11) holds for

some λ⋆ > 0. Then (6.12) holds with

λ = (2−p)λ1+(p −1)λ⋆ . (6.24)

As a consequence, we have λ ≥ λ⋆ with equality for the optimal value of λ in (6.12) if and only if λ⋆ = λ1 and

ϕ(y) =λ⋆ ∣y − y0∣2/2 for some y0 ∈Rn .

Proof. The carré du champ method applied as in Section 6.3.1 with p = 1 shows that λ1 ≥λ⋆. Coming back to
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the computations of Section 6.3.1, we can rearrange the integrals in the expressionQβ[w] differently and get

− 1

2β2

d

d t ∫Rn
(∣∇wβ∣2+ λ

p −2
w2β)dµ

= (1−θ)∫
Rn
(Lw)2 dµ−λ∫

Rn
∣∇w ∣2 dµ

+θ∫
Rn
(Lw)2 dµ+(κ+β−1)∫

Rn
(Lw) ∣∇w ∣2

w
dµ+κ(β−1)∫

Rn

∣∇w ∣4

w2
dµ

= ((1−θ)λ1+θλ⋆−λ)∫
Rn
∣∇w ∣2 dµ

+θ(∫
Rn
∥Hessw∥2 dµ+λ⋆∫

Rn
∣∇w ∣2 dµ)

−2(κ+β−1)∫
Rn

Hessw ∶ ∇w ⊗∇w

w
dµ+(κ(β−1)+κ+β−1)∫

Rn

∣∇w ∣4

w2
dµ .

With the choice of θ such that

(κ+β−1)2−θ(κ(β−1)+κ+β−1) = 0,

which means θ = θ(β)with

θ(β) ∶= (p −1)2β2

(p −2)β2+2β−1
,

we can write that

θ∫
Rn
∥Hessw∥2 dµ−2(κ+β−1)∫

Rn
Hessw ∶ ∇w ⊗∇w

w
dµ+(κ(β−1)+κ+β−1)∫

Rn

∣∇w ∣4

w2
dµ

= θ∫
Rn
∥Hessw − β(p −1)

θ

∇w ⊗∇w

w
∥

2

dµ ≥ 0.

Altogether, we have shown that
d

d t ∫Rn
(∣∇wβ∣2+ λ

p −2
w2β)dµ ≤ 0

if λ = (1−θ)λ1+θλ⋆. Notice that θ(β±(p)) = 1 for any p ∈ [1,2). The observation that

min
β∈[β−(p),β+(p)]

θ(β) = θ(1) = p −1

completes the proof of (6.24).

With β = 1 and p = 1, the computation in the proof of Theorem 90 shows that, if the initial datum w(t =
0, ⋅) is an optimal function for the Poincaré inequality (6.23), then

0 = d

d t ∫Rn
(∣∇w ∣2−λ⋆w2)dµ =−2(Q1[w]+∫

Rn
(Hessϕ−λ⋆Id) ∶ ∇w ⊗∇w dµ)

at t = 0. Here we keep all terms and in particular do not use the fact that Hessϕ−λ⋆Id ≥ 0 a.e. in the sense

of positive matrices. Since ∇w ≠ 0 a.e. andQ1[w] ≥ 0, we find that Hessϕ−λ⋆Id = 0 a.e. This completes the

proof in the equality case λ⋆ =λ1.

Remark 97. The proof of Lemma 96 is reminiscent of [195, 121]. The result when λ⋆ =λ1 points in the direction

of Obata’s theorem (also known as the ObataLichnerowicz theorem) and in some sense, it is the analogue for

Gaussian measures of the result of [194, p. 135] (also see for instance [43, p. 179]) on the sphere. The case

λ⋆ = λ1 is easy to understand in dimension d = 1: with β = 1 and p = 1, we apply the computation of the proof

of Lemma 96 to a function u in the eigenspace associated with λ1 and obtain that u′′ = 0 almost everywhere.
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This means that u(y) = a y +b for some real constants a ≠ 0 and b, and there is no loss of generality if we take

a = 1. Using now the eigenvalue equation Lu +λ1 u = 0, we read that ϕ′(y) = λ1 (y −b), which means that ϕ

is an harmonic potential. In higher dimensions, one has to remember that Inequality (6.12) can be tensorized

on product spaces: see for instance [187, 91, 126]. This is however responsible for some technicalities, which are

dealt with in greatest generality, e.g., in [150].

6.3.4 Improved inequalities under orthogonality conditions

Let Π1 be the L2(Rn ,dγ)orthogonal projection onto the space generated by the constants and the coordinate

functions, corresponding to the Hermite polynomials of order less or equal than 1. The following result was

recently proved in [P2, Appendix A] on the basis of Nelson’s hypercontractivity estimate in [220, Theorem 3]

and its relation with Gross’ logarithmic Sobolev inequality in [155] (also see [187, 14] for earlier results).

Proposition 98. Let n ≥ 1 and p ∈ [1,2). For any f ∈H1(Rn ,dγ), we have

∥∇ f ∥2L2(Rn ,dγ)−
1

p −2
(∥ f ∥2Lp(Rn ,dγ)−∥ f ∥2L2(Rn ,dγ)) ≥

1

2
(2−p)∥∇(Id−Π1) f ∥2L2(Rn ,dγ) .

Compared to (6.2), this result provides us with an improved entropy–entropy production inequalities under

orthogonality conditions. As noted in [P2], such an improvement is not optimal. There are other possible

approaches. For instance, a finer analysis of entropy methods has been used in [122] on the sphere, that could

probably be adapted to the case of the Gaussian measure. Alternatively, the convex interpolation of [187],

with the possible advantage that the result would not degenerate in the limit as p→ 2 using the recent stability

result of [119, Theorem 2].

6.4 Stability results for the Gaussian measure in the subcritical

range

The whole Section is devoted to the proof of Theorem 87. We split it in four lemmas. The key estimate is

obtained in Lemma 102.

1⃝ Let us start with the easy case, far away from the optimizers of (6.2) in the sense that for some θ > 0, we

assume

∥∇ f ∥2L2(Rn ,dγ) ≥ θ∥ f ∥2L2(Rn ,dγ) . (6.25)

By homogenity of the inequalities, we can fix ∥ f ∥2L2(Rn ,dγ) = 1 without loss of generality.

Lemma 99. Let n ≥ 1 and θ ∈ (0,1). For any function f ∈H1(Rn ,dγ) such that ∥ f ∥L2(Rn ,dγ) = 1 and ∥∇ f ∥2L2(Rn ,dγ) ≥ θ,

we have the estimate

∥∇ f ∥2L2(Rn ,dγ)−
1

2−p
(∥ f ∥2L2(Rn ,dγ)−∥ f ∥2Lp(Rn ,dγ)) ≥ κ⋆(θ)∥∇ f ∥2L2(Rn ,dγ)

In case (6.25), this already proves the result of Theorem 87 with cn,p ≤ c
(1)
n,p ∶= κ⋆(θ).
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Proof. From Corollary 94 and its proof applied with λ⋆ = 1, we obtain

∥∇ f ∥2L2(Rn ,dγ)−
1

2−p
(∥ f ∥2L2(Rn ,dγ)−∥ f ∥2Lp(Rn ,dγ))

≥
∥ f ∥2Lp(Rn ,dγ)

2−p

1

2
ψ((2−p)θ)

⎛
⎝
(2−p)

∥∇ f ∥2L2(Rn ,dγ)

∥ f ∥2
Lp(Rn ,dγ)

⎞
⎠

2

≥ 1

2
(2−p)ψ((2−p)θ)

∥∇ f ∥4L2(Rn ,dγ)

∥ f ∥2
Lp(Rn ,dγ)

≥ κ⋆(θ)∥∇ f ∥2L2(Rn ,dγ)

withκ⋆(θ) = 1
2 (2−p)ψ((2−p)θ) θ because t ↦ψ′′(t) is non-increasing, ∥∇ f ∥2L2(Rn ,dγ) ≥ θ and ∥ f ∥2Lp(Rn ,dγ) ≤

∥ f ∥2L2(Rn ,dγ).

2⃝ From now on we work in a neighbourhood of the constants which, by homogeneity of the inequalities, is

defined as

∥∇ f ∥2L2(Rn ,dγ) ≤ θ∥ f ∥2L2(Rn ,dγ) . (6.26)

With θ > 0 small, we claim that ∫Rn f dγ is close to 1 if ∥ f ∥L2(Rn ,dγ) = 1.

Lemma 100. Let n ≥ 1 and θ ∈ (0,1). For any function

f ∈H1(Rn ,dγ) such that ∥ f ∥L2(Rn ,dγ) = 1 and ∥∇ f ∥2L2(Rn ,dγ) ≤ θ , (6.27)

we have the estimate √
1−θ ≤∫

Rn
f dγ ≤ 1.

Proof. With f̄ ∶= ∫Rn f dγ, the result follows from the Gaussian Poincaré inequality according to

1 = ∥ f ∥2L2(Rn ,dγ) =∫
Rn
∣ f − f̄ ∣2 dγ+ f̄ 2 ≤ ∥∇ f ∥2L2(Rn ,dγ)+ f̄ 2 ≤ θ+ f̄ 2 .

3⃝ Assume that f is as in (6.27) and let us decompose u f (x) ∶= f (x)/∫Rn f dγ as

u f (x) = 1+εx ⋅ν+ηr(x)

where ν ∈ Sn−1 is such that εν = ∫Rn x u f (x)dγ with ε > 0, η is a positive number and r is a function in

H1(Rn ,dγ)∩(Id−Π1)L2(Rn ,dγ) such that ∥∇r∥L2(Rn ,dγ) = 1 and ∥r∥L2(Rn ,dγ) ≤ 1/2 by the Gaussian Poincaré

inequality after taking into account the additional orthogonality condition ∫Rn r xi dγ = 0 for any i = 1, 2,. . . ,n.

Lemma 101. Let n ≥ 1 and θ ∈ (0,1). Let f ∈H1(Rn ,dγ) be such that (6.27) holds. With the above notations,

we have

∥u f ∥2L2(Rn ,dγ) = 1+ε2+η2 ∥r∥2L2(Rn ,dγ) ≤ 1+θ and ∥∇u f ∥2L2(Rn ,dγ) = ε
2+η2 ≤ θ

1−θ
and, if η > t ε2 for some t > 0, then

∥∇u f ∥2L2(Rn ,dγ)−
1

2−p
(∥u f ∥2L2(Rn ,dγ)−∥u f ∥2Lp(Rn ,dγ)) ≥

1

4
(2−p)(η2+ t 2 ε4

1+ε2+η2
) .
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By homogeneity, if (6.27) holds and η > t ε2 for some given t > 0, using Lemma 100, we obtain

∥∇ f ∥2L2(Rn ,dγ)−
1

2−p
(∥ f ∥2L2(Rn ,dγ)−∥ f ∥2Lp(Rn ,dγ))

≥ 1

4
(2−p)(1−θ)

⎛
⎝
∥∇(Id−Π1) f ∥2L2(Rn ,dγ)+

t 2 ∥∇(Π1 f )∥4L2(Rn ,dγ)

∥∇ f ∥2
L2(Rn ,dγ)+∥ f ∥2

L2(Rn ,dγ)

⎞
⎠

.

This case already covers the result of Theorem 87 with cn,p ≤ c
(2)
n,p ∶= 1

4 (2−p)(1−θ)min{t ,1}.

Proof. The result follows from Proposition 98 and from the chain of elementary inequalities

η2 ≥ 1

2
(η2+ t 2 ε4) ≥ 1

2
(η2+ t 2 ε4

1+ε2+η2
) .

4⃝ The next part of the proof relies on a Taylor expansion of ∥u f ∥2Lp(Rn ,dγ). With no loss of generality, by rota-

tional invariance, we can assume that ν = (1,0, . . . ,0) so that with Cartesian coordinates x = (x1, x2, . . . , xn) ∈
Rn , we write u f (x) = 1+εx1+ηr(x). The following result is at the core of our strategy. It heavily relies on the

Gaussian logarithmic Sobolev inequality and new estimates for the remainder terms based on the bounded-

ness of ∫Rn r 2 logr 2 dγ.

Lemma 102. Let n ≥ 1 and f ∈ H1(Rn ,dγ) be a non-negative function such that (6.27) holds. We keep the

same notations as in Lemma 101 and further assume that η ≤ t ε2 for some t > 0. Then there is a constant C > 0,

depending only on n, p and t, such that

∥u f ∥2Lp(Rn ,dγ) ≥ 1+(p −1)(ε2+η2∥r∥2L2(Rn ,dγ))

+(p −1)(2−p)(1

2
ε4+ε2η∫

Rn
x2

1 r(x)dγ)− C ε
4

log(1
ε
)

as ε→ 0+ .

Proof. This proof is elementary although a little bit lengthy. Let us split it into three steps.

Step 1. Let us start with a list of preliminary remarks.

● Let Bε be the centred ball of radius 1/(2ε), that is,

Bε ∶= {x ∈Rn ∶ 2ε ∣x∣ < 1}

and let B c
ε =Rn ∖Bε. We observe that

γ(B c
ε) = ∣Sn−1∣∫

+∞

1/(2ε)
r n−1 e−

r 2

2 dr = cn ε
2−n e−

1
8ε2 (1+O (ε2)) as ε→ 0+

with cn = 23(2−n)/2/Γ(n/2). Let ξp ∶= supε∈(0,1/2) ε
−5(γ(B c

ε))
(2−p)/2

. Hence we have

∫
B c
ε

∣g ∣p dγ ≤ ∥g∥p
L2(Rn ,dγ) (γ(B

c
ε))
(2−p)/2 ≤ ξp ∥g∥p

L2(Rn ,dγ) ε
5

for any g ∈ L2(Rn ,dγ), by Hölder’s inequality and, as a consequence,

∫
Bε

∣g ∣p dγ ≤∫
Rn
∣g ∣p dγ ≤∫

Bε

∣g ∣p dγ+ξp ∥g∥p
L2(Rn ,dγ) ε

5 ∀ε ∈ (0,1/2) . (6.28)
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From now on, we assume without further notice that x ∈Bε unless it is specified.

● An expansion in Taylor series of (1+ s)p for s ≤ 0 shows that all terms are non-negative:

(1+ s)p ≥ 1+p s+ 1

2
p (p −1) s2 ∀ s ∈ (−1,0] .

Applied to u f = 1+εx1+ηr whenever 1+εx1 > 0 and r ≤ 0, we obtain

∣u f ∣p = (1+εx1+ηr)p = (1+εx1)p (1+ ηr

1+εx1
)

p

≥ (1+εx1)p (1+p
ηr

1+εx1
+ 1

2
p (p −1)( ηr

1+εx1
)

2

)

= (1+εx1)p +p (1+εx1)p−1
ηr + 1

2
p (p −1)(1+εx1)p−2

η2 r 2 .

● Let us consider the case 1+εx1 > 0 and r > 0. The function

ρ(s) ∶= 1

s2
((1+ s)p −1−p s− 1

2
p (p −1) s2) ∀ s ≥ 0

is bounded. Let us extend ρ by 0 on (−1,0) and define

ψε,η,r (x) ∶= (1+εx1)p−2
ρ( ηr(x)

1+εx1
) .

With this definition, using u f ≥ 0 by hypothesis, we obtain

∣u f ∣p ≥ (1+εx1+ηr)p

= (1+εx1)p +p (1+εx1)p−1
ηr + 1

2
p (p −1)(1+εx1)p−2

η2 r 2+ 1

2
p (p −1)η2 r(x)2ψε,η,r (x)

with equality whenever r ≥ 0.

As η→ 0+, ψε,η,r converges a.e. to 0 on Bε uniformly with respect to ε ∈ (0,1/2). The dominated conver-

gence theorem is enough to conclude that

lim
η→0+
∫

Bε

r(x)2ψε,η,r (x)dγ = 0

for a given function r , but this is not enough to conclude uniformly with respect to r . To do this, we need

more detailed estimates. Notice however that

∥ψε,η,r ∥L∞(Bε) ≤M ∶= 22−p ∥ρ∥L∞(R+)

where M is independent of ε, η and r .

● Since ∫Bε
x2 k

1 dγ ≥ ∫Bε
x2 k+1

1 dγ = 0 and ∫Rn x2 k
1 dγ ≥ ∫Rn x2 k+1

1 dγ = 0 for any k ∈ N, an expansion in Taylor

series of (1+εx1)p gives

∫
Rn
(1+εx1)p dγ ≥∫

Rn
(1+ 1

2
p (p −1)ε2 x2

1 +
1

24
p (p −1)(p −2)(p −3)x4

1 ε
4)dγ

= 1+ 1

2
p (p −1)ε2+ 1

8
p (p −1)(p −2)(p −3)ε4 .
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By applying (6.28) with g = 1+εx1, we obtain

∫
Rn
∣1+εx1∣p dγ ≤∫

Bε

∣1+εx1∣p dγ+ξp (1+ε2)p/2
ε5 .

Summing up with ε2 ≤ θ, we have

∫
Bε

∣1+εx1∣p dγ ≥ 1+ 1

2
p (p −1)ε2+ 1

8
p (p −1)(p −2)(p −3)ε4−ξp (1+θ)p/2 ε5 .

● Let us estimate ∥u f ∥
p
Lp(Rn ,dγ) using

∫
Rn
∣u f ∣p dγ ≥∫

Bε

∣u f ∣p dγ

and

∫
Bε

∣u f ∣p dγ ≥∫
Bε

∣1+εx1∣p dγ

+p η∫
Bε

(1+εx1)p−1 r dγ+ 1

2
p (p −1)η2∫

Bε

(1+εx1)p−2 r 2 dγ

+ 1

2
p (p −1)η2∫

Bε

r(x)2ψε,η,r (x)dγ .

We obtain

∫
Rn
∣u f ∣p dγ ≥ 1+ 1

2
p (p −1)ε2+ 1

8
p (p −1)(p −2)(p −3)ε4−ξp (1+θ)p/2 ε5

+p η∫
Bε

(1+εx1)p−1 r dγ+ 1

2
p (p −1)η2∫

Bε

(1+εx1)p−2 r 2 dγ

+ 1

2
p (p −1)η2∫

Bε

r(x)2ψε,η,r (x)dγ .

Step 2. We prove that η2 ∫Bε
r(x)2ψε,η,r (x)dγ is of order o(ε4) as η ≤ t ε2→ 0 for a given t > 0.

● By the logarithmic Sobolev inequality,

∫
Rn

h2 logh2 dγ ≤ 2∫
Rn
∣∇h∣2 dγ+∫

Rn
h2 dγ log(∫

Rn
h2 dγ) ,

applied to h = 1+(r −1)+, we learn that

∫
Rn

h2 logh2 dγ ≤ 2∫
Rn
∣∇r ∣2 dγ+(1+∫

Rn
r 2 dγ) log(1+∫

Rn
r 2 dγ) ≤ 2 log(2e) .

Let χ ∶= 1{h>s0} for any s0 > 1 and consider Aε,η,r,s0 ∶= {x ∈Bε ∶ ηr(x) ≤ s0}. Then we have

∫
Rn

h2 logh2 dγ ≥∫
Bε∖Aε,η,r,s0

h2 logh2 dγ =∫
Bε

χh2 logh2 dγ ≥ log( s0

η
)

2

∫
Bε

χr 2 dγ

because h ≥ 1 a.e. and h > s0/η on Bε∖ Aε,η,r,s0 and, as a consequence,

η2∫
Bε∖Aε,η,r,s0

r(x)2ψε,η,r (x)dγ ≥− log(2e)M

log s0+ log( 1
η
)
η2 .
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● Let us notice that

M = sup
s>0

∣ρ(s)∣
log(1+ s)

is finite. This allows us to write that

η2∫
Aε,η,r,s0

r(x)2ψε,η,r (x)dγ ≥−22−pM∫
Aε,η,r,s0

η2 r 2 log(1+2ηr) Id{r>0}dγ ,

where the restriction to the set {r > 0} comes from the fact that ψε,η,r (x) = 0 whenever r(x) ≤ 0. Now we

estimate log(1+2ηr) by

log(1+2ηr) ≤ log(1+2
√
η) if 0 ≤ r ≤ 1

√
η

,

log(1+2ηr) ≤ log(1+2 s0)
log( 1

η
)

logr 2 if
1
√
η
≤ r ≤ s0

η
,

and conclude using ∫Rn r 2 dγ ≤ 1 and ∫Rn r 2 logr 2 dγ ≤ 2∫Rn ∣∇r ∣2 dγ = 2 by the logarithmic Sobolev inequality

that

η2∫
Aε,η,r,s0

r(x)2ψε,η,r (x)dγ ≥−22−pMη2
⎛
⎜
⎝
θ log(1+2

√
η)+ 2 log(1+2 s0)

log( 1
η
)

⎞
⎟
⎠

,

Step 3. We compute the contribution of

p η∫
Bε

(1+εx1)p−1 r dγ and
1

2
p (p −1)η2∫

Bε

(1+εx1)p−2 r 2 dγ

to the expansion of ∫Rn ∣u f ∣p dγ.

●Using (6.28) applied to g = ∣r ∣1/p and the orthogonality constraints on r , we obtain

p η∫
Bε

(1+εx1)p−1 r dγ ≥ p η(∫
Rn
(1+εx1)p−1 r dγ−21−p ξp ε

5)

≥ p ηε2(1

2
(p −1)(p −2)∫

Rn
x2

1 r dγ−c1 ε
3−21−p ξp ε

5)

where c1 ∶=
√

15 sups∈(−1,0)∪(0,+∞) ∣(1+ s)p−1−1−(p −1) s− 1
2 (p −1)(p −2) s2∣/s3

● A similar computation shows that

1

2
p (p −1)η2∫

Bε

(1+εx1)p−2 r 2 dγ = 1

2
p (p −1)η2(∥r∥2L2(Rn ,dγ)−c2 ε)

where c2 ∶= sups∈(−1,0)∪(0,+∞) ∣(1+ s)p−2−1∣/s

Step 4. Collecting all terms, we have

∫
Rn
∣u f ∣p dγ ≥ 1+ 1

2
p (p −1)ε2+ 1

8
p (p −1)(p −2)(p −3)ε4+ 1

2
p (p −1)η2 ∥r∥2L2(Rn ,dγ)

+ 1

2
p (p −1)(p −2)ηε2 ∫

Rn
x2

1 r dγ− C
ε4

log(1
ε
)

for some constant C > 0 that is explicitly given in terms of t , ξp , M ,M, c1 and c2. In order to conclude, we
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notice that for any s >−1, d 4

d s4 (1+ s)
2
p > 0 implies that

(1+ s)
2
p ≥ 1+ 2

p
s+ 1

p2
(2−p) s2− 1

3 p3
(2−p)(4−p) s3 .

Applied to

∥u f ∥2Lp(Rn ,dγ) = (∫
Rn
(1+εx1+ηr)p dγ)

2
p

,

this completes the proof of Lemma 102.

Proof of Theorem 87. Up to the replacement of f by ∣ f ∣, there is no restriction in assuming that f is non-

negative: we can rely on Lemma 102, which is the main ingredient of the proof. The strategy is now very

similar to the proof of [P2, Theorem 7]. Let is consider the Hermite polynomial h1(x) ∶= x2
1−1 and decompose

r according to

r(x) ∶=αh1(x)+β r̃(x)

with ∥r̃∥L2(Rn ,dγ) = 1 so that ∥r∥2L2(Rn ,dγ) =α
2+β2 ≤ 1/2 and ∫Rn x2

1 r(x)dγ =α. With these notations we have

∥∇u f ∥2L2(Rn ,dγ) = ε
2+η2 ,

∥u f ∥2L2(Rn ,dγ) = 1+ε2+η2 (α2+β2) ,

∥u f ∥2Lp(Rn ,dγ) ≥ 1+(p −1)(ε2+η2 (α2+β2))+(p −1)(2−p)(1

2
ε4+αε2η)− C ε

4

log(1
ε
)

,

where the estimate of ∥u f ∥2Lp(Rn ,dγ) comes from Lemma 102. Hence, for some λ > 0 to be fixed,

∥∇u f ∥2L2(Rn ,dγ)−
1

2−p
(∥u f ∥2L2(Rn ,dγ)−∥u f ∥2Lp(Rn ,dγ))−λ(η

2+ t 2 ε4

1+ε2+η2
)

≥ η2 (1−α2−β2−λ)+(p −1

2
− λ t 2

1+ε2+η2
)ε4+(p −1)αε2η− 1

2−p

C ε4

log(1
ε
)

≥ (t 2 (1−α2−β2−2λ)+(p −1)α t + 1

2
(p −1)− 1

2−p

C
log(1

ε
)
)ε4 .

By writing

t 2 (1−α2−β2−2λ)+(p −1)α t + 1

2
(p −1)

= t 2(1− p +1

2
α2−β2−2λ)+ 1

2
(p −1)(1+α t)2

≥ 1

4
t 2 (3−p −8λ)+ 1

2
(p −1)(1+α t)2 ,

for any given t > 0 and λ < (3−p)/8, if ε > 0 is small enough, we obtain the result with cn,p = (1−θ)λ.



Chapter 7

Stability for the logarithmic Sobolev

inequality

This chapter corresponds to [P4], in collaboration with Jean Dolbeault and Nikita Simonov.

Abstract

This paper is devoted to stability results for the Gaussian logarithmic Sobolev inequality, where stability is

measured in strong norms. The strategy of our proofs relies on entropy methods and the use of diffusion flows

based on the Ornstein-Uhlenbeck operator. Under appropriate constraints, explicit constants are obtained.

Our approach covers several cases involving the strongest possible norm which is natural for the logarithmic

Sobolev inequality.

7.1 Introduction and main results

Let us consider the Gaussian logarithmic Sobolev inequality

∥∇u∥2L2(Rd ,dγ) ≥
1

2 ∫Rd
∣u∣2 log

⎛
⎝
∣u∣2

∥u∥2L2(Rd)

⎞
⎠

dγ ∀u ∈H1(Rd ,dγ) (7.1)

where dγ = γ(x)d x is the normalized Gaussian probability measure with density

γ(x) = (2π)−
d
2 e−

1
2
∣x∣2 ∀x ∈Rd .

In this paper we are interested in stability results, that is, in estimating the difference of the two terms in (7.1)

from below, by a distance to the set of optimal functions. According to [81, 24], equality in (7.1) is achieved

by functions in the manifold

M ∶= {wa,c ∶ (a,c) ∈Rd ×R}

where

wa,c(x) = c e−a⋅x ∀x ∈Rd

133
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and only by these functions. The ultimate goal of stability estimates is to find a notion of distance d, an explicit

constant β > 0 and an explicit exponent α > 0, which may depend on d, such that

∥∇u∥2L2(Rd ,dγ)−
1

2 ∫Rd
∣u∣2 log

⎛
⎝
∣u∣2

∥u∥2L2(Rd)

⎞
⎠

dγ ≥β inf
w∈M

d(u, w)α (S )

for any given u ∈ H1(Rd ,dγ). In this paper we consider the slightly simpler question of finding a specific

wu ∈M such that

∥∇u∥2L2(Rd ,dγ)−
1

2 ∫Rd
∣u∣2 log

⎛
⎝
∣u∣2

∥u∥2L2(Rd)

⎞
⎠

dγ ≥βd(u, wu)α , (⋆)

which provides us with no more than an estimate for (S ): any estimate of α and β for (⋆) is also an esti-

mate for (S ). In order to illustrate the difference between the two questions, let us consider the following

elementary example. Assume that d = 1 and consider the functions uε(x) = 1+εx in the limit as ε→ 0. With

d(u, w) = ∥u′ −w ′∥L2(R,dγ), which is the strongest possible notion of distance that we can expect to con-

trol in (⋆), elementary computations show that the deficit of the logarithmic Sobolev inequality, i.e., the left

hand-side in (⋆), is

∥∇uε∥2L2(Rd ,dγ)−
1

2 ∫Rd
∣uε∣2 log

⎛
⎝
∣uε∣2

∥uε∥2L2(Rd)

⎞
⎠

dγ = 1

2
ε4+O(ε6) ,

while, using the test function waε,cε ∈M where aε = 2ε and cε = e−a2
ε/4, we obtain

d(uε,1)2 = ∥u′ε∥2L2(R,dγ) = ε
2 and inf

w∈M
d(uε, w)α ≤ d (uε, waε,cε)

2 = 1

2
ε4+O(ε6) .

In practice we will consider only the case

wu = 1

in (⋆) and the above example shows that the best we can hope for without additional restriction is α ≥ 4.

Similar examples in higher dimensions can be obtained by considering for an arbitrary given ν ∈ Sd−1 the

functions uε(x) = 1+ εx ⋅ν in the limit as ε → 0. This is not a surprise in view of [138, 130, 171], and also

of the detailed Taylor expansions of [144, 74, 75]. Still with wu = 1, we can expect to have α = 2 in (⋆) under

additional conditions, including for d(u, w) = ∥∇u−∇w∥L2(Rd ,dγ), while it is otherwise banned as shown

for instance from [171, Theorem 1.2 (2)], or simply from considering the above example. Before entering

the details, let us mention a recent stability result for (S ) with α = 2 involving a constructive although very

delicate expression for β > 0 and d(u, w) = ∥u−w∥L2(Rd ,dγ) that appeared in [119]. Here we aim at stronger

estimates under additional constraints, with wu = 1, which is a different point of view. Let us start by a first

stability result.

Proposition 103. For all u ∈H1(Rd ,dγ) such that ∥u∥L2(Rd) = 1 and ∥x u∥2L2(Rd) ≤ d, we have

∥∇u∥2L2(Rd ,dγ)−
1

2 ∫Rd
∣u∣2 log ∣u∣2 dγ ≥ 1

2d
(∫

Rd
∣u∣2 log ∣u∣2 dγ)

2

(7.2)

and, with ψ(s) ∶= s− d
4 log(1+ 4

d s), we also have the stronger estimate

∥∇u∥2L2(Rd ,dγ)−
1

2 ∫Rd
∣u∣2 log ∣u∣2 dγ ≥ψ(∥∇u∥2L2(Rd ,dγ)) . (7.3)
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Similar results are already known in the literature (see for instance [58, 138, 130, 171]) and we claim no orig-

inality for the the results. Also see references to earlier proofs at the end of the introduction. Our method is

based on the carré du champ method. Even if some ideas go back to [15], it is elementary, new as far as we

know, and of some use for our other results.

Coming back to (⋆), we may notice that there is no loss of generality in imposing the condition ∥u∥L2(Rd) =
1, as we can always replace u by u/∥u∥L2(Rd). Because of the Csiszár-Kullback-Pinsker inequality

∫
Rd
∣u∣2 log ∣u∣2 dγ ≥ 1

4
∥∣u∣2−1∥2

L1(Rd ,dγ) (7.4)

and ∣ ∣u∣−1 ∣ = ∣ ∣u∣2−1 ∣/∣ ∣u∣+1 ∣ ≤ ∣ ∣u∣2−1 ∣, we find that (7.2) implies (⋆) type with

d(u, w) = ∥u−w∥L1(Rd ,dγ)

for nonnegative functions u, α = 4, and β = 1/(32d). For functions far away from the optimal functions, say

such that ∥∇u∥L2(Rd ,dγ) ≥ A under the conditions of Proposition 103, Inequality (7.3) provides us with an even

stronger stability result of (⋆) type with α = 2 and d(u, w) = ∥∇u−∇w∥L2(Rd ,dγ), but with a positive constant

β which depends on A > 0. Again, notice that (⋆) with such a distance cannot hold without constraints.

Next we aim at explicit results with α = 2, under other constraints. Let

C⋆ = 1+ 1

1728
≈ 1.0005787.

Theorem 104. For all u ∈H1(Rd ,dγ) such that u2γ is log-concave and such that

∫
Rd
(1, x) ∣u∣2 dγ = (1,0) and ∫

Rd
∣x∣2 ∣u∣2 dγ ≤ d , (7.5)

we have

∥∇u∥2L2(Rd ,dγ)−
C⋆
2 ∫Rd

∣u∣2 log ∣u∣2 dγ ≥ 0. (7.6)

The condition ∫Rd ∣x∣2 ∣u∣2 dγ ≤ d in (7.5) is a simplifying assumption. A result like (7.6) also holds if ∫Rd ∣x∣2 ∣u∣2 dγ >
d , but with a constant that differs from C⋆ and actually depends on ∫Rd ∣x∣2 ∣u∣2 dγ. We refer to Section 7.3.5:

see Proposition 109 for an extension of Theorem 104, and also for further comments on the extension of

Proposition 103. The constant C⋆ in (7.8) relies on an estimate of [55].

Inequality (7.6) with improved constant C⋆ > 1 compared to (7.1) can be recast in the form of a stability

inequality of type (⋆) around the normalised Gaussian as

∥∇u∥2L2(Rd ,dγ)−
1

2 ∫Rd
∣u∣2 log ∣u∣2 dγ ≥ 1

2
(C⋆−1)∫

Rd
∣u∣2 log ∣u∣2 dγ

for all functions u ∈ H1(Rd ,dγ) such that ∥u∥L2(Rd) = 1, which covers the case α = 2, β = (C⋆ − 1)/8 and

d(u, w) = ∥u−w∥L1(Rd ,dγ) in (⋆) for nonnegative functions by (7.4), or even in the stronger Ḣ1(Rd ,dγ) semi-

norm, as

∥∇u∥2L2(Rd ,dγ)−
1

2 ∫Rd
∣u∣2 log ∣u∣2 dγ ≥ C⋆−1

C⋆
∥∇u∥2L2(Rd ,dγ)

for all functions u ∈ H1(Rd ,dγ) such that ∥u∥L2(Rd) = 1, which corresponds to α = 2, β = (C⋆ − 1)/C⋆ and

d(u, w) = ∥∇(u−w)∥L2(Rd ,dγ) in (⋆). By the Gaussian Poincaré inequality, notice that the case of (⋆) with

α = 2, β = (C⋆−1)/C⋆ and the standard distance d(u, w) = ∥u−w∥L2(Rd ,dγ) is also covered.
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Log-concavity might appear as a rather restrictive assumption, but this is useful because a function which

is compactly supported at time t = 0 evolves through the diffusion flow into a logarithmically concave func-

tion after some finite time that can be estimated by the heat flow estimates of [192]. This is enough to produce

a stability result with an explicit constant. Compact support is in fact a too restrictive condition and we have

the following result.

Theorem 105. Let d ≥ 1. For any ε > 0, there is some explicit C > 1 depending only on ε such that, for any

u ∈H1(Rd ,dγ) satisfying (7.5) and

∫
Rd
∣u∣2 e ε ∣x∣2 dγ <∞ , (7.7)

then we have

∥∇u∥2L2(Rd ,dγ) ≥
C

2 ∫Rd
∣u∣2 log ∣u∣2 dγ . (7.8)

Additionally, if u is compactly supported in a ball of radius R > 0, then (7.8) holds with

C = 1+ C⋆−1

1+C⋆R2
.

This expression of the constant C in (7.8) is given in the proof, in Section 7.3.4. The simpler estimate in terms

of R relies on Theorem 104.

Let us conclude this introduction with a review of the literature. The logarithmic Sobolev inequality his-

torically appeared in [241, 53], in a form that was later rediscovered as an equivalent scale-invariant form

of the Euclidean version of the inequality in [261]. We refer to [155] for the Gaussian version (7.1) of the

inequality, and also to [139] for an equivalent result. The optimality case in the inequality has been char-

acterized in [81] but can also be deduced from [24]. Also see [253] for a short introductory review with an

emphasis on information theoretical aspects. The logarithmic Sobolev inequality can be viewed as a limit

case of a family of the Gagliardo-Nirenberg-Sobolev (GNS) as observed in [110], in the Euclidean setting, or

as a large dimension limit of the Sobolev inequality according to [36]. See [119, 75] for recent developments

and further references. We refer to [12, 160, 235, 26] to reference books on the topic. In a classical result

on stability in functional inequalities, Bianchi and Egnell proved in [47] that the deficit in the Sobolev in-

equality measures the Ḣ1(Rd ,d x) distance to the manifold of the Aubin-Talenti functions. The estimate has

been made constructive in [119] where a new L2(Rd ,d x) stability result for the logarithmic Sobolev inequal-

ity is also established (also see [171] for furrther results in strong norms). Still in the Euclidean setting a first

stability result in strong norms for the logarithmic Sobolev inequality appears in [138], where the authors

give deficit estimates in various distances for functions inducing a Poincaré inequality. Under the condi-

tion ∥x u∥L2(Rd ,dγ) =
√

d , a stability result measured by an entropy is given in [130]. For sequential stability

results in strong norms, we refer to [172] when assuming a bound on u in L4(Rd ,dγ) and to [171] when as-

suming a bound on ∣x∣2 u in L2(Rd ,dγ). Stability according to other notions of distance has been studied

in [191, 190, 140].

To our knowledge, the first result of stability for the logarithmic Sobolev inequality is a reinforcement of

the inequality due to E. Carlen in [81] where he introduces an additional term involving the Wiener trans-

form. Stability in logarithmic Sobolev inequality is related to deficit in Gaussian isoperimetry and we refer

to [58] for an introduction to early results in this direction, [29] for a sharp, dimension-free quantitative Gaus-

sian isoperimetric inequality, and [135] for recent results and further references. Results of Proposition 103

are known from [58, Theorem 1.1] where it is deduced from the HWI inequality due to F. Otto and C. Vil-

lani [226]. Such estimates have even been refined in [135]. There are several other proofs. In [138], M. Fathi,
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E. Indrei and M. Ledoux use a Mehler formula for the Ornstein-Uhlenbeck semigroup and Poincaré inequali-

ties. The proof in [130] is based on simple scaling properties of the Euclidean form of the logarithmic Sobolev

inequality, which also apply to Gagliardo-Nirenberg inequalities. Various stability results have been proved

in Wasserstein’s distance: we refer to [173, 58, 138, 172, 182, 61, 135, 171]. A key argument for Theorem 104 is

the fact that the heat flow preserves log-concavity according, e.g., [236], which is a pretty natural property in

this framework: see for instance [102].

In this paper, we carefully distinguish stability results of type (S ) where stability is measured w.r.t. M ,

and of type (⋆) where the distance to a given function is estimated. Even if this function is normalized and

centered, this is not enough as shown in [171]. Many counter-examples to stability are known, involving

Wasserstein’s distance for instance in [173, 58, 138, 172, 182], weaker distances like p-Wasserstein, or stronger

norms like Lp or H1: see for instance [172, 171]. The main counter-examples which we might try to apply

to our setting are [182, Theorem 1.3] and [135, Theorem 4] but, as already noted in [172], they are based

on the fact that the second moment diverges along a sequence of test functions, which is forbidden in our

assumptions.

This paper is organized as follows. Section 7.2 is devoted to the standard carré du champ method and

a proof of Proposition 103. Theorem 104 is proved in Section 7.3.3, under a log-concavity assumption. Us-

ing properties of the heat flow, the method is extended to the larger class of functions of Theorem 105 in

Section 7.3.4.

7.2 Entropy methods and entropy – entropy production stability

estimates

This section is devoted to the proof of Proposition 103.

7.2.1 Definitions and preliminary results

Consider the Ornstein-Uhlenbeck equation on Rd

∂h

∂t
=L h , h(t = 0, ⋅) = h0 , (t , x) ∈R+×Rd , (7.9)

where L h ∶=∆h−x ⋅∇h denotes the Ornstein-Uhlenbeck operator.

Let us recall some classical results. If h0 ∈ L1(Rd ,dγ) is nonnegative, then there exists a unique non-

negative weak solution to (7.9) (see for instance [137]). The two key properties of the Ornstein-Uhlenbeck

operator are

∫
Rd

v1 (L v2)dγ =−∫
Rd
∇v1 ⋅∇v2 dγ and [∇,L ]v =−∇v .

As a consequence, we obtain the two identities

∫
Rd
(L v)2 dγ =∫

Rd
∥Hess v∥2 dγ+∫

Rd
∣∇v ∣2 dγ (7.10)

and

∫
Rd

L v
∣∇v ∣2

v
dγ =−2∫

Rd
Hess v ∶ ∇v⊗∇v

v
dγ+∫

Rd

∣∇v ∣4

v2
dγ , (7.11)

where Hess v =∇⊗∇v is the Hessian matrix of v . Here we use the following notations. If a and b take values
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in Rd , a⊗b denotes the matrix (ai b j )1≤i , j≤d . With matrix valued m and n, we define m ∶ n =∑d
i , j=1 mi , j ni , j

and ∥m∥2 =m ∶m. If h is a nonnegative solution of (7.9), notice that v =
√

h solves

∂v

∂t
=L v + ∣∇v ∣2

v
. (7.12)

Let us fix ∥v∥L2(Rd) = 1, then the entropy and the Fisher information, respectively defined by

E[v] ∶=∫
Rd
∣v ∣2 log ∣v ∣2 dγ and I[v] ∶=∫

Rd
∣∇v ∣2 dγ ,

evolve along the flow according to

d

d t
E[v] =−4I[v] and

d

d t
I[v] =−2∫

Rd
((L v)2+L v

∣∇v ∣2

v
)dγ

if v solves (7.12). Using (7.10) and (7.11), we obtain the classical expression of the carré du champ method

d

d t
I[v]+2I[v] =−2∫

Rd
∥Hess v − ∇v⊗∇v

v
∥

2

dγ (7.13)

as for instance in [19, 128, 26]. By writing that

d

d t
(I[v]− 1

2
E[v]) ≤ 0 and lim

t→+∞
(I[v(t , ⋅)]− 1

2
E[v(t , ⋅)]) = 0,

we recover the standard proof of the entropy – entropy production inequality

I[v]− 1

2
E[v] ≥ 0, (7.14)

i.e., of (7.1) by the method of [24].

Several of the above expression can be rephrased in terms of the pressure variable

P ∶=− logh =−2 log v

using the following elementary identities

∇v =− 1

2
e−P/2∇P ,

∇v⊗∇v

v
= 1

4
e−P/2∇P ⊗∇P ,

Hess v =− 1

2
e−P/2 HessP + 1

4
e−P/2∇P ⊗∇P ,

so that, by taking into account v∇P =−2∇v and h = v2, we have

I[v] = 1

4 ∫Rd
∣∇P ∣2 h dγ and ∫

Rd
∥Hess v − ∇v⊗∇v

v
∥

2

dγ = 1

4 ∫Rd
∥HessP∥2 h dγ .

7.2.2 Improvements under moment constraints

In standard computations based on the carré du champ method, one usually drops the right-hand side

in (7.13) which results in the standard exponential decay of I[v(t , ⋅)] if v solves (7.12) and, after integra-

tion on t ∈ R+, proves (7.1). Keeping track of the right-hand side in (7.13) provides us with improvements as

shown in [15, 112, 129] in various interpolation inequalities but generically fails in the case of the logarithmic
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Sobolev inequality. We remedy to this issue by introducing moment constraints. This is not a very difficult

result but, as far as we know, it is new in the framework of the carré du champ method.

Lemma 106. With the notations of Section 7.2.1, if v ∈H2(Rd ,dγ) is a positive function such that ∫Rd ∣x∣2 ∣v ∣2 dγ ≤
d, then

4I[v] ≤∫
Rd
(∆P)h dγ ≤

√
d∫

Rd
∥HessP∥2 h dγ .

Proof. Using h∇P =−∇h, we obtain

4I[v] =∫
Rd
∣∇P ∣2 h dγ =−∫

Rd
∇P ⋅∇h dγ =∫

Rd
h (L P)dγ .

After recalling that L P =∆P −x ⋅∇P , using an integration by parts we deduce that

−∫
Rd

h x ⋅∇P dγ =∫
Rd

x ⋅∇h dγ =∫
Rd

h (∣x∣2−d)dγ =∫
Rd
∣v ∣2 (∣x∣2−d)dγ ≤ 0

which proves the first inequality. The second inequality follows from a Cauchy-Schwarz inequality and the

arithmetic-geometric inequality

(∆P)2 ≤ d ∥HessP∥2 .

Proof of Proposition 103. Let h = v2 be the solution of (7.9) with initial datum h0 = u2. Since x ↦ (∣x∣2−d) is

an eigenfunction of L with corresponding eigenvalue −2 and L is self-adjoint on L2(Rd ,dγ), we have

d

d t ∫Rd
(∣x∣2−d)h dγ =∫

Rd
(∣x∣2−d)(L h)dγ

=∫
Rd

h L (∣x∣2−d)dγ =−2∫
Rd
(∣x∣2−d)h dγ . (7.15)

The sign of t ↦ ∫Rd (∣x∣2−d)h(t , x)dγ is conserved and in particular we have that ∫Rd ∣x∣2 ∣v ∣2 dγ ≤ d for any

t ≥ 0. For any i = 1, 2. . . d , we also notice that x ↦ xi is also an eigenfunction of L with corresponding

eigenvalue −1 so that
d

d t ∫Rd
x h dγ =−∫

Rd
x h dγ

and, as a consequence ∫Rd x h(t , ⋅)dγ = 0 for all t ≥ 0 because ∫Rd x h0 dγ = 0.

For smooth enough solutions, we deduce from Lemma 106, (7.13) and (7.14) that

d

d t
I[v]+2I[v] ≤− 8

d
I2[v] ≤ 1

2d

d

d t
(E[v])2

and obtain by considering the limit as t →+∞ that

I[v] ≥ 1

2
E[v]+ 1

2d
(E[v])2 .

This provides us with (7.2). In the general case, one can get rid of the H2(Rd ,dγ) regularity of Lemma 106 by

a standard approximation scheme, which is classical and will not be detailed here.

As in [74], a better estimate is achieved as follows. Let

ϕ(s) ∶= d

4
(e

2
d

s −1) ∀ s ≥ 0.
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Using d
d t E[v] =−4I[v], we notice that

d

d t
(I[v]−ϕ(E[v])) =− 8

d
(I[v]−ϕ(E[v])) .

Since limt→+∞I[v(t , ⋅)] = 0 as can be deduced from a Gronwall estimate relying on d
d t I[v] ≤ −2I[v] and

limt→+∞E[v(t , ⋅)] = 0 as a consequence of (7.1), one knows that

lim
t→+∞

(I[v(t , ⋅)]−ϕ(E[v(t , ⋅)])) = 0.

Moreover, Gronwall estimates show that I[v(t , ⋅)]−ϕ(E[v(t , ⋅)] cannot change sign and an asymptotic ex-

pansion as t →+∞ as in [74, Appendix B.4] is enough to obtain that I[v(t , ⋅)]−ϕ(E[v(t , ⋅)] takes nonnegative

values for t > 0 large enough. Altogether, we conclude that

I[v(t , ⋅)]−ϕ(E[v(t , ⋅)]) ≥ 0

for any t ≥ 0 and, as a particular case, at t = 0 for v(0, ⋅) = u. The function ϕ is convex increasing and, as such,

invertible, so that we can also write

φ(I[u])−1−ϕ(E[u]) ≥ 0.

his completes the proof of (7.3) with the convex monotone increasing function

ψ(s) ∶= s− 1

2
ϕ−1(s) .

7.3 Stability results

7.3.1 Log-concave measures and Poincaré inequality

According to [27], given a Borel probability measure µ on Rd , its isoperimetric constant is defined as

h(µ) ∶= inf
A

Pµ(A)
min{µ(A),1−µ(A)}

where the infimum is taken on the set of arbitrary Borel subset Rd with µ-perimeter or surface measure

Pµ(A) ∶= limε→0+ (µ(Aε)−µ(A))/ε and Aε ∶= {x ∈ Rd ∶ ∣x − a∣ < ε for some a ∈ A}. Here and in what follows,

we shall say that a measure µ with density e−ψ with respect to Lebesgue’s measure is a log-concave probability

measure if ψ is a convex function, and denote by λ1(µ) the first positive eigenvalue of −Lψ where Lψ is the

Ornstein-Uhlenbeck operator Lψ ∶=∆−∇ψ ⋅∇. In that case, we learn from [189, Ineq. (5.8)] that

1

4
h(µ)2 ≤λ1(µ) ≤ 36h(µ)2

where the lower bound is J. Cheeger’s inequality that goes back to [93] for Riemannian manifolds and also to

earlier works by V.G. Maz’ya [206, 207]. This bound was later improved in [76, 188]. The characterization of

h(µ) has been actively studied, but it is out of the scope of the present paper. We learn from [55, Theorem 1.2]
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and [55, Ineq. (3.4)] that

h(µ) ≥ 1

6
√

3∫Rd ∣x −xµ∣2 dµ
where xµ =∫

Rd
x dµ

for any log-concave probability measure µ. This estimate is closely related with the results by R. Kannan,

L. Lovász and M. Simonovits in [179] and their conjecture, which again lies out of the scope of the present

paper (see for instance [57] for a recent work on the topic).

Altogether, if µ is a log-concave probability measure with dµ = e−ψ d x such that ∫Rd ∣x∣2 dµ ≤ d , then we

have the Poincaré inequality

∫
Rd
∣∇ f ∣2 dµ ≥ 1

432 ∫Rd
∣ f ∣2 dµ ∀ f ∈H1(Rd ,dµ) such that ∫

Rd
f dµ = 0. (7.16)

We refer to [88] and references therein for further estimates on λ1(µ).

7.3.2 Time evolution, log-concave densities and Poincaré inequality

Lemma 107. Let us consider consider a solution h of (7.9) with initial datum h0 = v2 and assume that µ0 ∶=
h0γ is log-concave. Then µt ∶= h(t , ⋅)γ is log-concave for all t ≥ 0.

Proof. The function g ∶= hγ solves the Fokker-Planck equation

∂g

∂t
=∆g +∇⋅(x g) .

The function f such that

f (t , x) ∶= g (1

2
log(1+2 t), x√

1+2 t
) ∀(t , x) ∈R+×Rd

solves the heat equation and can be represented using the heat kernel. According for instance to [236, 30],

log-concavity is preserved under convolution, which completes the proof.

The log-concavity property becomes true under the action of the flow of (7.9) after some delay t⋆ for

large classes of initial data. With the notation of Lemma 107, for any R > 0, we read from [192, Theorem 5.1]

by K. Lee and J-L. Vázquez that µt is log-concave for any

t ≥ t⋆(R) ∶= log(
√

R2+1) , (7.17)

if v is compactly supported in a ball of radius R > 0, by reducing the problem to the heat flow as in the above

proof. As a consequence, we know that (7.16) holds for any t ≥ t⋆(R).
Alternatively, under Assumption (7.7), we learn from a recent paper [95, Theorem 2] by H.-B. Chen,

S. Chewi, and J. Niles-Weed that the Poincaré inequality

∫
Rd
∣∇ f ∣2 dµt ≥λ1(µt)∫

Rd
∣ f ∣2 dµt ∀ f ∈H1(Rd ,dµt) such that ∫

Rd
f dµt = 0 (7.18)

holds for all t ≥ tε⋆ with

tε⋆ ∶= log(
√

1+ε−1) ,
1

λ1(µt)
≤ τ( ετ

ετ−1
+ A

1
ετ−1) and τ = 1

2
(e2t −1) .
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7.3.3 Explicit stability results for log-concave densities

Let us start by an elementary observation.

Lemma 108. If h ∈H1(Rd ,dγ) is such that ∫Rd x h dγ = 0 and P =− logh is the pressure variable, then

∫
Rd
∇P h dγ = 0.

Proof. The result follows from ∫Rd ∇P h dγ =−∫Rd ∇h dγ = ∫Rd x h dγ = 0.

With this result in hand, we can now prove our first main result.

Proof of Theorem 104. The function h = v2 is such that ∫Rd x h dγ = 0 and Lemma 108 applies. Since hγ is

log-concave, we can apply (7.16) with f = ∂P/∂xi for any i = 1, 2,. . . d and obtain

∫
Rd
∥HessP∥2 h dγ ≥ 1

432 ∫Rd
∣∇P ∣2 h dγ .

It follows from (7.13) that

d

d t ∫Rd
∣∇v ∣2 dγ+2∫

Rd
∣∇v ∣2 dγ ≤− 1

864 ∫Rd
∣∇v ∣2 dγ ,

and the stability result is obtained as in the proof of Proposition 103.

7.3.4 Extension by entropy methods and flows

This section is devoted to the proof of Theorem 105. The key idea is to evolve the function by the Ornstein-

Uhlenbeck equation, so that the solution after an initial time layer has the log-concavity property of Theo-

rem 104, at least if the initial datum has compact support. To some extent, the strategy is similar to the one

used in [63]. During the initial time layer, we use an improved version of the entropy – entropy production

inequality which arises as a consequence of the carré du champ method.

Proof of Theorem 105. Let h be the solution to (7.9) with initial datum h0 =u2 and define

Q(t) ∶=
I [
√

h(t , ⋅)]
E [
√

h(t , ⋅)]
∀ t ≥ 0.

Let us assume first that v has compact support. With no loss of generality, we can assume that v is supported

in B(0,R) for some R > 0. With t⋆ = t⋆(R) given by (7.17), we know from [192, Theorem 5.1] that µt is log-

concave at t = t⋆ and Theorem 104 applies:

Q(t⋆) ≥
C⋆
2

.

With an estimate similar to [63, Lemma 2.9], we learn from Section 7.2 that

dQ

d t
≤ 2Q(2Q−1) . (7.19)

An integration on (0, t⋆) shows that

Q(0) ≥ 1

2
(1+ 2Q(t⋆)−1

1+2Q(t⋆)(e2 t⋆ −1)
) ≥ 1

2
(1+ C⋆−1

1+C⋆R2
) = C

2
.



7.3. STABILITY RESULTS 143

Under the more general assumption (7.7), we rely on (7.18) and obtain with same notations as above and

t⋆ = tε⋆ that

∫
Rd
∥HessP∥2 h(t , ⋅)dγ ≥λ1(µt)∫

Rd
∣∇P ∣2 h(t , ⋅)dγ ∀ t ≥ t⋆ .

Moreover, for some explicit t0 = t0(ε) > t∗, we notice that t ↦λ1(µt) is nonincreasing on (t0,+∞). Hence we

deduce from

I[v(t0, ⋅)]− 1

8 ∫
+∞

t0

(4+λ1(µs))E ′[v(s, ⋅)]d s ≥ 0

after an integration by parts that

Q(t0) ≥
1

2
(1+ 1

4
λ1(µt0)) =∶C0 .

Using (7.19), we obtain

C = 1+ C0−1

1+C0 (e2 t0 −1)
.

This concludes the proof.

7.3.5 Normalization issues

If we do not assume that ∥u∥L2(Rd ,dγ) = 1 and ∥x u∥L2(Rd ,dγ) ≤ d , it is still possible to state the analogue of

Theorem 104, but the price to be paid is a dependence on

κ[u] ∶=
∥u∥L2(Rd ,dγ)

max{
√

d ,∥(x −x0)u∥L2(Rd ,dγ)}
where x0 =∫

Rd
x h0 dγ ,

which goes as follows.

Proposition 109. For all u ∈H1(Rd ,(1+ ∣x∣2)dγ) such that ∫Rd x u2 dγ = 0, and u2γ is log-concave, we have

∥∇u∥2L2(Rd ,dγ)−
1

2
(1+(C⋆−1)κ[u])∫

Rd
∣u∣2 log

⎛
⎝

∣u∣2

∥u∥2L2(Rd ,dγ)

⎞
⎠

dγ ≥ 0.

Proof. We learn from (7.15) that

∫
Rd
∣x∣2 h(t , x)dγ = d ∥u∥2L2(Rd ,dγ)+e−2t ∫

Rd
(∣x∣2−d)h0 dγ ∀ t ≥ 0.

Hence [55, Theorem 1.2] and [55, Ineq. (3.4)] apply with

h(µ) ≥ κ[u]
6
√

3
.

and the remainder of the proof of Theorem 104 is unchanged.

A similar extension of Theorem 105 can be done on the same basis. Details are left to the reader. As for

Proposition 103, we can make the following observations. The case ∫Rd ∣x∣2 ∣v ∣2 dγ ≤ d is already covered in

Lemma 106. If

A ∶=∫
Rd
∣u∣2 (∣x∣2−d)dγ

is positive, let us consider the solution h of (7.9) with initial datum h0 = u2. We know from (7.15) that

∫
Rd

h(t , x)(∣x∣2−d)dγ = A e−2t
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and deduce as in the proof of Lemma 106 that

4I[v] =∫
Rd
∣∇P ∣2 h dγ =∫

Rd
h (L P)dγ+ A e−2t ≤

√
d∫

Rd
∥HessP∥2 h dγ+ A e−2t

with P =− logh. Hence by (7.13), we learn that

d

d t
I[v]+2I[v] =− 1

2 ∫Rd
∥HessP∥2 h dγ ≤− 1

2d
(4I[v]− A e−2t)2

and this estimate can be rephrased with z(t) ∶= e2 t I[v(t , ⋅)] as

z′ ≤− e−2 t

2d
(4 z − A)2 .

Knowing that z′ < 0 is an improvement on the decay rate I[v(t , ⋅)] ≤ I[u]e−2 t can be rephrased as an im-

proved entropy – entropy production inequality for A > 0.
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Chapter 8

The normal contraction property for

non-bilinear Dirichlet forms

This chapter corresponds to [P5], published in Potential Analysis. The work is a collaboration with Ivailo

Hartarsky.

Abstract

We analyse the class of convex functionals E over L2(X ,m) for a measure space (X ,m) introduced by Cipri-

ani and Grillo [99] and generalising the classical bilinear Dirichlet forms. We investigate whether such non-

bilinear forms verify the normal contraction property, i.e., if E(ϕ ○ f ) ⩽ E( f ) for all f ∈ L2(X ,m), and all

1-Lipschitz functions ϕ ∶ R → R with ϕ(0) = 0. We prove that normal contraction holds if and only if E is

symmetric in the sense E(− f ) = E( f ), for all f ∈ L2(X ,m). An auxiliary result, which may be of independent

interest, states that it suffices to establish the normal contraction property only for a simple two-parameter

family of functions ϕ.

8.1 Introduction

8.1.1 Setting

Bilinear Dirichlet forms

Bilinear Dirichlet forms are a well-established topic, related to the theory of Markov processes and semi-

groups, see [70, 146, 203]. Let X be a nonempty set, letF be a σ−algebra over X , and take a σ−finite measure

m ∶ F → [0,∞]. Let Λ ∶ D(Λ)×D(Λ)→ R, be a symmetric, bilinear, and positive semi-definite form, such

that D(Λ) ⊂ L2(X ,m) is dense. If the form is closed, there exists a unique self-adjoint, positive operator

A ∶D(A)→ L2(X ,m), such that D(A) ⊂D(Λ), and

⟨A f , g ⟩ =Λ( f , g), ∀ f ∈D(A), g ∈D(Λ).

147
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Adopting the notation of functional calculus, we also have the formulae D(Λ) =D(A1/2), and

Λ( f , g) = ⟨A1/2 f , A1/2 g ⟩, ∀ f , g ∈D(Λ).

The bilinear form Λ is called a (bilinear) Dirichlet form if

Λ(1∧ f ∨0,1∧ f ∨0) ⩽Λ( f , f ), ∀ f ∈D(Λ).

This conditions intuitively means that the form contracts if its argument is truncated. By extension, the term

Dirichlet form also refers to the quadratic form

E( f ) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

1
2Λ( f , f ), i f f ∈D(Λ);

+∞, otherwise;

associated with a bilinear Dirichlet formΛ. This functional turns out to be always non-negative, convex (since

it is quadratic), and lower semicontinuous. Moreover, the subdifferential satisfies ∂E = A.

Bilinear Dirichlet forms correspond to self-adjoint, Markovian linear semigroups, via Tt = eAt , for any

t ⩾ 0. This was one idea behind the definition given in the section below.

Non-bilinear Dirichlet forms

We next turn to defining non-bilinear Dirichlet forms as they will be studied in the present work. Let E ∶
L2(X ,m)→ [0,∞] be a convex and l.s.c. functional. In all the paper we assume that E is not the constant +∞.

Let (Tt)t⩾0 be the semigroup of nonlinear operators generated by −∂E , where ∂ denotes the subdifferential

operator, via the differential equation

⎧⎪⎪⎪⎨⎪⎪⎪⎩

∂t Tt f ∈−∂E(Tt f ), ∀t ∈ (0,∞), ∀u ∈ L2(X ,m),

T0 f = f , ∀ f ∈ L2(X ,m).
(8.1)

Equation (8.1) is well-posed for all f ∈ L2(X ,m). Its solution is usually called the gradient flow of E starting at

f . See [6, 71] and refer to 8.1.2 for more background.

We say that a non-negative l.s.c. functional E is a non-bilinear Dirichlet form if E is convex and, for all

t ⩾ 0, the operator Tt ∶ L2(X ,m)→ L2(X ,m) verifies

1. order preservation: Tt f ⩽ Tt g for all f , g ∈ L2(X ,m) such that f ⩽ g (for the pointwise order up to a

negligible set);

2. L∞-contraction: ∥Tt f −Tt g∥∞ ⩽ ∥ f − g∥∞ for all f , g ∈ L2(X ,m).

This class of forms was introduced by Cipriani and Grillo [99] and we will provide an equivalent “static”

definition in Theorem 112 without reference to the underlying semigroup (also see Theorem 114).

Our main goal is to verify the normal contraction property for non-bilinear Dirichlet forms. A normal

contraction is a 1−Lipschitz function ϕ ∶ R → R, such that ϕ(0) = 0. We denote by Φ the set of all normal

contractions. We say that a functional E over L2(X ,m) has the normal contraction property if

E(ϕ( f )) ⩽ E( f ), ∀ϕ ∈Φ, ∀ f ∈ L2(X ,m). (8.2)

In the literature this property goes also under the name of Second Beurling-Deny Criterion since [233].
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8.1.2 Background

Bilinear setting

Aside their interest in probability, for which we refer to the bibliography of [70, 146, 203], bilinear Dirichlet

forms are also well-linked with linear diffusion equations and semigroups, see [24, 128]. This link gave fruitful

results in the theory of metric measure spaces, allowing for an intrinsic/Eulerian approach towards Ricci

curvature bounds, [10]. Under mild hypotheses, the authors of [10] could represent any bilinear Dirichlet

form E as a quadratic Cheeger’s energy on the base space X . One important point is that Ambrosio, Gigli,

and Savaré were able to create an appropriate notion of distance dE directly from the Dirichlet form E . Then,

via a condition à la Bakry-Emery, on the carré du champ associated with the quadratic form E , the authors

give a sense to notions such as Bochner’s inequality or a lower bound on the Ricci curvature. Their approach

is equivalent to that of Lott and Villani [201] and Sturm [245, 246], based on optimal transport. The creation

of a distance from a bilinear form is a technique present also in [51]. Bilinear Dirichlet forms also play a role

in potential and capacity theory, see [146, 237].

Historically, bilinear Dirichlet forms have been introduced by Beurling and Deny in [46]. One motivation

behind their definition was the fact that being a bilinear Dirichlet form was sufficient to have the normal

contraction property (see (8.2)). The fact that controlling one normal contraction is necessary and sufficient

to control all of them is nowadays known as the Beurling-Deny criterion. To prove such a property, one usu-

ally approximates the function f with weighted sums of characteristic functions. The normal contraction

property is a cornerstone for many purposes. For instance, for the development of a differential calculus [10]

and the classification of linear Markov semigroups [146], both based on bilinear Dirichlet forms.

Non-bilinear setting

Generalising the concept of Dirichlet form to a non-bilinear setting is a more recent problem, started with

the two works [52, 99]. A different kind of generalisation is that of [177], but we will not focus on it, since its

purpose is different. Using instruments from [31, 42, 71], Cipriani and Grillo [99] provided two equivalent

definitions of a non-bilinear Dirichlet form relevant to us, which will be discussed in further detail in Section

8.2. In [99], a number of properties of the class of non-bilinear Dirichlet forms are given, in particular with

respect to Γ−convergence (see [105]).

Two recent works on the topic are [100, 101], where Claus recovers many structural properties for non-

bilinear Dirichlet forms, among which we find a nonlinear Beurling–Deny principle, see [100, Theorem 2.39].

In the following sections, he develops a nonlinear theory of capacity. Furthermore, in [100, Corollary 2.40]

(also see [101, Theorem 3.22]), the normal contraction property is proved for non-bilinear Dirichlet forms,

but only for non-decreasing normal contractions and additionally assuming that the form is 0 at 0 (we avert

the reader that in [100, Definition 2.31] non-decreasing normal contractions are named simply normal con-

tractions).

Examples Let us mention two classes of basic examples, which generalise corresponding families of local

and nonlocal bilinear Dirichlet forms. These lie at the core of the functionals analysed in the references

quoted at the end of the section. Let Ω be an open subset of Rd and f ∶ Ω×Rd → R be a Borel-measurable

function. Let

E(u) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

∫Ω f (x,Du)dx u ∈W1,2
loc(Ω),

+∞ otherwise.
(8.3)
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We have that E is a non-bilinear Dirichlet form if f is non-negative, measurable in the first argument and

convex and lower-semicontinuous in the second one. See [107] for the lower semicontinuity of the functional,

while the property of being a non-bilinear Dirichlet form can be inferred as in [99, Theorem 4.1]. In addition,

E is symmetric if f (⋅,−v) = f (⋅, v), for all v ∈ Rd . Finally, E is always local, due to the locality of Du and the

fact that E is an integral functional. Among local forms, we can consider the following.

Example 110. Let Ω = R. Let f (x, v) =max(v,0). Then, the integral functional E associated to f by (8.3) is a

non-symmetric non-bilinear Dirichlet form, which does not satisfy the normal contraction property (8.2) for

the function ϕ =−id.

In this class of local functionals we also have the distinguished subclass of Finsler metrics, where

f (x, ⋅) = ∥ ⋅∥x , ∀x ∈Ω.

The form is bilinear if and only if, for all x ∈ Ω, the norm ∥ ⋅ ∥x satisfies the parallelogram identity, see [72,

Chapter 5].

Some non-local non-bilinear Dirichlet forms appear in [103], for example. In general we can say that any

functional E of the form

E(u) =∫
Ω2

ψ(u(x)−u(y))dx dy, ∀u ∈ L2(Ω,dx).

is a non-bilinear Dirichlet form for non-negative, l.s.c., convex ψ such that ψ(0) = 0. Lower semicontinuity

of the functional comes from Fatou’s Lemma, its convexity from the convexity of ψ. Finally, one can repeat

the computations in [170, Theorem 2] to prove order-preservation and contraction in L∞ for the semigroup

associated with E .

In [99], some interesting examples are developed in detail, ranging from functionals from the calculus of

variations to Sobolev seminorms in the context of C⋆−monomodules. The theory of [99] can be applied to

nonlinear diffusion equations (see [103, 141] and the references therein), analysis on graphs [168, 217], and

analysis on spaces with a very irregular geometry [167, 210]. Furthermore, Cheeger’s energies on extended

metric spaces are known to be non-bilinear Dirichlet forms [8]. We refer to [7, 9, 10] for this theory, which

originates from [94, 238]. See also [181, 202] for more estimates and contraction properties of Cheeger’s

energies.

8.1.3 Main results

Our main result is the following.

Theorem 111. Let E be a non-bilinear Dirichlet form. Then E has the normal contraction property (8.2) if and

only if

E(− f ) ⩽ E( f ) ∀ f ∈ L2(X ,m). (8.4)

This theorem goes in the same direction as the well-established one for the bilinear case [70, 146, 203].

We merely prove that a form will operate on all normal contractions, once it operates on the simplest one.

Henceforth, we say that E is symmetric if (8.4) holds and, equivalently, E(− f ) = E( f ) for all f ∈ L2(X ,m).
As witnessed by Example 110, the necessary symmetry assumption (8.4) needs to be made, since this non-

bilinear Dirichlet form does not have the normal contraction property.

Let us highlight that Theorem 111 may be viewed as a strengthening of the result of Claus [100, Corollary

2.40], whose proof follows the far more conventional approach of [41, 42]. The class of normal contractions
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f (x)

Hα( f , g)(x)

g(x)0

2α

Figure 8.1: Graph of the function Hα( f , g)(x) for fixed g(x).

we consider is richer and it controls, for example, the absolute value of the argument of the non-bilinear

Dirichlet form, which can be very useful (see e.g. [146]), as well as more complicated contractions.

In order to prove Theorem 111, we establish two results, both of which may be of independent interest.

Firstly, we provide an equivalent characterisation of non-bilinear Dirichlet forms, which turns out to be more

widely for our purposes than the other equivalent static characterisation of [99, Theorem 3.8], recalled in

Theorem114. To do so, we require a bit of notation. For all f , g ∈ L2(X ,m), and α ∈ [0,∞)we denote by f ∨ g

and f ∧ g denote the pointwise maximum and minimum and set Hα( f , g) = (g −α)∨ f ∧(g +α) (see Figure

8.1), that is,

Hα( f , g)(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

g(x)−α f (x)− g(x) <−α,

f (x) f (x)− g(x) ∈ [−α,α],

g(x)+α f (x)− g(x) >α.

(8.5)

Theorem 112. Let E ∶ L2(X ,m)→ [0,∞] be a l.s.c. functional. Then, E is a non-bilinear Dirichlet form if and

only if, for all f , g ∈ L2(X ,m), and α ∈ [0,∞), E verifies

E( f ∨ g)+E( f ∧ g) ⩽ E( f )+E(g), (8.6)

E(Hα( f , g))+E(Hα(g , f )) ⩽ E( f )+E(g). (8.7)

The advantage of Theorem 112 as compared to Theorem 114 is that conditions (8.7)-(8.6) are easier to

verify and useful to develop other functional inequalities such as the normal contraction property (8.2).

The second important step towards Theorem 111 is a reduction.

Lemma 113. Let G be the set of all normal contractions ϕ ∈Φ such that ∣ϕ′∣ = 1 and ϕ′ has at most two points

of discontinuity. Let ⟨G⟩ be the collection of all finite compositions of elements in G . Then, ⟨G⟩ is dense in Φ for

the pointwise convergence on R.

We observe that the elements of G are irreducible with respect to composition, so that G is minimal in

this sense. While the space G is quite simple, proving the normal contraction property (8.2) for ϕ ∈G by hand

from symmetry and (8.6)-(8.7) is still delicate, albeit elementary.

8.1.4 Plan of the paper

The remainder of the paper is structured as follows. In Section 8.2, we establish Theorem 112. In Section

8.3, we prove Theorem 111, relying on Theorem 112. This is the heart of our work. Finally, we discuss future

directions of research in Section 8.4.
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8.2 Efficient equivalent characterisation of non-bilinear Dirichlet

forms

The goal of the present section is to prove Theorem 112.

8.2.1 Preliminaries

We introduce the subsets C1 and C2,α, for α ∈ [0,∞), of L2(X ,m;R2) ∶

C1 = {( f , g) ∈ L2(X ,m;R2) ∶ f ⩽ g} , (8.8)

C2,α = {( f , g) ∈ L2(X ,m;R2) ∶ ∣ f − g ∣ ⩽α} . (8.9)

We notice that for all α, the sets C1 and C2,α are convex and closed in the L2−topology. For any closed and

convex subset C , the 1−Lipschitz projection operator PC ∶ L2(X ,m;R2)→C is defined by

PC( f , g) = argmin
(w,z)∈C

∥ f −w∥22+∥g − z∥22.

The projection map sends any point ( f , g) to the closest point PC( f , g) in C . We denote by P 1
C and P 2

C the

two components of the projection operator in L2(X ,m). More properties of projection maps are studied in

[72]. If one considers the sets C1 and C2,α, we have an explicit expression for the projections, thanks to [99,

Lemma 3.3]:

P1( f , g) = ( f − 1

2
(( f − g)∨0), g + 1

2
(( f − g)∨0)) , (8.10)

P2,α( f , g) = (g + 1

2
φα ○( f − g), f − 1

2
φα ○( f − g)) , (8.11)

where φα ∶R→R is given by

φα(z) = ((z +α)∨0)+((z −α)∧0). (8.12)

We further recall [99, Definition 3.1, Remark 3.2, Theorem 3.6].

Theorem 114. Let E ∶ L2(X ,m)→ [0,∞] be a l.s.c. functional. Then E is a non-bilinear Dirichlet form if and

only if, for all f , g ∈ L2(X ,m) and α ∈ [0,∞), E verifies

E (P 1
1( f , g))+E (P 2

1( f , g)) ⩽ E( f )+E(g), (8.13)

E (P 1
2,α( f , g))+E (P 2

2,α( f , g)) ⩽ E( f )+E(g). (8.14)

The key argument is the well-known fact from [31, 71] stating that

E (P 1
C( f , g))+E (P 2

C( f , g)) ⩽ E( f )+E(g)

for all f , g ∈ L2(X ,m) if and only if the semigroup Tt from (8.1) preserves C ∶

Tt C ⊂C , ∀t ⩾ 0,

where C can be any convex and closed set. Thus, (8.13)-(8.14) correspond to the order-preservation and the

L∞−contraction properties for (Tt)t , respectively. In [99, Theorem 3.8] one more step is made.
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Theorem 115. Let E ∶ L2(X ,m)→ [0,∞] be a l.s.c. functional. Then, E satisfies (8.6) if and only if E is convex

and satisfies (8.13).

Indeed, the last statement is a consequence of the more general [31, Proposition 2.5], which we will also

use.

Theorem 116. Let C be a closed convex subset of L2(X ,m;R2), let PC = (P 1
C ,P 2

C) be the associated orthogonal

projection. Let E ∶ L2(X ,m)→ [0,∞] be a l.s.c. functional. Let h,k ∶ L2(X ,m;R2)→ L2(X ,m) be two continu-

ous mappings such that, for all u, v ∈ L2(X ,m) and t , s ∈ [0,1] it holds that

h(ut , vs) =u1−s , k(ut , vs) = v1−t , (8.15)

where

ut = (1− t)u+ th(u, v), vs = (1− s)v + sk(u, v).

Moreover, assume

PC(u, v) = (u1/2, v1/2). (8.16)

Then, we have that for all u, v ∈ L2(X ,m)

E (P 1
C(u, v))+E (P 2

C(u, v)) ⩽ E(u)+E(v),

if and only if E is convex and for all u, v ∈ L2(X ,m)

E(h(u, v))+E(k(u, v)) ⩽ E(u)+E(v).

Remark 117. Note that, given Theorems 114 and 115, it is easy to deduce that every non-bilinear Dirichlet

form satisfies (8.6)-(8.7), which is the direction of Theorem 112 we will use for proving Theorem 111. Indeed,

Hα( f , g) = 1

2
P 1

2,α( f , g)+ 1

2
P 2

2,α(g , f )

for all α ⩾ 0 and f , g ∈ L2(X ,m), so that convexity and (8.14) give

E(Hα( f , g))+E(Hα(g , f ))

⩽ 1

2
(E(P 1

2,α( f , g))+E(P 2
2,α(g , f ))+E(P 1

2,α(g , f ))+E(P 2
2,α( f , g)))

⩽ E( f )+E(g).

8.2.2 Equivalence of the definitions

To conclude the section, we show that the convex sets C2,α verify the hypotheses of Theorem 116.

Proof of Theorem 112. Fix α > 0. Recalling the explicit expression of φα from (8.12), for any u, v ∈ L2(X ,m)
we have

φα ○(u− v)(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

u(x)− v(x)−α u(x)− v(x) ⩽−α,

2u(x)−2v(x) ∣u(x)− v(x)∣ ⩽α,

u(x)− v(x)+α u(x)− v(x) ⩾α.
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Further recalling the expression of P2,α from (8.11), in order to satisfy (8.16), we now choose h,k ∶ L2(X ,m;R2)→
L2(X ,m) such that

v + 1

2
φα ○(u− v) = u+h(u, v)

2
, u− 1

2
φα ○(u− v) = v +k(u, v)

2
.

Therefore, the expressions for h,k are the following

h(u, v)(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

v(x)−α u(x)− v(x) ⩽−α,

u(x) ∣u(x)− v(x)∣ ⩽α,

v(x)+α u(x)− v(x) ⩾α,

k(u, v)(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

u(x)+α u(x)− v(x) ⩽−α,

v(x) ∣u(x)− v(x)∣ ⩽α,

u(x)−α u(x)− v(x) ⩾α,

and we notice that h(u, v) =Hα(u, v) and k(u, v) =Hα(v,u).

It remains to verify the twist condition (8.15). Fix s, t ,u, v as in the hypothesis. Since the values of Hα

is defined pointwise, we also fix x ∈ X and drop this parameter for compactness of notation. Suppose that

∣u−v ∣ ⩽α, then H(u, v) = u, H(v,u) = v , so ut = u1−s = u, vs = v . The case u−v <−α is analogous to that with

u− v >α, since the role of u and v is symmetric. Hence, we will discuss only the former. Here we have

ut = (1− t)u+ t(v −α), vs = (1− s)v + s(u+α).

We need not discuss more subcases for the expression of Hα(ut , vs), since

ut − vs = (1− t)u+ t(v −α)−(1− s)v − s(u+α)

= (1− t − s)(u− v)−(t + s)α <−α.

Hence,

Hα(ut , vs) = vs −α = (1− s)v + su+(s−1)α = u1−s ,

The second condition in (8.15) follows similarly, so we omit it. Thus, applying Theorem 116, (8.14) is equiva-

lent to E being convex and (8.7). Yet, Theorem 115 gives that the convexity and (8.13) are equivalent to (8.6),

so Theorem 112 reduces to Theorem 114.

8.3 The normal contraction property

Throughout this section we fix a measure space (X ,m) and a functional on L2(X ,m) satisfying symmetry

and (8.6)-(8.7) for all f , g ∈ L2(X ,m) and α ∈ [0,∞).

We will prove the normal contraction property (8.2) progressively, starting from simple functions ϕ. More

specifically, for k ∈ {0,1, . . .}, x1, . . . , xk ∈ R such that −∞ = x0 < x1 < ⋅ ⋅ ⋅ < xk < xk+1 = ∞, we consider the

continuous function ϕx1,...,xk ∶R→R (see Figure 8.2) defined by ϕx1,...,xk(0) = 0 and

ϕ′x1,...,xk
(x) = (−1)i (8.17)
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x1 0 x2 x3

Figure 8.2: Graph of the function ϕx1,x2,x3 .

x0

id

σ
x0

0∨ id

ϕx

Figure 8.3: Illustration of (8.18).

for x ∈ (xi , xi+1). Let us denote Fk = {ϕx1,...,xk ∶ x1 < ⋅ ⋅ ⋅ < xk ∈ R}, so that F0 = {id}. We further set Φx1,...,xk =
E ○ϕx1,...,xk .

8.3.1 Basic contractions

Proposition 118. For any x ∈R and f ∈ L2(X ,m)we have Φx( f ) ⩽ E( f ).

Proof. Fix x ⩾ 0 (the case x < 0 is treated identically) and f . By (8.6)

Φx( f )+E(0∨ f ) ⩽ E( f )+E(σ○ f ) (8.18)

(see Figure 8.3), where

σ(y) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

0 y ⩽ 0,

y y ∈ (0, x),

2x − y y ⩾ x.

Thus, it suffices to show that E(0∨ f ) ⩾ E(σ○ f ).
But symmetry and (8.7) with α = 2x (see Figure 8.4) give

2E(σ○ f ) ⩽ E(σ○ f )+E(−σ○ f )

⩽ E(0∨ f )+E(−(0∨ f )) ⩽ 2E(0∨ f ),
(8.19)

concluding the proof.

Proposition 119. For any 0 ⩽ x1 < x2 or x1 < x2 ⩽ 0 and f ∈ L2(X ,m) it holds that Φx1,x2( f ) ⩽ E( f ).
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Figure 8.4: Illustration of (8.19).
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Figure 8.5: Illustration of (8.20).

Proof. Fix 0 ⩽ x1 < x2 and f , the case x1 < x2 ⩽ 0 being analogous. Let

σ(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

0 x ⩽ x1,

x1−x x ∈ (x1, x2),

x +x1−2x2 x ⩾ x2,

ψ(x) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

0 x ⩽ 0,

ϕx1,x2(x) x > 0.

Then (8.7) with α = x1 (see Figure 8.5) gives

E(ψ○ f )+E(0∨( f −x1)) ⩽ E(0∨ f )+E(σ○ f ). (8.20)

Moreover, by symmetry and (8.7) for α = 2(x2−x1) (see Figure 8.6) we get

2E(0∨( f −x1)) ⩾ E(0∨( f −x1))+E(0∧(x1− f ))

⩾ E(σ○ f )+E(−σ○ f ) ⩾ 2E(σ○ f ),
(8.21)

so that E(ψ○ f ) ⩽ E(0∨ f ). Furthermore, (8.6) gives

Φx1,x2( f )+E(0∨ f ) ⩽ E(ψ○ f )+E( f ) (8.22)

(see Figure 8.7), yielding the desired conclusion.

Proposition 120. For any x1 < 0 < x2 and f ∈ L2(X ,m) it holds that Φx1,x2( f ) ⩽ E( f ).
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Figure 8.6: Illustration of (8.21).
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Figure 8.7: Illustration of (8.22).

Proof. Without loss of generality assume that x2 >−x1 and fix f . Consider

ψ(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

x −2x1 x < x1,

−x x1 ⩽ x ⩽ x2,

−x2 x > x2.

Then (8.7) with α = 2x2 (see Figure 8.8) gives

Φx1,x2( f )+E( f ∧x2) ⩽ E( f )+E(ψ○ f ). (8.23)

Yet, ψ =ϕx1 ○(id∧ x2), so by Proposition 118 we have E(ψ○ f ) ⩽ E( f ∧ x2). Combining this with (8.23) yields

the desired conclusion.

x1 0

id

ψ

2x2

x1 x20

id∧x2

ϕx1,x2

Figure 8.8: Illustration of (8.23).
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8.3.2 Reduction to basic contractions

As we will see, the next proposition is essentially Lemma 113.

Proposition 121. Any ϕ ∈ Fk with k ⩾ 0 can be written as ϕ1○⋅ ⋅ ⋅○ϕ⌊k/2⌋○ψ with ϕi ∈ F2 for all i ∈ {1, . . . ,⌊k/2⌋}
and ψ ∈ Fk−2⌊k/2⌋.

Proof. We proceed by induction on k. The statement is trivial for k ∈ {0,1,2}. Assume that ϕ = ϕx1,...,xk ∈ Fk

for k ⩾ 3, with −∞ = x0 < x1 < ⋅ ⋅ ⋅ < xk < xk+1 =∞. Consider i ∈ {1, . . . ,k −1} such that xi+1 − xi < x j+1 − x j for

all j ≠ i (we may assume that the inequality is strict by perturbing the xi and taking a limit if necessary). We

consider the following cases.

• If xi+1 ⩽ 0, then set

x′j =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

x j +2(xi+1−xi) 1 ⩽ j < i ,

x j+2 i ⩽ j ⩽ k −2.

• If xi ⩾ 0, then set

x′j =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

x j 1 ⩽ j < i ,

x j+2−2(xi+1−xi) i ⩽ j ⩽ k −2.

• If xi < 0 < xi+1, then set

x′j =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

x j −xi 1 ⩽ j < i ,

x j+2−xi+1 i ⩽ j ⩽ k −2.

Then it suffices to prove that

ϕ =ϕx′1,...,x′k−2
○ϕxi ,xi+1 .

To do this, we verify (8.17) in each case. We will only treat the case xi ⩾ 0, the others two being analogous. We

have that

ϕ′x′1,...,x′k−2
(ϕxi ,xi+1(x))×ϕ

′
xi ,xi+1

(x) (8.24)

changes sign at xi and xi+1 due to the second factor. Moreover, ϕxi ,xi+1 takes the values in I =R∖[2xi−xi+1, xi ]
exactly once and

ϕxi ,xi+1(x j ) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

x′j 1 ⩽ j < i ,

x′j−2 i +2 ⩽ j ⩽ k.

But our choice of i implies I ⊃ {x′1, . . . , x′k−2}, so the first factor in (8.24) changes sign precisely at x1, . . . , xi−1, xi+2, . . . , xk ,

concluding the proof.

With Proposition 121 it is immediate to deduce Lemma 113.

Proof of Lemma 113. Observe that G = {id,−id}○(F0∪F1∪F2). Thus,

⟨G⟩ ⊃ {id,−id}○ ⟨F2⟩○(F0∪F1) ⊃ {id,−id}○
∞
⋃
k=0

Fk ⊃ ⟨G⟩, (8.25)

where the first and third inclusions follow by definition, while the second one is Proposition 121. Thus,

⟨G⟩ = {id,−id}○⋃∞k=0 Fk . It therefore remains to show that ⟨G⟩ is dense in Φ, in order to conclude the proof.
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To this extent, note that any ϕ ∈Φ coincides with its 1−Lipschitz envelope, i.e.,

ϕ(x) = inf
y∈R

ϕ(y)+ ∣x − y ∣, ∀x ∈R.

By continuity,

ϕ(x) = inf
y∈Q

ϕ(y)+ ∣x − y ∣, ∀x ∈R.

Taking a sequence of finite sets (Qn)n ↑ Q with Q0 = {0}, we can approximate ϕ with ϕn ∈ −id ○F2kn−1 for

some kn ∈ {1, . . . , ∣Qn ∣} given by

ϕn(x) ∶= inf
y∈Qn

ϕ(y)+ ∣x − y ∣, ∀x ∈R.

The limit ϕn →ϕ is in uniform convergence on compact sets thanks to equi-continuity, so the proof is com-

plete.

We are ready to assemble the proof of Theorem 111.

Proof of Theorem 111. By Theorem 112, any non-bilinear Dirichlet form E satisfies (8.7)-(8.6) and is l.s.c.

Since symmetry is a hypothesis of Theorem 111, together with Propositions 120, 119, and 118 it yields that for

any ϕ ∈G (recall Lemma 113) and f ∈ L2(X ,m) it holds that E(ϕ○ f ) ⩽ E( f ). Indeed, F0 is trivial, Proposition

118 deals with F1, Propositions 119 and 120 give F2 and then symmetry allows us to take opposites. Therefore,

the normal contraction property (8.2) also holds for all ϕ ∈ ⟨G⟩.
Fix f ∈ L2(X ,m) and an arbitrary normal contraction ϕ ∈ Φ. By Lemma 113, there exists a sequence

ϕn ∈ ⟨G⟩ such that ϕn(x)→ϕ(x) for all x ∈R, as n→∞, and

E(ϕn ○ f ) ⩽ E( f )

for all n. We have that ϕn( f )→ϕ( f ) pointwise in X , but

∣ϕn ○ f ∣2 ⩽ ∣ f ∣2 ∈ L1(X ,m),

as all functions ϕn are normal contractions. Then, by Lebesgue’s dominated convergence theorem

ϕn ○ f →ϕ○ f

in L2(X ,m). Thus, we obtain the desired inequality via the l.s.c. of E .

8.3.3 Locality

Let us conclude this section with a concept of locality allowing a much more direct proof of Theorem 111

under this hypothesis. We say that a non-bilinear Dirichlet form E is local if for all c ∈ R and u, v ∈ L2(X ,m)
such that u(x)(v(x)−c) = 0 for all x ∈ X , we have

E(u+ v) = E(u)+E(v).

Proof of Theorem 111 in the local case. Fix a symmetric local non-bilinear Dirichlet form E . As in the proof

of Theorem 111 it suffices to establish the normal contraction property (8.2) for all ϕ ∈⋃∞k=1 Fk (this part of

the proof does not rely on Theorem 112 and Propositions 118, 119, 120,and 121). Fix ϕ = ϕx1,...,xk for some
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x1 < ⋅ ⋅ ⋅ < xk . Observe that

ϕ(x) = ((x −x1)∧0)+
k

∑
i=1

(−1)i((0∨(x −xi))∧(xi+1−xi)).

Since all summands satisfy the locality condition, we get

E(ϕ○u) = E((u−x1)∧0))+
k

∑
i=1

E ((−1)i((0∨(u−xi))∧(xi+1−xi)))

= E((u−x1)∧0))+
k

∑
i=1

E((0∨(u−xi))∧(xi+1−xi)) = E(u),

using symmetry and locality for the second and third equalities.

8.4 Future directions

Two challenges which are still open are the following. Firstly, we are not aware of any attempt to obtain a

structural decomposition analogous to the one of [146] in the non-bilinear setting. Secondly, the theory of

[201, 245, 246] covers even the case where Cheeger’s energy of the metric measure space is a non-bilinear

form, while an analogue of [10] for the non-bilinear case is missing. It is our opinion that the subject of

metric measure spaces would profit from a study in this direction.

These two problems are strong motivations behind our paper, as we foresee that the normal contraction

property would be crucial in developing such theories. One difficulty we anticipate is the generalisation of

the computations in [24], which looks complicated even in the case of Finsler manifolds. Finally, establishing

the normal contraction property adds one structural argument in favour of the choice made by Cipriani and

Grillo of the generalisation of bilinear Dirichlet forms to the non-bilinear setting.
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MOTS CLÉS

Equations cinétiques de Fokker-Planck, inégalités de Gagliardo-Nirenberg, inégalité de Sobolev, inégalité log-
arithmique de Sobolev, dynamique de Langevin, stabilité, flot de chaleur, formes de Dirichlet, hypocoercivité,
fonctions log-concaves.

RÉSUMÉ

Cette thèse est consacrée aux équations cinétiques de Fokker-Planck, à la stabilité des inégalités fonctionnelles et aux

formes de Dirichlet non linéaires. Des taux de convergence vers l'équilibre sont estimés via un cadre analytique fonctionnel

basé sur les normes faibles des solutions. L'équation de Vlasov-Fokker-Planck, avec variable de position confinée dans

un tore, est analysée comme modèle de référence. La même stratégie est ensuite etendue à une large classe de modèles

cinétiques. Nous considérons également des inégalités de Gagliardo--Nirenberg sur la sphère qui interpolent entre les

inégalités de Poincaré et les inégalités de Sobolev. Nous prouvons des résultats constructifs de stabilité, dans la norme

la plus forte possible, avec des exposants optimaux. L'estimation de stabilité dégénère sur un sous-espace de dimension

finie, ce qui nécessite des précautions supplémentaires. Notre technique combine des développements de Taylor, l'analyse

harmonique et des methodes parabòliques. Nous prouvons rigoureusement la convergence de la famille de Gagliardo-

Nirenberg sur la sphère vers les inégalités de Beckner gaussiennes dans la limite de grandes dimensions. Ensuite, nous

donnons des résultats constructifs de stabilité, en utilisant des diffusions non linéaires sur l'espace gaussien. Enfin, nous

traitons l'inégalité de Sobolev logarithmique gaussienne comme cas limite. Nous trouvons des estimations explicites de

stabilité pour des densités log-concaves ou à support compact par un argument de log-concavité deduit du flot d'Ornstein-

-Uhlenbeck et de la méthode du carré du champ. Nous contribuons à la théorie des formes de Dirichlet non-linéaires en

etendant la propriété de contraction normale. La preuve adopte une nouvelle stratégie, basée sur l'approximation des

fonctions Lipschitz réelles par des compositions répétées de fonctions linéaires par morceaux simples.

ABSTRACT

This thesis concerns kinetic Fokker-Planck equations, stability of functionals inequalities, and nonlinear Dirichlet forms.

Constructive convergence rates to equilibrium for kinetic equations are computed via a functional analytic framework based

on weak norms of solutions. The Vlasov-Fokker-Planck equation, with the space variable confined in a torus, is analysed

as a benchmark. Then, the same strategy is generalised to a wide class of kinetic Fokker-Planck models. We also con-

sider Gagliardo-Nirenberg inequalities on the sphere, interpolating between the Poincaré and the Sobolev inequalities. We

prove constructive stability results, in the strongest possible norm, with sharp exponents in the distance from optimisers.

This term degenerates on a finite-dimensional subspace requiring additional care. Our technique combines Taylor expan-

sions, harmonic analysis, and (non)linear diffusion flows. We rigorously prove convergence of the Gagliardo-Nirenberg

family of inequalities, for the dimension of the sphere approaching infinity, to the Gaussian Beckner inequalities. Then,

we give constructive stability results for those, using nonlinear diffusion flows on the Gaussian space. Finally, we treat the

Gaussian logarithmic Sobolev inequality as a limit case. We find explicit stability estimates for log-concave or compactly-

supported densities, thanks to the interplay between log-concavity and the Ornstein-Uhlenbeck flow, using the carré du

champmethod. We contribute to the theory of nonlinear Dirichlet forms. We extend the normal contraction property to the

nonlinear setting. The proof adopts a new strategy, based on the approximation of real Lipschitz functions with repeated

compositions of elementary piecewise linear functions. 55

KEYWORDS

Kinetic Fokker-Planck equations, Gagliardo-Nirenberg inequalities, Sobolev inequality, logarithmic Sobolev
inequality, Langevin dynamics, stability, heat flow, Dirichlet forms, hypocoercivity, log-concave functions.
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