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1.1 Big Data Stream Processing

Stream processing has recently attracted much attention from both academia and industry due
to the fact that massive data streams have been increasingly collected over the years and they
can be smartly mined to discover new insights and valuable information [1-3]. For example,
we are living in the Internet of Things (IoT) era where a huge number of sensing devices have
been installed and developed, see Fig. 1.1. These devices have the capability to collect, manage,
and transmit data via IoT networks in real time. Accordingly, stream processing is required to
retrieve important insights from such IoT data in seconds or even faster for facilitating real-time

decision making [4].

In many modern online applications, data streams have three “V”’-characteristics: Volume,
Velocity, and Veracity. As they are continuously generated, their volume grows significantly over
time and possibly to infinity. Thus, one of the most notable features of streaming data is that
they are unbounded sequences of data samples. Velocity refers to the high-speed data arrival
rate and real-time processing. Data collected from user interactions in social networks (e.g.,

Facebook, Instagram, and Twitter) are, for example, at very high velocity. Veracity implies the
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Figure 1.1: Internet of Things

suitability, credibility, and trustworthiness of data streams. More specifically, this characteristic

relates to the biasedness, noise, uncertainty, incompleteness, and abnormality in data. Apart

from the three “V’s, streaming data have some other distinctive characteristics, including time

sensitivity /variation (aka concept drift), heterogeneity (different sources with diversity of data

types), volatile and unrepeatable property, and so on [2,3,5,6]. These characteristics lead to

several inherent requirements and computational issues for stream processing, such as:

Low latency: Stream methods and systems need to efficiently acquire, manage, and process

flows of data without introducing additional delays.

Low memory storage: Stream methods and systems must have the ability to operate in an

online fashion with limited memory resources.

Scalability: As streaming data normally grow in size much faster than computational re-

sources, stream processing requires scalable methods and systems.

Time variation: As streaming data can evolve with time, stream methods and systems are

required to be capable of tracking their variation along the time.

Robustness: In many cases, streaming data are imperfect and unreliable, so stream methods
and systems should have the potential to estimate and compute answers from corrupted

observations.

They are, however, also potential benefits of stream processing against batch processing, we refer

the readers to Table. 1.1 for a brief comparison between the two kinds of processing.

In this work, we mainly focus on stream methods which are capable of tracking the low-rank

approximation (LRA) of big data streams over time. Technically, the primary objective of the
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Table 1.1: Main differences between batch processing and stream processing

Features | Batch Processing Stream Processing
Input Large batches/chunks of data (Continuous) streams of data
Data size | Known and finite Unknown and/or infinite
Data type | Static Dynamic/time-varying

Process data all at once Process data streams in (near) real time
Processing . . .

Process in multiple passes Process in one- or two-pass
Response Provide after completion Provide immediately

Require much storage Require much less storage or no storage
Hardware . . . .

Require much processing resources | Require much less processing resources
Time Take longer time, latencies

. . Take a few seconds or faster

in minutes to hours

LRA is to approximate high-dimensional data by a more compact low-dimensional represen-
tation with limited loss of information [7]. Therefore, finding the LRA is a fundamental and
essential task for data mining in general and streaming data analytics in particular. For the
sake of convenience and convention, in what follows, we first list some linear and multilinear
algebraic operations (for vectors, matrices, and tensors) that are frequently used throughout this
manuscript. Next, we introduce one of the most well-known linear algebra techniques for finding
the LRA of matrices in batch setting, singular value decomposition (SVD), and then describe its
connection to some common types of tensor decomposition (TD). Finally, we present their online
(adaptive) variants for dealing with streaming data derived from one-dimensional observations
(i.e., SVD — subspace tracking) and multi-dimensional observations (i.e., tensor decomposition

— tensor tracking).

1.1.1 Vector, Matrix, and Tensor Operations

In this thesis, we use the following notational conventions. Lowercase, boldface lowercase, and
boldface capital letters denote scalars (e.g., ), vectors (e.g., x), and matrices (e.g., X), respec-
tively. Calligraphic and bold calligraphic letters are used to represent sets/subsects/supports
(e.g., &) and tensors (e.g., X)), respectively. For index notations, we use z; or x(i) to denote
the i-th element of x. The (i, j)-th element, the i-th row, and the j-th column of X are denoted
by x;; or X(i,j), X;. or X(i,:), and X. ; or X(:, ), respectively. We denote by X', X!, and
X# the transpose, inverse, and pseudo-inverse of X, respectively. The (1,12,...,in)-th element

of X is represented by i, iy, ins X (1,02, ...,iN), O [X]i iy, . in- In addition, X, or

Dyl tyeeeyt

X(: ... 50, .. .,:) represents a sub-tensor of X obtained by holding the n-th index of X at

in. The mode-n matricization of X is denoted by X™. Symbols ||.|, and ||.| represent the £,



1.1. BIG DATA STREAM PROCESSING

norm and Frobenius norm. In the following, we summarize some useful linear and multilinear

algebraic operations, to be used later.

Outer product: Given two vectors x € RV*! and y € RM*1_ their outer product is defined as

follows
_xlyl L1y2 ... »”UlyM_
oy — ac2'y1 x2'y2 . xz‘yM = [y wox ... yux| € RNXM (1.1)
| TNY1L INY2 ... INYM |

For a generalized case, the outer product of two tensors X € RI1x[2XXIN and Y e R/1xJ2xxIu

yields a tensor Z2 = X oY € RO xXInxJixxJu with elements
Z(i17i27 o 7iN7j17j27 cee 7.7M) - X(ilviQ') cee 77:N)y(j17.j27 cee 7.7M) (12)

Kronecker product: Given two matrices X € RMN*M and Y € RP*?Q| the Kronecker product

of X and Y results in an NP x M@ matrix of the following form

iL'LlY .CL’LQY e xl,MY
$2’1Y {BQQY e {L‘27MY

XeY=| " ' o | e RNPXME, (1.3)
J}N71Y xNgY e .CL'N7MY

Khatri-Rao product (aka Column-wise Kronecker product): Given two matrices Y € RV*"
and Y € RM*7 their Khatri-Rao product is an NM x r matrix of the following form
X0Y=[X61)0Y(:1) X2 @Y(2) ... Xar)oYer)| RV (14)

For short, we denote the Kronecker product and Khatri-Rao product of a sequence of matrices

{UMIN_ as follows

N
®U(n) _ U(N) ® U(N_l) R R U(1)7 (1.5)
n=1

N
@U(n) — UM ouN-D ..U, (1.6)
n=1

Tensor unfold and fold operations: The unfold of X € RIV}2XXIN written as unfold(X),
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returns a tensor Z of lower order:

Z =unfold(X) = € RIVvxToxTsxxly -1, (1.7)

Its inverse operator denoted by fold(Z) reshapes Z back to X as fold(unfold(X)) = X.

Tensor concatenation: The concatenation of two tensors X € Rl [2xXIN and y ¢ RIxxIn-1xW

along the last dimension results in 2 = X BY € RV *Iv-1xUn+W) with elements

o ) X(il,ig,...,’iN), if iy < Iy,
2(2177'27"'721\/) = (18)
Y(ii, i, ... in), HIN+W >iy > Iy.

Mode-n product: The mode-n product of a tensor X € RI2XXIN with a matrix U € R/*/»

returns a tensor Z = X x,, U € R X In1xIxInp1xXIN with elements
I
Z(ir,. i1,y bng -y iN) = Y X (i1, i1y ingts - i8) UG ). (1.9)
in=1

The mode-n product of X with N matrices {U®) N_| along all N modes is denoted as
[ AUHL ] = 2 %1 U0 5 U g U, (1.10)
Mode-(N, 1) product (aka tensor-train contraction): The mode-(N, 1) product of X € RI1x/2xxIn

with ) € RINXJ2XXJIn - written as X X}V Y, results in a tensor £ € RIXXJIn-1xJaxXIm

with elements

Iy
Z(’h?' . '7iN—17j27' . 7.7M) = Z X(Zla . 7iN—17Z.N)y(Z‘N7j27"'7jM)' (111)

in=1

T-product: The t-product of X € RItxxXIN gand Y e RI2xI XX XIN written as X * Y,

returns an [ X J x I3 X --- x Iy tensor Z of the recursive form

Z =X %Y = fold(bcirc(X) * unfold(y)), (1.12)
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where circ(.) is a block circulant tensor defined as

U1 UIN U]N_1 UQ
U, U, U, ..U

beirc)= | v °l (1.13)
U, U, .. Us U

where U; =U. . .; and the base case of the t-product of two 3-order tensors A € R/1xJ2xJ3 and

B € R/2XExJ3 ig defined as

A x B = fold(bcirc(.A) - unfold(B)) € R K%, (1.14)

Inner product: Given two tensors X and Y of the same size Iy X Iy X --- X Iy, their inner

product is defined as

I Iz In
(X Y)y=>"3 " X(iryia...,in)P(ir iz .. in). (1.15)

1.1.2 Batch Low-rank Approximation: From SVD to Tensor Decomposition

It is very well known that SVD is one of the most powerful and widely-used linear algebra
techniques with a number of applications in various domains [8,9]. Particularly, the compact

SVD of a rank-r matrix X € R/**!2 is given by

A1 VI

)\2 VT r
SVD 2 T
X =" luy,uy,.. .,uT} = Z)\iuivi , (1.16)
—_— i=1
U
T
M| vy
——
A vT

where U € RI1X" and V € R2*" are unitary matrices; and A € R™*" is a diagonal matrix whose
diagonal values are positive, i.e., A\ > Ao > --- > A\, > 0, see Fig. 1.2 for an illustration. For the
problem of low-rank approximation in batch setting, the following theorem indicates that SVD

can give the best LRA for any matrix X.
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All V

Figure 1.2: SVD of a rank-r matrix X.

Theorem 1 (Eckart-Young-Mirsky Theorem [9]). Denote by X = UAV' the SVD of
X € RN*2 [f k < rank(X) and X = S2F_ | \wv], then

min ||X - Al = || X - X, (1.17)
AcRI1xI2
rank(A)<k

with respect to both the spectral norm and Frobenius norm.

Thanks to Theorem 1, the best rank-k approximation of X can be obtained by applying the

following procedure:

e Step 1: Compute X SYD UAVT, where U € Rt and V € R2%%2 are unitary matrices,

and the diagonal matrix A € R/1*!2 contains positive diagonal entries in descending order.

e Step 2: Select the first k singular vectors from U and V to form the following matrices
Up=U(,1:k)and Vi, =V(;,1: k).
e Step 3: Select the top k strongest singular values in A to form: Ay = A(1:k,1:k).

e Step 4: Derive the best rank-k approximation of X from: X = UkAkV,;r.

When dealing with tensors (aka, multidimensional arrays), several multiway extensions of
the SVD have been developed for tensor decomposition (TD) in the literature [10-13|. The five
common types of TD are CP/PARFAC [14], Tucker/HOSVD [15], tensor-train/network [16],
t-SVD [17], and block-term decomposition (BTD) [18], see Fig. 1.3 for illustrations. Specifically,
they aim to factorize a tensor into a set of basis components (e.g., vectors, matrices, or simpler
tensors) and hence offer good low-rank tensor approximations. In the following, we describe their
connection to SVD and refer the readers to Chapter 5 for further details on their main features,

properties, and algorithms.

CP/PARAFAC Decomposition: Similar to SVD that represents X by a sum of rank-1 matrices

(i.e., iu;v; ), the CP decomposition also factorizes a tensor X € RI12XXIN into rank-1 terms:

XQZ)\iugl)ouZ@)o---oul(.N), (1.18)
i=1

~
rank-1 term
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CP/PARAFAC Tucker/HOSVD
D QD
QQ‘ S 9\
S f .S f S f @
. Xy .
X = >OC ] + OC ]+ ... + OET
HU(Z)(;,l) Hu(l)(:,r) |:|U‘2)( ) X = U(l) xl xz
UL u9(,2) uoGr)
°TP @ @
Xy Xy Xn
X = ><1 + x1 Foee et x1
XZ xz X,
Tensor-Train 3 T-SVD

Figure 1.3: Multiway extensions of SVD to high-order tensors: CP/PARAFAC, Tucker, BTD,
tensor-train, and t-SVD.

<

(n)

where u; " € R»*1 with 1 < n < N plays the same role as singular vectors of U and V in the
SVD model (1.16) (note that u;v; = u; o v;) [14]. The matrix UM = [ugn),ugn), . .,u,(ﬂ")] is
the n-th CP factor of X and it is not required to be orthogonal. Following the general definition
of matrix rank, the smallest integer r satisfying (1.18) is referred to as the tensor (CP) rank of
X. Under certain conditions, CP decomposition is essentially unique up to a permutation and

scale which is an useful property in many applications.

Tucker/HOSVD Decomposition: Apart from the classical form (1.16), we can express the
SVD of X as follows

XYPUAVT = A x,Ux, V. (1.19)
core 2 fact

Accordingly, a direct multiway extension of (1.19) to high-order tensors can be given by

Tucker
X =

G x1UW 5, U g xy UM, (1.20)

core N factors

where the core G € R"*"2X"X"N ig a tensor of smaller size than X (i.e., r, < I, Vn) and N tensor
factors {UMIN_ | UM € RM*"n are orthogonal matrices. The representation model (1.20) is
regarded as the high-order SVD (HOSVD) or Tucker format [15]. Unlike the SVD and CP,
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Tucker/HOSVD is not unique in general. However, as the subspace covering U™ is physically

unique, its main objective is for finding principal subspaces of the tensor factors [11].

Block-Term Decomposition: BTD factorizes X into several blocks of low multilinear-rank

instead of rank-1 terms

N (1.21)

%

XBLDZ gl XIUZ(-I) XQU(2) Xg - XNU
=1

low multilinear-rank term

The BTD can be viewed as a unification and generalization of the two well-known CP and
Tucker decompositions. Specifically, when {G;}7_, are diagonal tensors, BTD boils down to the
CP decomposition. It has the form of Tucker decomposition when only one block term (i.e.,
r = 1) is considered. In addition, several appealing features of the BTD are inherited from CP
and Tucker such as stable computation of Tucker, identification and uniqueness of CP [18]. In
parallel, it is worth recalling a remark in [18] that “the rank of a higher-order tensor is actually
a combination of the two aspects: one should specify the number of blocks and their size”. That

means BTD provides a unified approach to generalize the concept of matrix rank to tensors.

Tensor-Train Decomposition: Together with (1.16) and (1.19), we can write the SVD of X as
SVD :
X(i1,i2) "= Y MU(ir, k)V(k,ia). (1.22)
k=1

Accordingly, each element of a high-order tensor X can be represented by

1,72, ;TN —1

. .\ TT . . .
X (i1, i2,...,iN) = Z G1(1,i1,k1)Ga(k1,d2,k2) ... GN(kn—1,iN, 1). (1.23)
k1,k2,....kn—1
where G, is an r,,_1 X I,, X 7, tensor with n =1,2,...,N —1 and rg = ry = 1. We refer to the

representation model (1.23) as tensor-train (TT). Like CP, the TT format offers a memory-saving
model for representing high-order tensors. Like Tucker, the TT decomposition and the TT rank

r =[ry,re,...,7N_1] of any tensor X can be numerically computed in a stable and efficient way.

t-SVD Decomposition: Last but not least, another extension of SVD to high-order tensors is
the tensor SVD (t-SVD) which is of the following form:

X2y o g o« v, (1.24)
~~ —~—

orthogonal  f-diagonal orthogonal

where U and V are unitary tensors, and G is a rectangle f-diagonal tensor whose frontal slices
are diagonal matrices [17|. Intuitively, the t-SVD model (1.24) shares the similar form with
the SVD in (1.16). However, due to the t-product “x*”, the algebraic framework used in the
t-SVD is quite different from the classical (multi)-linear algebra in other types of TD and SVD.
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For example, most of its computations are performed in the Fourier domain. Under the t-SVD
format, the tubal-rank which is equal to the number of non-zero tubes of G is used to define the

LRA of tensors in the same manner as the SVD.

1.1.3 Online Low-rank Approximation: From Subspace to Tensor Tracking

In online setting, data samples are continuously collected with time. Accordingly, recomputing
the batch LRA methods (e.g., SVD or batch TD algorithms) at each time step becomes inefficient
due to their high complexity and the time variation, aka concept/distribution drift. This has led
to defining a variant of the LRA called online (adaptive) LRA in which we may want to track

the underlying process that generates streaming data with time.

When observations arriving at each time are one-dimensional (i.e., vectors), the main interest
in the online LRA is to estimate the principal subspace that compactly spans these observations
over time. Specifically, it is referred to as the problem of subspace tracking (ST) in signal
processing which has been developed for over three decades [19-21]. In general, on the arrival
of the new data y; € RI*! at time ¢, the subspace matrix U, € RI'*" can be derived from

analysing the spectrum of the following covariance matrix

¢
Ce= >,  B7yws, (1.25)
r=t—Li+1
where L; is the window length and 0 < 8 < 1 is the forgetting factor [20]. When L; = t and
B =1, C; in (1.25) boils down to the classical sample covariance matrix. More specifically, in
a connection to the batch LRA using SVD, the vector y; can be seen as the t-th column of the
underlying matrix X; = [X;_; y¢, see Fig. 1.4 for an illustration. The subspace matrix U,
plays a role as the left singular vector matrix of X;, while the coefficient vector w; = UtT y¢ is
indeed the t-th row of the matrix VA in the SVD expression (1.16). Depending on the choice of

C; and the subspace estimation technique, we can obtain several subspace tracking algorithms.

When observations arriving at each time are multidimensional (i.e., tensors), the online LRA
turns out to be tensor tracking which can be considered as a generalization of subspace tracking.
In particular, we wish to estimate the tensor dictionary (e.g., core tensor(s) and tensor factors)

that generates the underlying streaming data X; over time:

X1 HY,; if single-aspect streaming
X = , (1.26)
X: 1 UY; if multi-aspect streaming

where “H” and “U” denote the tensor concatenation and union operator, while X';_; and
Y, represent the old and new observations, respectively. The “single-aspect streaming” model

and the “multi-aspect streaming” model are, respectively, dedicated to represent data streams

10
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At time t Old Observations New Data
| . ' |
| N |
i Xt—l y Xt—l t Xt‘l D i
- Matrix X, X, Tensor X

Figure 1.4: Streaming data.

having one dimension and multiple dimensions varying with time. When new data samples
arrive, the tensor dictionary of X’y should be incrementally updated without reusing the batch
TD algorithms. Similar to subspace tracking, we can also obtain many tensor tracking algorithms
based on different tensor formats, streaming models, and optimization techniques. The readers
are referred to Chapter 5 for a comprehensive overview of the state-of-the-art tensor tracking

algorithms.

In recent years, the explosion of big data streams have posed significant challenges to the
online LRA problem. For example, efficiency and robustness are highly important when we
deal with streaming data in high dimensions. Many theoretical results in random matrix theory
(e.g., [22-24]) indicated that the sample covariance matrix (SCM) is not an efficient estimator
of the actual covariance matrix in the high-dimension, low-sample-size regime where datasets
are massive in both dimension and sample size. However, most of the state-of-the-art subspace
tracking methods in the literature are mainly based on the spectral analysis of the SCM, and
thus, they are not effective in such a regime. In parallel, sparse outliers and missing data
become more and more ubiquitous in modern streaming applications [6]. Sparse outliers are
data points that appear to be inconsistent with or exhibit abnormal behaviour different from
others. Missing data are often encountered during the acquisition and collection. Both sparse
outliers and missing data can cause several issues for knowledge discovery from data in general
and data streams in particular, see Fig. 1.5 for an illustration of outlier’s impact on the standard
principal component analysis (PCA) which specifically uses SVD in its computation. Therefore,
it requires robust algorithms capable of dealing with such data corruptions with time. In addition,
scalable tracking algorithms are always desirable for handling modern data streams, especially

dealing with large-scale and high-multidimensional data streams. As indicated later, most of

11
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Figure 1.5: Effect of outliers on the standard PCA.

the existing tracking algorithms are of high complexity with respect to both computation and
memory storage. Accordingly, it is essential to develop efficient and scalable tracking techniques
of low cost. In this work, we aim to develop efficient and effective tracking algorithms which

have the capability to deal with such challenges.

1.2 Thesis Description

1.2.1 Thesis Outline and Contributions

The rest of my thesis is organized into two major parts addressing respectively subspace tracking

and tensor tracking, followed by the conclusion and outlook, please see Fig. A.5 for an overview.

Part I: Subspace Tracking

In Chapter 2, we provide a brief survey on recent robust subspace tracking algorithms which were
mostly developed over the last decade. Particularly, we begin by introducing the basic ideas of
the subspace tracking problem. We then highlight main classes of algorithms for dealing with
non-Gaussian noises (e.g., sparse outliers, impulsive noise, and colored noise). Recent years have
also witnessed the widespread of high-dimensional data analysis in which sparse representation-
based methods are successfully applied to many signal processing applications. Accordingly, the

state-of-the-art sparse subspace tracking algorithms are also reviewed therein.

In Chapter 3, we propose a novel algorithm, namely PETRELS-ADMM, to deal with subspace
tracking in the presence of outliers and missing data. The proposed approach consists of two

main stages: outlier rejection and subspace estimation. In the first stage, alternating direction

12



1.2. THESIS DESCRIPTION

( )
INTRODUCTION
Chapter 1 > Introduction
L J
( )
Chapter 2 .| An Overview of Robust

- Subspace Tracking
|

( N

Chapter 3 . | Robust Subspace Tracking with

“| Missing Data and Outliers
\_

SUBSPACE
TRACKING

\ 4

J
) 4 )
= Chapter 4 _ Sparse Subspace Tracking In
D - High Dimensions
= \ y,
O
-
lﬂ_: S
(%p] Ve ~
v Chapter 1 An Overview of Tensor
n “| Tracking
= \ b,
|_
Chapter 6 |, h
PART Il TENSOR - P .| Robust Tensor Tracking with
TRACKING - “| Missing Data and Outliers
\ & J
( )
Chapter 7 | Tensor Tracking under Tensor-
| Train Format
\ & J

CONCLUSION
Chapter 9 >(Conclusion and Outlook ]

L

Figure 1.6: Thesis structure.

method of multipliers (ADMM) is effectively exploited to detect outliers affecting the observed
data. In the second stage, we propose an improved version of the parallel estimation and track-
ing by recursive least squares (PETRELS) algorithm to update the underlying subspace in the
missing data context. We then present a theoretical convergence analysis of PETRELS-ADMM
which shows that it generates a sequence of subspace solutions converging to the optimum of its
batch counterpart. The effectiveness of the proposed algorithm, as compared to state-of-the-art

algorithms, is illustrated on both simulated and real data.

In Chapter 4, we develop a new provable effective method called OPIT for tracking the sparse
principal subspace of data streams over time. Particularly, OPIT introduces a new adaptive

variant of power iteration with space and computational complexity linear to the data dimension.
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In addition, a new column-based thresholding operator is developed to regularize the subspace
sparsity. Utilizing both advantages of power iteration and thresholding operation, OPIT is
capable of tracking the underlying subspace in both classical regime and high dimensional regime.
We also present a theoretical result on its convergence to verify its consistency in high dimensions.
Several experiments are carried out on both synthetic and real data to demonstrate the tracking
ability of OPIT.

Part II: Tensor Tracking

In Chapter 5, we provide a contemporary and comprehensive survey on different types of tensor
tracking techniques. We particularly categorize the state-of-the-art methods into three main
groups: streaming CP decompositions, streaming Tucker decompositions, and streaming de-
compositions under other tensor formats (i.e., tensor-train, t-SVD, and BTD). In each group,
we further divide the existing algorithms into sub-categories based on their main optimization
framework and model architectures. Specifically, four main groups of streaming CP decomposi-
tion algorithms were emphasized, including subspace-based, block-coordinate descent, Bayesian
inference, and multi-aspect streaming decompositions. We categorized the current streaming
Tucker decomposition methods into three major classes based on their model architecture. They
are online tensor dictionary learning, tensor subspace tracking, and multi-aspect streaming de-
compositions. Finally, a brief survey on the existing methods which are capable of tracking

tensors under TT, BTD, and t-SVD formats is presented.

In Chapter 6, we propose three novel adaptive algorithms for tracking higher-order streaming
tensors with time, including ACP, ATD, and RACP. Under the CP format, ACP minimizes an
exponentially weighted recursive least-squares cost function to obtain the tensor factors in an
efficient way, thanks to the alternative minimization framework and the randomized sketching
technique. Under the Tucker format, ATD first tracks the underlying low-dimensional subspaces
covering the tensor factors, and then estimates the core tensor using a stochastic approximation.
Both the two algorithms ACP and ATD are fast and fully capable of tracking streaming tensors
from incomplete observations. When observations are corrupted by sparse outliers, we introduce
the so-called RACP algorithm robust to gross corruptions. Particularly, RACP first performs
online outlier rejection to accurately detect and remove sparse outliers, and then performs tensor
factor tracking to efficiently update the tensor factors. Convergence analysis for three algorithms
are established in the sense that the sequence of generated solutions converges asymptotically
to a stationary point of the objective function. Extensive experiments are conducted on both
synthetic and real data to demonstrate the effectiveness of the proposed algorithms in comparison

with state-of-the-art adaptive algorithms.

In Chapter 7, we introduce three new methods for the problem of streaming tensor-train

decomposition. The first method called TT-FOA is capable of tracking the low-rank components

14
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of high-order tensors from noisy and high-dimensional data with high accuracy, even when they
come from time-dependent observations. The second method called ATT is particularly designed
for handling incomplete streaming tensors. ATT is scalable, effective, and adept at estimating low
TT-rank component of streaming tensors. Besides, ATT can support parallel and distributed
computing. To deal with sparse outliers, we propose the so-called ROBOT which stands for
ROBust Online Tensor-Train decomposition. Technically, ROBOT has the ability to tracking
streaming tensors from imperfect streams (i.e., due to noise, outliers, and missing data) as well

as tracking their time variation in dynamic environments.

Conclusion and Outlook

Chapter 8 concludes the thesis with our main results and an outlook to future works. Particularly,
we present several research challenges and open problems that should be considered for the
development of tracking the low-rank component of data streams in the future. They are data
imperfection and corruption; rank revealing and tracking; efficient and scalable tensor tracking;
and other aspects such as theoretical analysis, symbolic data, and tracking under some less

common tensor formats. Possible solutions for these challenges are also discussed.

1.2.2 List of Publications

Most of the above results have been published/submitted in the following papers:

Journal Papers:

[25] L. T. Thanh, N. V. Dung, N. L. Trung and K. Abed-Meraim, “Robust Subspace Tracking With
Missing Data and Outliers: Novel Algorithm With Convergence Guarantee”, IEEE Trans. Signal
Process., vol. 69, pp. 2070-2085, 2021.

[26] L. T. Thanh  N.V.Dung, N. L. Trung and K. Abed-Meraim, “Robust Subspace Tracking Algorithms
in Signal Processing: A Brief Survey”, REV J. Elect. Commun., vol. 11, no. 1-2, pp. 15-25, 2021.

[27] L. T. Thanh, K. Abed-Meraim, N. L. Trung and A. Hafiane, “Robust Tensor Tracking with Missing
Data and Outliers: Novel Adaptive CP Decomposition and Convergence Analysis”, IEEE Trans.
Signal Process., vol. 70, pp. 4305-4320, 2022.

[28] L. T. Thanh, K. Abed-Meraim, N. L. Trung and A. Hafiane, “OPIT: A Simple and Effective Method
for Sparse Subspace Tracking in High-dimension and Low-sample-size Context”, IEEE Trans. Sig-
nal Process., 2022 (submitted).

[29] L. T. Thanh, K. Abed-Meraim, N. L. Trung and A. Hafiane, “Tracking Online Low-Rank Approz-
imations of Higher-Order Incomplete Streaming Tensors”, Elsevier Patterns, 2022 (submitted).

[30] L. T. Thanh, K. Abed-Meraim, N. L. Trung and A. Hafiane, “Streaming Tensor-Train Decomposi-
tion With Missing Data”, Elsevier Signal Process., 2022 (submitted).
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[31] L. T. Thanh, K. Abed-Meraim, N. L. Trung and A. Hafiane, “4 Contemporary and Comprehensive
Survey on Streaming Tensor Decomposition”, IEEE Trans. Knowl. Data. Eng., 2022 (submitted).

Conference Papers:

[32] L. T. Thanh, K. Abed-Meraim, N. L. Trung and R. Boyer, “Adaptive Algorithms for Tracking
Tensor-Train Decomposition of Streaming Tensors”, in Proc. 28th EUSIPCO, 2020, pp. 995-999.

[33] L. T. Thanh, K. Abed-Meraim, N. L. Trung and A. Hafiane, “A Fast Randomized Adaptive CP
Decomposition for Streaming Tensors”, in Proc. 46th ICASSP, 2021, pp. 2910-2914.

[34] L. T. Thanh, K. Abed-Meraim, A. Hafiane and N. L. Trung, “Sparse Subspace Tracking in High
Dimensions”, in Proc. 47th ICASSP, 2022, pp. 5892-5896.

[35] L. T. Thanh, K. Abed-Meraim, N. L. Trung and A. Hafiane, “Robust Tensor Tracking With Missing
Data Under Tensor-Train Format”, in Proc. 30th EUSIPCO, 2022, pp. 832-836.

[36] L. T. Thanh, T. T. Duy, K. Abed-Meraim, N. L. Trung and A. Hafiane, “Robust Online Tucker
Dictionary Learning from Multidimensional Data Streams”, in Proc. 14th APSIPA-ASC, 2022, pp.
1812-1817.

Contributions Outside the Scope of the Thesis

During my Ph.D study, I have also some other contributions to system identification which are

not included in this thesis:

[37] L. T. Thanh, K. Abed-Meraim and N. L. Trung, “Misspecified Cramer-Rao Bounds for Blind Chan-
nel Estimation under Channel Order Misspecification”, IEEE Trans. Signal Process., vol. 69,
pp- 5372-5385, 2021.

[38] L. T. Thanh, K. Abed-Meraim and N. L. Trung, “Performance Lower Bounds of Blind System
Identification Techniques in the Presence of Channel Order Estimation Error”, in Proc. 29th EU-
SIPCO, 2021, pp. 1646-1650.

[39] O. Rekik, A. Mokraoui, T. T. T Quynh, L. T. Thanh and K. Abed-Meraim. “Side Information
Effect on Semi-Blind Channel Identification for MIMO-OFDM Communications Systems”, in Proc.
55th ASILOMAR 2021, pp. 443-448.

Particularly in [37,38], we have addressed the problem of analyzing the theoretical perfor-
mance limit of system identification techniques under the misspecification of the channel order
through the lens of the misspecified Cramer-Rao bound (MCRB) — which is an extension of
the well-known Cramer—Rao bound (CRB) when the underlying system model is misspecified.
Specifically, we have introduced a new interpretation of the MCRB, called the generalized MCRB
(GMCRB), via the Moore—Penrose inverse operator. This bound is useful for singular problems
and particularly blind channel estimation problems in which the Hessian matrix is noninvertible.
Two closed-form expressions of the GMCRB are derived for unbiased blind estimators when the

channel order is misspecified. The first bound deals with deterministic models where both the
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channel and unknown symbols are deterministic. The second one is devoted to stochastic models
where we assume that transmitted symbols are unknown random variables i.i.d. drawn from
a Gaussian distribution. Two case studies of channel order misspecification are investigated to
demonstrate the effectiveness of the proposed GMCRBs over the classical CRBs. In [39], we have
investigated the effect of different prior about communications channels (e.g., specular channel
model, finite memory linear time invariant channel model, misspecification caused by array cali-
bration errors, so on) on the performance of semi-blind channel identification for MIMO-OFDM

systems.
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2.1. INTRODUCTION

Principal component analysis (PCA) and subspace estimation (SE) are popular data analysis tools and
used in a wide range of applications. The main interest in PCA/SE is for dimensionality reduction
and low-rank approximation purposes. The emergence of big data streams have led to several essential
issues for performing PCA/SE. Among them are (i) the size of such data streams increases over time,
(ii) the underlying models may be time-dependent, and (iii) problem of dealing with the uncertainty and
incompleteness in data. A robust variant of PCA/SE for such data streams, namely robust online PCA or
robust subspace tracking (RST), has been introduced as a good alternative. The main goal of this chapter
is to provide a brief survey on recent RST algorithms in signal processing. Particularly, we begin this
survey by introducing the basic ideas of the RST problem. Then, different aspects of RST are reviewed
with respect to different kinds of non-Gaussian noises and sparse constraints. Our own contributions on

this topic are also highlighted.

2.1 Introduction

Principal component analysis (PCA) and subspace estimation (SE) are widely used as a fun-
damental step for dimensionality reduction and analysis. Their main purpose is to extract
low-dimensional subspaces from high-dimensional data while still keeping as much relevant in-
formation as possible. Consequently, PCA and SE have found success in a wide range of fields,
from finance to neuroscience, with the most successful applications in computer science. The
main difference between them is that PCA emphasizes the use of eigenvectors rather than of
subspace as in SE. PCA in a standard set-up can be implemented by using either eigenvalue
decomposition (EVD) or singular value decomposition (SVD) and is proved to be optimal in

terms of the Frobenius-norm approximation error by the Eckart-Young theorem [40].

Recent years have witnessed an increasing interest in adaptive processing [2]. It is mainly
due to the fact that online applications generate a huge amount of data streams over time
and such streams are often with high veracity and velocity. It is known that veracity requires
robust algorithms for handling imperfect data while velocity demands (near) real-time processing.
Accordingly, important classes of PCA, such as subspace tracking (ST) also called PCA for
streaming data or streaming PCA or dynamic PCA, and ST with missing data have drawn much

research attention recently in signal processing and modern data analysis.

The attractive point of ST resides on two aspects. First, in a similar manner to batch subspace
methods [20], both the main components and the disturbance components of data observation
can be exploited in many different ways. In fact, the subspace is simple to understand (i.e.,
in a statistical sense) and implement, thus proving its efficiency in many practical applications.
Second, different from batch subspace methods, ST has a better trade-off between the accuracy

and the computational complexity, thus making it suitable for time-sensitivity and real-time
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2.1. INTRODUCTION

applications. Due to its practical use, we can find a wide range of applications in diverse fields [19,
20,41], for example, direction of arrival (DoA) tracking in radar and sonar, data compression

and filtering, blind channel estimation and equalization, and pattern recognition, to name a few.

However, it is well-known that PCA/SE is very sensitive to data corruptions. This fact re-
mains across the above important PCA classes in general and ST in particular. PCA dealing
with impulsive noise and outliers is referred to as robust PCA. In 2011, it was revisited in a sem-
inal work of Candes et al [42|. This work has attracted many research studies and applications,
with over 4000 citations as of now. PCA for streaming data with impulsive noise and outliers
is referred to as robust subspace tracking (RST). It is considered much more difficult than the

original ST [43].

ST algorithms have been developed for over three decades [19,20]. It has been around ten
years since Delma’s survey [20] and we thus believe it is not only important but the right time
to do an up-to-date survey in order to highlight some aspects that were not mentioned in [20] as

well as recent advances on this topic.

2.1.1 Related Work

Due to the importance of ST, there have been a number of published surveys in the literature.
One of the first and earliest surveys on principal subspace tracking algorithms was carried on by
Comon and Golub in [19]. The survey focuses on methods with high and moderate computational
complexity for tracking the low-rank approximation of covariance matrices which may be slowly
varying with time. In [20], Delmas provided a comprehensive overview on developments of

classical ST algorithms with low (linear) complexity.

Recently, different adaptations of PCA for modern datasets and applications were reviewed
in [44]. However, PCA for streaming data or ST was not addressed. The problem of tracking
the underlying subspace of data from incomplete observations was discussed in [41] and [45].
Particularly, the former concerned methodological classes of ST algorithms that are able to deal
with missing data while the latter presented a high-dimensional framework for analyzing their
convergence behavior. The survey in [21] carried out reviews on robust PCA, RST, and robust
subspace recovery in the presence of sparse outliers. Two similar surveys to [21] have also been
conducted in [46] and [47] which respectively review (i) static and dynamic RPCA algorithms,
and (ii) the entire body of works on robust sparse recovery. In the literature, there exist two
others surveys on two adaptations of PCA which are distributed PCA [48] and sparse PCA [49].

The main contributions of the above-mentioned papers are summarized in Table 2.1.
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2.2. ROBUST SUBSPACE TRACKING: PROBLEM FORMULATION

2.1.2 Main Contributions

To the best of our knowledge, we are not aware of any work that reviews the RST problem in the
presence of different kinds of non-Gaussian noise. Although the three surveys [21,46,47] reviewed
some classes of RST algorithms, they only discussed on sparse outliers. Methods for other non-
Gaussian noises (e.g., impulsive noise and colored noise) have not been reviewed yet. Moreover,
no survey exists on the problem of sparse ST in the literature. This observation motivates us to

carry out a survey on the topic.

The main goal of this survey is to fill the gap in the literature addressing the following three
kinds of non-Gaussian noises (including outliers, impulsive noise, and colored noise) and sparse
constraints. Our contributions are as follows. First, in the context of missing data and outliers,
we review four main approaches for dealing with them. They are Grassmannian, recursive
least-squares (RLS), recursive projected compressive sensing (ReProCS), and adaptive projected
subgradient method (APSM). Second, when the measurements are corrupted by impulsive noise,
we show that most of state-of-the-art RST algorithms are based on improving the well-known
PAST algorithm which belongs to the class of RLS methods. Two other appealing approaches
including weighted RLS and adaptive Kalman filtering are also reviewed. Third, we outline two
main classes of RST algorithms that are able to deal with colored noise: instrumental variable-

based and oblique projections. Finally, a short review on sparse ST algorithms is presented.

The structure of our review is as follows, please see Fig. 2.1 for an illustration. Section 2.2
states the problem of RST. In Section 2.3, we provide the state-of-the-art algorithms for the
RST problem in the presence of missing data and outliers. The next two sections, 2.4 and 2.5,
present RST algorithms that are able to handle impulsive noise and colored noise, respectively.

Section 2.6 provides a short review on sparse ST. Finally, Section 2.7 concludes the chapter.

2.2 Robust Subspace Tracking: Problem Formulation

At each time ¢, we suppose to observe a signal x; € R" satisfying
Xt = Pt(‘et + Vt), (21)

where Py € R™*" is an observation mask matrix indicating the i-th entry of x; is observed (i.e.,
Py(i,i) = 1) or not (i.e., Py(i,i) = 0), v; € R™*! is the (non-Gaussian) noise vector and £; is
the true signal living in a fixed or slowly time-varying low-dimensional subspace of R"™. More
concretely, £, = U;w; in which w; is a weight vector and U; € R™*" (r < n) is a basis matrix
with d(Uy, Uy_q) 2 gin (U, Uyq) < 1 where (U, U;_1) denotes the largest principal angle
between U; and U;_;. The RST problem can be stated as follows:
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Figure 2.1: The structure of the survey.

Robust Subspace Tracking: Given a streaming set of observed signals {x:}+>1 in (3.1),
we wish to estimate a rank-r matriz Uy such that it can cover the span of the complete-data

noiseless signal ;.

In this chapter, we consider the RST problem in the presence of different kinds of the non-
Gaussian noise vy: sparse outliers, impulse noise, and colored noise. Also, we review sparse ST

algorithms under the constraint that the basis matrix U, is sparse.

24



2.3. ROBUST SUBSPACE TRACKING IN THE PRESENCE OF MISSING DATA AND
OUTLIERS

2.3 Robust Subspace Tracking in the Presence of Missing Data

and Outliers

In the literature, there have been several studies on ST in the presence of outliers and missing
data. The proposed RST algorithms can be categorized into four main classes: (i) Grassmannian,
(ii) recursive east-Squares (RLS), (iii) recursive projected compressive sensing (ReProCS), and
(iv) adaptive projected subgradient method (APSM). We summarize all the RST algorithms

robust to outliers and missing data in Table 2.2.

2.3.1 Grassmannian Algorithms

Many of RST algorithms are based on the Grassmannian approach in which the ST procedure
can be cast into an optimization process on a Grassmann manifold. More concretely, Grassman
manifold is a space that parameterizes all r-dimensional linear subspaces of the N-dimensional
vector space. The underlying subspace can be derived from averaging the column span of the
(fully or partially) observed signals on the Grassmannian. Interestingly, each observed signal
£; spans a one-dimensional subspace which can be described as a point in the Grassmannian.
Therefore, the Grassmannian approach offers several advantages such as a lower number of
parameters to optimize and limited memory usage and the resulting RST algorithms are often

efficient and scalable to high dimensional data |71].

State-of-the-art RST algorithms include GRASTA [50], GOSUS [51], pROST |52, 53|, and
RoIGA [68,69]. In [50], He et al. proposed an efficient RST algorithm called Grassmannian
robust adaptive ST (GRASTA) which is a robust version of GROUSE in [72]. GRASTA first
uses an £1-norm cost function to reduce the effect of sparse outliers and then performs the incre-
mental gradient on the Grassmann manifold of the subspace U. In [51], Xu et al. introduced an
effective algorithm namely GOSUS for tracking subspace with structured-sparsity. GOSUS also
incorporates an adaptive step-size for the incremental gradient on the manifold. The effective-
ness of GOSUS was demonstrated via the real application of video background subtraction and
multiple face tracking. In [52,53], Hage et al. proposed a method, namely pPOST that combines
the advantages of Grassmannian optimization with a non-convex sparsity measure. Instead of
using the ¢1-norm regularization, pPOST uses the penalty with non-convex f{y-surrogates allows
reconstruction even in the case when ¢;-based methods fail. Another algorithm dubbed robust
intrinsic Grassmann average (RoIGA) was proposed by Rudrasis et al. in [68,69]. RoIGA is
a geometric approach to computing principal linear subspaces in finite and infinite dimensional
reproducing kernel Hilbert spaces. Among them, RolGA is shown as one of the fastest RST

algorithms for handling missing data corrupted by outliers.
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OUTLIERS

Table 2.2: Robust subspace tracking algorithms in the presence of both missing data and sparse

outliers.
. Missing Sparse Prior Warm Convergence Computational
Algorithm Approach
Data? Outliers? Information Start? Guarantee Complexity
GRASTA £1-norm + ADMM .
! v 4 X random X O(nr +1r?)
(2012 [50]) + Grassmannian
GOSUS Lo- ADMM
amorm X 4 v random X -
(2014 [51]) + Grassmannian
T Lo- + G i
pROS o-norm rassmannian X v X random X i
(2014 [52,53]) + Conjugate Gradient
MRMD Onli ax-
e manorn X 4 v random v -
(2014 [54]) regularization
ROSETA £y 2-norm + ADMM -+ .
b2 v v X random X O(nr?)
(2015 [55]) RLS
Roubst STAPSM
ouns APSM + CoSAMP* v 4 X random v O(knr?)
(2015 [56,57])
ReProCS-cPCA .
errobse ReProCS x v v batch v O(nrlog?(n) log(1/¢))°
(2016 [58])
OTNNR Truncated nuclear-norm
X 4 X random X -
(2016 [59]) regularization
OLP-RPCA lp-norm + singular .
’ g X v X random v O(nr +1r3)
(2017 [60]) value thresholding
L1-PCA £1-norm )
! X v X batch X O(nrw?)?
(2018 [61]) + Bit-flipping
PETRELS-CFAR
Robust statistic + RLS v v v batch X O(nr? + nw)*
(2018 [62])
s-ReProCS
sRetro ReProCS v v v batch v O(nrlog(n)log(1/€))®
(2019 [63])
NORST-mi
s ReProCS v X v batch v O(nrlog(1/e))®
(2019 [64])
L1-IRW {1-norm )
! X v X batch X O(k(nwr®p + 2" nr?))"
(2019 [65]) + Bit-flipping
OSTP Schatte Si-
ratien drasnon 4 X random v O(nr?)
(2019 [66]) + Block-proximal gradient
NORST
ReProCS v v v batch v O(nrlog(1/e))®
(2020 [67])
RoIGA & .
IGA?™ + Grassmannian X 4 X random X -
(2020 [68,69])
PETRELS-ADMM {;-norm + ADMM 5
v v v random v O(nr?)

(2021 [25,70])

+ RLS

# IGA: Intrinsic Grassmann Average

* CoSAMP: Compressed Sampling Orthogonal Matching Pursuit

+

o

w: length of training window

€ : a desired subspace recovery accuracy

¥ w: length of sliding window

t w: length of sliding window, k: number of iterations, and p: number of bit flips
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2.3.2 Recursive Least-Squares based Algorithms

Another line of the RST research is based on recursive least-squares (RLS) methods where the
underlying subspace is recursively updated by minimizing a (weighted) least-squares objective
function containing squared residuals and a penalty accounting for outliers. An efficient RLS-
based algorithm is parallel estimation and tracking by recursive least squares (PETRELS) [73]
which can be considered as an extension of the projection approximation ST (PAST) algo-

rithm [74] in order to handle missing data.

Inspired by PETRELS, several robust variants have been proposed to deal with outliers the
same line such as [25,55,62,70]. Robust online subspace estimation and tracking (ROSETA)
in [55] applies an adaptive step size at the stage of subspace estimation to enhance the convergence
rate. Meanwhile the main idea of PETRELS-CFAR algorithm [62] is to handle “outliers-removed”
data (i.e., outliers are first removed before performing ST) using a Constant False Alarm Rate
(CFAR) detector. Adopting the approach of PETRELS-CFAR, but aiming to improve RST per-
formance, we proposed an efficient algorithm called PETRELS-ADMM which is able to remove
outliers more effectively in [25,70]. It includes two main stages: outlier rejection and subspace
estimation and tracking. Outliers living in the measurement data are detected and removed by
a ADMM solver in an effective way. An improved PETRELS was then introduced to update the
underlying subspace. In practice, the convergence rate of RST-type algorithms is often faster

than that of Grassmmannian-based algorithms in slowly time-varying environments.

2.3.3 Recursive Projected Compressive Sensing based Algorithms

Recursive projected compressive sensing (ReProCS)-based algorithms [58, 63, 64, 67| are also

capable of tracking subspace in the presence of outliers and missing data.

ReProCS-type algorithms use the piecewise constant subspace change model described pre-
viously and start with a “good” estimate of the initial subspace. At each time, they first solve a
projected compressive sensing problem to derive the sparse outliers, e.g., using 1 minimization
followed by thresholding-based support estimation. After that, the subspace direction change is
then estimated by using projection-SVD [63].

ReProCS provides not only a memory-efficient and highly robust solution, but also a precise
subspace estimation compared to the state-of-the-arts. However, ReProCS-type algorithms often

require strong assumptions on subspace changes, outlier magnitudes, and accurate initialization.

2.3.4 Adaptive Projected Subgradient Method based Algorithms

Adaptive projected subgradient method (APSM) can provide a robust solution to the presence of

missing data and outliers [56,57]. Main advantages of APSM are that convex constraints can be
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readily incorporated and it can be used as an alternative to constructing the cost function from
the sum of square errors like RLS methods. The key idea of APSM stems from that unknown
parameters of regression models can be estimated from seeking a point in the intersection of all
the sets defined by measurements. In the context of ST, based on the latest observed signals, a
cost function is properly chosen at each time instant which scores a zero loss. The next task is
to reach the intersection point. To deal with sparse outliers, APSM-type algorithms detect the
time instances at which the observed signals are corrupted by outliers via using sparsity-aware
greedy techniques (e.g. compressed sampling orthogonal matching pursuit as used in [57]) and

then reject them.

2.3.5 Other Algorithms

Some other RST algorithms are able to track the underlying subspace over time from measure-
ments corrupted by sparse outliers such as MRMD [54], OTNNR [59], L1-PCA [61], L1-IRW [65],
OLP-RPCA [60], and OSTP [66]. Most of them use a ¢,-regularization (0 < p < 1) to discard

the effect of outliers. However, they are not designed for missing data.

2.4 Robust Subspace Tracking in the Presence of Impulsive Noise

By “impulsive”, we mean it can be burst noise |75, 76|, spherically invariant random variable
(SIRV) noise |77, 78], or alpha-stable noise [79,80]. We note that even though these algorithms
were described to reduce the effect of impulsive noise in general, most simulation results were
shown for burst noise only. RST algorithms that are robust to impulsive noise are summarized
in Table 2.3.

2.4.1 Robust Variants of PAST

To take into account impulsive noise, some methods proposed in the literature have mainly been
based on robust statistics so far. Among them, some studies have proposed robust variants
of PAST to deal with impulsive noise. In [81], a robust PAST (RPAST) was proposed. The
algorithm first detects the occurrence of the impulsive noise based on a threshold, and then elim-
inates undesirable effects by discarding contaminated observations. The threshold is determined
based on an empirical function of noise variance with the assumption that error vectors follow a

Gaussian distribution corrupted by additive impulsive noise.

Zhang et al. introduced another PAST’s variant called MCC-PAST via the maximum cor-
rentropy criterion (MCC) in [82,85,86]. MCC-PAST exploits a correntropy as a new statistic,
which can quantify both the time structures and statistics of two random processes, to deal with

impulsive noise. Accordingly, the maximum correntropy criterion (MCC) is applied as a substi-
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Table 2.3: Robust subspace tracking algorithms in the presence of impulsive noise.

) Burst SIRV a-stable Warm Convergence Computational
Algorithm Approach

noise noise noise Start? Guarantee  Complexity
RPAST
PAST -+ M-estimation v - v random v O(nr +r?)
(2006 [81])
MCC-PAST  Maxi t
aximum correntropy ) / andom X Onr +12)
(2014 [82])  criterion (MCC) + PAST
BNC-PAST Bounded nonlinear ,
- v random X O(nr +r7)
(2014 [83]) covariance (BNC) + PAST
robust KFVM Adaptive Kalman filter + O(nré + Zr2)+
v - - random X .
(2020 [84]) M-estimation O + 03)
ROBUSTA Weighted RLS +
& v v v random v O(nr +r?)

(2018 [62]) Mahalanobis distance

£: length of the sliding window

—: unknown or undetermined

tute for the mean square error criterion in the objective function of PAST. Based on the RLS
technique, the MCC-PAST algorithm was then developed. To extend the tracking capability of
the MCC-PAS, a variable forgetting factor (FF) technique was also employed in the recursion
process. In parallel, Shengyang et al. developed another robust variant of PAST, namely BNC-
PAST, to track the underlying subspace via a different criterion [83]. The authors defined a new
concept namely bounded non-linear covariance (BNC) to handle relative problems (including ST)
in the presence of non-Gaussian noise with a heavy-tailed distribution. In particular, bounded

nonlinear maps were employed to discard the effect of impulsive noise. Accordingly, a new robust
PAST algorithm based on BNC was derived.

2.4.2 Adaptive Kalman Filtering

Another good approach capable of handling impulsive noise is based on adaptive Kalaman fil-
tering. In [84], Liao et al. proposed a RST algorithm based on an adaptive Kalman filter with
variable number of measurements (KFVM). The main idea of using the KFVM is to deal with
the tracking of fast-varying subspace [87|. More concretely, when the underlying subspace varies
quickly, a small number of past observations are exploited in the recursion and vice versa. To
handle the impulsive noise, the M-estimate technique is incorporated into the KFVNM algorithm.
The complexity of the proposed KFVM-based algorithm is much higher than the PAST-based

algorithms especially when the number of observations used for subspace update is large.
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Table 2.4: Robust subspace tracking algorithms in the presence of colored noise.

Warm Guarantee = Computational

Algorithm Approach
Start? Convergence Complexity
IV-PAST
IV + PAST random X 3nl + O(nr)
(2012 [88])
IVPM
IV + propagator-based random X n(f+ 2r)
(2014 [89])
LOFF-VR-SREIV-PAST IV + PAST + 6nr + 512 4+ 4n
random v
(2020 [90]) adaptive forgetting factor +14r + O(nr)
bPAST Oblique projection )
© dne pro) random X 3nr? 4 3nr + O(r®)
(2005 [91]) + PAST
bYAST Oblique projection
© e proJ random X 5nr 4+ O(r? +n) + O(r®)
(2012 [92]) + YAST

£: the dimension of instrumental variable (IV) vector.

2.4.3 Weighted Recursive Least-Squares Method

Recently, based on robust statistics but different from the common two-step scheme mentioned
above, we proposed in [62] an RST algorithm with linear computational complexity based on a
weighted RLS approach, namely ROBUSTA. On the theoretical aspect, we provided a converge
analysis of ROBUSTA in the presence of SIRV noise. Interestingly, we showed that it also
corresponded to adaptive robust covariance estimation. ROBUSTA outperformed many state-
of-the-art algorithms for burst noise, SIRV noise, and alpha-stable noise. Also, it can be easily

adapted, in conjunction with pre-processing steps, to handle alpha-stable noise.

2.5 Robust Subspace Tracking in the Presence of Colored Noise

In the literature, RST algorithms that are robust to colored noise can be categorized into two

groups: (i) instrumental variable and (ii) oblique projection. We summarize these algorithms in
Table 2.5.

2.5.1 Instrumental Variable based Algorithms

For colored noise, one of the main directions is to use the instrumental variable (IV) which allows
avoiding biased estimate. An appealing benefit of this approach is easy to adapt derivation from
classical ST algorithms. While having improved performance, the computational complexity of
IV-based algorithms is often higher than the original ones due to the selection of the IV vector

size. Specifically, in [88], two direct extensions of the PAST algorithms, named IV-PAST and
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Table 2.5: Sparse subspace tracking algorithms

X Prior Warm  Guarantee Computational
Algorithm Approach
Information Start? Convergence Complexity
OIST Oja method
! X random 4 O(nr)
(2016 [93]) + Soft-thresholding
St ing SPCA Row truncation
reamins X batch v O(nr min(r, slogn))
(2015 [94]) + QR decomposition
01-PAST PAST method + ¢1-norm ) )
4 random X 3nr® + 3nr + O(r?)
(2016 [95]) sample matrix inverse
OVBSL Bayesian inference
Y v random X O(nr? + nr)
(2017 [96]) + {2 /£1-norm promotion
SS/DS-OPAST  2-step approach + OPAST 3nr? + 3nr + O(r3)/
X random X 9
(2017 [97]) + {1-norm approximation 3nr + O(nr”)
SS/GSS-FAPI 2-step approach + FAPI 2nr? + dnr + O(r?)/
X random v 5
(2020 [98]) + Givens rotations dnr 4 4dns + O(r?)

extended IV-PAST, were proposed. It is shown that their performance is enhanced, comparing
to the original ones. With the aim to improve further performance in subspace-based system
identification applications, several algorithms in conjunction with using IV were addressed in [89].
The key idea is to adapt the propagator approach by exploiting the relationship between array

signal processing and subspace identification.

Very recently, Chan et al. in [90] proposed a new robust variant of PAST capable of handing
linear models with complex coefficients, multiple outputs, and colored noises. In the proposed
method, the authors used a new adaptive forgetting factor and imposed a fo-norm regularization
into the objective function of PAST. In particular, the adaptive forgetting factor was obtained
at each time instant by minimizing the mean-square deviation of the estimator from an extended
IV linear model and IV-PAST. The additional ¢3-norm regularized term on the weight vectors
is aimed to reduce the error variance and prevent the ill-conditioned computation at low SNR
levels. Generally, if low computational complexity is concerned, IV-based methods require a IV

vector uncorrelated with the noise which is not always met in practice.

2.5.2 Oblique Projection based Algorithms

Another direction, which can avoid the above drawback, is based on oblique projection onto
the subspace manifold, such as [91,92]. It is due to the fact that the noise vector may lie in a
low dimension subspace instead of being treated as full rank in the observation space. Naturally,
oblique projections arise in the solution to recover the signal. Accordingly, Chen et al. proposed a
variant of PAST named oblique PAST (obPAST) to track the signal subspace in [91]. In the same
line, based on the well-known YAST algorithm [99], Florian et al. introduced the new obYAST
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algorithm in [92]. Both obPAST and obYAST minimized a new exponential least-squares cost
function where the orthogonal projection in the residual error term is replaced with an oblique
one. Experiment results indicate that this modification can facilitate the tracking ability of
PAST and YAST in the presence of colored noise. Table 2.4 reports further information about

these RST algorithms, e.g. convergence and complexity.

2.6 Sparse Subspace Tracking

Recently, sparse subspace estimation and tracking have been attracted more attention from the
signal processing community due to the fact that many modern datasets admit sparse represen-
tation has huge potential capabilities for analyzing them [100]. Although several algorithms have
been introduced for sparse subspace estimation in the batch setting (see [101-103] for examples),

there exist only a few studies on sparse ST algorithms so far.

In [93], Chuang and Yue proposed an adaptive algorithm called OIST (which stands for Oja’s
algorithm with Tterative Soft Thresholding) for online sparse PCA. The authors investigated
a rank-one spiked model in a high-dimension regime and indicated that the estimate of the
eigenvector from the sample covariance matrix is inconsistent. To alleviate it, they introduced
an extended version of Oja’s algorithm followed by a soft-thresholding step to promote sparsity
on the estimate. The asymptotic convergence, steady state, and phase transition of OIST were
also derived to understand its behavior in a high-dimension regime when the dimension is much
larger than the number of observations. However, OIST is designed for only rank-one subspaces,
i.e. lines. In parallel, a novel online sparse PCA algorithm able to deal with rank-k spiked models
(k > 1) was proposed via row truncation technique in [94]. More concretely, a simple ¢o-norm
based row truncation operator was introduced to zero out rows whose leverage score is below
a predefined threshold. At each time instant, the QR decomposition of the resulting truncated
covariance matrix was realized to update the principal subspace. The authors also proved that

the proposed algorithm is consistent in the high-dimension regime.

In [95], Xiaopeng et al. introduced a new robust variant of PAST called ¢1-PAST. Specifically,
the authors modified the cost function of PAST by adding a £;-norm constraint imposed on the
subspace matrix to control its sparsity. Accordingly, a new RLS algorithm like PAST was derived
to minimize the proposed objective function in an efficient way. The £1-PAST is robust and stable

even when the number of observations is small.

In [96], Giampouras et al. developed a novel robust sparse ST method namely OVBSL in
the lens of Bayesian inference. To deal with the sparsity constraint on the subspace matrix,
OVBSL utilized the group-sparsity inducing the convex f9/¢1-norm. Since it belongs to the
family of Bayesian methods, no fine-tuning parameter is required and the proposed algorithm is

fully automated.
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In this topic, we also proposed several two-stage approach based algorithms for sparse ST in
[97,98,104|. The main steps of the two-stage approach is as follows. We first utilize a well-known
ST algorithm from the literature (e.g. PAST or FAPI) to extract an orthonormal basis of the
underlying subspace. Then, we estimate a sparse weight matrix based on some criteria on sparsity
such that it can span the same subspace. For example, in [97], two new algorithms SS-OPAST
and DS-OPAST were designed for sparse system matrix and sparse source signals respectively.
We particularly exploited the natural gradient to find the sparsest matrix from the estimated
orthonormal matrix by OPAST. In [98,104], we used FAPI in the first stage and then derived
SS-FAPI, orthogonal SS-FAPI, and GSS-FAPI algorithms. Specifically, the sparsity criterion
considered there is differentiable and smoother than the previous one in [97]. Accordingly, it
facilitates the optimization by employing the Newton method and Taylor expansions. To sum

up, a performance comparison among these sparse ST algorithms is given in Table 2.5.

2.7 Conclusions

ST has shown an increased interest in signal processing with the aim of analysing real-time
big data problems and its improvement is in parallel to recent advances in optimization. In
this chapter, we provided a brief survey on adaptive algorithms for RST which were mostly
developed over the last decade. We highlighted three classes of RST algorithms for dealing
with non-Gaussian noises including sparse outliers, impulsive noise, and colored noise. The last
decade has also witnessed the widespread of high-dimensional data analysis in which sparse
representation-based methods are successfully applied to many signal processing applications.

Accordingly, sparse ST algorithms are also reviewed in this chapter.
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3.1. INTRODUCTION

In this chapter, we propose a novel algorithm, namely PETRELS-ADMM, to deal with subspace tracking
in the presence of outliers and missing data. The proposed approach consists of two main stages: outlier re-
jection and subspace estimation. In the first stage, alternating direction method of multipliers (ADMM)
is effectively exploited to detect outliers affecting the observed data. In the second stage, we propose an
improved version of the parallel estimation and tracking by recursive least squares (PETRELS) algorithm
to update the underlying subspace in the missing data context. We then present a theoretical convergence
analysis of PETRELS-ADMM which shows that it generates a sequence of subspace solutions converg-
ing to the optimum of its batch counterpart. The effectiveness of the proposed algorithm, as compared to

state-of-the-art algorithms, is illustrated on both simulated and real data.

3.1 Introduction

Subspace estimation plays an important role in signal processing with numerous applications
in wireless communications, radar, navigation, image/video processing, biomedical imaging,
etc. [105], especially processing modern datasets in today’s big and messy data [43]. It cor-
responds to estimating an appropriate r-dimensional subspace U of R" where r < n, from a
set of m observed data vectors {x;}I", or equivalently, a measurement data matrix X of size
n X m. To this end, the standard approach is to solve an eigen-problem in a batch manner
where the underlying subspace can be obtained from either singular value decomposition of the
data matrix or eigenvalue decomposition of its covariance matrix. In certain online or large-scale
applications, batch algorithms become inefficient due to their high computational complexity,

O(nmmin(m,n)), and memory cost, O(nm) [9].

In the signal processing literature, several good surveys of the standard algorithms for sub-
space tracking can be found, e.g., [19,105]. The algorithms can be categorized into three classes in
terms of their computational complexity: high complexity O(n?r), moderate complexity O(nr?)
and low complexity O(nr). Note that, there usually exists a trade-off among estimation accu-
racy, convergence rate and computational complexity. However, the performance of standard
algorithms may be degraded significantly if the measurement data are corrupted by even a small
number of outliers or missing observations [44]. Recent surveys [21,41,45] show that missing data
and outliers are ubiquitous and more and more common in the big data regime. This has led to
attempts to define robust variants of subspace learning, namely robust subspace tracking (RST),
or online robust PCA. In this work, we aim to investigate the RST problem in the presence of

both outliers and missing data.

Our study is also motivated by several emerging applications in diverse fields. In big data
analysis, subspace tracking is used to monitor dynamic cardiac magnetic resonance imaging
(MRI), track network-traffic anomalies [106] or mitigate radio frequency interference (RFI) in

radio astronomy [107]. Moreover, in 5G wireless communication, subspace tracking have recently
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been exploited for channel estimation in massive MIMO [108| and millimeter wave multiuser

MIMO [109].

3.1.1 Related Works

In the literature, there have been several studies on subspace tracking in the missing data con-
text. Among them, Grassmannian rank-one update subspace estimation (GROUSE) [72] is an
incremental gradient subspace algorithm that performs the stochastic gradient descent on the
Grassmannian manifold of the r-dimensional subspace. It belongs to the class of low complexity
and its convergence has recently been proved in [110]. A robust version of GROUSE for handling
outliers is Grassmannian robust adaptive subspace tracking (GRASTA) [50|. GRASTA first uses
an {1-norm cost function to reduce the effect of sparse outliers and then performs the incremental
gradient on the Grassmannian manifold of subspace U in a similar way as in GROUSE. Although
GRASTA is one of the fastest RST algorithms for handling missing data corrupted by outliers,

convergence analysis of this algorithm is not available.

Parallel estimation and tracking by recursive least squares (PETRELS) [73]| can be consid-
ered as an extension of the well-known projection approximation subspace tracking (PAST)
algorithm [74| in order to handle missing data. Specifically, PETRELS is a recursive least
squares-type algorithm applying the second order stochastic gradient descent to the cost func-
tion. Inspired by PETRELS, several variants have been proposed to deal with missing data in
the same line such as [55,62,106]. The subspace tracking algorithm in [106] is derived from
minimizing the sum of squared residuals, but adding a regularization of the nuclear norm of sub-
space U. Robust online subspace estimation and tracking (ROSETA) in [55] applies an adaptive
step size at the stage of subspace estimation to enhance the convergence rate. Meanwhile the
main idea of PETRELS-CFAR algorithm [62] is to handle “outliers-removed” data (i.e., out-
liers are first removed before performing subspace tracking) using a constant false alarm rate
(CFAR) detector. However, the convergence of these PETRELS-based algorithms has not been

mathematically proved yet.

Recursive projected compressive sensing (ReProCS)-based algorithms [63,64] are also able to
adaptively reconstruct a subspace from missing observations. They provide not only a memory-
efficient solution, but also a precise subspace estimation as compared to the state-of-the-arts.
However, they require strong assumptions on subspace changes, outlier magnitudes and accurate
initialization.

Other subspace tracking algorithms, able to deal with missing data, include pROST [53],
APSM [57], POPCA [111] and OVBSL [96]. They either require memorizing previous observa-

tions and good initialization or do not provide a convergence guarantee.

Among the subspace tracking algorithms reviewed above, only a few of them are robust in
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the presence of both outliers and missing observations, including GRASTA [50], pROST [53],
ROSETA [55], ReProCS-based algorithms [63,64] and PETRELS-CFAR |[62].

3.1.2 Contributions

Adopting the approach of PETRELS-CFAR [62] but aiming to improve RST performance, we
are interested in looking for a method that can remove outliers more effectively. Following our

preliminary study presented in [70], the main contributions of the chapter are as follows.

First, we propose a novel algorithm, namely PETRELS-ADMM, for the RST problem to
deal with both missing data and outliers. It includes two main stages: outlier rejection and
subspace estimation and tracking. Outliers residing in the measurement data are detected and
removed by our ADMM solver in an effective way. Particularly, we design an efficient augmented
Lagrangian alternating direction method for the ¢;-regularized loss minimization. Furthermore,
we propose an improved version of PETRELS, namely iPETRELS. It is observed that PETRELS
is ineffective when the fraction of missing data is too large. We thus add a regularization of the
{3 oo-norm, which aims to control the maximum #¢9-norm of rows in U, in the objective function
to avoid such performance loss. In addition, we introduce an adaptive step size to speed up the

convergence rate as well as enhance the subspace estimation accuracy.

Second, we provide a convergence analysis of the proposed algorithm where we show that
the solutions {U;};2; generated by PETRELS-ADMM converge to a stationary point of the
expected loss function f(U) asymptotically. To the best of our knowledge, this is a pioneer
analysis for RST algorithm’s convergence in the presence of both outliers and missing data,

under mild conditions.

Finally, we provide extensive experiments on both simulated and real data to illustrate the ef-
fectiveness of PETRELS-ADMM in three application contexts: robust subspace tracking, robust

matrix completion and video background-foreground separation.

There are several differences between PETRELS-ADMM and the state-of-the-art RST algo-
rithms. In particular, our mechanism for outlier rejection can facilitate the subspace estimation
ability of RST algorithms where “clean” data involve the process only, thus improving overall per-
formance. Excepting PETRELS-CFAR, the common principle of the state-of-the-art algorithms
is “outlier-resistant” (i.e., to have a “right” direction toward the true subspace). The algorithms
thus require robust cost functions as well as additional adaptive parameter selection. For exam-
ples, GRASTA and ROSETA use the £;-norm robust estimator to reduce the effect of outliers
while pROST applies the fp-norm one instead. However, there is no guarantee that the £,-
norm robust estimator (i.e., p € [0,1]) can provide an optimal solution because of non-convexity.
Accordingly, the effect of outliers can not be completely removed in tracking. This is why the al-

gorithms can fail in the appearance of a large fractions of outliers or significant subspace changes
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in practice. By contrast, “detect and skip” approach like PETRELS-CFAR can utilize advantage
(i.e., competitive performance) of the original PETRELS in missing observations and then treat

outliers as missing data to facilitate the subspace tracking.

Compared to PETRELS-CFAR, our ADMM solver may be efficient than CFAR . in terms of
memory cost and flexibility. The constant false alarm rate method (CFAR) [112] uses a moving
window to detect outliers (i.e., using both old and new observations at each time instant). By
contrast, our ADMM solver exploits only a new incoming data vector, hence requiring a lower
storage complexity. Moreover, the performance of CFAR depends on predefined parameters such
as the probability of false alarm and the size of the reference window [62]. Our ADMM solver does
not involve such parameters and hence it is more efficient. Third, PETRELS-CFAR may provide
an unstable solution in the presence of a high corruption fraction due to lack of regularization
(i.e., in the similar way as PETRELS).

Moreover, PETRELS-ADMM can be classified to a class of provable ST algorithms [63, 64|
where a performance guarantee is provided. Our proposed algorithm takes both advantages of

streaming solution (need only single-pass of data) and preserved convergence.

The structure of the chapter is organized as follows. Section 3.2 formulate the RST prob-
lem. Section 3.3 establishes our PETRELS-ADMM algorithm for RST and Section 3.4 gives
its theoretical convergence analysis. Section 3.5 presents extensive experiments to illustrate the
effectiveness of PETRELS-ADMM as compared to the state-of-the-art algorithms. Section 3.6

concludes the chapter.

3.2 Problem Formulation

3.2.1 Robust Subspace Tracking

Assume that at each time ¢, we observe a signal x; € R" satisfying the following model:
Xt = Pt(ﬁt +n; + St), (31)

where £; € R"™ is the true signal that lies in a low dimensional subspace! of U € R™*" (i.e.,
£; = Uw,, where wy is a weight vector and r < n), n; € R" is the noise vector, s; € R" is the
sparse outlier vector, while the diagonal matrix Py € R™*" is the observation mask indicating
whether the k-th entry of x; is observed (i.e., Py(k,k) = 1) or not (i.e., Py(k,k) = 0). For the

sake of convenience, let ); be the set of observed entries at time t.

Before introducing the RST formulation, we first define a loss function ¢(.) that remains

n an adaptive scheme, this subspace might be slowly time-varying, i.e., U = Uy, and hence the adaptive
RST algorithm introduced next would not only estimate U but also track its variations along the iterations.
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convex while still promoting sparsity: For a fixed subspace U € R™*" and a signal x € R™ under
an observation mask P, the loss function ¢(U, P, x) with respect to U and {P, x} is derived from

minimizing the projection residual on the observed entries and accounting for outliers as

(U, P,x) 2 min {(U,P,x,w,s) (3.2)
with (U, P,x,w,s) = |[P(Uw +s — x)||> + p|ls||, , (3.3)

where we here use the ¢; regularization to promote entry-wise sparsity on s and p > 0 is a

regularization parameter to control the degree of the sparsity.?

Now, given a streaming set of observed signals, X = {x;}!_; in (3.1), we wish to estimate a
rank-r matrix Uy € R™*" such that it can cover the span of the complete-data noiseless signal £;.

RST can be achieved via the following minimization problem:

t
U; = argmin [ft(U) 2 1Zﬁfﬂ'ﬁ(U, Pi,Xi)], (3.4)

UeRnXr t i—1

where the forgetting factor §; € (0,1] is to discount the effect of past observations. For the
convergence analysis, we will consider the expected cost f(U) on signals distributed by the true
data-generating distribution Pgat,, instead of the empirical cost f;(U). Thanks to the law of
large numbers, expectation of the observations without discounting (i.e., 8 = 1) converges to the

true value when ¢ tends to infinity,

U = argmin [f(U)
UeRan

SE i, [((UP,x) = lim ft(U)]. (3.5)

X ~ Pdata

From the past estimations {s;, w; }!_,, instead of minimizing the empirical cost function f;(U)

in (3.4), we propose to optimize the surrogate g,(U) of f;(U), which is defined as

t
1 i 2
9(U) =3 > B (HPz‘(UWi +si—x)|,+p ||Sz'\|1) : (3.6)
i=1
where {si,wi}§:1 are considered as constants. Note that, the surrogate function provides

an upper bound on f;(U). In our convergence analysis, we will prove that f;(U;) and g¢(Uy)
converge almost surely to the same limit. As a result, the solution U; obtained by minimizing

9:(U) is exactly the solution of f;(U) when ¢ tends to infinity.

2 The most direct way of enforcing sparsity constraints is to control the £o-norm of the solution which counts
the number of non-zero entries. Following this way, the problem of (3.2) is well specified but computationally
intractable. Interestingly, the ¢; relaxation can recover the original sparse solution of the ¢y problem while still
preserving convexity [113].
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3.2.2 Assumptions

We make the following assumptions for convenience of convergence analysis as well as helping
deploy our optimization algorithm:

(A-1): The data-generation distribution Pgat, has a compact support, x iAd Pgata. Indeed, real
data are often bounded such as audio, image and video, hence this assumption naturally holds
in many situations.

(A-2): U is constrained to the set U 2 {U e R™" U k][, £ 1,1 < k(U) < a} with a constant
a. The first constraint ||U. x[|, < 1 is not restrictive as it is considered to bound the scale of basis
vectors in U and hence prevents the arbitrarily very large values of U. While the low condition
number of the subspace x(U) is to prevent the ill-conditioned computation.

(A-3): Coefficients w are constrained to the set W = {w € R",w; < |w(i)| <wsq,i=1,2,...,r}
with two constants wi and ws, 0 < wy < wo. Since the data x and subspace U are assumed to
be bounded, it is natural that the subspace weight vector w is bounded too.

(A-4): The subspace changes at two successive time instances is small, i.e., the largest principal
angle between Uy and U;_1 is 0 < Opax < /2, or the distance between the two subspaces,
d(U¢, Uy_q) = sin(Omax), satisfies 0 < d(Uy, Up_q) < 1.

3.3 Proposed PETRELS-ADMM Algorithm

In this section, we present a novel algorithm, namely PETRELS-ADMM, for RST to handle
missing data in the presence of outliers. The main idea is to minimize the empirical cost function

g+ in (3.6) by updating outliers s;, weight vector w; and subspace Uy alternatively.

Under the assumption (A-2) that the underlying subspace U changes slowly, we can detect
outliers in s; by projecting the new observation x; into the space spanned by the formerly

estimated subspace U;_1 in the previous phase. Specifically, we solve the following minimization

problem:
{st, W} 2 argmin ((U;_1, Py, x;, W,s) (3.7)
with
UU1, Prxe, w,s) = [Pu(Uiw +s = x0)[, + sl - (3:8)

In the second phase, the subspace U; can be estimated by minimizing the sum of squared

residuals: N
tr(Pi) ~ 2 «a
- |Pi(Uw; —xi) |5, + gHUH%,m : (3.9)

t
1 t—i
U; = arg{rjmn n ;_1 I3
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Algorithm 1: Proposed PETRELS-ADMM

INPUT: A set of observed signals {x;}!_;,x; € R"*! observation masks {P;}I_, P; € R"*",
rank 7.
MAIN PROGRAM:

PROCEDURE:
fori=1,2,...,t
// Estimate outliers s; and coefficient w; using Algorithm 2:

. 2
{si,w;} = argmin [|P;(U;_;w + s — xi)H2 +pls|; -
s,W

// Update the new mask P,
{ﬁ;(hk) =Pi(k, k), ifsi(k) =0,

Pi(k,k) =0, otherwise.
// Estimate subspace U; using Algorithm 3:
1~ tr(P)) = s«
U, = in |- I VP (x; — U — Uz 1.
— l > =B~ OWI + IO
end for
OutpuT: U; € R™*"

a
where the regularization % HUH%OO is to bound the scale of vectors in U while the outliers s; has

been disregarded and the new observation 1?’Z are determined by the following rule:

P;(k, k) = Py(k, k), ifs;i(k) =0,

- (3.10)
P;(k, k) =0, otherwise,

which we aim to skip the corrupted entries of x;.

Our algorithm first applies the ADMM framework in [114], which has been widely used in pre-
vious works for solving (3.7), and then propose a modification of PETRELS [73] to handle (3.9).
In the outlier rejection stage, we emphasize here that we propose to focus on augmenting s
(as shown in (3.12)) to further annihilate outlier effect, unlike GRASTA and ROSETA which
focus on augmenting the residual error only.?> Meanwhile, we modify the subspace update step
in PETRELS by adding an adaptive step size n; € (0, 1] at each time instant ¢, instead of a
constant one as in the original version. The modification can be interpreted as an approximation

of Newton method. The proposed method is summarized in Algorithm 1.

3In GRASTA [50] and ROSETA [55], both the authors aimed to detect outliers s by solving the augmented
Lagrangian of (3.7) as follows

L(s,y,w)=|s]l, +y' (P(Uimiw +s —x:)) + g |IP:(Uaw +s — Xt)Hz
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Algorithm 2: Outlier Detection

INPUT: Observed signal x; € R"¥!, observation mask P; € R"*", the previous estimate
U,;_; € R™", maximum iteration K, penalty parameters pi, p2, absolute and relative
tolerances €,ps and €;¢]-

INITIALIZATION:

0 2% %} randomly.

e Choose {u’, s w
o {r’ e’ «+0on

MAIN PROGRAM:

PROCEDURE:
for k=0,1,.... K Cost
// Update w
whtl = (P, U;_)# Py (x; — s* +eF) 20,12 + Qur
zF = P,(U,_ whtl + 8% — xy) Qur
ehtl — ﬁzkﬁ-l + ﬁSHi(ZkH) Q,
// Update s
uktl = ﬁ(Pt(xt — Uy wh ) — py(s* —1r¥)) Qr
S = 8, (W 4 rh) o
PR+l — pk gkl gkl Q,
// Stopping criteria
if Hs]‘“'+1 — skH2 < \/Mé€abs + €rel ler’“HH2 break; Q,
end if
end for
OUTPUT: s, W

3.3.1 Online ADMM for Outlier Detection

We show in the following how to solve (3.7) step-by-step:

Update s;

To estimate outlier s; given w, we exploit the fact that (3.7) can be cast into the ADMM form

as follows:

min h(u) +¢(s) subject tou—s=0, (3.11)

u,s

where u is the additional decision variable, h(u) = 3||P¢(U;—1w + u — x,)||3 and ¢(s) = p||s||1.

The corresponding augmented Lagrangian with the dual variable vector 3 is thus given by

L(s,u,B) = q(s) +h(u) + BT (u—s) + %llUl — I3, (3.12)

42
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where p; > 0 is the regularization parameter*. Let r = 3/p; be the scaled dual variable, we can

rewrite the Lagrangian (3.12) as follows:
_ T P1 2
L(s,u,r) = q(s) + h(u) + prr (u —s) + = [lu—s]3. (3.13)

The optimization of (3.13) is achieved iteratively where we have the following update rule using

the scaled dual variable at the k-th iteration,

u*t! = argmin (h(u) +p1(cF) T (u—sF) + %Hu - skHi), (3.14)
u

sk*1 = argmin (q(s) —p(e®)Ts + %Hungrl — SH;), (3.15)
S

phHl — pk 4 gkt _ gkl (3.16)

In particular, we first exploit that the minimization (3.14) can be formulated as a convex

quadratic form:

. (14 T
uktt = argmin <2p1 Hu||§ - [Pt(Xt - Ut—lw) - Pl(Sk - I'k)] u)
u

1

= T3 (Pl = Uiaw) — (s = 1)), (3.17)

Meanwhile, (3.15) is a standard proximal minimization with the ¢;-norm [118] as

sF*1 = argmin (,0 Isll; + %HS = (u" 4 x") HZ)
S

=S

opr (W 1E), (3.18)

where S, () is a thresholding operator applied element-wise and defined as

0, if |z| < a,
So(x) =z —a, ifz>a, (3.19)

r+a, ifxr<-—a,

which is a proximity operator of the ¢;-norm. Finally, a simple update rule for the scaled dual

variable r can be given by the dual ascent, as

rf =k L AR (R, (3.20)

41t is referred to as the penalty parameter. Although the convergence rate of the proposed algorithm depends
on a specific chosen value, our convergence analysis indicates that the ADMM solver can converge for any positive
fixed penalty parameters. However, varying penalty parameters can give superior convergence in practice [114—
117].
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where the gradient V. (r*) is computed by V. (r*) = p(uf*t! — s¥+1) and +* > 0 is the step
size controlling the convergence rate. For ADMM methods, the regularization parameter is often
used as the the step size for updating dual variables [114]. Due to the scaled version r of the

dual variable B3, the step size v* is here set to be ¥¥ = 1/p; at the k-th iteration.

Update w;

To estimate wy given s, (3.7) can be recast into the following ADMM form:

1
min §HP,5(Ut_1W—|—S—xt)H§+y(e),

weW,ecRnx1 (3.21)

subject to P;(Ui_iw +s —x4) = e,

where y(e) is a convex regularizer function for the noise e, (e.g. y(e) = § le]|3, with ¢~ can
be chosen as the signal to noise ratio, SNR). The minimization (3.21) is equal to the following
optimization:

min  |le]|5 subject to Py (Upiw+s—x) =e. (3.22)
weWw,eeRnx1

However, the noise e is still affected by outliers because s may not be completely rejected in
each iteration. Therefore, (3.22) can be cast further into the ADMM form such that it can lie
between least squares (LS) and least absolute deviations to reduce the impact of outliers. The

Huber fitting can bring transition between the quadratic and absolute terms of Ly e(W,€)?, as
2
Lwe(w,e) = flP(e) 4 %HPt (Upmiw +s —x4) — e||2, (3.23)

where py > 0 is the penalty parameter whose characteristics are similar to that of p; and the

Huber function is given by [114]

#2/2,  al<,
(z) = (3.24)
lz| —1/2, |z| > 1.

fHub

As a result, e-updates for estimating w involves the proximity operator of the Huber function,

that is,

ek"'l = p2 Pt (Ut,1Wk+1 +s— Xt) +

-5 (P U wht!l 45— ) 3.25
1+ po L+ ((Umw™™ +s —xy) (3.25)

1+ p2

5Due to the natural f2-ball behavior of the noise (i.e., normal distributed vector) and the sparsity of some
unremoved parts of outliers, Huber fitting can be a reasonable choice. The Huber function consists of square and
linear terms, so it is less sensitive to variables which have a strong effect on the function ¢2-norm, but also does
not encourage the sparsity like £1-norm.
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Algorithm 3: Improved PETRELS for updating Uy,

INPUT: Observed signals {x;}{_;, observation mask f’t, the previous estimate U;_q, forgetting
factor §, regularization parameter «, the step size 1, & the previous matrix H;_.
MAIN PROGRAM:

PROCEDURE: Cost
P;x; — P,U,_
Ty — H tX¢ tUt 1Wt||2 O
L Tl
! 2 +1 e
if n, > n then n, = 1 end if O(1)
for m=1ton do
R = BR™, + f’t(m, m)w,w, r?
H* = R{* + 31 r
a, = (H") 'wy o(r?)
uit = uyy + 0:E P (m,m) (x50 (m) — w/ ™ )ay r
end for
OutpuT: U; € R™*"

Hence, at the (k + 1)-th iteration, w**! can be updated using the following closed-form solution

of the convex quadratic function:
whtl = (P,U )Py (x; — s + €F). (3.26)

To sum up, the rule for updating w; can be given by

Wk—i_1 = (PtUtfl)#Pt (Xt — s+ ek), (327)
2" = Py (Ui wht +5 — xy), (3.28)

k+1 _ P2 k+1 1 g k+1 3.29
© 1+p2z +1+p2 1+£(Z ) (3:29)

We note that, by using the Huber fitting operator, our algorithm is better in reducing the impact
of outliers than GRASTA and ROSETA which use fs-norm regularization.

The procedure is stopped when the number of iterations reaches the maximum or the accuracy

tolerance for the primal residual and dual norm has been met, i.e.,

Hs“1 — skH2 < V/Né€abs + €ral

plr’f“HQ , (3.30)

where €5 > 0 and €, > 0 are predefined tolerances for absolute and relative part respectively.
A reasonable range for the absolute tolerance may be [1076,1073], while [10~*,1072] is good for
the relative tolerance, see [114] for further details of the stopping criterion. The main steps of

the outlier detection are summarized as Algorithm 2.
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3.3.2 Improved PETRELS for Subspace Estimation

Having estimated s;, we optimize the following minimization
L . t— tr 2 (6% 2
U, = argmin [gt Zﬁ ' HP —Uw)||; + 2*t||U||2,oo ; (3.31)

where the observation mask P; is computed by (3.10).

Thanks to the parallel scheme of PETRELS [73], the optimal solution of the problem (3.31)

can be obtained by solving its subproblems at each row u™ of U, 1 < m < n:

u’ = argmln { Zﬂt i Pi(m ,m)(x;(m) — WiTum)2 + % [u™|3 |, (3.32)

=1

where &; = . In this way, we can speed up the subspace update by ignoring the u™ if the

tr(P;)
n
m-~th entry of x; is labeled as missing observation or outlier.

Thanks to Newton’s method, we can update each row of U; by the following rule:

-10G:(U
T A0 e , (3.33)
u um=u",
where the first derivative of g; is given by
0g:(U 2 L~ o
gtlim) = T ; 5t ZgiPi(ma m) (XZ(m) - Wz—rum)w: + ?um’ (334)
and the second derivative of g;, Hessian matrix, is given by
¢
2 = «
Hy(u™) =~ ;5,: &P (m,m)ww] + L (3.35)
1=
Specifically, the partial derivative agif}f ) at u” ; can be expressed by
9g:(U) _ 93:1(U)
R N L L T
o 2 =
+ ?(uﬁl —u’y) — E&Pt(m, m) (x¢(m) — w/] u™ )w ;. (3.36)
Since uj®; = argmin "’%—ulnSU) and the parameter a//t is small, so 8g:9u1mU) {um_u = 0 and then
t—1
09:(U -2 =~
gt(m) ~ —&Py(m,m) (xt(m) thu%" 1) T. (3.37)
Ou um—up | t
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llecll5 \2
lletll, (Hwtuz) +1
lwello

0

1

Figure 3.1: Adaptive step size 7.

Let us denote R}* = Zle ,Bfflflf’t(m, m)w;w, , the Hessian matrix can be rewritten by

~ 2 a
H 2 4, (u)) = 7 (R;” + 21). (3.38)

Therefore, a relaxed approximation of the recursive update (3.33) can be given by

u & ul” 4 06 Py(m,m) (x,(m) — w/ ™ )a,, (3.39)
where H]” = R" + §1°, a, = (H}") 'w; and 7; denotes the adaptive step size 7; € [0,1] at each
time instant ¢, instead of a constant as in the original PETRELS [73]. We here determine the

adaptive step size n; as follows

N = + with z; = lecll, (3.40)

i +1 [welly’

where the residual error e; is computed by e; = f’txt — f’tUt,lwt. Note that, the adaptive step
size n; can be expressed by 1, = sin(6;), see Fig. 3.1. The smaller angle 0, is, the closer to the

true subspace we are, the smaller step size is needed. The update is summarized in Algorithm 3.

3.3.3 Computational Complexity Analysis

The number of floating-point operations (flop) is used to measure the computational complexity
of the proposed PETRELS-ADMM. At the k-th iteration in the outlier detection phase, our
method requires O(Qr?) flops where € is average number of observed entries at each time instant
(Q < n). It is practically stated that the ADMM solver can converge within a few tens of
iterations [114] (also see Fig. 3.3). Therefore, the removal of outliers costs the averaged O(€2r?).
The complexity of the subspace estimation phase is also O(Qr?) as the original PETRELS [73].
The overall computational complexity of PETRELS-ADMM is of order O(€2r2) flops.

SH" € R™ " is a matrix of rank-one updates, so its inverse matrix can be efficiently computed recursively,
thanks to Sherman—Morrison formula [119]. Also, the small regularization parameter « > 0 can help the recursive
update having a better numerical stability. The computational complexity is of order O(r?).
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3.4 Performance Analysis

In this section, we provide a convergence analysis for the proposed PETRELS-ADMM algorithm.
Inspired by the results of convergence of empirical processes for online sparse coding in [120] and
online robust PCA in [121,122], we derive a theoretical approach to analyze the convergence
of values of the objective function {f;(U;)};2; as well as the solutions {U;}{2; generated by
PETRELS-ADMM.

Given assumptions defined in Section 3.2.2, our main theoretical result can be stated by the

following theorem:

Theorem 2 (Convergence of PETRELS-ADMM). In the stationary context, let {U:}52,
be the sequence of solutions generated by PETRELS-ADMM, then the sequence converges

to a stationary point of the expected loss function f(U) when t — oo.

Proof Sketch. Our proof can be divided into three main stages as follows: We first prove that
the solutions {Uy, st }+>1 generated by the PETRELS-ADMM algorithm are optimal w.r.t. the
cost function in (3.6). We then prove that a nonnegative sequence {g:(U)}$2, converges almost
surely where {U;}$°, is the sequence of optimal solutions generated by the PETRELS-ADMM
algorithm. After that, we prove that the surrogate {g:(U¢)}i2, converges almost surely to the
empirical loss function {f;(U;)}22, as well as the true loss function, i.e., g;(U;) “3 f(Uy) ¥
f(Uy), thanks to the central limit theorem.

Due to space limitation, we here present key results and report their proof sketch. The details

of their proofs are provided in our appendix. O
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Lemma 1 (Convergence of Algorithm 2). At each time t, let {s*,u* r* w* e*}2° be a
sequence generated by Algorithm 2 for outlier detection, there always exists a set of positive

numbers {cy, Cs, Cr, Cy, Ce} Such that, at each iteration, the minimizers satisfy

L(Sk—H’uk+17rk+1’wk+1’ek+1) < [’(Sk’ukjrkjwkjek) _ CuHuk _ uk+1H§

= sfls =S, — et et

whtl H; ek+1‘

. (3.41)

e

where the Lagrangian L(s,u,r,w,e) for updating these variables is a combination of two
functions (3.13) and (3.23), as

£(s,u,r,w,e) = q(s) +h(w) + prr” (a—3) + 5 u—s]3

2 2
+ () + 2| Py(Upmrw +5 —x;) — 5. (3.42)
The asymptotic variation of s* (i.e., outliers) is then given by

—sw ~0. (3.43)

Proof Sketch. We state the following proposition, which is in the same line as in previous con-

vergence analysis of ADMM algorithms [123,124], used to prove the first part of lemma 1.

Proposition 1. Let {s’“,u”“,r”“,wk,e‘yf}zoz1 be a sequence generated by Algorithm 2 and

denote qF be one of these variables, the minimizer q*+1 of (3.13) satisfies

L(qkﬂ, ) < E(qk, ) = chqk — quH; (3.44)

where ¢q 15 a positive number.

As a result, the cluster {s* u¥ r¥ w* e*} converges to stationary point of L(s,u,r, w,e)

when k — oo and it also implies that the sequence {sj}7°, is convergent, i.c.,
thEMﬂ—sw =0. (3.45)

O
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Proposition 2 (Convexity of the surrogate functions ¢¢(U)). Given assumptions in Sec-
tion 3.2.2, the surrogate function g:(U) defined in Eq. (3.6) is not only strongly convex,
but also Lipschitz function, i.e., there always exists two positive numbers my and mo such
that

my |[Uss — Uillz < [9:(Uss1) — 9:(U)), (3.46)
my [[Usr1 — Uellp > |9:(Usga) — g:(Uy)|.- (3.47)

Proof Sketch. To prove that g,(U) is strongly convex, we state the following facts: ¢;(U) is con-
tinuous and differentiable; its second derivative is a positive semi-definite matrix (i.e., Vi;g:(U) =
mI); and the domain of g;(U) is convex. In order to satisfy the Lipschitz condition, we show

that the first derivative of g;(U) is bounded. O

Lemma 2 (Convergence of Algorithm 3). Given an outlier vector s; generated by Algo-
rithm 2 at each time instant t, Algorithm 8 can provide a local optimal solution Uy for
minimizing g¢(U). Moreover, the asymptotic variation of estimated subspaces {Ug}>1 is

given by

1

U - Vsl %5 0(3). (3.48)

Proof. To establish the convergence, we exploit the fact that our modification can be seen as an

approximate of the Newton method,
U 2 Uy — e [Hfo(Ui1)] ' V35U, (3.49)

where H f,(U,_1) and V§(U,_1) are the Hessian matrix and gradient of the function §;(U) at
U;_1, as shown in Section 3.3.2. It implies that the estimated U; converges to the stationary
point of ¢,(U).

Furthermore, since g;(U) is strongly convex and Lipschitz function w.r.t the variable U as

shown in Proposition 2, we have the following inequality

m1 |Ups1 — Uell3 < [96(Ups1) — g:(Up)| < ma U1 — Uyl o (3.50)
me9 1

U,-U < = = — . .01

10~ Ul < 22 =03 351

Note that the positive number mgo = O(1/t) is already given in the proof of Proposition 2 in the

supplemental material, while m; is a constant. O

50



3.4. PERFORMANCE ANALYSIS

Lemma 3 (Convergence of the surrogate function g,(U)). Without discounting past ob-
servations, let {U}72, be a sequence of solutions generated by Algorithm 1 at each time

instant t, the sequence {g:(Uy)}$2, converges almost surely, i.e.,

Z ‘E[gt+1(Ut+1) = gt(Ut)|]:t] ‘ < +00 a.s., (352)
t=1

where {Fi b0 is the filtration of the past estimations at time instant t.

Proof Sketch. Let us define the indicator function d; as follows

it E[gt+1(Ut+1) - Qt(Ut)‘]'—t} >0,

0 otherwise.

1>

Wy (3.53)

According to the quasi-martingale convergence theorem [125, Section 4.4], in order to show the

convergence of the nonnegative stochastic process {g:(Uy)}72;, we will prove
o
Z E |:(5tE [gt+1(Ut+1) - gt(Ut) ‘ft]] < Q. (3.54)
t=0

In particular, we first indicate the following inequality:

(U, Py, x — f(U
9t+1(Upg1) — 9:(Uy) < (U, t+1ti+11) Jul t). (3.55)

Since E[E(Ut, Py, xt)] = f(U,), we have a nice property:

E[Qt+1(Ut+1) - gt(Ut)\}"t} < EAU:, Pt“’z(:rll) — #:(U0)|7] = f(Ut)t 4__ {t(Ut). (3.56)
We then have
]E[CStE [9t41(Ug1) — gt(Ut)}]:t]] < E[\/i(f(Ut) - ft(Ut))} \/i(tl—i—l) (3.57)

Under the given assumptions, we exploit the fact that the set of measurable functions {¢(U;, P, x)}i>1
defined in (3.2) is P-Donsker. Therefore, the centered and scaled version of the empirical function

f:(Uy) satisfies the following proposition:
E[VE(f(U) - fi(U)] = 0(1), (3.58)

thanks to Donsker theorem [126, Sec 19.2]. Furthermore, we also indicate that the sum Y 52, 1/(V/E(t + 1))
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3.4. PERFORMANCE ANALYSIS

converges. The two facts result in
o
ZE[5E Jt+1 Ut+1) gt(Ut)’]:tH < Q. (3.59)
t=0

Since ¢g;(U;) > 0, we can conclude that {g:(U;)}+>0 is quasi-martingale and converges almost

surely. O

' ")

Lemma 4 (Convergence of the empirical loss function f;(U)). The empirical loss functions

f:(Uy) and its surrogate g,(Uy) converge to the same limit, i.e.,

gt(Ut) ﬁ) ft(Ut) (360)

Proof Sketch. We begin the proof with providing the following inequality:

9:(Uy) — fi(Uy) (U, Piy1,xe41) — fi(Up)
<y — .
t+1 SU Ut t+1 ’ (3.61)
(8-1) (S-2)

where u; 2 9¢+(Uy). We then prove that the two sequences (S-1)-(S-2) converge almost surely.

As a result, the sequence {(g;(Uy) — ft(Ut))tJ%l} also convergence almost surely, i.e.,

S (0e(W) = V) 5 <. (3.62)
t=0

In parallel, we exploit that the real sequence {H%}tzo diverges, i.e., Y 1o, H% = oo. It implies
that g,(U;) — f;(Uy) converges. O

Corollary 1. The expected loss function { f(U¢)}72, converges almost surely when t — oo.

Proof. Since f(Uy) % f(Uy) and ¢,(Uy) 8 ft(Uy), then gt(Ut) f(Ut) Since ¢;(Uy)

converges almost surely, f(Uy) also converges almost surely when ¢t — co. O

7

Corollary 2. When t — oo, let U, = argmin ¢g;(U), we have
UGRHXT

L
f:(Uy) < £:(U) + 5HU — U3,V U e R™7, (3.63)

where L is a positive constant. In other words, Uy is the minimum point of f(U).
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Proof Sketch. Let us denote the error function e;(U) = ¢:(U) — f(U).

Due to ¢:(U;) 3 £;(Uy) when t — oo, we have Ve;(U;) = 0 and hence the following

inequality
L
|Ve(U)] < S0 - Uil (3.64)

It is therefore that

let(U) — er(Uy)|
U - Uillp

L
< JIU-Uir, (3.65)

thanks to the mean value theorem. In other word, we have |e;(U)| < %HU — Uy||% because of
a.s.
et(Ut) — 0.

In addition, for all U € R™*", we always have f;(U;) < ¢,(U). Therefore, we can conclude
the corollary as follows

F(U) < 0i(U) = (V) +(U) < fl(0) + o[ U -T2 (3.66)

It ends the proof. O

3.5 Experiments

In this section, we evaluate the performance of the proposed algorithm by comparing it to the
state-of-the-art in three scenarios relative to: robust subspace tracking, robust matrix completion
and video background-foreground separation respectively. In particular, extensive experiments on
simulated data are conducted to demonstrate the convergence and robustness of our PETRELS-
ADMM algorithm for subspace tracking and matrix completion. While four real video sequences
are used to illustrate the effectiveness of PETRELS-ADMM for background-foreground separa-

tion.

3.5.1 Robust Subspace Tracking

In the following experiments, data x; at each time ¢ is generated randomly using the standard

signal model as in (3.1)
Xt — Pt(th +n; + St), (367)

where U € R™ " denotes a mixing matrix, w; is a random vector living on R" space (i.e.,
£; = Uw;) and they are Gaussian i.i.d. of pdf A/(0,1); n; represents the white Gaussian noise
N(0,0?), with SNR = —101log;(0?) is the signal-to-noise ratio to control the impact of noise
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on algorithm performance; and s; is uniform i.i.d. over [0,fac-outlier| given the magnitude
fac-outlier of outliers that aim to create a space for outliers. Indices of missing entries and
outliers are generated randomly using the Bernoulli model with the probability wmissing and
Woutlier respectively. The two probabilities represent the density of missing entries and outliers

in the data.

In order to evaluate the subspace estimation accuracy, we use the subspace estimation per-
formance (SEP) [62] metric

sep— 1y~ (UL 1~ Unl& U}
L~ tr{U? (UsUl)Ues)

=1 es-i

(3.68)

where L is the number of independent runs, Ugy and Ueg; are the true and the estimated sub-
spaces at the i-th run respectively. Particularly, the denominator measures the sum of the squares
of the cosines of the principal angles between Ugg; and Ugy, while the numerator evaluates the
similar sum but for the two subspaces Ues; and the orthogonal complement UL . Accordingly,

the lower SEP is, the better the algorithm performance is.

State-of-the-art algorithms for comparison are: GRASTA [50], ROSETA [55] and PETRELS-
CFAR [62], ReProCS [63] and NORST [64]. Throughout our experiments, their algorithm pa-
rameters are set by default as mentioned in the algorithms. In particular, we set a penalty
parameter p = 1.8 and a constant step-size scale C = 2 in GRASTA. An adaptive step size of
ROSETA is initialized at pg = ﬁ with C' = 8 and 1y = 99, while two thresholds for controlling
the step size are set at 7o = 50 and 7p;gn, = 100. PETRELS-CFAR includes a forgetting factor
set at A = 0.999, a window size N,, = 150 and a false alarm probability P, varied from [0.1,0.7]
depended on the outlier intensity. Both ReProCS and NORST require several predefined pa-
rameters, including tain = 200 data samples, a = 60, K = 33 and weyq = 7.8 X 1074, For our
algorithm, we set the penalty parameters at 1.5, the regularization parameter o = 0.1 and the
step-size threshold 1 = sin(7/3), while the maximum number of iterations for outlier detection

phase is fixed at K = 50. Matlab codes are available online”. The experimental results are

averaged over 100 independent runs.

3.5.1.1 Convergence of PETRELS-ADMM

To demonstrate the convergence of our algorithm, we use a synthetic data whose number of row
n = 50, rank r» = 2, and 5000 vector samples with 90% entries observed on average. Specifically,

the outlier density woutlier 1S varied from 0.05 to 0.4, while the outlier intensity is set at three

TGRASTA: https:/ /sites.google.com /site/hejunzz/grasta
ROSETA: http://www.merl.com/research/license#ROSETA
ReProCS: https://github.com/praneethmurthy /ReProCS
Our code: https://github.com/thanhtbt/RST
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Figure 3.2: Convergence of PETRELS-ADMM in terms of the variation [|s¥T! —s¥|lo: n =
50,7 = 2, 90% entries observed and outlier density woutiier = 0.1.
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Figure 3.3: Convergence of PETRELS-ADMM in terms of the variation [|[Ugy1 — Ugllp: n =
50,7 = 2, 90% entries observed and outlier intensity fac-outlier = 10.

values representing a low, medium and high level (i.e., fac-outlier = 0.1, 1 and 10 respectively).
The penalty parameter p varies in the range [0.1, 1.5]. Also, two noise levels are considered, with
SNR € {0,10} dB. The results are shown as in Fig. 3.2 and Fig. 3.3.

Fig. 3.2 shows the convergence behavior of PETRELS-ADMM w.r.t the two variables: fac-outlier
and the weight p. We can see that, the variation of {s* Hi>1 always converges in all testing cases.

When the penalty parameter p > 0.5, the convergence rate is fast, i.e. the variation Hs”chl

k
- s,
can converge in 50 iterations in both low- and high-noise cases. The results are practical ev-

idences of Lemma 1. Similarly, Fig. 3.3 shows that the convergence of the variations of the
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sequence {U;}¢>0, generated by PETRELS- ADMM follows the theoretical behavior proved in
Lemma 2, that is, |[U; — Ups1||p 3 O(1/t) almost surely.

3.5.1.2 Outlier Detection

Following the above experiment, we next assess the ability of PETRELS-ADMM for outlier detec-
tion against the noise level. The three statistical metrics including Sensitivity (SEN) and Speci-
ficity (SEP) and Accuracy (ACC) are used to evaluate its outlier detection performance [127].
Particularly, SEN measures the percentage of outliers detected correctly over the total outliers
in the measurement data. SEP is similar to SEN, but for normal entries and ACC indicates
how the estimator makes the correct detection. We use the same data above, but 20% of the
observations are missing. The outlier density woutiier is set at 0.2, while two intensity levels are

considered, with fac-outlier € {1,10}.

Fig. 3.4 illustrates the outlier detection performance of PETRELS-ADMM versus the noise
level SNR. As can be seen that when we increase the value of SNR from —20 dB to 20 dB, the
detection accuracy goes up first and then converges towards a constant level. At very low SNRs
(i.e., < 0 dB), the proposed algorithm does not work well in which many normal entries are
labeled as outliers, although the number of correctly detected outliers are high. When SNR > 0
dB, PETRELS-ADMM achieves a competitive prediction accuracy with respect to all three

evaluation metrics.

Fig. 3.5 provides more practical evidences to demonstrate the effectiveness of PETRELS-
ADMM for the outlier detection. Particularly, the locations of outliers s; are well detected even

when the measurement data is corrupted by noise with a moderate SNR value (e.g. 10 dB). Also,

||St*§t||2)
lIstll2

in both cases (e.g. RE = 0.0616 at the 20 dB noise level). As a result, the corrupted signals are

amplitude of the outliers is recovered nearly correctly with a small relative error (RE =

also well reconstructed, as illustrated in Fig. 3.5(b) and (d).

3.5.1.3 Robustness of PETRELS-ADMM

To investigate the robustness of PETRELS-ADMM, we vary the outlier intensity, density and
missing density and then measure the SEP metric. Moreover, we also demonstrate the effective-

ness of PETRELS-ADMM against noisy and time-varying environments.

Impact of outlier intensity on algorithm performance

We fix n = 50, r = 2, 90% entries observed, outlier density woutlier = 0.1, SNR= 20 dB while
varying fac-outlier in the range [0.1,10]. We can see from Fig. 3.6 that PETRELS-ADMM al-

ways outperforms other state-of-the-art algorithms in all testing cases with different fac-outlier
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Figure 3.4: Outlier detection accuracy versus the noise level: n = 50, r = 2, 80% entries observed
and 20% outliers.

values. At low outlier intensity (i.e., fac-outlier < 1), all algorithms yield good accuracy with fast
convergences, though ROSETA and ReProCS obtain the higher SEP (i.e., ~ 1073) as compared
to that of the four remaining algorithms. In particular, PETRELS-ADMM provides the best
subspace estimation accuracy, i.e., SEP ~ 107 in both cases (see Fig. 3.6(a)-(b)). At a high in-
tensity level (e.g. fac-outlier =5 or 10), PETRELS-ADMM again provides the best performance
in terms of both convergence rate and accuracy. GRASTA performs similarly to ReProCS and
slightly worse than PETRELS-CFAR (i.e., their SEP values are around 10~%). While ROSETA
and NORST fail to recover the underlying subspace in the presence of strong outliers. Note that,
in all four experiments above, PETRELS-ADMM always obtains the best SEP value of around

107° and hence is robust to outlier intensity.

Impact of outlier density on algorithm performance

We fix n = 50, r = 2, 90% entries observed, outlier intensity fac-outlier = 5, SNR = 20 dB while
varying the outlier density woutlier in the range [0.05, 0.4]. The results are shown as in Fig. 3.7.
PETRELS-ADMM outperforms the four remaining algorithms in this context. In particular,
our algorithm performs very well even when the fraction of outliers is high (e.g. woutlier = 0.4).
By contrast, four algorithms including GRASTA, ROSETA, ReProCS and NORST may fail to
track subspace in the case of a high outlier density (see Fig. 3.7(d)). The PETRELS-CFAR
works well but has a lower convergence rate and accuracy in terms of SEP metric as compared to
PETRELS-ADMM. When the measurement data is corrupted by a smaller number of outliers,
PETRELS-ADMM still provides better performance than the others, as shown in Fig. 3.7 (a)-(c).
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Figure 3.6: Impact of outlier intensity on algorithm performance: n = 50, r = 2, 90% entries
observed, outlier density woutlier = 0.1 and SNR = 20 dB.

Impact of the density of missing entries on algorithm performance

Following the above experiments, we change the number of missing entries in the measurement
data by varying the probability wmissing While fixing the other attributes. The results are reported
in Fig. 7.13 and Fig. 3.9. In particular, the effect of wijssing on algorithm performance is presented
in Fig. 7.13. Similarly, PETRELS-ADMM yields the best performance in four cases of missing
observations. Three algorithms including PETRELS-CFAR, GRASTA and ReProCS provide
good performance but with slower convergence rate and accuracy, while ROSETA and NORST
have failed again in this task due to the high outlier intensity (i.e., fac-outlier = 10). As can

be seen from Fig. 3.9(a)-(c) that the state-of-the-art algorithms only perform well when the
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Figure 3.7: Impact of outlier density on algorithm performance: n = 50, r = 2, 90% entries
observed, outlier intensity fac-outlier = 10 and SNR = 20 dB.

number of corruptions is smaller than half the number of entries in the data measurement.
While PETRELS-ADMM still obtains the reasonable subspace estimation performance in terms
of SEP (i.e., = 1073) in the case of very high corruptions, see Fig. 3.9(d).

Noisy and Time-Varying Environments

We first investigate the effect of the noise on the performance of PETRELS-ADMM in comparison
with the state-of-the-art algorithms. We vary the value of SNR in the range from 0 dB to 20 dB
and assess their performance on the same data above. Experimental results are illustrated in

Fig. 3.10. As can be seen that the convergence rate of PETRELS-ADMM is not affected by
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Figure 3.8: Impact of the density of missing entries on algorithm performance: n = 50,7 = 2,
outlier density woutlier = 0.1, outlier intensity fac-outlier = 10 and SNR = 20 dB.

SNR, but only its estimation accuracy, as shown in Fig. 3.10(a). Specifically, when we decrease
the value of SNR, the estimation error between the true subspace and the estimation increases
gradually. At a high SNR level (e.g. 20 dB), previous experiments indicate that PETRELS-
ADMM outperforms state-of-the-art algorithms, see Fig. 3.6-3.9. At a low SNR level (e.g. 5
dB), PETRELS-ADMM yields the best estimation accuracy as well as convergence rate again,
as illustrated in Fig. 3.10(b). Similar outstanding performance of PETRELS-ADMM were also
observed at lower SNR levels of 10, 5 or 0 dB (please see Figs. 8-10 of the supplementary

material).

The robustness of PETRELS-ADMM is next investigated against nonstationary and time-
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Figure 3.9: Impact of the corruption fraction by missing data and outliers on algorithm perfor-
mance: n = 50,7 = 2 and fac-outlier = 10 and SNR = 20 dB.

varying environments. Particularly, the true subspace U is supposed to be varying with time
under the model U; = (1 — €)Uy—; + &Ny, where N, € R™" is a Gaussian noise matrix
(zero-mean and unit-variance) and ¢ is to control the subspace change which is chosen among
{1071,1072,1073}. We use the same signal model as in the previous tasks and 1000 vector sam-
ples. Also, we create an abrupt change at t = 500 to see how fast the proposed algorithm can
converge. We measure the performance of PETRELS-ADMM at two noise levels (SNR = 5 and
10 dB) with different corruption fractions. Experimental results are illustrated in Fig. 7.12(a)-
(d). In the same manner to the effect of the noise, the time-varying factor ¢ does not affect

the convergence rate of PETRELS-ADMM, but only its subspace estimation. Fig. 7.12 shows
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Figure 3.10: Impact of the additive noise on algorithm performance: n = 50,r = 2, 90% entries
observed and 10% outliers with intensity fac-outlier = 10.

that the estimation accuracy of the proposed algorithm will decrease if the time-varying factor
¢ increases. When the underlying subspace varies slowly (e.g. ¢ < 1072), the resulting values
of SEP, which always converge towards an error floor, indicate that PETRELS-ADMM can be

robust to slowly time-varying scenarios.

3.5.2 Robust Matrix Completion

We compare here the robust matrix completion (RMC) performance using PETRELS-ADMM
with GRASTA [50], LRGeomGC [128] and RPCA-GD [129].

The measurement data X = P ® (UW + S + N) used for this task corresponds to the rank-2
matrices of size of 400 x 400, where the operator ® denotes the Hadamard product. Particularly,
we generated the mixing matrix U € R*99%2 and the coefficient matrix W € R?*490 at random.
Their entries were random variables that follow Gaussian distribution with zero mean and unit
variance. The measurement data X was corrupted by a white Gaussian noise N e R400x400
whose SNR is fixed at 40 dB. In the literature, the SNR value of around 40 dB is used for
performance evaluation of completion algorithms due to missing observations and/or outliers at
low-noise conditions [130]. The data matrix was affected by different percentages of missing (P)

and outliers (S) from 0% — 90%. The location and value of corrupted entries (including missing

and outliers) were uniformly distributed.

Fig. 3.12 shows that the proposed algorithm of PETRELS-ADMM based RMC outper-
forms GRASTA, LRGeomGC and RPCA-GD. At low outlier intensity (i.e., fac-outlier = 0.1),
PETRELS-ADMM based RMC, LRGeomGC and RCPA-GD provide excellent performance even
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(a) SNR = 10 dB, Wmissing = 0.05 and wouttier = 0.05.  (b) SNR = 5 dB, Wmissing = 0.05 and woutlier = 0.05.
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Figure 3.11: PETRELS-ADMM in time-varying scenarios.

when the data is corrupted by a very high corruption fraction. At high outlier intensity (i.e.,
fac-outlier > 1), PETRELS-ADMM based RMC provides the best matrix reconstruction error
performance, GRASTA still retain good performance, while RPCA-GD and LRGeomGC fail to

recover corrupted entries.

3.5.3 Video Background/Foreground Separation

We further illustrate the effectiveness of the proposed PETRELS-ADMM algorithm in the ap-
plication of RST for video background/foreground separation, and compare with GRASTA
and PETRELS-CFAR. We use four real video sequences for this task, including Hall, Lobby,
Sidewalk and Highway datasets. In particular, the two former datasets are from GRASTA’s
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Figure 3.12: Effect of outlier intensity on robust matrix completion performance. White color
denotes perfect recovery, black color denotes failure and gray colour is in between.

homepage®, while the two latter datasets are from CD.net2012° [131]. The Hall dataset consists

of 3584 frames of size 174 x 144 pixels, while the Lobby dataset has 1546 frames of size 144 x 176

pixels. The Sidewalk dataset includes 1200 frames of size 240 x 352 pixels. Highway dataset

has 1700 frames of size 240 x 320 pixels. We can see from Fig. 3.13, PETRELS-ADMM is capable

of detecting objects in video and provides competitive performance as compared to GRASTA

and PETRELS-CFAR.

8https://sites.google.com /site/hejunzz/grasta
http://jacarini.dinf.usherbrooke.ca/dataset2012
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Video Frame PETRELS-ADMM PETRELS-CFAR GRASTA

Figure 3.13: Qualitative illustration of video background-foreground separation application.
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3.6 Conclusions

In this chapter, we have proposed an efficient algorithm, namely PETRELS-ADMM, for the
robust subspace tracking problem to handle missing data in the presence of outliers. By con-
verting the original RST problem to a surrogate one, which facilitates the tracking ability, we
have derived an online implementation for outlier rejection with a low computational complex-
ity and a fast convergence rate while still retaining a high subspace estimation performance.
We have established a theoretical convergence which guarantees that the solutions generated by
PETRELS-ADMM will converge to a stationary point asymptotically. The simulation results
have suggested that our algorithm is more effective than the state-of-the-art algorithms for ro-
bust subspace tracking and robust matrix completion. The effectiveness of PETRELS-ADMM

was also verified for the problem of video background-foreground separation.

3.7 Appendix

3.7.1 Proof of Lemma 1

Follow the line as in previous convergence analysis of ADMM algorithms [123,124], we can derive

the proof of Lemma 1 as follows

3.7.1.1 Proof of Proposition (P-1)

The minimizer u**! defined in (3.15) satisfies
E(sk,uk+1,rk,wk,ek) < L(sF,uF, r* Wk ek) — cuHuk — uk“H;. (P-1)
At the k-th iteration, the u-update in fact minimizes the objective function in (3.14), as

k+1

1
= argmin | Ly x(u,.) = o

u
u 2

2 k_ kT
[[ull3 = [Pt(xt —Upiw) —pi(s" —r )} ul.  (3.69)
The function Ly (u,.) is strongly convex with a positive constant (1 4 p1), i.e., the Hessian of
Ly k(u,.) is given by V2L, k(u,.) = (1+ p1)I. Since u**! = argmin,, Ly x(u,.), we have the fact
Ly r(uFT ) < L, ,(u”,.). Therefore, we obtain the following inequality

2
29

(3.70)

)

Euk(uk, ) — Eu,k(ukﬂ, ) > %Huk+1 — uk|

thanks to Proposition 19. It results in the Proposition (P-1).
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3.7.1.2 Proof of Proposition (P-2)

The minimizer s**! defined in (3.18) satisfies
2
E(sk+1,uk+1,rk,wk,ek) < E(sk,ukﬂ,rk,wk,ek) — csHsk — sk+1H2. (P-2)

At the k-th iteration, the variable s is updated by minimizing the objective function Lg (s, .) in
Eq. (3.15), as

S+ = argmin [Lo4(s,.) = plsl; + 2 s — (w1 e [5]. (3.71)

S

k+

We exploit that if given uf*! and r*, then both functions of the ¢;-norm |[s||; and fs-norm

Hs — (ubt ¢ rk)Hg are convex, so the Lgx(s,.) w.r.t. s is also convex. It is therefore that for

any s¥, s¥T1 € S, we always have

Ls j; (sk, ) > Lk (sk“, ) + <sk — gkt VL (skH, )> + %Hslﬁ'1 — Sk”; (3.72)

thanks to the Proposition 3.

Since s = argming Lg 4 (s, .), the first derivative VLs (s**1,.) = 0 and hence
Lsp(s®,) > Lon(sF,.). (3.73)
In other word, there always exists a nonnegative number cg > 0 such that

Ls i (sk, ) > L (skH, ) + %Hsl~C+1 — sng (3.74)

As a result, we have

K
IS =Ml < D0 Lonlsh ) = Lan(sH ) = Lon(sh ) = Loa(s"7). (3.75)
i=1

N =

K
k=1

Let K — oo, we then have > 7 ||s**! — s¥||2 < co. It ends the proof of (P-2) and the second

part of Lemma 1.

3.7.1.3 Proof of Proposition (P-3)

The minimizer r**! defined in (3.16) satisfies

L(s5+ uFH b+ wh o) < £(sH ub Lk wh k) — e, et — R 2, (P-3)
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Follow the r-update in Eq. (3.16), it is easy to verify that

ﬁ(sk+17uk+1’rk+lywk7ek) = (rk +ghtl uk+1)T(uk+1 _ Sk—l—l) + A

= ()T (W =)yt - sE D A

_ E(Sk+1,uk+1,rk7wk7ek) . erkH _ rk‘ ; (3.76)
where A = g(s"™1) + h(uF*?) + & ||uF+! — 51| Tt implies the proposition (P-3).
3.7.1.4 Proof of Proposition (P-4)
The minimizer w**! defined in (3.27) satisfies
L’(sk“'l,uk“'l,rk“'l,wk“'l,ek’) < E(sk+1,uk+1,rk+1,wk,ek) _ CwHWk _ WkHHZ' (P-4)

Denote z = Py(Uyw + ghtl _ x¢). In fact, the w-update minimizes the smooth version of the

objective function (3.23), as follows

Lok(z) = [((z(i)Z +1)7 o 1) + % ((z(z’) — ek (i) 4 1)M2 - 1)} . (3.77)

The first two derivatives of £, 4 (z,.) are given by
VLol = [a0)((0) + 1) a)an)? +1)77?] -
+ p2 [(z(l) — ) ((2(1) — (1) + 1)V, (2(n) — e (n))((2(1) — e*(1))? + 1)71/2}1

and
Vi Loz ) = diag<[(Z(1)2 +1)732, L (2(n)? + 1)—3/2]>

The Hessian matrix V2L, 1 (z,.) then satisfies poI < V2L, 1 (z,.) < (p2 + 1)L It is therefore that

L, (W, .) is strongly convex and Lipschitz continuous. In other word, it implies that

k+1 Jk+1 k41 k
E(s ,a"mr

W ,ek) _ ﬁ(skz-i-l’uk+1’rk+l7wkz+l,ek) > %Hwk _wk+1H§_ (3.80)

which results in the Proposition (P-4), thanks to Proposition 19.
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3.7.1.5 Proof of Proposition (P-5)

The minimizer e**! defined in (3.29) satisfies
2
L, b1 T kT by < £ (T bl PR kL ek) ek — eb L2 (Pog)

Similarly, we also have Le (e, .) is strongly convex, i.e.,

V2Les(e,.) = pa diag([((zk(l) —e(1))?+1)% .. ("(n) — e(n))® + 1)‘3/2} ) (3.81)
Therefore we have
Lor(eh,.) = Lop(e"t,) = 2 leb*t e . (3.82)

It ends the proof.

3.7.2 Proof of Proposition 2

To prove that g¢(U) is strongly convex, we state the following facts: ¢,(U) is continuous and
differentiable; its second derivative is a positive semi-definite matrix (i.e., Vi;g:(U) = mlI); and
the domain of g;(U) is convex. In order to satisfy the Lipschitz condition, we show that the first

derivative of ¢;(U) is bounded.

Stage I: Prove that ¢; is a strong convex function

We show that there exists a positive number m such that
[9:(Tr1) = 90(0)| 2 1 [Ura — Ui (3.83)
In particular, we state the two claims as follows:
(C-1): ¢:(U) is continuous and differentiable.

Proof. Given two variables A, B € U such that |A — B||3 < v for some positive constant
~. It is easy to verify that there exists a positive number 6 such that |g:(A) — g:(B)| < 6.
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Thanks to the triangle inequality, we have the following inequality:

t t
D BTP(AW +si—x) 3 = > BT [Pi(Bwi +s — xi) |3
i—1 i=1
4 1 .
B Pi(A —B)wil; < : D B7P(A =B w3
=1

9:(A) — (B)| =7

IN
S

s
Il
—

IN
| =

t
. v .
B A = BlE will; = ;Zﬁt Hliwills = 6, (3.84)
1 i=1

-
Il

It is therefore that the set of functions {g:(U)}2, is equicontinuous on U.
Furthermore, for any U*, H € U, we show that the following limit exists:

t

_g(U" +aH) —g,(U") ..~ 1 i ) 2
i1—>o : a t :ill}}) m;ﬂt (HPz'((U +aH)W¢+s¢—x¢)H2
—|Pi(U*wi + s — x;) H;). (3.85)

Specifically, let us denote y; = P;(U*W; +s; — x;), the limit can be written as follows:

a—0 a a—0

t
. gt(U* +aH) — g,(U¥) . 1 i 9 9
lim = lim *ta E_l Bt (HYz - (IP@'HWng - ||Yl||2>

a—0

t
. 1 t—1 2
—lim E_ljﬁ (HaPiniHQ . 2a(ui,Pini>>

¢
_9 »
=5 > B yi, PiHw,;) < oc. (3.86)
1=1

As a result, the function ¢;(U) is differentiable and its first derivative Vyg;(U) can be
given by
2 i
Vug(U) = 2> B Pi(Uwi + 5 —xi)w; . (3.87)
i=1
In the similar way, it is easy to verify that Vyg:(U) is also continuous and the second
derivative Vi;g:(U) is given by
t

2 .
Vg (U) = n Zﬁt_lPiWinT. (3.88)
i=1
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(C-2): The second derivative Vi;g:(U) is a positive-define matrix. For all x € RP*!, we have
t

237 5P (w) %) (W x)

XTV%gt(U)X =3
=1

t
2 ,
= § BPy(w x)2 >0, VB, t>0. (3.89)

It implies that there always exist a positive constant m such that V%gt(U) > ml.

It follows to the claims (C-1), (C-2) and the assumptions showing that the domain of g,(U) is a
convex set that ¢¢(U;) is strongly convex [132, Section 3.1.4|.

Stage II: Prove that g; is a Lipschitz function

19¢(Uty1) — 9:(Ur)| < ma||Upp — UtHF- (3.90)

Let us denote d¢(U) = ¢:(U) — g4+1(U). Since U; = argmin g;(U), we exploit that g;41(Usy1) <
Ucl
91+1(Uy) and hence

gt(Ut+1) - gt(Ut) = gt(Ut+1) - gt+1(Ut) + gt+1(Ut) - gt(Ut)

< (9(U) =91 (Uis1) ) = (9(U) —ger (U)) ). (39D)
dy (I}rt+1) d¢(U¢)

The first derivative of d;(U) = ¢4,(U) — ¢4+1(U) is given by

Vudi(U) = Vug:(U) — Vug+1(U)

3 t+1
1 . 1
=7 Z BTIP(Uw; + 8 — xi)w,; — 1 Z BHITIP (Uw; +5 — x)w,; . (3.92)
i=1
t ' ¢ '
Let Ay = Z ﬂt_ZPiUWZ'WZT and B; = Z BP;(si — x;), we can rewrite Vydy(U) as
i=1 =1
Ay A B: B
Vud;(U) = | — — — — . 3.93
udi(U) <t ) L (3.93)

Under the assumptions in Section 3.2.2, the subspace U, outlier {s;}, signal {x;} and coefficients

{w;} are bounded, then both A; and B; are bounded. It is therefore that

A A
IVudi (U] < H - B

: < ma=0(1/2) (3.94)

H _ Bt+1
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Therefore d;(U) is Lipschiz with the constant mso,

|di(Uyy1) — de(Uy)|
U1 — Ul

’gt(UtJrl) _gt(Ut)|
Utp1 — Ul —

< mg, hence ma. (3.95)

This ends the proof.

3.7.3 Proof of Lemma 2

We prove that our update rule is an approximate interpretation of Newton’s method. Since
the objective function g; is strongly convex with respect to the variable U, our algorithm can

guarantee that the solution converges to the stationary point of the problem.

In order to estimate subspace, at each time instant ¢, we optimize the following minimization

t
m : Foom —1 re m\2 «x m
u™ = argmin [ft(u )= Zﬁt P;(m,m)(xi(m) — w; u™)” + % [u™|3 | (3.96)
umeR"™X i=1

The first derivative of the objective function ft(um) can be determined by

t
- . " o
Vi) = =2) " B Pi(m,m)(x(°(m) — wlul ) w] + s
i=1

r m re m am m
= Vfi_1(ui’y) — 2P¢(m, m) (Xt (m) — WtTut—l)W;r + ?(ut—l - ut—2)' (3.97)

Since u™, = argmin f;_;(u™), the derivative Vf;_;(u}”,) = 0 and the Hessian at u}", is then
um

given by

t
M) = V2f(ur,) =23 87 Pi(m, m)wiw] + %1. (3.98)
i=1

Thanks to Newton’s method [132], a rule for subspace update can be obtained as
m m F (1M 17 /..m
U =g = (Hft(ut—l)) Vfi(uiy). (3.99)

Let us denote R}" = Zle BIPy(m, m)wiw, + a(% — %)I, we have

. 1
Hf(u)" ;) = 2R + « <2(f_t1) - 2t>1. (3.100)

As a result, we can derive the inverse Hessian matrix easily as follows

i)™ = 5 (2w ) o
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When t is large enough, the term (%(R;”)_1 + I)_1 ~ I+ O(1). It is therefore that the step

size can be approximated by
(M) R y) = P, m) (< (m) — wi ) (R) wi + O(1/1). (3.102)
It implies that uj* can be updated by the following recursive update rule
uf" = gy Py (m, m) (< (m) — wiwiy) (R) " wi, (3.103)

which is already defined in Eq. (3.14). In other word, the uj® generated by our algorithm can

converge to the stationary point of ft(um)

Note that, the properties of the objective functions and assumptions we made in Section 3.2.2
can guarantee the method will converge in practice. In particular, the objective functions g;(U) as
well as f;(u) and their first derivatives are continuously differentiable which can avoid derivative
issues in Newton’s method. In addition, the starting points in our algorithm are always chosen
at random. Further, since the objective functions {g;(U)}?2, are always positive, PETRELS-
ADMM can ignore the cases when their roots approach to zero asymptotically. To sum up, the

solution Uy generated by PETRELS-ADMM will converge to the stationary point of the function
9:(U).
The second part of the Lemma 3.7.3 can be easy to verify. Since g,(U;) is strongly convex

and Lipschitz function as proved in Proposition 2, we have the following inequality

mi [|Upr1 — Uillz < 19:(Usr) — 9:(Us)| < ma |[Urs — Uil
m m
& Ui = Ulllp (U1 = Ullp = 72) <06 [U = Unllp < 22 (3.104)

Note that the positive number mo = O(1/t) is already given in the Appendix 3.7.2, so it ends
the proof .

3.7.4 Proof of Lemma 3

Inspired of the result of convergence analysis for online sparse coding framework in [120, Propo-
sition 2|, we derive the convergence of g;(U;) in the similar way. In particular, we first denote

the nonnegative stochastic process {u;} as follows

w 2 g (U,) >0, (3.105)
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and then prove that it is a quasi-martingale, i.e., we have to prove the sum of the positive

difference of {u;}§°, is bounded,

Z ‘E[uH_l — UtH < 400 a.s. (3.106)
t=1

We can express g;4+1(U;) with respect to g,(Uy) as follows

t+1
1 i
9t+1(Uy) = ] ;ﬂt“ HIPi(Uew; + i — xi)|l5 + plIsilly

t
(72 oo 1PV 4= )3 + s, )
=1

1
+ <t+1( P10 + si41 — xeq1l3 + p llsesa ))
Bt 1
Ty 19t(Ut) + mE(Ut, Piy1,Xt41)- (3.107)

Since U4 = argming g1+1(U), we have the fact gi41(Ur1) — 9e+1(Up) <0, fi(Uy) < g:(Uy),

and hence

upr1 — U = Ger1(Uep1) — 9e(Uy) = 941(Ugr1) — 9e41(U) + 9e41(Uy) — 9:(Uy)
<0

1 t(l—p)+1
< gt—i-l(Ut) — gt(Ut) = 7£(Ut7 Pt+1,Xt+1) - (t_;_8>1

t+1 9:(Uy). (3.108)

It is therefore that

E[{(U, Pyy1,xe41) — (L1 = B) + 1)g:(Uy)]
t+1
< E[0(Us, Pri1,%i41) — 9:(Uy)] < E[{(U, Piy1,x141)] — f:(Uy)
N t+1 - t+1
E[f(Ut) - ft(Ut)] 1
_ B0 - —Qﬁﬂﬁwa—mUmD(¢W+D) (3.100)

E[G¢(Uy)] at

Elugyr —ue] <

because of fi(Uy) < ¢(U;) and E[¢(Uy, Piy1,x¢)] = f(Ug). In parallel, we exploit that
G(Uy) = V(£ (Uy) — £:(Uy)) is the scaled and centered version of the empirical measure, which
converges in distribution to a normal random variable, thanks to the center limit theorem. Hence
E[Vt(f(U;) — £:(Uy))] is bounded with a constant a. Then, the sum of the positive difference

of u; becomes

t; E[upr1 — w| < t; N (3.110)
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o)
e

Furthermore, let us consider the convergence of the sum —— . We use the Cauchy-
& 2 Vit +1) Y

MacLaurin integral test [133] for convergence, as

+oo o]
/ I / B
=1 Vi(t+1) e=1 (@* +1)

= aarctan(z)|{™ = a(arctan(co) — arctan(1)) < cc. (3.111)

In other words, since the sum of a; convergences, hence » ;2 E[ui41 — ug] < co. We complete

the proof.

3.7.5 Proof of Lemma 4

We investigate the convergence of a surrogate sequence {(gt(Ut) — [t(Uy)); +1} as follows

U, — £(U t(o—1
g( ti " {t( 0 _ up — U1 + Ger1(Uggr) — ge41(Uyg) + (f_i_l)gt(Ut)
<o %
(U, Pyy1,xe41) — fi(Uy)
+
t+1
P —
<yt (U, Pry1,x41) ft(Ut)’ (3.112)
‘ L t+1
& (52)

because of u; = ¢¢(U;) and A < 1. Note that, (S-1) — (S-2) converge almost surely:

e The sequence E[u; — uy1] converges almost surely as proved in Lemma 3.
e The sequence (S-2) also converges, thanks to the fact E[{(Uy, Pyy1,%x441)] = f(Uy) and

B[f(U)-fi(U)]

] as mentioned in the appendix 3.7.4.

the convergence of

It is therefore that the sequence {(g;(Uy) — ft(Ut))tJ%l} converges almost surely, i.e.,

i (gt Uy) — fi( Ut)) —11-1 < 00 (3.113)

t=0

On the other hand, the real sequence {t%} diverges, Y 17, H% = oco. It implies that ¢:(U;) —
f:(U;) convergences, thanks to the Proposition 24.

Technical Propositions

Here, we provide the following propositions which help us to derive several important results in

our proofs.
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Proposition 3 ( [134] ). The function f is strongly convex if and only if for all u,v € dom(f)

we always have

1

—5lv- ul > (v—u,0), VOcaf(u).

fv) = f(u)

Proposition 4 ( [132] ). The function f is m-strongly convex, with a constant m if and only if

for all u,v € dom(f) we always have
m
7~ F)] = 2 v — ull.

Proposition 5 ( [132] ). Every norm on R™ is convex and the sum of convex functions is convex.

Proposition 6 ( [135] ). The Huber penalty function replaces the {1-norm ||x||, ,x € R™ is given
by the sum Y7 fH(x(i)), where

x(i)? 2(i)] <
Hub(x z’)) _ 20 z(d)] < p,

K .
2(0)] - /2, J2] > p
There exists a smooth version of the Huber function ff“b, which has derivatives of all degrees,
n
V) = 3 (@) + 1) = ).
i=1

and the first derivative of the pseudo-Huber function v, is defined by
_1/2 —1/21 "
Viu(x) = [2(1) (21 + %) 12, a() (@) 4+ 62) ]

Proposition 7 ( [136, Proposition 1.2.4] ). Let {a;}72, and {b:}72, be two nonnegative sequences
such that Y ;01 a; = 00 and Y .o aib; < 00, |bey1 — b < Kay with some constant K, then

thanolobt =0 orY 2, b < oo.

Proposition 8. If {fi}+>1 and {g:}+>1 are sequences of bounded functions which converge uni-

formly on a set €, then {ft + gt }+>1 and {figi}+>1 converge uniformly on E.
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In recent years, sparse subspace tracking has attracted increasing attention in the signal processing com-
munity. In this chapter, we propose a new provable effective method called OPIT for tracking the sparse
principal subspace of data streams over time. Particularly, OPIT introduces a new adaptive variant of
power iteration with space and computational complexity linear to the data dimension. In addition, a
new column-based thresholding operator is developed to regularize the subspace sparsity. Utilizing both
advantages of power iteration and thresholding operation, OPIT is capable of tracking the underlying
subspace in both classical regime and high dimensional regime. We also present a theoretical result on
its convergence to verify its consistency in high dimensions. Several experiments are carried out on both

synthetic and real data to demonstrate the tracking ability of OPIT.

4.1 Introduction

Subspace tracking (ST) is an essential and fundamental problem in signal processing with various
applications to sensor array processing, wireless communication, and image/video processing, to
name a few [20]. It corresponds to the problem of tracking a low-rank subspace that can repre-
sent data streams. Most of subspace tracking methods are designed to estimate the underlying
subspace from the sample covariance matrix (SCM). We refer the reader to [20,21,26] for good

surveys on standard and robust ST algorithms.

Recently, many rigorous evidences and theoretical results in random matrix theory (e.g. [22—
24]) indicated that the SCM is not a good estimator of the actual covariance matrix in high-
dimension, low-sample-size (HDLSS) contexts where datasets are massive in both dimension n
and sample size T, and typically n/T — ¢ € (0,00]. In most online applications, this regime
is indeed more realistic and relevant than the classical one where n is fixed and T" — oco. It is
mainly due to the time variation of (big) data streams in nonstationary environments where the
underlying data distribution changes with time.! Accordingly, the data covariance matrix and
the principal subspace are time varying too, and thus, the “effective" window length which defines
actual data samples under processing is limited. Meanwhile, modern data streams are originally
associated with high dimensionality [2]. This leads to the case in which the data dimension n is

comparable or even larger than the actual number of snapshots under consideration 7.

Without further structural knowledge about the data, subspace tracking algorithms turn out
to be inconsistent in such a regime. Interestingly, the consistency of covariance estimation can
be guaranteed under suitably structured sparsity regularizations [138-142|. Therefore, sparse
subspace estimation and tracking have recently gained much attention in the signal processing
community. In the literature, several good methods have been proposed for sparse subspace

estimation, see [101,143-145] for examples and [49,146] for comprehensive surveys. However, in

IThis phenomenon is often referred to as concept drift or dataset shift in data mining and machine learn-
ing [137].
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an adaptive (online) setting, there have been only few studies on sparse subspace tracking (SST)

so far.

4.1.1 Related Works

As mentioned before, some online algorithms have been introduced for sparse subspace track-
ing [26]. A few of them are based on a two-stage approach in which one first utilizes a standard
ST algorithm to estimate the underlying subspace and then seek a sparse basis of the estimation
under some sparsity criteria. Particularly in [97,98,104], several variants of OPAST and FAPI
were proposed to track the sparse principal subspace. Another good approach is to regularize
the objective function that aims at accounting for the sparse basis. In [95], the authors modified
the objective function of PAST by adding a £1-norm regularization term on the subspace matrix
and then proposed a new robust variant of PAST called ¢;-PAST to optimize it. Similar to
¢1-PAST, the authors in [147] also introduced another adaptive algorithm using ¢;-norm mini-
mization called SPCAur for sparse subspace tracking. SPCAur adopts the stochastic gradient
descent on Grassmann manifolds and it is capable of tracking the underlying sparse subspace
from incomplete observations. In [96], a Bayesian-based algorithm called OVBSL was proposed
to deal with the sparsity constraint on the subspace matrix. An advantage of OVBSL is that it
is fully automated, i.e., no finetuning parameter is required. However, these algorithms are only
effective in the classical regime where the sample size is much larger than the dimension, i.e.,

n/T — 0 asymptotically.

Through the lens of machine learning and statistics, SST is generally referred to as the prob-
lem of online sparse PCA which often emphasizes the leading eigenvectors. In [93], the authors
proposed an extended version of the Oja algorithm for online sparse PCA, namely OIST. Its
convergence, steady-state, and phase transition were also derived to investigate the use of OIST
in high dimensions. OIST is, however, designed only for rank-1 sparse subspaces. In [94], an-
other online sparse PCA algorithm (SSPCA) was proposed and could deal with rank-r subspaces.
Specifically, this algorithm uses a simple row truncation operator, which sets rows whose scores
are smaller than a threshold to zero, for tracking the sparse principal subspace over time. How-
ever, this truncation operator is only designed for subspaces with a row-sparse support (i.e. all
eigenvectors must share the same sparsity patterns) which may not always meet in practice. In-
deed, it turns out to be ineffective for a sparse subspace with another support (e.g. elementwise
sparsity). Its performance in terms of estimation accuracy is typically lower than other SST

algorithms, see Fig. 4.4 and Fig. 4.5 for illustration.
It is worth noting that algorithms in [98,104], OIST [93], and SSPCA [94] can be viewed as

online variants of a classical method for principal subspace estimation, namely power iteration
(PI). In the literature, there exist other power-based subspace trackers and they can be broadly

categorized into the following classes: Oja-types [148,149|, Natural Power (NP)-types [150,151],
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Data Projection Method (DPM)-types [152,153|, and Approximated PI (API)-types [154,155].
Specifically, all of them are designed for tracking the principal subspace of the SCM which is,
however, not a good estimator of the true data covariance matrix in high dimensions. Accordingly,

they turn out to be inconsistent estimators in the HDLSS regime.

In parallel, recent years have also witnessed considerable research advances on robust ST
(RST) which aims to track the underlying subspace in the presence of data corruption [21,26,156].
For example, several RST algorithms were developed to handle sparse outliers, such as Grass-
mannian Robust Adaptive Subspace Tracking Algorithm (GRASTA) [157]|, Parallel Subspace
Estimation and Tracking by Recursive Least Squares (PETRELS)-types |25, 62], and Recursive
Projected Compressive Sensing (ReProCS)-types [63,64]. To deal with impulsive noises, three po-
tential approaches are robust statistics [82,158], adaptive Kalman filtering [84,87], and weighted
RLS [62,159]. Very recently, a-divergence was specifically exploited to bolster the tracking ability
of the well-known PAST and FAPI trackers in noisy and contaminated environments [160, 161].

However, none of them is designed for subspace tracking in the HDLSS context.

4.1.2 Contribution and Significance

In this chapter, we introduce a new provable adaptive algorithm called OPIT (OPIT stands
for Online Power Iteration via Thresholding) for sparse subspace tracking. OPIT takes both
advantages of power iteration and thresholding methods, and hence offers several appealing

features over the state-of-the-art SST /online sparse PCA algorithms.

First, OPIT belongs to the class of power methods, and thus its convergence rate is highly
competitive compared to other SST algorithms, especially in the high SNR regime. Unlike the
two SST algorithms based on power methods (i.e. OIST and SSPCA), OPIT utilizes old observa-
tions efficiently in a recursive way and still operates with linear space complexity. Accordingly,
OPIT could obtain not only a faster convergence rate but also a better subspace estimation
accuracy than OIST and SSPCA. Compared to OIST which is limited to tracking rank-1 sparse
subspaces, OPIT has the capability of tracking rank-r subspaces over time. Compared to SSPCA
which is useful for only subspaces with row-sparse supports, OPIT offers an effective subspace
tracker which can deal with more generalized sparsity supports than SSPCA, thanks to a new
thresholding operator to deal with subspace sparsity. In particular, we propose to apply column-
based thresholding instead of row-based thresholding as in SSPCA. With this operator, OPIT has
a great potential for handling several sparsity supports such as row-sparse, elementwise-sparse,

and local region-sparse.

Different from the existing two-stage SST algorithms, OPIT has ability to track the sparse
principal subspace with high accuracy in both the classical regime and the HDLSS regime.

Theoretically, the subspaces derived from the two-stage algorithms are identical to those obtained
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by the corresponding standard ST algorithms (e.g. OPAST and FAPI) used in their first stage.
It is due to the fact that the subspace spanned by a full rank matrix remains unchanged after
any rotation. Accordingly, they still suffer the limitation of the SCM in the HDLSS regime. By
contrast, our OPIT algorithm aims to track the underlying sparse subspace from a thresholded
SCM. Simulation results indicate that OPIT provides a much better subspace estimation accuracy
than the two-stage SST algorithms in high dimensions. More importantly, as indicated later
in our theoretical analysis, the convergence of OPIT with the thresholding operation can be

guaranteed under certain conditions.

In addition, OPIT is flexible and very adaptable for different scenarios. In particular, we can
adjust its procedure for dealing with multiple incoming data streams. This feature is useful for
application areas wherein block processing is required, i.e., a block of data samples is processed
and analysed at one time. Next, it is easy to introduce regularization parameters into OPIT
in order to regularize its performance in non-standard environments. Specifically, we can use a
forgetting factor to discount the impact of distant observations as well as facilitate the tracking
ability of OPIT in dynamic environments. Moreover, we can recast its update rule into a column-
wise update. Thanks to the deflation transformation, we particularly derive a fast variant of
OPIT called OPITd with lower complexity of both computation and memory storage. This
variant is fast and useful for tracking high-dimension and large-scale data streams residing in
a low-dimensional space. Last but not least, OPIT belongs to the class of provable subspace
tracking algorithms in which its convergence is guaranteed. Under certain conditions, OPIT can
achieve an e-relative-error approximation with high probability when the number of observations

is large enough.

4.1.3 Organization and Notations

The rest of the chapter is organized as follows. Section 4.2 formulates the SST problem. Sec-
tion 7.3.2 presents the proposed OPIT algorithm and its variant OPITd while Section 4.4 estab-
lishes its convergence analysis. Section 4.5 provides several experiments to demonstrate perfor-
mance of the proposed algorithms in comparison with the state-of-the-art algorithms. Section 4.6

concludes the chapter.

4.2 Problem Formulation
Assume that at time ¢, we collect a data sample x; € R™*! satisfying the signal model

Xt = Et + ny. (41)
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Here, ¢, € R™*! is a low-rank signal living in a subspace? spanned by a sparse matrix A™*" with
r<n (ie £ = Awy, where w; € R is a weight vector) and n; € R™*! is an additive spatially

white noise vector independent of £;. Sparse subspace tracking problem can be stated as follows:

Sparse Subspace Tracking: Given a set of data streams {xt}le, we aim to estimate a

sparse principle subspace Ay that compactly represents the span of signals {Et}thl.

Generally, the underlying subspace can be estimated from the spectral analysis of the actual

covariance matrix
C= E{th;r} = AIE{th;—}A—r + E{ntn:}. (4.2)

Without loss of generality, we suppose that C has the form C = O'%AAT—I—O'?LIn where E{Wth } =
021, and E{nyn; } = 021,,. Applying eigenvalue decomposition (EVD) on C yields

As 0| |U]
c™uau’ = [u, U, ° 1. (4.3)
0 A,| |U!

Here, A € R™" is a diagonal matrix whose diagonal elements are eigenvalues of C sorted in
decreasing order and U € R™*™ contains the corresponding eigenvectors. Accordingly, Uy € R™"*"
and U,, € R (=7 represent the principal subspace and the minor subspace of C, respectively.
The orthogonal projection matrix of the sparse principal subspace is unique (i.e., USU;,r = AA#),
so A can be obtained as A = U,Q* with

Q" = argmin HUSQHO s.t. Q is full-rank, (4.4)

QERTX’P
where ||.||o promotes the sparsity on A. In several applications, we often emphasize the principal
subspace rather than its specific basis, such as dimensionality reduction [162] and array process-
ing [107]. In this work, our main objective is to track the principal (signal) subspace of A while

the sparsifying step (4.4) is optional.

Most state-of-the-art SST algorithms estimate the principal subspace of the sample covariance
matrix Cr = 1/T Zzzl x;x,; [26]. However, in a high-dimensional regime where n/T —+ 0 a.s.,
Cr is not a good estimator of C. This limitation in an adaptive scheme is not necessarily due
to a data shortage but to the time variation which forces us to use a limited window of time
instead of all the data. Particularly, it has been shown that Cr is not a consistent estimate of C
in the HDLSS regime, e.g. [163-165]. As a result, most of SST algorithms are not good in high

dimensions, as illustrated in Fig. 4.5.

2In an adaptive scheme, the matrix A may be slowly varying with time, i.e., A = A;. Our algorithm is capable
of successfully estimating the subspace as well as tracking its variation along the time.
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On the other hand, under certain conditions, it is proved in [138,166] that
HC—T(CT)H2—>O a.s. as T — oo, (4.5)

where 7(.) is an appropriate thresholding operator. Thanks to (4.5), in the next section, we
derive a novel adaptive (online) algorithm based on power iteration and thresholding technique
that is capable of tracking the sparse principal subspace in both the classical regime and the
HDLSS regime.

4.3 Proposed Methods

In this section, a novel effective algorithm using thresholding is developed for sparse subspace
tracking. This algorithm is dubbed as OPIT which stands for Online Power Iteration via Thresh-
olding. We next derive a fast variant of OPIT called OPITd with lower complexity, thanks to
the deflation transformation. Some remarks on OPIT and OPITd are discussed in the following

subsection.

4.3.1 OPIT Algorithm

We first recall the main steps of the standard power iteration (PI) method on which we primarily
leverage in order to develop our OPIT algorithm, for computing the dominant eigenvectors of
C;. At the ¢-th iteration, PI particularly updates (i) Sy <— C,Uy_; and (ii) U, < QR(Sy) be
the Q-factor of QR factorization of S,. PI starts from an initial matrix Uy € R™*" and returns

an orthonormal matrix Uy, where L is the number of iterations [20].

In an adaptive scheme, the iteration step of PI can coincide with the data collection in time.
At time t, the sample covariance matrix C; can be recursively updated by: Ry = Ry_1 + xtxtT
and C; = t"'R;. As streaming data can vary with time, we propose to use a forgetting factor
B (0 < B < 1) to discount the impact of old observations exponentially. The underlying subspace

U, is then derived from spectral analysis of Ry which is updated continuously by
R; = ARy_1 + %%/ . (4.6)

Together with the fact that QR(R;U;—1) = QR(C;U;_1), we can rewrite the first step of PI as

follows
S: =R/U;1 = BRi—1Us1 + XtZ;r> (4.7)

where z; = U] ;x;.
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Algorithm 4: OPIT

INPUT: {x;}1;,x; € R"*! target rank r, a forgetting factor 0 < 8 < 1, window of length
W > 1, and a thresholding factor k

% [(1 — wsparse)n|  if Weparse is given,
N | 10r log n] if Weparse is unknown,

where Wgparse is the sparsity level of the sparse basis.
INITIAL: U) = randn(n,r), So. 7 = Onxr, Bo = Orx»r
MAIN PROGRAM:

PROCEDURE
fort=1,2,...,T/W do

Xt = Xg—1)ywa1s -+ Xew] // Data collection

Z, = UtT 1 X

(= 1)WSt 1B + 77 X0 2]
St = ( // Thresholding
// Promotes orthogonality
t/||St||2 // Promotes sparsity
=U/ U,

end for
OutpuT: U; € R™*"

// THRESHOLDING S, = 7(S;, k)

PROCEDURE
fori=1,2,...,r do
S; = St(l, Z)
Find the set 7; C [1,2,...,n] containing indices of k strongest elements of s;
Form S;(:,i) = §;, where §;(j) = {Si(]) lf] €T,
0 itj¢T

end for
OUTPUT: S; € R™*"

Towards a fast subspace estimator, we can utilize the previous subspace as a warm start in
the tracking process. Hereby, a key step at each time ¢ is to project Uy into the column space of
Utfl, i.e.,

U =U,E +U_ Fy, (4.8)

where U;_; | is the orthogonal complement of U;_1, E; = UtT_ 1U; and Fy = UtT_1 1 Uy are
coefficient matrices. Specifically, the first term of (4.8) represents the “old” information in Uy,

while the second one is its distinctive new information. Substituting U;_; according to (4.8)
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(one time-step delayed) into (4.7) results in
St = BSi—1Ei—1 + BR4_1U; o | Fi 1 +xs2, . (4.9)
The complement of projecting x; into the subspace U;_1 at time t can be given by
_ T _
Yt = (I - Ut—lUt_l)Xt = Xt — Ut_lzt. (410)

Here, y; is orthogonal to the column space of U;_;. For short, we denote AU;_1 = U;_5 | F;_1.

Based on (4.10), we obtain another expression of AU;_; as follows
AU;_ = yt,lh;r_l where h;_; = U;r_lyt,l. (4.11)

Under the assumption that the underlying subspace is fixed or slowly varying with time (i.e.,
Ut_gUtT_Q ~ Ut_lUtT_l), y¢—1 is nearly orthogonal to the subspace U;_;. In other words, angles
between y;_; and columns of U;_; are very close to 7/2, and hence, the norm of h;_; in (4.11)
is very small. Therefore, AU;_; and R;_1AU;_; are negligible and can be ignored during the
tracking process without any major performance degradation. It stems from the fact that the
presence of a small perturbation does not really affect the performance of power methods [167].

Accordingly, a good approximation to (4.9) can be given by

St ~ BSi1Ei_1 + x¢2, . (4.12)

In this work, the update (4.12) is further followed by an appropriate perturbation G defined
by the following thresholding operation 7(.) as:

gt é T(St, k) = CtUt—l + Gt, (413)

where the thresholding factor k can be determined as in Algorithm 4. Here, S, is particularly
derived from S; by keeping the k strongest (absolute value) elements in each column of S; and

setting the remaining elements to zero. Then, the second step of PI is replaced with

QR(S;) if orthonormalization,
U, = (4.14)

St/HStHQ if normalization.

In addition to the nice property (4.5), another main motivation for using the thresholding oper-

ation 7(.) stems from the following proposition:
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Proposition 9. Denote by {\;}}'_; the set of singular values of Cy in descending order (i.e.
Ai > Xit1). When the perturbation Gy satisfies: ||Gella < €A — Ary1) and ||A] Gyll2 <
E(Ar — Arg1) cos 0(Ay, Us_y) for some & < 1, we obtain

tan (A, CiUi_1 + Gy) < ytanf(Ay, Up_y),

where 0 < v < 1 and 0(.,.) denotes the canonical angle (the largest principal angle) between

two subspaces.

Proof. Tts proof follows immediately Lemma 2.2 in [167]. O]

As a corollary, the estimated U; will get closer to the true subspace A; with time.

The OPIT algorithm introduces the window parameter W. Here, the inclusion of W is useful
in some applications where we often collect multiple data samples instead of a single sample at

each time ¢. The main steps of OPIT are summarized in Algorithm 4.

Complezxity: For convenience of analysis, we suppose the window length W = 1. Most of the
steps in OPIT require a computational complexity of O(nr?) except the thresholding operator
which costs O(nr + rklog k) operations. Thus, the overall computational complexity of OPIT
is O(max{nr,klogk}r). In terms of memory storage, OPIT does not need to go back past
observations but utilizes their information in a recursive way. Hence, the proposed algorithm
requires a space of nr elements for saving the estimate Uy, while two buffer matrices S; and E;
need only nr + 2 elements in total. In conclusion, the space complexity of OPIT is linear to the

data dimension n.

4.3.2 OPIT with Deflation

A low cost subspace tracking algorithm with linear complexity of computation O(nr) is always
preferable due to its fast implementation time, especially for real-time applications.® Here, we
derive a fast variant of OPIT using deflation called OPITd which can achieve such a complexity

while preserving the algorithm’s accuracy in most cases.

Our main motivation stems from the fact that if we apply the following projection deflation
Ci = (I-uwuf)Cy(I-wu)), (4.15)

where u; is the most dominant eigenvector of C;, then the eigenvectors of (~3t are exactly the

3With respect to computational complexity, subspace tracking algorithms are categorized into three groups:
high complexity O(n’r) and O(n?), moderate complexity O(nr?), and low complexity O(nr). The last group,
which is referred to as fast algorithms, is the most important class for online processing [20].
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Algorithm 5: OPITd - OPIT with Deflation

INPUT: {x;},,x; € R"*1 target rank r, a forgetting factor 0 < 8 < 1, and a thresholding
factor k

_ { L(1 — wsparse)n|  if Weparse is given,

| 107 log n] if Weparse is unknown,

where wWgparse is the sparsity level of the sparse basis.
INITIAL: Ug = randn(n,r), Sp = 0 xr, €0 = 1,x1.
// Denote w; ; = Uy(:,7), s¢.; = Si(2,7), and e, ; = e(j).
MAIN PROGRAM:

PROCEDURE
fort=1,2,...,7T do
for j=1,2,...,r do
2t = u;r_ijt
St,j = 5%675—1,]&—1,]‘ + %zth
St.j = T(st,5,k) // Thresholding
uj = Se;/[ISe,;l2
erj = utT_Ljut,j
Xt = Xt — 2t,jU¢j // Deflation
end for

end for
OuTtpuT: U, € R™*"

same as C; with eigenvalues {0, \a,..., A\, }. Here, \; is the i-th strongest eigenvalue of C;. It
demonstrates that the deflation (4.15) can eliminate the influence of u; (i.e., by setting A1 to
zero) and switches the second dominant eigenvector up. As a result, once we estimated u; by
using a specific (online) method, the second dominant eigenvector of C; can be extracted from
(~3t in the same way as to u;. Moreover, repeating this procedure r times can result in r leading
eigenvectors of C;. Interestingly, in the case even when u; is not a true eigenvector of C;, the
projection deflation (4.15) still retains desirable properties (e.g. positive semi-definiteness) that
may be lost to other deflation transformations [168]. In what follows, we describe the way how

to linearize the production of OPIT using the projection deflation (4.15).

To update the j-th column wu;; of Uy, for j = 1,2,...,r, we replace the recursive rule (4.12)
with
t—1 1 :
St,j = BTet_LjSt_l’j + gzt,jxt, with (4.16&)
R —— )
Ztj =W ;X¢ and e = W_o W15, (4.16b)

where s, j, 2 j, and e;_1 j play the same role as S¢, z;, and E; in (4.12), respectively. Next, the
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thresholding operation (4.13) boils down to
St = T(S1,5, k). (4.17)

Then, the column wu; is simply derived from normalizing (4.17) to unit length as w;; =
Stj/l18¢5l2. At the end of the column-wise update, we deflate the component u;; from x;
as Xy <— X¢ — 24,z j for the estimation of the next component uy ;1. The main steps of OPITd

are summarized in Algorithm 5.

Complezity: The most expensive computation comes from the thresholding operation 7(s; ;, k)
which requires a cost of O(n + klogk). The remaining steps of OPITd require a computational
complexity of O(n) only. Accordingly, OPITd costs a complexity of O(r max{n,klogk}) for
updating the whole matrix U; at each time ¢t. In practice, we often set the value of k£ to
O(rlogn) or | (1 — wsparse)n| which is much smaller than n, and thus, the overall complexity of
OPITd is approximately linear to nr. OPITd also requires a less memory storage than OPIT.
Specifically, its space complexity is 2nr + r for saving Uy, Sy = [s¢1,St,2,...,St,] of size n x r

and e = [e;1,€:2,. .., em]T of size r x 1 at time ¢.

4.3.3 Discussions

First, it is worth noting that both OPIT and OPITd cannot enforce orthogonality and sparsity
in the estimate at the same time. On the one hand, when we adopt the orthonormalization step
using the QR factorization, OPIT ensures orthogonality but lacks sparsity. Although performing
the QR step can increase the numerical stability of OPIT, it destroys the sparsity, especially
when the target rank r is not too small. In most cases, the Q-factor of the thresholded S,
is a dense (orthogonal) matrix. However, when the columns of S, are sufficiently sparse and
have mostly non-zero elements in non-overlapping sets in its row support, then S, is almost
orthogonal and its Q-factor can be nearly sparse. We particularly meet such a case when data
streams are high-dimensional but of very low rank (i.e., 7 < n) and/or the sparsity level wgparse
is extremely high. In fact, we often emphasize the principal subspace rather than its specific
basis in subspace tracking, thus the lack of sparsity of OPIT is not the issue. On the other
hand, when the normalization step (e.g. U; = S;/||S¢||2) is taken into account instead of the QR
step, OPIT results in a sparse but non-orthogonal mixing matrix U;. The operation requires
only O(nr) while the QR step costs a complexity of O(nr?). Therefore, it helps speed up the
computation of OPIT especially when r is reasonably high compared to the dimension n. More
importantly, with this simple normalization, OPIT can achieve excellent subspace estimation

accuracy against the state-of-the-art SST algorithms, please see Figs. 4.4 and 4.5 for examples.

OPITd promotes sparsity but entails non-orthogonality and sub-optimality. Thanks to the

projection deflation, OPITd offers a fast column-wise update for tracking the underlying sub-

89



4.3. PROPOSED METHODS

space and successes in achieving the sparsity. The deflation has the advantage to estimate the
eigenvectors (which is referred to as principal components) while the matrix U; in OPIT can
be any basis of the principal subspace (not necessarily the eigenvectors). Accordingly, OPITd
has benefits in some applications such as data whitening requiring the eigenvectors. Specifically,
the combination of the thresholding operation 7(s; ;, k) and the column normalization results di-
rectly in sparse components in the estimate U, at each time . However, the deflation may cause
loss of orthogonality and introduces cumulative errors which can affect the successive estimation
of the next component. Accordingly, when the target rank r is not too small compared to the
data dimension n, both convergence rate and estimation accuracy of OPITd are less than that
of OPIT, see Fig. 4.7(b) for an illustration. In such a situation, we can re-orthonormalize U,

after a period of time to remedy the issue at low cost as well as increase the numerical stability

of OPITd.

Next, how to choose the value of k7 Ideally, this factor must be a r x 1 vector [ki, ko, ..., k;]
where k; represents the threshold level for the j-th column Ay(:,j). Clearly, the value of k;
should be close to the number of non-zero elements in A.(:,7). Without loss of generality, we
can assume that sparse patterns in A; are uniformly distributed, i.e., k; ~ k; Vi, j. Accordingly,
we can set k ~ kj ~ [(1 — wsparse)n| when the prior knowledge of the sparsity level wgparse —
the percentage of non-zero elements in A; — is given. If this information is not available, we
can tune this factor through cross-validation or simply chosen in O(logn), e.g. k = |mrlogn]|
where m is a positive number. The former remedy is useful for batch sparse subspace estimation
and sparse PCA [169]|. However, it requires a validation set — which we have to pass a number
of observations several times — and hence turns out to be inefficient for tracking problems. The
latter one is very simple and capable of achieving reasonable performance in practice. It stems
from the rigorous evidence in [170-172| that sparse subspace/PCA algorithms can recover the
sparse principal components in polynomial time when the expected number of non-zero elements
in each component is at most O(y/T/logn). As indicated later in Section IV, the number
of observations T' = O(n) can guarantee OPIT’s convergence, please see the condition (4.18).
Furthermore, we have logn < \/IW when T'= O(n) for a large n, and thus, we can choose
the factor k in the logarithmic regime O(logn) to ensure the thresholded matrix is sufficiently
sparse. A natural question raised here is whether the tracking ability of OPIT deteriorates or
not when the number of selected elements is smaller than the actual number of non-zeros in A;?
(e.g. it might occur due to the low level of sparsity). Fortunately, Proposition 9 also suggests
that if the perturbation error caused by the choice of k is small enough, OPIT still results in a

good estimate of A; when the number of observation is large enough.

Compared to the state-of-the-art power-based subspace tracking algorithms, OPIT is more
elegant, refined, and effective. Particularly upon the arrival of new data x;, many power-

based subspace trackers (e.g., Oja-types, NP-types, and DPM-types) adopt the update rule
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U; = orthnorm(U;_; + ntxtz;r ) where 1 is the step size and orthnorm(.) is an orthonormaliza-
tion procedure [20]. Therefore, the inclusion of E;_; in (4.12) not only makes OPIT different from
them, but also greatly bolsters its tracking ability. The matrix E;_1, which contains cosines of
the principal angles between two successive subspaces, plays the role of feedback in the tracking
process. Accordingly, it could help improve the adaptation rate and stability of OPIT, espe-
cially in nonstationary environments. API-type subspace trackers, on the other hand, exploit
the projection approximation U, >~ U;_;0,; where ©, is nearly orthogonal and very close to
an identity matrix [154]. Hereby, they would predict the current tracking performance error
and then use it for estimating the true subspace. More specifically, they follow the update rule
U, =U;_10; + y,ggtT ©®; where y; is the complement (error) of projecting x; onto U;_; defined
as in (4.10), g; is a gain vector, and @; = (I, + ||y¢||’g:g/ ) /2. However, when abrupt changes
happen (e.g., due to impulsive noises and outliers or data drift), the error y; would be very
large. The state transition matrix ®; would be very far from ideal that could degrade their
subspace estimation accuracy as well as convergence rate, see Section E.1 in our supplementary
document for examples. By contrast, OPIT exploits the past tracking performance error (i.e.,
one time step delayed) caused by itself which is independent of the current error y;. Thus, OPIT
is less sensitive to such changes than API-types. Together with the hard-thresholding operator
7(.) in (4.13), OPIT stands out from all the rest. The tracking ability of OPIT is verified by
several experiments in Section V where the results indicate that OPIT outperforms completely
the-state-of-the-art subspace trackers (including several power-based methods) in both classical

and high dimension regimes.

4.4 Convergence Analysis

In this section, we provide a convergence analysis for the proposed OPIT algorithm in Algorithm 4

under the assumption that A; = A is unchanged over time and 8 = 1.4
We make the following assumptions to facilitate our convergence analysis:

(A1) A is chosen in the set U = {U € Gy, |U||4,0 < (1 — Wsparse)n, and |[U||2 = 1}, where

G, denotes the class of n x r well-condition matrices and || U]

«0 = max; [|[U(:, j)|lo. Here, the
parameter wspqrse represents the sparsity level of A. In addition, A is sparse enough in the sense

that the average number of non-zero elements in each column is at most y/n/logn.

(A2) Data samples {x;}+>1 are norm-bounded, i.e., ||x¢||2 < M < oo Vt. Low-rank signals

4We limit our analysis in this work to a stationary case when A, = A V¢t and 8 = 1. Establishing the -
relative-error approximation guarantee for OPIT in nonstationary environments is non-trivial as data samples do
not share the same population. Specifically, finding a tight upper bound on the error matrix AC; — which plays a
key role in establishing the two necessary conditions (4.18) and (4.19) as well as Lemmas 1 and 2 — is challenging.
Instead of the normal sample covariance matrix (SCM), an exponential weighted variant of the SCM is applied
here because of the forgetting factor 5 < 1. It would make the theoretical convergence analysis more complicated.
We leave this challenge for future work.
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{€:}+>+ are supposed to be deterministic and bounded. Noise vectors {n;};>1 are i.i.d. random

variables of zero mean and their power is lower than the signal power.

In (A1), the underlying subspace is supposed to be sparse in the sense of column sparsity
defined by Vu et al. in [173].> It is not a strict sparsity constraint as the set I covers several
supports such as row-sparse, elementwise-sparse, and local region-sparse. Besides, the unit-norm
constraint of (Al) is a very mild condition as we can rescale A by recasting its operator norm
into the signal power. The second constraint of (A1) ensures trackers to estimate the sparse
subspace with high probability [170]. Meanwhile, (A2) is a common assumption for subspace
tracking problems and holds in many situations [25|. Together with (A1), they help prevent the
ill-conditioned computation and support the perturbation analysis of QR decomposition due to

the thresholding operation.

Given these assumptions, the main theoretical result of OPIT’s convergence can be stated by

the following theorem:

Theorem 3. Suppose that Ay = A, § = 1, the true covariance matrix has the form
C = d2AA" + 021, and two assumptions (A1)-(A2) are met. The initialization matriz

Ug and the number of observed (block) data samples t satisfies the following conditions

<\/F+ (Zi; +2Z:)\/ﬁ)27 (4.18)

372\@ )1/2
r+2yr(v2-1))

C'log(2/4)
> O\ E)
- We2

max { sinf(A, Ug), e} < ( (4.19)

where € > 0 is a predefined accuracy, C is a universal positive number and 0 < § < 1
is a predefined error probability. At time t, when U, is generated by OPIT with the

orthonormalization step using QR factorization, then
A .
di =sinf(A,U;) <, (4.20)

with a probability at least 1 — 6.

Proof Sketch.  First, let us denote the QR decomposition of S; by S; = U; rR;  where
“F7 stands for “full” entries. Here, we can express U; = U; W1 4+ Uy 7 | W2 where U, 7| €
R™*("=7) ig the orthogonal complement of U, r(ie., UZ]_-Ut’]-‘,J_ =0), W; € R™" and Wy €
R(™=7)%" are coefficient matrices. Specifically, it is easy to obtain that |[W1 |y = HUtT #U¢|l2 and

SWith respect to the concept of subspace sparsity, Vu et al. in [173] introduced two notions: column sparsity
and row sparsity. Specifically, a subspace is said to be column sparse if some orthonormal basis contains sparse
vectors. Meanwhile, every orthonormal basis of a row sparse subspace must consist of sparse vectors. Accordingly,
row sparse subspaces also belong to the class of column sparse subspaces. In this work, the proposed OPIT
algorithm can achieve an e-relative-error approximation guarantee for the class of column sparse subspaces, and
thus, its convergence guarantee also holds under the row sparsity.
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|Wall2 = ||U;—]_-7LU,5||Q. Accordingly, we can bound the distance d; = sin §(A, U;) as follows:"

di = AL, = AL (Ut s W1+ U r W),

(i) (i1
< [ALG [ [Willy + [A LUz [ Well, < [[ALT ], + Ui Unrll, (4:21)

Here, (i) thanks to the standard inequalities |[M + N2 < [[M]|2 + |[[N|l2 and ||[MN||2

IM]|2|IN||2; and (ii) is due to the following facts: ||A |||z = [|[U¢ll2 = ||Urr.1Lll2 = 1, [[Wil2
U/ £ll2/Uell2 < 1, AUz 1 ll2 < [AL[2[Urrill2 <1, and U] 2 | Uil = U], Up 7o

IAIN

The two terms of the right hand side of (4.21) can be bounded by Lemma 5 and 6, respectively.

Lemma 5. Let AC; = C; — C, we always have
2|IAT U, A
HAIUt,]—'H2 < O—nH LUt 1H2+ ” 2CtH2 . (422)
([2+o2)y/1- [ATOlE - 1A,
o\ 1/2
+ [o2 AU, + aci),])
Proof. See Appendix A. O
Lemma 6. The distance between Uy and Uy  1s bounded by
2IIATU,_ AC
107, s, < VT (oal|A U], + [[ACH],) O um
(2+2y2 - ATO;
- (4 Vi + VD) (AT, + lACi,) )
under the following condition
oZ|ATU—1]|, + |AC2 Vv2-1
" 2 < : (4.24)
(02 + 021 [ATU |}~ VT —1+V2
Proof. See Appendix B. O

Next, Lemma 7 indicates an upper bound on ||AC;||2 which plays a crucial role in Lemma 5

and 6 as well as establishing the two conditions (4.18) and (4.19) for the convergence of OPIT.

SFor any two orthonormal matrices A and U of the same size, we always have sin@(A,U) = |A] Ul =
[ULAl2.
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Lemma 7. The error matrix AC; is bounded in the operator norm with a probability at

least 1 —§:

HACtH2 <cs <ag # + (20n0, + JZ) t:V)’ (4.25)

where 0 > 0 is a predefined error probability, and cs = C+/log(2/6) with a universal

positive number C > 0.

Proof. See Appendix C.

O

Then, the necessary condition (4.24) for Lemma 6 is particularly satisfied when (4.18) is met

and the following inequality holds

a(r, p)
1— Oé(?", p)
(3 —2v2)(07 + 07)?

(r +2yr(vV2—1)+3— 2\@) (a% + r‘lpag)w

max { sin (A, Up), e} <

(X(T, P) -

, where (4.26)

(4.27)

for any positive number p in the range (0, r], please see Appendix D for details. Clearly, (4.19)

provides a lower bound on \/a(r, p)/(1 — a(r, p)).

Accordingly, Lemma 6 is achieved under the two conditions (4.18) and (4.19) while Lemma 1

holds for all t. Now, given Lemma 5, 6, and 7, the distance d; can be bounded by Lemma 6.

7

Lemma 8. Let dy = sinf(A,Uy),wy = max{dy, €}, v > 0 is any positive number satis-
fying wo < ’yrm and py < 1. Suppose that wo < v/2/2, the two conditions (4.19)

and (4.18) are met, we obtain

2 2
d, < ro, + po;
réy/1 —w%

¢ = 0.5max {[(1+4%r2)ah + (1 = py)%0l + 21+ 4% = py)o2a?] V2,
(02 +02)(1 - 0)/V7 }, (4.29)

max {dt_l, e}, where (4.28)

with o = y(14 /(1 +v2)(ro2 + po2)) (o2 + ag)_l. Furthermore, d; < € also holds when
t satisfies the condition (4.18).

Proof. See Appendix D.
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4.5 Experiments

In this section, we conduct several experiments on both synthetic and real data to demonstrate
the effectiveness and efficiency of OPIT and its variant OPITd. Their performance is evaluated
in comparison with state-of-the-art algorithms. Our simulations are implemented using MAT-
LAB on a laptop of Intel core i7 and 16GB of RAM. Our codes are also available online at
https://github.com/thanhtbt/sst/ to facilitate replicability and reproducibility.

4.5.1 Experiments with Synthetic Data

4.5.1.1 Experiment Setup

Following the formulation in section 4.2, data samples {x;}:>1 are generated at random under

the standard model:
x¢ = Aywy + opny, (4.30)

where n; € R™*! is a noise vector derived from N(0,1,), o, > 0 is to control the effect of the
noise on algorithm’s performance, w; € R™! is an i.i.d. Gaussian random vector of zero-mean
and unit-variance to represent the subspace coefficient. The sparse mixing matrix A; € R™*" at

time t is simulated as
At =0® (At_1 + ENt), (431)

where ® denotes the Hadamard product, 2 € R™*" is a Bernoulli random matrix with probability
1 — wsparse, N¢ is a normalized Gaussian white noise matrix, and € > 0 is the time-varying factor

aimed to control the subspace variation with time.

In order to evaluate the subspace estimation performance, we measure the following distance

between two subspaces’

d; 2 sin (A, Uy), (4.32)

where Uy refers to the estimated subspace at time t.

"Given two orthonormal matrices A and U of the same size, we always have sinf(A,U) = |[A[U|> =
[UTA|2 = |AAT — UUT |2 where (.)1 denotes the orthogonal complement, e.g., UTU, = 0. In MATLAB,
this distance can be easily computed by using the command sin(subspace(A, U)).

95



4.5. EXPERIMENTS

—B—01—B=07 —3 =098
—f=03—p=09 —f=1
B=05—8=095

—B—01—B=07 —3 =098
—B=03—p=09 —p=1
B=05—8=095

10
0 200 400 600 800 1000 0 200 400 600 800 1000
Time Index - ¢ Time Index - ¢
(a) Stationary: € =0 (b) Nonstationary: e = 10*

Figure 4.1: Effect of the forgetting factor 5.

4.5.1.2 Effect of the forgetting factor

The choice of the forgetting factor 5 plays an essential role in the tracking ability of OPIT. We
investigated its effect by varying its value from 0.1 to 1 and then evaluating the performance
of OPIT. Here, the data dimension, the true rank, the number of data samples were set at
n =50, r =10, and T = 1000, respectively. We fixed the noise factor at o, = 1073, while two
time-varying levels were considered, namely € = 0 (stationary) and e = 10~3 (nonstationary).
Results are illustrated in Fig. 4.1. In the stationary environment (Fig. 1(a)), we can see that
the higher the value of g is, the better the performance OPIT achieves, and g =1 offers the
best tracking performance. In the time-varying environment (Fig. 1(b)), 0 < 8 < 1 can provide
reasonably high subspace estimation accuracy. When £ is close to 0, OPIT can track the under-
lying subspace over time but its accuracy is low. When 8 = 1, OPIT’s performance degrades as

time passes.

4.5.1.3 OPIT in Noisy and Dynamic Environments

In order to demonstrate the tracking ability of OPIT in nonstationary environments, we varied
the value of the noise level o, and the time-varying factor ¢ among {107,102, 1073} and then
evaluated its subspace estimation accuracy. Two case studies were considered, including the
small-scale {n = 100, = 5} and the large-scale {n = 1000, = 50} in which the sparsity level
Wsparse Was set to 90% and an abrupt change was created at ¢ = 500. The forgetting factor /3
was fixed at 0.9 in both cases. We set the value of the thresholding factor k to [107logn].

Fig. 4.2 and Fig. 7.12 illustrate the effect of the noise level g, and the time-varying factor
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Figure 4.2: Effect of the noise level o, on performance of OPIT: sparsity level wgparse = 90%,
time-varying factor € = 10~4, and forgetting factor 5 = 0.9.

on the performance of OPIT, respectively. We can see that the value of g, and ¢ did not affect
the convergence rate of OPIT but its estimation error. Despite the value of o, and &, OPIT still
tracked successfully the underlying sparse subspace even in the presence of a significant change
at t = 500. The lower o,, and ¢ are, the better subspace estimation accuracy OPIT can achieve.
Moreover, these experimental results indicate that the dimension n and rank r had in fact a small
impact on how fast OPIT converges in dynamic environments. Specifically, when dealing with
the large-scale setting, its convergence rate was faster than that when handling the small-scale

one.

4.5.1.4 OPIT versus Other SST Methods

In this task, we compare the performance of OPIT against the state-of-the-art subspace tracking
algorithms in different scenarios. These SST algorithms include ¢;-PAST [95], SS-FAPT [9§],
SSPCA [94], and AdaOja [149].

We used 1000 snapshots derived from the model (4.30) in which the time-varying factor ¢ was
fixed at 1072 and the value of o,, was set to two levels: 10~! and 1073. Here, two sparsity levels
were also investigated, including 50% and 90%. The length of window was set to W = |logn|
for the large-scale settings and low noise levels, while we used W = 1 for others. We fixed the
forgetting factor 8 at 0.97 for all simulations in this task. For OPIT, the normalization step was
used instead of the QR factorization. Parameters of other SST algorithms were kept default to

have a fair comparison.
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Figure 4.3: Effect of the time-varying factor € on performance of OPIT: sparsity level wgparse =
90%, noise level o = 1074, and forgetting factor 8 = 0.9.

Experimental results are shown as in Fig. 4.4 and Fig. 4.5. In the classical regime (see Fig. 4.4),
OPIT was one of the two best effective SST algorithms, together with SS-FAPI. In particular,
the two algorithms outperformed ¢1-PAST, SSPCA, and AdaQja in all simulations. Indeed, the
convergence rate and estimation accuracy of OPIT were better than than of SS-FAPI, especially
in the case of weparse = 90%. When the target rank was set to a very low value (r = 2), all SST
algorithms were capable of tracking the underlying subspace over time, see Fig. 4.4(a)-(b). When
the target rank was reasonably high compared to the dimension (r = 10 versus n = 50), SSPCA
failed while £;-PAST and AdaQja still worked, but their tracking ability was substantially lower
than SS-FAPI and OPIT, as illustrated in Fig. 4.4(c)-(d).

When dealing with high-dimensional and large-scale settings, OPIT completely outperformed
other SST algorithms at both low and high levels of noise as well as sparsity, as shown in Fig. 4.5.
SSPCA failed to track the underlying subspace while AdaQOja, £1-PAST, and SS-FAP could work
in high dimensions. However, their performance in terms of estimation accuracy and convergence

rate were much less than that of OPIT.

4.5.1.5 OPITd versus OPIT

We here investigate the tracking ability of OPITd in comparison with the original OPIT with

respect to aspects: runtime, estimation accuracy, and robustness to abrupt changes.

To measure how fast OPITd is, we tested many configurations of {n,r} and reported its
run time. Most other parameters were kept fixed as in the previous task except the number of

snapshots 7', including the sparsity level wsparse = 90%, the noise level o, = 1073, the time-
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Figure 4.4: Performance comparisons between OPIT and other SST algorithms in the classical
setting: dimension n = 50, snapshots 7" = 1000, and time-varying factor £ = 1073,

varying factor ¢ = 1073, and the forgetting factor 8 = 0.97. We used 3000 snapshots instead of
1000 for this task. The experimental results in Fig. 4.6 show that OPITd was faster than OPIT
when the dimension n and the target rank r were set to large values (n > 100 and r > 10),

especially when the dimension n is actually high, e.g. n = 1000.

We next investigate the tracking ability of OPITd in time-varying environments with abrupt
changes. We reused the experiment setup above and created two abrupt changes at ¢ = 1000
and t = 2000 to evaluate how fast OPITd converges. Two noise levels were considered, including
on = 107! and o, = 1073, The results are illustrated in Fig. 4.7 and Fig. 4.8. When the
underlying model was of low rank, OPITd had almost the same performance to OPIT, see

Fig. 4.7(a). When the target rank r was large, OPITd did not work well, probably because the
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Figure 4.5: Performance comparisons between OPIT and other SST algorithms in high dimen-
sions: target rank r = 10, snapshots 7" = 1000, and time-varying factor ¢ = 1073,

projection deflation might lead to a cumulative error between successive estimates. However, if
the value of r is not too large, OPITd could track successfully the underlying subspace over time

when the sparsity level wgparse Was not too high, as shown in Fig. 4.8.

4.5.2 Experiments with Real Video Data

In this task, four different video sequences are used to illustrate the effectiveness and efficiency of
OPIT for real data, including “Lobby”, “Hall”, “Highway”, and “Park” whose details are reported
in Tab. 1, (see Fig. 4.9 for an illustration). We here compared the video tracking ability of OPIT
with the state-of-the-art subspace tracking algorithms (i.e., £;-PAST, SS-FAPI, and PETRELS-
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Figure 4.6: OPITd versus OPIT: Run time.
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Figure 4.7: Effect of the target rank r on performance of OPITd: dimension n = 100, snapshots
T = 3000, time-varying factor e = 1073, sparsity level Wsparse = 90%, forgetting factor 8 = 0.97,
and two abrupt changes at ¢ = 1000 and ¢ = 2000.

ADMM [25]) and tensor tracking algorithms (i.e., SOAP [174], OLCP [175], OLSTEC [176], and
ROLCP [33]). In order to apply these subspace tracking algorithms to the video sequences, each

video frame of size I x J was reshaped into a IJ x 1 vector. Following the studies on video

tracking in [25] and [33], the tensor rank and subspace rank were set to 10 for all simulations.

Simulation results are shown statistically in Tab. 7.1 and graphically in Fig. 4.10. As can be

seen that OPIT provided a competitive estimation accuracy as compared to PETRELS-ADMM

while its runtime was much faster than that of the ADMM-based tracking algorithm. Indeed,
OPIT had a better performance than PETRELS-ADMM on the “Lobby” data, see Fig. 4.10(a).
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Figure 4.8: Effect of the sparsity level wgparse on performance of OPITd: dimension n = 100,
rank r = 20, snapshots 7' = 3000, time-varying factor e = 1073, forgetting factor 3 = 0.97, and
two abrupt changes at ¢ = 1000 and ¢ = 2000.
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Figure 4.9: Four video sequences used in this chapter.

Also, OPIT outperformed most tracking algorithms, apart from PETRELS-ADMM. With re-
spect to runtime, ROLCP was the fastest “one-pass" tracking algorithm, several times faster than
the second-best. Interestingly, our algorithm is also designed for handling a block of multiple
incoming samples at each time (i.e. the length of window W > 1). When W = |log(1J)], OPIT

was even faster than ROLCP while still retaining a reasonable video tracking accuracy.

4.6 Conclusions

In this chapter, we have proposed a new provable OPIT algorithm which is fully capable of

tracking the sparse principal subspace over time in both classical regime and high-dimension,

102



4.6. CONCLUSIONS

2
1074 -Q@ ‘L1-PAST
—% -SS-FAPI
—% PETRELS-ADMM
—A—SOAP
——OLCP W
A —#—OLSTEC E
M—i—— —3—ROLCP E

—&— OPIT(Proposed)

i N 1 !r AL

S

Relative Error

750 1125 1500
Frame Index

(a) “Lobby”
2 :
107 L1-PAST
=3¥ 'SS-FAPI
8 ‘ —3% ‘PETRELS-ADMM
é:: 0 SOAP
Y OLCP
= 10 i < 2 X1V A OLSTEC
® z g B oy W e\ -E- ROLCP
E i K ”=~ ” N E OPIT(Proposed) |3
%‘S 10_2 9 uﬁfrn 7\ "_ﬁl“'f b "53{ s=r \.'\31h Irey "é‘\n\ = \ﬁ =\ \\\.\.Ign \l v —ﬁ—"‘é
o
10_4 | | | | ]
0 350 700 1050 1400 1700

Frame Index

(b) “Highway”

Figure 4.10: Tracking ability of algorithms on the video datasets.

low-sample-size regime. OPIT provides a competitive performance in terms of both subspace
estimation accuracy and convergence rate in the classical regime, especially when the SNR, level
is high. In high dimensions, OPIT outperforms other sparse subspace tracking algorithms, its
estimation accuracy is much better than that of the second-best, SS-FAPI. Besides, a fast variant
of OPIT has been obtained using deflation called OPITd. Its computational complexity and
memory storage are linear to the input size and they are lower than that of OPIT. Simulations
carried out on real video sequences indicated that the proposed method has potential for real

applications.
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Dataset “Lobby” “Hall” “Highway” “Park”
g Tensor-based 128 x 160 x 1546 | 174 x 144 x 3584 | 320 x 240 x 1700 | 288 x 352 x 600
| Matrix-based 20480 x 1546 25056 x 3584 76800 x 1700 101376 x 600
Evaluation metrics time(s) | error | time(s) | error | time(s) | error | time(s) | error
SOAP 14.29 0.842 21.72 0.989 39.89 0.821 21.34 0.789
§ OLCP 10.50 0.161 19.98 0.154 27.07 0.219 14.19 0.096
S) OLSTEC 44.25 0.037 92.82 0.041 130.1 0.064 53.13 | 0.032
ROLCP 4.32 0.114 10.74 0.120 11.45 0.154 4.47 0.086
PETRELS-ADMM 118.4 0.015 305.5 0.018 452.6 0.009 203.6 | 0.032
¢ | ¢1-PAST 14.11 0.031 33.73 0.101 46.78 0.159 19.21 0.058
% SS-FAPI 12.99 0.023 32.72 0.100 46.37 0.160 17.56 0.056
& OPIT (W =1) 16.32 0.013 50.78 0.056 56.78 0.102 26.94 0.042
OPIT (W = |log(IJ)]) | 1.89 | 0.021 | 5.62 | 0086 | 6.05 | 0.141 | 2.83 | 0.057

Table 4.1: Runtime and averaged relative error of adaptive algorithms on tracking the four video
sequences.

4.7 Appendix

4.7.1 Appendix A: Proof of Lemma 1

Because Uy r is the Q-factor of S¢, we obtain 0(A,U; ) = 6(A,S;) and hence

tanf(A, U, r) = max < f(v) = M . (4.33)
’ Iv]2=1 |ATSv|],
For any vector v € R™! and ||v||2 = 1, we can rewrite f(v) in (4.33) as follows
o AT+ ACHU v, _|AT(AAT « oty + ACYU ],
V)= =
HAT (C + ACt)Ut—1VH2 HAT (O‘%AAT + O'TQLIN + ACt)Ut—l"HQ
@ HUTQLAIUt—lv + AIACtUt—lVHQ
(62 +02)ATU v + ATAC,U;_1v||,
@ oATUL], + [ATACU],
~ (24 o) ATU ], ~ [[ATAC U,
(’g) oa|ATU 1|, + |AC2 (4.3)

(02 +02)y/1— IATU1 |3~ | ACH,

Here, (i) is due to A] A = 0 (orthogonal complement); (ii) uses the inequality ||P|j2 — [|Ql|2 <
P+ Qll2 < [|P|l2 + 1|Qll2;, YP, Q of the same size; and (iii) is derived from the following facts:
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[PAC: 2 < [[Pll2| AC:]l2, |Allz = [[ALll2 = [[Usall2 = 1, and

A?nm(ATUt—l) )‘ AlUt 1) 1 (435)

max (

where Apax(P) and Apin (P) represent the largest and smallest singular value of P, respectively.

Indeed, the relation (4.35) leads to

|AT U1, = Amax(ATUp1) > Amin(A T Uyy)

_\/1 2, (ATU, 1)2\/

(4.36)

and thus, (iii) follows.

In parallel, it is well known that siny) = 1/4/1 + tan=2 ¢ V¢ € [0,7/2] and h(z) = 1/vV1+ 2~
is an increasing function in the domain (0, 00), i.e. x; < xg implies h(x;) < h(z2). Accordingly,

we obtain
1

\/1 [ maxy f( )}72
| ALUi-1l, + [AC::

IN

1A LU,

= 5 . (4.37)
([t = AU - 1aci] '+
9\ 1/2
+ {U?@HAIUt—lHQ + HACtHQ} )
It ends the proof.
4.7.2 Appendix B: Proof of Lemma 2
We first recast HUZ 1 Uy, ]-‘H2 into the following form
HU UtfHQ - HU LUtH2 - HUtJ-'L(Ut - Ut,f)“z - HUIIF,LAUtH? (4.38)
Under the following condition
(1 + \f St HSt P < HStH2’ (439)

105



4.7. APPENDIX

where AS; = S; — S; and k(S;) = ||SZ¢||2HSt||2, we can bound this distance as follows

U/, AS
o sz oS
U/ AU, < ||[U/- AU, < 5]}
Ul AU, < (U AU, < [AS,[r
1= 1+ V2)r(S) ey —
1Sl
(i0)
i |AS:]|p (4.40)

/\min(St) - (1 + ﬁ)”AStHF

Here, (i) follows immediately the perturbation theory for QR decomposition [177, Theorem 3.1]
and (ii) is obtained from the facts that U,z |2 = 1, |[PQ|r < |P|2]QlF, and [|P#||2 =
mm( ) VP, Q of suitable sizes.

We also know that there always exists two coefficient matrices H; € R"™*" and K; € R(n—r)xr

satisfying U;—; = AH; + A K; (i.e. projection of U;_; onto the subspace A) and

A (H) = | ATU |2, Ain(H) = /1~ |ATU I3 (4.41)

Amax(Ke) = | ATU |2, Ain () = /1~ [[ATU |3
Accordingly, we can express S; by

St =CU,_1 + AC,U;_1 = (AZ, A" +02L,)(AH, + A | K;) + AC,U;_4
= A0’ + o’1,)H; + 02 A K, + AC,U;_;. (4.42)

Thanks to the fact that \;(P + Q) > A\(P) — Anax(Q) VP, Q of the same size, the lower
bound on Apin(S¢) is given by

Amin(St) > Amin (07 + 02)AH;) — Amax (02A 1 K}) — Amax (ACUy_1)
T, +o0 ))\min(Ht) — 0 )\max(Kt) - HACtHQ

> (o7
= (02 +02)\/1 = [ATU 1|3 - 02 [ATU 1l — [ACH e, (1.43)
In what follows, we derive an upper bound on ||AS;||r. For short, let us denote the support

of A, U, 1, and U; by T4, T;—1, and T, respectively, and S = T4 U T;_1 U T;. Here, it is easy
to verify that S; 5, = Cys,xs,Us—1 and Qt = S;7, = 7(S¢s,, k). Accordingly, we can bound
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|AS;||F as follows

|88, = [Sus, — Sl £ I8es, — Surall,
= ||lor ALK + ACU; 4|,
< Vr||ol ALK + AC U 1|, < Vr(oh || Kell2 + | AC]2)
= V(oAU 1|2 + [AC ), (4.44)

where (i) is due to |T¢| > |Ta| Vt (i.e. |S:¢\ T¢| < |S¢\ Tal), thanks the thresholding operator
7(.) with k/n > weparse-

In parallel, we can rewrite the sufficient and necessary condition (4.39) as
(14 VOS], as . <1 (4.4

Since [|Sf |z = AL

min

(S¢), substituting (4.43) for ”SZ%HQ and (4.44) for ||AS;||F results in

AU, +1ACH: _ v2-1
(o2 +ag)\/1 AU P VL V2

(4.46)

Under the condition (4.46), the upper bound on HUZLUL}'HQ is

VT (oal|A U], + [|AC)

(02 + o)1= AU o2 ATU -

10 U, <

- 1aC = 71 + VD) (A TV, + 1ACH:)

) Vr(2||[ATU ||, + [AC:2) 7 (4.47)

<(ag + o)1= [ATUE - (1+ V(1 + v2) x

< (@IATUL A, +1ACHL))

thanks to (4.40). It ends the proof.

4.7.3 Appendix C: Proof of Lemma 3

We begin the proof with the following proposition:
Proposition 10. Given two sets of random variable vectors {a;}}¥; and {b;}}¥\; where a; S
N(0,021,), b; i N(0,021,,,), and a; is independent of bj, Vi, j. The following inequality holds
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with a probability at least 1 — §:

N
1
LS abT| < Couny frogtzypymcdnm) (1.48)
=1 2
where 0 < 6 € 1 and C > 0 is a universal positive number.
Proof. Tts proof follows immediately Lemma 15 in [178|. O]
Since x; = Aw; + n;, we always have
1w
_ ]
aci, = gy x|
=1
1 tW
= <AwiwiT AT £ nyn] + Awin] +njw, AT) ~2AAT — 021,
WS 2
| w ;W ;W
< HA<tW > wiw,] — aﬁIT>AT + HtW > nn/] —olIy|| + 2HA<tW ZwiniT) H
P 2 i—1 2 i=1 2
1 | w tw
T 2 T 2 T
fﬂM”W;w%—%L;MW;mmﬂM%+WM”W;%m,
(4.49)

thanks to the inequality [|[PQ|l2 < ||P]|2]|Q]l2 for all P and Q of suitable sizes. Accordingly,
with a probability at least 1 — 0 (0 < § < 1), three components in the right hand side of (4.49)
are respectively bounded by

1 tW
i=1
1 tW
i=1
1 tW
T
’ 7 D Wi
i=1

where C, Co, C3 are universal positive parameters, thanks to Proposition 10 and |24, Proposition

< C1/Tog(2/8) 02, /%, (4.50)

2

< Oy/log(2/0)02 /%, (4.51)

2

< C’gx/log(2/(5)axam/%, (4.52)

2

2.1]. As a result, we obtain

ac, < (o231

+ (20000 +02) ) — > (4.53)

where ¢ = max {Cl, Co, Cg}\/log(2/5). It ends the proof.
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4.7.4 Appendix D: Proof of Lemma 4

We first use proof by induction to prove d; < wy = max{dp, €}. Particularly, we already have the
base case of dy < wp. In the induction step, we suppose d;_1 < wgy and then prove d; < wyq still
holds. After that, we indicate that d; < € is achievable when the two conditions (4.18) and (4.19)

are met.

Thanks to Lemma 3, when ¢ satisfies (4.18), i.e.,

¢ > SloB/0 1;%/(52?7"2 <\/7«+ (“é + 2%)\/ﬁ>2, (4.54)

lop Oz

we obtain ||AC|s < r~1poZe with 0 < p < r. In what follows, two case studies d;_; > € and

d¢—1 < € are investigated.
Case 1: When d;_1 > €, i.e., [|[AC2 < r_lpaidt_l.

We can rewrite ||A] Uy |2 as follows

(o5 + 1" pod)diy

|AlUF], < 2, 2y / 2 -1 2 2
([(an + o)1 —d? — 1 pogdi_q] "+
2 2,0 U2
+ (02 + o2p/r)2d2,)

(2 (0'7% + r‘lpai)dm
- _ 2

([(O’?L +02)\/1—wd —r ' poiwo| +

2 1 22 2\Y/?
+ (Un +r paw) wO)

(i4) 2, 1,2
g (Un +r pgz)dt—l (455)

(L + 720t + (1= p)2oi+

1/2
+2(1-py+ 727’2)0503> V1-wi

Here, (i) is obtained from the fact that g(z) = ((av1 — 22 — bx)? + cmz)_l/2 is an increasing
function in the range [0,/2/2] where a, b, and ¢ are defined therein® and (ii) is simple due to the
fact that there always exists a small parameter v > 0 such that py < 1 and wy < yry/1 — w?.

In the similar way, we obtain the following upper bound on ||U/ | U; #||a:

SWriting © = siny, the domain of y is [0,7/4]. Here, we can recast g(z) into g(y) =
((a cosy — bsiny)? + csin? y)_l/z. The derivative g’(y) is given by

g'(y) = 0.5((acosy — bsiny)® + esin’ y) —3/2 ((a® = b* — ¢) sin(2y) + abcos(2y)).

Since a? — b? > ¢ by their definition, ¢'(y) > 0 Yy € [0,7/4] and hence ¢'(z) = ¢'(y)dy/dx = ¢'(y)/V/1 — 22 >
0 Vz € [0,v/2/2]. Accordingly, di—1 < wo < +/2/2 implies g(d:—1) < g(wo) which (i) then follows.
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JF(o2 + o)
(02 +02)\/1—d} — (1+/r(1+V2))x
X (07% + r_lpag)dt_l
Vr(on + 1t pod)di—
(02 +02)\/1—w? — (L+ r(1+v2)) (02 + 7 1po2)wp
@ Jrlod +rpod)

>~ dtfla
(02 +02)(1—0)\/1~wp

where 0 = v(1 + /(1 + v2)(ro2 + po2)) (o2 + 62) 1. Specifically, (i) is due to the increasing
property of z(x) = (av/1 — 22 — bz)™!, and (ii) thanks to wy < yry/1 — wp.

Thanks to (4.55) and (4.56), we obtain

10/ LUl <

—~
.
=

IN

(4.56)

2 2
ro? + po?

dt < HAIUt,]-'HQ + ”U;—J_Ut,]-'HQ < Témdt,h (457)
where
¢ = 0.5max { ((1 +7%r) oy + (1= py)?og +2(1 = py + v2r2)a§a§)1/2,
(07 +om)(1 - Q)/W}- (4.58)

Note that in order to utilize the two bounds (6.189) and (4.56), the condition (4.46) must be

satisfied which is equivalent to

(02 +r~1po2)wo < V2 -1

(2 +oR)V1-wi  Vri-1+V2

(4.59)

(rp) \ /2
Accordingly, we obtain wy < <1far(’f p)) where

(3 —2v2)(0% 4 02)?
(r+2/F(V2~ 1) 13- 2v2) (0} + 7 po2)”

a(r,p) = (4.60)

3-2v2
r+2y1(v2—-1)+3-2

3_2\/§ 1/2
wo < (r+2\/¥(ﬂ—1)> , (4.61)

In parallel, a(r, p) > 7 for every 0 < p < r. Thus, we obtain

which is exactly the condition (4.19) in Theorem 1. Moreover, there are various options of
p € (0,r] satisfying pag <ré€\/1— wg — 702, e.g., when the value of p is very close to zero. In

such cases, d; will decrease in each time ¢, i.e., d; < d;—1 < wy.
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Case 2: When d;—1 < €, applying the same arguments in Case 1, we also obtain dy <

ron+po;
réy/1 —wg

To sum up, if the two conditions (4.18) and (4.19) are satisfied, then d; < max{d;_1,€} = wo.
As a result, the statement d; < € holds if and only if

2 2\ tW
( O P ) wo < e. (4.62)

réy/1 fwg

e <e<wp.

Specifically, (4.62) is equivalent to

. log(e/wp) .
- V[/'(log(ra,z1 + po2) — IOg(Tf\/W))

which is lower than the bound (4.18). Therefore, we can conclude that d; < e holds and it ends

(4.63)

the proof.

Appendix E: Additional Experimental Results
OPIT vs the best optimal power-based subspace tracker FAPI

Here, we illustrate that OPIT is more effective than the existing power-based subspace trackers.
As it is well-documented that FAPI is the best optimal power-based subspace tracker w.r.t. both
convergence rate and estimation accuracy [154]|, we adopt FAPI in this work. We set the data
dimension n = 100, the true rank » = 10, the number of data samples T = 2000. Two levels
of noise and time-varying factors are considered, namely o, = ¢ = 1072 and 0, = ¢ = 1072
To assess how fast subspace trackers converge, we create two abrupt changes at ¢ = 500 and
t = 1500. To have a fair comparison, the forgetting factor § is fixed at the same value 0.97 for
both OPIT and FAPI in all testing cases. Results are shown as in Fig. 4.11. We can see that
OPIT yields higher subspace estimation accuracy than FAPI. When abrupt changes happen,
OPIT also converges faster than FAPI.

OPIT vs State-of-the-art Subspace Trackers

In this subsection, we provide further performance comparison of OPIT against the state-of-the-
art subspace trackers addressed in Section V.4 in the main text. Fig. 4.12 and Fig. 4.13 illustrate
the experimental results in the classical regime and high dimensions when the noise level is high,

ie., o, = 1071, As can be seen that OPIT outperform others completely in both regimes.
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Figure 4.11: OPIT vs the best optimal power-based subspace tracker FAPI: Data dimension
n = 100, true rank 10, number of snapshots T = 2000, forgetting factor g8 = 0.97, abrupt
changes at ¢ = 500 and ¢ = 1500.

OPIT vs Data Dimension and Sample Size

This subsection provides additional experimental results of OPIT to demonstrate the effectiveness

of OPIT in many settings of data dimension and sample size. Please see Figs. 4-8 for details.
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Figure 4.12: Performance comparisons between OPIT and other ST algorithms in the classical
setting: dimension n = 50, snapshots 7" = 1000, time-varying factor ¢ = 1073, and the noise
level o, = 1071.
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Figure 4.13: Performance comparisons between OPIT and other SST algorithms in high dimen-
sions: target rank r = 10, snapshots 7" = 1000, time-varying factor ¢ = 1072, and the noise level
on =101
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Figure 4.14: n = 50,7 = 200: rank r = 10, time-varying e = 1073, sparsity 90%.
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Figure 4.15: n = 1000, 7 = 500: rank r = 10, time-varying € = 1073, sparsity 90%
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Figure 4.16: n = 2000,7 = 2000: rank r = 20, time-varying € = 1073, sparsity 90%
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Figure 4.17: n = 5000,7 = 2000: rank r = 20, time-varying € = 1073, sparsity 90%
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Chapter 5

An Overview of Tensor Tracking
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Tensor decomposition has been demonstrated to be successful in a wide range of applications, from neuro-
science and wireless communications to social networks. In an online setting, factorizing tensors derived
from multidimensional data streams is however non-trivial due to several inherent problems of real-time
stream processing. In recent years, many research efforts have been dedicated to developing online tech-
niques for decomposing such tensors, resulting in significant advances in streaming tensor decomposition
or tensor tracking. This topic is emerging and enriches the literature on tensor decomposition, particu-
larly from the data stream analystics perspective. Thus, it is imperative to carry out an overview of tensor
tracking to help researchers and practitioners understand its development and achievements, summarise
the current trends and advances, and identify challenging problems. In this article, we provide a con-
temporary and comprehensive survey on different types of tensor tracking techniques. We particularly
categorize the state-of-the-art methods into three main groups: streaming CP decompositions, streaming
Tucker decompositions, and streaming decompositions under other tensor formats (i.e., tensor-train, t-
SVD, and BTD). In each group, we further divide the existing algorithms into sub-categories based on
their main optimization framework and model architectures. Finally, we present several research chal-

lenges, open problems, and potential directions of tensor tracking in the future.

5.1 Introduction

Tensor decomposition (TD) has attracted much attention from the signal processing and machine
learning community [11]. As a tensor is a multiway array, it provides a natural representation
for multidimensional data. Accordingly, TD which factorizes a tensor into a set of basis com-
ponents (e.g., vectors, matrices, or simpler tensors) has become a popular tool for multivariate
and high-dimensional data analysis. In particular, we have witnessed significant advances in
TD and a rapid growth in its applications over the last two decades [13]. Several types of TD,
such as CANDECOMP/PARAFAC (CP) [14], high-order SVD (HOSVD)/Tucker [15], tensor
train/network [16], t-SVD [17], and block-term decomposition (BTD) [18], have been developed
and successfully applied to various domains, from neuroscience [179,180| wireless communica-
tions [181,182] to social networks [183,184].
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The demand for (near) real-time stream processing has been increasing over the years since
many modern applications (e.g., Internet-of-Things) generate massive amounts of streaming data
over time and analytical insights from such data can bring several benefits, e.g., for real-time
decision making [2|. As its name implies, (near) real-time stream processing needs to immediately
deliver and analyse data streams upon their arrival. Since streaming data grow bigger, faster,
and become more complex by the time, there exist several inherent problems which are still
challenging issues, such as (i) the unbounded size of streaming data, (ii) time-varying model,
concept drift, or dataset shift, and (iii) uncertainty and imperfection, etc. We refer the readers

to [2,3] for good surveys on data stream analysis.

When using tensors to represent data streams, TD is generally referred to as tensor tracking
or adaptive/online/ streaming tensor decomposition. Specifically, factorizing a streaming tensor
is nontrivial due to several computational challenges. First, as tensor streams are continuously
generated, their volume grows significantly over time and possibly to infinity. Applying the con-
ventional batch TD methods to such tensors is not possible as they require data to be stored
and processed offline. Second, properties of streaming tensors (e.g., the low-rank approxima-
tion model) can vary with time in unforeseen ways. Moreover, tensor streams often happen in
real-time, so retransmission of a stream is difficult, even impossible. Accordingly, batch tensor
estimation and decomposition become less accurate when time passes. Last but not least, some
modern applications require high-speed data acquisition systems to rapidly acquire and process
massive data streams. In such a case, very fast and (near) real-time processing is highly impor-
tant. However, batch TDs are often of high complexity, and hence turn out to be inefficient.
These characteristics make tensor tracking much different from batch tensor decomposition and
lead to several distinguishing requirements for tensor trackers, such as low latency and memory

storage, high scalability, adaptation to time variation, and robustness, to name a few.

As the literature of tensor tracking has significantly expanded in recent years, it is imperative
to it is imperative to conduct an extensive overview of the state-of-the-art tensor tracking algo-
rithms to help researchers and practitioners to identify: (i) which topics in tensor tracking are
significant and emerging, (ii) what kind of tracking models and related analysis techniques have
already been deployed to date and how to apply them in specific tasks, and (iii) main research

challenges, open problems, and potential directions of tensor tracking in the future.

5.1.1 State-of-the-art Surveys

The very first and gentle introduction to tensor and tensor decomposition was provided by Ras-
mus in [185] two decades ago. This reference offered a tutorial on CP/PAFRAFAC decomposition
covering features, properties, methods, and applications in chemometrics. Since then, there have
been many published survey papers which provided different points of view on tensor compu-

tation in the literature. We can broadly divide them into three classes, including (i) surveys
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Table 5.1: The State-of-the-art Surveys on Tensor Decompositions and Applications

Class

Review (Year)

Objects & Topics

Key Contribution

Surveys on tensor factorization
models, methods, and tools

[185] (1997) CP/PARAFAC An overview of CP decomposition with respect to aspects: features, properties,
decomposition methods, and applications in chemometrics.

[186] (2008) CP & Tucker A literature survey on unsupervised multiway data analysis: multiway models
decomposition (i.e., CP family and Tucker family), their workhorse algorithms and applications.
CP & Tucker An extensive survey on main algorithms, properties and applications of CP,

[10] (2009) decomposition Tucker decompositions and their variants.

A list of software and toolboxes for tensor processing.

[187] (2010)

Tucker/HOSVD
decomposition

An overview on numerical methods for Tucker/HOSVD decomposition & its
applications in signal processing.

[188] (2013)

Low-rank tensor
approximations

A literature survey on low-rank tensor approximation models and algorithms.

[189] (2014)

Incomplete tensor
decomposition

A survey on numerical methods for factorizing incomplete tensors and their
connections to signal processing applications.

[12] (2016)

Tensor network
decomposition

An extensive tutorial on tensor networks, their operations and algorithms.

[190] (2016)

Big tensor
decomposition

A brief review of methods for factorizing large-scale tensors.

[191] (2020)

Tucker/HOSVD
decomposition

A survey on randomized algorithms for computing Tucker/HOSVD decomposition.

[192] (2020)

Structured tensor
decomposition

A unified nonconvex optimization perspective for computing large-scale matrix
and tensor decompositions with structured factors.

Surveys on general
tensor problems

[193] (2007)

Tensor filtering

A review of tensor signal algebraic filtering methods.

[194] (2009)

CP & Tucker
decompositions

A review of theoretical results on the existence, uniqueness, degeneracies, and
numerical complexities of alternating least-squares and other tales.

[195] (2013)

Complexity of
tensor problems

An in-depth survey on theoretical and complexity results of some tensor
problems: tensor rank, eigen/singular values, and the best rank-1 approximation.

[196] (2014)

Tensor formats &
tensor ranks

A brief introduction on different types of tensor formats and tensor ranks.

[11] (2017)

Fundamentals &
backgrounds

An comprehensive overview of tensor decompositions w.r.t. aspects: uniqueness,
tensor ranks, algorithms, bounds, and applications.
A list of software and toolboxes for tensor processing.

[197] (2018)

Connections to

PCA

An introduction to tensors and tensor decompositions in the lens of PCA.

Surveys on tensor applications

An overview of tensor decomposition applications for a wide variety of data

(198] (2011) Data analysis and problem domains.
[199] (2015) Signal processing A comprehensive survey on tensor decompositions for signal processing.
[180] (2015) EEG applications A brief survey on tensor decompositions of EEG signals.
|200] (2016) Anomaly detection An interdisciplinary survey on tensor-based anomaly detection.
[201] (2017) Data fusion A review of tensor decompositions with emphasis on data fusion applications.
[202] (2017) Machine learnipg An tutorial on tensqr n.etwo.rk mode}s for super—compressed repr.esentation of
& data analysis data and their applications in machine learning and data analytics.
[203] (2019) Machine learning An overview of tensor techniques and applications in machine learning.
[204] (2021) I\'Iullt)irs(t)a(r:l:bgsrinségnal A comprehensive survey on tensor methods for multisensor signal processing.
[182] (2021) ¢ omgrliﬁfilé::i ons A comprehensive overview of tensor decompositions for wireless communications.

[184] (2021)

Social networks

A survey on tensor decomposition for analysing time-evolving social networks.

[205] (2021)

Computer vision &
deep learning

A practical overview of tensor methods for computer vision and deep learning

[206] (2022)

Nonlinear system
identification

A tutorial on tensor methods for nonlinear system identification.

[13] (2022)

Data analysis

A systematic and up-to-date overview of tensor decompositions from
the engineer’s point of view.

This work

Streaming tensor
decomposition
(Tensor tracking)

A contemporary and comprehensive survey on methods for factorizing
tensors derived from data streams under several tensors formats.
Research challenges, open problems, and future directions.

on models, methods, and tools for factorizing tensors, (ii) surveys on general tensor problems,
e.g., tensor operations, uniqueness, ranks, filtering, spectral analysis, and complexity, and (iii)
surveys on tensor applications. We refer the readers to Tab. 5.1 for the main contributions of

the state-of-the-art surveys on tensors.

Among them, the most notable and highly-cited survey paper is the work of Kolda et al.
in [10] that was published in the SIAM Review journal more than a decade ago. The survey
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presented basic multiway models (i.e., CP family and Tucker family) and workhorse algorithms
for factorizing tensors under these models. Some applications and software for tensors were also
mentioned. The second key survey in the literature is the work of Sidiropoulos et al. in [11]
that appeared five years ago in the IEFEE Transactions on Signal Processing journal. To fill
some gaps in the existing surveys on CP and Tucker decompositions of that time, the authors
provided an in-depth overview of tensors with respect to the following aspects: uniqueness, ranks,
bounds, algorithms, and applications. Moreover, an up-to-date list of software and toolboxes for
tensor computation was provided therein. To extend beyond the two standard multiway models,
Cichocki et al. conducted a comprehensive tutorial on tensor networks in [12,202] that appeared
in the Foundations and Trends in Machine Learning journal. Particularly, its coverage includes
tensor network models, the associated operations and algorithms, and their applications. Besides,
it also highlighted connections of tensor networks to dimensionality reduction and large-scale
optimization problems. Very recently, Liu et al. provided a general overview of tensors from the
engineer’s point of view in the book Tensor Computation for Data Analysis [13|. It covers various
aspects of tensor computations and decompositions, from operations and well-known multiway

representations to tensor-based data analysis techniques and practical applications.

However, to date, we are not aware of any survey paper specifically reviewing the problem of
streaming tensor decomposition or tensor tracking. Therefore, it is of great interest to carry out

an overview of this topic to enrich the tensor literature.

5.1.2 Main Contributions

In this chapter, we present a contemporary and comprehensive survey on the state-of-the-art

online techniques which are capable of factorizing tensors derived from data streams.

Our survey begins with basic coverage of five common tensor decompositions and their main
features. They are CP/PARAFAC, HOSVD /Tucker, BTD, tensor-train, and t-SVD. Two kinds
of streaming models are then introduced to represent streaming tensors, including single-aspect
and multi-aspect. Next, we review four main groups of streaming CP decomposition algorithms:
(i) subspace-based, (ii) block-coordinate descent, (iii) Bayesian inference, and (iv) multi-aspect
streaming CP decomposition. Under the Tucker format, we categorize currently available single-
aspect tensor tracking algorithms into two main classes: online tensor dictionary learning and
tensor subspace tracking. Multi-aspect streaming Tucker decomposition algorithms are then
overviewed. In addition, we provide a short survey on other online techniques for tracking
tensors under tensor-train, t-SVD, and BTD formats. Finally, we discuss a number of important
challenges and open problems as well as highlight potential directions for the problem of tensor
tracking in the future. To the best of our knowledge, our survey offers for the first time a
thorough review of techniques for factorizing tensors in an online fashion. Fig. 5.1 depicts depicts

the organization of the thesis.
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Figure 5.1: Structure of this chapter.

5.2 Tensor Decompositions
In this section, we briefly describe the background of the five popular tensor decompositions

which have already been deployed to factorize streaming tensors in an online fashion. They are
CP/PARAFAC, HOSVD/Tucker, BTD, tensor-train, and t-SVD.
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5.2.1 CP/PARAFAC Decomposition

Under the CP format [185], a tensor X € RI1*22XXIN can be decomposed into a set of N

matrices {UMN_ sharing the same number of columns as follows
22 [{UONL] = > U0 0 U i) o 0 UM ), (5.1)
i=1

where the so-called tensor factor U™ is of size I, xr with 1 < n < N. The smallest r

satisfying (5.1) is referred to as the CP-rank of X.

This decomposition has its advantages and disadvantages. On the one hand, CP is the best
memory-saving format for representing high-order tensors, and hence, it can overcome the curse
of dimensionality which particularly limits the order of tensors to be analysed. Under certain
conditions, CP decomposition is essentially unique up to a permutation and scale which is an
useful property in many applications, e.g., to recover exact components or individuals hidden in
the underlying data. However, its main disadvantage is that finding the true CP-rank r is known
as an NP-hard problem [195|. Even though the CP-rank is given in advance, the best rank-r
approximation of a tensor may not exist [207]. To compute the CP decomposition, one of the

most widely-used approaches is based on the alternating least-squares (ALS) technique [10].

5.2.2 Tucker Decomposition

Under the Tucker format [15], we can factorize X into a core tensor G of a smaller size and N

factors {UM N as
X2 [G:{UMN ] =G 51 UM x, UR xy... xy UM, (5.2)

where G is of size 71 X 19 X -+ x vy with 7, < I,, and U™ € RIn*"n ig an orthogonal matrix.

The vector r = [rq,rg,...,ry] is called the multilinear rank or rank-(ry,re,...,ry) of X.

Tucker decomposition is more flexible than CP in the sense that we can write any tensor X
in the form (5.2) and its computation can be done effectively and stably. The two most popular
algorithms for computing (5.2) are HOSVD and Higher-order Orthogonal Iteration (HOOI) [208|.
Both HOSVD and HOOI offer a good rank-(rq,r2,...,ry) tensor approximation for X and
they can be efficiently implemented in practice. In general, the Tucker representation is not
unique but the subspace covering U™ is physically unique. Therefore, the main interest in
Tucker decomposition is for finding subspaces of the tensor factors, and hence, for approximation,

dimensionality reduction, and feature extraction [11].
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5.2.3 Block-Term Decomposition

Block-term decomposition (BTD) allows to represent X as a sum of low multilinear-rank ten-
sors [18]:

R
x =Y [g: (U], (5.3)
i=1

where {G,}2 | with G; € R"1*"2X"X"N g the set of core tensors, U = [Ugn), ... ,Ug)] with
Ugn) € RIn*m is the n-th tensor factor, and r, < I, V i, n.

The BTD format (5.3) can be considered as a combination of CP and Tucker. As its name
reveals, the basic components in BTD are rank-(rq,r2,...,7x) blocks while they are rank-1
terms in CP/PARAFAC and matrix decompositions. When these blocks are rank-1 tensors (i.e.,
rn = 1 VYn), it boils down to CP. When it has only one block (i.e., R = 1), BTD becomes the
standard Tucker decomposition. It is worth noting that the number of blocks R relies on the
block’s size. Like CP, BTD is essentially unique [18]. The common approach to find (5.3) is also
based on the ALS technique [209].

5.2.4 Tensor-train Decomposition

Tensor-train (TT) decomposition expresses X as a multilinear product of third-order tensors
{GMN_ | according to

X =gM x1g® yl... L g, (5.4)

where G(™ € Rn-1%Inx"n g the p-th T'T-core (aka tensor carriage) with n =1,2,..., N. Here,

ro = rn = 1 and the quantities {r,}Y"}! are called TT-ranks [16].

This type of TD offers several appealing benefits for representing tensors, especially high-order
tensors. For instance, given an arbitrary tensor X, we always find a set of TT-cores {g(’”}ﬁ:l
satisfying (5.4) with suitable TT ranks. Besides, its TT-ranks can be effectively estimated in a
stable way in contrast to the CP-rank determination [195]. Moreover, TT also offers a memory-
saving representation for tensors and can break the curse of dimensionality like CP. With respect

to the implementation, the workhorse algorithm to compute TT is TT-SVD |[16].
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5.3. TENSOR TRACKING FORMULATION

5.2.5 T-SVD Decomposition

Tensor SVD (t-SVD) is another multiway extension of SVD for decomposing tensors in which

X is factorized into three tensors U, G, and V of the same order:

X=UxG+xV (5.5)

“x” denotes the t-product, U and V are unitary tensors, and G is a rectangle f-diagonal

where
tensor whose frontal slices are diagonal matrices [17|. To define the low-rank tensor approxima-
tion under the t-SVD format, the so-called tubal-rank r. is determined as the number of non-zero
tubes in G, (e.g., when the tensor X is of order 3, r¢(X) = >, 1[G(7,4,:) # O] where 1 is an

indicator function).

The t-SVD algebraic framework is quite different from the classical multilinear algebra in
other types of TD. Thanks to the t-product and Fourier transform, several linear, multilinear
operators and other transformations are successfully extended from matrices to tensors, such as
transpose, orthogonality, and inverse. In particular, t-SVD can be effectively obtained by com-
puting SVDs in Fourier domain and its performance (i.e., exact recovery with high probability)

can be guaranteed under mild conditions [17].

5.3 Tensor Tracking Formulation

In this section, the problem of tensor tracking is formulated. Specifically, we first divide stream-
ing tensor models into two classes and then construct some terminologies to support the problem
statement. They are single-aspect and multi-aspect streaming models, see Fig. 5.2 for an illus-
tration. After that, we formulate a general formulation of the tensor tracking problem which is

suitable for many applications.

5.3.1 Single-aspect Streaming Model

In the classical online setting, we are interested in the decomposition of an N-order streaming
tensor Xy fixing all but one dimension (mode). Without loss of generality, we suppose the last
dimension is temporal, and hence, we can write X; € R xIn-1%Iy where I§; is increasing

with time.

The following definition of temporal slices is useful to formulate the problem of single-aspect

tensor tracking.

Definition 1 (Temporal slice). Given a streaming tensor X, € RI<*IN-1xIy e sqy
YV, =Xi(s,...,:,7) € RIXI2XXIN-1 g the 7-th temporal slice of X for 1 < 1 < i
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t t+1 t+2
Single-aspect

Multi-aspect PR /

Figure 5.2: Single-aspect and multi-aspect streaming models.

Without loss of generality, we assume that I§ = ¢ meaning that at each time instant one
new slice of the tensor is observed. Accordingly, the streaming tensor X’; can be viewed as a
set of temporal slices {Y;}L_;. In other word, X is derived from appending the new comming

temporal slice Y; to the previous observations X;_; along the time dimension, i.e.,
X=X 1 ByY: and Iy =I"+1=t (5.6)
Generally, Y; has the form
Vi=P:® (L + N+ Oy), (5.7)

where “® ” denotes the Hadamard product, L; is a low-rank component, Py is a binary tensor,
N is a noise tensor, and O, is a sparse tensor. The data model (5.7) is a general form which
is suitable for many scenarios. For example, P; represents missing and observed entries of Yy;
N is an additive white Gaussian noise; and @; denotes the sparse outliers. Meanwhile, the
low-rank £, which can be formulated by CP, Tucker, BTD, TT, or t-SVD format, can be static
or time-varying. Based on these terminologies, the problem of single-aspect tensor tracking can

be formally stated as follows:

Single-aspect Tensor Tracking: At time ¢, given a temporal slice Y; and old estimates
of X;_1 (e.g., core tensors and tensor factors), we want to track the new estimates of

Xt = Xt—l EHN yt in time.

126



5.3. TENSOR TRACKING FORMULATION

5.3.2 Multi-aspect Streaming Model

In some modern online applications, tensor data may evolve in multiple dimensions/modes over
time, and thus, the single-aspect streaming model is not useful for modelling such streaming
data. In [210], Fanaee-T et al. for the first time introduced the concept of multi-aspect streaming
tensors to represent streaming data having more than one dimension increasing with time. Since
then, some online algorithms have been developed to deal with the problem of multi-aspect

streaming tensor decomposition.

For convenience, we first introduce the definitions of multi-aspect streaming tensors and

temporal tubes.

Definition 2 (Multi-aspect streaming tensor). A set of N-order tensors {X}i>1 is
called a multi-aspect streaming tensor sequence denoted as {X} when X, € RID<IEx %1y
IL = I+ WE where WE > 0,1 <n < N, and X;_1 is a sub-tensor of X;. If Xy belongs

to such a sequence {X'}, we say that X is a multi-aspect streaming tensor.

Definition 3 (Temporal tube). Given two successive tensors X—1 and Xy derived from
the same multi-aspect streaming tensor sequence { X'}, the coming data stream at time t

can be represented by Y, = X \X_1 of the same size as Xy with entries

X afIrl <, <It,
[yt] — [ t]u,...,zN if w® n = In (5.8)

115N .
0 otherwise,

for 1 <n < N. We say that the non-zero entries in Y are temporal tubes.

Now, we can state the problem of multi-aspect tensor tracking as follows:

Multi-aspect Tensor Tracking: At time ¢, given temporal tubes in Y;, and old esti-
mates of Xy_; (e.g., core tensors and tensor factors), we want to track the new estimates

of Xy = Xy_1 UY; in time.

It is worth noting that the single-aspect tensor tracking problem also belongs to the class
of multi-aspect tensor tracking where most of the tensor dimensions I,, are constant by setting
W! =0, except the last one va. Besides, temporal slices may be regarded as frontal slices of the

tensor Y, defined as in (5.8).
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5.3.3 General Formulation of Optimization

We here provide a general formulation of tensor tracking which can be used in many applications.

In particular, the optimization problem can be written as

t
argrgtlirz) [ Z BTE <yT7 P-, {g}a {u}a O) + PGRG ({g}) + PURU({U}) + pORO (O)
tohiuh, =t Regula;irze cores Regular;z; factors  Promote sparsity

Minimize residual errors

+AcLa({G}) + Lo ({U}) ] : (5.9)

~
Orientate applications

Here, {G} and {U} denote the set of core tensors and tensor factors respectively, while O is
to represent data corruptions by impulsive noise or outliers. Specifically, the three terms in the
second line of (6.5) are used to present regularizations or penalty terms imposed on parameters
of interest. The last two penalty terms of (6.5) are for the application orientation. The main loss

function ¢(.) is defined to minimize the residual errors between the estimations and observations.

5.4 Streaming CP Decomposition

The primary objective of this section is to provide technical descriptions of the-state-of-the-art
online techniques for factorizing streaming tensors under the CP format. In the literature, there
are many streaming CP algorithms and they can be categorized into the following groups: (i)
subspace-based methods, (ii) block-coordinate descent methods, (iii) Bayesian inference, and (iv)
multi-aspect streaming CP decompositions. The three former groups are particularly developed
for single-aspect streaming models, while the latter is dedicated to the factorization of tensors
having more than one temporally varying mode. The readers are referred to Tabs. 5.2 and 5.3
for quick comparisons of the existing streaming CP decomposition algorithms. In what follows,

we take each group into consideration.

5.4.1 Subspace-based Methods

The very first study addressing the problem of streaming CP decomposition is of Nion and
Sidiropoulos in [211]. Specifically, the authors introduced the two novel adaptive CP algorithms
called PARAFAC-SDT and PARAFAC-RLS capable of tracking third-order streaming tensors
having one temporal dimension. Both algorithms are based on the subspace-based approach in
which we first track a low-dimensional tensor subspace, and then recover the loading matrices
from exploiting its Khatri-Rao structure. Following the same line, some other adaptive CP
algorithms were proposed for tensor tracking such as CP-PETRELS [215|, 3D-OPAST [212],
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New Observations

[I3xr]

(2)
Ut—l
t-1 [1,xr] L X

@
Ut 1

Q

[Il X r] Xt
Figure 5.3: Single-aspect streaming CP decomposition of a third-order tensor.

and SOAP [174]. In the following, we describe their subspace-based framework for factorizing

streaming tensors with time.

First, we recall that the low-rank £; of Y; has the form £; = [[{U n)}n ,u ]] where ugN)

is the last row of Ug ), Thus, £; can be recast into the following form:

Kt = vec(Ly) = [ @ Utn ] =H; (uEN))T, (5.10)

(N)

where H; € RIt+IN-1X7 plays a role as a mixing matrix while u,”’ can be viewed as a coefficient
vector in subspace tracking problems. Accordingly, streaming CP decomposition can boil down

to a constrained problem of subspace tracking where the basis matrix has a Khatri-Rao structure.

Particularly for N = 3, the authors in [174,211,212,215| proposed to solve the following

objective function:

pr @ (yr H(u(3))T>Hz st. H=UW oU®,  (511)

T

{U } ., = argmin Zﬁt T

{U(")}3 =17=1

where y, = vec(Y;), pr = vec(P-), and u; is the 7-th row of the temporal factor U§3), and 3
is a forgetting factor aimed at discounting the impact of distant observations. Specifically, (5.11)

can be effectively solved by applying the following procedure:

e Stage 1: Estimate H; and u§3)7 given old estimates of U,El_)l and U§2_)1;

e Stage 2: Find UEI), UIEZ) satisfying H; ~ UEI)GU?), and then re-update H; + U§1)®U§2);

T
e Stage 3: Update Uf’) = [(U,Ei)l)T(uE?’))T} where uf’) can be re-estimated as in Step 1
(optional).
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Table 5.2: Main features of the state-of-the-art single-aspect streaming CP decomposition algo-
rithms.

. Missing Sparse High-order Convergence Warm Computational .
Algorithm Data? Outliers? (N >4)? Guarantee? Start? Complexity Other Information
PARAFAC- 272 - Subspace-based

RLST/SDT [211] ¥ X X X / o@r) - Tracking using RLST/SDT
2 - Subspace-based
3D-OPAST [212] X x x X v o(rr?) - Tracking using OPAST
TeCPSGD [106] v X X X random o(r?19)) - BCD + SGD
OLCP [175] X X v X v o(r*Iv-1) - BCD + SGD
- Subspace-based + Second-
SOAP [174] X X X X v O(TIZ) order estimation
- Supports nonnegativity
CP-NLS [213] X X X X v o(r*1?) - Nonlinear least-squares
BRST [214] 4 v v X v unavailable - Variational Bayesian
CP-PETRELS 2 - Subspace-based
[215] v X X X v o(r*1) - Tracking using PETRELS
CP-stream [216] X X v X random O(TZINfl) - ADMM + tunl‘ng—free
- Supports sparsity
POST [217] v X v X v O(TSNIN’]) - Variational Bayesian
OLSTEC [176] v X X v random o(rr?) - BCD + RLS
2
iPARAFAC X X X X v | §?| (-:i‘zsel)of - Apache Spark®
[218] b - Randomized MTTKRP
the selected set
TensorNOODL 22 - Online dictionary learning
[219] X X X v v O(r°I%) - Supports sparsity
SPADE [220] X X v X v O3Vt - Streaming PARAFAC2"
- . O(rN|S| + (rN)?
Sllceggfftdl X X v X random +N7%) with |S| : - Sparse decomposition
number of non-zeros
SOFIA [222] v v v X v O INY) - Holt-Winters fitting®
- Supports seasonality
- O((N+T)NT|Q| .
STF [223] v X v X v NI BCD + SGD
. ) O(r?|S|) with || : size - Random sampling
ACP [29,33] v X v v random of the selected set - BCD + RLS
RACP [27] v v v v random o(r?IV-1) - ADMM + RLS

- {1-norm penalty

. - Nonnegative decomposition
Onhlgz(if DL x x v v v oY) - Markovian data
- Online dictionary learning

* Suppose that [ = Io =--- = Iy = I, rcp = r, and |Q| is the number of observed elements.

# Abbreviations: RLS (recursive least-squares), SDT (simultaneous diagonalization tracking), BCD (block-coordinate descent), ADMM
(alternating direction method of multipliers), SGD (stochastic gradient descent), and MTTKRP (matricized-tensor times Khatri-Rao
product).

¢ Apache Spark is a unified data analytics framework that supports distributed storage and large-scale processing: https://spark.apache.org/.
® PARAFAC? is a flexible variant of CP [225]. While the classical CP model requires the tensor factors to be the same for all tensor slices,
PARAFAC2 only requires their cross product to be the same and these factors can be different in size slice by slice.

¢ Holt-Winters is an effective time series forecasting procedure [226].

In stage 1, the authors in [211] proposed two solvers for estimating H; and uy, including
recursive least-squares (RLS) and simultaneous diagonalization tracking (SDT). Chinh et al.
in [215] adopted a well-known subspace tracking algorithm called PETRELS. Dung et al. in [212]
applied another subspace tracking algorithm for this task, namely OPAST. In [174], the same

authors also introduced another low-cost tracker to estimate H; with rank-1 updates.

In stage 2, all the existing subspace-based algorithms used the bi-SVD procedure introduced

in [227] to recover Ugl) and U§2) from H;. Particularly, we can represent each column of H;
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as Hy(:,1) = vec(Ugl)(:,i)(UgQ)(:,i))T). Accordingly, the right and left singular vector of the

reshaped matrix from Hy(:, ¢) can provide a good estimate of Ugl) (:,4) and UEZ) (:,1), respectively,

. [bl-, )\i,ai]<— SVD (reshape(Ht(:, i), [12 Il]))
. Ugl)(:,i)e a; and U§2)(:, i) < Aib;

Computation of SVD may be expensive when dealing with large-scale streaming tensors, we can

use the alternative update based on power iteration as follows

. Hgi) < reshape (Hy(:, i), [J x 1])
. )\ T .
e UG (1Y) U2, ,0)

H, U}V (. 0)

° U(2) 1) — , .
CED |

As these algorithms are only designed for tracking third-order streaming tensors, there are still

rooms to develop subspace-based methods capable of handling N > 4.

5.4.2 Block-Coordinate Descent

The second approach is based on the block-coordinate descent (BCD) framework in which we
decompose the main optimization into two main stages at each time ¢: (i) estimate the temporal
factor UEN) given {Ugﬁ)l N=1 and (ii) update the non-temporal factor Ugn) withl1 <n<N-1

n=1>
in sequential or parallel given UgN) and the remaining factors. Many tracking algorithms adopt
this approach for estimating the low-rank approximation of streaming tensors over time in the
literature. We can list here some: TeCPSGD [106], OLCP [175], OLSTEC [176], CP-stream [216],
SPADE [220], SOFIA [222], iCP-AM |[228], ACP [|29], and RACP [27|. In what follows, we review
their strategy in each stage.

In stage 1, the general formulation of the optimization to estimate the last row ugN) of UEN)

can be given by

{uﬁN),ot} = argmin [H'Pt ® (yt 0O - [[{Ugr_z)l N-1 u(N)]])H;

u(N)’o n=1"

# o [a I + pollo], | 5:12)

where p,||u||3 is for avoiding the ill-posed computation and po||©||; promotes the sparsity in O.

Then, the temporal factor UEN) is obtained by appending the recent updated uEN) to the old
estimate Ulg% Most of the existing BCD-based tracking algorithms suppose that observations

are outlier-free (i.e., without @), and hence, they apply the regularized /randomized least-squares
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methods for solving (5.12). In the presence of sparse outliers, (5.12) can be effectively minimized
by ADMM or shrinkage-thresholding solvers, as presented in SOFIA [222] and RACP [27].

N-1

In stage 2, the non-temporal factors {Ugn) n—1 can be derived from solving the following

optimization

un)

t
U™ — argmin [Z [P @ (U (W) T+ 0l — y() H; + puRy (U(”))] . (5.13)
T=1

where pyRy(.) is a regularization term on U™ and

N-1 '
< Q UEZ)1> oul [Jacobi],

W =q o N1 (5.14)
(@Ugl)> © < Q U§’Z1> ®Ou! [Gauss-Seidel].
i=1 i=n+1

Here, we can apply one of the two iterative schemes to update Ug"): the Jacobi scheme supports

the parallel and /or distributed processing while the Gauss-Seidel scheme is useful for a sequential
(serial) one. The regularization can be [|[U™)||% for smoothness, U™ — Ugﬁ)lH% for slow time-
variation, or U™ =0 for non-negativity constraints. Next, we review two common types of

solver for optimizing (5.13): adaptive least-squares filters and stochastic gradient solvers.

a) Adaptive Least-Squares (LS) Filters. We can see that the first term of (5.13) is of a
weighted LS form very common in adaptive filtering while the second one is to regularize the
estimators. Accordingly, (5.13) can be effectively minimized by adaptive LS filters in general and

recursive least-squares (RLS) filters in particular.

In [176], Kasai proposed an exponential RLS algorithm called OLSTEC to minimize (5.13)
when the observations are outlier-free. OLSTEC is, however, designed for third-order streaming
tensors only and its complexities are relatively high compared to other algorithms. Thanh et
al. in [29] proposed another RLS algorithm called ACP which is capable of dealing with big
streaming tensors of higher order (N > 4). ACP is fast and requires much lower complexity than
OLSTEC. Very recently, the same authors in [27| proposed a sliding-window version of ACP
robust to both sparse outliers and missing data, namely RACP. Interestingly, three algorithms
belong to the class of provable online CP algorithms in which their convergence is guaranteed

under certain conditions.

In [213], Vandecappelle et al. introduced a nonlinear least-squares (NLS) algorithm for com-
puting the streaming CP decomposition of third-order tensors. In particular, the authors recast
the objective function of (5.13) into a truncated exponential window one by incorporating a diag-
onal weighting matrix L = diag([O, ...,0,8 1 g2 B, 1]) and then applied a NLS solver

to track the tensor factors with time. Following the same line, Smith et al. in [216] proposed
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another online CP algorithm called CP-stream. This algorithm has the potential to factorize
high-order streaming tensors as well as support constraints on streaming CP decomposition such

as smoothness and nonnegativity.

b) Stochastic Gradient Solvers. Instead of optimizing (5.13) directly, we can minimize its

t-th summand:

2

U™ = argmin [HP%’Z) @ (Y -0 oW (W) )|+ puRe(U)] (5.15)
u®)

Three algorithms TeCPSGD [106], OLCP [175], and SOFIA [222] adopt this replacement for

tracking tensor factors with time. The main difference among them is the type of Ry (.). Besides,

they obtain different forms of update:

[SOFIA]: UM = U™, + AU, (5.16)
[TeCPSGD] U,§">:(1 Bt) U+ AU() (5.17)
|OLCP] : = P (Q!") ™" with (5.18)

P(n) _ (") —i—AP( ) and
Q" = Q") +AQ".

Here, ¢, n¢, AUgn) AP(n) and AQg can be obtained from {Ut 1} 1 ! and the error AY, =
Pr® (Ye — [[{Ut () o ,utN)]]) It is worth noting that SOFIA is capable of dealing with
sparse corruptions. TeCPSGD has the ability to track tensors from missing observations, while

OLCP can handle streaming tensors of order greater than 3.

In [228], Zeng et al. proposed an incremental ALS algorithm called iCP-AM to minimize a

reinforced version of (5.15) which is defined as

2

. (5.19)
F

Uﬁ”) = argmin

(V) T
n n n T n uy n
g {Yi’ U (U o vim) ]—U”( ol evi )>

ol

where VL”) = (@?:_11 U(Ti)) ® (@ZN nil U( )) An appealing feature of iCP-AM against other
online CP algorithms is that it has a strategy to deal with the variation of the CP rank over

time, i.e., to change the number of low-rank components throughout the tracking process.

In parallel, Gujral et al. in [220] proposed an online algorithm called SPADE for tracking
tensors under the PARAFAC2 format. Specifically, SPADE tracks a fixed (non-temporal) factor
along one mode and allows the other tensor factors (modes) to vary with time. Thanks to its
stochastic design, SPADE is fast and memory-efficient. However, the stationary assumption that

time variation or concept drift is not allowed limits its applicability.
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5.4.3 Bayesian Inference

Besides, another good approach for dealing with the problem of streaming CP decomposition is
Bayesian inference. The state-of-the-art Bayesian-based streaming CP decomposition algorithms
are POST [217]|, BRST [214], and SBDT [229]. In general, three algorithms start with a prior
distribution of unknown parameters and then infer a posterior that best approximates the joint
distribution of these parameters on the arrival of new streaming data. The estimated posterior
is then used as the prior for the next update. In this subsection, we briefly describe the two
online Bayesian inference frameworks which were already used for tensor tracking: (i) streaming
variational Bayes (SVB) and (ii) assumed-density filtering (ADF). Also, prior distributions of

parameters of interest are reviewed.

a) Streaming variational Bayes. The two former algorithms POST and BRST adopted
the SVB framework [230] which is based on the following Bayes’ rule:

p(©] X1 By Vi) o< p(V:|©)p(O|X; 1), (5.20)

where © denotes the parameters of interest, e.g., tensor factors, CP rank, noise factors, and other
parameters. On the arrival of Y;, SVB first uses the current posterior ¢;—1(®) := p(@|Xt_1) as
the prior of ®, and then integrates with the likelihood of Y; to obtain

p1(©) =p(V:|©)q-1(0), (5.21)

which can be served as an approximation of the joint distribution p(®,Y;) up to a scale fac-
tor. The variational posterior ¢(®) is derived from maximizing the variational model evidence
lower bound (ELBO) L(¢(©)) = E,[log (p:(©)/q(©))] which is equivalent to minimizing the
Kullback-Leibler (KL) divergence:

argmin [KL <q(®)||ﬁt(®)> - / () 1og{§t<(%)) }d@] . (5.22)

The optimized form of ¢;(®;) of (5.22) can be given by
log ¢¢(0;) = Ey@/e,)[ log 5¢(©)] + const, (5.23)

where Eq@/@,)[.] is an expectation w.r.t. ¢ over all but ©;.

b) Assumed-Density Filtering. The latter algorithm, SBDT, applied the ADF framework
to infer the posterior distribution ¢(®) over time. Particularly, ADF is an incremental learn-
ing framework that allows for computing the approximate posteriors in Bayesian inference for

stochastic processes [231]. The ADF framework is also grounded on the Bayes’ rule (5.20) but

134



5.4. STREAMING CP DECOMPOSITION

utilizes a distribution from the exponential family (e.g., Gaussian distribution) to approximate
the current posterior. Instead of minimizing the KL divergence or maximizing the variational
ELBO like SVB, ADF projects p(®) into the selected distribution through moment matching
to obtain ¢(©).

c) Prior distributions over ®. We list common prior distributions over ® which were
already used by POST, BRST, and SBDT.

Prior distribution of tensor factors: All three algorithms assume that the prior over tensor
factors is derived from the following Gaussian distribution which is controlled by the hyperpa-

rameter A = [\, A, ..., A]:

In,
p(U]3) = [T (0. A1), < [1, ), (52
=1

where ul(-n) is the i-th row of U™ and A = diag(\) denotes the inverse covariance matrix. Here,

A is supposed to follow a Gamma distribution:

= HGam (/\j‘Cj,dj), (5.25)
j=1
where Gam ()\~|cj,d’) = Ifl(cj)/\ i~ le= 4N with I'(z fo x* le ®dx. Specifically, the mean

and variance of Gam(\;|cj,d;) are, respectively, ¢;/ d and c;/ d2 which aim to control the mag-

nitude of A.

Prior distribution of noises: The noise tensor is often assumed to be Gaussian, i.e., Ny ~
Him._m N(0,771) with a noise precision 7 > 0. The parameter 7 is further assigned to another

Gamma distribution p(7|a,b) = Gam (7]a,b) in the same way as for .

Prior distribution of sparse components: Only BRST in [214] has the ability to handle sparse

outliers. Here, BRST places a Gaussian prior distribution over the sparse O; as

0 -1

[(Peliyig...in
”Y’lez zN) °

s =TI - HN(Otm in

i1 12

(5.26)

where v is the sparsity precision parameter. If the value of v;, ;, is large, the corresponding
entry in O, is likely to have a small magnitude. By controlling the value of 7;, . ;,, we can control

the sparsity of Oj.

Prior distribution of NN’s weights: SBDT in [229] incorporates neural networks (NN) into

tensor factorization. SBDT assigns a spike-and-slab prior distribution over NN weights to sparsify
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New Observations

Figure 5.4: Multi-aspect streaming CP decomposition of a third-order tensor.

the network. Each weight wy,j: = [Wp,];¢ of NN is particularly sampled from
p(wmjt|5mjt) = Smth(wmjt‘Oyo'S) + (1 - Smjt)(s(wmjt)a (527)

where 0(.) denotes the delta function and the binary selection indicator s, is derived from

p(Smjt) = Bern(Sm]’t’po) — p(s]mjt(l - po)l_Smﬁ.

5.4.4 Multi-aspect streaming CP decomposition

In the literature, there are some online algorithms capable of tracking multi-aspect streaming
tensors under the CP format, such as MAST [232], OR-MSTC [233|, InParTen2 [234], and
DisMASTD [235|. We refer the readers to Tab. 5.3 for their key features. In what follows, we
first describe the main dynamic tensor decomposition (DTD) framework shared by most of these

algorithms and then highlight their characteristics in the following text.

For ease of reference, we denote by X;_1 € RV XIN and X, € RUrtd)xx(In+dn) the two
successive snapshots at t — 1 and ¢, please see Fig. 5.4 for an illustration. At time ¢, given X'} and
the old estimates {Ugﬁ)l}gzl of X;_1, we wish to update {Uﬁ")}ﬁzl such that X; ~ [[{Ugn) NI

The DTD introduced in [232] offers an online framework for the problem of multi-aspect
streaming CP decomposition. Particularly, DTD relaxes the CP representation of X’; in the
sense that if X'; is expressed by [[{Ugn) fy:l]], then its sub-tensor X;_; can be approximated
by [[{I_J'gn) N, ] where I_JE") € RI"*" is the sub-matrix of Uﬁ") € RUnFd)xr - Accordingly, DTD
enables us to divide X, into two parts X;_; and Y; = X;\X;_; in order to take advantages

of old estimates. We can first update I_Jgn) incrementally from Ugﬁ)l with a low cost and then

estimate the remaining part ﬂgn) € R¥*7 of Utn). The tensor factors are particularly derived
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from

{Ugn)}gzl = argmin [E()’t, {U(n)}g::l) + P( i\[: HU(H)H*”: (5.28)
n=1

(UL,

where the loss function £(.) is defined as

(P {UNY) = | U] - [oo

+ HPﬂt (Vi) = Po, ([[{U(")}ivzl]]) H (5.29)

2
X
Here, ; denotes the set of observed entries and u, p > 0 are two regularized parameters. Depend-
ing on the type of constraints, additional information imposed and the method of optimization,
we can obtain several types of estimators for tracking multi-aspect streaming tensors with time
under the DTD framework.

In [232], Song et al. developed the so-called MAST algorithm for tracking multi-aspect
streaming tensors. The authors recast (5.28) into a constrained minimization and then formed

the following Lagrangian function

N

n n n n /r] n n
£10) = Y- (sll2")], + (A%, 20 U+ 2z - v}
n=1
+o(Pe (U ), (5.30)

where @ = {UM Z() AMIN - with auxiliary matrices {Z(™}N_| and Lagrange multiplier
matrices {A() N _,,and n > 0 is a regularization parameter. Since terms of (5.30) are all
convex, it can be effectively minimized by several methods. In particular, MAST applies an
ADMM solver to minimize (5.30) in order to balance the trade-off between effectiveness and

efficiency in tracking process.

Since MAST is not designed for handling sparse outliers, Najafi et al. in [233] introduced
a robust version of MAST called OR-MSTC. In the presence of sparse outliers, the authors
proposed to regularize the objective function of (5.28) by adding an ¢;-norm regularization term
A|O|l1 and replacing Y; with Y; — O in the first term of £(.) in (5.30). Because the term A|O||1
is convex, OR-MSTC also adopts the well-known ADMM method in a similar way to MAST.

In [234], Yang et al. proposed a distributed version of MAST called InParTen2. Thanks
to Apache Spark, it can handle large-scale streaming tensors efficiently with a limited memory.
However, the use of InParTen2 is limited for third-order streaming tensors only. In [235], Yang et
al. introduced another distributed method called DisMASTD capable of dealing with tensors of
higher order. One of appealing feature of DisMASTD is that it can avoid repetitive computation

and reduce network communication cost.
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Table 5.3: Main features of multi-aspect streaming CP decomposition algorithms.

MAST OR-MSTC InParTen2 DisMASTD

Algorithm
(2017 [232]) (2019 [233]) (2020 [234]) (2021 [235])

Missing? v v X X
Outliers? X v X X
High-order?

igh-order / X Y

(N >4)
Distributed? X X v 4

New Observations [r.xr, xt]
[rl XTI, x(t —1)]

—p

(2)
~ G, Ui

[szrz]

&
U t-1

[lerl] [lel’]

Figure 5.5: Online tensor dictionary learning.

5.5 Streaming Tucker Decomposition

In the literature, there are many online tensor methods proposed for factorizing streaming ten-
sors. We can broadly categorize them into three main classes: (i) online tensor dictionary
learning, (ii) tensor subspace tracking, and (iii) multi-aspect streaming Tucker decomposition.
Specifically, the first two classes are designed for two specific cases of single-aspect streaming

Tucker decompositions, while the latter class is for multi-aspect streaming tensors.

5.5.1 Online Tensor Dictionary Learning

In the class of online tensor dictionary learning methods, we are particularly interested in a
specific case of single-aspect streaming Tucker decomposition where the underlying tensor X1 €

RI<¢xIN-1xT _ which represents a set of T data streams {yt}le of the same size I7 x Iy X
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Table 5.4: Main features of the state-of-the-art streaming Tucker decomposition algorithms.

Missi High- i 1
Algorithm issing Spa'rse igh-order Convergence Computatl.ona Additional Tnformation
Data? Outliers? (N >4)? Guarantee? Complexity
STA [236,237] X X v X O((N - l)’V‘IN_l) - Subspace tracking + deflation
IRTSA [238,239] X X X X O(3rI®) (with N = 3) - ISVD-based tracking
ITF [240] X X X X O(3rI®) (with N = 3) - ISVD-based tracking
IHOSVD [241] X X 4 X O(Nr?IV) - Adopts recursive matrix SVD
0(3(7' + k)BIB) - Adds noise perturbation
ALTO [242] X X X v k: random columns - Uses tensor sequential mapping
LRUT [243] X X v X O(N(r +k)*MIV) - j‘kdds noise perturbation .
k: random columns - Supports parallel computing
Riemannian- - Computes SGD on Riemannian
v ilabl
Tucker [244] x X X nnavarable manifold
HO-RLSL [245] X v v X 3I°0(1%) - For N =4 only
] ‘ O(N(I/d)z(N’l)) - Supports distribute?d computing
THOSVD [246] X X v X - Adopts RoundRobin process -
d: number of cores . . .
columnwise Jacobi-rotation
MIHOSVD O(N(I/d)wv’l)) - Supports distl'ibut?d comp}lting
X X v X . - Adopts tree-based integration +
[247] d: number of cores . . .
columnwise Jacobi-rotation
O(K(TN\Ql + NIMr)) - Multi-aspect streaming method
SIITA [248] v X v X K: iterations, M: number of - Supports side information +
columns of side matrices nonnegativity + sparsity
O(rdz(""l)l 2N "’”)) - Multi-aspect streaming method
eOTD [249] X X v X d, m: number of coming - Adopts SGD + MGS + block
temporal slices & modes tensor matrix multiplications
O(d(N - 1)(]7"2)N71) - Promotes sparse coding
OTL [250] X X v v d: dimensionality of new - Supports nonnegativity -+
coming tensor orthogonality
. (9(dN7"NIN_1 + NT‘QN) - Uses tensor sketching
Singleshot . . . . .
[251] X X v v d: dimensionality of new - Supports multiple coming
coming tensor temporal slices + nonnegativity
O((Nk + d)[N) - Uses tensor random projection
TTMTS [252] X X v 4 d=(s(1—(s/T)N)/(1 —s/I) - Supports one/two-pass
k, s: parameters of projection approximations
O(IN"Y(NIr+ MR+ 4M?)) - Nonlinear decomposition with
SNBTD |[253] X X v 4 M: number of pseudo inputs® Fourier features
R: size of the pseudo input - Uses Bayesian inference + ADF
D-L1-Tucker X v v X (Q(K(W'IN’l + IQTN’l)) - Applies threshold-based outlier
[254] K: iterations detection + L1-HOOI
BASS-Tucker x X v X O(r3WV=1 4 (Ir)N -1 - Sparse decomposition
|255] +Nr31N’1) - Uses Bayesian inference + ADF
. N-1 ‘s Bavesian i
SBDT [229] X X v X O(Nh + K[ ) - Uses Bayesian inference + ADF
K: number of weights in NNs - Incorporates NNs
N-1 2, N+1 _ : .
Zoom-Tucker O(KBNrI 2 sz KN=r Supports m'ultlple coming
[256] X X v X +KN?r*I)) temporal slices
K: iterations & B : blocks - Requires a preprocessing phase
RI/BK-NTD X X v X O(KN(Ir)N) - Nonnegative decomposition
[257] K: iterations - Uses NNLS + BCD
o(rQ] + r*N|S1| + r*|Sz| - Uses BCD + Sampling
ATD [29] v X v v +'r’2IN’2) with |S1], |Sz] : - Supports parallel computing
size of sampling sets
*Suppose that I =Io =---=Iy=1,r1 =7y =---=ry =7, and |Q] is the number of observed elements.

# Abbreviations: ISVD, (incremental SVD), SGD (stochastic gradient descent), MGS (modified Gram-Schmidt process), BCD (block-coordinate
descent), ADF (assume-density filtering), NN (neural network), and NNLS (nonnegative constrained least-squares solver).

“ Pseudo inputs: a small active pseudo set, which is not necessarily required to be a subset of the real data, is introduced to break the dependencies
between outputs and hence avoid the explicit computation of the full covariance matrix.

.-+ X In_1 — is supposed to be modelled by

N-1

Xr = [[QT; {umy ,ITH,
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where the core tensor Gp is of size 11 X -+« xry_1 xT (i.e., rny = T), the tensor factors
{U(")}flvz_ll,U(”) e RI»*"n are of fixed size, and the last factor U®) is an identify matrix.

Specifically, the t-th temporal slice Y; of X' is expressed as
) N-1 _
Y, = [[gt;{U( >}n:1ﬂ, t=1,2,...,T, (5.32)

where G; € R"1*72X"X"N-1 ig the t-th slice of the core tensor G7. The primary objective here is
to estimate G; and incrementally update {U(”)}ijz_l1 on the arrival of Y; at each time ¢. In what

follows, we review two main approaches to deal with this problem.

a) Incremental Subspace Learning on Tensor Unfolding Matrices. A natural and
very first approach for streaming Tucker decomposition is to incrementally update the subspaces
covering unfolding matrices of the underlying tensor. The central idea of this approach stems
from the fact that the n-th tensor factor Ugn) which is derived from the standard HOSVD is
given by

U™ = EVD ([Xiﬁ)l,Yi”)} pednel T), (5.33)

where Kgﬁ)l = [Xgn), . 7X§7_l)1] with X(Tn) is the mode-n unfolding matrix of Y,. Accordingly
at time t, we can apply the following dynamic tensor analysis (DTA) framework introduced

in [236,237] to estimate G; and update {Ugn) VoL

n=1 "

c™ « pc™ + (¥ 'y, (5.34a)
UE”) + eig (an), r), (5.34b)
G < [[yt, {(UE”))T}T’L‘EH, (5.34¢)

where 0 < § < 1 is a forgetting factor and eig(an), r) computes the top r principal eigenvectors
of Cg"). Since the two steps (5.34a) and (5.34b) are generally expensive, there have been some

studies offering good modifications or fast alternatives for (5.34).

In [236,237|, Sun et al. proposed a streaming tensor analysis (STA) algorithm for tracking
Ugn) with time, instead of taking the orthonormal step (5.34b) directly. Particularly on the

arrival of Y, STA first divides its unfolding matrix Xgn) into column vectors {yi,?)t} and then
(n)

m,t:

(i) projects it onto the subspace Ugﬁ)l, (ii)
(n)

m,t?

performs the following steps on each vector y
evaluates the corresponding residual error and the energy for each entry of y and (iii) updates
the matrix Ugn). Intuitively, the larger the residual error is, the more U§") is updated. The
complexity of STA is moderate while its effectiveness was demonstrated with the problem of

anomaly detection and multi-way latent semantic indexing.

In [238,239], Hu et al. introduced the so-called IRTSA algorithm to track the dominant
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N-1
n=1 -

mental SVD (ISVD) proposed by Ross et al. in [258] on the mode-n unfolding matrix Xgn) =
[Xgﬁ)l , Xgn)] in (5.33). Thanks to ISVD, IRTSA shares the same order of computational complex-

ity with STA while offers a better estimation than STA for the problem of background modelling

subspaces {Ugn) Specifically, instead of computing (5.34a), IRTSA applies a fast incre-

and object tracking. Although the current version of IRTSA is designed for factorizing three-
order streaming tensors, it is not difficult to extend IRTSA for dealing with higher-order tensors.
Besides, a modified version of IRTSA was introduced by Zang et al. in [240] for the problem of

web service recommendation.

In [241], Kuang et al. also proposed an incremental SVD-based streaming Tucker decom-
position, namely IHOSVD. In particular, this algorithm performs the following three processes
in a serial manner: (i) applies a recursive SVD method to compute singular values and sin-
gular vectors of unfolding matrices of the new tensor, (ii) merges the new results with the old
estimations from past observations, and (iii) obtains the core tensor with n-mode products. The-
oretical analyses and experimental results on intelligent transportation applications demonstrate
the effectiveness of IHOSVD.

In [259], Li et al. modified slightly the recursive update of the covariance matrix an)

in (5.34a) as follows
i = (- e +a(¥y”) Y, (5:35)

with a weight 1 > « > 0 and then introduced a robust incremental algorithm called RT'SL which
has the potential to model background and detect anomalies in applications of computer vision.
Since RTSL still applies directly the DTA framework, its complexity is relatively high. Thus, it

may become inefficient for handling large-scale and high dimensional streaming data.

Some other algorithms for streaming Tucker decomposition belonging to this group were
presented in [245-247, 260|, focusing on specific applications such as dynamic brain network

analysis, smart city services, cyber-physical-social networks and systems.

b) Online Multimodal Dictionary Learning. Another good strategy for the problem of
single-aspect tensor tracking is to apply online multimodal dictionary learning (OMDL) tech-
niques. As OMDL is a stochastic version of the multimodal dictionary (multilinear subspace)
learning [261], it allows estimating dictionaries (i.e., tensor factors) with one-pass processing.
In the literature, there exist some algorithms applying OMDL for tracking the low multilinear-
rank component of streaming tensors with time, such as OTDL [250], ODL [262], ORLTM [263],
OLRTR [264], and D-L1-Tucker [254].

The two former algorithms OTDL and ODL adopt the typical two-step learning procedure
to track the tensor factors over time, namely (i) tensor coding or inference of coefficients in the

core tensor and (ii) dictionary update per each tensor mode.
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Step 1: Tensor Coding. When Y, is observed, the general formulation of optimization for

this step is given by:
a2
@:m%mﬂpﬁmggﬁﬂﬁin+mndm} (5.36)

where pgR¢(.) is a regularization term on the core tensor G to promote sparsity or nonnegativity
for instance. Since the first term of (5.36) is differentiable while the second term may admit a

proximal operator (e.g., {,-norm), OTDL and ODL applied proximal methods to minimize it.

Step 2: Dictionary Update. When G, is estimated, the BCD framework can be used to update

Ugn). Specifically, both algorithms optimize the following minimization:

U =1

U( = argmin [ZH))T — QT; {Uz(ﬁ)l}i:fz—llﬂ Hi + puRu (U(n))] : (5.37)

with a penalty term pyRy(.) on U™, Interestingly, (5.37) can be recast into the standard least-
squares cost function which is very common in adaptive filtering theory. Accordingly, OTDL
introduced an effective recursive least-squares (RLS) solver to optimize it. Meanwhile, ODL

n)

used the stochastic gradient descent method to estimate UE with a low cost.

The next two algorithms ORLTM and OLRTR, on the other hand, estimated the tensor factors
without the need of tensor coding. In particular, the tensor factor U™ is directly derived from

the following optimization

t
Ugn) = argmin [Zﬁ()@, U(”)) + pu Ry (U("))] , (5.38)

U =1

where the loss function ¢(.) is defined as

min Hym_Ume_ow
R EM [T

(¥-,0") =

2
MR, + AzRR(R("))]  (539)

Here, R™ and O™ play the role of the coefficient and error, respectively. The main difference
between ORLTM and OLRTR is the type of Rr(.) used. Specifically, OLRTR uses the simple
Frobenius norm regularization Rp(R™) = [|R(™ |2, while ORLTM reinforces R = W(Z(®)
and then forms Rz(R™) = W™ |2, 4 [|Z(™]|]2. Intuitively, the minimization (5.38) may be
regarded as a robust version of (5.37) which aims to deal with sparse corruptions. Also, the
minimization (5.39) is not difficult to solve since its terms are all convex. Hence, both OLRTR
and ORLTM applied the RLS method to update Ug") over time.

In [254], Chachlakis et al. proposed a streaming Tucker decomposition called D-L1-Tucker for
dealing with streaming tensors. D-L1-Tucker shares the same objective function with ORLTM

and OLRTR, but adopts a different approach to handle data corruptions. Particularly on the
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Figure 5.6: Online tensor subspace learning.

arrival of Y, D-L1-Tucker first identifies whether Y; is an anomaly or not based on its reliability

which is defined as
Dot o

If r, < 7 where 7 € [0,1] is a predefined threshold, Y is labelled as an outlier slice and then it
is disregarded. Otherwise, Y, is considered as reliable and useful for tracking process. In such a
case, D-L1-Tucker appends Y; to the memory set Z; = Z; 1 U Y, and then applies the batch
L1-HOOI algorithm proposed in [265] for factorizing Z; in order to obtain tensor factors. After
that, Z; is re-updated by removing the oldest measurement for the next processing. D-L1-Tucker
requires a good batch initialization and its tracking ability is dependent on the threshold 7 and

the memory size M to store Z,.

5.5.2 Tensor Subspace Tracking

Apart from the model (5.31), the tensor X7 € RI*IN-1XT and its ¢-th temporal slice Y; with
1 <t < T can be modelled as follows

N
X = [[g; {U(n)}n:lﬂ7 (5.41)
N-1 (N
Vi =g {um Tl ui™], (5.42)
where the core tensor G € R™X72X X"~ and {U™) nN:_11 with U™ € RI"*™ are of fixed size
except the last factor U®) € RT*"~  and uEN) € RN ig the t-th row of UW) see Fig. 5.6 for
an illustration. At each time ¢, given old estimations G;_; and {Ug_l)1 g;ll, we are interested

in tracking Gy, uEN) and {Ugn) ;V:_ll which can compactly represent the temporal slice Y;. We
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refer this problem to as tensor subspace tracking.!

It is worth mentioning that single-aspect streaming CP methods also belong to this class as
the core tensor G is constrained to be identity. In the literature, there exist some tensor subspace
tracking methods which have the potential to deal with a general case of G. Each method adopts
a different strategy to factorize streaming tensors. In what follows, we briefly describe their main

features in chronological order.

a) Augmented Projection. In [243], Baskaran et al. introduced the so-called LRUT al-
gorithm (which stands for Low-Rank Updates to Tucker decomposition) using a randomized
projection technique for tracking the low multilinear-rank approximation of streaming tensors
over time. When a data stream arrives, LRUT first projects it onto an extended tensor sub-
space and then forms an augmented core tensor. Specifically, LRUT adds a few more random
dimensions to the current tensor subspace defined by old estimations of the tensor factors. The
inclusion of some random vectors here plays a role of noise perturbation aimed to prevent the
main optimization from getting stuck in local optima. Next, LRUT performs the standard Tucker
decomposition (e.g., batch HOSVD or HOOI) on the resulting augmented core tensor to update
tensor factors. In this way, we can avoid the computation of SVD on unfolding matrices of the
full tensor which is highly expensive in an online setting. However, its computational complexity
is still relatively high since LRUT uses several orthogonalization operations on augmented tensor

factors and unfolding matrices of the projected tensor slice.

b) Riemannian Optimization. In [244], Kasai et al. developed a Riemannian manifold pre-
conditioning approach for tensor completion. Specifically, its stochastic version can be adapted
for factorizing incomplete streaming tensors in an online fashion. Since the Tucker format pro-
vides an effective representation for tensors in the manifold M, = {& € RI**/2XXIN| rank(X) :=
r=[ry,ra,... ,rN]}, Riemannian optimization can offer a good approach for tensor decomposi-
tion and completion [266]. Accordingly, the authors proposed an efficient Riemannian gradient
based method to estimate the low multilinear-rank component of tensors. The proposed method
consists of a rank-one Riemannian gradient computation and a retraction step. Specifically, a
novel Riemannian metric on the tangent space of M, and its quotient manifold was introduced
to enable the Riemannian optimization framework. Furthermore, a map that combines all re-
tractions on the individual manifolds of tensor factors was used to transform the estimations to

the tensor manifold.

!This name stems from the following observation: we can recast (5.42) into the standard form

yt = Duy, (5.43)
where y;: = vec(Y,), ur = (u,EN))T and D is the transpose of the mode-N unfolding matrix of [G; {U“”}g;ll]].
Intuitively, (5.43) may be regarded as the data model which is very common and widely used in the problem of
subspace tracking where we wish to incrementally update D on the arrival of y; at each time ¢. Since the subspace
matrix D has a tensor structure, we label this problem as "tensor subspace tracking" without hesitation.
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c) Bayesian Inference. In [255], Fang et al. proposed a Bayesian streaming Tucker decom-
position method called BASS-Tucker for handling streaming sparse tensors. Similar to Bayesian
methods for streaming CP decomposition, BASS-Tucker adopts the streaming variational Bayes
(SVB) framework to infer the posterior of parameters of interest (e.g., tensor core, tensor fac-
tors, and nuisance parameters) over time. In addition, BASS-Tucker also utilizes the same priors
for the tensor factors and noise variance except that of the core tensor. Here, the following

spike-and-slab prior is used to model the core tensor:

5|p0 H H H Bern S]1J2 JN|p0) (5'44)

Jj1=1j2=1 in=1
ry T2

TN
p(G|S) = H H H 5j1j2~~-jNN(gj1j2ij‘0’ US) +(1— 8j1j2~~~jN)5(gj1j2~~jzv)7 (5.45)

J1=172=1 Jn=1

where & € R™M*"2X"X"N g g binary tensor, Bern(.|pp) is the Bernoulli distribution with proba-
bility po, and §(.) is the Delta function. We refer the readers to subsection 5.4.3 for details on
prior distributions of {U}¥ = and other model parameters as well as how the SVB framework

works.

d) Block-Coordinate Descent. There are three online Tucker algorithms using the BCD
framework, including ATD [29], RT-NTD [257] and BK-NTD [257]. In general, they go through

the following stages when Y; arrives:

Stage 1: Estimate the coeflicient vector ugN) given old estimations G;_; and {Ug_l)1 N
Generally, ugN) can be derived from
2
ugN) = argmln[Hyt [[gt 1,{Ut 1}n 1 (N)]] HF +PuRu(u(N))]. (5.46)

Stage 2: Estimate the tensor factor Ugn) given ugN), old estimation of Ugr_l)l and the remaining

factors, 1 <n < N — 1. The main optimization can be given by

t
U;" = argmin [ > BT UY, UM) + pyRy (UM )] , (5.47)
utr =1

where (Y-, U(")) = HXS-H) —U(")W(n HF, Y ) and WS-n) are respectively the mode-n unfolding
matrices of Y, and W.. Here, the coefficient tensor W, is defined as

=[G (U=t ] (5.48)
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Figure 5.7: Multi-aspect streaming Tucker decomposition of a three-order tensor.

Stage 3: Estimate the core tensor G; given G;_1, uEN), and {Ugn) 7]:[;11 particularly from

X Ugl)g(l)zT

T

¢ 2
G = argénin [Z gt - + pgRg(g)] , (5.49)
T=1

where ()1 denotes the mode-1 unfolding matrix and Z, = u, ® (®g:2 Ugn)).

Here, Ry(.), Ru(.), and Rg(.) are regularization terms on the coefficient ugN), the factor
U,En), and the core tensor G, respectively. These penalties can be nonnegativity, smoothness, or

sparsity depending on the specific application.

The former ATD algorithm was proposed by Thanh et al. in [29] which is capable of tracking
the low multilinear-rank approximation of streaming tensors from highly incomplete observations.
In stage 1, ATD particularly recasts (5.46) into a standard LS optimization and then applies a
randomized LS technique to minimize it. In stage 2, ATD introduces a recursive LS solver to
optimize (5.47) in an efficient way. Instead of solving (5.49) directly, ATD applies the stochastic

gradient descent to obtain its solution.

The two latter RI-NTD and BK-NTD algorithms were proposed by Zdunek et al. in [257] for
factorizing nonnegative tensors from streaming data. Both algorithms perform nonnegative least-
square (NNLS) solvers to incrementally update the tensor factors and the core tensor. Particu-
larly, RI-NTD utilizes a recursive strategy involving the nonnegatively constrained Gauss—Seidel
method while BK-NTD adopts the block Kaczmarz method. Similar to ATD, both RI-NTD and

BK-NTD estimate the core tensor using only the new coming data via a stochastic optimization.
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5.5.3 Multi-aspect streaming Tucker decomposition

Besides single-aspect streaming Tucker decomposition methods, few online techniques are capable
of tracking multi-aspect streaming tensors under the Tucker format over time, such as SITTA
in [248] and eOTD in [249].

SIITA in [248] offers an online inductive framework for tracking the low-rank tensor ap-
proximation of multi-aspect streaming tensors as well as completing their missing data with side

information. On the arrival of new data, SIITA particularly minimizes the following optimization

argmin (Y1, ({11, G, {UMNL,), (5.50)
g,{U(n),A(n)};\’:1
with
2
Fi(Pe (8N, 6 {UMRLL) = [[Pa, () — Po,([6: {8 U™ T
N
0665+ D el U5 (5.51)

n=1

where {sﬁ") N | with S; € RMn*In i5 the set of side information matrices and pg, {p;}}¥, are
regularization parameters. Here, SIITA incorporates the side information into the data model
by using {Sgn)}gzl as multiplicative terms. Accordingly, SIITA can accelerate the tracking
process because the product Sgn)U(") transforms the dimensionality of variables from I, to M,,,
and typically with M,, < I,. As every term of (5.50) are convex, SITTA adopts the gradient
descent to minimize it. Besides, a simple variant of SIITA namely NN-SITTA was also obtained
for nonnegative tensor decomposition. NN-SITTA is specifically derived from projecting the

estimates of SIITA into their nonnegative orthant at each time t.

In [249], Xiao et al. proposed the so-called eOTD algorithm for the multi-aspect tensor
tracking problem. Unlike SIITA, eOTD adopts the divide and conquer paradigm to deal with
multi-aspect streaming tensors. In particular, it divides the underlying tensor X; into 2V sub-
tensors Xgil""’iN) with i, € {0,1},1 < n < N, and XEO’“"O) = X;_1, see Fig. 5.7 for an
illustration. These sub-tensors are grouped into N classes {X,}"_; based on the sum of sub-
indices. For example, for a third-order tensor, we have X7 = {X§1,0,0)7 X§0,1,0)7 Xgo’o’l)}, Xy =
{Xﬁl’l’o),Xil’o’l),Xﬁo’l’l)}, and X3 = {Xﬁl’l’l)}. If a sub-tensor X§i1 """ ) ¢ Gy, factorizing it
will results in X7 =[G, (V"N ] where VI = U™ if i, = 1 and V™ = UM if

i, = 0. Here, the matrix Ugn) is constantly updated as follows

>l

UL, = a Ul + (1 - )X, (G, (5:52)

new n

The tensor factor Ugn) is specifically derived from Ugn) = orth ([Uy_l)l; ﬂgé)w]) = ([[_Jgn); ﬂgn)])
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Figure 5.8: Single-aspect streaming tensor-train decomposition.

where the modified Gram-Schmidt process was applied to compute the orth(.) operation. Finally,

the tensor core G, of fixed size is estimated by

G, = [[gt—ly {(I—Jgn))TUgﬁ)l}i:f:J] + Z [[Xgh,...,izv)’ {fjgn)}nN:J] (5.53)
(i1,0ersin ) 7(0,...,0)

An appealing feature of eOTD is that throughout the tracking process, eOTD only uses cheap
tensor-matrix multiplications and pseudo-inverse operations instead of computing the expensive

SVDs on big matrices. This makes eOTD easy for applying to large-scale applications.

5.6 Other Streaming Tensor Decompositions

Apart from the two most popular streaming CP and Tucker decompositions, some online methods
are capable of tracking tensors under other multiway models. This section focuses on tracking
algorithms that exploit TT, BTD, and t-SVD formats to construct the low-rank tensor approx-

imation in the streaming model.

5.6.1 Streaming Tensor-Train Decomposition

Despite success in the batch setting, TT decomposition has not gained in popularity as CP and
Tucker for tensor tracking. In the literature, there exist few tracking algorithms developed for

the problem of single-aspect tensor tracking under the TT format, see Fig. 5.8 for an illustration.

In [30,32,35|, Thanh et al. proposed three adaptive TT algorithms called TT-FOA, ATT,
and ROBOT for factorizing tensors in an online fashion. Particularly, TT-FOA in [32] is, to the
best of our knowledge, the very first of its kind in the literature. However, its practical use is
limited due to the lack of robustness to data corruption. To overcome the drawback, ATT in [30]

and ROBOT in [35] were developed to deal with missing data and sparse outliers, respectively.

All three algorithms share the same optimization framework where block-coordinate gradient
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(BCD) and recursive least-squares (RLS) methods are utilized to minimize the cost function. In

particular, a general formulation of the optimization problems can be written as

t
{g(n)}ﬁl\le)o

=1

+0,-Y)

[+ oo(07)) + pana({g<n>}ff)] , 550

where 8 € (0,1] is a forgetting factor to reduce the impact of old observations; Ro(O;) and
RG({Q(”)}QZII) are two regularization terms. Specifically, TT-FOA does not impose the two
penalties; ATT adopts Rg ({g(”) 7127:—11) = 2111\7:—11 Hg("> - QELH; to control the smoothness
of TT-cores over time; and ROBOT applies the ¢;-norm regularization Ro(O;) = ||O-|1 to
promote the sparsity on O..

Thanks to the BCD framework, (7.44) can be effectively decomposed into two main stages:
(i) estimate the temporal TT-core GgN) and outlier Oy, and (ii) update non-temporal TT-
cores {gﬁ”) }N —!. In stage 1, TT-FOA and ATT apply the regularized least-squares method

n=1
to estimate GgN) under the assumption that Y; is outlier-free. Meanwhile ROBOT adopts an

effective ADMM solver to account for the sparse outlier Oy. In stage 2, an effective RLS solver

was introduced to estimate {g,ﬁ’” 7]:[:_11 when GEN) and Oy (if any) are given in stage 1.

In parallel, Liu et al. in [267] proposed an incremental T'T method called iTTD to factorize
tensors having one temporal mode. Specifically, iTTD considers coming data streams as individ-
ual tensors and then factorizes them into TT-cores. The results are appended to old estimates
derived from past observations. In [268], Wang et al. also developed an incremental TT method
called AITT to decompose tensors from industrial loT data streams. By exploiting a relationship
between the directly reshaped matrix and integration of tensor unfolding matrices, AITT can
estimate effectively the underlying TT-cores. However, the two frameworks of iTTD and AITT
are not really online streaming learning ones but incremental batch learning. Therefore, they

are not useful for data streams from dynamical observations in time-varying environments.

5.6.2 Streaming Block-Term Decomposition

The block-term decomposition (BTD) unifies the two well-known CP and Tucker decompositions,
and thus, the tracking algorithms under the CP and Tucker formats principally belong to the
class of the streaming BTD with one block. When the number of blocks is greater than 2, there
are only two BTD methods able to deal with streaming tensors, including OnlineBTD [269] and
O-BTD-RLS [270].

The former method was proposed by Gujral et al. in [269] for tracking tensors under the

generalized BTD format of L blocks and a multilinear rank-(r1,79,...,75). On the arrival of
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Figure 5.9: Tracking the rank-(L, L,1) BTD of 3-rd order streaming X's.
the temporal slice Y, OnlineBTD performs the following minimization:

2
’ : (5.55)
F

argmin ‘
(G (UL,

yt - Z [[gza {U'En)}f");l]]
=1

where UM = [U U UM] with UM € RIvw and G; € RiXm2x=>rx 1 < p < N,
1 < i < r. Here, {U(”) nN:_11 are supposed to remain unchanged with time except the last

tensor factor U®Y)

. Prior information of L and rank-(ri,r9,...,7n) are known in advance. Old
estimates of the core tensors and tensor factors of X';_1 are used as a “warm start” for OnlineBTD
at each time ¢. To speed up the tracking, OnlineBTD utilizes (i) an accelerated matricized tensor
times Kronecker product, (ii) the pseudo-inverse operator using LU decomposition, and (iii) a
dynamic programming strategy introduced by Zhou et al. in [175] to avoid the re-computation

of duplicated Kronecker products.

The second method was introduced by Rontogiannis et al. in [270]. Specifically, O-BTD-
RLS is designed for tracking the low rank-(r,r, 1) terms of three-order streaming tensors (i.e.,
r1 =719 =1 and r3 = 1), see Fig. 5.9 for an illustration. In particular, the tensor factors of the

underlying tensor are incrementally updated by minimizing the following objective function:

¢ 2
argain | 3067, - 0O (U] 7| o/} 4
{U(n)}?z:l =1 F
L r e 3
#2323l + ) (.56)

=1 k=1

Here, UM = [Ugn), Ugn), - ,U(Ln)} with Ul(n) € R™*7 is the n-th tensor factor of interest, and

ul(T,? is the k-th column of Ul(n)7 n = 1,2; u” and u; are the 7-th row and [-th column of the
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temporal factor U®) € R™L | respectively; W, = diag(u™) @ I, and E = diag('~',...,3,1);
p1 and py are two regularization parameters; and n? is a small positive number to promote
smoothness at zero. Here, the former term of (5.56) has the form of weighted least-squares while
two latter terms are regularizations. Accordingly, an efficient recursive least-squares solver was
introduced to minimize (5.56) effectively. An appealing feature of O-BTD-RLS is that it has the
ability to reveal the BTD ranks over time by specifying the number of columns of the tensor

factors which are non-negligible in magnitude at each time t.

5.6.3 Streaming t-SVD Decomposition

Similar to TT and BTD, streaming t-SVD is still in its early stage. In the literature, there exists
only two works of Zhang et al. in [271] and Gilman et al. in [272,273] addressing the problem of
tensor tracking under the t-SVD format.

In [271], Zhang et al. introduced an online tensor PCA for sequential 2D data based on the
t-SVD structure. When Y, arrives, the proposed algorithm updates:

e The coefficient matrix YW, and the sparse outlier O from solving the following minimization

|1 A
{W:, 0} = al;/gvrr(lom b\yt —Up 1 x W — OHf7 + %HWH% + )\2”0”1:| : (5.57)

e The low tubal-rank tensor U; (a.k.a. basis dictionary) from taking iFFT of the tensor U,

along the third dimension where U, is specifically derived from

U, = argmin [;t U7 (A + DU - tr[ﬂTBt]} . (5.58)
U

Here, A; = diag(FFT(A;)) with A; = A;_1 + Wy« W/, B, = diag(FFT(B;)) with B; =
Bio1+ (Y — Oy) WtT, and the solution Uy is a matricization of Uj.

As the online tensor PCA above is not designed for handling missing data, Gilman et al.
in [272,273] proposed another algorithm called TOUCAN which is capable of tracking tensors
from missing observations. Specifically, the authors proposed to solve the constrained minimiza-
tion

t
2
{U,wi} = argminz H.FQT (yT — UWT) ‘2 subject to UTU = L, (5.59)
T=1

U,w

where y, = unfold(),) € CIBX1 w,_ = unfold(W,) € C'B*1 Fo = Pq. (F;; ® Ih) €
Cl9-[xIls ig the subsampled inverse Fourier transform, F,, € C**™ denotes the Discrete Fourier

Transform matrix, the mixing matrix U € R8s js defined as U = (Fy, ® I, )bcirc(U) FI_31.
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Motivated by the so-called GROUSE algorithm for subspace tracking in 72|, TOUCAN ap-
plies the incremental gradient descent on the tensor Grassman manifold to track U; with time. It
is worth noting that the objective function (5.59) is very common in subspace tracking problems.
Therefore, we can apply any subspace tracking algorithms which are capable of dealing with

missing data to minimize (5.59) effectively.

5.7 Applications

Tensor tracking or dynamic tensor analysis has already been found several online applications
and this section provides some typical examples in different research fields, from computer vision

and neuroscience to anomaly detection.

5.7.1 Computer Vision

We begin this section with one of the earliest and most popular applications of tensor tracking:
visual tracking which is an important task in computer vision [274]. Naturally, video datasets
can be represented as 4-th order streaming tensors of dimensionality, width x height x channel
x time. Accordingly, there are several studies devoted to developing tensor-based visual trackers
for better modeling the appearance of target objects, such as [238,275-277|, to name a few.
For example, Hu et al. in [238] proposed the so-called IRT'SA tracker using incremental tensor
subspace learning to capture the appearance of objects. Zhang et al. in [275] introduced an-
other visual tracker called DTAMU which stands for dynamic tensor analysis with mean update.
Weiming et al. in [276] developed a semi-supervised tensor-based visual tracker using graph em-
bedding. Khan et al. in [277] built an online spatio-temporal tensor learning model for visual
tracking using Bayesian inference. It is worth noting that most of the existing tensor-based visual

trackers correspond to the streaming Tucker decomposition and its variants.

Another notable application of tensor tracking in computer vision is video background and
foreground separation which is quite related to visual tracking, but with a different aim of model-
ing the scene background and detecting the information of changes in the scene. Similar to visual
tracking, many tensor-based separators were proposed, such as [27,35,263,278,279|. Particularly
in [27], Thanh et al. proposed a robust adaptive CP method called RACP which is capable of
modeling video background and detecting moving objects. Li et al. in [263] introduced an online
robust low-rank tensor modeling (ORLTM) method and found its success in video background
subtraction. Andrews et al. in [278] developed an online stochastic tensor decomposition for
background subtraction in multispectral video sequences. A robust streaming tensor-train algo-
rithm was developed in [35] which also has the potential to detect foreground in video. Salut
et al. in [279] proposed an online tensor robust principal component analysis and validated its

effectiveness with the problem of background and foreground separation.
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In parallel, there are other interesting computer vision applications of dynamic tensor anal-
ysis, such as visual data recovery [176,280], online video denoising [281,282], and segmenta-
tion/classification [252,283].

5.7.2 Neuroscience

The brain can be viewed as a complex system with various interacting regions that can produce
large multivariate data over time [284]. Many types of brain data can be represented by tensors,
such as electroencephalography (EEG), magnetoencephalography (MEG), functional magnetic
resonance imaging (fMRI), and near-infrared spectroscopy (NIRS) [285]. Apart from three in-
trinsic modes (i.e., frequency, channel, and time), brain data can have higher-order modes, such
as, subjects, conditions, and trials [285]. Together with the fact that brain activities can change
over time, dynamic tensor analysis has become an useful tool to study the structure and function

of brain from such data.

In what follows, we list some appealing brain-computer interface applications to demonstrate
the use of dynamic tensor analysis in neuroscience. First, for the problem of detecting dynamic
functional connectivity networks (DFCNs), Ozdemir et al. in [245] introduced a recursive tensor-
based framework capable of tracking DFCNs over time. The proposed framework was then
applied for studying error-related negativity — a brain potential response when patients make
errors during cognitive tasks [286]. Mahyari et al. in [287] developed a two-step approach using
incremental tensor subspace analysis for detecting DFCNs. Particularly, they first detect change
points at which the functional connectivity across subjects presents abrupt changes and then
summarize DFCNs between successive change points. Recently, Acar et al. in [288] proposed to
use the Parafac2 model for tracking the evolution of connectivity networks and compared its
performance with ICA and IVA. For the problem of localizing dynamic brain sources over time,
Ardeshir et al. in [289] utilized the boundary element method (BEM) [290] and the adaptive
PARAFAC-RLST tracker [211| with two operational windowing schemes. A variant using aug-
mented complex statistics in [291] also has the ability to track moving EEG sources with time.
For the problem of online EEG completion, Trung et al. in [292] proposed an adaptive CP algo-
rithm called NL-PETRELS capable of tracking and imputing incomplete EEG data. Thanh et
al. in [27,29] also demonstrated the use of ACP and RACP with real data by applying them
for online EEG completion. Other neuroscience applications of tensor analysis were reviewed
in [180,293,294].

5.7.3 Anomaly Detection

Anomaly detection, which corresponds to identifying patterns and data points that do not con-

form to normal behavior, plays an essential role in many applications, such as cyber security,
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statistics, and finance, to name a few [295]. Here, we provide some notable tensor-based anomaly

detectors which are customized to specific online applications.

Shi et al. in [296] developed the so-called STenSr algorithm for anomaly detection and pattern
discovery in spatio-temporal tensor streams from sensor networks. STenSr utilizes an incremen-
tal HOSVD and a metric based on Euclidean distance to detect abrupt changes when new
data comes. Kasai et al. in [297] introduced an online time-structured traffic tensor tracking
framework to detect network-level anomalies from link indirect measurements over time. In par-
ticular, it is based on a robust adaptive CP decomposition that uses RLS for tensor tracking
and ADMM for detecting abnormal flows. Cao et al. in [298] designed an interactive system
called Voila for detecting and monitoring visual anomalies. Voila is a tensor-based anomaly
detector with an interaction design that can ranks anomalous patterns based on user input.
Lin et al. in [299] proposed a novel method called TBAD to localize anomalous events. TBAD
employs a spatial-feature-temporal tensor model and analyses latent patterns through unsuper-
vised learning. Xu et al. in [300] introduced a tensor-based framework, namely SWTF, capable
of detecting multiple types of anomalies in road networks. We refer the readers to [200] for a

broader interdisciplinary survey of tensors for anomaly detection.

5.7.4 Others

Apart from online applications in the domains above, tensor tracking also found success in
some other research fields, namely wireless communications (e.g., channel tracking [301], DOA
tracking [302|, and time delay estimation [303]), network analysis (e.g., link prediction [304],
internet scale monitoring [305], and bot activities and network intrusions [306|), data analyt-
ics of chemical and biological manufacturing processes and components [307,308|, performance

monitoring [309,310|, and transportation [311,312].

5.8 Conclusions

Tensor tracking has recently gained increasing attention as a powerful tool for multidimensional
data stream analysis. In this survey, we have provided a technical overview of online techniques
for tracking streaming tensors over time. We highlighted the two most popular streaming CP
and Tucker decompositions. Specifically, four main groups of streaming CP decomposition algo-
rithms were emphasized, including subspace-based, block-coordinate descent, Bayesian inference,
and multi-aspect streaming decompositions. We categorized the current streaming Tucker de-
composition methods into three major classes based on their model architecture. They are online
tensor dictionary learning, tensor subspace tracking, and multi-aspect streaming decompositions.
Recent years have also witnessed significant advances in other types of tensor decomposition such
as tensor-train, BTD, and t-SVD. A brief survey on the existing methods which are capable of

tracking tensors under these formats was presented.
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Chapter 6

Robust Tensor Tracking with Missing
Data and Sparse Outliers
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6.1. INTRODUCTION

Tensor decomposition is a powerful multilinear algebra tool for analyzing multiway data and has been used
for various signal processing and machine learning applications. When the underlying tensor is derived
from (multidimensional) data streams, streaming tensor decomposition or tensor tracking is required.
In this chapter, we propose three novel adaptive algorithms for tracking the low-rank approximation of
high-order streaming tensors over time, including ACP, ATD, and RACP. Under the CP format, ACP
minimizes an exponentially weighted recursive least-squares cost function to obtain the tensor CP fac-
tors in an efficient way, thanks to the alternative minimization framework and the randomized sketching
technique. Under the Tucker format, ATD first tracks the underlying low-dimensional subspaces cover-
ing the tensor factors, and then estimates the core tensor using a stochastic approximation. Both the two
algorithms ACP and ATD are fast and fully capable of tracking streaming tensors from incomplete obser-
vations. When observations are corrupted by sparse outliers, we introduce the so-called RACP algorithm
robust to gross corruptions. Particularly, RACP first performs online outlier rejection to accurately detect
and remove sparse outliers, and then performs tensor factor tracking to efficiently update the tensor fac-
tors. Convergence analysis for three algorithms are established in the sense that the sequence of generated
solutions converges asymptotically to a stationary point of the objective function. Extensive experiments
are conducted on both synthetic and real data to demonstrate the effectiveness of the proposed algorithms

in comparison with state-of-the-art adaptive algorithms.

6.1 Introduction

The era of “Big Data”, which deals with massive datasets, has brought new analysis techniques
for discovering new valuable information hidden in the data [313]. Among these techniques is
multilinear low-rank approximation (LRA) of matrices and tensors, which has recently attracted

much attention from engineers and researchers [11].

A tensor is a multidimensional array and provides a natural representation of multivariate
and high-dimensional data. Low-rank approximation of tensors (t-LRA) can be considered as a
multiway extension of LRA of matrices (which are two-way) to higher dimensions [10]. Generally,
t-LRA is referred to as tensor decomposition which allows factorizing a tensor into a sequence of
basic components [10]. As a result, t-LRA provides a useful tool for dealing with several large-
scale multidimensional problems in modern data analysis which would be, otherwise, intractable
by classical methods. Two widely-used approaches for t-LRA are CANDECOMP /PARAFAC
(CP) decomposition! [14] and Tucker decomposition [314]. Under CP decomposition, a tensor
can be represented as a sum of rank-1 tensors; each rank-1 tensor is formulated as the outer
product of vectors. Under Tucker decomposition, a tensor is factorized into a sequence of factor

matrices acting on a reduced-size core tensor. “Workhorse” algorithms are based on the method

n the literature, there exist some other names for the CP decomposition: PARAFAC (Parallel Factors), CPD
(Canonical Polyadic Decomposition), and CANDECOMP or CAND (Canonical Decomposition).
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of alternating least-squares (ALS). The readers are referred to the work of [10] for a good review.

Characteristics of big data are associated with the following three “V”s: high volume, high
velocity and high veracity [313]. Velocity and veracity are the focus of this chapter. Velocity
requires (near) real-time processing of data streams, while veracity demands robust algorithms to
better deal with missing, noisy and inconsistent data. In online applications, data acquisition is
often a time-varying process in which data are serially collected or changing with time. Besides,
missing data are ubiquitous and more and more common in high-dimensional problems in which
collecting all attributes of data is either too expensive or even impossible. In addition, outliers
which are data points that appear to be inconsistent with or exhibit abnormal behaviour different
from others causes cause several issues (e.g., they introduce bias in estimation) for knowledge
discovery from data in general and data streams in particular. However, well-known t-LRA
algorithms either face high complexity or operate in batch mode and, thus, may not be suitable
for such problems. This has led to defining a variant of t-LRA, namely tensor tracking or

streaming tensor decomposition.

6.1.1 Related Works

In the literature, there are several studies related to the problem of tracking online t-LRA in the
missing data context; the tensors are said to be both streaming and incomplete. For adaptive CP
decomposition, Mardani et al. proposed TeCPSGD [106], which is a first-order algorithm and
uses the method of stochastic gradient descent (SGD). Leveraging the framework of alternating
minimization, TeCPSGD can estimate directly all factors but the one corresponding to the di-
mension growing over time in an efficient way. However, it often suffers from a slow convergence
rate inherent to SGD and, hence, is not suitable for fast time-varying scenarios. To overcome
this drawback, Kasai developed OLSTEC [176], which is an efficient second-order algorithm and
exploits the recursive least-squares technique. OLSTEC provides a competitive performance in
terms of estimation accuracy, but its computational complexity is much higher than that of
TeCPSGD. In parallel, Chinh et al. proposed to first track the low-dimensional tensor subspace
and then derive the loading factors from its Khatri-Rao structure [215]. However, the perfor-
mance of this algorithm is sensitive to initialization. None of the abovementioned algorithms
is capable of tracking online t-LRA when the tensors are of higher orders (i.e., greater than or
equal to 4). On the other hand, some adaptive CP algorithms, such as [175,216]|, are capable
of handling higher-order streaming tensors. However, they do not handle incomplete datasets.
Recently, Zhang et al. have developed BRST [214], which is able to handle outliers. To track and
separate the low-rank and sparsity components of the underlying tensor, a Bayesian statistical
model was applied. The computational complexity of BRST is, however, very high and thus the

method becomes inefficient when handling high-dimensional and fast-arriving data streams.

For adaptive Tucker decomposition, Kasai and Mishra introduced RPTucker [244], dealing
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with dynamic tensor completion. Leveraging a specific Riemannian metric, RPTucker effectively
performs preconditioned SGD on the Riemannian manifold of the subspace spanned by tensor
factors. Very recently, Gilman and Balzano have proposed TOUCAN (tensor rank-one update on
the complex Grassmannian) [273|, for tensor singular-value decomposition (t-SVD). Similar to
RPTucker, TOUCAN also performs the incremental gradient descent on the Grassmann manifold.
However, both algorithms are only suitable for third-order tensors. Dimitris et al. have recently
proposed the first robust online Tucker decomposition that can deal with streaming tensors in
the presence of outliers [254|. However, it was not designed for handling missing data. Some
studies have been conducted to design efficient t-SVD algorithms for higher-order tensors, for
example [315-317|. These algorithms were designed for batch computation and thus are not
suitable for dynamic models. Recently, Thanh et al. have proposed TT-FOA [32], which is an
adaptive tensor-train (TT) model for streaming tensors. Although TT-FOA and its stochastic
version are capable of tracking the online low-rank tensor-train representation of large-scale and

higher-order tensors, they were not designed to handle the situation with missing data.

In the multi-aspect streaming perspective of tensor analysis, Song et al. proposed an effective
multi-aspect streaming tensor framework (MAST) [232], used for dynamic tensor completion.
MAST can successfully track the multilinear LRA of incomplete tensors with dynamic growth
in more than one tensor mode. A robust version of MAST for handling outliers, called outlier-
robust multi-aspect streaming tensor completion and factorization (OR-MSTC), was proposed
in [233]. Thanks to the framework of alternating direction method of multipliers (ADMM),
OR-MSTC can estimate the low-rank component from measurements corrupted by outliers. A
new inductive framework, called SIITA, has been proposed to incorporate side information into
incremental tensor analysis [248]. SIITA can be seen as a counterpart of MAST for multi-aspect
streaming Tucker decomposition. Although all these approaches provide good frameworks for
the problem of dynamic tensor completion, they are either useful for third-order tensors only or
are of high complexity and hence relatively inefficient in applications with online data streams.

In addition, convergence analysis of these algorithms is not available.

Some other studies attempted to extend robust subspace learning/online PCA for high-order
tensor data. Hu et al. proposed an incremental tensor subspace learning algorithm, called
IRTSA, and applied it to robust visual tracking in video streams [239]. Li et al. presented a
robust algorithm that can update the tensor dictionary and detect anomalies in an online manner,
namely RTSL [259]. Sobral et al. introduced an online stochastic tensor algorithm for learning
low-rank structure and sparse components in the tensor data [278|. Another incremental tensor
decomposition was designed for video background and foreground separation in [318]|. Li et al.
developed an adaptive algorithm for robust low-rank tensor learning, called ORLTM [263]. Very
recently, Dimitris et al. have proposed the first robust online Tucker decomposition that can deal

with streaming tensors in the presence of outliers [254|. However, none of the above algorithms
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are designed for handling missing data. The problem of robust tensor tracking for high-order

incomplete streaming tensors remains largely unexplored.

6.1.2 Main Contributions

The main contributions of this chapter are summarized as follows:

e Firstly, under the CP format, we propose a novel adaptive CP (ACP) algorithm for tracking

higher-order incomplete streaming tensors. ACP is fast and requires a low computational
complexity and memory storage, thanks to the alternative minimization and randomized
sketching. It can handle incomplete tensors derived from infinite data streams because it
performs CP decomposition with constant time and space complexity that are independent
of time index ¢. A convergence analysis is then provided to establish performance guaran-
tees. To the best of our knowledge, the proposed ACP algorithm is the first one capable

of dealing with streaming tensors of higher orders with “provable” convergence guarantee.

Secondly, under the Tucker format, we propose the second algorithm, namely adaptive
Tucker decomposition (ATD), more flexible than ACP, for the problem of online t-LRA.
ATD exhibits competitive performance in terms of both estimation accuracy and computa-
tional complexity. Its convergence guarantee is also presented. Also, this chapter presents

for the first time a provable adaptive Tucker algorithm for this problem.

Thirdly, we propose a novel method for robust adaptive CP, called RACP, for the robust
tensor tracking problem in the presence of both missing data and outliers. Particularly,
RACP aims to learn low-rank components of streaming tensors in an online fashion as
well as offering robustness against gross data corruptions. RACP is a scalable and effec-
tive online CP algorithm with ability to (i) estimate low-rank components of streaming
tensors derived from imperfect and noisy data streams due to missing observations and
outlier corruptions, (ii) adapt the changes of the underlying data streams in dynamic and
nonstationary environments, (iii) separate and reject sparse outliers in an online fashion
with high accuracy, and (iv) easily incorporate prior information for dealing with specific
constraints on the tensor model, e.g., smoothness and nonnegativity. Also, we prove that
RACP is a provable adaptive CP algorithm with a convergence guarantee. Under mild
conditions, we prove that the sequence of solutions generated by RACP converges asymp-
totically to a stationary point of the empirical loss function. Moreover, the asymptotic
variation of the solutions and the almost-sure convergence of the objective function values

are also analyzed.

Last but not least, we provide several experiments on both synthetic and real data to
illustrate the effectiveness of the proposed algorihtms in comparison with state-of-the-art

tensor tracking algorithms.
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6.2 Tensor Tracking with Missing Data

6.2.1 Problem Statement

In this section, we investigate the problem of tracking an incomplete streaming tensor X; €
RIvxT2x %I fixing all but the last dimension I%; (see illustration in Fig. 6.1 where the gray
boxes represent missing data). Specifically, the ¢-th tensor slice Yy € RIX[2XXIN-1 of X, is

supposed to be generated under the following model:
yt:Pt®(£t+Nt)a (6.1)

where P; is a binary observation mask, N; is a Gaussian noise tensor of the same size with Y,
and Y, is the multilinear low-rank component. The mask P, shows whether the (i1, 9, ...,iny_1)-

th entry of Y; is missing or not, i.e.,

1, if Yiy45..in_, 1S Observed,
Pirigein-1 =3 pe (6.2)
0, otherwise.

The low-rank component Y is given by?

A _
L= [[g; {U(”)}T]:[:f, uEN)]], (6.3)
where r = [r1,79,...,ry] is the desired low multilinear rank, G € R"*"2X"*"N ig the core tensor,

U = {UMINTL with UM € RI*™ contains the first N loading factors, and ulEN) € R™ is the
weight vector.? The underlying tensor X; is derived from appending the new slice X’y to the

previous X';_1 along the time dimension, i.e.,
X=X 1 By Y, (6.4)

where I = I! + 1, as shown in Fig. 6.1.

The problem of tracking t-LRA of the incomplete streaming tensor X; can be stated as

follows:

2In online setting, the tensor core G and loading factors {U(”)} might be changing slowly over time, i.e.,
G =G, and U™ = U§”>, n=1,2,..., N — 1. Our algorithms are capable of estimating G and U accurately, but
also successfully tracking their variation along the time.

3In batch setting, the weight vector u; in (6.3) is seen as the ¢-th row of the last loading factor UM ¢ RIN*7N
Of Xt.
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f )
t=1 t=2

Figure 6.1: Incomplete streaming tensors.

Tensor Tracking with Missing Data: At each time ¢, we observe a streaming tensor
slice Y; under the data model (6.1). We aim to estimate G; and U, that will provide a

good multilinear low-rank approximation for X; in time.

Applying batch methods to X is possible, but these turns out inefficient for online (adaptive)
settings. Our goal is to develop efficient one-pass algorithms, both in computational complexity

and memory storage, for tracking the t-LRA of &X', from past estimations at each time ¢.

In an adaptive scheme, we propose to minimize the following exponentially weighted cost

function:

t
(0114} = anguin | 1,(G.U) = 1Y 6 0(0.U.Pr 7). (6.5)

T=1
where the loss function ¢(-) with respect to the 7-th temporal slice Y, is given by

2
(G.U P Y:) 2 min : (6.6)
ur F

P.® (aa - [o. {umy, uﬁmw

and S € (0,1] is the forgetting parameter. Here, all observations (i.e. tensor slices) in the time
interval [1, t] are taken into consideration in the estimation of the underlying low-rank component
at each time ¢. The least-squares loss £(.) defines the residual for each observation which measures
the difference between the observed value and the estimated value of the tensor slice. S is used
for discounting the effect of past observations exponentially, and ensuring that observations in
the distant past are substantially down-weighted in the cost function relative to the latest ones.
Accordingly, when 8 < 1, this can facilitate the tracking ability of estimators, especially in time-
varying and non-stationary environments. The effective window length for 8 < 1is (1 — )~}

when t is large.

In the next two sections, we describe the two proposed algorithms for solving (6.5) under
CP and Tucker decompositions. We make the following four assumptions for the convenience of

deploying our algorithms as well as analyzing their performance.

(A1) Observed tensor slices {Y¢}+>1 are independent and identically distributed from a data-
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generating distribution, which is the underlying distribution of the dataset, having a com-
pact set V. This assumption is very common for convergence analysis in online settings in
general and adaptive tensor decomposition in particular, e.g., [25,106,120,176]. Naturally,
it holds in several scenarios, for instance, real-life data are often bounded such as image,

video and audio.*

(A2) Tensor slices {Y;}+>1 follow the data model (6.47) where the true underlying loading factors
(U™ | are bounded, ie., [|[U{||,. < & < co. When (A1) holds, (A2) naturally holds.

It also prevents arbitrarily large values in U§”) and ill-conditioned computation.

(A3) Observation mask tensors {P;};>1 are independent of {Y:};>1 and their entries obey
the uniform distribution. With respect to the imputation of missing values and recov-
ery of low-rank components, the uniform randomness allows the sequence of binary masks
{P:}+>1 to admit stable recovery [319]. Moreover, the number of observed entries in Y
is supposed to be larger than the lower bound O(rLlog L), where L = I1I5...In_1 and

)

r = max(ry,r2,...,7N) , and every row of Xgn is observed at least r entries for all n.
The constraints are fundamental conditions to prevent the underdetermined imputation

problem [320].

(A4) The low multilinear-rank model is either static or changing slowly over time, i.e., the core
tensor and loading factors may vary slowly between two consecutive times ¢ — 1 and ¢:

G~ G, 1 and Ugn) ~ Uy_l)l. The tensor rank is supposed to be known.

6.2.2 Adaptive CP Decomposition

In this subsection, we first propose a fast adaptive CP algorithm for tracking online t-LRA of
incomplete streaming tensors, called ACP. Then, we provide a performance analysis in terms of

complexity and convergence to demonstrate its effectiveness and efficiency.

6.2.2.1 Proposed ACP Algorithm
Under the CP tensor model, (6.5) can be rewritten as follows:

t
U, = argz/rlnin [ft(l/l) = %Zﬁt—%(u,n,%) , (6.7)

=1

“Indeed, (A1) is a strong assumption in our analysis, but it can be relaxed as follows: Observed tensor slices
{Y¥:}+>1 are Frobenius-norm bounded, i.e., ||Y:||r < M < oo. Low-rank components {Y;}:>1 of the observed
tensor slices {Y;}+>1 are supposed to be deterministic and bounded. Noise tensors {N;};>1 are i.i.d. from a
distribution having a compact support.
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where the loss function ¢(U,P,,Y,) is defined by

2
f(u,'PT,y.,.) é Hf;in

ug-N eR"

(6.8)

® (yf - [{{U(”)}nsz,u(TN>]])

F

Leveraging past estimations of the loading factors, we propose to minimize the surrogate

g+(U) of fi(U) instead, which is defined, for a given value of {uSN)}1 ey DY

t

gty =S5

T=1

2

Po (¥ - [uonS )| (69)

The main motivation here stems from the following observations which will be detailed later
in our convergence analysis. First, it is easy to verify that ¢,(U) provides an upper bound on
fid) (ie., fr(U) < g(U) for all U and a fixed set of {uSN)}lgTSt). Also, the error function
et(U) = g:(U) — f(U) is L-smooth for some constant L > 0, i.e. it is differentiable and Ve (U)
is L-Lipschitz continuous. As a result, g.(U) is a first-order surrogate function of f;(U) [321] and
hence its theoretical convergence results can be achieved without making any strong assumptions
on fy(U). In particular, the sequence of surrogate values {g:(U)};2; is quasi-martingale and
converges almost surely. Accordingly, under a simple assumption that the directional derivative
of f; exists in any direction at any U, {g:(U:)}72, and {g:(U;)}72, converge to the same limit.
Indeed, the solution U; derived from minimizing g;(U) converges to a stationary point of fi(U)
when ¢ approaches infinity. Furthermore, g;(U) can be effectively minimized with a convergence

rate of O(1/t) and it is much simpler than minimizing f;(U).

In order to obtain a low-complexity estimator, we exploit that (6.9) can be efficiently solved
using the alternating minimization framework whose iteration step coincides with the tensor

slice’s acquisition in time. In particular, it can be divided into two main stages: (i) estimate

(N) () (N)

u, ’ first, given the old estimation U, and (ii) update the loading factor U, "/, given u, "’ and

the remaining factors. The proposed ACP algorithm is summarized in Algorithm 6. In the

following, we will describe the key steps of our algorithm for minimizing (6.9).

Step 1: Estimation of uEN)

Under the assumption that the loading factors might be static or slowly time-varying, i.e., U; ~

U,;_1, the weight vector ugN) can be derived from the loss function £(.) in (6.8) at time ¢ by

2

()
X (6.10)

u, ' = argmin H’Pt ® (3% —Hi XN uT> ‘
uelR”
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where H; =T Hﬁ:ll xnUy_L)l. Problem (6.10) can be readily converted into the standard form
of

2

g (611)

u;, ' = argmin HPt (yt — Htu)’
ueR”

where P; = diag(vec(P:)), y+ = vec(Y:), and H; has the Khatri-Rao structure, i.e.,
H, = () U (6.12)

For the sake of convenience, let €2, and xq, be the set and vector containing the observed
entries of Y;, while Hq, is the sub-matrix of H; obtained by selecting the rows corresponding to
XQ, -

Generally, problem (6.11) is an overdetermined least-squares (LS) regression and requires
O(|Q|r?) with respect to (w.r.t.) computational complexity to compute the exact LS solu-

tion [322]. Thus, it costs time and effort when dealing with high-dimensional and high-order

tensors.

We propose to solve a regularized least-squares sketch of (6.11) instead, i.e.,

(N) : 2 2
u, ' =argmin |£(yq, — Ho,u)|| + aHuH2, (6.13)
ucR” 2
where « is a small positive parameter for regularization, £(.) is a sketching map that helps
reduce the sample size, and hence speed up the calculations. Here, the introduction of «||ul|3
is for avoiding the singular/ill-posed computation or pathological cases as well as increasing the

least-squares interpretability in practice.® Accordingly, the updated rule for u; is given by
-1
M) = (H;H& +aI) HL xs,, (6.14)

where Hg, and xg, are transformed versions of Hg, and xq, under the sketching £(.), respectively.

In what follows, we indicate that in many cases, the uniform row-sampling can provide a good
sketch for (6.11) in which each row has equal chance of being selected. We start by revisiting

the definition of the leverage scores and coherence of a matrix.

5The value of a can be chosen in the range [10737 1] for reasonable performance in practice.
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Definition 4. (Leverage Scores & Coherence [323, Definition 2.1]). Given a matriz A =
[a];...;a) ] € R™" with m > r, its i-th row leverage score is defined as
A . 2 .
Ti(A) 2 a] (ATA)"a, = |UAG,H)|2 i=1,2,...,m. (6.15)

Here, Uy € R™*" is the left singular vector matriz of A. The coherence of A is the largest

leverage score

u(A) = max Ti(A). (6.16)

The leverage score T;(A) evaluates the contribution of a; in constituting A’s row space.
Accordingly, if the value of u(A) is high, A contains at least one “strong” row whose removal
would have a pernicious effect on its row space. When the value of p(A) is small (e.g. p(A) =
r/m < 1), no specific row is more important than others, i.e. information is approximately
uniformized across all rows. In such a case, the matrix A is called incoherent. The following

proposition indicates that the Khatri-Rao structure of H; may increase the incoherence from its

factors.
; N1 .
Proposition 11 (Coherence of Hy). Let ji;—1 = N1 ; ,u(Ut_l). We have
AN LI wuey @ v
n n — =
p(Hy) = u<@Ut_1> < 1] w(U) < it <1 (6.17)
n=1 n=1

Proof. The first inequality (i) is indeed a corollary of Lemma 4 in [324] which shows that u(A;®
As) < u(Aq)p(Az) for any A; and As of suitable sizes.

The second inequality (ii) is obtained by applying the AM-GM inequality to the set of N
positive numbers {u(U?_L)l) }Mﬁl. O

n=1

Accordingly, when dealing with a high-order streaming tensor (N is large) and/or with some
incoherent tensor factors, pu(H;) < ﬂi\:l < fit—1 < 1, i.e., H; has low coherence. In such cases,
uniform row-sampling is effective [325,326]. In the presence of highly coherent factors, a precon-
ditioning (mixing) step is necessary to guarantee the incoherence. For instance, the subsampled
randomized Hadamard transform (SRHT) is a good candidate which can produce a transformed
matrix whose rows have (almost) uniform leverage scores [327]. In this context, we here empha-
size that well-known randomized LS algorithms can help save much computational complexity

(N)
t

while obtaining reasonable estimations of u,” ’, especially for large-scale low-rank tensors.
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6.2. TENSOR TRACKING WITH MISSING DATA

Step 2: Estimation of U,E”)

The loading factor Uﬁn) can be updated by minimizing the objective function g¢(-) w.r.t. U,

as
1 t T2

U = argmin <0 87RO @ (Y0 - U (win) 1| (6.18)
U(n)eRlnxr t —1 F

where XS”) (resp. ES")) is the mode-n unfolding of Y, (resp. P,) and the coefficient matrix

WS”) is given by

N-1
we = (O )o@ (6.9
i=1,i#n

Interestingly, we exploit the fact that minimization (6.18) can boil down to the problem of

subspace tracking in the presence of missing data [41]. Particularly, the solution of (6.18) can

be obtained by minimizing subproblems for each row uﬁlf) of UM m=1,2,....1, as
() Iy T |2
uly, = argmin 5 >~ 677 RO (v) " - Wi i) )| (6.20)

(n

Uy, ) eR" =1

where Xi")n is the m-th row of Xg") and the row-mask matrix B(Tn)n = diag(B(Tn) (m,:)). Thanks
to the parallel scheme of the well-known PETRELS algorithm for subspace tracking 73], we
derive an efficient estimator for minimizing the exponentially weighted LS cost function (6.18).

Particularly, we first define two auxiliary matrices S§") and Vgn) as follows®

s = Bsi + (W) Wi, (6.21)
Vi = (si) N (wi) T (6.22)

The loading factor Ugn) is then updated recursively by
U = Ul + Ay (viv) ' (6.23)
where the matrix AXE") is derived from the mode-n unfolding of the residual error tensor AY;
AY, =P ® (Y — He xn (ul(fN))T). (6.24)

This is not PETRELS, but a modified version. Here, we can utilize the already updated Ugn) for

tracking the remaining factors which can improve the rate of convergence. Also, we can estimate

5To enable the recursive updating rule, the matrix Sé") is initialized by a scaled identity matrix Sén) =61,
with §, > 0.
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6.2. TENSOR TRACKING WITH MISSING DATA

Algorithm 6: Adaptive CP Decomposition (ACP)
INPUT: Incomplete slices {’Pt ® yt}jil, Y, € RivxlaxxIn-1x1 COP rank r, Forgetting factor
B € (0, 1], Parameters: o > 0, § > 0, and m > 0.
INTTIALIZATION: {U{”}" "' is initialized randomly and {S§"}" " = 6I,.
MAIN PROGRAM:

PROCEDURE:
fort=1,2,... do
Yo, =P:® Y,

Step 1: Estimation of uy

S = randsample (||, [mrlogr])

N-—1
H, =7 [ x,U",
n=1

—1
w, = (HiHs, +aI) Hlys,
T T
UM — [U(N) u(N)}

t—1 »Ht

AY; =P ® (yt —Hi XN ufT)

Step 2: Estimation of {Uﬁ")}f:
forn=1,2,...,N—-1do

Xgi) = unfold,(Yq,)
AY'" = unfold,(AX,)

Wi = ((U)*xE)

s = s + (W) Wi

Vi 5w

U = U+ A (vir)!

end
end

OUTPUT: {UE") }N

n=1

all the N factors in a parallel scheme which reduces further the cost when several computational

units are available.

6.2.2.2 Performance Analysis
Memory Storage and Computational Complexity

For the sake of simplifying the analysis, we assume that the fixed dimensions of the streaming

tensor Y; are equal to I and the CP rank is much lower than I, r < I.
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6.2. TENSOR TRACKING WITH MISSING DATA

With respect to memory storage, ACP requires O((N —1)(1 r+r2)) words of memory at each
(n)

time ¢, in particular for N loading factors {U(")}Q{:_l1 and N — 1 matrices S; " of size r x r.

In terms of computational complexity, the estimation of ugN) costs O(|S¢|r?) flops from solving

the randomized LS regression and forming the sketch for Hg,. The complexity for updating the
loading factor Ugn) comes from the computation of the two matrices AX,(fn) and Vgn). In
particular, the first one requires O(|Q|r) flops while the latter costs O(IV=2r2) flops. Note
that, the matrix S,En) is of size r X r, thus the computation of (Sﬁ”))‘l is not expensive and it
is independent of the tensor dimension. In conclusion, the overall computational complexity is
O(|Qu|r + (N — 1)IN=2 4 |8;|)r?) flops and reduces to O(|Q|r + (IN~2 + |S;])r?) flops in a
parallel scheme. Note that when a preconditioning step (e.g. SRHT) is needed to guarantee
the incoherence of Hg,, ACP requires an additional cost of O(|Q|rlogr) flops [328].

Convergence Guarantee

Inspired by our companion work on robust subspace tracking in [25] and the convergence anal-
ysis for 3-order tensors in [106,176], we derive a unified approach to analyze the convergence
behavior of ACP for high-order streaming tensors with missing data. Specifically, we analyze the
convergence of both the sequence of objective values { fi(U;)};2; and the sequence of generated

solutions {U;}7°,. Our main theoretical result is stated in the following lemma.

Lemma 9. Given assumptions (A1)-(A4), B =1, and the true U is fized, the sequence

of solutions {U}2, generated by ACP converges to a minimum point of fi when t — cc.

Proof Sketch. Our proof contains three main stages: (S1) we show that the solutions {Uy, u: }5°,
are uniformly bounded to justify the well-definedness condition. Their variations between two
successive time instances satisfy ||U§1)1 - Utn)H r — O(1/t) a.s. (S2) The sequence of nonneg-
ative surrogate values {g:(U;)}72, is quasi-martingale and convergent almost surely. (S3) The
empirical loss function {f:(U;)};2, and its surrogate {g:(U;)};2, converge to the same limit,
ie., g:(Uy) — fe(U:) a.s. Accordingly, {U;};°, converges to a stationary point of fi(U), i.e.,

Vfi(Uy) 2% 0. Details of the analysis is provided in the Appendix A. O]

6.2.3 Adaptive Tucker Decomposition

The proposed ACP algorithm is not always well-defined due to the fact that for a given CP rank,
the optimal CP-based representation of tensors may be nonexistent [207]. Under the Tucker

format, we now propose a more flexible algorithm called adaptive Tucker decomposition (ATD).

In the same way, we propose to minimize the following surrogate function ¢g;(G,U) of f1(G,U)
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6.2. TENSOR TRACKING WITH MISSING DATA

Algorithm 7: Adaptive Tucker Decomposition (ATD)

INPUT: Observations {’Pt ® Xt}toil, X, € RIvc2xxIn—1x1 Tycker rank

rrp = [r1,72,...,rN], Forgetting factor 8, Parameters: a > 0, § > 0, and m > 0.
INITIALIZATION: {Ué")}ivz_ll and Gy are initialized randomly, {S(()n)}i\:ll =61, .
MAIN PROGRAM:

PROCEDURE:
fort=1,2,... do
Yo, =P:® Y,

Step 1: Estimation of uy

S = randsample(|Q|, [mry logry])
N—1
H: =G H xnUﬁ’_”l

n=1

-1
w, = (Hg Hs, +oI) Hys,
N M»T T
Ul = [y u)]
AY; =P ® (Ve — Hi xy )
Step 2: Estimation of {U{"}N-!
forn=1,2,...,N—1do
n n # n
wi = (U y g
n n n n T
s = gsy + Wit (W)
n n)y—1 n
Vi = (57) Wi
n n n n T
U = U + AP (Vi)

end
Step 3: Estimation of G,

N-2
Zt = U %] ( ® UE’”))

n=2
AG, = (Ugl))#Azgl)Z?
AG; = reshape(AGy,rrp)
G =G 1+ AG,:

end
. (m\N
Ourput: {U;™}  and G,

in (6.5):

t

1
{G, U} = argﬁin (G, U) = S Zﬁt—T

=1

Pes (¥, = o U0y )

2
] . (6.25)
F

to leverage old estimations of the tensor core and the loading factors at each time ¢.
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6.2.3.1 Proposed ATD Algorithm

Thanks to the alternating minimization framework, we can obtain an efficient first-order estima-

tor for optimizing (6.25) in the same manner as ACP. Specifically, we first update the weight
(N)

vector u; ’, given old estimations of G and U, then estimate the loading factors {Ugn)}nzl

(

given utN), G:_1 and the remaining factors, and finally obtain the core tensor G; from the latest
updated factors. The proposed algorithm is summarized in Algorithm 7.

Step 1: Estimation of ugN)

We can derive the weight vector ugN) from the minimizing the last summand of ¢;(G,U) as

follows:

uEN) = argmin H’Pt ® (yt —Hi XN uT> ‘ Z, (6.26)

ueR”™~N

where H; = G Hflvz_ll XnUy_l)l. Similar to (6.10), the expression (6.26) can be readily reformu-

lated into its matrix-vector format as follows:

2

() . (6.27)

u;, ’ = argmin HPt (yt — Htu)’
ueR"™~N

where y; = vec(Y:), H; is the unfolding matrix of the tensor #; and the observation matrix
P; = diag(vec(P;)). The closed-form solution of (6.27) can be directly obtained by applying
the LS method as

—1
u™) = (HtT P.H, —|—a1) H, Py, (6.28)

where o > 0 is a small regularization parameter to avoid pathological cases in practice.

In order to speed up the computation of (6.28), the same randomized sampling technique as

in (7.12) can be applied to obtain an approximated version of uEN).

Step 2: Estimation of U,E”)

Given u; and old estimations of G;_1 and U;_1, we rewrite the minimization (6.25) with respect

to the variable U™ as follows:

t

n o1 _
UE ) = argmin *Zﬁt T

2
)
U™ eRInXrn 13 =1

povs (v —vowe) [ )
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6.2. TENSOR TRACKING WITH MISSING DATA

)

where the coeflicient matrix W(Tn is the mode-n unfolding of the tensor W, which is defined by

N—-1
W, — <gt_1 11 xiui?l) X1 ()T, (6.30)

i=1,i#n

Minimization (6.29) is similar to its counterpart in the proposed ACP algorithm in (6.18). There-
(

fore, we can apply the same subspace-based technique to update Utn). In particular, the updating

rule for Ugn) can be given by

Ul = Ul + Ay (vi)T, (6.31)

where the residual error AXIE”) and the coefficient matrix V,En) are computed as

AY"M =P e (YW - UM wi), (6.32)
n n)\ —1 n
v = (si)Twim), (6.33)

where the matrix S§n) is updated recursively as

s = s + Wi (Wi)T. (6.34)

Step 3: Estimation of G;
For the estimation of G; given the latest updated loading factors, (6.25) is reformulated as

‘ 2

PO (Y -ulaz, )

o (6.35)

¢
1
G; = argmin — Z gt
g t T=1
where the variable G is the mode-1 unfolding of G and the matrix Z. is given by

N-1
Z, =u™ g ( (% UE”)>. (6.36)
n=2

When handling a streaming tensor with a huge number of slices (i.e., ¢ is large) and a large number

of unknown parameters in G (i.e., [[2_, rn is large), applying batch gradient methods for (6.35)

n=1
may be time-consuming despite the effect of the forgetting factor A. Stochastic approximation
is introduced as a good alternative [329].

In particular, we minimize the last summand of (6.35) instead:

2
G, = argmin HEEI) ® (Xgl) — U,El)gmzt) H . (6.37)
[¢] F
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Given the estimation of Uy, the residual error between the newcoming tensor slice and the

recovered one is given by
Ayl —pVe ¥V —ule z,). (6.38)
Accordingly, we can derive the variation of G at time ¢ from
Ay =p{Y ¢ (U}VAGV7)), (6.39)
where Aggl) = le) - le_)l. In particular, AG, is computed as’

ag’ — (u*axylzy. (6.41)

After that, Agﬁ” will be reshaped into a tensor AG; of size r; X r9 X --- X . To sum up,

we obtain the simple rule for updating G; as follows:
G:=6Gi-1+AG:. (6.42)

We note that for overdetermined cases, the rule for updating G; can be sped up by using the

following “vector trick” in [331]:
vec(ABC') = (C ® A)vec(B). (6.43)

In particular, the expression (6.39) can be cast into the standard least-squares format as follows:

N-1

oy: = Py (ut ® ( ® Ugn))>5gt, (6.44)
n=1

where 0x; = vec(AXﬁl)), 0g; = vec(AQﬁl)) and P; = diag(vec(Egl))). Interestingly, (6.44)
is of the Kronecker structure, thus dg; can be efficiently computed by applying randomized
sketching techniques with a much lower complexity, e.g., the uniform sampling or the Kronecker

product regression in [332].

"Since Z; is of the Kronecker structure, we can obtain the pseudoinverse of Z, efficiently by using the following
nice property [330]

(A1RA® @A) =AT @A @ -0 AL (6.40)
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Step 4: Orthogonalization Step (Optional)

In the cases where the orthogonality constraints are imposed on the loading factors, we add an

orthogonalization step of U™ at each time ¢ as follows:

n n n n —1/2
U =u (U)o (6.45)

—1/2 pepresents the inverse square root or simply take the QR decomposition of Us.

where (.)
Accordingly, the update of AG, in (6.41) can be speeded up by replacing the pseudo-inverse

with the transpose operator:

AG, = (U axyVz]. (6.46)

6.2.3.2 Performance Analysis
Memory Storage and Computational Complexity

We assume that the fixed dimensions of the streaming tensor are equal to I and the desired

Tucker rank is rrp = [r,7,...,7].

In terms of memory storage, ATD requires O(r") and O((N — 1)Ir) words of memory for
saving the core tensor G and N — 1 loading factors {U(”) nN;II respectively. In addition, the cost

for saving N — 1 matrices S§n) is O((N — 1)r?) words of memory in total.

In terms of computational complexity, the computation of ATD comes from three main es-
timations: (i) the weight vector uEN), (ii) the loading factors {UMIN=1 and (iii) the core
tensor G. The two former estimations are similar to that of ACP, so they require a cost of
O(|Qu|r + (IN~2 4 |81|)r?) flops in a parallel scheme where |S;| denotes the size of the sampling
set of (6.27). The latter estimation costs O(|Q|r + IV ~2r*N) flops for computing AX and AG.
If using the randomize technique in this stage, the complexity is reduced to O(|Q|r + |Sa|r?Y)
flops where Sy is the set of selected samples from (6.44). Therefore, the overall computational

complexity of ATD is O(|Q¢|r + (IV 72 + |S1[)r? + |Sz|r*Y) in parallel scheme.

Convergence Guarantee

The convergence of ATD can be stated by the following lemma:

Lemma 10. Given assumptions (A1)-(A4), B = 1, the true G and U are fized, the
solutions {Gy, U };2, generated by ATD converges to a stationary point of the empirical

cost function f; when t — oco.

The proof of Lemma 10 can be obtained by applying the same arguments and principles as in
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Slice Y;

Outlier O, Noise N;

Figure 6.2: Temporal slice Y; with missing data and sparse outliers.

the case of ACP, detailed in the Appendix A. In particular, the analysis consists of the following
three main stages: (S1) the surrogate function g¢(G,U) is strongly bi-convex in the sense that G
and U are seen as multivariate variables. Solutions {G;,U;}7°, generated by ATD are bounded
and their variations between two successive time instances satisfy HUETl - U,E”) lF — O(1/t) as.
(S2) The nonnegative sequence {g:(G¢,U)}72; is quasi-martingale and hence convergent almost
surely. Furthermore, ¢:(G:,U;) — fi(Ge,Ur) — 0 a.s. (S3) The empirical cost function f,(G,U)
is continuously differentiable and Lipschitz. The sequence of solutions {G;,U;};°, converges to

a stationary point of fi(G,U), i.e., when ¢t — oo, the gradient V f(G¢,U) — 0 a.s.

6.3 Tensor Tracking with Sparse Outliers

6.3.1 Problem Statement

Here, we consider an incomplete streaming tensor X; € RI1x2xxIN-1xt whose slices are serially
observed with time. At each time ¢, Xy is particularly obtained by concatenating a new incoming
“slice” Y, € RIvx<f2xxIn-1X1 into the previous X;_; along the time dimension, i.e., X; =

X 1 By Y;. Particularly, we suppose to observe the slice Y, satisfying the following model:
Vi=Pi® (L + O+ Ny), (6.47)

where P, is a binary mask tensor, L; is a low-rank tensor, Oy is a sparse tensor containing
outliers, Ay is a Gaussian noise tensor, and all these tensors are of the same size with Y, please

see Fig 6.2 for an illustration.

Specifically, the observation mask P; indicates whether the (1,72, ...,ixy_1)-th entry of L,

is observed or missing, i.e.,

0, if x4, iy, 1S missing,
Divigoin = % pee (6.48)

1, otherwise.
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The low-rank tensor L; is generated according to the following model:

o= [{um@y ], (6.49)

n=1"

where uEN) e R™*! is a weight vector® and {UM™ N1 with U™ e i, € R*" are loading

n=1>
factors. For short, write D :=U; x Uz X --- X Uy and denote D = [(U(l))T, e (U(N))T]—r the
tensor dictionary containing all loading factors. The robust tensor tracking (RTT) problem can

be stated as follows:

Tensor Tracking with Sparse Outliers: At each time ¢, we observe a streaming tensor
slice Y; under the data model (6.47). We aim to estimate D; € D such that it can provide

a good multilinear low-rank approximation for X’; in time.

Now, we define a loss function £(-) that not only promotes sparsity but also preserves convexity.
For a fixed D and a tensor slice X under a binary observation mask P, the loss function w.r.t.
D and {P, Y} is defined as

((D,P,X) = min {(D,P,X,0,u), with (6.50)

i(D.P.¥,00) =[0],+2|Pe (¥y-0-#xyu)| (6.51)

where H = IHnNz_ll %, UM The ¢;-norm is to promote the sparsity on @ and p > 0 is a
regularized parameter.

t

> _4, robust tensor tracking

Now, given a streaming set of incomplete tensor slices {P. ® Y.}

(RTT) can be formulated as the following optimization problem:

1 ¢
D, =argmin [ f;(D)=— Y 74D, P, V-], (6.52)
D Ly _
Tft—Lt-‘rl

where L; is the length of a sliding window and S is a forgetting factor. When L; = ¢,8 = 1,
the minimization of (6.52) boils down to its counterpart in batch setting. When 0 < L; < ¢ or
B < 1, it reduces the impact of past observations, and hence facilitates the tracking ability of

RTT estimators in time-varying conditions.

We make some assumptions to support the proposed algorithm in Section III. First, entries
of tensor slices {Y;}+>1 are Frobenius-norm bounded, i.e., | Y¢||r < My < oo V. This prevents
arbitrarily large values in observations and ill-conditioned computation. Next, the tensor rank r
is supposed to remain unchanged over time. In addition, tensor factors {Ugn)}ﬁzl are bounded

and full column rank, i.e., rank(Uﬁn)) =r < I, and ||U£n)||F < Ky < oo Vn. Besides, the

8In batch setting, the weight vector u, in (6.49) is seen as the t-th row of the last loading factor U™ g RIN®T
of the underlying tensor X;.
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variation between two consecutive time instants is small, Ugn) ~ Ugﬁ)l Vn,t ie. D;_1 ~ Dy.
This assumption permits the estimation of the outliers and the coefficient vector from the previous
estimation with reasonable accuracy. Under these assumptions, our optimization algorithm is
capable of accurately estimating tensor factors, but also successfully tracking their variation

along the time.

6.3.2 Robust Adaptive CP Decomposition

In this section, we first propose the robust adaptive CP (RACP) algorithm for the RTT problem
in the presence of missing data and outliers. Then, we introduce two simple extensions of RACP

in order to deal with smoothness condition and nonnegative constraints.

6.3.2.1 Proposed RACP Algorithm

Solving the minimization of (6.52) exactly is possible but difficult since f¢(-) is nonconvex. We
here adapt it using the majorization-minimization (MM) framework [321], which has been suc-
cessfully applied to several signal processing problems in general [333| and online learning prob-
lems in particular [25,120,121,334|. In essence, we decompose it into two main stages: (i) online

outlier rejection and (ii) tensor factor tracking.

On the arrival of Y; at each time ¢, we first estimate the outlier tensor O, and the coefficient

vector u; based on the old estimation D;_;. Specifically, we solve the following optimization:

{O¢,u;} = argmin E(Dt_l,Pt,yt,O,u). (6.53)
O,u

From the past statistics {D., P-, Y-, Or,u; },>1, the set of loading factors D; = {Ugn) 712[:1 can

be updated by minimizing the following majorizing surrogate f;(-):

t

D) = ¢ > BTID, P, Vs, 05 u,), (6.54)
T:t—Lt+1

that locally approximates f;(-). Note that f;(D) is not only first-order surrogate, but also a
majorant function of f;(D), that is, for all ¢+ and D, we always have f;(D) < f;(D) and the
error function e;(D) = f;(D) — f;(D) is Lipschitz continuous. In fact, f;(D) and f;(D) converge
almost-surely to the same limit, and the solution Dy, which minimizes ft(D), is exactly the one
of fi(D) when t — oo. The results will be later proven in our convergence analysis. In what

follows, we propose two solvers for minimizing (6.53) and (6.54) efficiently.
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Algorithm 8: Robust Adaptive CP Decomposition (RACP)

INPUT: Tensor slices {P: ® Vi },—,, Vi € RIv T2 xIn—1X1 pank . forgetting factor g € (0, 1],
Parameters: penalty p > 0, precision €, €°*! > 0, maximum iteration K, o € [1.5,1.8], § > 0.

INITIALIZATION: {U(()")}T]::ll is initialized randomly and {Sé")}f;l = JL,.
MAIN PROGRAM:

PROCEDURE:
fort=1,2,... do
Stage 1: Online Outlier Rejection
3 ON 1 U(n)
00, zO, u «0
fori=1,2,...,K do
— (HtT,lPth_l)#HtT,lPt (ye — ot - zi_l/p),
r' = aP, (yt — Ht_lui) +(1- oz)oi_1
o' =8y, (r" =2 /p),
Z =71 p(o — 1),
on if stopping criteria are met break

Outlier Removal (Re-update of P, in (6.61) is optional): 5% =P:® (Y —
Stage 2: Estimation of {UE")}L
forn=1,2,...,N do

N
= ( Q Uf_>1> O] (uiN))T [Jacobi]
i=1,i%n
n—1 N
W,E") = <©U§1)) ® ( @ U,@l) ® (uEN))—r [Gauss-Seidel]
i=1 i=nt1

—~ T
Wi = [(wi)T(wir )]
form=1,2...,1, do

15(71) _ Eg,nn)m 0
=t,m T Lip(n)
0 /B =t—L+m

t,m —t,m

SSZ::BS&iml (VV“U B, W
V(n) _ (S(")) (W(”))
(;y(n)Z _ 15<n ((7(@) W(n)( <n)1 m)r>

ugln = u, + (697) " (Vi) |

end
end

tage 3: (Optional) Normalization and Re-estimation of u,

Column-wise Normalization: [U,(‘n)} =[U (n)} o (")} er

102]

end
OuTtpUT: Loading factors {Ui")}i]:l

Oy)

Re-estimation of us: u; = (H:Pth) H Pt(xt — 0¢) where H; = OnNzl UE”)

Stage 1: Online Outlier Rejection

To estimate O and u(N), we recast (6.53) into the following standard matrix-vector form:

t

2

Y

{ot,ugN)} = ar%rllllin lo]l1 + gHPt<yt —0-— Ht_lu)‘

177

(6.55)
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where 0y = vec(O,), y+ = vec(Y}), the observation mask matrix P; = diag(vec(P;)), and Hy 1

is of a Khatri-Rao structure, i.e., H;_1 = @fl\f:—ll Uiﬁ)l.

Since both terms of (6.55) are convex, it can be efficiently solved by several methods with
convergence guarantees. Here, we use an ADMM solver to minimize (6.55) due to its simple

interpretation and moderate convergence rate [114]. At the i-th iteration, we particularly read

o — (HtT_lPthq)#HLPt (Yt _ ol _ Zz’—l/p)’ 6.56

i—1 6.57

I‘i = aPt (yt — Htfllli) + (]. — Oé)O
o' =8y, (' =27 /p),

z' =z + p(o’ — '),

(6.56)
(6.57)
(6.58)
(6.59)

6.59

where S(-) is the soft-thresholding operator of the ¢;-norm defined as Sy () = max(0,z — ) —
max (0, —x — o) and o € [1.5,1.8] is a relaxation parameter. The procedure is stopped when
residuals are small, i.e., |P:(y; — Hi_1u® —0)||2 < €™ and ||o’ —r?||s < €?! where €%, 74! > ()
are predefined accuracy parameters or when the procedure reaches the maximum number of

iterations.

After the sparse outlier Oy is detected, we reduce the effect of @, on the tracking process by

the following outlier removal
Vi=Pi® Vi — Oy). (6.60)
In some cases, we can skip the corrupted entries in Y; by re-updating the mask P; as

0, if x4, 4, is missing or outlier,
Divis.iy = (6.61)
1, otherwise.

Here, the removal step (6.60) still holds under the new binary mask P;. This approach stems
from the following observations. In the context of subspace tracking (ST), rejecting outliers
can facilitate the tracking ability of ST estimators since only “clean” measurements involve the
process [25]. Our next stage for estimating the tensor basis can indeed boil down to the ST
problem with missing data, so the outlier rejection mechanism of (6.61) can improve performance.
Please see Fig. 6.24 for an illustration that the outlier rejection mechanism can help improve the

convergence rate of RACP when the fraction of corrupted entries is not too large.

Stage 2: Estimation of factors {Ugn)}g;l

The optimization (6.54) can be effectively solved by using the block-coordinate descent (BCD)
(n)

technique. The main idea is to minimize alternately the surrogate ft() w.r.t. each factor U,
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while fixing the remaining factors (hereafter denoted as ft(Ugn), .) for short), that is,

Ugn) = argminft(U(”), - (6.62)
U

Minimization (6.62) is equivalent to

t
U =argmin Y0 g7 [P0 e (X - U0 (W) HZ : (6.63)
Ul T=t—Li+1 r

(n)

where iTn and ES”) are the mode-n unfoldings of )AJT and P, and W(Tn) is given by

N-1 )
< ©O) Uii)l) © (M)’ [Jacobil,

wi = ] kA (6.64)
n—1 ) N-1 .
(@UEZ)> ©) ( @ Ug?l) © " [Gauss-Seidel].
i=1 i=n+1

Depending on the implementation, we can use one of the two iterative methods: the Jacobi
scheme supports the parallel and/or distributed processing while the Gauss-Seidel scheme is
useful for a sequential (serial) one. Excepting the closed-form of WS”), both methods share the

same procedure for solving (6.63) which is detailed as follows.

The minimization of (6.63) can be decomposed into sub-problems for each row ugf) of UM,

m=12,...,1,, as

PO ((3)7 - Wi i) T (6.65)

where XE”TL is the m-th row of i(Tn), and the row-mask matrix is given by BS",)H = diag (E&”) (m, )) .

The optimal solution of (6.65) can be derived from setting its derivative to zero

¢ t
-7 n)\ T n ~(n)\ T —T n)\ T n n n)\ T
> AW RHLEN) = S AW P WI ) (660)
T=t—L+1 T=t—L¢+1
Instead of solving (6.66) directly, we propose a more elegant recursive way to obtain ugnn)l as
follows. First, let us denote the left hand side of (6.66) by dg%, and
¢
sin= Y pT(WW) TP win, (6.67)

thth+1
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6.3. TENSOR TRACKING WITH SPARSE OUTLIERS

Accordingly, (6.66) becomes
(6.68)

Interestingly, both d(n) and S( ") can be updated recursively:

= gy, + (W) By @) (6.69)
=8\, + (W) B Wi, (6.70)
where
n n)\ T n) \T7T
Wi = (W) (Wi 6.71)
Vi = B0 7] (6.72)
_ (n) 0
B = |&tm (6.73)
o —pghp"
Therefore, we can rewrite (6.68)
i (u) " = s+ (W) TR, < o >
= 58 () "+ (W) B (54)
n n n (n) ~(n x (1 n
=S, + (W) P tm«yg,;f W@ . 6T
Multiplying both sides by (SE%)_l results in
af) = a4 (83 (Vi) (6.75)
where
63 = By ((30) T = WY (a0 7)), (6.764)
(6.76b)

n n)\—1 /xx7(n)\ T
Vi = (i) (W)
I,,, a simplified version of (6.75) for updating the

Collecting all rows ugnrzb together, m =1,2,...,

whole factor Ugn) can be given by
U = U+ Ay (viY) ! (6.77)

9To enable the recursive rules of (6.75) and (6.77), S(")n and S(n) can be initialized by 6I, where § > 0, for

n=12,...,N.
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where
n n (M Txxr(n
s = Bs{) + (W) Wi, (6.78a)
n n)\—1/xxr(m)\ T
Vi = () (W) (6.7D)
< (n ~(n) < (n n) (vxr(m\ T
AT B (V- U (W) ), (6780
with ?t(n) = h\dn) ?gi)jztm} In this way, we can skip several operations and save a mem-

ory storage of (’)(Zg:_ll(fn — 1)(Iyr + 7?)). Specifically, the cost of computing (6.78a) is
O(r? Hf\;?#n I;). The computation of (6.78b) also requires a cost of O(r? Hf\;?#n I;) be-
cause Sgn) is of size r x r and its inverse computation is not expensive and independent of the
tensor dimension. The error matrix A?t(") in (6.78c) can be derived from Step 1 by reshaping
the residual vector Py(y; —o; — H;—1u;). The most expensive step is the product A{Q(n) (Vgn))—r
which costs Hf\i _11 I; flops while the addition operator in (6.77) requires only rI,, flops. There-
fore, the overall cost of updating Ugn) in a naive way is O(r Hf\;l I;). Note that A\?gn) (Vgn))T
can be divided into two parts Zgn) = A?t(”)VVt(”) and Zgn) (Sgn))_—r. Here, A?t(")ifvﬁ”) can be
referred to as “matricized tensor times Khatri-Rao product” (MTTKRP) [335,336|. Fortunately,
Phan et al. in [336] proposed a clever reorganization of MTTKRP which can accelerate the
computation and reduce the overall cost of (6.77) to O(r? Hivz_llwén ).

Stage 3: Normalization and re-estimation of uEN) (Optional)

In order to avoid numerical problems, we can perform the column-wise normalization on the
updated factors {Ugn) 7];[;11. In addition, given the already estimated factors, the weight vector

u; in Step 1 can be re-updated to achieve a better estimation as follows
N .
M) = (HtTPth)#HtTPtha (6.79)

where H; = @7]:7;11 Ugn). This step is useful for the early stage of tracking and fast time-varying
environments [174,211,213].

6.3.2.2 Extensions of the RACP algorithm

In the following, we present two simple modifications of RACP when smoothness and nonnega-

tivity are imposed on the loading factors.

Smoothness Condition

In many applications, smoothness is a common assumption under which the underlying data or

model is supposed to be smooth [337]. Here, we incorporate a smoothing regularization matrix
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on the loading factors to control the smoothness of the solution as well as to avoid biases and
singular /ill-posed computation. Particularly, this regularization adds a small bias against large

terms into the updating rules.

On the arrival of Y;, the outliers O; and the coefficient vector u; are derived from the following
minimization:
{0 uf™} = argmin [|O]|, + 7| Bul.
Ou ) (6.80)
subject to H’Pt ® (yt — O —H;i 1 XN u) HF =

where Hi1 =T Hg;ll xnUgﬁ)l and v > 0 is a small penalty parameter and B a chosen banded

matrix. More concretely, the vector u; is obtained by minimizing the following problem:
(N) [ 2, p 2
u,”’ = argmin §HBuH2 + §HPt(yt —o—H;ju);|. (6.81)
u
Accordingly, we replace the update rule for u in (6.56) with
i T YuTr) o i
o = (HL,PH, o+ B'B) HLP, (y: — o). (6.82)

Instead of (6.65), the m-th row ugn) of U( ") is derived from

uf’;, = argmin [ O PO ()T~ Wi (i) ) [+ 2 HB(ug,f;))THz], (6.83)

u'(rr7> thth+1

(n)

t.m, 18 the solution of the following equation:

In particular, u

Z ,Bt T )T Tflm(is_ngl < Z ﬁt T )TPS—tLT)rLWS_n)+’;BTB) (ugg)yr

T=t—Li+1 T=t—Ly+1
(6.84)
Therefore, the recursive rule of (6.75) becomes
af = a4 (83 (Vi) (6.85)
where
Vin = (St + gBTB)il(Wgn))T. (6.86)
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Nonnegative Constraint

It is known that nonnegative tensor factorization (NTF) offers interesting properties, e.g., the
resulting expression appears to be purely additive and the loading factors are “sparse" in gen-
eral [338].

One of the simplest ways is to project the estimates (i.e., ugN) and {Ugn) 112/:—11) on their non-
negative orthant at the end of each step of RACP, as introduced by Nguyen et al. in [174]. This
approach offers a low complexity and yields a reasonable performance in some cases. However,
it may not be optimal as well as guarantee the convergence in general. In this task, we aim to

customize the updates of u,gN) and {Ug")}ﬁfz_ll for dealing with the nonnegativity at each time ¢.

In step 1, we particularly replace the exact LS solution (6.56) with the minimizer of the

following nonnegative least-squares (NNLS) problem:
A A 2
u’ = argmin HPt(yt — o' —H;_qu) H subject to [u]; > 0 Vj. (6.87)
u 2

Here, we can apply any provable NNLS algorithm for solving (6.87), the reader is referred to
[339,340] for good surveys on numerical methods for NNLS. In this work, we adopt the widely-
used algorithm of Lawson and Hanson [340| which is implemented as the function 1sqnonneg in

MATLAB.

In step 2, the m-th row of Ugn) can be derived from minimizing the following constrained
version of (6.65):

uf = argmin 30 7[R, (500) T~ W i) T,
u£:> T_tht+1 , 2
subject to [u%‘)]j >0 Vj. (6.88)

To solve (6.88), we apply the projected gradient method (i.e., proximal gradient on indicator
function [118]). More concretely, the iterative procedure for updating ug% is given by!?

[P o
W=\ T ey ST ey | :
ISt Isionlla] ¢

where j denotes the iteration index. We refer to this modification of RACP as NRACP.

10F‘rojected gradient descent has a form of u; = [uj,1 — njvf:t(u‘jfl):l+, where Vft (ugf})) = S§?,Lu£,’}> — d,(tnﬂ)q

In practice, we can set the value of the step-size n; to 1/L where L is the Lipschitz constant of Vft (u,(ff)). In

(n)

this work, it is easy to indicate that £ = HstvaZ'
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6.3.3 Performance Analysis

In this section, we present a theoretical convergence analysis for the proposed RACP method in
Algorithm 1 while assuming D; = D is fixed. Inspired by the recent results of our companion
works on robust subspace tracking [25] and tensor tracking [29], we establish a unified theoretical
approach to analyse the convergence of the objective values {f;(D;)}72, as well as the solutions

{D:}2, generated by RACP.

6.3.3.1 Assumptions

In order to facilitate the convergence analysis, we make the following assumptions:!!

(A1) Low-rank components {Y:}+>1 of the observed tensor slices {Y:}:+>1 are supposed to be
deterministic and bounded. Entries of noise tensors {N ¢ }+>1 are zero-mean, independently
and identically distributed (i.i.d.) with a small finite covariance, and bounded. Entries of

Y. are Frobenius-norm bounded, i.e., ||YV¢||r < M, < oo, for all ¢.

(A2) The dictionary Dy remains unchanged over time (i.e., D; = D). The loading factors are

Frobenius-norm bounded and the tensor rank r is fixed.

(A3) Observation masks {P;}+>1 are independent of {Y;}+>1, and their entries follow a uniform
distribution. The number of observed entries of Y, should be larger than the lower bound
O(rL log(L)), where L = I1I5...Iy. Every row of the mode-n unfolding Xgn) of Y; is
observed in at least r entries, for n = 1,2,..., N. In addition, each observed entry of Y,
is corrupted by outliers independently of others, i.e., the index of outliers is also uniformly

random.

(A4) The surrogate function f;(-) is m-strongly multi-block convex, i.e., its second-order deriva-

tive w.r.t. each factor is positive-definite, V%ft (U(”), ) = mlI > 0 with m > 0.

Among them, assumptions (A1) and (A2) are common for analysing the convergence of online
learning algorithms, such as [25,106,120|. Indeed, (A1) holds in many situations, e.g., real data
are often bounded such as audio, image and video. (A2) is a strong assumption as it requires
the tensor dictionary to be constant with time. It also prevents arbitrarily large values in U™
and ill-conditioned computation. Along with (Al), it is interpreted as the simplest possible
data model in (robust) tensor tracking where tensor slices are supposed to be generated from a
stationary process. Theoretically, stationary processes are often “easier” to model and analyse
than nonstationary ones as their statistical properties remain constant over time. Accordingly,

stationary has become a common assumption underlying many statistical procedures in general

" The four assumptions (A1)-(A4) are used for the purpose of convergence analysis only, the proposed RACP
algorithm can work well in many other scenarios, please see Sec. V for details
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and tracking tools in particular to study their convergence and asymptotic behavior. In this
work, a novel theoretical approach is established to analyse the convergence behavior of RACP
in stationary environments. We leave the convergence analysis of RACP under a nonstationary
model where the tensor dictionary is time-varying to a future work. Assumption (A3) is also
common, under which the index of missing entries is uniformly random. Moreover, with respect
to the imputation of missing values and recovery of low-rank components, the uniform random-
ness allows the sequence of binary masks {P;};>1 to admit stable recovery [319]. The next
two constraints of (A3) are fundamental conditions to prevent the underdetermined imputation
problem [341,342]. The last constraint of (A3) plays a similar role as the first one but accounting
for sparse outliers. Assumption (A4) allows us to derive several nice results in the convergence
analysis. In fact, the Hessian matrix of ft() w.r.t. each factor is already positive semidefinite,
(A4) can be achieved with a good initialization Dy or by simply adding a convex regularization

term into £(-) or f;(-).

6.3.3.2 Main Results

Given the assumptions of (A1)-(A4), our main theoretical result can be stated in the following

theorem:

Theorem 4. Given (A1)-(A4), Li =t and let Dy be the solution generated by Algorithm
1 at each time t. When t — oo,

o fi(Dy) — fi(Dy) 3 0;
[ ] Vft(Dt) a;sf 0.

Accordingly, Dy is almost surely a stationary point of fi(.) when t tends to infinity.

The proof of this theorem follows intermediately Proposition 11 and Lemmas 12 and 13, to

be stated shortly. We detail their proofs in our appendix.

Lemma 11 (Key Properties). Given (A1)-(A4), Ly = t, and denote the error function
e = fi— fi. If {Dy¢, O, ut}7°, is a sequence of variables generated by Algorithm 1, then

(a) Boundedness: {Dy, O, u:}i2, are uniformly bounded;
(b) Forward Monotonicity: f;(Dy_1) > f;(Dy);

(¢) Backward Monotonicity: fi_1(Dy_1) < fi_1(Dy);

(d) Stability of Estimates: |Dy — Dy_1||p = O(1/t);

(e) Stability of Errors: |e;(Dy) — er—1(Dy—1)] = O(1/1).
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Proof Sketch. Part (a) can be derived from applying the same arguments of Proposition 11 in our
companion work [29]. Parts (b) and (c) are trivial due to the proposed BCD scheme. Part (d)
can be obtained by exploiting the Lipschitz continuity and multi-block convexity of the surrogate

function f,. We indicate Part (e) by using Part (d) and the Lipschitz continuity of f and f. [

Lemma 12 (Almost sure convergence). The sequence of {fi(D;)}2, converges almost
surely ast — oo. The sequence of objective values { f(Dy) }i2, converges to the same limit

of its surrogate { fy(D¢)}52,, i.e.,

fi(Dy) = fi(Dy) as. (6.90)
Proof Sketch. We first prove that
ZE[5tE [frs1(Dega) — ft(Dt)’ftH < 00, (6.91)
t=1

where F; = {D,, O, u;}o<r<t records all past estimates of RACP at time ¢ and the indicator

function ¢; is defined as

1 if E[fi1(Deyr) — fu(De)|F] >0,

1>

(6.92)
0 otherwise.

Thanks to the quasi-martingale convergence theorem [343, page 51|, (6.91) implies that { f;(D;)}22,

converges almost surely as t — oo.

We next prove {f;(D;)}2, and {f:(D;)}$2, converge to the same limit by showing

Z H ift (D) _ o, (6.93)

Since Y 72, H% = 00 and |e;(Dy) — e;—1(Dy—1)| = O(1/t), we obtain Y ;2 f:(Dy) — f:(Dy) < o0

or

fe(Dy) = f:(Dy) a.s., (6.94)

thanks to [120, Lemma 3]. O
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Lemma 13 (Local convergence). Whent — oo, D, converges almost surely to a stationary
point of foo(.) = limy—oeo fr(.):

V foo(Dy) = Vs(Dy) = 0 a.s. (6.95)

Proof Sketch. We first indicate that

lim tr [(D¢ — Det1) 'V fer1(Dig1)] =0, (6.96)

t—o00

by showing » 72, )tr (D, — Dt+1)TVﬁ+1(Dt+1)] ‘ < 0.

Next, we prove that the following inequality

tr [(Dy — Dt+1)TVft+1(Dt+1)] < c1]|Dyy1 — Dt||2F
+eotr [(D—Dy) Vi1 (De)], (6.97)

holds for all D € D where ¢; and ¢y are positive constants.

Then, we use proof by contradiction to indicate that
(Vfoo(Doo))T(D - Doo) 2 07 vD € D. (6.98)

Accordingly, D, is a stationary point of fu(.).

In order to prove VJf; (Dt) LV (Dt) as t — oo, we first exploit that f;(D + a;V) <
ft(D +a;V) VD,V € D and a;, and then take its Taylor expansion at ¢t — oo to yield

foo (Doo) + tr [atVTVfOO (Doo)] + o(atV)
< foo(Doo) + tr [ar VTV foo (Do) ] + 0(ar V). (6.99)

As indicated in Lemma 12, foo(Doo) = foo(Doo) and thus
tr [, V'V foo (Dao)] < tr [V TV foo (Do) ]
Since the above inequality must hold for all V € D and at, we obtain
V foo (Do) = V foo (Doo). (6.100)

Together with (6.98), we can conclude that D, is a stationary point of the objective function

fi(.) as t — oo. O
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6.3.3.3 Discussions

Our analysis follows the same framework to derive the convergence of adaptive/incremental algo-
rithms for online matrix/tensor factorization problems as in [25,29,106,120,121,176]. Therefore,
our main theoretical result is somehow similar to their results. However, there are several points

that make our convergence analysis different from theirs.

First, [120] is devoted to the problem of online dictionary learning and sparse coding. The
authors dealt with a LASSO-like cost function and required a preliminary uniqueness condition on
the sparse coding. The condition is important to ensure that the solution generated in the sparse
coding stage is unique, and to derive the Lipschitz property of the cost function. Particularly,
they suggested an elastic-net regularized term for enforcing the condition. Since the problem
formulation of RTT is different, our convergence analysis does not involve such issues. Moreover,

the missing data distinguishes our work from theirs.

The studies in [121] and [25] consider the problem of robust online PCA /subspace tracking
which can handle data corruptions (i.e., outliers and/or missing entries). These studies are
designed for tracking the time-variant subspace — an object different from ours — which leads
to some differences from our analysis. In particular, their main goal is to develop provable
algorithms for minimizing the expected cost function in an online manner, and then indicate
that their algorithm converges to a stationary point or global optimum under certain conditions.
Our optimization, however, minimizes an exponential weighted cost function constructed on the
latest data streams (i.e., tensor slices). Moreover, [121] does not require the solution derived
from the subspace update stage necessarily optimal, but full column rank only at each time ¢
(see [121, Theorem 1|). However, it is a sufficient condition on which we highly leverage in our
analysis. In addition, our object is a set of multiple loading factors, instead of a single subspace

matrix as in [25,121].

The studies most related to ours are those in [29,106,176], which also investigate the tensor
tracking problem. However, they consider only outlier-free streaming tensors. By contrast, we
here provide a more unified convergence analysis that is able to deal with both missing data
and outliers. Also, our results are stronger than those of [106,176], being limited to the case of

third-order streaming tensors with 5 = 1.

6.4 Performance Evaluation

In this section, we provide several experiments on both synthetic and real data to demonstrate
the effectiveness of the proposed algorithms, ACP, ATD, and RACP. We also compare them
with several state-of-the-art algorithms to provide practical evidences of their effectiveness and

efficiency. All experiments are implemented on MATLAB a windows computer with an Intel
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Core i5-8300H and 16GB of RAM.12

6.4.1 Performance of ACP

We assess the performance of ACP w.r.t. the following aspects: (i) impact of algorithm pa-
rameters on its tracking ability; (i) performance of ACP in non-stationary and time-varying
environments; (iii) effectiveness and efficiency of ACP as compared with other adaptive CP

algorithms.

6.4.1.1 Experiment Setup

According to the setup of OLSTEC [176], a time-varying model for streaming tensors is con-

structed as follows.

At t = 0, the loading factor Ugn) is generated at random whose entries are i.i.d. drawn from

the Gaussian distribution A(0,1). At time ¢ > 0, Ugn) € R»*" is varied under the model
U =uqQ,, (6.101)

where Q; € R™*" is a rotation matrix to control the variation of U™ between instances ¢ and
t — 1, which is defined by

I,1| 0 0 0
0 cos(oy) —sin(a 0
Q: = () () , (6.102)
0 |sin(ay) cos(ay) 0
0 0 0 |L_p

where p; = mod(t +r — 2,7 — 1) + 1 and oy is the rotation angle. Specifically, the higher value

of ay is, the faster the loading factor U™ changes.

The t-th slice Y; with missing entries is then derived from the following model:
V=P ® ([{{Ugn)}g:—f’ ugN)]] + O—Nt>, (6.103)

where P, is a binary mask tensor whose entries are generated randomly using the Bernoulli

model with the probability p, i.e., p represents the missing density in the measurement; N is a

Gaussian noise tensor (with zero-mean, unit power entries) of the same size of Y; and the factor
()

o is to control the noise level; and the weight vector u; ’ is a Gaussian random vector living on

R”™ space.

20ur codes are available at: https://github.com/thanhtbt/tensor_tracking/.
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Figure 6.3: Effect of the forgetting factor 8 on the performance of ACP versus the rotation angle
Q.

In order to evaluate estimation accuracy, we measure the relative error (RE) metric defined
by

o ||Atr - Aes”F

RE(Aur, Acs) = T (6.104)

where Ay (resp. Aes) refers to the ground truth (resp. estimation)®3.

6.4.1.2 Effect of Forgetting Factor g

The choice of 5 plays a central role in how effective and efficient ACP can be in nonstationary
environments. In order to investigate the effect of the forgetting factor, we vary the value of
B from 0 to 1 and measure estimation accuracy of ACP in different tests with regard to the
rotational angle «. Fig. 6.3 illustrates the experimental results of applying ACP to a synthetic
4-order tensor whose size is 20 x 20 x 20 x 500 and its rank » = 5. The noise level o is set at
1073, while the sketching parameter m is fixed at 10. It is clear that the optimal value of 3
depends not only on the rotation angle a, but also on the missing density p. When § increases
from 0 to 1, the performance of ACP goes up first and then drops. As can be seen in Fig. 6.3
that the value of 5 should be around 0.5 for reasonable performance. Thus, we fix 5 = 0.5 in the
next experiments for. It is worth noting that in stationary environments, we can set the value

of 8 =1 to achieve the best performance, please see Fig. 6.4 for an illustration.

3Due to the permutation and scaling indeterminacy of the CP decomposition, we can find U., which is matched
with Uy, from Uy, as follows: U,s = UtPTDfl, where the permutation matrix P € R"*" and the diagonal matrix
D € R™" are derived from minimizing the optimization argminp p ||Ut — UtrDP”i.
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Figure 6.4: Performance of ACP in stationary environments: Y; € R20%20x20x1000 "the trye rank
r = 5, an abrupt change at ¢t = 500.

6.4.1.3 Asymptotic Convergence Behavior

We next illustrate the convergence behavior of ACP in terms of the variation ||U;y; — Uy||r and
the objective value fi(U;). We use the same 4-order tensor above but with 1000 tensor slices.
Two noise levels are considered (including ¢ = 0 and ¢ = 1073), while the missing density p is
chosen among {10%, 30%,50%}. The experiment results are shown as in Fig. 6.5. We can see

that convergence results agree with those stated in the proof sketch of Lemma 9.

6.4.1.4 Noisy and Dynamic Environments

First, the robustness of ACP is investigated against the noise variance. We test ACP’s tracking
ability on the same static 4-order tensor above with different values of the noise level o. Fig. 6.6
shows that the value of o does not affect the convergence rate of ACP, but only its estimation
error. Specifically, when we increase the noise level o, the relative error (RE) between the ground

truth and estimation goes up gradually, but towards an error bound.

Next, we use the same tensor, but the number of slices is double for illustrating the robustness
of ACP against time-varying environments. In particular, the proposed algorithm is evaluated in
two scenarios, including a slow time-varying case (i.e., @ = m/360) and a fast time-varying case
(i.e., a« = 7/45). Also, at time ¢ = 600, we make an abrupt change in these models. In addition,

the missing density p is chosen among {10%, 30%, 50%}.

Experimental results indicate that ACP is capable of tracking streaming tensors in dynamic
environments, as shown in Fig. 6.7. In both scenarios, the relative error (RE) between the ground
truth and estimation always converges towards a steady state error bound. The missing density p
has only an influence on the convergence rate of ACP. Specifically, the lower the missing density

p is, the faster ACP converges.
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Figure 6.5: Convergence behavior of ACP in terms of the objective values f;(U;) and ||Usq —
Uyl F.

6.4.1.5 Evaluation of Effectiveness and Efficiency

To demonstrate the effectiveness and efficiency of our algorithm, we compare performance of ACP
in terms of estimation accuracy and running time with the state-of-the-art adaptive CP decom-
positions for incomplete tensors, including OLSTEC [176], CP-PETRELS [215|, TeCPSGD [106].
For a fair comparison, parameters of these algorithms are fine-tuned carefully to achieve good
performance. Particularly, the forgetting factor A is set at 0.7, 0.001, and 0.98, respectively, for
OLSTEC, TeCPSGD and CP-PETRELS. Moreover, OLSTEC and TeCPSGD are also dependent

on a regularization parameter p which is set at 1072 and 10~! respectively.

Since these algorithms are capable of tracking 3-order tensors only, we use synthetic streaming
tensors of size N x N x 1000 in this task. The noise level is fixed at ¢ = 1073, Performance of
these algorithms is evaluated on a small tensor 20 x 20 x 1000 and a big tensor 200 x 200 x 1000.
Results are shown in Figs. 6.8 and 6.9. We can see that OLSTEC and ACP provide comparative
estimation accuracy. In terms of running time, ACP is several times faster than OLSTEC,
especially in big tensor tests. TeCPSGD is a fast adaptive algorithm, but yields lower estimation
accuracy as compared to ACP and OLSTEC, while CP-PETRELS gives the worst accuracy as
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Figure 6.6: Effect of the noise level o on the performance of ACP.
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Figure 6.7: Time-varying scenarios: ACP’s tracking ability versus the missing density p and the
rotation angle a: The noise level ¢ = 1073 and an abrupt change at t = 600.

well as running time.

6.4.2 Performance of ATD

The following experiments will evaluate the ability of ATD for the problem of tensor tracking.
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Figure 6.8: Tracking ability of four adaptive CP algorithms in a time-varying scenario with 50%
missing observations: The tensor of size 20 x 20 x 1000, the noise level o = 1073, the rotation
angle a = m/360 and an abrupt change at ¢t = 600.
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Figure 6.9: Performance of four adaptive CP algorithms on synthetic 3-order tensors: The noise
level 0 = 1072 and the rotation angle o = 7/360.

6.4.2.1 Experimental Setup

Follow the setup above, the incomplete slice Y; at time t is generated randomly using the

following model:
YVi=P:® <|:[gt,{U§n) i\;—ll’ugN)]] _|_0'Nt>, (6105)

where the loading factor Ugn) and the core tensor G, are updated by the following rules

Ul(fn) = Uy_l’)l + ENEn) and Gy = Gi—1 + Vs, (6.106)
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Figure 6.10: Performance of ATD versus the missing density p and the noise level g: On the
4-order tensor of size 20 x 20 x 20 x 500 and its Tucker rank rtp = [3, 3,3, 3].

where U((]n),Ngn) € RInX™ and Yy € RMX™2XXTN are the Gaussian noises whose entries are

distributed i.i.d from A/(0,1) and the time-varying factor ¢ is to control their variation.
Besides the relative error (RE) metric, we also use the subspace estimation performance

(SEP) [62] metric to evaluate the subspace estimation accuracy, which is defined by

tr (Ufs (I - UtTUﬁ)Ues)
tr (U% (U, U Us,)

SEP(Uy, Ugs) = , (6.107)
where Uy, (resp. Us) refers to the true loading factor (resp. estimated factor). The lower value

of SEP is, the better accuracy the algorithm achieves.

6.4.2.2 Robustness of ATD

In order to demonstrate the robustness of ATD against data corruption, we change the number
of missing entries in the measurement by varying the value of p and evaluate its performance on
different noise levels. We also compare ATD with three well-known batch Tucker algorithms for
tensor completion, including iHOOI [344|, ALSaS [344|, and WTucker [345]. These algorithms
are iterative-based, so their procedure will be stopped when the accuracy tolerance tol or the
maximum iteration ITER,x has been met. For convergence guarantee, we fix the value of tol
at 10~4, while the value of ITER,ay is set at 500, 500, and 100, respectively, for iIHOOI, ALSaS
and WTucker. For ATD, the forgetting factor A is fixed at 0.7 in the following experiments.

In this task, we use a static tensor of size 20 x 20 x 20 x 500 (i.e., the time-varying factor ¢ = 0)
whose core is generated at random from a Gaussian distribution of zero-mean and unit variance.

Under the Tucker model with rrp = [3, 3,3, 3], performance of ATD on the tensor is illustrated
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Table 6.1: Performance of Tucker algorithms on a static 4-order tensor of size 20 x 20 x 20 x 500
and the noise level o = 1072,

Rank [3,3,3,3] [10, 10, 10, 10]

Missing p=50% p="T170% p=50% p=T10%

Metric RE(X) | SEP(U) | Time(s) | RE(X) | SEP(U) | Time(s) | RE(X) | SEP(U) | Time(s) | RE(X) | SEP(U) | Time(s)

iHOOI 3.0e-4 4.2e-8 88.1 8.1e-4 4.7e-7 345.3 9.1e-2 5.1e-4 192.9 3.5e-1 1.3e-2 571.5

ALSaS 3.1e-4 4.3e-8 109.9 7.8e-4 4.9e-7 539.5 1.0e-4 2.8¢-9 719.1 8.3e-4 3.4e-8 3754.6

WTucker | 2.1e-4 2.4e-8 209.1 3.5e-4 1.3e-7 597.4 3.7e-5 | 2.8e-10 241.2 5.0e-5 | 3.3e-10 631.7

ATD 6.4e-5 | 7.6e-9 2.5 1.8e-4 | 1.4e-8 5.7 1.7e-5 | 6.8e-11 21.7 3.2e-5 | 2.5e-10 58.2

in Fig. 6.10. Results show that ATD can successfully track the multilinear low-rank model in
all test cases. Similar to ACP, the missing density p has influence only on the convergence rate
of ATD, i.e., the higher the value of p is, the slower ATD converges. Performance comparison
among Tucker algorithms is reported statistically in Tab. 6.1 and shown in Fig. 6.11. Results
indicate that ATD is the fastest algorithm, much faster than the state-of-the-art algorithms.
For instance, when dealing with the case of 50% missing observations and rtp = [3, 3, 3, 3], the
running time of ATD is only 2.51 seconds and 35 times faster than the second-fastest algorithm,
iHOOI. Moreover, ATD always provides good estimation accuracy in terms of both SEP metric

and RE metric as compared to that of the batch algorithms.

6.4.2.3 Tracking Ability in Dynamic Environments

We continue to investigate the tracking ability of ATD in nonstationary and time-varying en-
vironments by changing the time-varying factor € in the range [107*,107!]. We use the same
tensor dimensions as in the previous task. Also, we create a significant subspace change at time
t = 300 to see how fast ATD can converge. Fig. 6.12 shows the convergence behavior of ATD
versus the time-varying factor €. We can see that the convergence rate of ATD is not affected

by € but only its estimation error.

6.4.2.4 Orthogonality Constraint

In practice, Tucker decomposition is often considered with orthogonality constraints on the load-
ing factors. The unconstrained ATD can be recast into an orthogonal ATD while retaining the

equivalent approximation error. To demonstrate this point, we set up a time-varying scenario
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Figure 6.11: Performance of Tucker algorithms in the case where 50% entries are observed and
Tucker rank rtp = [3,3, 3, 3], and the noise level o = 1072,

and compare the performance of ATD and ATD with the orthogonalization step, called ATD-O.
Fig. 6.12 indicates that the convergence rate of ATD-O is slightly better than that of the uncon-
strained ATD, but both yield the same error floor. Due to space limitation, we here omit results
with ATD-O and presents only those of ATD.

6.4.2.5 Real Data

To demonstrate the effectiveness of our algorithms on real datasets, we consider two related

applications: video completion and multichannel EEG analysis.

Video Completion. In this task, four real video surveillance sequences are used, including
Highway, Hall, Lobby and Park!“. Specifically, Highway contains 1700 frames of size 320 x 240
pixels. Hall has 3584 frames of size 174 x 144 pixels. Lobby consists of 1546 frames of size
128 x 160 pixels. Park includes 600 frames of size 288 x 352 pixels.

We first investigate the effect of the forgetting factor A on the reconstruction performance of
the two proposed algorithms for video completion. Particularly, the value of A and the missing
ratio p are varied from 0.1 to 0.9. The CP rank and Tucker rank are set at 10 and [10, 10, 10],
respectively. Experimental results from Fig. 6.14 indicate that the performance of ACP and
ATD is not much affected by the forgetting factor. For this task, we therefore keep the value of

A at 0.5 as in previous experiments on synthetic data.

1Video sequences: http://jacarini.dinf.usherbrooke.ca,/
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Figure 6.12: Effect of the time-varying factor € on the performance of ATD: Tucker rank [3, 3, 3, 3],
90% entries are observed, the noise level is ¢ = 1072 and an abrupt change at t = 300.

We next compare our algorithms with OLSTEC [176], TeCPSGD [106] and CP-PETRELS
[215]. We set the value of A at 0.7, 0.001 and 0.999, respectively, for OLSTEC, TeCPSGD
and CP-PETRELS. Besides, OLSTEC and TeCPSGD are also depended on the regularization
parameter p which value is fixed at 0.1. Performance of these algorithms is shown statistically in
Tab. 7.1 and graphically in Fig. 6.15. We can see that ATD outperforms adaptive CP algorithms
in almost all tests. ACP also provides reasonable estimation accuracy on these data as compared
to others. CP-PETRELS seems to fail to track video background and thus recovers missing data
unsuccessfully. With respect to the running time, experimental results indicate that ACP is the

fastest adaptive tensor decompositions.

Multichannel EEG Analysis. We follow the experimental framework in [292, 346] to
illustrate the use of ACP for analyzing multichannel EEG signals. In this task, we use a public
EEG dataset collected on 14 subjects during the stimulation of hands'®. The EEG signals are
recorded using a system of 64 channels (electrodes) and we have 28 measurements per subject

in total.

We construct three-order EEG tensor of measurement x channel x time-frequency by taking
continuous wavelet transform to each EEG channel. Note that, the resulting time-frequency
representations are reshaped into vectors of length 4392 and hence being streamed. In a nutshell,
we have the EEG tensor whose size is 28 X 64 x4392 and its rank is set at 3 as provided in [292,346].
At each time, data of 20 (and 40) channels are supposed to be discarded randomly for our missing

observation purpose.

EEG data: http://www.erpwavelab.org/index.htm
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Figure 6.13: Comparison of ATD and ATD-O (orthogonality constraint) in a dynamic scenario:
the time-varying factor ¢ = 1072, the noise level & = 1073, 70% observations are observed and
an abrupt change at ¢t = 300.

We evaluate the performance of ACP in a comparison with the adaptive NL-PETRELS al-
gorithm in [292] and the batch CP-WOPT algorithm in [346]. To have a good initialization for
NL-PETRELS, the 1500 first slices are used to construct the training tensor. Also, the forgetting
factor A is set at 0.999. By contrast, ACP is not as sensitive to initialization conditions, so it is
initialized at random. We consider results obtained by using the batch algorithm as our ground

truth.

Under the CP model with rcp = 3, taking the tensor decomposition to the EEG tensor results
in three loading factors A € R?*3, B € R%*3 and C € R*392%3 corresponding to, respectively,
the measurement, channel and time-frequency modes. Fig. 6.16 illustrates the estimation of
A, B and C using CP-WOPT, NL-PETRELS and ACP. In particular, we use bar plots and 3D
head plots to represent the column vectors of A and B, while the time-frequency representations
corresponding to the columns of C are plotted as matrices. We can see from Fig. 6.16 that
both adaptive algorithms are capable of tracking three EEG loading factors. Indeed, our ACP
provides a slightly better estimation as compared to that of CP-WOPT. However, in the presence
of highly incomplete observations (e.g. 40 channels are missing), NL-PETRELS fails to estimate
the EEG loading factors while our ACP algorithms still works well, as shown in Fig 6.17.

6.4.3 Performance of RACP

We here provide several experiments on both synthetic and real data to demonstrate the effec-
tiveness of RACP and its variant. In particular, the performance of our method is evaluated

in comparison with the-state-of-the-art algorithms with respect to the following aspects: (i) im-
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Figure 6.14: Effect of the forgetting factor § on the video completion accuracy of ACP and ATC
on Lobby data.

pact of outliers, (ii) impact of missing data, and (iii) tracking ability in noisy and time-varying
environments.

6.4.3.1 Experiment Setup

At t = 0, the loading factor U(()n) € R"*" n =1,2,..., N is randomly initialized whose entries
are 1.i.d. from a normal distribution A(0,1). When ¢t > 1, Ugn) is varied according to the

following model:

U™ = Ul 4+ N, (6.108)
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Figure 6.15: Performance of adaptive tensor completion algorithms on the video sequences.
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Figure 6.16: Waveform-preserving character of ACP on the EEG tensor: 20 channels are missing.

n) . . . . . . . . oy
where NE ) is a Gaussian noise matrix (with zero-mean and unit-variance), and € is a positive

time-varying factor used to control the variation of U™ between ¢ and ¢ — 1.

The t-th slice Y; is then generated under the data model
V=P @ ([[{U(”)}n LM+ o +Nt> (6.109)

where P; is a binary observation mask according to a Bernoulli distribution with probability

of observing data 1 — wpiss, N is a Gaussian noise tensor with i.i.d. entries N'(0,02), O, is
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Methods TeCPSGD OLSTEC CP-PETRELS ACP ATD
3 N 7 NS 9] NS ] NS 9] N 9] N o]
5| @ g = £ e £ e = =) = ) E
A = = = = & ~ & ~ & ~ &
S
= | 10% | 0.2057 | 36.582 | 0.1693 | 132.02 | 0.9250 | 451.41 | 0.2178 | 14.437 | 0.1484 | 36.587
‘E’ X
£ | T | 50% | 0.2111 | 35.252 | 0.1709 | 95.188 | 0.9346 | 273.98 | 0.2251 | 13.295 | 0.1526 | 33.269
= | x
§ 90% | 0.2256 | 27.103 | 0.1849 | 54.246 | 0.9224 | 107.79 | 0.2725 | 13.017 | 0.1964 | 26.996
3
2 | 10% | 0.1456 | 15.060 | 0.1247 | 83.789 | 0.9819 | 339.10 | 0.1457 | 11.852 | 0.1006 | 36.293
— X
grs 3 | 50% | 0.1450 | 14.916 | 0.1260 | 74.869 | 0.9269 | 188.15 | 0.1602 | 11.808 | 0.1045 | 31.576
X
= | 90% | 0.1614 | 12.532 | 0.1497 | 47.235 | 0.9281 | 71.576 | 0.2341 | 11.897 | 0.1426 | 25.047
S
o | 10% | 0.1324 | 5.672 | 0.1213 | 29.490 | 0.9161 | 107.44 | 0.1258 | 4.613 | 0.0868 | 14.590
% X
S |2 ] 50% | 0.1452 | 4.920 | 0.1228 | 21.940 | 0.8596 | 61.051 | 0.1881 | 4.711 | 0.0884 | 10.630
—
X
&1 90% | 0.1733 | 4.022 | 0.1530 | 14.701 | 0.9736 | 22.150 | 0.2602 | 3.811 | 0.1333 | 9.245

10% | 0.1057 | 10.303 | 0.0905 | 49.213 | 0.9945 | 186.28 | 0.1270 | 6.458 | 0.0686 | 16.157

50% | 0.1246 | 9.940 | 0.0916 | 33.660 | 0.9892 | 127.30 | 0.1441 | 5.825 | 0.0759 | 14.052

Park
288 x 352 x 600

90% | 0.1369 | 8.497 | 0.1006 | 22.031 | 0.9627 | 50.435 | 0.2001 | 5.179 | 0.1122 | 10.966

Table 6.2: Performance of adaptive tensor decompositions on video data.

a sparse outlier tensor whose entries are drawn uniformly from the range [0, Aoutiier] and the
indices of outliers also follow a Bernoulli distribution with probability wout1ier, and u; € R7*!

is a standard normal random vector.

6.4.3.2 Robustness of RACP

We first investigate the robustness of RACP against gross data corruptions. Specifically, we
change the density of outliers and missing data, and then measure the relative error between the

ground truth and RACP’s estimation.

In this task, we use a synthetic 4*'-order streaming tensor of size 20 x 20 x 20 x 1000 and the
CP rank is set at r = 2 and r = 5. The noise level o,, and the time-varying factor ¢ are fixed
at 1072 and 1072, respectively. We consider the case where the underlying data is corrupted by

strong outliers with Agutiier = 10. The fraction of outliers (wout1ier) and missing data (wpiss)
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Figure 6.17: Waveform-preserving character of ACP on the EEG tensor: 40 channels are missing.
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Figure 6.18: Effect of data corruptions (outliers and missing values) on performance of RACP.
Black color denotes failure, white color denotes perfect estimation, and gray color is in between.

are varied in the range [5%,95%]. Throughout our experiments, the forgetting factor A is fixed

at 0.5 while the window length is L; = t.

Phase transitions w.r.t. the pair of {woutiier,wniss} are shown in Fig. 6.18. The results
indicate that there is a large region in which our estimation was successful. Particularly, RACP
worked well when the number of “clean" data is large enough. In the presence of huge data
corruptions (e.g., Woutlier > 70% and/or wyiss > 70%), the proposed algorithm failed to track

the underlying tensor model.

Next, we evaluate the tracking ability of RACP in time-varying environments. The two
synthetic rank-5 tensors of size 20 x 20 x 20 x 1000 and 20 x 20 x 20 x 20 x 1000 are used in
this task. The fraction of missing entries and sparse outliers are both set to 5%. The outlier

intensity Agutiier and the noise factor o, are fixed at 10 and 10™4, respectively. The value of

203



6.4. PERFORMANCE EVALUATION

=102 =102
€2 €2
aa aa
1()‘4 PO oy i e 10‘4 — MV g M M
0 250 500 750 1000 0 250 500 750 1000
Time Index - ¢ Time Index - ¢
(a) 4"-order: 20 x 20 x 20 x 1000 (b) 5™-order: 20 x 20 x 20 x 20 x 1000

Figure 6.19: Performance of RACP in time-varying environments.

the time-varying factor € is varied from [107%,1071]. An abrupt change is created at t = 600 to
assess how fast RACP converges. We can see from Fig. 7.12 that RACP’s convergence rate is

not much affected by the value of € but its estimation accuracy.

To demonstrate the effectiveness of the proposed algorithm, we compare the performance of
RACP with the state-of-the-art adaptive CP decompositions, including TeCPSGD [106], OL-
STEC [176], and ACP [29]. To have a fair comparison, algorithm parameters are set by default
as suggested by their authors. These algorithms are dependent on a forgetting factor; we set
its value at 0.7, 0.001, and 0.5 for OLSTEC, TeCPSGD, and ACP, respectively. The penalty
parameter is set at 1072 and 10~! for OLSTEC and TeCPSGD, respectively.

Since OLSTEC and TeCPSGD are only capable of tracking third-order streaming tensors, we
here use a synthetic streaming tensor of size 20 x 20 x 1000 and its rank is fixed at 5. The noise
level and time-varying factor are both kept at 10~2. Performance comparison results are shown

in Figs. 6.20 and 6.21.

Fig. 6.20 illustrates the impact of the outlier intensity on the performance of the four adaptive
CP algorithms in the presence of 10% missing data and 20% outliers. When the outlier intensity is
small, all algorithms could track the underlying tensor model over time, as shown in Fig. 6.20(a).
Indeed, TeCPSGD yielded a worse estimation than the three remaining adaptive CP algorithms.
In the presence of strong outliers, the state-of-the-art adaptive CP algorithms failed to update
the tensor basis and recover the corrupted tensor slice. By contrast, our RACP algorithm still
worked well, as shown in Fig. 6.20(b). Fig. 6.21 illustrates the impact of the outlier density on
the performance of RACP against the three adaptive CP algorithms when the missing density
wniss = 10% and outlier intensity Aout1ier = 10. We can see that RACP outperformed OLSTEC,
TeCPSGD, and ACP in all testing cases. Similar to the case study of strong outliers, the state-
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Figure 6.20: Impact of outlier intensity (Aoutiier) on performance of adaptive CP algorithms;
Wniss = 10%; Woutlier =— 20%7 0 = 10727 €= 1072'

of-the-art adaptive algorithms were unable to track the streaming tensors when the number of

outliers is large.

We next investigate the performance of RACP when the loading factors are not normal in
comparison with other adaptive CP algorithms. In particular, the initial factors {U(()n)}fyzl are
sampled from a uniform distribution on the (0,1) interval instead of Gaussian one. The time-
varying model (6.108) is replaced with UE") = Ug@l + eNgn) where Ng") is also an i.i.d. uniform
random matrix from 0 to 1. The parameter specifications are kept as in the previous experiment.
Results are illustrated in Fig. 6.22. We can see that the proposed RACP algorithm still tracks
successfully the loading factors along the time while the state-of-the-art CP algorithms failed.

Experimental results in Figs. 6.20, 6.21, and 6.22 suggest that the outlier rejection step (e.g.
Step 1 in RACP) using the ADMM solver plays an important role in the tracking process when
observations are corrupted by sparse outliers. Therefore, we next evaluate the effectiveness of
the proposed outlier rejection by applying the ADMM solver to other trackers: TeCPSGD and
OLSTEC. We here reuse the experiment setup above and create an abrupt change at ¢ = 600. We
can see from Fig. 6.23 that the combination of the ADMM solver and OLSTEC resulted in the
best convergence rate and estimation accuracy. This is probably due to the effectiveness of the
second-order estimator in slowly time-varying environments. Our RACP provided a reasonable
performance compared to that of OLSTEC, while TeCPSGD tracker did not work well. It

should note that OLSTEC is designed for only 3"d-order streaming tensors and its computational
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Figure 6.21: Impact of outlier density (wout1ier) on performance of adaptive CP algorithms:
Wniss = 10%; g = 10727 £ = 10727 Aoutlier =10.

complexity is high indeed. Our tracker is much faster and capable of dealing with higher-order
streaming tensors. We refer the readers to our companion work in [29] for further comparisons
of ACP against TeSGD and OLSTEC.

Finally, we conduct a performance comparison between the original RACP and its variant in
which the step of re-updating P, defined as in (6.61) is used. We reuse the two rank-5 tensors
of size 20 x 20 x 20 x 1000 and 20 x 20 x 20 x 20 x 1000. The fraction of missing entries is
fixed at 10%. We set the outlier density and intensity to 10% and 10, respectively. The noise
and time-varying factors are kept at 1072 and an abrupt change at ¢ = 600 is also created as
in previous experiments. The results are illustrated in Fig. 6.24. As can be seen the outlier

rejection mechanism can help improve the convergence rate of RACP.

6.4.3.3 Nonnegative RACP

We reuse the experiment setup in Section 6.4.3.1, but the time variation of U™ > 0 is modified

as
U™ = abs (UM, + N, (6.110)

where abs(-) denotes the absolute value, Ngn) is a Gaussian noise matrix with i.i.d. entries, and

€ is to control the variation.
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Figure 6.22: Non-Gaussian loading factors.

We first investigate the performance of NRACP against time-varying environments. A syn-
thetic rank-5 nonnegative tensor of size 50 x 50 x 50 x 1000 is used in this task. We consider
the case where 10% of the measurements are corrupted by outliers with Agus1ier = 10 and the
noise level is o,, = 1073, An abrupt change at ¢t = 600 is created to evaluate how fast NRACP
converges. The results are shown in Fig. 6.25. We can see that the relative error between the
estimation and ground truth converged to an error floor. Furthermore, the missing density wpiss
impacted only the convergence rate of NRACP. Specifically, the lower the missing density wyiss
was, the faster NRACP converged.

Next, we study the robustness of NRACP against the noise variance in comparison with
NSOAP [174] and NsSTEF [347]. Since both two algorithms are only feasible for third-order
tensors without corruptions (outliers and missing values), we use a synthetic outlier-free tensor
of size 50 x 50 x 1000 and rank 5 for this task. The time-varying factor € is set at 10~3. Perfor-
mance comparison results are illustrated in Fig. 6.26. At a low SNR, NSOAP provided a better
estimation accuracy than NRACP and NsTEF. However, the proposed NRACP outperformed
NSOAP and NSTEF at the high SNR, see Fig. 6.26(b). In the presence of abrupt changes, the
convergence rate of NRACP was fast while NSOAP and NsTEF failed to track the change.

6.4.3.4 Real Datasets

To demonstrate the use of RACP with real-world datasets, we consider the following tasks: (i)
tracking the online low-rank approximation of real-world data streams, (ii) multichannel EEG
analysis, and (iii) video background modeling and foreground detection. Please see Tab. 6.3 for

a summary of real datasets used in this paper.
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Figure 6.23: Outlier rejection with different trackers.
Table 6.3: Real datasets under the study.
Dataset Data size Tasks
Intel Berkeley Lab 54 x 4 x 1152 Tracking the online
Internet Traffic 12 x 12 x 48384 low-rank approximation
Taxi Trip Record | 265 x 265 x 3672 | & online data completion
Hall 176 x 144 x 3584
. Background modeling
Video Lobby 128 x 160 x 1546 ,
& foreground detection
Highway 240 x 320 x 1700
EEG ERPWAVELAB | 28 x 64 x 4392 | Multichannel EEG analysis
Epileptic data | 19 x 500 x 6929 | & anomaly EEG detection

Task 1: Tracking the online low-rank approximation and online data completion

Datasets: In this task, we use three real datasets: Intel Berkeley Lab'6, Internet Traffic!?,
and Taxi Trip Record!®. The first dataset is a collection of timestamped topology information
gathered from 54 positions (sensors) in the Intel Berkeley Research Lab. Specifically, these
sensors collected: temperature (in degree Celsius), humidity (ranging from 0% to 100%), light
(in Lux), and voltage (in volt, ranging from 2 to 3). Accordingly, we represent the sensor data by
a three-order tensor of size 54 x 4 x 1152 (i.e., sensor x measurement X time). The second dataset

is the link traffic data which was collected from the Internet2 backbone network Abilene. The

1%Intel Berkeley Lab: http://db.csail.mit.edu/labdata/labdata.html
"Internet Traffic: https://roughan.info/project/traffic_matrix/
'8 Taxi Record: https://wwwl.nyc.gov/site/tlc/about /tlc-trip-record-data.page
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Figure 6.24: Convergence rate of RACP and its modification with the re-update of P, as defined
in (6.61): wpiss = 10%, Woutrier = 10%, Aoutiier = 10, 0 = 1072, and £ = 1072
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Figure 6.25: Incomplete observations & time-varying scenarios: Performance of NRACP on a
synthetic rank-5 tensor of size 50 x 50 x 50 x 500; 0, = 1073, Agutrier = 10, Wout1ier = 10%.

Abilene backbone is relatively small with 12 routers, 15 links, and 144 flow entries in each traffic
matrix of size 12x12. We concatenate all these traffic matrices into a tensor of size 12x12x48384.
The third dataset describes yellow taxis trip records in the pairs of 265 pick-up and drop-off sites
in New York. Each trip record contains several attributes, such as pick-up/drop-off times and
locations, elapsed trip distance, rate type, and payment method. In this work, we specifically

construct a third-order tensor of size 265 x 265 x 3672 (i.e., origin X destination X time).

Experiments €& Results: Following the same experiment setup in subsection 6.4.3.1, data cor-

ruptions are generated as follows. The locations of missing entries and sparse outliers are ran-
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Figure 6.26: Nonnegative adaptive CP decompositions: Outliers-free, full observations and an
abrupt change at ¢ = 600.

10'
—
o
=
=
=
e,
&)
20
®
v
)
Z ;

107 ‘ ‘ ‘

2 4 6 8 10
Rank
(a) Performance of RACP with different values of tensor rank
1 T T
10 -©-TeCPSGD

= -=-0LSTEC
=< ¢ ~=RACP (Proposed)
@ 107} [Up RIE
N~— it A‘V‘“
)
ao

10'3:1 b ‘ ‘ ‘ ‘ ‘ E
0 200 400 600 800 1000
Time Index

(b) Performance of adaptive CP algorithms with tensor rank r = 6
Figure 6.27: Experimental results on the Intel Berkeley Lab data.
domly generated with probabilities wpiss and weutiier, respectively. Outlier’s values are drawn
uniformly from the range [0, max(X’)] where max(X) is the largest absolute value in the under-

lying data AX. In this experiment, we choose the value of wpigss and wous1ier among the range

{5%,10%,20%,40%}. As the true rank is unknown, we first vary its value from 2 to 10 and then
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Figure 6.28: Completion accuracy of adaptive CP algorithms on real-world data streams.

choose the “best” one based on the averaged reconstruction error, see Fig. 6.27(a) for an example.
We compare the performance of RACP against the two adaptive CP algorithms TeCPSGD [106]
and OLSTEC [176]. Both algorithms are dependent on the forgetting factor A, and its value is
set at 0.98, 0.001, and 0.7, respectively. The penalty parameter p is set at 1 for both TeCPSGD
and OLSTEC. The experimental result in Fig. 6.28 indicates that RACP outperforms TeCPSGD
and OLSTEC.
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Figure 6.29: Epileptic EEG Dataset.

Task 2: Multichannel EEG Analysis

Datasets: In this task, we use two public electroencephalogram (EEG) datasets: ERPWAVE-
LAB' and Epileptic EEG Data®’. The former dataset contains wavelet-transformed versions of
EEG signals that were collected from 14 subjects during the hand stimulation (i.e., propriocep-
tive pulls of the left and right hands) for inter-trial phase coherence analysis. In particular, these
EEG signals were recorded using an electrode system of 64 channels with 28 measurements per
subject. The continuous wavelet transform was then applied to represent these signals in the
time-frequency domain. The latter dataset includes 20 EEG recordings of 6 patients diagnosed
with epilepsy at the American university of Beirut medical center. The EEG data were partic-
ularly recorded by using a system of 21 channels with the sampling rate of 500Hz. The dataset
includes 3895 normal segments and 3850 abnormal segments in which there are 3034 partial
seizures, 705 electrographic seizures, and 111 video-detected seizures with no visual change over
EEG. Figs. 6.29(a) and 6.29(b) illustrate EEG normal waveforms and complex partial seizures.
In what follows, we consider two common problems in multichannel EEG analysis: (i) incomplete

multichannel EEG analysis from partial observations and (ii) anomaly EEG detection.

Incomplete Multichannel EEG Analysis: Here, we use the ERPWAVELAB dataset and follow
the same experimental setup in [29,292,346] to demonstrate the use of RACP with real EEG

YERPWAVELAB: http://www.erpwavelab.org/
20Epileptic EEG Data: https://data.mendeley.com /datasets/5pc2j46cbe/1
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Table 6.4: Averaged errors of adaptive CP algorithms for multichannel EEG analysis from in-
complete observations.

Missing channels NL-PETRELS ACP RACP (Proposed)

1/64 0.051 0.063 0.056
10/64 0.062 0.025 0.023
20/64 0.077 0.011 0.014
30/64 0.121 0.097 0.086
40/64 0.891 0.132 0.119
50/64 1.325 1.137 0.982

signals. Particularly, we construct an EEG tensor of size 28 x 64 x 4392 (i.e., measurement x
channel X time-frequency). To generate incomplete observations, signals from some channels
at each time are supposed to be missing at random. As suggested in [292, 346], we set the
tensor rank at r = 3. Performance of RACP is compared with two adaptive CP algorithms NL-
PETRELS [292] and ACP [29]. We fix the forgetting factor A at 0.999 and 0.5 for NL-PETRELS
and ACP, respectively. As NL-PETRELS requires a warm start, we run the batch CP-WOPT
algorithm [346] with the first 1500 tensor slices. Meanwhile, we use random initialization for ACP
and RACP. In this experiment, we aim to factorize the EEG tensor into three basis components
w.r.t. spatial domain, time-frequency domain, and measurement mode. As there is no real
ground truth, we use the results (i.e., CP factors) derived from applying the batch CP-ALS
algorithm to the EEG tensor with full observations as benchmarks. Experimental results are
shown in Tab. 6.4 and Fig. 6.30. They indicate that RACP outperforms NL-PETRELS and
provides a slightly better estimation than ACP, especially in the presence of highly incomplete

observations (e.g., > 40 channels are missing).

Anomaly EEG Detection: We demonstrate the use of RACP to detect abnormal activities in

the brain (i.e., epileptic seizures) with the epileptic EEG dataset. Here, we adopt a simple but
effective way to predict abnormalities in multidimensional data streams [237]. In particular, we

model the abnormality of a tensor (streaming) slice Y; by its recovery error
O )y #
= ||P — ||><U”U” )H /H H : 6.111
et H t®<yt ytn:1 nUp "U; » Vi » ( )

where {Ugn)}ﬁle is the set of solutions generated by RACP at time ¢. It is also worth noting

that the error e; is relatively proportional to the norm of the outlier O;. We label Y; based on
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Figure 6.30: First component of EEG factors when 40/60 EEG channels are missing.

the following rule

abnormal
e¢ = 7 =mean ({e}r,)+ astd ({e}L,), (6.112)

normal

where {e}r, denotes the set of e; with t — L, < 7 <.

We follow the method in our companion work on epileptic spike detection [179] to obtain
the time-frequency representation of multichannel EEG segments (including normal data and
seizures), and hence the corresponding EEG tensors of size 19 x 20 x 500 (i.e., channel X scale x
time).2! The resulting tensors are then concatenated into a huge tensor whose the last mode
is being streamed. We use the first 100 tensors of normal data to obtain a warm start and the
estimated rank of 9. Experimental results are shown in Fig. 6.31 (the error e; over time) and
Tab. 6.5 (prediction accuracy versus the value of ). Although the results are not really excel-
lent, it is highly potential to detect anomalies in EEG signals by monitoring the approximation

error. Subsequent investigations (e.g., type of wavelet, dominant scales, and mother function)

2! As indicated in the EEG dataset description report, data of two channels Cz and Pz were omitted. Thus, we
have 19 EEG channels left and each channel contains 500 samples. Also, 20 wavelet scales are chosen in the range
4, 8].
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Figure 6.31: The error e; over time with & = 1.5 and L; = t. Normal data which are inaccurately
labelled as abnormal are referred to as “false positive”.

Table 6.5: Anomaly EEG detection results. Sensitivity and specificity measure the percentage
of anomaly and normal data detected correctly, respectively. Accuracy indicates the overall.

Value of @ Sensitivity Specificity ~Accuracy

0.1 42.21% 53.02% 47.57%
0.5 59.74% 66.48% 63.09%
1 72.80% 74.38% 73.59%
1.5 81.58% 85.16% 83.36%
2 50.16% 53.54% 51.83%

are necessary to obtain a better prediction.

Task 3: Video Background-Foreground Modeling

To demonstrate the use of RACP for real applications, we consider the problem of video back-
ground modeling and foreground detection. Three real video sequences are used in this task,
including Hall, Lobby, and Highway?? (see Fig. 6.32). In particular, the Hall video is a set of
3584 images taken at an airport hall, and the image resolution is 176 x 144. The Lobby video
contains 1546 images of size 128 x 160 pixels which was captured in an indoor office with switch-
ing on/off lights. The Highway video contains 1700 images of vehicles on a highway, and each

frame is of size 240 x 320 pixels.

Background Modeling. We first measure the video background modeling ability of RACP
in comparison with a robust subspace tracking algorithm PETRELS-ADMM |[25], and two adap-

22CDNET: http://jacarini.dinf.usherbrooke.ca.
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b) Lobby c¢) Highway

Figure 6.32: Three video surveillance sequences.

tive CP algorithms (TeCPSGD [106] and OLSTEC [176]). These algorithms are dependent on
the forgetting factor A, and its value is set at 0.98, 0.001, and 0.7, respectively. The penalty
parameter p is set at 0.1 for both TeCPSGD and OLSTEC. The CP rank and subspace rank are
set at 10.

We consider the scenario where 50% of pixels are supposed to be missing at random. Ex-
perimental results are illustrated in Fig. 6.33. As we can see that the two robust algorithms
PETRELS-ADMM and RACP were able to recover the video background. Particularly, the pro-
posed RACP provided slightly better estimation than PETRELS-ADMM. The two adaptive CP
algorithms TeCPSGD and OLSTEC seem to have failed when the video frame contains moving

objects, probably because they do not account for sparse outliers.

Foreground Detection. Next, we investigate the ability of RACP in video foreground de-
tection. We also compare the performance of RACP with three notable foreground detection
algorithms, including GRASTA [50], OSTD [278] and PETRELS-ADMM [25]. To have a fair
comparison, algorithm parameters are set by default as suggested by their authors. Particularly,
the penalty parameter p and constant step-size scale C' are, respectively, set at 1.8 and 2 in
GRASTA. The forgetting factor in PETRELS-ADMM is fixed at A = 0.98, while OSTD is a
parameter-free algorithm. As can be seen from Fig. 6.34 that RACP was capable of detect-
ing moving objects in video streams and provided a competitive performance as compared to
GRASTA, OSTD, and PETRELS-ADMM.

6.5 Conclusions
In this chapter, we have proposed three new low-complexity algorithms (including ACP, ATD,

and RACP) for adaptive decomposition of higher-order incomplete and streaming tensors. First,

developed based on CP decomposition, ACP estimates a multilinear LRA of streaming tensors
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Figure 6.33: Qualitative illustration of video background modeling results.

from noisy and high-dimensional data with high accuracy, even when the decomposition model
may change slowly with time. Second, developed based on Tucker decomposition, ATD is a fast
randomized tracker, able to recover missing entries from highly incomplete observations. Lever-
aging the stochastic approximation and the uniform sampling technique, ATD has been shown to
be one of the fastest Tucker algorithms, much faster than the batch algorithms while providing
good estimation accuracy. Third, a novel robust adaptive CP decomposition called RACP has
been proposed to track the low-rank approximation of streaming tensors from uncertain, noisy,
and imperfect measurements. Its convergence analysis has been established to guarantee that
the solution generated by RACP converges to a stationary point asymptotically. Experimental
results have indicated that all three algorithms could estimate the tensor factors as well as track
their variations over time with high accuracy, and that they outperformed the state-of-the-art

tensor tracking algorithms in both simulated and real data tests.

6.6 Appendix

6.6.1 Appendix A: Proof of Lemma 9

Our analysis follows the same framework to derive the asymptotic convergence of adaptive al-
gorithms for problems of online matrix and tensor factorization [25,106,120,121]. In particular,

the convergence analysis contains three main stages: (I) we show that the solutions {Us, us}7°,
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Figure 6.34: Qualitative illustration of video foreground detection results.

are uniformly bounded to justify the well-definedness condition. Their variations between two
successive time instances satisfy HU,SZ)I — Ugn)H r — O(1/t) a.s. (II) The sequence of nonneg-
ative surrogate values {g:(U¢)}5°, is quasi-martingale and convergent almost surely. (III) The
empirical loss function {fi(U;)};2; and its surrogate {g.(U)};2, converge to the same limit,
ie., gt(Ur) — fi(Us) a.s. Accordingly, {U:}5°, converges to a stationary point of fi(U), i.e.

t—o0

Vft(blt) — 0.

6.6.1.1 Stagel

In order to justify the well-definedness condition, we first indicate that solutions {U, ugN)}fil

are bounded and hence obtain several important propositions for the next stages®3.

[ Proposition 12. Solutions {Us, u:}5°, generated by ACP are bounded.

Proof. We first note that ACP begins with full column rank and bounded factors {U(()n) N

n=1"

ZNote that we assume that the underlying tensor slices and their true loading factors are bounded, while in
this analysis, we investigate the bound of solutions generated by the proposed ACP algorithm.
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The matrix S((]”) is initialized by a scaled identity matrix S(()n) = 6,1, with §,, > 0.

At each time t > 0, the coefficient vector uEN) is achieved by minimizing the regularized LS
problem
N . 2 «Q
ug ) — argmin ||£(yq, — HQtu)H2 + §Hu||% (6.113)
ucR”

At u = 0, we obtain Hﬁ(ygt)Hi > ||£(ya, — HQtut)HZ + %Hutﬂg and hence

2
lui™13 < Z[|£va)|; < +oo. (6.114)

thanks to the assumption (A-1) that observed slides {Y:}+>1 are bounded. It implies that the

solution u; is bound.
In the following steps, we use the mathematical induction to indicate the bound of U;.
The base case. We prove that the set of solutions Uy = {Ugn) }V=is bounded at ¢ = 1.

Recall that, the minimizer Ug") is derived from the following optimization

2
Ug") = argmin Bﬁ") ® (Xgn) -u (Wgn))T) H ’ (6.115)
U®) gRInxr F
forn=1,2,...,N.

We know that for given M, N € R**_ [ M — N[ > abs(|M]|p — [N||z) > M| ¢ — |N| s

Accordingly, we have

[ @ (Ui (wi) ), = 2 B @ i < oc, (6.116)
It is therefore that
In
>R W (™) T|f; < oo, (6.117)
=1

where Eﬁ) = diag (Egn) (4,:)) and ugn) is the i-th row of Ugn). Since {U(()n) N_| are initialized by
full rank and bounded matrices and u; is bounded, Wgn) is a full column rank matrix. Under
the Assumption (A-3), the null space of EST?W?) admits only 0 as an element. As a result,

Hugn)H2 < +400,i=1,2,...,1, and hence Ugn) is bounded.

The induction step. Assume that {U;}*_; generated by ACP are bounded at time t = k >
1, we will prove that at t = k + 1, Uy, is also bounded.
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n)

The recursive rule for updating U( p+1 18 given by

n n) \ T
Ul(ch)l = ( ) AYE:+)1 (Vl(ch)l) ; (6.118)
where
n n T
AY;") =P @ (Yi(c+)1 U (W) )7 (6.119a)
n n —1
Vl(ch)l = (Sl(c+)l) ; (6.119Db)
Sl(c?l :ﬁs(n) (ngj-)l) W1(<:+)17 (6.119¢)
wit= (O ) eul, (6.9
1=1,i#n
Since {U( 1 are assumed to be bounded and ugy; is bounded, we obtain that W,(er)l and
AX; +)1 are bounded. Moreover, S,(C _31 can be recursively expressed by
st =28y + 3 wiw, (6.120)

(n)

where w; is the i-th row of Wk 1 Thanks to Sherman-Morrison formula and the initial case

S(n) = 0,1, Slg +)1 is a positive definite and invertible matrix and V( n)

k+1
inverse of the rank 1 update S,(:F)l) In addition, for any positive definite and invertible matrix

M € R™ ", we have

is always existent (i.e.

1

IM|lp < V7[Mll2 = romax(M), and [|[M™]], = o (M)

< +00, (6.121)

where opax(M) and opin (M) are the largest and smallest singular value of M, respectively.

Accordingly, we obtain

Ve,

, < vier Vi, - 1)

s(” )

The lower bound on the minimum singular value of Sl(:k)l is specified by the following proposition.

Proposition 13 (Theorem 1 [348] and Theorem 2.1 [349]). Let A be an r X r symmetric
matriz with positive eigenvalues o1(A) > o9(A) > -+ > o0.(A) > 0. If w is an r-

T

dimensional column vector and A = A +ww ', we always have

0r(A) <0r(A) <0, 1(A) <or1(A) <o < 01(A) < 01(A) < o1(A) + w3
(6.123)
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Accordingly, we have
Omin (S/(:gl) > AOmin (S]in)> > )\Zo'min (S](Cn_)l) > 2 )\k+10min(s(()n)) = )\k+16n > . (6124)
The last inequality is when the forgetting factor A = 1. As a result, we obtain

(n
Vi,

) < \ropdit < +oo. (6.125)

It implies that V(n)1 is bounded. Therefore, Uy is bounded, thanks to the rule (6.118). [

[ Proposition 14. The surrogate g¢(.) is a Lipschitz function. ]

Proof. First, we exploit that gs11 (Ugi)l) < gi+1 (UE”))V t due to Uii)l = argmin g4 11 (U(”)) and
hence

9 (U1)) = 901 (UF)) + 9041 (UE)) — e (U7")

(9:(U) = g1 (UED)) = (9 (UL") = gea (UF))

dy

(U = di (U™, (6.126)

9 (Uh) — 0 (U0]")

IN

A

where di(U) = ¢;(U) — g¢4+1(U). The derivative of d;(U™) is then given by

04 (U™) (A Ay B, B
S SICON Elni - _ 12
ou) v <t t+1>+<t t+1>’ (6.127)

where A, = YL_ g7 (W) W B, = St g7 (P @ X)W, Accordingly, we

have

thanks to the following inequality [[MN||, < ||[M]|;||N|/ for all M,N. It implies that the
function dy(U™) is Lipschitz, i.e.,

ad,(U™)
ou™)

B; Bi

Ay A ‘
R

t+1

: (6.128)
F

<Ol
F

9:(U) = 91(U}”) < d(ULD) = di(U}Y) < e[ UL, = U (6.129)

where the Lipschitz constant ¢, = O(1/t) is given by ¢, = /i”% - ?rf HF +| % - I?-t:ll HF’

where |U™)||r < & is the upper bound for |[U™)||x. O

In parallel, the surrogate g;(U) is a multi-convex function because of its quadratic form. It
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is therefore that
g (U) — g (U") > ma|[UL, — U7, (6.130)

where my, is a positive number. From (6.129) and (6.130), we obtain the following nice corollary:

Corollary 3. The asymptotic variation of Uy is given by

U, - U, = 0(1/1). (6.131)

6.6.1.2 Step II

We then prove that the nonnegative sequence {g:(U)}5°, converges almost surely where {U;}7°,

is generated by our ACP algorithm.

Convergence of {g:(U:)}72, can be stated in the following proposition:

Proposition 15. Let {U:}5°, be a sequence of solutions generated by ACP, the sequence

{9:(U4)}52, converges almost surely, i.e.,
3 ‘E[gtﬂ(um) _ gt(ut)\ft}’ < too as., (6.132)
t=1

where {Fi }>o is the filtration of the past estimations at time instant t.

Proof. We begin with the expression

t+1
1 1k
ger1(Uy) = HlZﬂ (U, Pr, Y7, uy)
1

= t+1 (Z(Ut, Pirt, Vi1, Ugg1) + Btgt(ut)>

UL P, Vier, w) | HB - 1) t
- t+1 M e G R

9t (Uy). (6.133)
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where ((U,P,Y) = min, {(U,P,Y,u). We then have

ald) — filldy) = <gt(ut) - Ht_ 1gt(ut)> - St

t+1 t+1
(U, Posr, W) — fi(U
= W) — g Uyy) - P ) Z L)
+1
t(B—1
+ g1 Us1) — g (Uy) + (er . )gt(ut)
<0 <0
(( Uy, Post, W) — fi(U
< gt(Ut) — grr1(Up1) + s, Pri y?i 1 v1) — Jil t), (6.134)
because 0 < 5 < 1 and gi11(U+1) < ger1(Uy) for all ¢ due to Uy = argmin i1 (U).
Moreover, we know that u;y; = argmin, Z(Ut, Pit1, Vit+1,1), SO
(U, Pri1, Yir1) = LU, Prit, Vi1, uepn).
Accordingly, we obtain the following inequality
(U, Pirr1, Yir1) — [rlde)  g(Us) — fr(Uy)
u —qU;) < - ) 6.135
g1 (U1) — g:(Us) < 1 1 T 1 (6.135)
Moreover fi(U;) < g:+(U;) for all t, we obtain
U, Pt (2
s Urin) — gnay) < (P Vi) ) (6.136)
Taking the expectation of (6.136) conditioned by F; results in
U, — i
E[ge1Uis1) — U F) < M, (6.137)

t+1
where f(U) be the expected cost function, i.e., f(U) = tlglglo ftU) and E[0U, Pig1, Vis1)] =

f(U), for all U. Now, let us define the indicator function d; as follows

a1 if E[grr1Usi1) — g:(Us)|Fi] >0,

0 otherwise.

5 (6.138)

Accordingly, we have

1

E [0/ [gr1 Uri) - 90\ F] | <E[VE(FW) — fitdr)]
Under the given assumptions that variables are bounded, we exploit that the set of loss func-

tions {€(Uys, Pt, X¢)}i>1 is P-Donsker [126]. As a result, the centered and scaled version of
ft[U,) satisfies the following proposition: E [\/f(f(blt) — fi (th))} = O(1), thanks to the Donsker
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theorem [126, Section 19.2].

We then consider the convergence of the sum > 2, T In particular, the Cauchy-

(t+1)

MacLaurin integral test [133] is applied for examining the convergence, that is, ft 1 \[( D) dt =
x . 1 .
7 < 00. Accordingly, { D }t>0 converges. Therefore, we obtain
o
ZE{(SE gt_;,_l let+1) gt(ut)]}}]] < 00. (6140)

t=1

According to quasi-martingale theorem [343, Theorem 9.4 & Proposition 9.5], we can conclude

that {g:(U)}72, converges almost surely, i.e.,

ZE g1 (Us1) — ge(Uy)| F] < o (6.141)
t=1

We complete the proof. O

Stage III

The last stage contains two main steps: (i) we first indicate that the empirical cost function
ft(U) is not only continuously differentiable, but also Lipschitz; (ii) we then prove {fi(Us)}52,
and {g:(U:)}72, converge to the same limit. As a result, the derivative of f;(U) equals to that
of g:(U) when t — oo, thanks to the first-order Taylor approximation. Since U; is the minimizer
of g:(U), the derivative V f(U) — 0 a.s.

To begin with, we provide the following proposition which is a corollary of Theorem 4.1
in [350]:

Proposition 16. Consider a continuous function f:V x U — R. Suppose that Yu € U,
the function f(.,u) is differentiable and Vv f(v,u) is continuous on V xU. If g(v) be the
function derived from g(v) = mingey f(v,u), then g(v) is also differentiable. In addition,

if u* = argmin, ey, f(v,u) be unique, Vg(v) = Vy f(v,u*), Vv € V.

Proof. Its proof is already provided in [350, Theorem 4.1]. O

Accordingly, we derive the following proposition to verify the differentiable property of £(U, Py, X)

at time t.
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Corollary 4. Given an incomplete observation Py ® X and the past estimation U, let

ul be the minimizer of the summand (U, Py, Xy, 1)

Pt®< ]]{U(”)}n -1 ul™ [D 2

F

(6.142)

ut = argmln
u;€R”

We obtain that ((U, P, X¢) = miny,, Z(U, Py, Xy, wy) is a continuously differentiable func-

tion and its partial deriative w.r.t. U™ is given by

oUU, Py, Xy) ) (n) " ATV enn
Tt _p(Me (th ~ U (W) )Wt, (6.143)
N
where W; = ( @ U§1)1> ® (uI)T. (6.144)
il it

As a result, the empirical cost function f;(U) = %ﬂt_'r Zizl (U, P;,Y;) is continuously

differentiable. Applying the same augments in Proposition 14, we also have

F F

where fi(UM) = f,(U™)~ fi, (UM), A = 550 517(W2) ' Wr, and B = !, g7 (Pe

Xq(-n))Wi All terms in the right side are bounded, the partial derivative fi(U) w.r.t. U™ is

bounded and hence
£(U) = R (UM) < 4, Ul - U, (6.146)

where d,, is the deterministic positive number. It implies that f;(.) is Lipschitz continuous.

Now, we indicate that the nonnegative sequence {(gt(ut) — ft(ut))H%l} converges almost
surely. We prove that the empirical cost function {fi(U:)};2, and its surrogate {g:(U:)}2,

converge to the same limit by showing
th l/lt ft th) < +00. (6147)

According to (6.174), we recall the following inequality

g:U) — fi(Uy)
t+1

(U, Pry, Yesr) — frllhs). (6.148)

< g:(Uy) — u
< gt(Uys) — g1 (U1) + 11

To examine the convergence of the right side of (6.148), we exploit the following facts: (i) The
convergence of E[g;(Uys) — g1 (Uy+1)| Ft]is already provided in Proposition 2, and (i) The second
term also converges, thanks to the convergence of E[f(U;) — f;(Uy)]/(t + 1) and
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El(U:, P, X)) = f(U,) for all t.

Accordingly, we have that {(g:(U:) — f(Uy)); +1} converges

> (gt Uy) — f; m))ﬁr - < oo (6.149)

t=0

Since both ¢:(U) and f;(U) are Lipschitz continuous, there always exist a constant L > 0 such

that

| (gr41@Uss1) = fron@Ues)) = (9:Ue) = frUs))| < L||[Uer — U (6.150)

In addition, the real sequence {75-%1 }isg diverges, ie., Y72 154%1 = +o0. It implies that > ;7 g:(Us)—
ft(Uys) < oo, thanks to [351, Lemma A.5]. Tt results in g;(Us) %3 fi(Uy),t — oc.

In parallel, g;(U) is the surrogate function of f;(U), we always have
aU +a V) > il +a, V), (6.151)

for all V and the nonnegative sequence {a,}. For short, let us denote g (U™) 2 gt(U) and
ft (U(”)) 2 f(U) when the remaining loading factors are fixed. With respect to U™ the
inequality (6.151) becomes

g (UM +a, V™) > (UM 4 0, VW), (6.152)

Thanks to Taylor’s theorem, taking the linear approximation of (6.180) yields

9:(0") + tr [a- (V™) 'Vg,(U)] + 0(a, V™)
> f(UM) + tr [a, (VO 'O £,(UM)] + 0(a, V). (6.153)

When t — 00, we have g;(U™) = £;(U{™) as proved in Lemma 1 and hence
tr [a, (V) 'Wg, (UM)] > tr [a, (V™) TV 1 (UM)]. (6.154)
Since the above inequality must hold for all V(™ and {a,}, we obtain
Vg (UM) = v £,(UM) =0, when t — oc. (6.155)

Because U, is the minimizer of g;(U), we derive V f;(U;) — 0 a.s. It ends the proof.
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6.6.2 Appendix B: Proof of Lemma 11

Boundedness: {D;, O, u:}°, are uniformly bounded.

At each time t > 0, the outlier O; and the coeflicient vector u; are derived from the minimization

(7) in the main manuscript. Accordingly, we always have
((Di—1, P, Vi, O, 0y) < £(Dy_1, P, V:,0,0). (6.156)
It is therefore that
1Ol + 2P @ (P — O —H 2 <PIPre v 6.157
til1 2“ t ® (Vi t t—1><Nut)HF_2 t t|F- (6.157)

Due to the two facts that | M| g+ ||N||r > [[M—=N||r > |[M||r—||N|| r, and |M|r < |[M]|1 [9],

we then obtain

|04l < |04, < E[[Pe® Pill7. < 52 < o, (6.158)

lp < 11Ol <

|PH_yw|], < 2[|Pr@ Vi, + ||7>t ® O], < oo, (6.159)

where M, is the upper bound of || Y;||r (see Assumption A1). Thanks to (6.158), O is uniformly
bound.

We indicate the bound of the solution u; and Dy = [Ugl), . ,UEN)] by using the mathemat-

ical induction.

We first recall that the proposed RACP algorithm begins with IV full-rank matrices {Uén) }nNzl
and a set of matrices S((]fgb =6 I,m=12,...1,.

The base case: At ¢t = 1, the matrix Hy = ngl U(()n) is then full rank, i.e., the null space
of Hy admits only 0 as a vector. Accordingly, u; is bounded, thanks to (6.159).

To indicate the bound of Ugn) for n = 1,2,..., N, we show that each row ugngl of Ugn) is
bounded. We first obtain the following inequality

i,

< [

Py (G) "= Wi () D), [V

s m

‘2 . (6.160)

In fact, three matrices Wg 731, Sgngl and V:(lngl for updating ugnr)n are bounded due to the bound

of {U(Jn)}n:r Accordingly, the right hand side of (6.160) is finite, thus ugrfgl is bounded for all
m. It implies that U(n) is bounded.

The induction step: We assume that {U )} ", generated by RACP are bounded at time

t =k > 1, we will prove that at t = k + 1, Ul(v—&-)l is also bounded.

Since {U }N 1 are assumed to be bounded, uy;; and W,gj1 m are then bounded. In parallel,
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we exploit that S/,(c Jr)l can be expressed by

S = AS, +Zpk+1 )W, Wi, (6.161)

where w; is the i-th row of wi) Thanks to Woodbury matrix identity [352| and S(()Z)n =41

k+1,m"
with § > 0, we obtain Sl(g—‘zlm > 0, ie., S,(gj_)lm is nonsingular with the smallest eigenvalue
Omin (ngﬁl m) >9 > 0. Thus V,(CJF)1 m is always existent.

For given M > 0, we always have | M||r < /7|[M|l2 = v/70max(M), and HM*1H2 = ! (M)

min

where omax(M) and omin(M) are the largest and smallest eigenvalue of M [9]. Accordingly, we
derive ||V](€721m||p <V/r/d < oo, e, VI(:k)l,m is bounded. As a result, ul” ., is bounded for all

m =1,2,...,1I,. Thanks to the mathematical induction, we can conclud’(?rtl};at the solution Ugn)
generated by RACP is bounded for ¢ > 1.
Forward Monotonicity: f;(D;_1) > fi(D;).
We have
fi (DH) ~ f:(Dy)
th t 17 U " 1) Ugn)p U ) ft( t 17 e 7U§r:1)ngi)v e ngl)) [Jacobi]

Z ft(Utl Y ,Ul(fn_l), U]g?_b)l, ey Ugl)) — ft(Ugl), ey Ugn_l), Ugn), e ,U,gl)) [Gauss-Seidel]

(6.162)
Recall that U(n) is the minimizer of ft( t 1, e ,Uﬁ;l), U,Ugﬁ_l), . ,Ulgﬂ)) if using Jacobi
scheme or ft (UE ), .. ,U§" 1), U, UET{I), e Ugﬂ)) if using Gauss-Seidel scheme. Therefore, we
always have
ﬂ) [Jacobi]

M) [Gauss-Seidel]

fOW, Ut U U
fOW, Ut U U

1 n—1 7
W, " U v
"M > f o, o) u®

[

—

SN—
v
o~

(
t
U,
As a result, fy(Dy_1) > f;(Dy).

Backward Monotonicity: f;(D;) < fi(Ds11).

Applying the similar argument above, we also obtain ft(Dt) < ﬂ(Dt+1).
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Stability of Estimates: ||D; —D;_1|r = O(1/t).

We first prove that the surrogate ft( ) w.r.t. each factor is Lipschitz continuous. Since Ugn) =

argmin f;(U™ ), we have ft( ) f( e 1, .)Vt and hence

(U, ) = e (U ) < {Fia (U ) = F(U ) }

—{f (UML) — RO 1,.)}. (6.163)
Lets denote the error function dy (U™, .) = fi (UM — ft(U(”), ). We have
A A B._ B
(n) — 17(n) t—1 g t-1  b¢ 164
vd,(U™,.) =U (t—l t>+<t—1 t)’ (6.164)

where A; = Zi:l BT (W.(rn))TW.(rn), B; = Zizl Bt (E.(rn) ® (XS-”) - O.(rn)))WS-n). Thanks to
the two facts that |MN]||, < [|[M||||N|| and |[M + NJ|z < ||[M]|r + [[N]||r [9], we obtain

|V, (U™, )|, < ko

= Cn, (6.165)
F

Bi1 By
t—1 t

where ks is the upper bound for |[UM™)||z. As a result, the error function dy(U™) is Lipschitz
with parameter ¢, = O(1/t), i.e

fiot (UM, ) = fia (UM,) < de(U,) = dp (U) < UM =0 |, (6.166)

Moreover, ft(U(") .) is a m-strongly convex function, i.e. ft 1(Ut , ) ft 1(U£ )1, ) > mHUt
Uy_l)lHQF. From that, we obtain the asymptotic variation of U™ as follows HUEn - t—1HF =
o — O(1/t), Therefore, we can conclude that ZnN:1 HUgn)—UEﬁ)lHQF = [|[D;—Dy—1 % = O(1/t?)
or |[Dy — Dy_q||p = O(1/1).

Stability of Errors: ‘et (D) — er—1(Dy—1 ‘ = O(1/t).

We begin with verifying the differentiable property of the loss function ¢(D, Py, YV¢) at time t.
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Proposition 17. Given an incomplete observation P:® Y and the past estimation of D,
let O, u; be the minimizer of@(D,Pt,yt, O,u), i.e.,

{uf, 07} = argmin |O]]s + gH’Pt ® (Vi— O —H xyu)l[2 (6.167)

where H = IH,{L? x, UM We obtain that (D, Py, Yi) = ming o E(D,'Pt,yt, O,u) is

a continuously differentiable function and its partial derivative w.r.t. U™ is given by

8€(D7 Pt7 yt) (n) (77/) (n) n X (’I’L) T\wx (n)
W = QEt ® (Xt _ Ot - U( )(Wt ) )Wt ’ (6168)
where W ( @ Ut 1) u)) ' (6.169)
i=1,i#n
Proof. The result follows intermediately Theorem 4.1 in [350, page 237]. Ul

Accordingly, the sum f;(D) = 1/L; ZT D41 BTUD, P, Y,) is continuously differen-
tiable.

Let us denote ft(U("),.) = ft_l(U(”),.) — ft(U(”),.). Applying the same arguments in
subsection 1.4, we also obtain
Al A

‘Bg’_ﬂl B"
Follt—1 t

t—1 t

IVAO™ ) < 5o

F

where AIE") =t BT (V’V£"))TW£”), and Bgn) =t BT (E(T") ® (Y(Tn) - (95”)))W§”).
Accordingly, V f; (U("), ) is bounded and hence

£(UML) = fU)) < doJul ol (6.171)

It implies that f;(.) is Lipschitz continuous. Since f;(D) and f;(D) are both Lipschitz continuous

functions, we then have

lei(Dy) — em1(D—1)| = | (s — ft(Dy)) = (fic1(Dio1) — fio1(Dy1)))|

< |fi(De) = fi(Deo1)| + | fe(Dy) — fi(De-1)| (6.172)

N
<> (en + dn)HU@l ~ UM =00,
n=1

It ends the proof.
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6.6.3 Appendix D: Proof of Lemma 12

Detailed Proof: We apply the similar arguments of Proposition 7 in our companion work [29] to

prove Lemma 12.

Almost sure convergence of {f;(D;)}°,

Main approach: We prove the convergence of the sequence ft(Dt) by showing that the stochas-
tic positive process uy 1= ft(Dt) is a quasi-martingale Fisk. In particular, if the sum of the pos-
itive difference of u; is bounded, u; is a quasi-martingale, and the sum converges almost surely,

thanks to the following quasi-martingale theorem:

Proposition 18 (Quasi-martingale Theorem [343, Theorem 9.4 & Proposition 9.5] and
[125, Section 4.4]). Let (2, F,P) be a probability space, {u}i=0 be a stochastic process on
the probability space and {F;}i=0 be a filtration by the past information at time instant t.

Let us define the indicator function 6; as follows

5 A 1 if Elugr —w|Fi] >0,
t p—

0 otherwise.

For all t, if uy > 0 and "2, E[d;(uit1 — u;)|Fi] < oo, then ug is a quasi-martingale and

converges almost surely, i.e.,

oo

ZE[ut+1 — Ut|Ft] < 00.
t=1

Now, we begin with the following relation when L; =t

t+1
_ 1 _
frn(Dy) = —= > B (D, P, ¥r, O ur)
+1 T=1
(D, Pei1, YVis1, O, ueg) | HB-1) ; t oz
= 1 + P ft(Dy) + t+1ft(Dt)~ (6.173)

Thanks to Lemma 1 and A < 1, we obtain ﬁ+1(Dt+1) < ft+1 (Dy) and

fi(Dy) — fi(Dy)

Dy, Pit1, Yiv1, Og1, wep1) — fi(Dy) (6.174)
t+1 '

N y ‘
< fi(Dy) = fis1(Dyg1) + ( t+1

Since fi(D;) < fy(Dy) Vt, we have

Dy, Pis1, Vi1, Ori1, upr1) — fi(Dy)
t+1

frri(Deg) = fi(Dy) < : (6.175)
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Define by {F;}i~0 a filtration associated to {ut}i~o where F; = {Dy, Ok, ug}1<p<¢ records
all past estimates of RACP at time ¢t. By definition, for every ¢ < ¢, F; C F, and thus,
the filtration is interpreted as streams of all historical but not future information generated

by RACP. Now, taking the expectation of the inequality (D3) conditioned on F; results in

B[foa(De) ~ fu(Dy)|7) < TPI—HD0)

each time ¢; the expected cost function f(.) is given by f(D) = klim f+(D), E[¢(Dy, Pri1 Xpi1)] =
—00
f(Dy), VDy and Vt; and £(Dy, Pig1, YVit1) = (D, Prg1, Vg1, Orgr, wpr) due to {Oppq, w1} =

, where F; is the filtration of past estimations at

arg mine y £(D, Pii1, Yit1, O, u) at time ¢.

Next, let us define the following indicator function

A 1 i E[fis1(Dig) — fi(Dy)|F] >0,

5 2 (6.176)

0 otherwise.

Here, the process {d; }+~¢ is adapted to the filtration {F; };~ as d; is measurable with respect to F;
for very t. From (D4), we then obtain Accordingly, we obtain E [(ME [ﬁH(DtH) - ft(DtﬂftH <
E [ﬁ(f(Dt) - ft(Dt))] m We know that the centered and scaled version of f;(D;) satisfies
E[VE(f(Dy)—f:(Dy))] = O(1), thanks to the Donsker theorem [126, Section 19.2]. We also derive

o1 = 1

—— dt < oo after some simple calculations, thus —— < o0 too. Accordingly,
=1 VE(t +1) ; VEt+1)
we obtain Y ;7 E[étE [ftH(DHl) - ft(Dt)|]-"tH < 0o. Therefore, {f;(D;)}22, converges almost
surely, i.e.,

oo

> E[fir1(Des1) = f(DOIF| < oc. (6.177)
t=1

thanks to the quasi-martingale theorem [343, Theorem 9.4 & Proposition 9.5

As t — oo, f(D;) — f(D;) almost surely

We prove {f;(D;)}22, and {f;(D;)}2°, converge to the same limit by showing

i ft(Dt; J: {t(Dt) < 0. (6.178)
t=1

According to (6.174), we know that e;(Dy)/t + 1 is bounded by f;(D¢)— fr+1(Dsr1) and (U(Dy, Pri1, Yir1)—
fi(Dy)) /(t + 1). Moreover, we have 3°7° fi(Dy) — fi11(D¢t1) < oo, and the sum of (¢(Dy, Prs1, YVis1)—
ft(Dy)) /(t + 1) also converges due to the convergence of E[f(D¢)— f:(Dy)] /(¢ + 1) and E[¢(Dy, P, X)] =
f(Dy)Vt. Since Y 2, t% = o0 and |e¢(Dy) — ei—1(Dy—1)| = O(1/t), we obtain 5%, fi(Dy) —
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ft(Dy) < o0, or

ft(Dy) = fi(Dy) a.s., (6.179)

thanks to [120, Lemma 3].

6.6.4 Appendix D: Proof of Lemma 13

In what follows, we prove that when ¢t — oo, VJf; (Dt) — Vi (Dt) and Vf,(D;) — 0 almost

surely.

As t — o0, V (Dt) — Vi (Dt) almost surely

Let D = [[_I(l), U@, ... ,[_J'(N)] be the limit point of the sequence of solutions {Ugn)}tzl.
We know that f;(D) is a majorant function of f;(D), i.e.,

fiD +aV) > (D +a V) VD,V € D, a. (6.180)
Taking the Taylor expansion of (6.180) at ¢ — oo results in
foo(D) + tr [atVTVfoo (D)] + o(arV) < foo (D) + tr [atVTVfOO (D)] + o(atV), (6.181)

where foo = lim; 00 ft() Asindicated in Lemma 1, foo (f)) = fso (f)) and hence tr [atVTVfoo (f))} <
tr [atVTV foo (f))] . Since the above inequality must hold for all V and a;, we obtain tr [V foo (f)) —
V feo (]5)] — 0 a.s.or

Vfs (f)) =Vfwo (f)) almost surely. (6.182)

As 00, Vi (D) = 0
This property is proved by applying immediately the following stages:

1. Stage 1: lim tr [(Dt — D) Vi (Dt+1)] =0;

t—o0

9. Stage 2: tr [(Dt . DHI)TVﬁH(DtH)} <etr [(D . Dt)vam(Dt)} +05|| Dy 1 =Dy |5 Ve, D €
D;

3. Stage 3: (Vﬁ(D))T(D —D) = 0 VD where D is the limited point of the sequence {D;};>1.
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Stage 1:
When L; = t, we can recast the surrogate function f;(.) into the following form

(D) zgtr [At([(UW))TU(N)} & [(UN-D)TUN D] g... 6 [(U<1>)TU<1>])}

_ 27” r [B(UY 0 U 6.0 UD)T] 4 Rao, (6.183)

where A; = AA;_1 +u;u/, and By is the (N 4 1)-unfolding matrix of the tensor By = A\B;_1 +
Pr® (Vi— O) xy v, and Ryo =250 [Pr@Vill3 + 37—, 87| O- |1 independent
of D. With respect to each factor U™ we can further express ft(D) as follows

2
fiu(D) = gtr (U TuA,,| - Tp tr[(U™) "By + Raxo. (6.184)
Here, the two matrices A, and By, are given by

A =A@ [(UD)TUD] @@ [(UCRD)Tut-D] (6.185)
® [(U(TLH))TU(”H)] ® - ® [(U(l))TU(l)]’

ZB x1 UM (2 5) X+ Xy UPTD( ) (6.186)

Xn-i—l U(n+1)(:7j) o XN U(N)(v.])a

where ng) e RI*2XIN denote the j-th mode-(N + 1) slices of By. It is easy to see that f;(D)
is a multi-block convex and differentiable function and its partial derivative w.r.t. each block is

Lipschitz continuous with constant f/t,n = ||A¢n||F. Accordingly, we have
‘ftJrl(Dt) — frs1(De1) — tr [(Dy = Dig1) 'V fi1(Dysa) | ‘ < L||D¢ — Dyya | s (6.187)

with L = max, (L, /2). Thanks to the triangle inequality, we then obtain

tr [(D; = Dyy1) "V fis1 (D)) ‘ < L||D; = Dy ||+ fis1(De) = frsa(Deya). (6.188)
Accordingly, we have

>

t=1

E [tr (D¢ = Dit1) Vi1 (Diga)] ‘ft}

5 [e.e] 9 o
<3 E[Ip D]+ 3
t=1 t=1

E[ﬁ+1(Dt+1) - ft+1(Dt)|~7:t} : (6.189)

Recall that ||D; — Dyy1[|p = O(1/t) as indicated in Proposition 1, hence Y 3%, || D¢ — Dyjq[|% <
d> 72, t% = d§ < oo for some constant d > 0. Together with (6.177), we obtain that the right
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hand side of (6.189) is finite.

Also, it is well-known that E[|z|] < oo implies |z| < oo almost surely for any random variable

x, thus we obtain
Z ‘ tr [(Dt - Dt+1)TVft+1(Dt+1)] ’ < 00. (6190)
t=1

Moreover, we always have

Ztr [(Dt — Dt+1)TVﬁ+1 (Dt+1)] < Z ‘ tr [(Dt - Dt+1)TVﬁ+1(Dt+1)]‘ < 00. (6191)
t=1 t=1

Therefore the series { tr[(D; — Dt+1)TVft+1(Dt+1)]}t>1 converges and we suppose that it con-

verges to C' < oo.
Now, we rewrite (6.191) as follows

t
lm Y " tr [(Dg — Dyy1) ' Vi1 (Digr)] = Jm tr (D¢ = Dyy1) "V i1 (Dis1)]

t—o0
=1

t—1
+ lim Y tr[(Dg — Dyy1) ' Vier1(Dyi1)] = C < . (6.192)

t—o00
T=1

When t — oo, the following partial sum also converges to C, i.e.,

t—1
Jlim B tr [(Dg — Dys1) "V frr1(Dyr1)] = C. (6.193)
T=1
It implies that
lim tr [(Dt D)’V ftH(Dm)} = 0. (6.194)

Step 2:

Because Ugi)l = argminyy(n) ]Et+]_ (U(”), .), we have

dq

Fin (U < fonn (Uﬁ”) + (Ut - Uiy, ) VD € D. (6.195)

Without loss of generality, we suppose that D is arbitrarily chosen in D such that ||D — Dy||p =
dy/tN for some positive constant d; > 0, hence ||U(”) — Ugn) |lr < di/Nt Vn.

As mentioned in Stage 1, Vf = [Vlf, Vof,...,VnFf ] is Lipschitz where V,,f denote the

partial derivative of f w.r.t. the n-th factor U . Thanks to Proposition 22, there always exists
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a constant ds > 0 such that

n n e n d n ~ n I:d
tr [ (U = U "V fin (U] < ot [(U(”) ~U") 'V, i (UL ),.)] + v
(6.196)
Collecting these inequalities with n = 1,2,..., N together, we derive
tr [(Dt - Dt+1)T [Vlft—i-l (U§_1|.)17 ')7 v2ft+1 (Ug_)lv ')7 SER) Vth—‘rl (Ugfl)a )]}
d ; n ; n ; n Ld
< tijiftr [(D — Dt)T[VlftJrl(Ug )>~),V2ft+1(U§ )a-)a---avat+1(U1(t ),~)H + t2N22'
(6.197)

It then follows that

_ d ~ -
tr |(Dy = Dist) Virr (Den) | < 73t [(D = D) Vit (Do) | + Lda|| Dy = Deca [
(6.198)

because of ||D; — Dy11]|r = O(1/t). The inequality (6.198) still holds for all D € D such that
|ID —D¢|lp > di/tN.

Step 3:

We use the proof by contradiction to indicate that the limited point D is a stationary point of
foo(.) over D.

Assume that D is not a stationary point of ft over D when t — oco. Then there exists D’ € D
and €; > 0 such that

tr (D' — D) Vfu(D)] < —e1 <0. (6.199)

Thanks to the triangle inequality, we have

(D D) Vs (D)~ (D' D) V(D) < [[V i (D) = V(D) D ~ D |,
+ || fo«(D)[| 7D — D+ | . (6.200)

It is easy to see that the RHS of (6.200) approaches to zero as k — oo because of D, — D and
V fis1(D;) = Vfso(D). In parallel, we know that tr[A] — tr[B] = tr[A — B] < v/n||A — B||r

and hence

tr[(D' = Dy) Vi1 (Dy)| < —e1 < 0. (6.201)
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According to (6.198), we obtain

~ —dj€
lim tr [(D; — Dyyq) " D < 0, 6.202

which is a contradiction in (6.194) in Step 1. Therefore, D is a stationary point of foo-

6.6.5 Appendix E: Useful Propositions

In this section, we would provide the following propositions which help us to derive several

important results in the proofs. Their details are provided in well-known materials.

Proposition 19 ( [132, Section 9.1.2]). The function f is m-strongly convex, with a constant m

if and only if for all u,v € dom(f), we always have [f(v) — f(u)] > 5 [[v — ul®.

Proposition 20 ( [132, page 72|). Every norm on R™ is convex and the sum of convex functions

1S CONvex.

Proposition 21 ( [132, page 329]). A function f : V — R is called Lipschitz function if there exist
a positive number L > 0 such that for all A,B € V, we always have |f(A)— f(B)| < L|A —B]|.

Proposition 22 ( 353, Lemma 1.2.3|). If a function f : V — R is differentiable and its derivative
1s L-Lipschitz continuous, then for all A,B €V,

F(A) ~ f(B) ~ (V/(B)) (A~ B)| < Z|A - B

Proposition 23. If {fi}i>1 and {g+}+>1 are sequences of bounded functions which converge

uniformly on a set €, then {fi + gt }+>1 and { frgi}1>1 converge uniformly on E.

Proof. Since f; and g; are bounded, we obtain |f;| < M < oo and |¢g:| < N < oo for all ¢. The
triangle inequality gives |fi + g¢| < |fe| + |g¢] < M + N for all t. Also, |fig:| = |fellge] < MN.
Therefore f; + g; and fig¢ are bounded. O

Proposition 24 ( [120, Lemma 3, page 35|). Let {a;}{2; and {b:}72, be two nonnegative se-
quences such that Y ;21 a; = 0o and Y ooy ab; < 00, |bp1 — be| < Kay with some constant K,

then limy oo by = 0 or Y2, by < 00.

Proposition 25 ( [350, Theorem 4.1, page 237|). Consider a continuous function f : VxU — R.
Suppose that Vu € U, the function f(.,u) is differentiable and V f(v,u) is continuous on ¥V xU.
If g(v) be the function derived from g(v) = minyey f(v,u), then g(v) is also differentiable. In
addition, if uw* = argmin, o, f(v,u) be unique, Vg(v) = Vy f(v,u*), vve V.

Proposition 26 (P-Donsker classes, Donsker theorem [126, Section 19.2]). Let F' = {{y : X —

R} be a set of measurable functions defined on a bounded subset of R™. For every 61,6, and x,
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if there exists a constant ¢ such that ¢, (x) — g, (x)| < c||6h — b2y, then F is P-Donsker. For

any function € in F', let us define the following functions

fi= 7 U0, and [ =E[f(U)].
=1

Assume that for all £, ||{||, < M and random variables {U;};>1 are Borel-measurable, we then
have E[Vt||fi — flloo] = O(1), where ||€]|o = inf{C >0, |f(z)| < C V¥ z}.

Proposition 27 (Quasi Martingales [125, Section 4.4]). Let (Q, F,P) be a probability space,
{ut}t>0 be a stochastic process on the probability space and {Fi}i~0 be a filtration by the past

information at time instant t. Let us define the indicator function §; as follows

5 A 1 if Elugr —wl|F] >0,
t pr—

0 otherwise.

For allt, ifuy > 0 and Y2 E[0;(uit1 —ui)|Fi] < 0o, then us is a quasi-martingale and converges

almost surely, i.e.,

[o¢]
ZE[Ut—i—l — w|Fy] < o0.
t=1
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7.1. INTRODUCTION

Tensor-train (TT) decomposition has been an efficient tool to find low order approximation of large-scale,
high-order tensors. In online setting, TT decomposition has not gained much attention and popularity
as CP and Tucker decompositions. In particular, the existing TT decomposition algorithms are either of
high computational complexity or operating in batch-mode, and hence, they become inefficient for (near)
real-time processing. In this chapter, we introduce three new online algorithms for the problem of stream-
ing tensor-train decomposition. The first algorithm called TT-FOA is capable of tracking the low-rank
components of high-order tensors from noisy and high-dimensional data with high accuracy, even when
they come from time-dependent observations. The second algorithm called ATT is specifically designed for
handling incomplete streaming tensors. ATT is scalable, effective, and adept at estimating low TT-rank
component of streaming tensors. To deal with sparse outliers, we propose the so-called ROBOT algo-
rithm which stands for ROBust Online Tensor-Train decomposition. Technically, ROBOT has the ability
to tracking streaming tensors from imperfect streams (i.e., due to noise, outliers, and missing data) as
well as tracking their time variation in dynamic environments. We conduct several experiments on both

synthetic and real data to demonstrate the effectiveness of the proposed algorithms.

7.1 Introduction

Tensor decomposition has received increasing attention from the machine learning and signal
processing community over the years [10,11]. It has been successfully applied to a broad range of
applications, from wireless communications [182,354] and image processing [355,356] to neuro-
science [179,357|. Tensor-train (TT) decomposition, which is one form of tensor decomposition,
has become a powerful processing tool for multi-dimensional and large-scale data analysis [12].
Under the tensor-train format, we can factorize a high-order tensor into a sequence of 3-order

tensors, see Fig. 7.1 for an illustration.

TT decomposition offers several advantages compared to the two standard Tucker and CP/PARAFAC
decompositions. First, we can represent any high-order tensor under T'T decomposition and its
computation is stable since it is based on computing low-rank approximations of unfolding ma-
trices of the tensor [16]. Second, TT-rank can be effectively determined in a stable way in
contrast to CP-rank which is known as an NP-hard problem [195,358]. Moreover, TT decompo-
sition provides a memory-saving representation for high-order tensors and can break the curse
of dimensionality which limits the order of the tensors to be analysed [16,189]. Accordingly,

TT decomposition is expected to be capable of handling big tensors efficiently and effectively.
We refer the readers to [12] for a comprehensive survey on basic properties, algorithms, and

applications of the tensor-train decomposition.

In recent years, the demand for big data stream analysis has been increasing rapidly [2].
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[le r.l] [rzl.)< I2 X I’.2] [rN—Z X IN—l>< r.N—l] [rN—l>< IN]

X = | GY x!|GAI x. ... x;_|GNDEH x| gV

Figure 7.1: Tensor-train decomposition of X € RI1*/2xxIn

In most modern online applications, data acquisition is a time-varying process where data are
sequentially acquired at a large scale with many attributes over time. This leads to several
issues for tensor decomposition in general and TT decomposition in particular: (i) size of the
tensor is growing linearly with time, (ii) time variation in nonstationary environments where the
underlying process generating the tensor can change over time, and (iii) uncertainties (e.g., im-
precise, noisy, and misleading entries) emanate during data collection, to name a few. In parallel,
missing data are ubiquitous in multi-dimensional and large-scale data analysis where collecting
all data attributes at a time is either too expensive or even impossible due to corruption [359].
Accordingly, it is of great interest to develop adaptive (online) tensor decomposition or tensor
tracking algorithms which are capable of handling these issues. In spite of several successes in
batch settings, T'T' decomposition has not gained the same popularity in online settings as CP
and Tucker decompositions. Particularly, most of the existing TT methods are operating in

batch-mode and become inefficient for streaming applications.

Related Works: There exist few T'T methods related to adaptive tensor decomposition in the
literature. In [360-362|, Lubich et al. introduced some dynamical tensor approximation methods
under TT format for factorizing time-varying tensors, thanks to the Dirac—Frenkel-McLachlan
variational principle. However, the dynamical tensors of interest are of fixed size, and hence, their
methods indeed belong to the class of batch TT algorithms. In [267], Liu et al. proposed an
incremental T'T method called iTTD for decomposing high-order tensors of which one dimension
grows with time. iTTD factorizes new streams as individual tensors into TT-cores and then
appends the estimated cores to old estimates from past observations. In [268], Wang et al. also
developed an incremental TT method for factorizing tensors derived from industrial IoT data
streams, namely AITT. By exploiting a relationship between the directly reshaped matrix and
integration of unfolding matrices, AITT can estimate effectively the underlying TT-cores with
low cost. Nevertheless, it is worth noting that the framework of both iTTD and AITT is not
really online streaming learning, but incremental batch learning. These drawbacks encourage us
to develop adaptive methods for factorizing high-order streaming tensors under the tensor-train

format.
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[|1>< '1] [l’lx szrz] [rN_2 x lN-1er_1] [rx14]
—_— 1 1
XY - Gt(l) « [G® Xy e X G-I < ™
S —
X, G

Figure 7.2: Streaming Tensor-Train Decomposition of X; € RItxT2xxIn-1xT}y

7.2 Streaming Tensor-Train Decomposition

7.2.1 Problem Formulation

Consider a streaming N-order tensor X; € RIx/2xxIn —1x1y fixing all but the last “time” di-
mension 1. At time ¢, X; is particularly obtained by appending a new slice Y; € RI1*/2x-*In-1
to the previous observation X;_; along the time dimension, i.e., I = va_l +1, please Fig. 7.2 for
an illustration. Instead of recomputing the batch TT decomposition for X';, we aim to develop
an efficient update, both in computational complexity and memory storage, to obtain TT-cores

of X; from past estimations.

TT decomposition of X; can be represented by a multilinear product of 3-order tensors called
TT-cores:

xi=6" x5 g7 xi - xn g, (7.1)

where rpp = [r1,79,...,7Ny_1] is a vector containing the TT-ranks, ggl) e RIOxm, gﬁN) €
R™N-1XIx and g§”) € Rrn—1XInXrn 'y =9 . N —1, are the TT-cores. In practice, (7.1) is only

an approximate model in a noisy environment, i.e.,
1 2 N
X, =60 x1 6@ xb xL g™ 4N, (7.2)
where N} is a noise tensor. The TT-cores can be estimated by solving the following minimization:

{g§ )}7]1\[:1 = argmin iHXt — XH st. x=¢gW x% g xé X}V g™, (7.3)
{9, "

Problem (7.3) can be rewritten in the adaptive scheme as follows
t

{gt”)}f:’:l = argmin Zﬁt”
{g<”)}§¥:1 =1

Ve =Wk 6V g™ (1)
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where Y, € RI1xIaxxIN-1 ig the 7-th slice of X, ggN) € R"~-1%1 ig the i-th column of the last
TT-core gﬁ”) and a forgetting factor A € (0, 1] is to discount the effect of past observations. The

following steps describe the basic idea of our method for solving (7.4).

Let us denote H; = ggl) X5 XNy QgN_I) nd {gt 1} _, be the old estimated TT-
cores of X;_1. Under the assumption that TT-cores are either static or changing slowly, hence
H; ~ H;i_ 1. Thus, we have

Hoxly G = X1 By Y,
= (e xh 0 By (Hxh g™ = Hxi [ [&V] (79)

Accordingly, we only need to estimate the last column vector gt ) of g(N) € R™V-1%t at time t,

instead of re-estimating the whole gt which becomes inefficient for a large t:

g™ = g™ | &™]. (7.6)

The vector ggN) can be updated by minimizing the ¢-th summand in (7.4):

2
g£N) = yt — Ht—l X}L g(N)HF. (7.7)

argmin
g(N) ER"N-1 x1

After that, we update TT-cores {GM}N -1 1

t
G\" = argmin [ft(g(n)) => BTV - A XL 6™ i, B

g(n) =1

: 7.8
F| (7.8)
where the two auxiliary tensors are given by

A =g gl (7.9)
B =gl ok 6T X g, (7.10)

We make the following assumptions for convenience of deploying our method: (A1) TT-cores
{G () ff;ll may change slowly between two consecutive instances ¢ — 1 and t, i.e. gﬁ”) ~ gg’j)l;

and (A2) TT-rank vector rpr = [r1,72,...,7y—1] is known and does not change with time.

7.2.2 Proposed Method

In this subsection, we propose an efficient first-order method, namely TT-FOA (which stands
for TT adaptive decomposition using First-Order Approach), for tensor-train decomposition of
streaming tensors by adapting the alternating minimization framework to the problem (7.44).

(N)

The proposed algorithm consists of two main steps: (i) estimate g, ’ first, given past estimated
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Algorithm 9: TT-FOA: First-Order Adaptive Tensor-Train Decomposition

INPUT: Observations {Y,}$2,, Yy € REvx<lexXIn—1 TT_rank rpr = [r1,792,...,7N_1],
forgetting factor 0 < 8 < 1.
INITIALIZATION: {G{"}N= are initialized randomly and {S{”}¥N-! =L

MAIN PROGRAM:

PROCEDURE:
fort=1,2,... do
Step 1: Estimate g,gN)
Hir = G§91 X% Gg1 Xila ><N 1 g(N Y
H; ; =unfolding(H:i—1,[[1l2... IN—1,7N-1])
Q= randsample([l,]1[2 . IN—l])
va, = vec(Ys)
g = Hﬁt,lmt

A=Y —Hi- 1><Ng(N)

Step 2: Update TT-cores G, in parallel

1 n—1
'At 1= t 1 X% Xn—1 g( )
Agn)l = unfolding(A§ )1, [rn—1, 115 . In,l])
B(n) gtn+1 n+2 XN 1g(N 1) X}ng(gN)
B§") = unfolding(B( rny In1lnso - - IN,I])
th) _ (n) ® A(n)
S(”) Bs(” +W(”)w( )

T

V(n) (S(n)) Wgn)
Agn) = unfolding(Ay, [In, Tn—17n))

-

G = GfY) + APV
(n)
t

= reshape(ng)7 [Pr—1, In,7n])
end
OutpuUT: TT-cores {QE”)}iLl-

(N)

TT-cores; (ii) then we update TT-cores G in parallel, given g, ’ and remaining TT-cores.

The pseudocode of TT-FOA is summarized in Algorithm 9.

7.2.2.1 Estimation of gEN)

(N)

Given a new slice Y; and past estimated TT-cores, g, ’ can be estimated by solving (7.7)

N .
g, ' = argmin
g(N) €R™n—1% 1

R R
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where p is a small positive parameter for regularization. It can be reformulated via its matrix-

vector representation as follows

(N) _

g, ' = argmin

2
, (7.11)
gMeR™N-1%1 2

2
yi—Heg™|| + 2)g™)
2

where y; = vec(Y;) and Hy_; € RIt+IN-1X"N-1 ig the unfolding matrix of H; ;.

Problem (7.11) is an overdetermined least-squares (LS) regression, it can be efficiently solved

by using the randomized sketching technique [323], as

(V) _

g, ' = argmin

2
, (7.12)
g(N)gRTNAXl 2

0] I

where £(.) is a sketching map. Thanks to the Kronecker structure of H[t — 1], uniform random
sampling can provide a good sketch for H; 1. Accordingly, we can select rows of H;_1 as well
as y; at random to form the sketch Hq, |, € RIxrv-1 and a sampled vector € RI®I*1 where
) denotes the set of sampling rows. Therefore, gEN) can be efficiently updated by applying the

ridge regression method to (7.12), whose closed-form is given by

N -1
glg ) = (Hgt,1H9t71 + pIT’N—l) Hgtflygt‘ (713)

As a result, the last TT-core QEN) is updated as follows

g = [giﬂ) | g§N>]. (7.14)

7.2.2.2 Estimation of TT-cores

Given the new slice Y; and past estimations, the k-th TT-core gﬁ") can be estimated by mini-
mizing the matrix-representation of the objective function (7.48), as follows

G<") ERIn XTnTp 1

t
G"= argmin |f(GM) =3 5|y —aIWL |, (7.15)
T7=1

where G%n) is the mode-2 matricization of gt”), an) is the mode-n matricization of Y, ; W&”) =

BS”) ® Agﬁ)l where ® denotes the Kronecker product, A)@l and BS”) are the unfolding matrices
of A,@l and B respectively;

The local optimal an) can be obtained by setting the first derivative of f (G(”)) to zero:

t t
Gy prrwwe = S gy we (7.16)

i=1 i=1
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From that, we can obtain Gﬁn) in the recursive way as follows:

T T
Let us denote Sgn) = Ztr:1 ﬁt_TWSn)WSn) and Rgn) = Zizl ﬁt_TYSn)Wgn) . The two ma-

trices Rgn) and Sgn) can be updated recursively:

.

s = s + witw (7.17)
_ T

R{™ = R, + XPwi (7.18)

Therefore, (7.16) can be rewritten as

.
G™s" = sR™, + YW

n n n n T
=BG, YW

=St ¢ (v - el wimywi (7.19)
Let the residual matrix Agn) and coefficient matrix Vgn) be
AW =y _gmw, (7.20)
v —w ! (s)) (7.21)
We obtain a simple rule for updating ng) as follows
G =c" +aMv, (7.22)

After that, the TT-core gﬁ”) will be derived from reshaping ng) into a 3-way tensor of size

Tne1 X Ipn X 7.

We also note that when dealing with large-scale and high-rank tensors (i.e. r, =~ I,,), TT-FOA
can be sped up by using its stochastic approximation. We refer to this method as the stochastic
TT-FOA. Particularly, the gradient V f (G(")) can be approximated by the instantaneous gradient
of the last summand of f (G(”)). Thus, Sgn) can be computed by

s~ W (Wit T, (7.23)

Accordingly, the matrix Vgn) in (7.21) can be derived directly from the right inverse of Wgn).

As a result, the stochastic TT-FOA not only skips several operations, but also saves a memory
storage of O(r2_,r2) for storing Sgn) at time t. However, the stochastic approximation achieves

a lower convergence rate than the original TT-FOA, see Fig. 7.7 for an illustration.
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7.2.2.3 Computational Complexity and Memory Storage Analysis

For convenience of the analysis, we assume that the fixed dimensions of the tensor are equal to
I while its TT-rank is rpp = [r,7,...,7]. In terms of computational complexity, TT-FOA first
requires O(|Q|r?) flops for computing gEN) by using the randomized LS method at time t. The
cost for updating the k-th TT-core, g§”), comes from matrix-matrix products except an inverse

operation for Sgn), hence it costs O(IV~172) flops in general. It is due to that the matrix SE") is

2 x r2, thus the computation of (Sl(tn))*1 is not expensive and independent of the tensor

of size r
dimension. Therefore, the overall computational complexity is O(1 N ~1r2). In term of memory
storage, TT-FOA does not require to save the observation data at each time, it totally costs
O((N — 1)(Ir* + r*)) words of memory for storing n — 1 TT-cores and N — 1 matrices Sgn).
When the stochastic TT-FOA is applied, the memory storage is only O((N - 1I r2) words of

memory.

7.3 Streaming Tensor-Train Decomposition with Missing Data

In this subsection, we propose a novel adaptive algorithm called ATT (which stands for Adaptive
Tensor-Train) for decomposing high-order incomplete streaming tensors with time under the
tensor-train format. By utilizing the recursive least-squares method in adaptive filtering, ATT
minimizes effectively a weighted least-squares objective function accounting for both missing
values and time-variation constraints on the underlying tensor-train cores. The proposed ATT
algorithm is scalable, effective, and technically adept at estimating low-rank components of
streaming tensors from noisy, imperfect, and incomplete observations as well as tracking their
time variation in nonstationary environments. Besides, ATT can support parallel and distributed
computing. To the best of our knowledge, ATT is the first TT algorithm which is capable of

dealing with time-dependent streaming tensors with missing values.

7.3.1 Problem Formulation

In this work, we consider the streaming tensor-train decomposition of an N-th order incom-
plete streaming tensor X; € RItxR2xxIn-1xIy fixing all but the last time (temporal) dimen-
sion I&. Particularly, X} is derived from appending the incoming stream Y, € RI1*f2x-xIn—1xW
(with W > 1) to the last observation X,;_; along the time dimension, i.e., X; = X;_; Hy
Y; with I}f\, = I]t\,_1 + W. We suppose that X’; is generated under the following model:

Vi=P:® (Li+Ny). (7.24)
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Here, P; is a binary (mask) tensor, N is a Gaussian noise tensor, and both tensors are of the

same size with X’;. The low-rank component £; of X’; has the form
=6 xig® xl.. L e, (7.25)

where G € Rrn-1%InX™ for n = 1,2, ..., N with ro = ry = 1 is the n-th TT-core (the first
and last TT-cores are indeed matrices); [r1,r,...,7n—-1] is the TT-rank; and GiN) € RTN-1xXW

contains the last W columns of the temporal TT-core QEN), ie., g§N) = [ Ei\? ! GEN)].
Conventionally, TT-cores {gt )} _, can be obtained from:

X 2
{gﬁ”)}ﬁf:l = argmin H'Pt ® (Xt —gW x5 g® X3 XNy g(N)> H J (7.26)
@, ’

where P, is the observation mask of the underlying tensor X;. In online settings, retaking the
batch TT methods to solve (7.26) becomes inefficient due to inherent time-variation and non-
stationarity of data streams as well as their high complexity in both computation and storage
cost. Therefore, we aim to develop a low cost and effective tracker to estimate the TT-cores of

X in time.

Specifically, we propose to minimize the following exponentially weighted least-squares objec-

tive function, instead of (7.26):

Pro (¥, -G xd - xh, 6k @)

t
(G H = i |35
{g(n) }27:1 =1

N-1 9
o3 [lo o | 721
n=1
where 8 € (0,1] is a forgetting factor aimed at reducing the effect of distant observations as well
as facilitating the tracking process in dynamic environments; and p is a regularization parameter
for controlling the time variation of TT-cores between two consecutive instances. Note that,

when =1 and p = 0, the objective function of (7.44) boils down to the batch one of (7.26).

To support our deployment in Section III, we make two mild assumptions on the data model:
TT-cores {G () may either be static or vary slowly with time, i.e. gt ~ gg@l; and TT-rank

is supposed to be known.

7.3.2 Proposed Method

In this section, we propose an adaptive method called ATT for adaptive tensor-train decompo-
sition with missing data. Thanks to the block-coordinate descent (BCD) framework, we par-

ticularly decompose (7.44) into two main stages: first, update the temporal QEN) given old

248
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Algorithm 10: ATT - Adaptive Tensor-Train

INPUT: Streams {P; ® V;}2,, Pi, Yy € R XX In—oxXW TTrank rpp = [r1,79,...,7N_1],
forgetting factor 0 < 8 < 1, regularized parameters p, A > 0.

INITIALIZATION: {QO )}N | are initialized at random, {S =0 and {Agon)}N =0

MAIN PROGRAM:

n= 1

PROCEDURE:
fort=1,2,... do

Stage 1: Estimate the temporal TT-core QEN)

Hi- 1_gf P Xy Xy 1g(N Y

H, = reshape{?-ttfl, Lis... IN,l,rN,l}}
fori=1,2,..., W do

yii =vec{¥(:,...,510)}

Pt,i = diag{’F’t(:7 e z)}

GM (i) = (B P Hey + ML, ) H Py,
Oyei = Pri(yei — Ht71G2(5N)(I,i))

AY:, = reshape{(sym, [I1,I,...,In_1, 1]}

end

g(N) [gEN) G(N)]
AY; =AY 1 By AV o Hy - By AYyw
Stage 2: Estimate the non-temporal TT-cores {ggn)}
forn=1,2, ...,Nfldo
n 1 n—1
A:E )1—915—)1 X3 oo X n 1g( )
A( )1 = reshape{Ai 1 rn 1,115 ..In,l]}
g(n+1) ><1Jr2 g 1) }\/ GEN)
BE " — reshape{Bg ), rn,In+1In+2 . -~IN—1]}
Wi = B o AL,
S — 8(%, + Wi (W)
AG" = (P & AY(") (W) "+ 3pAG™) ) (S + 41, v, )
G(”) G +AG™

gt —reshape{G( [rn—1,1n,7n]}

end

Stage 3 (Optional): Re-estimate ggN) with updated {gi”)}f: as in Stage 1.
end

OutpuT: TT-cores {gﬁ")}

N-1

n=1

N

n=1"

N—1
17

TT-cores, for n =1,2,..., N — 1. In stage 1, we apply the well-known regularized least-squares

estimations {gg’j) and second, estimate the non-temporal g given g,ﬁN) and remaining

method for estimating QIEN). An elegant recursive least-squares (RLS) adaptive filter is specifi-
cally developed to update the non-temporal TT-cores {g§”) iV:_ll in an effective way. Main steps

of the proposed ATT method are summarized in Algorithm 10.
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7.3.2.1 Estimation of the temporal TT-core QEN)

On the arrival of Y, we obtain GgN) from

2 2
G = argmin HPt ® (yt — Hi1 xk GV H n AHG(N)H , (7.28)
G F F
where H;—1 = E )1 ><2 x}v_lggffl) and A > 0 is a small regularized parameter. Here, the first

term of (7.28) is aimed at minimizing the residual error between observation and estimation for
t-th temporal slice, while the introduction of |G |2 is for avoiding the ill-posed computation

in practice. Particularly, we can rewrite (7.28) as follows

po (o) ool

GgN) = argmin

G(N)
where Yy, Py € RIv-IN-1xW and H;_; € RV IN-1X"N-1 are the unfolding matrices of Yy, Py
and H;_1, respectively. Furthermore, (7.29) can be decomposed into W subproblems w.r.t. W

columns of G(MV):

: e 2 )
G{"™(:,i) = argmin HPt,i <Yt,i - Ht—1g¢> ’2 + Allgil5- (7.30)
g

where y;; = Y¢(:,i) and P;; = diag{P:(:,i)}. The closed-form solution of the regularized
least-squares (7.46) can be given by

_ -1 _
GIM () = (AL PriHy g + ALy ) HL Pry (7.31)

Then, the temporal TT-core giN) is simply updated as gﬁN) = [gﬂ ‘ GgN)}. Note that, we

can re-update GEN) in the same way above when other TT-cores {g§”) 7]:[;11 are updated.

7.3.2.2 Estimation of the non-temporal TT-cores {g§">}f:‘11

We update {G™}V - by minimizing

P @ (yT _ A, 1 g B(m)H +p‘)g _gin

g( n) = argmin [Zﬁt T

n ‘E

(7.32)

where At 1= 1(51)1 Xy Xn g gtnll) and BY" gth Xy XNt ggfl) XN G, For

a better interpretation, we further recast (7.32) as

B (- oW+ o -2

G( " = argmin [Z,@t T

Gm) =1

2
(F] . (7.33)
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where G§ ) _ reshape{gt (I, Tn— 17%]} 7571),!5”) are the mode-n unfolding matrices of P,
and Y,; W =B Ag@l where

Agn)l = reshape{.Agn)17 [rn—1, 11> .. In—1]} (7.34)
(n) = reshape{B Tny In+IIn+2 IN—I]} (7.35)

Similar to the update of Gg ) in the first stage, we can update independently each row g(n)

of ng) as follows:

g\ = argmin [iﬁ” PT’Z‘m( () —ghwim )THz +p Hgfﬁ) - gﬁ)l,mHz] : (7.36)

where yg ,21 =Y

2
=
VS

m,:) and 135",21 = diag{E(Tn) (m, )}

Specifically, gt(??)l can be derived from setting the gradient of the function in (7.36) to zero:

t
(oo, + 30 #TWEIBL), (W) ) (g0) T = p(el,) T + 3 BT WIDBL) (4101)
=1 T=1

The closed-form solution of (7.37) is then given by
- n n T
gl = (S + pLrir) (A + (80 )] (7.38)

Where S( ™) and d(n) can be recursively updated as S = BSt 1m T Wt( npn) (Wt(n))T and

m tm

Bdt 1m —i—W( )P(n) (y(") ) . After doing some sunple calculations, we can rewrite (7.38)

t,m

as

> n n n -7
g = 8"+ (¥ PIL (W) T+ 8p0g(™, ) (S + PLrir) (7.39)

,m

where 6y§% = f’g% (yﬁi ggn)l ngn))T and égﬁ)l’m ggn)lm — gg )2m Accordingly, a

n)

recursive rule with a lower space complexity for updating the whole matrix GE at the same

time can be given by
-T
G =G+ (B © AY) (W) pAGE) (874 i) (140

where AY{") = Y — G, W™ and AG", = G, — G,

Then, we simply set gt = reshape{G( [rn—1,1n,7n]}. The rule (7.40) also suggests that
we can incrementally update {gt N_ ! in parallel without disrupting other each. In other

words, ATT can support parallel and distributed computing.
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7.3.2.3 Complexity Analysis

For brevity, we assume that I, = I and r,, = rforalln =1,2,..., N—1. At time ¢, ATT requires
a cost of O(W||r?) flops for updating GEN) where |€;] denotes the number of observed data.
Most of operations for updating gg”) are matrix-matrix products except an inverse operation of
a r? x r? matrix. Thus, ATT requires an extra cost of O((N — 1)IV~"1r?) flops. The overall
complexity of ATT is (9(7"2 max {(N — 1)IN"1p2, W]Qt|}) flops. In term of memory storage,
ATT needs O((N —1)(2Ir? + r*)) words of memory for storing {gt”)}fgf, {Agﬁ”)}fj;f, and

(n)y N—-1
{8 1o

Compared to batch TT methods (e.g., TT-SVD [16] and TT-HSVD [363]), the cost of ATT is
much cheaper as it is independent of the temporal dimension. Besides, its computation involves
only cheap matrix-matrix products and inverse operations of small matrices, and hence, it avoids
the expensive computation of SVD on the tensor’s unfolding matrices. Compared to TT-FOA
that is the first and only adaptive algorithm for streaming T'T decomposition in the literature,

ATT shares the same computational and space complexity.

7.4 Streaming Tensor-Train Decomposition with Sparse Outliers

In this paper, we introduce a new tensor-train method for factorizing incomplete high-order
streaming tensors possibly corrupted by sparse outliers. The proposed method is referred to as
ROBOT which stands for ROBust Online Tensor-Train decomposition. ROBOT involves two
well-known optimization methods: block-coordinate descent (BCD) and recursive least-squares
(RLS). Thanks to the BCD framework, ROBOT decomposes the main optimization into two
stages: (i) online outlier rejection and (ii) tracking of TT-cores in time. In the former stage,
we apply an effective ADMM solver to estimate the last (temporal) TT-core and sparse outliers
living in observations. In the latter stage, we present an efficient RLS solver to minimize an
exponential weighted least-squares objective function accounting for missing entries and time
variations of T'T-cores. Technically, ROBOT is capable of estimating the low-rank components
of the underlying tensor from imperfect streams (i.e., due to noise, outliers, and missing data) and
tracking their time variation in dynamic environments. To the best of our knowledge, ROBOT is

the first streaming T'T decomposition robust to sparse outliers, missing data, and time variation.

7.4.1 Problem Formulation

In this paper, we study the robust adaptive tensor-train decomposition of a N-order streaming
tensor X; in the presence of both sparse outliers and missing data. Without loss of generality, we
suppose the last dimension of X; is temporal, while the others remain constant with time, i.e.,

X, € RIvxlxxIn_ixIy, Specifically, at time ¢, X; is obtained by concatenating the incoming
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Slice Y;

Low-rank £, Outlier O Noise N;

Figure 7.3: Temporal slice Y; with missing data and outliers.

data stream Y; € RIVI2XXIn-1xW (with W > 1) to the old observation X; 1 along the

temporal dimension I%, i.e.,
X, =X, ByY, and Iy =1Iy"+W. (7.41)
The temporal slice Y; is supposed to have the form
Vi=P:® (Li+ O+ Ny), (7.42)

see Fig. 7.3 for an illustration. Particularly, P; is a binary mask tensor, Oy is a sparse outlier
tensor, N is a Gaussian noise tensor, and they share the same size as Y;. The low-rank

component L£; of Y; is expressed as
P e ) 719
where gi”’ € Rm-1XInXTn forp = 1,2, ..., N with rg =7y = 1is the n-th TT-core; [r1,72,...,7N_1]
is called TT-rank; and GEN) € R™v-1W contains the last W columns of ggN).
In online settings, we propose to minimize the following objective function:

argmin

t
(n)yN Zﬁt_k<H'Pk ® (g(l) xg - x_1 GV Xy GIY 4+ O - yk) Hi * leok”1>
{g"M}y)_,,0

k=1

N-1
)
n=1

2
’F] . (7.44)

Here, 8 € (0, 1] plays the role of a forgetting factor in adaptive filter theory which aims to reduce
the impact of distant observations as well as deal with nonstationary environments [364]. The
¢1-norm enforces the sparsity on O (the outliers), while the last regularization term of (7.44)
is to control the time variation of TT-cores between two consecutive instances. In addition, we
make two mild assumptions on the data model to support our algorithm development in Section
III: TT-cores {g(">}fLV;11 may either be static or vary slowly with time, i.e., gt”) ~ gg’j)l; and

the TT-rank is supposed to be known.
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7.4.2 Proposed Method

In this section, we propose an adaptive method called ROBOT (which stands for ROBust Online
Tensor-Train) for factorizing tensors derived from data streams in the presence of sparse outliers
and missing data. Particularly, we decompose the main problem (7.44) into two stages:

N-1,
n=1"

e Stage 1: update gﬁN) and Oy given {gg’j)l}

e Stage 2: estimate gﬁ") given gﬁN), Oy, and the remaining TT-cores, forn =1,2,..., N—1.

7.4.2.1 Estimation of the last TT-core QEN) and Outlier O,

At each time ¢, we estimate GIEN) and O by solving

{60,0.) =argmin [P (#e1 < 6+ 0 - W)Lt ml0]) + IS

(7.45)

_cm 1.1 (N-1) (N2 - . .
where Hi—1 = G} %5 Xn_1 G;—1  and the term ps||G'™Y)||% is to mitigate ill matrix
conditions. Interestingly, we exploit the fact that (7.45) can be decomposed into W sub-problems

w.r.t. W columns of GgN), as follows:

2
)2+P1H0i||1+p2HgiH§. (7.46)

argmin HEM (Ht—lgi +0; — Yt,i>

gi,0;

Here, g;,0;, and y;; are, respectively, the i-th column of GW) | the two unfolding matrices of
O and Yy; the mask P,; = diag{El(fN)(i,:)}; while the matrix H;_; € R IN-1XTN-1 jg g

matricization of H;_1.

Since both ¢;-norm and f3-norm are convex, (7.46) can be effectively minimized by several
methods, e.g., block coordinate descent (BCD) [365] and alternating direction method of multi-
pliers (ADMM) [114]. In this work, we adopt the ADMM solver introduced in our companion
work on robust subspace tracking [25]. Specifically, the update rule at the j-th iteration of the
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solver is given by

. -1 ) .
g’ = (HtT_1Et,th—1 + P2IrN_1> H/ P, (Yt,i —o/ M+ ej_1>v

7l = P, (Ht—lgj e Yt,i)a

j A 1 .

J = J 78 J
=T o @)

. 1 ) - -
W= W (Et,i(yt,z’ _ Ht—1g])) — Ap(0? 7t — i,

o =8, (0 +1r7),

v/ =rl ol — 8

Here, {zj el ul r } are dummy variables aiming to accelerate the update initialized as zeros;
the augmented Lagrangian parameters A; and A2 can be chosen in the range [1,1.8]; and S,(.)
is the soft-thresholding operator defined as S,(z) = max(0,z — @) — max(0, —z — ). We refer
the readers to [25] for further details. Note that since (7.46) is a biconvex minimization problem,
and thus, we can apply any other existing proved algorithm to obtain its optimal solution [366].

The temporal TT-core QEN) is simply obtained by QEN) = [gﬂ GEN)]. In addition, we

(N) N—1

can re-update G; '’ in the same way as above when others TT-cores {gﬁ") n—1 are updated.

Furthermore, after obtaining the outlier O, we can accelerate the tracking ability of ROBOT

by re-updating the observation mask P; as follows

N 0, if [O0;]. . . #0,
— 1 [ t]zlzg...uv?é (747)

['Pt] otherwise.

11%2...4N

[Pt]ilig...iN

It is motivated by the following observation: In the literature of robust subspace tracking (RST),
the outlier rejection step can facilitate the tracking ability of RST estimators because only “clean"
data are involved in the tracking process [25]. Our stage 2 for tracking the TT-cores can be
viewed as an extended version of RST for high-order streaming tensors, so the outlier rejection

mechanism of (7.47) can improve its performance.

N-—1
n=1

7.4.2.2 Estimation of TT-cores {gﬁ”)}

We estimate {G (")}g:_ll by minimizing

61" —omgnin| 322 (A} <k 6 b 8- . [ 4 - 0.

(7.48)
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where A~E7—L1 = ggl)l X3 X ginll and B = g(nH Xppo T XN_1 ggl_ : XN G
while the term O}, is discarded due to outlier rejection mechanism (7.47), i.e., Py @ (V¢ —
O, = P, ®Y,. Particularly, (7.48) can be regarded as the optimization problem of adaptive
TT decomposition from incomplete observations {Y;}:_, with new binary masks {Py}i_,
Accordingly, we can apply the effective recursive least-squares (RLS) method as proposed in our
work [30] for minimizing (7.48). For the sake of completeness, we describe here the main steps

of the RLS solver and refer the readers to [30] for further details.

For a better interpretation, we first recast (7.48) as

PO, (s (B @ AP v ||

G(n)

G( )—argmm [Z (Zﬁt T
+p2Hg$ZZ)—gt 1mH )] (7.49)

where gﬁff ) is the m-th row of G € RInX"-17n which is the transpose of the mode-2 unfolding
matrix of G , Prm = dlag{P(Tn ,:)}, Agf)l = reshape{Al(i)l, [rn—1, 1115 ..In,l]}, and
Bsn) = reshape{B( [rny Int1lnta - IN—1]}-

Let us denote W&”) = B(Tn) & A,@l and

t
S, = > 8w PL (W) (7.50)
T=1
t
dh) =>" g wpe) (v (7.51)
T=1

At time ¢, we then have

s(” 6St i + WP M(W(”)) (7.52)
Setting the gradient of (7.49) to zero results in:
In T T
> (St el ) (82) T =D (d +p2(eln) ). (7.54)
m=1 m=1

Therefore, we can express each row gg’% of ng) separately as

(Sion + oL i) (&000) | = A+ p2 (g™ 0) (7.55)
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Thanks to (7.52) and (7.53), we further recast (7.55) as

n n n) 5(n n)\ T n n B
N T B N P S
where 5y§7n) = f’g%( g% — ggﬁ)LmWEn))T and 5gt(ﬁ)1’m = gt(ﬁ)l,m — ggﬁ)Zm. Collecting all rows

gﬁ)l together (for m =1,2,...,1,), we obtain a simpler recursive rule as

-7
G =G+ (B & AX(") (W) "+ 6 AGHE ) (S 4 o) (75)

where AX(") = X{" -G W™ and AG!™) = G, ~G"),, and 8\ = S, + W (W) "
To enable the recursive update (7.57), we set AGE)") =0 and S(()n) =61, . with 6 > 0.

7.4.2.3 Computational Complexity and Memory Storage

For short, we suppose I, =1 and r,, =r foralln =1,2,..., N —1. In Stage 1, ROBOT requires
a cost of O(W||r?) flops for estimating both GEN) and O; where || denotes the number of
observed data in Y;. In Stage 2, ROBOT needs a cost of (’)((N — 1)IN_17‘4) flops for tracking
N — 1 TT-cores {ggn)}f:’:—f. Therefore, the overall complexity of ROBOT is O(r? max {(N —

DIN=1r2 W|y|}) flops. With respect to memory storage, ROBOT requires O ((N — 1)(21r% +
r*)) words of memory for storing {gt”)}N_l {AQE")}N_l and {Sﬁ")}N_l

n=1" n=1" n=1"

7.5 Experiments

In this section, we conduct several experiments on both synthetic and real data to evaluate
the performance of TT-FOA, ATT, and ROBOT for adaptive TT decomposition. Experiments
are implemented in MATLAB platform and are available online to facilitate replicability and

reproducibility.!

7.5.1 Performance of TT-FOA

We investigate the tracking ability of TT-FOA with respect to the following aspects: effect of
the forgetting factor A, effect of the noise level o, its performance in time-varying environments,

and its use for real data.
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Figure 7.4: Effect of the forgetting factor 8 on the performance of TT-FOA.

RE(XtT‘ 9 Xes)
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Figure 7.5: Effect of the noise level € on the performance of TT-FOA.

7.5.1.1 Synthetic Data

. t
We generate streaming 4-way tensors X; € RI1X[2x5X11 of 3 TT-rank vector rpt = [r1, 72, 73]

as follows:

Yi=6" <16 x5 g7 xi g + N,

"https://github.com/thanhtbt /ATT & https://github.com/thanhtbt /AT T-miss &
https://github.com/thanhtbt/ROBOT
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where the 3-way tensor Y; € RI1*12%I3 ig the t-th slice of X;; My is a Gaussian noise tensor of
the same size with Y; and e controls the noise level; the last column g§4) of TT-core g§4) is a
random vector living on R" space; TT-cores gﬁl), g§2) and 953) are, respectively, of size I X rq,

r1 X Is X 9 and 73 X I3 X r3 given by
G = (1-0)G/") + N},

where o controls the variation of the TT-cores between two consecutive instances, N gn) e Rixm
n . . .. . . . .
and N E ) € Rra-1XInXTu are noise tensors whose entries are i.i.d from the Gaussian distribution

with zero-mean and unit-variance.

To measure the estimation accuracy, we use the relative error (RE) metric given by

|20 .|

R'E(Xtra Xes) = HXt Fa (758)

I
where X, (resp. X¢s) refers to the true tensor (resp. estimated tensor).

The choice of forgetting factor A plays a central role in how fast TT-FOA converges. Fig. 7.4
shows the experimental results of applying the algorithm to a static and free-noise tensor whose
size is 10 x 12 x 15 x 500 and its TT-rank is rrr = [2,3,5]. We can see that the relative error is
minimized when A is round 0.7. TT-FOA fails when A is close to its infimum or supremum. We

then fix A = 0.7 in the next experiments.

To study the effect of noise on the performance of our algorithm, we vary the value of the
noise level € and access its estimation on the same tensor above. The result is shown in Fig. 7.11.
When we reduce the noise, relative error (RE) between the ground truth and estimation degrades
gradually and converges towards a steady state error bound. Note that the convergence rate of

the algorithm is not affected by the noise level but only its estimation error.

We next consider a scenario where TT-cores change slowly with time and abruptly at instant
t = 300. Fig. 7.6 shows the performance of TT-FOA applying to the same free-noise tensor
versus the time-varying factor o. In the same manner to the effect of the noise level, TT-FOA’s
estimation accuracy goes down when o increases, but converges towards a steady state error.
Fig. 7.7 shows a performance comparison among three TT" decomposition algorithms when the
value of the noise level € and the time-varying factor o are 10~ and 10~ respectively. The batch
algorithm TT-SVD fails in this time-varying scenario, while TT-FOA and its stochastic version
can track successfully the variation of the tensor along the time, which yields to an estimation
accuracy very close to the error bound (i.e. steady state error). The result also indicates that the
convergence rate of TT-FOA is faster than that of its stochastic version. This is probably because
the convergence rate of the stochastic TT-FOA is limited by its noisy/stochastic approximation

of the true gradient.
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Figure 7.6: Effect of the time-varying factor ¢ on the performance of TT-FOA in the case of

noise-free.
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Figure 7.7: Performance of three TT decomposition algorithms in a time-varying scenario: The
noise level € = 10™! and the time variance factor o = 1074,
7.5.1.2 Real Data

In order to provide empirical evidences of applying TT-FOA to real data, we use a surveillance

video sequence?, and a functional MRI data®. The video data contains 1546 frames of size

2http:/ /www.changedetection.net /
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Figure 7.8: Track surveillance video: TT-rank rpp = [15,15] and CP-rank rcp = 15.

128 x 160, while the fMRI data includes 20 abdominal scans of size 256 x 256 x 14.

The first task is to track surveillance video. We compare TT-FOA against the two state-of-
the-art adaptive CP tensor decompositions, including PARAFAC-SDT [211| and OLCP [175].
In order to apply these algorithms effectively, color video frames are converted into grayscale.
The CP-rank and TT-rank are set at 15 and [15, 15] respectively. Moreover, the 100 first video
frames are trained to obtain the good initialization for PARAFAC-SDT and OLCP. The results
indicate that TT-FOA outperforms these adaptive CP decompositions, as shown in Fig. 7.8 and
Fig. 7.9. In particular, PARAFAC-SDT fails to track video frame while OLCP achieves a worse

estimation accuracy than our algorithm.

The second task is to demonstrate the effect of TT-rank rp1 on the low-rank approximation
of the fMRI tensor. The abdominal scans are seen as tensor slices in the online setting. Results of
tracking the low-rank component of the last scan are shown in Fig. 7.10. The estimated low-rank
fMRI scan deviates from its ground truth when the TT-rank decreases, and hence the relative

error increases.

7.5.2 Performance of ATT

We investigate the tracking ability of ATT with respect to the following aspects: additive noise

effect, and its performance in nonstationary environments. Its effectiveness for real data is

3https://github.com/colehawkins/
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(a) Original Frame (b) PARAFAC-SDT

(c) OLCP (d) TT-FOA

Figure 7.9: Reconstructed 1345-th frame.

demonstrated with the problem of online video completion in comparison with the state-of-the-

art tensor tracking algorithms.

7.5.2.1 Experiment Setup

At time ¢, the t-th incomplete slice Yy is generated at random under the following model:
Vi=Pi® (6" x1 6 x} 6Y 1 gV + V). (7.59)

Here, P; € RIV}2xI3x1 g 5 binary tensor whose entries are i.i.d. Bernoulli random variables with
probability 1 — wpiss, 1.€., Wniss represents the missing density of Y;. Entries of the noise tensor
N, are ii.d. from N(0,02). g£4) € R™*1 is a Gaussian vector of zero-mean and unit-variance.
TT-cores ggl), 752), and gf’) are of size I1 X 71, r1 X I3 X 7o, and 79 X I3 X r3, respectively. Their
(n)
t—1

time variation is modelled as follows g,ﬁ”) =G, + ev,E”), for n = 1,2, 3, where ¢ plays a role as

the time-varying factor, v§”’ is of the same size as g§”) and its entries are also i.i.d from N(0, 1).

262



7.5. EXPERIMENTS

(a) Grouth Truth (b) RE = 0.077

(c) RE = 0.036 (d) RE = 0.007

Figure 7.10: Effect of TT-rank on the low-rank approximation of fMRI scans: (a) original MRI
scan, (b)-(d) low-rank approximation images for rrr of [10, 10], [20,20] and [50, 50] respectively.

We use the following relative error (RE) metric to evaluate the estimation accuracy:

e = Yes||

RE(ytrayes) - Hyt H ) (760)
"lF

where Yy, (resp. Yes) refers to the true tensor (resp. reconstructed tensor).

7.5.2.2 Effect of the noise level o,

In this task, we vary the value of g, and evaluate the performance of ATT. Here, we used a
static tensor (i.e., e = 0) of size 20 x 20 x 20 x 1000 and rank rpp = [5,5,5]. The missing density
Waniss Was set to 10%. We fixed the forgetting factor 8 and the two regularized parameters p, A
at 0.5, 1, and 1, respectively. A significant change was also created at t = 600 (i.e., we set € = 1
when ¢t = 600 and € = 0 otherwise) to investigate how fast ATT could converge. The result is

illustrated in Fig. 7.11. We can see that the noise level o,, does not affect the convergence rate
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Figure 7.11: Effect of the noise level o, on the tracking ability of ATT.

of ATT but only its estimation error.

7.5.2.3 Effect of the time-varying factor ¢

We next investigate the tracking ability of ATT in nonstationary environments. Similar to the
previous experiment, we also vary the value of € and then evaluate its estimation accuracy. Most
of experimental parameters were kept as above, except the noise level o, which was set to 1073.
Fig. 7.12 illustrates the performance of ATT versus the value of e. We can see that the estimation
accuracy of ATT goes down when ¢ increases, but converges towards a steady-state error in the
similar manner as in the previous case. Intuitively, the time-varying factor has an influence on
the convergence rate of tracking algorithms. However, as shown in Fig. 7.12, the value of ¢ does

not affect ATT’s convergence rate. This “phenomenon" thus deserves further investigations.

7.5.2.4 Effect of the missing density wpiss

Here, we measure the performance of ATT in the presence of different missing densities. Par-
ticularly, the value of wy;iss was chosen among {20%,40%,80%}. We reused the same 4-order
streaming tensor above with o,, = ¢ = 1073. Fig. 7.13 shows that the number of missing entries
in X; has an impact on both convergence rate and estimation accuracy of ATT, i.e., the lower
the value of wyiss i, the better performance ATT achieves. However, even with 80% of missing

data, ATT is still able to achieve relatively good performance.
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Figure 7.12: Effect of the time-varying factor € on the tracking ability of ATT.
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Figure 7.13: Effect of the missing density wpiss on the tracking ability of ATT.

7.5.2.5 Online video completion

Three real video sequences are used in this task, including “Lobby", “Highway", and “Hall".

Their sizes are summarized in Table 7.1.

We compare ATT with other online tensor completion algorithms: TeCPSGD [106], ACP [29],
and ATD [29]. To have a fair comparison, colour video frames were converted into grayscale ones.
The CP-rank, Tucker-rank, and TT-rank were set to 10, [10, 10,10], and [10, 10], respectively.
The results in Table 7.1 (i.e., averaged relative errors) and Fig. 7.14 indicate that ATT provided

a competitive video completion performance.
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TeCPSGD

ACP ATD ATT

Figure 7.14: The 500-th video frame of “Hall” data: 80% pixels are missing.

7.5.3 Performance of ROBOT

We here evaluate the performance of ROBOT in terms of the following aspects: (i) impact of
noise, (ii) its tracking ability in nonstationary environments, (iii) impact of missing observations,
(iv) impact of outliers, and (v) its use for the problem of video background and foreground

separation.

7.5.3.1 Experiment Setup

We follow the problem formulation in Section II to simulate temporal slices {Y¢}+>1. In partic-

ular, Y, is randomly generated under the model
V=P ® (Lt +0, +Nt) where £; = GV x1 g x1g® x1g®. (7.61)

Here, P; € RI1x12xI3x1 j5 o binary mask tensor whose entries are obtained by a Bernoulli model

with probability 1 — wyiss (i-€., Wmiss represents the missing density). N is a Gaussian noise
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Table 7.1: Averaged relative error of adaptive tensor decompositions on incomplete video se-
quences.

2 ° bgo Online Tensor Completion Methods
S z
1 P | £ | 1ecpseD | ACP | ATD | ATT
X% 20% | 0.1351 | 0.1500 | 0.1366 | 0.1264
<+
— o0
= T2 40% | 0.1412 | 0.1562 | 0.1370 | 0.1272
ﬁ-‘ X
= 80% | 0.1547 | 0.1868 | 0.1472 | 0.1336
X 20% | 0.1307 | 0.1320 | 0.1220 | 0.1214
5|23
2| x=|40% | 01327 | 0.1375 | 0.1241 | 0.1223
= | R X
— 80% | 0.1705 | 0.2142 | 0.1432 | 0.1263
| X 20% | 0.2056 | 0.2204 | 0.1980 | 0.1777
=
S| x=|40% | 02119 | 0.2206 | 0.2001 | 0.1836
=g
® 80% | 0.2133 | 0.2481 | 0.2089 | 0.2043

tensor whose entries are i.i.d. from N(0,02). O, is a sparse tensor containing outliers whose
amplitude is uniformly chosen in the interval [0,fac-outlier| while their indices (locations)
follow another Bernoulli model with probability woytiier. £+ 18 the low-rank component of Y, in
which g§4) € R"*! is a standard normal random vector. At time ¢, TT-cores are varied under
the model gﬁ”) = g@l + evgn), where € denotes the time-varying factor, vﬁ”)

size as g,ﬁ”) € R7n—1XInXTn and its entries are derived from N(0,1). At t =0, g(({‘) is initialized

shares the same

by a Gaussian distribution with zero mean and unit variance.

To evaluate the performance of ROBOT, we use the following relative error:

X r Xes
RE(X 1, Xoo) = w (7.62)

)

I

where Xy, (resp. Xs) refers to the true low-rank component (resp. estimation).

7.5.3.2 Effect of the noise level o,

We change the value of g,, and measure the estimation accuracy of ROBOT. We used a streaming

tensor of size 10 x 15 x 20 x 1000 and rank rpp = [5,5,5]. Parameters of the data model were
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Figure 7.15: Effect of the noise level o, on the performance of ROBOT.

set as: time-varying factor e = 0, missing density wpiss = 0%, and outlier density woysiier = 0%
(i.e. outliers free observations). We fixed algorithmic parameters of ROBOT as follows: the
forgetting factor § = 0.5 and two penalty parameters p; = po = 1. The result is shown in
Fig. 7.15. Clearly, the value of o, does not affect ROBOT’s convergence rate but its relative

error.

7.5.3.3 Effect of the time-varying factor ¢

Next, we evaluate the performance of ROBOT in dynamic and nonstationary environments. We
reused the streaming tensor above with 90% observations (i.e., wpmiss = 10%). The noise level
on was fixed at 1073. We set the outlier density and intensity to 10% and 1, respectively. The
forgetting factor and two penalty parameters were kept as above. Also, an abrupt change was
made at ¢ = 600 to assess how fast ROBOT converges. Fig. 7.16 illustrates the effect of € on the
performance of ROBOT. We can see that the performance of ROBOT increases when € decreases

and converges towards a steady-state error.

7.5.3.4 Effect of the missing density w,;ss

We then investigate the tracking ability of ROBOT in the presence of missing data. The value
of wymiss was chosen among {10%, 50%,90%}. We kept all experimental parameters as above,
except the time-varying factor € which was set to 1073. We can see from Fig. 7.17 that both
convergence rate and estimation accuracy of ROBOT are affected by the value of wy,iss. The

lower wyiss 18, the better performance ROBOT achieves.
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Figure 7.16: Effect of the varying factor € on the performance of ROBOT.
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Figure 7.17: Effect of the missing density w,;ss on the tracking ability of ROBOT.

7.5.3.5 Effect of outliers

Here, we measure the robustness of ROBOT against sparse outliers. Most of experimental
parameters were kept as in the previous tasks: wmiss = 10%, 8 = 0.5, 0, = € = 1073, and
p1 = p2 = 1. We investigated the case when 30% entries were corrupted by outliers. Three
levels of the outlier intensity fac-outlier were considered, including 0.1, 1, and 10 (resp. low,
moderate, and strong effect). Fig. 7.18 indicates that ROBOT is capable of tensor tracking from

incomplete observations corrupted by sparse outliers.
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Figure 7.18: Effect of the outliers on the tracking ability of ROBOT.
7.5.3.6 Video background /foreground separation

In this task,? we used three video datasets, including “Lobby”, “Highway”, and “Hall”. The dataset
“Lobby” includes 1700 frames of size 144 x 176. There are 1700 frames of size 240 x 320 in the
data “Highway, while “Hall” consists of 3584 frames whose size is 174 x 144. The performance
of ROBOT was evaluated in comparison with two online background/foreground separation
algorithms, including PETRELS-ADMM |[25] and GRASTA [50]. The subspace rank and TT-
rank were set to 10 and [10, 10], respectively. The result from Fig. 7.19 indicates that ROBOT is

able to detect moving objects in real surveillance video sequences with reasonable performance.

7.6 Conclusions

In this chapter, we have considered the problem of tensor tracking under the tensor-train format.
Three novel adaptive tensor-train decomposition algorithms are proposed for factorizing stream-
ing tensors, including TT-FOA, ATT, and ROBOT. Each algorithm is specifically designed for
dealing with a specific task. In particular, the former algorithm TT-FOA and its stochastic
variant have the capability to track the tensor-train representation of streaming tensors from
noisy and high-dimensional data with high accuracy, even when they come from time-dependent
observations. By utilizing the recursive least-squares method in adaptive filtering, the second
algorithm ATT minimizes effectively a weighted least-squares objective function accounting for
both missing values and time-variation constraints on the underlying tensor-train cores. The
latter algorithm ROBOT — which is a robust version of ATT — is fully capable of tracking the

underlying low-rank component of incomplete streaming tensors corrupted by sparse outliers in

“Here, the foreground plays the role of outliers and its separation from the background is based on the proposed
detection procedure.
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Figure 7.19: Background and foreground separation. From bottom to top row: Highway, Hall,
and Lobby. From left to right column: Original video frame, PETRELS-ADMM, GRASTA, and
ROBOT.

nonstationary environments. All three algorithms are fast, effective, and requires low computa-
tional complexity and memory storage. To the best of our knowledge, they are the first of their

kind that have the potential to handle streaming tensors under the tensor-train format.
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Chapter 8

Conclusion and Outlook

8.1 Conclusions

In this thesis, we have presented several contributions to the problem of tracking the low-rank

approximation of big data streams over time.

For Subspace Tracking

e We provided a survey on recent robust subspace tracking (RLS) algorithms to fill the gap
in the literature particularly addressing non-Gaussian noises (i.e., outliers, impulsive noise,
and colored noise) and sparse constraints. In the context of missing data and outliers,
we reviewed four main classes of RST algorithms, including Grassmannian, recursive least-
squares (RLS), recursive projected compressive sensing (ReProCS), and adaptive projected
subgradient method (APSM). When the data streams are corrupted by impulsive noises, we
indicated that most of state-of-the-art subspace tracking algorithms are based on improv-
ing the well-known PAST algorithm, together with weighted RLS and adaptive Kalman
filtering. Next, we outlined two main approaches to deal with subspace tracking in the
presence of colored noises, including instrumental variable-based and oblique projections.

Finally, a short review on sparse subspace tracking algorithms was presented.

e We proposed a probable adaptive algorithm called PETRELS-ADMM for tracking the un-
derlying subspace from incomplete observations corrupted by sparse outliers. The proposed
algorithm contains two main stages: outlier rejection and subspace estimation. In partic-
ular, outliers residing in the measurement data are detected and removed by our ADMM
solver in an effective way. Next, we proposed an improved version of PETRELS, namely
iPETRELS. It is observed that PETRELS is ineffective when the fraction of missing data
is too large. We thus added a regularization of the /{2 o-norm, which aims to control

the maximum #s-norm of rows in the subspace matrix, in the objective function to avoid
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such performance loss. Moreover, we also introduced an adaptive step size to speed up
the convergence rate as well as enhance the subspace estimation accuracy. Furthermore,
we successfully established a theoretical convergence which guarantees that the solutions

generated by PETRELS-ADMM will converge to a stationary point asymptotically.

We proposed a novel adaptive algorithm called OPIT for the sparse subspace tracking (SST)
problem. OPIT takes both advantages of power iteration and thresholding methods, and
hence offers several appealing features over the state-of-the-art tracking algorithms. First,
OPIT belongs to the class of power methods, and thus its convergence rate is highly com-
petitive compared to other SST algorithms, especially in the high SNR regime. Different
from the existing two-stage SST algorithms, OPIT has ability to track the sparse princi-
pal subspace with high accuracy in both the classical regime and the HDLSS regime. In
addition, OPIT is flexible and very adaptable for different scenarios. For example, we can
adjust its procedure for dealing with multiple incoming data streams. Also, it is easy to
introduce regularization parameters into OPIT in order to regularize its performance in
non-standard environments. Moreover, we can recast its update rule into a column-wise
update. Thanks to the deflation transformation, we derived a fast variant of OPIT called
OPITd with lower complexity of both computation and memory storage. This variant
is fast and useful for tracking high-dimension and large-scale data streams residing in a
low-dimensional space. Together with PETRELS-ADMM, OPIT belongs to the class of
provable subspace tracking algorithms in which its convergence is guaranteed. Under cer-
tain conditions, OPIT can achieve an e-relative-error approximation with high probability

when the number of observations is large enough.

For Tensor Tracking

e We provided a comprehensive survey on the state-of-the-art tensor tracking algorithms.

It begins with basic coverage of five common tensor decompositions and their main fea-
tures, including CP, Tucker, BTD, tensor-train, and t-SVD. Two kinds of streaming mod-
els were introduced to represent streaming tensors: single-aspect and multi-aspect. Next,
we reviewed four main classes of online CP algorithms: subspace-based, block-coordinate
descent, Bayesian inference, and multi-aspect streaming CP decomposition. Under the
Tucker format, we categorized the current single-aspect tensor tracking algorithms into two
main classes: online tensor dictionary learning and tensor subspace tracking. Multi-aspect
streaming Tucker decomposition algorithms were also surveyed. Moreover, we provided a
brief survey on other online techniques for tracking tensors under tensor-train, t-SVD, and
BTD formats.

e We proposed three efficient adaptive algorithms for tracking the low-rank component of
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streaming tensors over time. Under the CP format, we developed a novel adaptive CP
algorithm called ACP for tracking high-order incomplete streaming tensors. ACP is fast
and requires a low computational complexity and memory storage, thanks to the alternative
minimization and randomized sketching. Under the Tucker format, we proposed the second
algorithm, namely adaptive Tucker decomposition (ATD), more flexible than ACP, for
the problem of tensor tracking. ATD exhibits competitive performance in terms of both
estimation accuracy and computational complexity. Third, we introduced a robust version
of ACP called RACP for the problem of tensor tracking in the presence of both missing
data and outliers. In particular, RACP aims to learn the low-rank component of streaming
tensors in an online fashion as well as offering robustness against gross data corruptions.
More importantly, we proved that ACP, ATD, and RACP are provable algorithms with

convergence guarantee.

We developed three new methods for the problem of tensor tracking under the tensor-train
(TT) format. The first method called TT-FOA is capable of tracking the low-rank com-
ponents of high-order tensors from noisy and high-dimensional data with high accuracy,
even when they come from time-dependent observations. The second method called ATT is
particularly designed for handling incomplete streaming tensors. ATT is scalable, effective,
and adept at estimating low TT-rank component of streaming tensors. Besides, ATT can
support parallel and distributed computing. To deal with sparse outliers, we proposed the
so-called ROBOT which stands for ROBust Online Tensor-Train decomposition. Techni-
cally, ROBOT has the ability to tracking streaming tensors from imperfect streams (i.e.,
due to noise, outliers, and missing data) as well as tracking their time variation in dynamic

environments.

8.2 Research Challenges, Open Problems, and Future Directions

In this section, we present several research challenges and open problems that should be consid-

ered for the development of tensor tracking problems in the future. These problems also cover

the subspace tracking problem as it is a special case of tensor tracking. They are data imper-

fection and corruption; rank revealing and tracking; efficient and scalable tensor tracking; and

other aspects such as theoretical analysis, symbolic data, and tracking under some less common

tensor formats. Possible solutions for these challenges are also discussed.

8.2.1 Data Imperfection and Corruption

Dealing with data imperfection and corruption has been a critical issue in many applications and

tracking problems in particular [367]. We here present two main types of imperfect data that
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either remain unsolved or are still challenging for tensor tracking: (i) non-Gaussian and colored

noises; (ii) outliers and missing data.

Non-Gaussian and Colored Noises

Most of the existing tensor tracking algorithms were proposed under the additive white Gaussian
noise assumption. This assumption however does not always hold in practice. For example,
impulsive noises (e.g., burst, alpha-stable, and spherically invariant random variable noise),
which are introduced by human activities and natural sources, are one of the most common
non-Gaussian noises that often appear in tracking applications such as direction of arrivals [368],
OFDM systems [369] and adaptive system identification [370]. This type of noise can significantly
impact the tracking ability of estimators and it requires specific treatments [26]. In parallel,
colored noises that indicate types of noise that are correlated in space and/or time may reduce
the performance of tracking algorithms [371]. Accordingly, standard tracking algorithms may be
less effective in estimation accuracy in the presence of these noises. They need to be readapted

or redesigned for more robustness.

To the best of our knowledge, we are not aware of any tensor tracking algorithm capable
of handling such noises in the literature. Some potential approaches have been successfully
demonstrated in subspace tracking problems (i.e., tracking tensors of order 2), see [26] for a brief
survey. In particular, adaptive Kalman filtering and weighted RLS approaches can be adopted
for dealing with impulsive noises. Oblique projection and instrumental variable-based techniques
can handle colored noises. Therefore, it is desirable to extend these approaches from subspace

tracking to tensor tracking.

Outliers and Missing Data

They are now becoming more and more ubiquitous in modern datasets. Outliers are data points
that appear to be inconsistent with or exhibit abnormal behaviour different from others. Missing
observations are often encountered during the data acquisition and collection. Both outliers and
missing data can cause several issues (e.g., they introduce bias in estimation) for knowledge
discovery from data in general and data streams in particular [6]. Accordingly, dealing with
them is an essential task in the analysis of corrupted datasets which has been still a hot topic in
data mining for decades. In general, handling such corruptions involves removing/ignoring them

after detection or replacing them with alternative values.

There exist few tensor tracking algorithms robust to sparse outliers in the literature. Under the
CP format, SOFIA [222] applies the robust Holt-Winters forecasting model using a pre-cleaning
mechanism to identify and down-weight outliers. RACP [27] introduces a ¢;-norm penalty to

promote the sparsity on outliers and then uses an ADMM solver to estimate them. Under the
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Tucker format, ORLTM [263], OLRTR [264], and D-L1-Tucker [254] are able to deal with sparse
outliers. Both ORLTM and OLRTR propose to regularize the main objective function with
a f1-norm regularization. Meanwhile, D-L1-Tucker adopts a threshold-based method to detect
outliers. Except for RACP, most of the mentioned algorithms above are not designed for dealing
with missing data. In parallel, most of the existing online tensor completion and tracking are
sensitive to outliers, such as TeCPSGD [106], OLSTEC [176], and ACP [29]. Accordingly, there
are plenty of opportunities for us to develop robust tensor tracking from incomplete observations

as it is still in its early stage.

8.2.2 Rank Revealing and Tracking

Most of the state-of-the-art tensor tracking algorithms suppose that the tensor rank (e.g., CP,
Tucker, TT, or tubal rank) is given as prior information. In practice, it is however a difficult
assumption due to the facts that: (i) the tensor rank may change over time and (ii) a good rank
determination at the initialization stage is not always guaranteed when the number of training
samples is limited and (iii) the exact rank determination may be intractable (e.g., CP rank is
NP-hard [195]). Therefore, it is essential to develop tracking algorithms that are capable of

revealing the rank over time.

In the literature, there have been many heuristic methods developed for the problem of
tensor rank estimation. Most of them adopt the Bayesian approach to infer the tensor rank from
data, such as [372-374]. Theoretically, Bayesian inference offers a good recipe for the tensor
rank estimation as we can integrate the low-rank promoting prior as well as the tensor rank
into the learning framework. Another possible approach to determine the tensor rank is to use
neural networks (NNs), such as [375-377|. Since the rank can be considered as one type of data
feature, NNs which can extract hidden features within data can be used to solve the tensor rank
determination. Although these methods often require the tensor data to be fully observed, it is
possible to readapt or modify them such that their variant are able to handle tensors in an online
fashion. For example, we can adopt online Bayesian inference or online learning algorithms for

training NNs.

8.2.3 Efficient and Scalable Tensor Tracking

Chapter 5 indicates that most of the existing tensor tracking algorithms are of high complexity.
When we deal with large-scale and high-multidimensional streams, they may become less efficient.
Thus, it is necessary to develop efficient and scalable tracking techniques of low cost w.r.t. both
computational complexity and memory storage. In what follows, we present three potential ap-
proaches which are theoretically capable of accelerating the tracking process, namely (a) random-

ized sketching, (b) parallel and distributed computing, and (c) neural networks-based methods.
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Randomized Sketching

It is very well-known that randomized methods can reduce the computational cost of their
counterparts while still achieving reasonable estimation [323|. Accordingly, many attempts have
been made to take their advantages in computation for tensor decomposition in the literature,
we refer the readers to [191] for a good overview. Among them, there are a few online algorithms
utilizing successfully randomized techniques to speed up the tracking process, such as [29, 33,
218, 378|. Particularly, these algorithms involve solving several overdetermined least-squares
(LS) problems. Thanks to the CP and Tucker structures, they use random sampling to build
the sampled Khatri-Rao and Kronecker products, and then, recast the original LS problems into
randomized ones. Solving the new LS problems can save a lot of computational complexity.
Other randomized techniques (e.g., random projections and count sketch) with other tensor
formats have not yet been investigated for tensor tracking and they deserve next investigations

in the future.

Parallel and Distributed Computing

The second approach is to develop parallel and distributed computing frameworks for streaming
tensor decomposition. It stems from the fact that we can leverage several computational resources
to facilitate the tracking process. Moreover, computing systems in a parallel and distributed
environment can offer more reliability than their counterparts in a central one as they can avoid
the single point of failure which is a fundamental mistake from flaws in the implementation or
design of a system. Besides, another appealing advantage of this computing is the scaling up-
and-out process in which we can add and/or replace computational resources to the system. We

refer the readers to [379] for a good reference.

In the tensor literature, there are several parallel and distributed systems for processing
large-scale tensors. We can list here some efficient tools for: (a) distributed CP decomposition
(e.g., DFacTo [380], SPLATT [381]), (b) distributed Tucker decomposition (e.g., DHOSVD [246],
SGD-Tucker [382]), and (c) distributed TT decomposition (e.g., ADTT [268|, ATTAC [383]), etc.
These tools mainly distribute the unfolding matrices or sub-tensors among several clusters and
integrate their low-rank tensor approximations to find the overall low-rank approximation of
the underlying tensor. However, most of the existing distributed tensor decompositions are
not suitable for handling streaming data. Therefore, it is of great interest to develop practical

distributed systems for tracking tensors from data streams.
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Neural Networks-based Methods

Another potential approach is to incorporate neural networks (NNs) into tensor factorization to
benefit from their significant advances in computational power. On the one hand, the connection
between TDs and NNs has been established in some studies, such as [384-386]. For example,
Cohen et al. in [384] showed that the convolutional NNs with ReLU activation and max/average
pooling can be represented by tensor decomposition models. Wang et al. in [386] introduced two
NN models for finding the low-tubal-rank approximation of three-order tensors. Accordingly, NN
tools can be used to model and learn high-order interactions for tensors, and hence, for tensor
factorization and tracking. On the other hand, NNs can directly map data streams (temporal
slices) as input to the approximation result as output by applying some online learning techniques.
In the literature of machine learning, there exist several kinds of learning capable of dealing with
data streams, such as incremental learning, lifelong learning, and online continual learning, to

name a few. They can be specifically adapted for tensor tracking.

8.2.4 Others

Next, we present some other issues and problems which also deserve future investigations.

Provable Tensor Tracking

Although the existing tensor tracking methods can provide competitive performance w.r.t. esti-
mation accuracy and/or convergence rate in practice, most of them lack performance guarantees.
The gap between practical uses/implementations and theoretical results in tensor tracking may
be caused by the fact that most tensor problems are NP-hard [195], e.g., the best rank-1 tensor
approximation is NP-hard even when all observations (temporal slices) are fully observed. De-
spite several difficulties, there are still attempts to bridge the gap in the literature. Under certain
conditions (e.g., the underlying low-rank model remains unchanged over time), some studies es-
tablished successfully theoretical results to analyse the convergence behavior of their methods,
such as [27,29,176,219,251]. These initial results encourage us to investigate deeper theory
aspects in tensor tracking, such as time variation, asymptotic convergence, and non-asymptotic

convergence in low-sample-size settings.

Symbolic Tensor Tracking

In some applications, data may no longer be represented by single (certain) values, but need to
be formatted or grouped within sets, intervals, histograms, etc. It leads to the so-called symbolic
data analysis (SDA) paradigm in data mining and statistics to deal with such data [387]|. In SDA,

several new variables types and processing tools have been introduced to represent and analyse
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symbolic data, such as interval-valued, histogram-valued, and categorical modal variables, to
name a few. The readers are referred to [387] for a good survey on SDA. In the tensor literature,
Mauro et al. in [388] proposed for the first time a symbolic tensor decomposition for factorizing
interval-valued tensors under the tensor-train format. Specifically, the authors extended a set
of tools aiming to handle interval-valued matrices for high-order tensors and introduced efficient
decomposition and reconstruction strategies. As the symbolic tensor decomposition is in its very
early stage of development in both batch and online settings, there are a lot of aspects that need

to be investigated in the future.

Tensor Tracking under BTD, t-SVD, Tensor Network formats, and other Variants

As reviewed in the sections above, most of the state-of-the-art tensor tracking algorithms are
proposed for streaming CP and Tucker decompositions. Despite great success in the batch setting,
BTD, t-SVD, and tensor networks (e.g., tensor-train, tensor chain, and tensor ring) have not
attracted much attention in real-time stream processing until recently. Thus, developing online
methods for tracking tensors under these tensor formats and their variants is essential advantage
from their advantage in representing large-scale tensors as well as fulfil the gap between the two

most common tensor formats and others.
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Appendix A

Résumé en Francais de la These

A.1 Traitement de Flux de Données Volumineuses

Le traitement de flux a récemment attiré beaucoup d’attention de la part des universités et de
I'industrie en raison du fait que des flux de données massifs ont été de plus en plus collectés au
fil des ans et qu'’ils peuvent étre exploités intelligemment pour découvrir de nouvelles idées et
des informations précieuses [1-3]. Par exemple, nous vivons a l'ére de I'Internet des objets o
un grand nombre de dispositifs de détection ont été installés et développés. Ces appareils ont
la capacité de collecter, gérer et transmettre des données via des réseaux IoT en temps réel. En
conséquence, le traitement de flux est nécessaire pour récupérer des informations importantes a
partir de ces données IoT en quelques secondes ou méme plus rapidement pour faciliter la prise

de décision en temps réel [4].

Dans de nombreuses applications en ligne modernes, les flux de données ont trois caractéris-
tiques en «V»: Volume, Vitesse, et Variété. Comme ils sont générés en continu, leur volume
croit significativement dans le temps et éventuellement jusqu’a l'infini. Ainsi, I'une des carac-
téristiques les plus remarquables des données en continu est qu’il s’agit de séquences illimitées
d’échantillons de données. Vitesse fait référence au taux d’arrivée de données a grande vitesse
et au traitement en temps réel. Les données collectées a partir des interactions des utilisateurs
sur les réseaux sociaux (par ex. Facebook, Instagram et Twitter) sont, par exemple, a trés
grande vitesse. Variété implique I'adéquation, la crédibilité et la fiabilité des flux de données.
Plus précisément, cette caractéristique concerne le biais, le bruit, 'incertitude, I'incomplétude
et anormalité des données. Outre les trois « V », les données en continu ont d’autres carac-
téristiques distinctives, notamment la sensibilité/variation temporelle (alias dérive de concept),
I'hétérogénéité (différentes sources avec une diversité de types de données), une propriété volatile
et non reproductible, etc [2,3,5,6]. Ces caractéristiques entrainent plusieurs exigences inhérentes

et des problémes de calcul pour le traitement des flux, tels que:
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Faible Latence: Les procédés et systémes de flux doivent acquérir, gérer et traiter efficace-

ment des flux de données sans introduire de retards supplémentaires.

Faible Complexité Spatiale: Les procédés et systémes de flux doivent avoir la capacité de

fonctionner en ligne avec des ressources de mémoire limitées.

Evolutivité: Comme les données de streaming augmentent normalement en taille beaucoup
plus rapidement que les ressources de calcul, le traitement de flux nécessite des méthodes

et des systémes évolutifs.

Variation Temporelle: Comme les données en continu peuvent évoluer avec le temps, les
méthodes et les systémes de flux doivent étre capables de suivre leur variation dans le

temps.

Robustesse: Dans de nombreux cas, les données de flux sont imparfaites et peu fiables, de
sorte que les méthodes et les systémes de flux devraient avoir le potentiel d’estimer et de

calculer les réponses a partir d’observations corrompues.

Cependant, ce sont également des avantages potentiels du traitement par flux par rapport au

traitement par lots. Nous renvoyons les lecteurs au Tableau. A.1 pour une bréve comparaison

entre les deux types de traitement.

Table A.1: Principales différences entre le traitement par lots et le traitement des flux

Caractéristique | Traitement par lots Traitement des flux

Input Grands lots/morceaux de données | Flux de données (continus)

Taille des données | Connu et fini Inconnu et/ou infini

Type de données | Statique Dynamique/variant dans le temps

Traiter toutes les données & la fois | Traiter les flux de données en temps réel

Traitement . .
Traitement en plusieurs passes Processus en un ou deux passages
Réponse Fournir apres I’achévement Fournir immédiatement
Nécessite beaucoup de stockage Nécessite beaucoup moins ou pas de stockage
Hardware . . . . .
Nécessite beaucoup de traitement | Nécessite moins de ressources de traitement
Temps Prend plus de temps, latences

Prenez quelques secondes ou plus vite

en minutes & heures

Dans ce travail, nous nous concentrons principalement sur les méthodes de flux capables de

suivre I’approximation de rang inférieur (LRA) des flux de données volumineuses au fil du temps.

Techniquement, I'objectif principal de la LRA est d’approximer les données de grande dimen-

sion par une représentation de faible dimension plus compacte avec une perte d’informations

limitée [7]. Par conséquent, trouver la LRA est une tache fondamentale et essentielle pour

I’exploration de données en général et ’analyse de données en continu en particulier. Nous intro-

duisons 'une des techniques d’algébre linéaire les plus connues pour trouver le LRA des matrices
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All V A -+ EC ]
X - U — Vl Vr
ul

Figure A.1: SVD d’une matrice X.

dans la configuration par lots, la décomposition en valeurs singuliéres (SVD), puis décrivons sa
connexion & certains types courants de décomposition tensorielle (TD). Ensuite, nous présen-
tons leurs variantes en ligne (adaptatives) pour traiter les flux de données issus de I'observation
unidimensionnelle. (i.e., SVD — sous-espace) et observations multidimensionnelles (i.e., TD —

suivi tensoriel).

A.1.1 Approximation de Rang Inférieur: Du SVD au Décomposition du

Tenseur

Il est bien connu que SVD est I'une des techniques d’algébre linéaire les plus puissantes et les
plus utilisées avec un certain nombre d’applications dans divers domaines [8,9]. En particulier,

décomposition SVD d’une matrice X € R/1*2 ima rang r est

A1 VI
)\2 VT r
SVD 2 T
X "= ul,ug,...,ur} :Z)\iuivi ) (A 1)
N —— i=1
U
T
Al | Ve
——
A vT

ot U € RIXT et V € R2X" sont des matrices unitaires; A € R™" est une matrice diagonale
dont les valeurs diagonales sont positives, c.-a-d. A1 > Ao > --- > A, > 0, voir Fig. A.1 pour
une illustration. Pour le probléme d’approximation de rang inférieur dans la configuration par
lots, le théoréme suivant indique que SVD peut donner le meilleur LRA pour n’importe quelle

matrice X.
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Theorem 5 (Eckart-Young-Mirsky Theorem [9]). Dénoter par X = TUAV'
décomposition SVD d’une matrice X € RI*12 Gi k < rank(X) et X = Zle v
donc

min || X - Al =||X - X,
AER11X12
rank(A)<k

: (A.2)

par rapport a la norme spectrale et a la norme de Frobenius.

Merci au Théoréme 5, la meilleure approximation rang-k de X peut étre obtenue en appliquant

la procédure suivante:

- SVD N : o
e FEtape 1: Calculer X °=" UAV', ot U € RI'*1 et V € R2%/2 sont des matrices unitaires,
et la matrice diagonale A € R/1*!2 contient des entrées diagonales positives dans I'ordre

décroissant.

e FEtape 2: Sélectionnez les premiers k vecteurs singuliers parmi U et V pour former les matrices
suivantes U, = U(:,1: k) et Vi, =V (;,1: k).

e Etape 3: Sélectionnez les k valeurs singulieres les plus fortes dans A pour former: Ay = A(l:
k,1:k).

o FEtape 4: Dérivez la meilleure approximation rang-k de X a partir de: X, = UkAkV,I.

Lorsqu’il s’agit de tenseurs (aka, tableaux multidimensionnels), plusieurs extensions mul-
tivoies du SVD ont été développées pour la décomposition tensorielle (TD) dans la littéra-
ture [10-13]. Les cinq types courants de TD sont CP/PARFAC [14], Tucker/HOSVD |[15],
tensor-train /network [16], t-SVD [17], et décomposition en termes de blocs (BTD) [18], voir
Fig. A.2 pour des illustrations. Plus précisément, ils visent & factoriser un tenseur en un ensem-
ble de composants de base (par exemple, des vecteurs, des matrices ou des tenseurs plus simples)
et offrent donc de bonnes approximations de tenseur de rang inférieur. Dans ce qui suit, nous
décrivons leur connexion & SVD et renvoyons les lecteurs au Chapitre 5 pour plus de détails sur

leurs principales caractéristiques, propriétés et algorithmes.

Décomposition CP/PARAFAC: Semblable & SVD qui représente X par une somme de ma-
trices de rang-1 (c.-a-d. )\iuiv;r ), la décomposition CP factorise également un tenseur X €

R xI2xXIN on termes de rang-1:

x< Z i ul(»l) ou?o...o u(.N), (A.3)

7 7
i=1

rank-1 term

(n)

7

modéle SVD (A.1) (notez que w;v, = u; ov;) [14]. La matrice U = [ugn), uén), . ,u&n)] est

ottu,” € RI»*! avec 1 < n < N joue le méme role que les vecteurs singuliers de U et V dans le
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CP/PARAFAC Tucker/HOSVD
D D
QQ‘ S 9\
S f .S f S f @
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X = QOC ] + OC ]+ ... + OET
HU(Z)(;,l) Hu(l)(:,r) |:|U‘2)( ) X = U(l) xl xz
UL u9(,2) uoGr)
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X, x X,
I
Tensor-Train 3 T-SVvD

<

Figure A.2: Multiway extensions of SVD to high-order tensors: CP/PARAFAC, Tucker, BTD,
tensor-train, and t-SVD.

la n-iéme facteur CP de X et il n’est pas nécessaire qu’il soit orthogonal. Suivant la définition
générale du rang de la matrice, le plus petit entier r satisfaisant (A.3) est appelé le rang du tenseur
(CP) de X. Dans certaines conditions, la décomposition CP est essentiellement unique jusqu’a

une permutation et une échelle qui est une propriété utile dans de nombreuses applications.

Décomposition Tucker/HOSVD: En dehors de la forme classique (A.1), on peut exprimer la
SVD de X comme suit

XYL UAVT = A xUx,y V. (A.4)
~N

core 2 factors

En conséquence, une extension multidirectionnelle directe de (A.4) aux tenseurs d’ordre élevé

peut étre donnée par

Tucker

X G x UMW 5, UP) xg.oo xy U, (A.5)
~

core N factors

ou le noyau G € R *"2XX'N gt un tenseur de taille inférieure a X (ie., r, < I, Vn) et

N facteurs tensoriels {U™) U™ ¢ R*" sont des matrices orthogonales. Le modéle de

nl?

représentation (A.5) est considéré comme le format SVD d’ordre élevé (HOSVD) ou Tucker [15].
Contrairement au SVD et au CP, Tucker/HOSVD n’est pas unique en général. Cependant,
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comme le sous-espace couvrant U™ est physiquement unique, son objectif principal est de

trouver les sous-espaces principaux des facteurs tensoriels [11].

Décomposition BTD: BTD factorise X en plusieurs blocs de rang multilinéaire faible au lieu

de termes rank-1

% %

x PP Z Gi x1 UZ('I) xz U X3 XN uv. (A-6)
i=1

low multilinear-rank term

Le BTD peut étre considéré comme une unification et une généralisation des deux décompositions
CP et Tucker bien connues. Plus précisément, lorsque {G;};_; sont des tenseurs diagonaux, BTD
se résume & la décomposition CP. Il a la forme d’une décomposition de Tucker lorsqu’un seul
terme de bloc (c’est-a-dire r = 1) est considéré. De plus, plusieurs fonctionnalités attrayantes
du BTD sont héritées de CP et de Tucker, telles que le calcul stable de Tucker, I'identification et
I'unicité de CP [18]. En paralléle, il convient de rappeler une remarque dans [18] selon laquelle
“le rang d’un tenseur d’ordre supérieur est en fait une combinaison des deux aspects : il faut
préciser le nombre de blocs et leur taille”. Cela signifie que BTD fournit une approche unifiée

pour généraliser le concept de rang matriciel aux tenseurs.

Décomposition Tensor-Train: Avec (A.1) et (A.4), nous pouvons écrire la SVD de X comme
X (i1, i2) "2 Y A U(in, k) V (k, ia). (A7)
k=1

En conséquence, chaque élément d’un tenseur d’ordre supérieur X peut étre représenté par

71,725 ;TN -1

o .\ TT . . )
X (i1,d2,...,iN) = Z G1(1,41,k1)Ga(k1,42,ka) ... GN(EN-1,iN,1). (A.8)
k1,k2,... kN —1
ou G, est un r,_1 X I, X rp, tenseur avecn =1,2,...,N —1 et ro = rny = 1. Nous nous référons

au modele de représentation (A.8) en tant que train de tenseurs (TT). Comme CP, le format
TT offre un modéle d’économie de mémoire pour représenter les tenseurs d’ordre élevé. Comme
Tucker, la décomposition TT et le rang TT r = [r1,72,...,rN—1] de tout tenseur X peuvent étre

calculés numériquement de maniére stable et efficace.

Décomposition t-SVD: Enfin, une autre extension de SVD aux tenseurs d’ordre élevé est le

tenseur SVD (t-SVD) qui est de la forme suivante:

t-SVD
X = u = G x vV | (A.9)
A ~—~— A
orthogonal  f-diagonal orthogonal

ou U et V sont des tenseurs unitaires, et G est un rectangle f-tenseur diagonal dont les tranches

frontales sont des matrices diagonales [17]. Intuitivement, le modéle t-SVD (A.9) partage la
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méme forme avec le SVD in (A.1). Cependant, en raison du t-produit “*”, le cadre algébrique
utilisé dans le t-SVD est assez différent de I’algébre (multi)-linéaire classique dans d’autres types
de TD et SVD. Par exemple, la plupart des ses calculs sont effectués dans le domaine de Fourier
Sous le format t-SVD, le tubal-rank qui est égal au nombre de tubes non nuls de G est utilisé

pour définir le LRA des tenseurs de la méme maniére que le SVD.

A.1.2 Approximation de Rang Inférieur en Ligne: Du Sous-espace au Suivi

Tensoriel

Dans le cadre en ligne, des échantillons de données sont collectés en continu avec le temps. En
conséquence, le recalcul des méthodes LRA par lots (par exemple, les algorithmes SVD ou TD
par lots) & chaque pas de temps devient inefficace en raison de leur grande complexité et de la
variation temporelle, c’est-a-dire de la dérive concept/distribution. Cela a conduit & définir une
variante de la LRA appelée LRA en ligne (adaptative) dans laquelle nous pouvons vouloir suivre

le processus sous-jacent qui génére des données en continu dans le temps.

Lorsque les observations arrivant a chaque instant sont unidimensionnelles (c’est-a-dire vec-
torielles), I'intérét principal de la LRA en ligne est d’estimer le sous-espace principal qui couvre
de maniére compacte ces observations dans le temps. Plus précisément, on parle de probléme
de suivi de sous-espace (ST) dans le traitement du signal, qui a été développé pendant plus de
trois décennies [19-21]. En général, a larrivée des nouvelles données y; € RI>1 aqu temps t,
la matrice de sous-espace U; € RI*" peut étre dérivé de I’analyse du spectre de la matrice de

covariance suivante

¢

co= Y Ayl (A.10)

T=t—L:+1

ou Ly est la longueur de la fenétre et 0 < 5 < 1 est le facteur d’oubli [20]. Lorsque L; = tet =1,
C; dans (A.10) se résume a la matrice de covariance d’échantillon classique. Plus précisément,
dans une connexion au batch LRA utilisant SVD, le vecteur y; peut étre vu comme la t-iéme
colonne de la matrice sous-jacente X; = [X;_1 yy], voir Fig. A.3 pour une illustration. La
matrice de sous-espace U; joue le role de matrice vectorielle singuliére gauche de X;, tandis que
le vecteur de coefficients w; = U/ y; est bien la t-iéme ligne de la matrice VA dans I’expression
SVD (A.1). Selon le choix de C; et la technique d’estimation de sous-espace, nous pouvons

obtenir plusieurs algorithmes de suivi de sous-espace.

Lorsque les observations arrivant a chaque instant sont multidimensionnelles (c’est-a-dire
tensorielles), le LRA en ligne s’avére étre un suivi tenseur qui peut étre considéré comme une
généralisation du suivi subspatial. En particulier, nous souhaitons estimer le dictionnaire de

tenseurs (par exemple, le(s) tenseur(s) central(s) et les facteurs de tenseur) qui génére les données
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At time t Old Observations New Data

Figure A.3: Données en continu.

de flux sous-jacentes X; au fil du temps:

X;_1BY,; sistreaming mono-aspect
, (A.11)
X;_1UY; sistreaming multi-aspects

~+

ou “H” et “U” désignent la concaténation du tenseur et I'opérateur d’union, tandis que X;_; et
Y, représentent respectivement ’ancienne et la nouvelle observations. Le modéle “single-aspect
streaming” et le modéle “multi-aspect streaming” sont, respectivement, dédiés & représenter des
flux de données ayant une dimension et des dimensions multiples variant avec le temps. Lorsque
de nouveaux échantillons de données arrivent, le dictionnaire de tenseurs de X'y doit étre mis a
jour de maniére incrémentielle sans réutiliser les algorithmes TD par lots. Semblable au suivi de
sous-espace, nous pouvons également obtenir de nombreux algorithmes de suivi de tenseurs basés
sur différents formats de tenseurs, modéles de flux et techniques d’optimisation. Les lecteurs sont

renvoyés au chapitre 5 pour un apercu complet des algorithmes de suivi de tenseur de pointe.

Ces derniéres années, I’explosion des flux de données volumineuses a posé des défis importants
au probléme de la LRA en ligne. Par exemple, 'efficacité et la robustesse sont trés importantes
lorsque nous traitons des données en continu dans des dimensions élevées. De nombreux résul-
tats théoriques dans la théorie des matrices aléatoires (par exemple, [22-24]) ont indiqué que la
matrice de covariance de I’échantillon (SCM) n’est pas un estimateur efficace de la matrice de
covariance réelle dans ’échantillon de grande dimension et de faible taille régime ou les ensembles
de données sont massifs a la fois en dimension et en taille d’échantillon. Cependant, la plupart
des méthodes de suivi de sous-espace de pointe dans la littérature sont principalement basées sur
I’analyse spectrale du SCM, et donc, elles ne sont pas efficaces dans un tel régime. En paralléle,

les valeurs aberrantes clairsemées et les données manquantes deviennent de plus en plus om-
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Figure A.4: Effet des valeurs aberrantes sur la norme PCA

niprésentes dans les applications de streaming modernes [6]. Les valeurs aberrantes éparses sont
des points de données qui semblent étre incohérents ou qui présentent un comportement anormal
différent des autres. Des données manquantes sont souvent rencontrées lors de ’acquisition et de
la collecte. Les valeurs aberrantes éparses et les données manquantes peuvent entrainer plusieurs
problémes pour la découverte des connaissances a partir des données en général et des flux de
données en particulier, voir Fig. A.4 pour une illustration de I'impact des valeurs aberrantes
sur ’analyse en composantes principales (ACP) standard qui utilise spécifiquement SVD dans
son calcul. Par conséquent, cela nécessite des algorithmes robustes capables de gérer de telles
corruptions de données dans le temps. De plus, des algorithmes de suivi évolutifs sont toujours
souhaitables pour gérer les flux de données modernes, en particulier pour les flux de données
a grande échelle et hautement multidimensionnels. Comme indiqué plus loin, la plupart des
algorithmes de suivi existants sont d’'une complexité élevée en ce qui concerne & la fois le calcul
et le stockage en mémoire. En conséquence, il est essentiel de développer des techniques de suivi
efficaces et évolutives a faible cotit. Dans ce travail, nous visons & développer des algorithmes de

suivi efficients et efficaces qui ont la capacité de faire face a de tels défis.

A.2 Description de la These

A.2.1 Sommaire et Contributions de la Theése

Le reste de ma thése est organisé en deux grandes parties traitant respectivement du suivi
des sous-espaces et du suivi des tenseurs, suivies de la conclusion et des perspectives, veuillez

consulter Fig. A.5 pour un apercu.
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Partie I: Suivi de Sous-espace

Dans le Chapitre 2, nous fournissons un bref apercu des récents algorithmes robustes de suivi
de sous-espace qui ont été principalement développés au cours de la derniére décennie. En
particulier, nous commencons par introduire les idées de base du probléme de suivi de sous-
espace. Nous mettons ensuite en évidence les principales classes d’algorithmes pour traiter les
bruits non gaussiens (par exemple, les valeurs aberrantes éparses, le bruit impulsif et le bruit
coloré). Ces derniéres années ont également vu la généralisation de ’analyse de données de grande
dimension dans laquelle des méthodes basées sur la représentation clairsemée sont appliquées avec

succés & de nombreuses applications de traitement du signal. En conséquence, les algorithmes
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de suivi de sous-espace clairsemé de ’état de ’art y sont également passés en revue.

Dans Chapitre 3, nous proposons un nouvel algorithme, a savoir PETRELS-ADMM, pour
traiter le suivi de sous-espace en présence de valeurs aberrantes et de données manquantes.
L’approche proposée consiste en deux étapes principales: le rejet des valeurs aberrantes et
I’estimation du sous-espace. Dans la premiére étape, la méthode des multiplicateurs a direction
alternée (ADMM) est efficacement exploitée pour détecter les valeurs aberrantes affectant les don-
nées observées. Dans la deuxiéme étape, nous proposons une version améliorée de 1’algorithme
d’estimation et de suivi paralléles par les moindres carrés récursifs (PETRELS) pour mettre
& jour le sous-espace sous-jacent dans le contexte des données manquantes. Nous présentons
ensuite une analyse de convergence théorique de PETRELS-ADMM qui montre qu’il génére
une séquence de solutions de sous-espaces convergeant vers ’optimum de son homologue batch.
L’efficacité de I'algorithme proposé, par rapport aux algorithmes de pointe, est illustrée a la fois

sur des données simulées et réelles.

Dans Chapitre 4, nous développons une nouvelle méthode efficace prouvable appelée OPIT
pour suivre le sous-espace principal clairsemé des flux de données au fil du temps. En particulier,
OPIT introduit une nouvelle variante adaptative d’itération de puissance avec un espace et
une complexité de calcul linéaires & la dimension des données. De plus, un nouvel opérateur
de seuillage basé sur les colonnes est développé pour régulariser la parcimonie du sous-espace.
Utilisant & la fois les avantages de l'itération de puissance et de 'opération de seuillage, OPIT
est capable de suivre le sous-espace sous-jacent & la fois en régime classique et en régime de
grande dimension. Nous présentons également un résultat théorique sur sa convergence pour
vérifier sa consistance en grandes dimensions. Plusieurs expériences sont menées sur des données

synthétiques et réelles pour démontrer la capacité de suivi d’OPIT.

Partie II: Suivi Tensoriel

Dans le Chapitre 5, nous proposons une étude contemporaine et compléte des différents types
de techniques de suivi des tenseurs. Nous classons en particulier les méthodes de pointe en
trois groupes principaux : les décompositions CP en continu, les décompositions en continu de
Tucker et les décompositions en continu sous d’autres formats de tenseurs (c’est-a-dire, train de
tenseurs, t-SVD et BTD). Dans chaque groupe, nous divisons en outre les algorithmes existants
en sous-catégories en fonction de leur cadre d’optimisation principal et des architectures de
modéles. Plus précisément, quatre groupes principaux d’algorithmes de décomposition CP en
continu ont été mis en évidence, y compris la descente en coordonnées de bloc basée sur le sous-
espace, l'inférence bayésienne et les décompositions en continu multi-aspects. Nous catégorisé la
décomposition actuelle de Tucker en streaming méthodes en trois grandes classes en fonction de
leur modéle architecture. Il s’agit de 'apprentissage en ligne du dictionnaire de tenseurs, du suivi

du sous-espace tenseur et des décompositions en continu multi-aspects. Enfin, un bref apercu
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des méthodes existantes capables de suivre les tenseurs sous les formats TT, BTD et t-SVD est

présenté.

Dans Chapitre 6, nous proposons trois nouveaux algorithmes adaptatifs pour suivre les
tenseurs de flux d’ordre supérieur avec le temps, y compris ACP, ATD et RACP. Sous le format
CP, ACP minimise une fonction de coiit des moindres carrés récursive pondérée exponentielle-
ment pour obtenir les facteurs tensoriels de maniére efficace, grace au cadre de minimisation
alternatif et & la technique d’esquisse aléatoire. Sous le format Tucker, ATD suit d’abord les
sous-espaces sous-jacents de faible dimension couvrant les facteurs tensoriels, puis estime le
tenseur central & I’aide d’une approximation stochastique a. Les deux algorithmes ACP et ATD
sont rapides et parfaitement capables de suivre les tenseurs de flux & partir d’observations in-
complétes. Lorsque les observations sont corrompues par des valeurs aberrantes éparses, nous
introduisons l'algorithme dit RACP robuste aux corruptions grossiéres. En particulier, RACP
effectue d’abord le rejet des valeurs aberrantes en ligne pour détecter et supprimer avec précision
les valeurs aberrantes clairsemées, puis effectue un suivi des facteurs tensoriels pour mettre a
jour efficacement les facteurs tensoriels. L’analyse de convergence pour trois algorithmes est
établie dans le sens ou la séquence de solutions générées converge asymptotiquement vers un
point stationnaire de la fonction objectif. Des expériences approfondies sont menées sur des
données synthétiques et réelles pour démontrer I'efficacité des algorithmes proposés par rapport

aux algorithmes adaptatifs de pointe.

Dans le Chapitre 7, nous introduisons trois nouvelles méthodes pour le probléme de la décom-
position en continu des trains de tenseurs. La premiére méthode appelée TT-FOA est capable de
suivre avec une grande précision les composantes de rang inférieur des tenseurs d’ordre élevé a
partir de données bruitées et de grande dimension, méme lorsqu’elles proviennent d’observations
dépendant du temps. La deuxiéme méthode appelée ATT est particuliérement concue pour
gérer les tenseurs de flux incomplets. ATT est évolutif, efficace et apte & estimer les composants
de faible rang TT des tenseurs de flux. En outre, ATT peut prendre en charge I'informatique
paralléle et distribuée. Pour traiter les valeurs aberrantes éparses, nous proposons le soi-disant
ROBOT qui signifie ROBust Online Tensor-Train decomposition. Techniquement, ROBOT a la
capacité de suivre les tenseurs de streaming a partir de flux imparfaits (c’est-a-dire en raison
du bruit, des valeurs aberrantes et des données manquantes) ainsi que de suivre leur variation

temporelle dans des environnements dynamiques.

Conclusion et Perspectives

Le chapitre 8 conclut la thése avec nos principaux résultats et un apercu des travaux futurs. En
particulier, nous présentons plusieurs défis de recherche et problémes ouverts qui devraient étre
pris en compte pour le développement du suivi de la composante de rang inférieur des flux de

données a 'avenir. Il s’agit de 'imperfection et de la corruption des données; classement et suivi;
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suivi de tenseur efficace et évolutif; et d’autres aspects tels que ’analyse théorique, les données

symboliques et le suivi sous des formats de tenseur moins courants. Des solutions possibles a ces

défis sont également discutées.

A.2.2 Liste des Publications
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Trung Thanh LE
Analyse des Flux de Données de Signaux et d'Images:
Du Sous-espace au Suivi Tensoriel

Résumé: Le traitement des flux a récemment attiré l'attention du monde universitaire et de I'industrie, car les flux de données massives
ont été de plus en plus collectés au fil des ans. Cette thése se concentre principalement sur I'étude de 1'un des problémes les plus
fondamentaux du traitement des flux, I'approximation de rang inférieur (LRA) des flux de données en ligne. Lorsque les échantillons
de données arrivant a chaque pas de temps sont unidimensionnels, le probleme de LRA en ligne est techniquement appelé suivi de
sous-espace. Il s'agit d'un suivi tensoriel lorsque le flux de données est multidimensionnel.

Pour le suivi du sous-espace, nous avons proposé deux nouveaux algorithmes pour suivre le sous-espace sous-jacent des flux de données
dans deux scénarios spécifiques. Pour traiter les valeurs aberrantes clairsemées et les données manquantes, un algorithme efficace de
suivi de sous-espace en deux étapes a été développé, a savoir PETRELS-ADMM. L'algorithme proposé est basé sur la méthode de
direction alternée des multiplicateurs et des techniques de filtrage récursif des moindres carrés. Le deuxieme algorithme appelé OPIT
a été spécifiquement congu pour suivre le sous-espace principal clairsemé dans les grandes dimensions. Plus précisément, OPIT
introduit une nouvelle variante adaptative d'itération de puissance et un nouvel opérateur de seuillage basé sur des colonnes. Les deux
algorithmes proposés appartiennent a la classe des méthodes de suivi prouvables avec une garantie de convergence.

Pour le suivi des tenseurs, nous avons développé plusieurs nouveaux algorithmes pour suivre le LRA en ligne des tenseurs de streaming
au fil du temps. Sous le format CP/PARAFAC, nous exploitons les techniques alternatives de minimisation et d'esquisse aléatoire pour
développer ACP et RACP qui sont capables de factoriser des tenseurs incomplets et des tenseurs corrompus, respectivement. Sous le
format Tucker, nous avons proposé un autre algorithme en ligne appelé ATD. ATD suit d'abord les sous-espaces de faible dimension
sous-jacents couvrant les facteurs tensoriels, puis estime le tenseur central a l'aide d'une approximation stochastique. Une analyse de
convergence unifiée a été présentée pour justifier leur performance. En parall¢le, nous avons congu des algorithmes adaptatifs pour la
décomposition en continu des trains de tenseurs qui sont également capables de suivre les composants de rang inférieur des tenseurs
d'ordre élevé a partir de données bruitées, imparfaites et de grande dimension avec une grande précision.

En conclusion, notre étude apporte plusieurs nouvelles contributions a I'analyse des flux de données massives en général et au probléme
des LRA en ligne. Il s'agit de nouveaux outils d'analyse permettant de suivre efficacement les flux de données de LRA en ligne, des
observations unidimensionnelles aux observations multidimensionnelles dans différents contextes. Par conséquent, ils devraient faire
un pas en avant dans les applications en ligne du monde réel.

Mots clés : Flux de données, approximation de rang inférieur, sous-espace, tensoriel.

Signal and Image Data Stream Analytics:
From Subspace to Tensor Tracking

Summary: Stream processing has recently attracted much attention from both academia and industry since massive data streams have
been increasingly collected over the years. This thesis focuses on investigating the problem of online low-rank approximation (LRA)
of data streams over time. When data samples are one-dimensional, the online LRA problem is referred to as subspace tracking. It turns
out to be tensor tracking when streaming data are multi-dimensional.

For subspace tracking, we proposed two novel algorithms for tracking the underlying subspace of data streams under two specific
scenarios. To deal with sparse outliers and missing data, an effective two-stage subspace tracking algorithm was developed, namely
PETRELS-ADMM. The proposed algorithm is based on the alternating direction method of multipliers and recursive least-squares
filtering techniques. The second algorithm called OPIT was specifically designed for tracking the sparse principal subspace in high
dimensions. Specifically, OPIT introduces a new adaptive variant of power iteration and a new column-based thresholding operator.
Both two proposed algorithms belong to the class of provable tracking methods with a convergence guarantee.

For tensor tracking, we developed several new algorithms for tracking the online LRA of streaming tensors over time. Under the
CP/PARAFAC format, we leverage the alternative minimization and randomized sketching techniques to develop ACP and RACP
which are capable of factorizing incomplete tensors and corrupted tensors, respectively. Under the Tucker format, we proposed another
online algorithm called ATD. ATD first tracks the underlying low-dimensional subspaces covering the tensor factors, and then
estimates the core tensor using a stochastic approximation. A unified convergence analysis was presented to justify their performance.
In parallel, we designed some adaptive algorithms for streaming tensor-train decomposition which are also capable of tracking the low-
rank components of high-order tensors from noisy, imperfect and high-dimensional data with high accuracy.

In conclusion, our study provides several novel contributions to big data stream analytics in general and the online LRA problem in
particular. They are new analysis tools allowing to effectively track the online LRA of data streams from one-dimensional to multi-
dimensional observations in different settings, and thus, they are expected to take a step forward real-world online applications.

Keywords : Data stream, low-rank approximation, subspace, tensor.
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