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Abstract

In this thesis we investigate some properties of solutions of L∞-variational and transport
problems. This manuscript is divided into two parts.
The first part, made up of Chapter 2 and Chapter 3, deals with a supremal variational
problem. Supremal variational problems appeared for the first time in the late 60s in
the pioneering works of Aronsson [7, 8, 9]. Due to the nature of the L∞-norm, the in-
teresting minimizers are the so-called absolute minimizers (AM), which often happen to
be solutions of an associated PDE and to have uniqueness and regularity properties. In
Chapter 2 we investigate the problem associated with a quasiconvex continuous supremand
(x, p) 7→ H(x, p). Notably, we show a new optimality property for u ∈AM and prove a
structure result for the set of points x where H(x,Du(x)) = maxxH(x,Du(x)). In Chap-
ter 3 we consider the supremal variational problem in the framework of problems with
constraints on the gradient, proving C1 regularity of absolute minimizers on the above
mentioned set.
In the second part, which consists of Chapter 4 and Chapter 5, we are interested in the
L∞-optimal transport problem (L∞-OT), studied for the first time by Champion, De Pas-
cale, and Juutinen in 2007 [47]. An original contribution, presented in Chapter 4, is the
proof that the restrictable (optimal) plans (the analogous of AM) are concentrated on a
graph, if the cost function is strictly quasiconvex and satisfies a property similar to the
classical twist condition. Moreover, we prove uniqueness in the case of a discrete target
measure.
The L∞-OT is a non-convex problem, considered to be more difficult than the classical
OT. In order to have a better understanding, seeking a generalization to this setting of the
entropic approximation seems quite natural. With this intention, in Chapter 5, we pro-
vide a regularization which guarantees the Γ-convergence to the non-regularized L∞-OT
problem. Remarkably, we show that minimizers of the approximating functionals select
restrictable optimal plans. Finally we prove some estimates on the speed of convergence
and present some numerical illustrations performed with Sinkhorn’s algorithm.

The results in Chapter 2 are based on a joint work with L. De Pascale [32] and the ones of
Chapter 3 refer to the preprint [30]. Chapter 4 concerns a joint paper with L. De Pascale
and A. Kausamo [33], while Chapter 5 is inspired by a preprint with G. Carlier and L. De
Pascale [31].

i



ii



Riassunto

In questa tesi investighiamo alcune proprietà delle soluzioni dei problemi variazionali e di
trasporto in L∞. Il manoscritto è diviso in due parti.
La prima parte, composta dai Capitoli 2 e 3, tratta di un problema variazionale di tipo
supremale. I problemi variazionali supremali sono apparsi per la prima volta nei tardi
anni ‘60 nei lavori pionieristici di Aronsson [7, 8, 9]. Considerata la natura della norma
L∞, i minimizzanti interessanti sono i cosiddetti minimizzanti assoluti (AM), che spesso
risultano essere soluzioni di una PDE associata e hanno propretà di unicità e regolar-
ità. Nel Capitolo 2, analizziamo il problema associato ad un funzionale (x, p) 7→ H(x, p)
continuo e quasiconvesso. Nello specifico, mostriamo un’ulteriore proprietà di ottimal-
ità per u ∈AM e dimostriamo un risultato di struttura per l’insieme dei punti x dove
H(x,Du(x)) = maxxH(x,Du(x)). Nel Capitolo 3, inseriamo il problema variazionale nel
contesto dei problemi con vincoli sul grandiente, provando la C1 regolarità dei minimiz-
zanti assoluti sull’insieme sopracitato.
Nella seconda parte, costituita dal Capitolo 4 e dal Capitolo 5, ci interessiamo al problema
di trasporto ottimo in L∞, studiato per la prima volta da Champion, De Pascale e Juuti-
nen nel 2007 [47]. Un contributo originale, presentato nel Capitolo 4, è la dimostrazione
che i piani ottimali restrictable (l’analogo degli AM) sono concentrati in un grafico, se la
funzione costo è strettamente quasiconvessa e soddisfa una proprietà simile alla condizione
di twist classica. Inoltre, mostriamo l’unicità nel caso di una misura target discreta.
Il problema OT in L∞ è non-convesso e presumibilmente più difficile di quello classico. Al
fine di ottenere una migliore comprensione, sembra naturale cercare una generalizzazione a
questo ambito delle tecniche dell’approssimazione entropica. A questo scopo, nel Capitolo
5, definiamo una regolarizzazione che garantisce la Γ-convergenza al problema OT in L∞

non regolarizzato. In particolare proviamo che i minimimi dei funzionali approssimanti
selezionano piani restrictable. Infine, forniamo alcune stime sulla velocità di convergenza
e presentiamo alcuni esempi numerici realizzati con l’algoritmo di Sinkhor.

I risultati nel Capitolo 2 sono basati su un lavoro con L. De Pascale e quelli nel Capi-
tolo 3 si riferiscono al preprint [30]. Il Capitolo 4 riguarda un articolo con L. De Pascale e
A. Kausamo, mentre il Capitolo 5 è ispirato ad un lavoro con G. Carlier e L. De Pascale
[31].
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Résumé

Dans cette thèse on étudie certaines propriétés des solutions de problèmes variationnels et
de transport L∞. Ce manuscrit est divisé en deux parties.
La première partie, composée du Chapitre 2 et du Chapitre 3, traite d’un problème vari-
ationnel suprémal. Les problèmes variationnels suprémaux sont apparus pour la première
fois à la fin des années 60 dans les travaux pionniers d’Aronsson [7, 8, 9]. En raison de
la nature de la norme L∞, les minimiseurs intéressants sont les minimiseurs dits absolus
(AM), qui sont souvent solutions d’une EDP associée et ont des propriétés d’unicité et de
régularité. À la lumière de ces considérations, dans le Chapitre 2 nous analysons le prob-
lème associé à une fonctionnelle continue quasiconvexe (x, p) 7→ H(x, p). Nous montrons
notamment une nouvelle propriété d’optimalité pour u ∈AM et prouvons un résultat de
structure pour l’ensemble des points x où H(x,Du(x)) = maxxH(x,Du(x)).
Dans le Chapitre 3, nous resituons le problème variationel dans le cadre des problèmes
avec contraintes sur le gradient, en prouvant la régularité C1 des minimiseurs absolus sur
l’ensemble mentionné ci-dessus.
Dans la deuxième partie, qui comprend le Chapitre 4 et le Chapitre 5, on s’intéresse au
problème de transport optimal L∞, étudié pour la première fois par Champion, De Pascale,
et Juutinen en 2007 [47]. Une contribution originale, présentée dans le Chapitre 4, est la
preuve que les plans optimaux dits restreignables (restrictable) (l’analogue de AM) sont
concentrés sur un graphe, si la fonction de coût est strictement quasiconvexe et satisfait
une propriété similaire à la condition classique de twist. De plus, nous prouvons l’unicité
dans le cas d’une mesure cible discrète.
Le problème de transport optimal L∞ est non convexe, donc vraisemblablement plus com-
plexe que le problème de transport classique. Afin d’avoir une meilleure compréhension,
il semble naturel de chercher une généralisation à ce cadre de l’approximation entropique.
Dans ce but, dans le Chapitre 5, nous introduisons une régularisation qui garantit la Γ-
convergence vers le problème de transport L∞. En particulier, nous montrons que les
minimisateurs des fonctionnelles régularisées sélectionnent des plans optimaux restrictable.
Enfin, nous prouvons quelques estimations sur la vitesse de convergence et présentons
quelques illustrations numériques réalisées avec l’algorithme de Sinkhorn.

Les résultats du Chapitre 2 sont basés sur une collaboration avec L. De Pascale [32] et
ceux du Chapitre 3 font référence à la pré-publication [30]. Le Chapitre 4 concerne un tra-
vail commun avec L. De Pascale et A. Kausamo [33], tandis que le Chapitre 5 est inspiré
d’un travail avec G. Carlier et L. De Pascale [31].
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Chapter 1

Introduction

The work of this thesis is devoted to the study of L∞-variational and optimal transport
problems. A general definition of variational problem is minimizing a functional E defined
on a set U with values in [−∞,+∞]. Classically the set U is some suitable set of functions
u : Ω→ Rn, where Ω is an open subset of Rd.
However, this concept has been widely extended: for instance in Shape Optimization one
is interested in minimizing among a collections of “shapes”, usually bounded subsets of Rd
with some regularity assumptions on the boundary.
In the case of Optimal Transport problems, which is a framework of interest in this thesis,
the set U is a set of Borel probability measures.

1.1 L∞-variational problems

The first part of this manuscript is dedicated to some aspects related to absolute minimizers
of the so-called supremal or L∞ - variational problems.
Classically, a variational problem is the problem of minimizing the integral functional

F(u,Ω) :=

∫
Ω
H(x, u(x), Du(x))dx, (1.1.1)

where Ω is an open set of Rd and H is a Borel function defined on Ω × Rn × Rdn with
values in [0,+∞], among u : Ω→ Rn belonging to a suitable class of functions.
As the name suggests, an L∞-variational problem is instead the problem of minimizing the
functional

F∞(u,Ω) := ||H(·, u,Du)||L∞(Ω) = ess sup
x∈Ω

H(x, u(x), Du(x)), (1.1.2)

that is the L∞-norm of the density function H.

L∞ variational problems arise naturally in many physical problems and not only. For
example, in the problem of the deflection of a transversally loaded beam one seeks to mini-
mize the maximum deflection. In nonlinear elasticity, one wants to minimize the maximum
stored energy of a deformation gradient of the reference configuration 1. In chemotherapy,

1In physics and continuum mechanics, deformation is the transformation of a body from a reference
configuration to a current configuration. A configuration is a set containing the positions of all particles
of the body.
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CHAPTER 1. INTRODUCTION

one seeks to minimize the maximum tumor load. Also the problem of image reconstruction
and enhancement has been formulated as an L∞ problem (see [40]).

The existence of minimizers for the functional (1.1.2), for u ∈ W 1,∞(Ω,Rn), holds with
assumptions comparable with the ones of the integral case. As proved in [16], sufficient
conditions for weak* lower-semicontinuity of F∞ are for instance lower semicontinuity of
H with respect to the last two variables and quasiconvexity (i.e. convex sublevel sets) with
respect to the last one.

In contrast to the integral case, the essential supremum is a global operator, hence the
functional (1.1.2) might not depend locally on x and might not be sensitive to small per-
turbations of u, often leading to high non-uniqueness of minimizers. For this reason, while
dealing with supremal variational problems it makes sense to restrict our attention, rather
than to general minimizers, to “local” ones, known in the literature as absolute minimizers.
We say that u is an absolute minimizer for the functional (1.1.2) if for any V ⊂⊂ Ω,

F∞(u, V ) ≤ F∞(v, V ),

for any v which coincide with u on the boundary of V .

L∞-variational problems first appear in the pioneering works [7], [8] and [11], where the
author also showed for the scalar case u : Ω→ R, where Ω ⊂ R, that in analogy with the
classical variational problems there exists a PDE

D(H(·, u,Du)) ·Hp (·, u,Du) = 0, (A-E)

which can be thought as the Euler-Lagrange equation for this class of problems. This
PDE has then become known as Aronsson-Euler equation in his honor. Contrary to the
classical case, where being a minimizer is a sufficient condition to solve the associated
Euler-Lagrange equation, in this framework the right condition is to be an absolute mini-
mizer, as showed by Barron, Jensen and Wang in [17], where they prove that if H is C2 and
strictly quasiconvex, any absolute minimizer is a solution of (A-E) in the sense of viscosity
(we refer to [55] for more information about viscosity solutions). Their result holds both
in the scalar case u : Ω → R, with Ω ⊂ Rd and in the vectorial case u : Ω → Rn, where
Ω ⊂ R.
The study of the general vectorial case of the problem (1.1.2) is much more complicated
and for this topic we refer to some of the pioneering works of Katzourakis [83, 84, 85].

A special case of interest, and the first one to be studied, is the one of the functional

u 7→ ||Du||L∞(Ω), (A∞)

where u ∈ W 1,∞(Ω,R) and the supremand H(x, r, p) = |p| depends only on the last
variable. This functional has been treated first by Aronsson in [9], where he also proves
existence of absolute minimizers. The notoriety of the functional (A∞) is due to the fact
that the associated Aronsson-Euler equation

−∆∞u = −Duᵀ ·D2uDu = 0 (∆∞)

2



1.1. L∞-VARIATIONAL PROBLEMS

is the ∞-laplacian equation, which can be interpreted (see for instance [24]) as the limit
for p→∞ of the more famous p-laplacian equation

−∆pu = −div(|Du|p−2Du) = 0, (∆p)

which is in turn the Euler-Lagrange equation of the functional

u 7→ 1

p

∫
Ω
|Du(x)|pdx.

Still in [9] it has been shown that, for u ∈ C1(Ω), being an infinity harmonic function, that
is a solution of the equation (∆∞), is not only a necessary but also a sufficient condition
to be an absolute minimizer of (A∞). This result has been generalized to the functionals
H = H(p) ∈ C2(Rd) by Gariepy, Wang, and Yu in [70]. Finally we want to underline the
fact that this characterization does not hold in the vectorial case for absolute minimizers
in the sense of Aronsson, even if we consider the functional ||Du||L∞ , as showed by Kat-
zourakis and Shaw in [87].
Among many outstanding aspects relating to the equation (A-E), uniqueness and regular-
ity issues of its viscosity solutions are the most challenging.
In his seminal work [75], Jensen proves uniqueness for the viscosity solutions of the Dirich-
let problem associated to (∆∞). In [76] this result has been extended to p 7→ H(p) which
is C2 and convex.
For the regularity, Savin [109] and Evans and Savin [65] have proved that any infinity
harmonic function in R2 is C1,α for some 0 < α < 1. Wang and Yu [121], based on some
extensions of the ideas of Savin [109] and the technique of discrete gradient flow for Arons-
son’s equation, have proved C1-regularity for viscosity solutions to Aronsson’s equation in
R2 for any uniformly convex H ∈ C2(R2). The techniques used by Savin in [109] exploit
in turn a very interesting result appearing in [53].

In [53] Crandall, Evans, and Gariepy extend the result of [9], proving that every abso-
lute minimizer u of (A∞) (dropping Aronsson’s assumption u ∈ C1(Ω)) is characterized
not only by being a viscosity solution of (∆∞), but also by what they call comparison with
cones principle, which states that for any V ⊂⊂ Ω, for any a, b ∈ R and for any x0 ∈ Ω, if

u(x) ≥ (≤)a|x− x0|+ b, on ∂(V \ {x0}),

then
u(x) ≥ (≤)a|x− x0|+ b, in V.

The success of this characterization led Gariepy, Wang, and Yu [70] to develop the com-
parison principle of generalized cones for absolute minimizers of H = H(p) ∈ C2(Rd) and
the year later Champion, and De Pascale [43] to further generalize it with the so-called
comparison with distance functions principle, which characterizes the absolute minimizers
when H = H(x, p) is supposed to be only lower semicontinuous, in addition to satisfing the
natural assumptions of quasiconvexity and coercivity with respect to the second variable
and the assumption of a locally uniform “non-emptiness” of the sublevel sets of H.
More precisely, they prove that for any V ⊂⊂ Ω, any x0 ∈ Ω, any λ ≥ 0, and α ∈ R, the
inequality

u ≤ dλ(x0, ·) + α, on ∂(V \ {x0})

3
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implies
u ≤ dλ(x0, ·) + α, in V ,

where for every λ ≥ 0, dλ is a (pseudo) distance which depends on the sublevel sets
{p : H(x, p) ≤ λ} of the Hamiltonian H. Thanks to this property, in [98] the authors
prove the uniqueness of absolute minimizers when H is convex.

It is possible to show that this distance coincides with the distance δλH associated to H
defined by (1.3) in [73]

δλH(x, y) = sup
{
u(y)− u(x) : u ∈W 1,∞, ||H(·, Du)||L∞(Ω) ≤ λ

}
.

The importance of the relation between supremal functionals and distances associated
with H has been observed by several author, for instance in [72], under the assumptions
of 1-homogeneity of H with respect to the gradient variable, the authors use the intrinsic
distance function to characterize the relaxation of a supremal functional (for an extension
of this result see the more recent [73]).

The main idea behind the definition of the family of distances (dλ)λ ≥ 0 lies on the
fact that for H(x, p) = |p|, if Ω is convex and the boundary datum g is Lipschitz, then the
Dirichlet problem associated to (A∞)

min
{
||Du||L∞ : u ∈W 1,∞(Ω) ∩ C(Ω) andu = g on ∂Ω

}
admits solutions and an example of minimizers is provided by the so-called maximal and
minimal extensions (or McShane-Whitney extensions) of g

S−(x) := sup
y∈∂Ω
{g(y)− Lip(g, ∂Ω)|x− y|}

S+(x) := inf
y∈∂Ω
{g(y) + Lip(g, ∂Ω)|x− y|},

where Lip(g, ∂Ω) is the Lipschitz constant of g.
The goal thus is to define a new metric on Ω which depends on H in a way that McShane-
Whitney extensions for this metric are still solutions of the more general problem

min
{
||H(·, Dv)||L∞(Ω) : v ∈W 1,∞(Ω) ∩ C(Ω), v = g on ∂Ω

}
. (H)

If we think of Ω as a manifold with only one chart, the idea is to define for every x a
substitute for the metric tensor on Rd = TxΩ which depends on the λ-sublevel sets of H at
x. By the fact that {p : H(x, p) ≤ λ} is convex and compact for every λ, the natural can-
didate is the so-called support function of the sublevel sets (see Definition 2.1.3). Since the
support function is only positively 1-homogeneous one cannot expect to have a Rieman-
nian structure. However, as showed in Proposition 2.2.11, we have a Finslerian structure,
as the one defined in 2.1.11 (for more about Finsler metric see [60]), which allows for the
definition of the required family of pseudo-distances, which are also geodesic distances (see
Proposition 2.1.27).

In Chapter 2, which is based on a joint work with L. De Pascale [32], after giving some
preliminary results and definitions, we explore the characterization with the comparison
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with distance functions in order to prove further optimality results for the absolute min-
imizers of the problem (H), where H is as in [43], with the additional assumptions of
continuity and emptiness of the interior of the level sets.
In Section 2.2.5, we show that is possible to give a pointwise definition of

H(x,Du(x)),

which is denoted by H(·, Dv)(x) to distinguish it from the classical value which is only
almost everywhere defined. This definition is well-posed because, as proved in Propo-
sition 2.2.39 and Proposition 2.2.40d if u is differentiable at x0, then H(x0, Du(x0)) =
H(·, Du)(x0). Moreover, for any minimizer v we introduce the attainment set (see Defin-
tion 2.2.46)

A(v) := {x ∈ Ω | H(·, Dv)(x) = ess sup
x∈Ω

H(x,Dv(x))} (1.1.3)

and in Theorem 2.2.47 we prove the following optimality property:

if u ∈W 1,∞(Ω) ∩ C(Ω) is an absolute minimizer, then

A(u) ⊂ A(v) (1.1.4)

for all minimizers v of (H).

In the same theorem we also provide a qualitative description of A(u). More precisely if
x0 ∈ A(u), for some absolute minimizer u, there exists a geodesic for dµ passing trough x0

and connecting two different points of ∂Ω, with µ equal to the minimum of (H).

1.1.1 Constraints on the gradient

We observe that solving the problem (H) is equivalent to find u ∈ W 1,∞(Ω) ∩ C(Ω), such
that {

u = g on ∂Ω,

Du(x) ∈ {p : H(x, p) ≤ µ} for a.e. x ∈ Ω,

where
µ := min

{
||H(·, Dv)||L∞(Ω) : v ∈ g +W 1,∞(Ω) ∩ C0(Ω)

}
.

If in addition H ≥ 0 satisfies the natural assumptions of quasiconvexity, coercivity, and
lower semicontinuity, the sublevel sets are convex bodies (i.e. compact and convex sets) of
Rd and the system above is the Dirichlet formulation of the problem known in the literature
as convex constraints on the gradient, i.e. the study of the differential inclusion

{u ∈W 1,∞(Ω) : Du(x) ∈ K(x) for a.e. x ∈ Ω}, (1.1.5)

where K(x) is a convex body for every x ∈ Ω.

The interest on problems like (1.1.5), especially for K(x) = B(0, f(x)), for some non-
negative funtion f , is motivated also by some physical issues, such as the problem of the
elastic-plastic torsion of a cylindrical bar (see for instance [116, 63]), polycrystal plasticity,
or torsional creep problems and the problem of dielectric-breakdown, in which a body,
subject to an electric field Du, behaves as an insulator if Du(x) belongs to a convex set
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K(x) for a.e. x, otherwise the dielectric breakdown occurs and the body starts to conduct.
Moreover the dielectric-breakdown (see for instance [71, 41] and references therein) can be
mathematically interpreted as limiting case of the power-law model, which is known to give
a adequate description for some classes of conductors (see for instance [26] and reference
therein).
Problems with convex constraints on the gradient appear also in [42], where the authors
study the homogenization of some Dirichlet problems as a limit of variational problems
with convex bounded constraints on the gradient, providing a proof of a conjecture present
in [20]. Finally, convex constraints on the gradient appear also in the Monge-Kantorovich
transportation problem, in which one seeks to maximize∫

u(x)dµ(x)−
∫
u(x)dν(x),

among all the u’s such that Du(x) ∈ K(x) a.e. (see for instance [120]).

Chapter 3 is devoted to the presentation of the results present in the preprint [30]. Given
a connected and bounded open set Ω ⊂ Rd, we are interested in the Dirichlet problem{

u = g on ∂Ω,

Du(x) ∈ K(x) for a.e. x ∈ Ω,
(P)

where g ∈ C(∂Ω), u ∈ W 1,∞(Ω) ∩ C(Ω) and K(x) belongs to K, the family of convex
bodies of Rd, K(x) is continuous w.r.t. the Hausdorff distance and there exist 0 < α < M
such that B(0, α) ⊂ K(x) ⊂ B(0,M) for every x. This is a classical problem and the case
K(x) := B(0, f(x)), with f bounded from below by a positive constant, has been studied
by Aronsson in [12].
It is straightforward that if Ω is convex and K(x) = B(0, R) for every x, the problem (P)
admits a solution if and only if Lip(g, ∂Ω) ≤ R. A similar fact, proved also in [11], still holds
for K(x) = B(0, f(x)). We then expect to find a suitable metric such that the same result
holds for more general K(x). Given the analogy with L∞-variational problems like (H),
for every x we define the support function ϕ0(x, ·) of K(x) (see Definition 2.1.3), which is
in fact a Finsler metric and allows for the definition of a (pseudo) distance (x, y) 7→ d(x, y)
(see Definition 2.1.14) and it turns out to be

d(x, y) = sup
{
u(y)− u(x) : u ∈W 1,∞(Ω) ∩ C(Ω), Du(x) ∈ K(x) a.e. in Ω

}
,

where the left hand side of the equality is a distance introduced in [60] (see also [72, 73]).
The case K(x) = {H(x, ·) ≤ 0} has been treated by Lions in Theorem 5.3 of [92]. However
he does not use any Finsler structure and proves this result just for H(x, ·) continuous and
convex.
As expected, the result (inspired by [12, 43]) is that the problem (P) admits a solution if
and only if the boundary datum g is 1-Lipschitz w.r.t. to the new distance d (see Theorem
3.1.14) and examples of solutions are provided by the so-called maximal and minimal
extensions, defined for any x ∈ Ω by:

S−(x) = sup {g(y)− d(x, y) : y ∈ ∂Ω} ,
S+(x) = inf {g(y) + d(y, x) : y ∈ ∂Ω} .
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Since for every solution u of (P), S−(x) ≤ u(x) ≤ S+(x), it is natural to investigate the
structure of the uniqueness set, that is the set of points where S− = S+ and thus all
the solutions coincides. Theorem 3.2.8 states that for every point x of the uniqueness set
there exists an optimal Lipschitz curve (optimal in the sense of the definition of the Finsler
distance see 3.2.2) that passes through x, it is all contained in Ω except for the extreme
points, it connects two points of the boundary and S+, S− and every solution u of (P)
coincide along it. Moreover, all the solutions of (P) are derivable H1-a.e. along that curve
with curve derivative equal to ϕ0.
Under suitable assumptions on ϕ0 or on d it is also possible to prove (see Proposition
3.2.11 and Proposition 3.2.14) that the maximal and minimal extensions are respectively
locally semiconvex and semiconcave. Thanks to this fact in Theorem 3.2.17 we are able to
prove a further regularity result: every solution u of (P) is continuously differentiable on
the uniqueness set and if the interior of the uniqueness set is not empty, u ∈ C1,1

loc on the
interior.
Finally, if one inserts the supremal problem (H) of Chapter 2, in the framework of problems
like (P), it follows that for every solution u of (P) the uniqueness set is included in the the
attainment set A(u), as shown in Theorem 3.2.22. Moreover in Theorem 3.2.23 is proved
that if u is an absolute minimizers the other inclusion also occurs and the uniqueness and
the attainment sets coincides.
A byproduct of this fact is (Corollary 3.2.24) the continuous differentiability of the absolute
minimimizers on the attainment set under suitable regularity assumptions on H.

1.2 L∞-Optimal Transport problem

The second part of this manuscript is dedicated to the optimal mass transport problem in
L∞.
The Optimal Transport problem (OT) has its origin in 1871 with Monge [99], who wanted
to find the best way to move a pile of sand from a region to another, minimizing the
work. In rigorous mathematical terms, if (X, dX) and (Y, dY ) are two Polish spaces, i.e.
separable completely metrizable topological spaces, µ and ν are two Borel probability
measures respectively of X and Y (we write µ ∈ P(X) and ν ∈ P(Y )) and c : X × Y → R
is a Borel cost function, he was interested in solving the problem 2

inf
T (µ,ν)

∫
X
c(x, T (x))dµ, (1.2.1)

where
T (µ, ν) := {T : X → Y Borel : T]µ = ν} .

However, since it is hard and sometimes not possible to find a solution of the above for-
mulation, the problem remained unsolved for a long time, until 1942 when Kantorovich
([82]) formulated a relaxed version dropping the deterministic assumption that all the in-
finitesimal mass in x is forced to be “sent” by a map to “only” a y, in favor of the weaker
assumption of the mass being transported by a measure and therefore allowing the mass

2To be more precise in Monge’s original formulation X = Y = R3 and c(x, y) = |x− y|, the Euclidean
distance, so that we can think of µ and ν as the two distributions of sand’s mass and - under the assumption
of proportionality between force and mass - the cost is proportional to the work done.
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to “be split”. The new problem then becomes

min
γ∈Π(µ,ν)

∫
X×Y

c(x, y)dγ,

where
Π(µ, ν) :=

{
γ ∈ P(X × Y ) : π1

] γ = µ and π2
] γ = ν

}
,

with π1 and π2 being respectively the projections on the first and the second coordinate
of X × Y . As it will be discussed in Section 4.1.1, the set T (µ, ν) is “contained” in
Π(µ, ν) and Kantorovich’s formulation is actually a relaxation of the Monge’s problem (for
a rigorous proof see for instance Section 1.5 in [108]). Moreover, Kantorovich’s version
admits a solution - known in the literature as optimal plan - under the mild assumptions
of lower semicontinuity and boundness from below on c (see for instance [3, 108]) and if c
is continuous and non-negative and µ has no atom (see [105]),

min
Π(µ,ν)

∫
X×Y

c(x, y)dγ = inf
T (µ,ν)

∫
X
c(x, T (x))dµ.

In contrast to the classical optimal transport in which one considers the integral and thus
the overall cost, in the L∞-optimal transport one is interested in the L∞-norm of the cost
function with the aim of minimizing the “maximal cost”, i.e.

min
γ∈Π(µ,ν)

C∞(γ) := min
γ∈Π(µ,ν)

(
γ − ess sup

(x,y)∈X×Y
c(x, y)

)
= min

γ∈Π(µ,ν)
||c||L∞(X×Y,γ). (P∞)

Since γ is a probability measure, given a cost function c ≥ 0, ||c||L∞(γ) is equal to the limit
as p→∞ of the p-norm of c, ||c||Lp(γ), and therefore the L∞-OT can be seen as the limit
problem of

min
γ∈Π(µ,ν)

C
1
p
p (γ) :=

(∫
X×Y

cp(x, y)dγ

) 1
p

. (Pp)

As in the classical setting, minimizers of P∞ exist under mild assumptions on c such as
lower-semicontinuity (see [79]).

The first who studied the optimal transport problem in L∞ where Champion, De Pascale,
and Juutinen, who in [47] carried out a comprehensive study in the case X = Y = Rd,
d ≥ 1, and the cost of transporting a point x to a point y is given by their Euclidean
distance: c(x, y) = |x− y| and µ and ν are concentrated on compact sets of Rd.

When X = Y and c = dX , the minimal value of (P∞) is called ∞-Wasserstein distance
of the measures µ and ν and denoted by W∞(µ, ν) and by definition it provides a natural
control from above of the Wp distances, which are the minimal value of the problem (Pp)
with c = dX . The space (Pp(X),Wp) is a metric space on the probability measures with
finite p-moment Pp(X) for any 1 ≤ p <∞ and on the probability measures with bounded
support when p =∞. When 1 < p <∞, especially p = 2, this distance and the associated
metric space has been widely studied, leading to a considerable improvement in the theory
of optimal transport and its range of application: among the many others we recall the
definition of displacement interpolation given for the first time by McCann in [94] or of
Wasserstein barycenter due to Agueh, and Carlier appeared for the first time in [2], but
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also the breakthrough of the “Riemannian nature” of the Wasserstein spaces, which was
pointed out first in [102, 103].
Even though the case p = ∞ is more delicate and less understood, the distance W∞ ap-
pears naturally in many modelling issues. One of the first paper using such a distance
was [96], devoted to the shape of rotating stars, in which it turns out that the right local
minimizers of a functional F to consider are the one with respect to W∞, because they
happen to be characterized by the fact that every point of their support satisfies a local
minimality condition for a function f , which is the first variation of F .
Finally it is interesting to mention that for X = Rd and c the Euclidean distance, Bouch-
itté, Jimenez and Rajesh provide in [25] a reverse inequality between W∞ and Wp, of the
form

W∞(µ, ν) ≤ CWp(µ, ν)
p
p+d ,

where C is a constant depending on p, on the dimension d, on Ω and on a lower bound
on the density of µ. The result was also generalized to more general costs by Jylhä and
Rajala in [80] establishing necessary and sufficient conditions for the existence ofW∞-lower
bounds for the integral optimal transportation costs.

Since the optimal transport problem can be seen as a variational problem in which one
minimizes the functional among a set of measures, it seems reasonable to expect similarities
between the L∞-Monge-Kantorovich problem and the L∞-variational problems presented
before. As for the minimizers of the L∞ variational problems, in general we can not expect
any local property of optimal L∞-transportation plans. Indeed, differently from the stan-
dard integral Monge-Kantorovich problem, in which the functional γ 7→

∫
cdγ is linear,

if γ is an optimal plan for the L∞-OT problem and B is a Borel subset of X × Y , γ|B
is not necessarily optimal with respect to its marginals (see for instance Example 4.1.22).
To address this problem, Champion, De Pascale, and Juutinen invoked the concept of
restrictability. An optimal L∞-transportation plan is restrictable if, loosely speaking, its
restrictions are also optimal (for the rigorous definition see Definition 4.1.32) and it can
be seen as the the analogous of the absolute minimizers in the L∞-calculus of variations
problems. Moreover, they introduced the concept of∞-c-cyclical monotonicity, which car-
ries the well-known notion of c-cyclical monotonicity of optimal transportation plans (see
[3, 108, 120] for a detailed discussion) to the L∞-case. A plan γ is∞-c-cyclically monotone
if for any finite set of points {(xi, yi)}i=1,...,N in the support of γ, assigning xi to yi is the
best choice, in the sense that if we permute the yi’s with any permutation σ, the maximum
of c over {(xi, yσ(i))}i=1,...,N is never smaller than the maximum of c over {(xi, yi)}i=1,...,N .
The interesting fact is that they showed that restrictability and ∞-cyclical monotonicity
are equivalent. This equivalence also holds for more general cost functions at least if they
are continuous, as it was proven by Jylhä in Theorem 2.19 of [79].

In light of the fact that Π(µ, ν) is a convex set and the functional γ 7→
∫
cdγ is by linearity

a convex functional, the classical Kantorovich optimal transport problem is a convex op-
timization problem. It is well known in optimization that associated with such a problem
there is a dual problem, which provides useful information about the primal one. More
precisely the Monge-Kantorovich problem is equivalent to the dual formulation (see also
(DualOT)) given by

sup

{∫
X
ϕ(x)dµ+

∫
Y
ψ(y)dν : ϕ⊕ ψ ≤ c, (ϕ,ψ) ∈ Cb(X)× Cb(Y )

}
.
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The above dual formulation is a key aspect of the theory in optimal transport, especially
for deriving fundamental results of optimal transport like Brenier’s theorem ([27]) and the
Gangbo-McCann’s theorem ([69]), which not only prove the existence of optimal maps for
the Monge’s formulation (1.2.1) but also the uniqueness and the deterministic nature of
optimal plans for some cost functions c, i.e. that optimal plans are concentrated on graphs.

Since the functional γ 7→ C∞(γ) is not convex, we are not dealing with a convex opti-
mization problem and the question on whether there exists a dual formulation for the
L∞-optimal transport is more difficult. Contrary to the primal formulation it is not pos-
sible to consider the problem

sup

{(∫
X

ϕp(x)dµ+

∫
Y

ψp(y)dν

) 1
p

: ϕp ⊕ ψp ≤ cp, (ϕ,ψ) ∈ Cb(X)× Cb(Y )

}

and send p → ∞. Indeed even in the unlikely case in which ϕ ⊕ ψ ≥ 0 and the power 1
p

makes sense, there is no reason why the limit p→∞ should give any information.
Yet, although not convex, analogously to the supremal functionals, the functional γ 7→
C∞(γ) is quasiconvex, which means that the level sets are convex. This allows for a (sort
of) L∞-duality theory introduced and investigated first by Barron, Bocea, and Jensen in
[15]. However, the existence of trivial solutions in the dual formulation they provide pre-
vents it to be a useful and immediate tool.
The theory was further developed in the 1-dimensional case for the cost function c equal
to the Euclidean distance |x − y| by De Pascale and Louet in [61], where they construct
an example of a non trivial pair (ϕ,ψ), solution of the L∞-dual formulation (4.1.2). As an
application, they prove a result (Theorem 4.2 in [61]) that share similarities with Theorem
2.2.47 in Chapter 2, about the properties of the attainment set of an absolute minimizer for
the supremal variational problem (H). Indeed they prove that there exists a set of points
of the support of the source measure which are displaced at maximal distance by all the
optimal transport plans and on this set, which is shared by all the ∞-cyclically monotone
transport plans, any optimal transport plan must exactly coincide with the ∞-cyclically
monotone one.

Even though the absence of a satisfying duality theory, Champion, De Pascale, and Juu-
tinen were able to introduce in [47] a duality-free technique to show that for X = Y = Rd
and c(x, y) = |x − y|, under natural assumptions on µ, ∞-cyclical monotone transport
plans - or, even less, ∞-monotone transport plans (i.e. when the monotonicity property
holds only for sets of two points) - are actually induced by a transport map. The novelty of
their work is not only the result itself but also the fact that the technique they developed
turned out to be very useful to prove existence of solutions of the Monge problem also for
some integral transport costs, in which it is not evident how to exploit duality (see for
instance [44, 45]).
Still in [47], they prove that if the target measure ν is atomic, ∞-cyclical monotone - and
thus restrictable - transport plans are also unique. More precisely, if ν contains an atom,
say y0, and T and S are two optimal transport maps, both corresponding to infinitely
cyclically monotone transport plans, then µ(T−1({y0}) \ S−1({y0})) = 0.
Jylhä in [79] generalizes the result of [47] to cost functions of the form c(x, y) = h(y − x),
where h : Rd → R+ is strictly quasiconvex in the sense that for all t ∈ (0, 1) and x, x̄ ∈ Rd
with x 6= x̄

h((1− t)x+ tx̄) < max{h(x), h(x̄)}.
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In Chapter 4, after all the needed preliminaries, we present an original version of the
results discussed above about the deterministic nature of ∞-c-cyclically monotone plans
and their uniqueness, based on a joint work with L. De Pascale, and A. Kausamo [33]. In
particular consider a different cost function c which is strictly quasiconvex with respect to
one coordinate, but not translation invariant, and satisfies a special condition on the norm
of the gradient (see Theorem 4.2.10).
The relevant notion in the Monge-Kantorovich problem for integral costs is an invertibility
condition on the partial gradient of c ([46, 67] and [108] and references therein). This
condition is commonly used in dynamical systems, it is called the twist condition and it
goes very well along with convexity properties. There is no analogue of the twist condition
for L∞-optimal transport problem. In Theorem 4.2.8 we introduce a property which could
serve as twist condition in this setting and we give some examples of costs which have
this property (see Section 4.2.3). The property we introduce is invariant (as one could
expect) by composition of c with a strictly increasing, differentiable function. The proof
of the “Brenier type” result, that is the concentration of ∞-c-cyclically monotone plans on
a graph (and the consequent existence optimal maps), is provided by Theorem 4.2.10.
Although in Theorem 4.2.13 we do not change the essence of the proof of uniqueness, we
give a new structure to it which, in our opinion, makes the arguments more transparent
and may allow a better understanding of the problem.
The proof of the main results is based on measure theoretic considerations and on the
construction of certain specific cones. The same happens in [79] as well as in previous
works in which these techniques are applied. What is different is that the construction of
[79] is based on the translation invariance of the cost while our construction relies on the
notion of normal cone to the boundary of a convex set. This points to the possibility of a
general construction which may be adapted to different costs.

A different technique to prove the existence of an optimal transport map, which applies
to several costs of the form c(x, y) = h(x − y), for h strictly convex, was devised by C.
Jimenez and F. Santambrogio in [78]. They consider the convex set

Π∞(µ, ν) :=

{
γ ∈ arg min

Π(µ,ν)
C∞

}
and define the secondary variational problem

min

{∫
X×Y

|x− y|2dγ : γ ∈ Π∞(µ, ν)

}
.

They prove that if γ is optimal for the secondary problem then it is deterministic. However
the optimal map of [78] is not proved to be ∞-c-cyclically monotone.

1.2.1 L∞-Entropic Optimal Transport

The main idea of entropic regularization of the optimal transport problem in the integral
setting is to “relax” the Monge-Kantorovich problem by adding a noise. This allows to
replace the Monge-Kantorovich problem by a strongly convex problem which admits a
unique solution.
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More precisely, given two probability measure µ, ν ∈ P(Rd) and a cost function c : Rd ×
Rd → R, the Entropic Optimal Transport problem (also called entropy-regularized optimal
transport problem, EOT for short) reads as:

vε := inf
γ∈Π(µ,ν)

{∫
Rd×Rd

cdγ + εH(γ|µ⊗ ν)

}
,

where the penalization term

H(γ|µ⊗ ν) :=

{∫
Rd×Rd log

(
dγ

dµ⊗ν

)
dγ if γ << µ⊗ ν,

+∞ otherwise,

is the Boltzmann-Shannon relative entropy (also called Kullback-Leibler divergence) and
ε > 0 can be interpreted as a temperature parameter. Heuristically, this consists in moving
µ onto ν in the cheapest and (at the same time) most “diffuse” way, since the minimizer
γε of vε is forced to be absolutely continuous with respect to µ ⊗ ν because of the en-
tropy term, which is +∞ otherwise, and so its mass has to be “spread out”, in contrast
with solutions to the unperturbed transport problem, which happen to be concentrated on
graphs of Borel maps. Clearly, the “spreadness” of the approximate plan will depend on
the magnitude of the regularization parameter.

As highlighted by C. Léonard in many works, see for instance [89, 90], when c(x, y) = |x−y|2
2

the entropic regularization of the optimal transport problem is deeply connected to the
problem posed by Schrödinger in his seminal works [111, 112]. Suppose that you know
that at initial time t = 0 a very large number of non-interacting indistinguishable particles
are approximately distributed as a probability measure µ and that the dynamics of each
individual particle is driven by a Brownian motion with diffusion parameter ε. Suppose
also that at a final time t = 1, you observe the system in a configuration close to some
probability measure ν which is far from the one expected by the law of large numbers.
Then Schrödinger’s question is: “Conditionally on this very rare event, what is the most
likely path of the whole system between the times t = 0 and t = 1?”

Since EOT is a perturbed transport problem it is natural to investigate its behaviour
as the parameter ε approaches 0 and if and how it approximates the Monge-Kantorovich
problem. In the pioneering works of Léonard [89] (which tackled the question from the
Schrödinger problem’s viewpoint) and of Carlier et al. in [38] the Γ-convergence was proved
in the case c(x, y) = |x−y|2

2 (but it can be easily generalized to any 1 ≤ p < +∞). The
same result has been then extended to a very large class of continuous cost functions. As
a direct consequence, the optimal value vε of the EOT problem converges to the optimal
value of the OT problem - W 2

2 (µ, ν) in the case of quadratic costs - raising naturally the
question about a possible quantitative rate (see for instance [1, 64, 104, 50, 49, 39]). Also
the convergence of optimal plans and potentials - i.e. the solutions of the dual formulation
of the EOT problem - has been largely studied (see [100] as a comprehensive survey and
the references therein) and the question of quantitative estimates has been addressed in
[22, 101] by leveraging on a large deviations interpretation and on the notion of (c, ε)-
invariance, defined for the first time in [22]

In the last decade, the entropic optimal transport problem has witnessed an increasing
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interest and is now an extremely active research topic, because it has found numerous ap-
plications and proved to be an efficient way to approximate OT problems, especially from
a computational viewpoint.
The Monge-Kantorovich problem is a linear programming, which means a linear optimiza-
tion problem under linear constraints. In the discrete case this is even more evident and
this property has allowed for the use of the simplex method algorithm which provides exact
solutions, but it is computationally prohibitive in big dimensions (N2 unknown with 2N
constraints). Other algorithms where later found, such as the Hungarian (see [88]) and the
Auction (see [23]) methods, but the computational cost still remains high. For a complete
overview on numerical methods for optimal transport see [58, 19, 97].
On the contrary, one of the greatest advantage of EOT lies on the fact that we can in-
troduce a simple algorithm to compute the solution, which is performed by alternating
Kullback-Leibler projections on the two marginal constraints. By the algebraic properties
of the entropy such iterative projections correspond to the celebrated Sinkhorn’s algorithm
[114], which was applied in this framework for the first time by Cuturi in the pioneer-
ing work [57]. Beside being simple, this method turns out to converge much better (see
[68, 62]) compared to the algorithms used for the Monge-Kantorovich problem, determin-
ing the success of EOT for applications in machine learning, statistics, image processing,
language processing and other areas (see the monograph [58] and references therein).

As already discussed, the optimal transport problem in L∞-OT is a nonconvex and pre-
sumably much harder problem than OT and many aspects remain still unsolved and not
fully understood, such as the question of finding the best assumptions on c in order to
have Brenier type results as the one of Theorem 4.1.37 and Theorem 4.2.10 or of extend-
ing the result on uniqueness (Theorem 4.1.38 and Theorem 4.2.13) to more general target
measures ν.
Therefore due to the success of entropic approximation of the integral optimal transport
just recalled and in order to gain a better understanding, it makes sense to try to inves-
tigate, theoretically and numerically, whether the entropic approximation strategy can be
used for L∞-optimal transport as well.
In Chapter 5 we present this investigation, based on an ongoing work with G. Carlier
and L. De Pascale [31].
The approximated problem we provide reads

vε,p := min
γ∈Π(µ,ν)

{(∫
Rd×Rd

c(x, y)pdγ(x, y) + εH(γ|µ⊗ ν)

) 1
p

}
.

Since H(γ|µ⊗ ν) ≥ 0 with an equality exactly when γ = µ⊗ ν, we can see that(∫
Rd×Rd

c(x, y)pdγ(x, y) + εH(γ|µ⊗ ν)

) 1
p

≥ ||c||Lp(γ)

but
||c||Lp(γ) ≤ ||c||L∞(γ),

so roughly speaking these approximations play in opposite directions: adding the entropic
term is an approximation from above but approximating ‖c‖L∞(γ) by ‖c‖Lp(γ) is an ap-
proximation from below.
Under suitable assumptions on the convergence of ε→ 0 - which has to be related to p - or

13
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on the cost function c, in Theorem 5.2.4 we show the Γ-convergence towards the supremal
cost functional when p→∞ and ε(p)→ 0.
Moreover, what is particularly interesting in our opinion is that the results of [22] can be
used to show in Theorem 5.2.9 that Γ-convergence selects at the limit the distinguished
restrictable ∞-c-cyclically monotone minimizers, i.e. any cluster point γ∞ of the minimiz-
ers γε,p of vε,p is ∞-c-cyclically monotone and therefore, in some cases, concentrated on a
graph of a map.
Also the question of quantitative estimates on the rate of convergence of vε,p has been
addressed. In Proposition 5.2.11 and Remark 5.2.12, under the assumption of ||c||L∞(γ∞)

greater than 1, we have an exponential upper bound, while providing a lower bound is more
delicate and we manage to have a result just in the discrete case (Proposition 5.2.14). In
Section (5.2.4), we also discuss a partial extension of the large deviations result proved in
[22]
Finally, by using the Sinkhorn’s algorithm, we were able to give numerical examples, which
we think can well illustrate what has been proved and are presented in Section 5.2.5.

14



Notation

i.e. namely ;
w.r.t with respect to;
a.e. almost everywhere;
s.t. such that ;
N,N∗ set of non-negative integers, set of positive integers;
R set of real numbers;
R the set R ∪ {+∞}
R+ set [0,+∞) of non-negative real numbers;
Rd vector space of dimension d > 1 on the set of real numbers;
p · q standard scalar product between two vectors p, q ∈ Rn
intA the interior of a set A;
A the closure of a set A;
B(x0, r) open ball of Rd with radius r and center x0 ∈ Rd;
dist(x,A) distance function, i.e. infy∈A |x− y|;
C(X) space of continuous functions defined on the space X with real values;
Cb(X) space of bounded continuous functions defined on the space X with real values;
Lip(X) space of Lipschitz continuous functions;
Lip(f,X) Lipschitz constant of a function f on the space X;
M(X) space of Borel measures on X;
P(X) space of Borel probability measures on X;
suppµ support of the measure µ;
Lp(X,µ), Lp(µ) space of measurable functions for which pth power of absolute value is integrable

w.r.t. the measure µ, p ≥ 1;
L∞(X,µ) space of measurable functions with finite essential supremum w.r.t. µ;
Ω open subset of Rd;
V ⊂⊂ Ω open subset such that V ⊂ V ⊂ Ω;
Cc(Ω) space of continuous functions on Ω with compact support;
C0(Ω) space of continuous functions on Ω vanishing at the boundary;
Ck(Ω) space of k ∈ N times continuously differentiable functions on Ω;
Ck(Ω) restriction on Ω of Ck(Rd);
Ck,α(Ω) space of k ∈ N times continuously differentiable functions on Ω,

whose kth derivative is Hölder continuous with exponent α ∈ (0, 1];
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Ld Lebesgue measure on Rd;
µ << Ld Borel measure µ absolutely continuous w.r.t. to Ld;
Lp(Ω), L∞(Ω) Lp, L∞ space on Ω w.r.t. the Lebesgue measure;
W k,p(Ω,Rd) Sobolev of order k ∈ N∗ and integrability p ≥ 1 with values in Rd;
W k,p(Ω) Sobolev of order k ∈ N∗ and integrability p ≥ 1 with values in R;
W k,∞(Ω) Sobolev of order k ∈ N∗ and finite essential supremum;
g +W 1,∞(Ω) ∩ C0(Ω) u ∈W 1,∞(Ω) ∩ C(Ω) s.t. u = g on ∂Ω;
∇u classical gradient of a function u defined on Ω;
Du weak gradient of u (in case of u ∈W 1,∞(Ω), Du(x) = ∇u(x) a.e.).

Disclaimer. Following the usual notation present in the literature:

• in Chapter 2 and 3 we denote by γ a continuous curve γ : [a, b] → A, where [a, b] is
an interval of R and A ⊂ Rd;

• in Chapter 4 and 5 we denote by γ a probability measure belonging to the transport
plans from two probability measures µ and ν.
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Chapter 2

An L∞-variational problem and
absolute minimizers

2.1 Preliminaries

2.1.1 Some basics of convex analysis

From now on we will refer to a compact convex set as convex body and we define the set
K as

K := {K ⊂ Rd : K convex body}. (2.1.1)

For an exhaustive reference about convex bodies, see for instance [110].

Definition 2.1.1. Let K be a convex body such that 0 ∈ intK. The function ϕ : Rd → R
defined by

ϕ(p) := inf
{
t > 0 :

p

t
∈ K

}
,

is called gauge function of K.

Remark 2.1.2. One can easily prove the following properties:

(i) non-negativity: ϕ(p) ≥ 0 for every p ∈ Rd and ϕ(p) = 0 if and only if p = 0;

(ii) positive 1-homogeneity: ϕ(rp) = rϕ(p) for all r > 0;

(iii) subadditivity: ϕ(p1 + p2) ≤ ϕ(p1) + ϕ(p2), for all p1, p2 ∈ Rd.

We note that ϕ is not exactly a norm: the property (ii) tells that ϕ is positively 1-
homogeneous but not absolutely. Indeed it can happen that ϕ(p) 6= ϕ(−p). Therefore ϕ
is a norm (and one can write ϕ(p) = ||p||K) if and only if K is symmetric with respect to
the origin 0. However, thanks to (ii) and (iii) we still have the convexity of ϕ(·).

Definition 2.1.3. Let a convex body K ⊂ Rd such that 0 ∈ intK, the support function
is the function ϕ0 : Rd → R, defined by

ϕ0(q) := sup{p · q : p ∈ K}.

Remark 2.1.4. Directly by the definition of support function, we have the same properties
of ϕ:
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(i) non-negativity: ϕ0(q) ≥ 0 for every q ∈ Rd and ϕ0(q) = 0 if and only if q = 0;

(ii) positive 1-homogeneity: ϕ0(rq) = rϕ(q) for all r > 0;

(iii) subadditivity: ϕ0(q1 + q2) ≤ ϕ(q1) + ϕ(q2), for all q1, q2 ∈ Rd.

A before, (ii) and (iii) imply convexity.

Definition 2.1.5. Let K ⊂ Rd a convex body such that 0 ∈ intK, then the polar set of
K is defined by

K0 :=
{
q ∈ Rd : p · q ≤ 1 for all p ∈ K

}
.

Remark 2.1.6. Clearly K0 is a convex body with 0 ∈ intK.
Moreover we observe that

Bϕ(0, 1) := {p ∈ Rd : ϕ(p) ≤ 1} = K,

∂Bϕ(0, 1) := {p ∈ Rd : ϕ(p) = 1} = ∂K (2.1.2)

and

Bϕ0(0, 1) := {q ∈ Rd : ϕ0(q) ≤ 1} = K0,

∂Bϕ0(0, 1) := {q ∈ Rd : ϕ0(q) = 1} = ∂K0 (2.1.3)

Proposition 2.1.7. K00 = K.

Proof. Since

K00 := {w : w · q ≤ 1 for all q s.t. q · p ≤ 1, for all p ∈ K},

the inclusion K ⊂ K00 is straightforward.
Let us assume by contradiction that there exists p ∈ K00 such that p /∈ K. By the Hahn-
Banach Theorem, there exists a closed hyperplane {v : f · v = α}, with α > 0 since
0 ∈ K, such that

f · v < α < f · p, for all v ∈ K.

If we take f̄ = ϕ0(f)−1f (f 6= 0 because α > 0), then ϕ0(f̄) = 1 and we get

f̄ · v < α

ϕ0(f)
< f̄ · p ≤ 1, for all v ∈ K,

so that f̄ · v < 1 for all v ∈ K. On the other hand, by compactess we know that there
exists v̄ ∈ K such that f̄ · v̄ = ϕ0(f̄) = 1 and we get a contradiction.

Definition 2.1.8. We say that a function f : Rd → R is quasiconvex if for all x, y ∈ Rd
and for all t ∈ [0, 1] we have

f((1− t)x+ ty) ≤ max{f(x), f(y)}.

We say that f is strictly quasiconvex if for all x 6= y and for all t ∈ (0, 1)

f((1− t)x+ ty) < max{f(x), f(y)}.

Remark 2.1.9. Immediate properties are the following
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1. f is quasiconvex if and only if for all λ ∈ R the sublevel set Cλ = {x : f(x) ≤ λ} is
convex (possibly empty);

2. if f is continuous, f is strictly quasiconvex if and only if for all λ ∈ R the sublevel
set Cλ = {x : f(x) ≤ λ} is strictly convex (possibly empty);

3. if f is continuous and strictly quasiconvex, given m ∈ R, the only sublevel sets Cm
with empty interior are either the sets Cm with m < inf f , which are empty, or the
set Cm with m = inf f , which is either empty or a singleton;

4. if f is continuous and strictly quasiconvex, then the level set {x : f(x) = λ} has
always empty interior.

2.1.2 Some basics about Finsler manifolds

Let us now consider an open and connected subset Ω of Rd. The definition of (weak) Finsler
metric is given as follows (see also Definition 1.7 in [59], (1.1)-(1.5) in [60] or Definition 1.3
in [72]).

Definition 2.1.10. A Finsler metric on a differentiable manifold M is a map ψ : TM →
R+ such that ψ(x, ·) is convex and positively 1-homogeneous on TxM for every x ∈M .

Usually the Finsler metric is assumed to be smooth. However it is possible to weaken
this hypotesis by defining a (weak) Finsler metric.

Definition 2.1.11. A non-negative Borel-measurable function ψ : Ω × Rd → R+ is said
to be a (weak) Finsler metric on Ω if

(i) ψ(x, ·) is positively 1-homogeneous for every x ∈ Ω;

(ii) ψ(x, ·) is convex for Ld-a.e. x ∈ Ω;

(iii) for every compact subset B of Ω, there exist 0 < αB < MB, such that

αB|q| ≤ ψ(x, q) ≤MB|q|, for all (x, q) ∈ B × Rd.

Remark 2.1.12. The restriction of ψ to each tangent space TxM gives rise to the point-wise
Minkowski norm, which differes form that of a usual norm by the fact that in general is
not an even function, that is ψ(x, q) can be different from ψ(x,−q).

Finsler metrics generalize the notion of Riemannian ones, which correspond to the case

where ψ(x, ·) is the square root of a positive quadratic form, ψ(x, q) =
(∑

i,j aij(x)qiqj

) 1
2 .

Definition 2.1.13. Given a Finsler metric ψ, we can define the associated Finslerian
length functional L:

L(γ) :=

∫ 1

0
ψ(γ(t), γ̇(t))dt,

with γ ∈ Lip([0, 1]; Ω), where if U is a connected subset of Rd

Lip([0, 1];U) := {γ : [0, 1]→ U : γ Lipschitz}.

Notice that L is well defined. Indeed, the map t 7→ (γ(t), γ̇(t)) is Lebesgue measurable
on [0, 1] and ψ is Borel measurable on Ω × Rd, hence their composition ψ(γ(t), γ̇(t)) is
Lebesgue measurable.
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The Finsler length functional induces a distance on Ω as follows

Definition 2.1.14. Let x, y ∈ Ω, then we define

d(x, y) := inf

{∫ 1

0
ψ(γ(t), γ̇(t))dt : γ ∈ pathΩ(x, y)

}
, (2.1.4)

where, if U is a connected subset of Rd,

pathU (x, y) := {γ ∈ Lip([0, 1];U) : γ(0) = x, γ(1) = y}. (2.1.5)

The above definition can be extended to all x, y ∈ Ω, in the following way:

d(x, y) := inf
{

lim inf
n→∞

d(xn, yn) : (xn), (yn) ∈ ΩN and xn → x, yn → y
}
. (2.1.6)

Notation. When the set U in the definition of pathU is clear from the context, we will
simply write path.

Remark 2.1.15. Thanks to the positive 1-homogeneity of ψ, L(γ) does not depend on the
chosen parametrization of γ. Indeed if ρ : [0, 1]→ [a, b], with a < b, is an order preserving
Lipschitz diffeomorphism, if γ̃ : [a, b]→ Ω is s.t. γ̃(ρ(t)) = γ(t), then if τ = ρ(t)

L(γ) =

∫ 1

0
ψ(γ(t), γ̇(t))dt =

∫ 1

0
ψ

(
γ̃(ρ(t)), ˙̃γ(ρ(t))

d

dt
ρ(t)

)
dt

=

∫ b

a
ψ(γ̃(τ), ˙̃γ(τ))dτ.

This is the reason why in the (2.1.4) one can consider the infimum on pathΩ, defined by
(2.1.5), where the curves are defined on a fixed interval (in this case [0, 1]).

Remark 2.1.16. We observe that with the definition given by (2.1.6), the function d :
Ω×Ω→ [0,+∞] is the lower semicontinuous envelope or relaxed functional of the function

d̃(x, y) :=

{
d(x, y) if x, y ∈ Ω,

+∞ otherwise,

and it is, therefore, lower semicontinuous (see for instance Proposition 1.31 and 1.33 in
[35] for the proof that the lower semicontinuous envelope can be written as in (2.1.6)).

Definition 2.1.17. Given a connected open subset U of Rd, we define the intrinsic distance
in U w.r.t. to the Euclidean length by

|x− y|U := inf

{∫ 1

0
|γ̇(t)|dt : γ ∈ pathU (x, y)

}
.

Clearly, if U is convex | · |U coincides with the Euclidean distance.

The above definition can be extended to all x, y ∈ ∂U , in the following way:

|x− y|U := inf
{

lim inf
n→∞

|xn − yn|U : (xn), (yn) ∈ ΩN and xn → x, yn → y
}
.
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Remark 2.1.18. We observe that |x − y|U < ∞ for every x, y ∈ U . Indeed, since U is
connected and open, it is also path-connected. We can choose a continuous curve γ which
connects the two points. If it is not Lipschitz then, since the γ([0, 1]) is well contained in
Ω, there exist N ∈ N and x0, . . . , xN ∈ γ([0, 1]) such that x0 = x and xN = y and the
piece-wise curve η obtained by gluing the segments (1 − t)xi−1 + txi is contained in Ω.
Clearly l(η) =

∫ 1
0 |η̇(t)|dt < +∞.

Moreover if x, y are close enough that the segment connecting them in contained in U , for
instance if there exists r > 0 and z ∈ Ω such that B(z, r) ⊂⊂ Ω and x, y ∈ B(z, r), then
|x− y|Ω = |x− y|.
Remark 2.1.19. Note that the pseudo-distance defined in Definition 2.1.14 is not a distance
in general: as ψ(x, q) is not necessarily even in q, the distance d may be non-symmetric.
However, from now on, we will refer to d as “distance”.
Remark 2.1.20. Let us notice the following properties of d:

1. d(x, y) < +∞ for every x, y ∈ Ω. Indeed, by Remark 2.1.18 we can choose η ∈
path(x, y), obtaining

d(x, y) ≤
∫ 1

0
ψ(η, η̇)dt ≤MB

∫ 1

0
|η̇(t)|dt < +∞,

for some MB which depends on some compact set B ⊂ Ω such that x, y ∈ B, whose
existence is insured by property (iii) of Definition (2.1.11).

2. Since the boundary of Ω is not required to be regular, one may have dλ(x̃, y) = +∞
for some x̃ ∈ ∂Ω and y ∈ Ω: in this case, dλ(x̃, y) = +∞ for any y ∈ Ω due to the
connectedness of Ω;

3. d(x, y) = 0 if and only if x = y. Indeed, if x = y it is enough to take the constant
curve η(t) ≡ x for every t, obtaining ψ(η(t), η̇(t)) = ψ(x, 0) = 0 for every t. If x 6= y,
let r > 0 such that B(x, r) ⊂ Ω and y 6∈ B(x, r). Then for every γ ∈ pathΩ(x, y)
there exists t̄ ∈ (0, 1) such that γ([0, t̄)) ⊂ B(x, r) and γ(t̄) ∈ ∂B(x, r). Hence we get∫ 1

0
ψ(γ, γ̇)dt ≥

∫ t̄

0
ψ(γ, γ̇)dt ≥ αB(x,r)

∫ t̄

0
|γ̇|dt ≥ αB(x,r)r,

where αB(x,r) > 0 is the one of (iii) of Definition (2.1.11). The proof is concluded by
taking the infimum over all γ ∈ pathΩ(x, y).

4. with this definition of d,
d(x, y) ≤ d(x, z) + d(z, y)

for every x, y ∈ Ω and z ∈ Ω, but, as shown in the Example 2.1.21 below, it may
fail if the interpolating point z belongs to the boundary. However, as proved in
Proposition 2.1.24 if we assume ∂Ω to be Lipschitz (see Definition 2.1.22 below) the
triangle inequality holds for every x, y, z ∈ Ω.

Example 2.1.21. Let Ω ⊂ R2, defined as Ω := B(0, 1) \ {[0, y) : 0 < y < 1} and K(x) ≡
B1(0) for all x ∈ Ω. Then ϕ0(x, q) = |q| for any q ∈ Rd and for any x ∈ Ω. Let’s take
x = (x1, x2) =

(
1
2 ,

1
2

)
, y = (y1, y2) =

(
−1

2 ,
1
2

)
and z = (z1, z2) =

(
0, 1

2

)
then

d(x, y) = inf

{∫ 1

0
|γ̇(t)|dt : γ ∈ path(x, y)

}
=

√
2

2
+

√
2

2
=
√

2,
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while
d(x, z) + d(z, y) =

1

2
+

1

2
= 1.

Definition 2.1.22 (see for instance Definition 12.9 in [91]). The boundary ∂Ω of an
open set Ω ⊂ Rd is said to be locally Lipschitz if for every point x ∈ ∂Ω there exists a
neighborhood A of x, local coordinates y = (y′, yd) ∈ Rd−1×R with origin y = (0, 0) at x,
a Lipschitz function φ : Rd−1 → R, with Lip(φ) = L and φ(0) = 0, and ρ, h > 0 such that

∂Ω ∩A = {(y′, φ(y′)) : y′ ∈ B(0, ρ)}
Ω ∩A = {(y′, yd) : y′ ∈ Bd−1(0, ρ), h > yd > φ(x′)}.

If ∂Ω is bounded, then we refer to locally Lipschitz boundaries simply as Lipschitz.

Lemma 2.1.23. If Ω is bounded and ∂Ω is Lipschitz, there exists CΩ > 0, such that

|x− y| ≤ |x− y|Ω ≤ CΩ|x− y|, for any x, y ∈ Ω,

and in particular |x− y|Ω is always finite.

Proof. We want to prove that there exists a constant C = CΩ such that for every x, y ∈ Ω
there exists a curve γ ∈ pathΩ(x, y) such that

∫ 1
0 |γ̇|dt ≤ C|x − y|. Since Ω is bounded,

∂Ω is a compact set. Let x0 ∈ ∂Ω and let us consider L0, ρ0, r0 and as the ones in
Definition 2.1.22. Clearly ∂Ω ⊂

⋃
x0∈∂ΩB(x0,

r0
2 ). By compactness there exist N ∈ N and

x1, . . . , xN such that ∂Ω ⊂
⋃
i...N B(xi,

ri
2 ). We take L = maxi=1,...,N Li for some ε > 0

and r := mini=1,...,N
ri
2 .

Let x, y ∈ Ω.
Case 1.: The segment connecting x and y is contained in Ω. In this case |x−y|Ω = |x−y|.
Case 2.: |x−y| < r and the segment intersects the boundary. We call x̃ and ỹ respectively
the closest point to x and y given by the intersection of the segment [x, y] with ∂Ω. Let i
such that x̃ ∈ B(xi,

ri
2 ). Since |x̃− ỹ| < r ≤ ri

2 , then x̃, ỹ ∈ B(xi, ri). By our choice of ri,
we have that

∂Ω ∩B(xi, ri) = {(y′, φi(y′)) : y′ ∈ B(0, ρi)}
for some φi such that Lip(φi) = Li ≤ L. Therefore one can take γ̃ ∈ pathΩ(x̃, ỹ) such
that γ̃([0, 1]) ⊂ ∂Ω, γ̃(0) = x̃ = (x̃′, φi(x̃

′)) and γ̃(1) = ỹ = (ỹ′, φi(ỹ
′)) and for every t,

γ̃(t) = (z̃′, φi(z̃
′)), where z̃′ = (1− t)x̃′ + tỹ′. Then, if w̃′ = (1− s)x̃′ + sỹ′, it holds

|γ̃(t)− γ̃(s)| ≤
√
|z̃′ − w̃′|2 + |φi(z̃′)− φi(w̃′)|2

≤
√
|z̃′ − w̃′|2 + Li|z̃′ − w̃′|2

≤ (1 + L)|z̃′ − w̃′|
≤ (1 + L)|t− s||x̃′ − ỹ′|
≤ (1 + L)|t− s||x̃− ỹ|.

Therefore Lip(γ̃) ≤ (1+L)|x̃−ỹ|. Now, thanks to Lemma 3.2.6 below, for every ε > 0, there
exists γ̃ε such that γ̃ε(0) = x̃ε ∈ Ω, γ̃ε(1) = ỹε ∈ Ω, Lip(γ̃) < Lip(γ̃)+ε ≤ (1+L)|x̃− ỹ|+ε,
|γ̃ε(0) − γ̃(0)| = |x̃ε − ỹε| < ε and |γ̃ε(1) − γ̃(1)| < ε. Then, if we consider the curve ηε
obtained by gluing the segment [x, x̃ε], γ̃ε and [y, ỹε], we have

|x− y|Ω ≤ |x− x̃ε|+
∫ 1

0
| ˙̃γε|dt+ |y − ỹε|

≤ |x− x̃|+ ε+ (1 + L)|x̃− ỹ|+ ε+ |y − ỹ|+ ε.
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Since we can choose ε < |x− y| and since |x− x̃|, |y − ỹ| ≤ |x− y| (x, x̃, ỹ, y all belong to
the same segment), we get the following bound from above

|x− y|Ω ≤ 5|x− y|+ (1 + L)|x̃− ỹ| ≤ (6 + L)|x− y|.

Case 3.: |x− y| ≥ r and the segment intersects the boundary. Since Ω is compact, we can
"add balls" to the covering of ∂Ω in order to have a covering of Ω. More precisely, there
existsM ≥ N , xN+1, . . . , xM ∈ Ω and rN+1

2 , . . . , rM2 such that Ω ⊂
⋃M
i=1B(xi,

ri
2 ) and xi, ri2

are the same as before for every 1 ≤ i ≤ N . With an iterative procedure we start from x
which belongs to a ball, lets say (up to a change in the order of the indexes) B1 := B(x1,

r1
2 ).

If B1 intersects the ball which contains y, then take z2 in the intersection of the two balls
and call that ball B2. If this is not the case we consider another ball, different from B1,
which intersects B1 and call it B2 (such a B2 always exists by connectedness of Ω). Take
a point z2 ∈ B2 ∩ B1. If B1 ∩ ∂Ω = ∅, we are in Case 1. and we connect x := z1 to z2

with a segment. If B1 ∩ ∂Ω 6= ∅ we connect x := z1 to z2 with the curve η1
ε , given by Case

2., with ε small enough. If y ∈ B2 we connect z2 to y either with a segment or with some
η2
ε given by Case 2. and we stop. Otherwise, we consider a ball B3 different from B1 and
B2 such that B3 ∩ B2 6= ∅, we take z3 ∈ B2 ∩ B3 and we connect z2 with z3 either with a
segment or with η2

ε . We continue like this, trying to avoid, at every step, the balls already
intersected. If this is not possible, we come back until we find a ball which has never been
considered. By connectedness of Ω and since the number of balls is finite, we reach y in a
finite number of steps. If we pass for two times from the same segment or from the same
piece ηiε for some i we erase that piece. We then consider a curve η obtained by gluing
all the segments and the ηiε (taken at most one time). So at the end we have that η is
composed by at most M pieces. Thus, if R := maxi=1,...,M

ri
2

|x− y|Ω ≤
∫ 1

0
|η|dt ≤ N(6 + L)R ≤ N(6 + L)R

r
|x− y|.

Proposition 2.1.24. The distance function d : Ω×Ω→ [0,+∞] is lower semicontinuous
and d : Ω× Ω→ R+ is continuous.
If ∂Ω is Lipschitz and Ω is bounded, the distance function d : Ω × Ω → R+ is continuous
and the triangle inequality holds for every x, y, z ∈ Ω.

Proof. By Remark 2.1.16 we already know that the function d : Ω×Ω→ [0,+∞] is lower
semicontinuous. Thus, in order to prove the continuity of d : Ω×Ω→ R+ it is sufficient to
prove the upper semicontinuity. Let x, y ∈ Ω and r > 0 such thatB(x, r), B(y, r) ⊂⊂ Ω and
set B := B(x, r)∪B(y, r). If (xn)n, (yn)n ⊂ Ω are two sequences converging respectively to
x and y, we can assume without loss of generality that (xn)n ⊂ B(x, r) and (yn)n ⊂ B(y, r).
Then if γ ∈ pathB(x,r)(xn, x) we have

d(xn, x) ≤
∫ 1

0
ψ(γ, γ̇)dt ≤MB

∫ 1

0
|γ̇(t)|dt

and analogously if γ ∈ pathB(y,r)(yn, y)

d(yn, y) ≤MB

∫ 1

0
|γ̇(t)|dt,
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whereMB is given by property (iii) of Definition 2.1.11. Thus, passing to the infimum over
pathB(x,r)(xn, x) and pathB(y,r)(yn, y) we obtain

d(xn, x) ≤MB|xn − x|B(x,r) = MB|xn − x| and

d(yn, y) ≤MB|yn − y|B(x,r) = MB|yn − y|,

which implies

lim sup
n→+∞

d(xn, yn) ≤ lim sup
n→+∞

d(xn, x) + d(x, y) + lim sup
n→+∞

d(yn, y) = d(x, y).

Finally, if ∂Ω is Lipschitz, thanks to Lemma 2.1.23, there exists CΩ > 0, such that

|x− y| ≤ |x− y|Ω ≤ CΩ|x− y|, for any x, y ∈ Ω, (2.1.7)

and in particular |x− y|Ω is always finite. The (2.1.7) allows us to extend d continuously
to the boundary, defining, for every x, y ∈ ∂Ω:

d(x, y) := lim
n→∞

d(xn, yn), for some xn → x, yn → y and (xn)n, (yn)n ⊂ Ω.

This definition is well posed and equivalent to the one given by (2.1.6), indeed, if (xn)n, (x
′
n)n ⊂

Ω are two sequences converging to x and (yn)n, (y
′
n)n ⊂ Ω are two sequences converging to

y, by using the triangular inequality for points in Ω it holds∣∣d(xn, yn)− d(x′n, y
′
n)
∣∣ =

∣∣d(xn, yn)− d(x′n, yn) + d(x′n, yn)− d(x′n, y
′
n)
∣∣

≤ max{d(xn, x
′
n), d(x′n, xn)}+ max{d(yn, y

′
n), d(y′n, yn)}

≤MB|xn − x′n|Ω +MB|yn − y′n|Ω (2.1.8)
≤ CΩMB|xn − x′n|+ CΩMB|yn − y′n| → 0, (2.1.9)

where, as above, for any n large enough, B ⊂ Ω is a compact set such that xn, x′n, yn, y′n, x, y ∈
B.

Proposition 2.1.25. Let V ⊂ Ω such that V is bounded. Then there exist two constants
0 < αV < MV such that

αV |x− y|V ≤ d
V (x, y) ≤MV |x− y|V , for every x, y ∈ V.

If V ⊂⊂ Ω, there exist a compact set B ⊂ Ω and two constant 0 < αB < MB such that

d(x, y) ≤MB|x− y|Ω for every x, y ∈ V

and, for any fixed x ∈ V ,

d(x, y) ≥ αB|x− y|Ω, for every y s.t. |x− y| < α

M
dist(x, ∂V ).

Proof. Let x, y ∈ V ⊂ Ω and V bounded. Thanks to property (iii) in Definition 2.1.11 of
the Finsler metric ψ, there exist 0 < αV < MV such that

αV |q| ≤ ψ(z, q) ≤MV |q|, for all z ∈ V.
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Hence, we have that for any γ ∈ pathV(x, y)

αV

∫ 1

0
|γ̇(t)|dt ≤

∫ 1

0
ψ(γ(t), γ̇(t))dt ≤MV

∫ 1

0
|γ̇(t)|dt

and then
0 ≤ αV |x− y|V ≤ d

V (x, y) ≤MV |x− y|V .

If V ⊂⊂ Ω we consider A ⊂ Ω bounded, such that

|x− y|Ω = inf

{∫ 1

0
|γ̇(t)|dt : γ ∈ pathΩ(x, y)

}
= inf

{∫ 1

0
|γ̇(t)|dt : γ ∈ pathA(x, y)

}
,

for any x, y ∈ V . We stress that such set A exists. Indeed, by continuity |x − y|Ω < C,
for some C ≥ 0, for any x, y ∈ V . Let x, y ∈ V . If γ ∈ pathΩ(x, y) such that l(γ) <
|x − y|Ω + 1 < C + 1, then γ([0, 1]) ⊂ B(x, 2(C + 1)) ∩ Ω, otherwise l(γ) > 2(C + 1).
Thus we consider A = V + B(0, 2(C + 1)). If V + B(0, 2(C + 1)) is not connected we
consider the connected component containing V . Then we consider the set A (the closure
of A). Again, thanks to property (iii) in Definition 2.1.11 of the Finsler metric ψ, there
exist 0 < αA < MA such that

αA|q| ≤ ψ(z, q) ≤MA|q|, for all z ∈ A.

Hence, we have that for any γ ∈ pathA(x, y)

αA

∫ 1

0
|γ̇(t)|dt ≤

∫ 1

0
ψ(γ(t), γ̇(t))dt ≤MA

∫ 1

0
|γ̇(t)|dt (2.1.10)

and then
d(x, y) ≤MA|x− y|Ω, for every x, y ∈ V. (2.1.11)

Finally, let x ∈ V and y such that |x − y| ≤ αA
MA

dist(x, ∂V ). Then, from the inequality
above, we infer that

d(x, y) ≤MA|x− y|Ω = MA|x− y| < αAdist(x, ∂V ) ≤ αAdist(x, ∂A),

where the equality is due to the fact that by definition the segment which joins x and
y is contained in Ω. Possibly modifying A we consider ε > 0 such that dist(x, ∂A) >
dist(x, ∂V ) + ε. We claim that d(x, y) = dA(x, y). Let γ ∈ pathΩ(x, y) and let us assume
that there exists s ∈ (0, 1) such that |γ(s) − x| ≥ dist(x, ∂A). We consider s̄ = inf{s :
|γ(s)− x| ≥ dist(x, ∂A)}. Then∫ 1

0
ψ(γ, γ̇)dt ≥

∫ s̄

0
ψ(γ, γ̇)dt ≥ αA

∫ s̄

0
|γ̇|dt

≥ αA|γ(s)− x| ≥ αAdist(x, ∂A)

> αAdist(x, ∂V ) + ε > d(x, y) + ε.

Therefore d(x, y) = dA(x, y). We conclude the last part of the proof observing that (2.1.10)
implies

αA|x− y|Ω = αA|x− y|A ≤ d
A(x, y) = d(x, y).
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Corollary 2.1.26. If property (iii) is global, i.e. there exist 0 < α < M such that

α|q| ≤ ψ(x, q) ≤M |q|, for all (x, q) ∈ Ω× Rd,

then d : Ω× Ω→ R+ is equivalent to the intrinsic distance, i.e.

α|x− y|Ω ≤ d(x, y) ≤M |x− y|Ω, for all x, y ∈ Ω, (2.1.12)

and if ∂Ω is Lipschitz, d is equivalent to the Euclidean distance.

Proposition 2.1.27. The space (Ω, d), where d is the (pseudo) distance defined in Defi-
nition 2.1.14 is a length space, i.e. a metric space such that for every x, y ∈ Ω, it holds

d(x, y) = inf{Ld(γ) : γ ∈ pathΩ(x, y)}, (2.1.13)

where

Ld(γ) := sup

{
n−1∑
i=0

d(γ(ti), γ(ti+1)) : 0 = t0 < t1 < · · · < tn = 1

}
,

is the d-length of γ.

Proof. For all x, y ∈ Ω, we define the intrinsic distance d′ associated to d, as follows

d′(x, y) := inf{Ld(γ) : γ ∈ pathΩ(x, y)},

By definition d ≤ d′. We want to prove that d′ ≤ d.
Let’s take γ ∈ path, we show that

Ld(γ) ≤
∫ 1

0
ψ(γ(t), γ̇(t))dt.

Let 0 = t0 < t1 < · · · < tn = 1 be a partition of [0, 1] and let γi ∈ path(γ(ti), γ(ti+1)) be
defined by

γi(t) := γ(t), t ∈ [ti, ti+1].

By definition of d we have

n−1∑
i=0

d(γ(ti), γ(ti+1)) ≤
n−1∑
i=0

∫ ti+1

t1

ψ(γi(t), γ̇i(t))dt =

∫ 1

0
ψ(γ(t), γ̇(t))dt. (2.1.14)

Corollary 2.1.28. If Ω is bounded and property (2.1.2) of Definition 2.1.11 is global, i.e.
there exist 0 < α < M such that

α|q| ≤ ψ(x, q) ≤M |q|, for all (x, q) ∈ Ω× Rd,

for every x, y ∈ Ω there exists γ ∈ pathΩ(x, y) such that

d(x, y) = Ld(γ).

We will call such a γ, curve of minimal d-length.
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Proof. Let x, y ∈ Ω. First of all we notice that Ld(γ) is lower semicontinuous with respect
to the uniform convergence, indeed it is the supremum of a family of continuous functions
(d is continuous thanks to Proposition 2.1.24).
We also observe that for every γ ∈ pathΩ(x, y) and for every partition t0, . . . , tN such that
|γ(ti−1)− γ(ti)| = rk and B(γ(ti), rk) ⊂⊂ Ω for every i,

N∑
i=1

d(γ(ti−1), γ(ti)) ≥ α
N∑
i=1

|γ(ti−1)− γ(ti)|Ω = α

N∑
i=1

|γ(ti−1)− γ(ti)|,

where the inequality is due to Corollary 2.1.26 and the equality to the fact that with our
partition |γ(ti−1) − γ(ti)|Ω = |γ(ti−1) − γ(ti)| (see Remark2.1.18). Hence, by passing to
the supremum we obtain Ld(γ) ≥ α

∫ 1
0 |γ̇(t)|dt.

Let
` := d(x, y) = inf{Ld(γ) : γ ∈ pathΩ(x, y)}

and consider a sequence of curves (γn) such that `n := Ld(γn) converges to `. Without loss
of generality we can assume that Ld(γn) ≤ ` + 1 for all n. For the previous observation
we can thus reparametrize the curves γn : [0, 1] → Ω such that |γ̇n| =

∫ 1
0 |γ̇n(t)|dt ≤ `+1

α .
Since Ω is bounded we also have that |γn| ≤ C for every n, for some C ≥ 0, and we can
apply Arzelà-Ascoli theorem and find a subsequence, that we will still call (γn), such that
uniformly converges to a curve γ. Clearly γ belongs to pathΩ(x, y). Moreover

` ≤ Ld(γ) ≤ lim inf `n = `.

So we have that
d(x, y) = d′(x, y) = Ld(γ).

2.2 Some properties of absolute minimizers of supremal func-
tionals

For the reader’s convenience and to fix the notation, we recall the following definition.

Definition 2.2.1. Given a positive measure µ on a space X, i.e. µ ∈ M(X) and a Borel
function f : X → R, the essential supremum of f with respect to µ is defined by

µ− ess sup
x∈X

f(x) := inf{t ∈ R : µ
(
f−1(t,+∞)

)
= 0}.

If X = Ω ⊂ Rd and µ = Ld we simply write ess sup x∈Ω f(x).

Remark 2.2.2. If f : X → R is lower semicontinuous, then

µ− ess sup
x∈X

f(x) = sup{f(x) : x ∈ suppµ}.

Let Ω ⊂ Rd an open set and H : Ω×Rn×Rdn → R a Borel function, H ≥ 0, a supremal
variational problem or variational problem in L∞ is the problem of minimizing

F∞(u,Ω) := ||H(x, u(x), Du(x))||L∞(Ω) = ess sup
x∈Ω

H(x, u(x), Du(x)),

among a suitable class of functions u. The function H is called supremand.
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2.2.1 The supremand H

In this chapter we will consider Ω to be connected and bounded and we will be interested
in the following problem:

min

{
FH(v,Ω) := ess sup

x∈Ω
H(x,Dv(x)) : v ∈W 1,∞(Ω) ∩ C(Ω), v = g on ∂Ω

}
, (H)

where H : Ω× Rd → R is a Borel function, H ≥ 0, and the boundary datum g belongs to
W 1,∞(Ω) ∩ C(Ω).
We recall that the set W 1,∞(Ω) coincides with the set of locally Lipschitz continuous
functions on Ω, i.e. the set of functions u : Ω→ R such that for every x ∈ Ω there exists a
neighborhood A ⊂ Ω of x such that for every z, y ∈ A, |u(z)− u(y)| ≤ L|z − y|, for some
L ≥ 0 (see for instance Proposition 9.3 in [28]). Since the Lipschitz continuity holds only
locally, it might be not possible to extend u ∈W 1,∞(Ω) continuously up to the boundary,
that is why we consider the functions u ∈W 1,∞(Ω) ∩ C(Ω).

Proposition 2.2.3. If H is quasiconvex, then FH(·,Ω) is quasiconvex.

Proof. Let u, v ∈W 1,∞(Ω) ∩ C(Ω), u = v = g on ∂Ω, then for a.e. x ∈ Ω

H(x, (1− t)Du+ tDv) ≤ max{H(x,Du(x)), H(x,Dv(x))}
≤ max{ess sup

x∈Ω
H(x,Du(x)), ess sup

x∈Ω
H(x,Dv(x))}

= max{FH(u,Ω),FH(v,Ω)}.

Thus
FH((1− t)u+ tv,Ω) ≤ max{FH(u,Ω),FH(v,Ω)}.

Theorem 2.2.4. (Theorem 2.9 and 3.4 in [16]) If H(x, ·) : Rd → R is lower semicon-
tinuous and quasiconvex for a.e. x ∈ Ω, then FH(·,Ω) is sequentially weak* lower semi-
continuous on W 1,∞(Ω). Moreover if H(x, ·) is coercive uniformly w.r.t. x and H(·, p) is
uniformly continuous on Ω locally uniformly w.r.t. p, then problem (H) admits a solution.

Notation. We will write {H(x, ·) ≤ λ} := {p : H(x, p) ≤ λ}.

Throughout this chapter we will assume that the function H : Ω × Rd → R satisfies
the following assumptions:

(A) H ≥ 0, H(·, 0) = 0 and H(x, ·) is quasiconvex;

(B) the map (x, p) 7→ H(x, p) satisfies the following coercivity assumptions in p, uniformly
with respect to x: for every λ ≥ 0 there exists M ≥ 0 such that

H(x, p) ≤ λ =⇒ |p| ≤M ;

(C) the map (x, p) 7→ H(x, p) is continuous in Ω× Rd;

(D) For all λ > µ ≥ 0 there exists α > 0 such that

{H(x, ·) ≤ µ}+B(0, α) ⊂ {H(x, ·) ≤ λ},

for every x ∈ Ω;
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(E) For all β > 0, λ ≥ 0 and V ⊂⊂ Ω, there exists δ such that, for any λ ≥ 0 with∣∣λ− λ∣∣ < δ

{H(x, ·) ≤ λ} ⊂
{
H(x, ·) ≤ λ

}
+B(0, β),

for every x ∈ V .

Remark 2.2.5. We observe that:

(i) by continuity (and thus lower semicontinuity) and coercivity (assumption (B)) of
p 7→ H(x, p), the sublevel sets {p : H(x, p)} are compact;

(ii) the continuity ofH, given by the property (C), allows for the local uniform continuity.
This means that for every x0 ∈ Ω and for everyK, r > 0, there exists a non decreasing
function ω : [0, +∞)→ [0, +∞), such that limt→0 ω(t) = 0

|H(x, p)−H(y, p′)| ≤ ω(|x− y|+ |p− p′|),

for all (x, p), (y, p′) ∈ B(x0, r)×B(0,K);

(iii) by property (D), since 0 ∈ {H(x, ·) ≤ 0}, for any λ > 0 there exists α > 0 such that

B(0, α) ⊂ {H(x, ·) ≤ λ}, for any x ∈ Ω;

(iv) property (E) implies that the interior part of the level set {H(x, p) = λ} is empty
for every λ ≥ 0. Indeed, let us assume by contradiction that there exists λ ≥ 0 and
p ∈ {H(x, ·) = λ} such that B(p, r) ⊂ {H(x, ·) = λ}, for some r > 0. Let β = r

2 and,
for every n, let λn = λ− 1

n . We claim that

{H(x, ·) ≤ λ} 6⊂ {H(x, ·) ≤ λn}+B(0, β)

for every n. Since λ > λn for every n, it is enough to prove that

{H(x, ·) ≤ λ} 6⊂ {H(x, ·) < λ}+B(0, β).

If p ∈ ∂{H(x, ·) < λ} there exists a unitary vector w such that the point z = p+ 3
4rw

doesn’t belong to {H(x, ·) < λ}+B(0, β). If dist(p, {H(x, ·) < λ}) > 0 the existence
of such w is a fortiori true.

Remark 2.2.6. {H(x, ·) = λ} = ∂{H(x, ·) ≤ λ} and {H(x, ·) < λ} = int {H(x, ·) ≤ λ}.

Proof. Let p ∈ ∂{H(x, ·) ≤ λ}, then, by continuity of H, p ∈ {H(x, ·) = λ}. We now
prove the inclusion {H(x, ·) = λ} ⊂ ∂{H(x, ·) ≤ λ}. Let us assume by contradiction
that there exists p ∈ {H(x, ·) = λ} such that B(p, r) ⊂ {H(x, ·) ≤ λ} for some r > 0.
By property (E) we have that there exists p1 ∈ B(p, r) such that H(x, p1) < λ. By
continuity there exists r1 such that H(x, q) < λ for any q ∈ B(p1, r1). We choose r1

small enough such that B(p1, r1) ⊂⊂ B(p, r). Let p2 such that p = 1
2(p1 + p2). By

symmetry of B(p, r), B(p2, r1) ⊂ B(p, r). Again by property (E) we have that there exists
q2 ∈ B(p2, r1) such that H(x, q2) < λ. Let q1 ∈ B(p1, r1) such that p = 1

2(q1 + q2). Then
q1, q2 ∈ {H(x, ·) ≤ λ′} for some λ′ < λ, which implies, by convexity, p ∈ {H(x, ·) ≤ λ′},
leading us to a contradiction since H(x, p) = λ > λ′.
Finally, since {H(x, ·) ≤ λ} is closed,

{H(x, ·) = λ} = ∂{H(x, ·) ≤ λ} = {H(x, ·) ≤ λ} \ int {H(x, ·) ≤ λ}

and therefore int {H(x, ·) ≤ λ} = {H(x, ·) < λ}.
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Example 2.2.7. The functional H : Ω× R→ R, defined by

H(x, p) :=

{ |p|
dist(x,∂Ω) , if x ∈ Ω.

+∞ if x ∈ ∂Ω,

satisfies all the properties (A)-(E), but the property (D). However it satisfies a local version
of that property, that is for all λ > µ ≥ 0 and for every V ⊂⊂ Ω there exists αV > 0 such
that

{H(x, ·) ≤ µ}+B(0, αV ) ⊂ {H(x, ·) ≤ λ},

for every x ∈ V .

Proposition 2.2.8. Let λ > 0 and x ∈ Ω. Then for every sequence (xn)n converging to x

{H(xn, ·) ≤ λ}
H−→ {H(x, ·) ≤ λ} , as n→∞,

where with H−→ we mean convergence with respect to the Hausdorff distance1 dH.

Proof. First of all we observe that since {H(xn, ·) ≤ λ} ⊂ B(0,M) by assumption (B) of
H, by compactness of the metric dH we can extract a converging subsequence, that we will
still call {H(xn, ·) ≤ λ}, to a certain compact set K. Therefore for any p ∈ K there exists
pn ∈ {H(xn, ·) ≤ λ} such that pn → p and then by continuity of H, p ∈ {H(x, ·) ≤ λ}.
Let us assume by contradiction that there exists p ∈ {H(x, ·) ≤ λ} such that p /∈ K.
Let α = dist(p,K) and nα such that {H(xn, ·) ≤ λ} ⊂ K + B(0, α2 ) for any n ≥ nα,
then p ∈ (K +B(0, α2 ))c ⊂ ∩n≥nα {H(xn, ·) ≤ λ}. We now take r > 0 such that B(p, r) ⊂
(K+B(0, α2 ))c and we consider z ∈ B(p, r)∩int {H(x, ·) ≤ λ}. Notice that the intersection
is not empty by property (D), which insure for λ > 0 that int {H(x, ·) ≤ λ} 6= ∅, and by
convexity of the sublevel sets. Then H(xn, z) > λ for every n ≥ nα, but also H(x, z) < λ
(by Remark 2.2.6, H(x, z) has to be strictly smaller than λ) contradicting the continuity
of H.

2.2.2 The quasiconvex conjugate of H

There exists a generalization of convex conjugate of a convex function for quasiconvex
functions (see for instance in [43]).

Definition 2.2.9. For every x ∈ Ω and λ ≥ 0, we define Lλ(x, ·) : Rd → R by

Lλ(x, q) := sup{p · q : p ∈ Rd, H(x, p) ≤ λ}. (2.2.1)

Remark 2.2.10. For every x ∈ Ω and λ ≥ 0 the function Lλ(x, ·) is the support function of
the convex body {H(x, ·) ≤ λ} defined in Definition 2.1.3, therefore

• Lλ(x, ·) ≥ 0 and Lλ(x, q) = 0 if and only if q = 0;

• Lλ(x, ·) is positively 1-homogeneous for every x ∈ Ω;

• Lλ(x, ·) is convex for every x ∈ Ω;

Moreover by compactness there exists p ∈ {H(x, ·) ≤ λ} such that Lλ(x, q) = p · q. By
convexity p ∈ ∂{H(x, ·) ≤ λ}.

1For more details about Hausdorff distance see e.g. [74].
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Proposition 2.2.11. For every fixed λ ≥ 0, Lλ : Ω × Rd → R is a Finsler metric (see
Definition 2.1.11).

Proof. As pointed out in Remark 2.2.10, Lλ(x, ·) is non-negative, positively 1-homogeneous
and convex for every x ∈ Ω. Moreover, since property (D) and (B) imply e that for every
fixed λ there exist 0 < α < M such that for every x

B(0, α) ⊂ {H(x, ·) ≤ λ} ⊂ B(0,M),

and thus

sup{p · q : p ∈ B(0, α)} ≤ sup{p · q : p ∈ Rd, H(x, p) ≤ λ} ≤ sup{p · q : p ∈ B(0,M)},

we have that
α|q| ≤ Lλ(x, q) ≤M |q|,

for every x in Ω, proving property (iii). Finally, the Borel measurability is a direct conse-
quence of the upper semicontinuity showed in Lemma 2.2.12 below.

Lemma 2.2.12. The function (λ, x, q) 7→ Lλ(x, q) is upper semicontinuous.

Proof. Let (λn, xn, qn)n a sequence converging to (λ, x, q). Without loss of generality we
can assume that limn→∞ Lλn(xn, qn) = lim supn→∞ Lλn(xn, qn). For every n we take pn
such that Lλ(xn, qn) = pn · qn (see Remark 2.2.10). Since λn ≤ λ + ε for n large enough,
by the coercivity assumption (B) on H, it is possible to choose a subsequence of (pn)n
converging to a certain p, which we will still call (pn)n. By continuity of (x, p)→ H(x, p),
we have that

H(x, p) = lim
n
H(xn, pn) ≤ lim

n
λn = λ.

Therefore

lim sup
n

Lλn(xn, qn) = lim
n
Lλn(xn, qn) = lim

n
pn · qn = p · q ≤ Lλ(x, q).

Lemma 2.2.13. The map λ 7→ Lλ(x, q) is lower semicontinuos for any x ∈ Ω and q ∈ Rd.

Proof. Let λ ≥ 0 and (λn)n converging to λ. Then by assumption (E), for any β > 0 we
have {H(x, ·) ≤ λ} ⊂ {H(x, ·) ≤ λn}+ B(0, β) for n large enough. Let p ∈ {H(x, ·) ≤ λ}
such that Lλ(x, q) = p · q, then p = pn + wn, with pn ∈ {H(x, ·) ≤ λn} and wn ∈ B(0, β).
Thus

p · q ≤ lim inf
n

pn · q + β|q| ≤ lim inf
n

Lλn(x, q) + β|q|.

The thesis follows by the arbitrariness of β.

Proposition 2.2.14. For any λ ≥ 0, the unitary ball of Lλ(x, ·) is the polar set of the
convex sublevel set {H(x, ·) ≤ λ} of H, i.e. it holds

p ∈ {H(x, ·) ≤ λ} ⇐⇒ sup{p · q : Lλ(x, q) ≤ 1} ≤ 1. (2.2.2)

Proof. The thesis follows directly by Proposition 2.1.7. Indeed for any x ∈ Ω and λ ≥ 0,
the set {Lλ(x, ·) ≤ 1} is the polar set of the convex body {H(x, ·) ≤ p} (see Remark
2.1.6).
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Lemma 2.2.15. Let λ ≥ 0, then the map (x, q) 7→ Lλ(x, q) is continuous in Ω× Rd.

Proof. In light of Lemma 2.2.12 it is enough to show the lower semicontinuity of the map.
Let us fix (x, q) and consider a converging sequence ((xn, qn))n. Let p ∈ ∂{H(x, ·) ≤ λ}
such that Lλ(x, q) = p · q (see Remark 2.2.10) and take 0 < t < 1. By convexity tp ∈
int {H(x, ·) ≤ λ} and by Proposition 2.2.8 we have that tp ∈ {H(xn, ·) ≤ λ} indefinitely
for n large and thus

lim inf
n

Lλ(xn, qn) ≥ lim inf
n

tp · qn.

The thesis follows sending t→ 1.

We also have the following result of lower semicontinuity in x of Lλ, uniform with
respect to q.

Lemma 2.2.16. Let λ > 0, x0 ∈ Ω, K > 0. Then for all η > 0 there exists δ > 0 such
that

|q| ≤ K, |x− x0| ≤ δ ⇒ Lλ(x, q) ≥ Lλ(x0, q)− η.

Proof. Let us assume by contradiction that there exists η̄ > 0 such that for all n ≥ 0, there
exists qn, with qn ≤ K, and xn ∈ Ω, with |xn − x| < 2−n, such that

Lλ(xn, qn)− Lλ(x0, qn) < −η̄.

Since K is compact, up to the choice of a subsequence, we have that qn converges to a
certain point q ∈ K. Then we get the following contradiction:

Lλ(x0, q) = lim
n→∞

Lλ(xn, qn) ≤ lim inf
n→∞

Lλ(x0, qn)− η̄ = Lλ(x0, q)− η̄,

where the equalities are due to Lemma 2.2.15.

2.2.3 The family of pseudo-distances and a Lipschitz characterization of
minimizers

As pointed out in the Introduction 1.1, it makes sense to define a new metric on Ω which
depends on the sublevel sets {H(x, ·) ≤ λ} in order to extend the notion of Lipschitz
function. As showed in Proposition 2.2.11, Lλ(x, ·) is a Finsler metric for every x ∈ Ω
and λ ≥ 0, thus we can use it to define a family of (pseudo) distances on Ω (and on the
connected open subsets of Ω) associated to H (see 2.1.11). The fact that we talk about
“pseudo” distances is due to the lack of symmetry (see Remark 2.1.19).
This family of distances is useful to characterize the minimizers and to prove a property
for the absolute minimizers as we will see in the sequel of this chapter.

For every λ ≥ 0 and any x, y ∈ Ω and any λ ≥ 0, we set

dλ(x, y) := inf

{∫ 1

0
Lλ(γ(t), γ̇(t))dt : γ ∈ path(x, y)

}
, (2.2.3)

where path(x, y) := pathΩ(x, y), defined in (2.1.5).
For any x, y ∈ Ω we set

dλ(x, y) := inf

{
lim inf
n→+∞

dλ(xn, yn) : (xn)n, (yn)n ∈ ΩN and xn → x, yn → y

}
.
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Remark 2.2.17. Since for every λ ≥ 0, Lλ is a Finsler metric, dλ has all the properties
pointed out in Section 2.1.2, in particular in Remark 2.1.20. Moreover by Proposition
2.1.24 d : Ω× Ω→ R is continuous and by Corollary 2.1.26 it is equivalent to | · |Ω.
Remark 2.2.18. By definition, the function λ 7→ dλ is non-decreasing. In particular the
property (D) of H yields the strict monotonicity.
Remark 2.2.19. Sometimes it could be useful to restrict Definition 2.1.14 to connected open
subsets V of Ω, that are connected and well contained in Ω. For example when property
(D) holds only locally (see Example 2.2.7). In this case the distance between two points
x, y ∈ V will be

dVλ (x, y) := inf

{∫ 1

0
Lλ(γ(t), γ̇(t))dt : γ ∈ pathV (x, y)

}
,

where
pathV (x, y) := {γ ∈ Lip([0, 1], V ) : γ(0) = x, γ(1) = y}.

We point out that all the properties listed in Remark 2.1.20 and all the results in this
chapter hold also when we restrict to V .

Proposition 2.2.20. The map λ 7→ dλ(x, y) is left continuous on R+ for every (x, y) ∈
Ω× Ω.

Proof. Let us consider x, y ∈ Ω and V ⊂⊂ Ω such that x, y ∈ V . Fix λ ≥ 0 and consider a
sequence (λn)n ⊂ R≥0 such that λn ↗ λ. Let us then take β > 0. From the property (E)
of H we know that there exists δ such that

|λ− λ| < δ implies {H(x, ·) < λ} ⊂
{
H(x, ·) < λ

}
+B(0, β).

So, if we take n̄ such that |λn̄ − λ| < δ, we obtain

Lλ(x, q) := sup{p · q : H(x, p) ≤ λ}
≤ sup{(p̃+ wβ) · q : H(x, p̃) ≤ λn̄, wβ ∈ B(0, β)}
= Lλn̄(x, q) + β|q|, (2.2.4)

for every x ∈ V . From (2.2.4) and from the monotonicity of λ 7→ dλ we infer that, for any
(x, y) ∈ Ω× Ω,

dλn(x, y) < dλ(x, y) ≤ dλn(x, y) + β|x− y|Ω. (2.2.5)

proving the left continuity in Ω × Ω. The extension of this result to any two points
x, y ∈ Ω × Ω follows by applying (2.2.5) to any two converging sequences xn → x and
yn → y and then considering the infimum.

We are now ready to state and prove the above mentioned characterization of the
minimizers of (H), proving a Lipschitz property w.r.t. dλ.
Remark 2.2.21. Comment on the assumptions.
The results of the present section (Section 2.2.3) and of Section 2.2.4 below are present in
[43] and they all hold for milder assumptions on H, in particular assumption (C) can be
weakened in

(C’) the map (x, p) 7→ H(x, p) is lower semicontinuous in Ω× Rd

and the assumption (E) can be dropped.
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Theorem 2.2.22. Let λ ≥ 0 and u : Ω→ R be such that

u(y)− u(x) ≤ dλ(x, y), for all x, y ∈ Ω.

Then u ∈W 1,∞(Ω) and
H(·, Du(·)) ≤ λ

a.e. in Ω.
Viceversa, if u ∈W 1,∞(Ω) and

H(·, Du(·)) ≤ λ

a.e. in Ω, then
u(y)− u(x) ≤ dλ(x, y), for all x, y ∈ Ω.

If u ∈ C(Ω) then H(·, Du(·)) ≤ λ a.e. in Ω if and only if u(y) − u(x) ≤ dλ(x, y) for any
x, y ∈ Ω.

The same result as the one stated in Theorem 2.2.22 can be found in [43].

Proof. Let us assume that u(y)− u(x) ≤ dλ(x, y), for any x, y ∈ Ω. We take x, y ∈ Ω such
that the segment joining them is all contained in Ω. Then, by assumption (D) on H, as
pointed out in Proposition 2.2.11, there exists M ≥ 0

dλ(x, y) ≤
∫ 1

0
Lλ(x+ t(y − x), y − x)dt ≤M

∫ 1

0
|x− y| = M |x− y|.

Then

|u(y)− u(x)| ≤ max{dλ(x, y), dλ(y, x)} ≤M |x− y|,

implying that u ∈W 1,∞(Ω) ∩ C(Ω).
Since u is differentiable a.e. in Ω, we will show now that

H(x0, Du(x0)) ≤ λ

for any x0 that is a point of differentiability. We observe that, by (2.2.2) it is sufficient to
show that Du(x0) · q ≤ 1 for every q such that Lλ(x, q) ≤ 1.

Du(x0) · q = lim
h→0

u(x0 + hq)− u(x0)

h
≤ lim

h→0

dλ(x0, x0 + hq)

h
.

Moreover, for h small enough, by the 1-homogeneity of Lλ we have

1

h
dλ(x0, x0 + hq) ≤ 1

h

∫ 1

0
Lλ(x0 + thq, hq)dt =

∫ 1

0
Lλ(x0 + thq, q)dt.

Finally, by the upper semicontinuity of Lλ it follows that

lim sup
h→0

dλ(x0, x0 + hq)

h
≤ lim sup

h→0

∫ 1

0
Lλ(x0 + thq, q)dt ≤

∫ 1

0
Lλ(x0, q)dt ≤ 1.

By (2.2.2), we have H(x0, Du(x0)) ≤ λ.
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Suppose now that H(·, Du(·)) ≤ λ a.e. in Ω for some λ ≥ 0.
Let N := {x ∈ Ω : u is not differentiable at x or H(x,Du(x)) > λ}. Then

u(y)− u(x) ≤ inf

{∫ 1

0
Lλ(γ(t), γ̇(t))dt : γ ∈ path(x, y), γ trasversal to N

}
,

where trasversal means that H1(γ((0, 1)) ∩N) = 0. Indeed, for any γ trasversal to N , we
have

u(y)− u(x) =

∫ 1

0
(u ◦ γ)′dt =

∫ 1

0
Du(γ(t)) · γ̇(t)dt ≤

∫ 1

0
Lλ(γ(t), γ̇(t))dt,

where the inequality follows from the definition of Lλ, since H(·, Du) ≤ λ. Let’s now
take γ ∈ path(x, y). It is possible to approximate γ in W 1,∞((0, 1),Ω) by a sequence
(γk)k ⊂ path(x, y), with γk trasversal to N for any k ∈ N (Lemma 2.2.23 below). Then it
follows that

u(y)− u(x) ≤ inf

{∫ 1

0
Lλ(γ(t), γ̇(t))dt : γ ∈ path(x, y)

}
= dλ(x, y). (2.2.6)

If u ∈ C(Ω), then, by (2.2.6) and continuity of u, one has

u(y)− u(x) ≤ lim inf
n→+∞

dλ(xn, yn),

for any (xn)n, (yn)n such that xn → x and yn → y. Then u(y) − u(x) ≤ dλ(x, y) for any
x, y ∈ Ω.

Lemma 2.2.23. Let x, y ∈ Ω, γ ∈ Lip([0, 1],Ω) and E such that Ld(E) = 0. Then for
every ε > 0 there exists a curve γε ∈ Lip([0, 1],Ω) transversal to E (i.e. H1(γε((0, 1))∩E) =
0) such that

||γε − γ||W 1,∞((0,1)) < ε.

Proof. Let g(t) ∈ C1([0, 1]) be such that g(0) = g(1) = 0 and g(t) > 0, for every t ∈ (0, 1).
For every v ∈ Rd, we define the curve γv(t) = γ(t) + vg(t). Let A be the set of the points
(t, v) ∈ [0, 1]× Rd such that γv(t) ∈ E and At := {v ∈ Rd : (t, v) ∈ A}. Since Ld(E) = 0,
Ld(At) = 0 for every fixed t ∈ [0, 1] and therefore also Ld+1(A) = 0. This implies that
Av := {t ∈ [0, 1] : (t, v) ∈ A} is such that L1(Av) = 0 for a.e. v ∈ Rd. Let v such that
L1(Av) = 0, then γv is transversal to E. Indeed by Lipschitzianity of γv we have that
H1(γv(Av)) = 0 and we conclude by observing that γv(Av) = γv([0, 1]) ∩ E.
Finally, we choose v such that |v| < ε/||g(t)||W 1,∞([0,1]), so to obtain

||γv − γ||W 1,∞((0,1)) ≤ |v||g||W 1,∞((0,1)) < ε.

Remark 2.2.24. A consequence of Theorem 2.2.22 is that for every λ ≥ 0,

dλ(x, y) = δλH(x, y)

for every x, y ∈ Ω, where

δλH(x, y) = sup

{
u(y)− u(x) : u ∈W 1,∞(Ω), ess sup

x∈Ω
H(x,Du(x)) ≤ λ

}
which is a natural way to define a distance associated to the supremand H in a supremal
variational problem (see [72, 73]).
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Proof. The inequality “ ≥ ” is trivial using Theorem 2.2.22. To recover the converse
inequality we use again Theorem 2.2.22 to u(·) = dλ(z, ·), for some z ∈ Ω (indeed for every
x, y ∈ Ω dλ(z, y)− dλ(z, x) ≤ dλ(x, y)).

Definition 2.2.25. Let V a connected open subset of Ω and g be a function inW 1,∞(V )∩
C(V ) and λ ≥ 0. We define the functions S−λ (g, V ) and S+

λ (g, V ) given on V by:

∀x ∈ V S−λ (g, V )(x) = sup
{
g(y)− dVλ (x, y) : y ∈ ∂Ω

}
,

∀x ∈ V S+
λ (g, V )(x) = inf

{
g(y) + dVλ (y, x) : y ∈ ∂Ω

}
.

When g and V are clear from the context, we will write S±λ (x) instead of S±λ (g, V )(x).

Remark 2.2.26. As stressed in the Introduction 1.1, the functions S− and S+ are obtained
by analogy with the MacShane-Whitney operator (we refer to the introduction of [13] for
more about this operator). We also underline the fact that in the expression of S− it
appears dVλ (x, y) while in the one of S+ one has dλ(y, x). Since dVλ is not symmetric this
is an important fact.

Theorem 2.2.27. Let g be a function of W 1,∞(Ω) ∩ C(Ω) and assume that there exists
λ ≥ 0 such that g is “λ-Lipschitz” on ∂Ω, i.e.

g(y)− g(x) ≤ dλ(x, y), for any x, y ∈ ∂Ω.

Let
µ := inf{λ : g(y)− g(x) ≤ dλ(x, y) for any x, y ∈ ∂Ω}, (2.2.7)

then µ is the minimal value for the problem (H) and

µ = min{λ : g(y)− g(x) ≤ dλ(x, y) for any x, y ∈ ∂Ω} < +∞.

Moreover, the functions S−µ (g,Ω) = S−µ and S+
µ (g,Ω) = S+

µ are optimal solution of (H)
and for any optimal solution u of (H) one has

S−µ (x) ≤ u(x) ≤ S+
µ (x),

for all x ∈ Ω.

Remark 2.2.28. The same result holds if we consider a connected open subset V of Ω and
the associated dVλ .

Proof. We now notice that the minimum µ does not need a priori to be attained, so we
first set:

µ := inf{λ : g(y)− g(x) ≤ dλ(x, y) for any x, y ∈ ∂V } (2.2.8)

and for every x ∈ Ω,

S−µ (x) := sup {g(y)− dλ(x, y) : λ > µ, y ∈ ∂Ω} ,
S+
µ (x) := inf {g(y) + dλ(y, x) : λ > µ, y ∈ ∂Ω} .

We now claim that S−µ (x) = g(x) for any x ∈ ∂Ω. Indeed, taking y = x in the definition
of S−µ yields S−µ (x) ≥ g(x), while by definition of µ one has g(y)− dλ(x, y) ≤ g(x), for any
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λ > µ and y ∈ ∂Ω, so that S−µ (x) ≤ g(x), which in turn proves the claim. The same holds
for S+

µ .
The second claim is that, for any λ > µ and for any x, y ∈ Ω, one has:

S−µ (y)− S−µ (x) ≤ dλ(x, y). (2.2.9)

Indeed, take λ > µ, x ∈ Ω and y ∈ Ω. We notice that since λ 7→ dλ is not decreasing, the
supremum in the definition of S−µ can be taken for σ ∈ (µ, λ], so that

S−µ (y)− S−µ (x) = sup
z∈∂Ω,µ<σ≤λ

inf
z′∈∂Ω,µ<σ′≤λ

{g(z)− dσ(y, z)− g(z′) + dσ′(x, z
′)}

≤ sup
z∈∂Ω,µ<σ≤λ

{g(z)− dµ(y, z)− g(z) + dσ(x, z)} ≤ sup
µ<σ≤λ

dσ(x, y) = dλ(x, y),

where the last inequality is due to the triangular inequality that holds since y ∈ Ω.
When y ∈ ∂Ω, we notice that

S−µ (y) = g(y) and S−µ (x) ≥ g(y)− dλ(x, y) for every λ > µ.

In a similar way the estimate (2.2.9) can be proved for S+
µ .

By Theorem 2.2.22 we infer that FH(S−µ ),FH(S+
µ ) ≤ λ for every λ > µ. It follows that

FH(S−µ ),FH(S+
µ ) ≤ µ. In particular, by Theorem 2.2.22, we have that for every x, y ∈ ∂Ω

S−µ (x)− S−µ (y) ≤ dµ(x, y),

and, since S−µ = g on ∂Ω this implies that the minimum in the definition of µ (2.2.8) is
attained.
Moreover, we show that the minimal value for the problem (H) is equal to µ. By contra-
diction assume that there exists a function u ∈ W 1,∞(Ω) ∩ C(Ω), u = g on ∂Ω, such
that FH(u) ≤ λ for some λ < µ. Then, by Theorem 2.2.22 again, we would have
u(y) − u(x) ≤ dλ(x, y) for all x, y ∈ Ω. Since u = g on ∂Ω, this contradicts the mini-
mality of µ.
Finally, let u be an optimal solution of (H), i.e. H(·, Du(·)) ≤ µ a.e. in Ω. Then,
by Theorem 2.2.22, u(y) − u(x) ≤ dµ(x, y) for any x, y ∈ Ω. If y ∈ ∂Ω, this yields
g(y)−dµ(x, y) ≤ u(x) and then S−µ (x) ≤ u(x). With similar arguments can be shown that
u ≤ S+

µ in Ω.

2.2.4 Absolute minimizers and the property of comparison with Dis-
tance Functions

Definition 2.2.29. An absolute minimizer (AM) for (H) is a function u ∈W 1,∞(Ω)∩C(Ω)
and for all open subset V ⊂⊂ Ω one has

ess sup
x∈V

H(x,Du(x)) ≤ ess sup
x∈V

H(x,Dv(x))

for all v in W 1,∞(V ) ∩ C(V ) such that u = v on ∂V .

Existence of absolute minimizers holds under our (or even milder) assumptions (see
Theorem 4.1 or Theorem 4.7 in [48]).
Notice that in the above definition, we restrict ourselves to the open subsets V which are
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relatively compact in Ω, which is the common definition for absolute minimizers (see [13]),
but we do not assume that u is a solution of (H) which is in fact a consequence of this
definition and it is proved in the following lemma.
We recall that as stated in Remark 2.2.21 assumption (C) on H can be weaken in (C’).

Lemma 2.2.30. If u ∈ W 1,∞(Ω) ∩ C(Ω) is an absolute minimizer for the problem (H)
such that u = g on ∂Ω, then it is also a solution of (H).

Proof. Let v ∈W 1,∞(Ω) ∩ C(Ω), such that u = g on ∂Ω. We show that

ess sup
Ω

H(·, Du) ≤ ess sup
Ω

H(·, Dv).

Let δ > 0, we define V +
δ := {x : u > v+ δ}. Since ∂V +

δ = {x : u = v+ δ} and u = g = v
on ∂Ω, we have that V +

δ ⊂⊂ Ω. Thus, by the fact that u is an absolute minimizer we have
that

ess sup
V +
δ

H(·, Du) ≤ ess sup
V +
δ

H(·, Dv).

By letting δ → 0 we obtain

ess sup
u>v

H(·, Du) ≤ ess sup
u>v

H(·, Dv).

We prove that
ess sup
u<v

H(·, Du) ≤ ess sup
u<v

H(·, Dv)

in a similar way by defining V −δ := {x : u < v − δ}.
We conclude by observing that Du(x) = Dv(x) for a.e. x ∈ {u = v ∩ Ω}.

Proposition 2.2.31. Let V ⊂⊂ Ω, then for any λ ≥ 0, α ∈ R and x0 ∈ Ω one has

dλ(x0, x) + α ≥ S+
µ (dλ(x0, x) + α, V ) on V ,

−dλ(x, x0) + α ≤ S−µ (−dλ(x, x0) + α, V ) on V ,

where
µ := min{σ : dλ(x0, y)− dλ(x0, x) ≤ dVσ (x, y) for any x, y ∈ ∂V },

which is well defined thanks to Theorem 2.2.27 and Remark 2.2.28.

Proof. First of all we observe that dλ(x, y) ≤ dVλ (x, y) for every x, y ∈ Ω, since pathV (x, y) ⊂
path(x, y) and that, by (4) of Remark 2.1.20,

dλ(x0, x)− dλ(x0, y) ≤ dλ(x, y),

for every x, y ∈ Ω . We thus obtain µ ≤ λ and consequently dVµ ≤ dVλ . Therefore, recalling
that,

S+
µ (dλ(x0, ·) + α, V )(x) := inf{dλ(x0, y) + α+ dVµ (y, x)}

we have
S+
µ (dλ(x0, ·) + α, V )(x) ≤ inf{dλ(x0, y) + α+ dVλ (y, x)}. (2.2.10)
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Let δ > 0 and γ ∈ path(x0, x) such that

dλ(x0, x) ≥
∫ 1

0
Lλ(γ(t), γ̇(t))dt− δ.

Let t̄ ∈ [0, 1) such that γ(t) ∈ V for every t > t̄. Then γ(t̄) it holds

dλ(x0, x) ≥
∫ t̄

0
+

∫ t̄+ 1
n

t̄
+

∫ 1

t̄+ 1
n

Lλ(γ(t), γ̇(t))dt− δ

≥ dλ(x0, γ(t̄)) + 0 + dVλ

(
γ

(
t̄+

1

n

)
, x

)
− δ,

for any n > 0 such that t+ 1
n < 1. By passing to the lim inf for n→∞, we have

d(x0, x) ≥ dλ(x0, γ(t̄)) + dVλ (γ (t̄) , x)− δ.

We conclude by taking γ(t̄) as a competitor in (2.2.10). Indeed

S+
µ (dλ(x0, ·) + α, V )(x) ≤ dλ(x0, γ(t̄)) + α+ dVλ (γ (t̄) , x) ≤ d(x0, x) + α+ δ,

for any δ > 0.

Definition 2.2.32 (Comparison with Distance Functions). We say that a continuous func-
tion u : Ω → R satisfies the Comparison with Distance Functions (CDF) property from
above if for any connected open subset V ⊂⊂ Ω, any x0 ∈ Ω, any λ ≥ 0 and α ∈ R, the
inequality

u ≤ dλ(x0, ·) + α, on ∂(V \ {x0})

implies
u ≤ dλ(x0, ·) + α, in V .

Analogously u : Ω→ R satisfies the Comparison with Distance Functions (CDF) property
from below if for any connected open subset V ⊂⊂ Ω, any x0 ∈ Ω, any λ ≥ 0 and α ∈ R,
the inequality

u ≥ −dλ(x0, ·) + α, on ∂(V \ {x0})

implies
u ≥ −dλ(x0, ·) + α, in V .

Finally a continuous function u : Ω→ R satisfies the Comparison with Distance Functions
(CDF) property if it satisfies CDF both from above and from below.

Remark 2.2.33. In case assumption (B) and (D) on H hold only locally, i.e. for every
λ > λ′ ≥ 0 and every V ⊂⊂ Ω there exist 0 < αV < MV such that

B(0, α) + {H(x, ·) ≤ λ′}+B(0, αV ) ⊂ {H(x, ·) ≤ λ} ⊂ B(0,MV ),

for every x ∈ V (see Example 2.2.7), it makes sense to give a local definition. We say that
u satisfies the CDF locally (from above and from below) if for any connected open subset
V ⊂⊂ Ω, any x0 ∈ V any λ ≥ 0 and α ∈ R, the inequality

u ≤ dVλ (x0, ·) + α, on ∂(V \ {x0}) =⇒ u ≤ dVλ (x0, ·) + α, in V and

u ≥ −dVλ (x0, ·) + α, on ∂(V \ {x0}) =⇒ u ≤ −dVλ (x0, ·) + α, in V . (2.2.11)
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Theorem 2.2.34. Let g ∈W 1,∞(Ω)∩C(Ω). Then u = g on ∂Ω is an absolute minimizer
for (H) if and only if u satisfies the Comparison with Distance Functions property.

Proof. We start with the only if part. Let u be an absolute minimizer and let us consider
a connected open subset V ⊂⊂ Ω, x0 ∈ V and α ∈ R such that

u ≤ dλ(x0, ·) + α, on ∂(V \ {x0}).

Let αk := α+ 1
2k

and
Uk := {x ∈ V : u > dλ(x0, ·) + αk}.

We observe that Uk ⊂⊂ V . Indeed if there exists a sequence (xn) ∈ Uk converging to a
point x ∈ ∂V , then

u(x) = lim
n
u(xn) ≥ lim

n
dλ(x0, xn) + αk = dλ(x0, x) + αk > dλ(x0, x) + α.

Then we have that u = dλ(x0, ·) + αk on ∂Uk. Let us assume that Uk is connected,
otherwise the same reasoning holds in all the connected components. Since it is an absolute
minimizer, u is a solution of

min
{
FH(v, Uk) : v ∈ dλ(x0, ·) + αk +W 1,∞(Ω) ∩ C0(Ω)

}
and, by Proposition 2.2.27

u(x) ≤ S+
µ (dλ(x0, ·) + αk, Uk), for every x ∈ Uk.

By Proposition 2.2.31 we infer that

u(x) ≤ dλ(x0, ·) + αk, for every x ∈ Uk,

proving that Uk is empty for every k. Thus u(x) ≤ dλ(x0, x) +αk for every k and for every
x ∈ V . The proof is concluded by letting k →∞.
We pass now to the if part. For simplicity we provide here the proof of the fact that if u
satisfies the CDF locally (in the sense of (2.2.11) in Remark (2.2.33)) then u is an absolute
minimizer for (H)2. The same proof in the case u satisfies the global property of CDF is
in Theorem 4.3 in [43]. We omit it here because is much more technical and we present
some of those techniques in the proof of Proposition 2.2.42. See also Remark 2.2.35
Let V a connected open subset V ⊂⊂ Ω. We want to prove that

FH(u, V ) := min{FH(v, V ) : v ∈ u+W 1,∞(V ) ∩ C0(V )}.

We know by Theorem 2.2.27 that this is true if and only if

FH(u, V ) = µ := min{λ ≥ 0 : u(y)− u(x) ≤ dVλ (x, y) for any x, y ∈ ∂V }.

By definition of µ we have that for every x ∈ ∂V

u(y) ≤ u(x) + dVµ (x, y) for any y ∈ ∂(V \ {x})

and since u satisfies the comparison with distance functions from above we have that the
inequality holds for every y ∈ V . With the same reasoning

u(x) ≥ u(y)− dVµ (x, y) for any x ∈ ∂(V \ {y})
2This proof can be found in Theorem 3.5 in [43]
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and since u satisfies the comparison with distance functions from below we have that the
inequality holds for every x ∈ V . Therefore

u(x)− u(y) ≤ dVµ (x, y) for any x, y ∈ V

and we conclude thanks to Theorem 2.2.22 which implies FH(u, V ) ≤ µ.

Remark 2.2.35. The main difference in the case u satisfies the CDF property globally is
the fact that this property holds considering dλ, while in the definition of µ we have dVλ . In
this case in [43] the authors show in Lemma B.4 that if x, y ∈ V ⊂⊂ Ω are close enough,
then dVλ (x, y) = dΩ

λ (x, y). They then use this fact to apply the local CDF property to a
suitable choice of a subset of V .

2.2.5 Point-wise definition of H(x,Du(x))

Since u ∈ W 1,∞(Ω) the quantity H(x,Du(x)) is, a priori, defined only for a.e. x ∈ Ω. In
this section we show that there exists a natural point-wise definition of H(x,Du(x)) which
will be denoted by H(x,Du)(x).

Definition 2.2.36. Let u ∈ W 1,∞(Ω) ∩ C(Ω). For any x0 ∈ Ω and for any r > 0 such
that r < dist(x0, ∂Ω), we set

µ(x0, r) := inf{λ : u(x)− u(x0) ≤ dλ(x0, x) for any x ∈ B(x0, r)}. (2.2.12)

We observe that µ(x0, r) is not decreasing in r. This allows for the following definition:

H(·, Du)(x0) := lim
r→0

µ(x0, r) = inf
r
µ(x0, r).

Lemma 2.2.37. Let r > 0 then x 7→ µ(x, r) is upper semicontinuous in Ω.

Proof. Let xn → x and we may assume, without loss of generality that

µ(xn, r)→ ν.

We want to prove that µ(x, r) ≥ ν.
Let α < ν. For n such that µ(xn, r) > α there exists yn ∈ B(xn, r) such that

u(yn)− u(xn) > dα(xn, yn),

and we may assume, up to extraction of a subsequence, that yn → y ∈ B(x, r). Using the
continuity of u and the continuity of dα (see Proposition 2.1.24), we have

u(y)− u(x) = lim
n→+∞

u(yn)− u(xn) ≥ lim
n→+∞

dα(xn, yn) = dα(x, y),

which implies µ(x, r) ≥ α for every α < ν.

Corollary 2.2.38. The function x 7→ H(·, Du)(x) is upper semicontinuous in Ω.

Proof. This follows from Lemma 2.2.37 above since the infimum of upper semicontinuous
functions is upper semicontinuous.
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Proposition 2.2.39. Let u ∈W 1,∞(Ω) be such that u is differentiable at x0 ∈ Ω. Then

H(x0, Du(x0)) ≤ H(·, Du)(x0).

Proof. Let (εr)r>0 a sequence of positive real numbers that decreases to zero. We want to
show that H(x0, Du(x0)) ≤ µ(x0, r)+εr, for every r > 0. If we fix µεr := µ(x0, r)+εr and
we consider q ∈ Rd such that Lµεr (x0, q) ≤ 1, by the characterization (2.2.2) it is sufficient
to show that

Du(x0) · q ≤ 1.

Since u is differentiable at x0 we have:

Du(x0) · q = lim
h→0

u(x0 + hq)− u(x0)

h
≤ lim

h→0

1

h
dµεr (x0, x0 + hq) ≤

≤ lim
h→0

1

h

∫ 1

0
Lµεr (x0 + thq, hq)dt = lim

h→0

∫ 1

0
Lµεr (x0 + thq, q)dt =

= Lµεr (x0, q) ≤ 1,

where the first inequality follows from the definition of µ(x0, r). The proof is then con-
cluded.

Proposition 2.2.40. Let u ∈W 1,∞(Ω) be differentiable at x0. Then

H(x0, Du(x0)) ≥ H(x0, Du)(x0).

Proof. For every r > 0 such that B(x0, r) ⊂⊂ Ω denote by µr = µ(x0, r) and by µ :=
H(x0, Du)(x0). Let ε > 0 and xr ∈ B(x0, r) be such that

u(xr)− u(x0) ≥ dµr−ε(x0, xr).

Consider a sequence xrn−x0

sn
, where sn := |xrn − x0|. By compactness up to the choice of

a subsequence we have that
xrn − x0

sn
→ q,

for some unitary vector q. Let (εn) be sequence of real numbers decreasing to 0. For every
n ≥ 0, we denote by µn = µrn . Let γn ∈ path(x0, xrn), suitably parametrized, such that
(up to an increasing reparametrization) dµn−ε(x0, xrn) ≥

∫ sn
0 Lµn−ε(γn, γ̇n)dt− εn

2 , Then

u(xrn)− u(x0)

sn
≥ dµn−ε(x0, xrn)

sn

≥ 1

sn

∫ sn

0
Lµn−ε(γn, γ̇n)dt− εn

2

≥ 1

sn

∫ sn

0
Lµ−ε(γn, γ̇n)dt− εn

2

≥ 1

sn

∫ sn

0
Lµ−ε(x0, γ̇n)dt− εn

2
− εn

2

≥ Lµ−ε(x0,
1

sn

∫ sn

0
γ̇ndt)− εn

lim inf→ Lµ−ε(x0, q),

obtaining that Du(x0) · q ≥ Lµ−ε(x0, q). The inequality in the third line above follows
from Lemma 2.2.16 with η = εn

2 It follows by the definition of Lλ that

H(x0, Du(x0)) ≥ µ− ε.

The claim follows by the arbitrariness of ε.
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Corollary 2.2.41. For all u ∈W 1,∞(Ω)

ess sup
x∈Ω

H(x,Du(x)) = ess sup
x∈Ω

H(·, Du)(x).

2.2.6 The attainment set and its minimality

Proposition 2.2.42. Let u be an absolute minimizer for the problem (H). Let x0 be
such that H(x0, Du)(x0) = ess sup x∈ΩH(x,Du(x)) = µ and let α and M be such that
B(0, α) ⊂ {H(x, ·) ≤ λ} ⊂ B(0,M) for all λ in a neighborhood of µ. Then there exists y
such that dµ(x0, y) = α2

2M d(x0, ∂Ω) such that u(y)−u(x0) = dµ(x0, y) and H(y,Du)(y) = µ.

Proof. Let λ < µ. By Theorem 2.2.27, µ is the one defined by (2.2.7). Then for all r > 0
there exists yr ∈ B(x0, r) such that

u(yr)− u(x0) > dλ(x0, yr)

or, equivalently, for every open set A ⊂⊂ Ω there exists yA ∈ A such that

u(yA)− dλ(x0, yA) > u(x0).

Let R = α2

2M dist(x0, ∂Ω). Consider the open set VR = {z ∈ Ω : dλ(x0, z) < R}. By
definition of R, VR ⊂⊂ Ω3. Let

a = max
V R

{u(z)− dλ(x0, z)}.

We claim that
a = max

∂VR
{u(z)− dλ(x0, z)}.

Indeed, let
ab = max

∂(VR\{x0})
{u(z)− dλ(x0, z)},

we have that the distance function

ab + dλ(x0, z)

satisfies
ab + dλ(x0, z) ≥ u(z) on ∂(VR \ {x0}),

and then, since u is an absolute minimizer, thanks to Theorem 2.2.34 u satisfies the com-
parison with distance functions property and thus

ab + dλ(x0, z) ≥ u(z) on V R.

Moreover, by the choice of x0 and the fact that λ < µ, the maximum in ab can not be
reached in x0. Thus we have a = ab. Let yλ ∈ ∂VR be such that a = u(yλ) − dλ(x0, y)
let ε << 1 and let yε ∈ B(yλ, ε) be a point of the dλ−geodesic between x0 and yλ, which
exists by Corollary 2.1.28. By the definition of VR, yε ∈ VR so that

u(yε)− dλ(x0, yε) ≤ a ≤ u(yλ)− dλ(x0, yλ)
= u(yλ)− dλ(x0, yε)− dλ(yε, yλ).

3Indeed if z ∈ VR then |x0 − z| ≤ 1
α
dλ(x0, z) <

1
α
R = α

2M
dist(x0, ∂Ω) < dist(x0, ∂Ω).

43



CHAPTER 2. AN L∞-VARIATIONAL PROBLEM AND ABSOLUTE MINIMIZERS

We obtain
u(yλ)− u(yε) ≥ dλ(yε, yλ),

and then for small δ > 0

µ(yε, ε) > λ− δ

and when ε < δ

µ(yε, δ) ≥ µ(yε, ε) > λ− δ.

By the upper semicontinuity (see Lemma 2.2.37) we have for fixed δ

µ(yλ, δ) ≥ lim sup
ε→0

µ(yε, δ) ≥ λ− δ,

and letting δ → 0,
H(yλ, Du)(yλ) ≥ λ.

Consider λn ↗ µ and the corresponding yλn ∈ ∂VRn as constructed above. Up to subse-
quences yλn → y and, by the upper semicontinuity of H(x,Du)(x) we obtain

H(y,Du)(y) ≥ µ.

Moreover

u(y)− u(x0) = lim
n→∞

u(yλn)− u(x0) = lim
n→∞

dλn(x0, yn) = dµ(x0, y),

where the last equality is due to Lemma 2.2.20.

Remark 2.2.43. We observe that from Proposition 2.2.42 one can infer that for every
V ⊂⊂ Ω that contains x0, there exists y ∈ ∂V such that H(y,Du)(y) = µ.

Theorem 2.2.44. Let u be an absolute minimizer for the problem (H) and let x0 ∈ Ω be
such that

H(·, Du)(x0) = ess sup
x∈Ω

H(x,Du(x)) := µ. (2.2.13)

Then there exist x+∞, x−∞ ∈ ∂Ω, such that

u(x0) = u(x−∞) + dµ(x−∞, x0) = g(x−∞) + dµ(x−∞, x0),

u(x0) = u(x+∞)− dµ(x0, x+∞) = g(x+∞)− dµ(x0, x+∞) and
u(x+∞)− u(x−∞) = dµ(x−∞, x+∞).

Proof. We first claim that there exists x+∞ ∈ ∂Ω, such that

u(x+∞)− u(x0) ≥ dµ(x0, x+∞). (2.2.14)

Starting from x0 and following Proposition 2.2.42 we build a sequence (xn) ⊂ Ω such that
for all n ∈ N

α2

2M2
dist(xn, ∂Ω) =

dµ(xn, xn+1)

M
≤ |xn+1 − xn| ≤

dµ(xn, xn+1)

α
=

α

2M
dist(xn, ∂Ω)

and
u(xn+1)− u(xn) = dµ(xn, xn+1).
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From this it follows that for any n ∈ N

u(xn)− u(x0) =

n−1∑
i=0

dµ(xi, xi+1) ≥
n−1∑
i=0

α3

2M2
dist(xi, ∂Ω)

Since u is continuous in Ω and Ω is bounded, both series on the right of the equation above
converge and then

lim
n→∞

dist(xn, ∂Ω) = 0,

and (xn) is a Cauchy sequence converging to some point x+∞ ∈ ∂Ω. For this point it holds

u(x+∞)− u(x0) = lim
n→∞

u(xn)− u(x0) = lim
n→+∞

n−1∑
i=0

dµ(xi, xi+1)

≥ lim
n→+∞

dµ(x0, xn) = dµ(x0, x+∞).

In a similar way we can find x−∞ ∈ ∂Ω, such that

u(x0)− u(x−∞) ≥ dµ(x−∞, x0),

and so we get
u(x+∞)− u(x−∞) ≥ dµ(x−∞, x+∞).

One also deduces that

dµ(x−∞, x0) + dµ(x0, x+∞)

= u(x+∞)− u(x0) + u(x0)− u(x−∞)

= u(x+∞)− u(x−∞) = dµ(x−∞, x+∞),

that is x0 belongs to a geodesics for dµ connecting x−∞ to x+∞.

In the following example we show that assumption (E) on the functional H and the
consequent left continuity of the map λ 7→ dλ (Prop. 2.2.20), are essential for the validity
of Proposition 2.2.42 and the consequent proof of the Theorem 2.2.44.

Example 2.2.45. Let’s take Ω = B(0, 2) and

H(x, p) =


|p| if |p| < 1

2
1
2 if 1

2 ≤ |p| ≤
3
4

|p| − 1
4 if |p| > 3

4

.

Let u : B(0, 2) → R be such that u(x) = a · x, where 1
2 < |a| <

3
4 . Then u is an absolute

minimizer for H and H(x,Du(x)) = ess sup x∈ΩH(x,Du(x)) = 1
2 for all x ∈ Ω.

Calling x0 = 0 and taking V = B(0, 1) we have that, for any y ∈ ∂V ,

u(y)− u(x0) = a · y ≤ |a| < 3

4
.

Moreover
L 1

2
(x, q) =

3

4
|q| for anyx ∈ Ω
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and

dV1
2

(x0, y) = inf

{
3

4

∫ 1

0
|γ̇(t)|dt

}
=

3

4

∫ 1

0
|y|dt =

3

4
(2.2.15)

That is
max
x∈∂V

{u(y)− dV1
2

(x, y)} < 0.

Definition 2.2.46. We call attainment set of a function u ∈ W 1,∞ ∩ C(Ω), the set A(u)
defined by

A(u) := {x ∈ Ω : H(x,Du)(x) = ess sup
Ω

H(x,Du(x))}.

We finally prove the minimality property announced at the end of the introduction

Theorem 2.2.47. Let Ω be a bounded open set of Rd and u ∈ W 1,∞(Ω) ∩ C(Ω) be an
absolute minimizer for (H) and let v be any other minimizer for (H), then

A(u) ⊂ A(v). (2.2.16)

Moreover A(u) is the union of Lipschitz curves which are geodesics for dµ where µ is the
minimal value in (H)4.

Proof. Let x0 ∈ A(u) then, by Theorem 2.2.44, there exist x+∞, x−∞ ∈ ∂Ω, such that

u(x+∞)− u(x−∞) = dµ(x−∞, x+∞).

u(x+∞)− u(x0) = dµ(x0, x+∞), and u(x0)− u(x−∞) = dµ(x−∞, x0)

This implies that
dµ(x−∞, x0) + dµ(x0, x+∞) = dµ(x−∞, x+∞).

Then x0 belongs to a curve γ ∈ Lip([0, 1]) of minimal length for dµ (obtained, for example,
joining a curve of minimal length from x−∞ to x0 and one from x0 to x+∞). We now prove
that

γ([0, 1]) ⊂ A(u) and γ([0, 1]) ⊂ A(v).

Let t0 ∈ [0, 1] such that x0 = γ(t0) and let 0 ≤ t0 < s ≤ 1, then we have

u(γ(s))− u(x0) = dµ(x0, γ(s)).

Indeed

dµ(x0, x+∞) = u(x+∞)− u(x0) = u(x+∞)− u(γ(s)) + u(γ(s))− u(x0)

≤ dµ(γ(s), x+∞) + dµ(x0, γ(s)) = dµ(x0, x+∞),

by minimality of γ. Analogously, if 0 ≤ s < t0 ≤ 1, then

u(x0)− u(γ(s)) ≤ dµ(γ(s), x0).

Therefore, for any 0 ≤ t < s ≤ 1

u(γ(s))− u(γ(t)) = dµ(γ(t), γ(s)).

4We recall that existence of geodesics, that is of minimal dµ length, is ensured by Proposition 2.1.28.
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Then, since we can choose s arbitrarily close to t,

H(γ(t), Du)(γ(t)) ≥ µ,

and, since the other inequality holds everywhere, equality holds. A consequence of this
proof is that if u(γ(t)) = v(γ(t)) for any t ∈ [0, 1] then

H(γ(t), Dv)(γ(t)) ≥ µ.

We now prove that for any t

S−µ (u,Ω)(γ(t)) = S+
µ (u,Ω)(γ(t)) = u(γ(t)),

By definition of S+
µ (u,Ω) and S−µ (u,Ω), for any t ∈ [−1, 1], it holds

S−µ (u,Ω)(γ(t)) ≥ u(x+∞)− d(γ(t), x+∞) = u(γ(t)) and

S+
µ (u,Ω)(γ(t)) ≤ u(x−∞) + d(x−∞, γ(t)) = u(γ(t)),

(2.2.17)

where the equality follows from the (2.2.6). The converse inequality is provided by Theorem
2.2.27, for which

S−µ (u,Ω)(x) ≤ u(x) ≤ S+
µ (u,Ω)(x).

We then conclude recalling that again Theorem 2.2.27 implies that u(γ(t)) = v(γ(t)) for
any t ∈ [0, 1] for any other minimizer v.
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Chapter 3

On functions with convex constraints
on the gradient

3.1 Preliminaries

Definition 3.1.1. Given an open set Ω and p ∈ [1,+∞], we say that u satisfies a convex
constraint on the gradient if it belongs to the set

{u ∈W 1,p(Ω) : Du(x) ∈ C(x) for a.e. x ∈ Ω}, (3.1.1)

where, for a.e. x ∈ Ω, C(x) is a convex closed subset of Rd.

Given a bounded and connected open set Ω ⊂ Rd, we consider the Dirichlet problem
associated to the problem of convex constraints on the gradient, that is: given a function
g ∈ C(∂Ω), we study the solutions u ∈W 1,∞(Ω) ∩ C(Ω) of the following system{

u = g on ∂Ω,

Du(x) ∈ K(x) for a.e. x ∈ Ω,
(P)

where K(x) belongs to the set K of the convex bodies of Rd (see (2.1.1)) for every x ∈ Ω.
We will also assume that 0 ∈ K(x) for every x ∈ Ω.
The results in this chapter extend the work of Arronson [12] where he considers the more
classical case K(x) := B(0, f(x)), f being a nonnegative function, which is equivalent to
asking that |Du(x)| ≤ f(x) for a.e. x ∈ Ω.

For any x ∈ Ω, we consider the gauge functional ϕ(x, ·) : Rd → R+ associated to K(x)
(see Definition 2.1.1), i.e.

ϕ(x, p) := inf
{
t > 0 :

p

t
∈ K(x)

}
.

Then ϕ(x, ·) satisfies the properties (i), (ii), (iii) in Remark 2.1.2 for every x ∈ Ω. Moreover,
by (2.1.2) in Remark 2.1.6, it holds:

p ∈ K(x)⇔ ϕ(x, p) ≤ 1

p ∈ ∂K(x)⇔ ϕ(x, p) = 1.

Assumptions. From now on we will also requires that:
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(a) there exist α,M > 0 such that B(0, α) ⊂ K(x) ⊂ B(0,M), for every x ∈ Ω;

(b) ϕ(·, p) is continuous on Ω for every p ∈ Rd.

Remark 3.1.2. Assuming the continuity of ϕ(·, p) in (b) is equivalent to asking for the
continuity of K : Ω → K w.r.t. the Hausdorff distance, as shown in Proposition 3.1.6
below.
Remark 3.1.3. With assumptions (a) (which implies Equation (3.1.2) below) and (b) we
have that ϕ : Ω× Rd → R+ is a Finsler metric, defined in Definition 2.1.11.
First of all, we prove that ϕ is continuous w.r.t. the second variable as well.

Proposition 3.1.4. There exist α,M > 0 such that

|p|
M
≤ ϕ(x, p) ≤ |p|

α
, for all x ∈ Ω. (3.1.2)

In particular, ϕ(x, ·) is continuous w.r.t the Euclidean distance, uniformly w.r.t. x ∈ Ω.

Proof. For every t < |p|
M , pt /∈ K(x), because

∣∣p
t

∣∣ is greater than M , that is not possible by
assumption (a). Then the left inequality is proved in (3.1.2). The proof of the right one,
follows easily by the fact that again by the assumption (a),

α
p

|p|
∈ K(x),

and in view the positive 1-homogeneity of ϕ.
Finally, we show that the upper bound on ϕ(x, p) in the (3.1.4) implies continuity uniformly
w.r.t. x ∈ Ω. Indeed for every q ∈ Rd

|ϕ(x, q)− ϕ(x, p)| ≤ max{ϕ(x, q − p), ϕ(x, p− q)} ≤ |q − p|
α

,

where the first inequality holds thanks to the subadditivity property of ϕ (property (iii) in
Remark 2.1.2).

Corollary 3.1.5. The functional ϕ : Ω× Rd → R is continuous.

Proof. The proof is a direct consequence of Proposition 3.1.4 and assumption (b).

Proposition 3.1.6. Let x ∈ Ω and (xn)n∈N a sequence converging to x. Then, for all
p ∈ Rd

ϕ(xn, p) −→ ϕ(x, p) ⇐⇒ K(xn)
H−→ K(x),

where on the right side we mean the convergence w.r.t. to the Hausdorff distance for sets1.

Proof. In order to lighten the notation, we write K := K(x) and Kn := K(xn).
We first assume that ϕ is continuous w.r.t x. Let ε > 0, then there exists n0 ∈ N such that

|ϕ(xn, p)− ϕ(x, p)| < ε, for all n ≥ n0. (3.1.3)

We recall that dH(Kn,K) = max {ρ(Kn,K), ρ(K,Kn)}, where

ρ(Kn,K) := sup
p∈Kn

dist(p,K) and ρ(K,Kn) := sup
p∈K

dist(p,Kn).

1For more details about Hausdorff distance see e.g. [74].
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Let n ≥ n0. Then for every p ∈ K and p
1+ε ∈ Kn, since, by (3.1.3),

ϕ(xn, p) < ϕ(x, p) + ε ≤ 1 + ε.

That means that
dist(p,Kn) ≤

∣∣∣∣p− p

1 + ε

∣∣∣∣ =
ε|p|

1 + ε
≤ ε

1 + ε
M,

and thus ρ(K,Kn) ≤ ε
1+εM . Let us now consider p ∈ Kn, then as above p

1+ε ∈ K and
ρ(Kn,K) ≤ ε

1+εM .
We now prove the converse implication. Let p ∈ Rd. Proving that

lim
n→+∞

ϕ(xn, p) = ϕ(x, p)

is equivalent to show that

lim
n→∞

ϕ(xn, p) = ϕ(x, p) = 1, for every p ∈ ∂K.

Indeed for a generic p ∈ Rd such that ϕ(x, p) = t̄, for some t̄ > 0, the positive 1-homogeneity
of ϕ implies

ϕ(x, p) = t̄⇔ ϕ(x,
p

t̄
) = 1⇔ p

t̄
∈ ∂K.

Thus we restrict ourselves to p ∈ ∂K. Then, by convexity of K,

dist(βp,K) > 0, for every β > 1.

Let (βk)k a decreasing sequence of real numbers converging to 1. Then for every fixed k,
there exists ηk > 0 such that

dist(βkp,K) > ηk > 0.

Since Kn
H−→K, there exists Nηk ∈ N, such that2

d(βkp,Kn) > ηk > 0, for every n ≥ Nηk ,

which implies ϕ(xn, βkp) > 1.
By the triangular inequality,

ϕ(xn, p) ≥ ϕ(xn, βkp)− ϕ(xn, βkp− p) > 1− |βkp− p|
α

,

where the last inequality is due to Proposition 3.1.4. We infer that

lim inf
n→+∞

ϕ(xn, p) ≥ 1− |βk − 1||p|
α

.

By sending k →∞, we get lim infn→∞ ϕ(xn, p) ≥ 1.
We conclude the proof showing that lim supn→∞ ϕ(xn, p) ≤ 1. Let n ∈ N, if p ∈ Kn, then
ϕ(xn, p) ≤ 1, if, instead, p 6∈ Kn, we want to estimate ϕ(xn, p) from above. Let pn ∈ ∂Kn,
such that dist(p,Kn) = |p− pn|, then:

ϕ(xn, p) ≤ ϕ(xn, p
n) + ϕ(xn, p− pn) ≤ 1 +

|p− pn|
α

≤ 1 +
d(p,Kn)

α
.

The proof is concluded recalling that dist(p,Kn)→ dist(p,K) = 0.
2In order to see this, one can use the fact that

dH(Kn,K) = sup
p∈Rd

|dist(p,Kn)− dist(p,K)| .
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Definition 3.1.7. For any x ∈ Ω and for any q ∈ Rd, we define ϕ0(x, ·) : Rd → R, the
support function (see Definition 2.1.3) of K(x), that is

ϕ0(x, q) := sup {p · q : p ∈ K(x)} = sup {p · q : ϕ(x, p) ≤ 1} .

Remark 3.1.8. For every x ∈ Ω, ϕ0(x, ·) satisfies all the properties (i), (ii), (ii). Moreover
ϕ0 is a Finsler metric. Indeed, property (iii) in the definition of Finsler metric is satisfied
thanks to assumption (a) and the measurability of ϕ0(·, q) follows from the continuity of
ϕ0(·, q) for every q ∈ Rd(see Proposition 3.1.10 below) and the measurability of ϕ(x, ·) for
every x ∈ Ω is a direct consequence of the convexity.

Lemma 3.1.9. For every x ∈ Ω and q ∈ Rd there exists p = p(x, q) ∈ K(x) such that

ϕ0(x, q) = p · q.

If q ∈ Rd \ {0}, then p ∈ ∂K(x).
Moreover, if K(x) is strictly convex and q ∈ Rd \ {0}, then p = p(x, q) is unique.

Proof. The existence of p = p(x, q) follows directly from the compactness of K(x), while
the fact that p ∈ ∂K(x) is a consequence of the convexity.
If ∂K(x) is strictly convex, let us assume by contradiction that there exists p1 6= p2 such
that ϕ0(x, q) = p1 · q = p2 · q. Then, for all t ∈ (0, 1) we have

(tp1 + (1− t)p2) · q = tp1 · q + (1− t)p2 · q = ϕ0(x, q),

that means that tp1 + (1− t)p2 belongs to ∂K(x), contradicting the assumption of strictly
convexity.

Proposition 3.1.10. ϕ0 : Ω×Rd → R is continuous. Moreover if K(x) is strictly convex
for every x ∈ Ω, also the function p : Ω ×

(
Rd \ {0}

)
→ Rd such that p(x, q) ∈ K(x) and

p(x, q) · q = ϕ0(x, q) is continuous.

Proof. Let ((xn, qn))n converging to (x, q). By Lemma 3.1.9, there exists a sequence (pn)n,
such that

ϕ0(xn, qn) = pn · qn.

Since K(x) ⊂ B(0,M) for all x ∈ Ω, up to the choice of a subsequence we can assume that
there exists p ∈ Rd such that pn → p when n→ +∞. Clearly we have that pn · qn → p · q.
If q = 0 the proof is concluded. If q 6= 0, we want to prove that

ϕ0(x, q) = p · q.

Again by Lemma 3.1.9 pn ∈ ∂K(xn). By continuity of ϕ (Corollary 3.1.5) we infer that

1 = lim
n→+∞

ϕ(xn, pn) = ϕ(x, p),

which implies that p ∈ ∂K(x) and thus that p · q ≤ ϕ0(x, q). We now claim that

p · q ≥ w · q, for all w ∈ ∂K(x).

Let w ∈ ∂K(x), by convexity tw ∈ K(x) for all 0 ≤ t ≤ 1, with tw ∈ intK, for t < 1. Then
by Proposition 3.1.6 there exists ν ∈ N, such that tw ∈ K(xn) for all n ≥ ν. Therefore
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ϕ0(xn, q) = pn · q > tw · q for all n ≥ ν, which implies p · q ≥ tw · q. Letting t to 1, we get
the claim.
Finally ifK(x) is strictly convex for every x, by the uniqueness of p = p(x, q) = arg max {w·
q : w ∈ K(x)} proved in Lemma 3.1.7 before, we have the convergence of the whole (pn)
to p which implies continuity of p(x, q).

Remark 3.1.11. Supremal variational problems as problems with constraints on
the gradient.

If we consider the supremal variational problem (H), considered in Chapter 2

min

{
FH(v,Ω) := ess sup

x∈Ω
H(x,Dv(x)) : v ∈ g +W 1,∞(Ω) ∩ C0(Ω)

}
, (H)

where H satisfies the assumptions (A), (B), defined at the beginning of Section 2.2.1, and
the assumption (C’), defined in Remark 2.2.21, and such that

µ := min

{
ess sup
x∈Ω

H(x,Dv(x)) : v ∈ g +W 1,∞(Ω) ∩ C0(Ω)

}
< +∞,

then, if µ > 0, solving (H) is equivalent to solve{
u = g on ∂Ω,

Du(x) ∈ K(x) = {p : H(x, p) ≤ µ} for a.e. x ∈ Ω.
.

Indeed by quasiconvexity, lower semicontinuity and coercivity

K(x) = {H(x, ·) ≤ µ}

is convex and compact.
Moreover, if H satisfies the assumption (C) (see again beginning od Section 2.2.1), we
recover exactly the case where

K(x) = {H(x, ·) ≤ µ} and ϕ(x, p) := inf
{
t > 0 :

p

t
∈ {H(x, ·) ≤ µ}

}
satisfy assumption (a) and (b). In particular the continuity of ϕ is given by Proposition
3.1.6 and Proposition 2.2.8, which ensures the convergence w.r.t. Hausdorff distance of the
sublevel sets of H.
In this setting we also have ϕ0 = Lµ and d = dµ, where for every λ ≥ 0, Lλ and dλ are
defined by (2.2.1) and (2.2.3).

Problem (P) admits a solution if and only if the boundary values are compatible with
the gradient bound. If K(x) = B(0, f(x)) this is a known fact, which was proved also by
Aronsson in [11] and that we state in the following theorem.

Theorem 3.1.12 (Lemma 2.1 in [12]). Given a boundary datum g ∈ C(∂Ω), if K(x) :=
B(0, f(x)) for every x ∈ Ω, with f ∈ Cb(Ω) and f ≥ 0. Then the problem (P) admits a
solution u, if and only if

g(y)− g(x) ≤
∫ 1

0
f(γ(t))

∣∣∣∣dγdt (t)

∣∣∣∣ dt,
for every γ ∈ pathΩ(x, y), where pathΩ(x, y) is the set of Lipschitz curves connecting x to
y defined by (2.1.5).
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When K(x) = B(0, f(x)), ϕ0(x, q) = f(x)|q| so it is natural to expect a similar result
for a more general K(x).
As we did in Chapter 2, we define a Finslerian structure.

For every x, y ∈ Ω, we set

d(x, y) := inf

{∫ 1

0
ϕ0(γ(t), γ̇(t))dt : γ ∈ path(x, y)

}
, (3.1.4)

where path(x, y) := pathΩ(x, y) defined in (2.1.5). Moreover and for any x, y ∈ ∂Ω we set

d(x, y) := inf

{
lim inf
n→+∞

d(xn, yn) : (xn)n, (yn)n ∈ ΩN and xn → x, yn → y

}
.

Remark 3.1.13. Since ϕ0 is a Finsler metric, d : Ω × Ω → [0,+∞] defined by (3.1.4) has
all the properties pointed out in Section 2.1.2, in particular in Remark 2.1.20, Proposition
2.1.24, and Corollary 2.1.26.

The extended version of Theorem 3.1.12 is provided by the following theorem.

Theorem 3.1.14. Given a boundary datum g ∈ C(∂Ω), there exists a solution u of (P)
if and only if

g(y2)− g(y1) ≤ d(y1, y2) for all y1, y2 ∈ ∂Ω (1-Lip)

In analogy with Definition 2.2.25, we consider the maximal and minimal extensions
defined respectively by

S−(x) = sup {g(y)− d(x, y) : y ∈ ∂Ω} , (3.1.5)
S+(x) = inf {g(y) + d(y, x) : y ∈ ∂Ω} . (3.1.6)

Proposition 3.1.15. Let us assume that the boundary datum g of (P) satisfies (1-Lip).
Then the following facts hold true:

1. S+(y) = S−(y) = g(y) for every y ∈ ∂Ω;

2. For every x, y ∈ Ω

S+(y)− S+(x) ≤ d(x, y) and S−(y)− S−(x) ≤ d(x, y);

Proof. The proof of (1) follows directly from the definition of S+ and S− and by g satisfying
(1-Lip).
Let us prove (2). Let x ∈ Ω. Since g is continuous, d is lower semicontinuous (see
Proposition 2.1.24) and Ω is a compact set, there exists x1 ∈ ∂Ω, such that S+(x) =
g(x1) + d(x1, x). By definition of S+, we obtain:

S+(y)− S+(x) ≤ g(x1) + d(x1, y)− g(x1)− d(x1, x) = d(x1, y)− d(x1, x).

If x ∈ ∂Ω, thanks to point (1), we have

S+(y)− S+(x) = S+(y)− g(x) ≤ d(x, y),

where the second inequality is a direct consequence of the definition of S+.
If x ∈ Ω, we can apply the triangular inequality (see (4) in Remark 2.1.20) to have
d(x1, y) ≤ d(x1, x) + d(x, y).
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Theorem 3.1.16. Let u : Ω→ R be such that

u(y)− u(x) ≤ d(x, y) for all x, y ∈ Ω.

Then u ∈W 1,∞(Ω)∩C(Ω) and Du(x) ∈ K(x) for a.e. x ∈ Ω (in particular Du(x) ∈ K(x)
for any point x at which u is differentiable).
If, in addition, u = g on ∂Ω, then u ∈ C(Ω) and u(y)− u(x) ≤ d(x, y) for all x, y ∈ Ω.
Viceversa, if u ∈W 1,∞(Ω) ∩ C(Ω) such that Du(x) ∈ K(x) a.e. in Ω, then

u(y)− u(x) ≤ d(x, y) for all x, y ∈ Ω.

Proof. This result is analogous to Theorem 2.2.22 and the proof is the same.

Corollary 3.1.17. If g satisfies (1-Lip), S+, S− are solutions of (P).

Proof. The proof follows directly from Proposition 3.1.15 (1) and (2) and Theorem 3.1.16.

Proof of Theorem 3.1.14. The proof of Theorem 3.1.14 is a direct consequence of Corollary
3.1.17 and Theorem 3.1.16.

Proposition 3.1.18. If u is a solution of (P), then

S−(x) ≤ u(x) ≤ S+(x), for every x ∈ Ω.

Proof. Let us prove that u(x) ≤ S+(x) for all x ∈ Ω. The case S−(x) ≤ u(x) is similar.
Since by Theorem 3.1.16 u is 1-Lipschitz w.r.t. d, then the thesis is straightforward. Indeed
we have

u(x)− g(y) = u(x)− u(y) ≤ d(y, x) for every y ∈ ∂Ω,

that implies u(x) ≤ inf{g(y) + d(y, x)}.

Remark 3.1.19. Exactly as in Remark 2.2.24, a consequence of Theorem 3.1.16 is that

d(x, y) = δϕ0(x, y)

for every x, y ∈ Ω, where

δϕ0(x, y) = sup

{
u(y)− u(x) : u ∈W 1,∞(Ω), ess sup

x∈Ω
ϕ00(x,Du(x)) ≤ 1

}
= sup

{
u(y)− u(x) : u ∈W 1,∞(Ω), ess sup

x∈Ω
ϕ(x,Du(x)) ≤ 1

}
, (3.1.7)

which is a natural way to define a distance starting from a Finsler metric (see [60, 72]).

Proof. The inequality “ ≥ ” is trivial using Theorem 3.1.16 and the definition of ϕ.
To recover the converse inequality it is enough u(·) = d(z, ·), which is 1−Lipschitz thanks
to the triangular inequality, and apply again Theorem 3.1.16.
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3.2 The uniqueness set

Assumptions. In this section we will assume that

(a*) the map (x, p) 7→ ϕ(x, p) is continuous on Ω× Rd.

Assumption a* implies the continuity of K : Ω → K thanks to Proposition 3.1.6 and of
ϕ0 : Ω × Rd → R+ thanks to Proposition 3.1.10. Indeed in both cases, it is enough to do
the proofs with x ∈ Ω.

3.2.1 The structure of the uniqueness set

We start with some results about the (pseudo) distance d.

Proposition 3.2.1. Let x, y ∈ Ω. Then there exists γ ∈ pathΩ(x, y), such that

d(x, y) =

∫ 1

0
ϕ0(γ(t), γ̇(t))dt.

We say that such a γ is a d-geodesic connecting x to y.

Proof. We first observe that |x−y|Ω < +∞ (see Remark 2.1.18)implies, thanks to Corollary
2.1.26, that d(x, y) < +∞. We then consider a sequence (γn)n∈N ⊂ path(x, y), converging
to the infimum, i.e. such that

lim
n→∞

∫ 1

0
ϕ0(γn(t), γ̇n(t))dt = d(x, y), (3.2.1)

Thanks to the fact that ∫ 1

0
ϕ0(γn(t), γ̇n(t))dt ≥ α

∫ 1

0
|γ̇n(t)|dt,

for every n and for some α > 0 (which exists thanks to assumption (a) on K(x)), we can
also assume without loss of generality that |l(γn)| ≤ L, for all n, for some L ≥ 0, where
l(γn) is the Euclidian length of each γn. Then there exists a subsequence of (γn)n, that we
will still call (γn), such that

1. |γn(t)| ≤ C, for every s ∈ [0, 1], for some C ≥ 0, since Ω is bounded;

2. |γ̇n(t)| ≤ L a.e. in [0, 1].

By Arzelà-Ascoli Theorem, there exists a subsequence such that γn converges uniformly to
some curve γ, such that γ([0, 1] ⊂ Ω) and |γ̇(t)| ≤ L a.e. in (0, 1). Point (b) implies that
||γ̇n||L2((0,1)) are equibounded and therefore that γ̇n ⇀ γ̇ in L2((0, 1)).
In order to prove that γ is a minimizing curve, we observe that by definition of ϕ0 and
thanks, again, to assumption (a) on K(x), i.e. there exist 0 < α < M such that B(0, α) ⊂
K(x) ⊂ B(0,M) for every x ∈ Ω, given q1, q2 ∈ Rd, we have that

ϕ0(x, q1) ≤M |q1| and

ϕ0(x, q2) ≥ α q1

|q1|
· q2,
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for any, x ∈ Ω and hence

ϕ0(x, q2)− ϕ0(x, q1) ≥ α q1

|q1|
· q2 −M |q1| = (α−M)

q1

|q1|
· (q2 − q1).

We thus get the following estimate∫ 1

0
ϕ0(γn(t), γ̇n(t))dt ≥

∫ 1

0
ϕ0(γn(t), γ̇(t))dt+

∫ 1

0
(α−M)

γ̇(t)

|γ̇(t)|
· (γ̇ − γ̇n)dt,

thanks to which we can conclude

lim inf
n→∞

∫ 1

0
ϕ0(γn(t), γ̇n(t))dt ≥

∫ 1

0
ϕ0(γ(t), γ̇(t))dt.

Indeed

lim
n→∞

∫ 1

0
(α−M)

γ̇(t)

|γ̇(t)|
· (γ̇ − γ̇n)dt = 0,

by the fact that γ̇n ⇀ γ̇ in L2((0, 1)), and

lim
n→∞

∫ 1

0
ϕ0(γn(t), γ̇(t))dt =

∫ 1

0
ϕ0(γ(t), γ̇(t))dt, (3.2.2)

by (uniform) convergence of γn toward γ and by continuity of ϕ0.

Proposition 3.2.2. Let x, y ∈ Ω such that d(x, y) < +∞. Then there exists γ ∈
pathΩ(x, y), such that

d(x, y) =

∫ 1

0
ϕ0(γ(t), γ̇(t))dt.

We say that such a γ is a d-geodesic connecting x to y.

Proof. If x, y ∈ Ω, we conclude thanks to Proposition 3.2.1. Let x ∈ ∂Ω, y ∈ Ω such that
d(x, y) < +∞ and let (xn)n, (yn)n two sequences (they can be constructed for instance by
a diagonal argument) converging respectively to x and y such that

d(x, y) = lim
n→+∞

d(xn, yn).

For every n we consider γn ∈ pathΩ(xn, yn), reparametrized by arc length, such that

d(xn, yn) =

∫ l(γn)

0
ϕ0(γn(s), γ̇n(s))ds,

obtaining that

d(x, y) = lim
n→∞

∫ l(γn)

0
ϕ0(γn(s), γ̇n(s))ds. (3.2.3)

Finally we apply the same reasoning as in the proof of Proposition 3.2.1 to (γn)n and, up
to the choice of subsequences, we get a curve γ ∈ pathΩ(x, y), such that

lim
n→∞

∫ l(γn)

0
ϕ0(γn(s), γ̇n(s))ds =

∫ l(γ)

0
ϕ0(γ(s), γ̇(s))ds.
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Remark 3.2.3. From Proposition 3.2.1 and Proposition 3.2.2 we infer that, for every x, y ∈
Ω such that d(x, y) < +∞

d(x, y) ≥ inf

{∫ 1

0
ϕ0(γ(t), γ̇(t))dt : γ ∈ pathΩ(x, y)

}
.

We point out, as shown in the example below, that it might happen

d(x, y) > inf

{∫ 1

0
ϕ0(γ(t), γ̇(t))dt : γ ∈ pathΩ(x, y)

}
.

Example 3.2.4. Let Ω, K(x), x = (x1, x2) and y = (y1, y2) be as in Example 2.1.21. Then

d(x, y) = inf

{∫ 1

0
|γ̇(t)|dt : γ ∈ pathΩ(x, y)

}
=

√
2

2
+

√
2

2
=
√

2,

while

inf

{∫ 1

0
|γ̇(t)|dt : γ ∈ pathΩ(x, y)

}
= 1.

Proposition 3.2.5. If Ω has a Lipschitz boundary then, for every x, y ∈ Ω, d(x, y) < +∞
and

d(x, y) = inf

{∫ 1

0
ϕ0(γ(t), γ̇(t))dt : γ ∈ pathΩ(x, y)

}
. (3.2.4)

Proof. The first part of the statement is a consequence of the second part of Proposition
2.2.5.
As for the second part, since ∂Ω is Lipschitz (see Definition 2.1.22) by Lemma 3.2.6 below,
for any given γ ∈ pathΩ(x, y) it is possible to locally approximate γ([0, 1]) ∩ ∂Ω by a
sequence of Lipschitz curves (γn)n such that γn([0, 1]) ⊂ Ω and therefore, by compactness
it is possible to approximate the entire curve γ by a sequence of Lipschitz curves (γn)n
such that γn([0, 1]) ⊂ Ω.
Hence, given x, y ∈ Ω, if γ is such that∫ 1

0
ϕ0(γ(t), γ̇(t))dt ≤ inf

{∫ 1

0
ϕ0(γ(t), γ̇(t))dt : γ ∈ pathΩ(x, y)

}
+ ε

and (γn)n is a converging sequence, we have∫ 1

0
ϕ0(γ(t), γ̇(t))dt = lim

n

∫ 1

0
ϕ0(γn(t), γ̇n(t))dt ≥ lim d(xn, yn) = d(x, y).

By the arbitrariness of ε we get

d(x, y) ≤ inf

{∫ 1

0
ϕ0(γ(t), γ̇(t))dt : γ ∈ pathΩ(x, y)

}
.

The other inequality follows by Proposition 3.2.1 and Proposition 3.2.2 and it is pointed
out in Remark 3.2.3.
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Lemma 3.2.6. Let Ω bounded and ∂Ω be Lipschitz (see Definition 2.1.22). Let x ∈ ∂Ω
and let A ⊂ Ω be a neighborhood of x, ρ, h > 0 and φ : Bd−1(0, ρ) → R be a Lipschitz
function such that

∂Ω ∩A = {(y′, φ(y′)) : y′ ∈ B(0, ρ)}
Ω ∩A = {(y′, yd) : y′ ∈ Bd−1(0, ρ), h > yd > φ(x′)}.

Then for every Lipschitz curve γ : [0, 1] → ∂Ω ∩ B(x, r) there exists a sequence of curves
(γn), such that

1. γn([0, 1]) ⊂ Ω ∩A,

2. γn → γ uniformly,

3. γ̇n → γ̇ a.e. in (0, 1).

Proof. We take a sequence of functions φn : Bd−1(0, ρ)→ R such that φn(x) = φ(x) + 1
n .

Let π((x′, xd) = x′ the projection of Rd in Rd−1. We define

γn(s) := γ(s) + (0, φn(π(γ(s))))− (0, φ(π(γ(s))).)

Clearly, for n large enough, γn([0, 1]) ⊂ Ω ∩A and γn → γ uniformly. Moreover

γ̇n(s) = γ̇(s) + (0, Dφn(π ◦ γ)ᵀ ·Dπ(γ(s))γ̇(s))− (0, Dφ(π ◦ γ)ᵀ ·Dπ(γ(s))γ̇(s)) =

= γ̇(s) + (0, (Dφn(π ◦ γ)−Dφ(π ◦ γ))ᵀ · π(γ̇(s))) .

Then
|γn(s)− γ(s)| ≤ ||Dφn −Dφ||L∞ |γ̇(s)|.

Proposition 3.2.7. Let us assume that the boundary datum g of (P) satisfies (1-Lip).
Then

1. for every x ∈ Ω there exist y1, y2 ∈ ∂Ω and γ1 ∈ pathΩ(y1, x), γ2 ∈ pathΩ(x, y2) with

S+(x) = g(y1) +

∫ 1

0
ϕ0(γ1(t), γ̇1(t))dt,

such that γ1(t) ∈ Ω for every t ∈ (0, 1] and

S−(x) = g(y2)−
∫ 1

0
ϕ0(γ2(t), γ̇2(t))dt,

such that γ2(t) ∈ Ω for every t ∈ [0, 1). We will refer to such y1, γ1 and y2, γ2 as
optimal respectively for S+(x) and S−(x);

2. if y1 ∈ ∂Ω and γ1 ∈ pathΩ(y1, x) are optimal for S+(x), then for every t̂ ∈ (0, 1), if
z1 = γ1(t̂), we have

S+(z1) = g(y1) +

∫ t̂

0
ϕ0(γ1(t), γ̇1(t))dt, (3.2.5)

and if y2 ∈ ∂Ω and γ2 ∈ pathΩ(y2, x) are optimal for S−(x), then for every t̂ ∈ (0, 1),
if z2 = γ2(t̂),

S−(z2) = g(y2) +

∫ t̂

0
ϕ0(γ2(t), γ̇2(t))dt. (3.2.6)
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Proof. We start with the proof of (1). We first claim that for any x ∈ Ω there exist y ∈ ∂Ω
and γ ∈ pathΩ(x, y), such that

S+(x) = g(y) +

∫ 1

0
ϕ0(γ(t), γ̇(t))dt. (3.2.7)

Since g is continuous, d is lower semicontinuous (see Proposition 2.1.24) and Ω is a compact
set, there exists y ∈ ∂Ω such that

S+(x) = g(y) + d(y, x).

Now, the existence of an optimal curve is given by Proposition 3.2.2 and (3.2.7) is proven.
We then show that it is possible to find a curve that solves (3.2.7) and it is all contained
in Ω except from the first point. Let ŷ = γ(t̂) for some t̂ ∈ (0, 1], be the last point of the
boundary touched by γ, then γ : [t̂, 1]→ Ω touches the boundary only in t̂. We show that

g(y) +

∫ 1

0
ϕ0(γ(t), γ̇(t))dt = g(ŷ) +

∫ 1

t̂
ϕ0(γ(t), γ̇(t))dt.

By definition of S+ we know that “≤” holds. Let us assume by contradiction that the
inequality is strict. Then

d(y, ŷ) ≤
∫ t̂

0
ϕ0(γ(t), γ̇(t))dt < g(ŷ)− g(y), (3.2.8)

which contradicts (1-Lip).
We conclude by showing (2). Let y1 ∈ ∂Ω and γ1 be optimal for the definition of S+(x)
and let z1 = γ(t̂), for some t̂ ∈ (0, 1). We prove that

S+(z1) = g(y1) +

∫ t̂

0
ϕ0(γ1(t), γ̇1(t))dt = g(y1) + d(y1, z).

Assume by contradiction that there exist ŷ ∈ ∂Ω and η ∈ pathΩ(ŷ, z) such that

g(ŷ) +

∫ 1

0
ϕ0(η(t), η̇(t))ds < g(y1) +

∫ t̂

0
ϕ0(γ1(t), γ̇1(t))dt. (3.2.9)

Then if we call γ̂ the piece of γ connecting z1 to x and η̂ the reparametrized version of the
curve obtained by gluing η and γ̂, we have

g(ŷ) +

∫ 1

0
ϕ0(η̂(t), ˙̂η(t))dt < g(y1) +

∫ 1

0
ϕ0(γ1(t), γ̇1(t))dt,

contradicting the optimality of y and γ.
The proof of (1) and (2) for S− is analogous.

Theorem 3.2.8. Let us assume that the boundary datum g of (P) satisfies (1-Lip) and let
x ∈ Ω such that S+(x) = S−(x). Then for every y1, y2 ∈ ∂Ω and γ1 ∈ pathΩ(y1, x), γ2 ∈
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pathΩ(x, y2) which are respectively optimal for S+(x) and S−(x) in the sense of Proposition
3.2.7, if one defines the curve given by the concatenation of γ1 and γ2,

γ(t) :=

{
γ1(2t) for 0 ≤ t ≤ 1

2

γ2(2t− 1) for 1
2 < t ≤ 1

, (3.2.10)

it holds that γ ∈ pathΩ(y1, y2) and γ is a d-geodesic.
For every z ∈ γ 3 and for every solution u of (P), it also holds

S−(z) = u(z) = S+(z). (3.2.11)

Finally, S+, S− and every solution u of (P) are derivable along γ for H1 a.e. point of γ,
and ∇γS+ = ∇γS− = ∇γu = ϕ0(γ, γ̇).

Proof. Let x, y1, y2, γ1 and γ2 be as in the assumptions. Then S−(x) = S+(x) can be
rewritten as

g(y1) +

∫ 1

0
ϕ0(γ1(t), γ̇1(t))dt = g(y2)−

∫ 1

0
ϕ0(γ2(t), γ̇2(t))dt,

which implies

d(y1, y2) ≥ g(y2)− g(y1) =

=

∫ 1

0
ϕ0(γ1(t), γ̇1(t))dt+

∫ 1

0
ϕ0(γ2(t), γ̇2(t))dt = (3.2.12)

=

∫ 1

0
ϕ0(γ(t), γ̇(t))dt ≥ d(y1, y2),

proving that γ is a d-geodesic connecting y1 to y2.
For every z ∈ γ2, thanks to Proposition 3.2.7 (2)

S−(z)− S−(x) = g(y2)− d(z, y2)− g(y2) + d(x, y2) = d(x, z). (3.2.13)

Analogously, if z ∈ γ1, S+(x)− S+(z) = d(z, x).
Let now z1 ∈ γ1 and z2 ∈ γ2, then: .

d(z1, z2) ≥ S−(z2)− S−(z1) ≥ S−(z2)− S+(z1) =

= S−(z2)− S−(x) + S+(x)− S+(z1) = d(x, z2) + d(z1, x) ≥ d(z1, z2).

This proves that S+(z1) = S−(z1), switching the role of z1 and z2 we get S+(z2) = S−(z2)
and thus that S+ and S− coincide along γ. Therefore

S− = u = S+ along γ,

for every solution u of (P), by Proposition 3.1.18.
Moreover, if τ1 is such that γ1 3 z1 = γ(τ1) and τ2 such that γ2 3 z2 = γ(τ2), we claim
that

S−(z1) = g(y2)−
∫ 1

τ1

ϕ0(γ(t), γ̇(t))dt and (3.2.14)

S+(z2) = g(y1) +

∫ τ2

0
ϕ0(γ(t), γ̇(t))dt. (3.2.15)

3with a little abuse of notation we identify γ([0, 1]) with γ.
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Let us prove (3.2.14), (3.2.15) can be proven similarly. By the definition of S−(z1) it is
sufficient to prove that

g(y2)−
∫ 1

τ1

ϕ0(γ(t), γ̇(t))dt ≥ S−(z1). (3.2.16)

Since we know that

S−(z1) = S+(z1) = g(y1) +

∫ τ1

0
ϕ0(γ(t), γ̇(t))dt,

where the last equality holds again by Proposition (3.2.7) (2), the inequality (3.2.16) holds
if and only if

g(y2)− g(y1) ≥
∫ 1

0
ϕ0(γ(t), γ̇(t))dt,

that is true by (3.2.12). We point out that this result extends at all the points of γ what
we proved in Proposition (3.2.7) (2) for the points of γ1 and γ2.
We conclude showing that the derivative along γ of S+ and S− (and also of any solution
u of (P)) exists at every point at which the curve is differentiable and it is equal to ϕ0.
Let t̄ ∈ (0, 1) a Lebesgue point for ϕ0(γ(t), γ̇(t)), such that the curve is differentiable at t̄,
then for all what we proved above we can write

lim
h→0

S+(γ(t̄+ h))− S+(γ(t̄))

h
=

= lim
h→0

1

h

(
g(y1) +

∫ t̄+h

0
ϕ0(γ(t), γ̇(t))dt− g(y1)−

∫ t̄

0
ϕ0(γ(t), γ̇(t))dt

)
.

Which is equal to

lim
h→0

1

h

∫ t̄+h

t̄
ϕ0(γ(t), γ̇(t))dt = ϕ0(γ(t̄), γ̇(t̄)).

Definition 3.2.9. We will refer to the set of points

U :=
{
x ∈ Ω : S+(x) = S−(x)

}
as uniqueness set. What we have proved in Theorem 3.2.8, is that for every point x ∈ U
there exists a Lipschitz curve all contained in Ω except for its extreme points that is a
d-geodesic in the sense of Proposition 3.2.2.

3.2.2 Regularity of solutions on the uniqueness set

In this section we will study the regularity of solutions of (P) in the uniqueness set. More
precisely, we will show that such solutions of (P) are both locally semiconcave and locally
semiconvex at each point of the uniqueness set and therefore differentiable. Moreover, if
the interior part of the uniqueness set is not empty, every solution is locally C1,1.
Assumptions. In this section we will assume that the boundary datum g of (P) satisfies

g(y2)− g(y1) ≤ d(y1, y2) for all y1, y2 ∈ ∂Ω. (1-Lip)

Let us recall some definitions (see [37]) .
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Definition 3.2.10 (Semiconcavity and semiconvexity (see Def 1.1.1 [37])). We say that
u1, u2 : Ω → Rd are respectively semiconcave and semiconvex, if there exist C1, C2 ≥ 0
such that

u(x+ h) + u(x− h)− 2u(x) ≤ C1|h|2, (3.2.17)

u(x+ h) + u(x− h)− 2u(x) ≥ C2|h|2, (3.2.18)

for every x ∈ Ω, h ∈ Rd such that the segment [x− h, x+ h] ⊂ Ω.
We say that u1, u2 are respectively locally semiconcave and locally semiconvex, if for every
V ⊂⊂ Ω, there exist C1(V ), C2(V ) ≥ 0 such that (3.2.17) and (3.2.18) hold for every
x ∈ V , h ∈ Rd such that the segment [x− h, x+ h] ⊂ V .

Proposition 3.2.11. Let us assume that ϕ0 ∈ C2(Ω×
(
Rd \ {0}

)
). Then S+ and S− are

respectively locally semiconcave and locally semiconvex.

Proof. The proof of this fact is strongly inspired to the proof of Lemma 5.1 in [12]. We
prove (3.2.17) for S+. The proof of (3.2.18) for S− is analogous. Let V ⊂⊂ Ω and δ > 0
such that dist(x, ∂Ω) > 8δ for all x ∈ V . Since S+ is bounded, if |h| ≥ δ the inequality
(3.2.17) is easily verified. Let us then assume that |h| < δ. Let x in V and y1 ∈ ∂Ω,
γ1 ∈ pathΩ(y1, x), reparametrized by arc length, such that

S+(x) = g(y1) +

∫ l(γ1)

0
ϕ0(γ1(s), γ̇1(s))ds.

We define a := sup{t ∈ [0, l(γ1)] : dist(γ1(t), ∂Ω) ≤ 4δ}. We then consider

y(s) :=
s− a

l(γ1)− a
h

|h|
for a ≤ s ≤ l(γ1)

and

γ̄(s) :=

{
γ1(s) for 0 ≤ s ≤ a
γ1(s) + ty(s) for a ≤ s ≤ l(γ1),

where t ∈ [−|h|, |h|] is some parameter at our disposal. Notice that by construction l(γ1)−
a > 4δ and that γ̄(s) ∈ Ω for every a ≤ s ≤ l(γ1), indeed dist(γ̄(s), ∂Ω) > 3δ for
t ∈ [−|h|, |h|].
We define

F (t) : =

∫ l(γ1)

0
ϕ0(γ̄(s), ˙̄γ(s))ds

=

∫ a

0
ϕ0(γ1(s), γ̇1(s))ds+

∫ l(γ1)

a
ϕ0(γ1(s) + ty(s), γ̇1(s) + tẏ(s))ds

and we observe that F (0) = S+(x) and F+(±|h|) ≥ S+(x± h). In order to prove (3.2.17)
it is then enough to prove that there exists C1 ≤ 0 such that

F (|h|) + F (−|h|)− 2F (0) ≤ |h|2C1.

Thanks to the assumptions on ϕ0 we have

F ′(t) =

∫ l(γ1)

a
∇xϕ0(γ̄(s), ˙̄γ(s)) · y(s) +∇pϕ0(γ̄(s), ˙̄γ(s)) · ẏ(s)ds
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and

F ′′(t) =

∫ l(γ1)

a
(y(s), ẏ(s))ᵀ∇2ϕ0(γ̄(s), ˙̄γ(s)) · (y(s), ẏ(s)) ds, (3.2.19)

where |F ′′(t)| ≤ C1
2 for some C1 ≥ 0 for every t ∈ [−|h|, |h|], by continuity of ∇2ϕ0. The

proof is concluded thanks to the Taylor’s formula with the rest of Lagrange, for which
there exist θ1 ∈ [0, |h|] and θ2 ∈ [−|h|, 0] such that

F (|h|) + F (−|h|)− 2F (0) =
(
F ′′(θ1) + F ′′(θ2)

)
|h|2.

The following is a partial regularity result on ϕ0, which states that continuity of ∇xϕ
implies continuity of ∇xϕ0.

Proposition 3.2.12. If K(x) is strictly convex for all x ∈ Ω, ϕ(·, q) differentiable w.r.t. x
for every q ∈ Rd \ {0} and ∇xϕ(x, p) ∈ C

((
Ω×

(
Rd \ {0}

))
;Rd

)
, then also ∇xϕ0(x, q) ∈

C
((

Ω×
(
Rd \ {0}

))
;Rd

)
.

Proof. We first want to prove that the limit

lim
h→0

ϕ0(x+ hei, q)− ϕ0(x, q)

h
(3.2.20)

exists and is finite for any i = 1, . . . , d. We prove it for i = 1 and we fix h̄ = he1, in order
to simplify the notation. By Lemma(3.1.9), there exist unique p(x+ h̄, q) = p(x+ h̄) and
p(x, q) = p(x), such that

ϕ0(x+ h̄, q) = max{p · q | ϕ(x+ h̄, p) = 1} = p(x+ h̄) · q,
ϕ0(x, q) = max{p · q | ϕ(x, p) = 1} = p(x) · q.

The limit in (3.2.20) can be rewritten as

lim
h→0

p(x+ h̄) · q − p(x) · q
h

. (3.2.21)

Since ϕ is continuously differentiable w.r.t. x we can write

ϕ(x, p(x+ h̄)) = ϕ(x+ h̄, p(x+ h̄))− ∂x1ϕ(x, p(x+ h̄))h+ o(h)

= 1− ∂x1ϕ(x, p(x+ h̄))h+ o(h).

and

ϕ(x+ h̄, p(x)) = ϕ(x, p(x)) + ∂x1ϕ(x, p(x))h+ o(h)

= 1 + ∂x1ϕ(x, p(x))h+ o(h),

which implies that

ϕ

(
x,

p(x+ h̄)

1− ∂x1ϕ(x, p(x+ h̄))h+ o(h)

)
= 1 and

ϕ

(
x+ h̄,

p(x)

1 + ∂x1ϕ(x, p(x))h+ o(h)

)
= 1.

64



3.2. THE UNIQUENESS SET

and therefore that

p(x) · q ≥ p(x+ h̄)

1− ∂x1ϕ(x, p(x+ h̄))h+ o(h)
· q, and

p(x+ h̄) · q ≥ p(x)

1 + ∂x1ϕ(x, p(x))h+ o(h)
· q,

Then the quotient in the limit (3.2.21) can be estimated from above and below, by:

p(x+ h̄) · q − p(x) · q
h

≤

(
1− 1

1−∂x1ϕ(x,p(x+h̄))h+o(h)

)
p(x+ h̄) · q

h

=
1

1− ∂x1ϕ(x, p(x+ h̄))h+ o(h)

(
−∂x1ϕ(x, p(x+ h̄)) +

o(h)

h

)
p(x+ h̄) · q

and

p(x+ h̄) · q − p(x) · q
h

≥

(
1

1+∂x1ϕ(x,p(x))h+o(h) − 1
)
p(x) · q

h

=
1

1− ∂x1ϕ(x, p(x))h+ o(h)

(
−∂x1ϕ(x, p(x)) +

o(h)

h

)
p(x) · q.

Letting h→ 0 in both inequalities, by continuity of p(x) and ∂x1ϕ we get

∂x1ϕ
0(x, q) = lim

h→0

p(x+ h̄) · q − p(x) · q
h

= −∂x1ϕ (x, p(x)) p(x) · q,

which shows also that ∂x1ϕ
0 is continuous.

Proposition 3.2.13. Let u : V → Rd be a continuous function. Then the following facts
are equivalent:

(a) u : V → R is semiconcave (semiconvex);

(b) there exists C ≥ 0 such that u(x)− C
2 |x|

2 is concave (convex) in V ;

(c) u satisfies

(1− λ)u(x) + λu(y)− u((1− λ)x+ λy) ≤ (≥)λ(1− λ)C|y − x|2, (3.2.22)

for every x, y ∈ V such that the segment [x, y] ⊂ V and λ ∈ [0, 1].

More details about the above result can be found in [37].

Proposition 3.2.14. If d(y, ·) ∈ C1,1
loc (Ω), uniformly w.r.t. y, then S+ is locally semicon-

cave. If d(·, y) ∈ C1,1
loc (Ω) then S− is locally semiconvex.

Proof. We start proving that d(y, ·) is locally semiconcave. Let V ⊂⊂ Ω. Then by Propo-
sition 3.2.13 d(y, ·) is semiconcave in V uniformly in y if there exists C ≥ 0 such that
dC(y, x) := d(y, x) − C

2 |x|
2 is concave for every x ∈ V and y ∈ Ω. By assumption there

exists C > 0 such that |∇d(y, x)−∇xd(y, z)| ≤ C|x− z|. This implies that

0 ≥ (∇xd(y, x)−∇xd(y, z)) · (x− z)− C|x− z|2

=

(
∇x
(
d(y, x)− C

2
|x|2
)
−∇x

(
d(y, z)− C

2
|z|2
))
· (x− z)

= (∇xdC(y, x)−∇xdC(y, z)) · (x− z).
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The monotonicity relation and the differentiability of dC(y, ·) imply that dC(y, ·) is
concave for every x ∈ V and y ∈ Ω. The semiconcavity of S+ is proved just observing that
by continuity of g, lower semicontinuity of d (Proposition 2.1.24) and compactness of ∂Ω,
there exists y1 ∈ ∂Ω such that S+(x) = g(y1) + d(y1, x). The local semiconvexity of S−

can be proved analogously.

Definition 3.2.15 (see [37] Definition 3.1.1). For any x ∈ Ω, the sets

D−u(x) :=

{
p ∈ Rd : lim inf

y→x

u(y)− u(x)− p · (y − x)

|y − x|
≥ 0

}
(3.2.23)

D+u(x) :=

{
p ∈ Rd : lim sup

y→x

u(y)− u(x)− p · (y − x)

|y − x|
≤ 0

}
(3.2.24)

are called respectively superdifferential and subdifferential of u at x.

Proposition 3.2.16 (see [37] Proposition 3.3.1). If u : Ω → Rd is locally semiconcave,
then p belongs to D+u(x) if and only if for every V ⊂⊂ Ω there exists C = C(V )

u(y)− u(x)− p · (y − x) ≤ C|x− y|2, (3.2.25)

for every x, y ∈ V such that the segment [x, y] ⊂ V .

Proof. If (3.2.25) holds, then clearly p belongs to D+u(x).
Viceversa, let us assume that p ∈ D+u(x). Dividing the inequality in (3.2.22) by (1 −
λ)|x− y| we obtain

u(y)− u(x)

|y − x|
≤ u((1− λ)y + λx)− u(x)

(1− λ)|y − x|
+ Cλ|y − x|

≤ u(x+ (1− λ)(x− y))− u(x)

(1− λ)|y − x|
+ Cλ|y − x|

The thesis follows passing to the lim sup for λ→ 1− and using (3.2.24).

Theorem 3.2.17. Every solution u of (P) is differentiable at each point x of U , where U
is the uniqueness set. Moreover DS+ = Du = DS− on U and if (xk) ⊂ U is a sequence
of points that convergences to x ∈ U , then Du(xk) → Du(x). Finally, if intU 6= ∅ then
u ∈ C1,1(ω), for every ω subdomain of U .

Proof. We provide here a sketch of the proof of the first part. For the last part we refer to
Corollary 3.3.8 of [37].
Claim 1: D+S+(x) 6= ∅ and D−S−(x) 6= ∅ for every x ∈ Ω.
Proof 1. First of all we recall that if a function is locally semiconcave in Ω, then it is locally
Lipschitz (see for example Proposition 2.1.7 in [37]). Thus by Rademacher’s theorem it
follows that S+ is differentiable for a.e. x in Ω. This means that for any x ∈ Ω there
exists a sequence of points of differentiability (xk)k that converges to x. By definition
of subdifferential we have that DS+(xk) ∈ D+S+(xk) for every k. Moreover, thanks to
Proposition 3.2.16, we have that

S+(y)− S+(xk)−DS+(xk) · (y − xk) ≤ C|xk − y|2,

for every y ∈ Ω such that [xk, y] ∈ Ω. Then up to the choice of a subsequenceDS+(xk)→ p,
for some p ∈ Rd, so passing to the limit and using again Proposition 3.2.16 we obtain
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p ∈ D+S+(x). In order to prove that D−S−(x) 6= ∅ it is enough to observe that −S− is
locally semiconcave in Ω and that for any function u, D+(−u) = −D−(u).
Claim 2: If u is a solution of (P), then u is differentiable at x for every x ∈ U and
DS+(x) = DS−u(x) = Du(x).
Proof 2. If u is a solution of (P), then by Theorem 3.2.8 u(x) = S+(x) = S−(x) for every
x ∈ U . Thus for every V ⊂⊂ Ω and y ∈ Ω with [x, y] ⊂ V there exists C = C(V ) such
that

u(y)− u(x) ≤ S+(y)− S+(x) ≤ DS+(x) · (y − x) + C|x− y|2,

which by Proposition 3.2.16 implies that DS+(x) ∈ D+u(x). Analogously one can prove
that DS−(x) ∈ D−u(x) 6= ∅. Let θ be any unitary vector and p+ ∈ D+u(x), p− ∈ D−u(x),
then

p− · θ ≤ lim inf
h→0+

u(x+ hθ)− u(x)

h
≤ lim sup

h→0+

u(x+ hθ)− u(x)

h
≤ p+ · θ, (3.2.26)

that implies (p− − p+) · θ ≤ 0. By the arbitrariness of the unitary vector θ we have that
p+ = p− = Du(x) = DS+(x) = DS−(x).
Claim 3: If u is a solution of (P), then Du|U is continuous.
Proof 3. Let x ∈ U . We consider a sequence (xk) ⊂ U such that xk → x, then since Du(xk)
belongs both to D+u(xk) and D−u(xk) we have by Proposition 3.2.16 that

u(y)− u(xk)−Du(xk) · (y − xk) ≤ C1|xk − y|2,
u(y)− u(xk)−Du(xk) · (y − xk) ≥ C2|xk − y|2,

for every y ∈ V such that [xk, y] ∈ V and thus that (Du(xk))k is bounded and, arguing as
before, (Du(xk))k must converge to Du(x).

3.2.3 The attainment set as uniqueness set

As pointed out in Remark 3.1.11, if we consider a Borel function H : Ω×Rd → R satisfying
all the assumptions (A)–(D) defined in Section 2.2.1 then if

µ := min

{
ess sup
x∈Ω

H(x,Dv(x)) : v ∈W 1,∞(Ω) ∩ C(Ω), u = g on ∂Ω

}
< +∞,

the problem (H), can be rewritten in the form of (P) with K(x) = {H(x, ·) ≤ µ}.

Assumptions. In this section we will assume that

(C*) the map (x, p) 7→ H(x, p) is continuous in Ω× Rd.

Thanks to assumption (C*), we have that ϕ(x, p) := inf
{
t > 0 : p

t ∈ {H(x, ·) ≤ µ}
}
satis-

fies assumption (a*) and thus all the resultes of Section 3.2.1 hold. Moreover, by Theorem
2.2.4 we infer that µ < +∞.
Finally, we recall that by Theorem 2.2.27

µ = min{λ : g(y)− g(x) ≤ dλ(x, y) for any x, y ∈ ∂Ω}

and therefore g satisfies (1-Lip), i.e. it is 1 Lipschitz w.r.t. d.
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Proposition 3.2.18. Let H : Ω × Rd → Rd and µ as above. Given a boundary datum
g ∈W 1,∞(Ω) ∩C(Ω), if there exists a point x ∈ Ω where S+

µ (x) = S−µ (x) then there exists
a Lipschitz curve γ passing trough x such that γ belongs to the uniqueness set.

Proof. We recall that in this setting S+
µ (g,Ω) = S+ and S−µ (g,Ω) = S−. Then proof

follows directly by Theorem 3.2.8.

The following result is not directly useful for our purpose, but it may be interesting for
a better understanding of the functional ϕ and its regularity depending on H.

Proposition 3.2.19. If H(x, p) is positively 1-homogeneous w.r.t. p and ∇xH(x, p) ∈
C
(
Ω×

(
Rd \ {0}

))
, then ∇xϕ(x, p) ∈ C

(
Ω×

(
Rd \ {0}

))
.

Proof. We first consider p ∈ Rd \ {0} such that ϕ(x, p) = 1 (that means H(x, p) = µ). We
have to prove that

lim
|h|→0

ϕ(x+ h, p)− ϕ(x, p)−∇xϕ(x, p) · h
|h|

= 0 (3.2.27)

and ∇xϕ(x, p) is continuous. Since ∇xH exists and is continuous, it holds

H(x+ h, p) = H(x, p) +∇xH(x, p) · h+ o(|h|).

By 1-homogeneity, we have

µ

µ+∇xH(x, p) · h+ o(|h|)
H(x+ h, p) = H

(
x+ h, p

µ

µ+∇xH(x, p) · h+ o(|h|)

)
= µ.

That implies

1 = ϕ(x+ h, p
µ

µ+∇xH(x, p) · h+ o(|h|)
) = ϕ(x+ h, p)

µ

µ+∇xH(x, p) · h+ o(|h|)
.

From which we get

ϕ(x+ h, p) = 1 +
∇xH(x, p) · h+ o(|h|)

µ
= ϕ(x, p) +

∇xH(x, p) · h+ o(|h|)
µ

.

The (3.2.27) and the regularity of∇xϕ are proved just observing that∇xϕ(x, p) = µ−1∇xH(x, p).
If ϕ(x, p) 6= 1, we can use the same reasoning with p

ϕ(x,p) and, exploiting the 1-homogeneity
of ϕ w.r.t. to p, we get that ∇xϕ(x, p) = µ−1ϕ(x, p)∇xH(x, p).

Corollary 3.2.20. If H(x, p) is positively 1-homogeneous w.r.t. p, ∇xH : Ω×
(
Rd \ {0}

)
→

R is continuous and the sublevel sets {H(x, p) ≤ µ} are strictly convex for every x ∈ Ω,
then ϕ0(·, q) ∈ C1(Ω) for any q ∈ Rd \ {0}.

Proof. The proof follows directly by Proposition 3.2.19 and Proposition 3.2.12.

The aim now is to show for this case further properties of the uniqueness set U defined
in Section 3.2.

Proposition 3.2.21. Let u ∈W 1,∞(Ω)∩C(Ω) be an optimal solution of (H). If x belongs
to the uniqueness set U and u is differentiable at x then

H(x,Du(x)) = ess sup
x∈Ω

H(x,Du(x)).

68



3.2. THE UNIQUENESS SET

Proof. By Theorem 3.2.17 u is differentiable at x. Since u is a solution of (H), we know
that Du(x) ∈ {H(x, p) ≤ µ}. Let γ be a curve of the uniqueness set passing trough x. Let
s > 0 such that x = γ(s). By Theorem 3.2.8 we know that

Du(x) · γ̇(s) = lim
t→0

u(x+ tγ̇(s))− u(x)

t
= ϕ0(x0, γ̇(s)),

as stated in the last part of Theorem 3.2.8. Then by Lemma 3.1.9 we have that Du(x)
belongs to the boundary of K(x) = {H(x, p) ≤ µ}, that means H(x,Du(x)) = µ.

As we saw in Section 2.2.5, without further regularity assumptions, it is also possible
to give a point-wise definition (see Defintion 2.2.36) of the functional x 7→ H(x,Du)(x) for
every x ∈ Ω, in such a way that H(x,Du(x)) = H(x,Du)(x) if u is differentiable at x.
Therefore we are able to prove the following improvement of the Proposition 3.2.21:

Theorem 3.2.22. Let u ∈W 1,∞(Ω)∩C(Ω) be an optimal solution of the (H). If x belongs
to the uniqueness set U then

H(x,Du)(x) = ess sup
x∈Ω

H(x,Du(x)) = µ.

In particular
U ⊂ A(u),

where A(u) is the attainment set of u defined in Definition 2.2.46.

Proof. We have to prove that limr→0 µ(x, r) = µ. For every r > 0, µ(x, r) ≤ µ, by Theorem
3.1.16. Moreover, if we consider a curve γ ⊂ U passing through x given by Theorem 3.2.8,
we have that u(γ(s))− u(x) = d(x, γ(s)), proving that µ(x, r) = µ for every r.

In the next theorem we show that if we consider an absolute minimizer u, the converse
inclusion also holds, implying A(u) = U .

Theorem 3.2.23. Let us assume that H satisfies also assumption (E). Let u ∈W 1,∞(Ω)∩
C(Ω) be an absolute minimizer for (H) and let x ∈ Ω be such that H(x,Du)(x) =
ess sup x∈ΩH(x,Du(x)). Then x belongs to the uniqueness set, that is

A(u) ⊂ U .

Proof. Let x be as in the statement. By Theorem 2.2.44 we know that there exist y1, y2 ∈
∂Ω such that u(x) = g(y1) − d(x, y1) = g(y2) + d(y2, x). Then S+(x) ≤ u(x) ≤ S−, by
definition of S+ and S−. Moreover, by Proposition 3.1.18, S+ ≥ u(x) ≥ S−.

Corollary 3.2.24. Let us assume that H satisfies also assumption (E). Under the same
assumptions of Proposition 3.2.11 on ϕ0 or of Proposition 3.2.14 on d, any absolute mini-
mizer u for the problem (H) is differentiable on A(u) and Du|A(u) is continuous. Moreover
if intA(u) 6= ∅, then u ∈ C1,1

loc (A(u)).

Proof. The proof follows by Theorem 3.2.23 and Theorem 3.2.17.
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Chapter 4

L∞- Optimal Transport

4.1 Preliminaries

As pointed out in the Introduction, the so-called optimal transport problem has been
widely studied in the last decades and its theory has witnessed a huge development in
many directions. The scope of this section is to provide a brief survey of the results which
are useful for our purpose. More detailed and comprehensive references are, for instance,
[3, 108, 120].

4.1.1 A brief survey of Optimal Transport

Let (X, dX) and (Y, dY ) be Polish spaces, i.e. complete and separable metric spaces, and
µ ∈ P(X), ν ∈ P(Y ), where P(Z) denotes the space of Borel probability measures on a
Polish space Z.

Definition 4.1.1 (Weak - or narrow - topology). If (Z, τ) is a topological space, we say
that a sequence of probability measure (ρn)n weakly converges or converges w.r.t. to the
weak (or narrow) topology of measure to a probability measure ρ if

lim
n→+∞

∫
Z
fdρn =

∫
Z
fdρ,

for every f ∈ Cb(Z).

Definition 4.1.2 (Transport plans). We say that γ is a transport plan if it belongs to the
set

Π(µ, ν) :=
{
γ ∈ P(X × Y ) : π1

] γ = µ and π2
] γ = ν

}
,

where π1 and π2 represent respectively the projections on the spaces X and Y .
In other words, γ ∈ Π(µ, ν) if and only if

γ(A× Y ) = µ(A) and γ(X ×B) = ν(B),

for any Borel sets A ⊂ X, B ⊂ Y .

Definition 4.1.3 (Transport maps). We say that T is a transport map if it belongs to the
set

T (µ, ν) := {T : X → Y Borel : T]µ = ν} ,

71



CHAPTER 4. L∞- OPTIMAL TRANSPORT

where T]µ = ν means that
µ(T−1(B)) = ν(B),

for any Borel set B ⊂ Y , and T]µ is called the push-forward of µ under T .

Remark 4.1.4. We observe that

1. T (µ, ν) can be empty: consider for instance

µ = δx and ν =
1

2
(δy1 + δy2),

for some x ∈ X, y1 6= y2 ∈ Y ;

2. “T (µ, ν) ⊂ Π(µ, ν)”: for every T ∈ T (µ, ν),

γ := (Id× T )] µ ∈ Π(µ, ν).

The Optimal Transport Problem: Monge’s formulation [99]
Let c : X × Y → [0,+∞] be the so-called cost function (note that in the original work
c(x, y) = d(x, y) and X = Y ), the Monge Optimal Transport Problem is

inf
T∈T (µ,ν)

∫
X
c(x, T (x))dµ(x). (M-OT)

Remark 4.1.5. The problem (M-OT) does not always admits a solution. First of, all be-
cause T (µ, ν) can be empty (Remark 4.1.4 (1)), but also because it can happen, as showed
in Example 1.14 in [3], that transport maps exist but the infimum is not a minimum. In
general, it is not possible to find a topology such that T →

∫
c(x, T (x)) is lower semicon-

tinuous and T (µ, ν) is closed and compact.

The Optimal Transport Problem: Kantorovich’s formulation [82]
Let the Borel function c : X × Y → [0,+∞] be the so-called cost function, then the
Kantorovich Optimal Transport Problem is

min
γ∈Π(µ,ν)

∫
X×Y

c(x, y)dγ(x, y) = inf
γ∈Π(µ,ν)

∫
X×Y

c(x, y)dγ(x, y). (OT)

Remark 4.1.6. Some considerations:

1. for what we have observed in (2) of Remark 4.1.4,

min
Π(µ,ν)

(OT) ≤ inf
Π(µ,ν)

(M-OT)

and, moreover, the Kantorovich problem can be seen as the relaxation (for a detailed
explanation see for instance Chapter 1.5 in [108]) of the original problem by Monge in
which we allow for mass splitting ;

2. since Π(µ, ν) is convex and the functional γ →
∫
cdγ is linear, the problem (OT) is a

linear optimization problem under linear constraints.

In this case we have the following result.
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Theorem 4.1.7. Let c : X × Y → [0,+∞] lower semicontinuous. Then the infimum in
(OT) is attained.

Proof. The proof makes use of the classic direct method in the calculus of variations.
Indeed it is possible to prove that

• the functional γ →
∫
cdγ is lower semicontinuous with respect to the weak topology

of measures if c is lower semicontinuous,

• Π(µ, ν) is compact w.r.t. the weak topology of measures, thanks to Prokhorov’s
theorem.

Definition 4.1.8. A set Γ ⊂ X × Y is c-cyclically monotone (c-cm) if for every finite set
of points {(xi, yi)}ki=1 ⊂ Γ and for every permutation σ of the set {1, . . . , k} we have∑

1≤i≤k
c(xi, yi) ≤

∑
1≤i≤k

c(xi, yσ(i)) , (c-cm)

or, equivalently, ∑
1≤i≤k

c(xi, yi) ≤
∑

1≤i≤k
c(xi, yi+1) .

with yk+1 := y1. The equivalence is due to the fact that every permutation σ can be
obtained as composition of cycles acting on disjoint subsets of {1, . . . , k} and trivial cycles
on fixed points.
We say that a transport plan γ ∈ Π(µ, ν) is c-cyclically monotone (c-cm), if it is concen-
trated on c-cyclically monotone set.

Remark 4.1.9. If X = Y = Rd and c(x, y) = |x − y|2, the inequality (c-cm) is equivalent
to: ∑

1≤i≤k
〈xi, yi〉 ≥

∑
1≤i≤k

〈
xi, yσ(i)

〉
.

If the cost function is continuous the inequality in (1) is actually an equality, as stated
in the following theorem.

Theorem 4.1.10 (see A. Pratelli in [106] ). Assume that the cost function c : X×Y → R+

is continuous. Then a transport plan γ is optimal if and only if γ is c-cyclically monotone.

Theorem 4.1.11 (Duality, see for instance [3]). Let c : X ×Y → R lower semicontinuous
and bounded from below then

min (OT) = sup
(ϕ,ψ)∈Ic

{∫
X
ϕdµ+

∫
Y
ψdν

}
, (DualOT)

where
Ic = {(ϕ,ψ) ∈ Cb(X)× Cb(Y ) and ϕ(x) + ψ(y) ≤ c(x, y)}.

If c(x, y) ≤ a(x) + b(y) for some a ∈ L1(µ), b ∈ L1(ν), then there exists an optimal pair
(ϕ,ψ) ∈ L1(X,µ)× L1(Y, ν) and in particular

min
Π(µ,ν)

(OT) = max
Ic

(DualOT).

ϕ and ψ are called Kantorovich potentials.
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Definition 4.1.12 (2-Wasserstein distance). If X = Y and c(x, y) = d2(x, y), where d is
the distance between x and y, the minimum value

min
Π(µ,ν)

(∫
d2(x, y)dγ

) 1
2

,

is know as 2-Wasserstein distance between µ and ν and denoted by W2(µ, ν).
We have that W2 defines a distance on the set of probability measures with finite 2nd
moment, i.e.

P2(X) :=

{
µ ∈ P(X) :

∫
X
d2(x0, x)dµ < +∞, for some x0 ∈ X

}
.

In particular the topology induced by the distance of the space (P2(X),W2) inherits com-
pleteness, compactness and separability from X and, if X is compact, W2(µn, µ) → 0 for
n → ∞ if and only if µn ⇀ µ. Moreover all this results hold also for (Pp(X),Wp), with
any 1 < p < +∞. For more details we refer to [3, 108].

The following are results on the sufficient conditions for an optimal plan γ to be con-
centrated on a graph, i.e. to be equal to (Id×T )]µ, for some T ∈ (µ, ν). The consequence
is the existence and uniqueness of solutions of (M-OT)=(OT). The first and most famous
one is Brenier’s theorem:

Theorem 4.1.13 (Brenier, 1987 [27]). Let X = Y = Rd, µ, ν ∈ P(Rd) and c(x, y) =
|x−y|2

2 . Suppose that
∫
|x|2dµ,

∫
|y|2dµ < +∞, which implies min (OT) < +∞, and suppose

that µ gives no mass to (d − 1)-surfaces of class C2. Then, there exists a unique optimal
transport plan γK . Moreover, γK is induced by a transport map map T from µ to ν, which
is the unique solution of (M-OT), and it is of the form T = ∇u for a convex function u.
In particular, u(x) = 1

2 |x|
2 − ϕ(x), where ϕ is a Kantorovich potential.

Theorem 4.1.14 (Theorem 1.17 [108], first proved by Gangbo and McCann in [69]). Let
µ, ν ∈ P(Ω) with Ω a compact domain of Rd, µ << Ld and ∂Ω negligible. Let the cost
function be c(x, y) = h(x− y) with h strictly convex. Then there exists a optimal transport
plan γK for the cost, which is unique and of the form (Id× T )] µ, for some transport map
T from µ to ν. Moreover, there exists a Kantorovich potential ϕ, such that T and the
potential ϕ are linked by

T (x) = x− (∇h)−1 (∇ϕ(x))),

for µ-a.e. x.

Remark 4.1.15. Let us point out the key ingredients of the proof of Theorem 4.1.13 and
Theorem 4.1.14. The first one is the differentiability µ - almost everywhere of ϕ, while the
second one is the existence of a unique y solving the equation

∇xc(x, y) = ∇ϕ(x)

Definition 4.1.16 (Twist condition). For c : Ω × Ω → R with Ω ⊂ Rd we say that c
satisfies the twist condition whenever c is differentiable w.r.t. x at every point, and the
map y 7→ ∇xc(x0, y) is injective for every x0. For “nice” domains and cost functions, it
corresponds to

det∇2
x,yc(x, y) 6= 0.
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Proposition 4.1.17. If c is C1, ϕ is a Kantorovich potential for the cost c in the transport
from µ to ν, and (x0, y0) belongs to the support of an optimal transport plan γ, then

∇ϕ(x0) = ∇xc(x0, y0),

provided ϕ is differentiable at x0. In particular, the gradients of two different Kantorovich
potentials coincide on every point x0 of suppµ where both the potentials are differentiable.
Moreover if c satisfies the twist condition

y0 = (∇xc(x0, y0))−1∇ϕ(x0).

Theorem 4.1.13, Theorem 4.1.14 and Prop 4.1.17 can be generalized to Riemannian
manifold (see for instance [95, 21, 67] and also [120] and the references therein) and to
Sub-riemannian manifolds (see for instance [5]). Moreover some Monge type results have
been found also in cases where the twist condition does not hold, for example in case where
the cost function is equal to to the Euclidean norm (see [115, 117] and also [3] and the
references therein) or equal to any norm in Rd (see [45]).

4.1.2 A brief survey of L∞-Optimal Transport

Let still consider (X, dX) and (Y, dY ) to be Polish spaces, µ ∈ P(X), ν ∈ P(Y ) and
c : X × Y → [0,+∞] a Borel function.
The L∞-Optimal Transport problem is the problem

min
γ∈Π(µ,ν)

C∞(γ) := min
γ∈Π(µ,ν)

(
γ − ess sup

(x,y)∈X×Y
c(x, y)

)
= min

γ∈Π(µ,ν)
||c||L∞(γ,X×Y ), (OT∞)

where the γ-essential supremum of the function c is defined in Definition 2.2.1. See also
Remark 2.2 for the case c is lower semicontinuous.
Since we are considering probability measures γ, we have that Cp(γ)↗ C∞(γ) as p→∞,
where

min
γ∈Π(µ,ν)

Cp(γ) := min
γ∈Π(µ,ν)

(∫
X×Y

cp(x, y)dγ(x, y)

) 1
p

= min
γ∈Π(µ,ν)

||c||Lp(γ,X×Y ). (OTp)

Remark 4.1.18. The problem (OTp) is equivalent to the Monge-Kantorovich problem (OT),
where the cost function is cp, since the power 1

p does not affect the set of minimizers.
Moreover, in addition to the known property of Lp norms in case of finite measure spaces,

||c||Lp(γ) → ||c||L∞(γ),

it is also true (see Lemma 2.13 in [79]) that

min
γ∈Π(µ,ν)

Cp(γ)→ min
γ∈Π(µ,ν)

C∞(γ)

Definition 4.1.19 (∞-Wasserstein distance). If X = Y the cost function and c(x, y) =
d(x, y) is the distance between x and y, the (OT∞) becomes,

min
Π(µ,ν)

||d||L∞(γ),

which is the so-called is the so-called ∞-Wasserstein distance between µ and ν, denoted
by W∞(µ, ν).
In order to have W∞ < +∞, we usually consider µ and ν with compact support.
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Exactly as for the 2-Wasserstein distance defined in Definition 4.1.12 and for the more
general p-Wasserstein distance, denoted by Wp,

min
Π(µ,ν)

(∫
dp(x, y)dγ

) 1
p

,

we have a new distance on probability measures on compact sets, which measures the
minimal maximal displacement that should be done to move particles from one distribution
to the other. However the topology induced is not the same: even thought X is compact,
(P(X),W∞) is neither compact, nor separable, as soon as the cardinality of X is larger
than 1. Consider for instance

W∞ ((1− t)δx + tδy, δx) = |x− y|,

which tells us that (1− t)δx + tδy doesn’t tend to δx for t→ 0.

Remark 4.1.20. Exactly as the supremal functional FH studied in Chapter 2 (see (H)), the
functional C∞ : P(X × Y )→ R is quasiconvex, i.e. for any γ1, γ2 ∈ P(X × Y )

C∞(tγ1 + (1− t)γ2) ≤ max{C∞(γ1), C∞(γ2)}

In particular, by definition of essential supremum one can see that

C∞(tγ1 + (1− t)γ2) = max{C∞(γ1), C∞(γ2)} (4.1.1)

The first important result is the existence of optimal plans for the problem (OT∞),
which was first established in [47] and then generalized in [79].

Theorem 4.1.21. [Theorem 2.6 in [79]] Let c be lower semicontinous. Then the problem
(OT∞) has at least one minimizer, i.e. there exists γ∞ such that

γ∞ ∈ arg min
Π(µ,ν)

||c||L∞(γ,X×Y ).

Proof. The proof is similar to the one of Theorem 4.1.7. The keys ideas are:

• γ 7→ C∞(γ) is lower semicontinuous with respect to the weak topology of measures.
Indeed if γn ⇀ γ for any z ∈ supp γ there exists (zn)n, such that zn ∈ supp γn and
zn → z and we conclude with the lower semicontinuity of c;

• Π(µ, ν) is compact w.r.t. the weak topology of measures, thanks to Prokhorov’s
theorem.

In general, there can be a high level of non-uniqueness of the solutions of (OT∞): we
are only optimizing the “worst case" and more locally the situation can be far from optimal.
We provide below some easy examples to better illustrate this fact.

Example 4.1.22. Let us take µ := 1
3(δx1 + δx2 + δx3), ν := 1

3(δy1 + δy2 + δy3) and γ1 :=
1
3(δx1,y3 + δx2,y1 + δx3,y2), γ2 := 1

3(δx1,y3 + δx2,y2 + δx3,y1), as illustrated in Figure 4.1.1. We
can easily see that both the plans are optimal since the furthest points have been optimized
by sending x1 to y3.
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Figure 4.1.1: On the left γ1, on the right γ2 obtained sending x2 to y2 and x3 to y1.

Example 4.1.23. This is an example in which every transport plan is optimal. This example
was illustrated in [47]. Let us consider µ, ν ∈ P(R2) defined by µ := L2

b[0,1]2 and ν :=
1
2

(
δ(2,1) + δ(1,2)

)
and let c(x, y) = |x− y|. Then

C∞(γ) = sup{|x− y| : (x, y) ∈ supp γ} =
√

5,

for any γ ∈ Π(µ, ν). Indeed,

C∞(γ) = sup{c(x, y) : (x, y) ∈ supp γ} = |(0, 0)− (1, 2)| = |(0, 0)− (2, 1)| =
√

5

for every γ ∈ Π(µ, ν).

x

y

•

•

0

1

2

1 2

(2, 1)

(1, 2)

√
5

Figure 4.1.2: In the figure suppµ is the orange square and the two points supp ν :
{(1, 2), (2, 1)}.

It is often useful to consider a subset of better-behaving minimizers, the so-called∞-c-
cyclically monotone transport plans. The idea is that on the support of such a plan, there
is no rearrangement of destinations of a fixed finite set of points that would improve the
highest cost coupling of that set. To our purpose it is also useful to have a definition for a
plan that does not improve under the interchange of any two destinations of a given pair
of initial points. The exact definition of these propriety appears first in [47] and it can be
seen as a generalization to the L∞ setting of the Definition 4.1.8.
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Definition 4.1.24. A set Γ ⊂ X×Y is∞-c-cyclically monotone (∞-cm) if for every finite
set of points {(xi, yi)}ki=1 ⊂ Γ and for every permutation σ of the set {1, . . . , k} we have

max
1≤i≤k

c(xi, yi) ≤ max
1≤i≤k

c(xi, yσ(i)) , (∞-cm)

or, equivalently,
max
1≤i≤k

c(xi, yi) ≤ max
1≤i≤k

c(xi, yi+1) ,

with yk+1 := y1. As in Definition 4.1.8, the equivalence is due to the fact that every permu-
tation σ can be obtained as composition of cycles acting on disjoint subsets of {1, . . . , k}
and trivial cycles on fixed points.
We say that a transport plan γ ∈ Π(µ, ν) is ∞-c-cyclically monotone (∞-cm), if it is
concentrated on ∞-c-cyclically monotone set.

Definition 4.1.25. The set Γ ⊂ X×Y is∞-c-monotone (∞-m) if for any (x, y), (x′, y′) ∈ Γ
we have

max{c(x, y), c(x′, y′)} ≤ max{c(x, y′), c(x′, y)} . (∞-m)

We say that a transport plan γ ∈ Π(µ, ν) is ∞-c-monotone (∞-m), if it is concentrated on
an ∞-c-monotone set.

Notation: When the cost function c is the Euclidean distance (see original definition in
[47]) or c is clear from the contest, we will omit it and we will simply write that a plan γ
is ∞-cyclically monotone or ∞-monotone. Concerning this point it is also interesting to
consider the following remark.

Remark 4.1.26. If a set Γ ⊂ X × Y is ∞-c-cyclically monotone (∞-monotone) for some
cost function c, then Γ is also ∞-f(c)-cyclically monotone (∞-f(c)- monotone), where f
is any nondecreasing real function.

Lemma 4.1.27 (Lemma 2.11 in [79]). If the cost function c is continuous then a transport
plan γ is ∞-c-cyclically monotone (∞-c-monotone) if and only if supp γ is ∞-c-cyclically
monotone (∞-c-monotone).

Theorem 4.1.28 (Teorem 2.17 in [79]). If the transport cost c is continuous, then any
∞-c-cyclically monotone plan is optimal.

Remark 4.1.29. Every ∞-cyclically monotone plan is ∞-monotone but the reverse is not
true in general. Consider, for example, the marginal measures µ = ν to be the uniform
probability measure on the circle S1, the cost function c(x, y) = |x − y| (the Euclidean
distance), and the set Γ = Graph(Rθ), where Rθ is the rotation of a vector v ∈ S1 by
an angle θ < π/2. Now Γ is ∞-monotone, but since the transport plan supported by Γ
is not optimal (the optimal cost being 0, given by the identity map) the set Γ cannot be
∞-cyclically.

The existence is ensured by the following lemma, proved first by [47] and then gener-
alized by H. Jylhä in [79].

Lemma 4.1.30 (Lemma 2.12 in [79]). Let c be lower semicontinuous. Let γp be a solution
of the problem (Pp), p ≥ 1. Then cluster points of (γp)p≥1 w.r.t. to the weak convergence
exist and each of them is a solution of the problem (P∞). If, in addition, c is continuous
and the minimum of each problem (Pp) is finite, then the cluster points are ∞-c-cyclically
monotone.
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Theorem 4.1.31. (Theorem 2.16 in [79]) If c is continuous, then the problem (OT∞) has
a solution γ that is ∞-cyclically monotone.

Theorem 4.1.31 is a consequence of Lemma 4.1.30 and it is proved by approximating c
with bounded and continuous functions cm.

As expected, ∞-cyclically monotone transport plans are much better-behaved than
arbitrary solutions to the problem (OT∞). For example, they are restrictable in the sense
of the following definition.

Definition 4.1.32 (Restrictable minimizers). A transport plan γ ∈ Π(µ, ν) is said to be
a restrictable minimizer of the problem (P∞) if it satisfies the following condition: for any
γ′ ≤ γ, i.e. γ′(B) ≤ γ(B) for every Borel sets B, and γ′(X × Y ) > 0 we have

C∞(γ̄) = min
{
C∞(λ) : λ ∈ Π(π1

] γ̄, π
2
] γ̄)
}
,

where γ̄ = γ′

γ′(X×Y ) .

Remark 4.1.33. We point out how the definition of restrictable plans reminds the definition
given in Chapter (2) of absolute minimizers (see Definition 2.2.29).

In the Example 4.1.22 one can easily check that the plan γ2 obtained by switching the
role of y1 and y2 is ∞-cyclically monotone. It is interesting to notice that it is the one
which optimizes how to connect also the other points and not only the worst case and
it is therefore restrictable in the sense of Definition 4.1.32. Differently from γ1 which is
neither ∞-monotone nor restrictable. This elementary example could give an intuition of
the theorem stated below.

Theorem 4.1.34 (Theorem 2.19 in [79]). Let the transport cost c be continuous, then a
transport plan γ is a restrictable minimizer of (OT∞) if and only if it is ∞-c-cyclically
monotone.

As explained in Section 4.1.1, a crucial question in optimal transport theory is whether
an optimal solution of (OT) is deterministic, i.e. it is also a solution of (M-OT). In
the L∞-setting this problem is even more complicated since the lack of convexity implies
a lack of a duality tool, which, as pointed out in Section 1.2, has a key role in proving
Brenier’s theorem (Theorem 4.1.13), Gangbo and McCann’s theorem (Theorem 4.1.14)
and Proposition 4.1.17. The only result regarding duality for L∞ is the following, which
as been proved in [15].

Theorem 4.1.35. Let µ, ν ∈ P(Rd) and c : Rd × Rd → [0,+∞] lower semicontinuous.
Then if C∞(γ) < +∞ for some γ, the problem (OT∞) is equivalent to

inf
λ≥0

sup

{∫
Rd
ϕ(x)dµ+

∫
Rd
ψ(y)dν : (ϕ,ψ) ∈ Iλc

}
, (4.1.2)

where for any λ ≥ 0

Iλc :=
{

(ϕ,ψ) ∈ Cb(Rd)× Cb(Rd) : ϕ(x) + ψ(y) ≤ λ, if c(x, y) ≤ λ
}
.

Moreover the infimum in (4.1.2) is achieved for

λ∞ = min
Π(µ,ν)

C∞(γ).
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Remark 4.1.36. Theorem 4.1.35 above implies that

min
Π(µ,ν)

(OT∞) = sup

{∫
Rd
ϕ(x)dµ+

∫
Rd
ψ(y)dν : ϕ(x) + ψ(y) ≤ λ∞

}
.

Unfortunately the supremum with respect to (ϕ,ψ) always admits the trivial solution
ϕ = ψ = λ∞

2 , making hard a successful application of this theorem.
The first result regarding existence of Monge-type solutions in L∞ was found by De

Pascale, Champion and Juutinen in [47] who proved that for X = Y = Rd and c(x, y) =
|x − y|, not only we have existence of optimal maps but also that among the optimal
transport plans for (OT∞), the ∞-cm plans are actually concentrated on a graph of a
measurable function. We state here (Theorem 4.1.37 below) the generalized version of
that result proved by Jylä in [79].

Theorem 4.1.37 (Theorem 3.5 in [79] ). Let the cost function c be of the form c(x, y) :=
h(x− y), where

h : Rd × Rd → R+ is continuous and strictly quasiconvex

and let µ, ν ∈ P(Rd), with µ such that

µ(A) = 0 for every countably (n− 1)-Lipschitz set A ⊂ Rd.

Then every ∞-monotone plan γ is induced by a transport maps, i.e. there exists T : Rd →
Rd Borel such that γ = (Id× T )] µ.

In [47] the authors also prove a uniqueness result, generalized in [79], when the target
measure has atoms.

Theorem 4.1.38 (Theorem 3.13 in [79]). Let us assume that c and µ are as in Theorem
4.1.37 and that ν({y0}) > 0 for some y0 ∈ Rd. Let T and T̃ be optimal transport maps
corresponding respectively to ∞-c-cyclically monotone transport plans γ and γ̃. Then

µ
(
T−1({y0}) \ T̃−1({y0})

)
= 0.

Corollary 4.1.39. Let us assume that c, µ are as in Theorem 4.1.37 and that ν is a
discrete measure, then there exists a unique ∞-c-cyclically monotone transport plan.

The aim of the following section is to provide a further step in the direction of Brenier’s
type theorems in the L∞-optimal transport, by considering different cost functions, which
are not translation invariant. Our contribution in this sense is presented in Theorem 4.2.10
and Theorem 4.2.13. The attempt is to get rid of the translation invariance trying to find
a generalization of the notion of twist condition defined in Definition 4.1.16.

4.1.3 Discrete Optimal Transport

Regarding this part we refer to the book by Cuturi and Peyré ([58]), which provides an
exhaustive reference for the computational part of the optimal transport problem.

With discrete measure µ we mean a finite sum of Dirac masses

µ =
n∑
1

µiδxi ,
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where {xi}ni=1 are the points of Rd where it is concentrated on and {µi}ni=1 are the weights
associated to such points. If µ is a probability measure then

∑n
1 µi = 1.

If µ and ν are two discrete probability measures, given a cost function c : Rd × Rd → R
one can associates a matrix (ci,j)i,j ∈ Mnm, where ci,j := c(xi, yi) is the cost needed
to transport mass from xi to yj . In this setting the optimal transport problem and the
L∞-optimal transport problem can be written as

min

∑
i,j

γi,jci,j : γ ∈ Π(µ, ν)

 , (DOT)

min
γ∈Π(µ,ν)

max {ci,j : γi,j 6= 0} , (∞-DOT)

where γ =
∑

i,j γi,jδ(xi,yj) satisfies the mass conservation constraint γ ∈ Π(µ, ν) if1

γ1m =

∑
j

γi,j

 = µ and γᵀ1n =

(∑
i

γi,j

)
= ν, (4.1.3)

where 1n is the vector of size n with all entries equal to 1. In particular Π(µ, ν) is bounded
and defined by n + m equality constraints and therefore is a convex polytope, i.e. the
convex hull of its (finite) extreme points (see Theorem 8.8 in [34]).

If n = m and µi = νj = 1
n , by (4.1.3) we have that the set Π(µ, ν) is the set of the

so-called bi-stochastic matrices, whose extreme point, by Birkhoff’s theorem, are the ma-
trices belonging to the set

Σn := {γ : there exists σ ∈ Sn such that γi,j =
1

n
δj,σ(i)}, (4.1.4)

where δj,σ(i) is the Kronecker delta. Being γ →
∑
γi,jci,j an affine function, the minimum

is attained on the extreme points and so in this case optimal plans are permutations.

Even though the problem γ → C∞(γ) = max {ci,j : γi,j 6= 0} is not linear we have a
similar result.

Proposition 4.1.40. If n = m, then

v∞ = min
σ∈Sn

max
i
ci,σ(i).

Proof. From the considerations above, for any γ ∈ Π(µ, ν) there exists a finite set of indexes
S, such that γ =

∑
s∈S asγ

s, with
∑
as = 1 and γs an extreme point. By Remark 4.1.20

and equation (4.1.1), we have that C∞(γ) = maxs∈S C∞(γs), proving that the minimum
is attained on the extreme points, which belong to the set Σn defined by (4.1.4).

1Here with a small abuse of notation in (4.1.3) γ indicates the matrix with the weights γi,j as entries
and µ, ν the vectors of the weights µi and νj respectively.
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4.2 L∞-Optimal Transport for a class of strictly quasiconvex
cost functions

4.2.1 Basic definitions and main theorem

In the following we state some definitions and results which are necessary for the proof of
Theorem 4.2.10. They can also be found in [47].

Definition 4.2.1. Let y ∈ Rd, r > 0 and let γ ∈ Π(µ, ν) be a transport plan. We define

γ−1(B(y, r)) := π1
(

(Rd ×B(y, r)) ∩ supp γ
)

In other words, γ−1(B(y, r)) is the set of points whose mass is partially or completely
transported to B(y, r) by γ, and γ−1 corresponds to the inverse of the multimap induced
by supp γ. Notice also that γ−1(B(y, r)) is a Borel set.

Since this notion is important in the sequel, we recall that when U is a Borel set, one
has

lim
r→0+

Ld (U ∩B(x, r))

Ld(B(x, r))
= 1,

for almost every x in U : we shall call such a point x a Lebesgue point of U and we will
denote by Leb (U) the Borel set of Lebesgue points.

Definition 4.2.2. We say that the couple (x, y) ∈ Rd × Rd is a γ-regular point if x ∈
Leb

(
γ−1(B(y, r))

)
for any positive r. We denote

R(γ) := {(x, y) ∈ Rd × Rd : (x, y) is a γ-regular point}. (4.2.1)

Remark 4.2.3. Notice first that by the closedness of supp γ we have that R(γ) ⊂ supp γ.
Moreover it is not difficult to show that R(γ) is a Borel set. Indeed, if for every fixed n ∈ N
we consider a countable covering Rd ⊂

⋃
i∈NB (yi,n, 2

−n) of balls of radius 2−n, then

R(γ) =
⋂
n≥1

⋃
i∈N

(
Leb

(
γ−1

(
B
(
yi,n, 2

−n)))×B (yi,n, 2−n)) . (4.2.2)

Lemma 4.2.4. Let γ ∈ Π(µ, ν) and assume that µ << Ld. Then γ vanishes outside the
set R(γ) of γ-regular points.

Proof. Let us denote by S := supp γ \ R(γ) the complement of the γ-regular points,
intersected with the support of γ, i.e.

S := {(x, y) ∈ supp γ : x 6∈ Leb
(
γ−1 (B(y, r))

)
for some positive r}.

One can prove that S is actually equal to the set⋃
n≥1

⋃
i∈N

((
γ−1

(
B(yi,n, 2

−n)
)
\ Leb

(
γ−1

(
B(yi,n, 2

−n)
)))
×B(yi,n, 2

−n)
)
∩ supp γ.

In particular we have that

π1(S) =
⋃
n≥1

⋃
i∈N

(
γ−1

(
B(yi,n, 2

−n)
)
\ Leb

(
γ−1

(
B(yi,n, 2

−n)
)))

,
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and the set on the right-hand side has Lebesgue measure 0. Therefore, by absolute conti-
nuity of µ with respect to Ld we have µ(π1(S)) = 0. Finally

γ(S) ≤ γ(π1(S)× Rd) = µ(π1(S)) = 0.

Notation. At this point, it is natural to introduce a more refined definition

γ−1
∗ (B(y, r)) := π1

(
(Rd ×B(y, r)) ∩R(γ)

)
.

For future use we also introduce a suitable notation for a cone: let x0, ξ ∈ Rd such that
|ξ| = 1 and δ ∈ [0, 2] then

K(x0, ξ, δ) :=

{
x ∈ Rd \ {x0} :

x− x0

|x− x0|
· ξ ≥ 1− δ

}
∪ {x0},

and for a “truncated” cone

K(x0, ξ, δ, s) := K(x0, ξ, δ) ∩B(x0, s). (4.2.3)

Proposition 4.2.5. Let µ << Ld, let (x0, y0) ∈ R(γ) and let r > 0, then for every
ξ ∈ ∂B(0, 1), δ ∈ (0, 2] and s > 0 it holds:

Ld
(
γ−1
∗ (B(y0, r)) ∩K(x0, ξ, δ, s)

)
> 0.

In general, if A is a Borel set and x0 ∈ Leb (A) it holds:

Ld
(
A ∩ γ−1

∗ (B(y0, r)) ∩K(x0, ξ, δ, s)
)
> 0.

Proof. By definition of R(γ), x0 is a Lebesgue point of γ−1(B(y0, r)) which implies

Ld
(
γ−1(B(y0, r)) ∩K(x0, ξ, δ, s)

)
> 0

for every ξ ∈ ∂B(0, 1), δ ∈ (0, 2], s > 0. Thus there exists

(x, y) ∈ (K(x0, ξ, δ, s)×B(y0, r)) ∩ supp γ

such that x 6= x0. We take ρ > 0 small enough so that B(x, ρ) ⊂ K(x0, ξ, δ, s) and
B(y, ρ) ⊂ B(y0, r). We know that γ(B(x, ρ) × B(y, ρ)) > 0 because (x, y) ∈ supp γ, and
since γ is concentrated in R(γ) we have:

0 < γ((B(x, ρ)×B(y, ρ)) ∩R(γ))

≤ γ((K(x0, ξ, δ, s)×B(y0, r)) ∩R(γ))

≤ γ(K(x0, ξ, δ, s) ∩ γ−1
∗ (B(y0, r))× Rd)

= µ(K(x0, ξ, δ, s) ∩ γ−1
∗ (B(y0, r)).

Which in turn implies Ld(K(x0, ξ, δ, s) ∩ γ−1
∗ (B(y0, r)) > 0 by the fact that µ << Ld.
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Corollary 4.2.6. Let (x0, y0) ∈ R(γ) and let C be a convex set with intC 6= ∅ such that
x0 ∈ C. Then for every r > 0

Ld(γ−1
∗ (B(y0, r) ∩ intC)) > 0.

Moreover, if A is a Borel set and x0 ∈ Leb (A)

Ld(A ∩ γ−1
∗ (B(y0, r) ∩ intC)) > 0.

Proof. We observe that by convexity of C there exists a cone K (x0, ξ, δ), for some ξ ∈
∂B(0, 1) and δ ∈ (0, 1), such that for s sufficiently small

K (x0, ξ, δ, s) ⊂ intC ∪ {x0}.

By the monotonicity of the Lebesgue measure, the claim now follows from Proposition
4.2.5.

Before the first main result of this paper we present a technical lemma on convex sets
that will be useful in the sequel.

Lemma 4.2.7. Let B,C ⊂ Rd be two closed convex sets with nonempty interiors, differen-
tiable boundaries, and such that B ∩C 6= ∅. Let x ∈ ∂B ∩∂C be such that nB(x) 6= nC(x),
where nB(x) and nC(x) are the unit outer normals of B and C at x, respectively. Then
there exists a point a ∈ intB ∩ {w : (w − x) · nC(x) > 0} and δ, s > 0 such that the
intersection of the cone of direction a− x and amplitude δ with the ball centered at x and
of radius s is all contained in intB, that is

K

(
x,

a− x
|a− x|

, δ, s

)
⊂ intB ∪ {x}. (4.2.4)

Moreover for the reverse cone we have

K

(
x,− a− x
|a− x|

, δ, s

)
⊂ intC ∪ {x}. (4.2.5)

Proof. By the differentiability of the boundaries of sets B and C we have that nB(x) and
nC(x) are well-defined elements of Rd. In particular, by convexity nB(x) is the only unit
vector such that

(b− x) · nB(x) ≤ 0, for every b ∈ B.

Hence there exists a ∈ intB such that

(a− x) · nC(x) > 0. (4.2.6)

By choosing a suitable s > 0 and δ close enough to 0, by the continuity of the scalar
product and the convexity of B we can fix the cone K

(
x, a−x|a−x| , δ, s

)
that satisfies the first

claim (4.2.4).
Moreover, by Condition (4.2.6) we have − a−x

|a−x| · nC(x) < 0. Thus for a suitable choice of
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τ > 0, we have2 x− a−x
|a−x|τ ∈ intC. Arguing as before, there exists s′ <

∣∣∣x− a−x
|a−x|τ − x

∣∣∣ = τ

and δ′ close enough to 0, such that K
(
x,− a−x

|a−x| , δ
′, s′
)

satisfies the (4.2.5). Therefore,
possibly substituting s with min{s, s′} and δ with min{δ, δ′}, (4.2.4) and (4.2.5) hold
simultaneously.

Notation. Given y ∈ Rd and λ ∈ R we denote, whenever it is possible, by

nc(·,y)(x)

the unit outer normal to the sublevel set Cλ = {z : c(z, y) ≤ λ} at the point x ∈ ∂Cλ.
Before stating the following theorem we recall that the definition of quasiconvex and

strictly quasiconvex function is given by Definition 2.1.8. We also recall Remark 2.1.9
about the properties of the sublevel sets.

Theorem 4.2.8. Let µ, ν be two Borel probability measures on Rd with compact supports
and µ << Ld. Let c : Rd × Rd → R+ be a continuous function satisfying the following
properties:

(i) For all x there exists a unique y ∈ Rd such that c(x, y) = 0, and for every y ∈ Rd we
have3 infx∈Rd c(x, y) = 0;

(ii) c(·, y) is strictly quasiconvex for every y, i.e.

c((1− t)x+ tx̄, y) < max{c(x, y), c(x̄, y)}

for all t ∈ (0, 1) and for every x, x̄ ∈ Rd, x 6= x̄;

(iii) for all λ > 0 and y ∈ Rd the convex set Cλ = {z : c(z, y) ≤ λ} has differentiable
(C1) boundary;

(iv) c satisfies a “twist kind” condition, that is: for every x, y, ỹ ∈ Rd and for all λ > 0{
c(x, y) = c(x, ỹ) = λ

nc(·,y)(x) = nc(·,ỹ)(x)
=⇒ y = ỹ.

Let γ ∈ Π(µ, ν) and (x, ỹ) ∈ R(γ). Then for every (x, y) ∈ Rd×Rd with y 6= ỹ, there exists
(x′, y′) ∈ R(γ) such that

max{c(x′, y), c(x, y′)} < max{c(x, y), c(x′, y′)}. (4.2.7)

Moreover, if x ∈ Leb (A), for some Borel set A, then (x′, y′) above can be taken with x′ ∈ A.
2There exist ε > 0 and a concave function φ : Bd−1(0, ρ) → R such that x = (0, φ(0)) and

such that ∂C is the graph of φ in a sufficiently small neighborhood of x. In this setting nC(x) =
1√

1 + |∇φ(0)|2
(−∇φ(0), 1). We use the notation (v, vd) = v = − a−x

|a−x| , where v ∈ Rd−1 and vd ∈ R.

The condition v · nC(x) < 0 becomes v · ∇φ(0) > vd. Proving that x + τv ∈ intC, for some τ > 0,
can be done by showing that φ(τv) > φ(0) + τvd. The latter inequality follows directly by the fact that
limt→0

φ(tv)−φ(0)
t

> vd.
3By the strict quasiconvexity of c(·, y) (Assumption (ii)), if there exists a point x such that c(x, y) =

infz∈Rd c(z, y), then such a point is also unique.
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Remark 4.2.9. We call condition (iv) above “twist kind” because whenever c is differentiable
with respect to x, if ∇xc(x, ỹ) 6= 0 and ∇xc(x, y) 6= 0, then the condition becomes{

c(x, y) = c(x, ỹ)
∇xc(x,y)
|∇xc(x,y)| = ∇xc(x,ỹ)

|∇xc(x,ỹ)|
=⇒ y = ỹ.

This looks like the twist condition in the classical integral optimal transport.

Proof. Case 1: c(x, y) > c(x, ỹ).
First of all we fix λ = c(x, y) and Cλ = {z : c(z, y) ≤ λ}. Notice that intCλ is nonempty
by part (2) of Remark 2.1.9. Indeed c(x, y) = λ > 0 = infw∈Rd c(w, ỹ), by Assumption (i).
Now, the continuity of the cost function allows us to fix r > 0 such that

c(x, y′) < c(x, y) for all y′ ∈ B(ỹ, r) . (4.2.8)

Moreover, since (x, ỹ) ∈ R(γ), thanks to Corollary 4.2.6, we know that there exists (x′, y′) ∈
R(γ) with x′ ∈ intCλ = {z : c(z, y) < λ} (so that x 6= x′) and y′ ∈ B(ỹ, r) such that

(x′, y′) ∈ (intCλ ×B(ỹ, r)) ∩R(γ) .

Notice that such a y′ exists by the definition of γ−1
∗ (B(ỹ, r)).

By Condition (4.2.8) we have
c(x, y′) < c(x, y)

We also have that
c(x′, y) < c(x, y) ,

because x′ ∈ intCλ. These two inequalities imply that

max{c(x′, y), c(x, y′)} < c(x, y) ≤ max{c(x, y), c(x′, y′)},

concluding the proof for the Case 1.
Case 1 bis: If x ∈ Leb (A), for A being a Borel set, then by the second part of Corollary
4.2.6, we can find (x′, y′) ∈ R(γ), such that x′ ∈ intCλ ∩ A and y ∈ B(ỹ, r). As before,
such (x′, y′) satisfies the (4.2.7).
Case 2: c(x, y) < c(x, ỹ).
For this case, we follow a path similar to that of [79] but with a different construction of
cones.
This time we fix λ = c(x, ỹ), so that x ∈ ∂C̃λ, where C̃λ = {z : c(z, ỹ) ≤ λ}. Again we
denote by nc(·,ỹ)(x) the unit outer normal to the set C̃λ at x.
Let s be a small, positive real number such that ã := x− snc(·,ỹ)(x) ∈ int C̃λ, which is not
empty thanks to (2) of Remark 2.1.9. We fix

ε =
1

4
min {c(x, ỹ)− c(ã, ỹ), c(x, ỹ)− c(x, y)} .

Thanks to the continuity of c it is possible to find a positive radius r such that B(ã, r) ⊂ C̃λ
and for every (x′, y′) ∈ B(ã, r)×B(ỹ, r) we have

c(x′, y′) < c(ã, ỹ) + ε (4.2.9)
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and for every y′ ∈ B(ỹ, r) it holds

c(x, ỹ)− ε < c(x, y′). (4.2.10)

Consider the set 4 K̃ = {(1 − t)x + tB(ã, r) : t ∈ (0, 1)}. Thanks to the convexity, K̃ is
contained in C̃λ. We claim that

K̃ ⊂ {z : c(z, y′) < c(x, y′)} for every y′ ∈ B(ỹ, r).

Let z ∈ K̃. Then z = (1 − t)x + tz̃ for some z̃ ∈ B(ã, r) and some t ∈ (0, 1). We observe
that c(z̃, y′) < c(x, y′). Indeed

c(z̃, y′) < c(ã, ỹ) + ε ≤ 1

4
c(x, ỹ) +

3

4
c(ã, ỹ) < c(x, ỹ)− 3ε < c(x, y′), (4.2.11)

where the first inequality is due to Condition (4.2.9), the second and the third ones to the
definition of ε and the last one to (4.2.10). We conclude by the strict quasi-convexity of
c(·, y′), which implies

c(z, y′) < max{c(x, y′), c(z̃, y′)} = c(x, y′).

On the other hand, if we consider the reflected coneK = (1−t)x+tB(ã, r) with t ∈ (−1, 0),
again by the strict quasiconvexity of c(·, y′) we show that

K ⊂ {z : c(z, y′) > c(x, y′)} for every y′ ∈ B(ỹ, r).

Indeed, let z ∈ K, then z = (1 − t)x + tz̃, for some z̃ ∈ B(ã, r) and t ∈ (−1, 0). So
x = sz + (1 − s)z̃, with s = 1

(1−t) . Thus c(x, y′) < max{c(z, y′), c(z̃, y′)} = c(z, y′), where
the last equality is due to (4.2.11), and therefore for every x′ ∈ K and y′ ∈ B(ỹ, r) it holds

c(x, y′) < c(x′, y′).

Let now ρ > 0 such that c(x′, y) < c(x, y) + ε for every x′ ∈ K ∩ B(x, ρ). Then for every
x′ ∈ K ∩B(x, ρ) and y′ ∈ B(ỹ, r) it holds:

c(x′, y) < c(x, y) + ε <
1

4
c(x, ỹ) +

3

4
c(x, y) ≤ c(x, ỹ)− 3ε < c(x, y′) < c(x′, y′).

By choosing ρ small enough such that K∩B(x, ρ) is a “ truncated cone” of the form (4.2.3),
the proof of Case 2 is concluded thanks to Proposition 4.2.5, for which it is possible to
take x′ in the set (

B(x, ρ) ∩K ∩ γ−1
∗ (B(ỹ, r)

)
and therefore (x′, y′) in the set

((K ∩B(x, ρ))×B(ỹ, r)) ∩R(γ̃).

Case 2 bis: If x ∈ Leb (A) for some Borel set A, by the last part of Proposition 4.2.5, we
can choose (x′, y′) satisfying the (4.2.7) in the set

((A ∩K ∩B(x, ρ))×B(ỹ, r)) ∩R(γ̃).

Case 3: c(x, y) = c(x, ỹ) = λ > 0 (if c(x, y) = c(x, ỹ) = 0 then y = ỹ by Assumption (i))
and nc(·,y)(x) 6= nc(·,ỹ)(x).
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Cλ

C̃λ

x
•

−→n

B(x, s)

B(x, s2)

K̃
K

a •
•x′

• z

•y

•ỹ
r
• y′

Figure 4.2.1: Case 2 - Theorem 4.2.10

In Figure 4.2.1 we provide a visual description of the proof of this case, where we have
denoted the vector nc(·,ỹ)(x) by −→n .
Since x ∈ ∂Cλ ∩ ∂C̃λ and since by part (2) of Remark 2.1.9 these sublevel sets have
nonempty interiors, the assumptions of Lemma 4.2.7 above are satisfied. Therefore we can
construct two “truncated” cones, one inside intCλ ∪ {x} and the “reverse” one contained
in int C̃λ. More precisely there exist a ∈ intCλ and δ, s > 0 such that

K

(
x,

a− x
|a− x|

, δ, s

)
⊂ intCλ ∪ {x} and

K

(
x,− a− x
|a− x|

, δ, s

)
⊂ int C̃λ ∪ {x}.

In order to simplify the notation, let us denote by

K := K

(
x,

a− x
|a− x|

, δ, s

)
and K̃ := K

(
x,− a− x
|a− x|

, δ, s

)
.

We observe that c(x, ỹ) > c(z, ỹ) for every z ∈ int C̃λ, so if we take z in a set well-
contained in int C̃λ, for instance the portion of annulus K̃ \ B

(
x, s2

)
, since K̃ \B

(
x, s2

)
is compact and c(·, ỹ) is continuous, c(x, ỹ) > min{c(z, ỹ) : z ∈ K̃ \B

(
x, s2

)
}. Moreover

4We use the notation K̃ because also this set is a cone, even if slightly different from the cones defined
by (4.2.3).
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y 7→ min{c(z, y) : z ∈ K̃ \B
(
x, s2

)
} is continuous for every y. Therefore, there exists

r > 0 such that

c(x, y′) > c(z, y′), for all y′ ∈ B(ỹ, r), for all z ∈ K̃ \B
(
x,
s

2

)
. (4.2.12)

Let (x′, y′) ∈ (K ×B(ỹ, r)) ∩ R(γ) with x′ 6= x, which exists by Proposition 4.2.5 (and
definition of γ−1

∗ (ỹ, r)). Now, if we take z ∈ K̃ \ B
(
x, s2

)
on the line passing from x′ and

x (the order of the points on the line being x′, x, z), by the strict quasiconvexity of c with
respect to the first variable we have

c(x, y′) < max{c(x′, y′), c(z, y′)}.

By Condition (4.2.12), we infer that c(x, y′) < c(x′, y′).
Finally, since x′ ∈ intCλ, we have c(x′, y) < c(x, y) (again we use that, by the continuity
and the strict quasiconvexity of c, ∂Cλ = {z : c(z, y) = λ}). Hence Condition (4.2.7)
holds.
Case 3 bis: Also in this case thanks to the second part of Proposition 4.2.5, we can choose
our (x′, y′) ∈ ((A ∩K)×B(ỹ, r)) ∩R(γ) if x ∈ Leb (A), for some Borel set A.
Case 4: c(x, y) = c(x, ỹ) = λ > 0 and

nc(·,y)(x) = nc(·,ỹ)(x).

If this case occurs, by the assumption (iv) (the “twist kind” condition) we know that y = ỹ
against our assumption.

We are now ready to state and prove the main result of this section, which follows
directly bt Theorem 4.2.10.

Theorem 4.2.10. Let µ, ν be two Borel probability measures on Rd with compact supports
and µ << Ld and let c : Rd×Rd → R+ be a continuous function satisfying the assumptions
(i)-(iv) of Theorem 4.2.8. If γ ∈ Π(µ, ν) is ∞-monotone, then γ vanishes outside the graph
of a Borel map T ∈ T (µ, ν).

Proof. Thanks to Lemma 4.2.4 we know that γ is concentrated on the set of γ-regular
points R(γ) and that the set R(γ) is a Borel set. Therefore, it suffices to show that the set
R(γ) is the graph of a function T ∈ T (µ, ν). More precisely it is enough to prove that the
set R(γ) is contained in the graph of some function T : Rd → Rd. Indeed, Theorem 2.3 of
[3] ensures that T is a Borel map and that γ = (Id×T )]µ. Let us assume, by contradiction,
that there exist (x, y), (x, ỹ) ∈ R(γ) with y 6= ỹ. Then we can apply Theorem 4.2.8, thanks
to which it holds that there exists (x′, y′) ∈ R(γ) such that

max{c(x′, y), c(x, y′)} < max{c(x, y), c(x′, y′)}.

The above inequality implies that R(γ) is not ∞-monotone and, since R(γ) ⊂ supp γ,
neither is supp γ. This fact, together with Lemma 4.1.27 leads us to a contradiction.
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4.2.2 On the uniqueness of ICM optimal transport plans

The next lemma is slightly less general than its equivalent in [79] but we believe it makes
more transparent the proof of uniqueness that will follow.

Lemma 4.2.11. Let µ and ν be two probability measures on Rd, with compact supports
and µ << Ld. Assume that the function c : Rd × Rd → R+ satisfies the assumptions of
Theorem 4.2.8. Let T, T̃ ∈ T (µ, ν) be two transport maps associated to two ∞-monotone
transport plans γ and γ̃, i.e., γ = (Id× T )]µ and γ̃ = (Id× T̃ )]µ. Let A ⊂ Rd be a Borel
set such that for all x ∈ A, one has T (x) 6= T̃ (x). Define

R(A) = {z ∈ Rd : ∃x ∈ A s.t.

max{c(x, T (z)), c(z, T̃ (x))} < max{c(x, T̃ (x)), c(z, T (z))}}.

Then µ(A \ R(A)) = 0.

Remark 4.2.12. The definition of R(A) is not symmetric with respect to the interchange
of roles of T and T̃ , in the sense that

R̃(A) = {z ∈ Rd : ∃x ∈ A s.t.

max{c(x, T̃ (z)), c(z, T (x))} < max{c(x, T (x)), c(z, T̃ (z))}}.

is not necessarily equal to R(A). However, the same result can also be proven for R̃(A).

Proof. First of all we observe that

µ(A \ R(A)) = µ
(
π1(R(γ)) ∩ π1(R(γ̃)) ∩A \ R(A)

)
= µ

(
π1(R(γ)) ∩ π1(R(γ̃)) ∩ Leb (A) \ R(A)

)
,

since γ and γ̃ are respectively concentrated on R(γ) and R(γ̃) and µ << Ld. We will prove
that

π1(R(γ)) ∩ π1(R(γ̃)) ∩ Leb (A) \ R(A) = ∅.

Let us assume by contradiction that there exists x ∈ π1(R(γ)) ∩ π1(R(γ̃)) ∩ Leb (A) \
R(A) and consider (x, T (x)) ∈ R(γ) and (x, T̃ (x)) ∈ R(γ̃). By definition of A, we have
T (x) 6= T̃ (x). Thanks to the second part of Theorem 4.2.8 applied to R(γ̃), we can find
(x′, y′) = (x′, T̃ (x′)) ∈ R(γ̃) such that x′ ∈ A and

max{c(x, T̃ (x′)), c(x′, T (x))} < max{c(x, T (x)), c(x′, T̃ (x′))}. (4.2.13)

We conclude noticing that the inequality (4.2.13) implies that x ∈ R(A), contradicting the
fact that x ∈ A \ R(A).

Theorem 4.2.13. Let µ and ν be two probability measures on Rd, with compact support
and µ << Ld. Assume that the function c : Rd × Rd → R+ satisfies the assumptions of
Theorem 4.2.8 and that ν({y0}) > 0 for some y0 ∈ Rd. Let T and T̃ be optimal transport
maps corresponding respectively to ∞-c-cyclically monotone transport plans γ and γ̃. Then

µ
(
T−1({y0}) \ T̃−1({y0})

)
= 0.

90



4.2. L∞-OPTIMAL TRANSPORT FOR A CLASS OF STRICTLY QUASICONVEX
COST FUNCTIONS

Proof. Assume, by contradiction, that

µ
(
T−1({y0}) \ T̃−1({y0})

)
> 0.

We first restrict to the set of the full µ-measure where both the graphs of T and T̃ are∞-c-
cyclically monotone (by Theorem 4.2.10 we know that we may consider the set π1(R(γ))∩
π1(R(γ̃))). We may also assume, restricting our attention to the set of interest, that

T (x) 6= T̃ (x) for all x ∈ π1(R(γ)) ∩ π1(R(γ̃)). (4.2.14)

In this proof we will apply Lemma 4.2.11 repeatedly to different subsets A of suppµ, this
is always possible by Assumption (4.2.14).

We define B0 = {y0}, A1 = T−1(B0), A′1 = R(A1), and B1 = T̃ (A′1). We continue
recursively: assuming that for all j ∈ {1, . . . , k − 1} the sets Aj , A′j , and Bj have already
been defined we set

Ak = T−1(Bk−1) , A′k = R(Ak) , and

Bk = T̃ (A′k).

We observe that by construction µ(Aj) > 0 and, by Lemma 4.2.11, also µ(A′j) > 0 for
every j. We continue by defining

P1 =
⋃
k≥1

Ak and P2 =
⋃
k≥1

Bk.

We prove the following intermediate claim:

Claim y0 ∈ P2.
Proof. Let us first show that

µ(P1) = ν(P2). (4.2.15)

We prove that ν(P2) ≤ µ(P1). Right from the definitions of the sets P1, P2, Ak, and Bk
we see that

T−1(B0 ∪ P2) = P1.

Since ν = T]µ, we get

ν(P2) ≤ ν(B0 ∪ P2) = µ(T−1(B0 ∪ P2)) = µ(P1). (4.2.16)

In order to prove the other direction we first observe that, by using Lemma 4.2.11 with
A = Ak, we have

µ(Ak \ R(Ak)) = 0 for all k ≥ 1; (4.2.17)

remember that in our construction A′k = R(Ak). Now

µ(P1) = µ

⋃
k≥1

Ak

 a)

≤ µ

⋃
k≥1

A′k


≤ µ

⋃
k≥1

T̃−1(T̃ (A′k))

 = µ

T̃−1

⋃
k≥1

T̃ (A′k)


= ν

⋃
k≥1

T̃ (A′k)

 = ν

⋃
k≥1

Bk

 = ν(P2)
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where inequality a) is due to Condition (4.2.17). So we have µ(P1) ≤ ν(P2), which com-
pletes the proof of Condition (4.2.15).
If by contradiction y0 /∈ P2, since ν({y0}) > 0 (remember that in our construction
{y0} = B0), then

ν(P2) < ν(B0 ∪ P2) = µ(P1), (4.2.18)

where in the last equality we have used Condition (4.2.16). Inequality (4.2.18) is in con-
tradiction with (4.2.15) and the Claim is proven.
By the inclusion y0 ∈ P2 we now know that y0 belongs to Bk for some k ≥ 1. Therefore
there exist x′k ∈ A′k (remember that Bk = T̃ (A′k)) such that y0 = T̃ (x′k). Next we choose
xk ∈ Ak such that

max{c(xk, T̃ (x′k)), c(x
′
k, T (xk))} < max{c(xk, T (xk)), c(x

′
k, T̃ (x′k))}.

We recall that this is possible since A′k = R(Ak).
Because by construction Ak = T−1(Bk−1) and xk ∈ Ak, we have that T (xk) ∈ Bk−1 =

T̃ (A′k−1), so there exists x′k−1 ∈ A′k−1 such that T̃ (x′k−1) ∈ Bk−1 and T (xk) = T̃ (x′k−1).
And so we continue, decreasing with the indices down until having defined x′1 and x1. Since
x1 ∈ A1 = T−1(B0) we have that T (x1) = y0 = T̃ (x′k). Thus, we have constructed two

k-uples of points (xj)
k
j=1 and

(
x′j

)k
j=1

such that for all j, xj ∈ Aj and x′j ∈ A′j .{
T (xj) = T̃ (x′j−1) for all 2 ≤ j ≤ k;

T (x1) = T̃ (x′k) = y0.
.

and that for all 1 ≤ j ≤ k

max{c(x′j , T (xj)), c(xj , T̃ (x′j))} < max{c(x′j , T̃ (x′j)), c(xj , T (xj))}. (4.2.19)

We observe that by Condition (4.2.19), xj 6= x′j . We now apply to the set {xj}kj=1 the
cyclical permutation

σ(j) =

{
j + 1 if j ∈ {1, . . . , k − 1}
1 if j = k

.

We have

max
1≤j≤k

c(xj , T (xj))
a)

≤ max
1≤j≤k

c(xj , T (xσ(j)))
b)
= max

1≤j≤k
c(xj , T̃ (x′j))

c)
< max

1≤j≤k
max{c(xj , T (xj)), c(x

′
j , T̃ (x′j))} (4.2.20)

where inequality a) follows from the ∞-cm assumed on T . Equality b) follows from the
fact that by construction T (xσ(j)) = T̃ (x′j) for all j ∈ {1, . . . , k}. Estimate c) follows from
Condition (4.2.19). Concerning the last term in (4.2.20), we have two possibilities: either

max
1≤j≤k

max{c(xj , T (xj)), c(x
′
j , T̃ (x′j))} = c(xm, T (xm)) for some m

or
max

1≤j≤k
max{c(xj , T (xj)), c(x

′
j , T̃ (x′j))} = max

1≤j≤k
c(x′j , T̃ (x′j)) .
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The first case leads immediately to a contradiction. So we are left with the latter case. We
apply to the set {x′j}kj=1 the cyclical permutation

τ(j) =

{
j − 1 if j ∈ {2, . . . , k}
k if j = 1

.

We get

max
1≤j≤k

max{c(xj , T (xj)), c(x
′
j , T̃ (x′j))} = max

1≤j≤k
c(x′j , T̃ (x′j))

a)

≤ max
1≤j≤k

c(x′j , T̃ (x′τ(j)))
b)
= max

1≤j≤k
c(x′j , T (xj)) (4.2.21)

c)
< max

1≤j≤k
max{c(xj , T (xj)), c(x

′
j , T̃ (x′j))} . (4.2.22)

Above, in a) we have used the ∞-cm property of T̃ , in b) the fact that, by construction,
T (xj) = T̃ (x′τ(j)) for all j ∈ {1, . . . , k}, and in c) again Condition (4.2.19). Estimate
(4.2.21) is impossible, so we get a contradiction and we are done.

Corollary 4.2.14. Let us assume that c, µ are as in Theorem 4.2.13 and that ν is a
discrete measure, then there exists a unique ∞-c-cyclically monotone transport plan.

Example 4.2.15. Let us consider c, µ and ν be the same as in Example 4.1.23. Even though
in this case all plans are optimal, by Theorem 4.2.13 we know that there exists just one
which is ∞-cyclically monotone and it is the one which splits the unitary square in two
triangles and sends the triangle of vertices {(0, 0), (0, 1), (1, 1)} to the point (1, 2) and the
other triangle to the point (2, 1).

4.2.3 Some examples

In this section we give some examples of cost functions which satisfy the assumptions of
Theorem 4.2.10. We also present a counterexample which shows that the assumption of
the strict quasiconvexity of c(·, y) is necessary.

Example 4.2.16. Let c : Rd × Rd → R+ be a cost function of the type introduced in [79],
defined by

c(x, y) := h(y − x),

where h : Rd → R+ is a continuous and strictly quasiconvex function. Here, we also
assume that there exists a unique p ∈ Rd such that h(p) = 0, that h is differentiable, and
that ∇h(v) 6= 0 for every v 6= p. This cost function satisfies the assumptions of Theorem
4.2.10 from which we infer that the ∞-m transportation plans corresponding to c are of
the Monge type. The fact that c fulfils the condition (iv) can be seen as a special case of
the proof of the example below.

Example 4.2.17. Let c : Rd × Rd → R+ be defined by

c(x, y) := h(G(y)− F (x)),
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where h : Rd → R+ is defined as in the Example 4.2.16, F,G : Rd → Rd affines transfor-
mations of the form

F (x) = Ax+ b and G(y) = A′y + b′,

where A,A′ ∈Md×d are invertible matrices and b, b′ ∈ Rd.
We observe that the cost function c satisfies the assumptions of Theorem 4.2.10. By the
assumptions on h and the invertibility of F and G, Assumption (i) is satisfied. The strict
quasiconvexity of h and the linearity of F and G ensure the strict quasiconvexity of c(·, y)
for every y, and, for the same reason, c(x, ·) is strictly quasiconvex for every x.
Let us prove that the “twist kind” condition holds. Let us assume that there exist y, ỹ ∈ Rd
and λ > 0 such that c(x, y) = c(x, ỹ) = λ and nc(·,y)(x) = nc(·,ỹ)(x). We first observe that,
by the fact that

∇xc(x, y) = −∇F (x)T · ∇h(G(y)− F (x)) = −AT · ∇h(G(y)− F (x)),

∇xc(x, y) 6= 0 for every x, y such that G(y) − F (x) 6= p (that is, for every x, y such that
c(x, y) 6= 0). Thus, the equality between the two unit normals becomes

∇xc(x, y)

|∇xc(x, y)|
=
∇xc(x, ỹ)

|∇xc(x, ỹ)|
.

Since
∇yc(x, y) = A′T · ∇h(G(y)− F (x)),

thanks to the invertibility of A′ we have that

∇xc(x, y) = −AT (A′T )−1∇yc(x, y).

The computation above, the invertibility assumptions on A and A′ and the condition on
the normalized gradients imply

∇yc(x, y)

|∇yc(x, y)|
=
∇yc(x, ỹ)

|∇yc(x, ỹ)|
.

We observe that both y and ỹ belong to the boundary of the sublevel set with respect to
x, Cxλ := {z ∈ Rd : c(x, z) ≤ λ}. Then y and ỹ must coincide, since they are two points on
the smooth boundary of a strictly convex set Cxλ with the same normal.

The following is an example of an ∞-cm plan that is not given by a map for a cost
function that doesn’t satisfy the assumptions of Theorem 4.2.10.

Example 4.2.18. We consider the space X = R2 with the cost function given by the ∞-
distance

d((x1, y1), (x2, y2)) = max{|x1 − y1|, |x2 − y2|} .

We denote by Q := [0, 1]× [0, 1], the unit square centered at
(

1
2 ,

1
2

)
. We take µ = L2|Q, the

2-dimensional Lebesgue measure restricted to Q, and ν = L2|Q+(10,0), the 2-dimensional
Lebesgue measure restricted to the translation of Q by the vector (10, 0). Let γ ∈ Π(µ, ν)
be defined by

γ = µ⊗H1|{x1+10}×[0,1],

that is, the transport plan which distributes evenly every point (x1, x2) ∈ suppµ to the
vertical line segment {(x1 +10, y2) | y2 ∈ R}∩ (Q+(10, 0))}. This plan is clearly not given
by a map, but it is ∞-cm.
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To prove that γ is ∞-c-cyclically monotone we fix points {((xi1, xi2), (xi1 + 10, yi2))}Ni=1

in the support of γ and a permutation σ of the set {1, . . . , N}. Now

max
1≤i≤N

{d((xi1, x
i
2), ((xi1 + 10, yi2))} = max

1≤i≤N

{
max{10, |xi2 − yi2|}

}
= 10

where in the last equality we have used the fact that

|xi2 − yi2| ≤ 1 < 10 .

Let us prove that
max

1≤i≤N
{d((xi1, x

i
2), (x

σ(i)
1 + 10, y

σ(i)
2 ))} ≥ 10 .

It is enough to show that there exists an index k ∈ {1, . . . , N} such that

|xk1 − (x
σ(k)
1 + 10)| ≥ 10.

We may assume that σ is not the identity: for the identity permutation the∞-cm condition
holds as an equality. Let us denote I = {1, . . . , N} and let k0 be such that

xk0
1 = min{xk1 | k ∈ I}.

The point xk0
1 satisfies xk0

1 ≤ x
σ(k0)
1 . Therefore,

|xk0
1 − (x

σ(k0)
1 + 10)| = 10 + (x

σ(k0)
1 − xk0

1 ) ≥ 10

and we are done.
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Chapter 5

Entropic regularization of L∞-
Optimal Transport

5.1 Preliminaries

5.1.1 A brief survey of Entropic Optimal Transport

Definition 5.1.1. Given a measurable space (X,A) and γ, η ∈ P(X), the relative entropy
of γ with respect to η is defined as

H(γ|η) :=

{∫
Rd×Rd log

(
dγ
dη

)
dγ =

∫
Rd×Rd log

(
dγ
dη

)
d
(
dγ
dη

)
dη if γ << η,

+∞ otherwise.

Remark 5.1.2. Noting that the function h : [0,+∞]→ [−e−1,+∞] defined by h(t) = t log t
is strictly convex, we see that the functional γ 7→ H(γ|η) is convex e nonnegative (by
Jensen’s inequality) and strictly convex on the set where it is finite. Clearly H(γ|η) = 0 if
and only if γ = η.

Assumptions. In this chapter:

• X = Rd, d ≥ 1;

• µ, ν ∈ P(Rd);

• γ ∈ P(Rd × Rd).

Definition 5.1.3 (Entropic Optimal Transport Problem). Given c : Rd × Rd → R, the
entropic optimal transport problem with regularization parameter ε is

inf
Π(µ,ν)

{∫
Rd×Rd

cdγ + εH(γ|µ⊗ ν)

}
. (εEOT)

This problem admits a solution under mild assumptions on c, as we will see in Theorem
5.1.9. Let us also underline the fact that (εEOT) provides a good approximation of (OT):
among other convergence results (see for instance [90, 100]) we state here the Γ-convergence
result established by Carlier et al. in [38].
Let us define the following functionals:

Jε :=

{∫
Rd×Rd cdγ + εH(γ|µ⊗ ν) if γ ∈ Π(µ, ν),

+∞ otherwise,
(5.1.1)
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and

J :=

{∫
Rd×Rd cdγ if γ ∈ Π(µ, ν),

+∞ otherwise.
(5.1.2)

Theorem 5.1.4 (Γ-convergence). Given two probability measures µ, ν ∈ P(Rd) with finite
entropy and finite moment of order p > 1 (i.e.

∫
Rd |x|

pdµ < +∞) and a cost function
c : Rd × Rd → R such that c(x, y) = h(|x − y|) and |x|p ≤ h(x) ≤ 1 + |x|p. Then,
when ε → 0, Jε Γ-convergences to J with respect to the weak convergence of measures on
P(Rd × Rd).

Remark 5.1.5. If µ and ν have compact support then the same result holds for any c
continuous and nonnegative.

Let η << µ⊗ ν and consider the problem

inf
Π(µ,ν)

H(γ|η). (S)

This is a generalized version (see [100]) of the so-called static Schrödinger problem (see
[90]), where static refers to the fact that one is interested only in the initial and final
configuration µ and ν.

We state here an important result of existence and uniqueness of optimal solution for
the problem (S). The proof of this result can be found for example in [100](Theorem 2.1)
or in [90]. The interest of the following result relies also on the fact that it provides a
characterization of the density with respect to µ⊗ ν of the optimal solution γ∗.

Theorem 5.1.6. Let η << µ⊗ ν, such that dη
dµ⊗ν > 0 µ⊗ ν a.e., and let us assume that

there exists γ ∈ Π(µ, ν) such that1 H(γ|η) < +∞, then there exists a unique coupling γ∗,
such that

γ∗ = arg min
Π(µ,ν)

H(γ|η),

called the (static) Schrödinger bridge from µ to ν. Moreover:

(a) If γ∗ ∈ Π(µ, ν) is the Schrödinger bridge, then there exist two functions ϕ ∈ L1
µ(Rd)

and ψ ∈ L1
ν(Rd), called Schrödinger potentials, such that

dγ∗
dη

= eϕ(x)+ψ(y) η-a.e.

and ϕ and ψ are unique up to an additive constant2.

(b) Conversely, if γ0 ∈ Π(µ, ν) and there exist two measurable functions ϕ,ψ : Rd →
[−∞,∞) such that

dγ0

dη
= eϕ(x)+ψ(y) η-a.e.,

then γ0 = γ∗ and ϕ ∈ L1
µ(Rd) and ψ ∈ L1

ν(Rd).

Thanks to the convexity, the problem (S) has a dual formulation, as stated in the
following theorem.

1for instance log( dµ⊗ν
dη

) ∈ L1(µ⊗ ν)
2i.e. if ϕ′ and ψ′ are potentials, then ϕ′ = ϕ+ a µ a.e. and ψ′ = ψ − a ν a.e., for some a ∈ R
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Theorem 5.1.7 (Duality). Under the same assumptions on η of Theorem 5.1.6, let us
consider the problem

sup
ϕ∈L1

µ,ψ∈L1
ν

{∫
Rd
ϕ(x)dµ+

∫
Rd
ψ(y)dν −

∫
Rd×Rd

eϕ(x)+ψ(y)dη + 1

}
. (D)

Then (S)=(D), Moreover the supremum is attained by the Schrödinger potentials (ϕ∗, ψ∗)
and the maximizers are unique up to an additive constant. Therefore if γ∗ is the Schrödinger
bridge, the (D) becomes

H(γ∗|η) =

∫
Rd
ϕ∗(x)dµ+

∫
Rd
ψ∗(y)dν.

Remark 5.1.8. Let η = α−1
ε e−

c
εµ⊗ ν, where αε :=

∫
e−

c
εdµ⊗ ν, then

H(γ|µ⊗ ν) =

∫
log

(
dγ

dη

dη

µ⊗ ν
α−1
ε

)
dγ

= H(γ|η)−
∫
c

ε
dγ − log(αε)

and thus ∫
Rd×Rd

cdγ + εH(γ|µ⊗ ν) = εH(γ|η)− ε logαε, (5.1.3)

that means that for this choice of η and for every fixed parameter ε, the (εEOT) problem is
equivalent to the static Schrödinger problem (S). Therefore if (for instance) c ∈ L1(µ⊗ ν)
we can apply Theorem 5.1.6 and 5.1.7, obtaining the following result.

Theorem 5.1.9. Let c : Rd × Rd → R ∈ L1(µ⊗ ν) and ε > 0, then there exists a unique
coupling γε ∈ Π(µ, ν), such that

γε = arg min
Π(µ,ν)

{∫
Rd×Rd

cdγ + εH(γ|µ⊗ ν)

}
and

dγ

dµ⊗ ν
= eϕε(x)+ψε(y)− c(x,y)

ε ,

where ϕε = ε(ϕ∗− logαε
2 ) and ψε = ε(ψ∗− logαε

2 ), and ϕ∗, ψ∗ are the Schrödinger potentials
defined in Theorem 5.1.6, with η = α−1

ε e−
c
εµ⊗ ν.

Moreover

max
ϕ∈L1

µ,ψ∈L1
ν

∫
Rd
ϕ(x)dµ+

∫
Rd
ψ(y)dν − ε

∫
Rd×Rd

e
ϕ(x)+ψ(y)−c(x,y)

ε dµ⊗ ν + 1

=

∫
Rd
ϕε(x)dµ+

∫
Rd
ψε(y)dν = (εEOT).

5.1.2 Discrete Entropic Optimal Transport and Sinkhorn Algorithm

For every fixed ε > 0, the discrete version of the entropic optimal transport problem at
scale ε will be

min
γ∈Π(µ,ν)

∑
i,j

γi,jci,j + εH(γ|µ⊗ ν)

 , (εDEOT)
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where the discrete relative entropy of γ with respect to µ⊗ν = (µiνj)i,j becomes (assuming
without loss of generality that µi, νj 6= 0 for any i, j)

H(γ|µ⊗ ν) =
∑
i,j

γi,j log

(
γi,j
µiνj

)
.

According to Remark 5.1.8 (see (5.1.3)), if ηi,j = e−
cij
ε µiνj , the problem (εDEOT) is

equivalent to
min

γ∈Π(µ,ν)
εH(γ|η)− ε log aε, (DS)

with aε =
∑
e−

cij
ε µiνj .

We observe that

H(γ|η) =
∑
i,j

γi,j log

(
γi,j

e−
ci,j
ε µiνj

)

=
∑
i,j

γi,j log

(
γi,j

e−
ci,j
ε

)
−
∑
i

µi log(µi)−
∑
j

νj log(νj),

where
∑

i µi log(µi) and
∑

j νj log(νj) are given constants. So we have that the problem
of finding a minimizer for (εDEOT) (and thus for (DS)) is equivalent to solving

arg min KL(γ|K) := arg min
Π(µ,ν)

∑
i,j

γi,j log

(
γi,j
Kij

)
− γi,j +Ki,j

where Ki,j = e−
ci,j
ε is known as Gibbs kernel associated to the cost matrix (ci,j)i,j and

KL(γ|K) is the Kullback–Leibler divergence between couplings. In other words, the unique
solution γε of the (εDEOT) is the projection with respect to the K-L divergence of the
Gibbs kernel into Π(µ, ν),

γε := arg min
Π(µ,ν)

PKL
Π(µ,ν)(K).

The Iterative Fitting Procedure or Sinkhorn Algorithm - Primal version

In the discrete case we have also another similar version of Theorem 5.1.9 (see Chapter 4
in [58]): if γε is the solution of (εDEOT), there exists (f ε, gε) ∈ Rn × Rm such that

(γε)i,j = ef
ε
iKi,je

gεj = uεiKi,jv
ε
j , (5.1.4)

with (uε, vε) = (ef
ε
, eg

ε
). One can see that f ε = ϕε + ε logµ and gε = ψε + ε logµ, where

ϕε and ψε are the potentials (unique up to an additive constant) defined by Theorem 5.1.9.
Since (5.1.4) means that γε = diag(uε)Kdiag(vε) ∈ Π(µ, ν), we have that (uε, vε) must
satisfies

diag(uε)Kdiag(vε)1m = uε �Kvε = µ (5.1.5)
diag(vε)Kᵀdiag(uε)1n = vε �Kᵀuε = ν, (5.1.6)

where 1n is the vector of size n with all entries equal to 1, diag(u) is the diagonal matrix
with diagonal equal the vector u and the symbol � corresponds to entrywise multiplication
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of vectors. The algorithm which solves the equation (5.1.5), (5.1.6) has been firstly intro-
duced by Sinkhorn in [114] and it is also known as Iterative Proportional Fitting Procedure
(IPFP), because it proceeds iteratively, by modifying first u so that it satisfies Equation
(5.1.5) and then v to satisfy (5.1.6).

Sinkhorn algorithm - primal version
Initialize v(0) := 1m, then the algorithm is the following

u(l) :=
µ

Kv(l)
and γ(2l) := diag(u(l))Kdiag(v(l)) (5.1.7)

v(l+1) :=
ν

Kᵀu(l)
and γ(2l+1) := diag(u(l))Kdiag(v(l+1)) (5.1.8)

where the division is to be intended entrywise. We remark that a different inizialization
leads to different (u, v) which are only defined up to a multiplicative constant, but the
solution converges in any case to diag(u)Kdiag(v), as it has been showed by Franklin and
Lorenz in [68] who proved, using the Hilbert projective metric on the space of positive
vectors of Rn, the linear convergence of the Sinkhorn’s interations.

Sinkhorn algorithm - dual version

There exists also a dual - equivalent to the primal - version of the Sinkhorn algorithm.
Recalling Theorem 5.1.9 the dual formulation of the entropic optimal transport in the
discrete case looks

max
(f,g)∈Rn×Rm

∑
i

fiµi +
∑
j

gjνj − ε
∑
i,j

e
fi
ε e−

ci,j
ε e

gj
ε µiνj

 (εDD)

and of course (εDEOT)=(εDD). We observe that∑
i

fiµi +
∑
j

gjνj − ε
∑
i,j

e
fi
ε e−

ci,j
ε e

gj
ε µiνj

is equal to∑
i

fiµi +
∑
j

gjνj − ε
∑
i,j

e
fi
ε e−

ci,j
ε e

gj
ε elog(µi)+log(νj)

=
∑
i

(fi + log(µi))µi +
∑
j

(gj + log(νj))νj − ε
∑
i,j

e
fi+log(µi)+gj+log(νj)−ci,j

ε

− log(µi)− log(νj)

=
∑
i

fiµi +
∑
j

gjνj − ε
∑
i,j

e
fi
ε e−

ci,j
ε e

gj
ε − log(µi)− log(νj).

Therefore

(εDD) = max
(f,g)∈Rn×Rm

∑
i

fiµi +
∑
j

gjνj − ε
∑
i,j

e
fi
ε e−

ci,j
ε e

gj
ε − log(µi)− log(νj)


(5.1.9)
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In order to obtain the optimal couple (f, g) one can compute the gradients of the argument
in the right-hand side of the equation above, first with respect to f and then with respect
to g and impose them to be equal to 0, obtaining, for every component,

µi − e
fi
ε

∑
j

e−
ci,j
ε e

gj
ε = 0,

νj − e
gj
ε

∑
i

e−
ci,j
ε e

fi
ε = 0

and thus

f = ε log(µ)− ε log(Ke
g
ε ),

g = ε log(ν)− ε log(Kᵀe
f
ε ),

where log has to be intended entry-wise.
Therefore a simple approach to solving computationally the unconstrained maximization
problem (εDD) is to use an exact block coordinate ascent strategy, namely to update al-
ternatively f and g to cancel the respective gradients.

Sinkhorn algorithm - dual version
Initialize with g(0), then the algorithm will proceed as follows. For l ≥ 0:

f (l+1) = ε log(µ)− ε log

(
Ke

g(l)

ε

)
= ε log(µ)− ε log

∑
j

Ki,je
g
(l)
j
ε

 , (5.1.10)

g(l+1) = ε log(µ)− ε log

(
Kᵀe

f(l+1)

ε

)
= ε log(µ)− ε log

(∑
i

Kᵀ
i,je

f
(l+1)
i
ε

)
. (5.1.11)

We observe that iterations (5.1.10) and (5.1.11) are mathematically equivalent to the ones
of the primal version of Sinkhorn ((5.1.7),(5.1.8)). Indeed, we recover that at any iteration

(f (l), g(l)) = ε
(

log
(
u(l)
)
, log

(
v(l)
))

.

Definition 5.1.10. Given z ∈ Rn the soft-minimum of z at scale ε > 0 is defined by

minε(z) := −ε log

(
n∑
i

e−
zi
ε

)
.

Remark 5.1.11. First of all we notice that minε(z) ≤ min(z) := mini=1,...,n{zi} and that
minε(z)→ min(z) when ε→ 0. Moreover for any w ∈ R

minε(z) = w − ε log

(
n∑
i

e−
zi−w
ε

)
.

We observe that each components of the column vectors f (l+1) and g(l+1) in the iterations
(5.1.10) and (5.1.11) can be rewritten as

f
(l+1)
i = minε

(
ci,j − g(l)

j

)
j

+ ε logµi, (5.1.12)

g
(l+1)
j = minε

(
ci,j − f (l+1)

i

)
i
+ ε log νj , (5.1.13)
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where the term minε

(
ci,j − g(l)

j

)
j
denotes the soft-min of the i-th row of the matrix

C − 1m(g(l))
ᵀ and minε

(
ci,j − f (l+1)

i

)
i
denotes the soft-min of the j-th column of the

matrix C − f (l+1)
1n

ᵀ.

A strategy to avoid underflow for small values of ε is to use the log-sum-exp trick in
the iterations (5.1.12) and (5.1.13), which means rewriting the soft minimum as suggested
in the Remark 5.1.11.

Log-Domain Sinkhorn
Let G(l)

i := minj=1,...,m

{
ci,j − g(l)

j

}
j
and F

(l)
j := mini=1,...,n

{
ci,j − f (l)

i

}
i
, and initialize

g(0), then the Sinkhorn algorithm is equivalent to

f
(l+1)
i = minε

(
ci,j − g(l)

j −G
(l)
i

)
j

+ ε logµi +G
(l)
i , (5.1.14)

g
(l+1)
j = minε

(
ci,j − f (l+1)

i − F (l+1)
j

)
i
+ ε log νj + F

(l)
j , (5.1.15)

In contrast to the original iterations (5.1.10) and (5.1.11), these log-domain iterations
(5.1.14) and (5.1.15) are stable for arbitrary ε > 0. Indeed for any vector z,

n∑
i

e−
zi−z
ε ≥ e−

z−z
ε = 1,

so that in the iterations (5.1.14) and (5.1.15) the argument of the logarithm is never smaller
than 1.

5.2 L∞-Entropic Optimal Transport

In the sequel, we will always assume that

1. the transportation cost c : Rd × Rd → R+ is continuous,

2. the fixed marginals µ and ν of the problem are two Borel probability measures on
Rd with compact support.

Note that every γ in Π(µ, ν) has its support in suppµ × supp ν and that c is uniformly
continuous on suppµ× supp ν.
In this setting, it seems natural to introduce, for ε > 0 and exponent p ≥ 1 the functionals
Jp,ε, J∞ : P(Rd × Rd)→ R

Jp,ε(γ) :=


(∫

Rd×Rd c(x, y)pdγ(x, y) + εH(γ|µ⊗ ν)
) 1
p if γ ∈ Π(µ, ν),

+∞ otherwise,

and

J∞(γ) :=

{
||c||L∞(γ) if γ ∈ Π(µ, ν),

+∞ otherwise.
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Then we define

γp,ε := arg min
P(Rd×Rd)

Jp,ε(γ) = arg min
Π(µ,ν)

(∫
Rd×Rd

c(x, y)pdγ(x, y) + εH(γ|µ⊗ ν)

) 1
p

, (5.2.1)

which exists and is unique by Theorem 5.1.9, and

γ∞ ∈ arg min
P(Rd×Rd)

J∞(γ) = arg min
Π(µ,ν)

C∞(γ) = arg min
Π(µ,ν)

||c||L∞(γ), (5.2.2)

whose existence is guaranteed by Theorem 4.1.21.

5.2.1 Γ-convergence

In this section we will present a result regarding the Γ-convergence of Jp,ε to J∞.
However just letting p → ∞ and ε → 0 is not enough to ensure Γ-convergence. Indeed,
without additional assumptions, it can happen, as shown in the Example (5.2.1) below,
that minimizers of Jp,ε do not converge to a minimizer of J∞ (i.e. a solution of (OT∞)).
Example 5.2.1. Let the cost c such that c ≤ 1

2 and ε = 1
p . Then the minimizer γp of Jp, 1

p

satisfies ∫
cpdγp +

1

p
H(γp|µ⊗ ν) ≤

∫
cpdµ⊗ ν ≤ 2−p

and thus
H(γp|µ⊗ ν) ≤ p2−p.

Hence γp converges (actually strongly by Pinsker’s inequality, see e.g. Lemma 2.5 in [118])
to µ⊗ ν which in general is not a minimizer of J∞.

On the one hand, the example above suggests that Γ-convergence of the regularizations
Jp,ε to J∞ require conditions relating ε to p. On the other hand, in the previous example,
we see that the range of cp compared to the size of the entropic penalization ε is crucial.
With this in mind, it is worth to remarking that solution of the problem

arg min
Π(µ,ν)

||c||L∞(γ)

are invariant when replacing c with an increasing function of c. In particular, as shown in
Theorem 5.2.4 below, one can replace c by c+C, with C > 0 such that cp is large enough
to dominate the entropic term and to have Γ-convergence as p → ∞ for a fixed (or even
large) value of ε.

For the Γ-limsup inequality, we have used the so-called block approximation technique
introduced in [38], which is defined as follows:

Definition 5.2.2. Let γ ∈ Π(µ, ν). For δ > 0 and k ∈ Zd, we denote by Qδk the cube
δ(k + [0, 1)d). The block approximation of γ at scale δ ∈ (0, 1) is then defined by

γδ :=
∑

k,l∈Zd : µ(Qδk)>0, ν(Qδl )>0

γ(Qδk ×Qδl )
µ(Qδk)ν(Qδl )

µδk ⊗ νδl (5.2.3)

where µδk and νδl are defined by

µδk(A) = µ(Qδk ∩A), νδl (A) = ν(Qδl ∩A)

for every Borel subset A of Rd.
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For the sake of completeness, we provide a short proof of the properties of the block
approximation we will use in the proof of Theorem 5.2.4. These properties have been first
proved by Carlier et al. in [38] and an interesting improvement is provided in [39], where
the bound on H(γδ|µ ⊗ ν) is given by the upper entropy (or Rény) dimension of µ and
ν and this allows to cover the support of µ ⊗ ν with general partitions rather than cubes
and, if µ has finite log-moment one can also drop the compactness assumption on suppµ.

Lemma 5.2.3. Let γ ∈ Π(µ, ν) and γδ be the block approximation of γ at scale δ ∈ (0, 1),
then γδ ∈ Π(µ, ν) and

W∞(γδ, γ) ≤
√

2dδ, (5.2.4)

H(γδ|µ⊗ ν) ≤ d log
(L
δ

)
, (5.2.5)

where L is a constant depending only on suppµ.

Proof. The fact that γδ ∈ Π(µ, ν) is easy to check by construction (see [38]). Now observe
that by (5.2.3) the density of γδ with respect to µ⊗ ν is

dγδ

dµ⊗ ν
(x, y) =


γ(Qδk×Q

δ
l )

µ(Qδk)ν(Qδl )
if (x, y) ∈ Qδk ×Qδl , and µ(Qδk), ν(Qδj) > 0,

0 otherwise.

Therefore

H(γδ|µ⊗ ν) =
∑

k,l∈Zd : µ(Qδk)>0, ν(Qδl )>0

∫
Qδk×Q

δ
l

log

(
γ(Qδk ×Qδl )
µ(Qδk)ν(Qδl )

)
dγδ

≤
∑

k,l∈Zd : µ(Qδk)>0, ν(Qδl )>0

∫
Qδk×Q

δ
l

log

(
1

µ(Qδk)

)
dγδ

=
∑

k∈Zd : µ(Qδk)>0

µ(Qδk) log

(
1

µ(Qδk)

)
,

where the inequality is due to the fact that γ(Qδk×Q
δ
l )

ν(Qδl )
≤ 1, while the last equality is obtained

summing over I. If L ≥ 1 is such that suppµ is contained in a cube of side L − 1, the
number of cubes Qδk with positive µ-measure is not greater than Nδ :=

(
L
δ

)d. Therefore,
applying Jensen’s inequality to the concave function f(z) = z log(1

z ), we have

H(γδ|µ⊗ ν) ≤
Nδ∑
k=1

µ(Qδk) log

(
1

µ(Qδk)

)

≤ Nδ

((
1

Nδ

Nδ∑
k=1

µ(Qδk)

)
log

(
1∑Nδ

k=1
1
Nδ
µ(Qδk)

))
= log(Nδ) = d log(L)− d log(δ),

which proves (5.2.5).

By construction γ(Qδk × Qδl ) = γδ(Qδk × Qδl ), for any k, l. Let J be the set of pairs of
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indices (k, l) such that γδ(Qδk ×Qδl ) > 0 and set Q̄j = Qδk ×Qδl , for any j = (k, l) ∈ J . We
define

ηδ :=
∑
j

γ(Q̄j)γj ⊗ γδj ,

where γj(A) :=
γ(A∩Q̄j)
γ(Q̄j)

and γδj (A) :=
γδ(A∩Q̄j)
γδ(Q̄j)

. By construction ηδ ∈ Π(γ, γδ), thus

W∞(γ, γδ) ≤ ||x− y||L∞(ηδ) ≤ diam(Q̄j) =
√

2dδ.

Theorem 5.2.4. Under the general assumptions (1) and (2), we have:

1. Jp,εp Γ-converges (for the weak topology3 on P(suppµ × supp ν) to J∞ as p → ∞

provided ε
1
p
p → 0 as p→∞,

2. if in addition, c ≥ 1 +λ with λ ≥ 0, then Jp,εp Γ-converges to J∞ as p→∞ provided

lim
p→∞

1

p
log
(

1 + εp
log(p)

(1 + λ)p

)
= 0. (5.2.6)

In particular Jp,1 and Jp,p Γ-converge to J∞ as p→∞.

Proof. 1. Let γp ∈ Π(µ, ν) converge weakly star to γ. By nonnegativity of H(γp|µ ⊗ ν),
we have

lim inf
p

Jp,εp(γp) ≥ lim inf
p
‖c‖Lp(γp)

hence, for fixed q since ‖c‖Lp(γp) ≥ ‖c‖Lq(γp) for p ≥ q, we have

lim inf
p

Jp,εp(γp) ≥ lim inf
p
‖c‖Lq(γp) = ‖c‖Lq(γ)

taking the supremum with respect to q thus yields the desired Γ-liminf inequality

lim inf
p

Jp,εp(γp) ≥ ‖c‖L∞(γ) = J∞(γ).

Let us now prove the Γ-limsup inequality. For any γ ∈ Π(µ, ν) we consider γδ, the block
approximation of γ at scale δ ∈ (0, 1) defined by (5.2.3) below, whose convergence to γ is
insured by (5.2.4)4. By concavity, for p ≥ 1,

Jp,εp(γ
δ) ≤ ‖c‖Lp(γδ) + ε

1
p
pH(γδ|µ⊗ ν)

1
p

≤ ‖c‖L∞(γδ) + ε
1
p
pH(γδ|µ⊗ ν)

1
p
.

Denoting by ω a modulus of continuity of c on suppµ × supp ν, thanks to by (5.2.4), we
have

‖c‖L∞(γδ) ≤ ‖c‖L∞(γ) + ω(
√

2dδ),

3Note that, since suppµ× supp ν is compact, the weak topology defined in Definition 4.1.1 is equivalent
to what is usually called in literature weak* topology of measures, i.e. convergence tested against Cc
functions, which, in case of a compact space, are all the continuous functions.

4W∞(γ, γδ) ≥ W2(γ, γδ) and, as pointed out in Definition 4.1.12,W2(γ, γδ) → 0 implies γδ ⇀ γ (see
also Theorem 8.8 in [3])
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being
√

2dδ the diameter of the cubes of the approximation. Moreover, by (5.2.5), we have

H(γδ|µ⊗ ν)
1
p ≤ d

1
p log(L/δ)

1
p

so if we define γp as the block approximation of γ at scale (say) δ = 1
p , we obtain

lim sup
p

Jp,εp(γp) ≤ J∞(γ) + lim sup
p

(
ω
(√2d

p

)
+ d

1
p ε

1
p
p log(Lp)

1
p

)
= J∞(γ),

since we have assumed that ε
1
p
p → 0 as p→ +∞.

2. Let us now assume that c ≥ 1 + λ, the proof of the Γ-liminf inequality for Jp,εp is
exactly as above. For γ ∈ Π(µ, ν) and γp the block approximation of γ at scale 1

p , we have

Jp,εp(γp) ≤ ‖c‖L∞(γp)

(
1 +

dεp log(Lp)

(1 + λ)p

) 1
p

≤
(
J∞(γ) + ω

(√2d

p

))(
1 +

dεp log(Lp)

(1 + λ)p

) 1
p (5.2.7)

so that, as soon as (5.2.6) holds, one has

lim sup
p

Jp,εp(γp) ≤ J∞(γ).

Remark 5.2.5. Notice that in case c ≥ 1+λ for some λ > 0, Γ-convergence of Jp,εp to J∞ is
guaranteed even for fastly increasing εp like εp = pm(1 +λ)p with m ≥ 0. On the contrary,

in the general case, the condition ε
1
p
p → 0 requires to choose values of ε way too small to

be used in practice for numerical computations. This suggests in practice to rescale the
cost so that it is bounded from below by 1.

Remark 5.2.6. We observe that in (5.2.7) it is sufficient that ||c||L∞(γp) ≥ 1 + λ, for some
λ ≥ 0, therefore the conclusion of case 2. in Theorem 5.2.4 remains valid under the weaker
assumption that v∞ = minΠ(µ,ν) J∞ ≥ 1 + λ.

5.2.2 Selection of plans with ∞-cyclically monotone support

In Section 4.1.2, Definition 4.1.24, we have defined∞-c-cyclically monotone plans (∞-cm),
which are special solutions of (OT∞), indeed in addition to be characterized by restrictabil-
ity (Theorem 4.1.34), under suitable assumptions on µ and the cost function c (see Theorem
4.1.37 and Theorem 4.2.10), they are also solution of the L∞ Monge problem, i.e. there
exists a Borel map T such that γ∞ = (Id× T )] µ.

Notation. As pointed out in Section 4.1.2, when the cost function is clear from the
contest we will simply write ∞-cyclically monotone plans, omitting the dependence on c.
We also recall Remark 4.1.26, for the invariance of this notion under increasing functions
of c.
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Thanks to the Γ-convergence result (Theorem 5.2.4) proved in the previous section, we
have convergence up to subsequences of the minimizers γp,ε of Jp,ε. Indeed, Jp,ε are equi-
coercive since all the pre images are contained in Π(µ, ν), which is compact by Prokhorov’s
theorem. In particular it is sequentially compact, as P(Rd) is a Polish space (see Remark
5.1.1 in [4]). The goal of this section is to show that entropic approximation selects exactly
∞-c-cyclically monotone plans.
We shall make use of the analysis of the landmark recent article [22]. Let us first recall
the notion of (c, ε)-cyclically invariance introduced in [22]:

Definition 5.2.7. Let c : Rd × Rd → (0,∞) be a measurable function. A coupling
γ ∈ Π(µ, ν) is called (c, ε)-cyclically invariant if γ � µ ⊗ ν and its density admits a
representative dγ

dµ⊗ν : Rd × Rd → (0,∞) such that

k∏
i=1

dγ
dµ⊗ ν

(xi, yi) = exp

(
−1

ε

[
k∑
i=1

(c(xi, yi)− c(xi, yi+1))

])
k∏
i=1

dγ
dµ⊗ ν

(xi, yi+1),

for all k ∈ N∗ and {(xi, yi)}ki=1 ⊂ Rd × Rd, where yk+1 = y1.

In [22] (Proposition 2.2), it is shown that whenever

inf
γ∈Π(µ,ν)

∫
Rd×Rd

c dγ + εH(γ|µ⊗ ν) (5.2.8)

is finite, the (unique) solution γε of (5.2.8) is characterized by being (c, ε)-cyclically in-
variant. The next lemma, which is a part of Lemma 3.1 in [22], provides an estimate for
(c, ε)-cyclically invariant couplings, which will be useful for our purpose. For the reader’s
convenience we provide also here the proof.

Lemma 5.2.8. Let ε > 0 and γε ∈ Π(µ, ν) be (c, ε)-cyclical invariant. For every fixed
k ≥ 2, k ∈ N, and δ ≥ 0, let Ak,c(δ) be the set defined by

Ak,c(δ) :=

{
(xi, yi)

k
i=1 ∈

(
Rd × Rd

)k
:

k∑
i=1

c(xi, yi)−
k∑
i=1

c(xi, yi+1) ≥ δ

}
(5.2.9)

where yk+1 = y1. Let A ⊂ Ak,c(δ) be Borel. Then γkε :=
∏k
i=1 γε(dxi, dyi) satisfies

γkε (A) ≤ e
−δ
ε .

Proof. By Definition 5.2.7 of (c, ε)-cyclical invariance, for γkε a.e. (xi, yi)
k
i=1 ∈ A we have

that
k∏
i=1

dγε
dµ⊗ ν

(xi, yi) ≤ e−
δ
ε

k∏
i=1

dγε
dµ⊗ ν

(xi, yi+1).

In one defines the set Ā := {(xi, yi+1)ki=1 : (xi, yi) ∈ A}, by integrating over A with respect
to γkε =

∏
γε(xi, yi) =

∏
γε(xi, yi+1) we obtain

γkε (A) ≤ e−
δ
ε γkε (Ā) ≤ e−

δ
ε .
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The fact that the entropic approximation procedure selects ∞-cyclically monotone
plans is then ensured by the following:

Theorem 5.2.9. Let us assume that c > 0, and let γp,εp be the minimizer of Jp,εp . Then,
as p→∞, any cluster point γ∞ of the family (γp,εp) is ∞-cyclically monotone, provided

1. ε
1
p
p → 0 as p→∞,

2. εp = o(p(1 + λ)p) if, in addition, c ≥ 1 + λ with λ ≥ 0.

Proof. Up to extracting a subsequence, let us assume that γp,εp weakly star converges to
γ∞. We proceed by contradiction assuming that there exists δ > 0 and a finite sequence
of points (xi, yi)

k
i=1 contained in supp γ∞, such that

max
i=1,...,k

{c(xi, yi)} > max
i=1,...,k

{c(xi, yi+1)}+ δ.

By the continuity of the cost function c and by the uniform convergence of
(∑k

i=1 c(x
′
i, y
′
i)
p
) 1
p

to maxi=1,...,k{c(x′i, y′i)}, as p→ +∞, we deduce that for every i = 1, . . . , k there exists an
open neighborhood Ui of (xi, yi) and p(δ) > 0, such that(

k∑
i=1

c(x′i, y
′
i)
p

) 1
p

>

(
k∑
i=1

c(x′i, y
′
i+1)p

) 1
p

+ δ,

for every (x′i, y
′
i) ∈ Ui (again with the convention that y′k+1 = y′1), for every i = 1, . . . , k

and p ≥ p(δ). We now observe that

k∑
i=1

c(x′i, y
′
i)
p >

( k∑
i=1

c(x′i, y
′
i+1)p

) 1
p

+ δ

p

≥
k∑
i=1

c(x′i, y
′
i+1)p + p

(
k∑
i=1

c(x′i, y
′
i+1)p

) p−1
p

δ, (5.2.10)

where the last inequality follows from the convexity of t 7→ tp, with p > 1. Since c > 0 and
since, without loss of generality, we can assume Ui to be bounded for every i = 1, . . . , k,
there exists some b > 0 such that c ≥ b on each Ui, i = 1, . . . , k, hence, for every (x′i, y

′
i) ∈ Ui

and p ≥ p(δ)
k∑
i=1

c(x′i, y
′
i)
p >

k∑
i=1

c(x′i, y
′
i+1)p + pδbp−1. (5.2.11)

We thus have U1 × · · · × Uk ⊂ Ak,cp(pδb
p−1), where Ak,cp(pδbp−1) is defined as in (5.2.9)

with c replaced by cp. Applying Lemma 5.2.8, we thus get:

γk∞(U1 × · · · × Uk) :=
k∏
i=1

γ∞(Ui)

≤ lim inf
p

γkp,εp(U1 × · · · × Uk) :=
k∏
i=1

γp,εp(Ui)

≤ lim inf
p

e
− pδb

p−1

εp (5.2.12)
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so that if ε
1
p
p → 0 as p→∞, for large enough p one has εp ≤ bp, which yields

lim inf
p

e
− pδb

p−1

εp = 0.

On the other hand, since the points (xi, yi) belong to supp γ∞, we have that γk∞(U1×· · ·×
Uk) > 0, which yields the desired contradiction. This shows the first assertion.
Now, if c ≥ (1 + λ) with λ ≥ 0, we can replace b by (1 + λ) in (5.2.12) and the same
conclusion will be reached as soon as εp = o(p(1 + λ)p), proving the second assertion.

Remark 5.2.10. Despite what we observed in Remark 5.2.6 regarding Theorem 5.2.4, in
the proof of the second assertion of Theorem 5.2.9, it does not seem that the condition
c(x, y) ≥ 1 for every (x, y) can be weakened to J∞ ≥ 1. Note also that the condition
εp = o(p(1 + λ)p) is stronger than condition (5.2.6) that guarantees Γ-convergence when
c ≥ 1 + λ, for some λ ≥ 0.

5.2.3 Some estimates on the speed of convergence

Our aim in this section is to give some error estimates for vp − v∞ where

vp := min
γ∈Π(µ,ν)

Jp and v∞ := min
γ∈Π(µ,ν)

J∞. (5.2.13)

and we recall that Jp = Jp,1 (i.e. for the sake of simplicity we take εp = 1 as entropic
penalization parameter).

Upper bounds

Proposition 5.2.11 (Upper bounds). Let c ∈ C0,α(Rd × Rd), with α ∈ (0, 1] and let us
assume that v∞ ≥ 1 + λ for some λ ≥ 0. Then we have5

vp − v∞ ≤

{
O(e−βp), with β = min{α, log(1 + λ)} if λ > 0

O
(

log(log p))
p

)
if λ = 0.

Proof. Let γ∞ be a minimizer of J∞ and γδ be the block approximation of γ∞ at scale
δ ∈ (0, 1), as defined in (5.2.3). We observe that, by construction and by the Hölder
condition on c, denoting by A the C0,α semi-norm of c, we first have

||c||L∞(γδ) ≤ ||c||L∞(γ∞) +Aδα.

Then

vp ≤
(∫

cpdγδ +H(γδ|µ⊗ ν)

) 1
p

≤
(
||c||p

L∞(γδ)
+H(γδ|µ⊗ ν)

) 1
p

≤
(
||c||L∞(γ∞) +Aδα

)(
1 +

H(γδ|µ⊗ ν)

(1 + λ)p

) 1
p

≤ (v∞ +Aδα)

(
1 +

d log(L/δ)

(1 + λ)p

) 1
p

, (5.2.14)

5We recall that vp − v∞ might be either greater or smaller than 0. Indeed the p-norm is smaller than
the ∞-norm, but the entropy term is nonnegative.
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where the last inequality follows from Lemma 5.2.3. For λ > 0, choosing δ := e−p, (5.2.14)
becomes (setting C = d log(L))

vp ≤
(
v∞ +Ae−αp

)(
1 +

C + dp

(1 + λ)p

) 1
p

,

then for large p, one has(
1 +

C + dp

(1 + λ)p

) 1
p

= 1 +
d

(1 + λ)p
+ o
( 1

(1 + λ)p

)
.

Therefore, for p large enough,
vp ≤ v∞ +Be−βp,

for some B > 0 and β = min{α, log(1 + λ)}.
Now if λ = 0, we choose δ = p−1/α in (5.2.14) which gives

vp ≤
(
v∞ +

A

p

)
exp

(1

p
log(1 + d log(Lp1/α))

)
= v∞ +

v∞
p

log(log(p)) + o
( log(log(p)

p

)
which ends the proof.

Upper and lower bounds in the discrete case

Let us now consider the discrete case where for some points x1, . . . , xn and y1, . . . , ym in
Rd

µ =
n∑
i=1

µiδxi and ν =
m∑
j=1

νjδyj (5.2.15)

with (strictly, without loss of generality) positive weights µi and νj summing to 1. As
in Section 4.1.3 and 5.1.2, ci,j := c(xi, yj) ≥ 0 and γ will denote, with a small abuse of
notation, both the transport plan and the n×m matrix with entries γi,j .

Remark 5.2.12. In the discrete setting transport plans have a finite entropy with respect
to µ⊗ ν, with the (crude) bound

H(γ|µ⊗ ν) ≤M := −
N∑
i=1

µi log(µi)−
N∑
j=1

νj log(νj)

for every γ ∈ Π(µ, ν). So if v∞ ≥ 1 + λ with λ ≥ 0, taking γ∞ a minimizer of J∞, we
obtain

vp ≤ Jp(γ∞) ≤ v∞
(

1 +
M

(1 + λ)p

) 1
p

≤ v∞
(

1 +
M

p(1 + λ)p
+ o
( M

p(1 + λ)p

))
which gives an exponentially decaying upper bound for vp− v∞ for λ > 0 and an algebraic
upper bound vp − v∞ ≤ O(1/p) if λ = 0. The fact that v∞ ≥ 1 therefore ensures that
p(vp − v∞) is bounded from above.
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It turns out, that in the discrete setting, the condition v∞ ≥ 1 guarantees that we also
have an algebraically decaying lower bound for the error. To see this, we first need the
following:

Lemma 5.2.13. Let µ and ν be discrete measures i.e. of the form (5.2.15) and define

F∞ := arg min
Π(µ,ν)

||c||L∞(γ) = {γ ∈ Π(µ, ν) : J∞(γ) = v∞}

and for every γ ∈ F∞,

m(γ) := max{γij : γij > 0, cij = v∞}.

Then there is some θ > 0 such that m(γ) ≥ θ, for every γ ∈ F∞.

Proof. Since v∞ is the minimum of J∞ over Π(µ, ν), one can write F∞ as the set of
transport plans for which

γij > 0⇒ cij − v∞ ≤ 0

or equivalently
l(γ) :=

∑
ij

γij(cij − v∞)+ = 0.

In other words, F∞ is the facet of Π(µ, ν) where the linear form l (which is nonnegative
on Π(µ, ν)) achieves its minimum, it is therefore a convex polytope, whose extreme points
belong to the (finite) set of extreme points of F∞. Let us then denote the set of extreme
points of F∞ by {γs, s ∈ S} with S a finite index set. Thanks to Minkowski’s theorem,
we can write any γ ∈ F∞ as6

γ :=
∑
s∈S

αsγ
s, (5.2.16)

for some weights αs ≥ 0 summing to 1. In particular we may pick s0 ∈ S with αs0 ≥ 1
|S|

(with |S| denoting the cardinality of S). Then we have

m(γ) ≥ m(γs0)

|S|
≥ θ := min

s∈S

m(γs)

|S|

the strict positivity of θ then follows from the fact that S is finite and m(γs) > 0 for every
s ∈ S.

We are now ready to prove the announced lower bound.

Proposition 5.2.14 (Lower bound, discrete case). Assume that µ and ν are discrete
measures i.e. of the form (5.2.15) and that v∞ ≥ 1, then p(vp−v∞) is bounded from below.
Hence since p(vp − v∞) is also bounded from above (see Remark 5.2.12), we have

vp − v∞ = O
(1

p

)
.

6Another way to show (5.2.16) is to observe that if γ ∈ F∞ then there exists γs ∈ Π(µ, ν), with s ∈ S,
a finite set of indexes, such that γ :=

∑
s∈S αsγ

s. By Remark 4.1.20, J∞(γ) = C∞(γ) = maxs C∞(γs) and
thus γs ∈ F∞ for every s ∈ S.
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Proof. Let us argue by contradiction and assume that p(vp−v∞) is unbounded from below,
then there is a sequence pn →∞ as n→∞ such that

lim
n
pn(vpn − v∞) = −∞. (5.2.17)

Letting γn be the minimizer of Jpn , passing to a subsequence if necessary, we may assume
that γn converges to some γ∞ which belongs to F∞ (as defined in Lemma 5.2.13) since
v∞ ≥ 1. In particular, there exists i0, j0 such that

ci0,j0 = v∞ and γ∞,i0,j0 =: γi0j0∞ ≥ θ > 0,

where θ is the lower bound from Lemma 5.2.13. But since γi0j0n converges to γi0j0∞ we have,
for large enough n, γi0j0n ≥ θ

2 , hence, using the fact that ci0j0 = v∞ and the nonnegativity
of the entropy

vpn ≥ v∞
(θ

2

) 1
pn = v∞ exp

( 1

pn
log

θ

2

)
≥ v∞

(
1 +

1

pn
log

θ

2

)
which is the desired contradiction to (5.2.17).

5.2.4 A large deviations upper bound

In this (somehow independent) paragraph, our goal is to discuss a (partial) extension of
the large deviations results of [22] to the L∞-optimal transport framework. Considering
the Monge-Kantorovich problem (OT)

inf
π∈Π(µ,ν)

∫
Rd×Rd

c(x, y)dγ(x, y)

it is well-known (as we have seen in Theorem 4.1.10) that the optimal plans γ ∈ Π(µ, ν)
for (OT) are characterized by a property of c-cyclical monotonicity of Γ := supp γ (see
Definition 4.1.8).
To analyze fine convergence properties of the entropic approximation (εEOT) of (OT),
assuming convergence (taking a subsequence if necessary) as ε→ 0, of the minimizer γε of
(εEOT) to some γ and denoting by Γ the c-cyclically monotone set supp γ, the authors of
[22] introduced

I(x, y) := sup
k≥2

sup
(xi,yi)ki=2⊂Γ

sup
σ∈Σ(k)

{ k∑
i=1

c(xi, yi)−
k∑
i=1

c(xi, yσ(i))
}
, (x, y) ∈ Rd × Rd,

with (x1, y1) = (x, y). They proved that I is a good rate function for the family of
optimal entropic plans, {γε}ε>0 in the sense that (see for instance [119]) I is non-negative
and not identical equal to +∞, I is lower semicontinuous and it obeys, under very general
conditions, the large deviations principle

lim sup
ε→0

ε log(γε(C)) ≤ − inf
(x,y)∈C

I(x, y) and

lim inf
ε→0

ε log(γε(U)) ≥ − inf
(x,y)∈U

I(x, y),
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for every compact C and every open U included in suppµ× supp ν
Denoting by γp,ε the minimizer of Jp,ε, the results of [22] (using cp instead of c) of course
apply to the convergence of γp,ε as ε→ 0+ for a fixed exponent p. For L∞ optimal trans-
port, it makes more sense to rather consider the situation where ε > 0 is fixed and p tends
to∞. More precisely, we know from Theorem 5.2.9, that if c ≥ 1, ε > 0 is fixed, as p→∞
the family {γp,ε}p≥1 weakly converges (again possibly after an extraction) to some γ∞,
such that Γ∞ := supp (γ∞) is ∞-cyclically monotone.

Therefore we will assume throughout this paragraph that

• c ≥ 1,

• ε > 0 being fixed, the sequence of minimizers (γp,ε)p≥1 weakly converges as p → ∞
to some γ∞, with (∞-cyclically monotone) support Γ∞.

Let us define for every (x, y) ∈ Rd × Rd

I∞(x, y) := sup
k≥2

sup
(xi,yi)ki=2⊂Γ∞

sup
σ∈Σ(k)

{
max
1≤i≤k

{c(xi, yi)} − max
1≤i≤k

{c(xi, yσ(i))}
}
,

where (x1, y1) = (x, y). Also define

Ĩ∞(x, y) := sup
k≥2

sup
(xi,yi)ki=2⊂Γ∞

{
max
1≤i≤k

{c(xi, yi)} − max
1≤i≤k

{c(xi, yi+1)}
}
,

where (x1, y1) = (x, y) and yk+1 = y1. In our supremal optimal transport setting, we
cannot really expect that I∞ is a good rate function for (γp,ε)p≥1; indeed, arg min Π(µ,ν) J∞
is unchanged when replacing c with a strictly increasing function of c, while the same does
not hold for the function I∞. However it can be interesting to have a better understanding
of the function I∞, which still provides an upper bound for the family (γp,ε), as we will
see in Proposition 5.2.17.

Lemma 5.2.15. Let I∞ and Ĩ∞ be defined as above, then

• I∞ and Ĩ∞ are related by I∞ = max(0, Ĩ∞),

• I∞ and Ĩ∞ are lower semicontinuous, I∞ ≥ 0, I∞ = 0 on Γ∞,

• I∞ and Ĩ∞ coincide on (suppµ× Rd) ∪ (Rd × supp ν).

Proof. The fact that I∞ ≥ max(0, Ĩ∞) is obvious as well as the fact that Ĩ∞ = 0 on Γ∞.
Fix now (x, y) = (x1, y1) ∈ Rd × Rd, k ≥ 2, (x2, y2), . . . (xk, yk) in Γ∞ and σ ∈ Σ(k).
We can then partition {1, . . . , k} into I0 the (possibly empty) set of fixed-points of σ and
disjoint (empty if σ is the identity) orbits I1, . . . , Il on each of which σ is a cycle, this
means that for j = 1, . . . , l, we may denote (xi, yi)i∈Ij as (x̃jr, ỹ

j
r)r=1,...,|Ij | and (xi, yσ(i))i∈Ij

as (x̃jr, ỹ
j
r+1)r=1,...,|Ij | with the convention ỹj|Ij |+1 = ỹj1. We now observe that

max
1≤i≤k

{c(xi, yi)} − max
1≤i≤k

{c(xi, yσ(i))} ≤ max
j

{
max
i∈Ij

c(xi, yi)−max
i∈Ij

c(xi, yσ(i))
}
.

where the max with respect to j is taken on indices for which Ij is nonempty. To shorten
notations, for such a j let us set

βj := max
i∈Ij

c(xi, yi)−max
i∈Ij

c(xi, yσ(i)).
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Of course if I0 is nonempty, β0 = 0. Now if j ≥ 1 and Ij is nonempty

βj = max
r=1,...,|Ij |

c(x̃jr, ỹ
j
r)− max

r=1,...,|Ij |
c(x̃jr, ỹ

j
r+1) ≤ Ĩ∞(x̃j1, ỹ

j
1).

So, if (x̃j1, ỹ
j
1) = (x1, y1), βj ≤ Ĩ∞(x, y) and if (x̃j1, ỹ

j
1) 6= (x1, y1), then (x̃j1, ỹ

j
1) ∈ Γ∞, hence

Ĩ∞(x̃j1, ỹ
j
1) = 0 by the definition of Ĩ∞ and the fact that Γ∞ is ∞-cyclically monotone. In

other words, we can bound from above each βj by max(0, Ĩ∞(x, y)). Taking suprema with
respect to k, (x2, y2), . . . (xk, yk) in Γ∞ and σ ∈ Σ(k), we thus get I∞ ≤ max(0, Ĩ∞). Lower
semi continuity of I∞ and Ĩ∞ follows from the continuity of c, we have already observed
that Ĩ∞ ≤ 0 on Γ∞ which implies that I∞ = max(0, Ĩ∞) = 0 on Γ∞. Finally assume that
x ∈ suppµ and y ∈ Rd, since Γ∞ = supp γ∞ is compact and γ∞ ∈ Π(µ, ν), there exists
y′ ∈ Rd such that (x, y′) ∈ Γ∞, taking (x1, y1) = (x, y), (x2, y2) = (x, y′) as a competitor
in the definition of Ĩ∞(x, y) we see that Ĩ∞(x, y) ≥ 0 hence I∞(x, y) = Ĩ∞(x, y). The same
argument shows that I∞ and Ĩ∞ coincide on Rd × supp (ν).

Lemma 5.2.16. Let us fix (x, y) ∈ Rd × Rd. Suppose that for some δ ∈ R, k ∈ N, k ≥ 2
and (xi, yi)

k
i=2 ⊂ supp γ∞, we have

max
1≤i≤k

{c(xi, yi)} − max
1≤i≤k

{c(xi, yi+1)} > δ, where (x1, y1) := (x, y).

Then there exist α > 0, r > 0 and p0 ≥ 1 such that

γp,ε(Br(x, y)) ≤ αe
−pδ
ε , ∀p ≥ p0,

where γp,ε is the minimizer of Jp,ε.

Proof. Of course if δ ≤ 0, one can just take α = 1 so we may assume that δ > 0. Reasoning
as in the proof of Theorem 5.2.9 (recall that we have assumed c ≥ 1), we know that there
exist p0 and r > 0 such that

k∑
i=1

cp(x′i, y
′
i)−

k∑
i=1

cp(x′i, y
′
i+1) > pδ,

for every p ≥ p0 and (x′i, y
′
i)
k
i=1 ⊂ Br(x1, y1) × · · · × Br(xk, yk). Then Br(x1, y1) × · · · ×

Br(xk, yk) ⊂ Ak,cp(pδ) so, thanks to Lemma 5.2.8,

γkp,ε(Br(x1, y1)× · · · ×Br(xk, yk)) ≤ e
−pδ
ε .

Moreover lim infp→∞ γp,ε(Br(xi, yi)) ≥ γ∞(Br(xi, yi)) > β, for all 2 ≤ i ≤ k, for some
β > 0 since (xi, yi)

k
i=2 ⊂ supp γ∞, then

γp,ε(Br(x, y)) ≤
(
β

2

)1−k
e
−pδ
ε ,

for all p ≥ p0 (possibly replacing p0 with a larger one).

Proposition 5.2.17. Under the assumptions of this paragraph, for any compact set C ⊂
Rd × Rd s.t. C ∩ supp γ 6= ∅, one has

lim sup
p→∞

ε

p
log γp,ε(C) ≤ − inf

C∩(suppµ×supp ν)
Ĩ∞ ≤ − inf

C
I∞.
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Proof. First note that since γp,ε is supported on suppµ× supp ν,

γp,ε(C) = γp,ε(C ∩ (suppµ× supp ν))

and there is noting to prove if C is disjoint from suppµ× supp ν. Therefore we can assume
that C ∩ (suppµ× supp ν) 6= ∅. It then follows from Lemma 5.2.15 that

inf
C∩(suppµ×supp ν)

Ĩ∞ = inf
C∩(suppµ×supp ν)

I∞ ≥ inf
C
I∞.

Now let η > 0 and (x, y) ∈ C ∩ (suppµ× supp ν). By definition of Ĩ∞(x, y), given η > 0,
there exist k ≥ 2 and (xi, yi)

k
i=2 ⊂ Γ∞, such that (setting as usual (x1, y1) = (x, y) and

yk+1 = y1 = y)

max
1≤i≤k

{c(xi, yi)} − max
1≤i≤k

{c(xi, yi+1)} > min(η−1, Ĩ∞(x, y))− η.

Note that the truncation is used to handle the case where Ĩ∞(x, y) = +∞. By Lemma
5.2.16 we know that there exist α, r > 0 such that

γp,ε(Br(x, y)) ≤ α exp

(
−p(min(η−1, Ĩ∞(x, y))− η)

ε

)
.

Then
lim sup
p→∞

ε

p
log γp,ε(Br(x, y)) ≤ −min(η−1, Ĩ∞(x, y)) + η

and, by compactness of C,

lim sup
p→∞

ε

p
log γp,ε(C) ≤ − inf

C∩(suppµ×supp ν)
min(η−1, Ĩ∞) + η

which, letting η → 0+, yields the desired upper bound.

5.2.5 Numerical examples

In this section we will provide some - in our opinion interesting - numerical examples of
what we have discussed and proved theoretically in the previous sections.

In all the examples we have used the Sinkhorn algorithm (which has been discussed in
Section 5.1.2) to find a good approximation (with error smaller than 10−5) of the solution
of (εDEOT) with c replaced by cp:

γp,ε = arg min
Π(µ,ν)

∑
i,j

γi,jc
p
i,j + εH(γ|µ⊗ ν). ((p, ε)DEOT)

Clearly such a γp,ε minimizes also Jp,ε =
(∑

i,j γi,jc
p
i,j + εH(γ|µ⊗ ν)

) 1
p .

In light of Theorem 5.2.4 we expect to find, for suitable p and ε, a good approximation of
an optimal plan for the problem

min
γ∈Π(µ,ν)

max {ci,j : γi,j 6= 0} .
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Furthermore, thanks to Theorem 5.2.9, if c ≥ 1 we expect to find a plan close to an ∞-
cyclically monotone one.

Notation. In the following, given µ and ν, two discrete probability measures, a := (µi)i
and b := (νj)j will denote respectively the vectors of the weights µi of µ and νj of ν and
P = (γij)i,j will indicate the output matrix of the Sinkhorn algorithm, associated to the
plan γ which approximates the optimal solution γp,ε of ((p, ε)DEOT).

All the examples will be in dimension d = 2.

Figure 5.2.1: Example of convergence of the plan to the ∞-cm plan, for c(x, y) = |x− y|p,
for p ∈ {2, 3, 4, 5}, ε = 1 and µ (blue), ν (red) having orthogonal supports.

In the first example, as shown by Figure 5.2.1, we consider cp = |x−y|p, for p ∈ {2, 3, 4, 5},
µ which is uniformly concentrated on the blue points

{(−2, 0), (−1.5, 0), (−1, 0), (−0.5, 0), (0.5, 0), (1, 0), (1.5, 0), (2, 0)}

and ν on the red points

{(0,−1.367), (0,−0.867), (0, 867), (0, 1.367)}.

Note that with this choice of suppµ and supp ν, c ≥ 1 everywhere and therefore, thanks to
Theorem 5.2.4 and Theorem 5.2.9, Γ-convergence and convergence of the outputs towards
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∞-cm plans holds choosing ε = 1.
The simplicity of the problem and the big value of c allows for the use of the primal version
of the Sinkhorn algorithm, discussed in Section 5.1.2. The plan given by the algorithm is
represented by arrows: the black ones indicate that a blue point is sent to a red point with
high probability, while the gray ones indicate that a blue point is sent to a red point with
lower probability (but still not negligible).
We observe that for p = 2, by the orthogonality of the two supports, every transport plan
γ is concentrated on a cyclically monotone set (see Remark 4.1.9) and it is thus optimal
(see Theorem 4.1.10) for the Kantorovich problem. Here, since we look for a plan which
minimizes also the entropy, the Sinkhorn algorithm selects the most diffuse one. Conver-
gence towards an ∞-cm plan is really fast and it occurs already for p = 5.

Figure 5.2.2: Error on the marginals: the first image shows the error |P14 − a| of the
output P on the first marginal and the second one the error |P ᵀ

18 − b| on the second
marginal.

Regarding the accuracy, Figure 5.2.2 shows that for p = 5 and ε = 1 the distance |P14−a|
between the first marginals of the output γ and the distance |P ᵀ

18−b| between the second
marginal of γ and ν is of the order of 10−5 after only 350 iterations.
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Figure 5.2.3: Comparison among the speed of convergence for p ∈ [65, 160]. On the top:
vp in blue and v∞ in orange. On the bottom: Be−dp in green, − c

p in orange and vp − v∞
in blue. Here c := α and d := β.

Finally, Figure 5.2.3 shows the asymptotic behavior of vp := minΠ(µ,ν) Jp. In particular
we want to numerically represent the upper and lower bounds on the speed of convergence
of vp towards v∞ := minΠ(µ,ν) J∞ proved in Proposition 5.2.11 and Proposition 5.2.14. In
light of the fact that in Proposition 5.2.11 and Proposition 5.2.14 is enough to assume a
lower bound on v∞ and not a point-wise one on c (as required in order to have conver-
gence to ∞-cm plans), we have re-scaled the points of the supports of µ and ν, obtaining
v∞ ' 1.020469 > 1. Even though this example is still not fully satisfying, having a smaller
value of c was needed in order to increase the value of p, as discussed in Remark 5.2.18
below. The image on the top of Figure 5.2.3 shows in blue how vp changes varying p, which
is taken in the interval [60, 165]. For p in the same interval, in the image on the bottom
we have represented in blue vp − v∞, in green the upper bound Be−βp and in orange the
lower bound −α

p , where β = v∞ comes by Proposition 5.2.11 (in this case c is Lipschitz
so α = 1 > log(v∞) ) and α,B have been calculated using the mean square method (in
Figure 5.2.3, c = α and d = β).

119



CHAPTER 5. ENTROPIC REGULARIZATION OF L∞- OPTIMAL TRANSPORT

Figure 5.2.4: Example of convergence of the plan to the ∞-cm plan for c(x, y) =
(max{|x1 − y1|, |x2 − y2|})p, for p ∈ {2, 3, 4, 5}, ε = 1 and µ (blue), ν (red) having or-
thogonal supports.

We have also considered the same example (see Figure 5.2.4) with the cost function
cp(x, y) := (max{|x1 − y1|, |x2 − y2|})p. In this case the convergence is still fast and the
error is small after few iterations (of order 10−5 after about 180 iterations).

Remark 5.2.18. When c > 1 we have the advantage that not only we don’t need small ε,
but we can even increase it as much as needed (by case 2. in Theorem 5.2.4 we can even
choose for instance εp = (1+λ)p), on the other side we can encounter some difficulties when

computing the Gibbs kernel Kij = e−
c
p
ij
ε : if p is large it can happen that, for some i, j,

Ki,j = 0 making impossible to perform the division in the iterations of the primal version
of the Sinkhorn algorithm ((5.1.7),(5.1.8)). Fortunately, this problem can be overcome
using the Log-Domain version as discussed in the second part of Section 5.1.2.
Also the computation of vp can be delicate. Indeed when c is big the convergence to γ∞
occurs for relatively small p and therefore - since γ∞ is usually sparse - it is likely that the
output matrix P has some 0 entries, preventing the possibility of computing the logarithm
in the computation of H(γ|µ⊗ν). This is why when looking for the asymptotic behavior is
important to consider µ, ν and c such that v∞ > 1 but c ≤ 1 + η, for some suitable η > 0.
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Figure 5.2.5: c(x, y) = |x−y|p, for p ∈ {1, 2, 5, 15}, ε = 1, µ (blue) a uniform discretization
of the unitary square and ν (red) uniformly concentrated on the points (1, 2) and (2, 1).

Figure 5.2.6: Error on the second marginal marginal: for p = 30 and ε = 1 the distance
between P ᵀ

1m and ν is of order 10−15 after about 100 iterations.

Another interesting example is represented by Figure 5.2.5, which shows a numerical im-
plementation of Example 4.1.23: ν is concentrated on the points (1, 2) and (2, 1) as in
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the original version, while µ is uniformly concentrated on 100 points which discretize the
unitary square. Since every plan is optimal, when p is smaller, the role of the entropy
is more important and the selected plan is more diffuse. While increasing the value of
p the entropy becomes more and more negligible and the plan given by the algorithm is
more sparse and closer to the ∞-cyclically monotone plan. In this example, in light of
Remark 5.2.18 we have used Sinkhorn algorithm in Log-Domain and we have considered
p ∈ {1, 2, 5, 15}. Already for p = 15 one can notice a very good approximation of the ∞-
cyclically monotone plan, which in this case is unique (see Theorem 4.2.13 and Example
4.2.15).

Figure 5.2.7 represents the asymptotic behavior of vp−v∞, studied re-scaling the supports
in order to have v∞ ' 1.08166 and considering p ∈ [10, 206] and ε = 15.

Figure 5.2.7: Comparison among the speed of convergence of vp − v∞, Bedp and − c
p for

p ∈ [10, 206]. On the top: vp in blue and v∞ in orange. On the bottom: Bedp in green,
− c
p in orange and vp − v∞ in blue. Here c,B obtained with the square mean method and

d = v∞ (d = β of Proposition 5.2.11).

A small variation is to consider ν which is not uniformly concentrated on the points (1, 2)
and (2, 1) in order to have an idea of the shape of the ∞-cyclically monotone plan. In
Figure 5.2.8 and Figure 5.2.9, for p = 15 and ε = 1, we have considered progressively
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ν1 = 0.4δ(1,2) + 0.6δ(2,1), ν2 = 0.3δ(1,2) + 0.7δ(2,1), ν3 = 0.2δ(1,2) + 0.8δ(2,1) and ν4 =
0.1δ(1,2) + 0.9δ(2,1). Figure 5.2.9 shows which points of the suppurt of µ are sent to (1, 2)
(dark blue) and which ones are sent to (2, 1) (yellow).

Figure 5.2.8: Comparison among different not uniform target measures.
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Figure 5.2.9: Comparison among different not uniform target measures: in dark blue points
of suppµ which are sent to (1, 2) and in yellow points of suppµ which are sent to (2, 1).

An example of both µ and ν being the discretization of the Lebesgue measure restricted
to a portion of space is given by Figure 5.2.10, in which µ is supported on the square
[−0.25, 0.25]× [−0.25, 0.25] and ν is supported on the rectangle [1.25, 1.5]× [−0.5, 0.5] and
both measures are discretized with 100 points. The figure shows a comparison between the
output γ for a fixed ε = 1 when p = 2 and p = 20. One can immediately notice that for
p = 2 the entropy plays an important role and the algorithm selects the most diffuse plan.
Looking at the picture one could try to make a guess of the value of v∞, but in this case
we are not able to calculate it exactly. Indeed, even if the size of µ and ν is the same, to
apply what we observed in Proposition 4.1.40 we should be able to perform 100! iterations,
which is infeasible in practice!
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Figure 5.2.10: Comparison among different values of p: µ (blue) discretization of the square
[−0.25, 0.25]× [−0.25, 0.25], ν (red) discretization of the rectangle [1.25, 1.5]× [−0.5, 0.5],
ε = 1. On the left p = 2 while on the right p = 20.

An example in which it is possible (even if it is really slow!) to calculate v∞ “by hands” is
provided by Figure 5.2.11. Here µ is concentrated on 8 points, given by

{(x1, x2) : x1 = −0.25 + 0.125 · i, i = 1, . . . , 4, x2 ∈ {−0.1, 0.1}}

and ν is concentrated on 8 equidistant points of the segment starting from the point
(0.625, 1.25) to the point (1.25, 0) of the line y2 = −2y1 + 2.5. We have computed v∞ for
the cost c(x, y) = |x− y| applying Proposition 4.1.40, obtaining v∞ = 1.386473466558011
and that the points which are at the minimal-maximal distance are x∗ = (−0.25,−0.1) and
y∗ = (0.98214286, 0.53571429), the one connected by the yellow segment in the picture.
Regarding the speed of convergence we rescaled the problem in order to decrease further
v∞ = 1.0524606002472119. As showed in Figure 5.2.12, vp is calculated varying p in the
interval [10, 172], with ε = 5002. We observe that in this case, as shown in the picture on
the top, vp is initially smaller than v∞, then it increases becoming bigger and finally it
starts decreasing converging to v∞.

Figure 5.2.11: µ and ν uniformly distributed both concentrated on 8 points. The value
of v∞ is 1.386473466558011 and it is obtained transporting mass between the two points
connected by the yellow segment.
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Figure 5.2.12: Comparison among the speed of convergence of vp − v∞,Bedp and − c
p for

p ∈ [10, 172] and ε = 5002. On the top: vp in blue and v∞ in orange. On the bottom:
Bedp in green, − c

p in orange and vp−v∞ in blue. Here c,B obtained with the square mean
method and d = v∞ (d = β of Proposition 5.2.11).

The last example that we provide is presented in Figure 5.2.13 and Figure 5.2.14 in which
we have taken µ supported on 31 points which discretize a circle, centered in (0, 0) and

radius r = 0.2. The mass over those points is distributed as a Gaussian 1
σ
√

2π
e−
|x−x0|

2

2σ2 ,
where σ = 0.2 and x0 = (0.2,−0.1). The target measure ν is instead concentrated on
62 points which discretize two different circles both of radius r = 0.2, one centered in
(1.2001, 0) and the other centered in (0, 1.2001). The mass is distributed as two different

Gaussians: 1
σ
√

2π
e−
|y−y1

0 |
2

2σ2 , with y1
0 = (1.1, 0.05) and 1

σ
√

2π
e−
|y−y2

0 |
2

2σ2 , with y2
0 = (−0.05, 101).

Figure 5.2.13 shows the distribution of the mass in 3-dimension, while Figure 5.2.14 shows
the distribution with colors: as explained in the bar, the brighter is the color the more
mass is concentrated at the point. In the same picture there is also the representation by
arrows of the output γ of the algorithm for p = 45 and ε = 1. Finally, in Figure 5.2.15
we can see the error on the second marginal, which is of order 10−5 after less than 2000
iterations.
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Figure 5.2.13: 3d representation of the normalization of µ =
∑31

i=1 e
− |xi−x0|

2

2σ2 δxi (on the

left) and the normalization of ν =
∑31

j=1 e
−
|yj−y

1
0 |

2

2σ2 δyj +
∑62

j=32 e
−
|yj−y

2
0 |

2

2σ2 δyj (on the right).

Figure 5.2.14: Representation by colors of µ and ν and representation by arrows of the
output γ for p = 45 and ε = 1
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Figure 5.2.15: Error on the second marginal: |P ᵀ
131 − b|
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MOTS CLÉS

variationnel, transport optimal, minimiseurs absolus, supérieure essentielle, cycliquement monotone

RÉSUMÉ

Dans cette thèse on étudie certaines propriétés des solutions de problèmes variationnels et de transport L∞. Ce
manuscrit est divisé en deux parties.
La première partie, composée du Chapitre 2 et du Chapitre 3, traite d’un problème variationnel suprémal. Les prob-
lèmes variationnels suprémaux sont apparus pour la première fois à la fin des années 60 dans les travaux pionniers
d’Aronsson [7, 8, 9]. En raison de la nature de la norme L∞, les minimiseurs intéressants sont les minimiseurs dits
absolus (AM), qui sont souvent solutions d’une EDP associée et ont des propriétés d’unicité et de régularité. À la lumière
de ces considérations, dans le Chapitre 2 nous analysons le problème associé à une fonctionnelle continue quasiconvexe
(x, p) 7→ H(x, p). Nous montrons notamment une nouvelle propriété d’optimalité pour u ∈AM et prouvons un résultat de
structure pour l’ensemble des points x où H(x,Du(x)) = maxH(x,Du(x)).
Dans le Chapitre 3, nous resituons le problème variationel dans le cadre des problèmes avec contraintes sur le gradient,
en prouvant la régularité C1 des minimiseurs absolus sur l’ensemble mentionné ci-dessus.
Dans la deuxième partie, qui comprend le Chapitre 4 et le Chapitre 5, on s’intéresse au problème de transport opti-
mal L∞, étudié pour la première fois par Champion, De Pascale, et Juutinen en 2007 [47]. Une contribution originale,
présentée dans le Chapitre 4, est la preuve que les plans optimaux dits restreignables (restrictable) (l’analogue de AM)
sont concentrés sur un graphe, si la fonction de coût est strictement quasiconvexe et satisfait une propriété similaire à la
condition classique de twist. De plus, nous prouvons l’unicité dans le cas d’une mesure cible discrète.
Le problème de transport optimal L∞ est non convexe, donc vraisemblablement plus complexe que le problème de trans-
port classique. Afin d’avoir une meilleure compréhension, il semble naturel de chercher une généralisation à ce cadre
de l’approximation entropique. Dans ce but, dans le Chapitre 5, nous introduisons une régularisation qui garantit la Γ-
convergence vers le problème de transport L∞. En particulier, nous montrons que les minimisateurs des fonctionnelles
régularisées sélectionnent des plans optimaux restrictable. Enfin, nous prouvons quelques estimations sur la vitesse de
convergence et présentons quelques illustrations numériques réalisées avec l’algorithme de Sinkhorn.

ABSTRACT

In this thesis we investigate some properties of solutions of L∞-variational and transport problems. This manuscript is
divided into two parts.
The first part, made up of Chapter 2 and Chapter 3, deals with a supremal variational problem. Supremal variational
problems appeared for the first time in the late 60s in the pioneering works of Aronsson [7, 8, 9]. Due to the nature of the
L∞-norm, the interesting minimizers are the so-called absolute minimizers (AM), which often happen to be solutions of an
associated PDE and to have uniqueness and regularity properties. In Chapter 2 we investigate the problem associated to
a quasiconvex continuous supremand (x, p) 7→ H(x, p). Notably, we show a new optimality property for u ∈AM and prove
a structure result for the set of points x where H(x,Du(x)) = maxH(x,Du(x)). In Chapter 3 we insert the supremal
variational problem in the framework of problems with constraints on the gradient, proving C1 regularity of the absolute
minimizers on the above mentioned set.
In the second part, which consists of Chapter 4 and Chapter 5, we are interested in the L∞-optimal transport problem
(L∞-OT), studied for the first time by Champion, De Pascale, and Juutinen in 2007 [47]. An original contribution, pre-
sented in Chapter 4, is the proof that the restrictable (optimal) plans (the analogous of AM) are concentrated on a graph,
if the cost function is strictly quasiconvex and satisfies a property similar to the classical the twist condition. Moreover, we
prove uniqueness in the case of a discrete target measure.
The L∞-OT is a non-convex problem, presumably more difficult than the classical OT. In order to have a better under-
standing, seeking for a generalization to this setting of the entropic approximation seems quite natural. With this intent,
in Chapter 5, we provide a regularization which guarantees the Γ-convergence to the not regularized L∞-OT problem.
Remarkably, we show that minimizers of the approximating functionals select restrictable optimal plans. Finally we prove
some estimates on the speed of convergence and present some numerical illustrations performed with Sinkhorn’s algo-
rithm.

KEYWORDS

variational, optimal transport, absolute minimizers, essential supremum, cyclically monotone
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