
HAL Id: tel-04199925
https://theses.hal.science/tel-04199925

Submitted on 8 Sep 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Signal and image data stream analytics : from subspace
to tensor tracking

Trung Thanh Le

To cite this version:
Trung Thanh Le. Signal and image data stream analytics : from subspace to tensor tracking. Signal
and Image Processing. Université d’Orléans, 2022. English. �NNT : 2022ORLE1044�. �tel-04199925�

https://theses.hal.science/tel-04199925
https://hal.archives-ouvertes.fr

UNIVERSITÉ D’ORLÉANS
ÉCOLE DOCTORALE

MATHÉMATIQUES, INFORMATIQUE, PHYSIQUE
THÉORIQUE ET INGÉNIERIE DES SYSTÈMES

LABORATOIRE PRISME

THÈSE présentée par :

Trung Thanh LE
soutenue le : 20 Octobre 2022

pour obtenir le grade de : Docteur de l’Université d’Orléans

Discipline/Spécialité : Informatique. Traitement du Signal

Signal and Image Data Stream Analytics:
From Subspace to Tensor Tracking

THÈSE dirigée par :

ABED-MERAIM Karim PR, Université d’Orléans, directeur de thèse
HAFIANE Adel MCF-HDR, INSA CVL, co-directeur de thèse
NGUYEN Linh Trung MCF, Université Nationale du Vietnam de Hanoi,

co-encadrant

RAPPORTEURS :
ALBERA Laurent PR, Université Rennes
EL KORSO Mohammed Nabil PR, Université Paris-Saclay

JURY :
RAVIER Philippe PR, Université d’Orléans, Président du jury
ALBERA Laurent PR, Université Rennes
EL KORSO Mohammed Nabil PR, Université Paris-Saclay
BADEAU Roland PR, Télécom ParisTech
BOYER Rémy PR, Université de Lille
ABED-MERAIM Karim PR, Université d’Orléans
HAFIANE Adel MCF-HDR, INSA CVL
NGUYEN Linh Trung MCF, Université Nationale du Vietnam de Hanoi

Acknowledgments

This thesis marks the end of my three-year journey towards a Ph.D. degree in Signal Process-

ing from the University of Orléans, INSA CVL, PRISME. Despite having some difficulties and

things that didn’t go as expected, I have still enjoyed being a doctoral student at the PRISME

Laboratory. I am so grateful to have had the opportunity to meet, work with, and learn from so

many wonderful people.

To my supervisors. First of all, I would like to express my great appreciation to Prof. Karim

Abed-Meraim and Prof. Adel Hafiane, my supervisors at the University of Orléans, INSA CVL,

PRISME, and Prof. Nguyen Linh Trung, my advisor at VNU University of Engineering and

Technology. I am lucky to work under the supervision of Prof. Karim who is very kind, friendly,

and unconditionally supportive throughout my study. Thank you very much for giving me a lot

of freedom to pursue my ideas in research. I am so grateful to Prof. Adel for his useful comments

on my works in regular meetings. Without the support of Prof. Trung, I wouldn’t have got where

I am today, thank you so much.

To my colleagues and my friends. Many thanks to my “senpai”, Dr. Nguyen Viet Dung, for

his suggestions and discussions on my study as well as his academic and social experience in

France. Some results in my thesis are specifically inspired from his works on subspace tracking

and tensor decomposition. I am very fortunate to have three fantastic friends, Guanglie Ouyang,

Zuokun Ouyang, and Pham Minh Tuan, whose sincerity and friendship are highly appreciated.

My Ph.D. journey has been much more fun and exciting with their stories, talks, and moments.

I would like to thank Dr. Hoang Vy Thuy Lynh for her tremendous support during the years.

As starting a new life abroad is never easy, my life in France would not have been as pleasant as

it is right now without her help.

To my wife, my parents, and my late little brother. I am immensely thankful to my wife, Vu Thi

Kim Chung, for her love, care, and patience. She means everything to me, she is the reason for

my happiness and the anchor when things are difficult for me. I am indebted to my parents for

all their love and support. Lastly, this thesis is specifically dedicated to the memory of my late

little brother, Le Long Xuyen, who has left a void never to be filled in my family.

Thank you!

Le Trung Thanh

Contents

List of Figures vi

List of Tables xii

1 General Introduction 1

1.1 Big Data Stream Processing . 1

1.1.1 Vector, Matrix, and Tensor Operations . 3

1.1.2 Batch Low-rank Approximation: From SVD to Tensor Decomposition . . 6

1.1.3 Online Low-rank Approximation: From Subspace to Tensor Tracking . . . 10

1.2 Thesis Description . 12

1.2.1 Thesis Outline and Contributions . 12

1.2.2 List of Publications . 15

I Subspace Tracking 18

2 An Overview of Robust Subspace Tracking 19

2.1 Introduction . 20

2.1.1 Related Work . 21

2.1.2 Main Contributions . 23

2.2 Robust Subspace Tracking: Problem Formulation 23

2.3 Robust Subspace Tracking in the Presence of Missing Data and Outliers 25

2.3.1 Grassmannian Algorithms . 25

2.3.2 Recursive Least-Squares based Algorithms 27

2.3.3 Recursive Projected Compressive Sensing based Algorithms 27

2.3.4 Adaptive Projected Subgradient Method based Algorithms 27

i

CONTENTS

2.3.5 Other Algorithms . 28

2.4 Robust Subspace Tracking in the Presence of Impulsive Noise 28

2.4.1 Robust Variants of PAST . 28

2.4.2 Adaptive Kalman Filtering . 29

2.4.3 Weighted Recursive Least-Squares Method 30

2.5 Robust Subspace Tracking in the Presence of Colored Noise 30

2.5.1 Instrumental Variable based Algorithms 30

2.5.2 Oblique Projection based Algorithms . 31

2.6 Sparse Subspace Tracking . 32

2.7 Conclusions . 33

3 Robust Subspace Tracking with Missing Data and Outliers 34

3.1 Introduction . 35

3.1.1 Related Works . 36

3.1.2 Contributions . 37

3.2 Problem Formulation . 38

3.2.1 Robust Subspace Tracking . 38

3.2.2 Assumptions . 40

3.3 Proposed PETRELS-ADMM Algorithm . 40

3.3.1 Online ADMM for Outlier Detection . 42

3.3.2 Improved PETRELS for Subspace Estimation 46

3.3.3 Computational Complexity Analysis . 47

3.4 Performance Analysis . 48

3.5 Experiments . 53

3.5.1 Robust Subspace Tracking . 53

3.5.2 Robust Matrix Completion . 63

3.5.3 Video Background/Foreground Separation 64

3.6 Conclusions . 67

3.7 Appendix . 67

3.7.1 Proof of Lemma 1 . 67

3.7.2 Proof of Proposition 2 . 70

3.7.3 Proof of Lemma 2 . 73

ii

CONTENTS

3.7.4 Proof of Lemma 3 . 74

3.7.5 Proof of Lemma 4 . 76

4 Sparse Subspace Tracking in High Dimensions 78

4.1 Introduction . 79

4.1.1 Related Works . 80

4.1.2 Contribution and Significance . 81

4.1.3 Organization and Notations . 82

4.2 Problem Formulation . 82

4.3 Proposed Methods . 84

4.3.1 OPIT Algorithm . 84

4.3.2 OPIT with Deflation . 87

4.3.3 Discussions . 89

4.4 Convergence Analysis . 91

4.5 Experiments . 95

4.5.1 Experiments with Synthetic Data . 95

4.5.2 Experiments with Real Video Data . 100

4.6 Conclusions . 102

4.7 Appendix . 104

4.7.1 Appendix A: Proof of Lemma 1 . 104

4.7.2 Appendix B: Proof of Lemma 2 . 105

4.7.3 Appendix C: Proof of Lemma 3 . 107

4.7.4 Appendix D: Proof of Lemma 4 . 109

II Tensor Tracking 116

5 An Overview of Tensor Tracking 117

5.1 Introduction . 118

5.1.1 State-of-the-art Surveys . 119

5.1.2 Main Contributions . 121

5.2 Tensor Decompositions . 122

5.2.1 CP/PARAFAC Decomposition . 123

iii

CONTENTS

5.2.2 Tucker Decomposition . 123

5.2.3 Block-Term Decomposition . 124

5.2.4 Tensor-train Decomposition . 124

5.2.5 T-SVD Decomposition . 125

5.3 Tensor Tracking Formulation . 125

5.3.1 Single-aspect Streaming Model . 125

5.3.2 Multi-aspect Streaming Model . 127

5.3.3 General Formulation of Optimization . 128

5.4 Streaming CP Decomposition . 128

5.4.1 Subspace-based Methods . 128

5.4.2 Block-Coordinate Descent . 131

5.4.3 Bayesian Inference . 134

5.4.4 Multi-aspect streaming CP decomposition 136

5.5 Streaming Tucker Decomposition . 138

5.5.1 Online Tensor Dictionary Learning . 138

5.5.2 Tensor Subspace Tracking . 143

5.5.3 Multi-aspect streaming Tucker decomposition 147

5.6 Other Streaming Tensor Decompositions . 148

5.6.1 Streaming Tensor-Train Decomposition . 148

5.6.2 Streaming Block-Term Decomposition . 149

5.6.3 Streaming t-SVD Decomposition . 151

5.7 Applications . 152

5.7.1 Computer Vision . 152

5.7.2 Neuroscience . 153

5.7.3 Anomaly Detection . 153

5.7.4 Others . 154

5.8 Conclusions . 154

6 Robust Tensor Tracking with Missing Data and Sparse Outliers 155

6.1 Introduction . 156

6.1.1 Related Works . 157

6.1.2 Main Contributions . 159

iv

CONTENTS

6.2 Tensor Tracking with Missing Data . 160

6.2.1 Problem Statement . 160

6.2.2 Adaptive CP Decomposition . 162

6.2.3 Adaptive Tucker Decomposition . 168

6.3 Tensor Tracking with Sparse Outliers . 174

6.3.1 Problem Statement . 174

6.3.2 Robust Adaptive CP Decomposition . 176

6.3.3 Performance Analysis . 184

6.4 Performance Evaluation . 188

6.4.1 Performance of ACP . 189

6.4.2 Performance of ATD . 193

6.4.3 Performance of RACP . 199

6.5 Conclusions . 216

6.6 Appendix . 217

6.6.1 Appendix A: Proof of Lemma 9 . 217

6.6.2 Appendix B: Proof of Lemma 11 . 227

6.6.3 Appendix D: Proof of Lemma 12 . 231

6.6.4 Appendix D: Proof of Lemma 13 . 233

6.6.5 Appendix E: Useful Propositions . 237

7 Tensor Tracking under Tensor-Train Format 239

7.1 Introduction . 240

7.2 Streaming Tensor-Train Decomposition . 242

7.2.1 Problem Formulation . 242

7.2.2 Proposed Method . 243

7.3 Streaming Tensor-Train Decomposition with Missing Data 247

7.3.1 Problem Formulation . 247

7.3.2 Proposed Method . 248

7.4 Streaming Tensor-Train Decomposition with Sparse Outliers 252

7.4.1 Problem Formulation . 252

7.4.2 Proposed Method . 254

7.5 Experiments . 257

v

CONTENTS

7.5.1 Performance of TT-FOA . 257

7.5.2 Performance of ATT . 261

7.5.3 Performance of ROBOT . 266

7.6 Conclusions . 270

8 Conclusions 272

8.1 Conclusions . 272

8.2 Research Challenges, Open Problems, and Future Directions 274

8.2.1 Data Imperfection and Corruption . 274

8.2.2 Rank Revealing and Tracking . 276

8.2.3 Efficient and Scalable Tensor Tracking . 276

8.2.4 Others . 278

A Résumé de la Thèse 280

A.1 Traitement de Flux de Données Volumineuses . 280

A.1.1 Approximation de Rang Inférieur: Du SVD au Décomposition du Tenseur 282

A.1.2 Approximation de Rang Inférieur en Ligne: Du Sous-espace au Suivi Ten-
soriel . 286

A.2 Description de la Thèse . 288

A.2.1 Sommaire et Contributions de la Thèse 288

A.2.2 Liste des Publications . 292

Bibliography 294

vi

List of Figures

1.1 Internet of Things . 2

1.2 SVD of a rank-r matrix X. 7

1.3 Multiway extensions of SVD to high-order tensors: CP/PARAFAC, Tucker, BTD,
tensor-train, and t-SVD. 8

1.4 Streaming data. 11

1.5 Effect of outliers on the standard PCA. 12

1.6 Thesis structure. 13

2.1 The structure of the survey. 24

3.1 Adaptive step size ηt. 47

3.2 Convergence of PETRELS-ADMM in terms of the variation ∥sk+1 − sk∥2: n =

50, r = 2, 90% entries observed and outlier density ωoutlier = 0.1. 55

3.3 Convergence of PETRELS-ADMM in terms of the variation ∥Ut+1 −Ut∥F : n =

50, r = 2, 90% entries observed and outlier intensity fac-outlier = 10. 55

3.4 Outlier detection accuracy versus the noise level: n = 50, r = 2, 80% entries
observed and 20% outliers. 57

3.5 Outlier detection and data reconstruction: n = 50, r = 2, 90% entries observed,
outlier intensity fac-outlier = 1, and outlier density ωoutlier = 0.1. 58

3.6 Impact of outlier intensity on algorithm performance: n = 50, r = 2, 90% entries
observed, outlier density ωoutlier = 0.1 and SNR = 20 dB. 59

3.7 Impact of outlier density on algorithm performance: n = 50, r = 2, 90% entries
observed, outlier intensity fac-outlier = 10 and SNR = 20 dB. 60

3.8 Impact of the density of missing entries on algorithm performance: n = 50, r = 2,
outlier density ωoutlier = 0.1, outlier intensity fac-outlier = 10 and SNR = 20 dB. 61

3.9 Impact of the corruption fraction by missing data and outliers on algorithm per-
formance: n = 50, r = 2 and fac-outlier = 10 and SNR = 20 dB. 62

vii

LIST OF FIGURES

3.10 Impact of the additive noise on algorithm performance: n = 50, r = 2, 90% entries
observed and 10% outliers with intensity fac-outlier = 10. 63

3.11 PETRELS-ADMM in time-varying scenarios. 64

3.12 Effect of outlier intensity on robust matrix completion performance. White color
denotes perfect recovery, black color denotes failure and gray colour is in between. 65

3.13 Qualitative illustration of video background-foreground separation application. . 66

4.1 Effect of the forgetting factor β. 96

4.2 Effect of the noise level σn on performance of OPIT: sparsity level ωsparse = 90%,
time-varying factor ε = 10−4, and forgetting factor β = 0.9. 97

4.3 Effect of the time-varying factor ε on performance of OPIT: sparsity level ωsparse =

90%, noise level σ = 10−4, and forgetting factor β = 0.9. 98

4.4 Performance comparisons between OPIT and other SST algorithms in the classical
setting: dimension n = 50, snapshots T = 1000, and time-varying factor ε = 10−3. 99

4.5 Performance comparisons between OPIT and other SST algorithms in high dimen-
sions: target rank r = 10, snapshots T = 1000, and time-varying factor ε = 10−3. 100

4.6 OPITd versus OPIT: Run time. 101

4.7 Effect of the target rank r on performance of OPITd: dimension n = 100, snap-
shots T = 3000, time-varying factor ε = 10−3, sparsity level ωsparse = 90%,
forgetting factor β = 0.97, and two abrupt changes at t = 1000 and t = 2000. . . 101

4.8 Effect of the sparsity level ωsparse on performance of OPITd: dimension n = 100,
rank r = 20, snapshots T = 3000, time-varying factor ε = 10−3, forgetting factor
β = 0.97, and two abrupt changes at t = 1000 and t = 2000. 102

4.9 Four video sequences used in this chapter. 102

4.10 Tracking ability of algorithms on the video datasets. 103

4.11 OPIT vs the best optimal power-based subspace tracker FAPI: Data dimension
n = 100, true rank 10, number of snapshots T = 2000, forgetting factor β = 0.97,
abrupt changes at t = 500 and t = 1500. 112

4.12 Performance comparisons between OPIT and other ST algorithms in the classical
setting: dimension n = 50, snapshots T = 1000, time-varying factor ε = 10−3,
and the noise level σn = 10−1. 113

4.13 Performance comparisons between OPIT and other SST algorithms in high di-
mensions: target rank r = 10, snapshots T = 1000, time-varying factor ε = 10−3,
and the noise level σn = 10−1. 114

4.14 n = 50, T = 200: rank r = 10, time-varying ϵ = 10−3, sparsity 90%. 114

4.15 n = 1000, T = 500: rank r = 10, time-varying ϵ = 10−3, sparsity 90% 115

viii

LIST OF FIGURES

4.16 n = 2000, T = 2000: rank r = 20, time-varying ϵ = 10−3, sparsity 90% 115

4.17 n = 5000, T = 2000: rank r = 20, time-varying ϵ = 10−3, sparsity 90% 115

5.1 Structure of this chapter. 122

5.2 Single-aspect and multi-aspect streaming models. 126

5.3 Single-aspect streaming CP decomposition of a third-order tensor. 129

5.4 Multi-aspect streaming CP decomposition of a third-order tensor. 136

5.5 Online tensor dictionary learning. 138

5.6 Online tensor subspace learning. 143

5.7 Multi-aspect streaming Tucker decomposition of a three-order tensor. 146

5.8 Single-aspect streaming tensor-train decomposition. 148

5.9 Tracking the rank-(L,L, 1) BTD of 3-rd order streaming X t. 150

6.1 Incomplete streaming tensors. 161

6.2 Temporal slice Y t with missing data and sparse outliers. 174

6.3 Effect of the forgetting factor β on the performance of ACP versus the rotation
angle α. 190

6.4 Performance of ACP in stationary environments: Y t ∈ R20×20×20×1000, the true
rank r = 5, an abrupt change at t = 500. 191

6.5 Convergence behavior of ACP in terms of the objective values ft(U t) and ∥Ut+1−
Ut∥F . 192

6.6 Effect of the noise level σ on the performance of ACP. 193

6.7 Time-varying scenarios: ACP’s tracking ability versus the missing density ρ and
the rotation angle α: The noise level σ = 10−3 and an abrupt change at t = 600. 193

6.8 Tracking ability of four adaptive CP algorithms in a time-varying scenario with
50% missing observations: The tensor of size 20 × 20 × 1000, the noise level
σ = 10−3, the rotation angle α = π/360 and an abrupt change at t = 600. 194

6.9 Performance of four adaptive CP algorithms on synthetic 3-order tensors: The
noise level σ = 10−3 and the rotation angle α = π/360. 194

6.10 Performance of ATD versus the missing density ρ and the noise level σ: On the
4-order tensor of size 20× 20× 20× 500 and its Tucker rank rTD = [3, 3, 3, 3]. . . 195

6.11 Performance of Tucker algorithms in the case where 50% entries are observed and
Tucker rank rTD = [3, 3, 3, 3], and the noise level σ = 10−2. 197

ix

LIST OF FIGURES

6.12 Effect of the time-varying factor ε on the performance of ATD: Tucker rank
[3, 3, 3, 3], 90% entries are observed, the noise level is σ = 10−2 and an abrupt
change at t = 300. 198

6.13 Comparison of ATD and ATD-O (orthogonality constraint) in a dynamic scenario:
the time-varying factor ε = 10−2, the noise level σ = 10−3, 70% observations are
observed and an abrupt change at t = 300. 199

6.14 Effect of the forgetting factor β on the video completion accuracy of ACP and
ATC on Lobby data. 200

6.15 Performance of adaptive tensor completion algorithms on the video sequences. . 201

6.16 Waveform-preserving character of ACP on the EEG tensor: 20 channels are miss-
ing. 201

6.17 Waveform-preserving character of ACP on the EEG tensor: 40 channels are missing.203

6.18 Effect of data corruptions (outliers and missing values) on performance of RACP.
Black color denotes failure, white color denotes perfect estimation, and gray color
is in between. 203

6.19 Performance of RACP in time-varying environments. 204

6.20 Impact of outlier intensity (Aoutlier) on performance of adaptive CP algorithms;
ωmiss = 10%, ωoutlier = 20%, σ = 10−2, ε = 10−2. 205

6.21 Impact of outlier density (ωoutlier) on performance of adaptive CP algorithms:
ωmiss = 10%, σ = 10−2, ε = 10−2, Aoutlier = 10. 206

6.22 Non-Gaussian loading factors. 207

6.23 Outlier rejection with different trackers. 208

6.24 Convergence rate of RACP and its modification with the re-update of P t as defined
in (6.61): ωmiss = 10%, ωoutlier = 10%, Aoutlier = 10, σ = 10−2, and ε = 10−2. . 209

6.25 Incomplete observations & time-varying scenarios: Performance of NRACP on a
synthetic rank-5 tensor of size 50 × 50 × 50 × 500; σn = 10−3, Aoutlier = 10,
ωoutlier = 10%. 209

6.26 Nonnegative adaptive CP decompositions: Outliers-free, full observations and an
abrupt change at t = 600. 210

6.27 Experimental results on the Intel Berkeley Lab data. 210

6.28 Completion accuracy of adaptive CP algorithms on real-world data streams. . . . 211

6.29 Epileptic EEG Dataset. 212

6.30 First component of EEG factors when 40/60 EEG channels are missing. 214

6.31 The error et over time with α = 1.5 and Lt = t. Normal data which are inaccu-
rately labelled as abnormal are referred to as “false positive”. 215

x

LIST OF FIGURES

6.32 Three video surveillance sequences. 216

6.33 Qualitative illustration of video background modeling results. 217

6.34 Qualitative illustration of video foreground detection results. 218

7.1 Tensor-train decomposition of X ∈ RI1×I2×···×IN 241

7.2 Streaming Tensor-Train Decomposition of X t ∈ RI1×I2×···×IN−1×ItN 242

7.3 Temporal slice Y t with missing data and outliers. 253

7.4 Effect of the forgetting factor β on the performance of TT-FOA. 258

7.5 Effect of the noise level ϵ on the performance of TT-FOA. 258

7.6 Effect of the time-varying factor σ on the performance of TT-FOA in the case of
noise-free. 260

7.7 Performance of three TT decomposition algorithms in a time-varying scenario:
The noise level ϵ = 10−1 and the time variance factor σ = 10−4. 260

7.8 Track surveillance video: TT-rank rTT = [15, 15] and CP-rank rCP = 15. 261

7.9 Reconstructed 1345-th frame. 262

7.10 Effect of TT-rank on the low-rank approximation of fMRI scans: (a) original MRI
scan, (b)-(d) low-rank approximation images for rTT of [10, 10], [20, 20] and [50, 50]

respectively. 263

7.11 Effect of the noise level σn on the tracking ability of ATT. 264

7.12 Effect of the time-varying factor ε on the tracking ability of ATT. 265

7.13 Effect of the missing density ωmiss on the tracking ability of ATT. 265

7.14 The 500-th video frame of “Hall” data: 80% pixels are missing. 266

7.15 Effect of the noise level σn on the performance of ROBOT. 268

7.16 Effect of the varying factor ϵ on the performance of ROBOT. 269

7.17 Effect of the missing density ωmiss on the tracking ability of ROBOT. 269

7.18 Effect of the outliers on the tracking ability of ROBOT. 270

7.19 Background and foreground separation. From bottom to top row: Highway, Hall,
and Lobby. From left to right column: Original video frame, PETRELS-ADMM,
GRASTA, and ROBOT. 271

A.1 SVD d’une matrice X. 282

A.2 Multiway extensions of SVD to high-order tensors: CP/PARAFAC, Tucker, BTD,
tensor-train, and t-SVD. 284

A.3 Données en continu. 287

xi

LIST OF FIGURES

A.4 Effet des valeurs aberrantes sur la norme PCA 288

A.5 Structure de la thèse . 289

xii

List of Tables

1.1 Main differences between batch processing and stream processing 3

2.1 Surveys on PCA/SE and ST . 22

2.2 Robust subspace tracking algorithms in the presence of both missing data and
sparse outliers. 26

2.3 Robust subspace tracking algorithms in the presence of impulsive noise. 29

2.4 Robust subspace tracking algorithms in the presence of colored noise. 30

2.5 Sparse subspace tracking algorithms . 31

4.1 Runtime and averaged relative error of adaptive algorithms on tracking the four
video sequences. 104

5.1 The State-of-the-art Surveys on Tensor Decompositions and Applications 120

5.2 Main features of the state-of-the-art single-aspect streaming CP decomposition
algorithms. 130

5.3 Main features of multi-aspect streaming CP decomposition algorithms. 138

5.4 Main features of the state-of-the-art streaming Tucker decomposition algorithms. 139

6.1 Performance of Tucker algorithms on a static 4-order tensor of size 20×20×20×500
and the noise level σ = 10−2. 196

6.2 Performance of adaptive tensor decompositions on video data. 202

6.3 Real datasets under the study. 208

6.4 Averaged errors of adaptive CP algorithms for multichannel EEG analysis from
incomplete observations. 213

6.5 Anomaly EEG detection results. Sensitivity and specificity measure the percent-
age of anomaly and normal data detected correctly, respectively. Accuracy indi-
cates the overall. 215

xiii

LIST OF TABLES

7.1 Averaged relative error of adaptive tensor decompositions on incomplete video
sequences. 267

A.1 Principales différences entre le traitement par lots et le traitement des flux 281

xiv

Acronyms

ADMM Alternating Direction Method of Multipliers

ALS Alternating Least-Squares

BCD Block-Coordinate Descent

BTD Block-term Decomposition

CANDECOMP Canonical Decompostion

CP CANDECOMP/PARAFAC

EVD Eigenvalue Decomposition

FFT, iFFT Fast Fourier transform and its inverse

HDLSS High Dimension and Low Sample Size

HOOI Higher Order Orthogonal Iteration

HOSVD Higher-Order SVD

IoT Internet of Things

LRA Low-rank Approximation

PARAFAC Parallel Factors

PCA Principal Component Analysis

RE Relative Error

RLS Recursive Least Squares

SCM Sample Covariance Matrix

SEP Subspace Estimation Performance

ST Subspace Tracking

SVD Singular Value Decomposition

TD Tensor Decomposition

T-SVD Tensor SVD

TT Tensor Train

xv

Notations

R (resp. C) set of real (resp. complex) numbers

x,x,X,X , and X scalar, vector, matrix, tensor, and set/subset/support

xi,j/X(i, j)/[X]ij (i, j)-th entry of X

xi1,...,iN /X(i1, . . . , iN)/[X]i1...iN (i1, . . . , iN)-th entry of X

x = vec(X) vectorization of X

X = diag(x) diagonal matrix X with x on the main diagonal

X(i, :),X(:, j) i-th row and j-th column of X

X⊤, X−1 X# transpose, inverse, and pseudo-inverse of X

λmax(X), λmin(X) largest and smallest singular values of X

κ(X) condition number of X equal to λmax(X)
λmin(X)

rank(X) rank of X

span(X) the column space of a tall matrix X

tr(X) trace of X

θ(X,Y) canonical angle between span(X) and span(Y)

In n× n identity matrix

U(n) n-th loading factor/matrix

X(n), unfoldn(X) mode-n unfolding of X

Y = bcirc(X) block circulant tensor Y specified by X

◦, ⊛, ⊙, ⊗ outer, Hadamard, Khatri-Rao, and Kronecker product⊙N
n=1U

(n) U(N) ⊙U(N−1) ⊙ · · · ⊙U(1)⊗N
n=1U

(n) U(N) ⊗U(N−1) ⊗ · · · ⊗U(1)

X ×n U n-mode product of X with U,

X ×1
n Y mode-(n, 1) contracted product of X with Y

X ⊞n Y concatenation of X with Y along the n-th mode

xvi

Notations
X ∗Y t-product of X with Y

X ⊆ Y X is a sub-tensor of Y
q
{U(n)}Nn=1

y ∑r
i=1U

(1)(:, i) ◦U(2)(:, i) ◦ · · · ◦U(N)(:, i)
q
X ; {U(n)}Nn=1

y
X ×1 U

(1) ×2 U
(2) ×3 · · · ×N U(N)

∥.∥F , ∥.∥p, ∥.∥∗ Euclidean norm, ℓp norm, and nuclear norm

⌊x⌉ integer closest to x

max{x, y},min{x, y} maximum and minimum of x and y

(.)⊥ orthogonal (perpendicular) complement

E[.] expectation operator

∼ distributed as

∝ proportional to

N (µ, σ2) Gaussian distribution of mean µ and variance σ2

N (µ,Σ) Gaussian vector distribution of mean µ and variance Σ

xvii

Chapter 1

General Introduction

Contents

1.1 Big Data Stream Processing . 1

1.1.1 Vector, Matrix, and Tensor Operations 3

1.1.2 Batch Low-rank Approximation: From SVD to Tensor Decomposition . 6

1.1.3 Online Low-rank Approximation: From Subspace to Tensor Tracking . . 10

1.2 Thesis Description . 12

1.2.1 Thesis Outline and Contributions . 12

1.2.2 List of Publications . 15

1.1 Big Data Stream Processing

Stream processing has recently attracted much attention from both academia and industry due

to the fact that massive data streams have been increasingly collected over the years and they

can be smartly mined to discover new insights and valuable information [1–3]. For example,

we are living in the Internet of Things (IoT) era where a huge number of sensing devices have

been installed and developed, see Fig. 1.1. These devices have the capability to collect, manage,

and transmit data via IoT networks in real time. Accordingly, stream processing is required to

retrieve important insights from such IoT data in seconds or even faster for facilitating real-time

decision making [4].

In many modern online applications, data streams have three “V”-characteristics: Volume,

Velocity, and Veracity. As they are continuously generated, their volume grows significantly over

time and possibly to infinity. Thus, one of the most notable features of streaming data is that

they are unbounded sequences of data samples. Velocity refers to the high-speed data arrival

rate and real-time processing. Data collected from user interactions in social networks (e.g.,

Facebook, Instagram, and Twitter) are, for example, at very high velocity. Veracity implies the

1

1.1. BIG DATA STREAM PROCESSING

Internet of

Things

Figure 1.1: Internet of Things

suitability, credibility, and trustworthiness of data streams. More specifically, this characteristic

relates to the biasedness, noise, uncertainty, incompleteness, and abnormality in data. Apart

from the three “V”s, streaming data have some other distinctive characteristics, including time

sensitivity/variation (aka concept drift), heterogeneity (different sources with diversity of data

types), volatile and unrepeatable property, and so on [2, 3, 5, 6]. These characteristics lead to

several inherent requirements and computational issues for stream processing, such as:

• Low latency: Stream methods and systems need to efficiently acquire, manage, and process

flows of data without introducing additional delays.

• Low memory storage: Stream methods and systems must have the ability to operate in an

online fashion with limited memory resources.

• Scalability: As streaming data normally grow in size much faster than computational re-

sources, stream processing requires scalable methods and systems.

• Time variation: As streaming data can evolve with time, stream methods and systems are

required to be capable of tracking their variation along the time.

• Robustness: In many cases, streaming data are imperfect and unreliable, so stream methods

and systems should have the potential to estimate and compute answers from corrupted

observations.

They are, however, also potential benefits of stream processing against batch processing, we refer

the readers to Table. 1.1 for a brief comparison between the two kinds of processing.

In this work, we mainly focus on stream methods which are capable of tracking the low-rank

approximation (LRA) of big data streams over time. Technically, the primary objective of the

2

1.1. BIG DATA STREAM PROCESSING

Table 1.1: Main differences between batch processing and stream processing

Features Batch Processing Stream Processing

Input Large batches/chunks of data (Continuous) streams of data

Data size Known and finite Unknown and/or infinite

Data type Static Dynamic/time-varying

Processing
Process data all at once Process data streams in (near) real time
Process in multiple passes Process in one- or two-pass

Response Provide after completion Provide immediately

Hardware
Require much storage Require much less storage or no storage
Require much processing resources Require much less processing resources

Time Take longer time, latencies
Take a few seconds or faster

in minutes to hours

LRA is to approximate high-dimensional data by a more compact low-dimensional represen-

tation with limited loss of information [7]. Therefore, finding the LRA is a fundamental and

essential task for data mining in general and streaming data analytics in particular. For the

sake of convenience and convention, in what follows, we first list some linear and multilinear

algebraic operations (for vectors, matrices, and tensors) that are frequently used throughout this

manuscript. Next, we introduce one of the most well-known linear algebra techniques for finding

the LRA of matrices in batch setting, singular value decomposition (SVD), and then describe its

connection to some common types of tensor decomposition (TD). Finally, we present their online

(adaptive) variants for dealing with streaming data derived from one-dimensional observations

(i.e., SVD → subspace tracking) and multi-dimensional observations (i.e., tensor decomposition

→ tensor tracking).

1.1.1 Vector, Matrix, and Tensor Operations

In this thesis, we use the following notational conventions. Lowercase, boldface lowercase, and

boldface capital letters denote scalars (e.g., x), vectors (e.g., x), and matrices (e.g., X), respec-

tively. Calligraphic and bold calligraphic letters are used to represent sets/subsects/supports

(e.g., X) and tensors (e.g., X), respectively. For index notations, we use xi or x(i) to denote

the i-th element of x. The (i, j)-th element, the i-th row, and the j-th column of X are denoted

by xi,j or X(i, j), Xi,: or X(i, :), and X:,j or X(:, j), respectively. We denote by X⊤, X−1, and

X# the transpose, inverse, and pseudo-inverse of X, respectively. The (i1, i2, . . . , iN)-th element

of X is represented by xi1,i2,...,iN , X (i1, i2, . . . , iN), or [X]i1,i2,...,iN . In addition, X :,...,:,in,:,...,: or

X (:, . . . , :, in, :, . . . , :) represents a sub-tensor of X obtained by holding the n-th index of X at

in. The mode-n matricization of X is denoted by X(n). Symbols ∥.∥p and ∥.∥F represent the ℓp

3

1.1. BIG DATA STREAM PROCESSING

norm and Frobenius norm. In the following, we summarize some useful linear and multilinear

algebraic operations, to be used later.

Outer product : Given two vectors x ∈ RN×1 and y ∈ RM×1, their outer product is defined as

follows

x ◦ y =

x1y1 x1y2 . . . x1yM

x2y1 x2y2 . . . x2yM
...

...
. . .

...

xNy1 xNy2 . . . xNyM

=
[
y1x y2x . . . yMx

]
∈ RN×M . (1.1)

For a generalized case, the outer product of two tensors X ∈ RI1×I2×···×IN and Y ∈ RJ1×J2×···×JM

yields a tensor Z = X ◦Y ∈ RI1×···×IN×J1×···×JM with elements

Z(i1, i2, . . . , iN , j1, j2, . . . , jM) = X (i1, i2, . . . , iN)Y(j1, j2, . . . , jM). (1.2)

Kronecker product : Given two matrices X ∈ RN×M and Y ∈ RP×Q, the Kronecker product

of X and Y results in an NP ×MQ matrix of the following form

X⊗Y =

x1,1Y x1,2Y . . . x1,MY

x2,1Y x2,2Y . . . x2,MY

...
...

. . .
...

xN,1Y xN,2Y . . . xN,MY

∈ RNP×MQ. (1.3)

Khatri-Rao product (aka Column-wise Kronecker product): Given two matrices Y ∈ RN×r

and Y ∈ RM×r, their Khatri-Rao product is an NM × r matrix of the following form

X⊙Y =
[
X(:, 1)⊗Y(:, 1) X(:, 2)⊗Y(:, 2) . . . X(:, r)⊗Y(:, r)

]
∈ RNM×r. (1.4)

For short, we denote the Kronecker product and Khatri-Rao product of a sequence of matrices

{U(n)}Nn=1 as follows

N⊗
n=1

U(n) = U(N) ⊗U(N−1) ⊗ · · · ⊗U(1), (1.5)

N⊙
n=1

U(n) = U(N) ⊙U(N−1) ⊙ · · · ⊙U(1). (1.6)

Tensor unfold and fold operations: The unfold of X ∈ RI1×I2×···×IN , written as unfold(X),

4

1.1. BIG DATA STREAM PROCESSING

returns a tensor Z of lower order:

Z = unfold
(
X
)
=

X :,...,:,1

X :,...,:,2

...

X :,...,:,IN

∈ RI1IN×I2×I3×···×IN−1 . (1.7)

Its inverse operator denoted by fold(Z) reshapes Z back to X as fold
(
unfold(X)

)
= X .

Tensor concatenation: The concatenation of two tensors X ∈ RI1×I2×···×IN and Y ∈ RI1×···×IN−1×W

along the last dimension results in Z = X ⊞Y ∈ RI1×···×IN−1×(IN+W) with elements

Z(i1, i2, . . . , iN) =

X (i1, i2, . . . , iN), if iN ≤ IN ,

Y(i1, i2, . . . , iN), if IN +W ≥ iN > IN .
(1.8)

Mode-n product : The mode-n product of a tensor X ∈ RI1×I2×···×IN with a matrix U ∈ RJ×In

returns a tensor Z = X ×n U ∈ RI1×···×In−1×J×In+1×···×IN with elements

Z(i1, . . . , in−1, j, in+1, . . . , iN) =

In∑
in=1

X (i1, . . . , in−1, in, in+1, . . . , iN)U(j, in). (1.9)

The mode-n product of X with N matrices {U(n)}Nn=1 along all N modes is denoted as

r
X ,
{
U(n)

}N
n=1

z
= X ×1 U

(1) ×2 U
(2) ×3 · · · ×N U(N). (1.10)

Mode-(N, 1) product (aka tensor-train contraction): The mode-(N, 1) product of X ∈ RI1×I2×···×IN

with Y ∈ RIN×J2×···×JM , written as X ×1
N Y , results in a tensor Z ∈ RI1×···×JN−1×J2×···×JM

with elements

Z(i1, . . . , iN−1, j2, . . . , jM) =

IN∑
iN=1

X (i1, . . . , iN−1, iN)Y(iN , j2, . . . , jM). (1.11)

T-product : The t-product of X ∈ RI1×I2×···×IN and Y ∈ RI2×J×I3×···×IN , written as X ∗ Y ,

returns an I1 × J × I3 × · · · × IN tensor Z of the recursive form

Z = X ∗Y = fold
(
bcirc(X) ∗ unfold(Y)

)
, (1.12)

5

1.1. BIG DATA STREAM PROCESSING

where circ(.) is a block circulant tensor defined as

bcirc(U) =

U1 U IN U IN−1
. . . U2

U2 U1 U IN . . . U3

...
. . .

. . .
. . .

...

U IN U IN−1
. . . U2 U1

, (1.13)

where U i = U :,...,:,i and the base case of the t-product of two 3-order tensors A ∈ RJ1×J2×J3 and

B ∈ RJ2×K×J3 is defined as

A ∗B = fold
(
bcirc(A) · unfold(B)

)
∈ RJ1×K×J3 . (1.14)

Inner product : Given two tensors X and Y of the same size I1 × I2 × · · · × IN , their inner

product is defined as

〈
X ,Y

〉
=

I1∑
i1

I2∑
i2

· · ·
IN∑
iN

X (i1, i2 . . . , iN)Y(i1, i2 . . . , iN). (1.15)

1.1.2 Batch Low-rank Approximation: From SVD to Tensor Decomposition

It is very well known that SVD is one of the most powerful and widely-used linear algebra

techniques with a number of applications in various domains [8, 9]. Particularly, the compact

SVD of a rank-r matrix X ∈ RI1×I2 is given by

X
SVD
=
[
u1,u2, . . . ,ur

]
︸ ︷︷ ︸

U

λ1

λ2
. . .

λr

︸ ︷︷ ︸

Λ

v⊤
1

v⊤
2

...

v⊤
r

︸ ︷︷ ︸
V⊤

=
r∑

i=1

λiuiv
⊤
i , (1.16)

where U ∈ RI1×r and V ∈ RI2×r are unitary matrices; and Λ ∈ Rr×r is a diagonal matrix whose

diagonal values are positive, i.e., λ1 ≥ λ2 ≥ · · · ≥ λr > 0, see Fig. 1.2 for an illustration. For the

problem of low-rank approximation in batch setting, the following theorem indicates that SVD

can give the best LRA for any matrix X.

6

1.1. BIG DATA STREAM PROCESSING

 1 r

1u
1v

X U

V

 rv

ru

Figure 1.2: SVD of a rank-r matrix X.

Theorem 1 (Eckart-Young-Mirsky Theorem [9]). Denote by X = UΛV⊤ the SVD of

X ∈ RI1×I2. If k ≤ rank(X) and Xk =
∑k

i=1 λiuiv
⊤
i , then

min
A∈RI1×I2

rank(A)≤k

∥∥X−A
∥∥ =

∥∥X−Xk

∥∥, (1.17)

with respect to both the spectral norm and Frobenius norm.

Thanks to Theorem 1, the best rank-k approximation of X can be obtained by applying the

following procedure:

• Step 1 : Compute X
SVD
= UΛV⊤, where U ∈ RI1×I1 and V ∈ RI2×I2 are unitary matrices,

and the diagonal matrix Λ ∈ RI1×I2 contains positive diagonal entries in descending order.

• Step 2 : Select the first k singular vectors from U and V to form the following matrices
Uk = U(:, 1 : k) and Vk = V(:, 1 : k).

• Step 3 : Select the top k strongest singular values in Λ to form: Λk = Λ(1 : k, 1 : k).

• Step 4 : Derive the best rank-k approximation of X from: Xk = UkΛkV
⊤
k .

When dealing with tensors (aka, multidimensional arrays), several multiway extensions of

the SVD have been developed for tensor decomposition (TD) in the literature [10–13]. The five

common types of TD are CP/PARFAC [14], Tucker/HOSVD [15], tensor-train/network [16],

t-SVD [17], and block-term decomposition (BTD) [18], see Fig. 1.3 for illustrations. Specifically,

they aim to factorize a tensor into a set of basis components (e.g., vectors, matrices, or simpler

tensors) and hence offer good low-rank tensor approximations. In the following, we describe their

connection to SVD and refer the readers to Chapter 5 for further details on their main features,

properties, and algorithms.

CP/PARAFAC Decomposition: Similar to SVD that represents X by a sum of rank-1 matrices

(i.e., λiuiv
⊤
i), the CP decomposition also factorizes a tensor X ∈ RI1×I2×···×IN into rank-1 terms:

X CP
=

r∑
i=1

λi u
(1)
i ◦ u

(2)
i ◦ · · · ◦ u

(N)
i︸ ︷︷ ︸

rank-1 term

, (1.18)

7

1.1. BIG DATA STREAM PROCESSING

(1)
U (2)

U

(
)N

U

1 2

N

G

X (2) (: 1),U

(
) (:

)

N

,r

U

(2) (:),rU

(1) (:),rU

(2)

1U

1

2

N

1G
(1)

1U

()

1

N
U

 VG 1

1
1

2
1

N
(1)

G
(2)

G (1)N
G

()N
G1

1N

(1) (: 1),U

CP/PARAFAC

X

Tensor-Train

X

Tucker/HOSVD

T-SVD

X

(2) (:),rU

(1) (: 2),U

(
) (:

2
)

N

,

U
BTD

X

(2)

2U

1

2

N

2G
(1)

2U

()

2

N
U

(2)

rU

1

2

N

rG
(1)

rU

()N

rU

(
) (:

1)

N

,

U

U

Figure 1.3: Multiway extensions of SVD to high-order tensors: CP/PARAFAC, Tucker, BTD,
tensor-train, and t-SVD.

where u
(n)
i ∈ RIn×1 with 1 ≤ n ≤ N plays the same role as singular vectors of U and V in the

SVD model (1.16) (note that uiv
⊤
i = ui ◦ vi) [14]. The matrix U(n) =

[
u
(n)
1 ,u

(n)
2 , . . . ,u

(n)
r

]
is

the n-th CP factor of X and it is not required to be orthogonal. Following the general definition

of matrix rank, the smallest integer r satisfying (1.18) is referred to as the tensor (CP) rank of

X . Under certain conditions, CP decomposition is essentially unique up to a permutation and

scale which is an useful property in many applications.

Tucker/HOSVD Decomposition: Apart from the classical form (1.16), we can express the

SVD of X as follows

X
SVD
= UΛV⊤ = Λ︸︷︷︸

core

×1U×2 V︸ ︷︷ ︸
2 factors

. (1.19)

Accordingly, a direct multiway extension of (1.19) to high-order tensors can be given by

X Tucker
= G︸︷︷︸

core

×1U
(1) ×2 U

(2) ×3 · · · ×N U(N)︸ ︷︷ ︸
N factors

, (1.20)

where the core G ∈ Rr1×r2×···×rN is a tensor of smaller size than X (i.e., rn ≤ In ∀n) and N tensor

factors {U(n)}Nn=1, U
(n) ∈ RIn×rn are orthogonal matrices. The representation model (1.20) is

regarded as the high-order SVD (HOSVD) or Tucker format [15]. Unlike the SVD and CP,

8

1.1. BIG DATA STREAM PROCESSING

Tucker/HOSVD is not unique in general. However, as the subspace covering U(n) is physically

unique, its main objective is for finding principal subspaces of the tensor factors [11].

Block-Term Decomposition: BTD factorizes X into several blocks of low multilinear-rank

instead of rank-1 terms

X BTD
=

r∑
i=1

Gi ×1 U
(1)
i ×2 U

(2)
i ×3 · · · ×N U

(N)
i︸ ︷︷ ︸

low multilinear-rank term

. (1.21)

The BTD can be viewed as a unification and generalization of the two well-known CP and

Tucker decompositions. Specifically, when {Gi}ri=1 are diagonal tensors, BTD boils down to the

CP decomposition. It has the form of Tucker decomposition when only one block term (i.e.,

r = 1) is considered. In addition, several appealing features of the BTD are inherited from CP

and Tucker such as stable computation of Tucker, identification and uniqueness of CP [18]. In

parallel, it is worth recalling a remark in [18] that “the rank of a higher-order tensor is actually

a combination of the two aspects: one should specify the number of blocks and their size”. That

means BTD provides a unified approach to generalize the concept of matrix rank to tensors.

Tensor-Train Decomposition: Together with (1.16) and (1.19), we can write the SVD of X as

X(i1, i2)
SVD
=

r∑
k=1

λkU(i1, k)V(k, i2). (1.22)

Accordingly, each element of a high-order tensor X can be represented by

X (i1, i2, . . . , iN)
TT
=

r1,r2,...,rN−1∑
k1,k2,...,kN−1

G1(1, i1, k1)G2(k1, i2, k2) . . .GN (kN−1, iN , 1). (1.23)

where Gn is an rn−1 × In × rn tensor with n = 1, 2, . . . , N − 1 and r0 = rN = 1. We refer to the

representation model (1.23) as tensor-train (TT). Like CP, the TT format offers a memory-saving

model for representing high-order tensors. Like Tucker, the TT decomposition and the TT rank

r = [r1, r2, . . . , rN−1] of any tensor X can be numerically computed in a stable and efficient way.

t-SVD Decomposition: Last but not least, another extension of SVD to high-order tensors is

the tensor SVD (t-SVD) which is of the following form:

X t-SVD
= U︸︷︷︸

orthogonal

∗ G︸︷︷︸
f -diagonal

∗ V︸︷︷︸
orthogonal

, (1.24)

where U and V are unitary tensors, and G is a rectangle f -diagonal tensor whose frontal slices

are diagonal matrices [17]. Intuitively, the t-SVD model (1.24) shares the similar form with

the SVD in (1.16). However, due to the t-product “ ∗ ”, the algebraic framework used in the

t-SVD is quite different from the classical (multi)-linear algebra in other types of TD and SVD.

9

1.1. BIG DATA STREAM PROCESSING

For example, most of its computations are performed in the Fourier domain. Under the t-SVD

format, the tubal-rank which is equal to the number of non-zero tubes of G is used to define the

LRA of tensors in the same manner as the SVD.

1.1.3 Online Low-rank Approximation: From Subspace to Tensor Tracking

In online setting, data samples are continuously collected with time. Accordingly, recomputing

the batch LRA methods (e.g., SVD or batch TD algorithms) at each time step becomes inefficient

due to their high complexity and the time variation, aka concept/distribution drift. This has led

to defining a variant of the LRA called online (adaptive) LRA in which we may want to track

the underlying process that generates streaming data with time.

When observations arriving at each time are one-dimensional (i.e., vectors), the main interest

in the online LRA is to estimate the principal subspace that compactly spans these observations

over time. Specifically, it is referred to as the problem of subspace tracking (ST) in signal

processing which has been developed for over three decades [19–21]. In general, on the arrival

of the new data yt ∈ RI1×1 at time t, the subspace matrix Ut ∈ RI1×r can be derived from

analysing the spectrum of the following covariance matrix

Ct =
t∑

τ=t−Lt+1

βt−τyτy
⊤
τ , (1.25)

where Lt is the window length and 0 < β ≤ 1 is the forgetting factor [20]. When Lt = t and

β = 1, Ct in (1.25) boils down to the classical sample covariance matrix. More specifically, in

a connection to the batch LRA using SVD, the vector yt can be seen as the t-th column of the

underlying matrix Xt = [Xt−1 yt], see Fig. 1.4 for an illustration. The subspace matrix Ut

plays a role as the left singular vector matrix of Xt, while the coefficient vector wt = U⊤
t yt is

indeed the t-th row of the matrix VΛ in the SVD expression (1.16). Depending on the choice of

Ct and the subspace estimation technique, we can obtain several subspace tracking algorithms.

When observations arriving at each time are multidimensional (i.e., tensors), the online LRA

turns out to be tensor tracking which can be considered as a generalization of subspace tracking.

In particular, we wish to estimate the tensor dictionary (e.g., core tensor(s) and tensor factors)

that generates the underlying streaming data X t over time:

X t =

X t−1 ⊞Y t if single-aspect streaming

X t−1 ∪Y t if multi-aspect streaming
, (1.26)

where “ ⊞ ” and “ ∪ ” denote the tensor concatenation and union operator, while X t−1 and

Y t represent the old and new observations, respectively. The “single-aspect streaming” model

and the “multi-aspect streaming” model are, respectively, dedicated to represent data streams

10

1.1. BIG DATA STREAM PROCESSING

1tX

tX

Yt1tX

X t

ty

Old Observations New Data

Matrix Tensor

At time t

1X t

X t

1
Yt

2
Yt

3
Yt

Figure 1.4: Streaming data.

having one dimension and multiple dimensions varying with time. When new data samples

arrive, the tensor dictionary of X t should be incrementally updated without reusing the batch

TD algorithms. Similar to subspace tracking, we can also obtain many tensor tracking algorithms

based on different tensor formats, streaming models, and optimization techniques. The readers

are referred to Chapter 5 for a comprehensive overview of the state-of-the-art tensor tracking

algorithms.

In recent years, the explosion of big data streams have posed significant challenges to the

online LRA problem. For example, efficiency and robustness are highly important when we

deal with streaming data in high dimensions. Many theoretical results in random matrix theory

(e.g., [22–24]) indicated that the sample covariance matrix (SCM) is not an efficient estimator

of the actual covariance matrix in the high-dimension, low-sample-size regime where datasets

are massive in both dimension and sample size. However, most of the state-of-the-art subspace

tracking methods in the literature are mainly based on the spectral analysis of the SCM, and

thus, they are not effective in such a regime. In parallel, sparse outliers and missing data

become more and more ubiquitous in modern streaming applications [6]. Sparse outliers are

data points that appear to be inconsistent with or exhibit abnormal behaviour different from

others. Missing data are often encountered during the acquisition and collection. Both sparse

outliers and missing data can cause several issues for knowledge discovery from data in general

and data streams in particular, see Fig. 1.5 for an illustration of outlier’s impact on the standard

principal component analysis (PCA) which specifically uses SVD in its computation. Therefore,

it requires robust algorithms capable of dealing with such data corruptions with time. In addition,

scalable tracking algorithms are always desirable for handling modern data streams, especially

dealing with large-scale and high-multidimensional data streams. As indicated later, most of

11

1.2. THESIS DESCRIPTION

True Principal Component (PC)
Estimated PC

Inlier

Outlier

O Ox

y

x

y
Outlier points

Figure 1.5: Effect of outliers on the standard PCA.

the existing tracking algorithms are of high complexity with respect to both computation and

memory storage. Accordingly, it is essential to develop efficient and scalable tracking techniques

of low cost. In this work, we aim to develop efficient and effective tracking algorithms which

have the capability to deal with such challenges.

1.2 Thesis Description

1.2.1 Thesis Outline and Contributions

The rest of my thesis is organized into two major parts addressing respectively subspace tracking

and tensor tracking, followed by the conclusion and outlook, please see Fig. A.5 for an overview.

Part I: Subspace Tracking

In Chapter 2, we provide a brief survey on recent robust subspace tracking algorithms which were

mostly developed over the last decade. Particularly, we begin by introducing the basic ideas of

the subspace tracking problem. We then highlight main classes of algorithms for dealing with

non-Gaussian noises (e.g., sparse outliers, impulsive noise, and colored noise). Recent years have

also witnessed the widespread of high-dimensional data analysis in which sparse representation-

based methods are successfully applied to many signal processing applications. Accordingly, the

state-of-the-art sparse subspace tracking algorithms are also reviewed therein.

In Chapter 3, we propose a novel algorithm, namely PETRELS-ADMM, to deal with subspace

tracking in the presence of outliers and missing data. The proposed approach consists of two

main stages: outlier rejection and subspace estimation. In the first stage, alternating direction

12

1.2. THESIS DESCRIPTION

SUBSPACE
TRACKING

An Overview of Robust
Subspace Tracking

Robust Subspace Tracking with
Missing Data and Outliers

Sparse Subspace Tracking In
High Dimensions

TH
ES

IS
 S

TR
U

C
TU

R
E

PART I

Chapter 2

Chapter 3

Chapter 4

TENSOR
TRACKING

An Overview of Tensor
Tracking

Robust Tensor Tracking with
Missing Data and Outliers

Tensor Tracking under Tensor-
Train Format

PART II

Chapter 5

Chapter 6

Chapter 7

Conclusion and Outlook
Chapter 9

Chapter 1
Introduction

INTRODUCTION

CONCLUSION

Figure 1.6: Thesis structure.

method of multipliers (ADMM) is effectively exploited to detect outliers affecting the observed

data. In the second stage, we propose an improved version of the parallel estimation and track-

ing by recursive least squares (PETRELS) algorithm to update the underlying subspace in the

missing data context. We then present a theoretical convergence analysis of PETRELS-ADMM

which shows that it generates a sequence of subspace solutions converging to the optimum of its

batch counterpart. The effectiveness of the proposed algorithm, as compared to state-of-the-art

algorithms, is illustrated on both simulated and real data.

In Chapter 4, we develop a new provable effective method called OPIT for tracking the sparse

principal subspace of data streams over time. Particularly, OPIT introduces a new adaptive

variant of power iteration with space and computational complexity linear to the data dimension.

13

1.2. THESIS DESCRIPTION

In addition, a new column-based thresholding operator is developed to regularize the subspace

sparsity. Utilizing both advantages of power iteration and thresholding operation, OPIT is

capable of tracking the underlying subspace in both classical regime and high dimensional regime.

We also present a theoretical result on its convergence to verify its consistency in high dimensions.

Several experiments are carried out on both synthetic and real data to demonstrate the tracking

ability of OPIT.

Part II: Tensor Tracking

In Chapter 5, we provide a contemporary and comprehensive survey on different types of tensor

tracking techniques. We particularly categorize the state-of-the-art methods into three main

groups: streaming CP decompositions, streaming Tucker decompositions, and streaming de-

compositions under other tensor formats (i.e., tensor-train, t-SVD, and BTD). In each group,

we further divide the existing algorithms into sub-categories based on their main optimization

framework and model architectures. Specifically, four main groups of streaming CP decomposi-

tion algorithms were emphasized, including subspace-based, block-coordinate descent, Bayesian

inference, and multi-aspect streaming decompositions. We categorized the current streaming

Tucker decomposition methods into three major classes based on their model architecture. They

are online tensor dictionary learning, tensor subspace tracking, and multi-aspect streaming de-

compositions. Finally, a brief survey on the existing methods which are capable of tracking

tensors under TT, BTD, and t-SVD formats is presented.

In Chapter 6, we propose three novel adaptive algorithms for tracking higher-order streaming

tensors with time, including ACP, ATD, and RACP. Under the CP format, ACP minimizes an

exponentially weighted recursive least-squares cost function to obtain the tensor factors in an

efficient way, thanks to the alternative minimization framework and the randomized sketching

technique. Under the Tucker format, ATD first tracks the underlying low-dimensional subspaces

covering the tensor factors, and then estimates the core tensor using a stochastic approximation.

Both the two algorithms ACP and ATD are fast and fully capable of tracking streaming tensors

from incomplete observations. When observations are corrupted by sparse outliers, we introduce

the so-called RACP algorithm robust to gross corruptions. Particularly, RACP first performs

online outlier rejection to accurately detect and remove sparse outliers, and then performs tensor

factor tracking to efficiently update the tensor factors. Convergence analysis for three algorithms

are established in the sense that the sequence of generated solutions converges asymptotically

to a stationary point of the objective function. Extensive experiments are conducted on both

synthetic and real data to demonstrate the effectiveness of the proposed algorithms in comparison

with state-of-the-art adaptive algorithms.

In Chapter 7, we introduce three new methods for the problem of streaming tensor-train

decomposition. The first method called TT-FOA is capable of tracking the low-rank components

14

1.2. THESIS DESCRIPTION

of high-order tensors from noisy and high-dimensional data with high accuracy, even when they

come from time-dependent observations. The second method called ATT is particularly designed

for handling incomplete streaming tensors. ATT is scalable, effective, and adept at estimating low

TT-rank component of streaming tensors. Besides, ATT can support parallel and distributed

computing. To deal with sparse outliers, we propose the so-called ROBOT which stands for

ROBust Online Tensor-Train decomposition. Technically, ROBOT has the ability to tracking

streaming tensors from imperfect streams (i.e., due to noise, outliers, and missing data) as well

as tracking their time variation in dynamic environments.

Conclusion and Outlook

Chapter 8 concludes the thesis with our main results and an outlook to future works. Particularly,

we present several research challenges and open problems that should be considered for the

development of tracking the low-rank component of data streams in the future. They are data

imperfection and corruption; rank revealing and tracking; efficient and scalable tensor tracking;

and other aspects such as theoretical analysis, symbolic data, and tracking under some less

common tensor formats. Possible solutions for these challenges are also discussed.

1.2.2 List of Publications

Most of the above results have been published/submitted in the following papers:

Journal Papers:

[25] L. T. Thanh, N. V. Dung, N. L. Trung and K. Abed-Meraim, “Robust Subspace Tracking With
Missing Data and Outliers: Novel Algorithm With Convergence Guarantee”, IEEE Trans. Signal
Process., vol. 69, pp. 2070–2085, 2021.

[26] L. T. Thanh, N. V. Dung, N. L. Trung and K. Abed-Meraim, “Robust Subspace Tracking Algorithms
in Signal Processing: A Brief Survey”, REV J. Elect. Commun., vol. 11, no. 1–2, pp. 15–25, 2021.

[27] L. T. Thanh, K. Abed-Meraim, N. L. Trung and A. Hafiane, “Robust Tensor Tracking with Missing
Data and Outliers: Novel Adaptive CP Decomposition and Convergence Analysis”, IEEE Trans.
Signal Process., vol. 70, pp. 4305–4320, 2022.

[28] L. T. Thanh, K. Abed-Meraim, N. L. Trung and A. Hafiane, “OPIT: A Simple and Effective Method
for Sparse Subspace Tracking in High-dimension and Low-sample-size Context”, IEEE Trans. Sig-
nal Process., 2022 (submitted).

[29] L. T. Thanh, K. Abed-Meraim, N. L. Trung and A. Hafiane, “Tracking Online Low-Rank Approx-
imations of Higher-Order Incomplete Streaming Tensors”, Elsevier Patterns, 2022 (submitted).

[30] L. T. Thanh, K. Abed-Meraim, N. L. Trung and A. Hafiane, “Streaming Tensor-Train Decomposi-
tion With Missing Data”, Elsevier Signal Process., 2022 (submitted).

15

1.2. THESIS DESCRIPTION

[31] L. T. Thanh, K. Abed-Meraim, N. L. Trung and A. Hafiane, “A Contemporary and Comprehensive
Survey on Streaming Tensor Decomposition”, IEEE Trans. Knowl. Data. Eng., 2022 (submitted).

Conference Papers:

[32] L. T. Thanh, K. Abed-Meraim, N. L. Trung and R. Boyer, “Adaptive Algorithms for Tracking
Tensor-Train Decomposition of Streaming Tensors”, in Proc. 28th EUSIPCO, 2020, pp. 995–999.

[33] L. T. Thanh, K. Abed-Meraim, N. L. Trung and A. Hafiane, “A Fast Randomized Adaptive CP
Decomposition for Streaming Tensors”, in Proc. 46th ICASSP, 2021, pp. 2910–2914.

[34] L. T. Thanh, K. Abed-Meraim, A. Hafiane and N. L. Trung, “Sparse Subspace Tracking in High
Dimensions”, in Proc. 47th ICASSP, 2022, pp. 5892–5896.

[35] L. T. Thanh, K. Abed-Meraim, N. L. Trung and A. Hafiane, “Robust Tensor Tracking With Missing
Data Under Tensor-Train Format”, in Proc. 30th EUSIPCO, 2022, pp. 832–836.

[36] L. T. Thanh, T. T. Duy, K. Abed-Meraim, N. L. Trung and A. Hafiane, “Robust Online Tucker
Dictionary Learning from Multidimensional Data Streams”, in Proc. 14th APSIPA-ASC, 2022, pp.
1812-1817.

Contributions Outside the Scope of the Thesis

During my Ph.D study, I have also some other contributions to system identification which are

not included in this thesis:

[37] L. T. Thanh, K. Abed-Meraim and N. L. Trung, “Misspecified Cramer-Rao Bounds for Blind Chan-
nel Estimation under Channel Order Misspecification”, IEEE Trans. Signal Process., vol. 69,
pp. 5372–5385, 2021.

[38] L. T. Thanh, K. Abed-Meraim and N. L. Trung, “Performance Lower Bounds of Blind System
Identification Techniques in the Presence of Channel Order Estimation Error”, in Proc. 29th EU-
SIPCO, 2021, pp. 1646–1650.

[39] O. Rekik, A. Mokraoui, T. T. T Quynh, L. T. Thanh and K. Abed-Meraim. “Side Information
Effect on Semi-Blind Channel Identification for MIMO-OFDM Communications Systems”, in Proc.
55th ASILOMAR 2021, pp. 443–448.

Particularly in [37, 38], we have addressed the problem of analyzing the theoretical perfor-

mance limit of system identification techniques under the misspecification of the channel order

through the lens of the misspecified Cramer–Rao bound (MCRB) – which is an extension of

the well-known Cramer–Rao bound (CRB) when the underlying system model is misspecified.

Specifically, we have introduced a new interpretation of the MCRB, called the generalized MCRB

(GMCRB), via the Moore–Penrose inverse operator. This bound is useful for singular problems

and particularly blind channel estimation problems in which the Hessian matrix is noninvertible.

Two closed-form expressions of the GMCRB are derived for unbiased blind estimators when the

channel order is misspecified. The first bound deals with deterministic models where both the

16

1.2. THESIS DESCRIPTION

channel and unknown symbols are deterministic. The second one is devoted to stochastic models

where we assume that transmitted symbols are unknown random variables i.i.d. drawn from

a Gaussian distribution. Two case studies of channel order misspecification are investigated to

demonstrate the effectiveness of the proposed GMCRBs over the classical CRBs. In [39], we have

investigated the effect of different prior about communications channels (e.g., specular channel

model, finite memory linear time invariant channel model, misspecification caused by array cali-

bration errors, so on) on the performance of semi-blind channel identification for MIMO-OFDM

systems.

17

Part I

Subspace Tracking

18

Chapter 2

An Overview of Robust Subspace

Tracking

Contents

2.1 Introduction . 20

2.1.1 Related Work . 21

2.1.2 Main Contributions . 23

2.2 Robust Subspace Tracking: Problem Formulation 23

2.3 Robust Subspace Tracking in the Presence of Missing Data and
Outliers . 25

2.3.1 Grassmannian Algorithms . 25

2.3.2 Recursive Least-Squares based Algorithms 27

2.3.3 Recursive Projected Compressive Sensing based Algorithms 27

2.3.4 Adaptive Projected Subgradient Method based Algorithms 27

2.3.5 Other Algorithms . 28

2.4 Robust Subspace Tracking in the Presence of Impulsive Noise . . . 28

2.4.1 Robust Variants of PAST . 28

2.4.2 Adaptive Kalman Filtering . 29

2.4.3 Weighted Recursive Least-Squares Method 30

2.5 Robust Subspace Tracking in the Presence of Colored Noise 30

2.5.1 Instrumental Variable based Algorithms 30

2.5.2 Oblique Projection based Algorithms . 31

2.6 Sparse Subspace Tracking . 32

2.7 Conclusions . 33

19

2.1. INTRODUCTION

Principal component analysis (PCA) and subspace estimation (SE) are popular data analysis tools and
used in a wide range of applications. The main interest in PCA/SE is for dimensionality reduction
and low-rank approximation purposes. The emergence of big data streams have led to several essential
issues for performing PCA/SE. Among them are (i) the size of such data streams increases over time,
(ii) the underlying models may be time-dependent, and (iii) problem of dealing with the uncertainty and
incompleteness in data. A robust variant of PCA/SE for such data streams, namely robust online PCA or
robust subspace tracking (RST), has been introduced as a good alternative. The main goal of this chapter
is to provide a brief survey on recent RST algorithms in signal processing. Particularly, we begin this
survey by introducing the basic ideas of the RST problem. Then, different aspects of RST are reviewed
with respect to different kinds of non-Gaussian noises and sparse constraints. Our own contributions on
this topic are also highlighted.

2.1 Introduction

Principal component analysis (PCA) and subspace estimation (SE) are widely used as a fun-

damental step for dimensionality reduction and analysis. Their main purpose is to extract

low-dimensional subspaces from high-dimensional data while still keeping as much relevant in-

formation as possible. Consequently, PCA and SE have found success in a wide range of fields,

from finance to neuroscience, with the most successful applications in computer science. The

main difference between them is that PCA emphasizes the use of eigenvectors rather than of

subspace as in SE. PCA in a standard set-up can be implemented by using either eigenvalue

decomposition (EVD) or singular value decomposition (SVD) and is proved to be optimal in

terms of the Frobenius-norm approximation error by the Eckart-Young theorem [40].

Recent years have witnessed an increasing interest in adaptive processing [2]. It is mainly

due to the fact that online applications generate a huge amount of data streams over time

and such streams are often with high veracity and velocity. It is known that veracity requires

robust algorithms for handling imperfect data while velocity demands (near) real-time processing.

Accordingly, important classes of PCA, such as subspace tracking (ST) also called PCA for

streaming data or streaming PCA or dynamic PCA, and ST with missing data have drawn much

research attention recently in signal processing and modern data analysis.

The attractive point of ST resides on two aspects. First, in a similar manner to batch subspace

methods [20], both the main components and the disturbance components of data observation

can be exploited in many different ways. In fact, the subspace is simple to understand (i.e.,

in a statistical sense) and implement, thus proving its efficiency in many practical applications.

Second, different from batch subspace methods, ST has a better trade-off between the accuracy

and the computational complexity, thus making it suitable for time-sensitivity and real-time

20

2.1. INTRODUCTION

applications. Due to its practical use, we can find a wide range of applications in diverse fields [19,

20, 41], for example, direction of arrival (DoA) tracking in radar and sonar, data compression

and filtering, blind channel estimation and equalization, and pattern recognition, to name a few.

However, it is well-known that PCA/SE is very sensitive to data corruptions. This fact re-

mains across the above important PCA classes in general and ST in particular. PCA dealing

with impulsive noise and outliers is referred to as robust PCA. In 2011, it was revisited in a sem-

inal work of Candes et al [42]. This work has attracted many research studies and applications,

with over 4000 citations as of now. PCA for streaming data with impulsive noise and outliers

is referred to as robust subspace tracking (RST). It is considered much more difficult than the

original ST [43].

ST algorithms have been developed for over three decades [19, 20]. It has been around ten

years since Delma’s survey [20] and we thus believe it is not only important but the right time

to do an up-to-date survey in order to highlight some aspects that were not mentioned in [20] as

well as recent advances on this topic.

2.1.1 Related Work

Due to the importance of ST, there have been a number of published surveys in the literature.

One of the first and earliest surveys on principal subspace tracking algorithms was carried on by

Comon and Golub in [19]. The survey focuses on methods with high and moderate computational

complexity for tracking the low-rank approximation of covariance matrices which may be slowly

varying with time. In [20], Delmas provided a comprehensive overview on developments of

classical ST algorithms with low (linear) complexity.

Recently, different adaptations of PCA for modern datasets and applications were reviewed

in [44]. However, PCA for streaming data or ST was not addressed. The problem of tracking

the underlying subspace of data from incomplete observations was discussed in [41] and [45].

Particularly, the former concerned methodological classes of ST algorithms that are able to deal

with missing data while the latter presented a high-dimensional framework for analyzing their

convergence behavior. The survey in [21] carried out reviews on robust PCA, RST, and robust

subspace recovery in the presence of sparse outliers. Two similar surveys to [21] have also been

conducted in [46] and [47] which respectively review (i) static and dynamic RPCA algorithms,

and (ii) the entire body of works on robust sparse recovery. In the literature, there exist two

others surveys on two adaptations of PCA which are distributed PCA [48] and sparse PCA [49].

The main contributions of the above-mentioned papers are summarized in Table 2.1.

21

2.1. INTRODUCTION

T
ab

le
2.

1:
Su

rv
ey

s
on

P
C

A
/S

E
an

d
ST

P
ap

er
T
op

ic
&

sc
op

e
M

ai
n

co
nt

ri
b
u
ti

on

[1
9,

19
90

]
P

ri
nc

ip
al

ST
A

su
rv

ey
on

nu
m

er
ic

al
m

et
ho

ds
fo

r
tr

ac
ki

ng
th

e
lo

w
-r

an
k

ap
pr

ox
im

at
io

n
of

co
va

ri
an

ce
m

at
ri

ce
s

sl
ow

ly
va

ry
in

g
w

it
h

ti
m

e.

[2
0,

20
10

]
P

ri
nc

ip
al

an
d

m
in

or
ST

A
co

m
pr

eh
en

si
ve

su
rv

ey
on

cl
as

si
ca

lS
T

al
go

ri
th

m
s.

[4
4,

20
16

]
P

ri
nc

ip
al

co
m

po
ne

nt
an

al
ys

is
A

su
rv

ey
on

ad
ap

ta
ti

on
s

of
P

C
A

fo
r

m
od

er
n

da
ta

se
ts

an
d

ap
pl

ic
at

io
ns

.

[4
5,

20
18

]
P

ri
nc

ip
al

ST
A

hi
gh

-d
im

en
si

on
al

an
al

ys
is

fr
am

ew
or

k
fo

r
th

e
st

at
e-

of
-t

he
-a

rt
ST

al
go

ri
th

m
s

fr
om

in
co

m
pl

et
e

ob
se

rv
at

io
ns

.

[4
1,

20
18

]
ST

an
d

st
re

am
in

g
P

C
A

A
su

rv
ey

on
bo

th
cl

as
si

ca
la

nd
re

ce
nt

ST
al

go
ri

th
m

s
ab

le
to

ha
nd

le
m

is
si

ng
da

ta

an
d

th
ei

r
pe

rf
or

m
an

ce
gu

ar
an

te
e.

[2
1,

20
18

]
R

ob
us

t
su

bs
pa

ce
le

ar
ni

ng
A

su
rv

ey
on

ro
bu

st
P

C
A

,R
ST

,a
nd

ro
bu

st
su

bs
pa

ce
re

co
ve

ry
in

th
e

pr
es

en
ce

of
sp

ar
se

ou
tl

ie
rs

.

[4
6,

20
18

]
R

ob
us

t
P

C
A

A
su

rv
ey

on
st

at
is

ti
c

an
d

dy
na

m
ic

ro
bu

st
P

C
A

al
go

ri
th

m
s.

[4
8,

20
18

]
P

ri
nc

ip
al

co
m

po
ne

nt
an

al
ys

is
A

su
rv

ey
on

di
st

ri
bu

te
d

P
C

A
al

go
ri

th
m

s.

[4
7,

20
18

]
R

ob
us

t
su

bs
pa

ce
re

co
ve

ry
A

su
rv

ey
on

w
or

ks
on

ro
bu

st
su

bs
pa

ce
re

co
ve

ry
w

he
n

m
ea

su
re

m
en

ts
ar

e

co
rr

up
te

d
by

sp
ar

se
ou

tl
ie

rs
.

[4
9,

20
18

]
Sp

ar
se

P
C

A
A

su
rv

ey
on

re
ce

nt
th

eo
re

ti
ca

ld
ev

el
op

m
en

ts
of

sp
ar

se
P

C
A

.

O
ur

s
R

ST
A

su
rv

ey
on

R
ST

al
go

ri
th

m
s

in
th

e
pr

es
en

ce
of

di
ffe

re
nt

ki
nd

s
of

co
rr

up
ti

on
s

(e
.g

.
ou

tl
ie

rs
,m

is
si

ng
da

ta
,i

m
pu

ls
iv

e,
an

d
co

lo
re

d
no

is
e)

an
d

sp
ar

se
su

bs
pa

ce
.

22

2.2. ROBUST SUBSPACE TRACKING: PROBLEM FORMULATION

2.1.2 Main Contributions

To the best of our knowledge, we are not aware of any work that reviews the RST problem in the

presence of different kinds of non-Gaussian noise. Although the three surveys [21,46,47] reviewed

some classes of RST algorithms, they only discussed on sparse outliers. Methods for other non-

Gaussian noises (e.g., impulsive noise and colored noise) have not been reviewed yet. Moreover,

no survey exists on the problem of sparse ST in the literature. This observation motivates us to

carry out a survey on the topic.

The main goal of this survey is to fill the gap in the literature addressing the following three

kinds of non-Gaussian noises (including outliers, impulsive noise, and colored noise) and sparse

constraints. Our contributions are as follows. First, in the context of missing data and outliers,

we review four main approaches for dealing with them. They are Grassmannian, recursive

least-squares (RLS), recursive projected compressive sensing (ReProCS), and adaptive projected

subgradient method (APSM). Second, when the measurements are corrupted by impulsive noise,

we show that most of state-of-the-art RST algorithms are based on improving the well-known

PAST algorithm which belongs to the class of RLS methods. Two other appealing approaches

including weighted RLS and adaptive Kalman filtering are also reviewed. Third, we outline two

main classes of RST algorithms that are able to deal with colored noise: instrumental variable-

based and oblique projections. Finally, a short review on sparse ST algorithms is presented.

The structure of our review is as follows, please see Fig. 2.1 for an illustration. Section 2.2

states the problem of RST. In Section 2.3, we provide the state-of-the-art algorithms for the

RST problem in the presence of missing data and outliers. The next two sections, 2.4 and 2.5,

present RST algorithms that are able to handle impulsive noise and colored noise, respectively.

Section 2.6 provides a short review on sparse ST. Finally, Section 2.7 concludes the chapter.

2.2 Robust Subspace Tracking: Problem Formulation

At each time t, we suppose to observe a signal xt ∈ Rn satisfying

xt = Pt(ℓt + vt), (2.1)

where Pt ∈ Rn×n is an observation mask matrix indicating the i-th entry of xt is observed (i.e.,

Pt(i, i) = 1) or not (i.e., Pt(i, i) = 0), vt ∈ Rn×1 is the (non-Gaussian) noise vector and ℓt is

the true signal living in a fixed or slowly time-varying low-dimensional subspace of Rn. More

concretely, ℓt = Utwt in which wt is a weight vector and Ut ∈ Rn×r (r ≪ n) is a basis matrix

with d(Ut,Ut−1)
∆
= sin θ(Ut,Ut−1) ≪ 1 where θ(Ut,Ut−1) denotes the largest principal angle

between Ut and Ut−1. The RST problem can be stated as follows:

23

2.2. ROBUST SUBSPACE TRACKING: PROBLEM FORMULATION

Introduction

Related WorksSECTION 1

Missing data
& Outliers

SECTION 3

Problem
Formulation

SECTION 2

Colored
Noise

SECTION 5

Main Contributions

Grassmannian Algorithms

Recursive Least-Squares

Recursive Compressive Sensing

Adaptive Projected Sub-Gradient

Other Algorithms

Instrumental Variable

Oblique Projection

SECTION 6
Conclusion

Impulsive
Noise

SECTION 4

Weighted Recursive Least-Squares

Robust variants of PAST

Adaptive Kalman Filtering

Figure 2.1: The structure of the survey.

Robust Subspace Tracking: Given a streaming set of observed signals {xt}t≥1 in (3.1),

we wish to estimate a rank-r matrix Ut such that it can cover the span of the complete-data

noiseless signal ℓt.

In this chapter, we consider the RST problem in the presence of different kinds of the non-

Gaussian noise vt: sparse outliers, impulse noise, and colored noise. Also, we review sparse ST

algorithms under the constraint that the basis matrix Ut is sparse.

24

2.3. ROBUST SUBSPACE TRACKING IN THE PRESENCE OF MISSING DATA AND
OUTLIERS

2.3 Robust Subspace Tracking in the Presence of Missing Data

and Outliers

In the literature, there have been several studies on ST in the presence of outliers and missing

data. The proposed RST algorithms can be categorized into four main classes: (i) Grassmannian,

(ii) recursive east-Squares (RLS), (iii) recursive projected compressive sensing (ReProCS), and

(iv) adaptive projected subgradient method (APSM). We summarize all the RST algorithms

robust to outliers and missing data in Table 2.2.

2.3.1 Grassmannian Algorithms

Many of RST algorithms are based on the Grassmannian approach in which the ST procedure

can be cast into an optimization process on a Grassmann manifold. More concretely, Grassman

manifold is a space that parameterizes all r-dimensional linear subspaces of the N -dimensional

vector space. The underlying subspace can be derived from averaging the column span of the

(fully or partially) observed signals on the Grassmannian. Interestingly, each observed signal

ℓt spans a one-dimensional subspace which can be described as a point in the Grassmannian.

Therefore, the Grassmannian approach offers several advantages such as a lower number of

parameters to optimize and limited memory usage and the resulting RST algorithms are often

efficient and scalable to high dimensional data [71].

State-of-the-art RST algorithms include GRASTA [50], GOSUS [51], pROST [52, 53], and

RoIGA [68, 69]. In [50], He et al. proposed an efficient RST algorithm called Grassmannian

robust adaptive ST (GRASTA) which is a robust version of GROUSE in [72]. GRASTA first

uses an ℓ1-norm cost function to reduce the effect of sparse outliers and then performs the incre-

mental gradient on the Grassmann manifold of the subspace U. In [51], Xu et al. introduced an

effective algorithm namely GOSUS for tracking subspace with structured-sparsity. GOSUS also

incorporates an adaptive step-size for the incremental gradient on the manifold. The effective-

ness of GOSUS was demonstrated via the real application of video background subtraction and

multiple face tracking. In [52,53], Hage et al. proposed a method, namely pPOST that combines

the advantages of Grassmannian optimization with a non-convex sparsity measure. Instead of

using the ℓ1-norm regularization, pPOST uses the penalty with non-convex ℓ0-surrogates allows

reconstruction even in the case when ℓ1-based methods fail. Another algorithm dubbed robust

intrinsic Grassmann average (RoIGA) was proposed by Rudrasis et al. in [68, 69]. RoIGA is

a geometric approach to computing principal linear subspaces in finite and infinite dimensional

reproducing kernel Hilbert spaces. Among them, RoIGA is shown as one of the fastest RST

algorithms for handling missing data corrupted by outliers.

25

2.3. ROBUST SUBSPACE TRACKING IN THE PRESENCE OF MISSING DATA AND
OUTLIERS

Table 2.2: Robust subspace tracking algorithms in the presence of both missing data and sparse
outliers.

Algorithm Approach
Missing Sparse Prior Warm Convergence Computational

Data? Outliers? Information Start? Guarantee Complexity

GRASTA ℓ1-norm + ADMM
✓ ✓ ✗ random ✗ O(nr + r3)

(2012 [50]) + Grassmannian

GOSUS ℓ2-norm + ADMM
✗ ✓ ✓ random ✗ -

(2014 [51]) + Grassmannian

pROST ℓ0-norm + Grassmannian
✗ ✓ ✗ random ✗ -

(2014 [52,53]) + Conjugate Gradient

MRMD Online max-norm
✗ ✓ ✓ random ✓ -

(2014 [54]) regularization

ROSETA ℓ1,2-norm + ADMM +
✓ ✓ ✗ random ✗ O(nr2)

(2015 [55]) RLS

Roubst STAPSM
APSM + CoSAMP∗ ✓ ✓ ✗ random ✓ O(knr2)

(2015 [56,57])

ReProCS-cPCA
ReProCS ✗ ✓ ✓ batch ✓ O(nr log2(n) log(1/ϵ))⋄

(2016 [58])

OTNNR Truncated nuclear-norm
✗ ✓ ✗ random ✗ -

(2016 [59]) regularization

OLP-RPCA ℓp-norm + singular
✗ ✓ ✗ random ✓ O(nr + r3)

(2017 [60]) value thresholding

L1-PCA ℓ1-norm
✗ ✓ ✗ batch ✗ O(nrω2)‡

(2018 [61]) + Bit-flipping

PETRELS-CFAR
Robust statistic + RLS ✓ ✓ ✓ batch ✗ O(nr2 + nω)+

(2018 [62])

s-ReProCS
ReProCS ✓ ✓ ✓ batch ✓ O(nr log(n) log(1/ϵ))⋄

(2019 [63])

NORST-miss
ReProCS ✓ ✗ ✓ batch ✓ O(nr log(1/ϵ))⋄

(2019 [64])

L1-IRW ℓ1-norm
✗ ✓ ✗ batch ✗ O(k(nwr3p+ 2rnr2))†

(2019 [65]) + Bit-flipping

OSTP Schatten quasi-norm
✗ ✓ ✗ random ✓ O(nr2)

(2019 [66]) + Block-proximal gradient

NORST
ReProCS ✓ ✓ ✓ batch ✓ O(nr log(1/ϵ))⋄

(2020 [67])

RoIGA
IGA# + Grassmannian ✗ ✓ ✗ random ✗ -

(2020 [68,69])

PETRELS-ADMM ℓ1-norm + ADMM
✓ ✓ ✓ random ✓ O(nr2)

(2021 [25,70]) + RLS

IGA: Intrinsic Grassmann Average
∗ CoSAMP: Compressed Sampling Orthogonal Matching Pursuit
+ ω: length of training window
⋄ ϵ : a desired subspace recovery accuracy
‡ ω: length of sliding window
† ω: length of sliding window, k: number of iterations, and p: number of bit flips

26

2.3. ROBUST SUBSPACE TRACKING IN THE PRESENCE OF MISSING DATA AND
OUTLIERS

2.3.2 Recursive Least-Squares based Algorithms

Another line of the RST research is based on recursive least-squares (RLS) methods where the

underlying subspace is recursively updated by minimizing a (weighted) least-squares objective

function containing squared residuals and a penalty accounting for outliers. An efficient RLS-

based algorithm is parallel estimation and tracking by recursive least squares (PETRELS) [73]

which can be considered as an extension of the projection approximation ST (PAST) algo-

rithm [74] in order to handle missing data.

Inspired by PETRELS, several robust variants have been proposed to deal with outliers the

same line such as [25, 55, 62, 70]. Robust online subspace estimation and tracking (ROSETA)

in [55] applies an adaptive step size at the stage of subspace estimation to enhance the convergence

rate. Meanwhile the main idea of PETRELS-CFAR algorithm [62] is to handle “outliers-removed”

data (i.e., outliers are first removed before performing ST) using a Constant False Alarm Rate

(CFAR) detector. Adopting the approach of PETRELS-CFAR, but aiming to improve RST per-

formance, we proposed an efficient algorithm called PETRELS-ADMM which is able to remove

outliers more effectively in [25, 70]. It includes two main stages: outlier rejection and subspace

estimation and tracking. Outliers living in the measurement data are detected and removed by

a ADMM solver in an effective way. An improved PETRELS was then introduced to update the

underlying subspace. In practice, the convergence rate of RST-type algorithms is often faster

than that of Grassmmannian-based algorithms in slowly time-varying environments.

2.3.3 Recursive Projected Compressive Sensing based Algorithms

Recursive projected compressive sensing (ReProCS)-based algorithms [58, 63, 64, 67] are also

capable of tracking subspace in the presence of outliers and missing data.

ReProCS-type algorithms use the piecewise constant subspace change model described pre-

viously and start with a “good” estimate of the initial subspace. At each time, they first solve a

projected compressive sensing problem to derive the sparse outliers, e.g., using ℓ1 minimization

followed by thresholding-based support estimation. After that, the subspace direction change is

then estimated by using projection-SVD [63].

ReProCS provides not only a memory-efficient and highly robust solution, but also a precise

subspace estimation compared to the state-of-the-arts. However, ReProCS-type algorithms often

require strong assumptions on subspace changes, outlier magnitudes, and accurate initialization.

2.3.4 Adaptive Projected Subgradient Method based Algorithms

Adaptive projected subgradient method (APSM) can provide a robust solution to the presence of

missing data and outliers [56,57]. Main advantages of APSM are that convex constraints can be

27

2.4. ROBUST SUBSPACE TRACKING IN THE PRESENCE OF IMPULSIVE NOISE

readily incorporated and it can be used as an alternative to constructing the cost function from

the sum of square errors like RLS methods. The key idea of APSM stems from that unknown

parameters of regression models can be estimated from seeking a point in the intersection of all

the sets defined by measurements. In the context of ST, based on the latest observed signals, a

cost function is properly chosen at each time instant which scores a zero loss. The next task is

to reach the intersection point. To deal with sparse outliers, APSM-type algorithms detect the

time instances at which the observed signals are corrupted by outliers via using sparsity-aware

greedy techniques (e.g. compressed sampling orthogonal matching pursuit as used in [57]) and

then reject them.

2.3.5 Other Algorithms

Some other RST algorithms are able to track the underlying subspace over time from measure-

ments corrupted by sparse outliers such as MRMD [54], OTNNR [59], L1-PCA [61], L1-IRW [65],

OLP-RPCA [60], and OSTP [66]. Most of them use a ℓp-regularization (0 ≤ p ≤ 1) to discard

the effect of outliers. However, they are not designed for missing data.

2.4 Robust Subspace Tracking in the Presence of Impulsive Noise

By “impulsive”, we mean it can be burst noise [75, 76], spherically invariant random variable

(SIRV) noise [77, 78], or alpha-stable noise [79, 80]. We note that even though these algorithms

were described to reduce the effect of impulsive noise in general, most simulation results were

shown for burst noise only. RST algorithms that are robust to impulsive noise are summarized

in Table 2.3.

2.4.1 Robust Variants of PAST

To take into account impulsive noise, some methods proposed in the literature have mainly been

based on robust statistics so far. Among them, some studies have proposed robust variants

of PAST to deal with impulsive noise. In [81], a robust PAST (RPAST) was proposed. The

algorithm first detects the occurrence of the impulsive noise based on a threshold, and then elim-

inates undesirable effects by discarding contaminated observations. The threshold is determined

based on an empirical function of noise variance with the assumption that error vectors follow a

Gaussian distribution corrupted by additive impulsive noise.

Zhang et al. introduced another PAST’s variant called MCC-PAST via the maximum cor-

rentropy criterion (MCC) in [82, 85, 86]. MCC-PAST exploits a correntropy as a new statistic,

which can quantify both the time structures and statistics of two random processes, to deal with

impulsive noise. Accordingly, the maximum correntropy criterion (MCC) is applied as a substi-

28

2.4. ROBUST SUBSPACE TRACKING IN THE PRESENCE OF IMPULSIVE NOISE

Table 2.3: Robust subspace tracking algorithms in the presence of impulsive noise.

Algorithm Approach
Burst SIRV α-stable Warm Convergence Computational

noise noise noise Start? Guarantee Complexity

RPAST
PAST + M-estimation ✓ - ✓ random ✓ O(nr + r2)

(2006 [81])

MCC-PAST Maximum correntropy
✓ - ✓ random ✗ O(nr + r2)

(2014 [82]) criterion (MCC) + PAST

BNC-PAST Bounded nonlinear
✓ - ✓ random ✗ O(nr + r2)

(2014 [83]) covariance (BNC) + PAST

robust KFVM Adaptive Kalman filter +
✓ - - random ✗

O(nrℓ+ ℓr2)+

(2020 [84]) M-estimation O(ℓ2r + ℓ3)

ROBUSTA Weighted RLS +
✓ ✓ ✓ random ✓ O(nr + r2)

(2018 [62]) Mahalanobis distance

ℓ: length of the sliding window

−: unknown or undetermined

tute for the mean square error criterion in the objective function of PAST. Based on the RLS

technique, the MCC-PAST algorithm was then developed. To extend the tracking capability of

the MCC-PAS, a variable forgetting factor (FF) technique was also employed in the recursion

process. In parallel, Shengyang et al. developed another robust variant of PAST, namely BNC-

PAST, to track the underlying subspace via a different criterion [83]. The authors defined a new

concept namely bounded non-linear covariance (BNC) to handle relative problems (including ST)

in the presence of non-Gaussian noise with a heavy-tailed distribution. In particular, bounded

nonlinear maps were employed to discard the effect of impulsive noise. Accordingly, a new robust

PAST algorithm based on BNC was derived.

2.4.2 Adaptive Kalman Filtering

Another good approach capable of handling impulsive noise is based on adaptive Kalaman fil-

tering. In [84], Liao et al. proposed a RST algorithm based on an adaptive Kalman filter with

variable number of measurements (KFVM). The main idea of using the KFVM is to deal with

the tracking of fast-varying subspace [87]. More concretely, when the underlying subspace varies

quickly, a small number of past observations are exploited in the recursion and vice versa. To

handle the impulsive noise, the M-estimate technique is incorporated into the KFVNM algorithm.

The complexity of the proposed KFVM-based algorithm is much higher than the PAST-based

algorithms especially when the number of observations used for subspace update is large.

29

2.5. ROBUST SUBSPACE TRACKING IN THE PRESENCE OF COLORED NOISE

Table 2.4: Robust subspace tracking algorithms in the presence of colored noise.

Algorithm Approach
Warm Guarantee Computational

Start? Convergence Complexity

IV-PAST
IV + PAST random ✗ 3nℓ+O(nr)

(2012 [88])

IVPM
IV + propagator-based random ✗ n(ℓ+ 2r)

(2014 [89])

LOFF-VR-SREIV-PAST IV + PAST +
random ✓

6nr + 5r2 + 4n

(2020 [90]) adaptive forgetting factor +14r +O(nr)

obPAST Oblique projection
random ✗ 3nr2 + 3nr +O(r3)

(2005 [91]) + PAST

obYAST Oblique projection
random ✗ 5nr +O(r2 + n) +O(r3)

(2012 [92]) + YAST

ℓ: the dimension of instrumental variable (IV) vector.

2.4.3 Weighted Recursive Least-Squares Method

Recently, based on robust statistics but different from the common two-step scheme mentioned

above, we proposed in [62] an RST algorithm with linear computational complexity based on a

weighted RLS approach, namely ROBUSTA. On the theoretical aspect, we provided a converge

analysis of ROBUSTA in the presence of SIRV noise. Interestingly, we showed that it also

corresponded to adaptive robust covariance estimation. ROBUSTA outperformed many state-

of-the-art algorithms for burst noise, SIRV noise, and alpha-stable noise. Also, it can be easily

adapted, in conjunction with pre-processing steps, to handle alpha-stable noise.

2.5 Robust Subspace Tracking in the Presence of Colored Noise

In the literature, RST algorithms that are robust to colored noise can be categorized into two

groups: (i) instrumental variable and (ii) oblique projection. We summarize these algorithms in

Table 2.5.

2.5.1 Instrumental Variable based Algorithms

For colored noise, one of the main directions is to use the instrumental variable (IV) which allows

avoiding biased estimate. An appealing benefit of this approach is easy to adapt derivation from

classical ST algorithms. While having improved performance, the computational complexity of

IV-based algorithms is often higher than the original ones due to the selection of the IV vector

size. Specifically, in [88], two direct extensions of the PAST algorithms, named IV-PAST and

30

2.5. ROBUST SUBSPACE TRACKING IN THE PRESENCE OF COLORED NOISE

Table 2.5: Sparse subspace tracking algorithms

Algorithm Approach
Prior Warm Guarantee Computational

Information Start? Convergence Complexity

OIST Oja method
✗ random ✓ O(nr)

(2016 [93]) + Soft-thresholding

Streaming SPCA Row truncation
✗ batch ✓ O(nrmin(r, s logn))

(2015 [94]) + QR decomposition

ℓ1-PAST PAST method + ℓ1-norm
✓ random ✗ 3nr2 + 3nr +O(r2)

(2016 [95]) sample matrix inverse

OVBSL Bayesian inference
✓ random ✗ O(nr2 + nr)

(2017 [96]) + ℓ2/ℓ1-norm promotion

SS/DS-OPAST 2-step approach + OPAST
✗ random ✗

3nr2 + 3nr +O(r3)/
(2017 [97]) + ℓ1-norm approximation 3nr +O(nr2)

SS/GSS-FAPI 2-step approach + FAPI
✗ random ✓

2nr2 + 4nr +O(r2)/
(2020 [98]) + Givens rotations 4nr + 4ns+O(r2)

extended IV-PAST, were proposed. It is shown that their performance is enhanced, comparing

to the original ones. With the aim to improve further performance in subspace-based system

identification applications, several algorithms in conjunction with using IV were addressed in [89].

The key idea is to adapt the propagator approach by exploiting the relationship between array

signal processing and subspace identification.

Very recently, Chan et al. in [90] proposed a new robust variant of PAST capable of handing

linear models with complex coefficients, multiple outputs, and colored noises. In the proposed

method, the authors used a new adaptive forgetting factor and imposed a ℓ2-norm regularization

into the objective function of PAST. In particular, the adaptive forgetting factor was obtained

at each time instant by minimizing the mean-square deviation of the estimator from an extended

IV linear model and IV-PAST. The additional ℓ2-norm regularized term on the weight vectors

is aimed to reduce the error variance and prevent the ill-conditioned computation at low SNR

levels. Generally, if low computational complexity is concerned, IV-based methods require a IV

vector uncorrelated with the noise which is not always met in practice.

2.5.2 Oblique Projection based Algorithms

Another direction, which can avoid the above drawback, is based on oblique projection onto

the subspace manifold, such as [91, 92]. It is due to the fact that the noise vector may lie in a

low dimension subspace instead of being treated as full rank in the observation space. Naturally,

oblique projections arise in the solution to recover the signal. Accordingly, Chen et al. proposed a

variant of PAST named oblique PAST (obPAST) to track the signal subspace in [91]. In the same

line, based on the well-known YAST algorithm [99], Florian et al. introduced the new obYAST

31

2.6. SPARSE SUBSPACE TRACKING

algorithm in [92]. Both obPAST and obYAST minimized a new exponential least-squares cost

function where the orthogonal projection in the residual error term is replaced with an oblique

one. Experiment results indicate that this modification can facilitate the tracking ability of

PAST and YAST in the presence of colored noise. Table 2.4 reports further information about

these RST algorithms, e.g. convergence and complexity.

2.6 Sparse Subspace Tracking

Recently, sparse subspace estimation and tracking have been attracted more attention from the

signal processing community due to the fact that many modern datasets admit sparse represen-

tation has huge potential capabilities for analyzing them [100]. Although several algorithms have

been introduced for sparse subspace estimation in the batch setting (see [101–103] for examples),

there exist only a few studies on sparse ST algorithms so far.

In [93], Chuang and Yue proposed an adaptive algorithm called OIST (which stands for Oja’s

algorithm with Iterative Soft Thresholding) for online sparse PCA. The authors investigated

a rank-one spiked model in a high-dimension regime and indicated that the estimate of the

eigenvector from the sample covariance matrix is inconsistent. To alleviate it, they introduced

an extended version of Oja’s algorithm followed by a soft-thresholding step to promote sparsity

on the estimate. The asymptotic convergence, steady state, and phase transition of OIST were

also derived to understand its behavior in a high-dimension regime when the dimension is much

larger than the number of observations. However, OIST is designed for only rank-one subspaces,

i.e. lines. In parallel, a novel online sparse PCA algorithm able to deal with rank-k spiked models

(k ≥ 1) was proposed via row truncation technique in [94]. More concretely, a simple ℓ2-norm

based row truncation operator was introduced to zero out rows whose leverage score is below

a predefined threshold. At each time instant, the QR decomposition of the resulting truncated

covariance matrix was realized to update the principal subspace. The authors also proved that

the proposed algorithm is consistent in the high-dimension regime.

In [95], Xiaopeng et al. introduced a new robust variant of PAST called ℓ1-PAST. Specifically,

the authors modified the cost function of PAST by adding a ℓ1-norm constraint imposed on the

subspace matrix to control its sparsity. Accordingly, a new RLS algorithm like PAST was derived

to minimize the proposed objective function in an efficient way. The ℓ1-PAST is robust and stable

even when the number of observations is small.

In [96], Giampouras et al. developed a novel robust sparse ST method namely OVBSL in

the lens of Bayesian inference. To deal with the sparsity constraint on the subspace matrix,

OVBSL utilized the group-sparsity inducing the convex ℓ2/ℓ1-norm. Since it belongs to the

family of Bayesian methods, no fine-tuning parameter is required and the proposed algorithm is

fully automated.

32

2.7. CONCLUSIONS

In this topic, we also proposed several two-stage approach based algorithms for sparse ST in

[97,98,104]. The main steps of the two-stage approach is as follows. We first utilize a well-known

ST algorithm from the literature (e.g. PAST or FAPI) to extract an orthonormal basis of the

underlying subspace. Then, we estimate a sparse weight matrix based on some criteria on sparsity

such that it can span the same subspace. For example, in [97], two new algorithms SS-OPAST

and DS-OPAST were designed for sparse system matrix and sparse source signals respectively.

We particularly exploited the natural gradient to find the sparsest matrix from the estimated

orthonormal matrix by OPAST. In [98, 104], we used FAPI in the first stage and then derived

SS-FAPI, orthogonal SS-FAPI, and GSS-FAPI algorithms. Specifically, the sparsity criterion

considered there is differentiable and smoother than the previous one in [97]. Accordingly, it

facilitates the optimization by employing the Newton method and Taylor expansions. To sum

up, a performance comparison among these sparse ST algorithms is given in Table 2.5.

2.7 Conclusions

ST has shown an increased interest in signal processing with the aim of analysing real-time

big data problems and its improvement is in parallel to recent advances in optimization. In

this chapter, we provided a brief survey on adaptive algorithms for RST which were mostly

developed over the last decade. We highlighted three classes of RST algorithms for dealing

with non-Gaussian noises including sparse outliers, impulsive noise, and colored noise. The last

decade has also witnessed the widespread of high-dimensional data analysis in which sparse

representation-based methods are successfully applied to many signal processing applications.

Accordingly, sparse ST algorithms are also reviewed in this chapter.

33

Chapter 3

Robust Subspace Tracking with

Missing Data and Outliers

Contents

3.1 Introduction . 35

3.1.1 Related Works . 36

3.1.2 Contributions . 37

3.2 Problem Formulation . 38

3.2.1 Robust Subspace Tracking . 38

3.2.2 Assumptions . 40

3.3 Proposed PETRELS-ADMM Algorithm 40

3.3.1 Online ADMM for Outlier Detection . 42

3.3.2 Improved PETRELS for Subspace Estimation 46

3.3.3 Computational Complexity Analysis . 47

3.4 Performance Analysis . 48

3.5 Experiments . 53

3.5.1 Robust Subspace Tracking . 53

3.5.2 Robust Matrix Completion . 63

3.5.3 Video Background/Foreground Separation 64

3.6 Conclusions . 67

3.7 Appendix . 67

3.7.1 Proof of Lemma 1 . 67

3.7.2 Proof of Proposition 2 . 70

3.7.3 Proof of Lemma 2 . 73

3.7.4 Proof of Lemma 3 . 74

3.7.5 Proof of Lemma 4 . 76

34

3.1. INTRODUCTION

In this chapter, we propose a novel algorithm, namely PETRELS-ADMM, to deal with subspace tracking
in the presence of outliers andmissing data. The proposed approach consists of twomain stages: outlier re-
jection and subspace estimation. In the first stage, alternating direction method of multipliers (ADMM)
is effectively exploited to detect outliers affecting the observed data. In the second stage, we propose an
improved version of the parallel estimation and tracking by recursive least squares (PETRELS) algorithm
to update the underlying subspace in the missing data context. We then present a theoretical convergence
analysis of PETRELS-ADMM which shows that it generates a sequence of subspace solutions converg-
ing to the optimum of its batch counterpart. The effectiveness of the proposed algorithm, as compared to
state-of-the-art algorithms, is illustrated on both simulated and real data.

3.1 Introduction

Subspace estimation plays an important role in signal processing with numerous applications

in wireless communications, radar, navigation, image/video processing, biomedical imaging,

etc. [105], especially processing modern datasets in today’s big and messy data [43]. It cor-

responds to estimating an appropriate r-dimensional subspace U of Rn where r ≪ n, from a

set of m observed data vectors {xi}mi=1, or equivalently, a measurement data matrix X of size

n × m. To this end, the standard approach is to solve an eigen-problem in a batch manner

where the underlying subspace can be obtained from either singular value decomposition of the

data matrix or eigenvalue decomposition of its covariance matrix. In certain online or large-scale

applications, batch algorithms become inefficient due to their high computational complexity,

O(nmmin(m,n)), and memory cost, O(nm) [9].

In the signal processing literature, several good surveys of the standard algorithms for sub-

space tracking can be found, e.g., [19,105]. The algorithms can be categorized into three classes in

terms of their computational complexity: high complexity O(n2r), moderate complexity O(nr2)
and low complexity O(nr). Note that, there usually exists a trade-off among estimation accu-

racy, convergence rate and computational complexity. However, the performance of standard

algorithms may be degraded significantly if the measurement data are corrupted by even a small

number of outliers or missing observations [44]. Recent surveys [21,41,45] show that missing data

and outliers are ubiquitous and more and more common in the big data regime. This has led to

attempts to define robust variants of subspace learning, namely robust subspace tracking (RST),

or online robust PCA. In this work, we aim to investigate the RST problem in the presence of

both outliers and missing data.

Our study is also motivated by several emerging applications in diverse fields. In big data

analysis, subspace tracking is used to monitor dynamic cardiac magnetic resonance imaging

(MRI), track network-traffic anomalies [106] or mitigate radio frequency interference (RFI) in

radio astronomy [107]. Moreover, in 5G wireless communication, subspace tracking have recently

35

3.1. INTRODUCTION

been exploited for channel estimation in massive MIMO [108] and millimeter wave multiuser

MIMO [109].

3.1.1 Related Works

In the literature, there have been several studies on subspace tracking in the missing data con-

text. Among them, Grassmannian rank-one update subspace estimation (GROUSE) [72] is an

incremental gradient subspace algorithm that performs the stochastic gradient descent on the

Grassmannian manifold of the r-dimensional subspace. It belongs to the class of low complexity

and its convergence has recently been proved in [110]. A robust version of GROUSE for handling

outliers is Grassmannian robust adaptive subspace tracking (GRASTA) [50]. GRASTA first uses

an ℓ1-norm cost function to reduce the effect of sparse outliers and then performs the incremental

gradient on the Grassmannian manifold of subspace U in a similar way as in GROUSE. Although

GRASTA is one of the fastest RST algorithms for handling missing data corrupted by outliers,

convergence analysis of this algorithm is not available.

Parallel estimation and tracking by recursive least squares (PETRELS) [73] can be consid-

ered as an extension of the well-known projection approximation subspace tracking (PAST)

algorithm [74] in order to handle missing data. Specifically, PETRELS is a recursive least

squares-type algorithm applying the second order stochastic gradient descent to the cost func-

tion. Inspired by PETRELS, several variants have been proposed to deal with missing data in

the same line such as [55, 62, 106]. The subspace tracking algorithm in [106] is derived from

minimizing the sum of squared residuals, but adding a regularization of the nuclear norm of sub-

space U. Robust online subspace estimation and tracking (ROSETA) in [55] applies an adaptive

step size at the stage of subspace estimation to enhance the convergence rate. Meanwhile the

main idea of PETRELS-CFAR algorithm [62] is to handle “outliers-removed” data (i.e., out-

liers are first removed before performing subspace tracking) using a constant false alarm rate

(CFAR) detector. However, the convergence of these PETRELS-based algorithms has not been

mathematically proved yet.

Recursive projected compressive sensing (ReProCS)-based algorithms [63,64] are also able to

adaptively reconstruct a subspace from missing observations. They provide not only a memory-

efficient solution, but also a precise subspace estimation as compared to the state-of-the-arts.

However, they require strong assumptions on subspace changes, outlier magnitudes and accurate

initialization.

Other subspace tracking algorithms, able to deal with missing data, include pROST [53],

APSM [57], POPCA [111] and OVBSL [96]. They either require memorizing previous observa-

tions and good initialization or do not provide a convergence guarantee.

Among the subspace tracking algorithms reviewed above, only a few of them are robust in

36

3.1. INTRODUCTION

the presence of both outliers and missing observations, including GRASTA [50], pROST [53],

ROSETA [55], ReProCS-based algorithms [63,64] and PETRELS-CFAR [62].

3.1.2 Contributions

Adopting the approach of PETRELS-CFAR [62] but aiming to improve RST performance, we

are interested in looking for a method that can remove outliers more effectively. Following our

preliminary study presented in [70], the main contributions of the chapter are as follows.

First, we propose a novel algorithm, namely PETRELS-ADMM, for the RST problem to

deal with both missing data and outliers. It includes two main stages: outlier rejection and

subspace estimation and tracking. Outliers residing in the measurement data are detected and

removed by our ADMM solver in an effective way. Particularly, we design an efficient augmented

Lagrangian alternating direction method for the ℓ1-regularized loss minimization. Furthermore,

we propose an improved version of PETRELS, namely iPETRELS. It is observed that PETRELS

is ineffective when the fraction of missing data is too large. We thus add a regularization of the

ℓ2,∞-norm, which aims to control the maximum ℓ2-norm of rows in U, in the objective function

to avoid such performance loss. In addition, we introduce an adaptive step size to speed up the

convergence rate as well as enhance the subspace estimation accuracy.

Second, we provide a convergence analysis of the proposed algorithm where we show that

the solutions {Ut}∞t=1 generated by PETRELS-ADMM converge to a stationary point of the

expected loss function f(U) asymptotically. To the best of our knowledge, this is a pioneer

analysis for RST algorithm’s convergence in the presence of both outliers and missing data,

under mild conditions.

Finally, we provide extensive experiments on both simulated and real data to illustrate the ef-

fectiveness of PETRELS-ADMM in three application contexts: robust subspace tracking, robust

matrix completion and video background-foreground separation.

There are several differences between PETRELS-ADMM and the state-of-the-art RST algo-

rithms. In particular, our mechanism for outlier rejection can facilitate the subspace estimation

ability of RST algorithms where “clean” data involve the process only, thus improving overall per-

formance. Excepting PETRELS-CFAR, the common principle of the state-of-the-art algorithms

is “outlier-resistant” (i.e., to have a “right” direction toward the true subspace). The algorithms

thus require robust cost functions as well as additional adaptive parameter selection. For exam-

ples, GRASTA and ROSETA use the ℓ1-norm robust estimator to reduce the effect of outliers

while pROST applies the ℓ0-norm one instead. However, there is no guarantee that the ℓp-

norm robust estimator (i.e., p ∈ [0, 1]) can provide an optimal solution because of non-convexity.

Accordingly, the effect of outliers can not be completely removed in tracking. This is why the al-

gorithms can fail in the appearance of a large fractions of outliers or significant subspace changes

37

3.2. PROBLEM FORMULATION

in practice. By contrast, “detect and skip” approach like PETRELS-CFAR can utilize advantage

(i.e., competitive performance) of the original PETRELS in missing observations and then treat

outliers as missing data to facilitate the subspace tracking.

Compared to PETRELS-CFAR, our ADMM solver may be efficient than CFAR in terms of

memory cost and flexibility. The constant false alarm rate method (CFAR) [112] uses a moving

window to detect outliers (i.e., using both old and new observations at each time instant). By

contrast, our ADMM solver exploits only a new incoming data vector, hence requiring a lower

storage complexity. Moreover, the performance of CFAR depends on predefined parameters such

as the probability of false alarm and the size of the reference window [62]. Our ADMM solver does

not involve such parameters and hence it is more efficient. Third, PETRELS-CFAR may provide

an unstable solution in the presence of a high corruption fraction due to lack of regularization

(i.e., in the similar way as PETRELS).

Moreover, PETRELS-ADMM can be classified to a class of provable ST algorithms [63, 64]

where a performance guarantee is provided. Our proposed algorithm takes both advantages of

streaming solution (need only single-pass of data) and preserved convergence.

The structure of the chapter is organized as follows. Section 3.2 formulate the RST prob-

lem. Section 3.3 establishes our PETRELS-ADMM algorithm for RST and Section 3.4 gives

its theoretical convergence analysis. Section 3.5 presents extensive experiments to illustrate the

effectiveness of PETRELS-ADMM as compared to the state-of-the-art algorithms. Section 3.6

concludes the chapter.

3.2 Problem Formulation

3.2.1 Robust Subspace Tracking

Assume that at each time t, we observe a signal xt ∈ Rn satisfying the following model:

xt = Pt(ℓt + nt + st), (3.1)

where ℓt ∈ Rn is the true signal that lies in a low dimensional subspace1 of U ∈ Rn×r (i.e.,

ℓt = Uwt, where wt is a weight vector and r ≪ n), nt ∈ Rn is the noise vector, st ∈ Rn is the

sparse outlier vector, while the diagonal matrix Pt ∈ Rn×n is the observation mask indicating

whether the k-th entry of xt is observed (i.e., Pt(k, k) = 1) or not (i.e., Pt(k, k) = 0). For the

sake of convenience, let Ωt be the set of observed entries at time t.

Before introducing the RST formulation, we first define a loss function ℓ(.) that remains

1In an adaptive scheme, this subspace might be slowly time-varying, i.e., U = Ut, and hence the adaptive
RST algorithm introduced next would not only estimate U but also track its variations along the iterations.

38

3.2. PROBLEM FORMULATION

convex while still promoting sparsity: For a fixed subspace U ∈ Rn×r and a signal x ∈ Rn under

an observation mask P, the loss function ℓ(U,P,x) with respect to U and {P,x} is derived from

minimizing the projection residual on the observed entries and accounting for outliers as

ℓ(U,P,x)
∆
= min

s,w
ℓ̃(U,P,x,w, s) (3.2)

with ℓ̃(U,P,x,w, s) =
∥∥P(Uw + s− x)

∥∥2
2
+ ρ ∥s∥1 , (3.3)

where we here use the ℓ1 regularization to promote entry-wise sparsity on s and ρ > 0 is a

regularization parameter to control the degree of the sparsity.2

Now, given a streaming set of observed signals, X = {xi}ti=1 in (3.1), we wish to estimate a

rank-r matrix Ut ∈ Rn×r such that it can cover the span of the complete-data noiseless signal ℓt.

RST can be achieved via the following minimization problem:

Ut =argmin
U∈Rn×r

[
ft(U)

∆
=

1

t

t∑
i=1

βt−i
i ℓ(U,Pi,xi)

]
, (3.4)

where the forgetting factor βi ∈ (0, 1] is to discount the effect of past observations. For the

convergence analysis, we will consider the expected cost f(U) on signals distributed by the true

data-generating distribution Pdata, instead of the empirical cost ft(U). Thanks to the law of

large numbers, expectation of the observations without discounting (i.e., β = 1) converges to the

true value when t tends to infinity,

Û =argmin
U∈Rn×r

[
f(U)

∆
= E

x
i.i.d∼ Pdata

[ℓ(U,P,x)] = lim
t→∞

ft(U)

]
. (3.5)

From the past estimations {si,wi}ti=1, instead of minimizing the empirical cost function ft(U)

in (3.4), we propose to optimize the surrogate gt(U) of ft(U), which is defined as

gt(U) =
1

t

t∑
i=1

βt−i
i

(∥∥Pi(Uwi + si − xi)
∥∥2
2
+ ρ ∥si∥1

)
, (3.6)

where {si,wi}ti=1 are considered as constants. Note that, the surrogate function provides

an upper bound on ft(U). In our convergence analysis, we will prove that ft(Ut) and gt(Ut)

converge almost surely to the same limit. As a result, the solution Ut obtained by minimizing

gt(U) is exactly the solution of ft(U) when t tends to infinity.

2 The most direct way of enforcing sparsity constraints is to control the ℓ0-norm of the solution which counts
the number of non-zero entries. Following this way, the problem of (3.2) is well specified but computationally
intractable. Interestingly, the ℓ1 relaxation can recover the original sparse solution of the ℓ0 problem while still
preserving convexity [113].

39

3.3. PROPOSED PETRELS-ADMM ALGORITHM

3.2.2 Assumptions

We make the following assumptions for convenience of convergence analysis as well as helping

deploy our optimization algorithm:

(A-1): The data-generation distribution Pdata has a compact support, x i.i.d∼ Pdata. Indeed, real

data are often bounded such as audio, image and video, hence this assumption naturally holds

in many situations.

(A-2): U is constrained to the set U ∆
= {U ∈ Rn×r, ∥U:,k∥2 ≤ 1, 1 ≤ κ(U) ≤ α} with a constant

α. The first constraint ∥U:,k∥2 ≤ 1 is not restrictive as it is considered to bound the scale of basis

vectors in U and hence prevents the arbitrarily very large values of U. While the low condition

number of the subspace κ(U) is to prevent the ill-conditioned computation.

(A-3): Coefficients w are constrained to the set W = {w ∈ Rr, ω1 ≤ |w(i)| ≤ ω2, i = 1, 2, . . . , r}
with two constants ω1 and ω2, 0 ≤ ω1 < ω2. Since the data x and subspace U are assumed to

be bounded, it is natural that the subspace weight vector w is bounded too.

(A-4): The subspace changes at two successive time instances is small, i.e., the largest principal

angle between Ut and Ut−1 is 0 ≤ θmax ≪ π/2, or the distance between the two subspaces,

d(Ut,Ut−1) = sin(θmax), satisfies 0 ≤ d(Ut,Ut−1)≪ 1.

3.3 Proposed PETRELS-ADMM Algorithm

In this section, we present a novel algorithm, namely PETRELS-ADMM, for RST to handle

missing data in the presence of outliers. The main idea is to minimize the empirical cost function

gt in (3.6) by updating outliers st, weight vector wt and subspace Ut alternatively.

Under the assumption (A-2) that the underlying subspace U changes slowly, we can detect

outliers in st by projecting the new observation xt into the space spanned by the formerly

estimated subspace Ut−1 in the previous phase. Specifically, we solve the following minimization

problem:

{st,wt}
∆
= argmin

s,w
ℓ̃(Ut−1,Pt,xt,w, s) (3.7)

with

ℓ̃(Ut−1,Pt,xt,w, s) =
∥∥Pt(Ut−1w + s− xt)

∥∥2
2
+ ρ ∥s∥1 . (3.8)

In the second phase, the subspace Ut can be estimated by minimizing the sum of squared

residuals:

Ut = argmin
U

[
1

t

t∑
i=1

βt−i tr(P̃i)

n

∥∥P̃i(Uwi − xi)
∥∥2
2
+
α

2t
∥U∥22,∞

]
, (3.9)

40

3.3. PROPOSED PETRELS-ADMM ALGORITHM

Algorithm 1: Proposed PETRELS-ADMM
Input: A set of observed signals {xi}ti=1,xi ∈ Rn×1, observation masks {Pi}ti=1,Pi ∈ Rn×n,
rank r.

Main Program:

Procedure:
for i = 1, 2, . . . , t

// Estimate outliers si and coefficient wi using Algorithm 2:
aaaa{si,wi} = argmin

s,w

∥∥Pi(Ui−1w + s− xi)
∥∥2
2
+ ρ ∥s∥1 .

// Update the new mask P̃i:

aaaa

{
P̃i(k, k) = Pi(k, k), if si(k) = 0,

P̃i(k, k) = 0, otherwise.

// Estimate subspace Ui using Algorithm 3:

aaaaUi = argmin
U

[
1

i

i∑
j=1

βi−j tr(P̃j)

n

∥∥P̃j(xj −Uw)
∥∥2
2
+
α

2i
∥U∥22,∞

]
.

end for
Output: Ut ∈ Rn×r

where the regularization
α

2t
∥U∥22,∞ is to bound the scale of vectors in U while the outliers st has

been disregarded and the new observation P̃i are determined by the following rule:P̃i(k, k) = Pi(k, k), if si(k) = 0,

P̃i(k, k) = 0, otherwise,
(3.10)

which we aim to skip the corrupted entries of xi.

Our algorithm first applies the ADMM framework in [114], which has been widely used in pre-

vious works for solving (3.7), and then propose a modification of PETRELS [73] to handle (3.9).

In the outlier rejection stage, we emphasize here that we propose to focus on augmenting s

(as shown in (3.12)) to further annihilate outlier effect, unlike GRASTA and ROSETA which

focus on augmenting the residual error only.3 Meanwhile, we modify the subspace update step

in PETRELS by adding an adaptive step size ηt ∈ (0, 1] at each time instant t, instead of a

constant one as in the original version. The modification can be interpreted as an approximation

of Newton method. The proposed method is summarized in Algorithm 1.

3In GRASTA [50] and ROSETA [55], both the authors aimed to detect outliers s by solving the augmented
Lagrangian of (3.7) as follows

L(s,y,w) = ∥s∥1 + y⊤(Pt(Ut−1w + s− xt)
)
+

ρ

2

∥∥Pt

(
Ut−1w + s− xt

)∥∥2

2
.

41

3.3. PROPOSED PETRELS-ADMM ALGORITHM

Algorithm 2: Outlier Detection
Input: Observed signal xt ∈ Rn×1, observation mask Pt ∈ Rn×n, the previous estimate
Ut−1 ∈ Rn×r, maximum iteration K, penalty parameters ρ1, ρ2, absolute and relative
tolerances ϵabs and ϵrel.

Initialization:
• Choose {u0, s0,w0, z0, e0} randomly.

• {r0, e0} ← 0n

Main Program:

Procedure:
for k = 0, 1, . . . ,K Cost
// Update w

wk+1 = (PtUi−1)
#Pt(xt − sk + ek) 2Ωtr

2 +Ωtr

zk+1 = Pt(Ut−1w
k+1 + sk − xt) Ωtr

ek+1 = ρ2

1+ρ2
zk+1 + 1

1+ρ2
S1+ 1

ρ2

(zk+1) Ωt

// Update s

uk+1 = 1
1+ρ1

(
Pt(xt −Ut−1w

k+1)− ρ1(sk − rk)
)

Ωtr

sk+1 = Sρ/ρ1
(uk+1 + rk) Ωt

rk+1 = rk + uk+1 − sk+1 Ωt

// Stopping criteria
if
∥∥sk+1 − sk

∥∥
2
<
√
nϵabs + ϵrel

∥∥ρ1rk+1
∥∥
2

break; Ωt

end if
end for
Output: s,w

3.3.1 Online ADMM for Outlier Detection

We show in the following how to solve (3.7) step-by-step:

Update st

To estimate outlier st given w, we exploit the fact that (3.7) can be cast into the ADMM form

as follows:

min
u,s

h(u) + q(s) subject to u− s = 0, (3.11)

where u is the additional decision variable, h(u) = 1
2 ||Pt(Ut−1w + u− xt)||22 and q(s) = ρ∥s∥1.

The corresponding augmented Lagrangian with the dual variable vector β is thus given by

L(s,u,β) = q(s) + h(u) + β⊤(u− s) +
ρ1
2
∥u− s∥22, (3.12)

42

3.3. PROPOSED PETRELS-ADMM ALGORITHM

where ρ1 > 0 is the regularization parameter4. Let r = β/ρ1 be the scaled dual variable, we can

rewrite the Lagrangian (3.12) as follows:

L(s,u, r) = q(s) + h(u) + ρ1r
⊤(u− s) +

ρ1
2
∥u− s∥22. (3.13)

The optimization of (3.13) is achieved iteratively where we have the following update rule using

the scaled dual variable at the k-th iteration,

uk+1 = argmin
u

(
h(u) + ρ1(r

k)⊤(u− sk) +
ρ1
2

∥∥u− sk
∥∥2
2

)
, (3.14)

sk+1 = argmin
s

(
q(s)− ρ1(rk)⊤s+

ρ1
2

∥∥uk+1 − s
∥∥2
2

)
, (3.15)

rk+1 = rk + uk+1 − sk+1. (3.16)

In particular, we first exploit that the minimization (3.14) can be formulated as a convex

quadratic form:

uk+1 = argmin
u

(
1 + ρ1

2
∥u∥22 −

[
Pt(xt −Ut−1w)− ρ1(sk − rk)

]⊤
u

)
=

1

1 + ρ1

(
Pt(xt −Ut−1w)− ρ1(sk − rk)

)
. (3.17)

Meanwhile, (3.15) is a standard proximal minimization with the ℓ1-norm [118] as

sk+1 = argmin
s

(
ρ ∥s∥1 +

ρ1
2

∥∥s− (uk+1 + rk
)∥∥2

2

)
= Sρ/ρ1

(
uk+1 + rk

)
, (3.18)

where Sa(x) is a thresholding operator applied element-wise and defined as

Sa(x) =

0, if |x| ≤ a,

x− a, if x > a,

x+ a, if x < −a,

(3.19)

which is a proximity operator of the ℓ1-norm. Finally, a simple update rule for the scaled dual

variable r can be given by the dual ascent, as

rk+1 = rk + γk∇L(r
k), (3.20)

4It is referred to as the penalty parameter. Although the convergence rate of the proposed algorithm depends
on a specific chosen value, our convergence analysis indicates that the ADMM solver can converge for any positive
fixed penalty parameters. However, varying penalty parameters can give superior convergence in practice [114–
117].

43

3.3. PROPOSED PETRELS-ADMM ALGORITHM

where the gradient ∇L(r
k) is computed by ∇L(r

k) = ρ1(u
k+1 − sk+1) and γk > 0 is the step

size controlling the convergence rate. For ADMM methods, the regularization parameter is often

used as the the step size for updating dual variables [114]. Due to the scaled version r of the

dual variable β, the step size γk is here set to be γk = 1/ρ1 at the k-th iteration.

Update wt

To estimate wt given s, (3.7) can be recast into the following ADMM form:

min
w∈W,e∈Rn×1

1

2

∥∥Pt(Ut−1w + s− xt)
∥∥2
2
+ y(e),

subject to Pt(Ut−1w + s− xt) = e,

(3.21)

where y(e) is a convex regularizer function for the noise e, (e.g. y(e) = σ
2 ∥e∥

2
2, with σ−1 can

be chosen as the signal to noise ratio, SNR). The minimization (3.21) is equal to the following

optimization:
min

w∈W,e∈Rn×1
∥e∥22 subject to Pt

(
Ut−1w + s− xt

)
= e. (3.22)

However, the noise e is still affected by outliers because s may not be completely rejected in

each iteration. Therefore, (3.22) can be cast further into the ADMM form such that it can lie

between least squares (LS) and least absolute deviations to reduce the impact of outliers. The

Huber fitting can bring transition between the quadratic and absolute terms of Lw,e(w, e)
5, as

Lw,e(w, e) = fHub(e) +
ρ2
2

∥∥Pt

(
Ut−1w + s− xt

)
− e
∥∥2
2
, (3.23)

where ρ2 > 0 is the penalty parameter whose characteristics are similar to that of ρ1 and the

Huber function is given by [114]

fHub(x) =

x2/2, |x| ≤ 1,

|x| − 1/2, |x| > 1.
(3.24)

As a result, e-updates for estimating w involves the proximity operator of the Huber function,

that is,

ek+1 =
ρ2

1 + ρ2
Pt

(
Ut−1w

k+1 + s− xt

)
+

1

1 + ρ2
S1+ 1

ρ2

(
Pt

(
Ut−1w

k+1 + s− xt

))
. (3.25)

5Due to the natural ℓ2-ball behavior of the noise (i.e., normal distributed vector) and the sparsity of some
unremoved parts of outliers, Huber fitting can be a reasonable choice. The Huber function consists of square and
linear terms, so it is less sensitive to variables which have a strong effect on the function ℓ2-norm, but also does
not encourage the sparsity like ℓ1-norm.

44

3.3. PROPOSED PETRELS-ADMM ALGORITHM

Algorithm 3: Improved PETRELS for updating Ut

Input: Observed signals {xi}ti=1, observation mask P̃t, the previous estimate Ut−1, forgetting
factor β, regularization parameter α, the step size η, ξt the previous matrix Ht−1.

Main Program:

Procedure: Cost

xt =
∥P̃txt − P̃tUt−1wt∥2

∥wt∥2
Ωtr

ηt =
xt√
x2t + 1

O(1)

if ηt > η then ηt = 1 end if O(1)
for m = 1 to n do

Rm
t = βRm

t−1 + P̃t(m,m)wtw
⊤
t r2

Hm
t = Rm

t + α
2 I r

at = (Hm
t)−1wt O(r2)

um
t = um

t−1 + ηtξtP̃t(m,m)(xre
t (m)−w⊤

t u
m
t−1)at r

end for
Output: Ut ∈ Rn×r

Hence, at the (k+1)-th iteration, wk+1 can be updated using the following closed-form solution

of the convex quadratic function:

wk+1 =
(
PtUt−1

)#
Pt

(
xt − s+ ek

)
. (3.26)

To sum up, the rule for updating wt can be given by

wk+1 =
(
PtUt−1

)#
Pt

(
xt − s+ ek

)
, (3.27)

zk+1 = Pt

(
Ut−1w

k+1 + s− xt

)
, (3.28)

ek+1 =
ρ2

1 + ρ2
zk+1 +

1

1 + ρ2
S1+ 1

ρ2

(
zk+1

)
. (3.29)

We note that, by using the Huber fitting operator, our algorithm is better in reducing the impact

of outliers than GRASTA and ROSETA which use ℓ2-norm regularization.

The procedure is stopped when the number of iterations reaches the maximum or the accuracy

tolerance for the primal residual and dual norm has been met, i.e.,∥∥∥sk+1 − sk
∥∥∥
2
<
√
nϵabs + ϵrel

∥∥∥ρ1rk+1
∥∥∥
2
, (3.30)

where ϵabs > 0 and ϵrel > 0 are predefined tolerances for absolute and relative part respectively.

A reasonable range for the absolute tolerance may be [10−6, 10−3], while [10−4, 10−2] is good for

the relative tolerance, see [114] for further details of the stopping criterion. The main steps of

the outlier detection are summarized as Algorithm 2.

45

3.3. PROPOSED PETRELS-ADMM ALGORITHM

3.3.2 Improved PETRELS for Subspace Estimation

Having estimated st, we optimize the following minimization

Ut := argmin
U

[
g̃t(U) =

1

t

t∑
i=1

βt−i tr(P̃i)

n

∥∥P̃i(xi −Uwi)
∥∥2
2
+
α

2t
∥U∥22,∞

]
, (3.31)

where the observation mask P̃i is computed by (3.10).

Thanks to the parallel scheme of PETRELS [73], the optimal solution of the problem (3.31)

can be obtained by solving its subproblems at each row um of U, 1 ≤ m ≤ n:

um
t = argmin

um

[
1

t

t∑
i=1

βt−iξiP̃i(m,m)
(
xi(m)−w⊤

i u
m
)2

+
α

2t
∥um∥22

]
, (3.32)

where ξi =
tr(P̃i)

n . In this way, we can speed up the subspace update by ignoring the um if the

m-th entry of xt is labeled as missing observation or outlier.

Thanks to Newton’s method, we can update each row of Ut by the following rule:

um
t = um

t−1 −
[
Ht(u

m)
]−1∂g̃t(U)

∂um

∣∣∣∣
um=um

t−1

, (3.33)

where the first derivative of g̃t is given by

∂g̃t(U)

∂um
=
−2
t

t∑
i=1

βt−iξiP̃i(m,m)
(
xi(m)−w⊤

i u
m
)
w⊤

i +
α

t
um, (3.34)

and the second derivative of g̃t, Hessian matrix, is given by

Ht(u
m) =

2

t

t∑
i=1

βt−iξiP̃i(m,m)wiw
⊤
i +

α

t
I. (3.35)

Specifically, the partial derivative ∂g̃t(U)
∂um at um

t−1 can be expressed by

∂g̃t(U)

∂um

∣∣∣∣
um=um

t−1

=
∂g̃t−1(U)

∂um

∣∣∣∣
um=um

t−1

+
α

t

(
um
t−1 − um

t−2

)
− 2

t
ξtP̃t(m,m)

(
xt(m)−w⊤

t u
m
t−1

)
w⊤

t . (3.36)

Since um
t−1 = argmin ∂g̃t−1(U)

∂um and the parameter α/t is small, so ∂g̃t−1(U)
∂um

∣∣
um=um

t−1
= 0 and then

∂g̃t(U)

∂um

∣∣∣∣
um=um

t−1

≈ −2
t
ξtP̃t(m,m)

(
xt(m)−w⊤

t u
m
t−1

)
w⊤

t . (3.37)

46

3.3. PROPOSED PETRELS-ADMM ALGORITHM

∥et∥2
∥wt∥2

√(∥et∥2
∥wt∥2

)2
+ 1

1

θt

Figure 3.1: Adaptive step size ηt.

Let us denote Rm
t =

∑t
i=1 β

t−i
i ξiP̃t(m,m)wiw

⊤
i , the Hessian matrix can be rewritten by

Hm
t

∆
= Hf̃t(um

t−1) =
2

t

(
Rm

t +
α

2
I

)
. (3.38)

Therefore, a relaxed approximation of the recursive update (3.33) can be given by

um
t ≈ um

t−1 + ηtξtP̃t(m,m)
(
xt(m)−w⊤

t u
m
t−1

)
a⊤t , (3.39)

where Hm
t = Rm

t + α
2 I

6, at = (Hm
t)−1wt and ηt denotes the adaptive step size ηt ∈ [0, 1] at each

time instant t, instead of a constant as in the original PETRELS [73]. We here determine the

adaptive step size ηt as follows

ηt =
xt√
x2t + 1

with xt =
∥et∥2
∥wt∥2

, (3.40)

where the residual error et is computed by et = P̃txt− P̃tUt−1wt. Note that, the adaptive step

size ηt can be expressed by ηt = sin(θt), see Fig. 3.1. The smaller angle θt is, the closer to the

true subspace we are, the smaller step size is needed. The update is summarized in Algorithm 3.

3.3.3 Computational Complexity Analysis

The number of floating-point operations (flop) is used to measure the computational complexity

of the proposed PETRELS-ADMM. At the k-th iteration in the outlier detection phase, our

method requires O(Ωr2) flops where Ω is average number of observed entries at each time instant

(Ω ≤ n). It is practically stated that the ADMM solver can converge within a few tens of

iterations [114] (also see Fig. 3.3). Therefore, the removal of outliers costs the averaged O(Ωr2).
The complexity of the subspace estimation phase is also O(Ωr2) as the original PETRELS [73].

The overall computational complexity of PETRELS-ADMM is of order O(Ωr2) flops.

6Hm
t ∈ Rr×r is a matrix of rank-one updates, so its inverse matrix can be efficiently computed recursively,

thanks to Sherman–Morrison formula [119]. Also, the small regularization parameter α > 0 can help the recursive
update having a better numerical stability. The computational complexity is of order O(r2).

47

3.4. PERFORMANCE ANALYSIS

3.4 Performance Analysis

In this section, we provide a convergence analysis for the proposed PETRELS-ADMM algorithm.

Inspired by the results of convergence of empirical processes for online sparse coding in [120] and

online robust PCA in [121, 122], we derive a theoretical approach to analyze the convergence

of values of the objective function {ft(Ut)}∞t=1 as well as the solutions {Ut}∞t=1 generated by

PETRELS-ADMM.

Given assumptions defined in Section 3.2.2, our main theoretical result can be stated by the

following theorem:

Theorem 2 (Convergence of PETRELS-ADMM). In the stationary context, let {Ut}∞t=1

be the sequence of solutions generated by PETRELS-ADMM, then the sequence converges

to a stationary point of the expected loss function f(U) when t→∞.

Proof Sketch. Our proof can be divided into three main stages as follows: We first prove that

the solutions {Ut, st}t≥1 generated by the PETRELS-ADMM algorithm are optimal w.r.t. the

cost function in (3.6). We then prove that a nonnegative sequence {gt(Ut)}∞t=1 converges almost

surely where {Ut}∞t=1 is the sequence of optimal solutions generated by the PETRELS-ADMM

algorithm. After that, we prove that the surrogate {gt(Ut)}∞t=1 converges almost surely to the

empirical loss function {ft(Ut)}∞t=1 as well as the true loss function, i.e., gt(Ut)
a.s.→ ft(Ut)

a.s.→
f(Ut), thanks to the central limit theorem.

Due to space limitation, we here present key results and report their proof sketch. The details

of their proofs are provided in our appendix.

48

3.4. PERFORMANCE ANALYSIS

Lemma 1 (Convergence of Algorithm 2). At each time t, let {sk,uk, rk,wk, ek}∞k=1 be a

sequence generated by Algorithm 2 for outlier detection, there always exists a set of positive

numbers {cu, cs, cr, cw, ce} such that, at each iteration, the minimizers satisfy

L
(
sk+1,uk+1, rk+1,wk+1, ek+1

)
≤ L

(
sk,uk, rk,wk, ek

)
− cu

∥∥uk − uk+1
∥∥2
2

− cs
∥∥sk − sk+1

∥∥2
2
− cr

∥∥rk − rk+1
∥∥2
2

− cw
∥∥wk −wk+1

∥∥2
2
− ce

∥∥ek − ek+1
∥∥2
2
, (3.41)

where the Lagrangian L(s,u, r,w, e) for updating these variables is a combination of two

functions (3.13) and (3.23), as

L
(
s,u, r,w, e

)
= q(s) + h(u) + ρ1r

⊤(u− s) +
ρ1
2
∥u− s∥22

+ fHub(e) +
ρ2
2

∥∥Pt

(
Ut−1w + s− xt

)
− e
∥∥2
2
. (3.42)

The asymptotic variation of sk (i.e., outliers) is then given by

lim
k→∞

∥∥∥sk+1 − sk
∥∥∥2
2
= 0. (3.43)

Proof Sketch. We state the following proposition, which is in the same line as in previous con-

vergence analysis of ADMM algorithms [123,124], used to prove the first part of lemma 1.

Proposition 1. Let {sk,uk, rk,wk, ek}∞k=1 be a sequence generated by Algorithm 2 and

denote qk be one of these variables, the minimizer qk+1 of (3.13) satisfies

L
(
qk+1, .

)
≤ L

(
qk, .

)
− cq

∥∥qk − qk+1
∥∥2
2
, (3.44)

where cq is a positive number.

As a result, the cluster {sk,uk, rk,wk, ek} converges to stationary point of L(s,u, r,w, e)
when k →∞ and it also implies that the sequence {sk}∞k=0 is convergent, i.e.,

lim
k→∞

∥∥∥sk+1 − sk
∥∥∥2
2
= 0. (3.45)

49

3.4. PERFORMANCE ANALYSIS

Proposition 2 (Convexity of the surrogate functions gt(U)). Given assumptions in Sec-

tion 3.2.2, the surrogate function gt(U) defined in Eq. (3.6) is not only strongly convex,

but also Lipschitz function, i.e., there always exists two positive numbers m1 and m2 such

that

m1 ∥Ut+1 −Ut∥2F ≤
∣∣gt(Ut+1)− gt(Ut)

∣∣, (3.46)

m2 ∥Ut+1 −Ut∥F ≥
∣∣gt(Ut+1)− gt(Ut)

∣∣. (3.47)

Proof Sketch. To prove that gt(U) is strongly convex, we state the following facts: gt(U) is con-

tinuous and differentiable; its second derivative is a positive semi-definite matrix (i.e.,∇2
Ugt(U) ⪰

mI); and the domain of gt(U) is convex. In order to satisfy the Lipschitz condition, we show

that the first derivative of gt(U) is bounded.

Lemma 2 (Convergence of Algorithm 3). Given an outlier vector st generated by Algo-

rithm 2 at each time instant t, Algorithm 3 can provide a local optimal solution Ut for

minimizing gt(U). Moreover, the asymptotic variation of estimated subspaces {Ut}t≥1 is

given by

∥Ut −Ut+1∥F
a.s.→ O

(
1

t

)
. (3.48)

Proof. To establish the convergence, we exploit the fact that our modification can be seen as an

approximate of the Newton method,

Ut
∼= Ut−1 − ηt

[
Hf̃t(Ut−1)

]−1∇g̃t(Ut−1), (3.49)

where Hf̃t(Ut−1) and ∇g̃t(Ut−1) are the Hessian matrix and gradient of the function g̃t(U) at

Ut−1, as shown in Section 3.3.2. It implies that the estimated Ut converges to the stationary

point of gt(U).

Furthermore, since gt(U) is strongly convex and Lipschitz function w.r.t the variable U as

shown in Proposition 2, we have the following inequality

m1 ∥Ut+1 −Ut∥2F ≤
∣∣gt(Ut+1)− gt(Ut)

∣∣ ≤ m2 ∥Ut+1 −Ut∥F (3.50)

⇔ ∥Ut −Ut+1∥F ≤
m2

m1
= O

(
1

t

)
. (3.51)

Note that the positive number m2 = O(1/t) is already given in the proof of Proposition 2 in the

supplemental material, while m1 is a constant.

50

3.4. PERFORMANCE ANALYSIS

Lemma 3 (Convergence of the surrogate function gt(U)). Without discounting past ob-

servations, let {Ut}∞t=1 be a sequence of solutions generated by Algorithm 1 at each time

instant t, the sequence {gt(Ut)}∞t=1 converges almost surely, i.e.,

∞∑
t=1

∣∣∣E[gt+1(Ut+1)− gt(Ut)
∣∣Ft

]∣∣∣ < +∞ a.s., (3.52)

where {Ft}t>0 is the filtration of the past estimations at time instant t.

Proof Sketch. Let us define the indicator function δt as follows

δt
∆
=

1 if E
[
gt+1(Ut+1)− gt(Ut)

∣∣Ft

]
> 0,

0 otherwise.
(3.53)

According to the quasi-martingale convergence theorem [125, Section 4.4], in order to show the

convergence of the nonnegative stochastic process {gt(Ut)}∞t=1, we will prove

∞∑
t=0

E
[
δtE
[
gt+1(Ut+1)− gt(Ut)

∣∣Ft

]]
<∞. (3.54)

In particular, we first indicate the following inequality:

gt+1(Ut+1)− gt(Ut) ≤
ℓ(Ut,Pt+1,xt+1)− ft(Ut)

t+ 1
. (3.55)

Since E
[
ℓ(Ut,Pt+1,xt)

]
= f(Ut), we have a nice property:

E
[
gt+1(Ut+1)− gt(Ut)

∣∣Ft

]
≤

E
[
ℓ(Ut,Pt+1,xt+1)− ft(Ut)

∣∣Ft

]
t+ 1

=
f(Ut)− ft(Ut)

t+ 1
. (3.56)

We then have

E
[
δtE
[
gt+1(Ut+1)− gt(Ut)

∣∣Ft

]]
≤ E

[√
t
(
f(Ut)− ft(Ut)

)] 1√
t(t+ 1)

. (3.57)

Under the given assumptions, we exploit the fact that the set of measurable functions {ℓ(Ui,P,x)}i≥1

defined in (3.2) is P-Donsker. Therefore, the centered and scaled version of the empirical function

ft(Ut) satisfies the following proposition:

E
[√

t
(
f(Ut)− ft(Ut)

)]
= O(1), (3.58)

thanks to Donsker theorem [126, Sec 19.2]. Furthermore, we also indicate that the sum
∑∞

t=1 1/(
√
t(t+ 1))

51

3.4. PERFORMANCE ANALYSIS

converges. The two facts result in

∞∑
t=0

E
[
δE
[
gt+1(Ut+1)− gt(Ut)

∣∣Ft

]]
<∞. (3.59)

Since gt(Ut) > 0, we can conclude that {gt(Ut)}t>0 is quasi-martingale and converges almost

surely.

Lemma 4 (Convergence of the empirical loss function ft(U)). The empirical loss functions

ft(Ut) and its surrogate gt(Ut) converge to the same limit, i.e.,

gt(Ut)
a.s.−→ ft(Ut). (3.60)

Proof Sketch. We begin the proof with providing the following inequality:

gt(Ut)− ft(Ut)

t+ 1
≤ ut − ut+1︸ ︷︷ ︸

(S-1)

+
ℓ(Ut,Pt+1,xt+1)− ft(Ut)

t+ 1︸ ︷︷ ︸
(S-2)

, (3.61)

where ut
∆
= gt(Ut). We then prove that the two sequences (S-1)-(S-2) converge almost surely.

As a result, the sequence
{
(gt(Ut)− ft(Ut))

1
t+1

}
also convergence almost surely, i.e.,

∞∑
t=0

(
gt(Ut)− ft(Ut)

) 1

t+ 1
<∞. (3.62)

In parallel, we exploit that the real sequence { 1
t+1}t≥0 diverges, i.e.,

∑∞
t=1

1
t+1 = ∞. It implies

that gt(Ut)− ft(Ut) converges.

Corollary 1. The expected loss function {f(Ut)}∞t=1 converges almost surely when t→∞.

Proof. Since ft(Ut)
a.s.→ f(Ut) and gt(Ut)

a.s.→ ft(Ut), then gt(Ut)
a.s.→ f(Ut). Since gt(Ut)

converges almost surely, f(Ut) also converges almost surely when t→∞.

Corollary 2. When t→∞, let Ut = argmin
U∈Rn×r

gt(U), we have

ft(Ut) ≤ ft(U) +
L

2
∥U−Ut∥2F , ∀ U ∈ Rn×r, (3.63)

where L is a positive constant. In other words, Ut is the minimum point of f(U).

52

3.5. EXPERIMENTS

Proof Sketch. Let us denote the error function et(U) = gt(U)− ft(U).

Due to gt(Ut)
a.s.→ ft(Ut) when t → ∞, we have ∇et(Ut) = 0 and hence the following

inequality

∥∇et(U)∥ ≤ L

2
∥U−Ut∥F . (3.64)

It is therefore that

|et(U)− et(Ut)|
∥U−Ut∥F

≤ L

2
∥U−Ut∥F , (3.65)

thanks to the mean value theorem. In other word, we have |et(U)| ≤ L
2 ∥U −Ut∥2F because of

et(Ut)
a.s.→ 0.

In addition, for all U ∈ Rn×r, we always have ft(Ut) ≤ gt(U). Therefore, we can conclude

the corollary as follows

ft(Ut) ≤ gt(Ut) = ft(U) + et(U) ≤ ft(U) +
L

2

∥∥U−Ut

∥∥2
F
. (3.66)

It ends the proof.

3.5 Experiments

In this section, we evaluate the performance of the proposed algorithm by comparing it to the

state-of-the-art in three scenarios relative to: robust subspace tracking, robust matrix completion

and video background-foreground separation respectively. In particular, extensive experiments on

simulated data are conducted to demonstrate the convergence and robustness of our PETRELS-

ADMM algorithm for subspace tracking and matrix completion. While four real video sequences

are used to illustrate the effectiveness of PETRELS-ADMM for background-foreground separa-

tion.

3.5.1 Robust Subspace Tracking

In the following experiments, data xt at each time t is generated randomly using the standard

signal model as in (3.1)

xt = Pt(Uωt + nt + st), (3.67)

where U ∈ Rn×r denotes a mixing matrix, ωt is a random vector living on Rr space (i.e.,

ℓt = Uωt) and they are Gaussian i.i.d. of pdf N (0, 1); nt represents the white Gaussian noise

N (0, σ2), with SNR = −10 log10(σ2) is the signal-to-noise ratio to control the impact of noise

53

3.5. EXPERIMENTS

on algorithm performance; and st is uniform i.i.d. over [0, fac-outlier] given the magnitude

fac-outlier of outliers that aim to create a space for outliers. Indices of missing entries and

outliers are generated randomly using the Bernoulli model with the probability ωmissing and

ωoutlier respectively. The two probabilities represent the density of missing entries and outliers

in the data.

In order to evaluate the subspace estimation accuracy, we use the subspace estimation per-

formance (SEP) [62] metric

SEP =
1

L

L∑
i=1

tr
{
U#

es-i(I−UexU
#
ex)Ues-i

}
tr
{
U#

es-i(UexU
#
ex)Ues-i

} , (3.68)

where L is the number of independent runs, Uex and Ues-i are the true and the estimated sub-

spaces at the i-th run respectively. Particularly, the denominator measures the sum of the squares

of the cosines of the principal angles between Ues-i and Uex, while the numerator evaluates the

similar sum but for the two subspaces Ues-i and the orthogonal complement U⊥
ex. Accordingly,

the lower SEP is, the better the algorithm performance is.

State-of-the-art algorithms for comparison are: GRASTA [50], ROSETA [55] and PETRELS-

CFAR [62], ReProCS [63] and NORST [64]. Throughout our experiments, their algorithm pa-

rameters are set by default as mentioned in the algorithms. In particular, we set a penalty

parameter ρ = 1.8 and a constant step-size scale C = 2 in GRASTA. An adaptive step size of

ROSETA is initialized at µ0 = C
1+η0

with C = 8 and η0 = 99, while two thresholds for controlling

the step size are set at ηlow = 50 and ηhigh = 100. PETRELS-CFAR includes a forgetting factor

set at λ = 0.999, a window size Nw = 150 and a false alarm probability Pfa varied from [0.1, 0.7]

depended on the outlier intensity. Both ReProCS and NORST require several predefined pa-

rameters, including ttrain = 200 data samples, α = 60,K = 33 and ωeval = 7.8 × 10−4. For our

algorithm, we set the penalty parameters at 1.5, the regularization parameter α = 0.1 and the

step-size threshold η = sin(π/3), while the maximum number of iterations for outlier detection

phase is fixed at K = 50. Matlab codes are available online7. The experimental results are

averaged over 100 independent runs.

3.5.1.1 Convergence of PETRELS-ADMM

To demonstrate the convergence of our algorithm, we use a synthetic data whose number of row

n = 50, rank r = 2, and 5000 vector samples with 90% entries observed on average. Specifically,

the outlier density ωoutlier is varied from 0.05 to 0.4, while the outlier intensity is set at three

7GRASTA: https://sites.google.com/site/hejunzz/grasta
ROSETA: http://www.merl.com/research/license#ROSETA
ReProCS: https://github.com/praneethmurthy/ReProCS
Our code: https://github.com/thanhtbt/RST

54

3.5. EXPERIMENTS

0 100 200 300 400 500

10
-15

10
-10

10
-5

10
0

(a) SNR = 0 dB.

0 100 200 300 400 500

10
-15

10
-10

10
-5

10
0

(b) SNR = 10 dB.

Figure 3.2: Convergence of PETRELS-ADMM in terms of the variation ∥sk+1 − sk∥2: n =
50, r = 2, 90% entries observed and outlier density ωoutlier = 0.1.

0 1000 2000 3000 4000 5000
10

-8

10
-6

10
-4

10
-2

10
0

10
2

(a) Outlier density ωoutlier = 0.05.

0 1000 2000 3000 4000 5000
10

-8

10
-6

10
-4

10
-2

10
0

10
2

(b) Outlier density ωoutlier = 0.4.

Figure 3.3: Convergence of PETRELS-ADMM in terms of the variation ∥Ut+1 −Ut∥F : n =
50, r = 2, 90% entries observed and outlier intensity fac-outlier = 10.

values representing a low, medium and high level (i.e., fac-outlier = 0.1, 1 and 10 respectively).

The penalty parameter ρ varies in the range [0.1, 1.5]. Also, two noise levels are considered, with

SNR ∈ {0, 10} dB. The results are shown as in Fig. 3.2 and Fig. 3.3.

Fig. 3.2 shows the convergence behavior of PETRELS-ADMM w.r.t the two variables: fac-outlier

and the weight ρ. We can see that, the variation of {sk}k≥1 always converges in all testing cases.

When the penalty parameter ρ ≥ 0.5, the convergence rate is fast, i.e. the variation
∥∥sk+1 − sk

∥∥
2

can converge in 50 iterations in both low- and high-noise cases. The results are practical ev-

idences of Lemma 1. Similarly, Fig. 3.3 shows that the convergence of the variations of the

55

3.5. EXPERIMENTS

sequence {Ut}t≥0, generated by PETRELS- ADMM follows the theoretical behavior proved in

Lemma 2, that is, ∥Ut −Ut+1∥F
a.s.→ O(1/t) almost surely.

3.5.1.2 Outlier Detection

Following the above experiment, we next assess the ability of PETRELS-ADMM for outlier detec-

tion against the noise level. The three statistical metrics including Sensitivity (SEN) and Speci-

ficity (SEP) and Accuracy (ACC) are used to evaluate its outlier detection performance [127].

Particularly, SEN measures the percentage of outliers detected correctly over the total outliers

in the measurement data. SEP is similar to SEN, but for normal entries and ACC indicates

how the estimator makes the correct detection. We use the same data above, but 20% of the

observations are missing. The outlier density ωoutlier is set at 0.2, while two intensity levels are

considered, with fac-outlier ∈ {1, 10}.

Fig. 3.4 illustrates the outlier detection performance of PETRELS-ADMM versus the noise

level SNR. As can be seen that when we increase the value of SNR from −20 dB to 20 dB, the

detection accuracy goes up first and then converges towards a constant level. At very low SNRs

(i.e., < 0 dB), the proposed algorithm does not work well in which many normal entries are

labeled as outliers, although the number of correctly detected outliers are high. When SNR > 0

dB, PETRELS-ADMM achieves a competitive prediction accuracy with respect to all three

evaluation metrics.

Fig. 3.5 provides more practical evidences to demonstrate the effectiveness of PETRELS-

ADMM for the outlier detection. Particularly, the locations of outliers st are well detected even

when the measurement data is corrupted by noise with a moderate SNR value (e.g. 10 dB). Also,

amplitude of the outliers is recovered nearly correctly with a small relative error (RE = ∥st−s̃t∥2
∥st∥2)

in both cases (e.g. RE = 0.0616 at the 20 dB noise level). As a result, the corrupted signals are

also well reconstructed, as illustrated in Fig. 3.5(b) and (d).

3.5.1.3 Robustness of PETRELS-ADMM

To investigate the robustness of PETRELS-ADMM, we vary the outlier intensity, density and

missing density and then measure the SEP metric. Moreover, we also demonstrate the effective-

ness of PETRELS-ADMM against noisy and time-varying environments.

Impact of outlier intensity on algorithm performance

We fix n = 50, r = 2, 90% entries observed, outlier density ωoutlier = 0.1, SNR= 20 dB while

varying fac-outlier in the range [0.1, 10]. We can see from Fig. 3.6 that PETRELS-ADMM al-

ways outperforms other state-of-the-art algorithms in all testing cases with different fac-outlier

56

3.5. EXPERIMENTS

-20 -10 0 10 20
0

20

40

60

80

100

(a) fac-outlier = 1.

-20 -10 0 10 20
0

20

40

60

80

100

(b) fac-outlier = 10.

Figure 3.4: Outlier detection accuracy versus the noise level: n = 50, r = 2, 80% entries observed
and 20% outliers.

values. At low outlier intensity (i.e., fac-outlier ≤ 1), all algorithms yield good accuracy with fast

convergences, though ROSETA and ReProCS obtain the higher SEP (i.e., ≈ 10−3) as compared

to that of the four remaining algorithms. In particular, PETRELS-ADMM provides the best

subspace estimation accuracy, i.e., SEP ≈ 10−5 in both cases (see Fig. 3.6(a)-(b)). At a high in-

tensity level (e.g. fac-outlier = 5 or 10), PETRELS-ADMM again provides the best performance

in terms of both convergence rate and accuracy. GRASTA performs similarly to ReProCS and

slightly worse than PETRELS-CFAR (i.e., their SEP values are around 10−4). While ROSETA

and NORST fail to recover the underlying subspace in the presence of strong outliers. Note that,

in all four experiments above, PETRELS-ADMM always obtains the best SEP value of around

10−5 and hence is robust to outlier intensity.

Impact of outlier density on algorithm performance

We fix n = 50, r = 2, 90% entries observed, outlier intensity fac-outlier = 5, SNR = 20 dB while

varying the outlier density ωoutlier in the range [0.05, 0.4]. The results are shown as in Fig. 3.7.

PETRELS-ADMM outperforms the four remaining algorithms in this context. In particular,

our algorithm performs very well even when the fraction of outliers is high (e.g. ωoutlier = 0.4).

By contrast, four algorithms including GRASTA, ROSETA, ReProCS and NORST may fail to

track subspace in the case of a high outlier density (see Fig. 3.7(d)). The PETRELS-CFAR

works well but has a lower convergence rate and accuracy in terms of SEP metric as compared to

PETRELS-ADMM. When the measurement data is corrupted by a smaller number of outliers,

PETRELS-ADMM still provides better performance than the others, as shown in Fig. 3.7 (a)-(c).

57

3.5. EXPERIMENTS

0

5

0 10 20 30 40 50

0

5

0 10 20 30 40 50

(a) Outlier detection: SNR = 20 dB.

-4

-2

0

2

4

0 10 20 30 40 50

-4

-2

0

2

4

0 10 20 30 40 50

(b) Data recovery: SNR = 20 dB.

0

5

10

0 10 20 30 40 50

0

5

10

0 10 20 30 40 50

(c) Outlier detection: SNR = 10 dB.

-2

0

2

0 10 20 30 40 50

-2

0

2

0 10 20 30 40 50

(d) Data recovery: SNR = 10 dB.

Figure 3.5: Outlier detection and data reconstruction: n = 50, r = 2, 90% entries observed,
outlier intensity fac-outlier = 1, and outlier density ωoutlier = 0.1.

58

3.5. EXPERIMENTS

0 1000 2000 3000 4000 5000
10

-6

10
-4

10
-2

10
0

10
2

(a) fac-outlier = 0.1.

0 1000 2000 3000 4000 5000
10

-6

10
-4

10
-2

10
0

10
2

(b) fac-outlier = 1.

0 1000 2000 3000 4000 5000
10

-6

10
-4

10
-2

10
0

10
2

(c) fac-outlier = 5.

0 1000 2000 3000 4000 5000
10

-6

10
-4

10
-2

10
0

10
2

(d) fac-outlier = 10.

Figure 3.6: Impact of outlier intensity on algorithm performance: n = 50, r = 2, 90% entries
observed, outlier density ωoutlier = 0.1 and SNR = 20 dB.

Impact of the density of missing entries on algorithm performance

Following the above experiments, we change the number of missing entries in the measurement

data by varying the probability ωmissing while fixing the other attributes. The results are reported

in Fig. 7.13 and Fig. 3.9. In particular, the effect of ωmissing on algorithm performance is presented

in Fig. 7.13. Similarly, PETRELS-ADMM yields the best performance in four cases of missing

observations. Three algorithms including PETRELS-CFAR, GRASTA and ReProCS provide

good performance but with slower convergence rate and accuracy, while ROSETA and NORST

have failed again in this task due to the high outlier intensity (i.e., fac-outlier = 10). As can

be seen from Fig. 3.9(a)-(c) that the state-of-the-art algorithms only perform well when the

59

3.5. EXPERIMENTS

0 1000 2000 3000 4000 5000
10

-6

10
-4

10
-2

10
0

10
2

(a) ωoutlier = 0.05.

0 1000 2000 3000 4000 5000
10

-6

10
-4

10
-2

10
0

10
2

(b) ωoutlier = 0.1.

0 1000 2000 3000 4000 5000
10

-6

10
-4

10
-2

10
0

10
2

(c) ωoutlier = 0.2.

0 1000 2000 3000 4000 5000
10

-6

10
-4

10
-2

10
0

10
2

(d) ωoutlier = 0.4.

Figure 3.7: Impact of outlier density on algorithm performance: n = 50, r = 2, 90% entries
observed, outlier intensity fac-outlier = 10 and SNR = 20 dB.

number of corruptions is smaller than half the number of entries in the data measurement.

While PETRELS-ADMM still obtains the reasonable subspace estimation performance in terms

of SEP (i.e., ≈ 10−3) in the case of very high corruptions, see Fig. 3.9(d).

Noisy and Time-Varying Environments

We first investigate the effect of the noise on the performance of PETRELS-ADMM in comparison

with the state-of-the-art algorithms. We vary the value of SNR in the range from 0 dB to 20 dB

and assess their performance on the same data above. Experimental results are illustrated in

Fig. 3.10. As can be seen that the convergence rate of PETRELS-ADMM is not affected by

60

3.5. EXPERIMENTS

0 1000 2000 3000 4000 5000
10

-6

10
-4

10
-2

10
0

10
2

(a) ωmissing = 0.05.

0 1000 2000 3000 4000 5000
10

-6

10
-4

10
-2

10
0

10
2

(b) ωmissing = 0.1.

0 1000 2000 3000 4000 5000
10

-6

10
-4

10
-2

10
0

10
2

(c) ωmissing = 0.2.

0 1000 2000 3000 4000 5000
10

-6

10
-4

10
-2

10
0

10
2

(d) ωmissing = 0.4.

Figure 3.8: Impact of the density of missing entries on algorithm performance: n = 50, r = 2,
outlier density ωoutlier = 0.1, outlier intensity fac-outlier = 10 and SNR = 20 dB.

SNR, but only its estimation accuracy, as shown in Fig. 3.10(a). Specifically, when we decrease

the value of SNR, the estimation error between the true subspace and the estimation increases

gradually. At a high SNR level (e.g. 20 dB), previous experiments indicate that PETRELS-

ADMM outperforms state-of-the-art algorithms, see Fig. 3.6-3.9. At a low SNR level (e.g. 5

dB), PETRELS-ADMM yields the best estimation accuracy as well as convergence rate again,

as illustrated in Fig. 3.10(b). Similar outstanding performance of PETRELS-ADMM were also

observed at lower SNR levels of 10, 5 or 0 dB (please see Figs. 8-10 of the supplementary

material).

The robustness of PETRELS-ADMM is next investigated against nonstationary and time-

61

3.5. EXPERIMENTS

0 1000 2000 3000 4000 5000
10

-6

10
-4

10
-2

10
0

10
2

(a) ωmissing, ωoutlier = 0.05.

0 1000 2000 3000 4000 5000
10

-6

10
-4

10
-2

10
0

10
2

(b) ωmissing, ωoutlier = 0.1.

0 1000 2000 3000 4000 5000
10

-6

10
-4

10
-2

10
0

10
2

(c) ωmissing, ωoutlier = 0.2.

0 1000 2000 3000 4000 5000
10

-6

10
-4

10
-2

10
0

10
2

(d) ωmissing, ωoutlier = 0.3.

Figure 3.9: Impact of the corruption fraction by missing data and outliers on algorithm perfor-
mance: n = 50, r = 2 and fac-outlier = 10 and SNR = 20 dB.

varying environments. Particularly, the true subspace U is supposed to be varying with time

under the model Ut = (1 − ε)Ut−1 + εNt, where Nt ∈ Rn×r is a Gaussian noise matrix

(zero-mean and unit-variance) and ε is to control the subspace change which is chosen among

{10−1, 10−2, 10−3}. We use the same signal model as in the previous tasks and 1000 vector sam-

ples. Also, we create an abrupt change at t = 500 to see how fast the proposed algorithm can

converge. We measure the performance of PETRELS-ADMM at two noise levels (SNR = 5 and

10 dB) with different corruption fractions. Experimental results are illustrated in Fig. 7.12(a)-

(d). In the same manner to the effect of the noise, the time-varying factor ε does not affect

the convergence rate of PETRELS-ADMM, but only its subspace estimation. Fig. 7.12 shows

62

3.5. EXPERIMENTS

0 1000 2000 3000 4000 5000
10

-6

10
-4

10
-2

10
0

10
2

(a) PETRELS-ADMM.

0 1000 2000 3000 4000 5000
10

-6

10
-4

10
-2

10
0

10
2

(b) SNR = 5 dB.

Figure 3.10: Impact of the additive noise on algorithm performance: n = 50, r = 2, 90% entries
observed and 10% outliers with intensity fac-outlier = 10.

that the estimation accuracy of the proposed algorithm will decrease if the time-varying factor

ε increases. When the underlying subspace varies slowly (e.g. ε ≤ 10−2), the resulting values

of SEP, which always converge towards an error floor, indicate that PETRELS-ADMM can be

robust to slowly time-varying scenarios.

3.5.2 Robust Matrix Completion

We compare here the robust matrix completion (RMC) performance using PETRELS-ADMM

with GRASTA [50], LRGeomGC [128] and RPCA-GD [129].

The measurement data X = P⊛ (UW+S+N) used for this task corresponds to the rank-2

matrices of size of 400×400, where the operator ⊛ denotes the Hadamard product. Particularly,

we generated the mixing matrix U ∈ R400×2 and the coefficient matrix W ∈ R2×400 at random.

Their entries were random variables that follow Gaussian distribution with zero mean and unit

variance. The measurement data X was corrupted by a white Gaussian noise N ∈ R400×400

whose SNR is fixed at 40 dB. In the literature, the SNR value of around 40 dB is used for

performance evaluation of completion algorithms due to missing observations and/or outliers at

low-noise conditions [130]. The data matrix was affected by different percentages of missing (P)

and outliers (S) from 0%− 90%. The location and value of corrupted entries (including missing

and outliers) were uniformly distributed.

Fig. 3.12 shows that the proposed algorithm of PETRELS-ADMM based RMC outper-

forms GRASTA, LRGeomGC and RPCA-GD. At low outlier intensity (i.e., fac-outlier = 0.1),

PETRELS-ADMM based RMC, LRGeomGC and RCPA-GD provide excellent performance even

63

3.5. EXPERIMENTS

0 200 400 600 800 1000
10

-4

10
-2

10
0

10
2

(a) SNR = 10 dB, ωmissing = 0.05 and ωoutlier = 0.05.

0 200 400 600 800 1000
10

-4

10
-2

10
0

10
2

(b) SNR = 5 dB, ωmissing = 0.05 and ωoutlier = 0.05.

0 200 400 600 800 1000
10

-4

10
-2

10
0

10
2

(c) SNR = 10 dB, ωmissing = 0.2 and ωoutlier = 0.2.

0 200 400 600 800 1000
10

-4

10
-2

10
0

10
2

(d) SNR = 5 dB, ωmissing = 0.2 and ωoutlier = 0.2.

Figure 3.11: PETRELS-ADMM in time-varying scenarios.

when the data is corrupted by a very high corruption fraction. At high outlier intensity (i.e.,

fac-outlier ≥ 1), PETRELS-ADMM based RMC provides the best matrix reconstruction error

performance, GRASTA still retain good performance, while RPCA-GD and LRGeomGC fail to

recover corrupted entries.

3.5.3 Video Background/Foreground Separation

We further illustrate the effectiveness of the proposed PETRELS-ADMM algorithm in the ap-

plication of RST for video background/foreground separation, and compare with GRASTA

and PETRELS-CFAR. We use four real video sequences for this task, including Hall, Lobby,

Sidewalk and Highway datasets. In particular, the two former datasets are from GRASTA’s

64

3.5. EXPERIMENTS

0 20 40 60 80

0

20

40

60

80

0 20 40 60 80

0

20

40

60

80

0 20 40 60 80

0

20

40

60

80

0 20 40 60 80

0

20

40

60

80

0 20 40 60 80

0

20

40

60

80

0 20 40 60 80

0

20

40

60

80

0 20 40 60 80

0

20

40

60

80

0 20 40 60 80

0

20

40

60

80

0 20 40 60 80

0

20

40

60

80

0 20 40 60 80

0

20

40

60

80

0 20 40 60 80

0

20

40

60

80

0 20 40 60 80

0

20

40

60

80

0 20 40 60 80

0

20

40

60

80

PETRELS-ADMM

0 20 40 60 80

0

20

40

60

80

GRASTA

0 20 40 60 80

0

20

40

60

80

RPCA-GD

0 20 40 60 80

0

20

40

60

80

LRGeomGC

Figure 3.12: Effect of outlier intensity on robust matrix completion performance. White color
denotes perfect recovery, black color denotes failure and gray colour is in between.

homepage8, while the two latter datasets are from CD.net20129 [131]. The Hall dataset consists

of 3584 frames of size 174×144 pixels, while the Lobby dataset has 1546 frames of size 144×176

pixels. The Sidewalk dataset includes 1200 frames of size 240 × 352 pixels. Highway dataset

has 1700 frames of size 240×320 pixels. We can see from Fig. 3.13, PETRELS-ADMM is capable

of detecting objects in video and provides competitive performance as compared to GRASTA

and PETRELS-CFAR.

8https://sites.google.com/site/hejunzz/grasta
9http://jacarini.dinf.usherbrooke.ca/dataset2012

65

3.5. EXPERIMENTS

Video Frame PETRELS-ADMM PETRELS-CFAR GRASTA

Figure 3.13: Qualitative illustration of video background-foreground separation application.

66

3.6. CONCLUSIONS

3.6 Conclusions

In this chapter, we have proposed an efficient algorithm, namely PETRELS-ADMM, for the

robust subspace tracking problem to handle missing data in the presence of outliers. By con-

verting the original RST problem to a surrogate one, which facilitates the tracking ability, we

have derived an online implementation for outlier rejection with a low computational complex-

ity and a fast convergence rate while still retaining a high subspace estimation performance.

We have established a theoretical convergence which guarantees that the solutions generated by

PETRELS-ADMM will converge to a stationary point asymptotically. The simulation results

have suggested that our algorithm is more effective than the state-of-the-art algorithms for ro-

bust subspace tracking and robust matrix completion. The effectiveness of PETRELS-ADMM

was also verified for the problem of video background-foreground separation.

3.7 Appendix

3.7.1 Proof of Lemma 1

Follow the line as in previous convergence analysis of ADMM algorithms [123,124], we can derive

the proof of Lemma 1 as follows

3.7.1.1 Proof of Proposition (P-1)

The minimizer uk+1 defined in (3.15) satisfies

L
(
sk,uk+1, rk,wk, ek

)
≤ L(sk,uk, rk,wk, ek)− cu

∥∥uk − uk+1
∥∥2
2
. (P-1)

At the k-th iteration, the u-update in fact minimizes the objective function in (3.14), as

uk+1 = argmin
u

[
Lu,k(u, .) =

1 + ρ1
2
∥u∥22 −

[
Pt

(
xt −Ut−1w

)
− ρ1

(
sk − rk

)]⊤
u

]
. (3.69)

The function Lu,k(u, .) is strongly convex with a positive constant (1 + ρ1), i.e., the Hessian of

Lu,k(u, .) is given by ∇2Lu,k(u, .) = (1+ ρ1)I. Since uk+1 = argminu Lu,k(u, .), we have the fact

Lu,k(uk+1, .) ≤ Lu,k(uk, .). Therefore, we obtain the following inequality

Lu,k
(
uk, .

)
− Lu,k

(
uk+1, .

)
≥ 1 + ρ1

2

∥∥uk+1 − uk
∥∥2
2
, (3.70)

thanks to Proposition 19. It results in the Proposition (P-1).

67

3.7. APPENDIX

3.7.1.2 Proof of Proposition (P-2)

The minimizer sk+1 defined in (3.18) satisfies

L
(
sk+1,uk+1, rk,wk, ek

)
≤ L

(
sk,uk+1, rk,wk, ek

)
− cs

∥∥sk − sk+1
∥∥2
2
. (P-2)

At the k-th iteration, the variable s is updated by minimizing the objective function Ls,k(s, .) in

Eq. (3.15), as

sk+1 = argmin
s

[
Ls,k(s, .) = ρ ∥s∥1 +

ρ1
2

∥∥s− (uk+1 + rk
)∥∥2

2

]
. (3.71)

We exploit that if given uk+1 and rk, then both functions of the ℓ1-norm ∥s∥1 and ℓ2-norm∥∥s− (uk+1 + rk)
∥∥2
2

are convex, so the Ls,k(s, .) w.r.t. s is also convex. It is therefore that for

any sk, sk+1 ∈ S, we always have

Ls,k
(
sk, .

)
≥ Ls,k

(
sk+1, .

)
+
〈
sk − sk+1,∇Ls,k

(
sk+1, .

)〉
+

1

2

∥∥sk+1 − sk
∥∥2
2
, (3.72)

thanks to the Proposition 3.

Since sk+1 = argmins Ls,k(s, .), the first derivative ∇Ls,k(sk+1, .) = 0 and hence

Ls,k
(
sk, .

)
≥ Ls,k

(
sk+1, .

)
. (3.73)

In other word, there always exists a nonnegative number cs ≥ 0 such that

Ls,k
(
sk, .

)
≥ Ls,k

(
sk+1, .

)
+

1

2

∥∥sk+1 − sk
∥∥2
2
. (3.74)

As a result, we have

K∑
k=1

1

2

∥∥sk+1 − sk
∥∥2
2
≤

K∑
i=1

Ls,k
(
sk, .

)
− Ls,k

(
sk+1, .

)
= Ls,k

(
s1, .

)
− Ls,k

(
sK+1, .

)
. (3.75)

Let K → ∞, we then have
∑∞

k=1 ∥sk+1 − sk∥22 < ∞. It ends the proof of (P-2) and the second

part of Lemma 1.

3.7.1.3 Proof of Proposition (P-3)

The minimizer rk+1 defined in (3.16) satisfies

L
(
sk+1,uk+1, rk+1,wk, ek

)
≤ L

(
sk+1,uk+1, rk,wk, ek

)
− cr

∥∥rk − rk+1
∥∥2
2
. (P-3)

68

3.7. APPENDIX

Follow the r-update in Eq. (3.16), it is easy to verify that

L
(
sk+1,uk+1, rk+1,wk, ek

)
= ρ1

(
rk + sk+1 − uk+1

)⊤(
uk+1 − sk+1

)
+A

= ρ1(r
k)⊤
(
uk+1 − sk+1

)
− ρ1

∥∥uk+1 − sk+1
∥∥2
2
+A

= L
(
sk+1,uk+1, rk,wk, ek

)
− ρ1

∥∥rk+1 − rk
∥∥2
2
, (3.76)

where A = g(sk+1) + h(uk+1) + ρ1
2 ∥u

k+1 − sk+1∥. It implies the proposition (P-3).

3.7.1.4 Proof of Proposition (P-4)

The minimizer wk+1 defined in (3.27) satisfies

L
(
sk+1,uk+1, rk+1,wk+1, ek

)
≤ L

(
sk+1,uk+1, rk+1,wk, ek

)
− cw

∥∥wk −wk+1
∥∥2
2
. (P-4)

Denote z = Pt(Utw + sk+1 − xt). In fact, the w-update minimizes the smooth version of the

objective function (3.23), as follows

Lz,k(z, .) =
n∑

i=1

[((
z(i)2 + 1

)1/2 − 1
)
+
ρ2
2

((
z(i)− ek(i)

)2
+ 1)1/2 − 1

)]
. (3.77)

The first two derivatives of Lz,k(z, .) are given by

∇Lz,k(z, .) =
[
z(1)(z(1)2 + 1)−1/2, . . . , z(n)(z(n)2 + 1)−1/2

]⊤
(3.78)

+ ρ2

[
(z(1)− ek(1))((z(1)− ek(1))2 + 1)−1/2, . . . , (z(n)− ek(n))((z(1)− ek(1))2 + 1)−1/2

]⊤
,

and

∇2Lz,k(z, .) = diag
([

(z(1)2 + 1)−3/2, . . . , (z(n)2 + 1)−3/2
])

+ ρ2diag
([

((z(1)− ek(1))2 + 1)−3/2, . . . , (z(n)− ek(n))2 + 1)−3/2
])
. (3.79)

The Hessian matrix ∇2Lz,k(z, .) then satisfies ρ2I < ∇2Lz,k(z, .) ≤ (ρ2 +1)I. It is therefore that

Lz,k(w, .) is strongly convex and Lipschitz continuous. In other word, it implies that

L
(
sk+1,uk+1, rk+1,wk, ek

)
− L

(
sk+1,uk+1, rk+1,wk+1, ek

)
>
ρ2
2

∥∥wk −wk+1
∥∥2
2
. (3.80)

which results in the Proposition (P-4), thanks to Proposition 19.

69

3.7. APPENDIX

3.7.1.5 Proof of Proposition (P-5)

The minimizer ek+1 defined in (3.29) satisfies

L
(
sk+1,uk+1, rk+1,wk+1, ek+1

)
≤ L

(
sk+1,uk+1, rk+1,wk+1, ek

)
− ce

∥∥ek − ek+1
∥∥2
2
. (P-5)

Similarly, we also have Le,k(e, .) is strongly convex, i.e.,

∇2Le,k(e, .) = ρ2 diag
([(

(zk(1)− e(1))2 + 1
)−3/2

, . . . ,
(
zk(n)− e(n))2 + 1

)−3/2
])
. (3.81)

Therefore we have

Le,k
(
ek, .

)
− Le,k

(
ek+1, .

)
≥ ρ2

2

∥∥∥ek+1 − ek
∥∥∥2
2
. (3.82)

It ends the proof.

3.7.2 Proof of Proposition 2

To prove that gt(U) is strongly convex, we state the following facts: gt(U) is continuous and

differentiable; its second derivative is a positive semi-definite matrix (i.e., ∇2
Ugt(U) ⪰ mI); and

the domain of gt(U) is convex. In order to satisfy the Lipschitz condition, we show that the first

derivative of gt(U) is bounded.

Stage I: Prove that gt is a strong convex function

We show that there exists a positive number m such that

∣∣gt(Ut+1)− gt(Ut)
∣∣ ≥ m1 ∥Ut+1 −Ut∥2F . (3.83)

In particular, we state the two claims as follows:

(C-1): gt(U) is continuous and differentiable.

Proof. Given two variables A,B ∈ U such that ∥A−B∥2F < γ for some positive constant

γ. It is easy to verify that there exists a positive number θ such that |gt(A)− gt(B)| < θ.

70

3.7. APPENDIX

Thanks to the triangle inequality, we have the following inequality:

∣∣gt(A)− gt(B)
∣∣ =1

t

∣∣∣∣ t∑
i=1

βt−i ∥Pi(Awi + si − xi)∥22 −
t∑

i=1

βt−i ∥Pi(Bwi + si − xi)∥22

∣∣∣∣
≤ 1

t

t∑
i=1

βt−i ∥Pi(A−B)wi∥22 ≤
1

t

t∑
i=1

βt−i ∥Pi(A−B)∥2F ∥wi∥22

≤ 1

t

t∑
i=1

βt−i ∥A−B∥2F ∥wi∥22 =
γ

t

t∑
i=1

βt−i ∥wi∥22 = θ, (3.84)

It is therefore that the set of functions {gt(U)}∞t=1 is equicontinuous on U .

Furthermore, for any U∗,H ∈ U , we show that the following limit exists:

lim
a→0

gt(U
∗ + aH)− gt(U∗)

a
= lim

a→0

1

ta

t∑
i=1

βt−i
(∥∥Pi

(
(U∗ + aH)wi + si − xi

)∥∥2
2

−
∥∥Pi

(
U∗wi + si − xi

)∥∥2
2

)
. (3.85)

Specifically, let us denote yi = Pi(U
∗wi + si − xi), the limit can be written as follows:

lim
a→0

gt(U
∗ + aH)− gt(U∗)

a
= lim

a→0

1

ta

t∑
i=1

βt−i
(
∥yi − aPiHwi∥22 − ∥yi∥22

)
= lim

a→0

1

ta

t∑
i=1

βt−i
(
∥aPiHwi∥22 − 2a⟨ui,PiHwi⟩

)
=
−2
t

t∑
i=1

βt−i⟨yi,PiHwi⟩ <∞. (3.86)

As a result, the function gt(U) is differentiable and its first derivative ∇Ugt(U) can be

given by

∇Ugt(U) =
2

t

t∑
i=1

βt−iPi(Uwi + si − xi)w
⊤
i . (3.87)

In the similar way, it is easy to verify that ∇Ugt(U) is also continuous and the second

derivative ∇2
Ugt(U) is given by

∇2
Ugt(U) =

2

t

t∑
i=1

βt−iPiwiw
⊤
i . (3.88)

71

3.7. APPENDIX

(C-2): The second derivative ∇2
Ugt(U) is a positive-define matrix. For all x ∈ Rp×1, we have

x⊤∇2
Ugt(U)x =

2

t

t∑
i=1

βt−iPi(w
⊤
i x)

⊤(w⊤
i x)

=
2

t

t∑
i=1

βt−iPi(w
⊤
i x)

2 > 0, ∀β, t > 0. (3.89)

It implies that there always exist a positive constant m such that ∇2
Ugt(U) ≥ mI.

It follows to the claims (C-1), (C-2) and the assumptions showing that the domain of gt(U) is a

convex set that gt(Ut) is strongly convex [132, Section 3.1.4].

Stage II: Prove that gt is a Lipschitz function

∣∣gt(Ut+1)− gt(Ut)
∣∣ ≤ m2

∥∥Ut+1 −Ut

∥∥
F
. (3.90)

Let us denote dt(U) = gt(U)−gt+1(U). Since Ut = argmin
U∈U

gt(U), we exploit that gt+1(Ut+1) ≤

gt+1(Ut) and hence

gt(Ut+1)− gt(Ut) = gt(Ut+1)− gt+1(Ut) + gt+1(Ut)− gt(Ut)

≤
(
gt(Ut+1)− gt+1(Ut+1)︸ ︷︷ ︸

dt(Ut+1)

)
−
(
gt(Ut)− gt+1(Ut)︸ ︷︷ ︸

dt(Ut)

)
. (3.91)

The first derivative of dt(U) = gt(U)− gt+1(U) is given by

∇Udt(U) = ∇Ugt(U)−∇Ugt+1(U)

=
1

t

t∑
i=1

βt−iPi(Uwi + si − xi)w
⊤
i −

1

t+ 1

t+1∑
i=1

βt+1−iPi(Uwi + si − xi)w
⊤
i . (3.92)

Let At =
t∑

i=1

βt−iPiUwiw
⊤
i and Bt =

t∑
i=1

βt−iPi(si − xi), we can rewrite ∇Udt(U) as

∇Udt(U) =

(
At

t
− At+1

t+ 1

)
+

(
Bt

t
− Bt+1

t+ 1

)
. (3.93)

Under the assumptions in Section 3.2.2, the subspace U, outlier {st}, signal {xt} and coefficients

{wt} are bounded, then both At and Bt are bounded. It is therefore that

∥∇Udt(U)∥F ≤
∥∥∥∥At

t
− At+1

t+ 1

∥∥∥∥
F

+

∥∥∥∥Bt

t
− Bt+1

t+ 1

∥∥∥∥
F

≤ m2 = O(1/t). (3.94)

72

3.7. APPENDIX

Therefore dt(U) is Lipschiz with the constant m2,

|dt(Ut+1)− dt(Ut)|
∥Ut+1 −Ut∥F

≤ m2, hence
|gt(Ut+1)− gt(Ut)|
∥Ut+1 −Ut∥F

≤ m2. (3.95)

This ends the proof.

3.7.3 Proof of Lemma 2

We prove that our update rule is an approximate interpretation of Newton’s method. Since

the objective function gt is strongly convex with respect to the variable U, our algorithm can

guarantee that the solution converges to the stationary point of the problem.

In order to estimate subspace, at each time instant t, we optimize the following minimization

um = argmin
um∈Rr×1

[
f̃t(u

m) =
t∑

i=1

βt−iPi(m,m)
(
xre
i (m)−w⊤

i u
m
)2

+
α

2t
∥um∥22

]
. (3.96)

The first derivative of the objective function f̃t(um) can be determined by

∇f̃t(um
t−1) = −2

t∑
i=1

βt−iPi(m,m)
(
xre
i (m)−w⊤

i u
m
t−1

)
w⊤

i +
α

t
um
t−1

= ∇f̃t−1(u
m
t−1)− 2Pt(m,m)

(
xre
t (m)−w⊤

t u
m
t−1

)
w⊤

t +
α

t

(
um
t−1 − um

t−2

)
. (3.97)

Since um
t−1 = argmin

um
f̃t−1(u

m), the derivative ∇f̃t−1(u
m
t−1) = 0 and the Hessian at um

t−1 is then

given by

Hf̃t(um
t−1) = ∇2f̃t(u

m
t−1) = 2

t∑
i=1

βt−iPi(m,m)wiw
⊤
i +

α

t
I. (3.98)

Thanks to Newton’s method [132], a rule for subspace update can be obtained as

um
t = um

t−1 − ηt
(
Hf̃t(um

t−1)
)−1∇f̃t(um

t−1). (3.99)

Let us denote Rm
t =

∑t
i=1 β

t−iPt(m,m)wiw
⊤
i + α

(
1
2t −

βt

2(t−1)

)
I, we have

Hf̃t(um
t−1) = 2Rm

t + α

(
βt

2(t− 1)
− 1

2t

)
I. (3.100)

As a result, we can derive the inverse Hessian matrix easily as follows

(
Hf̃t(um

t−1)
)−1

=
1

2

(
Rm

t

)−1
(
O(1/t)

2

(
Rm

t

)−1
+ I

)−1

. (3.101)

73

3.7. APPENDIX

When t is large enough, the term
(O(1/t)

2 (Rm
t)−1+ I

)−1 ≈ I+O
(
1
t

)
. It is therefore that the step

size can be approximated by

[
Hf̃t(um

t−1)
]−1∇f̃t(um

t−1) = −Pt(m,m)
(
xre
t (m)−w⊤

t u
m
t−1

)(
Rm

t

)−1
wt +O

(
1/t
)
. (3.102)

It implies that um
t can be updated by the following recursive update rule

um
t = um

t−1 + ηtPt(m,m)
(
xre
t (m)−w⊤

t u
m
t−1

)(
Rm

t

)−1
wt, (3.103)

which is already defined in Eq. (3.14). In other word, the um
t generated by our algorithm can

converge to the stationary point of f̃t(um).

Note that, the properties of the objective functions and assumptions we made in Section 3.2.2

can guarantee the method will converge in practice. In particular, the objective functions g̃t(U) as

well as f̃t(u) and their first derivatives are continuously differentiable which can avoid derivative

issues in Newton’s method. In addition, the starting points in our algorithm are always chosen

at random. Further, since the objective functions {g̃t(U)}∞t=1 are always positive, PETRELS-

ADMM can ignore the cases when their roots approach to zero asymptotically. To sum up, the

solution Ut generated by PETRELS-ADMM will converge to the stationary point of the function

g̃t(U).

The second part of the Lemma 3.7.3 can be easy to verify. Since gt(Ut) is strongly convex

and Lipschitz function as proved in Proposition 2, we have the following inequality

m1 ∥Ut+1 −Ut∥2F ≤
∣∣gt(Ut+1)− gt(Ut)

∣∣ ≤ m2 ∥Ut+1 −Ut∥F
⇔ ∥Ut+1 −Ut∥F

(
∥Ut+1 −Ut∥F −

m2

m1

)
≤ 0⇔ ∥Ut −Ut+1∥F ≤

m2

m1
. (3.104)

Note that the positive number m2 = O(1/t) is already given in the Appendix 3.7.2, so it ends

the proof .

3.7.4 Proof of Lemma 3

Inspired of the result of convergence analysis for online sparse coding framework in [120, Propo-

sition 2], we derive the convergence of gt(Ut) in the similar way. In particular, we first denote

the nonnegative stochastic process {ut} as follows

ut
∆
= gt(Ut) ≥ 0, (3.105)

74

3.7. APPENDIX

and then prove that it is a quasi-martingale, i.e., we have to prove the sum of the positive

difference of {ut}∞t=1 is bounded,

∞∑
t=1

∣∣E[ut+1 − ut]
∣∣ < +∞ a.s. (3.106)

We can express gt+1(Ut) with respect to gt(Ut) as follows

gt+1(Ut) =
1

t+ 1

t+1∑
i=1

βt+1−i ∥Pi(Utwi + si − xi)∥22 + ρ ∥si∥1

=

(
β

t+ 1

t∑
i=1

βt−i ∥Pi(Utwi + si − xi)∥22 + ρ ∥si∥1
)

+

(
1

t+ 1

(
∥Pt+1Ut + st+1 − xt+1∥22 + ρ ∥st+1∥1

))
=

βt

t+ 1
gt(Ut) +

1

t+ 1
ℓ(Ut,Pt+1,xt+1). (3.107)

Since Ut+1 = argminU gt+1(U), we have the fact gt+1(Ut+1) − gt+1(Ut) ≤ 0, ft(Ut) ≤ gt(Ut),

and hence

ut+1 − ut = gt+1(Ut+1)− gt(Ut) = gt+1(Ut+1)− gt+1(Ut)︸ ︷︷ ︸
≤0

+ gt+1(Ut)− gt(Ut)

≤ gt+1(Ut)− gt(Ut) =
1

t+ 1
ℓ(Ut,Pt+1,xt+1)−

t(1− β) + 1

t+ 1
gt(Ut). (3.108)

It is therefore that

E[ut+1 − ut] ≤
E
[
ℓ(Ut,Pt+1,xt+1)− (t(1− β) + 1)gt(Ut)

]
t+ 1

≤
E
[
ℓ(Ut,Pt+1,xt+1)− gt(Ut)

]
t+ 1

≤
E
[
ℓ(Ut,Pt+1,xt+1)

]
− ft(Ut)

t+ 1

=
E
[
f(Ut)− ft(Ut)

]
t+ 1

=

(
E
[√

t
(
f(Ut)− ft(Ut)

)])
︸ ︷︷ ︸

E[Gt(Ut)]

(
1√

t(t+ 1)

)
︸ ︷︷ ︸

at

, (3.109)

because of ft(Ut) ≤ gt(Ut) and E[ℓ(Ut,Pt+1,xt)] = f(Ut). In parallel, we exploit that

Gt(Ut) =
√
t(f(Ut)− ft(Ut)) is the scaled and centered version of the empirical measure, which

converges in distribution to a normal random variable, thanks to the center limit theorem. Hence

E[
√
t(f(Ut) − ft(Ut))] is bounded with a constant α. Then, the sum of the positive difference

of ut becomes

∞∑
t=1

∣∣E[ut+1 − ut]
∣∣ < ∞∑

t=1

α√
t(t+ 1)

. (3.110)

75

3.7. APPENDIX

Furthermore, let us consider the convergence of the sum
∞∑
t=1

α√
t(t+ 1)

. We use the Cauchy-

MacLaurin integral test [133] for convergence, as∫ +∞

t=1

α√
t(t+ 1)

dt =

∫ ∞

x=1

α

(x2 + 1)
dx

= αarctan(x)|+∞
1 = α

(
arctan(∞)− arctan(1)

)
<∞. (3.111)

In other words, since the sum of at convergences, hence
∑∞

t=1 E[ut+1 − ut] < ∞. We complete

the proof.

3.7.5 Proof of Lemma 4

We investigate the convergence of a surrogate sequence
{
(gt(Ut)− ft(Ut))

1
t+1

}
as follows

gt(Ut)− ft(Ut)

t+ 1
= ut − ut+1 + gt+1(Ut+1)− gt+1(Ut)︸ ︷︷ ︸

≤0

+
t(β − 1)

t+ 1
gt(Ut)︸ ︷︷ ︸

≤0

+
ℓ(Ut,Pt+1,xt+1)− ft(Ut)

t+ 1

≤ ut − ut+1︸ ︷︷ ︸
(S-1)

+
ℓ(Ut,Pt+1,xt+1)− ft(Ut)

t+ 1︸ ︷︷ ︸
(S-2)

, (3.112)

because of ut = gt(Ut) and λ ≤ 1. Note that, (S-1)− (S-2) converge almost surely:

• The sequence E[ut − ut+1] converges almost surely as proved in Lemma 3.

• The sequence (S-2) also converges, thanks to the fact E
[
ℓ(Ut,Pt+1,xt+1)

]
= f(Ut) and

the convergence of
E
[
f(Ut)−ft(Ut)

]
t+1 as mentioned in the appendix 3.7.4.

It is therefore that the sequence
{
(gt(Ut)− ft(Ut))

1
t+1

}
converges almost surely, i.e.,

∞∑
t=0

(
gt(Ut)− ft(Ut)

) 1

t+ 1
<∞. (3.113)

On the other hand, the real sequence { 1
t+1} diverges,

∑∞
t=0

1
t+1 = ∞. It implies that gt(Ut) −

ft(Ut) convergences, thanks to the Proposition 24.

Technical Propositions

Here, we provide the following propositions which help us to derive several important results in

our proofs.

76

3.7. APPENDIX

Proposition 3 ([134]). The function f is strongly convex if and only if for all u,v ∈ dom(f)

we always have

f(v)− f(u)− 1

2
∥v − u∥22 ≥ ⟨v − u,θ⟩, ∀θ ∈ ∂f(u).

Proposition 4 ([132]). The function f is m-strongly convex, with a constant m if and only if

for all u,v ∈ dom(f) we always have

∣∣f(v)− f(u)∣∣ ≥ m

2
∥v − u∥22 .

Proposition 5 ([132]). Every norm on Rn is convex and the sum of convex functions is convex.

Proposition 6 ([135]). The Huber penalty function replaces the ℓ1-norm ∥x∥1 ,x ∈ Rn is given

by the sum
∑n

i=1 f
Hub
µ (x(i)), where

fHub
µ

(
x(i)

)
=

x(i)2

2µ , |x(i)| ≤ µ,

|x(i)| − µ/2, |x| > µ.

There exists a smooth version of the Huber function fHub
µ , which has derivatives of all degrees,

ψµ(x) =

n∑
i=1

(
(x(i)2 + µ2)1/2 − µ

)
.

and the first derivative of the pseudo-Huber function ψµ is defined by

∇ψµ(x) =
[
x(1)

(
x(1)2 + µ2

)−1/2
, . . . , x(n)

(
x(n)2 + µ2

)−1/2
]⊤
.

Proposition 7 ([136, Proposition 1.2.4]). Let {at}∞t=1 and {bt}∞t=1 be two nonnegative sequences

such that
∑∞

i=1 ai = ∞ and
∑∞

i=1 aibi < ∞, |bt+1 − bt| < Kat with some constant K, then

lim
t→∞

bt = 0 or
∑∞

i=1 bi <∞.

Proposition 8. If {ft}t≥1 and {gt}t≥1 are sequences of bounded functions which converge uni-

formly on a set E, then {ft + gt}t≥1 and {ftgt}t≥1 converge uniformly on E.

77

Chapter 4

Sparse Subspace Tracking in High

Dimensions

Contents

4.1 Introduction . 79

4.1.1 Related Works . 80

4.1.2 Contribution and Significance . 81

4.1.3 Organization and Notations . 82

4.2 Problem Formulation . 82

4.3 Proposed Methods . 84

4.3.1 OPIT Algorithm . 84

4.3.2 OPIT with Deflation . 87

4.3.3 Discussions . 89

4.4 Convergence Analysis . 91

4.5 Experiments . 95

4.5.1 Experiments with Synthetic Data . 95

4.5.2 Experiments with Real Video Data . 100

4.6 Conclusions . 102

4.7 Appendix . 104

4.7.1 Appendix A: Proof of Lemma 1 . 104

4.7.2 Appendix B: Proof of Lemma 2 . 105

4.7.3 Appendix C: Proof of Lemma 3 . 107

4.7.4 Appendix D: Proof of Lemma 4 . 109

78

4.1. INTRODUCTION

In recent years, sparse subspace tracking has attracted increasing attention in the signal processing com-
munity. In this chapter, we propose a new provable effective method called OPIT for tracking the sparse
principal subspace of data streams over time. Particularly, OPIT introduces a new adaptive variant of
power iteration with space and computational complexity linear to the data dimension. In addition, a
new column-based thresholding operator is developed to regularize the subspace sparsity. Utilizing both
advantages of power iteration and thresholding operation, OPIT is capable of tracking the underlying
subspace in both classical regime and high dimensional regime. We also present a theoretical result on
its convergence to verify its consistency in high dimensions. Several experiments are carried out on both
synthetic and real data to demonstrate the tracking ability of OPIT.

4.1 Introduction

Subspace tracking (ST) is an essential and fundamental problem in signal processing with various

applications to sensor array processing, wireless communication, and image/video processing, to

name a few [20]. It corresponds to the problem of tracking a low-rank subspace that can repre-

sent data streams. Most of subspace tracking methods are designed to estimate the underlying

subspace from the sample covariance matrix (SCM). We refer the reader to [20, 21, 26] for good

surveys on standard and robust ST algorithms.

Recently, many rigorous evidences and theoretical results in random matrix theory (e.g. [22–

24]) indicated that the SCM is not a good estimator of the actual covariance matrix in high-

dimension, low-sample-size (HDLSS) contexts where datasets are massive in both dimension n

and sample size T , and typically n/T → c ∈ (0,∞]. In most online applications, this regime

is indeed more realistic and relevant than the classical one where n is fixed and T → ∞. It is

mainly due to the time variation of (big) data streams in nonstationary environments where the

underlying data distribution changes with time.1 Accordingly, the data covariance matrix and

the principal subspace are time varying too, and thus, the “effective" window length which defines

actual data samples under processing is limited. Meanwhile, modern data streams are originally

associated with high dimensionality [2]. This leads to the case in which the data dimension n is

comparable or even larger than the actual number of snapshots under consideration T .

Without further structural knowledge about the data, subspace tracking algorithms turn out

to be inconsistent in such a regime. Interestingly, the consistency of covariance estimation can

be guaranteed under suitably structured sparsity regularizations [138–142]. Therefore, sparse

subspace estimation and tracking have recently gained much attention in the signal processing

community. In the literature, several good methods have been proposed for sparse subspace

estimation, see [101,143–145] for examples and [49,146] for comprehensive surveys. However, in

1This phenomenon is often referred to as concept drift or dataset shift in data mining and machine learn-
ing [137].

79

4.1. INTRODUCTION

an adaptive (online) setting, there have been only few studies on sparse subspace tracking (SST)

so far.

4.1.1 Related Works

As mentioned before, some online algorithms have been introduced for sparse subspace track-

ing [26]. A few of them are based on a two-stage approach in which one first utilizes a standard

ST algorithm to estimate the underlying subspace and then seek a sparse basis of the estimation

under some sparsity criteria. Particularly in [97,98,104], several variants of OPAST and FAPI

were proposed to track the sparse principal subspace. Another good approach is to regularize

the objective function that aims at accounting for the sparse basis. In [95], the authors modified

the objective function of PAST by adding a ℓ1-norm regularization term on the subspace matrix

and then proposed a new robust variant of PAST called ℓ1-PAST to optimize it. Similar to

ℓ1-PAST, the authors in [147] also introduced another adaptive algorithm using ℓ1-norm mini-

mization called SPCAur for sparse subspace tracking. SPCAur adopts the stochastic gradient

descent on Grassmann manifolds and it is capable of tracking the underlying sparse subspace

from incomplete observations. In [96], a Bayesian-based algorithm called OVBSL was proposed

to deal with the sparsity constraint on the subspace matrix. An advantage of OVBSL is that it

is fully automated, i.e., no finetuning parameter is required. However, these algorithms are only

effective in the classical regime where the sample size is much larger than the dimension, i.e.,

n/T → 0 asymptotically.

Through the lens of machine learning and statistics, SST is generally referred to as the prob-

lem of online sparse PCA which often emphasizes the leading eigenvectors. In [93], the authors

proposed an extended version of the Oja algorithm for online sparse PCA, namely OIST. Its

convergence, steady-state, and phase transition were also derived to investigate the use of OIST

in high dimensions. OIST is, however, designed only for rank-1 sparse subspaces. In [94], an-

other online sparse PCA algorithm (SSPCA) was proposed and could deal with rank-r subspaces.

Specifically, this algorithm uses a simple row truncation operator, which sets rows whose scores

are smaller than a threshold to zero, for tracking the sparse principal subspace over time. How-

ever, this truncation operator is only designed for subspaces with a row-sparse support (i.e. all

eigenvectors must share the same sparsity patterns) which may not always meet in practice. In-

deed, it turns out to be ineffective for a sparse subspace with another support (e.g. elementwise

sparsity). Its performance in terms of estimation accuracy is typically lower than other SST

algorithms, see Fig. 4.4 and Fig. 4.5 for illustration.

It is worth noting that algorithms in [98, 104], OIST [93], and SSPCA [94] can be viewed as

online variants of a classical method for principal subspace estimation, namely power iteration

(PI). In the literature, there exist other power-based subspace trackers and they can be broadly

categorized into the following classes: Oja-types [148,149], Natural Power (NP)-types [150,151],

80

4.1. INTRODUCTION

Data Projection Method (DPM)-types [152, 153], and Approximated PI (API)-types [154, 155].

Specifically, all of them are designed for tracking the principal subspace of the SCM which is,

however, not a good estimator of the true data covariance matrix in high dimensions. Accordingly,

they turn out to be inconsistent estimators in the HDLSS regime.

In parallel, recent years have also witnessed considerable research advances on robust ST

(RST) which aims to track the underlying subspace in the presence of data corruption [21,26,156].

For example, several RST algorithms were developed to handle sparse outliers, such as Grass-

mannian Robust Adaptive Subspace Tracking Algorithm (GRASTA) [157], Parallel Subspace

Estimation and Tracking by Recursive Least Squares (PETRELS)-types [25, 62], and Recursive

Projected Compressive Sensing (ReProCS)-types [63,64]. To deal with impulsive noises, three po-

tential approaches are robust statistics [82,158], adaptive Kalman filtering [84,87], and weighted

RLS [62,159]. Very recently, α-divergence was specifically exploited to bolster the tracking ability

of the well-known PAST and FAPI trackers in noisy and contaminated environments [160, 161].

However, none of them is designed for subspace tracking in the HDLSS context.

4.1.2 Contribution and Significance

In this chapter, we introduce a new provable adaptive algorithm called OPIT (OPIT stands

for Online Power Iteration via Thresholding) for sparse subspace tracking. OPIT takes both

advantages of power iteration and thresholding methods, and hence offers several appealing

features over the state-of-the-art SST/online sparse PCA algorithms.

First, OPIT belongs to the class of power methods, and thus its convergence rate is highly

competitive compared to other SST algorithms, especially in the high SNR regime. Unlike the

two SST algorithms based on power methods (i.e. OIST and SSPCA), OPIT utilizes old observa-

tions efficiently in a recursive way and still operates with linear space complexity. Accordingly,

OPIT could obtain not only a faster convergence rate but also a better subspace estimation

accuracy than OIST and SSPCA. Compared to OIST which is limited to tracking rank-1 sparse

subspaces, OPIT has the capability of tracking rank-r subspaces over time. Compared to SSPCA

which is useful for only subspaces with row-sparse supports, OPIT offers an effective subspace

tracker which can deal with more generalized sparsity supports than SSPCA, thanks to a new

thresholding operator to deal with subspace sparsity. In particular, we propose to apply column-

based thresholding instead of row-based thresholding as in SSPCA. With this operator, OPIT has

a great potential for handling several sparsity supports such as row-sparse, elementwise-sparse,

and local region-sparse.

Different from the existing two-stage SST algorithms, OPIT has ability to track the sparse

principal subspace with high accuracy in both the classical regime and the HDLSS regime.

Theoretically, the subspaces derived from the two-stage algorithms are identical to those obtained

81

4.2. PROBLEM FORMULATION

by the corresponding standard ST algorithms (e.g. OPAST and FAPI) used in their first stage.

It is due to the fact that the subspace spanned by a full rank matrix remains unchanged after

any rotation. Accordingly, they still suffer the limitation of the SCM in the HDLSS regime. By

contrast, our OPIT algorithm aims to track the underlying sparse subspace from a thresholded

SCM. Simulation results indicate that OPIT provides a much better subspace estimation accuracy

than the two-stage SST algorithms in high dimensions. More importantly, as indicated later

in our theoretical analysis, the convergence of OPIT with the thresholding operation can be

guaranteed under certain conditions.

In addition, OPIT is flexible and very adaptable for different scenarios. In particular, we can

adjust its procedure for dealing with multiple incoming data streams. This feature is useful for

application areas wherein block processing is required, i.e., a block of data samples is processed

and analysed at one time. Next, it is easy to introduce regularization parameters into OPIT

in order to regularize its performance in non-standard environments. Specifically, we can use a

forgetting factor to discount the impact of distant observations as well as facilitate the tracking

ability of OPIT in dynamic environments. Moreover, we can recast its update rule into a column-

wise update. Thanks to the deflation transformation, we particularly derive a fast variant of

OPIT called OPITd with lower complexity of both computation and memory storage. This

variant is fast and useful for tracking high-dimension and large-scale data streams residing in

a low-dimensional space. Last but not least, OPIT belongs to the class of provable subspace

tracking algorithms in which its convergence is guaranteed. Under certain conditions, OPIT can

achieve an ϵ-relative-error approximation with high probability when the number of observations

is large enough.

4.1.3 Organization and Notations

The rest of the chapter is organized as follows. Section 4.2 formulates the SST problem. Sec-

tion 7.3.2 presents the proposed OPIT algorithm and its variant OPITd while Section 4.4 estab-

lishes its convergence analysis. Section 4.5 provides several experiments to demonstrate perfor-

mance of the proposed algorithms in comparison with the state-of-the-art algorithms. Section 4.6

concludes the chapter.

4.2 Problem Formulation

Assume that at time t, we collect a data sample xt ∈ Rn×1 satisfying the signal model

xt = ℓt + nt. (4.1)

82

4.2. PROBLEM FORMULATION

Here, ℓt ∈ Rn×1 is a low-rank signal living in a subspace2 spanned by a sparse matrix An×r with

r < n (i.e. ℓt = Awt, where wt ∈ Rr×1 is a weight vector) and nt ∈ Rn×1 is an additive spatially

white noise vector independent of ℓt. Sparse subspace tracking problem can be stated as follows:

Sparse Subspace Tracking: Given a set of data streams {xt}Tt=1, we aim to estimate a

sparse principle subspace At that compactly represents the span of signals {ℓt}Tt=1.

Generally, the underlying subspace can be estimated from the spectral analysis of the actual

covariance matrix

C = E
{
xtx

⊤
t

}
= AE

{
wtw

⊤
t

}
A⊤ + E

{
ntn

⊤
t

}
. (4.2)

Without loss of generality, we suppose that C has the form C = σ2xAA⊤+σ2nIn where E{wtw
⊤
t } =

σ2xIr and E{ntn
⊤
t } = σ2nIn. Applying eigenvalue decomposition (EVD) on C yields

C
EVD
= UΛU⊤ =

[
Us Un

]Λs 0

0 Λn

U⊤
s

U⊤
n

 . (4.3)

Here, Λ ∈ Rn×n is a diagonal matrix whose diagonal elements are eigenvalues of C sorted in

decreasing order and U ∈ Rn×n contains the corresponding eigenvectors. Accordingly, Us ∈ Rn×r

and Un ∈ Rn×(n−r) represent the principal subspace and the minor subspace of C, respectively.

The orthogonal projection matrix of the sparse principal subspace is unique (i.e., UsU
⊤
s = AA#),

so A can be obtained as A = UsQ
∗ with

Q∗ = argmin
Q∈Rr×r

∥∥UsQ
∥∥
0

s.t. Q is full-rank, (4.4)

where ∥.∥0 promotes the sparsity on A. In several applications, we often emphasize the principal

subspace rather than its specific basis, such as dimensionality reduction [162] and array process-

ing [107]. In this work, our main objective is to track the principal (signal) subspace of A while

the sparsifying step (4.4) is optional.

Most state-of-the-art SST algorithms estimate the principal subspace of the sample covariance

matrix CT = 1/T
∑T

t=1 xtx
⊤
t [26]. However, in a high-dimensional regime where n/T ↛ 0 a.s.,

CT is not a good estimator of C. This limitation in an adaptive scheme is not necessarily due

to a data shortage but to the time variation which forces us to use a limited window of time

instead of all the data. Particularly, it has been shown that CT is not a consistent estimate of C

in the HDLSS regime, e.g. [163–165]. As a result, most of SST algorithms are not good in high

dimensions, as illustrated in Fig. 4.5.

2In an adaptive scheme, the matrix A may be slowly varying with time, i.e., A = At. Our algorithm is capable
of successfully estimating the subspace as well as tracking its variation along the time.

83

4.3. PROPOSED METHODS

On the other hand, under certain conditions, it is proved in [138,166] that

∥∥C− τ(CT)
∥∥
2
→ 0 a. s. as T →∞, (4.5)

where τ(.) is an appropriate thresholding operator. Thanks to (4.5), in the next section, we

derive a novel adaptive (online) algorithm based on power iteration and thresholding technique

that is capable of tracking the sparse principal subspace in both the classical regime and the

HDLSS regime.

4.3 Proposed Methods

In this section, a novel effective algorithm using thresholding is developed for sparse subspace

tracking. This algorithm is dubbed as OPIT which stands for Online Power Iteration via Thresh-

olding. We next derive a fast variant of OPIT called OPITd with lower complexity, thanks to

the deflation transformation. Some remarks on OPIT and OPITd are discussed in the following

subsection.

4.3.1 OPIT Algorithm

We first recall the main steps of the standard power iteration (PI) method on which we primarily

leverage in order to develop our OPIT algorithm, for computing the dominant eigenvectors of

Ct. At the ℓ-th iteration, PI particularly updates (i) Sℓ ← CtUℓ−1 and (ii) Uℓ ← QR(Sℓ) be

the Q-factor of QR factorization of Sℓ. PI starts from an initial matrix U0 ∈ Rn×r and returns

an orthonormal matrix UL where L is the number of iterations [20].

In an adaptive scheme, the iteration step of PI can coincide with the data collection in time.

At time t, the sample covariance matrix Ct can be recursively updated by: Rt = Rt−1 + xtx
⊤
t

and Ct = t−1Rt. As streaming data can vary with time, we propose to use a forgetting factor

β (0 < β ≤ 1) to discount the impact of old observations exponentially. The underlying subspace

Ut is then derived from spectral analysis of Rt which is updated continuously by

Rt = βRt−1 + xtx
⊤
t . (4.6)

Together with the fact that QR(RtUt−1) = QR(CtUt−1), we can rewrite the first step of PI as

follows

St = RtUt−1 = βRt−1Ut−1 + xtz
⊤
t , (4.7)

where zt = U⊤
t−1xt.

84

4.3. PROPOSED METHODS

Algorithm 4: OPIT
Input: {xi}Ti=1,xi ∈ Rn×1, target rank r, a forgetting factor 0 < β ≤ 1, window of length
W ≥ 1, and a thresholding factor k

k =

{
⌊(1− ωsparse)n⌉ if ωsparse is given,
⌊10r log n⌉ if ωsparse is unknown,

where ωsparse is the sparsity level of the sparse basis.
Initial: U0 = randn(n, r), S0,F = 0n×r,E0 = 0r×r

Main Program:

Procedure
for t = 1, 2, . . . , T/W do

Xt = [x(t−1)W+1, . . . ,xtW] // Data collection

Zt = U⊤
t−1Xt

St = β (t−1)W
tW St−1Et−1 +

1
tW XtZ

⊤
t

Ŝt = τ(St, k) // Thresholding

Ut =

{
QR(Ŝt) // Promotes orthogonality
Ŝt/∥Ŝt∥2 // Promotes sparsity

Et = U⊤
t−1Ut

end for
Output: Ut ∈ Rn×r

// Thresholding Ŝt = τ(St, k)

Procedure
for i = 1, 2, . . . , r do

si = St(:, i)
Find the set Tt ⊂ [1, 2, . . . , n] containing indices of k strongest elements of si

Form Ŝt(:, i) = ŝi, where ŝi(j) =

{
si(j) if j ∈ Tt
0 if j /∈ Tt

end for
Output: Ŝt ∈ Rn×r

Towards a fast subspace estimator, we can utilize the previous subspace as a warm start in

the tracking process. Hereby, a key step at each time t is to project Ut into the column space of

Ut−1, i.e.,

Ut = Ut−1Et +Ut−1,⊥Ft, (4.8)

where Ut−1,⊥ is the orthogonal complement of Ut−1, Et = U⊤
t−1Ut and Ft = U⊤

t−1,⊥Ut are

coefficient matrices. Specifically, the first term of (4.8) represents the “old” information in Ut,

while the second one is its distinctive new information. Substituting Ut−1 according to (4.8)

85

4.3. PROPOSED METHODS

(one time-step delayed) into (4.7) results in

St = βSt−1Et−1 + βRt−1Ut−2,⊥Ft−1 + xtz
⊤
t . (4.9)

The complement of projecting xt into the subspace Ut−1 at time t can be given by

yt =
(
I−Ut−1U

⊤
t−1

)
xt = xt −Ut−1zt. (4.10)

Here, yt is orthogonal to the column space of Ut−1. For short, we denote ∆Ut−1 = Ut−2,⊥Ft−1.

Based on (4.10), we obtain another expression of ∆Ut−1 as follows

∆Ut−1 = yt−1h
⊤
t−1 where ht−1 = U⊤

t−1yt−1. (4.11)

Under the assumption that the underlying subspace is fixed or slowly varying with time (i.e.,

Ut−2U
⊤
t−2 ≃ Ut−1U

⊤
t−1), yt−1 is nearly orthogonal to the subspace Ut−1. In other words, angles

between yt−1 and columns of Ut−1 are very close to π/2, and hence, the norm of ht−1 in (4.11)

is very small. Therefore, ∆Ut−1 and Rt−1∆Ut−1 are negligible and can be ignored during the

tracking process without any major performance degradation. It stems from the fact that the

presence of a small perturbation does not really affect the performance of power methods [167].

Accordingly, a good approximation to (4.9) can be given by

St ≃ βSt−1Et−1 + xtz
⊤
t . (4.12)

In this work, the update (4.12) is further followed by an appropriate perturbation Gt defined

by the following thresholding operation τ(.) as:

Ŝt
∆
= τ(St, k) = CtUt−1 +Gt, (4.13)

where the thresholding factor k can be determined as in Algorithm 4. Here, Ŝt is particularly

derived from St by keeping the k strongest (absolute value) elements in each column of St and

setting the remaining elements to zero. Then, the second step of PI is replaced with

Ut =

QR(Ŝt) if orthonormalization,

Ŝt

/
∥Ŝt∥2 if normalization.

(4.14)

In addition to the nice property (4.5), another main motivation for using the thresholding oper-

ation τ(.) stems from the following proposition:

86

4.3. PROPOSED METHODS

Proposition 9. Denote by {λi}ni=1 the set of singular values of Ct in descending order (i.e.

λi ≥ λi+1). When the perturbation Gt satisfies: ∥Gt∥2 ≤ ξ(λr − λr+1) and ∥A⊤
t Gt∥2 ≤

ξ(λr − λr+1) cos θ(At,Ut−1) for some ξ < 1, we obtain

tan θ
(
At,CtUt−1 +Gt

)
≤ γ tan θ

(
At,Ut−1

)
,

where 0 < γ < 1 and θ(., .) denotes the canonical angle (the largest principal angle) between

two subspaces.

Proof. Its proof follows immediately Lemma 2.2 in [167].

As a corollary, the estimated Ut will get closer to the true subspace At with time.

The OPIT algorithm introduces the window parameter W . Here, the inclusion of W is useful

in some applications where we often collect multiple data samples instead of a single sample at

each time t. The main steps of OPIT are summarized in Algorithm 4.

Complexity: For convenience of analysis, we suppose the window length W = 1. Most of the

steps in OPIT require a computational complexity of O(nr2) except the thresholding operator

which costs O(nr + rk log k) operations. Thus, the overall computational complexity of OPIT

is O(max{nr, k log k}r). In terms of memory storage, OPIT does not need to go back past

observations but utilizes their information in a recursive way. Hence, the proposed algorithm

requires a space of nr elements for saving the estimate Ut, while two buffer matrices St and Et

need only nr+ r2 elements in total. In conclusion, the space complexity of OPIT is linear to the

data dimension n.

4.3.2 OPIT with Deflation

A low cost subspace tracking algorithm with linear complexity of computation O(nr) is always

preferable due to its fast implementation time, especially for real-time applications.3 Here, we

derive a fast variant of OPIT using deflation called OPITd which can achieve such a complexity

while preserving the algorithm’s accuracy in most cases.

Our main motivation stems from the fact that if we apply the following projection deflation

C̃t = (I− u1u
⊤
1)Ct(I− u1u

⊤
1), (4.15)

where u1 is the most dominant eigenvector of Ct, then the eigenvectors of C̃t are exactly the

3With respect to computational complexity, subspace tracking algorithms are categorized into three groups:
high complexity O(n2r) and O(n2), moderate complexity O(nr2), and low complexity O(nr). The last group,
which is referred to as fast algorithms, is the most important class for online processing [20].

87

4.3. PROPOSED METHODS

Algorithm 5: OPITd - OPIT with Deflation
Input: {xi}Ti=1,xi ∈ Rn×1, target rank r, a forgetting factor 0 < β ≤ 1, and a thresholding
factor k

k =

{
⌊(1− ωsparse)n⌉ if ωsparse is given,
⌊10r log n⌉ if ωsparse is unknown,

where ωsparse is the sparsity level of the sparse basis.
Initial: U0 = randn(n, r), S0 = 0n×r, e0 = 1r×1.
// Denote ut,j = Ut(:, j), st,j = St(:, j), and et,j = et(j).
Main Program:

Procedure
for t = 1, 2, . . . , T do

for j = 1, 2, . . . , r do
zt,j = u⊤

t−1,jxt

st,j = β t−1
t et−1,jst−1,j +

1
t zt,jxt

ŝt,j = τ(st,j , k) // Thresholding

ut,j = ŝt,j/∥ŝt,j∥2
et,j = u⊤

t−1,jut,j

xt = xt − zt,jut,j // Deflation

end for
end for
Output: Ut ∈ Rn×r

same as Ct with eigenvalues {0, λ2, . . . , λn}. Here, λi is the i-th strongest eigenvalue of Ct. It

demonstrates that the deflation (4.15) can eliminate the influence of u1 (i.e., by setting λ1 to

zero) and switches the second dominant eigenvector up. As a result, once we estimated u1 by

using a specific (online) method, the second dominant eigenvector of Ct can be extracted from

C̃t in the same way as to u1. Moreover, repeating this procedure r times can result in r leading

eigenvectors of Ct. Interestingly, in the case even when u1 is not a true eigenvector of Ct, the

projection deflation (4.15) still retains desirable properties (e.g. positive semi-definiteness) that

may be lost to other deflation transformations [168]. In what follows, we describe the way how

to linearize the production of OPIT using the projection deflation (4.15).

To update the j-th column ut,j of Ut, for j = 1, 2, . . . , r, we replace the recursive rule (4.12)

with

st,j = β
t− 1

t
et−1,jst−1,j +

1

t
zt,jxt, with (4.16a)

zt,j = u⊤
t−1,jxt and et−1,j = u⊤

t−2,jut−1,j , (4.16b)

where st,j , zt,j , and et−1,j play the same role as St, zt, and Et in (4.12), respectively. Next, the

88

4.3. PROPOSED METHODS

thresholding operation (4.13) boils down to

ŝt,j = τ(st,j , k). (4.17)

Then, the column ut,j is simply derived from normalizing (4.17) to unit length as ut,j =

ŝt,j/∥ŝt,j∥2. At the end of the column-wise update, we deflate the component ut,j from xt

as xt ← xt − zt,jut,j for the estimation of the next component ut,j+1. The main steps of OPITd

are summarized in Algorithm 5.

Complexity: The most expensive computation comes from the thresholding operation τ(st,j , k)

which requires a cost of O(n+ k log k). The remaining steps of OPITd require a computational

complexity of O(n) only. Accordingly, OPITd costs a complexity of O(rmax{n, k log k}) for

updating the whole matrix Ut at each time t. In practice, we often set the value of k to

O(r log n) or ⌊(1− ωsparse)n⌉ which is much smaller than n, and thus, the overall complexity of

OPITd is approximately linear to nr. OPITd also requires a less memory storage than OPIT.

Specifically, its space complexity is 2nr + r for saving Ut, St = [st,1, st,2, . . . , st,r] of size n × r
and et = [et,1, et,2, . . . , et,r]

⊤ of size r × 1 at time t.

4.3.3 Discussions

First, it is worth noting that both OPIT and OPITd cannot enforce orthogonality and sparsity

in the estimate at the same time. On the one hand, when we adopt the orthonormalization step

using the QR factorization, OPIT ensures orthogonality but lacks sparsity. Although performing

the QR step can increase the numerical stability of OPIT, it destroys the sparsity, especially

when the target rank r is not too small. In most cases, the Q-factor of the thresholded Ŝt

is a dense (orthogonal) matrix. However, when the columns of Ŝt are sufficiently sparse and

have mostly non-zero elements in non-overlapping sets in its row support, then Ŝt is almost

orthogonal and its Q-factor can be nearly sparse. We particularly meet such a case when data

streams are high-dimensional but of very low rank (i.e., r ≪ n) and/or the sparsity level ωsparse

is extremely high. In fact, we often emphasize the principal subspace rather than its specific

basis in subspace tracking, thus the lack of sparsity of OPIT is not the issue. On the other

hand, when the normalization step (e.g. Ut = Ŝt/∥Ŝt∥2) is taken into account instead of the QR

step, OPIT results in a sparse but non-orthogonal mixing matrix Ut. The operation requires

only O(nr) while the QR step costs a complexity of O(nr2). Therefore, it helps speed up the

computation of OPIT especially when r is reasonably high compared to the dimension n. More

importantly, with this simple normalization, OPIT can achieve excellent subspace estimation

accuracy against the state-of-the-art SST algorithms, please see Figs. 4.4 and 4.5 for examples.

OPITd promotes sparsity but entails non-orthogonality and sub-optimality. Thanks to the

projection deflation, OPITd offers a fast column-wise update for tracking the underlying sub-

89

4.3. PROPOSED METHODS

space and successes in achieving the sparsity. The deflation has the advantage to estimate the

eigenvectors (which is referred to as principal components) while the matrix Ut in OPIT can

be any basis of the principal subspace (not necessarily the eigenvectors). Accordingly, OPITd

has benefits in some applications such as data whitening requiring the eigenvectors. Specifically,

the combination of the thresholding operation τ(st,j , k) and the column normalization results di-

rectly in sparse components in the estimate Ut at each time t. However, the deflation may cause

loss of orthogonality and introduces cumulative errors which can affect the successive estimation

of the next component. Accordingly, when the target rank r is not too small compared to the

data dimension n, both convergence rate and estimation accuracy of OPITd are less than that

of OPIT, see Fig. 4.7(b) for an illustration. In such a situation, we can re-orthonormalize Ut

after a period of time to remedy the issue at low cost as well as increase the numerical stability

of OPITd.

Next, how to choose the value of k? Ideally, this factor must be a r× 1 vector [k1, k2, . . . , kr]

where kj represents the threshold level for the j-th column At(:, j). Clearly, the value of kj
should be close to the number of non-zero elements in At(:, j). Without loss of generality, we

can assume that sparse patterns in At are uniformly distributed, i.e., ki ≃ kj ∀i, j. Accordingly,

we can set k ≃ kj ≃ ⌊(1 − ωsparse)n⌉ when the prior knowledge of the sparsity level ωsparse –

the percentage of non-zero elements in At – is given. If this information is not available, we

can tune this factor through cross-validation or simply chosen in O(log n), e.g. k = ⌊mr log n⌉
where m is a positive number. The former remedy is useful for batch sparse subspace estimation

and sparse PCA [169]. However, it requires a validation set – which we have to pass a number

of observations several times – and hence turns out to be inefficient for tracking problems. The

latter one is very simple and capable of achieving reasonable performance in practice. It stems

from the rigorous evidence in [170–172] that sparse subspace/PCA algorithms can recover the

sparse principal components in polynomial time when the expected number of non-zero elements

in each component is at most O(
√
T/ log n). As indicated later in Section IV, the number

of observations T = O(n) can guarantee OPIT’s convergence, please see the condition (4.18).

Furthermore, we have log n <
√
T/ log n when T = O(n) for a large n, and thus, we can choose

the factor k in the logarithmic regime O(log n) to ensure the thresholded matrix is sufficiently

sparse. A natural question raised here is whether the tracking ability of OPIT deteriorates or

not when the number of selected elements is smaller than the actual number of non-zeros in At?

(e.g. it might occur due to the low level of sparsity). Fortunately, Proposition 9 also suggests

that if the perturbation error caused by the choice of k is small enough, OPIT still results in a

good estimate of At when the number of observation is large enough.

Compared to the state-of-the-art power-based subspace tracking algorithms, OPIT is more

elegant, refined, and effective. Particularly upon the arrival of new data xt, many power-

based subspace trackers (e.g., Oja-types, NP-types, and DPM-types) adopt the update rule

90

4.4. CONVERGENCE ANALYSIS

Ut = orthnorm(Ut−1 + ηtxtz
⊤
t) where ηt is the step size and orthnorm(.) is an orthonormaliza-

tion procedure [20]. Therefore, the inclusion of Et−1 in (4.12) not only makes OPIT different from

them, but also greatly bolsters its tracking ability. The matrix Et−1, which contains cosines of

the principal angles between two successive subspaces, plays the role of feedback in the tracking

process. Accordingly, it could help improve the adaptation rate and stability of OPIT, espe-

cially in nonstationary environments. API-type subspace trackers, on the other hand, exploit

the projection approximation Ut ≃ Ut−1Θt where Θt is nearly orthogonal and very close to

an identity matrix [154]. Hereby, they would predict the current tracking performance error

and then use it for estimating the true subspace. More specifically, they follow the update rule

Ut = Ut−1Θt + ytg
⊤
t Θt where yt is the complement (error) of projecting xt onto Ut−1 defined

as in (4.10), gt is a gain vector, and Θt = (Ir + ∥yt∥2gtg⊤
t)

−1/2. However, when abrupt changes

happen (e.g., due to impulsive noises and outliers or data drift), the error yt would be very

large. The state transition matrix Θt would be very far from ideal that could degrade their

subspace estimation accuracy as well as convergence rate, see Section E.1 in our supplementary

document for examples. By contrast, OPIT exploits the past tracking performance error (i.e.,

one time step delayed) caused by itself which is independent of the current error yt. Thus, OPIT

is less sensitive to such changes than API-types. Together with the hard-thresholding operator

τ(.) in (4.13), OPIT stands out from all the rest. The tracking ability of OPIT is verified by

several experiments in Section V where the results indicate that OPIT outperforms completely

the-state-of-the-art subspace trackers (including several power-based methods) in both classical

and high dimension regimes.

4.4 Convergence Analysis

In this section, we provide a convergence analysis for the proposed OPIT algorithm in Algorithm 4

under the assumption that At = A is unchanged over time and β = 1.4

We make the following assumptions to facilitate our convergence analysis:

(A1) A is chosen in the set U = {U ∈ Gn,r, ∥U∥∗,0 ≤ (1− ωsparse)n, and ∥U∥2 = 1}, where

Gn,r denotes the class of n× r well-condition matrices and ∥U∥∗,0 = maxj ∥U(:, j)∥0. Here, the

parameter ωsparse represents the sparsity level of A. In addition, A is sparse enough in the sense

that the average number of non-zero elements in each column is at most
√
n/ log n.

(A2) Data samples {xt}t≥1 are norm-bounded, i.e., ∥xt∥2 ≤ M < ∞ ∀t. Low-rank signals

4We limit our analysis in this work to a stationary case when At = A ∀t and β = 1. Establishing the ϵ-
relative-error approximation guarantee for OPIT in nonstationary environments is non-trivial as data samples do
not share the same population. Specifically, finding a tight upper bound on the error matrix ∆Ct – which plays a
key role in establishing the two necessary conditions (4.18) and (4.19) as well as Lemmas 1 and 2 – is challenging.
Instead of the normal sample covariance matrix (SCM), an exponential weighted variant of the SCM is applied
here because of the forgetting factor β < 1. It would make the theoretical convergence analysis more complicated.
We leave this challenge for future work.

91

4.4. CONVERGENCE ANALYSIS

{ℓt}t≥t are supposed to be deterministic and bounded. Noise vectors {nt}t≥1 are i.i.d. random

variables of zero mean and their power is lower than the signal power.

In (A1), the underlying subspace is supposed to be sparse in the sense of column sparsity

defined by Vu et al. in [173].5 It is not a strict sparsity constraint as the set U covers several

supports such as row-sparse, elementwise-sparse, and local region-sparse. Besides, the unit-norm

constraint of (A1) is a very mild condition as we can rescale A by recasting its operator norm

into the signal power. The second constraint of (A1) ensures trackers to estimate the sparse

subspace with high probability [170]. Meanwhile, (A2) is a common assumption for subspace

tracking problems and holds in many situations [25]. Together with (A1), they help prevent the

ill-conditioned computation and support the perturbation analysis of QR decomposition due to

the thresholding operation.

Given these assumptions, the main theoretical result of OPIT’s convergence can be stated by

the following theorem:

Theorem 3. Suppose that At = A, β = 1, the true covariance matrix has the form

C = σ2xAA⊤ + σ2nI, and two assumptions (A1)-(A2) are met. The initialization matrix

U0 and the number of observed (block) data samples t satisfies the following conditions

t ≥ C log(2/δ)

Wϵ2

(√
r +

(σ2n
σ2x

+ 2
σn
σx

)√
n

)2

, (4.18)

max
{
sin θ(A,U0), ϵ

}
≤
(

3− 2
√
2

r + 2
√
r(
√
2− 1)

)1/2

, (4.19)

where ϵ > 0 is a predefined accuracy, C is a universal positive number and 0 < δ ≪ 1

is a predefined error probability. At time t, when Ut is generated by OPIT with the

orthonormalization step using QR factorization, then

dt
∆
= sin θ(A,Ut) ≤ ϵ, (4.20)

with a probability at least 1− δ.

Proof Sketch. First, let us denote the QR decomposition of St by St = Ut,FRt,F where

“F” stands for “full” entries. Here, we can express Ut = Ut,FW1 +Ut,F ,⊥W2 where Ut,F ,⊥ ∈
Rn×(n−r) is the orthogonal complement of Ut,F (i.e., U⊤

t,FUt,F ,⊥ = 0), W1 ∈ Rr×r and W2 ∈
R(n−r)×r are coefficient matrices. Specifically, it is easy to obtain that ∥W1∥2 = ∥U⊤

t,FUt∥2 and

5With respect to the concept of subspace sparsity, Vu et al. in [173] introduced two notions: column sparsity
and row sparsity. Specifically, a subspace is said to be column sparse if some orthonormal basis contains sparse
vectors. Meanwhile, every orthonormal basis of a row sparse subspace must consist of sparse vectors. Accordingly,
row sparse subspaces also belong to the class of column sparse subspaces. In this work, the proposed OPIT
algorithm can achieve an ϵ-relative-error approximation guarantee for the class of column sparse subspaces, and
thus, its convergence guarantee also holds under the row sparsity.

92

4.4. CONVERGENCE ANALYSIS

∥W2∥2 = ∥U⊤
t,F ,⊥Ut∥2. Accordingly, we can bound the distance dt = sin θ(A,Ut) as follows:6

dt =
∥∥A⊤

⊥Ut

∥∥
2

(i)
=
∥∥A⊤

⊥
(
Ut,FW1 +Ut,F ,⊥W2

)∥∥
2

(i)

≤
∥∥A⊤

⊥Ut,F
∥∥
2

∥∥W1

∥∥
2
+
∥∥A⊤

⊥Ut,F ,⊥
∥∥
2

∥∥W2

∥∥
2

(ii)

≤
∥∥A⊤

⊥Ut,F
∥∥
2
+
∥∥U⊤

t,⊥Ut,F
∥∥
2
. (4.21)

Here, (i) thanks to the standard inequalities ∥M + N∥2 ≤ ∥M∥2 + ∥N∥2 and ∥MN∥2 ≤
∥M∥2∥N∥2; and (ii) is due to the following facts: ∥A⊥∥2 = ∥Ut∥2 = ∥Ut,F ,⊥∥2 = 1, ∥W1∥2 ≤
∥U⊤

t,F∥2∥Ut∥2 ≤ 1, ∥A⊤
⊥Ut,F ,⊥∥2 ≤ ∥A⊤

⊥∥2∥Ut,F ,⊥∥2 ≤ 1, and ∥U⊤
t,F ,⊥Ut∥2 = ∥U⊤

t,⊥Ut,F∥2.

The two terms of the right hand side of (4.21) can be bounded by Lemma 5 and 6, respectively.

Lemma 5. Let ∆Ct = Ct −C, we always have

∥∥A⊤
⊥Ut,F

∥∥
2
≤

σ2n
∥∥A⊤

⊥Ut−1

∥∥
2
+ ∥∆Ct∥2([(

σ2x + σ2n
)√

1−
∥∥A⊤

⊥Ut−1

∥∥2
2
−
∥∥∆Ct

∥∥
2

]2
+
[
σ2n
∥∥A⊤

⊥Ut−1

∥∥
2
+
∥∥∆Ct

∥∥
2

]2)1/2

. (4.22)

Proof. See Appendix A.

Lemma 6. The distance between Ut and Ut,F is bounded by

∥∥U⊤
t,⊥Ut,F

∥∥
2
≤

√
r
(
σ2n
∥∥A⊤

⊥Ut−1

∥∥
2
+
∥∥∆Ct

∥∥
2

)(
(σ2x + σ2n)

√
1−

∥∥A⊤
⊥Ut−1

∥∥2
2

−
(
1 +
√
r(1 +

√
2)
)(
σ2n
∥∥A⊤

⊥Ut−1

∥∥
2
+
∥∥∆Ct

∥∥
2

))
, (4.23)

under the following condition

σ2n
∥∥A⊤

⊥Ut−1

∥∥
2
+ ∥∆Ct∥2

(σ2x + σ2n)
√

1−
∥∥A⊤

⊥Ut−1

∥∥2
2

≤
√
2− 1

√
r − 1 +

√
2
. (4.24)

Proof. See Appendix B.

Next, Lemma 7 indicates an upper bound on ∥∆Ct∥2 which plays a crucial role in Lemma 5

and 6 as well as establishing the two conditions (4.18) and (4.19) for the convergence of OPIT.

6For any two orthonormal matrices A and U of the same size, we always have sin θ(A,U) = ∥A⊤
⊥U∥2 =

∥U⊤
⊥A∥2.

93

4.4. CONVERGENCE ANALYSIS

Lemma 7. The error matrix ∆Ct is bounded in the operator norm with a probability at

least 1− δ:

∥∥∆Ct

∥∥
2
≤ cδ

(
σ2x

√
r

tW
+
(
2σnσx + σ2n

)√ n

tW

)
, (4.25)

where δ > 0 is a predefined error probability, and cδ = C
√
log(2/δ) with a universal

positive number C > 0.

Proof. See Appendix C.

Then, the necessary condition (4.24) for Lemma 6 is particularly satisfied when (4.18) is met

and the following inequality holds

max
{
sin θ(A,U0), ϵ

}
≤

√
α(r, ρ)

1− α(r, ρ)
, where (4.26)

α(r, ρ) =
(3− 2

√
2)(σ2x + σ2n)

2(
r + 2

√
r(
√
2− 1) + 3− 2

√
2
)(
σ2n + r−1ρσ2x

)2 , (4.27)

for any positive number ρ in the range (0, r], please see Appendix D for details. Clearly, (4.19)

provides a lower bound on
√
α(r, ρ)/(1− α(r, ρ)).

Accordingly, Lemma 6 is achieved under the two conditions (4.18) and (4.19) while Lemma 1

holds for all t. Now, given Lemma 5, 6, and 7, the distance dt can be bounded by Lemma 6.

Lemma 8. Let d0 = sin θ(A,U0), ω0 = max{d0, ϵ}, γ > 0 is any positive number satis-

fying ω0 ≤ γr
√
1− ω2

0 and ργ < 1. Suppose that ω0 ≤
√
2/2, the two conditions (4.19)

and (4.18) are met, we obtain

dt ≤
rσ2n + ρσ2x

rξ
√

1− ω2
0

max
{
dt−1, ϵ

}
, where (4.28)

ξ = 0.5max
{[

(1 + γ2r2)σ4n + (1− ργ)2σ4x + 2(1 + γ2r2 − ργ)σ2nσ2x
]1/2

,

(σ2n + σ2x)(1− ϱ)/
√
r
}
, (4.29)

with ϱ = γ
(
1+
√
r(1+

√
2)(rσ2n+ ρσ2x)

)(
σ2n+σ2x

)−1. Furthermore, dt ≤ ϵ also holds when

t satisfies the condition (4.18).

Proof. See Appendix D.

94

4.5. EXPERIMENTS

4.5 Experiments

In this section, we conduct several experiments on both synthetic and real data to demonstrate

the effectiveness and efficiency of OPIT and its variant OPITd. Their performance is evaluated

in comparison with state-of-the-art algorithms. Our simulations are implemented using MAT-

LAB on a laptop of Intel core i7 and 16GB of RAM. Our codes are also available online at

https://github.com/thanhtbt/sst/ to facilitate replicability and reproducibility.

4.5.1 Experiments with Synthetic Data

4.5.1.1 Experiment Setup

Following the formulation in section 4.2, data samples {xt}t≥1 are generated at random under

the standard model:

xt = Atwt + σnnt, (4.30)

where nt ∈ Rn×1 is a noise vector derived from N (0, In), σn > 0 is to control the effect of the

noise on algorithm’s performance, wt ∈ Rr×1 is an i.i.d. Gaussian random vector of zero-mean

and unit-variance to represent the subspace coefficient. The sparse mixing matrix At ∈ Rn×r at

time t is simulated as

At = Ω⊛ (At−1 + εNt), (4.31)

where ⊛ denotes the Hadamard product, Ω ∈ Rn×r is a Bernoulli random matrix with probability

1−ωsparse, Nt is a normalized Gaussian white noise matrix, and ε > 0 is the time-varying factor

aimed to control the subspace variation with time.

In order to evaluate the subspace estimation performance, we measure the following distance

between two subspaces7

dt
∆
= sin θ(At,Ut), (4.32)

where Ut refers to the estimated subspace at time t.

7Given two orthonormal matrices A and U of the same size, we always have sin θ(A,U) = ∥A⊤
⊥U∥2 =

∥U⊤
⊥A∥2 = ∥AA⊤ −UU⊤∥2 where (.)⊥ denotes the orthogonal complement, e.g., U⊤U⊥ = 0. In MATLAB,

this distance can be easily computed by using the command sin(subspace(A,U)).

95

4.5. EXPERIMENTS

0 200 400 600 800 1000

10
-4

10
-3

10
-2

10
-1

(a) Stationary: ϵ = 0

0 200 400 600 800 1000

10
-4

10
-3

10
-2

10
-1

(b) Nonstationary: ϵ = 10−3

Figure 4.1: Effect of the forgetting factor β.

4.5.1.2 Effect of the forgetting factor β

The choice of the forgetting factor β plays an essential role in the tracking ability of OPIT. We

investigated its effect by varying its value from 0.1 to 1 and then evaluating the performance

of OPIT. Here, the data dimension, the true rank, the number of data samples were set at

n = 50, r = 10, and T = 1000, respectively. We fixed the noise factor at σn = 10−3, while two

time-varying levels were considered, namely ε = 0 (stationary) and ε = 10−3 (nonstationary).

Results are illustrated in Fig. 4.1. In the stationary environment (Fig. 1(a)), we can see that

the higher the value of β is, the better the performance OPIT achieves, and β = 1 offers the

best tracking performance. In the time-varying environment (Fig. 1(b)), 0≪ β < 1 can provide

reasonably high subspace estimation accuracy. When β is close to 0, OPIT can track the under-

lying subspace over time but its accuracy is low. When β = 1, OPIT’s performance degrades as

time passes.

4.5.1.3 OPIT in Noisy and Dynamic Environments

In order to demonstrate the tracking ability of OPIT in nonstationary environments, we varied

the value of the noise level σn and the time-varying factor ε among {10−1, 10−2, 10−3} and then

evaluated its subspace estimation accuracy. Two case studies were considered, including the

small-scale {n = 100, r = 5} and the large-scale {n = 1000, r = 50} in which the sparsity level

ωsparse was set to 90% and an abrupt change was created at t = 500. The forgetting factor β

was fixed at 0.9 in both cases. We set the value of the thresholding factor k to ⌊10r log n⌉.

Fig. 4.2 and Fig. 7.12 illustrate the effect of the noise level σn and the time-varying factor ε

96

4.5. EXPERIMENTS

0 200 400 600 800 1000

10
-4

10
-2

10
0

(a) n = 100, r = 5

0 200 400 600 800 1000

10
-4

10
-2

10
0

(b) n = 1000, r = 50

Figure 4.2: Effect of the noise level σn on performance of OPIT: sparsity level ωsparse = 90%,
time-varying factor ε = 10−4, and forgetting factor β = 0.9.

on the performance of OPIT, respectively. We can see that the value of σn and ε did not affect

the convergence rate of OPIT but its estimation error. Despite the value of σn and ε, OPIT still

tracked successfully the underlying sparse subspace even in the presence of a significant change

at t = 500. The lower σn and ε are, the better subspace estimation accuracy OPIT can achieve.

Moreover, these experimental results indicate that the dimension n and rank r had in fact a small

impact on how fast OPIT converges in dynamic environments. Specifically, when dealing with

the large-scale setting, its convergence rate was faster than that when handling the small-scale

one.

4.5.1.4 OPIT versus Other SST Methods

In this task, we compare the performance of OPIT against the state-of-the-art subspace tracking

algorithms in different scenarios. These SST algorithms include ℓ1-PAST [95], SS-FAPI [98],

SSPCA [94], and AdaOja [149].

We used 1000 snapshots derived from the model (4.30) in which the time-varying factor ε was

fixed at 10−3 and the value of σn was set to two levels: 10−1 and 10−3. Here, two sparsity levels

were also investigated, including 50% and 90%. The length of window was set to W = ⌊log n⌉
for the large-scale settings and low noise levels, while we used W = 1 for others. We fixed the

forgetting factor β at 0.97 for all simulations in this task. For OPIT, the normalization step was

used instead of the QR factorization. Parameters of other SST algorithms were kept default to

have a fair comparison.

97

4.5. EXPERIMENTS

0 200 400 600 800 1000

10
-4

10
-2

10
0

(a) n = 100, r = 5

0 200 400 600 800 1000

10
-4

10
-2

10
0

(b) n = 1000, r = 50

Figure 4.3: Effect of the time-varying factor ε on performance of OPIT: sparsity level ωsparse =
90%, noise level σ = 10−4, and forgetting factor β = 0.9.

Experimental results are shown as in Fig. 4.4 and Fig. 4.5. In the classical regime (see Fig. 4.4),

OPIT was one of the two best effective SST algorithms, together with SS-FAPI. In particular,

the two algorithms outperformed ℓ1-PAST, SSPCA, and AdaOja in all simulations. Indeed, the

convergence rate and estimation accuracy of OPIT were better than than of SS-FAPI, especially

in the case of ωsparse = 90%. When the target rank was set to a very low value (r = 2), all SST

algorithms were capable of tracking the underlying subspace over time, see Fig. 4.4(a)-(b). When

the target rank was reasonably high compared to the dimension (r = 10 versus n = 50), SSPCA

failed while ℓ1-PAST and AdaOja still worked, but their tracking ability was substantially lower

than SS-FAPI and OPIT, as illustrated in Fig. 4.4(c)-(d).

When dealing with high-dimensional and large-scale settings, OPIT completely outperformed

other SST algorithms at both low and high levels of noise as well as sparsity, as shown in Fig. 4.5.

SSPCA failed to track the underlying subspace while AdaOja, ℓ1-PAST, and SS-FAP could work

in high dimensions. However, their performance in terms of estimation accuracy and convergence

rate were much less than that of OPIT.

4.5.1.5 OPITd versus OPIT

We here investigate the tracking ability of OPITd in comparison with the original OPIT with

respect to aspects: runtime, estimation accuracy, and robustness to abrupt changes.

To measure how fast OPITd is, we tested many configurations of {n, r} and reported its

run time. Most other parameters were kept fixed as in the previous task except the number of

snapshots T , including the sparsity level ωsparse = 90%, the noise level σn = 10−3, the time-

98

4.5. EXPERIMENTS

0 200 400 600 800 1000
10

-4

10
-2

10
0

(a) r = 2, ωsparse = 50%

0 200 400 600 800 1000
10

-4

10
-2

10
0

(b) r = 2, ωsparse = 90%

0 200 400 600 800 1000
10

-4

10
-2

10
0

(c) r = 10, ωsparse = 50%

0 200 400 600 800 1000
10

-4

10
-2

10
0

(d) r = 10 , ωsparse = 90%

Figure 4.4: Performance comparisons between OPIT and other SST algorithms in the classical
setting: dimension n = 50, snapshots T = 1000, and time-varying factor ε = 10−3.

varying factor ε = 10−3, and the forgetting factor β = 0.97. We used 3000 snapshots instead of

1000 for this task. The experimental results in Fig. 4.6 show that OPITd was faster than OPIT

when the dimension n and the target rank r were set to large values (n ≥ 100 and r ≥ 10),

especially when the dimension n is actually high, e.g. n = 1000.

We next investigate the tracking ability of OPITd in time-varying environments with abrupt

changes. We reused the experiment setup above and created two abrupt changes at t = 1000

and t = 2000 to evaluate how fast OPITd converges. Two noise levels were considered, including

σn = 10−1 and σn = 10−3. The results are illustrated in Fig. 4.7 and Fig. 4.8. When the

underlying model was of low rank, OPITd had almost the same performance to OPIT, see

Fig. 4.7(a). When the target rank r was large, OPITd did not work well, probably because the

99

4.5. EXPERIMENTS

0 200 400 600 800 1000

10
-4

10
-2

10
0

(a) n = 1000, ωsparse = 50%

0 200 400 600 800 1000

10
-4

10
-2

10
0

(b) n = 1000, ωsparse = 90%

0 200 400 600 800 1000

10
-4

10
-2

10
0

(c) r = 10000, ωsparse = 50%

0 200 400 600 800 1000

10
-4

10
-2

10
0

(d) n = 10000 , ωsparse = 90%

Figure 4.5: Performance comparisons between OPIT and other SST algorithms in high dimen-
sions: target rank r = 10, snapshots T = 1000, and time-varying factor ε = 10−3.

projection deflation might lead to a cumulative error between successive estimates. However, if

the value of r is not too large, OPITd could track successfully the underlying subspace over time

when the sparsity level ωsparse was not too high, as shown in Fig. 4.8.

4.5.2 Experiments with Real Video Data

In this task, four different video sequences are used to illustrate the effectiveness and efficiency of

OPIT for real data, including “Lobby”, “Hall”, “Highway”, and “Park” whose details are reported

in Tab. 1, (see Fig. 4.9 for an illustration). We here compared the video tracking ability of OPIT

with the state-of-the-art subspace tracking algorithms (i.e., ℓ1-PAST, SS-FAPI, and PETRELS-

100

4.5. EXPERIMENTS

[1
0,

2]

[1
0,

5]

[2
0,

5]

[2
0,

10
]

[5
0,

5]

[5
0,

10
]

[1
00

,1
0]

[1
00

,2
0]

[5
00

,1
0]

[5
00

,1
0]

[1
00

0,
50

]

[1
00

0,
10

0]
0

100

200

300
OPIT

OPITd

[1
0,

2]

[1
0,

5]

[2
0,

5]

[2
0,

10
]

[5
0,

5]

[5
0,

10
]

[1
00

,1
0]

[1
00

,2
0]

10
-1

10
0

10
1

Figure 4.6: OPITd versus OPIT: Run time.

0 1000 2000 3000
10

-4

10
-2

10
0

(a) r = 5

0 1000 2000 3000
10

-4

10
-2

10
0

(b) r = 30

Figure 4.7: Effect of the target rank r on performance of OPITd: dimension n = 100, snapshots
T = 3000, time-varying factor ε = 10−3, sparsity level ωsparse = 90%, forgetting factor β = 0.97,
and two abrupt changes at t = 1000 and t = 2000.

ADMM [25]) and tensor tracking algorithms (i.e., SOAP [174], OLCP [175], OLSTEC [176], and

ROLCP [33]). In order to apply these subspace tracking algorithms to the video sequences, each

video frame of size I × J was reshaped into a IJ × 1 vector. Following the studies on video

tracking in [25] and [33], the tensor rank and subspace rank were set to 10 for all simulations.

Simulation results are shown statistically in Tab. 7.1 and graphically in Fig. 4.10. As can be

seen that OPIT provided a competitive estimation accuracy as compared to PETRELS-ADMM

while its runtime was much faster than that of the ADMM-based tracking algorithm. Indeed,

OPIT had a better performance than PETRELS-ADMM on the “Lobby” data, see Fig. 4.10(a).

101

4.6. CONCLUSIONS

0 1000 2000 3000
10

-4

10
-2

10
0

(a) ωsparse = 10%

0 1000 2000 3000
10

-4

10
-2

10
0

(b) ωsparse = 50%

Figure 4.8: Effect of the sparsity level ωsparse on performance of OPITd: dimension n = 100,
rank r = 20, snapshots T = 3000, time-varying factor ε = 10−3, forgetting factor β = 0.97, and
two abrupt changes at t = 1000 and t = 2000.

b) Halla) Lobby c) Highway d) Park

Figure 4.9: Four video sequences used in this chapter.

Also, OPIT outperformed most tracking algorithms, apart from PETRELS-ADMM. With re-

spect to runtime, ROLCP was the fastest “one-pass" tracking algorithm, several times faster than

the second-best. Interestingly, our algorithm is also designed for handling a block of multiple

incoming samples at each time (i.e. the length of window W > 1). When W = ⌊log(IJ)⌉, OPIT

was even faster than ROLCP while still retaining a reasonable video tracking accuracy.

4.6 Conclusions

In this chapter, we have proposed a new provable OPIT algorithm which is fully capable of

tracking the sparse principal subspace over time in both classical regime and high-dimension,

102

4.6. CONCLUSIONS

0 375 750 1125 1500
10

-4

10
-2

10
0

10
2

(a) “Lobby”

0 350 700 1050 1400 1700
10

-4

10
-2

10
0

10
2

(b) “Highway”

Figure 4.10: Tracking ability of algorithms on the video datasets.

low-sample-size regime. OPIT provides a competitive performance in terms of both subspace

estimation accuracy and convergence rate in the classical regime, especially when the SNR level

is high. In high dimensions, OPIT outperforms other sparse subspace tracking algorithms, its

estimation accuracy is much better than that of the second-best, SS-FAPI. Besides, a fast variant

of OPIT has been obtained using deflation called OPITd. Its computational complexity and

memory storage are linear to the input size and they are lower than that of OPIT. Simulations

carried out on real video sequences indicated that the proposed method has potential for real

applications.

103

4.7. APPENDIX

Dataset “Lobby” “Hall” “Highway” “Park”
Si

ze Tensor-based 128× 160× 1546 174× 144× 3584 320× 240× 1700 288× 352× 600

Matrix-based 20480× 1546 25056× 3584 76800× 1700 101376× 600

Evaluation metrics time(s) error time(s) error time(s) error time(s) error

T
en

so
r

SOAP 14.29 0.842 21.72 0.989 39.89 0.821 21.34 0.789

OLCP 10.50 0.161 19.98 0.154 27.07 0.219 14.19 0.096

OLSTEC 44.25 0.037 92.82 0.041 130.1 0.064 53.13 0.032

ROLCP 4.32 0.114 10.74 0.120 11.45 0.154 4.47 0.086

Su
bs

pa
ce

PETRELS-ADMM 118.4 0.015 305.5 0.018 452.6 0.009 203.6 0.032

ℓ1-PAST 14.11 0.031 33.73 0.101 46.78 0.159 19.21 0.058

SS-FAPI 12.99 0.023 32.72 0.100 46.37 0.160 17.56 0.056

OPIT (W = 1) 16.32 0.013 50.78 0.056 56.78 0.102 26.94 0.042

OPIT (W = ⌊log(IJ)⌋) 1.89 0.021 5.62 0.086 6.05 0.141 2.83 0.057

Table 4.1: Runtime and averaged relative error of adaptive algorithms on tracking the four video
sequences.

4.7 Appendix

4.7.1 Appendix A: Proof of Lemma 1

Because Ut,F is the Q-factor of St, we obtain θ(A,Ut,F) = θ(A,St) and hence

tan θ(A,Ut,F) = max
∥v∥2=1

{
f(v) =

∥∥A⊤
⊥Stv

∥∥
2∥∥A⊤Stv
∥∥
2

}
. (4.33)

For any vector v ∈ Rr×1 and ∥v∥2 = 1, we can rewrite f(v) in (4.33) as follows

f(v) =

∥∥A⊤
⊥
(
C+∆Ct

)
Ut−1v

∥∥
2∥∥A⊤

(
C+∆Ct

)
Ut−1v

∥∥
2

=

∥∥A⊤
⊥
(
σ2xAA⊤ + σ2nIN +∆Ct

)
Ut−1v

∥∥
2∥∥A⊤

(
σ2xAA⊤ + σ2nIN +∆Ct

)
Ut−1v

∥∥
2

(i)
=

∥∥σ2nA⊤
⊥Ut−1v +A⊤

⊥∆CtUt−1v
∥∥
2∥∥(σ2x + σ2n

)
A⊤Ut−1v +A⊤∆CtUt−1v

∥∥
2

(ii)

≤
σ2n
∥∥A⊤

⊥Ut−1

∥∥
2
+
∥∥A⊤

⊥∆CtUt−1

∥∥
2

(σ2x + σ2n)
∥∥A⊤Ut−1

∥∥
2
−
∥∥A⊤∆CtUt−1

∥∥
2

(iii)

≤
σ2n
∥∥A⊤

⊥Ut−1

∥∥
2
+ ∥∆Ct∥2

(σ2x + σ2n)
√

1− ∥A⊤
⊥Ut−1∥22 − ∥∆Ct∥2

. (4.34)

Here, (i) is due to A⊤
⊥A = 0 (orthogonal complement); (ii) uses the inequality ∥P∥2 − ∥Q∥2 ≤

∥P+Q∥2 ≤ ∥P∥2 + ∥Q∥2, ∀P,Q of the same size; and (iii) is derived from the following facts:

104

4.7. APPENDIX

∥P∆Ct∥2 ≤ ∥P∥2∥∆Ct∥2, ∥A∥2 = ∥A⊥∥2 = ∥Ut−1∥2 = 1, and

λ2min(A
⊤Ut−1) + λ2max(A

⊤
⊥Ut−1) = 1, (4.35)

where λmax(P) and λmin(P) represent the largest and smallest singular value of P, respectively.

Indeed, the relation (4.35) leads to

∥∥A⊤Ut−1

∥∥
2
= λmax(A

⊤Ut−1) ≥ λmin(A
⊤Ut−1)

=
√
1− λ2max

(
A⊤

⊥Ut−1

)
=

√
1−

∥∥A⊤
⊥Ut−1

∥∥2
2
, (4.36)

and thus, (iii) follows.

In parallel, it is well known that sinψ = 1
/√

1 + tan−2 ψ ∀ψ ∈ [0, π/2] and h(x) = 1/
√
1 + x−2

is an increasing function in the domain (0,∞), i.e. x1 ≤ x2 implies h(x1) ≤ h(x2). Accordingly,

we obtain

∥∥A⊤
⊥Ut,F

∥∥
2
≤ 1√

1 +
[
maxv f(v)

]−2

=
σ2n
∥∥A⊤

⊥Ut−1

∥∥
2
+ ∥∆Ct∥2([(

σ2x + σ2n
)√

1−
∥∥A⊤

⊥Ut−1

∥∥2 − ∥∆Ct∥2
]2
+

+
[
σ2n
∥∥A⊤

⊥Ut−1

∥∥
2
+ ∥∆Ct∥2

]2)1/2

. (4.37)

It ends the proof.

4.7.2 Appendix B: Proof of Lemma 2

We first recast
∥∥U⊤

t,⊥Ut,F
∥∥
2

into the following form

∥∥U⊤
t,⊥Ut,F

∥∥
2
=
∥∥U⊤

t,F ,⊥Ut

∥∥
2
=
∥∥U⊤

t,F ,⊥
(
Ut −Ut,F

)∥∥
2
=
∥∥U⊤

t,F ,⊥∆Ut

∥∥
2
. (4.38)

Under the following condition

(1 +
√
2)κ(St)

∥∥St − Ŝt

∥∥
F
<
∥∥St

∥∥
2
, (4.39)

105

4.7. APPENDIX

where ∆St = St − Ŝt and κ(St) = ∥S#
t ∥2∥St∥2, we can bound this distance as follows

∥∥U⊤
t,F ,⊥∆Ut

∥∥
2
≤

∥∥U⊤
t,F ,⊥∆Ut

∥∥
F

(i)

≤
κ(St)

∥U⊤
t,F ,⊥∆St∥F
∥St∥2

1− (1 +
√
2)κ(St)

∥∆St∥F
∥St∥2

(ii)

≤ ∥∆St∥F
λmin(St)− (1 +

√
2)∥∆St∥F

. (4.40)

Here, (i) follows immediately the perturbation theory for QR decomposition [177, Theorem 3.1]

and (ii) is obtained from the facts that ∥Ut,F ,⊥∥2 = 1, ∥PQ∥F ≤ ∥P∥2∥Q∥F , and ∥P#∥2 =

λ−1
min(P) ∀P,Q of suitable sizes.

We also know that there always exists two coefficient matrices Ht ∈ Rr×r and Kt ∈ R(n−r)×r

satisfying Ut−1 = AHt +A⊥Kt (i.e. projection of Ut−1 onto the subspace A) and

λmax(Ht) = ∥A⊤Ut−1∥2, λmin(Ht) =
√
1− ∥A⊤

⊥Ut−1∥22, (4.41)

λmax(Kt) = ∥A⊤
⊥Ut−1∥2, λmin(Kt) =

√
1− ∥A⊤Ut−1∥22.

Accordingly, we can express St by

St = CUt−1 +∆CtUt−1 = (AΣxA
⊤ + σ2nIn)(AHt +A⊥Kt) +∆CtUt−1

= A(σ2xIr + σ2nIr)Ht + σ2nA⊥Kt +∆CtUt−1. (4.42)

Thanks to the fact that λi(P + Q) ≥ λi(P) − λmax(Q) ∀P,Q of the same size, the lower

bound on λmin(St) is given by

λmin(St) ≥ λmin

(
(σ2x + σ2n)AHt

)
− λmax

(
σ2nA⊥Kt

)
− λmax

(
∆CtUt−1

)
≥ (σ2x + σ2n)λmin(Ht)− σ2nλmax(Kt)− ∥∆Ct∥2

= (σ2x + σ2n)
√
1− ∥A⊤

⊥Ut−1∥22 − σ
2
n∥A⊤

⊥Ut−1∥2 − ∥∆Ct∥2, (4.43)

In what follows, we derive an upper bound on ∥∆St∥F . For short, let us denote the support

of A, Ut−1, and Ut by TA, Tt−1, and Tt, respectively, and St = TA ∪ Tt−1 ∪ Tt. Here, it is easy

to verify that St,St = Ct,St×StUt−1 and Ŝt = St,Tt = τ(St,St , k). Accordingly, we can bound

106

4.7. APPENDIX

∥∆St∥F as follows

∥∥∆St

∥∥
F
=
∥∥St,St − St,Tt

∥∥
F

(i)

≤ ∥St,St − St,TA
∥∥
F

=
∥∥σ2nA⊥Kt +∆CtUt−1

∥∥
F

≤
√
r
∥∥σ2nA⊥Kt +∆CtUt−1

∥∥
2
≤
√
r
(
σ2n∥Kt∥2 + ∥∆Ct∥2

)
=
√
r
(
σ2n∥A⊤

⊥Ut−1∥2 + ∥∆Ct∥2
)
, (4.44)

where (i) is due to |Tt| ≥ |TA| ∀t (i.e. |St \ Tt| ≤ |St \ TA|), thanks the thresholding operator

τ(.) with k/n ≥ ωsparse.

In parallel, we can rewrite the sufficient and necessary condition (4.39) as

(1 +
√
2)
∥∥S#

t

∥∥
2

∥∥∆St

∥∥
F
≤ 1. (4.45)

Since ∥S#
t ∥2 = λ−1

min(St), substituting (4.43) for ∥S#
t ∥2 and (4.44) for ∥∆St∥F results in

σ2n
∥∥A⊤

⊥Ut−1

∥∥
2
+ ∥∆Ct∥2

(σ2x + σ2n)
√

1−
∥∥A⊤

⊥Ut−1

∥∥2 ≤
√
2− 1

√
r − 1 +

√
2
. (4.46)

Under the condition (4.46), the upper bound on ∥U⊤
t,⊥Ut,F∥2 is

∥∥U⊤
t,⊥Ut,F

∥∥
2
≤

√
r
(
σ2n
∥∥A⊤

⊥Ut−1

∥∥
2
+ ∥∆Ct∥2

)((
σ2x + σ2n

)√
1−

∥∥A⊤
⊥Ut−1

∥∥2
2
− σ2n

∥∥A⊤
⊥Ut−1

∥∥
2
−

− ∥∆Ct∥2 −
√
r
(
1 +
√
2
)(
σ2n
∥∥A⊤

⊥Ut−1

∥∥
2
+ ∥∆Ct∥2

))
=

√
r
(
σ2n
∥∥A⊤

⊥Ut−1

∥∥
2
+ ∥∆Ct∥2

)((
σ2x + σ2n

)√
1−

∥∥A⊤
⊥Ut−1

∥∥2
2
−
(
1 +
√
r(1 +

√
2)
)
×

×
(
σ2n
∥∥A⊤

⊥Ut−1

∥∥
2
+ ∥∆Ct∥2

))
, (4.47)

thanks to (4.40). It ends the proof.

4.7.3 Appendix C: Proof of Lemma 3

We begin the proof with the following proposition:

Proposition 10. Given two sets of random variable vectors {ai}Ni=1 and {bi}Ni=1 where ai
i.i.d.∼

N (0, σ2aIn), bi
i.i.d.∼ N (0, σ2b Im), and ai is independent of bj ,∀i, j. The following inequality holds

107

4.7. APPENDIX

with a probability at least 1− δ:∥∥∥∥∥ 1

N

N∑
i=1

aib
⊤
i

∥∥∥∥∥
2

≤ Cσaσb

√
log(2/δ)

max{n,m}
N

. (4.48)

where 0 < δ ≪ 1 and C > 0 is a universal positive number.

Proof. Its proof follows immediately Lemma 15 in [178].

Since xi = Awi + ni, we always have

∥∥∆Ct

∥∥
2
=

∥∥∥∥ 1

tW

tW∑
i=1

xix
⊤
i −C

∥∥∥∥
2

=

∥∥∥∥ 1

tW

tW∑
i=1

(
Awiw

⊤
i A

⊤ + nin
⊤
i +Awin

⊤
i + niw

⊤
i A

⊤
)
− σ2xAA⊤ − σ2nIn

∥∥∥∥
2

≤
∥∥∥∥A(1

tW

tW∑
i=1

wiw
⊤
i − σ2xIr

)
A⊤
∥∥∥∥
2

+

∥∥∥∥ 1

tW

tW∑
i=1

nin
⊤
i − σ2nIN

∥∥∥∥
2

+ 2

∥∥∥∥A(1

tW

tW∑
i=1

win
⊤
i

)∥∥∥∥
2

≤
∥∥A∥∥2

2

∥∥∥∥ 1

tW

tW∑
i=1

wiw
⊤
i − σ2xIr

∥∥∥∥
2

+

∥∥∥∥ 1

tW

tW∑
i=1

nin
⊤
i − σ2nIn

∥∥∥∥
2

+ 2
∥∥A∥∥

2

∥∥∥∥ 1

tW

tW∑
i=1

win
⊤
i

∥∥∥∥
2

,

(4.49)

thanks to the inequality ∥PQ∥2 ≤ ∥P∥2∥Q∥2 for all P and Q of suitable sizes. Accordingly,

with a probability at least 1− δ (0 < δ ≪ 1), three components in the right hand side of (4.49)

are respectively bounded by

∥∥∥∥ 1

tW

tW∑
i=1

wiw
⊤
i − σ2xIr

∥∥∥∥
2

≤ C1

√
log(2/δ)σ2x

√
r

tW
, (4.50)

∥∥∥∥ 1

tW

tW∑
i=1

nin
⊤
i − σ2nIn

∥∥∥∥
2

≤ C2

√
log(2/δ)σ2n

√
n

tW
, (4.51)

∥∥∥∥ 1

tW

tW∑
i=1

win
⊤
i

∥∥∥∥
2

≤ C3

√
log(2/δ)σxσn

√
n

tW
, (4.52)

where C1, C2, C3 are universal positive parameters, thanks to Proposition 10 and [24, Proposition

2.1]. As a result, we obtain

∥∥∆Ct

∥∥
2
≤ cδ

(
σ2x

√
r

tW
+
(
2σnσx + σ2n

)√ n

tW

)
, (4.53)

where cδ = max
{
C1, C2, C3

}√
log(2/δ). It ends the proof.

108

4.7. APPENDIX

4.7.4 Appendix D: Proof of Lemma 4

We first use proof by induction to prove dt ≤ ω0 = max{d0, ϵ}. Particularly, we already have the

base case of d0 ≤ ω0. In the induction step, we suppose dt−1 ≤ ω0 and then prove dt ≤ ω0 still

holds. After that, we indicate that dt ≤ ϵ is achievable when the two conditions (4.18) and (4.19)

are met.

Thanks to Lemma 3, when t satisfies (4.18), i.e.,

t ≥ C log(2/δ)r2

Wϵ2ρ2

(√
r +

(σ2n
σ2x

+ 2
σn
σx

)√
n

)2

, (4.54)

we obtain ∥∆Ct∥2 ≤ r−1ρσ2xϵ with 0 < ρ ≤ r. In what follows, two case studies dt−1 ≥ ϵ and

dt−1 ≤ ϵ are investigated.

Case 1: When dt−1 ≥ ϵ, i.e., ∥∆Ct∥2 ≤ r−1ρσ2xdt−1.

We can rewrite ∥A⊤
⊥Ut,F∥2 as follows

∥∥A⊤
⊥Ut,F

∥∥
2
≤ (σ2n + r−1ρσ2x)dt−1([

(σ2n + σ2x)
√
1− d2t−1 − r

−1ρσ2xdt−1

]2
+

aaaaaaaaaaaa + (σ2n + σ2xρ/r)
2d2t−1

)1/2
(i)

≤ (σ2n + r−1ρσ2x)dt−1([
(σ2n + σ2x)

√
1− ω2

0 − r
−1ρσ2xω0

]2
+

aaaaaaaaaaaaaaaaaaaaa + (σ2n + r−1ρσ2x)
2ω2

0

)1/2
(ii)

≤ (σ2n + r−1ρσ2x)dt−1(
(1 + γ2r2)σ4n + (1− ργ)2σ4x+
aaaaaaaa + 2(1− ργ + γ2r2)σ2xσ

2
n

)1/2√
1− ω2

0

. (4.55)

Here, (i) is obtained from the fact that g(x) =
(
(a
√
1− x2 − bx)2 + cx2

)−1/2 is an increasing

function in the range [0,
√
2/2] where a, b, and c are defined therein8 and (ii) is simple due to the

fact that there always exists a small parameter γ > 0 such that ργ < 1 and ω0 ≤ γr
√
1− ω2

0.

In the similar way, we obtain the following upper bound on ∥U⊤
t,⊥Ut,F∥2:

8Writing x = sin y, the domain of y is [0, π/4]. Here, we can recast g(x) into g(y) =(
(a cos y − b sin y)2 + c sin2 y

)−1/2. The derivative g′(y) is given by

g′(y) = 0.5
(
(a cos y − b sin y)2 + c sin2 y

)−3/2(
(a2 − b2 − c) sin(2y) + ab cos(2y)

)
.

Since a2 − b2 > c by their definition, g′(y) > 0 ∀y ∈ [0, π/4] and hence g′(x) = g′(y)dy/dx = g′(y)/
√
1− x2 >

0 ∀x ∈ [0,
√
2/2]. Accordingly, dt−1 ≤ ω0 ≤

√
2/2 implies g(dt−1) ≤ g(ω0) which (i) then follows.

109

4.7. APPENDIX

∥∥U⊤
t,⊥Ut,F

∥∥
2
≤

√
r
(
σ2n + r−1ρσ2x

)
dt−1(

σ2x + σ2n
)√

1− d2t −
(
1 +
√
r(1 +

√
2)
)
×

×
(
σ2n + r−1ρσ2x

)
dt−1

(i)

≤
√
r(σ2n + r−1ρσ2x)dt−1(

σ2x + σ2n
)√

1− ω2
0 −

(
1 +
√
r(1 +

√
2)
)(
σ2n + r−1ρσ2x

)
ω0

(ii)

≤
√
r(σ2n + r−1ρσ2x)

(σ2x + σ2n)(1− ϱ)
√
1− ω2

0

dt−1, (4.56)

where ϱ = γ
(
1 +
√
r(1 +

√
2)(rσ2n + ρσ2x)

)
(σ2x + σ2n)

−1. Specifically, (i) is due to the increasing

property of z(x) = (a
√
1− x2 − bx)−1, and (ii) thanks to ω0 ≤ γr

√
1− ω2

0.

Thanks to (4.55) and (4.56), we obtain

dt ≤
∥∥A⊤

⊥Ut,F
∥∥
2
+
∥∥U⊤

t,⊥Ut,F
∥∥
2
≤ rσ2n + ρσ2x

rξ
√
1− ω2

0

dt−1, (4.57)

where

ξ = 0.5max
{(

(1 + γ2r2)σ4n + (1− ργ)2σ4x + 2(1− ργ + γ2r2)σ2xσ
2
n

)1/2
,

(σ2x + σ2n)(1− ϱ)/
√
r
}
. (4.58)

Note that in order to utilize the two bounds (6.189) and (4.56), the condition (4.46) must be

satisfied which is equivalent to

(σ2n + r−1ρσ2x)ω0

(σ2x + σ2n)
√
1− ω2

0

≤
√
2− 1

√
r − 1 +

√
2
. (4.59)

Accordingly, we obtain ω0 ≤
(

α(r,ρ)
1−α(r,ρ)

)1/2
where

α(r, ρ) =
(3− 2

√
2)(σ2x + σ2n)

2(
r + 2

√
r(
√
2− 1) + 3− 2

√
2
)(
σ2n + r−1ρσ2x

)2 . (4.60)

In parallel, α(r, ρ) ≥ 3−2
√
2

r+2
√
r(
√
2−1)+3−2

√
2

for every 0 < ρ ≤ r. Thus, we obtain

ω0 ≤
(

3− 2
√
2

r + 2
√
r(
√
2− 1)

)1/2

, (4.61)

which is exactly the condition (4.19) in Theorem 1. Moreover, there are various options of

p ∈ (0, r] satisfying ρσ2x < rξ
√

1− ω2
0 − rσ2n, e.g., when the value of ρ is very close to zero. In

such cases, dt will decrease in each time t, i.e., dt ≤ dt−1 ≤ ω0.

110

4.7. APPENDIX

Case 2: When dt−1 ≤ ϵ, applying the same arguments in Case 1, we also obtain dt ≤
rσ2

n+ρσ2
x

rξ
√

1−ω2
0

ϵ ≤ ϵ ≤ ω0.

To sum up, if the two conditions (4.18) and (4.19) are satisfied, then dt ≤ max{dt−1, ϵ} = ω0.

As a result, the statement dt ≤ ϵ holds if and only if(
rσ2n + ρσ2x

rξ
√

1− ω2
0

)tW

ω0 ≤ ϵ. (4.62)

Specifically, (4.62) is equivalent to

t ≥ log(ϵ/ω0)

W
(
log(rσ2n + ρσ2x)− log(rξ

√
1− ω2

0)
) . (4.63)

which is lower than the bound (4.18). Therefore, we can conclude that dt ≤ ϵ holds and it ends

the proof.

Appendix E: Additional Experimental Results

OPIT vs the best optimal power-based subspace tracker FAPI

Here, we illustrate that OPIT is more effective than the existing power-based subspace trackers.

As it is well-documented that FAPI is the best optimal power-based subspace tracker w.r.t. both

convergence rate and estimation accuracy [154], we adopt FAPI in this work. We set the data

dimension n = 100, the true rank r = 10, the number of data samples T = 2000. Two levels

of noise and time-varying factors are considered, namely σn = ϵ = 10−3 and σn = ϵ = 10−2.

To assess how fast subspace trackers converge, we create two abrupt changes at t = 500 and

t = 1500. To have a fair comparison, the forgetting factor β is fixed at the same value 0.97 for

both OPIT and FAPI in all testing cases. Results are shown as in Fig. 4.11. We can see that

OPIT yields higher subspace estimation accuracy than FAPI. When abrupt changes happen,

OPIT also converges faster than FAPI.

OPIT vs State-of-the-art Subspace Trackers

In this subsection, we provide further performance comparison of OPIT against the state-of-the-

art subspace trackers addressed in Section V.4 in the main text. Fig. 4.12 and Fig. 4.13 illustrate

the experimental results in the classical regime and high dimensions when the noise level is high,

i.e., σn = 10−1. As can be seen that OPIT outperform others completely in both regimes.

111

4.7. APPENDIX

0 400 800 1200 1600 2000

10
-4

10
-2

10
0

(a) σn = ϵ = 10−3, ωsparse = 90%

0 400 800 1200 1600 2000

10
-4

10
-2

10
0

(b) σn = ϵ = 10−2, ωsparse = 90%

Figure 4.11: OPIT vs the best optimal power-based subspace tracker FAPI: Data dimension
n = 100, true rank 10, number of snapshots T = 2000, forgetting factor β = 0.97, abrupt
changes at t = 500 and t = 1500.

OPIT vs Data Dimension and Sample Size

This subsection provides additional experimental results of OPIT to demonstrate the effectiveness

of OPIT in many settings of data dimension and sample size. Please see Figs. 4-8 for details.

112

4.7. APPENDIX

0 200 400 600 800 1000
10

-2

10
-1

10
0

(a) r = 2, ωsparse = 50%

0 200 400 600 800 1000
10

-2

10
-1

10
0

(b) r = 2, ωsparse = 90%

0 200 400 600 800 1000
10

-2

10
-1

10
0

(c) r = 10, ωsparse = 50%

0 200 400 600 800 1000
10

-2

10
-1

10
0

(d) r = 10 , ωsparse = 90%

Figure 4.12: Performance comparisons between OPIT and other ST algorithms in the classical
setting: dimension n = 50, snapshots T = 1000, time-varying factor ε = 10−3, and the noise
level σn = 10−1.

113

4.7. APPENDIX

0 200 400 600 800 1000

10
-2

10
-1

10
0

10
1

(a) n = 1000, ωsparse = 50%

0 200 400 600 800 1000

10
-2

10
-1

10
0

10
1

(b) n = 1000, ωsparse = 90%

0 200 400 600 800 1000

10
-2

10
-1

10
0

10
1

(c) n = 10000, ωsparse = 50%

0 200 400 600 800 1000

10
-2

10
-1

10
0

10
1

(d) n = 10000 , ωsparse = 90%

Figure 4.13: Performance comparisons between OPIT and other SST algorithms in high dimen-
sions: target rank r = 10, snapshots T = 1000, time-varying factor ε = 10−3, and the noise level
σn = 10−1.

0 40 80 120 160 200
10

-2

10
-1

10
0

10
1

(a) σn = 10−1

0 40 80 120 160 200
10

-4

10
-2

10
0

10
2

(b) σn = 10−3

Figure 4.14: n = 50, T = 200: rank r = 10, time-varying ϵ = 10−3, sparsity 90%.

114

4.7. APPENDIX

0 100 200 300 400 500
10

-2

10
-1

10
0

10
1

(a) σn = 10−1

0 100 200 300 400 500
10

-4

10
-2

10
0

10
2

(b) σn = 10−3

Figure 4.15: n = 1000, T = 500: rank r = 10, time-varying ϵ = 10−3, sparsity 90%

0 500 1000 1500 2000
10

-2

10
-1

10
0

10
1

(a) σn = 10−1

0 500 1000 1500 2000
10

-4

10
-2

10
0

10
2

(b) σn = 10−3

Figure 4.16: n = 2000, T = 2000: rank r = 20, time-varying ϵ = 10−3, sparsity 90%

0 500 1000 1500 2000

10
-2

10
-1

10
0

10
1

(a) σn = 10−1

0 500 1000 1500 2000
10

-4

10
-2

10
0

10
2

(b) σn = 10−3

Figure 4.17: n = 5000, T = 2000: rank r = 20, time-varying ϵ = 10−3, sparsity 90%

115

Part II

Tensor Tracking

116

Chapter 5

An Overview of Tensor Tracking

Contents

5.1 Introduction . 118

5.1.1 State-of-the-art Surveys . 119

5.1.2 Main Contributions . 121

5.2 Tensor Decompositions . 122

5.2.1 CP/PARAFAC Decomposition . 123

5.2.2 Tucker Decomposition . 123

5.2.3 Block-Term Decomposition . 124

5.2.4 Tensor-train Decomposition . 124

5.2.5 T-SVD Decomposition . 125

5.3 Tensor Tracking Formulation . 125

5.3.1 Single-aspect Streaming Model . 125

5.3.2 Multi-aspect Streaming Model . 127

5.3.3 General Formulation of Optimization . 128

5.4 Streaming CP Decomposition . 128

5.4.1 Subspace-based Methods . 128

5.4.2 Block-Coordinate Descent . 131

5.4.3 Bayesian Inference . 134

5.4.4 Multi-aspect streaming CP decomposition 136

5.5 Streaming Tucker Decomposition . 138

5.5.1 Online Tensor Dictionary Learning . 138

5.5.2 Tensor Subspace Tracking . 143

5.5.3 Multi-aspect streaming Tucker decomposition 147

5.6 Other Streaming Tensor Decompositions 148

5.6.1 Streaming Tensor-Train Decomposition 148

117

5.1. INTRODUCTION

5.6.2 Streaming Block-Term Decomposition 149

5.6.3 Streaming t-SVD Decomposition . 151

5.7 Applications . 152

5.7.1 Computer Vision . 152

5.7.2 Neuroscience . 153

5.7.3 Anomaly Detection . 153

5.7.4 Others . 154

5.8 Conclusions . 154

Tensor decomposition has been demonstrated to be successful in a wide range of applications, from neuro-
science and wireless communications to social networks. In an online setting, factorizing tensors derived
from multidimensional data streams is however non-trivial due to several inherent problems of real-time
stream processing. In recent years, many research efforts have been dedicated to developing online tech-
niques for decomposing such tensors, resulting in significant advances in streaming tensor decomposition
or tensor tracking. This topic is emerging and enriches the literature on tensor decomposition, particu-
larly from the data stream analystics perspective. Thus, it is imperative to carry out an overview of tensor
tracking to help researchers and practitioners understand its development and achievements, summarise
the current trends and advances, and identify challenging problems. In this article, we provide a con-
temporary and comprehensive survey on different types of tensor tracking techniques. We particularly
categorize the state-of-the-art methods into three main groups: streaming CP decompositions, streaming
Tucker decompositions, and streaming decompositions under other tensor formats (i.e., tensor-train, t-
SVD, and BTD). In each group, we further divide the existing algorithms into sub-categories based on
their main optimization framework and model architectures. Finally, we present several research chal-
lenges, open problems, and potential directions of tensor tracking in the future.

5.1 Introduction

Tensor decomposition (TD) has attracted much attention from the signal processing and machine

learning community [11]. As a tensor is a multiway array, it provides a natural representation

for multidimensional data. Accordingly, TD which factorizes a tensor into a set of basis com-

ponents (e.g., vectors, matrices, or simpler tensors) has become a popular tool for multivariate

and high-dimensional data analysis. In particular, we have witnessed significant advances in

TD and a rapid growth in its applications over the last two decades [13]. Several types of TD,

such as CANDECOMP/PARAFAC (CP) [14], high-order SVD (HOSVD)/Tucker [15], tensor

train/network [16], t-SVD [17], and block-term decomposition (BTD) [18], have been developed

and successfully applied to various domains, from neuroscience [179, 180] wireless communica-

tions [181,182] to social networks [183,184].

118

5.1. INTRODUCTION

The demand for (near) real-time stream processing has been increasing over the years since

many modern applications (e.g., Internet-of-Things) generate massive amounts of streaming data

over time and analytical insights from such data can bring several benefits, e.g., for real-time

decision making [2]. As its name implies, (near) real-time stream processing needs to immediately

deliver and analyse data streams upon their arrival. Since streaming data grow bigger, faster,

and become more complex by the time, there exist several inherent problems which are still

challenging issues, such as (i) the unbounded size of streaming data, (ii) time-varying model,

concept drift, or dataset shift, and (iii) uncertainty and imperfection, etc. We refer the readers

to [2, 3] for good surveys on data stream analysis.

When using tensors to represent data streams, TD is generally referred to as tensor tracking

or adaptive/online/ streaming tensor decomposition. Specifically, factorizing a streaming tensor

is nontrivial due to several computational challenges. First, as tensor streams are continuously

generated, their volume grows significantly over time and possibly to infinity. Applying the con-

ventional batch TD methods to such tensors is not possible as they require data to be stored

and processed offline. Second, properties of streaming tensors (e.g., the low-rank approxima-

tion model) can vary with time in unforeseen ways. Moreover, tensor streams often happen in

real-time, so retransmission of a stream is difficult, even impossible. Accordingly, batch tensor

estimation and decomposition become less accurate when time passes. Last but not least, some

modern applications require high-speed data acquisition systems to rapidly acquire and process

massive data streams. In such a case, very fast and (near) real-time processing is highly impor-

tant. However, batch TDs are often of high complexity, and hence turn out to be inefficient.

These characteristics make tensor tracking much different from batch tensor decomposition and

lead to several distinguishing requirements for tensor trackers, such as low latency and memory

storage, high scalability, adaptation to time variation, and robustness, to name a few.

As the literature of tensor tracking has significantly expanded in recent years, it is imperative

to it is imperative to conduct an extensive overview of the state-of-the-art tensor tracking algo-

rithms to help researchers and practitioners to identify: (i) which topics in tensor tracking are

significant and emerging, (ii) what kind of tracking models and related analysis techniques have

already been deployed to date and how to apply them in specific tasks, and (iii) main research

challenges, open problems, and potential directions of tensor tracking in the future.

5.1.1 State-of-the-art Surveys

The very first and gentle introduction to tensor and tensor decomposition was provided by Ras-

mus in [185] two decades ago. This reference offered a tutorial on CP/PAFRAFAC decomposition

covering features, properties, methods, and applications in chemometrics. Since then, there have

been many published survey papers which provided different points of view on tensor compu-

tation in the literature. We can broadly divide them into three classes, including (i) surveys

119

5.1. INTRODUCTION

Table 5.1: The State-of-the-art Surveys on Tensor Decompositions and Applications

Class Review (Year) Objects & Topics Key Contribution

Su
rv

ey
s

on
te

ns
or

fa
ct

or
iz

at
io

n
m

od
el

s,
m

et
ho

ds
,a

nd
to

ol
s

[185] (1997) CP/PARAFAC
decomposition

An overview of CP decomposition with respect to aspects: features, properties,
methods, and applications in chemometrics.

[186] (2008) CP & Tucker
decomposition

A literature survey on unsupervised multiway data analysis: multiway models
(i.e., CP family and Tucker family), their workhorse algorithms and applications.

[10] (2009) CP & Tucker
decomposition

An extensive survey on main algorithms, properties and applications of CP,
Tucker decompositions and their variants.
A list of software and toolboxes for tensor processing.

[187] (2010) Tucker/HOSVD
decomposition

An overview on numerical methods for Tucker/HOSVD decomposition & its
applications in signal processing.

[188] (2013) Low-rank tensor
approximations A literature survey on low-rank tensor approximation models and algorithms.

[189] (2014) Incomplete tensor
decomposition

A survey on numerical methods for factorizing incomplete tensors and their
connections to signal processing applications.

[12] (2016) Tensor network
decomposition An extensive tutorial on tensor networks, their operations and algorithms.

[190] (2016) Big tensor
decomposition A brief review of methods for factorizing large-scale tensors.

[191] (2020) Tucker/HOSVD
decomposition A survey on randomized algorithms for computing Tucker/HOSVD decomposition.

[192] (2020) Structured tensor
decomposition

A unified nonconvex optimization perspective for computing large-scale matrix
and tensor decompositions with structured factors.

Su
rv

ey
s

on
ge

ne
ra

l
te

ns
or

pr
ob

le
m

s

[193] (2007) Tensor filtering A review of tensor signal algebraic filtering methods.

[194] (2009) CP & Tucker
decompositions

A review of theoretical results on the existence, uniqueness, degeneracies, and
numerical complexities of alternating least-squares and other tales.

[195] (2013) Complexity of
tensor problems

An in-depth survey on theoretical and complexity results of some tensor
problems: tensor rank, eigen/singular values, and the best rank-1 approximation.

[196] (2014) Tensor formats &
tensor ranks A brief introduction on different types of tensor formats and tensor ranks.

[11] (2017) Fundamentals &
backgrounds

An comprehensive overview of tensor decompositions w.r.t. aspects: uniqueness,
tensor ranks, algorithms, bounds, and applications.
A list of software and toolboxes for tensor processing.

[197] (2018) Connections to
PCA An introduction to tensors and tensor decompositions in the lens of PCA.

Su
rv

ey
s

on
te

ns
or

ap
pl

ic
at

io
ns

[198] (2011) Data analysis An overview of tensor decomposition applications for a wide variety of data
and problem domains.

[199] (2015) Signal processing A comprehensive survey on tensor decompositions for signal processing.
[180] (2015) EEG applications A brief survey on tensor decompositions of EEG signals.
[200] (2016) Anomaly detection An interdisciplinary survey on tensor-based anomaly detection.
[201] (2017) Data fusion A review of tensor decompositions with emphasis on data fusion applications.

[202] (2017) Machine learning
& data analysis

An tutorial on tensor network models for super-compressed representation of
data and their applications in machine learning and data analytics.

[203] (2019) Machine learning An overview of tensor techniques and applications in machine learning.

[204] (2021) Multisensor signal
processing A comprehensive survey on tensor methods for multisensor signal processing.

[182] (2021) Wireless
communications A comprehensive overview of tensor decompositions for wireless communications.

[184] (2021) Social networks A survey on tensor decomposition for analysing time-evolving social networks.

[205] (2021) Computer vision &
deep learning A practical overview of tensor methods for computer vision and deep learning

[206] (2022) Nonlinear system
identification A tutorial on tensor methods for nonlinear system identification.

[13] (2022) Data analysis A systematic and up-to-date overview of tensor decompositions from
the engineer’s point of view.

This work
Streaming tensor
decomposition

(Tensor tracking)

A contemporary and comprehensive survey on methods for factorizing
tensors derived from data streams under several tensors formats.
Research challenges, open problems, and future directions.

on models, methods, and tools for factorizing tensors, (ii) surveys on general tensor problems,

e.g., tensor operations, uniqueness, ranks, filtering, spectral analysis, and complexity, and (iii)

surveys on tensor applications. We refer the readers to Tab. 5.1 for the main contributions of

the state-of-the-art surveys on tensors.

Among them, the most notable and highly-cited survey paper is the work of Kolda et al.

in [10] that was published in the SIAM Review journal more than a decade ago. The survey

120

5.1. INTRODUCTION

presented basic multiway models (i.e., CP family and Tucker family) and workhorse algorithms

for factorizing tensors under these models. Some applications and software for tensors were also

mentioned. The second key survey in the literature is the work of Sidiropoulos et al. in [11]

that appeared five years ago in the IEEE Transactions on Signal Processing journal. To fill

some gaps in the existing surveys on CP and Tucker decompositions of that time, the authors

provided an in-depth overview of tensors with respect to the following aspects: uniqueness, ranks,

bounds, algorithms, and applications. Moreover, an up-to-date list of software and toolboxes for

tensor computation was provided therein. To extend beyond the two standard multiway models,

Cichocki et al. conducted a comprehensive tutorial on tensor networks in [12,202] that appeared

in the Foundations and Trends in Machine Learning journal. Particularly, its coverage includes

tensor network models, the associated operations and algorithms, and their applications. Besides,

it also highlighted connections of tensor networks to dimensionality reduction and large-scale

optimization problems. Very recently, Liu et al. provided a general overview of tensors from the

engineer’s point of view in the book Tensor Computation for Data Analysis [13]. It covers various

aspects of tensor computations and decompositions, from operations and well-known multiway

representations to tensor-based data analysis techniques and practical applications.

However, to date, we are not aware of any survey paper specifically reviewing the problem of

streaming tensor decomposition or tensor tracking. Therefore, it is of great interest to carry out

an overview of this topic to enrich the tensor literature.

5.1.2 Main Contributions

In this chapter, we present a contemporary and comprehensive survey on the state-of-the-art

online techniques which are capable of factorizing tensors derived from data streams.

Our survey begins with basic coverage of five common tensor decompositions and their main

features. They are CP/PARAFAC, HOSVD/Tucker, BTD, tensor-train, and t-SVD. Two kinds

of streaming models are then introduced to represent streaming tensors, including single-aspect

and multi-aspect. Next, we review four main groups of streaming CP decomposition algorithms:

(i) subspace-based, (ii) block-coordinate descent, (iii) Bayesian inference, and (iv) multi-aspect

streaming CP decomposition. Under the Tucker format, we categorize currently available single-

aspect tensor tracking algorithms into two main classes: online tensor dictionary learning and

tensor subspace tracking. Multi-aspect streaming Tucker decomposition algorithms are then

overviewed. In addition, we provide a short survey on other online techniques for tracking

tensors under tensor-train, t-SVD, and BTD formats. Finally, we discuss a number of important

challenges and open problems as well as highlight potential directions for the problem of tensor

tracking in the future. To the best of our knowledge, our survey offers for the first time a

thorough review of techniques for factorizing tensors in an online fashion. Fig. 5.1 depicts depicts

the organization of the thesis.

121

5.2. TENSOR DECOMPOSITIONS

Subspace-based Methods

Tensor Tracking
Formulation

SECTION 3

Tensor
Decompositions

SECTION 2

Streaming Tucker
Decomposition

SECTION 5

Block-coordinate Descent

CP/PARAFAC Decomposition

Tucker Decomposition

Block-term Decomposition

Tensor-train Decomposition

T-SVD Decomposition

SECTION 6 Other Streaming
Decompositions

Streaming CP
Decomposition

SECTION 4

General Formulation of Optimization

Single-aspect Streaming Model

Multi-aspect Streaming Model

Bayesian Inference

Streaming TT Decomposition

Streaming t-SVD Decomposition

Streaming BTD Decomposition

Multi-aspect streaming methods

Tensor Subspace Tracking

Online Tensor Dictionary Learning

Multi-aspect streaming methods

Figure 5.1: Structure of this chapter.

5.2 Tensor Decompositions

In this section, we briefly describe the background of the five popular tensor decompositions

which have already been deployed to factorize streaming tensors in an online fashion. They are

CP/PARAFAC, HOSVD/Tucker, BTD, tensor-train, and t-SVD.

122

5.2. TENSOR DECOMPOSITIONS

5.2.1 CP/PARAFAC Decomposition

Under the CP format [185], a tensor X ∈ RI1×I2×···×IN can be decomposed into a set of N

matrices {U(n)}Nn=1 sharing the same number of columns as follows

X ∆
=

q
{U(n)}Nn=1

y
=

r∑
i=1

U(1)(:, i) ◦U(2)(:, i) ◦ · · · ◦U(N)(:, i), (5.1)

where the so-called tensor factor U(n) is of size In × r with 1 ≤ n ≤ N . The smallest r

satisfying (5.1) is referred to as the CP-rank of X .

This decomposition has its advantages and disadvantages. On the one hand, CP is the best

memory-saving format for representing high-order tensors, and hence, it can overcome the curse

of dimensionality which particularly limits the order of tensors to be analysed. Under certain

conditions, CP decomposition is essentially unique up to a permutation and scale which is an

useful property in many applications, e.g., to recover exact components or individuals hidden in

the underlying data. However, its main disadvantage is that finding the true CP-rank r is known

as an NP-hard problem [195]. Even though the CP-rank is given in advance, the best rank-r

approximation of a tensor may not exist [207]. To compute the CP decomposition, one of the

most widely-used approaches is based on the alternating least-squares (ALS) technique [10].

5.2.2 Tucker Decomposition

Under the Tucker format [15], we can factorize X into a core tensor G of a smaller size and N

factors {U(n)}Nn=1 as

X ∆
=

q
G; {U(n)}Nn=1

y
= G ×1 U

(1) ×2 U
(2) ×3 · · · ×N U(N), (5.2)

where G is of size r1 × r2 × · · · × rN with rn ≤ In, and U(n) ∈ RIn×rn is an orthogonal matrix.

The vector r = [r1, r2, . . . , rN] is called the multilinear rank or rank-(r1, r2, . . . , rN) of X .

Tucker decomposition is more flexible than CP in the sense that we can write any tensor X
in the form (5.2) and its computation can be done effectively and stably. The two most popular

algorithms for computing (5.2) are HOSVD and Higher-order Orthogonal Iteration (HOOI) [208].

Both HOSVD and HOOI offer a good rank-(r1, r2, . . . , rN) tensor approximation for X and

they can be efficiently implemented in practice. In general, the Tucker representation is not

unique but the subspace covering U(n) is physically unique. Therefore, the main interest in

Tucker decomposition is for finding subspaces of the tensor factors, and hence, for approximation,

dimensionality reduction, and feature extraction [11].

123

5.2. TENSOR DECOMPOSITIONS

5.2.3 Block-Term Decomposition

Block-term decomposition (BTD) allows to represent X as a sum of low multilinear-rank ten-

sors [18]:

X =
R∑
i=1

q
Gi; {U(n)

i }
N
n=1

y
, (5.3)

where {Gr}Rr=1 with Gi ∈ Rr1×r2×···×rN is the set of core tensors, U(n) =
[
U

(n)
1 , . . . ,U

(n)
R

]
with

U
(n)
i ∈ RIn×rn is the n-th tensor factor, and rn ≤ In ∀ i, n.

The BTD format (5.3) can be considered as a combination of CP and Tucker. As its name

reveals, the basic components in BTD are rank-(r1, r2, . . . , rN) blocks while they are rank-1

terms in CP/PARAFAC and matrix decompositions. When these blocks are rank-1 tensors (i.e.,

rn = 1 ∀n), it boils down to CP. When it has only one block (i.e., R = 1), BTD becomes the

standard Tucker decomposition. It is worth noting that the number of blocks R relies on the

block’s size. Like CP, BTD is essentially unique [18]. The common approach to find (5.3) is also

based on the ALS technique [209].

5.2.4 Tensor-train Decomposition

Tensor-train (TT) decomposition expresses X as a multilinear product of third-order tensors

{G(n)}Nn=1 according to

X = G(1) ×1
1 G(2) ×1

2 · · · ×1
N G(N), (5.4)

where G(n) ∈ Rrn−1×In×rn is the n-th TT-core (aka tensor carriage) with n = 1, 2, . . . , N . Here,

r0 = rN = 1 and the quantities {rn}N−1
n=1 are called TT-ranks [16].

This type of TD offers several appealing benefits for representing tensors, especially high-order

tensors. For instance, given an arbitrary tensor X , we always find a set of TT-cores {G(n)}Nn=1

satisfying (5.4) with suitable TT ranks. Besides, its TT-ranks can be effectively estimated in a

stable way in contrast to the CP-rank determination [195]. Moreover, TT also offers a memory-

saving representation for tensors and can break the curse of dimensionality like CP. With respect

to the implementation, the workhorse algorithm to compute TT is TT-SVD [16].

124

5.3. TENSOR TRACKING FORMULATION

5.2.5 T-SVD Decomposition

Tensor SVD (t-SVD) is another multiway extension of SVD for decomposing tensors in which

X is factorized into three tensors U ,G, and V of the same order:

X = U ∗ G ∗ VH , (5.5)

where “ ∗ ” denotes the t-product, U and V are unitary tensors, and G is a rectangle f -diagonal

tensor whose frontal slices are diagonal matrices [17]. To define the low-rank tensor approxima-

tion under the t-SVD format, the so-called tubal-rank rt is determined as the number of non-zero

tubes in G, (e.g., when the tensor X is of order 3, rt(X) =
∑

i 1[G(i, i, :) ̸= 0] where 1 is an

indicator function).

The t-SVD algebraic framework is quite different from the classical multilinear algebra in

other types of TD. Thanks to the t-product and Fourier transform, several linear, multilinear

operators and other transformations are successfully extended from matrices to tensors, such as

transpose, orthogonality, and inverse. In particular, t-SVD can be effectively obtained by com-

puting SVDs in Fourier domain and its performance (i.e., exact recovery with high probability)

can be guaranteed under mild conditions [17].

5.3 Tensor Tracking Formulation

In this section, the problem of tensor tracking is formulated. Specifically, we first divide stream-

ing tensor models into two classes and then construct some terminologies to support the problem

statement. They are single-aspect and multi-aspect streaming models, see Fig. 5.2 for an illus-

tration. After that, we formulate a general formulation of the tensor tracking problem which is

suitable for many applications.

5.3.1 Single-aspect Streaming Model

In the classical online setting, we are interested in the decomposition of an N -order streaming

tensor X t fixing all but one dimension (mode). Without loss of generality, we suppose the last

dimension is temporal, and hence, we can write X t ∈ RI1×···×IN−1×ItN where ItN is increasing

with time.

The following definition of temporal slices is useful to formulate the problem of single-aspect

tensor tracking.

Definition 1 (Temporal slice). Given a streaming tensor X t ∈ RI1×···×IN−1×ItN , we say

Yτ = X t(:, . . . , :, τ) ∈ RI1×I2×···×IN−1 is the τ -th temporal slice of X t for 1 ≤ τ ≤ ItN .

125

5.3. TENSOR TRACKING FORMULATION

t 1t 2t

Single-aspect

Multi-aspect

Figure 5.2: Single-aspect and multi-aspect streaming models.

Without loss of generality, we assume that ItN = t meaning that at each time instant one

new slice of the tensor is observed. Accordingly, the streaming tensor X t can be viewed as a

set of temporal slices {Yτ}tτ=1. In other word, X t is derived from appending the new comming

temporal slice Y t to the previous observations X t−1 along the time dimension, i.e.,

X t = X t−1 ⊞N Y t and ItN = It−1
N + 1 = t. (5.6)

Generally, Y t has the form

Y t = P t ⊛
(
Lt +N t +Ot

)
, (5.7)

where “⊛ ” denotes the Hadamard product, Lt is a low-rank component, P t is a binary tensor,

N t is a noise tensor, and Ot is a sparse tensor. The data model (5.7) is a general form which

is suitable for many scenarios. For example, P t represents missing and observed entries of Y t;

N t is an additive white Gaussian noise; and Ot denotes the sparse outliers. Meanwhile, the

low-rank Lt, which can be formulated by CP, Tucker, BTD, TT, or t-SVD format, can be static

or time-varying. Based on these terminologies, the problem of single-aspect tensor tracking can

be formally stated as follows:

Single-aspect Tensor Tracking: At time t, given a temporal slice Y t and old estimates

of X t−1 (e.g., core tensors and tensor factors), we want to track the new estimates of

X t = X t−1 ⊞N Y t in time.

126

5.3. TENSOR TRACKING FORMULATION

5.3.2 Multi-aspect Streaming Model

In some modern online applications, tensor data may evolve in multiple dimensions/modes over

time, and thus, the single-aspect streaming model is not useful for modelling such streaming

data. In [210], Fanaee-T et al. for the first time introduced the concept of multi-aspect streaming

tensors to represent streaming data having more than one dimension increasing with time. Since

then, some online algorithms have been developed to deal with the problem of multi-aspect

streaming tensor decomposition.

For convenience, we first introduce the definitions of multi-aspect streaming tensors and

temporal tubes.

Definition 2 (Multi-aspect streaming tensor). A set of N -order tensors {X t}t≥1 is

called a multi-aspect streaming tensor sequence denoted as {X} when X t ∈ RIt1×It2×···×ItN ,

Itn = It−1
n +W t

n where W t
n ≥ 0, 1 ≤ n ≤ N , and X t−1 is a sub-tensor of X t. If X t belongs

to such a sequence {X}, we say that X t is a multi-aspect streaming tensor.

Definition 3 (Temporal tube). Given two successive tensors X t−1 and X t derived from

the same multi-aspect streaming tensor sequence {X}, the coming data stream at time t

can be represented by Y t = X t\X t−1 of the same size as X t with entries

[
Y t

]
i1,...,iN

=

[
X t

]
i1,...,iN

if It−1
n < in ≤ Itn,

0 otherwise,
(5.8)

for 1 ≤ n ≤ N . We say that the non-zero entries in Y t are temporal tubes.

Now, we can state the problem of multi-aspect tensor tracking as follows:

Multi-aspect Tensor Tracking: At time t, given temporal tubes in Y t, and old esti-

mates of X t−1 (e.g., core tensors and tensor factors), we want to track the new estimates

of X t = X t−1 ∪Y t in time.

It is worth noting that the single-aspect tensor tracking problem also belongs to the class

of multi-aspect tensor tracking where most of the tensor dimensions In are constant by setting

W t
n = 0, except the last one ItN . Besides, temporal slices may be regarded as frontal slices of the

tensor Y t defined as in (5.8).

127

5.4. STREAMING CP DECOMPOSITION

5.3.3 General Formulation of Optimization

We here provide a general formulation of tensor tracking which can be used in many applications.

In particular, the optimization problem can be written as

argmin
{G},{U},O

[
t∑

τ=1

βτ ℓ
(
Yτ ,Pτ , {G}, {U},O

)
︸ ︷︷ ︸

Minimize residual errors

+ ρGRG

(
{G}

)︸ ︷︷ ︸
Regularize cores

+ ρURU

(
{U}

)︸ ︷︷ ︸
Regularize factors

+ ρORO

(
O
)︸ ︷︷ ︸

Promote sparsity

+ λGLG
(
{G}

)
+ λULU

(
{U}

)︸ ︷︷ ︸
Orientate applications

]
. (5.9)

Here, {G} and {U} denote the set of core tensors and tensor factors respectively, while O is

to represent data corruptions by impulsive noise or outliers. Specifically, the three terms in the

second line of (6.5) are used to present regularizations or penalty terms imposed on parameters

of interest. The last two penalty terms of (6.5) are for the application orientation. The main loss

function ℓ(.) is defined to minimize the residual errors between the estimations and observations.

5.4 Streaming CP Decomposition

The primary objective of this section is to provide technical descriptions of the-state-of-the-art

online techniques for factorizing streaming tensors under the CP format. In the literature, there

are many streaming CP algorithms and they can be categorized into the following groups: (i)

subspace-based methods, (ii) block-coordinate descent methods, (iii) Bayesian inference, and (iv)

multi-aspect streaming CP decompositions. The three former groups are particularly developed

for single-aspect streaming models, while the latter is dedicated to the factorization of tensors

having more than one temporally varying mode. The readers are referred to Tabs. 5.2 and 5.3

for quick comparisons of the existing streaming CP decomposition algorithms. In what follows,

we take each group into consideration.

5.4.1 Subspace-based Methods

The very first study addressing the problem of streaming CP decomposition is of Nion and

Sidiropoulos in [211]. Specifically, the authors introduced the two novel adaptive CP algorithms

called PARAFAC-SDT and PARAFAC-RLS capable of tracking third-order streaming tensors

having one temporal dimension. Both algorithms are based on the subspace-based approach in

which we first track a low-dimensional tensor subspace, and then recover the loading matrices

from exploiting its Khatri-Rao structure. Following the same line, some other adaptive CP

algorithms were proposed for tensor tracking such as CP-PETRELS [215], 3D-OPAST [212],

128

5.4. STREAMING CP DECOMPOSITION

(1)

tU

1[]I r

2[]I r

3 3()[]I d r New Observations

I

(3)

tU

1tX
(2)

tU

(1)

tU

(1)

tU

1[]I r

2[]I r

I

(3)

1tU

(2)

1tU

(1)

1tU

3[]I r
(3)ˆ
tU

1tX

2I

1I

3I

3d

tX

(3)

tU

2I

1I

3I
3I

3d

Figure 5.3: Single-aspect streaming CP decomposition of a third-order tensor.

and SOAP [174]. In the following, we describe their subspace-based framework for factorizing

streaming tensors with time.

First, we recall that the low-rank Lt of Y t has the form Lt =
q
{U(n)

t }
N−1
n=1 ,u

(N)
t

y
, where u

(N)
t

is the last row of U(N)
t . Thus, Lt can be recast into the following form:

ℓt
∆
= vec(Lt) =

[N−1⊙
n=1

U
(n)
t

](
u
(N)
t

)⊤
= Ht

(
u
(N)
t

)⊤
, (5.10)

where Ht ∈ RI1...IN−1×r plays a role as a mixing matrix while u
(N)
t can be viewed as a coefficient

vector in subspace tracking problems. Accordingly, streaming CP decomposition can boil down

to a constrained problem of subspace tracking where the basis matrix has a Khatri-Rao structure.

Particularly for N = 3, the authors in [174, 211, 212, 215] proposed to solve the following

objective function:

{
U

(n)
t

}3
n=1

= argmin
{U(n)}3n=1

t∑
τ=1

βt−τ
∥∥∥pτ ⊛

(
yτ −H

(
u(3)
τ

)⊤)∥∥∥2
2

s.t. H = U(1) ⊙U(2), (5.11)

where yτ = vec(Yτ), pτ = vec(Pτ), and uτ is the τ -th row of the temporal factor U
(3)
t , and β

is a forgetting factor aimed at discounting the impact of distant observations. Specifically, (5.11)

can be effectively solved by applying the following procedure:

• Stage 1: Estimate Ht and u
(3)
t , given old estimates of U(1)

t−1 and U
(2)
t−1;

• Stage 2: Find U
(1)
t , U(2)

t satisfying Ht ≃ U
(1)
t ⊙U

(2)
t , and then re-update Ht ← U

(1)
t ⊙U

(2)
t ;

• Stage 3: Update U
(3)
t =

[(
U

(3)
t−1

)⊤(
u
(3)
t

)⊤]⊤ where u
(3)
t can be re-estimated as in Step 1

(optional).

129

5.4. STREAMING CP DECOMPOSITION

Table 5.2: Main features of the state-of-the-art single-aspect streaming CP decomposition algo-
rithms.

Algorithm Missing
Data?

Sparse
Outliers?

High-order Convergence Warm Computational Other Information(N ≥ 4)? Guarantee? Start? Complexity

PARAFAC-
✗ ✗ ✗ ✗ ✓ O

(
r2I2

) - Subspace-based
RLST/SDT [211] - Tracking using RLST/SDT

3D-OPAST [212] ✗ ✗ ✗ ✗ ✓ O
(
rI2

) - Subspace-based
- Tracking using OPAST

TeCPSGD [106] ✓ ✗ ✗ ✗ random O
(
r2|Ω|

)
- BCD + SGD

OLCP [175] ✗ ✗ ✓ ✗ ✓ O
(
r2IN−1

)
- BCD + SGD

SOAP [174] ✗ ✗ ✗ ✗ ✓ O
(
rI2

) - Subspace-based + Second-
order estimation

- Supports nonnegativity

CP-NLS [213] ✗ ✗ ✗ ✗ ✓ O(r2I2) - Nonlinear least-squares

BRST [214] ✓ ✓ ✓ ✗ ✓ unavailable - Variational Bayesian

CP-PETRELS
✓ ✗ ✗ ✗ ✓ O

(
r2|Ω|

) - Subspace-based
[215] - Tracking using PETRELS

CP-stream [216] ✗ ✗ ✓ ✗ random O
(
r2IN−1

) - ADMM + tuning-free
- Supports sparsity

POST [217] ✓ ✗ ✓ ✗ ✓ O
(
r3NIN−1

)
- Variational Bayesian

OLSTEC [176] ✓ ✗ ✗ ✓ random O
(
r2I2

)
- BCD + RLS

iPARAFAC
✗ ✗ ✗ ✗ ✓

O
(
r2|S|

)
- Apache Sparka

[218]
|S| : size of

the selected set - Randomized MTTKRP

TensorNOODL
✗ ✗ ✗ ✓ ✓ O(r2I2) - Online dictionary learning

[219] - Supports sparsity

SPADE [220] ✗ ✗ ✓ ✗ ✓ O(r3IN−1) - Streaming PARAFAC2b

SliceNStitch
✗ ✗ ✓ ✗ random

O
(
rN |S|+ (rN)2

+Nr3
)

with |S| :
number of non-zeros

- Sparse decomposition[221]

SOFIA [222] ✓ ✓ ✓ ✗ ✓ O
(
r3IN−1

) - Holt-Winters fittingc

- Supports seasonality

STF [223] ✓ ✗ ✓ ✗ ✓
O
(
(N + r)Nr|Ω|
+NIr3

) - BCD + SGD

ACP [29,33] ✓ ✗ ✓ ✓ random O
(
r2|S|

)
with |S| : size - Random sampling

of the selected set - BCD + RLS

RACP [27] ✓ ✓ ✓ ✓ random O
(
r2IN−1

) - ADMM + RLS
- ℓ1-norm penalty

Online CPDL
✗ ✗ ✓ ✓ ✓ O

(
r2IN−1

) - Nonnegative decomposition

[224] - Markovian data
- Online dictionary learning

⋆ Suppose that I1 = I2 = · · · = IN = I, rCP = r, and |Ω| is the number of observed elements.
Abbreviations: RLS (recursive least-squares), SDT (simultaneous diagonalization tracking), BCD (block-coordinate descent), ADMM
(alternating direction method of multipliers), SGD (stochastic gradient descent), and MTTKRP (matricized-tensor times Khatri-Rao
product).
a Apache Spark is a unified data analytics framework that supports distributed storage and large-scale processing: https://spark.apache.org/.
b PARAFAC2 is a flexible variant of CP [225]. While the classical CP model requires the tensor factors to be the same for all tensor slices,
PARAFAC2 only requires their cross product to be the same and these factors can be different in size slice by slice.
c Holt-Winters is an effective time series forecasting procedure [226].

In stage 1, the authors in [211] proposed two solvers for estimating Ht and ut, including

recursive least-squares (RLS) and simultaneous diagonalization tracking (SDT). Chinh et al.

in [215] adopted a well-known subspace tracking algorithm called PETRELS. Dung et al. in [212]

applied another subspace tracking algorithm for this task, namely OPAST. In [174], the same

authors also introduced another low-cost tracker to estimate Ht with rank-1 updates.

In stage 2, all the existing subspace-based algorithms used the bi-SVD procedure introduced

in [227] to recover U
(1)
t and U

(2)
t from Ht. Particularly, we can represent each column of Ht

130

5.4. STREAMING CP DECOMPOSITION

as Ht(:, i) = vec
(
U

(1)
t (:, i)(U

(2)
t (:, i))⊤

)
. Accordingly, the right and left singular vector of the

reshaped matrix from Ht(:, i) can provide a good estimate of U(1)
t (:, i) and U

(2)
t (:, i), respectively,

•
[
bi, λi,ai

]
← SVD

(
reshape(Ht(:, i), [I2 I1])

)
• U

(1)
t (:, i)← a∗i and U

(2)
t (:, i)← λibi

Computation of SVD may be expensive when dealing with large-scale streaming tensors, we can

use the alternative update based on power iteration as follows

• H
(i)
t ← reshape

(
Ht(:, i), [J × I]

)
• U

(1)
t (:, i)←

(
H

(i)
t

)⊤
U

(2)
t−1(:, i)

• U
(2)
t (:, i)← H

(i)
t U

(1)
t (:, i)∥∥H(i)

t U
(1)
t (:, i)

∥∥ .

As these algorithms are only designed for tracking third-order streaming tensors, there are still

rooms to develop subspace-based methods capable of handling N ≥ 4.

5.4.2 Block-Coordinate Descent

The second approach is based on the block-coordinate descent (BCD) framework in which we

decompose the main optimization into two main stages at each time t: (i) estimate the temporal

factor U(N)
t given {U(n)

t−1}
N−1
n=1 , and (ii) update the non-temporal factor U(n)

t with 1 ≤ n ≤ N −1

in sequential or parallel given U
(N)
t and the remaining factors. Many tracking algorithms adopt

this approach for estimating the low-rank approximation of streaming tensors over time in the

literature. We can list here some: TeCPSGD [106], OLCP [175], OLSTEC [176], CP-stream [216],

SPADE [220], SOFIA [222], iCP-AM [228], ACP [29], and RACP [27]. In what follows, we review

their strategy in each stage.

In stage 1, the general formulation of the optimization to estimate the last row u
(N)
t of U(N)

t

can be given by

{
u
(N)
t ,Ot

}
= argmin

u(N),O

[∥∥∥P t ⊛
(
Y t −O −

q{
U

(n)
t−1

}N−1

n=1
,u(N)

y)∥∥∥2
F

+ ρu
∥∥u(N)

∥∥2
2
+ ρO

∥∥O∥∥
1

]
, (5.12)

where ρu∥u∥22 is for avoiding the ill-posed computation and ρO∥O∥1 promotes the sparsity in O.

Then, the temporal factor U
(N)
t is obtained by appending the recent updated u

(N)
t to the old

estimate U
(N)
t−1. Most of the existing BCD-based tracking algorithms suppose that observations

are outlier-free (i.e., without O), and hence, they apply the regularized/randomized least-squares

131

5.4. STREAMING CP DECOMPOSITION

methods for solving (5.12). In the presence of sparse outliers, (5.12) can be effectively minimized

by ADMM or shrinkage-thresholding solvers, as presented in SOFIA [222] and RACP [27].

In stage 2, the non-temporal factors {U(n)
t }

N−1
n=1 can be derived from solving the following

optimization

U
(n)
t =argmin

U(n)

[
t∑

τ=1

βt−τ
∥∥∥P(n)

τ ⊛
(
U(n)

(
W(n)

τ

)⊤
+O(n)

τ −Y(n)
τ

)∥∥∥2
F
+ ρURU

(
U(n)

)]
, (5.13)

where ρURU (.) is a regularization term on U(n) and

W(n)
τ =

(N−1⊙
i=1,i ̸=n

U
(i)
t−1

)
⊙ u⊤

τ [Jacobi],

(n−1⊙
i=1

U
(i)
t

)
⊙
(N−1⊙

i=n+1

U
(i)
t−1

)
⊙ u⊤

τ [Gauss-Seidel].

(5.14)

Here, we can apply one of the two iterative schemes to update U
(n)
t : the Jacobi scheme supports

the parallel and/or distributed processing while the Gauss-Seidel scheme is useful for a sequential

(serial) one. The regularization can be ∥U(n)∥2F for smoothness, ∥U(n) −U
(n)
t−1∥2F for slow time-

variation, or U(n) ⪰ 0 for non-negativity constraints. Next, we review two common types of

solver for optimizing (5.13): adaptive least-squares filters and stochastic gradient solvers.

a) Adaptive Least-Squares (LS) Filters. We can see that the first term of (5.13) is of a

weighted LS form very common in adaptive filtering while the second one is to regularize the

estimators. Accordingly, (5.13) can be effectively minimized by adaptive LS filters in general and

recursive least-squares (RLS) filters in particular.

In [176], Kasai proposed an exponential RLS algorithm called OLSTEC to minimize (5.13)

when the observations are outlier-free. OLSTEC is, however, designed for third-order streaming

tensors only and its complexities are relatively high compared to other algorithms. Thanh et

al. in [29] proposed another RLS algorithm called ACP which is capable of dealing with big

streaming tensors of higher order (N ≥ 4). ACP is fast and requires much lower complexity than

OLSTEC. Very recently, the same authors in [27] proposed a sliding-window version of ACP

robust to both sparse outliers and missing data, namely RACP. Interestingly, three algorithms

belong to the class of provable online CP algorithms in which their convergence is guaranteed

under certain conditions.

In [213], Vandecappelle et al. introduced a nonlinear least-squares (NLS) algorithm for com-

puting the streaming CP decomposition of third-order tensors. In particular, the authors recast

the objective function of (5.13) into a truncated exponential window one by incorporating a diag-

onal weighting matrix L = diag
(
[0, . . . , 0, βL−1, βL−2, . . . , β, 1]

)
and then applied a NLS solver

to track the tensor factors with time. Following the same line, Smith et al. in [216] proposed

132

5.4. STREAMING CP DECOMPOSITION

another online CP algorithm called CP-stream. This algorithm has the potential to factorize

high-order streaming tensors as well as support constraints on streaming CP decomposition such

as smoothness and nonnegativity.

b) Stochastic Gradient Solvers. Instead of optimizing (5.13) directly, we can minimize its

t-th summand:

U
(n)
t = argmin

U(n)

[∥∥∥P(n)
t ⊛

(
Y

(n)
t −O

(n)
t −U(n)

(
W

(n)
t

)⊤)∥∥∥2
F
+ ρURU

(
U(n)

)]
. (5.15)

Three algorithms TeCPSGD [106], OLCP [175], and SOFIA [222] adopt this replacement for

tracking tensor factors with time. The main difference among them is the type of RU (.). Besides,

they obtain different forms of update:

[SOFIA] : U
(n)
t = U

(n)
t−1 + γt∆U

(n)
t , (5.16)

[TeCPSGD] : U
(n)
t =

(
1− βt

tηt

)
U

(n)
t−1 +

1

ηt
∆U

(n)
t , (5.17)

[OLCP] : U
(n)
t = P

(n)
t

(
Q

(n)
t

)−1 with (5.18)

P
(n)
t = P

(n)
t−1 +∆P

(n)
t and

Q
(n)
t = Q

(n)
t−1 +∆Q

(n)
t .

Here, γt, ηt, ∆U
(n)
t , ∆P

(n)
t , and ∆Q

(n)
t can be obtained from

{
U

(m)
t−1

}N−1

m=1
and the error ∆Y t =

P t ⊛
(
Y t−Ot−

q
{U(n)

t−1}
N−1
n=1 ,u

(N)
t

y)
. It is worth noting that SOFIA is capable of dealing with

sparse corruptions. TeCPSGD has the ability to track tensors from missing observations, while

OLCP can handle streaming tensors of order greater than 3.

In [228], Zeng et al. proposed an incremental ALS algorithm called iCP-AM to minimize a

reinforced version of (5.15) which is defined as

U
(n)
t =argmin

U(n)

∥∥∥∥∥
[
Y

(n)
t U

(n)
t−1

(
U

(N)
t−1 ⊙V

(n)
t−1

)⊤]
−U(n)

(u(N)
t

Ū
(n)
t

⊙V
(n)
t

)⊤∥∥∥∥∥
2

F

, (5.19)

where V
(n)
τ =

(⊙n−1
i=1 U

(i)
τ

)
⊙
(⊙N−1

i=n+1U
(i)
τ

)
. An appealing feature of iCP-AM against other

online CP algorithms is that it has a strategy to deal with the variation of the CP rank over

time, i.e., to change the number of low-rank components throughout the tracking process.

In parallel, Gujral et al. in [220] proposed an online algorithm called SPADE for tracking

tensors under the PARAFAC2 format. Specifically, SPADE tracks a fixed (non-temporal) factor

along one mode and allows the other tensor factors (modes) to vary with time. Thanks to its

stochastic design, SPADE is fast and memory-efficient. However, the stationary assumption that

time variation or concept drift is not allowed limits its applicability.

133

5.4. STREAMING CP DECOMPOSITION

5.4.3 Bayesian Inference

Besides, another good approach for dealing with the problem of streaming CP decomposition is

Bayesian inference. The state-of-the-art Bayesian-based streaming CP decomposition algorithms

are POST [217], BRST [214], and SBDT [229]. In general, three algorithms start with a prior

distribution of unknown parameters and then infer a posterior that best approximates the joint

distribution of these parameters on the arrival of new streaming data. The estimated posterior

is then used as the prior for the next update. In this subsection, we briefly describe the two

online Bayesian inference frameworks which were already used for tensor tracking: (i) streaming

variational Bayes (SVB) and (ii) assumed-density filtering (ADF). Also, prior distributions of

parameters of interest are reviewed.

a) Streaming variational Bayes. The two former algorithms POST and BRST adopted

the SVB framework [230] which is based on the following Bayes’ rule:

p
(
Θ
∣∣X t−1 ⊞N Y t

)
� p
(
Y t

∣∣Θ)p(Θ∣∣X t−1

)
, (5.20)

where Θ denotes the parameters of interest, e.g., tensor factors, CP rank, noise factors, and other

parameters. On the arrival of Y t, SVB first uses the current posterior qt−1(Θ) := p
(
Θ|X t−1

)
as

the prior of Θ, and then integrates with the likelihood of Y t to obtain

p̃t(Θ) = p
(
Y t

∣∣Θ)qt−1(Θ), (5.21)

which can be served as an approximation of the joint distribution p(Θ,Y t) up to a scale fac-

tor. The variational posterior qt(Θ) is derived from maximizing the variational model evidence

lower bound (ELBO) L(q(Θ)) = Eq

[
log
(
p̃t(Θ)/q(Θ)

)]
which is equivalent to minimizing the

Kullback-Leibler (KL) divergence:

argmin
q

[
KL
(
q(Θ)

∥∥p̃t(Θ)
)
=

∫
q(Θ) log

{
q(Θ)

p̃t(Θ)

}
dΘ

]
. (5.22)

The optimized form of qt(Θi) of (5.22) can be given by

log qt(Θi) = Eq(Θ/Θi)

[
log p̃t(Θ)

]
+ const, (5.23)

where Eq(Θ/Θi)[.] is an expectation w.r.t. q over all but Θi.

b) Assumed-Density Filtering. The latter algorithm, SBDT, applied the ADF framework

to infer the posterior distribution qt(Θ) over time. Particularly, ADF is an incremental learn-

ing framework that allows for computing the approximate posteriors in Bayesian inference for

stochastic processes [231]. The ADF framework is also grounded on the Bayes’ rule (5.20) but

134

5.4. STREAMING CP DECOMPOSITION

utilizes a distribution from the exponential family (e.g., Gaussian distribution) to approximate

the current posterior. Instead of minimizing the KL divergence or maximizing the variational

ELBO like SVB, ADF projects p̃t(Θ) into the selected distribution through moment matching

to obtain qt(Θ).

c) Prior distributions over Θ. We list common prior distributions over Θ which were

already used by POST, BRST, and SBDT.

Prior distribution of tensor factors: All three algorithms assume that the prior over tensor

factors is derived from the following Gaussian distribution which is controlled by the hyperpa-

rameter λ = [λ1, λ2, . . . , λr]:

p
(
U(n)

∣∣λ) = In∏
i=1

N
(
u
(n)
i

∣∣0,Λ−1
)
, ∀n ∈ [1, N], (5.24)

where u
(n)
i is the i-th row of U(n) and Λ = diag(λ) denotes the inverse covariance matrix. Here,

λ is supposed to follow a Gamma distribution:

p(λ) =
r∏

j=1

Gam
(
λj |cj , dj

)
, (5.25)

where Gam
(
λj |cj , dj

)
=

dj
cj

Γ(cj)
λj

cj−1e−djλj with Γ(z) =
∫∞
0 xz−1e−xdx. Specifically, the mean

and variance of Gam(λj |cj , dj) are, respectively, cj/dj and cj/d2j which aim to control the mag-

nitude of λ.

Prior distribution of noises: The noise tensor is often assumed to be Gaussian, i.e., N t ∼∏
i1i2...iN

N (0, τ−1) with a noise precision τ > 0. The parameter τ is further assigned to another

Gamma distribution p(τ |a, b) = Gam
(
τ |a, b

)
in the same way as for λ.

Prior distribution of sparse components: Only BRST in [214] has the ability to handle sparse

outliers. Here, BRST places a Gaussian prior distribution over the sparse Ot as

p
(
Ot

∣∣γ) = I1∏
i1

I2∏
i2

· · ·
IN∏
iN

N
([

Ot

]
i1i2...iN

∣∣∣0, γ−1
i1i2...iN

)[Pt]i1i2...iN
. (5.26)

where γ is the sparsity precision parameter. If the value of γi1...iN is large, the corresponding

entry in Ot is likely to have a small magnitude. By controlling the value of γi1...iN , we can control

the sparsity of Ot.

Prior distribution of NN’s weights: SBDT in [229] incorporates neural networks (NN) into

tensor factorization. SBDT assigns a spike-and-slab prior distribution over NN weights to sparsify

135

5.4. STREAMING CP DECOMPOSITION

(3)

tU

(2)

tU
(1)

tU

1d
1 1()[]I d r

(1)ˆ
tU

(2)ˆ
tU

(3
)

ˆ tU

2 2()[]I d r

2I 2d

3I

3d

3 3()[]I d r

1I
(1)

tU

(2)

tU

(3
)

tU

1tX

New Observations

1I

1d

3I

3d

2I 2d

I

Figure 5.4: Multi-aspect streaming CP decomposition of a third-order tensor.

the network. Each weight ωmjt = [Wm]jt of NN is particularly sampled from

p
(
ωmjt|smjt

)
= smjtN

(
ωmjt|0, σ20

)
+ (1− smjt)δ(ωmjt), (5.27)

where δ(.) denotes the delta function and the binary selection indicator smjt is derived from

p(smjt) = Bern(smjt|ρ0) = ρ
smjt

0 (1− ρ0)1−smjt .

5.4.4 Multi-aspect streaming CP decomposition

In the literature, there are some online algorithms capable of tracking multi-aspect streaming

tensors under the CP format, such as MAST [232], OR-MSTC [233], InParTen2 [234], and

DisMASTD [235]. We refer the readers to Tab. 5.3 for their key features. In what follows, we

first describe the main dynamic tensor decomposition (DTD) framework shared by most of these

algorithms and then highlight their characteristics in the following text.

For ease of reference, we denote by X t−1 ∈ RI1×···×IN and X t ∈ R(I1+d1)×···×(IN+dN) the two

successive snapshots at t−1 and t, please see Fig. 5.4 for an illustration. At time t, given X t and

the old estimates {U(n)
t−1}Nn=1 of X t−1, we wish to update {U(n)

t }Nn=1 such that X t ≈
q
{U(n)

t }Nn=1

y
.

The DTD introduced in [232] offers an online framework for the problem of multi-aspect

streaming CP decomposition. Particularly, DTD relaxes the CP representation of X t in the

sense that if X t is expressed by J{U(n)
t }Nn=1

y
, then its sub-tensor X t−1 can be approximated

by J{Ū(n)
t }Nn=1

y
where Ū

(n)
t ∈ RIn×r is the sub-matrix of U(n)

t ∈ R(In+d)×r. Accordingly, DTD

enables us to divide X t into two parts X t−1 and Y t = X t\X t−1 in order to take advantages

of old estimates. We can first update Ū
(n)
t incrementally from U

(n)
t−1 with a low cost and then

estimate the remaining part Û
(n)
t ∈ Rd×r of U(n)

t . The tensor factors are particularly derived

136

5.4. STREAMING CP DECOMPOSITION

from

{
U

(n)
t

}N
n=1

= argmin
{U(n)}Nn=1

[
ℓ
(
Y t,

{
U(n)

}N
n=1

)
+ ρ
(N∑

n=1

∥∥U(n)
∥∥
∗

)]
, (5.28)

where the loss function ℓ(.) is defined as

ℓ
(
Y t,

{
U(n)

}N
n=1

)
= µ

∥∥∥q{U(n)
t−1}

N
n=1

y
−

q
{Ū(n)}Nn=1

y∥∥∥2
F

+
∥∥∥PΩt

(
Y t

)
− PΩt

(q
{U(n)}Nn=1

y)∥∥∥2
F
. (5.29)

Here, Ωt denotes the set of observed entries and µ, ρ > 0 are two regularized parameters. Depend-

ing on the type of constraints, additional information imposed and the method of optimization,

we can obtain several types of estimators for tracking multi-aspect streaming tensors with time

under the DTD framework.

In [232], Song et al. developed the so-called MAST algorithm for tracking multi-aspect

streaming tensors. The authors recast (5.28) into a constrained minimization and then formed

the following Lagrangian function

L
(
Y t,Θ

)
=

N∑
n=1

(
ρ
∥∥Z(n)

∥∥
∗ +

〈
Λ(n),Z(n) −U(n)

〉
+
η

2

∥∥Z(n) −U(n)
∥∥2
F

)
+ ℓ
(
Y t,

{
U(n)

}N
n=1

)
, (5.30)

where Θ = {U(n),Z(n),Λ(n)}Nn=1 with auxiliary matrices {Z(n)}Nn=1 and Lagrange multiplier

matrices {Λ(n)}Nn=1, and η > 0 is a regularization parameter. Since terms of (5.30) are all

convex, it can be effectively minimized by several methods. In particular, MAST applies an

ADMM solver to minimize (5.30) in order to balance the trade-off between effectiveness and

efficiency in tracking process.

Since MAST is not designed for handling sparse outliers, Najafi et al. in [233] introduced

a robust version of MAST called OR-MSTC. In the presence of sparse outliers, the authors

proposed to regularize the objective function of (5.28) by adding an ℓ1-norm regularization term

λ∥O∥1 and replacing Y t with Y t −O in the first term of ℓ(.) in (5.30). Because the term λ∥O∥1
is convex, OR-MSTC also adopts the well-known ADMM method in a similar way to MAST.

In [234], Yang et al. proposed a distributed version of MAST called InParTen2. Thanks

to Apache Spark, it can handle large-scale streaming tensors efficiently with a limited memory.

However, the use of InParTen2 is limited for third-order streaming tensors only. In [235], Yang et

al. introduced another distributed method called DisMASTD capable of dealing with tensors of

higher order. One of appealing feature of DisMASTD is that it can avoid repetitive computation

and reduce network communication cost.

137

5.5. STREAMING TUCKER DECOMPOSITION

Table 5.3: Main features of multi-aspect streaming CP decomposition algorithms.

Algorithm
MAST OR-MSTC InParTen2 DisMASTD

(2017 [232]) (2019 [233]) (2020 [234]) (2021 [235])

Missing? ✓ ✓ ✗ ✗

Outliers? ✗ ✓ ✗ ✗

High-order?
(N ≥ 4)

✓ ✓ ✗ ✓

Distributed? ✗ ✗ ✓ ✓

(1)

tU

1[]I r

2[]I r

New Observations

1tX

(2)

tU

(1)

tU

(1)

tU

1 1[]I r

2 2[]I r

1tG
(2)

1tU

(1)

1tU

1tX

1tX

2I

1I

3I

1

2I

1I

3I

1 2 (1)[]r r t

1 2 1[]r r
tG

1tG

tY

1 2[]r r t

Figure 5.5: Online tensor dictionary learning.

5.5 Streaming Tucker Decomposition

In the literature, there are many online tensor methods proposed for factorizing streaming ten-

sors. We can broadly categorize them into three main classes: (i) online tensor dictionary

learning, (ii) tensor subspace tracking, and (iii) multi-aspect streaming Tucker decomposition.

Specifically, the first two classes are designed for two specific cases of single-aspect streaming

Tucker decompositions, while the latter class is for multi-aspect streaming tensors.

5.5.1 Online Tensor Dictionary Learning

In the class of online tensor dictionary learning methods, we are particularly interested in a

specific case of single-aspect streaming Tucker decomposition where the underlying tensor X T ∈
RI1×···×IN−1×T – which represents a set of T data streams {Y t}Tt=1 of the same size I1 × I2 ×

138

5.5. STREAMING TUCKER DECOMPOSITION

Table 5.4: Main features of the state-of-the-art streaming Tucker decomposition algorithms.

Algorithm
Missing Sparse High-order Convergence Computational

Additional Information
Data? Outliers? (N ≥ 4)? Guarantee? Complexity

STA [236,237] ✗ ✗ ✓ ✗ O
(
(N − 1)rIN−1

)
- Subspace tracking + deflation

IRTSA [238,239] ✗ ✗ ✗ ✗ O
(
3rI3

)
(with N = 3) - ISVD-based tracking

ITF [240] ✗ ✗ ✗ ✗ O
(
3rI3

)
(with N = 3) - ISVD-based tracking

IHOSVD [241] ✗ ✗ ✓ ✗ O
(
Nr2IN

)
- Adopts recursive matrix SVD

ALTO [242] ✗ ✗ ✗ ✓

O
(
3(r + k)6I3

)
- Adds noise perturbation

k: random columns - Uses tensor sequential mapping

LRUT [243] ✗ ✗ ✓ ✗
O
(
N(r + k)2NIN

)
- Adds noise perturbation

k: random columns - Supports parallel computing

Riemannian-
✓ ✗ ✗ ✗ unavailable

- Computes SGD on Riemannian
Tucker [244] manifold

HO-RLSL [245] ✗ ✓ ✓ ✗ 3I2O
(
I3
)

- For N = 4 only

IHOSVD [246] ✗ ✗ ✓ ✗
O
(
N(I/d)2(N−1)) - Supports distributed computing

d: number of cores
- Adopts RoundRobin process +

columnwise Jacobi-rotation

MIHOSVD
[247]

✗ ✗ ✓ ✗
O
(
N(I/d)2(N−1)) - Supports distributed computing

d: number of cores
- Adopts tree-based integration +

columnwise Jacobi-rotation

SIITA [248] ✓ ✗ ✓ ✗

O
(
K(rN |Ω|+NIMr)

)
- Multi-aspect streaming method

K: iterations, M : number of - Supports side information +
columns of side matrices nonnegativity + sparsity

eOTD [249] ✗ ✗ ✓ ✗

O
(
rd2(m−1)I2(N−m)

)
- Multi-aspect streaming method

d,m: number of coming
temporal slices & modes

- Adopts SGD + MGS + block
tensor matrix multiplications

OTL [250] ✗ ✗ ✓ ✓

O
(
d(N − 1)(Ir2)

N−1) - Promotes sparse coding
d: dimensionality of new

coming tensor
- Supports nonnegativity +

orthogonality

Singleshot
[251]

✗ ✗ ✓ ✓

O
(
dNrNIN−1 +Nr2N

)
- Uses tensor sketching

d: dimensionality of new
coming tensor

- Supports multiple coming
temporal slices + nonnegativity

TTMTS [252] ✗ ✗ ✓ ✓

O
(
(Nk + d)IN

)
- Uses tensor random projection

d = (s(1− (s/I)N)/(1− s/I) - Supports one/two-pass
k, s: parameters of projection approximations

SNBTD [253] ✗ ✗ ✓ ✓

O
(
IN−1(NIr +MR+ 4M2)

)
- Nonlinear decomposition with

M : number of pseudo inputsa Fourier features
R: size of the pseudo input - Uses Bayesian inference + ADF

D-L1-Tucker
[254]

✗ ✓ ✓ ✗
O
(
K(rIN−1 + I2rN−1)

)
- Applies threshold-based outlier

K: iterations detection + L1-HOOI

BASS-Tucker
✗ ✗ ✓ ✗

O
(
r3(N−1) + (Ir)N−1

+Nr3IN−1
) - Sparse decomposition

[255] - Uses Bayesian inference + ADF

SBDT [229] ✗ ✗ ✓ ✗
O
(
NIr +KIN−1

)
- Uses Bayesian inference + ADF

K: number of weights in NNs - Incorporates NNs

Zoom-Tucker
✗ ✗ ✓ ✗

O
(
KBNrIN−1 +KN2rN+1

+KN2r2I)
)

K: iterations & B : blocks

- Supports multiple coming

[256]
temporal slices

- Requires a preprocessing phase

RI/BK-NTD
✗ ✗ ✓ ✗

O
(
KN(Ir)N

)
- Nonnegative decomposition

[257] K: iterations - Uses NNLS + BCD

ATD [29] ✓ ✗ ✓ ✓

O
(
r|Ω|+ r2N |S1|+ r2|S2|

+r2IN−2
)

with |S1|, |S2| :
size of sampling sets

- Uses BCD + Sampling
- Supports parallel computing

⋆ Suppose that I1 = I2 = · · · = IN = I, r1 = r2 = · · · = rN = r, and |Ω| is the number of observed elements.
Abbreviations: ISVD, (incremental SVD), SGD (stochastic gradient descent), MGS (modified Gram-Schmidt process), BCD (block-coordinate
descent), ADF (assume-density filtering), NN (neural network), and NNLS (nonnegative constrained least-squares solver).
a Pseudo inputs: a small active pseudo set, which is not necessarily required to be a subset of the real data, is introduced to break the dependencies
between outputs and hence avoid the explicit computation of the full covariance matrix.

· · · × IN−1 – is supposed to be modelled by

X T =
r
GT ;

{
U(n)

}N−1

n=1
, IT

z
, (5.31)

139

5.5. STREAMING TUCKER DECOMPOSITION

where the core tensor GT is of size r1 × · · · × rN−1 × T (i.e., rN = T), the tensor factors

{U(n)}N−1
n=1 ,U

(n) ∈ RIn×rn are of fixed size, and the last factor U(N) is an identify matrix.

Specifically, the t-th temporal slice Y t of X T is expressed as

Y t =
r
Gt;
{
U(n)

}N−1

n=1

z
, t = 1, 2, . . . , T, (5.32)

where Gt ∈ Rr1×r2×···×rN−1 is the t-th slice of the core tensor GT . The primary objective here is

to estimate Gt and incrementally update {U(n)}N−1
n=1 on the arrival of Y t at each time t. In what

follows, we review two main approaches to deal with this problem.

a) Incremental Subspace Learning on Tensor Unfolding Matrices. A natural and

very first approach for streaming Tucker decomposition is to incrementally update the subspaces

covering unfolding matrices of the underlying tensor. The central idea of this approach stems

from the fact that the n-th tensor factor U
(n)
t which is derived from the standard HOSVD is

given by

U
(n)
t = EVD

([
X

(n)
t−1,Y

(n)
t

][
X

(n)
t−1,Y

(n)
t

]⊤)
, (5.33)

where X
(n)
t−1 =

[
Y

(n)
1 , . . . ,Y

(n)
t−1

]
with Y

(n)
τ is the mode-n unfolding matrix of Yτ . Accordingly

at time t, we can apply the following dynamic tensor analysis (DTA) framework introduced

in [236,237] to estimate Gt and update {U(n)
t }

N−1
n=1 :

C
(n)
t ← βC

(n)
t−1 +

(
Y

(n)
t

)⊤
Y

(n)
t , (5.34a)

U
(n)
t ← eig

(
C

(n)
t , r

)
, (5.34b)

Gt ←
r
Y t,

{
(U

(n)
t)⊤

}N−1

n=1

z
, (5.34c)

where 0 < β ≤ 1 is a forgetting factor and eig(C
(n)
t , r) computes the top r principal eigenvectors

of C(n)
t . Since the two steps (5.34a) and (5.34b) are generally expensive, there have been some

studies offering good modifications or fast alternatives for (5.34).

In [236, 237], Sun et al. proposed a streaming tensor analysis (STA) algorithm for tracking

U
(n)
t with time, instead of taking the orthonormal step (5.34b) directly. Particularly on the

arrival of Y t, STA first divides its unfolding matrix Y
(n)
t into column vectors {y(n)

m,t} and then

performs the following steps on each vector y
(n)
m,t: (i) projects it onto the subspace U

(n)
t−1, (ii)

evaluates the corresponding residual error and the energy for each entry of y(n)
m,t, and (iii) updates

the matrix U
(n)
t . Intuitively, the larger the residual error is, the more U

(n)
t is updated. The

complexity of STA is moderate while its effectiveness was demonstrated with the problem of

anomaly detection and multi-way latent semantic indexing.

In [238, 239], Hu et al. introduced the so-called IRTSA algorithm to track the dominant

140

5.5. STREAMING TUCKER DECOMPOSITION

subspaces {U(n)
t }

N−1
n=1 . Specifically, instead of computing (5.34a), IRTSA applies a fast incre-

mental SVD (ISVD) proposed by Ross et al. in [258] on the mode-n unfolding matrix X
(n)
t =[

X
(n)
t−1,Y

(n)
t

]
in (5.33). Thanks to ISVD, IRTSA shares the same order of computational complex-

ity with STA while offers a better estimation than STA for the problem of background modelling

and object tracking. Although the current version of IRTSA is designed for factorizing three-

order streaming tensors, it is not difficult to extend IRTSA for dealing with higher-order tensors.

Besides, a modified version of IRTSA was introduced by Zang et al. in [240] for the problem of

web service recommendation.

In [241], Kuang et al. also proposed an incremental SVD-based streaming Tucker decom-

position, namely IHOSVD. In particular, this algorithm performs the following three processes

in a serial manner: (i) applies a recursive SVD method to compute singular values and sin-

gular vectors of unfolding matrices of the new tensor, (ii) merges the new results with the old

estimations from past observations, and (iii) obtains the core tensor with n-mode products. The-

oretical analyses and experimental results on intelligent transportation applications demonstrate

the effectiveness of IHOSVD.

In [259], Li et al. modified slightly the recursive update of the covariance matrix C
(n)
t

in (5.34a) as follows

C
(n)
t = (1− α)C(n)

t−1 + α
(
Y

(n)
t

)⊤
Y

(n)
t , (5.35)

with a weight 1 ≥ α > 0 and then introduced a robust incremental algorithm called RTSL which

has the potential to model background and detect anomalies in applications of computer vision.

Since RTSL still applies directly the DTA framework, its complexity is relatively high. Thus, it

may become inefficient for handling large-scale and high dimensional streaming data.

Some other algorithms for streaming Tucker decomposition belonging to this group were

presented in [245–247, 260], focusing on specific applications such as dynamic brain network

analysis, smart city services, cyber-physical-social networks and systems.

b) Online Multimodal Dictionary Learning. Another good strategy for the problem of

single-aspect tensor tracking is to apply online multimodal dictionary learning (OMDL) tech-

niques. As OMDL is a stochastic version of the multimodal dictionary (multilinear subspace)

learning [261], it allows estimating dictionaries (i.e., tensor factors) with one-pass processing.

In the literature, there exist some algorithms applying OMDL for tracking the low multilinear-

rank component of streaming tensors with time, such as OTDL [250], ODL [262], ORLTM [263],

OLRTR [264], and D-L1-Tucker [254].

The two former algorithms OTDL and ODL adopt the typical two-step learning procedure

to track the tensor factors over time, namely (i) tensor coding or inference of coefficients in the

core tensor and (ii) dictionary update per each tensor mode.

141

5.5. STREAMING TUCKER DECOMPOSITION

Step 1: Tensor Coding . When Y t is observed, the general formulation of optimization for

this step is given by:

Gt = argmin
G

[∥∥∥Y t −
q
G;
{
U

(n)
t−1

}N−1

n=1

y∥∥∥2
F
+ ρGRG(G)

]
, (5.36)

where ρGRG(.) is a regularization term on the core tensor G to promote sparsity or nonnegativity

for instance. Since the first term of (5.36) is differentiable while the second term may admit a

proximal operator (e.g., ℓp-norm), OTDL and ODL applied proximal methods to minimize it.

Step 2: Dictionary Update. When Gt is estimated, the BCD framework can be used to update

U
(n)
t . Specifically, both algorithms optimize the following minimization:

U
(n)
t = argmin

U(n)

[
t∑

τ=1

∥∥∥Yτ −
q
Gτ ;

{
U

(n)
t−1

}N−1

n=1

y∥∥∥2
F
+ ρURU

(
U(n)

)]
, (5.37)

with a penalty term ρURU (.) on U(n). Interestingly, (5.37) can be recast into the standard least-

squares cost function which is very common in adaptive filtering theory. Accordingly, OTDL

introduced an effective recursive least-squares (RLS) solver to optimize it. Meanwhile, ODL

used the stochastic gradient descent method to estimate U
(n)
t with a low cost.

The next two algorithms ORLTM and OLRTR, on the other hand, estimated the tensor factors

without the need of tensor coding. In particular, the tensor factor U(n) is directly derived from

the following optimization

U
(n)
t = argmin

U(n)

[
t∑

τ=1

ℓ
(
Yτ ,U

(n)
)
+ ρURU

(
U(n)

)]
, (5.38)

where the loss function ℓ(.) is defined as

ℓ
(
Yτ ,U

(n)
)
= min

R(n),E(n)

[∥∥∥Y(n)
τ −U(n)R(n) −O(n)

∥∥∥2
F
+ λ1

∥∥E(n)
∥∥
1
+ λ2RR(R

(n))

]
. (5.39)

Here, R(n) and O(n) play the role of the coefficient and error, respectively. The main difference

between ORLTM and OLRTR is the type of RR(.) used. Specifically, OLRTR uses the simple

Frobenius norm regularization RR(R
(n)) = ∥R(n)∥2F , while ORLTM reinforces R(n) = W(n)Z(n)

and then forms RR(R
(n)) = ∥W(n)∥2F + ∥Z(n)∥2F . Intuitively, the minimization (5.38) may be

regarded as a robust version of (5.37) which aims to deal with sparse corruptions. Also, the

minimization (5.39) is not difficult to solve since its terms are all convex. Hence, both OLRTR

and ORLTM applied the RLS method to update U
(n)
t over time.

In [254], Chachlakis et al. proposed a streaming Tucker decomposition called D-L1-Tucker for

dealing with streaming tensors. D-L1-Tucker shares the same objective function with ORLTM

and OLRTR, but adopts a different approach to handle data corruptions. Particularly on the

142

5.5. STREAMING TUCKER DECOMPOSITION

(1)

tU

1[]I r

2[]I r

3(1)[]I r

New Observations

tG

(3)

tU

1tX
(2)

tU

(1)

tU

(1)

tU

1 1[]I r

2 2[]I r

1tG

(3)

1tU

(2)

1tU

(1)

1tU

3 3[]I r

(3)

tu

1tX

2I

1I

3I

1

(3)

tU

2I

1I

3I

1 2 3[]r r r

1 2 3[]r r r

(fixed size)

tY

Figure 5.6: Online tensor subspace learning.

arrival of Y t, D-L1-Tucker first identifies whether Y t is an anomaly or not based on its reliability

which is defined as

rt =
∥∥∥qY t;

{
(U

(n)
t−1)

⊤}N−1

n=1

y∥∥∥2
F

∥∥∥Y t

∥∥∥−2

F
. (5.40)

If rt ≤ τ where τ ∈ [0, 1] is a predefined threshold, Y t is labelled as an outlier slice and then it

is disregarded. Otherwise, Y t is considered as reliable and useful for tracking process. In such a

case, D-L1-Tucker appends Y t to the memory set Zt = Zt−1 ∪ Y t and then applies the batch

L1-HOOI algorithm proposed in [265] for factorizing Zt in order to obtain tensor factors. After

that, Zt is re-updated by removing the oldest measurement for the next processing. D-L1-Tucker

requires a good batch initialization and its tracking ability is dependent on the threshold τ and

the memory size M to store Zt.

5.5.2 Tensor Subspace Tracking

Apart from the model (5.31), the tensor X T ∈ RI1×···×IN−1×T and its t-th temporal slice Y t with

1 ≤ t ≤ T can be modelled as follows

X T =
r
G;
{
U(n)

}N
n=1

z
, (5.41)

Y t =
r
G;
{
U(n)

}N−1

n=1
,u

(N)
t

z
, (5.42)

where the core tensor G ∈ Rr1×r2×···×rN and {U(n)}N−1
n=1 with U(n) ∈ RIn×rn are of fixed size

except the last factor U(N) ∈ RT×rN , and u
(N)
t ∈ R1×rN is the t-th row of U(N), see Fig. 5.6 for

an illustration. At each time t, given old estimations Gt−1 and {U(n)
t−1}

N−1
n=1 , we are interested

in tracking Gt, u
(N)
t and {U(n)

t }
N−1
n=1 which can compactly represent the temporal slice Y t. We

143

5.5. STREAMING TUCKER DECOMPOSITION

refer this problem to as tensor subspace tracking.1

It is worth mentioning that single-aspect streaming CP methods also belong to this class as

the core tensor G is constrained to be identity. In the literature, there exist some tensor subspace

tracking methods which have the potential to deal with a general case of G. Each method adopts

a different strategy to factorize streaming tensors. In what follows, we briefly describe their main

features in chronological order.

a) Augmented Projection. In [243], Baskaran et al. introduced the so-called LRUT al-

gorithm (which stands for Low-Rank Updates to Tucker decomposition) using a randomized

projection technique for tracking the low multilinear-rank approximation of streaming tensors

over time. When a data stream arrives, LRUT first projects it onto an extended tensor sub-

space and then forms an augmented core tensor. Specifically, LRUT adds a few more random

dimensions to the current tensor subspace defined by old estimations of the tensor factors. The

inclusion of some random vectors here plays a role of noise perturbation aimed to prevent the

main optimization from getting stuck in local optima. Next, LRUT performs the standard Tucker

decomposition (e.g., batch HOSVD or HOOI) on the resulting augmented core tensor to update

tensor factors. In this way, we can avoid the computation of SVD on unfolding matrices of the

full tensor which is highly expensive in an online setting. However, its computational complexity

is still relatively high since LRUT uses several orthogonalization operations on augmented tensor

factors and unfolding matrices of the projected tensor slice.

b) Riemannian Optimization. In [244], Kasai et al. developed a Riemannian manifold pre-

conditioning approach for tensor completion. Specifically, its stochastic version can be adapted

for factorizing incomplete streaming tensors in an online fashion. Since the Tucker format pro-

vides an effective representation for tensors in the manifoldMr =
{
X ∈ RI1×I2×···×IN | rank(X) :=

r = [r1, r2, . . . , rN]
}
, Riemannian optimization can offer a good approach for tensor decomposi-

tion and completion [266]. Accordingly, the authors proposed an efficient Riemannian gradient

based method to estimate the low multilinear-rank component of tensors. The proposed method

consists of a rank-one Riemannian gradient computation and a retraction step. Specifically, a

novel Riemannian metric on the tangent space ofMr and its quotient manifold was introduced

to enable the Riemannian optimization framework. Furthermore, a map that combines all re-

tractions on the individual manifolds of tensor factors was used to transform the estimations to

the tensor manifold.

1This name stems from the following observation: we can recast (5.42) into the standard form

yt = Dut, (5.43)

where yt = vec(Yt), ut =
(
u
(N)
t

)⊤ and D is the transpose of the mode-N unfolding matrix of
q
G; {U(n)}N−1

n=1

y
.

Intuitively, (5.43) may be regarded as the data model which is very common and widely used in the problem of
subspace tracking where we wish to incrementally update D on the arrival of yt at each time t. Since the subspace
matrix D has a tensor structure, we label this problem as "tensor subspace tracking" without hesitation.

144

5.5. STREAMING TUCKER DECOMPOSITION

c) Bayesian Inference. In [255], Fang et al. proposed a Bayesian streaming Tucker decom-

position method called BASS-Tucker for handling streaming sparse tensors. Similar to Bayesian

methods for streaming CP decomposition, BASS-Tucker adopts the streaming variational Bayes

(SVB) framework to infer the posterior of parameters of interest (e.g., tensor core, tensor fac-

tors, and nuisance parameters) over time. In addition, BASS-Tucker also utilizes the same priors

for the tensor factors and noise variance except that of the core tensor. Here, the following

spike-and-slab prior is used to model the core tensor:

p
(
S|ρ0

)
=

r1∏
j1=1

r2∏
j2=1

· · ·
rN∏

jN=1

Bern
(
sj1j2...jN |ρ0

)
, (5.44)

p(G|S) =

r1∏
j1=1

r2∏
j2=1

· · ·
rN∏

jN=1

sj1j2...jNN
(
gj1j2...jN |0, σ

2
0

)
+ (1− sj1j2...jN)δ(gj1j2...jN), (5.45)

where S ∈ Rr1×r2×···×rN is a binary tensor, Bern(.|ρ0) is the Bernoulli distribution with proba-

bility ρ0, and δ(.) is the Delta function. We refer the readers to subsection 5.4.3 for details on

prior distributions of {U(n)}N−1
n=1 and other model parameters as well as how the SVB framework

works.

d) Block-Coordinate Descent. There are three online Tucker algorithms using the BCD

framework, including ATD [29], RT-NTD [257] and BK-NTD [257]. In general, they go through

the following stages when Y t arrives:

Stage 1 : Estimate the coefficient vector u
(N)
t given old estimations Gt−1 and {U(n)

t−1}
N−1
n=1 .

Generally, u(N)
t can be derived from

u
(N)
t = argmin

u(N)

[∥∥∥Y t −
q
Gt−1; {U(n)

t−1}
N−1
n=1 ,u

(N)
y∥∥∥2

F
+ ρuRu(u

(N))

]
. (5.46)

Stage 2 : Estimate the tensor factor U(n)
t given u

(N)
t , old estimation of U(n)

t−1 and the remaining

factors, 1 ≤ n ≤ N − 1. The main optimization can be given by

U
(n)
t = argmin

U(n)

[
t∑

τ=1

βt−τ ℓ(Yτ ,U
(n)) + ρURU

(
U(n)

)]
, (5.47)

where ℓ(Yτ ,U
(n)) =

∥∥Y(n)
τ −U(n)W

(n)
τ

∥∥2
F
, Y(n)

τ and W
(n)
τ are respectively the mode-n unfolding

matrices of Yτ and Wτ . Here, the coefficient tensor Wτ is defined as

Wτ =
q
Gt−1; {U(m)

t−1}
N−1
m=1,m ̸=n,u

(N)
τ

y
. (5.48)

145

5.5. STREAMING TUCKER DECOMPOSITION

(3)

tU

(2)

tU
(1)

tU
1d

1 1 1()[]I d r
(1)ˆ
tU

(2)ˆ
tU

(3
)

ˆ tU

2 2 2()[]I d r

2I
2d

3I

3d

3 3 3()[]I d r

1I(1)

tU

(2)

tU

(3
)

tU

(0,0,0)

tX

New Observations

1I

1d

3I

3d

2I
2d

(0,1,0)

tX

(1,0,0)

tX (1,1,0)

tX
(0,1,1)

tX

(1,1,1)

tX(1,0,1)

tX
(0,0,1)

tX

(0,0,0)

1t t X X

1 2 3[]r r r

tG

(fixed size)

Figure 5.7: Multi-aspect streaming Tucker decomposition of a three-order tensor.

Stage 3 : Estimate the core tensor Gt given Gt−1, u
(N)
t , and {U(n)

t }
N−1
n=1 particularly from

Gt = argmin
G

[
t∑

τ=1

βt−τ
∥∥∥X(1)

τ −U
(1)
t G(1)Zτ

∥∥∥2
F
+ ρGRG(G)

]
, (5.49)

where (.)(1) denotes the mode-1 unfolding matrix and Zτ = uτ ⊗
(⊗N

n=2U
(n)
t

)
.

Here, Ru(.), RU (.), and RG(.) are regularization terms on the coefficient u
(N)
t , the factor

U
(n)
t , and the core tensor Gt, respectively. These penalties can be nonnegativity, smoothness, or

sparsity depending on the specific application.

The former ATD algorithm was proposed by Thanh et al. in [29] which is capable of tracking

the low multilinear-rank approximation of streaming tensors from highly incomplete observations.

In stage 1, ATD particularly recasts (5.46) into a standard LS optimization and then applies a

randomized LS technique to minimize it. In stage 2, ATD introduces a recursive LS solver to

optimize (5.47) in an efficient way. Instead of solving (5.49) directly, ATD applies the stochastic

gradient descent to obtain its solution.

The two latter RI-NTD and BK-NTD algorithms were proposed by Zdunek et al. in [257] for

factorizing nonnegative tensors from streaming data. Both algorithms perform nonnegative least-

square (NNLS) solvers to incrementally update the tensor factors and the core tensor. Particu-

larly, RI-NTD utilizes a recursive strategy involving the nonnegatively constrained Gauss–Seidel

method while BK-NTD adopts the block Kaczmarz method. Similar to ATD, both RI-NTD and

BK-NTD estimate the core tensor using only the new coming data via a stochastic optimization.

146

5.5. STREAMING TUCKER DECOMPOSITION

5.5.3 Multi-aspect streaming Tucker decomposition

Besides single-aspect streaming Tucker decomposition methods, few online techniques are capable

of tracking multi-aspect streaming tensors under the Tucker format over time, such as SITTA

in [248] and eOTD in [249].

SIITA in [248] offers an online inductive framework for tracking the low-rank tensor ap-

proximation of multi-aspect streaming tensors as well as completing their missing data with side

information. On the arrival of new data, SIITA particularly minimizes the following optimization

argmin
G,{U(n),A(n)}Nn=1

ft

(
Y t, {S(n)

t }Nn=1,G, {U(n)}Nn=1

)
, (5.50)

with

ft

(
Y t, {S(n)}Nn=1,G, {U(n)}Nn=1

)
=
∥∥∥PΩt

(
Y t

)
− PΩt

(q
G;
{
S
(n)
t U(n)

}N
n=1

y)∥∥∥2
F

+ ρG
∥∥G∥∥2

F
+

N∑
n=1

ρn
∥∥U(n)

∥∥2
F
, (5.51)

where {S(n)
t }Nn=1 with St ∈ RMn×In is the set of side information matrices and ρG, {ρi}Ni=1 are

regularization parameters. Here, SIITA incorporates the side information into the data model

by using {S(n)
t }Nn=1 as multiplicative terms. Accordingly, SIITA can accelerate the tracking

process because the product S(n)
t U(n) transforms the dimensionality of variables from In to Mn,

and typically with Mn ≪ In. As every term of (5.50) are convex, SITTA adopts the gradient

descent to minimize it. Besides, a simple variant of SIITA namely NN-SITTA was also obtained

for nonnegative tensor decomposition. NN-SITTA is specifically derived from projecting the

estimates of SIITA into their nonnegative orthant at each time t.

In [249], Xiao et al. proposed the so-called eOTD algorithm for the multi-aspect tensor

tracking problem. Unlike SIITA, eOTD adopts the divide and conquer paradigm to deal with

multi-aspect streaming tensors. In particular, it divides the underlying tensor X t into 2N sub-

tensors X (i1,...,iN)
t with in ∈ {0, 1}, 1 ≤ n ≤ N , and X (0,...,0)

t = X t−1, see Fig. 5.7 for an

illustration. These sub-tensors are grouped into N classes {Xn}Nn=1 based on the sum of sub-

indices. For example, for a third-order tensor, we have X1 =
{
X (1,0,0)

t ,X (0,1,0)
t ,X (0,0,1)

t

}
, X2 ={

X (1,1,0)
t ,X (1,0,1)

t ,X (0,1,1)
t

}
, and X3 = {X (1,1,1)

t }. If a sub-tensor X (i1,...,iN)
t ∈ Gn, factorizing it

will results in X (i1,...,iN)
t = JGt, {V(n)

t }Nn=1K where V
(n)
t = Û

(n)
t if in = 1 and V

(n)
t = U

(n)
t if

in = 0. Here, the matrix Û
(n)
t is constantly updated as follows

Û(n)
new = αÛ

(n)
old + (1− α)Xt

(i1,...,iN)
n

(
G

(n)
in

)#
. (5.52)

The tensor factor U
(n)
t is specifically derived from U

(n)
t = orth

(
[U

(n)
t−1; Û

(n)
new]

)
=
(
[Ū

(n)
1 ; Û

(n)
t]
)

147

5.6. OTHER STREAMING TENSOR DECOMPOSITIONS

 1

1
1

2
1

N(1)

tG (2)

tG
(1)N

t

G

()

1

N

tG1

1N
1tX tY

1 1[]I r 1 2 2[]r I r
2 1 1[]N N Nr I r 1[]Nr t

()N

tG
tX

Figure 5.8: Single-aspect streaming tensor-train decomposition.

where the modified Gram-Schmidt process was applied to compute the orth(.) operation. Finally,

the tensor core Gt of fixed size is estimated by

Gt =
r
Gt−1,

{(
Ū

(n)
t

)⊤
U

(n)
t−1

}N
n=1

z
+

∑
(i1,...,iN)̸=(0,...,0)

r
X (i1,...,iN)

t ,
{
Û

(n)
t

}N
n=1

z
. (5.53)

An appealing feature of eOTD is that throughout the tracking process, eOTD only uses cheap

tensor-matrix multiplications and pseudo-inverse operations instead of computing the expensive

SVDs on big matrices. This makes eOTD easy for applying to large-scale applications.

5.6 Other Streaming Tensor Decompositions

Apart from the two most popular streaming CP and Tucker decompositions, some online methods

are capable of tracking tensors under other multiway models. This section focuses on tracking

algorithms that exploit TT, BTD, and t-SVD formats to construct the low-rank tensor approx-

imation in the streaming model.

5.6.1 Streaming Tensor-Train Decomposition

Despite success in the batch setting, TT decomposition has not gained in popularity as CP and

Tucker for tensor tracking. In the literature, there exist few tracking algorithms developed for

the problem of single-aspect tensor tracking under the TT format, see Fig. 5.8 for an illustration.

In [30, 32, 35], Thanh et al. proposed three adaptive TT algorithms called TT-FOA, ATT,

and ROBOT for factorizing tensors in an online fashion. Particularly, TT-FOA in [32] is, to the

best of our knowledge, the very first of its kind in the literature. However, its practical use is

limited due to the lack of robustness to data corruption. To overcome the drawback, ATT in [30]

and ROBOT in [35] were developed to deal with missing data and sparse outliers, respectively.

All three algorithms share the same optimization framework where block-coordinate gradient

148

5.6. OTHER STREAMING TENSOR DECOMPOSITIONS

(BCD) and recursive least-squares (RLS) methods are utilized to minimize the cost function. In

particular, a general formulation of the optimization problems can be written as

{
{G(n)

t }Nn=1,Ot

}
= argmin

{G(n)}Nn=1,O

[
t∑

τ=1

βt−τ

(∥∥∥Pτ ⊛
(
G(1) ×1

2 · · · ×1
N−1 G(N−1) ×1

N G(N)
τ

+Oτ −Yτ

)∥∥∥2
F
+ ρORO

(
Oτ

))
+ ρGRG

({
G(n)

}N−1

n=1

)]
, (5.54)

where β ∈ (0, 1] is a forgetting factor to reduce the impact of old observations; RO(Oτ) and

RG

(
{G(n)}N−1

n=1

)
are two regularization terms. Specifically, TT-FOA does not impose the two

penalties; ATT adopts RG

(
{G(n)}N−1

n=1

)
=
∑N−1

n=1

∥∥G(n) − G(n)
t−1

∥∥2
F

to control the smoothness

of TT-cores over time; and ROBOT applies the ℓ1-norm regularization RO(Oτ) = ∥Oτ∥1 to

promote the sparsity on Oτ .

Thanks to the BCD framework, (7.44) can be effectively decomposed into two main stages:

(i) estimate the temporal TT-core G
(N)
t and outlier Ot, and (ii) update non-temporal TT-

cores {G(n)
t }

N−1
n=1 . In stage 1, TT-FOA and ATT apply the regularized least-squares method

to estimate G
(N)
t under the assumption that Y t is outlier-free. Meanwhile ROBOT adopts an

effective ADMM solver to account for the sparse outlier Ot. In stage 2, an effective RLS solver

was introduced to estimate {G(n)
t }

N−1
n=1 when G

(N)
t and Ot (if any) are given in stage 1.

In parallel, Liu et al. in [267] proposed an incremental TT method called iTTD to factorize

tensors having one temporal mode. Specifically, iTTD considers coming data streams as individ-

ual tensors and then factorizes them into TT-cores. The results are appended to old estimates

derived from past observations. In [268], Wang et al. also developed an incremental TT method

called AITT to decompose tensors from industrial IoT data streams. By exploiting a relationship

between the directly reshaped matrix and integration of tensor unfolding matrices, AITT can

estimate effectively the underlying TT-cores. However, the two frameworks of iTTD and AITT

are not really online streaming learning ones but incremental batch learning. Therefore, they

are not useful for data streams from dynamical observations in time-varying environments.

5.6.2 Streaming Block-Term Decomposition

The block-term decomposition (BTD) unifies the two well-known CP and Tucker decompositions,

and thus, the tracking algorithms under the CP and Tucker formats principally belong to the

class of the streaming BTD with one block. When the number of blocks is greater than 2, there

are only two BTD methods able to deal with streaming tensors, including OnlineBTD [269] and

O-BTD-RLS [270].

The former method was proposed by Gujral et al. in [269] for tracking tensors under the

generalized BTD format of L blocks and a multilinear rank-(r1, r2, . . . , rN). On the arrival of

149

5.6. OTHER STREAMING TENSOR DECOMPOSITIONS

 ...

tX

1tX tY

)1(

1
U

)2(

1
U)1(

L
U

)2(

L
U

1
u

L
u

Figure 5.9: Tracking the rank-(L,L, 1) BTD of 3-rd order streaming X t.

the temporal slice Y t, OnlineBTD performs the following minimization:

argmin
{Gi}ri=1,{U(n)}Nn=1

∥∥∥∥Y t −
r∑

i=1

q
Gi, {U(n)

i }
N
n=1

y
∥∥∥∥2
F

, (5.55)

where U(n) =
[
U

(n)
1 ,U

(n)
2 , . . . ,U

(n)
r

]
with U

(n)
i ∈ RIn×rn and Gi ∈ Rr1×r2×···×rN , 1 ≤ n ≤ N,

1 ≤ i ≤ r. Here, {U(n)}N−1
n=1 are supposed to remain unchanged with time except the last

tensor factor U(N). Prior information of L and rank-(r1, r2, . . . , rN) are known in advance. Old

estimates of the core tensors and tensor factors of X t−1 are used as a “warm start” for OnlineBTD

at each time t. To speed up the tracking, OnlineBTD utilizes (i) an accelerated matricized tensor

times Kronecker product, (ii) the pseudo-inverse operator using LU decomposition, and (iii) a

dynamic programming strategy introduced by Zhou et al. in [175] to avoid the re-computation

of duplicated Kronecker products.

The second method was introduced by Rontogiannis et al. in [270]. Specifically, O-BTD-

RLS is designed for tracking the low rank-(r, r, 1) terms of three-order streaming tensors (i.e.,

r1 = r2 = r and r3 = 1), see Fig. 5.9 for an illustration. In particular, the tensor factors of the

underlying tensor are incrementally updated by minimizing the following objective function:

argmin
{U(n)}3n=1

[t∑
τ=1

βt−τ

∥∥∥∥Yτ −U(1)Wτ

[
U(2)

]⊤∥∥∥∥2
F

+ ρ1

√∥∥Ξul

∥∥2
2
+ η2

+ ρ2

L∑
l=1

r∑
k=1

√∥∥u(1)
l,k

∥∥2
2
+
∥∥u(2)

l,k

∥∥2
2
+ η2

]
, (5.56)

Here, U(n) =
[
U

(n)
1 ,U

(n)
2 , . . . ,U

(n)
L

]
with U

(n)
l ∈ RIn×r is the n-th tensor factor of interest, and

u
(n)
l,k is the k-th column of U(n)

l , n = 1, 2; uτ and ul are the τ -th row and l-th column of the

150

5.6. OTHER STREAMING TENSOR DECOMPOSITIONS

temporal factor U(3) ∈ Rt×L, respectively; Wτ = diag(uτ) ⊗ Ir and Ξ = diag(βt−1, . . . , β, 1);

ρ1 and ρ2 are two regularization parameters; and η2 is a small positive number to promote

smoothness at zero. Here, the former term of (5.56) has the form of weighted least-squares while

two latter terms are regularizations. Accordingly, an efficient recursive least-squares solver was

introduced to minimize (5.56) effectively. An appealing feature of O-BTD-RLS is that it has the

ability to reveal the BTD ranks over time by specifying the number of columns of the tensor

factors which are non-negligible in magnitude at each time t.

5.6.3 Streaming t-SVD Decomposition

Similar to TT and BTD, streaming t-SVD is still in its early stage. In the literature, there exists

only two works of Zhang et al. in [271] and Gilman et al. in [272,273] addressing the problem of

tensor tracking under the t-SVD format.

In [271], Zhang et al. introduced an online tensor PCA for sequential 2D data based on the

t-SVD structure. When Y t arrives, the proposed algorithm updates:

• The coefficient matrix W t and the sparse outlier Ot from solving the following minimization

{W t,Ot} = argmin
W,O

[
1

2

∥∥Y t − U t−1 ∗W −O
∥∥2
F
+
λ1
2
∥W∥2F + λ2∥O∥1

]
. (5.57)

• The low tubal-rank tensor U t (a.k.a. basis dictionary) from taking iFFT of the tensor Û t

along the third dimension where Û t is specifically derived from

Ût = argmin
Û

[
1

2
tr
[
Û⊤(Ât + I3λ1I

)
Û
]
− tr

[
Û⊤B̂t

]]
. (5.58)

Here, Ât = diag(FFT(At)) with At = At−1 + W t ∗W⊤
t , B̂t = diag(FFT(Bt)) with Bt =

Bt−1 + (Y t −Ot) ∗W⊤
t , and the solution Ût is a matricization of Û t.

As the online tensor PCA above is not designed for handling missing data, Gilman et al.

in [272, 273] proposed another algorithm called TOUCAN which is capable of tracking tensors

from missing observations. Specifically, the authors proposed to solve the constrained minimiza-

tion

{Ut,wt} = argmin
U,w

t∑
τ=1

∥∥∥FΩτ

(
yτ −Uwτ

)∥∥∥2
2

subject to U⊤U = IrI3 , (5.59)

where yτ = unfold(Yτ) ∈ CI1I3×1, wτ = unfold(Wτ) ∈ CrI3×1, FΩτ = PΩτ

(
F−1
I3
⊗ II1

)
∈

C|Ωτ |×I1I3 is the subsampled inverse Fourier transform, Fn ∈ Cn×n denotes the Discrete Fourier

Transform matrix, the mixing matrix U ∈ RI1I3×rI3 is defined as U =
(
FI3 ⊗ II1

)
bcirc(U) F−1

I3
.

151

5.7. APPLICATIONS

Motivated by the so-called GROUSE algorithm for subspace tracking in [72], TOUCAN ap-

plies the incremental gradient descent on the tensor Grassman manifold to track U t with time. It

is worth noting that the objective function (5.59) is very common in subspace tracking problems.

Therefore, we can apply any subspace tracking algorithms which are capable of dealing with

missing data to minimize (5.59) effectively.

5.7 Applications

Tensor tracking or dynamic tensor analysis has already been found several online applications

and this section provides some typical examples in different research fields, from computer vision

and neuroscience to anomaly detection.

5.7.1 Computer Vision

We begin this section with one of the earliest and most popular applications of tensor tracking:

visual tracking which is an important task in computer vision [274]. Naturally, video datasets

can be represented as 4-th order streaming tensors of dimensionality, width × height × channel

× time. Accordingly, there are several studies devoted to developing tensor-based visual trackers

for better modeling the appearance of target objects, such as [238, 275–277], to name a few.

For example, Hu et al. in [238] proposed the so-called IRTSA tracker using incremental tensor

subspace learning to capture the appearance of objects. Zhang et al. in [275] introduced an-

other visual tracker called DTAMU which stands for dynamic tensor analysis with mean update.

Weiming et al. in [276] developed a semi-supervised tensor-based visual tracker using graph em-

bedding. Khan et al. in [277] built an online spatio-temporal tensor learning model for visual

tracking using Bayesian inference. It is worth noting that most of the existing tensor-based visual

trackers correspond to the streaming Tucker decomposition and its variants.

Another notable application of tensor tracking in computer vision is video background and

foreground separation which is quite related to visual tracking, but with a different aim of model-

ing the scene background and detecting the information of changes in the scene. Similar to visual

tracking, many tensor-based separators were proposed, such as [27,35,263,278,279]. Particularly

in [27], Thanh et al. proposed a robust adaptive CP method called RACP which is capable of

modeling video background and detecting moving objects. Li et al. in [263] introduced an online

robust low-rank tensor modeling (ORLTM) method and found its success in video background

subtraction. Andrews et al. in [278] developed an online stochastic tensor decomposition for

background subtraction in multispectral video sequences. A robust streaming tensor-train algo-

rithm was developed in [35] which also has the potential to detect foreground in video. Salut

et al. in [279] proposed an online tensor robust principal component analysis and validated its

effectiveness with the problem of background and foreground separation.

152

5.7. APPLICATIONS

In parallel, there are other interesting computer vision applications of dynamic tensor anal-

ysis, such as visual data recovery [176, 280], online video denoising [281, 282], and segmenta-

tion/classification [252,283].

5.7.2 Neuroscience

The brain can be viewed as a complex system with various interacting regions that can produce

large multivariate data over time [284]. Many types of brain data can be represented by tensors,

such as electroencephalography (EEG), magnetoencephalography (MEG), functional magnetic

resonance imaging (fMRI), and near-infrared spectroscopy (NIRS) [285]. Apart from three in-

trinsic modes (i.e., frequency, channel, and time), brain data can have higher-order modes, such

as, subjects, conditions, and trials [285]. Together with the fact that brain activities can change

over time, dynamic tensor analysis has become an useful tool to study the structure and function

of brain from such data.

In what follows, we list some appealing brain-computer interface applications to demonstrate

the use of dynamic tensor analysis in neuroscience. First, for the problem of detecting dynamic

functional connectivity networks (DFCNs), Ozdemir et al. in [245] introduced a recursive tensor-

based framework capable of tracking DFCNs over time. The proposed framework was then

applied for studying error-related negativity – a brain potential response when patients make

errors during cognitive tasks [286]. Mahyari et al. in [287] developed a two-step approach using

incremental tensor subspace analysis for detecting DFCNs. Particularly, they first detect change

points at which the functional connectivity across subjects presents abrupt changes and then

summarize DFCNs between successive change points. Recently, Acar et al. in [288] proposed to

use the Parafac2 model for tracking the evolution of connectivity networks and compared its

performance with ICA and IVA. For the problem of localizing dynamic brain sources over time,

Ardeshir et al. in [289] utilized the boundary element method (BEM) [290] and the adaptive

PARAFAC-RLST tracker [211] with two operational windowing schemes. A variant using aug-

mented complex statistics in [291] also has the ability to track moving EEG sources with time.

For the problem of online EEG completion, Trung et al. in [292] proposed an adaptive CP algo-

rithm called NL-PETRELS capable of tracking and imputing incomplete EEG data. Thanh et

al. in [27, 29] also demonstrated the use of ACP and RACP with real data by applying them

for online EEG completion. Other neuroscience applications of tensor analysis were reviewed

in [180,293,294].

5.7.3 Anomaly Detection

Anomaly detection, which corresponds to identifying patterns and data points that do not con-

form to normal behavior, plays an essential role in many applications, such as cyber security,

153

5.8. CONCLUSIONS

statistics, and finance, to name a few [295]. Here, we provide some notable tensor-based anomaly

detectors which are customized to specific online applications.

Shi et al. in [296] developed the so-called STenSr algorithm for anomaly detection and pattern

discovery in spatio-temporal tensor streams from sensor networks. STenSr utilizes an incremen-

tal HOSVD and a metric based on Euclidean distance to detect abrupt changes when new

data comes. Kasai et al. in [297] introduced an online time-structured traffic tensor tracking

framework to detect network-level anomalies from link indirect measurements over time. In par-

ticular, it is based on a robust adaptive CP decomposition that uses RLS for tensor tracking

and ADMM for detecting abnormal flows. Cao et al. in [298] designed an interactive system

called Voila for detecting and monitoring visual anomalies. Voila is a tensor-based anomaly

detector with an interaction design that can ranks anomalous patterns based on user input.

Lin et al. in [299] proposed a novel method called TBAD to localize anomalous events. TBAD

employs a spatial-feature-temporal tensor model and analyses latent patterns through unsuper-

vised learning. Xu et al. in [300] introduced a tensor-based framework, namely SWTF, capable

of detecting multiple types of anomalies in road networks. We refer the readers to [200] for a

broader interdisciplinary survey of tensors for anomaly detection.

5.7.4 Others

Apart from online applications in the domains above, tensor tracking also found success in

some other research fields, namely wireless communications (e.g., channel tracking [301], DOA

tracking [302], and time delay estimation [303]), network analysis (e.g., link prediction [304],

internet scale monitoring [305], and bot activities and network intrusions [306]), data analyt-

ics of chemical and biological manufacturing processes and components [307, 308], performance

monitoring [309,310], and transportation [311,312].

5.8 Conclusions

Tensor tracking has recently gained increasing attention as a powerful tool for multidimensional

data stream analysis. In this survey, we have provided a technical overview of online techniques

for tracking streaming tensors over time. We highlighted the two most popular streaming CP

and Tucker decompositions. Specifically, four main groups of streaming CP decomposition algo-

rithms were emphasized, including subspace-based, block-coordinate descent, Bayesian inference,

and multi-aspect streaming decompositions. We categorized the current streaming Tucker de-

composition methods into three major classes based on their model architecture. They are online

tensor dictionary learning, tensor subspace tracking, and multi-aspect streaming decompositions.

Recent years have also witnessed significant advances in other types of tensor decomposition such

as tensor-train, BTD, and t-SVD. A brief survey on the existing methods which are capable of

tracking tensors under these formats was presented.

154

Chapter 6

Robust Tensor Tracking with Missing

Data and Sparse Outliers

Contents

6.1 Introduction . 156

6.1.1 Related Works . 157

6.1.2 Main Contributions . 159

6.2 Tensor Tracking with Missing Data 160

6.2.1 Problem Statement . 160

6.2.2 Adaptive CP Decomposition . 162

6.2.3 Adaptive Tucker Decomposition . 168

6.3 Tensor Tracking with Sparse Outliers 174

6.3.1 Problem Statement . 174

6.3.2 Robust Adaptive CP Decomposition . 176

6.3.3 Performance Analysis . 184

6.4 Performance Evaluation . 188

6.4.1 Performance of ACP . 189

6.4.2 Performance of ATD . 193

6.4.3 Performance of RACP . 199

6.5 Conclusions . 216

6.6 Appendix . 217

6.6.1 Appendix A: Proof of Lemma 9 . 217

6.6.2 Appendix B: Proof of Lemma 11 . 227

6.6.3 Appendix D: Proof of Lemma 12 . 231

6.6.4 Appendix D: Proof of Lemma 13 . 233

6.6.5 Appendix E: Useful Propositions . 237

155

6.1. INTRODUCTION

Tensor decomposition is a powerfulmultilinear algebra tool for analyzingmultiway data and has been used
for various signal processing and machine learning applications. When the underlying tensor is derived
from (multidimensional) data streams, streaming tensor decomposition or tensor tracking is required.
In this chapter, we propose three novel adaptive algorithms for tracking the low-rank approximation of
high-order streaming tensors over time, including ACP, ATD, and RACP. Under the CP format, ACP
minimizes an exponentially weighted recursive least-squares cost function to obtain the tensor CP fac-
tors in an efficient way, thanks to the alternative minimization framework and the randomized sketching
technique. Under the Tucker format, ATD first tracks the underlying low-dimensional subspaces cover-
ing the tensor factors, and then estimates the core tensor using a stochastic approximation. Both the two
algorithms ACP and ATD are fast and fully capable of tracking streaming tensors from incomplete obser-
vations. When observations are corrupted by sparse outliers, we introduce the so-called RACP algorithm
robust to gross corruptions. Particularly, RACP first performs online outlier rejection to accurately detect
and remove sparse outliers, and then performs tensor factor tracking to efficiently update the tensor fac-
tors. Convergence analysis for three algorithms are established in the sense that the sequence of generated
solutions converges asymptotically to a stationary point of the objective function. Extensive experiments
are conducted on both synthetic and real data to demonstrate the effectiveness of the proposed algorithms
in comparison with state-of-the-art adaptive algorithms.

6.1 Introduction

The era of “Big Data”, which deals with massive datasets, has brought new analysis techniques

for discovering new valuable information hidden in the data [313]. Among these techniques is

multilinear low-rank approximation (LRA) of matrices and tensors, which has recently attracted

much attention from engineers and researchers [11].

A tensor is a multidimensional array and provides a natural representation of multivariate

and high-dimensional data. Low-rank approximation of tensors (t-LRA) can be considered as a

multiway extension of LRA of matrices (which are two-way) to higher dimensions [10]. Generally,

t-LRA is referred to as tensor decomposition which allows factorizing a tensor into a sequence of

basic components [10]. As a result, t-LRA provides a useful tool for dealing with several large-

scale multidimensional problems in modern data analysis which would be, otherwise, intractable

by classical methods. Two widely-used approaches for t-LRA are CANDECOMP/PARAFAC

(CP) decomposition1 [14] and Tucker decomposition [314]. Under CP decomposition, a tensor

can be represented as a sum of rank-1 tensors; each rank-1 tensor is formulated as the outer

product of vectors. Under Tucker decomposition, a tensor is factorized into a sequence of factor

matrices acting on a reduced-size core tensor. “Workhorse” algorithms are based on the method

1In the literature, there exist some other names for the CP decomposition: PARAFAC (Parallel Factors), CPD
(Canonical Polyadic Decomposition), and CANDECOMP or CAND (Canonical Decomposition).

156

6.1. INTRODUCTION

of alternating least-squares (ALS). The readers are referred to the work of [10] for a good review.

Characteristics of big data are associated with the following three “V”s: high volume, high

velocity and high veracity [313]. Velocity and veracity are the focus of this chapter. Velocity

requires (near) real-time processing of data streams, while veracity demands robust algorithms to

better deal with missing, noisy and inconsistent data. In online applications, data acquisition is

often a time-varying process in which data are serially collected or changing with time. Besides,

missing data are ubiquitous and more and more common in high-dimensional problems in which

collecting all attributes of data is either too expensive or even impossible. In addition, outliers

which are data points that appear to be inconsistent with or exhibit abnormal behaviour different

from others causes cause several issues (e.g., they introduce bias in estimation) for knowledge

discovery from data in general and data streams in particular. However, well-known t-LRA

algorithms either face high complexity or operate in batch mode and, thus, may not be suitable

for such problems. This has led to defining a variant of t-LRA, namely tensor tracking or

streaming tensor decomposition.

6.1.1 Related Works

In the literature, there are several studies related to the problem of tracking online t-LRA in the

missing data context; the tensors are said to be both streaming and incomplete. For adaptive CP

decomposition, Mardani et al. proposed TeCPSGD [106], which is a first-order algorithm and

uses the method of stochastic gradient descent (SGD). Leveraging the framework of alternating

minimization, TeCPSGD can estimate directly all factors but the one corresponding to the di-

mension growing over time in an efficient way. However, it often suffers from a slow convergence

rate inherent to SGD and, hence, is not suitable for fast time-varying scenarios. To overcome

this drawback, Kasai developed OLSTEC [176], which is an efficient second-order algorithm and

exploits the recursive least-squares technique. OLSTEC provides a competitive performance in

terms of estimation accuracy, but its computational complexity is much higher than that of

TeCPSGD. In parallel, Chinh et al. proposed to first track the low-dimensional tensor subspace

and then derive the loading factors from its Khatri-Rao structure [215]. However, the perfor-

mance of this algorithm is sensitive to initialization. None of the abovementioned algorithms

is capable of tracking online t-LRA when the tensors are of higher orders (i.e., greater than or

equal to 4). On the other hand, some adaptive CP algorithms, such as [175, 216], are capable

of handling higher-order streaming tensors. However, they do not handle incomplete datasets.

Recently, Zhang et al. have developed BRST [214], which is able to handle outliers. To track and

separate the low-rank and sparsity components of the underlying tensor, a Bayesian statistical

model was applied. The computational complexity of BRST is, however, very high and thus the

method becomes inefficient when handling high-dimensional and fast-arriving data streams.

For adaptive Tucker decomposition, Kasai and Mishra introduced RPTucker [244], dealing

157

6.1. INTRODUCTION

with dynamic tensor completion. Leveraging a specific Riemannian metric, RPTucker effectively

performs preconditioned SGD on the Riemannian manifold of the subspace spanned by tensor

factors. Very recently, Gilman and Balzano have proposed TOUCAN (tensor rank-one update on

the complex Grassmannian) [273], for tensor singular-value decomposition (t-SVD). Similar to

RPTucker, TOUCAN also performs the incremental gradient descent on the Grassmann manifold.

However, both algorithms are only suitable for third-order tensors. Dimitris et al. have recently

proposed the first robust online Tucker decomposition that can deal with streaming tensors in

the presence of outliers [254]. However, it was not designed for handling missing data. Some

studies have been conducted to design efficient t-SVD algorithms for higher-order tensors, for

example [315–317]. These algorithms were designed for batch computation and thus are not

suitable for dynamic models. Recently, Thanh et al. have proposed TT-FOA [32], which is an

adaptive tensor-train (TT) model for streaming tensors. Although TT-FOA and its stochastic

version are capable of tracking the online low-rank tensor-train representation of large-scale and

higher-order tensors, they were not designed to handle the situation with missing data.

In the multi-aspect streaming perspective of tensor analysis, Song et al. proposed an effective

multi-aspect streaming tensor framework (MAST) [232], used for dynamic tensor completion.

MAST can successfully track the multilinear LRA of incomplete tensors with dynamic growth

in more than one tensor mode. A robust version of MAST for handling outliers, called outlier-

robust multi-aspect streaming tensor completion and factorization (OR-MSTC), was proposed

in [233]. Thanks to the framework of alternating direction method of multipliers (ADMM),

OR-MSTC can estimate the low-rank component from measurements corrupted by outliers. A

new inductive framework, called SIITA, has been proposed to incorporate side information into

incremental tensor analysis [248]. SIITA can be seen as a counterpart of MAST for multi-aspect

streaming Tucker decomposition. Although all these approaches provide good frameworks for

the problem of dynamic tensor completion, they are either useful for third-order tensors only or

are of high complexity and hence relatively inefficient in applications with online data streams.

In addition, convergence analysis of these algorithms is not available.

Some other studies attempted to extend robust subspace learning/online PCA for high-order

tensor data. Hu et al. proposed an incremental tensor subspace learning algorithm, called

IRTSA, and applied it to robust visual tracking in video streams [239]. Li et al. presented a

robust algorithm that can update the tensor dictionary and detect anomalies in an online manner,

namely RTSL [259]. Sobral et al. introduced an online stochastic tensor algorithm for learning

low-rank structure and sparse components in the tensor data [278]. Another incremental tensor

decomposition was designed for video background and foreground separation in [318]. Li et al.

developed an adaptive algorithm for robust low-rank tensor learning, called ORLTM [263]. Very

recently, Dimitris et al. have proposed the first robust online Tucker decomposition that can deal

with streaming tensors in the presence of outliers [254]. However, none of the above algorithms

158

6.1. INTRODUCTION

are designed for handling missing data. The problem of robust tensor tracking for high-order

incomplete streaming tensors remains largely unexplored.

6.1.2 Main Contributions

The main contributions of this chapter are summarized as follows:

• Firstly, under the CP format, we propose a novel adaptive CP (ACP) algorithm for tracking

higher-order incomplete streaming tensors. ACP is fast and requires a low computational

complexity and memory storage, thanks to the alternative minimization and randomized

sketching. It can handle incomplete tensors derived from infinite data streams because it

performs CP decomposition with constant time and space complexity that are independent

of time index t. A convergence analysis is then provided to establish performance guaran-

tees. To the best of our knowledge, the proposed ACP algorithm is the first one capable

of dealing with streaming tensors of higher orders with “provable” convergence guarantee.

• Secondly, under the Tucker format, we propose the second algorithm, namely adaptive

Tucker decomposition (ATD), more flexible than ACP, for the problem of online t-LRA.

ATD exhibits competitive performance in terms of both estimation accuracy and computa-

tional complexity. Its convergence guarantee is also presented. Also, this chapter presents

for the first time a provable adaptive Tucker algorithm for this problem.

• Thirdly, we propose a novel method for robust adaptive CP, called RACP, for the robust

tensor tracking problem in the presence of both missing data and outliers. Particularly,

RACP aims to learn low-rank components of streaming tensors in an online fashion as

well as offering robustness against gross data corruptions. RACP is a scalable and effec-

tive online CP algorithm with ability to (i) estimate low-rank components of streaming

tensors derived from imperfect and noisy data streams due to missing observations and

outlier corruptions, (ii) adapt the changes of the underlying data streams in dynamic and

nonstationary environments, (iii) separate and reject sparse outliers in an online fashion

with high accuracy, and (iv) easily incorporate prior information for dealing with specific

constraints on the tensor model, e.g., smoothness and nonnegativity. Also, we prove that

RACP is a provable adaptive CP algorithm with a convergence guarantee. Under mild

conditions, we prove that the sequence of solutions generated by RACP converges asymp-

totically to a stationary point of the empirical loss function. Moreover, the asymptotic

variation of the solutions and the almost-sure convergence of the objective function values

are also analyzed.

• Last but not least, we provide several experiments on both synthetic and real data to

illustrate the effectiveness of the proposed algorihtms in comparison with state-of-the-art

tensor tracking algorithms.

159

6.2. TENSOR TRACKING WITH MISSING DATA

6.2 Tensor Tracking with Missing Data

6.2.1 Problem Statement

In this section, we investigate the problem of tracking an incomplete streaming tensor X t ∈
RI1×I2×···×ItN fixing all but the last dimension ItN (see illustration in Fig. 6.1 where the gray

boxes represent missing data). Specifically, the t-th tensor slice Y t ∈ RI1×I2×···×IN−1 of X t is

supposed to be generated under the following model:

Y t = P t ⊛
(
Lt +N t

)
, (6.1)

where P t is a binary observation mask, N t is a Gaussian noise tensor of the same size with Y t,

and Y t is the multilinear low-rank component. The mask P t shows whether the (i1, i2, . . . , iN−1)-

th entry of Y t is missing or not, i.e.,

pi1i2...iN−1 =

1, if yi1i2...iN−1 is observed,

0, otherwise.
(6.2)

The low-rank component Y t is given by2

Lt
∆
=

r
G;
{
U(n)

}N−1

n=1
,u

(N)
t

z
, (6.3)

where r = [r1, r2, . . . , rN] is the desired low multilinear rank, G ∈ Rr1×r2×···×rN is the core tensor,

U = {U(n)}N−1
n=1 with U(n) ∈ RIn×rn contains the first N loading factors, and u

(N)
t ∈ RrN is the

weight vector.3 The underlying tensor X t is derived from appending the new slice X t to the

previous X t−1 along the time dimension, i.e.,

X t = X t−1 ⊞N Y t, (6.4)

where ItN = It−1
N + 1, as shown in Fig. 6.1.

The problem of tracking t-LRA of the incomplete streaming tensor X t can be stated as

follows:

2In online setting, the tensor core G and loading factors {U(n)} might be changing slowly over time, i.e.,
G = Gt and U(n) = U

(n)
t , n = 1, 2, . . . , N − 1. Our algorithms are capable of estimating G and U accurately, but

also successfully tracking their variation along the time.
3In batch setting, the weight vector ut in (6.3) is seen as the t-th row of the last loading factor U(N) ∈ RItN×rN

of X t.

160

6.2. TENSOR TRACKING WITH MISSING DATA

t = 2t = 1K

I

J(t)

Figure 6.1: Incomplete streaming tensors.

Tensor Tracking with Missing Data: At each time t, we observe a streaming tensor

slice Y t under the data model (6.1). We aim to estimate Gt and U t that will provide a

good multilinear low-rank approximation for X t in time.

Applying batch methods to X t is possible, but these turns out inefficient for online (adaptive)

settings. Our goal is to develop efficient one-pass algorithms, both in computational complexity

and memory storage, for tracking the t-LRA of X t from past estimations at each time t.

In an adaptive scheme, we propose to minimize the following exponentially weighted cost

function:

{
Gt,U t

}
= argmin

G,U

[
ft
(
G,U

)
=

1

t

t∑
τ=1

βt−τ ℓ
(
G,U ,Pτ ,Yτ

)]
, (6.5)

where the loss function ℓ(·) with respect to the τ -th temporal slice Yτ is given by

ℓ
(
G,U ,Pτ ,Yτ

) ∆
= min

uτ∈RrN

∥∥∥∥Pτ ⊛

(
Yτ −

r
G,
{
U(n)

}N−1

n=1
,u(N)

τ

z)∥∥∥∥2
F

, (6.6)

and β ∈ (0, 1] is the forgetting parameter. Here, all observations (i.e. tensor slices) in the time

interval [1, t] are taken into consideration in the estimation of the underlying low-rank component

at each time t. The least-squares loss ℓ(.) defines the residual for each observation which measures

the difference between the observed value and the estimated value of the tensor slice. β is used

for discounting the effect of past observations exponentially, and ensuring that observations in

the distant past are substantially down-weighted in the cost function relative to the latest ones.

Accordingly, when β < 1, this can facilitate the tracking ability of estimators, especially in time-

varying and non-stationary environments. The effective window length for β < 1 is (1 − β)−1

when t is large.

In the next two sections, we describe the two proposed algorithms for solving (6.5) under

CP and Tucker decompositions. We make the following four assumptions for the convenience of

deploying our algorithms as well as analyzing their performance.

(A1) Observed tensor slices {Y t}t≥1 are independent and identically distributed from a data-

161

6.2. TENSOR TRACKING WITH MISSING DATA

generating distribution, which is the underlying distribution of the dataset, having a com-

pact set V. This assumption is very common for convergence analysis in online settings in

general and adaptive tensor decomposition in particular, e.g., [25,106,120,176]. Naturally,

it holds in several scenarios, for instance, real-life data are often bounded such as image,

video and audio.4

(A2) Tensor slices {Y t}t≥1 follow the data model (6.47) where the true underlying loading factors{
U

(n)
t

}
t≥1

are bounded, i.e.,
∥∥U(n)

t

∥∥
F
≤ κ < ∞. When (A1) holds, (A2) naturally holds.

It also prevents arbitrarily large values in U
(n)
t and ill-conditioned computation.

(A3) Observation mask tensors {P t}t≥1 are independent of {Y t}t≥1 and their entries obey

the uniform distribution. With respect to the imputation of missing values and recov-

ery of low-rank components, the uniform randomness allows the sequence of binary masks

{P t}t≥1 to admit stable recovery [319]. Moreover, the number of observed entries in Y t

is supposed to be larger than the lower bound O(rL logL), where L = I1I2 . . . IN−1 and

r = max(r1, r2, . . . , rN) , and every row of Y
(n)
t is observed at least r entries for all n.

The constraints are fundamental conditions to prevent the underdetermined imputation

problem [320].

(A4) The low multilinear-rank model is either static or changing slowly over time, i.e., the core

tensor and loading factors may vary slowly between two consecutive times t − 1 and t:

Gt ≃ Gt−1 and U
(n)
t ≃ U

(n)
t−1. The tensor rank is supposed to be known.

6.2.2 Adaptive CP Decomposition

In this subsection, we first propose a fast adaptive CP algorithm for tracking online t-LRA of

incomplete streaming tensors, called ACP. Then, we provide a performance analysis in terms of

complexity and convergence to demonstrate its effectiveness and efficiency.

6.2.2.1 Proposed ACP Algorithm

Under the CP tensor model, (6.5) can be rewritten as follows:

U t = argmin
U

[
ft(U) =

1

t

t∑
τ=1

βt−τ ℓ
(
U ,Pτ ,Yτ

)]
, (6.7)

4Indeed, (A1) is a strong assumption in our analysis, but it can be relaxed as follows: Observed tensor slices
{Yt}t≥1 are Frobenius-norm bounded, i.e., ∥Yt∥F < M < ∞. Low-rank components {Yt}t≥1 of the observed
tensor slices {Yt}t≥1 are supposed to be deterministic and bounded. Noise tensors {N t}t≥1 are i.i.d. from a
distribution having a compact support.

162

6.2. TENSOR TRACKING WITH MISSING DATA

where the loss function ℓ(U ,Pτ ,Yτ) is defined by

ℓ
(
U ,Pτ ,Yτ

) ∆
= min

u
(N)
τ ∈Rr

∥∥∥∥Pτ ⊛

(
Yτ −

r{
U(n)}N−1

n=1 ,u
(N)
τ

z)∥∥∥∥2
F

. (6.8)

Leveraging past estimations of the loading factors, we propose to minimize the surrogate

gt(U) of ft(U) instead, which is defined, for a given value of
{
u
(N)
τ

}
1≤τ≤t

, by

gt(U) =
1

t

t∑
τ=1

βt−τ

∥∥∥∥Pτ ⊛

(
Yτ −

r{
U(n)

}N−1

n=1
,u(N)

τ

z)∥∥∥∥2
F

. (6.9)

The main motivation here stems from the following observations which will be detailed later

in our convergence analysis. First, it is easy to verify that gt(U) provides an upper bound on

ft(U) (i.e., ft(U) ≤ gt(U) for all U and a fixed set of {u(N)
τ }1≤τ≤t). Also, the error function

et(U) = gt(U)− ft(U) is L-smooth for some constant L > 0, i.e. it is differentiable and ∇et(U)

is L-Lipschitz continuous. As a result, gt(U) is a first-order surrogate function of ft(U) [321] and

hence its theoretical convergence results can be achieved without making any strong assumptions

on ft(U). In particular, the sequence of surrogate values {gt(U t)}∞t=1 is quasi-martingale and

converges almost surely. Accordingly, under a simple assumption that the directional derivative

of ft exists in any direction at any U , {gt(U t)}∞t=1 and {gt(U t)}∞t=1 converge to the same limit.

Indeed, the solution U t derived from minimizing gt(U) converges to a stationary point of ft(U)

when t approaches infinity. Furthermore, gt(U) can be effectively minimized with a convergence

rate of O(1/t) and it is much simpler than minimizing ft(U).

In order to obtain a low-complexity estimator, we exploit that (6.9) can be efficiently solved

using the alternating minimization framework whose iteration step coincides with the tensor

slice’s acquisition in time. In particular, it can be divided into two main stages: (i) estimate

u
(N)
t first, given the old estimation U t, and (ii) update the loading factor U

(n)
t , given u

(N)
t and

the remaining factors. The proposed ACP algorithm is summarized in Algorithm 6. In the

following, we will describe the key steps of our algorithm for minimizing (6.9).

Step 1: Estimation of u
(N)
t

Under the assumption that the loading factors might be static or slowly time-varying, i.e., U t ≃
U t−1, the weight vector u

(N)
t can be derived from the loss function ℓ(.) in (6.8) at time t by

u
(N)
t = argmin

u∈Rr

∥∥∥P t ⊛
(
Y t −Ht ×N u⊤

)∥∥∥2
2
, (6.10)

163

6.2. TENSOR TRACKING WITH MISSING DATA

where Ht = I
∏N−1

n=1 ×nU
(n)
t−1. Problem (6.10) can be readily converted into the standard form

of

u
(N)
t = argmin

u∈Rr

∥∥∥Pt

(
yt −Htu

)∥∥∥2
2
, (6.11)

where Pt = diag(vec(P t)), yt = vec(Y t), and Ht has the Khatri-Rao structure, i.e.,

Ht =
N−1⊙
n=1

U
(n)
t−1. (6.12)

For the sake of convenience, let Ωt and xΩt be the set and vector containing the observed

entries of Y t, while HΩt is the sub-matrix of Ht obtained by selecting the rows corresponding to

xΩt .

Generally, problem (6.11) is an overdetermined least-squares (LS) regression and requires

O(|Ωt|r2) with respect to (w.r.t.) computational complexity to compute the exact LS solu-

tion [322]. Thus, it costs time and effort when dealing with high-dimensional and high-order

tensors.

We propose to solve a regularized least-squares sketch of (6.11) instead, i.e.,

u
(N)
t = argmin

u∈Rr

∥∥∥L(yΩt −HΩtu
)∥∥∥2

2
+ α

∥∥u∥∥2
2
, (6.13)

where α is a small positive parameter for regularization, L(.) is a sketching map that helps

reduce the sample size, and hence speed up the calculations. Here, the introduction of α∥u∥22
is for avoiding the singular/ill-posed computation or pathological cases as well as increasing the

least-squares interpretability in practice.5 Accordingly, the updated rule for ut is given by

u
(N)
t =

(
H⊤

St
HSt + αI

)−1
H⊤

St
xSt , (6.14)

where HSt and xSt are transformed versions of HΩt and xΩt under the sketching L(.), respectively.

In what follows, we indicate that in many cases, the uniform row-sampling can provide a good

sketch for (6.11) in which each row has equal chance of being selected. We start by revisiting

the definition of the leverage scores and coherence of a matrix.

5The value of α can be chosen in the range [10−3, 1] for reasonable performance in practice.

164

6.2. TENSOR TRACKING WITH MISSING DATA

Definition 4. (Leverage Scores & Coherence [323, Definition 2.1]). Given a matrix A =

[a⊤1 ; . . . ;a
⊤
m] ∈ Rm×r with m > r, its i-th row leverage score is defined as

Ti(A)
∆
= a⊤i

(
A⊤A

)#
ai =

∥∥UA(i, :)
∥∥2
2
, i = 1, 2, . . . ,m. (6.15)

Here, UA ∈ Rm×r is the left singular vector matrix of A. The coherence of A is the largest

leverage score

µ(A) = max
i
Ti(A). (6.16)

The leverage score Ti(A) evaluates the contribution of ai in constituting A’s row space.

Accordingly, if the value of µ(A) is high, A contains at least one “strong” row whose removal

would have a pernicious effect on its row space. When the value of µ(A) is small (e.g. µ(A) ≈
r/m ≪ 1), no specific row is more important than others, i.e. information is approximately

uniformized across all rows. In such a case, the matrix A is called incoherent. The following

proposition indicates that the Khatri-Rao structure of Ht may increase the incoherence from its

factors.

Proposition 11 (Coherence of Ht). Let µ̄t−1 =
1

N − 1

N−1∑
n=1

µ
(
U

(n)
t−1

)
. We have

µ(Ht) = µ

(N−1⊙
n=1

U
(n)
t−1

)
(i)

≤
N−1∏
n=1

µ
(
U

(n)
t−1

) (ii)

≤ µ̄N−1
t−1 < 1. (6.17)

Proof. The first inequality (i) is indeed a corollary of Lemma 4 in [324] which shows that µ(A1⊙
A2) ≤ µ(A1)µ(A2) for any A1 and A2 of suitable sizes.

The second inequality (ii) is obtained by applying the AM–GM inequality to the set of N

positive numbers
{
µ
(
U

(n)
t−1

)}M−1

n=1
.

Accordingly, when dealing with a high-order streaming tensor (N is large) and/or with some

incoherent tensor factors, µ(Ht) ≤ µ̄N−1
t−1 ≪ µ̄t−1 < 1, i.e., Ht has low coherence. In such cases,

uniform row-sampling is effective [325,326]. In the presence of highly coherent factors, a precon-

ditioning (mixing) step is necessary to guarantee the incoherence. For instance, the subsampled

randomized Hadamard transform (SRHT) is a good candidate which can produce a transformed

matrix whose rows have (almost) uniform leverage scores [327]. In this context, we here empha-

size that well-known randomized LS algorithms can help save much computational complexity

while obtaining reasonable estimations of u(N)
t , especially for large-scale low-rank tensors.

165

6.2. TENSOR TRACKING WITH MISSING DATA

Step 2: Estimation of U
(n)
t

The loading factor U
(n)
t can be updated by minimizing the objective function gt(·) w.r.t. U(n),

as

U
(n)
t = argmin

U(n)∈RIn×r

1

t

t∑
τ=1

βt−τ
∥∥∥P(n)

τ ⊛
(
Y(n)

τ −U(n)
(
W(n)

τ

)⊤)∥∥∥2
F
, (6.18)

where Y
(n)
τ (resp. P

(n)
τ) is the mode-n unfolding of Yτ (resp. Pτ) and the coefficient matrix

W
(n)
τ is given by

W(n)
τ =

(N−1⊙
i=1,i ̸=n

U
(i)
t−1

)
⊙ (u(N)

τ)⊤. (6.19)

Interestingly, we exploit the fact that minimization (6.18) can boil down to the problem of

subspace tracking in the presence of missing data [41]. Particularly, the solution of (6.18) can

be obtained by minimizing subproblems for each row u
(n)
m of U(n), m = 1, 2, . . . , In as

u
(n)
t,m = argmin

u
(n)
m ∈Rr

1

t

t∑
τ=1

βt−τ
∥∥∥P(n)

τ,m

((
y(n)
τ,m

)⊤ −W(n)
τ

(
u(n)
m

)⊤)∥∥∥2
F
, (6.20)

where y(n)
τ,m

is the m-th row of Y(n)
τ and the row-mask matrix P

(n)
τ,m = diag(P(n)

τ (m, :)). Thanks

to the parallel scheme of the well-known PETRELS algorithm for subspace tracking [73], we

derive an efficient estimator for minimizing the exponentially weighted LS cost function (6.18).

Particularly, we first define two auxiliary matrices S
(n)
t and V

(n)
t as follows6

S
(n)
t = βS

(n)
t−1 +

(
W

(n)
t

)⊤
W

(n)
t , (6.21)

V
(n)
t =

(
S
(n)
t

)−1(
W

(n)
t

)⊤
. (6.22)

The loading factor U
(n)
t is then updated recursively by

U
(n)
t = U

(n)
t−1 +∆Y

(n)
t

(
V

(n)
t

)⊤
, (6.23)

where the matrix ∆Y
(n)
t is derived from the mode-n unfolding of the residual error tensor ∆Y t

∆Y t = P t ⊛
(
Y t −Ht ×N (u

(N)
t)⊤

)
. (6.24)

This is not PETRELS, but a modified version. Here, we can utilize the already updated U
(n)
t for

tracking the remaining factors which can improve the rate of convergence. Also, we can estimate

6To enable the recursive updating rule, the matrix S
(n)
0 is initialized by a scaled identity matrix S

(n)
0 = δnIrn

with δn > 0.

166

6.2. TENSOR TRACKING WITH MISSING DATA

Algorithm 6: Adaptive CP Decomposition (ACP)
Input: Incomplete slices

{
Pt ⊛Yt

}∞
t=1

, Yt ∈ RI1×I2×···×IN−1×1, CP rank r, Forgetting factor
β ∈ (0, 1], Parameters: α > 0, δ > 0, and m > 0.

Initialization:
{
U

(n)
0

}N−1

n=1
is initialized randomly and

{
S
(n)
0

}N−1

n=1
= δIr.

Main Program:

Procedure:
for t = 1, 2, . . . do

YΩt = Pt ⊛Yt

Step 1: Estimation of ut

S = randsample
(
|Ωt|, ⌊mr log r⌉

)
Ht = I

N−1∏
n=1

×nU
(n)
t−1

ut =
(
H⊤

St
HSt + αI

)−1
H⊤

St
ySt

U
(N)
t =

[
U

(N)
t−1

⊤
,u

(N)
t

]⊤
∆Yt = Pt ⊛

(
Yt −Ht ×N u⊤

t

)
Step 2: Estimation of

{
U

(n)
t

}N−1

n=1

for n = 1, 2, . . . , N − 1 do

Y
(n)
Ωt

= unfoldn(YΩt)

∆Y
(n)
t = unfoldn(∆X t)

W
(n)
t =

((
U

(n)
t−1

)#
Y

(n)
Ωt

)⊤
S
(n)
t = βS

(n)
t−1 +

(
W

(n)
t

)⊤
W

(n)
t

V
(n)
t = (S

(n)
t)−1W

(n)
t

U
(n)
t = U

(n)
t−1 +∆Y

(n)
t

(
V

(n)
t

)⊤
end

end
Output:

{
U

(n)
t

}N
n=1

all the N factors in a parallel scheme which reduces further the cost when several computational

units are available.

6.2.2.2 Performance Analysis

Memory Storage and Computational Complexity

For the sake of simplifying the analysis, we assume that the fixed dimensions of the streaming

tensor Y t are equal to I and the CP rank is much lower than I, r ≪ I.

167

6.2. TENSOR TRACKING WITH MISSING DATA

With respect to memory storage, ACP requires O
(
(N−1)(Ir+r2)

)
words of memory at each

time t, in particular for N loading factors {U(n)}N−1
n=1 and N − 1 matrices S

(n)
t of size r × r.

In terms of computational complexity, the estimation of u(N)
t costsO(|St|r2) flops from solving

the randomized LS regression and forming the sketch for HSt . The complexity for updating the

loading factor U
(n)
t comes from the computation of the two matrices ∆Y

(n)
t and V

(n)
t . In

particular, the first one requires O(|Ωt|r) flops while the latter costs O(IN−2r2) flops. Note

that, the matrix S
(n)
t is of size r × r, thus the computation of

(
S
(n)
t

)−1 is not expensive and it

is independent of the tensor dimension. In conclusion, the overall computational complexity is

O
(
|Ωt|r + ((N − 1)IN−2 + |St|)r2

)
flops and reduces to O

(
|Ωt|r + (IN−2 + |St|)r2

)
flops in a

parallel scheme. Note that when a preconditioning step (e.g. SRHT) is needed to guarantee

the incoherence of HΩt , ACP requires an additional cost of O
(
|Ωt|r log r

)
flops [328].

Convergence Guarantee

Inspired by our companion work on robust subspace tracking in [25] and the convergence anal-

ysis for 3-order tensors in [106, 176], we derive a unified approach to analyze the convergence

behavior of ACP for high-order streaming tensors with missing data. Specifically, we analyze the

convergence of both the sequence of objective values {ft(U t)}∞t=1 and the sequence of generated

solutions {U t}∞t=1. Our main theoretical result is stated in the following lemma.

Lemma 9. Given assumptions (A1)-(A4), β = 1, and the true U is fixed, the sequence

of solutions {Ut}∞t=1 generated by ACP converges to a minimum point of ft when t→∞.

Proof Sketch. Our proof contains three main stages: (S1) we show that the solutions {U t,ut}∞t=1

are uniformly bounded to justify the well-definedness condition. Their variations between two

successive time instances satisfy ∥U(n)
t+1 −U

(n)
t ∥F → O(1/t) a.s. (S2) The sequence of nonneg-

ative surrogate values {gt(U t)}∞t=1 is quasi-martingale and convergent almost surely. (S3) The

empirical loss function {ft(U t)}∞t=1 and its surrogate {gt(U t)}∞t=1 converge to the same limit,

i.e., gt(U t) → ft(U t) a.s. Accordingly, {U t}∞t=1 converges to a stationary point of ft(U), i.e.,

∇ft(U t)
t→∞−→ 0. Details of the analysis is provided in the Appendix A.

6.2.3 Adaptive Tucker Decomposition

The proposed ACP algorithm is not always well-defined due to the fact that for a given CP rank,

the optimal CP-based representation of tensors may be nonexistent [207]. Under the Tucker

format, we now propose a more flexible algorithm called adaptive Tucker decomposition (ATD).

In the same way, we propose to minimize the following surrogate function gt(G,U) of ft(G,U)

168

6.2. TENSOR TRACKING WITH MISSING DATA

Algorithm 7: Adaptive Tucker Decomposition (ATD)
Input: Observations

{
Pt ⊛X t

}∞
t=1

, X t ∈ RI1×I2×···×IN−1×1, Tucker rank
rTD = [r1, r2, . . . , rN], Forgetting factor β, Parameters: α > 0, δ > 0, and m > 0.

Initialization:
{
U

(n)
0

}N−1

n=1
and G0 are initialized randomly,

{
S
(n)
0

}N−1

n=1
= δIrn .

Main Program:

Procedure:
for t = 1, 2, . . . do

YΩt = Pt ⊛Yt

Step 1: Estimation of ut

S = randsample
(
|Ωt|, ⌊mrN log rN⌉

)
Ht = Gt−1

N−1∏
n=1

×nU
(n)
t−1

ut =
(
H⊤

St
HSt + αI

)−1
H⊤

St
ySt

U
(N)
t =

[
U

(N)
t−1

⊤
,u

(N)
t

]⊤
∆Yt = Pt ⊛

(
Yt −Ht ×N u⊤

t

)
Step 2: Estimation of {U(n)

t }N−1
n=1

for n = 1, 2, . . . , N − 1 do

W
(n)
t =

(
U

(n)
t−1

)#
Y

(n)
Ωt

S
(n)
t = βS

(n)
t−1 +W

(n)
t

(
W

(n)
t

)⊤
V

(n)
t =

(
S
(n)
t

)−1
W

(n)
t

U
(n)
t = U

(n)
t−1 +∆Y

(n)
t

(
V

(n)
t

)⊤
end

Step 3: Estimation of Gt

Zt = ut ⊗
(N−2⊗

n=2

U
(n)
t

)
∆Gt =

(
U

(1)
t

)#
∆Y

(1)
t Z#

t

∆Gt = reshape(∆Gt, rTD)

Gt = Gt−1 +∆Gt

end
Output:

{
U

(n)
t

}N
n=1

and Gt

in (6.5):

{Gt,U t} = argmin
G,U

[
gt(G,U) =

1

t

t∑
τ=1

βt−τ

∥∥∥∥Pτ ⊛

(
Yτ −

r
G;
{
U(n)

}N−1

n=1
,u(N)

τ

z)∥∥∥∥2
F

]
, (6.25)

to leverage old estimations of the tensor core and the loading factors at each time t.

169

6.2. TENSOR TRACKING WITH MISSING DATA

6.2.3.1 Proposed ATD Algorithm

Thanks to the alternating minimization framework, we can obtain an efficient first-order estima-

tor for optimizing (6.25) in the same manner as ACP. Specifically, we first update the weight

vector u
(N)
t , given old estimations of G and U , then estimate the loading factors {U(n)

t }n≥1

given u
(N)
t ,Gt−1 and the remaining factors, and finally obtain the core tensor Gt from the latest

updated factors. The proposed algorithm is summarized in Algorithm 7.

Step 1: Estimation of u
(N)
t

We can derive the weight vector u
(N)
t from the minimizing the last summand of gt(G,U) as

follows:

u
(N)
t = argmin

u∈RrN

∥∥∥P t ⊛
(
Y t −Ht ×N u⊤

)∥∥∥2
2
, (6.26)

where Ht = Gt−1
∏N−1

n=1 ×nU
(n)
t−1. Similar to (6.10), the expression (6.26) can be readily reformu-

lated into its matrix-vector format as follows:

u
(N)
t = argmin

u∈RrN

∥∥∥Pt

(
yt −Htu

)∥∥∥2
2
, (6.27)

where yt = vec(Y t), Ht is the unfolding matrix of the tensor Ht and the observation matrix

Pt = diag(vec(P t)). The closed-form solution of (6.27) can be directly obtained by applying

the LS method as

u
(N)
t =

(
H⊤

t PtHt + αI
)−1

H⊤
t Ptyt, (6.28)

where α > 0 is a small regularization parameter to avoid pathological cases in practice.

In order to speed up the computation of (6.28), the same randomized sampling technique as

in (7.12) can be applied to obtain an approximated version of u(N)
t .

Step 2: Estimation of U
(n)
t

Given ut and old estimations of Gt−1 and U t−1, we rewrite the minimization (6.25) with respect

to the variable U(n) as follows:

U
(n)
t = argmin

U(n)∈RIn×rn

1

t

t∑
τ=1

βt−τ
∥∥∥P(n)

τ ⊛
(
Y(n)

τ −U(n)W(n)
τ

)∥∥∥2
F
, (6.29)

170

6.2. TENSOR TRACKING WITH MISSING DATA

where the coefficient matrix W
(n)
τ is the mode-n unfolding of the tensor Wτ which is defined by

Wτ =

(
Gt−1

N−1∏
i=1,i ̸=n

×iU
(i)
t−1

)
×N+1 (u

(N)
τ)⊤. (6.30)

Minimization (6.29) is similar to its counterpart in the proposed ACP algorithm in (6.18). There-

fore, we can apply the same subspace-based technique to update U(n)
t . In particular, the updating

rule for U
(n)
t can be given by

U
(n)
t = U

(n)
t−1 +∆Y

(n)
t (V

(n)
t)⊤, (6.31)

where the residual error ∆Y
(n)
t and the coefficient matrix V

(n)
t are computed as

∆Y
(n)
t = P

(n)
t ⊛

(
Y

(n)
t −U

(n)
t−1W

(n)
t

)
, (6.32)

V
(n)
t =

(
S
(n)
t

)−1
W

(n)
t , (6.33)

where the matrix S
(n)
t is updated recursively as

S
(n)
t = βS

(n)
t−1 +W

(n)
t (W

(n)
t)⊤. (6.34)

Step 3: Estimation of Gt

For the estimation of Gt given the latest updated loading factors, (6.25) is reformulated as

Gt = argmin
G

1

t

t∑
τ=1

βt−τ
∥∥∥P(1)

τ ⊛
(
Y(1)

τ −U
(1)
t G(1)Zτ

)∥∥∥2
F
, (6.35)

where the variable G(1) is the mode-1 unfolding of G and the matrix Zτ is given by

Zτ = u(N)
τ ⊗

(N−1⊗
n=2

U
(n)
t

)
. (6.36)

When handling a streaming tensor with a huge number of slices (i.e., t is large) and a large number

of unknown parameters in G (i.e.,
∏N

n=1 rn is large), applying batch gradient methods for (6.35)

may be time-consuming despite the effect of the forgetting factor λ. Stochastic approximation

is introduced as a good alternative [329].

In particular, we minimize the last summand of (6.35) instead:

Gt = argmin
G

∥∥∥P(1)
t ⊛

(
Y

(1)
t −U

(1)
t G(1)Zt

)∥∥∥2
F
. (6.37)

171

6.2. TENSOR TRACKING WITH MISSING DATA

Given the estimation of U t, the residual error between the newcoming tensor slice and the

recovered one is given by

∆Y
(1)
t = P

(1)
t ⊛

(
Y

(1)
t −U

(1)
t G

(1)
t−1Zt

)
. (6.38)

Accordingly, we can derive the variation of G at time t from

∆Y
(1)
t = P

(1)
t ⊛

(
U

(1)
t ∆G

(1)
t Zt

)
, (6.39)

where ∆G
(1)
t = G

(1)
t −G

(1)
t−1. In particular, ∆Gt is computed as7

∆G
(1)
t =

(
U

(1)
t

)#
∆Y

(1)
t Z#

t . (6.41)

After that, ∆G
(1)
t will be reshaped into a tensor ∆Gt of size r1 × r2 × · · · × rN . To sum up,

we obtain the simple rule for updating Gt as follows:

Gt = Gt−1 +∆Gt. (6.42)

We note that for overdetermined cases, the rule for updating Gt can be sped up by using the

following “vector trick” in [331]:

vec(ABC⊤) = (C⊗A)vec(B). (6.43)

In particular, the expression (6.39) can be cast into the standard least-squares format as follows:

δyt = Pt

(
ut ⊗

(N−1⊗
n=1

U
(n)
t

))
δgt, (6.44)

where δxt = vec(∆Y
(1)
t), δgt = vec

(
∆G

(1)
t

)
and Pt = diag

(
vec(P(1)

t)
)
. Interestingly, (6.44)

is of the Kronecker structure, thus δgt can be efficiently computed by applying randomized

sketching techniques with a much lower complexity, e.g., the uniform sampling or the Kronecker

product regression in [332].

7Since Zt is of the Kronecker structure, we can obtain the pseudoinverse of Zt efficiently by using the following
nice property [330]

(A1 ⊗A2 ⊗ · · · ⊗An)
= A#

1 ⊗A#
2 ⊗ · · · ⊗A#

n . (6.40)

172

6.2. TENSOR TRACKING WITH MISSING DATA

Step 4: Orthogonalization Step (Optional)

In the cases where the orthogonality constraints are imposed on the loading factors, we add an

orthogonalization step of U(n) at each time t as follows:

U
(n)
t = U

(n)
t

[(
U

(n)
t

)⊤
U

(n)
t

]−1/2
, (6.45)

where (.)−1/2 represents the inverse square root or simply take the QR decomposition of Ut.

Accordingly, the update of ∆Gt in (6.41) can be speeded up by replacing the pseudo-inverse

with the transpose operator:

∆Gt =
(
U

(1)
t

)⊤
∆Y

(1)
t Z⊤

t . (6.46)

6.2.3.2 Performance Analysis

Memory Storage and Computational Complexity

We assume that the fixed dimensions of the streaming tensor are equal to I and the desired

Tucker rank is rTD = [r, r, . . . , r].

In terms of memory storage, ATD requires O(rN) and O
(
(N − 1)Ir

)
words of memory for

saving the core tensor G and N −1 loading factors {U(n)}N−1
n=1 respectively. In addition, the cost

for saving N − 1 matrices S
(n)
t is O((N − 1)r2) words of memory in total.

In terms of computational complexity, the computation of ATD comes from three main es-

timations: (i) the weight vector u
(N)
t , (ii) the loading factors {U(n)}N−1

n=1 and (iii) the core

tensor G. The two former estimations are similar to that of ACP, so they require a cost of

O
(
|Ωt|r+(IN−2 + |S1|)r2

)
flops in a parallel scheme where |S1| denotes the size of the sampling

set of (6.27). The latter estimation costs O
(
|Ωt|r+ IN−2r2N

)
flops for computing ∆X and ∆G.

If using the randomize technique in this stage, the complexity is reduced to O
(
|Ωt|r + |S2|r2N

)
flops where S2 is the set of selected samples from (6.44). Therefore, the overall computational

complexity of ATD is O
(
|Ωt|r + (IN−2 + |S1|)r2 + |S2|r2N

)
in parallel scheme.

Convergence Guarantee

The convergence of ATD can be stated by the following lemma:

Lemma 10. Given assumptions (A1)-(A4), β = 1, the true G and U are fixed, the

solutions {Gt,U t}∞t=1 generated by ATD converges to a stationary point of the empirical

cost function ft when t→∞.

The proof of Lemma 10 can be obtained by applying the same arguments and principles as in

173

6.3. TENSOR TRACKING WITH SPARSE OUTLIERS

Figure 6.2: Temporal slice Y t with missing data and sparse outliers.

the case of ACP, detailed in the Appendix A. In particular, the analysis consists of the following

three main stages: (S1) the surrogate function gt(G,U) is strongly bi-convex in the sense that G
and U are seen as multivariate variables. Solutions {Gt,U t}∞t=1 generated by ATD are bounded

and their variations between two successive time instances satisfy ∥U(n)
t+1 −U

(n)
t ∥F → O(1/t) a.s.

(S2) The nonnegative sequence {gt(Gt,U t)}∞t=1 is quasi-martingale and hence convergent almost

surely. Furthermore, gt(Gt,U t) − ft(Gt,U t) → 0 a.s. (S3) The empirical cost function ft(G,U)

is continuously differentiable and Lipschitz. The sequence of solutions {Gt,U t}∞t=1 converges to

a stationary point of ft(G,U), i.e., when t→∞, the gradient ∇ft(Gt,U t)→ 0 a.s.

6.3 Tensor Tracking with Sparse Outliers

6.3.1 Problem Statement

Here, we consider an incomplete streaming tensor X t ∈ RI1×I2×···×IN−1×t whose slices are serially

observed with time. At each time t, X t is particularly obtained by concatenating a new incoming

“slice” Y t ∈ RI1×I2×···×IN−1×1 into the previous X t−1 along the time dimension, i.e., X t =

X t−1 ⊞N Y t. Particularly, we suppose to observe the slice Y t satisfying the following model:

Y t = P t ⊛
(
Lt +Ot +N t

)
, (6.47)

where P t is a binary mask tensor, Lt is a low-rank tensor, Ot is a sparse tensor containing

outliers, N t is a Gaussian noise tensor, and all these tensors are of the same size with Y t, please

see Fig 6.2 for an illustration.

Specifically, the observation mask P t indicates whether the (i1, i2, . . . , iN−1)-th entry of Lt

is observed or missing, i.e.,

pi1i2...iN =

0, if xi1i2...iN−1 is missing,

1, otherwise.
(6.48)

174

6.3. TENSOR TRACKING WITH SPARSE OUTLIERS

The low-rank tensor Lt is generated according to the following model:

Lt =
r{

U(n)
}N−1

n=1
,u

(N)
t

z
, (6.49)

where u
(N)
t ∈ Rr×1 is a weight vector8 and {U(n)}N−1

n=1 , with U(n) ∈ Un ⊆ RIn×r, are loading

factors. For short, write D := U1 × U2 × · · · × UN and denote D =
[
(U(1))⊤, . . . , (U(N))⊤

]⊤ the

tensor dictionary containing all loading factors. The robust tensor tracking (RTT) problem can

be stated as follows:

Tensor Tracking with Sparse Outliers: At each time t, we observe a streaming tensor

slice Y t under the data model (6.47). We aim to estimate Dt ∈ D such that it can provide

a good multilinear low-rank approximation for X t in time.

Now, we define a loss function ℓ(·) that not only promotes sparsity but also preserves convexity.

For a fixed D and a tensor slice X under a binary observation mask P , the loss function w.r.t.

D and {P ,Y} is defined as

ℓ
(
D,P ,X

)
= min

u,O
ℓ̃
(
D,P ,X ,O,u

)
, with (6.50)

ℓ̃
(
D,P ,Y ,O,u

)
=
∥∥O∥∥

1
+
ρ

2

∥∥∥P ⊛
(
Y −O −H×N u⊤

)∥∥∥2
F
, (6.51)

where H = I
∏N−1

n=1 ×nU
(n). The ℓ1-norm is to promote the sparsity on O and ρ > 0 is a

regularized parameter.

Now, given a streaming set of incomplete tensor slices {Pτ ⊛Yτ}tτ=1, robust tensor tracking

(RTT) can be formulated as the following optimization problem:

Dt = argmin
D

[
ft(D) =

1

Lt

t∑
τ=t−Lt+1

βt−τ ℓ
(
D,Pτ ,Yτ

)]
, (6.52)

where Lt is the length of a sliding window and β is a forgetting factor. When Lt = t, β = 1,

the minimization of (6.52) boils down to its counterpart in batch setting. When 0 < Lt < t or

β < 1, it reduces the impact of past observations, and hence facilitates the tracking ability of

RTT estimators in time-varying conditions.

We make some assumptions to support the proposed algorithm in Section III. First, entries

of tensor slices {Y t}t≥1 are Frobenius-norm bounded, i.e., ∥Y t∥F ≤ Mx <∞ ∀t. This prevents

arbitrarily large values in observations and ill-conditioned computation. Next, the tensor rank r

is supposed to remain unchanged over time. In addition, tensor factors {U(n)
t }Nn=1 are bounded

and full column rank, i.e., rank(U
(n)
t) = r < In and ∥U(n)

t ∥F ≤ κU < ∞ ∀n. Besides, the

8In batch setting, the weight vector ut in (6.49) is seen as the t-th row of the last loading factor U(N) ∈ RItN×r

of the underlying tensor X t.

175

6.3. TENSOR TRACKING WITH SPARSE OUTLIERS

variation between two consecutive time instants is small, U
(n)
t ≃ U

(n)
t−1 ∀n, t i.e. Dt−1 ≃ Dt.

This assumption permits the estimation of the outliers and the coefficient vector from the previous

estimation with reasonable accuracy. Under these assumptions, our optimization algorithm is

capable of accurately estimating tensor factors, but also successfully tracking their variation

along the time.

6.3.2 Robust Adaptive CP Decomposition

In this section, we first propose the robust adaptive CP (RACP) algorithm for the RTT problem

in the presence of missing data and outliers. Then, we introduce two simple extensions of RACP

in order to deal with smoothness condition and nonnegative constraints.

6.3.2.1 Proposed RACP Algorithm

Solving the minimization of (6.52) exactly is possible but difficult since ft(·) is nonconvex. We

here adapt it using the majorization-minimization (MM) framework [321], which has been suc-

cessfully applied to several signal processing problems in general [333] and online learning prob-

lems in particular [25,120,121,334]. In essence, we decompose it into two main stages: (i) online

outlier rejection and (ii) tensor factor tracking.

On the arrival of Y t at each time t, we first estimate the outlier tensor Ot and the coefficient

vector ut based on the old estimation Dt−1. Specifically, we solve the following optimization:

{Ot,ut} = argmin
O,u

ℓ̃
(
Dt−1,P t,Y t,O,u

)
. (6.53)

From the past statistics {Dτ ,Pτ ,Yτ ,Oτ ,uτ}τ≥1, the set of loading factors Dt = {U(n)
t }Nn=1 can

be updated by minimizing the following majorizing surrogate f̃t(·):

f̃t(D) =
1

Lt

t∑
τ=t−Lt+1

βt−τ ℓ̃
(
D,Pτ ,Yτ ,Oτ ,uτ

)
, (6.54)

that locally approximates ft(·). Note that f̃t(D) is not only first-order surrogate, but also a

majorant function of ft(D), that is, for all t and D, we always have ft(D) ≤ f̃t(D) and the

error function et(D) = f̃t(D)− ft(D) is Lipschitz continuous. In fact, f̃t(D) and ft(D) converge

almost-surely to the same limit, and the solution Dt, which minimizes f̃t(D), is exactly the one

of ft(D) when t → ∞. The results will be later proven in our convergence analysis. In what

follows, we propose two solvers for minimizing (6.53) and (6.54) efficiently.

176

6.3. TENSOR TRACKING WITH SPARSE OUTLIERS

Algorithm 8: Robust Adaptive CP Decomposition (RACP)
Input: Tensor slices

{
Pt ⊛Yt

}∞
t=1

, Yt ∈ RI1×I2×···×IN−1×1, rank r, forgetting factor β ∈ (0, 1],
Parameters: penalty ρ > 0, precision ϵres, ϵout > 0, maximum iteration K, α ∈ [1.5, 1.8], δ > 0.

Initialization:
{
U

(n)
0

}N−1

n=1
is initialized randomly and

{
S
(n)
0

}N−1

n=1
= δIr.

Main Program:

Procedure:
for t = 1, 2, . . . do

Stage 1: Online Outlier Rejection
Ht−1 =

⊙N−1
n=1 U

(n)
t−1

o0, z0,u0 ← 0

for i = 1, 2, . . . ,K do

ui =
(
H⊤

t−1PtHt−1

)#
H⊤

t−1Pt

(
yt − oi−1 − zi−1/ρ

)
,

ri = αPt

(
yt −Ht−1u

i)+ (1− α)oi−1

oi = S1/ρ
(
ri − zi−1/ρ

)
,

zi = zi−1 + ρ(oi − ri),

if stopping criteria are met break
end
Outlier Removal (Re-update of Pt in (6.61) is optional): Ŷt = Pt ⊛ (Yt −Ot)

Stage 2: Estimation of
{
U

(n)
t

}N

n=1

for n = 1, 2, . . . , N do

W
(n)
t =

(N⊙
i=1,i ̸=n

U
(i)
t−1

)
⊙ (u

(N)
t)⊤ [Jacobi]

W
(n)
t =

(n−1⊙
i=1

U
(i)
t

)
⊙

(N⊙
i=n+1

U
(i)
t−1

)
⊙ (u

(N)
t)⊤ [Gauss-Seidel]

W̃
(n)
t =

[(
W

(n)
t

)⊤ (
W

(n)
t−Lt

)⊤]⊤
for m = 1, 2 . . . , In do

P̃
(n)

t,m =

[
P

(n)
t,m 0

0 −βLtP
(n)
t−Lt,m

]
Ỹ

(n)

t,m =
[
Ŷ

(n)

t,m Ŷ
(n)

t−Lt,m

]
S
(n)
t,m = βS

(n)
t−1,m +

(
W̃

(n)
t

)⊤
P̃

(n)

t,mW̃
(n)
t

V
(n)
t,m =

(
S
(n)
t,m

)−1(
W̃

(n)
t

)⊤
δỹ(n)

t,m
= P̃

(n)

t,m

((
ỹ(n)

t,m

)⊤ − W̃
(n)
t

(
u
(n)
t−1,m

)⊤)
u
(n)
t,m = u

(n)
t−1,m +

(
δỹ(n)

t,m

)⊤(
V

(n)
t,m

)⊤
end

end

Stage 3: (Optional) Normalization and Re-estimation of ut

Column-wise Normalization:
[
U

(n)
t

]
:,r

=
[
U

(n)
t

]
:,r

/∥∥[U(n)
t

]
:,r

∥∥2

2
.

Re-estimation of ut: ut =
(
H⊤

t PtHt

)#
H⊤

t Pt(xt − ot) where Ht =
⊙N

n=1 U
(n)
t

end
Output: Loading factors

{
U

(n)
t

}N

n=1
.

Stage 1: Online Outlier Rejection

To estimate Ot and u
(N)
t , we recast (6.53) into the following standard matrix-vector form:

{
ot,u

(N)
t

}
= argmin

o,u
∥o∥1 +

ρ

2

∥∥∥Pt

(
yt − o−Ht−1u

)∥∥∥2
2
, (6.55)

177

6.3. TENSOR TRACKING WITH SPARSE OUTLIERS

where ot = vec(Ot), yt = vec(Y t), the observation mask matrix Pt = diag(vec(P t)), and Ht−1

is of a Khatri-Rao structure, i.e., Ht−1 =
⊙N−1

n=1 U
(n)
t−1.

Since both terms of (6.55) are convex, it can be efficiently solved by several methods with

convergence guarantees. Here, we use an ADMM solver to minimize (6.55) due to its simple

interpretation and moderate convergence rate [114]. At the i-th iteration, we particularly read

ui =
(
H⊤

t−1PtHt−1

)#
H⊤

t−1Pt

(
yt − oi−1 − zi−1/ρ

)
, (6.56)

ri = αPt

(
yt −Ht−1u

i
)
+ (1− α)oi−1 (6.57)

oi = S1/ρ
(
ri − zi−1/ρ

)
, (6.58)

zi = zi−1 + ρ(oi − ri), (6.59)

where S(·) is the soft-thresholding operator of the ℓ1-norm defined as Sα(x) = max(0, x− α)−
max(0,−x − α) and α ∈ [1.5, 1.8] is a relaxation parameter. The procedure is stopped when

residuals are small, i.e., ∥Pt(yt−Ht−1u
i−oi)∥2 ≤ ϵres and ∥oi− ri∥2 ≤ ϵout where ϵres, ϵout > 0

are predefined accuracy parameters or when the procedure reaches the maximum number of

iterations.

After the sparse outlier Ot is detected, we reduce the effect of Ot on the tracking process by

the following outlier removal

Ŷ t = P t ⊛ (Y t −Ot). (6.60)

In some cases, we can skip the corrupted entries in Y t by re-updating the mask P t as

pi1i2...iN =

0, if xi1...iN is missing or outlier,

1, otherwise.
(6.61)

Here, the removal step (6.60) still holds under the new binary mask P t. This approach stems

from the following observations. In the context of subspace tracking (ST), rejecting outliers

can facilitate the tracking ability of ST estimators since only “clean” measurements involve the

process [25]. Our next stage for estimating the tensor basis can indeed boil down to the ST

problem with missing data, so the outlier rejection mechanism of (6.61) can improve performance.

Please see Fig. 6.24 for an illustration that the outlier rejection mechanism can help improve the

convergence rate of RACP when the fraction of corrupted entries is not too large.

Stage 2: Estimation of factors
{
U

(n)
t

}N−1

n=1

The optimization (6.54) can be effectively solved by using the block-coordinate descent (BCD)

technique. The main idea is to minimize alternately the surrogate f̃t(·) w.r.t. each factor U
(n)
t

178

6.3. TENSOR TRACKING WITH SPARSE OUTLIERS

while fixing the remaining factors (hereafter denoted as f̃t(U
(n)
t , .) for short), that is,

U
(n)
t = argmin

U(n)

f̃t
(
U(n), .

)
. (6.62)

Minimization (6.62) is equivalent to

U
(n)
t = argmin

U(n)

t∑
τ=t−Lt+1

βt−τ
∥∥∥P(n)

τ ⊛
(
Ŷ

(n)

τ −U(n)
(
W(n)

τ

)⊤)∥∥∥2
F
, (6.63)

where Ŷ
(n)

τ and P
(n)
τ are the mode-n unfoldings of Ŷτ and Pτ , and W

(n)
τ is given by

W(n)
τ =

(N−1⊙
i=1,i ̸=n

U
(i)
t−1

)
⊙ (u(N)

τ)⊤ [Jacobi],

(n−1⊙
i=1

U
(i)
t

)
⊙
(N−1⊙

i=n+1

U
(i)
t−1

)
⊙ (u(N)

τ)⊤ [Gauss-Seidel].

(6.64)

Depending on the implementation, we can use one of the two iterative methods: the Jacobi

scheme supports the parallel and/or distributed processing while the Gauss-Seidel scheme is

useful for a sequential (serial) one. Excepting the closed-form of W(n)
τ , both methods share the

same procedure for solving (6.63) which is detailed as follows.

The minimization of (6.63) can be decomposed into sub-problems for each row u
(n)
m of U(n),

m = 1, 2, . . . , In, as

u
(n)
t,m = argmin

u
(n)
m

t∑
τ=t−Lt+1

βt−τ
∥∥∥P(n)

τ,m

((
ŷ(n)
τ,m

)⊤ −W(n)
τ

(
u(n)
m

)⊤)∥∥∥2
F
, (6.65)

where ŷ(n)
τ,m

is them-th row of Ŷ
(n)

τ , and the row-mask matrix is given by P
(n)
τ,m = diag

(
P

(n)
τ (m, :)

)
.

The optimal solution of (6.65) can be derived from setting its derivative to zero

t∑
τ=t−Lt+1

βt−τ
(
W(n)

τ

)⊤
P(n)

τ,m

(
ŷ(n)
τ,m

)⊤
=

t∑
τ=t−Lt+1

βt−τ
(
W(n)

τ

)⊤
P(n)

τ,mW(n)
τ

(
u
(n)
t,m

)⊤
. (6.66)

Instead of solving (6.66) directly, we propose a more elegant recursive way to obtain u
(n)
t,m as

follows. First, let us denote the left hand side of (6.66) by d
(n)
t,m, and

S
(n)
t,m =

t∑
τ=t−Lt+1

βt−τ
(
W(n)

τ

)⊤
P(n)

τ,mW(n)
τ . (6.67)

179

6.3. TENSOR TRACKING WITH SPARSE OUTLIERS

Accordingly, (6.66) becomes

S
(n)
t,m

(
u
(n)
t,m

)⊤
= d

(n)
t,m. (6.68)

Interestingly, both d
(n)
t,m and S

(n)
t,m can be updated recursively:

d
(n)
t,m = βd

(n)
t−1,m +

(
W̃

(n)
t

)⊤
P̃

(n)

t,m

(
ỹ(n)
t,m

)⊤
, (6.69)

S
(n)
t,m = βS

(n)
t−1,m +

(
W̃

(n)
t

)⊤
P̃

(n)

t,mW̃
(n)
t . (6.70)

where

W̃
(n)
t =

[(
W

(n)
t

)⊤ (
W

(n)
t−Lt

)⊤]⊤
, (6.71)

ỹ(n)
t,m

=
[
ŷ(n)
t,m

ŷ(n)
t−Lt,m

]
, (6.72)

P̃
(n)

t,m =

P(n)
t,m 0

0 −βLtP
(n)
t−Lt,m

 . (6.73)

Therefore, we can rewrite (6.68) as

S
(n)
t,m

(
u
(n)
t,m

)⊤
= βd

(n)
t−1,m +

(
W̃

(n)
t

)⊤
P̃

(n)

t,m

(
ỹ(n)
t,m

)⊤
= βS

(n)
t−1,m

(
u
(n)
t−1,m

)⊤
+
(
W̃

(n)
t

)⊤
P̃

(n)

t,m

(
ỹ(n)
t,m

)⊤
= S

(n)
t,m

(
u
(n)
t−1,m

)⊤
+
(
W̃

(n)
t

)⊤
P̃

(n)

t,m

((
ỹ(n)
t,m

)⊤ − W̃
(n)
t

(
u
(n)
t−1,m

)⊤)
. (6.74)

Multiplying both sides by
(
S
(n)
t,m

)−1 results in

u
(n)
t,m = u

(n)
t−1,m +

(
δỹ(n)

t,m

)⊤(
V

(n)
t,m

)⊤
, (6.75)

where

δỹ(n)
t,m

= P̃
(n)

t,m

((
ỹ(n)
t,m

)⊤ − W̃
(n)
t

(
u
(n)
t−1,m

)⊤)
, (6.76a)

V
(n)
t,m =

(
S
(n)
t,m

)−1(
W̃

(n)
t

)⊤
. (6.76b)

Collecting all rows u(n)
t,m together, m = 1, 2, . . . , In, a simplified version of (6.75) for updating the

whole factor U
(n)
t can be given by9

U
(n)
t = U

(n)
t−1 +∆Ỹ

(n)
t

(
V

(n)
t

)⊤
, (6.77)

9To enable the recursive rules of (6.75) and (6.77), S(n)
0,m and S

(n)
0 can be initialized by δIr where δ > 0, for

n = 1, 2, . . . , N .

180

6.3. TENSOR TRACKING WITH SPARSE OUTLIERS

where

S
(n)
t = βS

(n)
t−1 +

(
W̃

(n)
t

)⊤
W̃

(n)
t , (6.78a)

V
(n)
t =

(
S
(n)
t

)−1(
W̃

(n)
t

)⊤
, (6.78b)

∆Ỹ
(n)
t = P̃

(n)

t ⊛
(
Ỹ

(n)
t −U

(n)
t−1

(
W̃

(n)
t

)⊤)
, (6.78c)

with Ỹ
(n)
t =

[
Ŷ

(n)
t Ŷ

(n)
t−Lt,m

]
. In this way, we can skip several operations and save a mem-

ory storage of O
(∑N−1

n=1 (In − 1)(Inr + r2)
)
. Specifically, the cost of computing (6.78a) is

O
(
r2
∏N−1

i=1,i ̸=n Ii
)
. The computation of (6.78b) also requires a cost of O

(
r2
∏N−1

i=1,i ̸=n Ii
)

be-

cause S
(n)
t is of size r × r and its inverse computation is not expensive and independent of the

tensor dimension. The error matrix ∆Ỹ
(n)
t in (6.78c) can be derived from Step 1 by reshaping

the residual vector Pt(yt−ot−Ht−1ut). The most expensive step is the product ∆Ỹ
(n)
t

(
V

(n)
t

)⊤
which costs r

∏N−1
i=1 Ii flops while the addition operator in (6.77) requires only rIn flops. There-

fore, the overall cost of updating U
(n)
t in a naive way is O

(
r
∏N−1

i=1 Ii
)
. Note that ∆Ỹ

(n)
t

(
V

(n)
t

)⊤
can be divided into two parts Z

(n)
t = ∆Ỹ

(n)
t W̃

(n)
t and Z

(n)
t

(
S
(n)
t

)−⊤. Here, ∆Ỹ
(n)
t W̃

(n)
t can be

referred to as “matricized tensor times Khatri-Rao product” (MTTKRP) [335,336]. Fortunately,

Phan et al. in [336] proposed a clever reorganization of MTTKRP which can accelerate the

computation and reduce the overall cost of (6.77) to O
(
r2
∏N−1

i=1,i ̸=n Ii
)
.

Stage 3: Normalization and re-estimation of u
(N)
t (Optional)

In order to avoid numerical problems, we can perform the column-wise normalization on the

updated factors {U(n)
t }

N−1
n=1 . In addition, given the already estimated factors, the weight vector

ut in Step 1 can be re-updated to achieve a better estimation as follows

u
(N)
t =

(
H⊤

t PtHt

)#
H⊤

t Ptŷt, (6.79)

where Ht =
⊙N−1

n=1 U
(n)
t . This step is useful for the early stage of tracking and fast time-varying

environments [174,211,213].

6.3.2.2 Extensions of the RACP algorithm

In the following, we present two simple modifications of RACP when smoothness and nonnega-

tivity are imposed on the loading factors.

Smoothness Condition

In many applications, smoothness is a common assumption under which the underlying data or

model is supposed to be smooth [337]. Here, we incorporate a smoothing regularization matrix

181

6.3. TENSOR TRACKING WITH SPARSE OUTLIERS

on the loading factors to control the smoothness of the solution as well as to avoid biases and

singular/ill-posed computation. Particularly, this regularization adds a small bias against large

terms into the updating rules.

On the arrival of Y t, the outliers Ot and the coefficient vector ut are derived from the following

minimization: {
Ot,u

(N)
t

}
= argmin

O,u

∥∥O∥∥
1
+
γ

2

∥∥Bu
∥∥2
2
,

subject to
∥∥∥P t ⊛

(
Y t −O −Ht−1 ×N u

)∥∥∥2
F
= 0,

(6.80)

where Ht−1 = I
∏N−1

n=1 ×nU
(n)
t−1 and γ > 0 is a small penalty parameter and B a chosen banded

matrix. More concretely, the vector ut is obtained by minimizing the following problem:

u
(N)
t = argmin

u

[
γ

2

∥∥Bu
∥∥2
2
+
ρ

2

∥∥Pt(yt − o−Ht−1u)
∥∥2
2

]
. (6.81)

Accordingly, we replace the update rule for u in (6.56) with

ui =
(
H⊤

t−1PtHt−1 +
γ

ρ
B⊤B

)#
H⊤

t−1Pt

(
yt − oi

)
. (6.82)

Instead of (6.65), the m-th row u
(n)
t,m of U(n)

t is derived from

u
(n)
t,m = argmin

u
(n)
m

[
t∑

τ=t−Lt+1

βt−τ
∥∥∥P(n)

τ,m

((
ŷ(n)
τ,m

)⊤ −W(n)
τ

(
u(n)
m

)⊤)∥∥∥2
2
+
γ

2

∥∥∥B(u(n)
m

)⊤∥∥∥2
2

]
, (6.83)

In particular, u(n)
t,m is the solution of the following equation:

t∑
τ=t−Lt+1

βt−τ
(
W(n)

τ

)⊤
P(n)

τ,m

(
ŷ(n)
τ,m

)⊤
=

(t∑
τ=t−Lt+1

βt−τ
(
W(n)

τ

)⊤
P(n)

τ,mW(n)
τ +

γ

2
B⊤B

)(
u(n)
m

)⊤
.

(6.84)

Therefore, the recursive rule of (6.75) becomes

u
(n)
t,m = u

(n)
t−1,m +

(
δỹ(n)

t,m

)⊤(
V̄

(n)
t,m

)⊤
, (6.85)

where

V̄
(n)
t,m =

(
S
(n)
t,m +

γ

2
B⊤B

)−1(
W̃

(n)
t

)⊤
. (6.86)

182

6.3. TENSOR TRACKING WITH SPARSE OUTLIERS

Nonnegative Constraint

It is known that nonnegative tensor factorization (NTF) offers interesting properties, e.g., the

resulting expression appears to be purely additive and the loading factors are “sparse" in gen-

eral [338].

One of the simplest ways is to project the estimates (i.e., u(N)
t and {U(n)

t }
N−1
n=1) on their non-

negative orthant at the end of each step of RACP, as introduced by Nguyen et al. in [174]. This

approach offers a low complexity and yields a reasonable performance in some cases. However,

it may not be optimal as well as guarantee the convergence in general. In this task, we aim to

customize the updates of u(N)
t and {U(n)

t }
N−1
n=1 for dealing with the nonnegativity at each time t.

In step 1, we particularly replace the exact LS solution (6.56) with the minimizer of the

following nonnegative least-squares (NNLS) problem:

ui = argmin
u

∥∥∥Pt

(
yt − oi −Ht−1u

)∥∥∥2
2

subject to [u]j ≥ 0 ∀j. (6.87)

Here, we can apply any provable NNLS algorithm for solving (6.87), the reader is referred to

[339, 340] for good surveys on numerical methods for NNLS. In this work, we adopt the widely-

used algorithm of Lawson and Hanson [340] which is implemented as the function lsqnonneg in

MATLAB.

In step 2, the m-th row of U
(n)
t can be derived from minimizing the following constrained

version of (6.65):

u
(n)
t,m = argmin

u
(n)
m

t∑
τ=t−Lt+1

βt−τ
∥∥∥P(n)

τ,m

((
ŷ(n)
τ,m

)⊤ −W(n)
τ

(
u(n)
m

)⊤)∥∥∥2
2
,

subject to
[
u(n)
m

]
j
≥ 0 ∀j. (6.88)

To solve (6.88), we apply the projected gradient method (i.e., proximal gradient on indicator

function [118]). More concretely, the iterative procedure for updating u
(n)
t,m is given by10

uj =

[(
Ir −

S
(n)
t,m∥∥S(n)
t,m

∥∥
2

)
uj−1 −

d
(n)
t,m∥∥S(n)
t,m

∥∥
2

]
+

, (6.89)

where j denotes the iteration index. We refer to this modification of RACP as NRACP.

10Projected gradient descent has a form of uj =
[
uj−1 − ηj∇f̃t(uj−1)

]
+
, where ∇f̃t

(
u
(n)
m

)
= S

(n)
t,mu

(n)
m − d

(n)
t,m.

In practice, we can set the value of the step-size ηj to 1/L where L is the Lipschitz constant of ∇f̃t
(
u
(n)
m

)
. In

this work, it is easy to indicate that L =
∥∥S(n)

t,m

∥∥
2
.

183

6.3. TENSOR TRACKING WITH SPARSE OUTLIERS

6.3.3 Performance Analysis

In this section, we present a theoretical convergence analysis for the proposed RACP method in

Algorithm 1 while assuming Dt = D is fixed. Inspired by the recent results of our companion

works on robust subspace tracking [25] and tensor tracking [29], we establish a unified theoretical

approach to analyse the convergence of the objective values {ft(Dt)}∞t=1 as well as the solutions

{Dt}∞t=1 generated by RACP.

6.3.3.1 Assumptions

In order to facilitate the convergence analysis, we make the following assumptions:11

(A1) Low-rank components {Y t}t≥1 of the observed tensor slices {Y t}t≥1 are supposed to be

deterministic and bounded. Entries of noise tensors {N t}t≥1 are zero-mean, independently

and identically distributed (i.i.d.) with a small finite covariance, and bounded. Entries of

Y t are Frobenius-norm bounded, i.e., ∥Y t∥F ≤Mx <∞, for all t.

(A2) The dictionary Dt remains unchanged over time (i.e., Dt = D). The loading factors are

Frobenius-norm bounded and the tensor rank r is fixed.

(A3) Observation masks {P t}t≥1 are independent of {Y t}t≥1, and their entries follow a uniform

distribution. The number of observed entries of Y t should be larger than the lower bound

O
(
rL log(L)

)
, where L = I1I2 . . . IN . Every row of the mode-n unfolding Y

(n)
t of Y t is

observed in at least r entries, for n = 1, 2, . . . , N . In addition, each observed entry of Y t

is corrupted by outliers independently of others, i.e., the index of outliers is also uniformly

random.

(A4) The surrogate function f̃t(·) is m-strongly multi-block convex, i.e., its second-order deriva-

tive w.r.t. each factor is positive-definite, ∇2
nf̃t
(
U(n), .

)
⪰ mI ≻ 0 with m > 0.

Among them, assumptions (A1) and (A2) are common for analysing the convergence of online

learning algorithms, such as [25,106,120]. Indeed, (A1) holds in many situations, e.g., real data

are often bounded such as audio, image and video. (A2) is a strong assumption as it requires

the tensor dictionary to be constant with time. It also prevents arbitrarily large values in U(n)

and ill-conditioned computation. Along with (A1), it is interpreted as the simplest possible

data model in (robust) tensor tracking where tensor slices are supposed to be generated from a

stationary process. Theoretically, stationary processes are often “easier” to model and analyse

than nonstationary ones as their statistical properties remain constant over time. Accordingly,

stationary has become a common assumption underlying many statistical procedures in general

11The four assumptions (A1)-(A4) are used for the purpose of convergence analysis only, the proposed RACP
algorithm can work well in many other scenarios, please see Sec. V for details

184

6.3. TENSOR TRACKING WITH SPARSE OUTLIERS

and tracking tools in particular to study their convergence and asymptotic behavior. In this

work, a novel theoretical approach is established to analyse the convergence behavior of RACP

in stationary environments. We leave the convergence analysis of RACP under a nonstationary

model where the tensor dictionary is time-varying to a future work. Assumption (A3) is also

common, under which the index of missing entries is uniformly random. Moreover, with respect

to the imputation of missing values and recovery of low-rank components, the uniform random-

ness allows the sequence of binary masks {P t}t≥1 to admit stable recovery [319]. The next

two constraints of (A3) are fundamental conditions to prevent the underdetermined imputation

problem [341,342]. The last constraint of (A3) plays a similar role as the first one but accounting

for sparse outliers. Assumption (A4) allows us to derive several nice results in the convergence

analysis. In fact, the Hessian matrix of f̃t(·) w.r.t. each factor is already positive semidefinite,

(A4) can be achieved with a good initialization D0 or by simply adding a convex regularization

term into ℓ̃(·) or f̃t(·).

6.3.3.2 Main Results

Given the assumptions of (A1)-(A4), our main theoretical result can be stated in the following

theorem:

Theorem 4. Given (A1)-(A4), Lt = t and let Dt be the solution generated by Algorithm

1 at each time t. When t→∞,

• ft(Dt)− f̃t(Dt)
a.s.→ 0;

• ∇ft(Dt)
a.s.→ 0.

Accordingly, Dt is almost surely a stationary point of ft(.) when t tends to infinity.

The proof of this theorem follows intermediately Proposition 11 and Lemmas 12 and 13, to

be stated shortly. We detail their proofs in our appendix.

Lemma 11 (Key Properties). Given (A1)-(A4), Lt = t, and denote the error function

et := f̃t − ft. If {Dt,Ot,ut}∞t=1 is a sequence of variables generated by Algorithm 1, then

(a) Boundedness: {Dt,Ot,ut}∞t=1 are uniformly bounded;

(b) Forward Monotonicity: f̃t(Dt−1) ≥ f̃t(Dt);

(c) Backward Monotonicity: f̃t−1(Dt−1) ≤ f̃t−1(Dt);

(d) Stability of Estimates: ∥Dt −Dt−1∥F = O(1/t);

(e) Stability of Errors: |et(Dt)− et−1(Dt−1)| = O(1/t).

185

6.3. TENSOR TRACKING WITH SPARSE OUTLIERS

Proof Sketch. Part (a) can be derived from applying the same arguments of Proposition 11 in our

companion work [29]. Parts (b) and (c) are trivial due to the proposed BCD scheme. Part (d)

can be obtained by exploiting the Lipschitz continuity and multi-block convexity of the surrogate

function f̃t. We indicate Part (e) by using Part (d) and the Lipschitz continuity of f and f̃ .

Lemma 12 (Almost sure convergence). The sequence of {f̃t(Dt)}∞t=1 converges almost

surely as t→∞. The sequence of objective values {ft(Dt)}∞t=1 converges to the same limit

of its surrogate {f̃t(Dt)}∞t=1, i.e.,

ft(Dt)→ f̃t(Dt) a.s. (6.90)

Proof Sketch. We first prove that

∞∑
t=1

E
[
δtE
[
f̃t+1(Dt+1)− f̃t(Dt)

∣∣Ft

]]
<∞, (6.91)

where Ft = {Dτ ,Oτ ,uτ}0<τ≤t records all past estimates of RACP at time t and the indicator

function δt is defined as

δt
∆
=

1 if E
[
f̃t+1(Dt+1)− f̃t(Dt)

∣∣Ft

]
> 0,

0 otherwise.
(6.92)

Thanks to the quasi-martingale convergence theorem [343, page 51], (6.91) implies that {f̃t(Dt)}∞t=1

converges almost surely as t→∞.

We next prove {ft(Dt)}∞t=1 and {f̃t(Dt)}∞t=1 converge to the same limit by showing

∞∑
t=1

f̃t(Dt)− ft(Dt)

t+ 1
<∞. (6.93)

Since
∑∞

t=1
1

t+1 =∞ and
∣∣et(Dt)− et−1(Dt−1)

∣∣ = O(1/t), we obtain
∑∞

t=1 f̃t(Dt)− ft(Dt) <∞,
or

f̃t(Dt)→ ft(Dt) a.s., (6.94)

thanks to [120, Lemma 3].

186

6.3. TENSOR TRACKING WITH SPARSE OUTLIERS

Lemma 13 (Local convergence). When t→∞, Dt converges almost surely to a stationary

point of f̃∞(.) = limt→∞ f̃t(.):

∇f̃∞(Dt)→ ∇f∞(Dt)→ 0 a.s. (6.95)

Proof Sketch. We first indicate that

lim
t→∞

tr
[
(Dt −Dt+1)

⊤∇f̃t+1(Dt+1)
]
= 0, (6.96)

by showing
∑∞

t=1

∣∣∣ tr [(Dt −Dt+1)
⊤∇f̃t+1(Dt+1)

]∣∣∣ <∞.
Next, we prove that the following inequality

tr
[
(Dt −Dt+1)

⊤∇f̃t+1

(
Dt+1

)]
≤ c1

∥∥Dt+1 −Dt

∥∥2
F

+ c2 tr
[
(D−Dt)

⊤∇f̃t+1

(
Dt

)]
, (6.97)

holds for all D ∈ D where c1 and c2 are positive constants.

Then, we use proof by contradiction to indicate that

(
∇f̃∞(D∞)

)⊤
(D−D∞) ≥ 0, ∀D ∈ D. (6.98)

Accordingly, D∞ is a stationary point of f̃∞(.).

In order to prove ∇f̃t
(
Dt

) a.s.→ ∇ft
(
Dt

)
as t → ∞, we first exploit that ft(D + atV) ≤

f̃t(D+ atV) ∀D,V ∈ D and at, and then take its Taylor expansion at t→∞ to yield

f∞
(
D∞

)
+ tr

[
atV

⊤∇f∞
(
D∞

)]
+ o

(
atV

)
≤ f̃∞

(
D∞

)
+ tr

[
atV

⊤∇f̃∞
(
D∞

)]
+ o

(
atV

)
. (6.99)

As indicated in Lemma 12, f̃∞
(
D∞

)
= f∞

(
D∞

)
and thus

tr
[
atV

⊤∇f∞
(
D∞

)]
≤ tr

[
atV

⊤∇f̃∞
(
D∞

)]
.

Since the above inequality must hold for all V ∈ D and at, we obtain

∇f̃∞
(
D∞

)
= ∇f∞

(
D∞

)
. (6.100)

Together with (6.98), we can conclude that D∞ is a stationary point of the objective function

ft(.) as t→∞.

187

6.4. PERFORMANCE EVALUATION

6.3.3.3 Discussions

Our analysis follows the same framework to derive the convergence of adaptive/incremental algo-

rithms for online matrix/tensor factorization problems as in [25,29,106,120,121,176]. Therefore,

our main theoretical result is somehow similar to their results. However, there are several points

that make our convergence analysis different from theirs.

First, [120] is devoted to the problem of online dictionary learning and sparse coding. The

authors dealt with a LASSO-like cost function and required a preliminary uniqueness condition on

the sparse coding. The condition is important to ensure that the solution generated in the sparse

coding stage is unique, and to derive the Lipschitz property of the cost function. Particularly,

they suggested an elastic-net regularized term for enforcing the condition. Since the problem

formulation of RTT is different, our convergence analysis does not involve such issues. Moreover,

the missing data distinguishes our work from theirs.

The studies in [121] and [25] consider the problem of robust online PCA/subspace tracking

which can handle data corruptions (i.e., outliers and/or missing entries). These studies are

designed for tracking the time-variant subspace – an object different from ours – which leads

to some differences from our analysis. In particular, their main goal is to develop provable

algorithms for minimizing the expected cost function in an online manner, and then indicate

that their algorithm converges to a stationary point or global optimum under certain conditions.

Our optimization, however, minimizes an exponential weighted cost function constructed on the

latest data streams (i.e., tensor slices). Moreover, [121] does not require the solution derived

from the subspace update stage necessarily optimal, but full column rank only at each time t

(see [121, Theorem 1]). However, it is a sufficient condition on which we highly leverage in our

analysis. In addition, our object is a set of multiple loading factors, instead of a single subspace

matrix as in [25,121].

The studies most related to ours are those in [29, 106, 176], which also investigate the tensor

tracking problem. However, they consider only outlier-free streaming tensors. By contrast, we

here provide a more unified convergence analysis that is able to deal with both missing data

and outliers. Also, our results are stronger than those of [106, 176], being limited to the case of

third-order streaming tensors with β = 1.

6.4 Performance Evaluation

In this section, we provide several experiments on both synthetic and real data to demonstrate

the effectiveness of the proposed algorithms, ACP, ATD, and RACP. We also compare them

with several state-of-the-art algorithms to provide practical evidences of their effectiveness and

efficiency. All experiments are implemented on MATLAB a windows computer with an Intel

188

6.4. PERFORMANCE EVALUATION

Core i5-8300H and 16GB of RAM.12

6.4.1 Performance of ACP

We assess the performance of ACP w.r.t. the following aspects: (i) impact of algorithm pa-

rameters on its tracking ability; (ii) performance of ACP in non-stationary and time-varying

environments; (iii) effectiveness and efficiency of ACP as compared with other adaptive CP

algorithms.

6.4.1.1 Experiment Setup

According to the setup of OLSTEC [176], a time-varying model for streaming tensors is con-

structed as follows.

At t = 0, the loading factor U
(n)
t is generated at random whose entries are i.i.d. drawn from

the Gaussian distribution N (0, 1). At time t > 0, U(n)
t ∈ RIn×r is varied under the model

U
(n)
t = U

(n)
t−1Qt, (6.101)

where Qt ∈ Rr×r is a rotation matrix to control the variation of U(n) between instances t and

t− 1, which is defined by

Qt =

Ipt−1 0 0 0

0 cos(αt) − sin(αt) 0

0 sin(αt) cos(αt) 0

0 0 0 Ir−pt−1

, (6.102)

where pt = mod(t+ r − 2, r − 1) + 1 and αt is the rotation angle. Specifically, the higher value

of αt is, the faster the loading factor U(n) changes.

The t-th slice Y t with missing entries is then derived from the following model:

Y t = P t ⊛

(r{
U

(n)
t

}N−1

n=1
,u

(N)
t

z
+ σN t

)
, (6.103)

where P t is a binary mask tensor whose entries are generated randomly using the Bernoulli

model with the probability ρ, i.e., ρ represents the missing density in the measurement; N t is a

Gaussian noise tensor (with zero-mean, unit power entries) of the same size of Y t and the factor

σ is to control the noise level; and the weight vector u(N)
t is a Gaussian random vector living on

Rr space.

12Our codes are available at: https://github.com/thanhtbt/tensor_tracking/.

189

6.4. PERFORMANCE EVALUATION

10
-2

0.9
/10

10
-1

0.6 /45

10
0

/900.3
/180

0 /360

10
-2

10
-1

10
0

10
-2

0.9
/10

10
-1

0.6 /45

10
0

/900.3
/180

0 /360

10
-2

10
-1

10
0

Figure 6.3: Effect of the forgetting factor β on the performance of ACP versus the rotation angle
α.

In order to evaluate estimation accuracy, we measure the relative error (RE) metric defined

by

RE(Atr,Aes) =
∥Atr −Aes∥F
∥Atr∥F

, (6.104)

where Atr(resp. Aes) refers to the ground truth (resp. estimation)13.

6.4.1.2 Effect of Forgetting Factor β

The choice of β plays a central role in how effective and efficient ACP can be in nonstationary

environments. In order to investigate the effect of the forgetting factor, we vary the value of

β from 0 to 1 and measure estimation accuracy of ACP in different tests with regard to the

rotational angle α. Fig. 6.3 illustrates the experimental results of applying ACP to a synthetic

4-order tensor whose size is 20 × 20 × 20 × 500 and its rank r = 5. The noise level σ is set at

10−3, while the sketching parameter m is fixed at 10. It is clear that the optimal value of β

depends not only on the rotation angle α, but also on the missing density ρ. When β increases

from 0 to 1, the performance of ACP goes up first and then drops. As can be seen in Fig. 6.3

that the value of β should be around 0.5 for reasonable performance. Thus, we fix β = 0.5 in the

next experiments for. It is worth noting that in stationary environments, we can set the value

of β = 1 to achieve the best performance, please see Fig. 6.4 for an illustration.

13Due to the permutation and scaling indeterminacy of the CP decomposition, we can find Ues which is matched
with Utr from Ut, as follows: Ues = UtP

⊤D−1, where the permutation matrix P ∈ Rr×r and the diagonal matrix
D ∈ Rr×r are derived from minimizing the optimization argminD,P

∥∥Ut −UtrDP
∥∥2

F
.

190

6.4. PERFORMANCE EVALUATION

0 200 400 600 800 1000

10
-16

10
-8

10
0

(a) σ = 0

0 200 400 600 800 1000

10
-16

10
-8

10
0

(b) β = 1

Figure 6.4: Performance of ACP in stationary environments: Y t ∈ R20×20×20×1000, the true rank
r = 5, an abrupt change at t = 500.

6.4.1.3 Asymptotic Convergence Behavior

We next illustrate the convergence behavior of ACP in terms of the variation ∥Ut+1−Ut∥F and

the objective value ft(U t). We use the same 4-order tensor above but with 1000 tensor slices.

Two noise levels are considered (including σ = 0 and σ = 10−3), while the missing density ρ is

chosen among {10%, 30%, 50%}. The experiment results are shown as in Fig. 6.5. We can see

that convergence results agree with those stated in the proof sketch of Lemma 9.

6.4.1.4 Noisy and Dynamic Environments

First, the robustness of ACP is investigated against the noise variance. We test ACP’s tracking

ability on the same static 4-order tensor above with different values of the noise level σ. Fig. 6.6

shows that the value of σ does not affect the convergence rate of ACP, but only its estimation

error. Specifically, when we increase the noise level σ, the relative error (RE) between the ground

truth and estimation goes up gradually, but towards an error bound.

Next, we use the same tensor, but the number of slices is double for illustrating the robustness

of ACP against time-varying environments. In particular, the proposed algorithm is evaluated in

two scenarios, including a slow time-varying case (i.e., α = π/360) and a fast time-varying case

(i.e., α = π/45). Also, at time t = 600, we make an abrupt change in these models. In addition,

the missing density ρ is chosen among {10%, 30%, 50%}.

Experimental results indicate that ACP is capable of tracking streaming tensors in dynamic

environments, as shown in Fig. 6.7. In both scenarios, the relative error (RE) between the ground

truth and estimation always converges towards a steady state error bound. The missing density ρ

has only an influence on the convergence rate of ACP. Specifically, the lower the missing density

ρ is, the faster ACP converges.

191

6.4. PERFORMANCE EVALUATION

0 200 400 600 800 1000
10

-40

10
-20

10
0

(a) ft(U t): Noise-free

0 200 400 600 800 1000
10

-20

10
-10

10
0

(b) ∥Ut+1 −U∥F : Noise-free

0 200 400 600 800 1000

10
-5

10
0

10
5

(c) ft(U t): σ = 10−3

0 200 400 600 800 1000
10

-5

10
-2

10
1

(d) ∥Ut+1 −U∥F : σ = 10−3

Figure 6.5: Convergence behavior of ACP in terms of the objective values ft(U t) and ∥Ut+1 −
Ut∥F .

6.4.1.5 Evaluation of Effectiveness and Efficiency

To demonstrate the effectiveness and efficiency of our algorithm, we compare performance of ACP

in terms of estimation accuracy and running time with the state-of-the-art adaptive CP decom-

positions for incomplete tensors, including OLSTEC [176], CP-PETRELS [215], TeCPSGD [106].

For a fair comparison, parameters of these algorithms are fine-tuned carefully to achieve good

performance. Particularly, the forgetting factor λ is set at 0.7, 0.001, and 0.98, respectively, for

OLSTEC, TeCPSGD and CP-PETRELS. Moreover, OLSTEC and TeCPSGD are also dependent

on a regularization parameter µ which is set at 10−3 and 10−1 respectively.

Since these algorithms are capable of tracking 3-order tensors only, we use synthetic streaming

tensors of size N ×N × 1000 in this task. The noise level is fixed at σ = 10−3. Performance of

these algorithms is evaluated on a small tensor 20×20×1000 and a big tensor 200×200×1000.

Results are shown in Figs. 6.8 and 6.9. We can see that OLSTEC and ACP provide comparative

estimation accuracy. In terms of running time, ACP is several times faster than OLSTEC,

especially in big tensor tests. TeCPSGD is a fast adaptive algorithm, but yields lower estimation

accuracy as compared to ACP and OLSTEC, while CP-PETRELS gives the worst accuracy as

192

6.4. PERFORMANCE EVALUATION

0 100 200 300 400 500
10

-10

10
-5

10
0

0 100 200 300 400 500
10

-10

10
-5

10
0

Figure 6.6: Effect of the noise level σ on the performance of ACP.

0 200 400 600 800 1000

10
-2

10
-1

10
0

0 200 400 600 800 1000

10
-2

10
-1

10
0

Figure 6.7: Time-varying scenarios: ACP’s tracking ability versus the missing density ρ and the
rotation angle α: The noise level σ = 10−3 and an abrupt change at t = 600.

well as running time.

6.4.2 Performance of ATD

The following experiments will evaluate the ability of ATD for the problem of tensor tracking.

193

6.4. PERFORMANCE EVALUATION

0 200 400 600 800 1000

10
-2

10
-1

10
0

0 200 400 600 800 1000

10
-2

10
-1

10
0

Figure 6.8: Tracking ability of four adaptive CP algorithms in a time-varying scenario with 50%
missing observations: The tensor of size 20 × 20 × 1000, the noise level σ = 10−3, the rotation
angle α = π/360 and an abrupt change at t = 600.

20 200 20 200 20 200 20 200

0

0.3

0.6

0.9

20 200 20 200 20 200 20 200

0

30

60

90

Figure 6.9: Performance of four adaptive CP algorithms on synthetic 3-order tensors: The noise
level σ = 10−3 and the rotation angle α = π/360.

6.4.2.1 Experimental Setup

Follow the setup above, the incomplete slice Y t at time t is generated randomly using the

following model:

Y t = P t ⊛

(r
Gt;
{
U

(n)
t

}N−1

t=1
,u

(N)
t

z
+ σN t

)
, (6.105)

where the loading factor U
(n)
t and the core tensor Gt are updated by the following rules

U
(n)
t = U

(n)
t−1 + εN

(n)
t and Gt = Gt−1 + εV t, (6.106)

194

6.4. PERFORMANCE EVALUATION

0 100 200 300 400 500

10
-4

10
-2

10
0

0 100 200 300 400 500

10
-8

10
-4

10
0

Figure 6.10: Performance of ATD versus the missing density ρ and the noise level σ: On the
4-order tensor of size 20× 20× 20× 500 and its Tucker rank rTD = [3, 3, 3, 3].

where U
(n)
0 ,N

(n)
t ∈ RIn×rn and V t ∈ Rr1×r2×···×rN are the Gaussian noises whose entries are

distributed i.i.d from N (0, 1) and the time-varying factor ε is to control their variation.

Besides the relative error (RE) metric, we also use the subspace estimation performance

(SEP) [62] metric to evaluate the subspace estimation accuracy, which is defined by

SEP(Utr,Ues) =
tr
(
U#

es(I−UtrU
#
tr)Ues

)
tr
(
U#

es(UtrU
#
tr)Ues

) , (6.107)

where Utr(resp. Ues) refers to the true loading factor (resp. estimated factor). The lower value

of SEP is, the better accuracy the algorithm achieves.

6.4.2.2 Robustness of ATD

In order to demonstrate the robustness of ATD against data corruption, we change the number

of missing entries in the measurement by varying the value of ρ and evaluate its performance on

different noise levels. We also compare ATD with three well-known batch Tucker algorithms for

tensor completion, including iHOOI [344], ALSaS [344], and WTucker [345]. These algorithms

are iterative-based, so their procedure will be stopped when the accuracy tolerance tol or the

maximum iteration ITERmax has been met. For convergence guarantee, we fix the value of tol

at 10−4, while the value of ITERmax is set at 500, 500, and 100, respectively, for iHOOI, ALSaS

and WTucker. For ATD, the forgetting factor λ is fixed at 0.7 in the following experiments.

In this task, we use a static tensor of size 20×20×20×500 (i.e., the time-varying factor ε = 0)

whose core is generated at random from a Gaussian distribution of zero-mean and unit variance.

Under the Tucker model with rTD = [3, 3, 3, 3], performance of ATD on the tensor is illustrated

195

6.4. PERFORMANCE EVALUATION

Table 6.1: Performance of Tucker algorithms on a static 4-order tensor of size 20× 20× 20× 500
and the noise level σ = 10−2.

Rank [3, 3, 3, 3] [10, 10, 10, 10]

Missing ρ = 50% ρ = 70% ρ = 50% ρ = 70%

Metric RE(X) SEP(U) Time(s) RE(X) SEP(U) Time(s) RE(X) SEP(U) Time(s) RE(X) SEP(U) Time(s)

iHOOI 3.0e-4 4.2e-8 88.1 8.1e-4 4.7e-7 345.3 9.1e-2 5.1e-4 192.9 3.5e-1 1.3e-2 571.5

ALSaS 3.1e-4 4.3e-8 109.9 7.8e-4 4.9e-7 539.5 1.0e-4 2.8e-9 719.1 8.3e-4 3.4e-8 3754.6

WTucker 2.1e-4 2.4e-8 209.1 3.5e-4 1.3e-7 597.4 3.7e-5 2.8e-10 241.2 5.0e-5 3.3e-10 631.7

ATD 6.4e-5 7.6e-9 2.5 1.8e-4 1.4e-8 5.7 1.7e-5 6.8e-11 21.7 3.2e-5 2.5e-10 58.2

in Fig. 6.10. Results show that ATD can successfully track the multilinear low-rank model in

all test cases. Similar to ACP, the missing density ρ has influence only on the convergence rate

of ATD, i.e., the higher the value of ρ is, the slower ATD converges. Performance comparison

among Tucker algorithms is reported statistically in Tab. 6.1 and shown in Fig. 6.11. Results

indicate that ATD is the fastest algorithm, much faster than the state-of-the-art algorithms.

For instance, when dealing with the case of 50% missing observations and rTD = [3, 3, 3, 3], the

running time of ATD is only 2.51 seconds and 35 times faster than the second-fastest algorithm,

iHOOI. Moreover, ATD always provides good estimation accuracy in terms of both SEP metric

and RE metric as compared to that of the batch algorithms.

6.4.2.3 Tracking Ability in Dynamic Environments

We continue to investigate the tracking ability of ATD in nonstationary and time-varying en-

vironments by changing the time-varying factor ε in the range [10−4, 10−1]. We use the same

tensor dimensions as in the previous task. Also, we create a significant subspace change at time

t = 300 to see how fast ATD can converge. Fig. 6.12 shows the convergence behavior of ATD

versus the time-varying factor ε. We can see that the convergence rate of ATD is not affected

by ε but only its estimation error.

6.4.2.4 Orthogonality Constraint

In practice, Tucker decomposition is often considered with orthogonality constraints on the load-

ing factors. The unconstrained ATD can be recast into an orthogonal ATD while retaining the

equivalent approximation error. To demonstrate this point, we set up a time-varying scenario

196

6.4. PERFORMANCE EVALUATION

0 100 200 300 400 500

10
-5

10
-2

10
1

0 100 200 300 400 500

10
-8

10
-4

10
0

0 100 200 300 400 500
10

-3

10
-1

10
1

Figure 6.11: Performance of Tucker algorithms in the case where 50% entries are observed and
Tucker rank rTD = [3, 3, 3, 3], and the noise level σ = 10−2.

and compare the performance of ATD and ATD with the orthogonalization step, called ATD-O.

Fig. 6.12 indicates that the convergence rate of ATD-O is slightly better than that of the uncon-

strained ATD, but both yield the same error floor. Due to space limitation, we here omit results

with ATD-O and presents only those of ATD.

6.4.2.5 Real Data

To demonstrate the effectiveness of our algorithms on real datasets, we consider two related

applications: video completion and multichannel EEG analysis.

Video Completion. In this task, four real video surveillance sequences are used, including

Highway, Hall, Lobby and Park14. Specifically, Highway contains 1700 frames of size 320× 240

pixels. Hall has 3584 frames of size 174 × 144 pixels. Lobby consists of 1546 frames of size

128× 160 pixels. Park includes 600 frames of size 288× 352 pixels.

We first investigate the effect of the forgetting factor λ on the reconstruction performance of

the two proposed algorithms for video completion. Particularly, the value of λ and the missing

ratio ρ are varied from 0.1 to 0.9. The CP rank and Tucker rank are set at 10 and [10, 10, 10],

respectively. Experimental results from Fig. 6.14 indicate that the performance of ACP and

ATD is not much affected by the forgetting factor. For this task, we therefore keep the value of

λ at 0.5 as in previous experiments on synthetic data.

14Video sequences: http://jacarini.dinf.usherbrooke.ca/

197

6.4. PERFORMANCE EVALUATION

0 100 200 300 400 500

10
-8

10
-4

10
0
0 100 200 300 400 500

10
-3

10
-1

10
1

Figure 6.12: Effect of the time-varying factor ε on the performance of ATD: Tucker rank [3, 3, 3, 3],
90% entries are observed, the noise level is σ = 10−2 and an abrupt change at t = 300.

We next compare our algorithms with OLSTEC [176], TeCPSGD [106] and CP-PETRELS

[215]. We set the value of λ at 0.7, 0.001 and 0.999, respectively, for OLSTEC, TeCPSGD

and CP-PETRELS. Besides, OLSTEC and TeCPSGD are also depended on the regularization

parameter µ which value is fixed at 0.1. Performance of these algorithms is shown statistically in

Tab. 7.1 and graphically in Fig. 6.15. We can see that ATD outperforms adaptive CP algorithms

in almost all tests. ACP also provides reasonable estimation accuracy on these data as compared

to others. CP-PETRELS seems to fail to track video background and thus recovers missing data

unsuccessfully. With respect to the running time, experimental results indicate that ACP is the

fastest adaptive tensor decompositions.

Multichannel EEG Analysis. We follow the experimental framework in [292, 346] to

illustrate the use of ACP for analyzing multichannel EEG signals. In this task, we use a public

EEG dataset collected on 14 subjects during the stimulation of hands15. The EEG signals are

recorded using a system of 64 channels (electrodes) and we have 28 measurements per subject

in total.

We construct three-order EEG tensor of measurement × channel × time-frequency by taking

continuous wavelet transform to each EEG channel. Note that, the resulting time-frequency

representations are reshaped into vectors of length 4392 and hence being streamed. In a nutshell,

we have the EEG tensor whose size is 28×64×4392 and its rank is set at 3 as provided in [292,346].

At each time, data of 20 (and 40) channels are supposed to be discarded randomly for our missing

observation purpose.

15EEG data: http://www.erpwavelab.org/index.htm

198

6.4. PERFORMANCE EVALUATION

0 100 200 300 400 500

10
-2

10
-1

10
0

0 100 200 300 400 500
10

-5

10
-2

10
1

Figure 6.13: Comparison of ATD and ATD-O (orthogonality constraint) in a dynamic scenario:
the time-varying factor ε = 10−2, the noise level σ = 10−3, 70% observations are observed and
an abrupt change at t = 300.

We evaluate the performance of ACP in a comparison with the adaptive NL-PETRELS al-

gorithm in [292] and the batch CP-WOPT algorithm in [346]. To have a good initialization for

NL-PETRELS, the 1500 first slices are used to construct the training tensor. Also, the forgetting

factor λ is set at 0.999. By contrast, ACP is not as sensitive to initialization conditions, so it is

initialized at random. We consider results obtained by using the batch algorithm as our ground

truth.

Under the CP model with rCP = 3, taking the tensor decomposition to the EEG tensor results

in three loading factors A ∈ R28×3, B ∈ R64×3 and C ∈ R4392×3 corresponding to, respectively,

the measurement, channel and time-frequency modes. Fig. 6.16 illustrates the estimation of

A,B and C using CP-WOPT, NL-PETRELS and ACP. In particular, we use bar plots and 3D

head plots to represent the column vectors of A and B, while the time-frequency representations

corresponding to the columns of C are plotted as matrices. We can see from Fig. 6.16 that

both adaptive algorithms are capable of tracking three EEG loading factors. Indeed, our ACP

provides a slightly better estimation as compared to that of CP-WOPT. However, in the presence

of highly incomplete observations (e.g. 40 channels are missing), NL-PETRELS fails to estimate

the EEG loading factors while our ACP algorithms still works well, as shown in Fig 6.17.

6.4.3 Performance of RACP

We here provide several experiments on both synthetic and real data to demonstrate the effec-

tiveness of RACP and its variant. In particular, the performance of our method is evaluated

in comparison with the-state-of-the-art algorithms with respect to the following aspects: (i) im-

199

6.4. PERFORMANCE EVALUATION

10 20 30 40 50 60 70 80 90

Missing ratio (%)

0.1

0.3

0.5

0.7

0.9
0.15

0.2

0.25

0.3

0.35

(a) ACP: Averaged Reconstruction Error

10 20 30 40 50 60 70 80 90

Missing ratio (%)

0.1

0.3

0.5

0.7

0.9
0.1

0.12

0.14

0.16

(b) ATD: Averaged Reconstruction Error

0 500 1000 1500

10
-1

10
0

 = 0.1

 = 0.2

 = 0.3

 = 0.4

 = 0.5

 = 0.6

 = 0.7

 = 0.8

 = 0.9

 = 1

(c) ACP: full observations

0 500 1000 1500

10
-1

10
0

 = 0.1

 = 0.2

 = 0.3

 = 0.4

 = 0.5

 = 0.6

 = 0.7

 = 0.8

 = 0.9

 = 1

(d) ATP: full observations

0 500 1000 1500

10
-1

10
0

 = 0.1

 = 0.2

 = 0.3

 = 0.4

 = 0.5

 = 0.6

 = 0.7

 = 0.8

 = 0.9

 = 1

(e) ACP: 50% observations

0 500 1000 1500

10
-1

10
0

 = 0.1

 = 0.2

 = 0.3

 = 0.4

 = 0.5

 = 0.6

 = 0.7

 = 0.8

 = 0.9

 = 1

(f) ATD: 50% observations

Figure 6.14: Effect of the forgetting factor β on the video completion accuracy of ACP and ATC
on Lobby data.

pact of outliers, (ii) impact of missing data, and (iii) tracking ability in noisy and time-varying

environments.

6.4.3.1 Experiment Setup

At t = 0, the loading factor U
(n)
0 ∈ RIn×r, n = 1, 2, . . . , N is randomly initialized whose entries

are i.i.d. from a normal distribution N (0, 1). When t ≥ 1, U
(n)
t is varied according to the

following model:

U
(n)
t = U

(n)
t−1 + ϵN

(n)
t , (6.108)

200

6.4. PERFORMANCE EVALUATION

(a) Lobby video: 50% missing. (b) Lobby video: Performance of ATD.

(c) Hall video: 50% missing. (d) Hall video: Performance of ATD.

Figure 6.15: Performance of adaptive tensor completion algorithms on the video sequences.

1 24 48 72

1

20

40

60

1 7 14 21 28

-0.5

0

0.5

1.0

1.5

1 24 48 72

1

20

40

60

1 7 14 21 28

-0.5

0

0.5

1.0

1.5

1 24 48 72

1

20

40

60

1 7 14 21 28

-1.0

0

1.0

(a) CP-OPT (Batch)

1 24 48 72

1

20

40

60

1 7 14 21 28

-0.5

0

0.5

1

1.5

1 24 48 72

1

20

40

60

1 7 14 21 28

-0.5

0

0.5

1.0

1.5

1 24 48 72

1

20

40

60

11 7 14 21 28

-1.0

0

1.0

(b) NL-PETRELS (Adaptive)

1 24 48 72

1

20

40

60

1 7 14 21 28

-0.5

0

0.5

1.0

1.5

1 24 48 72

1

20

40

60

1 7 14 21 28

-0.5

0

0.5

1.0

1.5

1 24 48 72

1

20

40

60

1 7 14 21 28

-1.0

0

1.0

(c) ACP (Adaptive)

Figure 6.16: Waveform-preserving character of ACP on the EEG tensor: 20 channels are missing.

where N
(n)
t is a Gaussian noise matrix (with zero-mean and unit-variance), and ϵ is a positive

time-varying factor used to control the variation of U(n) between t and t− 1.

The t-th slice Y t is then generated under the data model

Y t = P t ⊛

(r{
U

(n)
t

}N−1

n=1
,u

(N)
t

z
+Ot +N t

)
, (6.109)

where P t is a binary observation mask according to a Bernoulli distribution with probability

of observing data 1 − ωmiss, N t is a Gaussian noise tensor with i.i.d. entries N (0, σ2n), Ot is

201

6.4. PERFORMANCE EVALUATION

Methods TeCPSGD OLSTEC CP-PETRELS ACP ATD

D
at

as
et

Si
ze

M
is

si
ng

R
E
(X

)

T
im

e(
s)

R
E
(X

)

T
im

e(
s)

R
E
(X

)

T
im

e(
s)

R
E
(X

)

T
im

e(
s)

R
E
(X

)

T
im

e(
s)

Hi
gh

wa
y

32
0
×
24
0
×
1
70
0

10% 0.2057 36.582 0.1693 132.02 0.9250 451.41 0.2178 14.437 0.1484 36.587

50% 0.2111 35.252 0.1709 95.188 0.9346 273.98 0.2251 13.295 0.1526 33.269

90% 0.2256 27.103 0.1849 54.246 0.9224 107.79 0.2725 13.017 0.1964 26.996

Ha
ll

17
4
×
14
4
×
35
8
4

10% 0.1456 15.060 0.1247 83.789 0.9819 339.10 0.1457 11.852 0.1006 36.293

50% 0.1450 14.916 0.1260 74.869 0.9269 188.15 0.1602 11.808 0.1045 31.576

90% 0.1614 12.532 0.1497 47.235 0.9281 71.576 0.2341 11.897 0.1426 25.047

Lo
bb

y

12
8
×
1
60
×
15
46

10% 0.1324 5.672 0.1213 29.490 0.9161 107.44 0.1258 4.613 0.0868 14.590

50% 0.1452 4.920 0.1228 21.940 0.8596 61.051 0.1881 4.711 0.0884 10.630

90% 0.1733 4.022 0.1530 14.701 0.9736 22.150 0.2602 3.811 0.1333 9.245

Pa
rk

28
8
×
35
2
×
6
00 10% 0.1057 10.303 0.0905 49.213 0.9945 186.28 0.1270 6.458 0.0686 16.157

50% 0.1246 9.940 0.0916 33.660 0.9892 127.30 0.1441 5.825 0.0759 14.052

90% 0.1369 8.497 0.1006 22.031 0.9627 50.435 0.2001 5.179 0.1122 10.966

Table 6.2: Performance of adaptive tensor decompositions on video data.

a sparse outlier tensor whose entries are drawn uniformly from the range [0, Aoutlier] and the

indices of outliers also follow a Bernoulli distribution with probability ωoutlier, and ut ∈ Rr×1

is a standard normal random vector.

6.4.3.2 Robustness of RACP

We first investigate the robustness of RACP against gross data corruptions. Specifically, we

change the density of outliers and missing data, and then measure the relative error between the

ground truth and RACP’s estimation.

In this task, we use a synthetic 4th-order streaming tensor of size 20× 20× 20× 1000 and the

CP rank is set at r = 2 and r = 5. The noise level σn and the time-varying factor ϵ are fixed

at 10−3 and 10−2, respectively. We consider the case where the underlying data is corrupted by

strong outliers with Aoutlier = 10. The fraction of outliers (ωoutlier) and missing data (ωmiss)

202

6.4. PERFORMANCE EVALUATION

1 24 48 72

1

20

40

60

1 7 14 21 28

-0.5

0

0.5

1.0

1.5

1 24 48 72

1

20

40

60

1 7 14 21 28

-0.5

0

0.5

1.0

1.5

1 24 48 72

1

20

40

60

1 7 14 21 28

-1.0

0

1.0

(a) CP-OPT (Batch)

1 24 48 72

1

20

40

60

1 7 14 21 28

-0.5

0

0.5

1.0

1.5

1 24 48 72

1

20

40

60

1 7 14 21 28

-0.5

0

0.5

1.0

1.5

1 24 48 72

1

20

40

60
1 7 14 21 28

-1.0

0

1.0

(b) NL-PETRELS (Adaptive)

1 24 48 72

1

20

40

60

1 7 14 21 28

-0.5

0

0.5

1.0

1.5

1 24 48 72

1

20

20

60

1 7 14 21 28

-0.5

0

0.5

1.0

1.5

1 24 48 72

1

20

40

60

1 7 14 21 28

-1.0

0

1.0

(c) ACP (Adaptive)

Figure 6.17: Waveform-preserving character of ACP on the EEG tensor: 40 channels are missing.

10 30 50 70 90

10

30

50

70

90

(a) r = 2

10 30 50 70 90

10

30

50

70

90

(b) r = 5

Figure 6.18: Effect of data corruptions (outliers and missing values) on performance of RACP.
Black color denotes failure, white color denotes perfect estimation, and gray color is in between.

are varied in the range [5%, 95%]. Throughout our experiments, the forgetting factor λ is fixed

at 0.5 while the window length is Lt = t.

Phase transitions w.r.t. the pair of {ωoutlier, ωmiss} are shown in Fig. 6.18. The results

indicate that there is a large region in which our estimation was successful. Particularly, RACP

worked well when the number of “clean" data is large enough. In the presence of huge data

corruptions (e.g., ωoutlier ≥ 70% and/or ωmiss ≥ 70%), the proposed algorithm failed to track

the underlying tensor model.

Next, we evaluate the tracking ability of RACP in time-varying environments. The two

synthetic rank-5 tensors of size 20 × 20 × 20 × 1000 and 20 × 20 × 20 × 20 × 1000 are used in

this task. The fraction of missing entries and sparse outliers are both set to 5%. The outlier

intensity Aoutlier and the noise factor σn are fixed at 10 and 10−4, respectively. The value of

203

6.4. PERFORMANCE EVALUATION

0 250 500 750 1000

10
-4

10
-2

10
0

(a) 4th-order: 20× 20× 20× 1000

0 250 500 750 1000

10
-4

10
-2

10
0

(b) 5th-order: 20× 20× 20× 20× 1000

Figure 6.19: Performance of RACP in time-varying environments.

the time-varying factor ϵ is varied from [10−4, 10−1]. An abrupt change is created at t = 600 to

assess how fast RACP converges. We can see from Fig. 7.12 that RACP’s convergence rate is

not much affected by the value of ϵ but its estimation accuracy.

To demonstrate the effectiveness of the proposed algorithm, we compare the performance of

RACP with the state-of-the-art adaptive CP decompositions, including TeCPSGD [106], OL-

STEC [176], and ACP [29]. To have a fair comparison, algorithm parameters are set by default

as suggested by their authors. These algorithms are dependent on a forgetting factor; we set

its value at 0.7, 0.001, and 0.5 for OLSTEC, TeCPSGD, and ACP, respectively. The penalty

parameter is set at 10−3 and 10−1 for OLSTEC and TeCPSGD, respectively.

Since OLSTEC and TeCPSGD are only capable of tracking third-order streaming tensors, we

here use a synthetic streaming tensor of size 20× 20× 1000 and its rank is fixed at 5. The noise

level and time-varying factor are both kept at 10−2. Performance comparison results are shown

in Figs. 6.20 and 6.21.

Fig. 6.20 illustrates the impact of the outlier intensity on the performance of the four adaptive

CP algorithms in the presence of 10% missing data and 20% outliers. When the outlier intensity is

small, all algorithms could track the underlying tensor model over time, as shown in Fig. 6.20(a).

Indeed, TeCPSGD yielded a worse estimation than the three remaining adaptive CP algorithms.

In the presence of strong outliers, the state-of-the-art adaptive CP algorithms failed to update

the tensor basis and recover the corrupted tensor slice. By contrast, our RACP algorithm still

worked well, as shown in Fig. 6.20(b). Fig. 6.21 illustrates the impact of the outlier density on

the performance of RACP against the three adaptive CP algorithms when the missing density

ωmiss = 10% and outlier intensity Aoutlier = 10. We can see that RACP outperformed OLSTEC,

TeCPSGD, and ACP in all testing cases. Similar to the case study of strong outliers, the state-

204

6.4. PERFORMANCE EVALUATION

0 250 500 750 1000
0

0.5

1

0 250 500 750 1000

10
-2

10
0

10
2

(a) Aoutlier = 1 (small)

0 250 500 750 1000
0

0.5

1

0 250 500 750 1000

10
-2

10
0

10
2

(b) Aoutlier = 10 (strong)

Figure 6.20: Impact of outlier intensity (Aoutlier) on performance of adaptive CP algorithms;
ωmiss = 10%, ωoutlier = 20%, σ = 10−2, ε = 10−2.

of-the-art adaptive algorithms were unable to track the streaming tensors when the number of

outliers is large.

We next investigate the performance of RACP when the loading factors are not normal in

comparison with other adaptive CP algorithms. In particular, the initial factors {U(n)
0 }Nn=1 are

sampled from a uniform distribution on the (0, 1) interval instead of Gaussian one. The time-

varying model (6.108) is replaced with U
(n)
t = U

(n)
t−1 + ϵN

(n)
t where N

(n)
t is also an i.i.d. uniform

random matrix from 0 to 1. The parameter specifications are kept as in the previous experiment.

Results are illustrated in Fig. 6.22. We can see that the proposed RACP algorithm still tracks

successfully the loading factors along the time while the state-of-the-art CP algorithms failed.

Experimental results in Figs. 6.20, 6.21, and 6.22 suggest that the outlier rejection step (e.g.

Step 1 in RACP) using the ADMM solver plays an important role in the tracking process when

observations are corrupted by sparse outliers. Therefore, we next evaluate the effectiveness of

the proposed outlier rejection by applying the ADMM solver to other trackers: TeCPSGD and

OLSTEC. We here reuse the experiment setup above and create an abrupt change at t = 600. We

can see from Fig. 6.23 that the combination of the ADMM solver and OLSTEC resulted in the

best convergence rate and estimation accuracy. This is probably due to the effectiveness of the

second-order estimator in slowly time-varying environments. Our RACP provided a reasonable

performance compared to that of OLSTEC, while TeCPSGD tracker did not work well. It

should note that OLSTEC is designed for only 3rd-order streaming tensors and its computational

205

6.4. PERFORMANCE EVALUATION

0 250 500 750 1000
0

0.5

1

0 250 500 750 1000

10
-2

10
0

10
2

(a) ωoutlier = 10%

0 250 500 750 1000
0

0.5

1

0 250 500 750 1000

10
-2

10
0

10
2

(b) ωoutlier = 50%

Figure 6.21: Impact of outlier density (ωoutlier) on performance of adaptive CP algorithms:
ωmiss = 10%, σ = 10−2, ε = 10−2, Aoutlier = 10.

complexity is high indeed. Our tracker is much faster and capable of dealing with higher-order

streaming tensors. We refer the readers to our companion work in [29] for further comparisons

of ACP against TeSGD and OLSTEC.

Finally, we conduct a performance comparison between the original RACP and its variant in

which the step of re-updating P t defined as in (6.61) is used. We reuse the two rank-5 tensors

of size 20 × 20 × 20 × 1000 and 20 × 20 × 20 × 20 × 1000. The fraction of missing entries is

fixed at 10%. We set the outlier density and intensity to 10% and 10, respectively. The noise

and time-varying factors are kept at 10−2 and an abrupt change at t = 600 is also created as

in previous experiments. The results are illustrated in Fig. 6.24. As can be seen the outlier

rejection mechanism can help improve the convergence rate of RACP.

6.4.3.3 Nonnegative RACP

We reuse the experiment setup in Section 6.4.3.1, but the time variation of U(n) ⪰ 0 is modified

as

U
(n)
t = abs

(
U

(n)
t−1 + ϵN

(n)
t

)
, (6.110)

where abs(·) denotes the absolute value, N(n)
t is a Gaussian noise matrix with i.i.d. entries, and

ϵ is to control the variation.

206

6.4. PERFORMANCE EVALUATION

0 250 500 750 1000

10
-2

10
0

10
2

(a) ωmiss = ωoutlier = 5%

0 250 500 750 1000

10
-2

10
0

10
2

(b) ωmiss = ωoutlier = 20%

Figure 6.22: Non-Gaussian loading factors.

We first investigate the performance of NRACP against time-varying environments. A syn-

thetic rank-5 nonnegative tensor of size 50 × 50 × 50 × 1000 is used in this task. We consider

the case where 10% of the measurements are corrupted by outliers with Aoutlier = 10 and the

noise level is σn = 10−3. An abrupt change at t = 600 is created to evaluate how fast NRACP

converges. The results are shown in Fig. 6.25. We can see that the relative error between the

estimation and ground truth converged to an error floor. Furthermore, the missing density ωmiss
impacted only the convergence rate of NRACP. Specifically, the lower the missing density ωmiss
was, the faster NRACP converged.

Next, we study the robustness of NRACP against the noise variance in comparison with

NSOAP [174] and NsTEF [347]. Since both two algorithms are only feasible for third-order

tensors without corruptions (outliers and missing values), we use a synthetic outlier-free tensor

of size 50× 50× 1000 and rank 5 for this task. The time-varying factor ϵ is set at 10−3. Perfor-

mance comparison results are illustrated in Fig. 6.26. At a low SNR, NSOAP provided a better

estimation accuracy than NRACP and NsTEF. However, the proposed NRACP outperformed

NSOAP and NsTEF at the high SNR, see Fig. 6.26(b). In the presence of abrupt changes, the

convergence rate of NRACP was fast while NSOAP and NsTEF failed to track the change.

6.4.3.4 Real Datasets

To demonstrate the use of RACP with real-world datasets, we consider the following tasks: (i)

tracking the online low-rank approximation of real-world data streams, (ii) multichannel EEG

analysis, and (iii) video background modeling and foreground detection. Please see Tab. 6.3 for

a summary of real datasets used in this paper.

207

6.4. PERFORMANCE EVALUATION

0 250 500 750 1000

10
-2

10
0

10
2

(a) ωmiss = ωoutlier = 5%

0 250 500 750 1000

10
0

(b) ωmiss = ωoutlier = 20%

Figure 6.23: Outlier rejection with different trackers.

Table 6.3: Real datasets under the study.

Dataset Data size Tasks

Intel Berkeley Lab 54× 4× 1152 Tracking the online
low-rank approximation

& online data completion
Internet Traffic 12× 12× 48384

Taxi Trip Record 265× 265× 3672

Video

Hall 176× 144× 3584
Background modeling
& foreground detection

Lobby 128× 160× 1546

Highway 240× 320× 1700

EEG
ERPWAVELAB 28× 64× 4392 Multichannel EEG analysis

& anomaly EEG detectionEpileptic data 19× 500× 6929

Task 1: Tracking the online low-rank approximation and online data completion

Datasets: In this task, we use three real datasets: Intel Berkeley Lab16, Internet Traffic17,

and Taxi Trip Record18. The first dataset is a collection of timestamped topology information

gathered from 54 positions (sensors) in the Intel Berkeley Research Lab. Specifically, these

sensors collected: temperature (in degree Celsius), humidity (ranging from 0% to 100%), light

(in Lux), and voltage (in volt, ranging from 2 to 3). Accordingly, we represent the sensor data by

a three-order tensor of size 54×4×1152 (i.e., sensor×measurement× time). The second dataset

is the link traffic data which was collected from the Internet2 backbone network Abilene. The

16Intel Berkeley Lab: http://db.csail.mit.edu/labdata/labdata.html
17Internet Traffic: https://roughan.info/project/traffic_matrix/
18Taxi Record: https://www1.nyc.gov/site/tlc/about/tlc-trip-record-data.page

208

6.4. PERFORMANCE EVALUATION

0 250 500 750 1000

10
-2

10
0

10
2

(a) 4th-order: 20× 20× 20× 1000

0 250 500 750 1000

10
-2

10
0

10
2

(b) 5th-order: 20× 20× 20× 20× 1000

Figure 6.24: Convergence rate of RACP and its modification with the re-update of P t as defined
in (6.61): ωmiss = 10%, ωoutlier = 10%, Aoutlier = 10, σ = 10−2, and ε = 10−2.

0 250 500 750 1000
10

-4

10
-2

10
0

10
2

Figure 6.25: Incomplete observations & time-varying scenarios: Performance of NRACP on a
synthetic rank-5 tensor of size 50× 50× 50× 500; σn = 10−3, Aoutlier = 10, ωoutlier = 10%.

Abilene backbone is relatively small with 12 routers, 15 links, and 144 flow entries in each traffic

matrix of size 12×12. We concatenate all these traffic matrices into a tensor of size 12×12×48384.
The third dataset describes yellow taxis trip records in the pairs of 265 pick-up and drop-off sites

in New York. Each trip record contains several attributes, such as pick-up/drop-off times and

locations, elapsed trip distance, rate type, and payment method. In this work, we specifically

construct a third-order tensor of size 265× 265× 3672 (i.e., origin× destination× time).

Experiments & Results: Following the same experiment setup in subsection 6.4.3.1, data cor-

ruptions are generated as follows. The locations of missing entries and sparse outliers are ran-

209

6.4. PERFORMANCE EVALUATION

0 250 500 750 1000
10

-3

10
-1

10
1

(a) σn = 10−1, ϵ = 10−3

0 250 500 750 1000
10

-3

10
-1

10
1

(b) σn = 10−3, ϵ = 10−3

Figure 6.26: Nonnegative adaptive CP decompositions: Outliers-free, full observations and an
abrupt change at t = 600.

2 4 6 8 10

10
-3

10
-1

10
1

(a) Performance of RACP with different values of tensor rank

0 200 400 600 800 1000

10
-3

10
-1

10
1

(b) Performance of adaptive CP algorithms with tensor rank r = 6

Figure 6.27: Experimental results on the Intel Berkeley Lab data.

domly generated with probabilities ωmiss and ωoutlier, respectively. Outlier’s values are drawn

uniformly from the range [0,max(X)] where max(X) is the largest absolute value in the under-

lying data X . In this experiment, we choose the value of ωmiss and ωoutlier among the range

{5%, 10%, 20%, 40%}. As the true rank is unknown, we first vary its value from 2 to 10 and then

210

6.4. PERFORMANCE EVALUATION

(5%,5%) (10%,10%) (20%,20%) (40%,40%)
10

-3

10
-1

10
1

(a) Intel Berkeley Lab: Estimated rank r = 6

(5%,5%) (10%,10%) (20%,20%) (40%,40%)
10

-3

10
-1

10
1

(b) Internet Traffic: Estimated rank r = 3

(5%,5%) (10%,10%) (20%,20%) (40%,40%)
10

-3

10
-1

10
1

(c) Taxi Trip Record: Estimated rank r = 8

Figure 6.28: Completion accuracy of adaptive CP algorithms on real-world data streams.

choose the “best” one based on the averaged reconstruction error, see Fig. 6.27(a) for an example.

We compare the performance of RACP against the two adaptive CP algorithms TeCPSGD [106]

and OLSTEC [176]. Both algorithms are dependent on the forgetting factor λ, and its value is

set at 0.98, 0.001, and 0.7, respectively. The penalty parameter µ is set at 1 for both TeCPSGD

and OLSTEC. The experimental result in Fig. 6.28 indicates that RACP outperforms TeCPSGD

and OLSTEC.

211

6.4. PERFORMANCE EVALUATION

0 0.2 0.4 0.6 0.8 1

O1

F4

C3

F7

T4

(a) Normal data

0 0.2 0.4 0.6 0.8 1

O1

F4

C3

F7

T4

(b) Complex partial seizure

Figure 6.29: Epileptic EEG Dataset.

Task 2: Multichannel EEG Analysis

Datasets: In this task, we use two public electroencephalogram (EEG) datasets: ERPWAVE-

LAB19 and Epileptic EEG Data20. The former dataset contains wavelet-transformed versions of

EEG signals that were collected from 14 subjects during the hand stimulation (i.e., propriocep-

tive pulls of the left and right hands) for inter-trial phase coherence analysis. In particular, these

EEG signals were recorded using an electrode system of 64 channels with 28 measurements per

subject. The continuous wavelet transform was then applied to represent these signals in the

time-frequency domain. The latter dataset includes 20 EEG recordings of 6 patients diagnosed

with epilepsy at the American university of Beirut medical center. The EEG data were partic-

ularly recorded by using a system of 21 channels with the sampling rate of 500Hz. The dataset

includes 3895 normal segments and 3850 abnormal segments in which there are 3034 partial

seizures, 705 electrographic seizures, and 111 video-detected seizures with no visual change over

EEG. Figs. 6.29(a) and 6.29(b) illustrate EEG normal waveforms and complex partial seizures.

In what follows, we consider two common problems in multichannel EEG analysis: (i) incomplete

multichannel EEG analysis from partial observations and (ii) anomaly EEG detection.

Incomplete Multichannel EEG Analysis: Here, we use the ERPWAVELAB dataset and follow

the same experimental setup in [29, 292, 346] to demonstrate the use of RACP with real EEG

19ERPWAVELAB: http://www.erpwavelab.org/
20Epileptic EEG Data: https://data.mendeley.com/datasets/5pc2j46cbc/1

212

6.4. PERFORMANCE EVALUATION

Table 6.4: Averaged errors of adaptive CP algorithms for multichannel EEG analysis from in-
complete observations.

Missing channels NL-PETRELS ACP RACP (Proposed)

1/64 0.051 0.063 0.056

10/64 0.062 0.025 0.023

20/64 0.077 0.011 0.014

30/64 0.121 0.097 0.086

40/64 0.891 0.132 0.119

50/64 1.325 1.137 0.982

signals. Particularly, we construct an EEG tensor of size 28 × 64 × 4392 (i.e., measurement ×
channel × time-frequency). To generate incomplete observations, signals from some channels

at each time are supposed to be missing at random. As suggested in [292, 346], we set the

tensor rank at r = 3. Performance of RACP is compared with two adaptive CP algorithms NL-

PETRELS [292] and ACP [29]. We fix the forgetting factor λ at 0.999 and 0.5 for NL-PETRELS

and ACP, respectively. As NL-PETRELS requires a warm start, we run the batch CP-WOPT

algorithm [346] with the first 1500 tensor slices. Meanwhile, we use random initialization for ACP

and RACP. In this experiment, we aim to factorize the EEG tensor into three basis components

w.r.t. spatial domain, time-frequency domain, and measurement mode. As there is no real

ground truth, we use the results (i.e., CP factors) derived from applying the batch CP-ALS

algorithm to the EEG tensor with full observations as benchmarks. Experimental results are

shown in Tab. 6.4 and Fig. 6.30. They indicate that RACP outperforms NL-PETRELS and

provides a slightly better estimation than ACP, especially in the presence of highly incomplete

observations (e.g., ≥ 40 channels are missing).

Anomaly EEG Detection: We demonstrate the use of RACP to detect abnormal activities in

the brain (i.e., epileptic seizures) with the epileptic EEG dataset. Here, we adopt a simple but

effective way to predict abnormalities in multidimensional data streams [237]. In particular, we

model the abnormality of a tensor (streaming) slice Y t by its recovery error

et =
∥∥∥P t ⊛

(
Y t −Y t

N∏
n=1

×nU
(n)
t U

(n)
t

#)∥∥∥
F

/∥∥∥Y t

∥∥∥
F
, (6.111)

where {U(n)
t }Nn=1 is the set of solutions generated by RACP at time t. It is also worth noting

that the error et is relatively proportional to the norm of the outlier Ot. We label Y t based on

213

6.4. PERFORMANCE EVALUATION

(a) Ground Truth (b) ACP

(c) NL-PETRELS (d) RACP (Proposed)

Figure 6.30: First component of EEG factors when 40/60 EEG channels are missing.

the following rule

et
abnormal

≷
normal

τt = mean
(
{e}Lt

)
+ α std

(
{e}Lt

)
, (6.112)

where {e}Lt denotes the set of eτ with t− Lt < τ ≤ t.

We follow the method in our companion work on epileptic spike detection [179] to obtain

the time-frequency representation of multichannel EEG segments (including normal data and

seizures), and hence the corresponding EEG tensors of size 19× 20× 500 (i.e., channel× scale×
time).21 The resulting tensors are then concatenated into a huge tensor whose the last mode

is being streamed. We use the first 100 tensors of normal data to obtain a warm start and the

estimated rank of 9. Experimental results are shown in Fig. 6.31 (the error et over time) and

Tab. 6.5 (prediction accuracy versus the value of α). Although the results are not really excel-

lent, it is highly potential to detect anomalies in EEG signals by monitoring the approximation

error. Subsequent investigations (e.g., type of wavelet, dominant scales, and mother function)

21As indicated in the EEG dataset description report, data of two channels Cz and Pz were omitted. Thus, we
have 19 EEG channels left and each channel contains 500 samples. Also, 20 wavelet scales are chosen in the range
[4, 8].

214

6.4. PERFORMANCE EVALUATION

0 200 400 600 800 1000

0.4

0.6

0.8
False PositiveTrue Anomaly

Figure 6.31: The error et over time with α = 1.5 and Lt = t. Normal data which are inaccurately
labelled as abnormal are referred to as “false positive”.

Table 6.5: Anomaly EEG detection results. Sensitivity and specificity measure the percentage
of anomaly and normal data detected correctly, respectively. Accuracy indicates the overall.

Value of α Sensitivity Specificity Accuracy

0.1 42.21% 53.02% 47.57%

0.5 59.74% 66.48% 63.09%

1 72.80% 74.38% 73.59%

1.5 81.58% 85.16% 83.36%

2 50.16% 53.54% 51.83%

are necessary to obtain a better prediction.

Task 3: Video Background-Foreground Modeling

To demonstrate the use of RACP for real applications, we consider the problem of video back-

ground modeling and foreground detection. Three real video sequences are used in this task,

including Hall, Lobby, and Highway22 (see Fig. 6.32). In particular, the Hall video is a set of

3584 images taken at an airport hall, and the image resolution is 176 × 144. The Lobby video

contains 1546 images of size 128×160 pixels which was captured in an indoor office with switch-

ing on/off lights. The Highway video contains 1700 images of vehicles on a highway, and each

frame is of size 240× 320 pixels.

Background Modeling. We first measure the video background modeling ability of RACP

in comparison with a robust subspace tracking algorithm PETRELS-ADMM [25], and two adap-

22CDNET: http://jacarini.dinf.usherbrooke.ca.

215

6.5. CONCLUSIONS

Figure 6.32: Three video surveillance sequences.

tive CP algorithms (TeCPSGD [106] and OLSTEC [176]). These algorithms are dependent on

the forgetting factor λ, and its value is set at 0.98, 0.001, and 0.7, respectively. The penalty

parameter µ is set at 0.1 for both TeCPSGD and OLSTEC. The CP rank and subspace rank are

set at 10.

We consider the scenario where 50% of pixels are supposed to be missing at random. Ex-

perimental results are illustrated in Fig. 6.33. As we can see that the two robust algorithms

PETRELS-ADMM and RACP were able to recover the video background. Particularly, the pro-

posed RACP provided slightly better estimation than PETRELS-ADMM. The two adaptive CP

algorithms TeCPSGD and OLSTEC seem to have failed when the video frame contains moving

objects, probably because they do not account for sparse outliers.

Foreground Detection. Next, we investigate the ability of RACP in video foreground de-

tection. We also compare the performance of RACP with three notable foreground detection

algorithms, including GRASTA [50], OSTD [278] and PETRELS-ADMM [25]. To have a fair

comparison, algorithm parameters are set by default as suggested by their authors. Particularly,

the penalty parameter ρ and constant step-size scale C are, respectively, set at 1.8 and 2 in

GRASTA. The forgetting factor in PETRELS-ADMM is fixed at λ = 0.98, while OSTD is a

parameter-free algorithm. As can be seen from Fig. 6.34 that RACP was capable of detect-

ing moving objects in video streams and provided a competitive performance as compared to

GRASTA, OSTD, and PETRELS-ADMM.

6.5 Conclusions

In this chapter, we have proposed three new low-complexity algorithms (including ACP, ATD,

and RACP) for adaptive decomposition of higher-order incomplete and streaming tensors. First,

developed based on CP decomposition, ACP estimates a multilinear LRA of streaming tensors

216

6.6. APPENDIX

Figure 6.33: Qualitative illustration of video background modeling results.

from noisy and high-dimensional data with high accuracy, even when the decomposition model

may change slowly with time. Second, developed based on Tucker decomposition, ATD is a fast

randomized tracker, able to recover missing entries from highly incomplete observations. Lever-

aging the stochastic approximation and the uniform sampling technique, ATD has been shown to

be one of the fastest Tucker algorithms, much faster than the batch algorithms while providing

good estimation accuracy. Third, a novel robust adaptive CP decomposition called RACP has

been proposed to track the low-rank approximation of streaming tensors from uncertain, noisy,

and imperfect measurements. Its convergence analysis has been established to guarantee that

the solution generated by RACP converges to a stationary point asymptotically. Experimental

results have indicated that all three algorithms could estimate the tensor factors as well as track

their variations over time with high accuracy, and that they outperformed the state-of-the-art

tensor tracking algorithms in both simulated and real data tests.

6.6 Appendix

6.6.1 Appendix A: Proof of Lemma 9

Our analysis follows the same framework to derive the asymptotic convergence of adaptive al-

gorithms for problems of online matrix and tensor factorization [25,106,120,121]. In particular,

the convergence analysis contains three main stages: (I) we show that the solutions {U t,ut}∞t=1

217

6.6. APPENDIX

Original Frame RACPPETRELS-ADMMGRASTAOSTD

Figure 6.34: Qualitative illustration of video foreground detection results.

are uniformly bounded to justify the well-definedness condition. Their variations between two

successive time instances satisfy ∥U(n)
t+1 −U

(n)
t ∥F → O(1/t) a.s. (II) The sequence of nonneg-

ative surrogate values {gt(U t)}∞t=1 is quasi-martingale and convergent almost surely. (III) The

empirical loss function {ft(U t)}∞t=1 and its surrogate {gt(U t)}∞t=1 converge to the same limit,

i.e., gt(U t) → ft(U t) a.s. Accordingly, {U t}∞t=1 converges to a stationary point of ft(U), i.e.

∇ft(U t)
t→∞−→ 0.

6.6.1.1 Stage I

In order to justify the well-definedness condition, we first indicate that solutions {U t,u
(N)
t }∞t=1

are bounded and hence obtain several important propositions for the next stages23.

Proposition 12. Solutions {U t,ut}∞t=1 generated by ACP are bounded.

Proof. We first note that ACP begins with full column rank and bounded factors {U(n)
0 }Nn=1.

23Note that we assume that the underlying tensor slices and their true loading factors are bounded, while in
this analysis, we investigate the bound of solutions generated by the proposed ACP algorithm.

218

6.6. APPENDIX

The matrix S
(n)
0 is initialized by a scaled identity matrix S

(n)
0 = δnIr with δn > 0.

At each time t > 0, the coefficient vector u
(N)
t is achieved by minimizing the regularized LS

problem

u
(N)
t = argmin

u∈Rr

∥∥L(yΩt −HΩtu)
∥∥2
2
+
α

2
∥u∥22. (6.113)

At u = 0, we obtain
∥∥L(yΩt)

∥∥2
2
≥
∥∥L(yΩt −HΩtut)

∥∥2
2
+
α

2
∥ut∥22 and hence

∥u(N)
t ∥22 ≤

2

α

∥∥L(yΩt)
∥∥2
2
< +∞, (6.114)

thanks to the assumption (A-1) that observed slides {Y t}t≥1 are bounded. It implies that the

solution ut is bound.

In the following steps, we use the mathematical induction to indicate the bound of U t.

The base case. We prove that the set of solutions U1 = {U(n)
1 }

N−1
n=1 is bounded at t = 1.

Recall that, the minimizer U
(n)
1 is derived from the following optimization

U
(n)
1 = argmin

U(n)∈RIn×r

∥∥∥P(n)
1 ⊛

(
Y

(n)
1 −U(n)

(
W

(n)
1

)⊤)∥∥∥2
F
, (6.115)

for n = 1, 2, . . . , N .

We know that for given M,N ∈ Ra×b, ∥M−N∥F ≥ abs(∥M∥F − ∥N∥F) ≥ ∥M∥F − ∥N∥F .
Accordingly, we have∥∥∥P(n)

1 ⊛
(
U

(n)
1

(
W

(n)
1

)⊤)∥∥∥
F
≤ 2

∥∥∥P(n)
1 ⊛Y

(n)
1

∥∥∥
F
< +∞, (6.116)

It is therefore that

In∑
i=1

∥∥P(n)
1,i W

(n)
1

(
u
(n)
i

)⊤∥∥2
2
< +∞, (6.117)

where P
(n)
1,i = diag

(
P

(n)
1 (i, :)

)
and u

(n)
i is the i-th row of U(n)

1 . Since {U(n)
0 }Nn=1 are initialized by

full rank and bounded matrices and u1 is bounded, W(n)
1 is a full column rank matrix. Under

the Assumption (A-3), the null space of P
(n)
1,i W

(n)
1 admits only 0 as an element. As a result,∥∥u(n)

i

∥∥
2
< +∞, i = 1, 2, . . . , In and hence U

(n)
1 is bounded.

The induction step. Assume that {U i}ki=1 generated by ACP are bounded at time t = k >

1, we will prove that at t = k + 1, Uk+1 is also bounded.

219

6.6. APPENDIX

The recursive rule for updating U
(n)
k+1 is given by

U
(n)
k+1 = U

(n)
k +∆Y

(n)
k+1

(
V

(n)
k+1

)⊤
, (6.118)

where

∆Y
(n)
k+1 = P

(n)
k+1 ⊛

(
Y

(n)
k+1 −U(n)

τ

(
W

(n)
k+1

)⊤)
, (6.119a)

V
(n)
k+1 =

(
S
(n)
k+1

)−1
, (6.119b)

S
(n)
k+1 = βS

(n)
k +

(
W

(n)
k+1

)⊤
W

(n)
k+1, (6.119c)

W
(n)
k+1 =

(N⊙
i=1,i ̸=n

U
(i)
k

)
⊙ u⊤

k+1, (6.119d)

Since {U(n)
k }

N
n=1 are assumed to be bounded and uk+1 is bounded, we obtain that W(n)

k+1 and

∆Y
(n)
k+1 are bounded. Moreover, S(n)

k+1 can be recursively expressed by

S
(n)
k+1 = λS

(n)
k +

∑
i

wiw
⊤
i , (6.120)

where wi is the i-th row of W(n)
k+1. Thanks to Sherman-Morrison formula and the initial case

S
(n)
0 = δnI, S

(n)
k+1 is a positive definite and invertible matrix and V

(n)
k+1 is always existent (i.e.

inverse of the rank 1 update S
(n)
k+1). In addition, for any positive definite and invertible matrix

M ∈ Rr×r, we have

∥M∥F ≤
√
r∥M∥2 =

√
rσmax(M), and

∥∥M−1
∥∥
2
=

1

σmin(M)
< +∞, (6.121)

where σmax(M) and σmin(M) are the largest and smallest singular value of M, respectively.

Accordingly, we obtain

∥∥∥V(n)
k+1

∥∥∥
F
≤
√
rCP

∥∥∥V(n)
k+1

∥∥∥
2
=

√
rCP

σmin

(
S
(n)
k+1

) . (6.122)

The lower bound on the minimum singular value of S(n)
k+1 is specified by the following proposition.

Proposition 13 (Theorem 1 [348] and Theorem 2.1 [349]). Let A be an r× r symmetric

matrix with positive eigenvalues σ1(A) ≥ σ2(A) ≥ · · · ≥ σr(A) > 0. If w is an r-

dimensional column vector and Â = A+ww⊤, we always have

σr(A) ≤ σr(Â) ≤ σr−1(A) ≤ σr−1(Â) ≤ · · · ≤ σ1(A) ≤ σ1(Â) ≤ σ1(A) + ∥w∥22.
(6.123)

220

6.6. APPENDIX

Accordingly, we have

σmin

(
S
(n)
k+1

)
≥ λσmin

(
S
(n)
k

)
≥ λ2σmin

(
S
(n)
k−1

)
≥ · · · ≥ λk+1σmin(S

(n)
0) = λk+1δn ≥ δn. (6.124)

The last inequality is when the forgetting factor λ = 1. As a result, we obtain∥∥∥V(n)
k+1

∥∥∥
F
≤
√
rCPδ

−1
n < +∞. (6.125)

It implies that V
(n)
k+1 is bounded. Therefore, Uk+1 is bounded, thanks to the rule (6.118).

Proposition 14. The surrogate gt(.) is a Lipschitz function.

Proof. First, we exploit that gt+1

(
U

(n)
t+1

)
≤ gt+1

(
U

(n)
t

)
∀ t due to U

(n)
t+1 = argmin gt+1

(
U(n)

)
and

hence

gt
(
U

(n)
t+1

)
− gt

(
U

(n)
t

)
= gt

(
U

(n)
t+1

)
− gt+1

(
U

(n)
t+1

)
+ gt+1

(
U

(n)
t+1

)
− gt

(
U

(n)
t

)
≤
(
gt
(
U

(n)
t+1

)
− gt+1

(
U

(n)
t+1

))
−
(
gt
(
U

(n)
t

)
− gt+1

(
U

(n)
t

))
∆
= dt

(
U

(n)
t+1

)
− dt

(
U

(n)
t

)
, (6.126)

where dt(U) = gt(U)− gt+1(U). The derivative of dt(U(n)) is then given by

∂dt
(
U(n)

)
∂U(n)

= U(n)

(
At

t
− At+1

t+ 1

)
+

(
Bt

t
− Bt+1

t+ 1

)
, (6.127)

where At =
∑t

τ=1 β
t−τ
(
W

(n)
τ

)⊤
W

(n)
τ , Bt =

∑t
τ=1 β

t−τ
(
P

(n)
τ ⊛ X

(n)
τ

)
W

(n)
τ . Accordingly, we

have ∥∥∥∥∥∂dt
(
U(n)

)
∂U(n)

∥∥∥∥∥
F

≤
∥∥U(n)

∥∥
F

∥∥∥∥At

t
− At+1

t+ 1

∥∥∥∥
F

+

∥∥∥∥Bt

t
− Bt+1

t+ 1

∥∥∥∥
F

, (6.128)

thanks to the following inequality ∥MN∥F ≤ ∥M∥F ∥N∥F for all M,N. It implies that the

function dt(U(n)) is Lipschitz, i.e.,

gt
(
U

(n)
t+1

)
− gt

(
U

(n)
t

)
≤ dt

(
U

(n)
t+1

)
− dt

(
U

(n)
t

)
≤ cn

∥∥U(n)
t+1 −U

(n)
t

∥∥
F
, (6.129)

where the Lipschitz constant cn = O(1/t) is given by cn = κ
∥∥At

t −
At+1

t+1

∥∥
F
+
∥∥Bt

t −
Bt+1

t+1

∥∥
F
,

where ∥U(n)∥F ≤ κ is the upper bound for ∥U(n)∥F .

In parallel, the surrogate gt(U) is a multi-convex function because of its quadratic form. It

221

6.6. APPENDIX

is therefore that

gt
(
U

(n)
t+1

)
− gt

(
U

(n)
t

)
≥ mn

∥∥U(n)
t+1 −U

(n)
t

∥∥2
F
, (6.130)

where mn is a positive number. From (6.129) and (6.130), we obtain the following nice corollary:

Corollary 3. The asymptotic variation of U t is given by

∥∥U(n)
t+1 −U

(n)
t

∥∥
F
= O

(
1/t
)
. (6.131)

6.6.1.2 Step II

We then prove that the nonnegative sequence {gt(U t)}∞t=1 converges almost surely where {U t}∞t=1

is generated by our ACP algorithm.

Convergence of {gt(U t)}∞t=1 can be stated in the following proposition:

Proposition 15. Let {U t}∞t=1 be a sequence of solutions generated by ACP, the sequence

{gt(U t)}∞t=1 converges almost surely, i.e.,

∞∑
t=1

∣∣∣E[gt+1(U t+1)− gt(U t)|Ft

]∣∣∣ < +∞ a.s., (6.132)

where {Ft}t>0 is the filtration of the past estimations at time instant t.

Proof. We begin with the expression

gt+1(U t) =
1

t+ 1

t+1∑
τ=1

βt+1−k ℓ̃(U t,Pτ ,Yτ ,uτ)

=
1

t+ 1

(
ℓ̃(U t,P t+1,Y t+1,ut+1) + βtgt(U t)

)
=
ℓ̃(U t,P t+1,Y t+1,ut+1)

t+ 1
+
t(β − 1)

t+ 1
gt(U t) +

t

t+ 1
gt(U t). (6.133)

222

6.6. APPENDIX

where ℓ(U ,P ,Y) = minu ℓ̃(U ,P ,Y ,u). We then have

gt(U t)− ft(U t)

t+ 1
=

(
gt(U t)−

t

t+ 1
gt(U t)

)
− ft(U t)

t+ 1

= gt(U t)− gt+1(U t+1) +
ℓ̃(U t,P t+1,Y t+1,ut+1)− ft(U t)

t+ 1

+ gt+1(U t+1)− gt+1(U t)︸ ︷︷ ︸
≤0

+
t(β − 1)

t+ 1
gt(U t)︸ ︷︷ ︸

≤0

≤ gt(U t)− gt+1(U t+1) +
ℓ̃(U t,P t+1,Y t+1,ut+1)− ft(U t)

t+ 1
, (6.134)

because 0 < β ≤ 1 and gt+1(U t+1) ≤ gt+1(U t) for all t due to U t+1 = argmin gt+1(U).

Moreover, we know that ut+1 = argminu ℓ̃(U t,P t+1,Y t+1,u), so

ℓ(U t,P t+1,Y t+1) = ℓ̃(U t,P t+1,Y t+1,ut+1).

Accordingly, we obtain the following inequality

gt+1(U t+1)− gt(U t) ≤
ℓ(U t,P t+1,Y t+1)− ft(U t)

t+ 1
− gt(U t)− ft(U t)

t+ 1
. (6.135)

Moreover ft(U t) ≤ gt(U t) for all t, we obtain

gt+1(U t+1)− gt(U t) ≤
ℓ(U t,P t+1,Y t+1)− ft(U t)

t+ 1
. (6.136)

Taking the expectation of (6.136) conditioned by Ft results in

E
[
gt+1(U t+1)− gt(U t)|Ft

]
≤ f(U t)− ft(U t)

t+ 1
, (6.137)

where f(U) be the expected cost function, i.e., f(U) = lim
t→∞

ft(U) and E
[
ℓ(U ,P t+1,Y t+1)

]
=

f(U), for all U . Now, let us define the indicator function δt as follows

δt
∆
=

1 if E
[
gt+1(U t+1)− gt(U t)|Ft

]
> 0,

0 otherwise.
(6.138)

Accordingly, we have

E
[
δtE
[
gt+1(U t+1)− gt(U t)|Ft

]]
≤ E

[√
t
(
f(U t)− ft(U t)

)] 1√
t(t+ 1)

. (6.139)

Under the given assumptions that variables are bounded, we exploit that the set of loss func-

tions {ℓ(U t,P t,X t)}t≥1 is P-Donsker [126]. As a result, the centered and scaled version of

ft(U t) satisfies the following proposition: E
[√

t
(
f(U t)−ft(U t)

)]
= O(1), thanks to the Donsker

223

6.6. APPENDIX

theorem [126, Section 19.2].

We then consider the convergence of the sum
∑∞

t=1
1√

t(t+1)
. In particular, the Cauchy-

MacLaurin integral test [133] is applied for examining the convergence, that is,
∫ +∞
t=1

1√
t(t+1)

dt =

π
4 <∞. Accordingly,

{
1√

t(t+1)

}
t>0

converges. Therefore, we obtain

∞∑
t=1

E
[
δE
[
gt+1(U t+1)− gt(U t)|Ft

]]
<∞. (6.140)

According to quasi-martingale theorem [343, Theorem 9.4 & Proposition 9.5], we can conclude

that {gt(U t)}∞t=1 converges almost surely, i.e.,

∞∑
t=1

E
[
gt+1(U t+1)− gt(U t)|Ft

]
<∞. (6.141)

We complete the proof.

Stage III

The last stage contains two main steps: (i) we first indicate that the empirical cost function

ft(U) is not only continuously differentiable, but also Lipschitz; (ii) we then prove {ft(U t)}∞t=1

and {gt(U t)}∞t=1 converge to the same limit. As a result, the derivative of ft(U) equals to that

of gt(U) when t→∞, thanks to the first-order Taylor approximation. Since U t is the minimizer

of gt(U), the derivative ∇ft(U)→ 0 a.s.

To begin with, we provide the following proposition which is a corollary of Theorem 4.1

in [350]:

Proposition 16. Consider a continuous function f : V × U → R. Suppose that ∀u ∈ U ,

the function f(.,u) is differentiable and ∇vf(v,u) is continuous on V ×U . If g(v) be the

function derived from g(v) = minu∈U f(v,u), then g(v) is also differentiable. In addition,

if u∗ = argminu∈U f(v,u) be unique, ∇g(v) = ∇vf(v,u
∗), ∀v ∈ V.

Proof. Its proof is already provided in [350, Theorem 4.1].

Accordingly, we derive the following proposition to verify the differentiable property of ℓ(U ,P t,X t)

at time t.

224

6.6. APPENDIX

Corollary 4. Given an incomplete observation P t ⊛ X t and the past estimation U , let

u∗
t be the minimizer of the summand ℓ̃(U ,P t,X t,u)

u∗
t = argmin

ut∈Rr

∥∥∥∥P t ⊛

(
Y t −

z{
U(n)}N−1

n=1 ,u
(N)
t

r)∥∥∥∥2
F

. (6.142)

We obtain that ℓ(U ,P t,X t) = minut ℓ̃(U ,P t,X t,ut) is a continuously differentiable func-

tion and its partial derivative w.r.t. U(n) is given by

∂ℓ(U ,P t,X t)

∂U(n)
= 2P

(n)
t ⊛

(
Y

(n)
t −U(n)

(
W∗

t

)⊤)
W∗

t , (6.143)

where W∗
t =

(N⊙
i=1,i ̸=n

U
(i)
t−1

)
⊙ (u∗

t)
⊤. (6.144)

As a result, the empirical cost function ft(U) = 1
tβ

t−τ
∑t

τ=1 ℓ(U ,Pτ ,Yτ) is continuously

differentiable. Applying the same augments in Proposition 14, we also have

∥∥∥∥ ∂f̄t

∂U(n)

∥∥∥∥
F

≤
∥∥U(n)

∥∥
F

∥∥∥∥Ā(n)
t

t
−

Ā
(n)
t+1

t+ 1

∥∥∥∥
F

+

∥∥∥∥B̄(n)
t

t
−

B̄
(n)
t+1

t+ 1

∥∥∥∥
F

, (6.145)

where f̄t
(
U(n)

)
= ft

(
U(n)

)
−ft+1

(
U(n)

)
, Ā(n)

t =
∑t

τ=1 β
t−τ
(
W∗

τ

)⊤
W∗

τ , and B̄
(n)
t =

∑t
τ=1 β

t−τ
(
P

(n)
τ ⊛

Y
(n)
τ

)
W∗

τ . All terms in the right side are bounded, the partial derivative f̄t(U) w.r.t. U(n) is

bounded and hence

ft
(
U

(n)
t+1

)
− ft

(
U

(n)
t

)
≤ dn

∥∥U(n)
t+1 −U

(n)
t

∥∥
F
, (6.146)

where dn is the deterministic positive number. It implies that ft(.) is Lipschitz continuous.

Now, we indicate that the nonnegative sequence
{(
gt(U t) − ft(U t)

)
1

t+1

}
converges almost

surely. We prove that the empirical cost function {ft(U t)}∞t=1 and its surrogate {gt(U t)}∞t=1

converge to the same limit by showing

∞∑
t=1

gt(U t)− ft(U t) < +∞. (6.147)

According to (6.174), we recall the following inequality

gt(U t)− ft(U t)

t+ 1
≤ gt(U t)− gt+1(U t+1) +

ℓ(U t,P t+1,Y t+1)− ft(U t)

t+ 1
. (6.148)

To examine the convergence of the right side of (6.148), we exploit the following facts: (i) The

convergence of E
[
gt(U t)−gt+1(U t+1)|Ft

]
is already provided in Proposition 2, and (ii) The second

term also converges, thanks to the convergence of E[f(Ut)− ft(Ut)]/(t+ 1) and

225

6.6. APPENDIX

E[ℓ(U t,P ,X)] = f(U t) for all t.

Accordingly, we have that
{(
gt(U t)− ft(U t)

)
1

t+1

}
converges

∞∑
t=0

(
gt(U t)− ft(U t)

) 1

t+ 1
<∞. (6.149)

Since both gt(U) and ft(U) are Lipschitz continuous, there always exist a constant L > 0 such

that

∣∣(gt+1(U t+1)− ft+1(U t+1)
)
−
(
gt(U t)− ft(U t)

)∣∣ ≤ L∥∥U t+1 − U t

∥∥
F
. (6.150)

In addition, the real sequence
{

1
t+1

}
t≥0

diverges, i.e.,
∑∞

t=0
1

t+1 = +∞. It implies that
∑∞

t=0 gt(U t)−
ft(U t) <∞, thanks to [351, Lemma A.5]. It results in gt(U t)

a.s→ ft(U t), t→∞.

In parallel, gt(U) is the surrogate function of ft(U), we always have

gt(U + aτV) ≥ ft(U + aτV), (6.151)

for all V and the nonnegative sequence {aτ}. For short, let us denote gt
(
U(n)

) ∆
= gt(U) and

ft
(
U(n)

) ∆
= ft(U) when the remaining loading factors are fixed. With respect to U(n), the

inequality (6.151) becomes

gt
(
U(n) + aτV

(n)
)
≥ ft

(
U(n) + aτV

(n)
)
. (6.152)

Thanks to Taylor’s theorem, taking the linear approximation of (6.180) yields

gt
(
U

(n)
t

)
+ tr

[
aτ
(
V(n)

)⊤∇gt(U(n)
t

)]
+ o

(
aτV

(n)
)

≥ ft
(
U

(n)
t

)
+ tr

[
aτ
(
V(n)

)⊤∇ft(U(n)
t

)]
+ o

(
aτV

(n)
)
. (6.153)

When t→∞, we have gt
(
U

(n)
t

)
= ft

(
U

(n)
t

)
as proved in Lemma 1 and hence

tr
[
aτ
(
V(n)

)⊤∇gt(U(n)
t

)]
≥ tr

[
aτ
(
V(n)

)⊤∇ft(U(n)
t

)]
. (6.154)

Since the above inequality must hold for all V(n) and {aτ}, we obtain

∇gt
(
U

(n)
t

)
−∇ft

(
U

(n)
t

)
→ 0, when t→∞. (6.155)

Because U t is the minimizer of gt(U), we derive ∇ft(U t)→ 0 a.s. It ends the proof.

226

6.6. APPENDIX

6.6.2 Appendix B: Proof of Lemma 11

Boundedness: {Dt,Ot,ut}∞t=1 are uniformly bounded.

At each time t > 0, the outlier Ot and the coefficient vector ut are derived from the minimization

(7) in the main manuscript. Accordingly, we always have

ℓ̃
(
Dt−1,P t,Y t,Ot,ut

)
≤ ℓ̃
(
Dt−1,P t,Y t,0,0

)
. (6.156)

It is therefore that

∥Ot∥1 +
ρ

2

∥∥P t ⊛ (Y t −Ot −Ht−1 ×N ut)
∥∥2
F
≤ ρ

2

∥∥P t ⊛Y t

∥∥2
F
. (6.157)

Due to the two facts that ∥M∥F +∥N∥F ≥ ∥M−N∥F ≥ ∥M∥F −∥N∥F , and ∥M∥F ≤ ∥M∥1 [9],

we then obtain

∥∥Ot

∥∥
F
≤
∥∥Ot

∥∥
1
≤ ρ

2

∥∥P t ⊛Y t

∥∥2
F
≤ ρ

2
M2

x <∞, (6.158)∥∥PtHt−1ut

∥∥
2
≤ 2
∥∥P t ⊛Y t

∥∥
F
+
∥∥P t ⊛Ot

∥∥
F
<∞, (6.159)

where Mx is the upper bound of ∥Y t∥F (see Assumption A1). Thanks to (6.158), Ot is uniformly

bound.

We indicate the bound of the solution ut and Dt =
[
U

(1)
t , . . . ,U

(N)
t

]
by using the mathemat-

ical induction.

We first recall that the proposed RACP algorithm begins withN full-rank matrices
{
U

(n)
0

}N
n=1

and a set of matrices S
(n)
0,m = δnI,m = 1, 2, . . . , In.

The base case: At t = 1, the matrix H0 =
⊙N

n=1U
(n)
0 is then full rank, i.e., the null space

of H0 admits only 0 as a vector. Accordingly, u1 is bounded, thanks to (6.159).

To indicate the bound of U
(n)
1 for n = 1, 2, . . . , N , we show that each row u

(n)
1,m of U

(n)
1 is

bounded. We first obtain the following inequality∥∥∥u(n)
1,m

∥∥∥
2
≤
∥∥∥u(n)

0,m

∥∥∥
2
+
∥∥∥P(n)

1,m

((
x
(n)
1,m

)⊤ −W
(n)
1

(
u
(n)
0,m

)⊤)∥∥∥
2

∥∥∥V(n)
1,m

∥∥∥
2
. (6.160)

In fact, three matrices W(n)
1,m, S(n)

1,m and V
(n)
1,m for updating u

(n)
1,m are bounded due to the bound

of
{
U

(n)
0

}N
n=1

. Accordingly, the right hand side of (6.160) is finite, thus u
(n)
1,m is bounded for all

m. It implies that U
(n)
1 is bounded.

The induction step: We assume that {U(n)
i }ki=1 generated by RACP are bounded at time

t = k > 1, we will prove that at t = k + 1, U(n)
k+1 is also bounded.

Since {U(n)
k }

N
n=1 are assumed to be bounded, uk+1 and W

(n)
k+1,m are then bounded. In parallel,

227

6.6. APPENDIX

we exploit that S
(n)
k+1,m can be expressed by

S
(n)
k+1,m = λS(n)

τ,m +
∑
i

p(n)
k+1,m

(i)w⊤
i wi, (6.161)

where wi is the i-th row of W(n)
k+1,m. Thanks to Woodbury matrix identity [352] and S

(n)
0,m = δI

with δ > 0, we obtain S
(n)
k+1,m ≻ 0, i.e., S

(n)
k+1,m is nonsingular with the smallest eigenvalue

σmin

(
S
(n)
k+1,m

)
≥ δ > 0. Thus V

(n)
k+1,m is always existent.

For given M ≻ 0, we always have ∥M∥F ≤
√
r∥M∥2 =

√
rσmax(M), and

∥∥M−1
∥∥
2
= σ−1

min(M)

where σmax(M) and σmin(M) are the largest and smallest eigenvalue of M [9]. Accordingly, we

derive ∥V(n)
k+1,m∥F ≤

√
r/δ <∞, i.e., V(n)

k+1,m is bounded. As a result, u(n)
k+1,m is bounded for all

m = 1, 2, . . . , In. Thanks to the mathematical induction, we can conclude that the solution U
(n)
t

generated by RACP is bounded for t ≥ 1.

Forward Monotonicity: f̃t(Dt−1) ≥ f̃t(Dt).

We have

f̃t(Dt−1)− f̃t(Dt)

=

N∑

n=1

f̃t
(
U

(1)
t−1, . . . ,U

(n−1)
t−1 ,U

(n)
t−1, . . . ,U

(N)
t−1

)
− f̃t

(
U

(1)
t−1, . . . ,U

(n−1)
t−1 ,U

(i)
t , . . . ,U

(N)
t−1

)
[Jacobi]

N∑
n=1

f̃t
(
U

(1)
t , . . . ,U

(n−1)
t ,U

(n)
t−1, . . . ,U

(N)
t−1

)
− f̃t

(
U

(1)
t , . . . ,U

(n−1)
t ,U

(n)
t , . . . ,U

(N)
t−1

)
[Gauss-Seidel]

(6.162)

Recall that U
(n)
t is the minimizer of f̃t

(
U

(1)
t−1, . . . ,U

(n−1)
t−1 ,U,U

(n+1)
t−1 , . . . ,U

(N)
t−1

)
if using Jacobi

scheme or f̃t
(
U

(1)
t , . . . ,U

(n−1)
t ,U,U

(n+1)
t−1 , . . . ,U

(N)
t−1

)
if using Gauss-Seidel scheme. Therefore, we

always have

f̃t
(
U

(1)
t−1, . . . ,U

(n−1)
t−1 ,U

(n)
t−1, . . . ,U

(N)
t−1

)
≥ f̃t

(
U

(1)
t−1, . . . ,U

(n−1)
t−1 ,U

(i)
t , . . . ,U

(N)
t−1

)
[Jacobi]

f̃t
(
U

(1)
t−1, . . . ,U

(n−1)
t−1 ,U

(n)
t−1, . . . ,U

(N)
t−1

)
≥ f̃t

(
U

(1)
t−1, . . . ,U

(n−1)
t−1 ,U

(i)
t , . . . ,U

(N)
t−1

)
[Gauss-Seidel]

As a result, f̃t(Dt−1) ≥ f̃t(Dt).

Backward Monotonicity: f̃t(Dt) ≤ f̃t(Dt+1).

Applying the similar argument above, we also obtain f̃t(Dt) ≤ f̃t(Dt+1).

228

6.6. APPENDIX

Stability of Estimates: ∥Dt −Dt−1∥F = O(1/t).

We first prove that the surrogate f̃t(.) w.r.t. each factor is Lipschitz continuous. Since U
(n)
t =

argmin f̃t(U
(n), .), we have f̃t(U

(n)
t , .) ≤ f̃t(U(n)

t−1, .)∀t and hence

f̃t−1

(
U

(n)
t , .

)
− f̃t−1

(
U

(n)
t−1, .

)
≤
{
f̃t−1

(
U

(n)
t , .

)
− f̃t

(
U

(n)
t , .

)}
−
{
f̃t−1

(
U

(n)
t−1, .

)
− f̃t

(
U

(n)
t−1, .

)}
. (6.163)

Lets denote the error function dt(U(n), .) = f̃t−1(U
(n), .)− f̃t(U(n), .). We have

∇dt
(
U(n), .

)
= U(n)

(
At−1

t− 1
− At

t

)
+

(
Bt−1

t− 1
− Bt

t

)
, (6.164)

where At =
∑t

τ=1 β
t−τ
(
W

(n)
τ

)⊤
W

(n)
τ , Bt =

∑t
τ=1 β

t−τ
(
P

(n)
τ ⊛ (Y

(n)
τ −O(n)

τ)
)
W

(n)
τ . Thanks to

the two facts that ∥MN∥F ≤ ∥M∥F ∥N∥F and ∥M+N∥F ≤ ∥M∥F + ∥N∥F [9], we obtain

∥∥∇dt(U(n), .)
∥∥
F
≤ κU

∥∥∥∥At−1

t− 1
− At

t

∥∥∥∥
F

+

∥∥∥∥Bt−1

t− 1
− Bt

t

∥∥∥∥
F

= cn, (6.165)

where κU is the upper bound for ∥U(n)∥F . As a result, the error function dt(U
(n)) is Lipschitz

with parameter cn = O(1/t), i.e.,

f̃t−1

(
U

(n)
t , .

)
− f̃t−1

(
U

(n)
t−1, .

)
≤ dt

(
U

(n)
t , .

)
− dt

(
U

(n)
t−1, .

)
≤ cn

∥∥U(n)
t −U

(n)
t−1

∥∥
F
. (6.166)

Moreover, f̃t(U(n), .) is am-strongly convex function, i.e., f̃t−1

(
U

(n)
t , .

)
−f̃t−1

(
U

(n)
t−1, .

)
≥ m

∥∥U(n)
t −

U
(n)
t−1

∥∥2
F
. From that, we obtain the asymptotic variation of U(n) as follows

∥∥U(n)
t −U

(n)
t−1

∥∥
F
≤

cn
m = O

(
1/t
)
, Therefore, we can conclude that

∑N
n=1

∥∥U(n)
t −U

(n)
t−1

∥∥2
F
= ∥Dt−Dt−1∥2F = O

(
1/t2

)
or ∥Dt −Dt−1∥F = O

(
1/t
)
.

Stability of Errors:
∣∣et(Dt)− et−1(Dt−1)

∣∣ = O(1/t).
We begin with verifying the differentiable property of the loss function ℓ(D,P t,Y t) at time t.

229

6.6. APPENDIX

Proposition 17. Given an incomplete observation P t⊛Y t and the past estimation of D,

let Ot,u
∗
t be the minimizer of ℓ̃(D,P t,Y t,O,u), i.e.,

{u∗
t ,O∗

t } = argmin
u,O

∥O∥1 +
ρ

2

∥∥P t ⊛
(
Y t −O −H×N u

)∥∥2
F
. (6.167)

where H = I
∏N−1

n=1 ×nU
(n). We obtain that ℓ(D,P t,Y t) = minu,O ℓ̃(D,P t,Y t,O,u) is

a continuously differentiable function and its partial derivative w.r.t. U(n) is given by

∂ℓ(D,P t,Y t)

∂U(n)
= 2P

(n)
t ⊛

(
Y

(n)
t −O(n)

t −U(n)
(
W̄

(n)
t

)⊤)
W̄

(n)
t , (6.168)

where W̄
(n)
t =

(N−1⊙
i=1,i ̸=n

U
(i)
t−1

)
⊙ (u∗

t)
⊤. (6.169)

Proof. The result follows intermediately Theorem 4.1 in [350, page 237].

Accordingly, the sum ft(D) = 1/Lt
∑t

τ=t−Lt+1 β
t−τ ℓ(D,Pτ ,Yτ) is continuously differen-

tiable.

Let us denote f̄t
(
U(n), .

)
= ft−1

(
U(n), .

)
− ft

(
U(n), .

)
. Applying the same arguments in

subsection I.4, we also obtain

∥∥∇f̄t(U(n), .
)∥∥

F
≤ κU

∥∥∥∥Ā(n)
t−1

t− 1
− Ā

(n)
t

t

∥∥∥∥
F

+

∥∥∥∥B̄(n)
t−1

t− 1
− B̄

(n)
t

t

∥∥∥∥
F

= dn, (6.170)

where Ā
(n)
t =

∑t
τ=1 β

t−τ
(
W̄

(n)
τ

)⊤
W̄

(n)
τ , and B̄

(n)
t =

∑t
τ=1 β

t−τ
(
P

(n)
τ ⊛ (Y

(n)
τ − O(n)

τ)
)
W̄

(n)
τ .

Accordingly, ∇f̄t
(
U(n), .

)
is bounded and hence

ft
(
U

(n)
t−1, .

)
− ft

(
U

(n)
t , .

)
≤ dn

∥∥U(n)
t−1 −U

(n)
t

∥∥
F
. (6.171)

It implies that ft(.) is Lipschitz continuous. Since f̃t(D) and ft(D) are both Lipschitz continuous

functions, we then have

∣∣et(Dt)− et−1(Dt−1)
∣∣ = ∣∣(f̃t(Dt)− ft(Dt)

)
−
(
f̃t−1(Dt−1)− ft−1(Dt−1)

)∣∣
≤
∣∣f̃t(Dt)− f̃t(Dt−1)

∣∣+ ∣∣ft(Dt)− ft(Dt−1)
∣∣

≤
N∑

n=1

(cn + dn)
∥∥U(n)

t−1 −U
(n)
t

∥∥
F
= O(1/t).

(6.172)

It ends the proof.

230

6.6. APPENDIX

6.6.3 Appendix D: Proof of Lemma 12

Detailed Proof: We apply the similar arguments of Proposition 7 in our companion work [29] to

prove Lemma 12.

Almost sure convergence of {f̃t(Dt)}∞t=1

Main approach: We prove the convergence of the sequence f̃t(Dt) by showing that the stochas-

tic positive process ut := f̃t(Dt) is a quasi-martingale Fisk. In particular, if the sum of the pos-

itive difference of ut is bounded, ut is a quasi-martingale, and the sum converges almost surely,

thanks to the following quasi-martingale theorem:

Proposition 18 (Quasi-martingale Theorem [343, Theorem 9.4 & Proposition 9.5] and

[125, Section 4.4]). Let (Ω,F ,P) be a probability space, {ut}t>0 be a stochastic process on

the probability space and {Ft}t>0 be a filtration by the past information at time instant t.

Let us define the indicator function δt as follows

δt
∆
=

1 if E[ut+1 − ut|Ft] > 0,

0 otherwise.

For all t, if ut ≥ 0 and
∑∞

i=1 E[δi(ui+1 − ui)|Fi] < ∞, then ut is a quasi-martingale and

converges almost surely, i.e.,

∞∑
t=1

E[ut+1 − ut|Ft] <∞.

Now, we begin with the following relation when Lt = t

f̃t+1(Dt) =
1

t+ 1

t+1∑
τ=1

βt+1−k ℓ̃(Dt,Pτ ,Yτ ,Oτ ,uτ)

=
ℓ̃(Dt,P t+1,Y t+1,Ot+1,ut+1)

t+ 1
+
t(β − 1)

t+ 1
f̃t(Dt) +

t

t+ 1
f̃t(Dt). (6.173)

Thanks to Lemma 1 and λ ≤ 1, we obtain f̃t+1(Dt+1) ≤ f̃t+1(Dt) and

f̃t(Dt)− ft(Dt)

t+ 1
≤ f̃t(Dt)− f̃t+1(Dt+1) +

ℓ̃(Dt,P t+1,Y t+1,Ot+1,ut+1)− ft(Dt)

t+ 1
. (6.174)

Since ft(Dt) ≤ f̃t(Dt) ∀t, we have

f̃t+1(Dt+1)− f̃t(Dt) ≤
ℓ̃(Dt,P t+1,Y t+1,Ot+1,ut+1)− ft(Dt)

t+ 1
, (6.175)

231

6.6. APPENDIX

Define by {Ft}t>0 a filtration associated to {ut}t>0 where Ft = {Dk,Ok,uk}1≤k≤t records

all past estimates of RACP at time t. By definition, for every i ≤ t, Fi ⊆ Ft, and thus,

the filtration is interpreted as streams of all historical but not future information generated

by RACP. Now, taking the expectation of the inequality (D3) conditioned on Ft results in

E
[
f̃t+1(Dt+1)− f̃t(Dt)|Ft

]
≤ f(Dt)− ft(Dt)

t+ 1
, where Ft is the filtration of past estimations at

each time t; the expected cost function f(.) is given by f(D) = lim
k→∞

fτ (D), E
[
ℓ(Dt,Pk+1X k+1)

]
=

f(Dt),∀Dt and ∀t; and ℓ(Dt,P t+1,Y t+1) = ℓ̃(Dt,P t+1,Y t+1,Ot+1,ut+1) due to {Ot+1,ut+1} =
argminO,u ℓ̃(D,P t+1,Y t+1,O,u) at time t.

Next, let us define the following indicator function

δt
∆
=

1 if E
[
f̃t+1(Dt+1)− f̃t(Dt)|Ft

]
> 0,

0 otherwise.
(6.176)

Here, the process {δt}t>0 is adapted to the filtration {Ft}t>0 as δt is measurable with respect to Ft

for very t. From (D4), we then obtain Accordingly, we obtain E
[
δtE
[
f̃t+1(Dt+1)− f̃t(Dt)|Ft

]]
≤

E
[√

t
(
f(Dt)− ft(Dt)

)]
1√

t(t+1)
. We know that the centered and scaled version of ft(Dt) satisfies

E
[√
t
(
f(Dt)−ft(Dt)

)]
= O(1), thanks to the Donsker theorem [126, Section 19.2]. We also derive∫ ∞

t=1

1√
t(t+ 1)

dt <∞ after some simple calculations, thus
∞∑
t

1√
t(t+ 1)

<∞ too. Accordingly,

we obtain
∑∞

t=1 E
[
δtE
[
f̃t+1(Dt+1)− f̃t(Dt)|Ft

]]
<∞. Therefore, {f̃t(Dt)}∞t=1 converges almost

surely, i.e.,

∞∑
t=1

E
[
f̃t+1(Dt+1)− f̃t(Dt)|Ft

]
<∞. (6.177)

thanks to the quasi-martingale theorem [343, Theorem 9.4 & Proposition 9.5]

As t→∞, f̃t(Dt)→ ft(Dt) almost surely

We prove {ft(Dt)}∞t=1 and {f̃t(Dt)}∞t=1 converge to the same limit by showing

∞∑
t=1

f̃t(Dt)− ft(Dt)

t+ 1
<∞. (6.178)

According to (6.174), we know that et(Dt)/t+ 1 is bounded by f̃t(Dt)−f̃t+1(Dt+1) and (ℓ(Dt,P t+1,Y t+1)−
ft(Dt))

/
(t+ 1). Moreover, we have

∑∞
t=1 f̃t(Dt)− f̃t+1(Dt+1) <∞, and the sum of (ℓ(Dt,P t+1,Y t+1)−

ft(Dt))
/
(t+ 1) also converges due to the convergence of E[f(Dt)−ft(Dt)]

/
(t+ 1) and E[ℓ(Dt,P ,X)] =

f(Dt)∀t. Since
∑∞

t=1
1

t+1 = ∞ and
∣∣et(Dt) − et−1(Dt−1)

∣∣ = O(1/t), we obtain
∑∞

t=1 f̃t(Dt) −

232

6.6. APPENDIX

ft(Dt) <∞, or

f̃t(Dt)→ ft(Dt) a.s., (6.179)

thanks to [120, Lemma 3].

6.6.4 Appendix D: Proof of Lemma 13

In what follows, we prove that when t → ∞, ∇f̃t
(
Dt

)
→ ∇ft

(
Dt

)
and ∇f̃t(Dt) → 0 almost

surely.

As t→∞, ∇f̃t
(
Dt

)
→ ∇ft

(
Dt

)
almost surely

Let D̄ =
[
Ū(1), Ū(2), . . . , Ū(N)

]
be the limit point of the sequence of solutions {U(n)

t }t≥1.

We know that f̃t(D) is a majorant function of ft(D), i.e.,

f̃t(D+ atV) ≥ ft(D+ atV) ∀D,V ∈ D, at. (6.180)

Taking the Taylor expansion of (6.180) at t→∞ results in

f∞
(
D̄
)
+ tr

[
atV

⊤∇f∞
(
D̄
)]

+ o
(
atV

)
≤ f̃∞

(
D̄
)
+ tr

[
atV

⊤∇f̃∞
(
D̄
)]

+ o
(
atV

)
, (6.181)

where f̃∞ = limt→∞ f̃t(.). As indicated in Lemma 1, f̃∞
(
D̄
)
= f∞

(
D̄
)

and hence tr
[
atV

⊤∇f∞
(
D̄
)]
≤

tr
[
atV

⊤∇f̃∞
(
D̄
)]
. Since the above inequality must hold for all V and at, we obtain tr

[
∇f̃∞

(
D̄
)
−

∇f∞
(
D̄
)]
→ 0 a.s. or

∇f̃∞
(
D̄
)
= ∇f∞

(
D̄
)

almost surely. (6.182)

As t→∞, ∇f̃∞
(
D̄
)
= 0

This property is proved by applying immediately the following stages:

1. Stage 1: lim
t→∞

tr
[
(Dt −Dt+1)

⊤∇f̃t+1

(
Dt+1

)]
= 0;

2. Stage 2: tr
[
(Dt −Dt+1)

⊤∇f̃t+1

(
Dt+1

)]
≤ c1 tr

[
(D−Dt)

⊤∇f̃t+1

(
Dt

)]
+c2

∥∥Dt+1−Dt

∥∥2
F
∀t,D ∈

D;

3. Stage 3:
(
∇f̃t(D̄)

)⊤
(D−D̄) ⪰ 0 ∀D where D̄ is the limited point of the sequence {Dt}t≥1.

233

6.6. APPENDIX

Stage 1:

When Lt = t, we can recast the surrogate function f̃t(.) into the following form

f̃t(D) =
ρ

t
tr
[
At

([
(U(N))⊤U(N)

]
⊛
[
(U(N−1))⊤U(N−1)

]
⊛ · · ·⊛

[
(U(1))⊤U(1)

])]
− 2ρ

t
tr
[
Bt

(
U(N) ⊙U(N−1) ⊙ · · · ⊙U(1)

)⊤]
+RX ,O, (6.183)

where At = λAt−1 + utu
⊤
t , and Bt is the (N + 1)-unfolding matrix of the tensor Bt = λBt−1 +

P t ⊛ (Y t −Ot)×N+1 u
⊤
t , and RX ,O = ρ

t

∑t
τ=1 ∥P t ⊛ Y t∥2F + 1

t

∑t
τ=1 β

t−τ∥Oτ∥1 independent

of D. With respect to each factor U(n), we can further express f̃t(D) as follows

f̃t(D) =
ρ

t
tr
[(
U(n)

)⊤
U(n)At,n

]
− 2ρ

t
tr
[(
U(n)

)⊤
Bt,n

]
+RX ,O. (6.184)

Here, the two matrices At,n and Bt,n are given by

At,n = At ⊛
[
(U(1))⊤U(1)

]
⊛ · · ·⊛

[
(U(n−1))⊤U(n−1)

]
(6.185)

⊛
[
(U(n+1))⊤U(n+1)

]
⊛ · · ·⊛

[
(U(1))⊤U(1)

]
,

Bt,n =

r∑
j=1

B
(j)
t ×1 U

(1)(:, j)×2 · · · ×n−1 U
(n−1)(:, j) (6.186)

×n+1 U
(n+1)(:, j) · · · ×N U(N)(:, j),

where B
(j)
t ∈ RI1×I2···×IN denote the j-th mode-(N +1) slices of Bt. It is easy to see that f̃t(D)

is a multi-block convex and differentiable function and its partial derivative w.r.t. each block is

Lipschitz continuous with constant L̃t,n = ∥At,n∥F . Accordingly, we have∣∣∣f̃t+1

(
Dt

)
− f̃t+1

(
Dt+1

)
− tr

[
(Dt −Dt+1)

⊤∇f̃t+1(Dt+1)
]∣∣∣ ≤ L̃∥∥Dt −Dt+1

∥∥2
F
, (6.187)

with L̃ = maxn(L̃t,n/2). Thanks to the triangle inequality, we then obtain∣∣∣ tr [(Dt −Dt+1)
⊤∇f̃t+1(Dt+1)

]∣∣∣ ≤ L̃∥∥Dt −Dt+1

∥∥2
F
+ f̃t+1(Dt)− f̃t+1(Dt+1). (6.188)

Accordingly, we have

∞∑
t=1

∣∣∣∣E[tr [(Dt −Dt+1)
⊤∇f̃t+1(Dt+1)

]∣∣Ft

]∣∣∣∣
≤ L̃

∞∑
t=1

E
[∥∥Dt −Dt+1

∥∥2
F

]
+

∞∑
t=1

∣∣∣∣E[f̃t+1(Dt+1)− f̃t+1(Dt)
∣∣Ft

]∣∣∣∣. (6.189)

Recall that
∥∥Dt−Dt+1∥F = O(1/t) as indicated in Proposition 1, hence

∑∞
t=1

∥∥Dt−Dt+1∥2F ≤
d
∑∞

t=1
1
t2

= dπ
6 < ∞ for some constant d > 0. Together with (6.177), we obtain that the right

234

6.6. APPENDIX

hand side of (6.189) is finite.

Also, it is well-known that E[|x|] <∞ implies |x| <∞ almost surely for any random variable

x, thus we obtain

∞∑
t=1

∣∣∣ tr [(Dt −Dt+1)
⊤∇f̃t+1(Dt+1)

]∣∣∣ <∞. (6.190)

Moreover, we always have

∞∑
t=1

tr
[
(Dt −Dt+1)

⊤∇f̃t+1(Dt+1)
]
<

∞∑
t=1

∣∣∣ tr [(Dt −Dt+1)
⊤∇f̃t+1(Dt+1)

]∣∣∣ <∞. (6.191)

Therefore the series
{
tr[(Dt −Dt+1)

⊤∇f̃t+1(Dt+1)]
}
t≥1

converges and we suppose that it con-

verges to C <∞.

Now, we rewrite (6.191) as follows

lim
t→∞

t∑
τ=1

tr
[
(Dk −Dk+1)

⊤∇f̃k+1(Dk+1)
]
= lim

t→∞
tr
[
(Dt −Dt+1)

⊤∇f̃t+1

(
Dt+1

)]
+ lim

t→∞

t−1∑
τ=1

tr
[
(Dk −Dk+1)

⊤∇f̃k+1(Dk+1)
]
= C <∞. (6.192)

When t→∞, the following partial sum also converges to C, i.e.,

lim
t→∞

t−1∑
τ=1

tr
[
(Dk −Dk+1)

⊤∇f̃k+1(Dk+1)
]
= C. (6.193)

It implies that

lim
t→∞

tr
[
(Dt −Dt+1)

⊤∇f̃t+1

(
Dt+1

)]
= 0. (6.194)

Step 2:

Because U
(n)
t+1 = argminU(n) f̃t+1

(
U(n), .

)
, we have

f̃t+1

(
U

(n)
t+1, .

)
≤ f̃t+1

(
U

(n)
t +

d1
tN

(
U(n) −U

(n)
t

)
, .
)
∀D ∈ D. (6.195)

Without loss of generality, we suppose that D is arbitrarily chosen in D such that ∥D−Dt∥F =

d1/tN for some positive constant d1 > 0, hence ∥U(n) −U
(n)
t ∥F ≤ d1/Nt ∀n.

As mentioned in Stage 1, ∇f̃ =
[
∇1f̃ ,∇2f̃ , . . . ,∇N f̃

]
is Lipschitz where ∇nf̃ denote the

partial derivative of f̃ w.r.t. the n-th factor U(n). Thanks to Proposition 22, there always exists

235

6.6. APPENDIX

a constant d2 > 0 such that

tr
[(
U

(n)
t −U

(n)
t+1

)⊤∇nf̃t+1

(
U

(n)
t+1, .

)]
≤ d1
tN

tr

[(
U(n) −U

(n)
t

)⊤∇nf̃t+1

(
U

(n)
t , .

)]
+

L̃d2
t2N2

.

(6.196)

Collecting these inequalities with n = 1, 2, . . . , N together, we derive

tr
[
(Dt −Dt+1)

⊤[∇1f̃t+1

(
U

(1)
t+1, .

)
,∇2f̃t+1

(
U

(2)
t+1, .

)
, . . . ,∇N f̃t+1

(
U

(N)
t+1, .

)]]
≤ d1
tN

tr

[(
D−Dt

)⊤[∇1f̃t+1

(
U

(n)
t , .

)
,∇2f̃t+1

(
U

(n)
t , .

)
, . . . ,∇N f̃t+1

(
U

(n)
t , .

)]]
+

L̃d2
t2N2

.

(6.197)

It then follows that

tr
[
(Dt −Dt+1)

⊤∇f̃t+1

(
Dt+1

)]
≤ d1
tN

tr
[
(D−Dt)

⊤∇f̃t+1

(
Dt

)]
+ L̃d2

∥∥Dt −Dt+1

∥∥2
F
,

(6.198)

because of ∥Dt −Dt+1∥F = O(1/t). The inequality (6.198) still holds for all D ∈ D such that

∥D−Dt∥F > d1/tN .

Step 3:

We use the proof by contradiction to indicate that the limited point D̄ is a stationary point of

f̃∞(.) over D.

Assume that D̄ is not a stationary point of f̃t over D when t→∞. Then there exists D′ ∈ D
and ϵ1 > 0 such that

tr
[
(D′ − D̄)⊤∇f̃∞

(
D̄
)]
≤ −ϵ1 < 0. (6.199)

Thanks to the triangle inequality, we have

∥∥(D′ −Dτ)
⊤∇f̃k+1(Dτ)− (D′ − D̄)⊤∇f̃∞(D̄)

∥∥
F
≤
∥∥∇f̃k+1(Dτ)−∇f̃∞(D̄)

∥∥
F

∥∥D′ −Dτ

∥∥
F

+ ∥f̃∞(D̄)∥F ∥D̄−Dτ∥F . (6.200)

It is easy to see that the RHS of (6.200) approaches to zero as k →∞ because of Dτ → D̄ and

∇f̃k+1(Dτ) → ∇f̃∞(D̄). In parallel, we know that tr[A] − tr[B] = tr[A − B] ≤
√
n∥A − B∥F

and hence

tr
[(
D′ −Dk

)⊤∇f̃k+1

(
Dk

)]
≤ −ϵ1 < 0. (6.201)

236

6.6. APPENDIX

According to (6.198), we obtain

lim
k→∞

tr
[
(Dτ −Dk+1)

⊤∇f̃k+1(Dk+1)
]
≤ −d1ϵ
tN∥D′ −Dτ∥F

< 0, (6.202)

which is a contradiction in (6.194) in Step 1. Therefore, D̄ is a stationary point of f̃∞.

6.6.5 Appendix E: Useful Propositions

In this section, we would provide the following propositions which help us to derive several

important results in the proofs. Their details are provided in well-known materials.

Proposition 19 ([132, Section 9.1.2]). The function f is m-strongly convex, with a constant m

if and only if for all u,v ∈ dom(f), we always have |f(v)− f(u)| ≥ m
2 ∥v − u∥2 .

Proposition 20 ([132, page 72]). Every norm on Rn is convex and the sum of convex functions

is convex.

Proposition 21 ([132, page 329]). A function f : V → R is called Lipschitz function if there exist

a positive number L > 0 such that for all A,B ∈ V, we always have |f(A)− f(B)| ≤ L∥A−B∥.

Proposition 22 ([353, Lemma 1.2.3]). If a function f : V → R is differentiable and its derivative

is L-Lipschitz continuous, then for all A,B ∈ V,∣∣∣f(A)− f(B)−
(
∇f(B)

)⊤
(A−B)

∣∣∣ ≤ L

2
∥A−B∥2.

Proposition 23. If {ft}t≥1 and {gt}t≥1 are sequences of bounded functions which converge

uniformly on a set E, then {ft + gt}t≥1 and {ftgt}t≥1 converge uniformly on E.

Proof. Since ft and gt are bounded, we obtain |ft| < M < ∞ and |gt| < N < ∞ for all t. The

triangle inequality gives |ft + gt| ≤ |ft| + |gt| < M + N for all t. Also, |ftgt| = |ft||gt| ≤ MN .

Therefore ft + gt and ftgt are bounded.

Proposition 24 ([120, Lemma 3, page 35]). Let {at}∞t=1 and {bt}∞t=1 be two nonnegative se-

quences such that
∑∞

i=1 ai = ∞ and
∑∞

i=1 aibi < ∞, |bt+1 − bt| < Kat with some constant K,

then limt→∞ bt = 0 or
∑∞

i=1 bi <∞.

Proposition 25 ([350, Theorem 4.1, page 237]). Consider a continuous function f : V×U → R.

Suppose that ∀u ∈ U , the function f(.,u) is differentiable and ∇vf(v,u) is continuous on V×U .

If g(v) be the function derived from g(v) = minu∈U f(v,u), then g(v) is also differentiable. In

addition, if u∗ = argminu∈U f(v,u) be unique, ∇g(v) = ∇vf(v,u
∗), ∀v ∈ V.

Proposition 26 (P-Donsker classes, Donsker theorem [126, Section 19.2]). Let F = {ℓθ : X →
R} be a set of measurable functions defined on a bounded subset of Rn. For every θ1, θ2 and x,

237

6.6. APPENDIX

if there exists a constant c such that |ℓθ1(x)− ℓθ2(x)| < c ∥θ1 − θ2∥2 , then F is P-Donsker. For

any function ℓ in F , let us define the following functions

ft =
1

t

t∑
i=1

ℓ(Ui), and f = E[ft(U)].

Assume that for all ℓ, ∥ℓ∥∞ < M and random variables {Ui}i≥1 are Borel-measurable, we then

have E[
√
t∥ft − f∥∞] = O(1), where ∥ℓ∥∞

∆
= inf{C ≥ 0, |f(x)| < C ∀ x}.

Proposition 27 (Quasi Martingales [125, Section 4.4]). Let (Ω,F ,P) be a probability space,

{ut}t>0 be a stochastic process on the probability space and {Ft}t>0 be a filtration by the past

information at time instant t. Let us define the indicator function δt as follows

δt
∆
=

1 if E[ut+1 − ut|Ft] > 0,

0 otherwise.

For all t, if ut ≥ 0 and
∑∞

i=1 E[δi(ui+1−ui)|Fi] <∞, then ut is a quasi-martingale and converges

almost surely, i.e.,

∞∑
t=1

E[ut+1 − ut|Ft] <∞.

238

Chapter 7

Tensor Tracking under Tensor-Train

Format

Contents

7.1 Introduction . 240

7.2 Streaming Tensor-Train Decomposition 242

7.2.1 Problem Formulation . 242

7.2.2 Proposed Method . 243

7.3 Streaming Tensor-Train Decomposition with Missing Data 247

7.3.1 Problem Formulation . 247

7.3.2 Proposed Method . 248

7.4 Streaming Tensor-Train Decomposition with Sparse Outliers 252

7.4.1 Problem Formulation . 252

7.4.2 Proposed Method . 254

7.5 Experiments . 257

7.5.1 Performance of TT-FOA . 257

7.5.2 Performance of ATT . 261

7.5.3 Performance of ROBOT . 266

7.6 Conclusions . 270

239

7.1. INTRODUCTION

Tensor-train (TT) decomposition has been an efficient tool to find low order approximation of large-scale,
high-order tensors. In online setting, TT decomposition has not gained much attention and popularity
as CP and Tucker decompositions. In particular, the existing TT decomposition algorithms are either of
high computational complexity or operating in batch-mode, and hence, they become inefficient for (near)
real-time processing. In this chapter, we introduce three new online algorithms for the problem of stream-
ing tensor-train decomposition. The first algorithm called TT-FOA is capable of tracking the low-rank
components of high-order tensors from noisy and high-dimensional data with high accuracy, even when
they come from time-dependent observations. The second algorithm called ATT is specifically designed for
handling incomplete streaming tensors. ATT is scalable, effective, and adept at estimating low TT-rank
component of streaming tensors. To deal with sparse outliers, we propose the so-called ROBOT algo-
rithm which stands for ROBust Online Tensor-Train decomposition. Technically, ROBOT has the ability
to tracking streaming tensors from imperfect streams (i.e., due to noise, outliers, and missing data) as
well as tracking their time variation in dynamic environments. We conduct several experiments on both
synthetic and real data to demonstrate the effectiveness of the proposed algorithms.

7.1 Introduction

Tensor decomposition has received increasing attention from the machine learning and signal

processing community over the years [10,11]. It has been successfully applied to a broad range of

applications, from wireless communications [182, 354] and image processing [355, 356] to neuro-

science [179,357]. Tensor-train (TT) decomposition, which is one form of tensor decomposition,

has become a powerful processing tool for multi-dimensional and large-scale data analysis [12].

Under the tensor-train format, we can factorize a high-order tensor into a sequence of 3-order

tensors, see Fig. 7.1 for an illustration.

TT decomposition offers several advantages compared to the two standard Tucker and CP/PARAFAC

decompositions. First, we can represent any high-order tensor under TT decomposition and its

computation is stable since it is based on computing low-rank approximations of unfolding ma-

trices of the tensor [16]. Second, TT-rank can be effectively determined in a stable way in

contrast to CP-rank which is known as an NP-hard problem [195,358]. Moreover, TT decompo-

sition provides a memory-saving representation for high-order tensors and can break the curse

of dimensionality which limits the order of the tensors to be analysed [16, 189]. Accordingly,

TT decomposition is expected to be capable of handling big tensors efficiently and effectively.

We refer the readers to [12] for a comprehensive survey on basic properties, algorithms, and

applications of the tensor-train decomposition.

In recent years, the demand for big data stream analysis has been increasing rapidly [2].

240

7.1. INTRODUCTION

 1

1
1

2
1

N
(1)

G (2)
G

(1)N
G

1

1N

1 1[]I r 1 2 2[]r I r 2 1 1[]N N Nr I r 1[]N Nr I

()N
GX

Figure 7.1: Tensor-train decomposition of X ∈ RI1×I2×···×IN .

In most modern online applications, data acquisition is a time-varying process where data are

sequentially acquired at a large scale with many attributes over time. This leads to several

issues for tensor decomposition in general and TT decomposition in particular: (i) size of the

tensor is growing linearly with time, (ii) time variation in nonstationary environments where the

underlying process generating the tensor can change over time, and (iii) uncertainties (e.g., im-

precise, noisy, and misleading entries) emanate during data collection, to name a few. In parallel,

missing data are ubiquitous in multi-dimensional and large-scale data analysis where collecting

all data attributes at a time is either too expensive or even impossible due to corruption [359].

Accordingly, it is of great interest to develop adaptive (online) tensor decomposition or tensor

tracking algorithms which are capable of handling these issues. In spite of several successes in

batch settings, TT decomposition has not gained the same popularity in online settings as CP

and Tucker decompositions. Particularly, most of the existing TT methods are operating in

batch-mode and become inefficient for streaming applications.

RelatedWorks: There exist few TT methods related to adaptive tensor decomposition in the

literature. In [360–362], Lubich et al. introduced some dynamical tensor approximation methods

under TT format for factorizing time-varying tensors, thanks to the Dirac–Frenkel-McLachlan

variational principle. However, the dynamical tensors of interest are of fixed size, and hence, their

methods indeed belong to the class of batch TT algorithms. In [267], Liu et al. proposed an

incremental TT method called iTTD for decomposing high-order tensors of which one dimension

grows with time. iTTD factorizes new streams as individual tensors into TT-cores and then

appends the estimated cores to old estimates from past observations. In [268], Wang et al. also

developed an incremental TT method for factorizing tensors derived from industrial IoT data

streams, namely AITT. By exploiting a relationship between the directly reshaped matrix and

integration of unfolding matrices, AITT can estimate effectively the underlying TT-cores with

low cost. Nevertheless, it is worth noting that the framework of both iTTD and AITT is not

really online streaming learning, but incremental batch learning. These drawbacks encourage us

to develop adaptive methods for factorizing high-order streaming tensors under the tensor-train

format.

241

7.2. STREAMING TENSOR-TRAIN DECOMPOSITION

 1

1
1

2
1

N
(1)

tG
(2)

tG (1)N

t

G

()

1

N

tG1

1N
1tX tY

1 1[]I r 1 2 2[]r I r
2 1 1[]N N Nr I r 1[]t

N Nr I

()N

tGtX

Figure 7.2: Streaming Tensor-Train Decomposition of X t ∈ RI1×I2×···×IN−1×ItN .

7.2 Streaming Tensor-Train Decomposition

7.2.1 Problem Formulation

Consider a streaming N -order tensor X t ∈ RI1×I2×···×IN−1×ItN fixing all but the last “time” di-

mension ItN . At time t, X t is particularly obtained by appending a new slice Y t ∈ RI1×I2×···×IN−1

to the previous observation X t−1 along the time dimension, i.e., ItN = It−1
N +1, please Fig. 7.2 for

an illustration. Instead of recomputing the batch TT decomposition for X t, we aim to develop

an efficient update, both in computational complexity and memory storage, to obtain TT-cores

of X t from past estimations.

TT decomposition of X t can be represented by a multilinear product of 3-order tensors called

TT-cores:

X t = G(1)
t ×1

2 G
(2)
t ×1

3 · · · ×1
N G(N)

t , (7.1)

where rTT = [r1, r2, . . . , rN−1] is a vector containing the TT-ranks, G(1)
t ∈ RI1×r1 , G(N)

t ∈
RrN−1×ItN and G(n)

t ∈ Rrn−1×In×rn , n = 2, . . . , N − 1, are the TT-cores. In practice, (7.1) is only

an approximate model in a noisy environment, i.e.,

X t = G(1)
t ×1

2 G
(2)
t ×1

3 · · · ×1
N G(N)

t +N t (7.2)

where N t is a noise tensor. The TT-cores can be estimated by solving the following minimization:

{
G(n)

t

}N
n=1

= argmin
{G(n)}Nn=1

1

2

∥∥∥X t − X̃
∥∥∥2
F

s.t. X̃ = G(1) ×1
2 G(2) ×1

3 · · · ×1
N G(N). (7.3)

Problem (7.3) can be rewritten in the adaptive scheme as follows

{
G(n)

t

}N
n=1

= argmin
{G(n)}Nn=1

t∑
τ=1

βt−τ
∥∥∥Yτ − G(1) ×1

2 · · · ×1
N−1 G(N−1) ×1

N g(N)
τ

∥∥∥2
F
, (7.4)

242

7.2. STREAMING TENSOR-TRAIN DECOMPOSITION

where Yτ ∈ RI1×I2×···×IN−1 is the τ -th slice of X t, g
(N)
τ ∈ RrN−1×1 is the i-th column of the last

TT-core G(n)
t and a forgetting factor λ ∈ (0, 1] is to discount the effect of past observations. The

following steps describe the basic idea of our method for solving (7.4).

Let us denote Ht = G(1)
t ×1

2 · · · ×1
N−1 G(N−1)

t , and {G(n)
t−1}Nn=1 be the old estimated TT-

cores of X t−1. Under the assumption that TT-cores are either static or changing slowly, hence

Ht ≃Ht−1. Thus, we have

Ht ×1
N G(N)

t = X t−1 ⊞N Y t

=
(
Ht−1 ×1

N G(N)
t−1

)
⊞N

(
Ht ×1

N g
(N)
t

)
≃Ht ×1

N

[
G(N)

t−1

∣∣ g(N)
t

]
. (7.5)

Accordingly, we only need to estimate the last column vector g
(N)
t of G(N)

t ∈ RrN−1×t at time t,

instead of re-estimating the whole G(N)
t which becomes inefficient for a large t:

G(N)
t ≃

[
G(N)

t−1

∣∣ g(N)
t

]
. (7.6)

The vector g
(N)
t can be updated by minimizing the t-th summand in (7.4):

g
(N)
t = argmin

g(N)∈RrN−1×1

∥∥∥Y t −Ht−1 ×1
n g(N)

∥∥∥2
F
. (7.7)

After that, we update TT-cores {G(n)}N−1
n=1 by

G(n)
t = argmin

G(n)

[
ft
(
G(n)

)
=

t∑
τ=1

βt−τ
∥∥∥Yτ −A(n)

t−1 ×
1
n G(n) ×1

k+1 B(n)
τ

∥∥∥2
F

]
, (7.8)

where the two auxiliary tensors are given by

A(n)
t−1 = G(1)

t−1 ×
1
2 · · · ×1

n−1 G
(n−1)
t−1 , (7.9)

B(n)
τ = G(n+1)

t−1 ×1
n+2 · · · ×1

N−1 G
(n−1)
t−1 ×1

N g(N)
τ . (7.10)

We make the following assumptions for convenience of deploying our method: (A1) TT-cores

{G(n)}N−1
n=1 may change slowly between two consecutive instances t − 1 and t, i.e. G(n)

t ≃ G(n)
t−1;

and (A2) TT-rank vector rTT = [r1, r2, . . . , rN−1] is known and does not change with time.

7.2.2 Proposed Method

In this subsection, we propose an efficient first-order method, namely TT-FOA (which stands

for TT adaptive decomposition using First-Order Approach), for tensor-train decomposition of

streaming tensors by adapting the alternating minimization framework to the problem (7.44).

The proposed algorithm consists of two main steps: (i) estimate g
(N)
t first, given past estimated

243

7.2. STREAMING TENSOR-TRAIN DECOMPOSITION

Algorithm 9: TT-FOA: First-Order Adaptive Tensor-Train Decomposition
Input: Observations {Yt}∞t=1, Yt ∈ RI1×I2×···×IN−1 , TT-rank rTT = [r1, r2, . . . , rN−1],
forgetting factor 0 < β ≤ 1.

Initialization: {G(n)
0 }

N−1
n=1 are initialized randomly and {S(n)

0 }
N−1
n=1 = I.

Main Program:

Procedure:
for t = 1, 2, . . . do

Step 1: Estimate g
(N)
t

Ht−1 = G
(1)
t−1 ×1

2 G
(2)
t−1 ×1

3 · · · ×1
N−1 G

(N−1)
t−1

Ht−1 = unfolding(Ht−1, [I1I2 . . . IN−1, rN−1])

Ω = randsample
(
[1, I1I2 . . . IN−1]

)
yΩt = vec(Yt)

g
(N)
t = H#

Ωt−1
yΩt

∆t = Yt −Ht−1 ×1
N g

(N)
t

Step 2: Update TT-cores Gk in parallel
A(n)

t−1 = G
(1)
t−1 ×1

2 · · · ×1
n−1 G

(n−1)
t−1

A
(n)
t−1 = unfolding

(
A(n)

t−1, [rn−1, I1I2 . . . In−1]
)

B(n)
t = G(n+1)

t−1 ×1
n+2 · · · ×1

N−1 G
(N−1)
t−1 ×1

N g
(N)
t

B
(n)
t = unfolding

(
B(n)

t , [rn, In+1In+2 . . . IN−1]
)

W
(n)
t = B

(n)
t ⊗A

(n)
t−1

S
(n)
t = βS

(n)
t−1 +W

(n)
t W

(n)
t

⊤

V
(n)
t =

(
S
(n)
t

)−1
W

(n)
t

⊤

∆
(n)
t = unfolding(∆t, [In, rn−1rn])

G
(n)
t = G

(n)
t−1 +∆

(n)
t V

(n)
t

⊤

G(n)
t = reshape(G(n)

t , [rn−1, In, rn])

end
Output: TT-cores {G(n)

t }Nn=1.

TT-cores; (ii) then we update TT-cores G(n) in parallel, given g
(N)
t and remaining TT-cores.

The pseudocode of TT-FOA is summarized in Algorithm 9.

7.2.2.1 Estimation of g
(N)
t

Given a new slice Y t and past estimated TT-cores, g(N)
t can be estimated by solving (7.7)

g
(N)
t = argmin

g(N)∈Rrn−1×1

∥∥∥Y t −Ht−1 ×1
N g(N)

∥∥∥2
F
+
ρ

2

∥∥∥g(N)
∥∥∥2
2
,

244

7.2. STREAMING TENSOR-TRAIN DECOMPOSITION

where ρ is a small positive parameter for regularization. It can be reformulated via its matrix-

vector representation as follows

g
(N)
t = argmin

g(N)∈RrN−1×1

∥∥∥yt −Ht−1g
(N)
∥∥∥2
2
+
ρ

2

∥∥∥g(N)
∥∥∥2
2
, (7.11)

where yt = vec(Y t) and Ht−1 ∈ RI1...IN−1×rN−1 is the unfolding matrix of Ht−1.

Problem (7.11) is an overdetermined least-squares (LS) regression, it can be efficiently solved

by using the randomized sketching technique [323], as

g
(N)
t = argmin

g(N)∈RrN−1×1

∥∥∥L(Ht−1

)
g(N) − L

(
yt

)∥∥∥2
2
+
ρ

2

∥∥∥g(N)
∥∥∥2
2
, (7.12)

where L(.) is a sketching map. Thanks to the Kronecker structure of H[t− 1], uniform random

sampling can provide a good sketch for Ht−1. Accordingly, we can select rows of Ht−1 as well

as yt at random to form the sketch HΩt−1 ∈ R|Ω|×rN−1 and a sampled vector ∈ R|Ω|×1, where

Ω denotes the set of sampling rows. Therefore, g(N)
t can be efficiently updated by applying the

ridge regression method to (7.12), whose closed-form is given by

g
(N)
t =

(
H⊤

Ωt−1
HΩt−1 + ρIrN−1

)−1
H⊤

Ωt−1
yΩt . (7.13)

As a result, the last TT-core G(N)
t is updated as follows

G(N)
t =

[
G(N)

t−1

∣∣ g(N)
t

]
. (7.14)

7.2.2.2 Estimation of TT-cores

Given the new slice Y t and past estimations, the k-th TT-core G(n)
t can be estimated by mini-

mizing the matrix-representation of the objective function (7.48), as follows

G
(n)
t = argmin

G(n)∈RIn×rnrn−1

[
f(G(n)) =

t∑
τ=1

βt−τ
∥∥Y(n)

τ −G(n)W(n)
τ

∥∥2
F

]
, (7.15)

where G
(n)
t is the mode-2 matricization of G(n)

t , Y(n)
τ is the mode-n matricization of Yτ ; W

(n)
τ =

B
(n)
τ ⊗A

(n)
t−1 where ⊗ denotes the Kronecker product, A(n)

t−1 and B
(n)
τ are the unfolding matrices

of A(n)
t−1 and B(n)

τ respectively;

The local optimal G(n)
t can be obtained by setting the first derivative of f(G(n)) to zero:

G(n)
t∑

i=1

βt−τW(n)
τ W(n)

τ

⊤
=

t∑
i=1

βt−τY(n)
τ W(n)

τ

⊤
. (7.16)

245

7.2. STREAMING TENSOR-TRAIN DECOMPOSITION

From that, we can obtain G
(n)
t in the recursive way as follows:

Let us denote S
(n)
t =

∑t
τ=1 β

t−τW
(n)
τ W

(n)
τ

⊤
and R

(n)
t =

∑t
τ=1 β

t−τY
(n)
τ W

(n)
τ

⊤
. The two ma-

trices R
(n)
t and S

(n)
t can be updated recursively:

S
(n)
t = βS

(n)
t−1 +W

(n)
t W

(n)
t

⊤
, (7.17)

R
(n)
t = βR

(n)
t−1 + X̄

(k)
t W

(n)
t

⊤
. (7.18)

Therefore, (7.16) can be rewritten as

G(n)S
(n)
t = βR

(n)
t−1 +Y

(n)
t W

(n)
t

⊤

= βG
(n)
t−1S

(n)
t−1 +Y

(n)
t W

(n)
t

⊤

= G
(n)
t−1S

(n)
t +

(
Y

(n)
t −G

(n)
t−1W

(n)
t

)
W

(n)
t

⊤
. (7.19)

Let the residual matrix ∆
(n)
t and coefficient matrix V

(n)
t be

∆
(n)
t = Y

(n)
t −G

(n)
t−1W

(n)
t , (7.20)

V
(n)
t = W

(n)
t

⊤(
S
(n)
t

)−1
. (7.21)

We obtain a simple rule for updating G
(n)
t as follows

G
(n)
t = G

(n)
t−1 +∆

(n)
t V

(n)
t . (7.22)

After that, the TT-core G(n)
t will be derived from reshaping G

(n)
t into a 3-way tensor of size

rn−1 × In × rn.

We also note that when dealing with large-scale and high-rank tensors (i.e. rn ≈ In), TT-FOA

can be sped up by using its stochastic approximation. We refer to this method as the stochastic

TT-FOA. Particularly, the gradient∇f(G(n)) can be approximated by the instantaneous gradient

of the last summand of f(G(n)). Thus, S(n)
t can be computed by

S
(n)
t ≃W

(n)
t (W

(n)
t)⊤. (7.23)

Accordingly, the matrix V
(n)
t in (7.21) can be derived directly from the right inverse of W(n)

t .

As a result, the stochastic TT-FOA not only skips several operations, but also saves a memory

storage of O(r2n−1r
2
n) for storing S

(n)
t at time t. However, the stochastic approximation achieves

a lower convergence rate than the original TT-FOA, see Fig. 7.7 for an illustration.

246

7.3. STREAMING TENSOR-TRAIN DECOMPOSITION WITH MISSING DATA

7.2.2.3 Computational Complexity and Memory Storage Analysis

For convenience of the analysis, we assume that the fixed dimensions of the tensor are equal to

I while its TT-rank is rTT = [r, r, . . . , r]. In terms of computational complexity, TT-FOA first

requires O(|Ω|r2) flops for computing g
(N)
t by using the randomized LS method at time t. The

cost for updating the k-th TT-core, G(n)
t , comes from matrix-matrix products except an inverse

operation for S(n)
t , hence it costs O(IN−1r2) flops in general. It is due to that the matrix S

(n)
t is

of size r2 × r2, thus the computation of (S(n)
t)−1 is not expensive and independent of the tensor

dimension. Therefore, the overall computational complexity is O(IN−1r2). In term of memory

storage, TT-FOA does not require to save the observation data at each time, it totally costs

O
(
(N − 1)(Ir2 + r4)

)
words of memory for storing n − 1 TT-cores and N − 1 matrices S

(n)
t .

When the stochastic TT-FOA is applied, the memory storage is only O
(
(N − 1)Ir2

)
words of

memory.

7.3 Streaming Tensor-Train Decomposition with Missing Data

In this subsection, we propose a novel adaptive algorithm called ATT (which stands for Adaptive

Tensor-Train) for decomposing high-order incomplete streaming tensors with time under the

tensor-train format. By utilizing the recursive least-squares method in adaptive filtering, ATT

minimizes effectively a weighted least-squares objective function accounting for both missing

values and time-variation constraints on the underlying tensor-train cores. The proposed ATT

algorithm is scalable, effective, and technically adept at estimating low-rank components of

streaming tensors from noisy, imperfect, and incomplete observations as well as tracking their

time variation in nonstationary environments. Besides, ATT can support parallel and distributed

computing. To the best of our knowledge, ATT is the first TT algorithm which is capable of

dealing with time-dependent streaming tensors with missing values.

7.3.1 Problem Formulation

In this work, we consider the streaming tensor-train decomposition of an N -th order incom-

plete streaming tensor X t ∈ RI1×I2×···×IN−1×ItN fixing all but the last time (temporal) dimen-

sion ItN . Particularly, X t is derived from appending the incoming stream Y t ∈ RI1×I2×···×IN−1×W

(with W ≥ 1) to the last observation X t−1 along the time dimension, i.e., X t = X t−1 ⊞N

Y t with ItN = It−1
N +W. We suppose that X t is generated under the following model:

Y t = P t ⊛
(
Lt +N t

)
. (7.24)

247

7.3. STREAMING TENSOR-TRAIN DECOMPOSITION WITH MISSING DATA

Here, P t is a binary (mask) tensor, N t is a Gaussian noise tensor, and both tensors are of the

same size with X t. The low-rank component Lt of X t has the form

Lt = G(1)
t ×1

2 G
(2)
t ×1

3 · · · ×1
N G

(N)
t , (7.25)

where G(n) ∈ Rrn−1×In×rn for n = 1, 2, . . . , N with r0 = rN = 1 is the n-th TT-core (the first

and last TT-cores are indeed matrices); [r1, r2, . . . , rN−1] is the TT-rank; and G
(N)
t ∈ RrN−1×W

contains the last W columns of the temporal TT-core G(N)
t , i.e., G(N)

t =
[
G(N)

t−1

∣∣ G(N)
t

]
.

Conventionally, TT-cores
{
G(N)

t }Nn=1 can be obtained from:

{G(n)
t }Nn=1 = argmin

{G(n)}Nn=1

∥∥∥P̂ t ⊛
(
X t − G(1) ×1

2 G(2) ×1
3 · · · ×1

N G(N)
)∥∥∥2

F
, (7.26)

where P̂ t is the observation mask of the underlying tensor X t. In online settings, retaking the

batch TT methods to solve (7.26) becomes inefficient due to inherent time-variation and non-

stationarity of data streams as well as their high complexity in both computation and storage

cost. Therefore, we aim to develop a low cost and effective tracker to estimate the TT-cores of

X t in time.

Specifically, we propose to minimize the following exponentially weighted least-squares objec-

tive function, instead of (7.26):

{G(n)
t }Nn=1 = argmin

{G(n)}Nn=1

[
t∑

τ=1

βt−τ
∥∥∥Pτ ⊛

(
Yτ − G(1) ×1

2 · · · ×1
N−1 G(N−1) ×1

N G(N)
τ

)∥∥∥2
F

+ ρ
N−1∑
n=1

∥∥∥G(n) − G(n)
t−1

∥∥∥2
F

]
, (7.27)

where β ∈ (0, 1] is a forgetting factor aimed at reducing the effect of distant observations as well

as facilitating the tracking process in dynamic environments; and ρ is a regularization parameter

for controlling the time variation of TT-cores between two consecutive instances. Note that,

when β = 1 and ρ = 0, the objective function of (7.44) boils down to the batch one of (7.26).

To support our deployment in Section III, we make two mild assumptions on the data model:

TT-cores {G(n)}N−1
n=1 may either be static or vary slowly with time, i.e., G(n)

t ≃ G(n)
t−1; and TT-rank

is supposed to be known.

7.3.2 Proposed Method

In this section, we propose an adaptive method called ATT for adaptive tensor-train decompo-

sition with missing data. Thanks to the block-coordinate descent (BCD) framework, we par-

ticularly decompose (7.44) into two main stages: first, update the temporal G(N)
t given old

248

7.3. STREAMING TENSOR-TRAIN DECOMPOSITION WITH MISSING DATA

Algorithm 10: ATT - Adaptive Tensor-Train
Input: Streams {Pt ⊛Yt}∞t=1, Pt,Yt ∈ RI1×I2×···×IN−1×W , TT-rank rTT = [r1, r2, . . . , rN−1],
forgetting factor 0 < β ≤ 1, regularized parameters ρ, λ > 0.

Initialization: {G(n)
0 }

N−1
n=1 are initialized at random, {S(n)

0 }
N−1
n=1 = 0 and {∆G(n)

0 }
N−1
n=1 = 0.

Main Program:

Procedure:
for t = 1, 2, . . . do

Stage 1: Estimate the temporal TT-core G(N)
t

Ht−1 = G(1)
t−1 ×1

2 · · · ×1
N−1 G

(N−1)
t−1

Ht−1 = reshape
{
Ht−1, [I1I2 . . . IN−1, rN−1]

}
for i = 1, 2, . . . ,W do

yt,i = vec
{
Yt(:, . . . , :, i)

}
P̄t,i = diag

{
Pt(:, . . . , :, i)

}
G

(N)
t (:, i) =

(
H⊤

t−1P̄t,iHt−1 + λIrN−1

)−1
H⊤

t−1P̄t,iyt,i

δyt,i = P̄t,i

(
yt,i −Ht−1G

(N)
t (:, i)

)
∆Yt,i = reshape

{
δyt,i, [I1, I2, . . . , IN−1, 1]

}
end
G(N)

t =
[
G(N)

t−1 G
(N)
t

]
∆Yt = ∆Yt,1 ⊞N ∆Yt,2 ⊞N · · ·⊞N ∆Yt,W

Stage 2: Estimate the non-temporal TT-cores
{
G(n)

t

}N−1

n=1

for n = 1, 2, . . . , N − 1 do
A(n)

t−1 = G(1)
t−1 ×1

2 · · · ×1
n−1 G

(n−1)
t−1

A
(n)
t−1 = reshape

{
A(n)

t−1, [rn−1, I1I2 . . . In−1]
}

B(n)
t = G(n+1)

t−1 ×1
n+2 . . .G

(N−1)
t−1 ×1

N G
(N)
t

B
(n)
t = reshape

{
B(n)

t , [rn, In+1In+2 . . . IN−1]
}

W
(n)
t = B

(n)
t ⊗A

(n)
t−1

S
(n)
t = βS

(n)
t−1 +W

(n)
t (W

(n)
t)⊤

∆G
(n)
t =

((
P

(n)
t ⊛∆Y

(n)
t

)(
W

(n)
t

)⊤
+ βρ∆G

(n)
t−1

)(
S
(n)
t + ρIrn−1rn

)−⊤

G
(n)
t = G

(n)
t−1 +∆G

(n)
t

G(n)
t = reshape

{
G

(n)
t , [rn−1, In, rn]

}
end

Stage 3 (Optional): Re-estimate G(N)
t with updated

{
G(n)

t

}N−1

n=1
as in Stage 1.

end
Output: TT-cores

{
G(n)

t

}N
n=1

.

estimations
{
G(n)

t−1

}N−1

n=1
; and second, estimate the non-temporal G(n)

t given G(N)
t and remaining

TT-cores, for n = 1, 2, . . . , N − 1. In stage 1, we apply the well-known regularized least-squares

method for estimating G(N)
t . An elegant recursive least-squares (RLS) adaptive filter is specifi-

cally developed to update the non-temporal TT-cores {G(n)
t }

N−1
n=1 in an effective way. Main steps

of the proposed ATT method are summarized in Algorithm 10.

249

7.3. STREAMING TENSOR-TRAIN DECOMPOSITION WITH MISSING DATA

7.3.2.1 Estimation of the temporal TT-core G(N)
t

On the arrival of Y t, we obtain G
(N)
t from

G
(N)
t = argmin

G(N)

∥∥∥P t ⊛
(
Y t −Ht−1 ×1

N G(N)
)∥∥∥2

F
+ λ

∥∥∥G(N)
∥∥∥2
F
, (7.28)

where Ht−1 = G(1)
t−1×1

2 · · ·×1
N−1G

(N−1)
t−1 and λ > 0 is a small regularized parameter. Here, the first

term of (7.28) is aimed at minimizing the residual error between observation and estimation for

t-th temporal slice, while the introduction of λ∥G(N)∥2F is for avoiding the ill-posed computation

in practice. Particularly, we can rewrite (7.28) as follows

G
(N)
t = argmin

G(N)

∥∥∥Pt ⊛
(
Yt −Ht−1G

(N)
)∥∥∥2

2
+ λ

∥∥∥G(N)
∥∥∥2
F
, (7.29)

where Yt,Pt ∈ RI1...IN−1×W , and Ht−1 ∈ RI1...IN−1×rN−1 are the unfolding matrices of Y t, P t

and Ht−1, respectively. Furthermore, (7.29) can be decomposed into W subproblems w.r.t. W

columns of G(N):

G
(N)
t (:, i) = argmin

gi

∥∥∥P̄t,i

(
yt,i −Ht−1gi

)∥∥∥2
2
+ λ

∥∥gi∥∥22. (7.30)

where yt,i = Yt(:, i) and P̄t,i = diag{Pt(:, i)}. The closed-form solution of the regularized

least-squares (7.46) can be given by

G
(N)
t (:, i) =

(
H⊤

t−1P̄t,iHt−1 + λIrN−1

)−1
H⊤

t−1P̄t,iyt,i. (7.31)

Then, the temporal TT-core G(N)
t is simply updated as G(N)

t =
[
G(N)

t−1

∣∣ G(N)
t

]
. Note that, we

can re-update G
(N)
t in the same way above when other TT-cores {G(n)

t }
N−1
n=1 are updated.

7.3.2.2 Estimation of the non-temporal TT-cores
{
G(n)

t

}N−1

n=1

We update {G(n)}N−1
n=1 by minimizing

G(n)
t =argmin

G(n)

[
t∑

τ=1

βt−τ
∥∥∥Pτ ⊛

(
Yτ −A(n)

t−1 ×
1
n G(n) ×1

n+1 B(n)
τ

)∥∥∥2
F
+ ρ
∥∥∥G(n) − G(n)

t−1

∥∥∥2
F

]
,

(7.32)

where A(n)
t−1 = G(1)

t−1 ×1
2 · · · ×1

n−1 G
(n−1)
t−1 and B(n)

τ = G(n+1)
t−1 ×1

n+2 · · · ×1
N−1 G

(N−1)
t−1 ×1

N G
(N)
τ . For

a better interpretation, we further recast (7.32) as

G
(n)
t = argmin

G(n)

[
t∑

τ=1

βt−τ
∥∥∥P(n)

τ ⊛
(
Y(n)

τ −G(n)W(n)
τ

)∥∥∥2
F
+ ρ
∥∥∥G(n) −G

(n)
t−1

∥∥∥2
F

]
, (7.33)

250

7.3. STREAMING TENSOR-TRAIN DECOMPOSITION WITH MISSING DATA

where G
(n)
t = reshape

{
G(n)

t , [In, rn−1rn]
}
; P(n)

τ ,Y
(n)
τ are the mode-n unfolding matrices of Pτ

and Yτ ; W
(n)
τ = B

(n)
τ ⊗A

(n)
t−1 where

A
(n)
t−1 = reshape

{
A(n)

t−1, [rn−1, I1I2 . . . In−1]
}

(7.34)

B(n)
τ = reshape

{
B(n)

t , [rn, In+1In+2 . . . IN−1]
}

(7.35)

Similar to the update of G(N)
t in the first stage, we can update independently each row g

(n)
t,m

of G(n)
t as follows:

g
(n)
t,m = argmin

g
(n)
m

[
t∑

τ=1

βt−τ
∥∥∥P̄(n)

τ,m

(
y(n)
τ,m − g(n)

m W(n)
τ

)⊤∥∥∥2
2
+ ρ

∥∥∥g(n)
m − g

(n)
t−1,m

∥∥∥2
2

]
, (7.36)

where y
(n)
τ,m = Y

(n)
τ (m, :) and P̄

(n)
τ,m = diag

{
P

(n)
τ (m, :)

}
.

Specifically, g(n)
t,m can be derived from setting the gradient of the function in (7.36) to zero:

(
ρIrn−1rn +

t∑
τ=1

βt−τW(n)
τ P̄(n)

τ,m

(
W(n)

τ

)⊤)(
g(n)
m

)⊤
= ρ
(
g
(n)
t−1,m

)⊤
+

t∑
τ=1

βt−τW(n)
τ P̄(n)

τ,m

(
y(n)
τ,m

)⊤
.

(7.37)

The closed-form solution of (7.37) is then given by

g
(n)
t,m =

[(
S
(n)
t,m + ρIrn−1rn

)−1(
d
(n)
t,m + ρ

(
g
(n)
t−1,m

)⊤)]⊤
, (7.38)

where S
(n)
t,m and d

(n)
t,m can be recursively updated as S

(n)
t,m = βS

(n)
t−1,m + W

(n)
t P̄

(n)
t,m

(
W

(n)
t

)⊤ and

d
(n)
t,m = βd

(n)
t−1,m+W

(n)
t P̄

(n)
t,m

(
y
(n)
t,m

)⊤. After doing some simple calculations, we can rewrite (7.38)

as

g
(n)
t,m = g

(n)
t−1,m +

(
δy

(n)
t,mP̄

(n)
t,m

(
W

(n)
t

)⊤
+ βρδg

(n)
t−1,m

)(
S
(n)
t,m + ρIrn−1rn

)−⊤
, (7.39)

where δy
(n)
t,m = P̄

(n)
t,m

(
y
(n)
t,m − g

(n)
t−1,mW

(n)
t

)⊤ and δg
(n)
t−1,m = g

(n)
t−1,m − g

(n)
t−2,m. Accordingly, a

recursive rule with a lower space complexity for updating the whole matrix G
(n)
t at the same

time can be given by

G
(n)
t = G

(n)
t−1 +

((
P

(n)
t ⊛∆Y

(n)
t

)(
W

(n)
t

)⊤
+ ρ∆G

(n)
t−1

)(
S
(n)
t + ρIrn−1rn

)−⊤
, (7.40)

where ∆Y
(n)
t,m = Y

(n)
t −G

(n)
t−1W

(n)
t and ∆G

(n)
t−1 = G

(n)
t−1 −G

(n)
t−2.

Then, we simply set G(n)
t = reshape

{
G

(n)
t , [rn−1, In, rn]

}
. The rule (7.40) also suggests that

we can incrementally update {G(n)
t }

N−1
n=1 in parallel without disrupting other each. In other

words, ATT can support parallel and distributed computing.

251

7.4. STREAMING TENSOR-TRAIN DECOMPOSITION WITH SPARSE OUTLIERS

7.3.2.3 Complexity Analysis

For brevity, we assume that In = I and rn = r for all n = 1, 2, . . . , N−1. At time t, ATT requires

a cost of O(W |Ωt|r2) flops for updating G
(N)
t where |Ωt| denotes the number of observed data.

Most of operations for updating G(n)
t are matrix-matrix products except an inverse operation of

a r2 × r2 matrix. Thus, ATT requires an extra cost of O
(
(N − 1)IN−1r4

)
flops. The overall

complexity of ATT is O
(
r2max

{
(N − 1)IN−1r2,W |Ωt|

})
flops. In term of memory storage,

ATT needs O
(
(N − 1)(2Ir2 + r4)

)
words of memory for storing

{
G(n)

t

}N−1

n=1
,
{
∆G(n)

t

}N−1

n=1
, and{

S
(n)
t

}N−1

n=1
.

Compared to batch TT methods (e.g., TT-SVD [16] and TT-HSVD [363]), the cost of ATT is

much cheaper as it is independent of the temporal dimension. Besides, its computation involves

only cheap matrix-matrix products and inverse operations of small matrices, and hence, it avoids

the expensive computation of SVD on the tensor’s unfolding matrices. Compared to TT-FOA

that is the first and only adaptive algorithm for streaming TT decomposition in the literature,

ATT shares the same computational and space complexity.

7.4 Streaming Tensor-Train Decomposition with Sparse Outliers

In this paper, we introduce a new tensor-train method for factorizing incomplete high-order

streaming tensors possibly corrupted by sparse outliers. The proposed method is referred to as

ROBOT which stands for ROBust Online Tensor-Train decomposition. ROBOT involves two

well-known optimization methods: block-coordinate descent (BCD) and recursive least-squares

(RLS). Thanks to the BCD framework, ROBOT decomposes the main optimization into two

stages: (i) online outlier rejection and (ii) tracking of TT-cores in time. In the former stage,

we apply an effective ADMM solver to estimate the last (temporal) TT-core and sparse outliers

living in observations. In the latter stage, we present an efficient RLS solver to minimize an

exponential weighted least-squares objective function accounting for missing entries and time

variations of TT-cores. Technically, ROBOT is capable of estimating the low-rank components

of the underlying tensor from imperfect streams (i.e., due to noise, outliers, and missing data) and

tracking their time variation in dynamic environments. To the best of our knowledge, ROBOT is

the first streaming TT decomposition robust to sparse outliers, missing data, and time variation.

7.4.1 Problem Formulation

In this paper, we study the robust adaptive tensor-train decomposition of a N -order streaming

tensor X t in the presence of both sparse outliers and missing data. Without loss of generality, we

suppose the last dimension of X t is temporal, while the others remain constant with time, i.e.,

X t ∈ RI1×I2×···×IN−1×ItN . Specifically, at time t, X t is obtained by concatenating the incoming

252

7.4. STREAMING TENSOR-TRAIN DECOMPOSITION WITH SPARSE OUTLIERS

Figure 7.3: Temporal slice Y t with missing data and outliers.

data stream Y t ∈ RI1×I2×···×IN−1×W (with W ≥ 1) to the old observation X t−1 along the

temporal dimension ItN , i.e.,

X t = X t−1 ⊞N Y t and ItN = It−1
N +W. (7.41)

The temporal slice Y t is supposed to have the form

Y t = P t ⊛
(
Lt +Ot +N t

)
, (7.42)

see Fig. 7.3 for an illustration. Particularly, P t is a binary mask tensor, Ot is a sparse outlier

tensor, N t is a Gaussian noise tensor, and they share the same size as Y t. The low-rank

component Lt of Y t is expressed as

Lt = G(1)
t ×1

2 G
(2)
t ×1

3 · · · ×1
N G

(N)
t , (7.43)

where G(n)
t ∈ Rrn−1×In×rn for n = 1, 2, . . . , N with r0 = rN = 1 is the n-th TT-core; [r1, r2, . . . , rN−1]

is called TT-rank; and G
(N)
t ∈ RrN−1×W contains the last W columns of G(N)

t .

In online settings, we propose to minimize the following objective function:

argmin
{G(n)}Nn=1,O

[
t∑

k=1

βt−k

(∥∥∥Pk ⊛
(
G(1) ×1

2 · · · ×1
N−1 G(N−1) ×1

N G(n)
τ +Ok −Yk

)∥∥∥2
F
+ ρ1

∥∥Ok

∥∥
1

)

+ ρ2

N−1∑
n=1

∥∥∥G(n) − G(n)
t−1

∥∥∥2
F

]
. (7.44)

Here, β ∈ (0, 1] plays the role of a forgetting factor in adaptive filter theory which aims to reduce

the impact of distant observations as well as deal with nonstationary environments [364]. The

ℓ1-norm enforces the sparsity on O (the outliers), while the last regularization term of (7.44)

is to control the time variation of TT-cores between two consecutive instances. In addition, we

make two mild assumptions on the data model to support our algorithm development in Section

III: TT-cores {G(n)}N−1
n=1 may either be static or vary slowly with time, i.e., G(n)

t ≃ G(n)
t−1; and

the TT-rank is supposed to be known.

253

7.4. STREAMING TENSOR-TRAIN DECOMPOSITION WITH SPARSE OUTLIERS

7.4.2 Proposed Method

In this section, we propose an adaptive method called ROBOT (which stands for ROBust Online

Tensor-Train) for factorizing tensors derived from data streams in the presence of sparse outliers

and missing data. Particularly, we decompose the main problem (7.44) into two stages:

• Stage 1: update G(N)
t and Ot given

{
G(n)

t−1

}N−1

n=1
;

• Stage 2: estimate G(n)
t given G(N)

t , Ot, and the remaining TT-cores, for n = 1, 2, . . . , N−1.

7.4.2.1 Estimation of the last TT-core G(N)
t and Outlier Ot

At each time t, we estimate G
(N)
t and Ot by solving

{
G

(N)
t ,Ot

}
=argmin

G(N),O

[∥∥∥P t ⊛
(
Ht−1 ×1

N G(N) +O −Y t

)∥∥∥2
F
+ ρ1

∥∥O∥∥
1
+ ρ2

∥∥G(N)
∥∥2
F

]
,

(7.45)

where Ht−1 = G(1)
t−1 ×1

2 · · · ×1
N−1 G(N−1)

t−1 and the term ρ2∥G(N)∥2F is to mitigate ill matrix

conditions. Interestingly, we exploit the fact that (7.45) can be decomposed into W sub-problems

w.r.t. W columns of G(N)
t , as follows:

argmin
gi,oi

∥∥∥Pt,i

(
Ht−1gi + oi − yt,i

)∥∥∥2
2
+ ρ1

∥∥oi∥∥1 + ρ2
∥∥gi∥∥22. (7.46)

Here, gi,oi, and yt,i are, respectively, the i-th column of G(N), the two unfolding matrices of

O and Y t; the mask Pt,i = diag
{
P

(N)
t (i, :)

}
; while the matrix Ht−1 ∈ RI1...IN−1×rN−1 is a

matricization of Ht−1.

Since both ℓ1-norm and ℓ2-norm are convex, (7.46) can be effectively minimized by several

methods, e.g., block coordinate descent (BCD) [365] and alternating direction method of multi-

pliers (ADMM) [114]. In this work, we adopt the ADMM solver introduced in our companion

work on robust subspace tracking [25]. Specifically, the update rule at the j-th iteration of the

254

7.4. STREAMING TENSOR-TRAIN DECOMPOSITION WITH SPARSE OUTLIERS

solver is given by

gj =
(
H⊤

t−1Pt,iHt−1 + ρ2IrN−1

)−1
H⊤

t−1Pt,i

(
yt,i − oj−1 + ej−1

)
,

zj = Pt,i

(
Ht−1g

j + sj−1 − yt,i

)
,

ej =
λ1

1 + λ1
zj +

1

1 + λ1
S1+ 1

λ1

(
zj
)
,

uj =
1

1 + λ2

(
Pt,i

(
yt,i −Ht−1g

j
))
− λ2(oj−1 − rj−1),

oj = Sρ1/λ2

(
uj + rj−1

)
,

rj = rj−1 + uj − sj .

Here,
{
zj , ej ,uj , rj

}
are dummy variables aiming to accelerate the update initialized as zeros;

the augmented Lagrangian parameters λ1 and λ2 can be chosen in the range [1, 1.8]; and Sα(.)
is the soft-thresholding operator defined as Sα(x) = max(0, x − α) −max(0,−x − α). We refer

the readers to [25] for further details. Note that since (7.46) is a biconvex minimization problem,

and thus, we can apply any other existing proved algorithm to obtain its optimal solution [366].

The temporal TT-core G(N)
t is simply obtained by G(N)

t = [G(N)
t−1 G

(N)
t]. In addition, we

can re-update G
(N)
t in the same way as above when others TT-cores {G(n)

t }
N−1
n=1 are updated.

Furthermore, after obtaining the outlier Ot, we can accelerate the tracking ability of ROBOT

by re-updating the observation mask P t as follows

[
P̃ t

]
i1i2...iN

=

0, if
[
Ot

]
i1i2...iN

̸= 0,[
P t

]
i1i2...iN

, otherwise.
(7.47)

It is motivated by the following observation: In the literature of robust subspace tracking (RST),

the outlier rejection step can facilitate the tracking ability of RST estimators because only “clean"

data are involved in the tracking process [25]. Our stage 2 for tracking the TT-cores can be

viewed as an extended version of RST for high-order streaming tensors, so the outlier rejection

mechanism of (7.47) can improve its performance.

7.4.2.2 Estimation of TT-cores
{
G(n)

t

}N−1

n=1

We estimate {G(n)}N−1
n=1 by minimizing

G(n)
t =argmin

G(n)

[
t∑

τ=1

βt−τ
∥∥∥P̃τ ⊛

(
A(n)

t−1 ×
1
n G(n) ×1

n+1 B(n)
τ −Yτ

)∥∥∥2
F
+ ρ2

∥∥∥G(n) − G(n)
t−1

∥∥∥2
F

]
,

(7.48)

255

7.4. STREAMING TENSOR-TRAIN DECOMPOSITION WITH SPARSE OUTLIERS

where A(n)
t−1 = G(1)

t−1 ×1
2 · · · ×1

n−1 G(n−1)
t−1 and B(n)

τ = G(n+1)
t−1 ×1

n+2 · · · ×1
N−1 G(N−1)

t−1 ×1
N G

(n)
τ

while the term Ok is discarded due to outlier rejection mechanism (7.47), i.e., P̃ t ⊛ (Y t −
Ot) = P̃ t ⊛ Y t. Particularly, (7.48) can be regarded as the optimization problem of adaptive

TT decomposition from incomplete observations {Yk}tk=1 with new binary masks {P̃k}tk=1.

Accordingly, we can apply the effective recursive least-squares (RLS) method as proposed in our

work [30] for minimizing (7.48). For the sake of completeness, we describe here the main steps

of the RLS solver and refer the readers to [30] for further details.

For a better interpretation, we first recast (7.48) as

G
(n)
t = argmin

G(n)

[
In∑

m=1

(t∑
τ=1

βt−τ
∥∥∥P̄(n)

τ,m

(
g(n)
m

(
B(n)

τ ⊗A
(n)
t−1

)
− y(n)

τ,m

)∥∥∥2
2

+ ρ2

∥∥∥g(n)
m − g

(n)
t−1,m

∥∥∥2
2

)]
, (7.49)

where g
(n)
m is the m-th row of G(n) ∈ RIn×rn−1rn which is the transpose of the mode-2 unfolding

matrix of G(n), P̄τ,m = diag
{
P̃

(n)
τ (m, :)

}
, A

(n)
t−1 = reshape

{
A(n)

t−1, [rn−1, I1I2 . . . In−1]
}
, and

B
(n)
τ = reshape

{
B(n)

t , [rn, In+1In+2 . . . IN−1]
}
.

Let us denote W
(n)
τ = B

(n)
τ ⊗A

(n)
t−1 and

S(n)
τ,m =

t∑
τ=1

βt−τW
(n)
t P̄

(n)
t,m

(
W

(n)
t

)⊤
, (7.50)

d
(n)
t,m =

t∑
τ=1

βt−τW(n)
τ P̄(n)

τ,m

(
y(n)
τ,m

)⊤
. (7.51)

At time t, we then have

S
(n)
t,m = βS

(n)
t−1,m +W

(n)
t P̄

(n)
t,m

(
W

(n)
t

)⊤ (7.52)

d
(n)
t,m, = βd

(n)
t−1,m +W

(n)
t P̄

(n)
t,m

(
y
(n)
t,m

)⊤
. (7.53)

Setting the gradient of (7.49) to zero results in:

In∑
m=1

(
S
(n)
t,m + ρ2Irn−1rn

)(
g(n)
m

)⊤
=

In∑
m=1

(
d
(n)
t,m + ρ2

(
g
(n)
t−1,m

)⊤)
. (7.54)

Therefore, we can express each row g
(n)
t,m of G(n)

t separately as

(
S
(n)
t,m + ρ2Irn−1rn

)(
g
(n)
t,m

)⊤
= d

(n)
t,m + ρ2

(
g
(n)
t−1,m

)⊤
. (7.55)

256

7.5. EXPERIMENTS

Thanks to (7.52) and (7.53), we further recast (7.55) as

g
(n)
t,m = g

(n)
t−1,m +

(
δy

(n)
t,mP̄

(n)
t,m

(
W

(n)
t

)⊤
+ βρ2δg

(n)
t−1,m

)(
S
(n)
t,m + ρ2Irn−1rn

)−⊤
, (7.56)

where δy
(n)
t,m = P̄

(n)
t,m

(
y
(n)
t,m − g

(n)
t−1,mW

(n)
t

)⊤ and δg
(n)
t−1,m = g

(n)
t−1,m − g

(n)
t−2,m. Collecting all rows

g
(n)
t,m together (for m = 1, 2, . . . , In), we obtain a simpler recursive rule as

G
(n)
t = G

(n)
t−1 +

((
P

(n)
t ⊛∆X

(n)
t

)(
W

(n)
t

)⊤
+ βρ2∆G

(n)
t−1

)(
S
(n)
t + ρ2Irn−1rn

)−⊤
, (7.57)

where ∆X
(n)
t,m = X

(n)
t −G

(n)
t−1W

(n)
t and ∆G

(n)
t−1 = G

(n)
t−1−G

(n)
t−2, and S

(n)
t = βS

(n)
t−1+W

(n)
t

(
W

(n)
t

)⊤.

To enable the recursive update (7.57), we set ∆G
(n)
0 = 0 and S

(n)
0 = δ(n)Irn−1rn with δ(n) > 0.

7.4.2.3 Computational Complexity and Memory Storage

For short, we suppose In = I and rn = r for all n = 1, 2, . . . , N −1. In Stage 1, ROBOT requires

a cost of O(W |Ωt|r2) flops for estimating both G
(N)
t and Ot where |Ωt| denotes the number of

observed data in Y t. In Stage 2, ROBOT needs a cost of O
(
(N − 1)IN−1r4

)
flops for tracking

N − 1 TT-cores {G(n)
t }

N−1
n=1 . Therefore, the overall complexity of ROBOT is O

(
r2max

{
(N −

1)IN−1r2,W |Ωt|
})

flops. With respect to memory storage, ROBOT requires O
(
(N − 1)(2Ir2 +

r4)
)

words of memory for storing
{
G(n)

t

}N−1

n=1
,
{
∆G(n)

t

}N−1

n=1
, and

{
S
(n)
t

}N−1

n=1
.

7.5 Experiments

In this section, we conduct several experiments on both synthetic and real data to evaluate

the performance of TT-FOA, ATT, and ROBOT for adaptive TT decomposition. Experiments

are implemented in MATLAB platform and are available online to facilitate replicability and

reproducibility.1

7.5.1 Performance of TT-FOA

We investigate the tracking ability of TT-FOA with respect to the following aspects: effect of

the forgetting factor λ, effect of the noise level σ, its performance in time-varying environments,

and its use for real data.

257

7.5. EXPERIMENTS

0 100 200 300 400 500

10
-15

10
-10

10
-5

10
0

Figure 7.4: Effect of the forgetting factor β on the performance of TT-FOA.

0 100 200 300 400 500

10
-9

10
-6

10
-3

10
0

Figure 7.5: Effect of the noise level ϵ on the performance of TT-FOA.

7.5.1.1 Synthetic Data

We generate streaming 4-way tensors X t ∈ RI1×I2×I3×It4 of a TT-rank vector rTT = [r1, r2, r3]

as follows:

Y t = G(1)
t ×1

2 G
(2)
t ×1

3 G
(3)
t ×1

4 g
(4)
t + ϵN t,

1https://github.com/thanhtbt/ATT & https://github.com/thanhtbt/ATT-miss &
https://github.com/thanhtbt/ROBOT

258

7.5. EXPERIMENTS

where the 3-way tensor Y t ∈ RI1×I2×I3 is the t-th slice of X t; N t is a Gaussian noise tensor of

the same size with Y t and ϵ controls the noise level; the last column g
(4)
t of TT-core G(4)

t is a

random vector living on Rr3 space; TT-cores G(1)
t ,G(2)

t and G(3)
t are, respectively, of size I1× r1,

r1 × I2 × r2 and r2 × I3 × r3 given by

G(n)
t = (1− σ)G(n)

t−1 + σN (n)
t ,

where σ controls the variation of the TT-cores between two consecutive instances, N (n)
1 ∈ RI1×r1

and N (n)
t ∈ Rrn−1×In×rn are noise tensors whose entries are i.i.d from the Gaussian distribution

with zero-mean and unit-variance.

To measure the estimation accuracy, we use the relative error (RE) metric given by

RE(X tr,X es) =

∥∥X tr −X es

∥∥
F∥∥X tr

∥∥
F

, (7.58)

where X tr(resp. X es) refers to the true tensor (resp. estimated tensor).

The choice of forgetting factor λ plays a central role in how fast TT-FOA converges. Fig. 7.4

shows the experimental results of applying the algorithm to a static and free-noise tensor whose

size is 10× 12× 15× 500 and its TT-rank is rTT = [2, 3, 5]. We can see that the relative error is

minimized when λ is round 0.7. TT-FOA fails when λ is close to its infimum or supremum. We

then fix λ = 0.7 in the next experiments.

To study the effect of noise on the performance of our algorithm, we vary the value of the

noise level ϵ and access its estimation on the same tensor above. The result is shown in Fig. 7.11.

When we reduce the noise, relative error (RE) between the ground truth and estimation degrades

gradually and converges towards a steady state error bound. Note that the convergence rate of

the algorithm is not affected by the noise level but only its estimation error.

We next consider a scenario where TT-cores change slowly with time and abruptly at instant

t = 300. Fig. 7.6 shows the performance of TT-FOA applying to the same free-noise tensor

versus the time-varying factor σ. In the same manner to the effect of the noise level, TT-FOA’s

estimation accuracy goes down when σ increases, but converges towards a steady state error.

Fig. 7.7 shows a performance comparison among three TT decomposition algorithms when the

value of the noise level ϵ and the time-varying factor σ are 10−1 and 10−4 respectively. The batch

algorithm TT-SVD fails in this time-varying scenario, while TT-FOA and its stochastic version

can track successfully the variation of the tensor along the time, which yields to an estimation

accuracy very close to the error bound (i.e. steady state error). The result also indicates that the

convergence rate of TT-FOA is faster than that of its stochastic version. This is probably because

the convergence rate of the stochastic TT-FOA is limited by its noisy/stochastic approximation

of the true gradient.

259

7.5. EXPERIMENTS

0 100 200 300 400 500

10
-6

10
-4

10
-2

10
0

Figure 7.6: Effect of the time-varying factor σ on the performance of TT-FOA in the case of
noise-free.

0 100 200 300 400 500

10
-3

10
-2

10
-1

10
0

10
1

Figure 7.7: Performance of three TT decomposition algorithms in a time-varying scenario: The
noise level ϵ = 10−1 and the time variance factor σ = 10−4.

7.5.1.2 Real Data

In order to provide empirical evidences of applying TT-FOA to real data, we use a surveillance

video sequence2, and a functional MRI data3. The video data contains 1546 frames of size

2http://www.changedetection.net/

260

7.5. EXPERIMENTS

0 500 1000 1500

10
-1

10
0

10
1

Figure 7.8: Track surveillance video: TT-rank rTT = [15, 15] and CP-rank rCP = 15.

128× 160, while the fMRI data includes 20 abdominal scans of size 256× 256× 14.

The first task is to track surveillance video. We compare TT-FOA against the two state-of-

the-art adaptive CP tensor decompositions, including PARAFAC-SDT [211] and OLCP [175].

In order to apply these algorithms effectively, color video frames are converted into grayscale.

The CP-rank and TT-rank are set at 15 and [15, 15] respectively. Moreover, the 100 first video

frames are trained to obtain the good initialization for PARAFAC-SDT and OLCP. The results

indicate that TT-FOA outperforms these adaptive CP decompositions, as shown in Fig. 7.8 and

Fig. 7.9. In particular, PARAFAC-SDT fails to track video frame while OLCP achieves a worse

estimation accuracy than our algorithm.

The second task is to demonstrate the effect of TT-rank rTT on the low-rank approximation

of the fMRI tensor. The abdominal scans are seen as tensor slices in the online setting. Results of

tracking the low-rank component of the last scan are shown in Fig. 7.10. The estimated low-rank

fMRI scan deviates from its ground truth when the TT-rank decreases, and hence the relative

error increases.

7.5.2 Performance of ATT

We investigate the tracking ability of ATT with respect to the following aspects: additive noise

effect, and its performance in nonstationary environments. Its effectiveness for real data is

3https://github.com/colehawkins/

261

7.5. EXPERIMENTS

(a) Original Frame (b) PARAFAC-SDT

(c) OLCP (d) TT-FOA

Figure 7.9: Reconstructed 1345-th frame.

demonstrated with the problem of online video completion in comparison with the state-of-the-

art tensor tracking algorithms.

7.5.2.1 Experiment Setup

At time t, the t-th incomplete slice Y t is generated at random under the following model:

Y t = P t ⊛
(
G(1)

t ×1
2 G

(2)
t ×1

3 G
(3)
t ×1

4 g
(4)
t +N t

)
. (7.59)

Here, P t ∈ RI1×I2×I3×1 is a binary tensor whose entries are i.i.d. Bernoulli random variables with

probability 1− ωmiss, i.e., ωmiss represents the missing density of Y t. Entries of the noise tensor

N t are i.i.d. from N (0, σ2n). g
(4)
t ∈ Rr3×1 is a Gaussian vector of zero-mean and unit-variance.

TT-cores G(1)
t ,G(2)

t , and G(3)
t are of size I1× r1, r1× I2× r2, and r2× I3× r3, respectively. Their

time variation is modelled as follows G(n)
t = G(n)

t−1 + εV(n)
t , for n = 1, 2, 3, where ε plays a role as

the time-varying factor, V(n)
t is of the same size as G(n)

t and its entries are also i.i.d from N (0, 1).

262

7.5. EXPERIMENTS

(a) Grouth Truth (b) RE = 0.077

(c) RE = 0.036 (d) RE = 0.007

Figure 7.10: Effect of TT-rank on the low-rank approximation of fMRI scans: (a) original MRI
scan, (b)-(d) low-rank approximation images for rTT of [10, 10], [20, 20] and [50, 50] respectively.

We use the following relative error (RE) metric to evaluate the estimation accuracy:

RE
(
Y tr,Yes

)
=

∥∥Y tr −Yes

∥∥
F∥∥Y tr

∥∥
F

, (7.60)

where Y tr (resp. Yes) refers to the true tensor (resp. reconstructed tensor).

7.5.2.2 Effect of the noise level σn

In this task, we vary the value of σn and evaluate the performance of ATT. Here, we used a

static tensor (i.e., ε = 0) of size 20×20×20×1000 and rank rTT = [5, 5, 5]. The missing density

ωmiss was set to 10%. We fixed the forgetting factor β and the two regularized parameters ρ, λ

at 0.5, 1, and 1, respectively. A significant change was also created at t = 600 (i.e., we set ϵ = 1

when t = 600 and ε = 0 otherwise) to investigate how fast ATT could converge. The result is

illustrated in Fig. 7.11. We can see that the noise level σn does not affect the convergence rate

263

7.5. EXPERIMENTS

0 250 500 750 1000

10
-6

10
-4

10
-2

10
0

Figure 7.11: Effect of the noise level σn on the tracking ability of ATT.

of ATT but only its estimation error.

7.5.2.3 Effect of the time-varying factor ε

We next investigate the tracking ability of ATT in nonstationary environments. Similar to the

previous experiment, we also vary the value of ε and then evaluate its estimation accuracy. Most

of experimental parameters were kept as above, except the noise level σn which was set to 10−3.

Fig. 7.12 illustrates the performance of ATT versus the value of ε. We can see that the estimation

accuracy of ATT goes down when ε increases, but converges towards a steady-state error in the

similar manner as in the previous case. Intuitively, the time-varying factor has an influence on

the convergence rate of tracking algorithms. However, as shown in Fig. 7.12, the value of ε does

not affect ATT’s convergence rate. This “phenomenon" thus deserves further investigations.

7.5.2.4 Effect of the missing density ωmiss

Here, we measure the performance of ATT in the presence of different missing densities. Par-

ticularly, the value of ωmiss was chosen among {20%, 40%, 80%}. We reused the same 4-order

streaming tensor above with σn = ε = 10−3. Fig. 7.13 shows that the number of missing entries

in X t has an impact on both convergence rate and estimation accuracy of ATT, i.e., the lower

the value of ωmiss is, the better performance ATT achieves. However, even with 80% of missing

data, ATT is still able to achieve relatively good performance.

264

7.5. EXPERIMENTS

0 250 500 750 1000
10

-5

10
-3

10
-1

10
1

Figure 7.12: Effect of the time-varying factor ε on the tracking ability of ATT.

0 250 500 750 1000

10
-4

10
-3

10
-2

10
-1

Figure 7.13: Effect of the missing density ωmiss on the tracking ability of ATT.

7.5.2.5 Online video completion

Three real video sequences are used in this task, including “Lobby", “Highway", and “Hall".

Their sizes are summarized in Table 7.1.

We compare ATT with other online tensor completion algorithms: TeCPSGD [106], ACP [29],

and ATD [29]. To have a fair comparison, colour video frames were converted into grayscale ones.

The CP-rank, Tucker-rank, and TT-rank were set to 10, [10, 10, 10], and [10, 10], respectively.

The results in Table 7.1 (i.e., averaged relative errors) and Fig. 7.14 indicate that ATT provided

a competitive video completion performance.

265

7.5. EXPERIMENTS

Figure 7.14: The 500-th video frame of “Hall” data: 80% pixels are missing.

7.5.3 Performance of ROBOT

We here evaluate the performance of ROBOT in terms of the following aspects: (i) impact of

noise, (ii) its tracking ability in nonstationary environments, (iii) impact of missing observations,

(iv) impact of outliers, and (v) its use for the problem of video background and foreground

separation.

7.5.3.1 Experiment Setup

We follow the problem formulation in Section II to simulate temporal slices {Y t}t≥1. In partic-

ular, Y t is randomly generated under the model

Y t = P t ⊛
(
Lt +Ot +N t

)
where Lt = G(1)

t ×1
2 G

(2)
t ×1

3 G
(3)
t ×1

4 g
(4)
t . (7.61)

Here, P t ∈ RI1×I2×I3×1 is a binary mask tensor whose entries are obtained by a Bernoulli model

with probability 1 − ωmiss (i.e., ωmiss represents the missing density). N t is a Gaussian noise

266

7.5. EXPERIMENTS

Table 7.1: Averaged relative error of adaptive tensor decompositions on incomplete video se-
quences.

D
at

as
et

Si
ze

M
is

si
ng Online Tensor Completion Methods

TeCPSGD ACP ATD ATT
H

al
l

17
4
×
14

4
×

×
3
58

4
20% 0.1351 0.1500 0.1366 0.1264

40% 0.1412 0.1562 0.1370 0.1272

80% 0.1547 0.1868 0.1472 0.1336

Lo
bb

y

12
8
×
16

0
×

×
15

46

20% 0.1307 0.1320 0.1220 0.1214

40% 0.1327 0.1375 0.1241 0.1223

80% 0.1705 0.2142 0.1432 0.1263

H
ig

hw
ay

32
0
×
24

0
×

×
17

00

20% 0.2056 0.2204 0.1980 0.1777

40% 0.2119 0.2206 0.2001 0.1836

80% 0.2133 0.2481 0.2089 0.2043

tensor whose entries are i.i.d. from N (0, σ2n). Ot is a sparse tensor containing outliers whose

amplitude is uniformly chosen in the interval [0, fac-outlier] while their indices (locations)

follow another Bernoulli model with probability ωoutlier. Lt is the low-rank component of Y t in

which g
(4)
t ∈ Rr3×1 is a standard normal random vector. At time t, TT-cores are varied under

the model G(n)
t = G(n)

t−1 + εV(n)
t , where ε denotes the time-varying factor, V(n)

t shares the same

size as G(n)
t ∈ Rrn−1×In×rn and its entries are derived from N (0, 1). At t = 0, G(n)

0 is initialized

by a Gaussian distribution with zero mean and unit variance.

To evaluate the performance of ROBOT, we use the following relative error:

RE
(
X tr,X es

)
=

∥∥X tr −X es

∥∥
F∥∥X tr

∥∥
F

, (7.62)

where X tr (resp. X es) refers to the true low-rank component (resp. estimation).

7.5.3.2 Effect of the noise level σn

We change the value of σn and measure the estimation accuracy of ROBOT. We used a streaming

tensor of size 10 × 15 × 20 × 1000 and rank rTT = [5, 5, 5]. Parameters of the data model were

267

7.5. EXPERIMENTS

0 250 500 750 1000
10

-9

10
-6

10
-3

10
0

Figure 7.15: Effect of the noise level σn on the performance of ROBOT.

set as: time-varying factor ϵ = 0, missing density ωmiss = 0%, and outlier density ωoutlier = 0%

(i.e. outliers free observations). We fixed algorithmic parameters of ROBOT as follows: the

forgetting factor β = 0.5 and two penalty parameters ρ1 = ρ2 = 1. The result is shown in

Fig. 7.15. Clearly, the value of σn does not affect ROBOT’s convergence rate but its relative

error.

7.5.3.3 Effect of the time-varying factor ϵ

Next, we evaluate the performance of ROBOT in dynamic and nonstationary environments. We

reused the streaming tensor above with 90% observations (i.e., ωmiss = 10%). The noise level

σn was fixed at 10−3. We set the outlier density and intensity to 10% and 1, respectively. The

forgetting factor and two penalty parameters were kept as above. Also, an abrupt change was

made at t = 600 to assess how fast ROBOT converges. Fig. 7.16 illustrates the effect of ϵ on the

performance of ROBOT. We can see that the performance of ROBOT increases when ϵ decreases

and converges towards a steady-state error.

7.5.3.4 Effect of the missing density ωmiss

We then investigate the tracking ability of ROBOT in the presence of missing data. The value

of ωmiss was chosen among {10%, 50%, 90%}. We kept all experimental parameters as above,

except the time-varying factor ϵ which was set to 10−3. We can see from Fig. 7.17 that both

convergence rate and estimation accuracy of ROBOT are affected by the value of ωmiss. The

lower ωmiss is, the better performance ROBOT achieves.

268

7.5. EXPERIMENTS

0 250 500 750 1000

10
-4

10
-3

10
-2

10
-1

Figure 7.16: Effect of the varying factor ϵ on the performance of ROBOT.

0 250 500 750 1000
10

-4

10
-3

10
-2

10
-1

10
0

Figure 7.17: Effect of the missing density ωmiss on the tracking ability of ROBOT.

7.5.3.5 Effect of outliers

Here, we measure the robustness of ROBOT against sparse outliers. Most of experimental

parameters were kept as in the previous tasks: ωmiss = 10%, β = 0.5, σn = ϵ = 10−3, and

ρ1 = ρ2 = 1. We investigated the case when 30% entries were corrupted by outliers. Three

levels of the outlier intensity fac-outlier were considered, including 0.1, 1, and 10 (resp. low,

moderate, and strong effect). Fig. 7.18 indicates that ROBOT is capable of tensor tracking from

incomplete observations corrupted by sparse outliers.

269

7.6. CONCLUSIONS

0 200 400 600 800 1000
10

-3

10
-2

10
-1

10
0

Figure 7.18: Effect of the outliers on the tracking ability of ROBOT.

7.5.3.6 Video background/foreground separation

In this task,4 we used three video datasets, including “Lobby”, “Highway”, and “Hall”. The dataset

“Lobby” includes 1700 frames of size 144 × 176. There are 1700 frames of size 240 × 320 in the

data “Highway, while “Hall” consists of 3584 frames whose size is 174 × 144. The performance

of ROBOT was evaluated in comparison with two online background/foreground separation

algorithms, including PETRELS-ADMM [25] and GRASTA [50]. The subspace rank and TT-

rank were set to 10 and [10, 10], respectively. The result from Fig. 7.19 indicates that ROBOT is

able to detect moving objects in real surveillance video sequences with reasonable performance.

7.6 Conclusions

In this chapter, we have considered the problem of tensor tracking under the tensor-train format.

Three novel adaptive tensor-train decomposition algorithms are proposed for factorizing stream-

ing tensors, including TT-FOA, ATT, and ROBOT. Each algorithm is specifically designed for

dealing with a specific task. In particular, the former algorithm TT-FOA and its stochastic

variant have the capability to track the tensor-train representation of streaming tensors from

noisy and high-dimensional data with high accuracy, even when they come from time-dependent

observations. By utilizing the recursive least-squares method in adaptive filtering, the second

algorithm ATT minimizes effectively a weighted least-squares objective function accounting for

both missing values and time-variation constraints on the underlying tensor-train cores. The

latter algorithm ROBOT – which is a robust version of ATT – is fully capable of tracking the

underlying low-rank component of incomplete streaming tensors corrupted by sparse outliers in

4Here, the foreground plays the role of outliers and its separation from the background is based on the proposed
detection procedure.

270

7.6. CONCLUSIONS

Figure 7.19: Background and foreground separation. From bottom to top row: Highway, Hall,
and Lobby. From left to right column: Original video frame, PETRELS-ADMM, GRASTA, and
ROBOT.

nonstationary environments. All three algorithms are fast, effective, and requires low computa-

tional complexity and memory storage. To the best of our knowledge, they are the first of their

kind that have the potential to handle streaming tensors under the tensor-train format.

271

Chapter 8

Conclusion and Outlook

8.1 Conclusions

In this thesis, we have presented several contributions to the problem of tracking the low-rank

approximation of big data streams over time.

For Subspace Tracking

• We provided a survey on recent robust subspace tracking (RLS) algorithms to fill the gap

in the literature particularly addressing non-Gaussian noises (i.e., outliers, impulsive noise,

and colored noise) and sparse constraints. In the context of missing data and outliers,

we reviewed four main classes of RST algorithms, including Grassmannian, recursive least-

squares (RLS), recursive projected compressive sensing (ReProCS), and adaptive projected

subgradient method (APSM). When the data streams are corrupted by impulsive noises, we

indicated that most of state-of-the-art subspace tracking algorithms are based on improv-

ing the well-known PAST algorithm, together with weighted RLS and adaptive Kalman

filtering. Next, we outlined two main approaches to deal with subspace tracking in the

presence of colored noises, including instrumental variable-based and oblique projections.

Finally, a short review on sparse subspace tracking algorithms was presented.

• We proposed a probable adaptive algorithm called PETRELS-ADMM for tracking the un-

derlying subspace from incomplete observations corrupted by sparse outliers. The proposed

algorithm contains two main stages: outlier rejection and subspace estimation. In partic-

ular, outliers residing in the measurement data are detected and removed by our ADMM

solver in an effective way. Next, we proposed an improved version of PETRELS, namely

iPETRELS. It is observed that PETRELS is ineffective when the fraction of missing data

is too large. We thus added a regularization of the ℓ2,∞-norm, which aims to control

the maximum ℓ2-norm of rows in the subspace matrix, in the objective function to avoid

272

8.1. CONCLUSIONS

such performance loss. Moreover, we also introduced an adaptive step size to speed up

the convergence rate as well as enhance the subspace estimation accuracy. Furthermore,

we successfully established a theoretical convergence which guarantees that the solutions

generated by PETRELS-ADMM will converge to a stationary point asymptotically.

• We proposed a novel adaptive algorithm called OPIT for the sparse subspace tracking (SST)

problem. OPIT takes both advantages of power iteration and thresholding methods, and

hence offers several appealing features over the state-of-the-art tracking algorithms. First,

OPIT belongs to the class of power methods, and thus its convergence rate is highly com-

petitive compared to other SST algorithms, especially in the high SNR regime. Different

from the existing two-stage SST algorithms, OPIT has ability to track the sparse princi-

pal subspace with high accuracy in both the classical regime and the HDLSS regime. In

addition, OPIT is flexible and very adaptable for different scenarios. For example, we can

adjust its procedure for dealing with multiple incoming data streams. Also, it is easy to

introduce regularization parameters into OPIT in order to regularize its performance in

non-standard environments. Moreover, we can recast its update rule into a column-wise

update. Thanks to the deflation transformation, we derived a fast variant of OPIT called

OPITd with lower complexity of both computation and memory storage. This variant

is fast and useful for tracking high-dimension and large-scale data streams residing in a

low-dimensional space. Together with PETRELS-ADMM, OPIT belongs to the class of

provable subspace tracking algorithms in which its convergence is guaranteed. Under cer-

tain conditions, OPIT can achieve an ϵ-relative-error approximation with high probability

when the number of observations is large enough.

For Tensor Tracking

• We provided a comprehensive survey on the state-of-the-art tensor tracking algorithms.

It begins with basic coverage of five common tensor decompositions and their main fea-

tures, including CP, Tucker, BTD, tensor-train, and t-SVD. Two kinds of streaming mod-

els were introduced to represent streaming tensors: single-aspect and multi-aspect. Next,

we reviewed four main classes of online CP algorithms: subspace-based, block-coordinate

descent, Bayesian inference, and multi-aspect streaming CP decomposition. Under the

Tucker format, we categorized the current single-aspect tensor tracking algorithms into two

main classes: online tensor dictionary learning and tensor subspace tracking. Multi-aspect

streaming Tucker decomposition algorithms were also surveyed. Moreover, we provided a

brief survey on other online techniques for tracking tensors under tensor-train, t-SVD, and

BTD formats.

• We proposed three efficient adaptive algorithms for tracking the low-rank component of

273

8.2. RESEARCH CHALLENGES, OPEN PROBLEMS, AND FUTURE DIRECTIONS

streaming tensors over time. Under the CP format, we developed a novel adaptive CP

algorithm called ACP for tracking high-order incomplete streaming tensors. ACP is fast

and requires a low computational complexity and memory storage, thanks to the alternative

minimization and randomized sketching. Under the Tucker format, we proposed the second

algorithm, namely adaptive Tucker decomposition (ATD), more flexible than ACP, for

the problem of tensor tracking. ATD exhibits competitive performance in terms of both

estimation accuracy and computational complexity. Third, we introduced a robust version

of ACP called RACP for the problem of tensor tracking in the presence of both missing

data and outliers. In particular, RACP aims to learn the low-rank component of streaming

tensors in an online fashion as well as offering robustness against gross data corruptions.

More importantly, we proved that ACP, ATD, and RACP are provable algorithms with

convergence guarantee.

• We developed three new methods for the problem of tensor tracking under the tensor-train

(TT) format. The first method called TT-FOA is capable of tracking the low-rank com-

ponents of high-order tensors from noisy and high-dimensional data with high accuracy,

even when they come from time-dependent observations. The second method called ATT is

particularly designed for handling incomplete streaming tensors. ATT is scalable, effective,

and adept at estimating low TT-rank component of streaming tensors. Besides, ATT can

support parallel and distributed computing. To deal with sparse outliers, we proposed the

so-called ROBOT which stands for ROBust Online Tensor-Train decomposition. Techni-

cally, ROBOT has the ability to tracking streaming tensors from imperfect streams (i.e.,

due to noise, outliers, and missing data) as well as tracking their time variation in dynamic

environments.

8.2 Research Challenges, Open Problems, and Future Directions

In this section, we present several research challenges and open problems that should be consid-

ered for the development of tensor tracking problems in the future. These problems also cover

the subspace tracking problem as it is a special case of tensor tracking. They are data imper-

fection and corruption; rank revealing and tracking; efficient and scalable tensor tracking; and

other aspects such as theoretical analysis, symbolic data, and tracking under some less common

tensor formats. Possible solutions for these challenges are also discussed.

8.2.1 Data Imperfection and Corruption

Dealing with data imperfection and corruption has been a critical issue in many applications and

tracking problems in particular [367]. We here present two main types of imperfect data that

274

8.2. RESEARCH CHALLENGES, OPEN PROBLEMS, AND FUTURE DIRECTIONS

either remain unsolved or are still challenging for tensor tracking: (i) non-Gaussian and colored

noises; (ii) outliers and missing data.

Non-Gaussian and Colored Noises

Most of the existing tensor tracking algorithms were proposed under the additive white Gaussian

noise assumption. This assumption however does not always hold in practice. For example,

impulsive noises (e.g., burst, alpha-stable, and spherically invariant random variable noise),

which are introduced by human activities and natural sources, are one of the most common

non-Gaussian noises that often appear in tracking applications such as direction of arrivals [368],

OFDM systems [369] and adaptive system identification [370]. This type of noise can significantly

impact the tracking ability of estimators and it requires specific treatments [26]. In parallel,

colored noises that indicate types of noise that are correlated in space and/or time may reduce

the performance of tracking algorithms [371]. Accordingly, standard tracking algorithms may be

less effective in estimation accuracy in the presence of these noises. They need to be readapted

or redesigned for more robustness.

To the best of our knowledge, we are not aware of any tensor tracking algorithm capable

of handling such noises in the literature. Some potential approaches have been successfully

demonstrated in subspace tracking problems (i.e., tracking tensors of order 2), see [26] for a brief

survey. In particular, adaptive Kalman filtering and weighted RLS approaches can be adopted

for dealing with impulsive noises. Oblique projection and instrumental variable-based techniques

can handle colored noises. Therefore, it is desirable to extend these approaches from subspace

tracking to tensor tracking.

Outliers and Missing Data

They are now becoming more and more ubiquitous in modern datasets. Outliers are data points

that appear to be inconsistent with or exhibit abnormal behaviour different from others. Missing

observations are often encountered during the data acquisition and collection. Both outliers and

missing data can cause several issues (e.g., they introduce bias in estimation) for knowledge

discovery from data in general and data streams in particular [6]. Accordingly, dealing with

them is an essential task in the analysis of corrupted datasets which has been still a hot topic in

data mining for decades. In general, handling such corruptions involves removing/ignoring them

after detection or replacing them with alternative values.

There exist few tensor tracking algorithms robust to sparse outliers in the literature. Under the

CP format, SOFIA [222] applies the robust Holt-Winters forecasting model using a pre-cleaning

mechanism to identify and down-weight outliers. RACP [27] introduces a ℓ1-norm penalty to

promote the sparsity on outliers and then uses an ADMM solver to estimate them. Under the

275

8.2. RESEARCH CHALLENGES, OPEN PROBLEMS, AND FUTURE DIRECTIONS

Tucker format, ORLTM [263], OLRTR [264], and D-L1-Tucker [254] are able to deal with sparse

outliers. Both ORLTM and OLRTR propose to regularize the main objective function with

a ℓ1-norm regularization. Meanwhile, D-L1-Tucker adopts a threshold-based method to detect

outliers. Except for RACP, most of the mentioned algorithms above are not designed for dealing

with missing data. In parallel, most of the existing online tensor completion and tracking are

sensitive to outliers, such as TeCPSGD [106], OLSTEC [176], and ACP [29]. Accordingly, there

are plenty of opportunities for us to develop robust tensor tracking from incomplete observations

as it is still in its early stage.

8.2.2 Rank Revealing and Tracking

Most of the state-of-the-art tensor tracking algorithms suppose that the tensor rank (e.g., CP,

Tucker, TT, or tubal rank) is given as prior information. In practice, it is however a difficult

assumption due to the facts that: (i) the tensor rank may change over time and (ii) a good rank

determination at the initialization stage is not always guaranteed when the number of training

samples is limited and (iii) the exact rank determination may be intractable (e.g., CP rank is

NP-hard [195]). Therefore, it is essential to develop tracking algorithms that are capable of

revealing the rank over time.

In the literature, there have been many heuristic methods developed for the problem of

tensor rank estimation. Most of them adopt the Bayesian approach to infer the tensor rank from

data, such as [372–374]. Theoretically, Bayesian inference offers a good recipe for the tensor

rank estimation as we can integrate the low-rank promoting prior as well as the tensor rank

into the learning framework. Another possible approach to determine the tensor rank is to use

neural networks (NNs), such as [375–377]. Since the rank can be considered as one type of data

feature, NNs which can extract hidden features within data can be used to solve the tensor rank

determination. Although these methods often require the tensor data to be fully observed, it is

possible to readapt or modify them such that their variant are able to handle tensors in an online

fashion. For example, we can adopt online Bayesian inference or online learning algorithms for

training NNs.

8.2.3 Efficient and Scalable Tensor Tracking

Chapter 5 indicates that most of the existing tensor tracking algorithms are of high complexity.

When we deal with large-scale and high-multidimensional streams, they may become less efficient.

Thus, it is necessary to develop efficient and scalable tracking techniques of low cost w.r.t. both

computational complexity and memory storage. In what follows, we present three potential ap-

proaches which are theoretically capable of accelerating the tracking process, namely (a) random-

ized sketching, (b) parallel and distributed computing, and (c) neural networks-based methods.

276

8.2. RESEARCH CHALLENGES, OPEN PROBLEMS, AND FUTURE DIRECTIONS

Randomized Sketching

It is very well-known that randomized methods can reduce the computational cost of their

counterparts while still achieving reasonable estimation [323]. Accordingly, many attempts have

been made to take their advantages in computation for tensor decomposition in the literature,

we refer the readers to [191] for a good overview. Among them, there are a few online algorithms

utilizing successfully randomized techniques to speed up the tracking process, such as [29, 33,

218, 378]. Particularly, these algorithms involve solving several overdetermined least-squares

(LS) problems. Thanks to the CP and Tucker structures, they use random sampling to build

the sampled Khatri-Rao and Kronecker products, and then, recast the original LS problems into

randomized ones. Solving the new LS problems can save a lot of computational complexity.

Other randomized techniques (e.g., random projections and count sketch) with other tensor

formats have not yet been investigated for tensor tracking and they deserve next investigations

in the future.

Parallel and Distributed Computing

The second approach is to develop parallel and distributed computing frameworks for streaming

tensor decomposition. It stems from the fact that we can leverage several computational resources

to facilitate the tracking process. Moreover, computing systems in a parallel and distributed

environment can offer more reliability than their counterparts in a central one as they can avoid

the single point of failure which is a fundamental mistake from flaws in the implementation or

design of a system. Besides, another appealing advantage of this computing is the scaling up-

and-out process in which we can add and/or replace computational resources to the system. We

refer the readers to [379] for a good reference.

In the tensor literature, there are several parallel and distributed systems for processing

large-scale tensors. We can list here some efficient tools for: (a) distributed CP decomposition

(e.g., DFacTo [380], SPLATT [381]), (b) distributed Tucker decomposition (e.g., DHOSVD [246],

SGD-Tucker [382]), and (c) distributed TT decomposition (e.g., ADTT [268], ATTAC [383]), etc.

These tools mainly distribute the unfolding matrices or sub-tensors among several clusters and

integrate their low-rank tensor approximations to find the overall low-rank approximation of

the underlying tensor. However, most of the existing distributed tensor decompositions are

not suitable for handling streaming data. Therefore, it is of great interest to develop practical

distributed systems for tracking tensors from data streams.

277

8.2. RESEARCH CHALLENGES, OPEN PROBLEMS, AND FUTURE DIRECTIONS

Neural Networks-based Methods

Another potential approach is to incorporate neural networks (NNs) into tensor factorization to

benefit from their significant advances in computational power. On the one hand, the connection

between TDs and NNs has been established in some studies, such as [384–386]. For example,

Cohen et al. in [384] showed that the convolutional NNs with ReLU activation and max/average

pooling can be represented by tensor decomposition models. Wang et al. in [386] introduced two

NN models for finding the low-tubal-rank approximation of three-order tensors. Accordingly, NN

tools can be used to model and learn high-order interactions for tensors, and hence, for tensor

factorization and tracking. On the other hand, NNs can directly map data streams (temporal

slices) as input to the approximation result as output by applying some online learning techniques.

In the literature of machine learning, there exist several kinds of learning capable of dealing with

data streams, such as incremental learning, lifelong learning, and online continual learning, to

name a few. They can be specifically adapted for tensor tracking.

8.2.4 Others

Next, we present some other issues and problems which also deserve future investigations.

Provable Tensor Tracking

Although the existing tensor tracking methods can provide competitive performance w.r.t. esti-

mation accuracy and/or convergence rate in practice, most of them lack performance guarantees.

The gap between practical uses/implementations and theoretical results in tensor tracking may

be caused by the fact that most tensor problems are NP-hard [195], e.g., the best rank-1 tensor

approximation is NP-hard even when all observations (temporal slices) are fully observed. De-

spite several difficulties, there are still attempts to bridge the gap in the literature. Under certain

conditions (e.g., the underlying low-rank model remains unchanged over time), some studies es-

tablished successfully theoretical results to analyse the convergence behavior of their methods,

such as [27, 29, 176, 219, 251]. These initial results encourage us to investigate deeper theory

aspects in tensor tracking, such as time variation, asymptotic convergence, and non-asymptotic

convergence in low-sample-size settings.

Symbolic Tensor Tracking

In some applications, data may no longer be represented by single (certain) values, but need to

be formatted or grouped within sets, intervals, histograms, etc. It leads to the so-called symbolic

data analysis (SDA) paradigm in data mining and statistics to deal with such data [387]. In SDA,

several new variables types and processing tools have been introduced to represent and analyse

278

8.2. RESEARCH CHALLENGES, OPEN PROBLEMS, AND FUTURE DIRECTIONS

symbolic data, such as interval-valued, histogram-valued, and categorical modal variables, to

name a few. The readers are referred to [387] for a good survey on SDA. In the tensor literature,

Mauro et al. in [388] proposed for the first time a symbolic tensor decomposition for factorizing

interval-valued tensors under the tensor-train format. Specifically, the authors extended a set

of tools aiming to handle interval-valued matrices for high-order tensors and introduced efficient

decomposition and reconstruction strategies. As the symbolic tensor decomposition is in its very

early stage of development in both batch and online settings, there are a lot of aspects that need

to be investigated in the future.

Tensor Tracking under BTD, t-SVD, Tensor Network formats, and other Variants

As reviewed in the sections above, most of the state-of-the-art tensor tracking algorithms are

proposed for streaming CP and Tucker decompositions. Despite great success in the batch setting,

BTD, t-SVD, and tensor networks (e.g., tensor-train, tensor chain, and tensor ring) have not

attracted much attention in real-time stream processing until recently. Thus, developing online

methods for tracking tensors under these tensor formats and their variants is essential advantage

from their advantage in representing large-scale tensors as well as fulfil the gap between the two

most common tensor formats and others.

279

Appendix A

Résumé en Franҫais de la Thèse

A.1 Traitement de Flux de Données Volumineuses

Le traitement de flux a récemment attiré beaucoup d’attention de la part des universités et de

l’industrie en raison du fait que des flux de données massifs ont été de plus en plus collectés au

fil des ans et qu’ils peuvent être exploités intelligemment pour découvrir de nouvelles idées et

des informations précieuses [1–3]. Par exemple, nous vivons à l’ère de l’Internet des objets où

un grand nombre de dispositifs de détection ont été installés et développés. Ces appareils ont

la capacité de collecter, gérer et transmettre des données via des réseaux IoT en temps réel. En

conséquence, le traitement de flux est nécessaire pour récupérer des informations importantes à

partir de ces données IoT en quelques secondes ou même plus rapidement pour faciliter la prise

de décision en temps réel [4].

Dans de nombreuses applications en ligne modernes, les flux de données ont trois caractéris-

tiques en «V»: Volume, Vitesse, et Variété. Comme ils sont générés en continu, leur volume

croît significativement dans le temps et éventuellement jusqu’à l’infini. Ainsi, l’une des carac-

téristiques les plus remarquables des données en continu est qu’il s’agit de séquences illimitées

d’échantillons de données. Vitesse fait référence au taux d’arrivée de données à grande vitesse

et au traitement en temps réel. Les données collectées à partir des interactions des utilisateurs

sur les réseaux sociaux (par ex. Facebook, Instagram et Twitter) sont, par exemple, à très

grande vitesse. Variété implique l’adéquation, la crédibilité et la fiabilité des flux de données.

Plus précisément, cette caractéristique concerne le biais, le bruit, l’incertitude, l’incomplétude

et l’anormalité des données. Outre les trois « V », les données en continu ont d’autres carac-

téristiques distinctives, notamment la sensibilité/variation temporelle (alias dérive de concept),

l’hétérogénéité (différentes sources avec une diversité de types de données), une propriété volatile

et non reproductible, etc [2,3,5,6]. Ces caractéristiques entraînent plusieurs exigences inhérentes

et des problèmes de calcul pour le traitement des flux, tels que:

280

A.1. TRAITEMENT DE FLUX DE DONNÉES VOLUMINEUSES

• Faible Latence: Les procédés et systèmes de flux doivent acquérir, gérer et traiter efficace-

ment des flux de données sans introduire de retards supplémentaires.

• Faible Complexité Spatiale: Les procédés et systèmes de flux doivent avoir la capacité de

fonctionner en ligne avec des ressources de mémoire limitées.

• Évolutivité: Comme les données de streaming augmentent normalement en taille beaucoup

plus rapidement que les ressources de calcul, le traitement de flux nécessite des méthodes

et des systèmes évolutifs.

• Variation Temporelle: Comme les données en continu peuvent évoluer avec le temps, les

méthodes et les systèmes de flux doivent être capables de suivre leur variation dans le

temps.

• Robustesse: Dans de nombreux cas, les données de flux sont imparfaites et peu fiables, de

sorte que les méthodes et les systèmes de flux devraient avoir le potentiel d’estimer et de

calculer les réponses à partir d’observations corrompues.

Cependant, ce sont également des avantages potentiels du traitement par flux par rapport au

traitement par lots. Nous renvoyons les lecteurs au Tableau. A.1 pour une brève comparaison

entre les deux types de traitement.

Table A.1: Principales différences entre le traitement par lots et le traitement des flux

Caractéristique Traitement par lots Traitement des flux

Input Grands lots/morceaux de données Flux de données (continus)

Taille des données Connu et fini Inconnu et/ou infini

Type de données Statique Dynamique/variant dans le temps

Traitement
Traiter toutes les données à la fois Traiter les flux de données en temps réel
Traitement en plusieurs passes Processus en un ou deux passages

Réponse Fournir après l’achèvement Fournir immédiatement

Hardware
Nécessite beaucoup de stockage Nécessite beaucoup moins ou pas de stockage
Nécessite beaucoup de traitement Nécessite moins de ressources de traitement

Temps Prend plus de temps, latences
Prenez quelques secondes ou plus vite

en minutes à heures

Dans ce travail, nous nous concentrons principalement sur les méthodes de flux capables de

suivre l’approximation de rang inférieur (LRA) des flux de données volumineuses au fil du temps.

Techniquement, l’objectif principal de la LRA est d’approximer les données de grande dimen-

sion par une représentation de faible dimension plus compacte avec une perte d’informations

limitée [7]. Par conséquent, trouver la LRA est une tâche fondamentale et essentielle pour

l’exploration de données en général et l’analyse de données en continu en particulier. Nous intro-

duisons l’une des techniques d’algèbre linéaire les plus connues pour trouver le LRA des matrices

281

A.1. TRAITEMENT DE FLUX DE DONNÉES VOLUMINEUSES

 1 r

1u
1v

X U

V

 rv

ru

Figure A.1: SVD d’une matrice X.

dans la configuration par lots, la décomposition en valeurs singulières (SVD), puis décrivons sa

connexion à certains types courants de décomposition tensorielle (TD). Ensuite, nous présen-

tons leurs variantes en ligne (adaptatives) pour traiter les flux de données issus de l’observation

unidimensionnelle. (i.e., SVD → sous-espace) et observations multidimensionnelles (i.e., TD →
suivi tensoriel).

A.1.1 Approximation de Rang Inférieur: Du SVD au Décomposition du
Tenseur

Il est bien connu que SVD est l’une des techniques d’algèbre linéaire les plus puissantes et les

plus utilisées avec un certain nombre d’applications dans divers domaines [8, 9]. En particulier,

décomposition SVD d’une matrice X ∈ RI1×I2 ima rang r est

X
SVD
=
[
u1,u2, . . . ,ur

]
︸ ︷︷ ︸

U

λ1

λ2
. . .

λr

︸ ︷︷ ︸

Λ

v⊤
1

v⊤
2

...

v⊤
r

︸ ︷︷ ︸
V⊤

=

r∑
i=1

λiuiv
⊤
i , (A.1)

où U ∈ RI1×r et V ∈ RI2×r sont des matrices unitaires; Λ ∈ Rr×r est une matrice diagonale

dont les valeurs diagonales sont positives, c.-à-d. λ1 ≥ λ2 ≥ · · · ≥ λr > 0, voir Fig. A.1 pour

une illustration. Pour le problème d’approximation de rang inférieur dans la configuration par

lots, le théorème suivant indique que SVD peut donner le meilleur LRA pour n’importe quelle

matrice X.

282

A.1. TRAITEMENT DE FLUX DE DONNÉES VOLUMINEUSES

Theorem 5 (Eckart-Young-Mirsky Theorem [9]). Dénoter par X = UΛV⊤

décomposition SVD d’une matrice X ∈ RI1×I2. Si k ≤ rank(X) et Xk =
∑k

i=1 λiuiv
⊤
i ,

donc

min
A∈RI1×I2

rank(A)≤k

∥∥X−A
∥∥ =

∥∥X−Xk

∥∥, (A.2)

par rapport à la norme spectrale et à la norme de Frobenius.

Merci au Théorème 5, la meilleure approximation rang-k de X peut être obtenue en appliquant

la procédure suivante:

• Étape 1 : Calculer X SVD
= UΛV⊤, où U ∈ RI1×I1 et V ∈ RI2×I2 sont des matrices unitaires,

et la matrice diagonale Λ ∈ RI1×I2 contient des entrées diagonales positives dans l’ordre
décroissant.

• Étape 2 : Sélectionnez les premiers k vecteurs singuliers parmi U et V pour former les matrices
suivantes Uk = U(:, 1 : k) et Vk = V(:, 1 : k).

• Étape 3 : Sélectionnez les k valeurs singulières les plus fortes dans Λ pour former: Λk = Λ(1 :

k, 1 : k).

• Étape 4 : Dérivez la meilleure approximation rang-k de X à partir de: Xk = UkΛkV
⊤
k .

Lorsqu’il s’agit de tenseurs (aka, tableaux multidimensionnels), plusieurs extensions mul-

tivoies du SVD ont été développées pour la décomposition tensorielle (TD) dans la littéra-

ture [10–13]. Les cinq types courants de TD sont CP/PARFAC [14], Tucker/HOSVD [15],

tensor-train/network [16], t-SVD [17], et décomposition en termes de blocs (BTD) [18], voir

Fig. A.2 pour des illustrations. Plus précisément, ils visent à factoriser un tenseur en un ensem-

ble de composants de base (par exemple, des vecteurs, des matrices ou des tenseurs plus simples)

et offrent donc de bonnes approximations de tenseur de rang inférieur. Dans ce qui suit, nous

décrivons leur connexion à SVD et renvoyons les lecteurs au Chapitre 5 pour plus de détails sur

leurs principales caractéristiques, propriétés et algorithmes.

Décomposition CP/PARAFAC : Semblable à SVD qui représente X par une somme de ma-

trices de rang-1 (c.-à-d. λiuiv
⊤
i), la décomposition CP factorise également un tenseur X ∈

RI1×I2×···×IN en termes de rang-1:

X CP
=

r∑
i=1

λi u
(1)
i ◦ u

(2)
i ◦ · · · ◦ u

(N)
i︸ ︷︷ ︸

rank-1 term

, (A.3)

où u
(n)
i ∈ RIn×1 avec 1 ≤ n ≤ N joue le même rôle que les vecteurs singuliers de U et V dans le

modèle SVD (A.1) (notez que uiv
⊤
i = ui ◦ vi) [14]. La matrice U(n) =

[
u
(n)
1 ,u

(n)
2 , . . . ,u

(n)
r

]
est

283

A.1. TRAITEMENT DE FLUX DE DONNÉES VOLUMINEUSES

(1)
U (2)

U

(
)N

U

1 2

N

G

X (2) (: 1),U

(
) (:

)

N

,r

U

(2) (:),rU

(1) (:),rU

(2)

1U

1

2

N

1G
(1)

1U

()

1

N
U

 VG 1

1
1

2
1

N
(1)

G
(2)

G (1)N
G

()N
G1

1N

(1) (: 1),U

CP/PARAFAC

X

Tensor-Train

X

Tucker/HOSVD

T-SVD

X

(2) (:),rU

(1) (: 2),U

(
) (:

2
)

N

,

U
BTD

X

(2)

2U

1

2

N

2G
(1)

2U

()

2

N
U

(2)

rU

1

2

N

rG
(1)

rU

()N

rU

(
) (:

1)

N

,

U

U

Figure A.2: Multiway extensions of SVD to high-order tensors: CP/PARAFAC, Tucker, BTD,
tensor-train, and t-SVD.

la n-ième facteur CP de X et il n’est pas nécessaire qu’il soit orthogonal. Suivant la définition

générale du rang de la matrice, le plus petit entier r satisfaisant (A.3) est appelé le rang du tenseur

(CP) de X . Dans certaines conditions, la décomposition CP est essentiellement unique jusqu’à

une permutation et une échelle qui est une propriété utile dans de nombreuses applications.

Décomposition Tucker/HOSVD : En dehors de la forme classique (A.1), on peut exprimer la

SVD de X comme suit

X
SVD
= UΛV⊤ = Λ︸︷︷︸

core

×1U×2 V︸ ︷︷ ︸
2 factors

. (A.4)

En conséquence, une extension multidirectionnelle directe de (A.4) aux tenseurs d’ordre élevé

peut être donnée par

X Tucker
= G︸︷︷︸

core

×1U
(1) ×2 U

(2) ×3 · · · ×N U(N)︸ ︷︷ ︸
N factors

, (A.5)

où le noyau G ∈ Rr1×r2×···×rN est un tenseur de taille inférieure à X (i.e., rn ≤ In ∀n) et

N facteurs tensoriels {U(n)}Nn=1, U
(n) ∈ RIn×rn sont des matrices orthogonales. Le modèle de

représentation (A.5) est considéré comme le format SVD d’ordre élevé (HOSVD) ou Tucker [15].

Contrairement au SVD et au CP, Tucker/HOSVD n’est pas unique en général. Cependant,

284

A.1. TRAITEMENT DE FLUX DE DONNÉES VOLUMINEUSES

comme le sous-espace couvrant U(n) est physiquement unique, son objectif principal est de

trouver les sous-espaces principaux des facteurs tensoriels [11].

Décomposition BTD : BTD factorise X en plusieurs blocs de rang multilinéaire faible au lieu

de termes rank-1

X BTD
=

r∑
i=1

Gi ×1 U
(1)
i ×2 U

(2)
i ×3 · · · ×N U

(N)
i︸ ︷︷ ︸

low multilinear-rank term

. (A.6)

Le BTD peut être considéré comme une unification et une généralisation des deux décompositions

CP et Tucker bien connues. Plus précisément, lorsque {Gi}ri=1 sont des tenseurs diagonaux, BTD

se résume à la décomposition CP. Il a la forme d’une décomposition de Tucker lorsqu’un seul

terme de bloc (c’est-à-dire r = 1) est considéré. De plus, plusieurs fonctionnalités attrayantes

du BTD sont héritées de CP et de Tucker, telles que le calcul stable de Tucker, l’identification et

l’unicité de CP [18]. En parallèle, il convient de rappeler une remarque dans [18] selon laquelle

“le rang d’un tenseur d’ordre supérieur est en fait une combinaison des deux aspects : il faut

préciser le nombre de blocs et leur taille”. Cela signifie que BTD fournit une approche unifiée

pour généraliser le concept de rang matriciel aux tenseurs.

Décomposition Tensor-Train: Avec (A.1) et (A.4), nous pouvons écrire la SVD de X comme

X(i1, i2)
SVD
=

r∑
k=1

λkU(i1, k)V(k, i2). (A.7)

En conséquence, chaque élément d’un tenseur d’ordre supérieur X peut être représenté par

X (i1, i2, . . . , iN)
TT
=

r1,r2,...,rN−1∑
k1,k2,...,kN−1

G1(1, i1, k1)G2(k1, i2, k2) . . .GN (kN−1, iN , 1). (A.8)

où Gn est un rn−1× In× rn tenseur avec n = 1, 2, . . . , N − 1 et r0 = rN = 1. Nous nous référons

au modèle de représentation (A.8) en tant que train de tenseurs (TT). Comme CP, le format

TT offre un modèle d’économie de mémoire pour représenter les tenseurs d’ordre élevé. Comme

Tucker, la décomposition TT et le rang TT r = [r1, r2, . . . , rN−1] de tout tenseur X peuvent être

calculés numériquement de manière stable et efficace.

Décomposition t-SVD : Enfin, une autre extension de SVD aux tenseurs d’ordre élevé est le

tenseur SVD (t-SVD) qui est de la forme suivante:

X t-SVD
= U︸︷︷︸

orthogonal

∗ G︸︷︷︸
f -diagonal

∗ V︸︷︷︸
orthogonal

, (A.9)

où U et V sont des tenseurs unitaires, et G est un rectangle f -tenseur diagonal dont les tranches

frontales sont des matrices diagonales [17]. Intuitivement, le modèle t-SVD (A.9) partage la

285

A.1. TRAITEMENT DE FLUX DE DONNÉES VOLUMINEUSES

même forme avec le SVD in (A.1). Cependant, en raison du t-produit “ ∗ ”, le cadre algébrique

utilisé dans le t-SVD est assez différent de l’algèbre (multi)-linéaire classique dans d’autres types

de TD et SVD. Par exemple, la plupart des ses calculs sont effectués dans le domaine de Fourier

Sous le format t-SVD, le tubal-rank qui est égal au nombre de tubes non nuls de G est utilisé

pour définir le LRA des tenseurs de la même manière que le SVD.

A.1.2 Approximation de Rang Inférieur en Ligne: Du Sous-espace au Suivi
Tensoriel

Dans le cadre en ligne, des échantillons de données sont collectés en continu avec le temps. En

conséquence, le recalcul des méthodes LRA par lots (par exemple, les algorithmes SVD ou TD

par lots) à chaque pas de temps devient inefficace en raison de leur grande complexité et de la

variation temporelle, c’est-à-dire de la dérive concept/distribution. Cela a conduit à définir une

variante de la LRA appelée LRA en ligne (adaptative) dans laquelle nous pouvons vouloir suivre

le processus sous-jacent qui génère des données en continu dans le temps.

Lorsque les observations arrivant à chaque instant sont unidimensionnelles (c’est-à-dire vec-

torielles), l’intérêt principal de la LRA en ligne est d’estimer le sous-espace principal qui couvre

de manière compacte ces observations dans le temps. Plus précisément, on parle de problème

de suivi de sous-espace (ST) dans le traitement du signal, qui a été développé pendant plus de

trois décennies [19–21]. En général, à l’arrivée des nouvelles données yt ∈ RI1×1 au temps t,

la matrice de sous-espace Ut ∈ RI1×r peut être dérivé de l’analyse du spectre de la matrice de

covariance suivante

Ct =

t∑
τ=t−Lt+1

βt−τyτy
⊤
τ , (A.10)

où Lt est la longueur de la fenêtre et 0 < β ≤ 1 est le facteur d’oubli [20]. Lorsque Lt = t et β = 1,

Ct dans (A.10) se résume à la matrice de covariance d’échantillon classique. Plus précisément,

dans une connexion au batch LRA utilisant SVD, le vecteur yt peut être vu comme la t-ième

colonne de la matrice sous-jacente Xt = [Xt−1 yt], voir Fig. A.3 pour une illustration. La

matrice de sous-espace Ut joue le rôle de matrice vectorielle singulière gauche de Xt, tandis que

le vecteur de coefficients wt = U⊤
t yt est bien la t-ième ligne de la matrice VΛ dans l’expression

SVD (A.1). Selon le choix de Ct et la technique d’estimation de sous-espace, nous pouvons

obtenir plusieurs algorithmes de suivi de sous-espace.

Lorsque les observations arrivant à chaque instant sont multidimensionnelles (c’est-à-dire

tensorielles), le LRA en ligne s’avère être un suivi tenseur qui peut être considéré comme une

généralisation du suivi subspatial. En particulier, nous souhaitons estimer le dictionnaire de

tenseurs (par exemple, le(s) tenseur(s) central(s) et les facteurs de tenseur) qui génère les données

286

A.1. TRAITEMENT DE FLUX DE DONNÉES VOLUMINEUSES

1tX

tX

Yt1tX

X t

ty

Old Observations New Data

Matrix Tensor

At time t

1X t

X t

1
Yt

2
Yt

3
Yt

Figure A.3: Données en continu.

de flux sous-jacentes X t au fil du temps:

X t =

X t−1 ⊞Y t si streaming mono-aspect

X t−1 ∪Y t si streaming multi-aspects
, (A.11)

où “⊞” et “∪” désignent la concaténation du tenseur et l’opérateur d’union, tandis que X t−1 et

Y t représentent respectivement l’ancienne et la nouvelle observations. Le modèle “single-aspect

streaming” et le modèle “multi-aspect streaming” sont, respectivement, dédiés à représenter des

flux de données ayant une dimension et des dimensions multiples variant avec le temps. Lorsque

de nouveaux échantillons de données arrivent, le dictionnaire de tenseurs de X t doit être mis à

jour de manière incrémentielle sans réutiliser les algorithmes TD par lots. Semblable au suivi de

sous-espace, nous pouvons également obtenir de nombreux algorithmes de suivi de tenseurs basés

sur différents formats de tenseurs, modèles de flux et techniques d’optimisation. Les lecteurs sont

renvoyés au chapitre 5 pour un apercu complet des algorithmes de suivi de tenseur de pointe.

Ces dernières années, l’explosion des flux de données volumineuses a posé des défis importants

au problème de la LRA en ligne. Par exemple, l’efficacité et la robustesse sont très importantes

lorsque nous traitons des données en continu dans des dimensions élevées. De nombreux résul-

tats théoriques dans la théorie des matrices aléatoires (par exemple, [22–24]) ont indiqué que la

matrice de covariance de l’échantillon (SCM) n’est pas un estimateur efficace de la matrice de

covariance réelle dans l’échantillon de grande dimension et de faible taille régime où les ensembles

de données sont massifs à la fois en dimension et en taille d’échantillon. Cependant, la plupart

des méthodes de suivi de sous-espace de pointe dans la littérature sont principalement basées sur

l’analyse spectrale du SCM, et donc, elles ne sont pas efficaces dans un tel régime. En parallèle,

les valeurs aberrantes clairsemées et les données manquantes deviennent de plus en plus om-

287

A.2. DESCRIPTION DE LA THÈSE

True Principal Component (PC)
Estimated PC

Inlier

Outlier

O Ox

y

x

y
Outlier points

Figure A.4: Effet des valeurs aberrantes sur la norme PCA

niprésentes dans les applications de streaming modernes [6]. Les valeurs aberrantes éparses sont

des points de données qui semblent être incohérents ou qui présentent un comportement anormal

différent des autres. Des données manquantes sont souvent rencontrées lors de l’acquisition et de

la collecte. Les valeurs aberrantes éparses et les données manquantes peuvent entraîner plusieurs

problèmes pour la découverte des connaissances à partir des données en général et des flux de

données en particulier, voir Fig. A.4 pour une illustration de l’impact des valeurs aberrantes

sur l’analyse en composantes principales (ACP) standard qui utilise spécifiquement SVD dans

son calcul. Par conséquent, cela nécessite des algorithmes robustes capables de gérer de telles

corruptions de données dans le temps. De plus, des algorithmes de suivi évolutifs sont toujours

souhaitables pour gérer les flux de données modernes, en particulier pour les flux de données

à grande échelle et hautement multidimensionnels. Comme indiqué plus loin, la plupart des

algorithmes de suivi existants sont d’une complexité élevée en ce qui concerne à la fois le calcul

et le stockage en mémoire. En conséquence, il est essentiel de développer des techniques de suivi

efficaces et évolutives à faible coût. Dans ce travail, nous visons à développer des algorithmes de

suivi efficients et efficaces qui ont la capacité de faire face à de tels défis.

A.2 Description de la Thèse

A.2.1 Sommaire et Contributions de la Thèse

Le reste de ma thèse est organisé en deux grandes parties traitant respectivement du suivi

des sous-espaces et du suivi des tenseurs, suivies de la conclusion et des perspectives, veuillez

consulter Fig. A.5 pour un apercu.

288

A.2. DESCRIPTION DE LA THÈSE

SUBSPACE
TRACKING

An Overview of Robust
Subspace Tracking

Robust Subspace Tracking with
Missing Data and Outliers

Sparse Subspace Tracking In
High Dimensions

TH
ES

IS
 S

TR
U

C
TU

R
E

PART I

Chapter 2

Chapter 3

Chapter 4

TENSOR
TRACKING

An Overview of Tensor
Tracking

Robust Tensor Tracking with
Missing Data and Outliers

Tensor Tracking under Tensor-
Train Format

PART II

Chapter 5

Chapter 6

Chapter 7

Conclusion and Outlook
Chapter 9

Chapter 1
Introduction

INTRODUCTION

CONCLUSION

Figure A.5: Structure de la thèse

Partie I: Suivi de Sous-espace

Dans le Chapitre 2, nous fournissons un bref apercu des récents algorithmes robustes de suivi

de sous-espace qui ont été principalement développés au cours de la dernière décennie. En

particulier, nous commencons par introduire les idées de base du problème de suivi de sous-

espace. Nous mettons ensuite en évidence les principales classes d’algorithmes pour traiter les

bruits non gaussiens (par exemple, les valeurs aberrantes éparses, le bruit impulsif et le bruit

coloré). Ces dernières années ont également vu la généralisation de l’analyse de données de grande

dimension dans laquelle des méthodes basées sur la représentation clairsemée sont appliquées avec

succès à de nombreuses applications de traitement du signal. En conséquence, les algorithmes

289

A.2. DESCRIPTION DE LA THÈSE

de suivi de sous-espace clairsemé de l’état de l’art y sont également passés en revue.

Dans Chapitre 3, nous proposons un nouvel algorithme, à savoir PETRELS-ADMM, pour

traiter le suivi de sous-espace en présence de valeurs aberrantes et de données manquantes.

L’approche proposée consiste en deux étapes principales: le rejet des valeurs aberrantes et

l’estimation du sous-espace. Dans la première étape, la méthode des multiplicateurs à direction

alternée (ADMM) est efficacement exploitée pour détecter les valeurs aberrantes affectant les don-

nées observées. Dans la deuxième étape, nous proposons une version améliorée de l’algorithme

d’estimation et de suivi parallèles par les moindres carrés récursifs (PETRELS) pour mettre

à jour le sous-espace sous-jacent dans le contexte des données manquantes. Nous présentons

ensuite une analyse de convergence théorique de PETRELS-ADMM qui montre qu’il génère

une séquence de solutions de sous-espaces convergeant vers l’optimum de son homologue batch.

L’efficacité de l’algorithme proposé, par rapport aux algorithmes de pointe, est illustrée à la fois

sur des données simulées et réelles.

Dans Chapitre 4, nous développons une nouvelle méthode efficace prouvable appelée OPIT

pour suivre le sous-espace principal clairsemé des flux de données au fil du temps. En particulier,

OPIT introduit une nouvelle variante adaptative d’itération de puissance avec un espace et

une complexité de calcul linéaires à la dimension des données. De plus, un nouvel opérateur

de seuillage basé sur les colonnes est développé pour régulariser la parcimonie du sous-espace.

Utilisant à la fois les avantages de l’itération de puissance et de l’opération de seuillage, OPIT

est capable de suivre le sous-espace sous-jacent à la fois en régime classique et en régime de

grande dimension. Nous présentons également un résultat théorique sur sa convergence pour

vérifier sa consistance en grandes dimensions. Plusieurs expériences sont menées sur des données

synthétiques et réelles pour démontrer la capacité de suivi d’OPIT.

Partie II: Suivi Tensoriel

Dans le Chapitre 5, nous proposons une étude contemporaine et complète des différents types

de techniques de suivi des tenseurs. Nous classons en particulier les méthodes de pointe en

trois groupes principaux : les décompositions CP en continu, les décompositions en continu de

Tucker et les décompositions en continu sous d’autres formats de tenseurs (c’est-à-dire, train de

tenseurs, t-SVD et BTD). Dans chaque groupe, nous divisons en outre les algorithmes existants

en sous-catégories en fonction de leur cadre d’optimisation principal et des architectures de

modèles. Plus précisément, quatre groupes principaux d’algorithmes de décomposition CP en

continu ont été mis en évidence, y compris la descente en coordonnées de bloc basée sur le sous-

espace, l’inférence bayésienne et les décompositions en continu multi-aspects. Nous catégorisé la

décomposition actuelle de Tucker en streaming méthodes en trois grandes classes en fonction de

leur modèle architecture. Il s’agit de l’apprentissage en ligne du dictionnaire de tenseurs, du suivi

du sous-espace tenseur et des décompositions en continu multi-aspects. Enfin, un bref apercu

290

A.2. DESCRIPTION DE LA THÈSE

des méthodes existantes capables de suivre les tenseurs sous les formats TT, BTD et t-SVD est

présenté.

Dans Chapitre 6, nous proposons trois nouveaux algorithmes adaptatifs pour suivre les

tenseurs de flux d’ordre supérieur avec le temps, y compris ACP, ATD et RACP. Sous le format

CP, ACP minimise une fonction de coût des moindres carrés récursive pondérée exponentielle-

ment pour obtenir les facteurs tensoriels de manière efficace, grâce au cadre de minimisation

alternatif et à la technique d’esquisse aléatoire. Sous le format Tucker, ATD suit d’abord les

sous-espaces sous-jacents de faible dimension couvrant les facteurs tensoriels, puis estime le

tenseur central à l’aide d’une approximation stochastique a. Les deux algorithmes ACP et ATD

sont rapides et parfaitement capables de suivre les tenseurs de flux à partir d’observations in-

complètes. Lorsque les observations sont corrompues par des valeurs aberrantes éparses, nous

introduisons l’algorithme dit RACP robuste aux corruptions grossières. En particulier, RACP

effectue d’abord le rejet des valeurs aberrantes en ligne pour détecter et supprimer avec précision

les valeurs aberrantes clairsemées, puis effectue un suivi des facteurs tensoriels pour mettre à

jour efficacement les facteurs tensoriels. L’analyse de convergence pour trois algorithmes est

établie dans le sens où la séquence de solutions générées converge asymptotiquement vers un

point stationnaire de la fonction objectif. Des expériences approfondies sont menées sur des

données synthétiques et réelles pour démontrer l’efficacité des algorithmes proposés par rapport

aux algorithmes adaptatifs de pointe.

Dans le Chapitre 7, nous introduisons trois nouvelles méthodes pour le problème de la décom-

position en continu des trains de tenseurs. La première méthode appelée TT-FOA est capable de

suivre avec une grande précision les composantes de rang inférieur des tenseurs d’ordre élevé à

partir de données bruitées et de grande dimension, même lorsqu’elles proviennent d’observations

dépendant du temps. La deuxième méthode appelée ATT est particulièrement concue pour

gérer les tenseurs de flux incomplets. ATT est évolutif, efficace et apte à estimer les composants

de faible rang TT des tenseurs de flux. En outre, ATT peut prendre en charge l’informatique

parallèle et distribuée. Pour traiter les valeurs aberrantes éparses, nous proposons le soi-disant

ROBOT qui signifie ROBust Online Tensor-Train decomposition. Techniquement, ROBOT a la

capacité de suivre les tenseurs de streaming à partir de flux imparfaits (c’est-à-dire en raison

du bruit, des valeurs aberrantes et des données manquantes) ainsi que de suivre leur variation

temporelle dans des environnements dynamiques.

Conclusion et Perspectives

Le chapitre 8 conclut la thèse avec nos principaux résultats et un apercu des travaux futurs. En

particulier, nous présentons plusieurs défis de recherche et problèmes ouverts qui devraient être

pris en compte pour le développement du suivi de la composante de rang inférieur des flux de

données à l’avenir. Il s’agit de l’imperfection et de la corruption des données; classement et suivi;

291

A.2. DESCRIPTION DE LA THÈSE

suivi de tenseur efficace et évolutif; et d’autres aspects tels que l’analyse théorique, les données

symboliques et le suivi sous des formats de tenseur moins courants. Des solutions possibles à ces

défis sont également discutées.

A.2.2 Liste des Publications

La plupart des résultats ci-dessus ont été publiés/soumis dans les articles suivants:

Articles de Journaux:

[25] L. T. Thanh, N. V. Dung, N. L. Trung and K. Abed-Meraim, “Robust Subspace Tracking With
Missing Data and Outliers: Novel Algorithm With Convergence Guarantee”, IEEE Trans. Signal
Process., vol. 69, pp. 2070–2085, 2021.

[26] L. T. Thanh, N. V. Dung, N. L. Trung and K. Abed-Meraim, “Robust Subspace Tracking Algorithms
in Signal Processing: A Brief Survey”, REV J. Elect. Commun., vol. 11, no. 1–2, pp. 15–25, 2021.

[27] L. T. Thanh, K. Abed-Meraim, N. L. Trung and A. Hafiane, “Robust Tensor Tracking with Missing
Data and Outliers: Novel Adaptive CP Decomposition and Convergence Analysis”, IEEE Trans.
Signal Process., vol. 70, pp. 4305–4320, 2022.

[28] L. T. Thanh, K. Abed-Meraim, N. L. Trung and A. Hafiane, “OPIT: A Simple and Effective Method
for Sparse Subspace Tracking in High-dimension and Low-sample-size Context”, IEEE Trans. Sig-
nal Process., 2022 (submitted).

[29] L. T. Thanh, K. Abed-Meraim, N. L. Trung and A. Hafiane, “Tracking Online Low-Rank Approx-
imations of Higher-Order Incomplete Streaming Tensors”, Elsevier Patterns, 2022 (submitted).

[30] L. T. Thanh, K. Abed-Meraim, N. L. Trung and A. Hafiane, “Streaming Tensor-Train Decomposi-
tion With Missing Data”, Elsevier Signal Process., 2022 (submitted).

[31] L. T. Thanh, K. Abed-Meraim, N. L. Trung and A. Hafiane, “A Contemporary and Comprehensive
Survey on Streaming Tensor Decomposition”, IEEE Trans. Knowl. Data. Eng., 2022 (submitted).

Conférence:

[32] L. T. Thanh, K. Abed-Meraim, N. L. Trung and R. Boyer, “Adaptive Algorithms for Tracking
Tensor-Train Decomposition of Streaming Tensors”, in Proc. 28th EUSIPCO, 2020, pp. 995–999.

[33] L. T. Thanh, K. Abed-Meraim, N. L. Trung and A. Hafiane, “A Fast Randomized Adaptive CP
Decomposition for Streaming Tensors”, in Proc. 46th ICASSP, 2021, pp. 2910–2914.

[34] L. T. Thanh, K. Abed-Meraim, A. Hafiane and N. L. Trung, “Sparse Subspace Tracking in High
Dimensions”, in Proc. 47th ICASSP, 2022, pp. 5892–5896.

[35] L. T. Thanh, K. Abed-Meraim, N. L. Trung and A. Hafiane, “Robust Tensor Tracking With Missing
Data Under Tensor-Train Format”, in Proc. 30th EUSIPCO, 2022, pp. 832–836.

[36] L. T. Thanh, T. T. Duy, K. Abed-Meraim, N. L. Trung and A. Hafiane, “Robust Online Tucker
Dictionary Learning from Multidimensional Data Streams”, in Proc. 14th APSIPA-ASC, 2022, pp.
1812-1817.

292

A.2. DESCRIPTION DE LA THÈSE

Contributions en Dehors du Champ de la Thèse

Au cours de mes études de doctorat, j’ai également apporté d’autres contributions à l’identification

des systèmes aveugles qui ne sont pas incluses dans cette thèse:

[37] L. T. Thanh, K. Abed-Meraim and N. L. Trung, “Misspecified Cramer-Rao Bounds for Blind Chan-
nel Estimation under Channel Order Misspecification”, IEEE Trans. Signal Process., vol. 69,
pp. 5372–5385, 2021.

[38] L. T. Thanh, K. Abed-Meraim and N. L. Trung, “Performance Lower Bounds of Blind System
Identification Techniques in the Presence of Channel Order Estimation Error”, in Proc. 29th EU-
SIPCO, 2021, pp. 1646–1650.

[39] O. Rekik, A. Mokraoui, T. T. T Quynh, L. T. Thanh and K. Abed-Meraim. “Side Information
Effect on Semi-Blind Channel Identification for MIMO-OFDM Communications Systems”, in Proc.
55th ASILOMAR 2021, pp. 443–448.

293

Bibliography

[1] C. P. Chen and C.-Y. Zhang, “Data-intensive applications, challenges, techniques and tech-

nologies: A survey on Big Data,” Inf. Sci., vol. 275, pp. 314–347, 2014.

[2] T. Kolajo, O. Daramola, and A. Adebiyi, “Big data stream analysis: A systematic literature

review,” J. Big Data, vol. 6, no. 1, pp. 1–30, 2019.

[3] M. Bahri, A. Bifet, J. Gama, H. M. Gomes, and S. Maniu, “Data stream analysis: Foun-

dations, major tasks and tools,” Data Min. Knowl. Discov., vol. 11, 2021.

[4] A. Al-Fuqaha, M. Guizani, M. Mohammadi, M. Aledhari, and M. Ayyash, “Internet of

things: A survey on enabling technologies, protocols, and applications,” IEEE Commun.

Surv. Tutor., vol. 17, no. 4, pp. 2347–2376, 2015.

[5] A. A. Safaei, “Real-time processing of streaming big data,” Real-Time Syst., vol. 53, no. 1,

pp. 1–44, 2017.

[6] T. Akidau, S. Chernyak, and R. Lax, Streaming Systems: The What, Where, When, and

How of Large-Scale Data Processing, 2018.

[7] I. Markovsky, Low-Rank Approximation: Algorithms, Implementation, Applications, 2019.

[8] G. W. Stewart, “On the early history of the singular value decomposition,” SIAM Rev.,

vol. 35, no. 4, pp. 551–566, 1993.

[9] G. H. Golub and C. F. Van Loan, Matrix Computations, 2012.

[10] T. G. Kolda and B. W. Bader, “Tensor decompositions and applications,” SIAM Rev.,

vol. 51, no. 3, pp. 455–500, 2009.

[11] N. D. Sidiropoulos, L. D. Lathauwer, X. Fu, K. Huang, E. E. Papalexakis, and C. Faloutsos,

“Tensor decomposition for signal processing and machine learning,” IEEE Trans. Signal

Process., vol. 65, no. 13, pp. 3551–3582, 2017.

[12] A. Cichocki, N. Lee, I. V. Oseledets, A.-H. Phan, Q. Zhao, and D. P. Mandic, “Tensor

networks for dimensionality reduction and large-scale optimization: Part 1 low-rank tensor

decompositions,” Found. Trends Mach. Learn., vol. 9, no. 4-5, pp. 249–429, 2016.

294

BIBLIOGRAPHY

[13] Y. Liu, J. Liu, Z. Long, and C. Zhu, Tensor Computation for Data Analysis, 2022.

[14] R. A. Harshman, “Foundations of the PARAFAC procedure: Models and conditions for an

explanatory multimodal factor analysis,” UCLA Work. Pap. Phon., vol. 16, no. 1-84, 1970.

[15] L. R. Tucker, “Some mathematical notes on three-mode factor analysis,” Psychometrika,

vol. 31, no. 3, pp. 279–311, 1966.

[16] I. V. Oseledets, “Tensor-train decomposition,” SIAM J. Sci. Comput., vol. 33, no. 5, pp.

2295–2317, 2011.

[17] M. E. Kilmer and C. D. Martin, “Factorization strategies for third-order tensors,” Linear

Algebra Appl., vol. 435, no. 3, pp. 641–658, 2011.

[18] L. De Lathauwer, “Decompositions of a higher-order tensor in block terms—Part II: Defi-

nitions and uniqueness,” SIAM J. Matrix Anal. Appl., vol. 30, no. 3, pp. 1033–1066, 2008.

[19] P. Comon and G. H. Golub, “Tracking a few extreme singular values and vectors in signal

processing,” Proc. IEEE, vol. 78, no. 8, pp. 1327–1343, 1990.

[20] J.-P. Delmas, “Subspace tracking for signal processing,” in Adaptive Signal Processing: Next

Generation Solutions, 2010, pp. 211–270.

[21] N. Vaswani, T. Bouwmans, S. Javed, and P. Narayanamurthy, “Robust subspace learn-

ing: Robust PCA, robust subspace tracking, and robust subspace recovery,” IEEE Signal

Process. Mag., vol. 35, no. 4, pp. 32–55, 2018.

[22] N. El. Karoui, “Spectrum estimation for large dimensional covariance matrices using ran-

dom matrix theory,” Ann. Stat., vol. 36, no. 6, pp. 2757–2790, 2008.

[23] X. Mestre, “On the asymptotic behavior of the sample estimates of eigenvalues and eigen-

vectors of covariance matrices,” IEEE Trans. Signal Process., vol. 56, no. 11, pp. 5353–5368,

2008.

[24] R. Vershynin, “How close is the sample covariance matrix to the actual covariance matrix?”

J. Theor. Probab., vol. 25, no. 3, pp. 655–686, 2012.

[25] L. T. Thanh, N. V. Dung, N. L. Trung, and K. Abed-Meraim, “Robust subspace tracking

with missing data and outliers: Novel algorithm with convergence guarantee,” IEEE Trans.

Signal Process., vol. 69, pp. 2070–2085, 2021.

[26] ——, “Robust subspace tracking algorithms in signal processing: A brief survey,” REV J.

Elect. Commun., vol. 11, no. 1-2, pp. 16–25, 2021.

295

BIBLIOGRAPHY

[27] L. T. Thanh, K. Abed-Meraim, N. Linh Trung, and A. Hafiane, “Robust tensor track-

ing with missing data and outliers: Novel adaptive CP decomposition and convergence

analysis,” vol. 70, pp. 4305–4320, 2022.

[28] L. T. Thanh, K. Abed Meraim, N. L. Trung, and A. Hafiane, “OPIT: A Simple and Effective

Method for Sparse Subspace Tracking in High-dimension and Low-sample-size Context,”

IEEE Trans. Signal Process., 2022 (submitted).

[29] L. T. Thanh, K. Abed-Meraim, N. L. Trung, and A. Hafiane, “Tracking dynamic low-

rank approximations of incomplete high-order streaming tensors,” Elsevier Patterns, 2022

(submitted).

[30] L. T. Thanh, K. Abed Meraim, N. Linh Trung, and A. Hafiane, “Streaming tensor-train

decomposition with missing data,” Signal Process., 2022 (submitted).

[31] L. T. Thanh, K. Abed-Meraim, N. Linh Trung, and A. Hafiane, “A Contemporary and

Comprehensive Survey on Streaming Tensor Decomposition,” IEEE Trans. Knowl. Data

Eng., 2022 (submitted).

[32] L. T. Thanh, K. Abed-Meraim, N. Linh-Trung, and R. Boyer, “Adaptive algorithms for

tracking tensor-train decomposition of streaming tensors,” in Eur. Signal Process. Conf.,

2020, pp. 995–999.

[33] L. T. Thanh, K. Abed-Meraim, N. L. Trung, and A. Hafiane, “A fast randomized adap-

tive CP decomposition for streaming tensors,” in IEEE Int. Conf. Acoust. Speech Signal

Process., 2021, pp. 2910–2914.

[34] L. T. Thanh, K. Abed-Meraim, A. Hafiane, and N. L. Trung, “Sparse subspace tracking in

high dimensions,” in IEEE Int. Conf. Acoust. Speech Signal Process., 2022, pp. 5892–5896.

[35] L. T. Thanh, K. Abed-Meraim, N. Linh Trung, and A. Hafiane, “Robust tensor tracking

with missing data under tensor-train format,” in Eur. Signal. Process. Conf., 2022, pp.

832–836.

[36] L. T. Thanh, K. Abed-Meraim, N. L. Trung, and A. Hafiane, “Robust online tucker dictio-

nary learning from multidimensional data streams,” in Proc. 14th Asia-Pacific Signal Inf.

Process. Assoc. Ann. Summit Conf., 2022.

[37] L. T. Thanh, K. Abed-Meraim, and N. L. Trung, “Misspecified Cramer–Rao Bounds for

Blind Channel Estimation Under Channel Order Misspecification,” IEEE Trans. Signal

Process., vol. 69, pp. 5372–5385, 2021.

[38] ——, “Performance lower bounds of blind system identification techniques in the presence

of channel order estimation error,” in Eur. Signal Process. Conf., 2021, pp. 1646–1650.

296

BIBLIOGRAPHY

[39] O. Rekik, A. Mokraoui, T. T. Thuy Quynh, T.-T. Le, and K. Abed-Meraim, “Side Infor-

mation Effect on Semi-Blind Channel Identification for MIMO-OFDM Communications

Systems,” in 2021 55th Asilomar Conference on Signals, Systems, and Computers, 2021,

pp. 443–448.

[40] I. Jolliffe, Principal Component Analysis, 2002.

[41] L. Balzano, Y. Chi, and Y. M. Lu, “Streaming PCA and Subspace Tracking: The Missing

Data Case,” Proceed. IEEE, vol. 106, no. 8, pp. 1293–1310, 2018.

[42] E. J. Candès, X. Li, Y. Ma, and J. Wright, “Robust principal component analysis?” J.

ACM, vol. 58, no. 3, p. 11, 2011.

[43] N. Vaswani, Y. Chi, and T. Bouwmans, “Rethinking PCA for modern data sets: Theory,

algorithms, and applications,” Proc. IEEE, vol. 106, no. 8, pp. 1274–1276, 2018.

[44] I. T. Jolliffe and J. Cadima, “Principal component analysis: A review and recent develop-

ments,” Philos. Trans. Royal Soc. A, vol. 374, no. 2065, p. 20150202, 2016.

[45] C. Wang, Y. C. Eldar, and Y. M. Lu, “Subspace estimation from incomplete observations:

A high-dimensional analysis,” IEEE J. Sel. Top. Signal Process., vol. 12, no. 6, pp. 1240–

1252, 2018.

[46] N. Vaswani and P. Narayanamurthy, “Static and dynamic robust PCA and matrix comple-

tion: A review,” Proc. IEEE, vol. 106, no. 8, pp. 1359–1379, 2018.

[47] G. Lerman and T. Maunu, “An overview of robust subspace recovery,” Procc. IEEE, vol.

106, no. 8, pp. 1380–1410, 2018.

[48] S. X. Wu, H. Wai, L. Li, and A. Scaglione, “A review of distributed algorithms for principal

component analysis,” Procc. IEEE, vol. 106, no. 8, pp. 1321–1340, 2018.

[49] H. Zou and L. Xue, “A selective overview of sparse principal component analysis,” Proc.

IEEE, vol. 106, no. 8, pp. 1311–1320, 2018.

[50] J. He, L. Balzano, and A. Szlam, “Incremental gradient on the Grassmannian for online

foreground and background separation in subsampled video,” in IEEE Conf. Comput. Vis.

Pattern Recogn. IEEE, 2012, pp. 1568–1575.

[51] J. Xu, V. K. Ithapu, L. Mukherjee, J. M. Rehg, and V. Singh, “GOSUS: Grassmannian

online subspace updates with structured-sparsity,” in IEEE Int. Conf. Comput. Vis., 2013,

pp. 3376–3383.

[52] F. Seidel, C. Hage, and M. Kleinsteuber, “pROST: A smoothed lp-Norm robust online

subspace tracking method for background subtraction in video,” Mach. Vis. Appl., vol. 25,

no. 5, pp. 1227–1240, 2014.

297

BIBLIOGRAPHY

[53] C. Hage and M. Kleinsteuber, “Robust PCA and subspace tracking from incomplete ob-

servations using ℓ0-Surrogates,” Comput. Stat., vol. 29, no. 3-4, pp. 467–487, 2014.

[54] J. Shen, H. Xu, and P. Li, “Online optimization for max-norm regularization,” in Adv.

Neural Inf. Process. Syst., 2014, pp. 1718–1726.

[55] H. Mansour and X. Jiang, “A robust online subspace estimation and tracking algorithm,”

in IEEE Int. Conf. Acoust. Speech Signal Process., 2015, pp. 4065–4069.

[56] S. Chouvardas, Y. Kopsinis, and S. Theodoridis, “An Adaptive Projected Subgradient

based algorithm for robust subspace tracking,” in IEEE Int. Conf. Acoust. Speech Signal

Process., 2014, pp. 5497–5501.

[57] ——, “Robust subspace tracking with missing entries: The set-theoretic approach,” IEEE

Trans. Signal Process., vol. 63, no. 19, pp. 5060–5070, 2015.

[58] J. Zhan, B. Lois, H. Guo, and N. Vaswani, “Online (and offline) robust PCA: Novel algo-

rithms and performance guarantees,” in Artif. Intell. Stat., 2016, pp. 1488–1496.

[59] B. Hong, L. Wei, Y. Hu, D. Cai, and X. He, “Online robust principal component analysis

via truncated nuclear norm regularization,” Neurocomput., vol. 175, pp. 216–222, 2016.

[60] K. G. Quach, C. N. Duong, K. Luu, and T. D. Bui, “Non-convex online robust PCA:

Enhance sparsity via p-Norm minimization,” Comput. Vis. Image Underst., vol. 158, pp.

126–140, 2017.

[61] P. P. Markopoulos, M. Dhanaraj, and A. Savakis, “Adaptive L1-norm principal-component

analysis with online outlier rejection,” IEEE J. Sel. Top. Signal Process., vol. 12, no. 6,

pp. 1131–1143, 2018.

[62] N. Linh-Trung, V. D. Nguyen, M. Thameri, T. Minh-Chinh, and K. Abed-Meraim, “Low-

complexity adaptive algorithms for robust subspace tracking,” IEEE J. Sel. Topics Signal

Process., vol. 12, no. 6, pp. 1197–1212, 2018.

[63] P. Narayanamurthy and N. Vaswani, “Provable dynamic robust PCA or robust subspace

tracking,” IEEE Trans. Inf. Theory, vol. 65, no. 3, pp. 1547–1577, 2019.

[64] P. Narayanamurthy, V. Daneshpajooh, and N. Vaswani, “Provable subspace tracking from

missing data and matrix completion,” IEEE Trans. Signal Process., pp. 4245–4260, 2019.

[65] Y. Liu, K. Tountas, D. A. Pados, S. N. Batalama, and M. J. Medley, “L1-subspace tracking

for streaming data,” Pattern Recog., vol. 97, p. 106992, 2020.

[66] X. Jia, X. Feng, W. Wang, H. Huang, and C. Xu, “Online Schatten quasi-norm minimiza-

tion for robust principal component analysis,” Inf. Sci., vol. 476, pp. 83–94, 2019.

298

BIBLIOGRAPHY

[67] P. Narayanamurthy and N. Vaswani, “Fast robust subspace tracking via PCA in sparse

data-dependent noise,” IEEE J. Sel. Areas Inf. Theory, vol. 1, no. 3, pp. 723–744, 2020.

[68] R. Chakraborty, S. Hauberg, and B. C. Vemuri, “Intrinsic Grassmann averages for online

linear and robust subspace learning,” in IEEE Conf. Comput. Vis. Pattern Recogn., 2017,

pp. 6196–6204.

[69] R. Chakraborty, L. Yang, S. Hauberg, and B. Vemuri, “Intrinsic Grassmann averages for

online linear, robust and nonlinear subspace learning,” IEEE Trans. Pattern Anal. Mach.

Intell., pp. 1–1, 2020.

[70] L. T. Thanh, N. V. Dung, N. L. Trung, and K. Abed Meraim, “Robust subspace tracking

with missing data and outliers via ADMM,” in European Signal Process. Conf., 2019, pp.

1–5.

[71] S. Hauberg, A. Feragen, R. Enficiaud, and M. J. Black, “Scalable robust principal compo-

nent analysis using Grassmann averages,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 38,

no. 11, pp. 2298–2311, 2016.

[72] L. Balzano, R. Nowak, and B. Recht, “Online identification and tracking of subspaces from

highly incomplete information,” in Allerton Conf. Commun. Control Comput., 2010, pp.

704–711.

[73] Y. Chi, Y. C. Eldar, and R. Calderbank, “PETRELS: Parallel subspace estimation and

tracking by recursive least squares from partial observations,” IEEE Trans. Signal Process.,

vol. 61, no. 23, pp. 5947–5959, 2013.

[74] B. Yang, “Projection approximation subspace tracking,” IEEE Trans. Signal Process.,

vol. 43, no. 1, pp. 95–107, 1995.

[75] K. L. Blackard, T. S. Rappaport, and C. W. Bostian, “Measurements and models of ra-

dio frequency impulsive noise for indoor wireless communications,” IEEE J. Sel. Areas

Commun., vol. 11, no. 7, pp. 991–1001, 1993.

[76] W. Ebel and W. Tranter, “The performance of Reed-Solomon codes on a bursty-noise

channel,” IEEE Trans. Commun., vol. 43, no. 2/3/4, pp. 298–306, 1995.

[77] Kung Yao, “A representation theorem and its applications to spherically-invariant random

processes,” IEEE Trans. Inf. Theory, vol. 19, no. 5, pp. 600–608, 1973.

[78] E. Ollila, D. E. Tyler, V. Koivunen, and H. V. Poor, “Complex elliptically symmetric

distributions: Survey, new results and applications,” IEEE Trans. Signal Process., vol. 60,

no. 11, pp. 5597–5625, 2012.

299

BIBLIOGRAPHY

[79] C. L. Nikias and M. Shao, Signal Processing with Alpha-Stable Distributions and Applica-

tions, 1995.

[80] P. G. Georgiou, P. Tsakalides, and C. Kyriakakis, “Alpha-stable modeling of noise and

robust time-delay estimation in the presence of impulsive noise,” IEEE Trans. Multimedia,

vol. 1, no. 3, pp. 291–301, 1999.

[81] S.-C. Chan, Y. Wen, and K.-L. Ho, “A robust past algorithm for subspace tracking in

impulsive noise,” IEEE Trans. Signal Process., vol. 54, no. 1, pp. 105–116, 2006.

[82] J. Zhang and T.-s. Qiu, “A robust correntropy based subspace tracking algorithm in im-

pulsive noise environments,” Digit. Signal Process., vol. 62, pp. 168–175, 2017.

[83] S. Luan, T. Qiu, L. Yu, J. Zhang, A. Song, and Y. Zhu, “BNC-based projection approxi-

mation subspace tracking under impulsive noise,” IET Radar Sonar Navig., vol. 11, no. 7,

pp. 1055–1061, 2017.

[84] B. Liao, Z. Zhang, and S.-C. Chan, “A new robust Kalman filter-based subspace tracking

algorithm in an impulsive noise environment,” IEEE Trans. Circuits Syst. II Express Briefs,

vol. 57, no. 9, pp. 740–744, 2010.

[85] J.-f. ZHANG, T.-s. QIU, and S. LI, “A robust PAST algorithm based on maximum corren-

tropy criterion for impulsive noise environments,” Acta Electonica Sin., vol. 43, no. 3, p.

483, 2015.

[86] J. Zhang and T. Qiu, “A novel tracking method for fast varying subspaces in impulsive

noise environments,” in 2016 Int. Conf. Signal Process. Commun. Syst., 2016, pp. 1–7.

[87] S. Chan, Z. Zhang, and Y. Zhou, “A new adaptive Kalman filter-based subspace tracking

algorithm and its application to DOA estimation,” in IEEE Int. Symp. Circuits Systt.,

2006, pp. 4 pp.–132.

[88] T. Gustafsson, “Instrumental variable subspace tracking using projection approximation,”

IEEE Trans. Signal Process., vol. 46, no. 3, pp. 669–681, 1998.

[89] G. Mercère, L. Bako, and S. Lecœuche, “Propagator-based methods for recursive subspace

model identification,” Signal Process., vol. 88, no. 3, pp. 468–491, 2008.

[90] S. Chan, H. Tan, and J. Lin, “A new variable forgetting factor and variable regularized

square root extended instrumental variable PAST algorithm with applications,” IEEE

Trans. Aerosp. Electron. Syst., vol. 56, no. 3, pp. 1886–1902, 2020.

[91] M. Chen and Z. Wang, “Subspace tracking in colored noise based on oblique projection,” in

2006 IEEE International Conference on Acoustics Speech and Signal Processing Proceed-

ings, vol. 3, 2006, pp. III–III.

300

BIBLIOGRAPHY

[92] F. Yger, M. Berar, G. Gasso, and A. Rakotomamonjy, “Oblique principal subspace tracking

on manifold,” in IEEE Int. Conf. Acoust. Speech Signal Process., 2012, pp. 2429–2432.

[93] C. Wang and Y. M. Lu, “Online learning for sparse PCA in high dimensions: Exact dy-

namics and phase transitions,” in IEEE Inf. Theory Works., 2016, pp. 186–190.

[94] W. Yang and H. Xu, “Streaming Sparse Principal Component Analysis,” in Int. Conf.

Mach. Learn., 2015, pp. 494–503.

[95] X. Yang, Y. Sun, T. Zeng, T. Long, and T. K. Sarkar, “Fast STAP method based on PAST

with sparse constraint for airborne phased array radar,” IEEE Trans. Signal Process.,

vol. 64, no. 17, pp. 4550–4561, 2016.

[96] P. V. Giampouras, A. A. Rontogiannis, K. E. Themelis, and K. D. Koutroumbas, “Online

sparse and low-rank subspace learning from incomplete data: A Bayesian view,” Signal

Process., vol. 137, pp. 199–212, 2017.

[97] N. Lassami, K. Abed-Meraim, and A. Aïssa-El-Bey, “Low cost subspace tracking algorithms

for sparse systems,” in Eur. Signal Process. Conf., 2017, pp. 1400–1404.

[98] N. Lassami, A. Aïssa-El-Bey, and K. Abed-Meraim, “Low cost sparse subspace tracking

algorithms,” Signal Process., vol. 173, p. 107522, 2020.

[99] R. Badeau, G. Richard, and B. David, “Fast and stable YAST algorithm for principal and

minor subspace tracking,” IEEE Trans. Signal Process., vol. 56, no. 8, pp. 3437–3446, 2008.

[100] Z. Zhang, Y. Xu, J. Yang, X. Li, and D. Zhang, “A survey of sparse representation: Algo-

rithms and applications,” IEEE Access, vol. 3, pp. 490–530, 2015.

[101] T. T. Cai, Z. Ma, Y. Wu et al., “Sparse PCA: Optimal rates and adaptive estimation,”

Ann. Stat., vol. 41, no. 6, pp. 3074–3110, 2013.

[102] D. Papailiopoulos, A. Dimakis, and S. Korokythakis, “Sparse PCA through low-rank ap-

proximations,” in Int. Conf. Mach. Learn., 2013, pp. 747–755.

[103] V. Q. Vu, J. Cho, J. Lei, and K. Rohe, “Fantope projection and selection: A near-Optimal

convex relaxation of sparse PCA,” in Adv. Neural Inf. Process. Syst., 2013, pp. 2670–2678.

[104] N. Lassami, A. Aïssa-El-Bey, and K. Abed-Meraim, “Fast sparse subspace tracking algo-

rithm based on shear and givens rotations,” in Asilomar Conf. Signals Syst. Comput., 2019,

pp. 1667–1671.

[105] A. Tulay and H. Simon, Adaptive Signal Processing: Next Generation Solutions, 2010.

301

BIBLIOGRAPHY

[106] M. Mardani, G. Mateos, and G. B. Giannakis, “Subspace learning and imputation for

streaming big data matrices and tensors,” IEEE Trans. Signal Process., vol. 63, no. 10, pp.

2663–2677, 2015.

[107] N. V. Dung, K. Abed-Meraim, N. L. Trung, and R. Weber, “Generalized minimum noise

subspace for array processing,” IEEE Trans. Signal Process., vol. 65, no. 14, pp. 3789–3802,

2017.

[108] S. Haghighatshoar and G. Caire, “Low-complexity massive MIMO subspace estimation and

tracking from low-dimensional projections,” IEEE Trans. Signal Process., vol. 66, no. 7,

pp. 1832–1844, 2018.

[109] S. Buzzi and C. D’Andrea, “Subspace tracking and least squares approaches to channel

estimation in millimeter wave multiuser MIMO,” IEEE Trans. Commun., vol. 67, no. 10,

pp. 6766–6780, 2019.

[110] D. Zhang and L. Balzano, “Global convergence of a Grassmannian gradient descent algo-

rithm for subspace estimation.” in Int. Conf. Artif. Intell. Stat., Cadiz, Spain, 2016, pp.

1460–1468.

[111] A. Gonen, D. Rosenbaum, Y. C. Eldar, and S. Shalev-Shwartz, “Subspace learning with

partial information,” J. Mach. Learn. Res., vol. 17, no. 1, pp. 1821–1841, 2016.

[112] M. Shor and N. Levanon, “Performances of order statistics CFAR,” IEEE Trans. Aerosp.

Electron. Syst., vol. 27, no. 2, pp. 214–224, 1991.

[113] J. A. Tropp, “Just relax: Convex programming methods for identifying sparse signals in

noise,” IEEE Trans. Inf. Theory, vol. 52, no. 3, pp. 1030–1051, 2006.

[114] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, “Distributed optimization and

statistical learning via the alternating direction method of multipliers,” Found. Trends

Mach. Learn., vol. 3, no. 1, pp. 1–122, 2011.

[115] E. Ghadimi, A. Teixeira, I. Shames, and M. Johansson, “Optimal parameter selection

for the alternating direction method of multipliers (ADMM): Quadratic problems,” IEEE

Trans. Automat. Contr., vol. 60, no. 3, pp. 644–658, 2015.

[116] Y. Xu, M. Liu, Q. Lin, and T. Yang, “ADMM without a fixed penalty parameter: Faster

convergence with new adaptive penalization,” in Adv. Neural Inf. Process. Syst., vol. 30,

2017, pp. 1267–1277.

[117] W. Tian and X. Yuan, “An alternating direction method of multipliers with a worst-case

O(1/n$2̂$) convergence rate,” Math. Comput., vol. 88, no. 318, pp. 1685–1713, 2019.

302

BIBLIOGRAPHY

[118] N. Parikh and S. Boyd, “Proximal Algorithms,” Found. Trends Opt., vol. 1, no. 3, pp.

127–239, 2014.

[119] W. W. Hager, “Updating the inverse of a matrix,” SIAM Rev., vol. 31, no. 2, pp. 221–239,

1989.

[120] J. Mairal, F. Bach, J. Ponce, and G. Sapiro, “Online learning for matrix factorization and

sparse coding,” J. Mach. Learn. Res., vol. 11, no. Jan, pp. 19–60, 2010.

[121] J. Feng, H. Xu, and S. Yan, “Online robust PCA via stochastic optimization,” in Adv.

Neural Inf. Process. Syst., 2013, pp. 404–412.

[122] J. Shen, H. Xu, and P. Li, “Online optimization for max-norm regularization,” Mach.

Learn., vol. 106, no. 3, pp. 419–457, 2017.

[123] G. Li and T. K. Pong, “Global convergence of splitting methods for nonconvex composite

optimization,” SIAM J. Optim., vol. 25, no. 4, pp. 2434–2460, 2015.

[124] Y. Wang, W. Yin, and J. Zeng, “Global convergence of ADMM in nonconvex nonsmooth

optimization,” J. Sci. Comput., vol. 78, no. 1, pp. 29–63, 2019.

[125] L. Bottou, “Online learning and stochastic approximations,” -Line Learn. Neural Netw.,

vol. 17, no. 9, p. 142.

[126] A. W. Van der Vaart, Asymptotic Statistics, 2000.

[127] D. M. Powers, “Evaluation: From precision, recall and F-measure to ROC, informedness,

markedness and correlation,” J. Mach. Learn. Tech., vol. 2, no. 1, pp. 37–63, 2011.

[128] B. Vandereycken, “Low-rank matrix completion by Riemannian optimization,” SIAM J.

Optim., vol. 23, no. 2, pp. 1214–1236, 2013.

[129] X. Yi, D. Park, Y. Chen, and C. Caramanis, “Fast algorithms for robust PCA via gradient

descent,” in Adv. Neural Inf. Process. Syst., 2016, pp. 4152–4160.

[130] L. T. Nguyen, J. Kim, and B. Shim, “Low-rank matrix completion: A contemporary sur-

vey,” IEEE Access, vol. 7, pp. 94 215–94 237, 2019.

[131] N. Goyette, P. Jodoin, F. Porikli, J. Konrad, and P. Ishwar, “Changedetection.Net: A new

change detection benchmark dataset,” in IEEE Conf. Comput. Vis. Pattern Recogn., 2012,

pp. 1–8.

[132] S. Boyd and L. Vandenberghe, Convex Optimization, 2004.

[133] K. Knopp, Theory and Application of Infinite Series, 2013.

303

BIBLIOGRAPHY

[134] S. Shalev-Shwartz and Y. Singer, “Online learning: Theory, algorithms, and applications,”

2007.

[135] K. Fountoulakis and J. Gondzio, “A second-order method for strongly convex 1 -

regularization problems,” Math. Program., vol. 156, no. 1-2, pp. 189–219, 2016.

[136] D. P. Bertsekas, “Nonlinear programming,” J. Oper. Res. Soc., vol. 48, no. 3, pp. 334–334,

1997.

[137] J. Gama, I. Zliobaitė, A. Bifet, M. Pechenizkiy, and A. Bouchachia, “A survey on concept

drift adaptation,” ACM Comput. Surv., vol. 46, no. 4, pp. 1–37, 2014.

[138] N. El Karoui, “Operator norm consistent estimation of large-dimensional sparse covariance

matrices,” Ann. Stat., vol. 36, no. 6, pp. 2717–2756, 2008.

[139] C. Lam and J. Fan, “Sparsistency and rates of convergence in large covariance matrix

estimation,” Ann. Stat., vol. 37, no. 6B, p. 4254, 2009.

[140] I. M. Johnstone and A. U. Lu, “On consistency and sparsity for principal components

analysis in high dimensions,” J. Am. Stat. Assoc., vol. 104, no. 486, pp. 682–693, 2009.

[141] P. J. Bickel and E. Levina, “Covariance regularization by thresholding,” Ann. Stat., vol. 36,

no. 6, pp. 2577–2604, 2008.

[142] D. Shen, H. Shen, and J. S. Marron, “Consistency of sparse PCA in high dimension, low

sample size contexts,” J. Mult. Anal., vol. 115, pp. 317–333, 2013.

[143] A. A. Arash and J. W. Martin, “High-dimensional analysis of semidefinite relaxations for

sparse principal components,” Ann. Stat., vol. 37, no. 5B, pp. 2877–2921, 2009.

[144] M. Journée, Y. Nesterov, P. Richtárik, and R. Sepulchre, “Generalized power method for

sparse principal component analysis.” J. Mach. Learn. Res., vol. 11, no. 2, pp. 517–553,

2010.

[145] Z. Ma, “Sparse principal component analysis and iterative thresholding,” Ann. Stat., vol. 41,

no. 2, pp. 772–801, 2013.

[146] T. Cai, Z. Ren, and H. H. Zhou, “Estimating structured high-dimensional covariance and

precision matrices: Optimal rates and adaptive estimation,” Electron. J. Stat., vol. 10,

no. 1, pp. 1–59, 2016.

[147] P. Xiao and L. Balzano, “Online sparse and orthogonal subspace estimation from partial

information,” in Allerton Conf. Commun. Control Comput., 2016, pp. 284–291.

[148] K. Abed-Meraim, S. Attallah, A. Chkeif, and Y. Hua, “Orthogonal Oja algorithm,” IEEE

Signal Process. Lett., vol. 7, no. 5, pp. 116–119, 2000.

304

BIBLIOGRAPHY

[149] Z. Allen-Zhu and Y. Li, “First efficient convergence for streaming k-PCA: A global, gap-free,

and near-optimal rate,” in IEEE Ann. Symp. Found. Comput. Sci., 2017, pp. 487–492.

[150] Y. Hua, Y. Xiang, T. Chen, K. Abed-Meraim, and Y. Miao, “A new look at the power

method for fast subspace tracking,” Digit. Signal Process., vol. 9, no. 4, pp. 297–314, 1999.

[151] K. Abed-Meraim, A. Chkeif, Y. Hua, and S. Attallah, “On a class of orthonormal algorithms

for principal and minor subspace tracking,” J. VLSI Signal Process. Syst., vol. 31, no. 1,

pp. 57–70, 2002.

[152] X. G. Doukopoulos and G. V. Moustakides, “Fast and stable subspace tracking,” IEEE

Trans. Signal Process., vol. 56, no. 4, pp. 1452–1465, 2008.

[153] R. Wang, M. Yao, D. Zhang, and H. Zou, “A novel orthonormalization matrix based fast

and stable DPM algorithm for principal and minor subspace tracking,” IEEE Trans. Signal

Process., vol. 60, no. 1, pp. 466–472, 2011.

[154] R. Badeau, B. David, and G. Richard, “Fast approximated power iteration subspace track-

ing,” IEEE Trans. Signal Process., vol. 53, no. 8, pp. 2931–2941, 2005.

[155] Q. Wu, J. Zheng, Z. Dong, E. Panayirci, Z. Wu, and R. Qingnuobu, “An improved adaptive

subspace tracking algorithm based on approximated power iteration,” IEEE Access, vol. 6,

pp. 43 136–43 145, 2018.

[156] N. Vaswani and P. Narayanamurthy, “Static and dynamic robust PCA and matrix comple-

tion: A review,” Proc. IEEE, vol. 106, no. 8, pp. 1359–1379, 2018.

[157] J. He, L. Balzano, and A. Szlam, “Incremental gradient on the Grassmannian for online

foreground and background separation in subsampled video,” in IEEE Conf. Comput. Vis.

Pattern Recogn., 2012, pp. 1568–1575.

[158] S.-C. Chan, Y. Wen, and K.-L. Ho, “A robust PAST algorithm for subspace tracking in

impulsive noise,” IEEE Trans. Signal Process., vol. 54, no. 1, pp. 105–116, 2006.

[159] V.-D. Nguyen, N. L. Trung, and K. Abed-Meraim, “Robust subspace tracking algorithms

using fast adaptive Mahalanobis distance,” Signal Process., vol. 195, p. 108402, 2022.

[160] A. M. Rekavandi, A.-K. Seghouane, and K. Abed-Meraim, “TRPAST: A tunable and robust

projection approximation subspace tracking method,” IEEE Trans. Signal Process., 2022

(submitted).

[161] L. T. Thanh, A. M. Rekavandi, S. Abd-Krim, and K. Abed-Meraim, “Robust subspace

tracking with contamination via α-divergence,” in IEEE Int. Conf. Acoust. Speech Signal

Process., 2023 (submitted).

305

BIBLIOGRAPHY

[162] L. Van Der Maaten, E. Postma, and J. Van den Herik, “Dimensionality reduction: A

comparative review,” J. Mach. Learn. Res., vol. 10, no. 66-71, p. 13, 2009.

[163] J.-M. Chaufray, W. Hachem, and P. Loubaton, “Asymptotic analysis of optimum and

suboptimum CDMA downlink MMSE receivers,” IEEE Trans. Inf. Theory, vol. 50, no. 11,

pp. 2620–2638, 2004.

[164] X. Mestre and M. Á. Lagunas, “Modified subspace algorithms for DoA estimation with

large arrays,” IEEE Trans. Signal Process., vol. 56, no. 2, pp. 598–614, 2008.

[165] T. T. Cai, C.-H. Zhang, and H. H. Zhou, “Optimal rates of convergence for covariance

matrix estimation,” Ann. Stat., vol. 38, no. 4, pp. 2118–2144, 2010.

[166] A. J. Rothman, E. Levina, and J. Zhu, “Generalized thresholding of large covariance ma-

trices,” J. Am. Stat. Assoc., vol. 104, no. 485, pp. 177–186, 2009.

[167] M. Hardt and E. Price, “The noisy power method: A meta algorithm with applications,”

in Adv. Neural Inf. Process. Syst., vol. 27, 2014.

[168] L. W. Mackey, “Deflation methods for sparse PCA,” in Adv. Neural Inf. Process. Syst.,

2008, pp. 1017–1024.

[169] X.-T. Yuan and T. Zhang, “Truncated Power Method for Sparse Eigenvalue Problems,” J.

Mach. Learn. Res., vol. 14, no. Apr, pp. 899–925, 2013.

[170] Y. Deshpande and A. Montanari, “Sparse PCA via covariance thresholding,” J. Mach.

Learn. Res., vol. 17, no. 1, pp. 4913–4953, 2016.

[171] T. Wang, Q. Berthet, and R. J. Samworth, “Statistical and computational trade-offs in

estimation of sparse principal components,” Ann. Stat., vol. 44, no. 5, pp. 1896–1930,

2016.

[172] R. Krauthgamer, B. Nadler, D. Vilenchik et al., “Do semidefinite relaxations solve sparse

PCA up to the information limit?” Ann. Stat., vol. 43, no. 3, pp. 1300–1322, 2015.

[173] V. Q. Vu and J. Lei, “Minimax sparse principal subspace estimation in high dimensions,”

Ann. Stat., vol. 41, no. 6, pp. 2905–2947, 2013.

[174] N. V. Dung, K. Abed-Meraim, and N. L. Trung, “Second-order optimization based adaptive

PARAFAC decomposition of three-way tensors,” Digit. Signal Process., vol. 63, pp. 100–

111, 2017.

[175] S. Zhou, N. X. Vinh, J. Bailey, Y. Jia, and I. Davidson, “Accelerating online CP decom-

positions for higher order tensors,” in ACM SIGKDD Int. Conf. Knowl. Discover. Data

Min., 2016, pp. 1375–1384.

306

BIBLIOGRAPHY

[176] H. Kasai, “Fast online low-rank tensor subspace tracking by CP decomposition using re-

cursive least squares from incomplete observations,” Neurocomput., vol. 347, pp. 177–190,

2019.

[177] X.-W. Chang, “On the Perturbation of the Q-factor of the QR Factorization,” Numer.

Linear Algebra Appl., vol. 19, no. 3, pp. 607–619, 2012.

[178] I. Mitliagkas, C. Caramanis, and P. Jain, “Memory limited, streaming PCA,” in Adv. Neural

Inf. Process. Syst., 2013, pp. 2886–2894.

[179] L. T. Thanh, N. T. A. Dao, N. V. Dung, N. L. Trung, and K. Abed-Meraim, “Multi-channel

EEG epileptic spike detection by a new method of tensor decomposition,” J. Neural Eng.,

vol. 17, no. 1, p. 016023, 2020.

[180] F. Cong, Q.-H. Lin, L.-D. Kuang, X.-F. Gong, P. Astikainen, and T. Ristaniemi, “Tensor

decomposition of EEG signals: A brief review,” J. Neurosci. Methods, vol. 248, pp. 59–69,

2015.

[181] D. Nion and N. D. Sidiropoulos, “Tensor algebra and multidimensional harmonic retrieval

in signal processing for MIMO radar,” IEEE Trans. Signal Process., vol. 58, no. 11, pp.

5693–5705, 2010.

[182] H. Chen, F. Ahmad, S. Vorobyov, and F. Porikli, “Tensor decompositions in wireless com-

munications and MIMO radar,” IEEE J. Sel. Topics Signal Process., vol. 15, no. 3, pp.

438–453, 2021.

[183] M. Nakatsuji, Q. Zhang, X. Lu, B. Makni, and J. A. Hendler, “Semantic social network

analysis by cross-domain tensor factorization,” IEEE Trans. Comput. Soc. Syst., vol. 4,

no. 4, pp. 207–217, 2017.

[184] S. Fernandes, H. Fanaee-T, and J. Gama, “Tensor decomposition for analysing time-

evolving social networks: An overview,” Artif. Intell. Rev., vol. 54, no. 4, pp. 2891–2916,

2021.

[185] R. Bro, “PARAFAC. Tutorial and applications,” Chemometr. Intell. Lab. Syst., vol. 38,

no. 2, pp. 149–172, 1997.

[186] E. Acar and B. Yener, “Unsupervised multiway data analysis: A literature survey,” IEEE

Trans Knowl. Data Eng., vol. 21, no. 1, pp. 6–20, 2008.

[187] G. Bergqvist and E. G. Larsson, “The higher-order singular value decomposition: Theory

and an application,” IEEE Signal Process. Mag., vol. 27, no. 3, pp. 151–154, 2010.

[188] L. Grasedyck, D. Kressner, and C. Tobler, “A literature survey of low-rank tensor approx-

imation techniques,” GAMM-Mitteilungen, vol. 36, no. 1, pp. 53–78, 2013.

307

BIBLIOGRAPHY

[189] N. Vervliet, O. Debals, L. Sorber, and L. De Lathauwer, “Breaking the Curse of Dimen-

sionality Using Decompositions of Incomplete Tensors: Tensor-based scientific computing

in big data analysis,” IEEE Signal Process. Mag., vol. 31, no. 5, pp. 71–79, 2014.

[190] V. D. Nguyen, K. Abed-Meraim, and N. Linh-Trung, “Fast tensor decompositions for big

data processing,” in Int. Conf. Adv. Technol. Commun., 2016, pp. 215–221.

[191] S. A. Asl, A. Cichocki, A. H. Phan, I. Oseledets et al., “Randomized algorithms for com-

putation of Tucker decomposition and higher-order SVD (HOSVD),” IEEE Access, vol. 9,

pp. 28 684–28 706, 2021.

[192] X. Fu, N. Vervliet, L. De Lathauwer, K. Huang, and N. Gillis, “Computing large-scale

matrix and tensor decomposition with structured factors: A unified nonconvex optimization

perspective,” IEEE Signal Process. Mag., vol. 37, no. 5, pp. 78–94, 2020.

[193] D. Muti and S. Bourennane, “Survey on tensor signal algebraic filtering,” Signal Process.,

vol. 87, no. 2, pp. 237–249, 2007.

[194] P. Comon, X. Luciani, and A. L. De Almeida, “Tensor decompositions, alternating least

squares and other tales,” J. Chemom., vol. 23, no. 7-8, pp. 393–405, 2009.

[195] C. J. Hillar and L.-H. Lim, “Most tensor problems are NP-hard,” J. ACM, vol. 60, no. 6,

p. 45, 2013.

[196] P. Comon, “Tensors : A brief introduction,” IEEE Signal Process. Mag., vol. 31, no. 3, pp.

44–53, 2014.

[197] A. Zare, A. Ozdemir, M. A. Iwen, and S. Aviyente, “Extension of PCA to higher order data

structures: An introduction to tensors, tensor decompositions, and tensor PCA,” Procc.

IEEE, vol. 106, no. 8, pp. 1341–1358, 2018.

[198] M. Mørup, “Applications of tensor (multiway array) factorizations and decompositions in

data mining,” Data Min. Knowl. Discov., vol. 1, no. 1, pp. 24–40, 2011.

[199] A. Cichocki, D. Mandic, L. D. Lathauwer, G. Zhou, Q. Zhao, C. Caiafa, and H. A. Phan,

“Tensor Decompositions for Signal Processing Applications: From two-way to multiway

component analysis,” IEEE Signal Process. Mag., vol. 32, no. 2, pp. 145–163, 2015.

[200] H. Fanaee-T and J. Gama, “Tensor-based anomaly detection: An interdisciplinary survey,”

Knowl. Based Syst., vol. 98, pp. 130–147, 2016.

[201] E. E. Papalexakis, C. Faloutsos, and N. D. Sidiropoulos, “Tensors for data mining and data

fusion: Models, applications, and scalable algorithms,” ACM Trans. Intell. Syst. Technol.,

vol. 8, no. 2, p. 16, 2017.

308

BIBLIOGRAPHY

[202] A. Cichocki, A.-H. Phan, Q. Zhao, N. Lee, I. Oseledets, M. Sugiyama, and D. P. Mandic,

“Tensor networks for dimensionality reduction and large-scale optimization: Part 2 appli-

cations and future perspectives,” Found. Trends Mach. Learn., vol. 9, no. 6, pp. 431–673,

2017.

[203] Y. Ji, Q. Wang, X. Li, and J. Liu, “A survey on tensor techniques and applications in

machine learning,” IEEE Access, vol. 7, pp. 162 950–162 990, 2019.

[204] S. Miron, Y. Zniyed, R. Boyer, A. De Almeida, G. Favier, D. Brie, and P. Comon, “Tensor

methods for multisensor signal processing,” IET Signal Process., vol. 14, no. 10, pp. 693–

709, 2021.

[205] Y. Panagakis, J. Kossaifi, G. G. Chrysos, J. Oldfield, M. A. Nicolaou, A. Anandkumar,

and S. Zafeiriou, “Tensor methods in computer vision and deep learning,” Proc. IEEE, vol.

109, no. 5, pp. 863–890, 2021.

[206] K. Batselier, “Low-rank tensor decompositions for nonlinear system identification: A tuto-

rial with examples,” IEEE Control Syst. Mag., vol. 42, no. 1, pp. 54–74, 2022.

[207] V. De Silva and L.-H. Lim, “Tensor rank and the ill-posedness of the best low-rank approx-

imation problem,” SIAM J. Matrix Anal. Appl., vol. 30, no. 3, pp. 1084–1127, 2008.

[208] L. De Lathauwer, B. De Moor, and J. Vandewalle, “On the best rank-1 and rank-(r1, r2„

rn) approximation of higher-order tensors,” SIAM J. Matrix Anal. Appl., vol. 21, no. 4, pp.

1324–1342, 2000.

[209] L. De Lathauwer and D. Nion, “Decompositions of a higher-order tensor in block

terms—Part III: Alternating least squares algorithms,” SIAM J. Matrix Anal. Appl.,

vol. 30, pp. 1067–1083, 2008.

[210] H. Fanaee-T and J. Gama, “Multi-aspect-streaming tensor analysis,” Knowl. Based Syst.,

vol. 89, pp. 332–345, 2015.

[211] D. Nion and N. D. Sidiropoulos, “Adaptive algorithms to track the PARAFAC decompo-

sition of a third-order tensor,” IEEE Trans. Signal Process., vol. 57, no. 6, pp. 2299–2310,

2009.

[212] V. D. Nguyen, K. Abed-Meraim, and N. Linh-Trung, “Fast adaptive PARAFAC decompo-

sition algorithm with linear complexity,” in IEEE Int. Conf. Acoust. Speech Signal Process.,

2016, pp. 6235–6239.

[213] M. Vandecappelle, N. Vervliet, and L. De Lathauwer, “Nonlinear least squares updating of

the canonical polyadic decomposition,” in Eur. Signal Process. Conf., 2017, pp. 663–667.

309

BIBLIOGRAPHY

[214] Z. Zhang and C. Hawkins, “Variational bayesian inference for robust streaming tensor

factorization and completion,” in IEEE Int. Conf. Data Min., 2018, pp. 1446–1451.

[215] T. Minh-Chinh, V. D. Nguyen, N. Linh-Trung, and K. Abed-Meraim, “Adaptive PARAFAC

decomposition for third-order tensor completion,” in IEEE Int. Conf. Commun. Elect.,

2016, pp. 297–301.

[216] S. Smith, K. Huang, N. D. Sidiropoulos, and G. Karypis, “Streaming tensor factorization

for infinite data sources,” in SIAM Int. Conf. Data Min., 2018, pp. 81–89.

[217] Y. Du, Y. Zheng, K. Lee, and S. Zhe, “Probabilistic streaming tensor decomposition,” in

IEEE Int. Conf. Data Min., 2018, pp. 99–108.

[218] H.-K. Yang and H.-S. Yong, “Incremental PARAFAC decomposition for three-dimensional

tensors using Apache Spark,” in Int. Conf. Web Eng., 2019, pp. 63–71.

[219] S. Rambhatla, X. Li, and J. Haupt, “Provable online CP /PARAFAC decomposition of a

structured tensor via dictionary learning,” in Adv. Neural Inf. Process. Syst., vol. 33, 2020,

pp. 1–12.

[220] E. Gujral, G. Theocharous, and E. E. Papalexakis, “SPADE: Streaming PARAFAC2 de-

composition for large datasets,” in SIAM Int. Conf. Data Min., 2020, pp. 577–585.

[221] T. Kwon, I. Park, D. Lee, and K. Shin, “SliceNStitch: Continuous CP decomposition of

sparse tensor streams,” IEEE Int. Conf. Data Eng., pp. 816–827, 2021.

[222] L. Dongjin and S. Kijung, “Robust factorization of real-world tensor streams with patterns,

missing values, and outliers,” in IEEE Int. Conf. Data Eng., 2021, pp. 840–851.

[223] D. Ahn, S. Kim, and U. Kang, “Accurate online tensor factorization for temporal tensor

streams with missing values,” in ACM Int. Conf. Inf. Knowl. Manag., 2021, pp. 2822–2826.

[224] H. Lyu, C. Strohmeier, and D. Needell, “Online nonnegative CP-dictionary learning for

Markovian data,” J. Mach. Learn. Res., pp. 1–41, 2022 (to appear).

[225] R. A. Harshman, “PARAFAC2: Mathematical and technical notes,” UCLA Work. Pap.

Phon., vol. 22, pp. 30–44, 1972.

[226] C. Chatfield, “The holt-winters forecasting procedure,” J. R. Stat. Soc. Ser. C Appl. Stat.,

vol. 27, no. 3, pp. 264–279, 1978.

[227] P. Strobach, “Bi-iteration SVD subspace tracking algorithms,” IEEE Trans. Signal Process.,

vol. 45, no. 5, pp. 1222–1240, 1997.

[228] C. Zeng and M. K. Ng, “Incremental CP tensor decomposition by alternating minimization

method,” SIAM J. Matrix Anal. Appl., vol. 42, no. 2, pp. 832–858, 2021.

310

BIBLIOGRAPHY

[229] S. Fang, Z. Wang, Z. Pan, J. Liu, and S. Zhe, “Streaming Bayesian deep tensor factoriza-

tion,” in Int. Conf. Machine Learn., 2021, pp. 3133–3142.

[230] T. Broderick, N. Boyd, A. Wibisono, A. C. Wilson, and M. I. Jordan, “Streaming variational

bayes,” in Advances in Neural Information Processing Systems, C. J. C. Burges, L. Bottou,

M. Welling, Z. Ghahramani, and K. Q. Weinberger, Eds., vol. 26, 2013.

[231] X. Boyen and D. Koller, “Tractable inference for complex stochastic processes,” in Conf.

Uncertain. Artif. Intell., 1998, pp. 33–42.

[232] Q. Song, X. Huang, H. Ge, J. Caverlee, and X. Hu, “Multi-aspect streaming tensor com-

pletion,” in ACM SIGKDD Int. Conf. Knowl. Discov. Data Min., 2017, pp. 435–443.

[233] M. Najafi, L. He, and S. Y. Philip, “Outlier-robust multi-aspect streaming tensor comple-

tion and factorization.” in IJCAI Int. Joint Conf. Artif. Intell., 2019, pp. 3187–3194.

[234] H.-K. Yang and H.-S. Yong, “Multi-aspect incremental tensor decomposition based on

distributed in-memory big data systems,” J. Data Inf. Sci., vol. 5, no. 2, pp. 13–32, 2020.

[235] K. Yang, Y. Gao, Y. Shen, B. Zheng, and L. Chen, “DisMASTD: An efficient distributed

multi-aspect streaming tensor decomposition,” in IEEE Int. Conf. Data Eng., 2021, pp.

1080–1091.

[236] J. Sun, D. Tao, and C. Faloutsos, “Beyond streams and graphs: Dynamic tensor analysis,”

in ACM SIGKDD Int. Conf. Knowl. Discov. Data Min., 2006, pp. 374–383.

[237] J. Sun, D. Tao, S. Papadimitriou, P. S. Yu, and C. Faloutsos, “Incremental tensor analysis:

Theory and applications,” ACM Trans. Knowl. Discov. Data, vol. 2, no. 3, pp. 1–37, 2008.

[238] X. Li, W. Hu, Z. Zhang, X. Zhang, and G. Luo, “Robust visual tracking based on incre-

mental tensor subspace learning,” in IEEE Int. Conf. Comput. Vis., 2007, pp. 1–8.

[239] W. Hu, X. Li, X. Zhang, X. Shi, S. Maybank, and Z. Zhang, “Incremental tensor subspace

learning and its applications to foreground segmentation and tracking,” Int. J. Comput.

Vis., vol. 91, no. 3, pp. 303–327, 2011.

[240] W. Zhang, H. Sun, X. Liu, Xiaohui, and Guo, “An incremental tensor factorization ap-

proach for web service recommendation,” in IEEE Int. Conf. Data Min. Works., 2014, pp.

346–351.

[241] L. Kuang, F. Hao, L. T. Yang, M. Lin, C. Luo, and G. Min, “A tensor-based approach

for big data representation and dimensionality reduction,” IEEE Trans. Emerg. Topics

Comput., vol. 2, no. 3, pp. 280–291, 2014.

311

BIBLIOGRAPHY

[242] R. Yu, D. Cheng, and Y. Liu, “Accelerated online low rank tensor learning for multivariate

spatiotemporal streams,” in Int. Conf. Mach. Learn., 2015, pp. 238–247.

[243] M. Baskaran, M. H. Langston, T. Ramananandro, D. Bruns-Smith, T. Henretty, J. Ezick,

and R. Lethin, “Accelerated low-rank updates to tensor decompositions,” in IEEE High

Perf. Extreme Comput. Conf., 2016, pp. 1–7.

[244] H. Kasai and B. Mishra, “Low-rank tensor completion: A Riemannian manifold precondi-

tioning approach,” in Int. Conf. Mach. Learn., 2016, pp. 1012–1021.

[245] A. Ozdemir, E. M. Bernat, and S. Aviyente, “Recursive tensor subspace tracking for dy-

namic brain network analysis,” IEEE Trans. Signal Inf. Process. Netw., vol. 3, no. 4, pp.

669–682, 2017.

[246] X. Wang, W. Wang, L. T. Yang, S. Liao, D. Yin, and M. J. Deen, “A distributed HOSVD

method with its incremental computation for big data in cyber-physical-social systems,”

IEEE Trans. Comput. Social Syst., vol. 5, no. 2, pp. 481–492, 2018.

[247] L. T. Yang, X. Wang, X. Chen, L. Wang, R. Ranjan, X. Chen, and M. J. Deen, “A

multi-order distributed HOSVD with its incremental computing for big services in cyber-

physical-social systems,” IEEE Trans. Big Data, vol. 6, no. 4, pp. 666–678, 2020.

[248] N. Madhav, B. Mishra, M. Gupta, and P. Talukdar, “Inductive framework for multi-

aspect streaming tensor completion with side information,” in ACM Int. Conf. Inf. Knowl.

Manag., 2018, pp. 307–316.

[249] H. Xiao, F. Wang, F. Ma, and J. Gao, “eOTD: An efficient online tucker decomposition

for higher order tensors,” in IEEE Int. Conf. Data Min., 2018, pp. 1326–1331.

[250] A. Traoré, M. Berar, and A. Rakotomamonjy, “Online multimodal dictionary learning,”

Neurocomput., vol. 368, pp. 163–179, 2019.

[251] ——, “Singleshot: A scalable Tucker tensor decomposition,” in Adv. Neural Inf. Process.

Syst., 2019.

[252] Y. Sun, Y. Guo, C. Luo, J. Tropp, and M. Udell, “Low-rank tucker approximation of a

tensor from streaming data,” SIAM J. Math. Data Sci., vol. 2, no. 4, pp. 1123–1150, 2020.

[253] Z. Pan, Z. Wang, and S. Zhe, “Streaming nonlinear Bayesian tensor decomposition,” in

Conf. Uncertain. Artif. Intell., 2020, pp. 490–499.

[254] D. G. Chachlakis, M. Dhanaraj, A. Prater-Bennette, and P. P. Markopoulos, “Dynamic

L1-norm Tucker tensor decomposition,” IEEE J. Sel. Topics Signal Process., vol. 15, no. 3,

pp. 587–602, 2021.

312

BIBLIOGRAPHY

[255] S. Fang, R. M. Kirby, and S. Zhe, “Bayesian streaming sparse Tucker decomposition,” in

Conf. Uncertain. Artif. Intell., 2021, pp. 558–567.

[256] J.-G. Jang and U. Kang, “Fast and memory-efficient tucker decomposition for answering

diverse time range queries,” in ACM SIGKDD Conf. Knowl. Discov. Data Min., 2021, pp.

725–735.

[257] R. Zdunek and K. Fonal, “Incremental nonnegative Tucker decomposition with block-

coordinate descent and recursive approaches,” Symmetry, vol. 14, no. 1, p. 113, 2022.

[258] D. A. Ross, J. Lim, R.-S. Lin, and M.-H. Yang, “Incremental learning for robust visual

tracking,” Int. J. Comput. Vis., vol. 77, no. 1, pp. 125–141, 2008.

[259] J. Li, G. Han, J. Wen, and X. Gao, “Robust tensor subspace learning for anomaly detec-

tion,” Int. J. Mach. Learn. Cybern., vol. 2, no. 2, pp. 89–98, 2011.

[260] X. Wang, L. T. Yang, X. Chen, M. J. Deen, and J. Jin, “Improved multi-order distributed

HOSVD with its incremental computing for smart city services,” IEEE Trans. Sust. Com-

put., vol. 6, no. 3, pp. 456–468, 2021.

[261] H. Lu, K. N. Plataniotis, and A. N. Venetsanopoulos, “A survey of multilinear subspace

learning for tensor data,” Pattern Recognit., vol. 44, no. 7, pp. 1540–1551, 2011.

[262] R. Zhao and Q. Wang, “Learning separable dictionaries for sparse tensor representation:

An online approach,” IEEE Trans. Circuits Syst. II Express Briefs, vol. 66, no. 3, pp.

502–506, 2019.

[263] P. Li, J. Feng, X. Jin, L. Zhang, X. Xu, and S. Yan, “Online robust low-rank tensor

modeling for streaming data analysis,” IEEE Trans. Neural Netw. Learn. Syst., vol. 30,

no. 4, pp. 1061–1075, 2019.

[264] Y. Hu, A. Qu, Y. Wang, and D. Work, “Streaming data preprocessing via online tensor

recovery for large environmental sensor networks,” ArXiv Prepr. ArXiv210900596, 2021.

[265] D. G. Chachlakis, A. Prater-Bennette, and P. P. Markopoulos, “L1-norm Tucker tensor

decomposition,” IEEE Access, vol. 7, pp. 178 454–178 465, 2019.

[266] D. Kressner, M. Steinlechner, and B. Vandereycken, “Low-rank tensor completion by Rie-

mannian optimization,” BIT Numer. Math., vol. 54, no. 2, pp. 447–468, 2014.

[267] H. Liu, L. T. Yang, Y. Guo, X. Xie, and J. Ma, “An incremental tensor-train decomposition

for cyber-physical-social big data,” IEEE Trans. Big Data, vol. 7, no. 2, pp. 341–354, 2021.

[268] X. Wang, L. T. Yang, Y. Wang, L. Ren, and M. J. Deen, “ADTT: A highly efficient

distributed tensor-train decomposition method for IIoT big data,” IEEE Trans Ind. Inf.,

vol. 17, no. 3, pp. 1573–1582, 2021.

313

BIBLIOGRAPHY

[269] E. Gujral and E. E. Papalexakis, “OnlineBTD: Streaming algorithms to track the block

term decomposition of large tensors,” in IEEE Int. Conf. Data Sci. Adv. Anal., 2020, pp.

168–177.

[270] A. A. Rontogiannis, E. Kofidis, and P. V. Giampouras, “Online rank-revealing block-term

tensor decomposition,” in Asilomar Conf. Signals Syst. Comput., 2021, pp. 1678–1682.

[271] Z. Zhang, D. Liu, S. Aeron, and A. Vetro, “An online tensor robust PCA algorithm for

sequential 2D data,” in IEEE Int. Conf. Acoust. Speech Signal Process., 2016, pp. 2434–

2438.

[272] K. Gilman, D. Ataee Tarzanagh, and L. Balzano, “Grassmannian Optimization for Online

Tensor Completion and Tracking with the t-SVD,” IEEE Trans. Signal Process., pp. 1–1,

2022.

[273] K. Gilman and L. Balzano, “Online tensor completion and free submodule tracking with

the t-SVD,” in IEEE Int. Conf. Acoust. Speech Signal Process., 2020, pp. 3282–3286.

[274] A. W. Smeulders, D. M. Chu, R. Cucchiara, S. Calderara, A. Dehghan, and M. Shah, “Vi-

sual tracking: An experimental survey,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 36,

no. 7, pp. 1442–1468, 2013.

[275] X. Zhang, X. Shi, W. Hu, X. Li, and S. Maybank, “Visual tracking via dynamic tensor

analysis with mean update,” Neurocomput., vol. 74, no. 17, pp. 3277–3285, 2011.

[276] W. Hu, J. Gao, J. Xing, C. Zhang, and S. Maybank, “Semi-supervised tensor-based graph

embedding learning and its application to visual discriminant tracking,” IEEE Trans. Pat-

tern Anal. Mach. Intell., vol. 39, no. 1, pp. 172–188, 2016.

[277] S. Khan, G. Xu, R. Chan, and H. Yan, “An online spatio-temporal tensor learning model

for visual tracking and its applications to facial expression recognition,” Expert Syst. Appl.,

vol. 90, pp. 427–438, 2017.

[278] A. Sobral, S. Javed, S. K. Jung, T. Bouwmans, and E. Zahzah, “Online stochastic tensor

decomposition for background subtraction in multispectral video sequences,” in IEEE Int.

Conf. Comput. Vis., 2015, pp. 946–953.

[279] M. M. Salut and D. V. Anderson, “Online tensor robust principal component analysis,”

IEEE Access, vol. 10, pp. 69 354–69 363, 2022.

[280] Y. He and G. K. Atia, “Patch tracking-based streaming tensor ring completion for visual

data recovery,” IEEE Trans. Circuits Syst. Video Techn., pp. 1–1, 2022.

314

BIBLIOGRAPHY

[281] B. Wen, Y. Li, L. Pfister, and Y. Bresler, “Joint adaptive sparsity and low-rankness on

the fly: an online tensor reconstruction scheme for video denoising,” in IEEE Int. Conf.

Comput. Vis., 2017, pp. 241–250.

[282] B. Wen, S. Ravishankar, and Y. Bresler, “VIDOSAT: High-dimensional sparsifying trans-

form learning for online video denoising,” IEEE Trans. Image Process., vol. 28, no. 4, pp.

1691–1704, 2018.

[283] C. Min and G. Medioni, “Inferring segmented dense motion layers using 5D tensor voting,”

IEEE Trans. Pattern Anal. Mach. Intell., vol. 30, no. 9, pp. 1589–1602, 2008.

[284] D. S. Bassett and M. S. Gazzaniga, “Understanding complexity in the human brain,” Trends

Cognitive Sci., vol. 15, no. 5, pp. 200–209, 2011.

[285] A. Cichocki, Y. Washizawa, T. Rutkowski, H. Bakardjian, A.-H. Phan, S. Choi, H. Lee,

Q. Zhao, L. Zhang, and Y. Li, “Noninvasive BCIs: Multiway signal-processing array de-

compositions,” Computer, vol. 41, no. 10, pp. 34–42, 2008.

[286] N. Yeung, M. M. Botvinick, and J. D. Cohen, “The neural basis of error detection: conflict

monitoring and the error-related negativity.” Psychological Rev., vol. 111, no. 4, p. 931,

2004.

[287] A. G. Mahyari, D. M. Zoltowski, E. M. Bernat, and S. Aviyente, “A tensor decomposition-

based approach for detecting dynamic network states from EEG,” IEEE Trans. Biomed.

Eng., vol. 64, no. 1, pp. 225–237, 2016.

[288] E. Acar, M. Roald, K. M. Hossain, V. D. Calhoun, and T. Adali, “Tracing evolving networks

using tensor factorizations vs. ICA-based approaches,” Front. Neurosci., vol. 16, 2022.

[289] A. Fotouhi, E. Eqlimi, and B. Makkiabadi, “Evaluation of adaptive PARAFAC alogorithms

for tracking of simulated moving brain sources,” in Annual Int. Conf. IEEE Eng. Med. Biol.

Society. IEEE, 2015, pp. 3819–3822.

[290] J. W. Meijs, O. W. Weier, M. J. Peters, and A. Van Oosterom, “On the numerical accu-

racy of the boundary element method (EEG application),” IEEE Trans. Biomedical Eng.,

vol. 36, no. 10, pp. 1038–1049, 1989.

[291] A. Fotouhi, E. Eqlimi, and B. Makkiabadi, “Adaptive localization of moving eeg sources

using augmented complex tensor factorization,” in IEEE Int. Conf. Telecommun. Signal

Process. IEEE, 2017, pp. 439–443.

[292] N. Linh-Trung, T. Minh-Chinh, V. Nguyen, and K. Abed-Meraim, “A non-linear tensor

tracking algorithm for analysis of incomplete multi-channel EEG data,” in Int. Symp. Med.

Inf. Commun. Technol., 2018, pp. 1–6.

315

BIBLIOGRAPHY

[293] E. Karahan, P. A. Rojas-Lopez, M. L. Bringas-Vega, P. A. Valdes-Hernandez, and P. A.

Valdes-Sosa, “Tensor analysis and fusion of multimodal brain images,” Proc. IEEE, vol.

103, no. 9, pp. 1531–1559, 2015.

[294] G. Zhou, Q. Zhao, Y. Zhang, T. Adalı, S. Xie, and A. Cichocki, “Linked component analysis

from matrices to high-order tensors: Applications to biomedical data,” Proceed. IEEE, vol.

104, no. 2, pp. 310–331, 2016.

[295] V. Chandola, A. Banerjee, and V. Kumar, “Anomaly detection: A survey,” ACM Comput.

Surv., vol. 41, no. 3, pp. 1–58, 2009.

[296] L. Shi, A. Gangopadhyay, and V. P. Janeja, “STenSr: Spatio-temporal tensor streams for

anomaly detection and pattern discovery,” Knowl. Inf. Syst., vol. 43, no. 2, pp. 333–353,

2015.

[297] H. Kasai, W. Kellerer, and M. Kleinsteuber, “Network volume anomaly detection and iden-

tification in large-scale networks based on online time-structured traffic tensor tracking,”

IEEE Trans. Netw. Service Manag., vol. 13, no. 3, pp. 636–650, 2016.

[298] N. Cao, C. Lin, Q. Zhu, Y.-R. Lin, X. Teng, and X. Wen, “Voila: Visual anomaly detection

and monitoring with streaming spatiotemporal data,” IEEE Trans. Vis. Comput. Graph.,

vol. 24, no. 1, pp. 23–33, 2017.

[299] C. Lin, Q. Zhu, S. Guo, Z. Jin, Y.-R. Lin, and N. Cao, “Anomaly detection in spatiotem-

poral data via regularized non-negative tensor analysis,” Data Min. Knowl. Disc., vol. 32,

no. 4, pp. 1056–1073, 2018.

[300] M. Xu, J. Wu, H. Wang, and M. Cao, “Anomaly detection in road networks using sliding-

window tensor factorization,” IEEE Trans. Intell. Transport. Syst., vol. 20, no. 12, pp.

4704–4713, 2019.

[301] J. Yuan, G. C. Alexandropoulos, E. Kofidis, T. L. Jensen, and E. De Carvalho, “Channel

tracking for ris-enabled multi-user simo systems in time-varying wireless channels,” in IEEE

Int. Conf. Commun. Works. IEEE, 2022, pp. 145–150.

[302] K. Luo, X. Zhou, B. Wang, J. Huang, and H. Liu, “Sparse Bayes tensor and DOA tracking

inspired channel estimation for V2X millimeter wave massive MIMO system,” Sensors,

vol. 21, no. 12, p. 4021, 2021.

[303] C. C. Garcez, D. V. de Lima, R. K. Miranda, F. Mendonca, J. P. C. da Costa, A. L.

de Almeida, and R. T. de Sousa Jr, “Tensor-based subspace tracking for time-delay esti-

mation in GNSS multi-antenna receivers,” Sensors, vol. 19, no. 23, p. 5076, 2019.

316

BIBLIOGRAPHY

[304] D. M. Dunlavy, T. G. Kolda, and E. Acar, “Temporal link prediction using matrix and

tensor factorizations,” ACM Trans. Knowl. Disc. Data, vol. 5, no. 2, pp. 1–27, 2011.

[305] Y.-R. Lin, K. S. Candan, H. Sundaram, and L. Xie, “SCENT: Scalable compressed moni-

toring of evolving multirelational social networks,” ACM Trans. Multimedia Comput. Com-

mun. Appl., vol. 7, no. 1, pp. 1–22, 2011.

[306] K. Shin, B. Hooi, J. Kim, and C. Faloutsos, “Densealert: Incremental dense-subtensor

detection in tensor streams,” in ACM SIGKDD Int. Conf. Knowl. Discov. Data Min.,

2017, pp. 1057–1066.

[307] W. Sun and R. D. Braatz, “Opportunities in tensorial data analytics for chemical and

biological manufacturing processes,” Comput. Chem. Eng., vol. 143, p. 107099, 2020.

[308] I. W. Sanou, R. Redon, X. Luciani, and S. Mounier, “Online Nonnegative and Sparse

Canonical Polyadic Decomposition of Fluorescence Tensors,” Chemometrics and Intelligent

Laboratory Systems, p. 104550, 2022.

[309] X. Meng, A. Morris, and E. Martin, “On-line monitoring of batch processes using a

PARAFAC representation,” J. Chemometr., vol. 17, no. 1, pp. 65–81, 2003.

[310] S. Gourvenec, I. Stanimirova, C.-A. Saby, C. Airiau, and D. Massart, “Monitoring batch

processes with the STATIS approach,” J. Chemometr., vol. 19, no. 5-7, pp. 288–300, 2005.

[311] H. Tan, Y. Wu, B. Shen, P. J. Jin, and B. Ran, “Short-term traffic prediction based on

dynamic tensor completion,” IEEE Trans. Intell. Transport. Syst., vol. 17, no. 8, pp. 2123–

2133, 2016.

[312] J. Wang, J. Wu, Z. Wang, F. Gao, and Z. Xiong, “Understanding urban dynamics via

context-aware tensor factorization with neighboring regularization,” IEEE Trans. Knowl.

Data Eng., vol. 32, no. 11, pp. 2269–2283, 2019.

[313] M. Chen, S. Mao, and Y. Liu, “Big data: A survey,” Mobile Netw. Appl., vol. 19, no. 2, pp.

171–209, 2014.

[314] L. De Lathauwer, B. De Moor, and J. Vandewalle, “A multilinear singular value decompo-

sition,” SIAM J. Matrix Anal. Appl., vol. 21, no. 4, pp. 1253–1278, 2000.

[315] C. D. Martin, R. Shafer, and B. LaRue, “An order-p tensor factorization with applications

in imaging,” SIAM J. Sci. Comput., vol. 35, no. 1, pp. A474–A490, 2013.

[316] Z. Zhang and S. Aeron, “Exact tensor completion using t-SVD,” IEEE Trans. Signal Pro-

cess., vol. 65, no. 6, pp. 1511–1526, 2017.

317

BIBLIOGRAPHY

[317] F. Jiang, X.-Y. Liu, H. Lu, and R. Shen, “Efficient multi-dimensional tensor sparse coding

using t-linear combination,” in AAAI Conf. Artif. Intell., 2018.

[318] I. Kajo, N. Kamel, and Y. Ruichek, “Incremental tensor-based completion method for

detection of stationary foreground objects,” IEEE Trans. Circuits Syst. Video Technol.,

vol. 29, no. 5, pp. 1325–1338, 2019.

[319] S. Chatterjee, “A deterministic theory of low rank matrix completion,” IEEE Trans. Inf.

Theory, vol. 66, no. 12, pp. 8046–8055, 2020.

[320] M. Ashraphijuo and X. Wang, “Fundamental conditions for low-CP-rank tensor comple-

tion,” J. Mach. Learn. Res., vol. 18, no. 1, pp. 2116–2145, 2017.

[321] J. Mairal, “Incremental majorization-minimization optimization with application to large-

scale machine learning,” SIAM J. Optim., vol. 25, no. 2, pp. 829–855, 2015.

[322] G. Raskutti and M. W. Mahoney, “A statistical perspective on randomized sketching for

ordinary least-squares,” J. Mach. Learn. Res., vol. 17, no. 1, pp. 7508–7538, 2016.

[323] M. W. Mahoney, “Randomized algorithms for matrices and data,” Found. Trends Mach.

Learn., vol. 3, no. 2, pp. 123–224, 2011.

[324] C. Battaglino, G. Ballard, and T. G. Kolda, “A practical randomized CP tensor decompo-

sition,” SIAM J. Matrix Anal. Appl., vol. 39, no. 2, pp. 876–901, 2018.

[325] H. Avron, P. Maymounkov, and S. Toledo, “Blendenpik: Supercharging LAPACK’s least-

squares solver,” SIAM J. Sci. Comput., vol. 32, no. 3, pp. 1217–1236, 2010.

[326] I. C. Ipsen and T. Wentworth, “The effect of coherence on sampling from matrices with

orthonormal columns, and preconditioned least squares problems,” SIAM J. Matrix Anal.

Appl., vol. 35, no. 4, pp. 1490–1520, 2014.

[327] J. A. Tropp, “Improved analysis of the subsampled randomized Hadamard transform,” Adv.

Adapt. Data Anal., vol. 3, no. 01n02, pp. 115–126, 2011.

[328] P. Drineas, M. W. Mahoney, S. Muthukrishnan, and T. Sarlós, “Faster least squares ap-

proximation,” Numer. Math., vol. 117, no. 2, pp. 219–249, 2011.

[329] J. C. Spall, Introduction to Stochastic Search and Optimization, 2005.

[330] A. N. Langville and W. J. Stewart, “The Kronecker product and stochastic automata

networks,” J. Comput. Appl. Math., vol. 167, no. 2, pp. 429–447, 2004.

[331] C. F. Van Loan, “The ubiquitous Kronecker product,” J. Comput. Appl. Math., vol. 123,

no. 1-2, pp. 85–100, 2000.

318

BIBLIOGRAPHY

[332] H. Diao, R. Jayaram, Z. Song, W. Sun, and D. Woodruff, “Optimal sketching for Kronecker

product regression and low rank approximation,” in Adv. Neural Inf. Process. Syst., 2019,

pp. 4739–4750.

[333] Y. Sun, P. Babu, and D. P. Palomar, “Majorization-minimization algorithms in signal

processing, communications, and machine learning,” IEEE Trans. Signal Process., vol. 65,

no. 3, pp. 794–816, 2016.

[334] N. Guan, D. Tao, Z. Luo, and B. Yuan, “Online nonnegative matrix factorization with

robust stochastic approximation,” IEEE Trans. Neural Netw. Learn. Syst., vol. 23, no. 7,

pp. 1087–1099, 2012.

[335] B. W. Bader and T. G. Kolda, “Efficient MATLAB computations with sparse and factored

tensors,” SIAM J. Sci. Comput., vol. 30, no. 1, pp. 205–231, 2008.

[336] A.-H. Phan, P. Tichavskỳ, and A. Cichocki, “Fast alternating LS algorithms for high order

CANDECOMP/PARAFAC tensor factorizations,” IEEE Trans. Signal Process., vol. 61,

no. 19, pp. 4834–4846, 2013.

[337] J. S. Simonoff, Smoothing Methods in Statistics, 2012.

[338] A. Cichocki, R. Zdunek, A. H. Phan, and S.-i. Amari, Nonnegative Matrix and Tensor

Factorizations: Applications to Exploratory Multi-Way Data Analysis and Blind Source

Separation, 2009.

[339] D. Chen and R. J. Plemmons, “Nonnegativity constraints in numerical analysis,” in Sym-

posium on the Birth of Numerical Analysis, 2010, pp. 109–139.

[340] C. L. Lawson and R. J. Hanson, Solving Least Squares Problems, 1995.

[341] D. L. Pimentel-Alarcón, N. Boston, and R. D. Nowak, “A characterization of deterministic

sampling patterns for low-rank matrix completion,” IEEE J. Sel. Topics Signal Process.,

vol. 10, no. 4, pp. 623–636, 2016.

[342] M. Ashraphijuo, V. Aggarwal, and X. Wang, “Deterministic and probabilistic conditions

for finite completability of low-Tucker-Rank tensor,” IEEE Trans. Inf. Theory, vol. 65,

no. 9, pp. 5380–5400, 2019.

[343] M. Métivier, Semimartingales: A Course on Stochastic Processes, 1984.

[344] Y. Xu, “Fast algorithms for higher-order singular value decomposition from incomplete

data,” J. Comput. Math., vol. 35, no. 4, pp. 395–420, 2017.

[345] M. Filipović and A. Jukić, “Tucker factorization with missing data with application to low-

n-rank tensor completion,” Multidimens. Syst. Signal Process., vol. 26, no. 3, pp. 677–692,

2015.

319

BIBLIOGRAPHY

[346] E. Acar, D. M. Dunlavy, T. G. Kolda, and M. Mørup, “Scalable tensor factorizations for

incomplete data,” Chemometr. Intell. Lab. Syst., vol. 106, no. 1, pp. 41–56, 2011.

[347] V. Vigneron, A. Kodewitz, M. N. da Costa, A. M. Tome, and E. Langlang, “Non-negative

sub-tensor ensemble factorization (NsTEF) algorithm. A new incremental tensor factoriza-

tion for large datasets.” Signal Process., vol. 144, pp. 77–86, 2018.

[348] J. R. Bunch, C. P. Nielsen, and D. C. Sorensen, “Rank-one modification of the symmetric

eigenproblem,” Numer. Math., vol. 31, no. 1, pp. 31–48, 1978.

[349] G. Cheng, X. Luo, and L. Li, “The bounds of the smallest and largest eigenvalues for

rank-one modification of the Hermitian eigenvalue problem,” Applied Mathematics Letters,

vol. 25, no. 9, pp. 1191–1196, 2012.

[350] J. F. Bonnans and A. Shapiro, “Optimization problems with perturbations: A guided tour,”

SIAM Rev., vol. 40, no. 2, pp. 228–264, 1998.

[351] J. Mairal, “Stochastic majorization-minimization algorithms for large-scale optimization,”

in Adv. Neural Inf. Process. Syst., 2013, pp. 2283–2291.

[352] N. J. Higham, Accuracy and Stability of Numerical Algorithms, 2002.

[353] Y. Nesterov, “Introductory lectures on convex programming,” 1998.

[354] E. Kofidis, “A tensor-based approach to joint channel Estimation/Data detection in flexible

multicarrier MIMO systems,” IEEE Trans. Signal Process., vol. 68, pp. 3179–3193, 2020.

[355] V. A. Miguel, J. E. Cohen, R. Cabral Farias, J. Chanussot, and P. Comon, “Nonnega-

tive tensor CP decomposition of hyperspectral data,” IEEE Trans. Geosci. Remote Sens.,

vol. 54, no. 5, pp. 2577–2588, 2016.

[356] S. Velasco-Forero and J. Angulo, “Classification of hyperspectral images by tensor modeling

and additive morphological decomposition,” Pattern Recognit., vol. 46, no. 2, pp. 566–577,

2013.

[357] E. Acar, C. Aykut-Bingol, H. Bingol, R. Bro, and B. Yener, “Multiway analysis of epilepsy

tensors,” Bioinformatics, vol. 23, no. 13, pp. i10–i18, 2007.

[358] J. Hastad, “Tensor rank is NP-complete,” J. Algorithm., vol. 11, no. 4, pp. 644–654, 1990.

[359] R. J. Little and D. B. Rubin, Statistical Analysis with Missing Data, 2019.

[360] C. Lubich, T. Rohwedder, R. Schneider, and B. Vandereycken, “Dynamical approximation

by hierarchical Tucker and tensor-train tensors,” SIAM J. Matrix Anal. Appl., vol. 34,

no. 2, pp. 470–494, 2013.

320

BIBLIOGRAPHY

[361] C. Lubich, I. V. Oseledets, and B. Vandereycken, “Time integration of tensor trains,” SIAM

J. Numer. Anal., vol. 53, no. 2, pp. 917–941, 2015.

[362] C. Lubich, B. Vandereycken, and H. Walach, “Time integration of rank-constrained Tucker

tensors,” SIAM J. Numer. Anal., vol. 56, no. 3, pp. 1273–1290, 2018.

[363] Y. Zniyed, R. Boyer, A. de Almeida, and G. Favier, “A TT-Based hierarchical framework

for decomposing high-order tensors,” SIAM J. Sci. Comput., vol. 42, no. 2, pp. 822–848,

2020.

[364] S. S. Haykin, Adaptive Filter Theory, 2008.

[365] Y. Xu and W. Yin, “A block coordinate descent method for regularized multiconvex opti-

mization with applications to nonnegative tensor factorization and completion,” SIAM J.

Imaging Sci., vol. 6, no. 3, pp. 1758–1789, 2013.

[366] J. Gorski, F. Pfeuffer, and K. Klamroth, “Biconvex sets and optimization with biconvex

functions: A survey and extensions,” Math. Methods Oper. Res., vol. 66, no. 3, pp. 373–407,

2007.

[367] A. Bifet, Adaptive Stream Mining: Pattern Learning and Mining from Evolving Data

Streams, 2010.

[368] A.-A. Saucan, T. Chonavel, C. Sintes, and J.-M. Le Caillec, “CPHD-DOA Tracking of

multiple extended sonar targets in impulsive environments,” IEEE Trans. Signal Process.,

vol. 64, no. 5, pp. 1147–1160, 2016.

[369] S. Wang, Z. He, K. Niu, P. Chen, and Y. Rong, “New results on joint channel and impul-

sive noise estimation and tracking in underwater acoustic OFDM systems,” IEEE Trans.

Wireless Commun., vol. 19, no. 4, pp. 2601–2612, 2020.

[370] R. L. Das and M. Narwaria, “Lorentzian based adaptive filters for impulsive noise environ-

ments,” IEEE Trans. Circuits Syst. Regul. Pap., vol. 64, no. 6, pp. 1529–1539, 2017.

[371] P. Hänggi and P. Jung, “Colored noise in dynamical systems,” Adv. Chem. Phys., vol. 89,

pp. 239–326, 2007.

[372] M. Mørup and L. K. Hansen, “Automatic relevance determination for multi-way models,”

J. Chemom., vol. 23, no. 7-8, pp. 352–363, 2009.

[373] J. A. Bazerque, G. Mateos, and G. B. Giannakis, “Rank regularization and Bayesian in-

ference for tensor completion and extrapolation,” IEEE Trans. Signal Process., vol. 61,

no. 22, pp. 5689–5703, 2013.

321

BIBLIOGRAPHY

[374] Q. Zhao, L. Zhang, and A. Cichocki, “Bayesian CP factorization of incomplete tensors with

automatic rank determination,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 37, no. 9,

pp. 1751–1763, 2015.

[375] M. Che, A. Cichocki, and Y. Wei, “Neural networks for computing best rank-one approxi-

mations of tensors and its applications,” Neurocomputing, vol. 267, pp. 114–133, 2017.

[376] M. Zhou, Y. Liu, Z. Long, L. Chen, and C. Zhu, “Tensor rank learning in CP decomposition

via convolutional neural network,” Signal Process. Image Commun., vol. 73, pp. 12–21,

2019.

[377] C. Hawkins, X. Liu, and Z. Zhang, “Towards compact neural networks via end-to-end

training: A Bayesian tensor approach with automatic rank determination,” SIAM J. Math.

Data Sci., vol. 4, no. 1, pp. 46–71, 2022.

[378] C. Ma, X. Yang, and H. Wang, “Randomized online CP decomposition,” in Int. Conf. Adv.

Comput. Intell., 2018, pp. 414–419.

[379] I. Foster, Designing and Building Parallel Programs: Concepts and Tools for Parallel Soft-

ware Engineering, 2020.

[380] J. H. Choi and S. Vishwanathan, “DFacTo: Distributed factorization of tensors,” in Adv.

Neural Inf. Process. Syst., 2014, pp. 1–9.

[381] S. Smith, N. Ravindran, N. D. Sidiropoulos, and G. Karypis, “SPLATT: Efficient and

parallel sparse tensor-matrix multiplication,” in IEEE Int. Parallel Distrib. Process. Symp.,

2015, pp. 61–70.

[382] H. Li, Z. Li, K. Li, J. S. Rellermeyer, L. Chen, and K. Li, “SGD-Tucker: A novel stochas-

tic optimization strategy for parallel sparse Tucker decomposition,” IEEE Trans. Parallel

Distrib. Syst., vol. 32, no. 7, pp. 1828–1841, 2021.

[383] H. Al Daas, G. Ballard, P. Benner, and M. P. I. Magdeburg, “Parallel Algorithms for Tensor

Train Arithmetic,” SIAM J. Sci. Comput., vol. 44, no. 1, pp. 25–53, 2022.

[384] N. Cohen and A. Shashua, “Convolutional rectifier networks as generalized tensor decom-

positions,” in Int. Conf. Mach. Learn., 2016, pp. 955–963.

[385] B. Liu, L. He, Y. Li, S. Zhe, and Z. Xu, “NeuralCP: Bayesian multiway data analysis with

neural tensor decomposition,” Cogn. Comput., vol. 10, no. 6, pp. 1051–1061, 2018.

[386] X. Wang, M. Che, and Y. Wei, “Tensor neural network models for tensor singular value

decompositions,” Comput. Optim. Appl., vol. 75, no. 3, pp. 753–777, 2020.

322

BIBLIOGRAPHY

[387] P. Brito, “Symbolic data analysis: Another look at the interaction of data mining and

statistics,” Data Min. Knowl. Discov., vol. 4, no. 4, pp. 281–295, 2014.

[388] F. Di Mauro, K. S. Candan, and M. L. Sapino, “Tensor-train decomposition in presence of

interval-valued data,” IEEE Trans. Knowl. Data Eng., 2021 (early access).

323

Trung Thanh LE
Analyse des Flux de Données de Signaux et d'Images:

 Du Sous-espace au Suivi Tensoriel

Résumé: Le traitement des flux a récemment attiré l'attention du monde universitaire et de l'industrie, car les flux de données massives
ont été de plus en plus collectés au fil des ans. Cette thèse se concentre principalement sur l'étude de l'un des problèmes les plus
fondamentaux du traitement des flux, l'approximation de rang inférieur (LRA) des flux de données en ligne. Lorsque les échantillons
de données arrivant à chaque pas de temps sont unidimensionnels, le problème de LRA en ligne est techniquement appelé suivi de
sous-espace. Il s'agit d'un suivi tensoriel lorsque le flux de données est multidimensionnel.

Pour le suivi du sous-espace, nous avons proposé deux nouveaux algorithmes pour suivre le sous-espace sous-jacent des flux de données
dans deux scénarios spécifiques. Pour traiter les valeurs aberrantes clairsemées et les données manquantes, un algorithme efficace de
suivi de sous-espace en deux étapes a été développé, à savoir PETRELS-ADMM. L'algorithme proposé est basé sur la méthode de
direction alternée des multiplicateurs et des techniques de filtrage récursif des moindres carrés. Le deuxième algorithme appelé OPIT
a été spécifiquement conçu pour suivre le sous-espace principal clairsemé dans les grandes dimensions. Plus précisément, OPIT
introduit une nouvelle variante adaptative d'itération de puissance et un nouvel opérateur de seuillage basé sur des colonnes. Les deux
algorithmes proposés appartiennent à la classe des méthodes de suivi prouvables avec une garantie de convergence.

Pour le suivi des tenseurs, nous avons développé plusieurs nouveaux algorithmes pour suivre le LRA en ligne des tenseurs de streaming
au fil du temps. Sous le format CP/PARAFAC, nous exploitons les techniques alternatives de minimisation et d'esquisse aléatoire pour
développer ACP et RACP qui sont capables de factoriser des tenseurs incomplets et des tenseurs corrompus, respectivement. Sous le
format Tucker, nous avons proposé un autre algorithme en ligne appelé ATD. ATD suit d'abord les sous-espaces de faible dimension
sous-jacents couvrant les facteurs tensoriels, puis estime le tenseur central à l'aide d'une approximation stochastique. Une analyse de
convergence unifiée a été présentée pour justifier leur performance. En parallèle, nous avons conçu des algorithmes adaptatifs pour la
décomposition en continu des trains de tenseurs qui sont également capables de suivre les composants de rang inférieur des tenseurs
d'ordre élevé à partir de données bruitées, imparfaites et de grande dimension avec une grande précision.

En conclusion, notre étude apporte plusieurs nouvelles contributions à l'analyse des flux de données massives en général et au problème
des LRA en ligne. Il s'agit de nouveaux outils d'analyse permettant de suivre efficacement les flux de données de LRA en ligne, des
observations unidimensionnelles aux observations multidimensionnelles dans différents contextes. Par conséquent, ils devraient faire
un pas en avant dans les applications en ligne du monde réel.

Mots clés : Flux de données, approximation de rang inférieur, sous-espace, tensoriel.

Signal and Image Data Stream Analytics:
From Subspace to Tensor Tracking

Summary: Stream processing has recently attracted much attention from both academia and industry since massive data streams have
been increasingly collected over the years. This thesis focuses on investigating the problem of online low-rank approximation (LRA)
of data streams over time. When data samples are one-dimensional, the online LRA problem is referred to as subspace tracking. It turns
out to be tensor tracking when streaming data are multi-dimensional.

For subspace tracking, we proposed two novel algorithms for tracking the underlying subspace of data streams under two specific
scenarios. To deal with sparse outliers and missing data, an effective two-stage subspace tracking algorithm was developed, namely
PETRELS-ADMM. The proposed algorithm is based on the alternating direction method of multipliers and recursive least-squares
filtering techniques. The second algorithm called OPIT was specifically designed for tracking the sparse principal subspace in high
dimensions. Specifically, OPIT introduces a new adaptive variant of power iteration and a new column-based thresholding operator.
Both two proposed algorithms belong to the class of provable tracking methods with a convergence guarantee.

For tensor tracking, we developed several new algorithms for tracking the online LRA of streaming tensors over time. Under the
CP/PARAFAC format, we leverage the alternative minimization and randomized sketching techniques to develop ACP and RACP
which are capable of factorizing incomplete tensors and corrupted tensors, respectively. Under the Tucker format, we proposed another
online algorithm called ATD. ATD first tracks the underlying low-dimensional subspaces covering the tensor factors, and then
estimates the core tensor using a stochastic approximation. A unified convergence analysis was presented to justify their performance.
In parallel, we designed some adaptive algorithms for streaming tensor-train decomposition which are also capable of tracking the low-
rank components of high-order tensors from noisy, imperfect and high-dimensional data with high accuracy.
In conclusion, our study provides several novel contributions to big data stream analytics in general and the online LRA problem in
particular. They are new analysis tools allowing to effectively track the online LRA of data streams from one-dimensional to multi-
dimensional observations in different settings, and thus, they are expected to take a step forward real-world online applications.

Keywords : Data stream, low-rank approximation, subspace, tensor.

PRISME Laboratoire
12 rue de Blois, 45100 Orleans, France

