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CHAPTER 0

Résumé des principaux résultats

Ce chapitre présente les principaux résultats obtenus au cours de cette thése et peut étre lu
indépendamment.

0.1 Introduction

Omniprésents dans les systémes physiques, les phénoménes de transport aléatoire s’observent
a toutes les échelles temporelles et spatiales, et dans tous les domaines, de la biologie & la
mécanique, en passant par la finance et la géologie. La diffusion de photons dans un milieu
hétérogene [Rosenstock 1961, Savo et al. 2017], le mouvement d’un moteur moléculaire le long
d’un brin d’ADN |[Berg et al. 1981], le repliement d’une chaine polymérique [Lifshitz et al. 1978|,
I'évolution d’un actif financier [Black & Scholes 1973], la structure d'un vol d’étourneaux
[Cavagna et al. 2010], les fluctuations d’un risque sismique [Matthews 2002]... sont autant de
phénoménes qui peuvent étre décrits par un mouvement aléatoire, et dont la compréhension est
essentielle pour répondre & des questions trés importantes en pratique. Par exemple, avec quelle
probabilité le cours de la bourse atteint-il un certain seuil ? A quelle vitesse la transcription géné-
tique, responsable de la synthése de protéines nécessaires au bon fonctionnement de 'organisme,
s’effectue-t-elle 7 Ou encore, quelle est la distribution du temps d’attente entre deux séismes
connaissant 1'historique sismique d’une région donnée ?

Face & ces multiples interrogations, la communauté scientifique s’attelle depuis la fin du
19°m¢ siécle & catégoriser et modéliser ces phénoménes avec un objectif double : extraire des
propriétés statistiques pertinentes pour interpréter les résultats empiriques, et tenter d’émettre
des prédictions quantitatives afin de répondre aux questions pratiques soulevées. Deux siécles et
demi plus tard, nous résumons, certes brutalement, les éléments essentiels & la modélisation et &
I'interprétation d’un probléme physique de transport aléatoire.

(i) En premier lieu, il convient de définir les régles du transport pour rendre compte de la
dynamique aléatoire observée, et plus précisément d’identifier le processus stochastique sous-
jacent qui décrit le mouvement de la particule considérée (nous utilisons ici le terme particule de
maniére générique, qu'il s’agisse d’un étourneau ou du prix d’une action).

Historiquement, c’est entre 1900 et 1905 que Bachelier [Bachelier 1900] et FEinstein
|[Einstein 1905] introduisent pour la premiére fois le mouvement Brownien, afin de décrire le
mouvement erratique de certaines particules expérimentales. Si leur modélisation repose sur
le formalisme des équations aux dérivées partielles continues en temps et en espace, d’autres
descriptions mathématiques paralléles émergent. Pearson propose un modéle de marche aléa-
toire en temps discret et espace continu [Pearson 1905] et, quelques années plus tard, Polya
[Polya 1921] se focalise sur les marches aléatoires sur réseaux hypercubiques, discrétes a la fois
en temps et en espace. Notons que, bien que distincts, ces modéles partagent des similarités
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fortes. Premiérement, tout trois sont Markoviens, c’est & dire que la dynamique stochastique ne
dépend que de I'état de la particule & 'instant ¢ donné, et non pas de I’historique de la trajectoire.
Deuxiémement, il s’agit de processus diffusifs, pour lesquels le déplacement quadratique moyen
(x2(t)) de la particule (MSD pour mean square displacement en anglais) se comporte linéairement
a grand temps : (22(t)) ~ t.

Il est important de souligner que le MSD empirique d’un processus Markovien n’est pas toujours
linéaire. Par exemple, certaines trajectoires d’animaux en quéte de nourriture [Reynolds 2006]
sont caractérisées par un MSD empirique sur-linéaire (x2(t)) o< t# avec 8 > 1. L’introduction
de nouveaux processus stochastiques pour correctement modéliser ces phénoménes de diffusion
anormale [Bouchaud & Georges 1990] est alors nécessaire. Citons les vols de Levy [Levy 1937],
un cas de marche aléatoire Markovienne dont les incréments sont distribués en loi de puissance
p(0) oc 0=+ avec p €]0,2[, conduisant a une dynamique super-diffusive, et un déplacement
typique a grand temps z, ~ n'/#, par opposition au cas diffusif a, ~ V1. A linverse, certains
résultats expérimentaux, concernant la dynamique de matériaux vitreux par exemple, manifestent
un comportement sous-diffusif, qui peut étre correctement modélisé par des marches aléatoires en
temps continu [Montroll & Weiss 1965, Monthus & Bouchaud 1996] (CTRW pour Continuous
Time Random Walk en anglais), pour lesquelles la particule attend un temps aléatoire T avant
chaque déplacement, distribué selon une loi de puissance p(7) =148 ou g €]0, 1[. Dans ce
cas, le MSD est alors sous linéaire (z%(t)) oc t7.

Si les modéles Markoviens ménent souvent a une description simplifiée d’un phénomeéne
physique, et permettent d’obtenir des résultats analytiques explicites, ceux-ci négligent compléte-
ment les effets de mémoire qui peuvent potentiellement influencer trés fortement la dynamique
de la particule observée. Parmi les modéles stochastiques non-Markoviens, citons I'exemple
emblématique du mouvement Brownien Fractionnaire (FBM de I'anglais Fractional Brownian
Motion) [Mandelbrot & Van Ness 1968|, un processus gaussien non-Markovien caractérisé en-
tiérement par sa fonction d’auto-corrélation (x(t1)z(t2)) o< (|t1]? + |t2|?H — |t; — t2|?H). En
particulier, le FBM décrit correctement la dynamique sous-diffusive (H < 1/2) de polymeéres
semi-flexibles. Enfin, dans un autre contexte, les marches a renforcement [Grassberger 2017]
modélisent des phénomeénes dont la dynamique a 'instant ¢ dépend de I’historique complet de la
trajectoire, et dont la distribution & n temps (x(¢1),...,z(t,)) n'est a priori pas gaussienne. Ce
type de comportement a été observé dans certains systémes naturels, chez les fourmis par exemple
[Goss et al. 1989], dont le mouvement aléatoire est influencé par la géomeétrie du territoire visité
précédemment.

(ii) Une fois qu’un processus stochastique pertinent pour décrire le mouvement aléatoire a
été identifié, il est nécessaire d’introduire une observable statistique, c’est & dire une quantité
probabiliste que 'on va chercher & évaluer afin d’en tirer des conclusions physiques. A différentes
classes de questions physiques correspondent différentes observables, et nous distinguons deux
grandes catégories.

Tout d’abord, les observables dynamiques permettent de décrire les propriétés statistiques de
la trajectoire associée au processus aléatoire x(f) & un instant déterministe ¢ fixé. Si le MSD
(x2(t)), qui rend compte du caractére diffusif ou non du phénomeéne considéré, est ’observable
dynamique la plus naturelle, d’autres observables permettent de quantifier I’efficacité du processus
d’exploration. Par exemple, pour les marches aléatoires discrétes en temps et en espace, le
nombre S, de sites distincts visités aprés n pas [Dvoretzky & Erdos 1951, Wijland et al. 1997]



0.1. Introduction 3

quantifie le taux de découverte de nouveaux sites. Notons que le calcul de la distribution de
Sy est particuliérement pertinent pour déterminer la probabilité qu’une particule sur un réseau
contenant des piéges distribués aléatoirement soit toujours en vie aprés n pas [Rosenstock 1961].
Pour les processus planaires en espace continu comme le mouvement Brownien 2D, 'aire de
I’enveloppe convexe de la trajectoire [Majumdar et al. 2010a] constitue une observable dynamique
alternative permettant de décrire I’étendue du territoire visité.

La seconde catégorie correspond aux observables de premier passage, qui caractérisent les
propriétés statistiques de la trajectoire au bout d’un temps d’arrét aléatoire, et sont asso-
ciées a l'efficacité d’un processus de recherche de cible. En particulier, le temps de premier
passage (FPT de l'anglais first-passage time) sur une cible fixée a regu une attention partic-
uliére dés I'introduction du mouvement Brownien; en effet, de nombreux phénoménes physiques
sont contrélés par un événement de premier passage : cyclisation d’'une chaine polymérique
|Gooden et al. 1998, fixation d’une protéine |Berg et al. 1981] ou encore longueur d’une file
d’attente [Asmussen 2003]. Par conséquent, la distribution du FPT a été beaucoup étudiée, aussi
bien pour des marches discrétes sur réseaux et graphes [Montroll 1969, Haynes & Roberts 2008|,
que dans le cadre des processus confinés invariants d’échelle [Bénichou et al. 2010a] et, plus
récemment, des processus confinés non-Markoviens |Levernier et al. 2018|. Notons enfin que les
observables de premier passage ne sont pas uniquement associées au temps de premier passage,
mais s’inscrivent également dans le cadre de la recherche préférentielle de cible. En particulier, la
probabilité de splitting [Zoia et al. 2009] définie comme la probabilité d’atteindre une cible avant
une autre, est une observable fondamentale, quantifiant par exemple la probabilité de fixation
allélique [Wright 1931].

En résumé, la modélisation et I'interprétation d’'un phénomeéne de transport aléatoire s’organise
autour de deux axes : le choix d’un processus aléatoire précis - régles de saut et géométrie - et
d’une observable stochastique associée, reflétant une propriété physique du systéme que 'on
cherche a analyser. Dans ce manuscrit, nous nous appuyons sur ces deux aspects et proposons
d’étudier deux problémes distincts. Dans un premier temps, nous nous focalisons uniquement
sur le second axe, et introduisons une nouvelle observable, le territoire visité avant atteinte d’une
cible en confinement, que nous caractérisons pour la classe de processus stochastiques la plus
vaste possible. Inversement, dans une seconde partie, nous nous concentrons sur un type de
marche aléatoire particuliére : les processus de saut unidimensionnels en confinement, pour
lesquels, bien qu’introduits dés le début du 20°™° siécle, peu d’observables ont été évaluées.

Partie I. Dans le cadre de marches aléatoires sur réseau, le nombre S,, de sites distincts visités
aprés n pas, qui quantifie 'efficacité du processus d’exploration, a été longuement étudié; pour
une marche normale sur un réseau 1D, la distribution compléte de .S,, est connue explicitement
[Dvoretzky & Erdos 1951|. Dans le cas des réseaux hypercubiques en plus grande dimension,
seul le comportement asymptotique & grand n des premiers moments de S,, a été déterminé
[Jain & Pruitt 1971, Jain & Pruitt 1974]. Ces résultats ont été étendus au cas de marches de
plus proches voisins sur graphes quelconques [Havlin & ben Avraham 1987], ainsi qu’aux marches
de Riemann unidimensionnelles |Gillis & Weiss 1970, Mariz et al. 2001] qui effectuent des sauts
distribués algébriquement [Hughes 1995].

Notons que ces résultats concernent essentiellement des marches aléatoires dans une géométrie
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infinie; en effet, dans un espace confiné, le nombre de sites total est borné, et le marcheur finit
invariablement par explorer I'intégralité du domaine confinant. Pourtant, la question du nombre
de sites distincts visités reste légitime, pour peu que 'on définisse un temps d’arrét physique
auquel S, est évalué. Par exemple, pour une particule confinée dans une boite possédant une
unique sortie, on pourra se demander quelle fraction du territoire est visitée avant que la particule
ne s’échappe. En particulier, cette information est essentielle pour déterminer la probabilité que
la particule réagisse avec une cible intérieure avant de trouver la sortie. Pour répondre a ce type
de question, nous consacrons la premiére partie de cette thése a la détermination du nombre
C(s0) de sites distincts visités par un marcheur confiné issu de sg, avant d’atteindre une cible
fixée sp. Nous insistons sur le fait que le temps d’arrét correspondant a la découverte de la cible
est intrinséquement lié a la trajectoire d’exploration; C'(sg) est donc une observable de premier
passage.

Théoriquement, ’évaluation des propriétés statistiques du territoire visité C'(sg) présente un
certain nombre de difficultés techniques. En particulier, le statut (visité ou non) du site atteint
au n®™¢ pas, dépend de I'historique complet des sites visités, et la présence d’un site absorbant
st modifie la statistique des trajectoires. Afin de contourner ces difficultés, nous avons montré
que ’évaluation du nombre de sites distincts visités C(sg) se rameéne & la détermination des
probabilités de splitting associées au processus considéré.

Ce faisant, nous avons calculé la distribution exacte de C(sg) pour la classe des processus
unidimensionnels avec span connecté, c’est & dire ne laissant pas de trous, parmi lesquels figurent
la marche normale et la marche persistante par exemple. De maniére plus générale, dans le
cadre de processus invariants d’échelle et dans la limite de grand volume confinant, nous avons
identifié différentes classes d’universalité, et montré que la distribution compléte de C(sg) prend
une forme de scaling explicite. Nos résultats couvrent en particulier les exemples classiques des
marches de Riemann, ainsi que des marches de plus proches voisins sur réseaux fractals. En
conclusion, nous soulignons que l'introduction et la détermination des propriétés statistiques du
territoire C(sg) visité avant atteinte d’une cible ouvre la voie & une caractérisation plus fine des
propriétés géométriques du processus d’exploration avant la sortie d’une enceinte confinante, et
présente un intérét expérimental fort, notamment dans le cadre de réactions chimiques limitées
par diffusion.

Partie II. La seconde partie de cette thése est consacrée non plus & une unique observable,
mais & un unique type de processus stochastiques : les processus de saut unidimensionnels. Ces
marches aléatoires sur R décrivent la position z,, d’une particule issue de xg aprés n pas, et
dont les incréments aléatoires sont indépendants et identiquement distribués, de distribution
commune p({) symétrique quelconque. En particulier, le modéle de la marche exponentielle
[Van Kampen 1992] est un exemple typique de processus de saut, pour lequel p(¢) = %e*m. Ces
processus sont particuliérement importants pour modéliser et interpréter les données expérimen-
tales ou numériques, qui sont intrinséquement discrétes, et ce de maniére transverse, que ce
soit dans le cadre de problémes de transfert radiatif [Milne 1921], ou pour décrire le mouvement
saccadé de bactéries [Koshland 1980].

Les propriétés statistiques de processus de saut en milieu infini, c’est a dire pouvant évoluer
sur R tout entier, sont bien connues. Par exemple, la distribution de la position de la particule
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au temps n s’écrit explicitement en fonction de p(¢). De la méme maniére les processus de
saut en milieu semi-infini, c’est & dire stoppés dés le premier passage a travers 0 (ie dés que
devient strictement négatif), sont également bien caractérisés. La distribution de la position
aprés n pas est explicite [[vanov 1994], et la probabilité de survie, définie comme la probabilité
de rester positif durant les n premiers pas, est connue exactement pour toutes valeurs de n et
xo |Doney 2012, Majumdar et al. 2017|. Citons en particulier un résultat surprenant connu sous
le nom de théoréme de Sparre Andersen [Andersen 1954] : la probabilité de survie partant de
xo = 0 est universelle et indépendante de p(¥).

En revanche, pour les processus de saut confinés dans un intervalle [0, z], c’est & dire stoppés
deés leur premiére sortie, il n’existe pas de résultats généraux concernant la distribution de la
position de la particule aprés n pas, ni méme quantifiant la probabilité de survie associée a
I'intervalle. Nous soulignons que la difficulté technique réside principalement dans le fait que
les équations intégrales définissant ces observables ne sont pas solubles pour des processus de
saut arbitraires. Cependant, nous avons montré que dans la limite de grand intervalle x — oo,
certaines observables de premier passage associées aux événements de sortie de [0, z] peuvent
étre évaluées de maniére générale, c’est a dire pour toute distribution p(¢).

Tout d’abord, en exhibant un lien entre les processus de saut confinés et semi-infinis, nous
avons montré que la probabilité de splitting mo ,(z¢), définie comme la probabilité que le marcheur
sorte a travers x plutot que 0, prend une forme asymptotique universelle, valable pour tout p(¢)
et toute condition initiale zg. Pour caractériser plus finement les événements de sortie, nous
nous sommes ensuite intéressés a la distribution du temps de sortie de l'intervalle. Dans la
limite asymptotique de grand temps et grand intervalle, nous avons montré que cette distribution
prend également une forme universelle, indépendante des détails de p(¢). Enfin, nos résultats
s’étendent naturellement a des processus de saut confinés en plus grande dimension, qui sont
particuliérement pertinents pour décrire des situations physiques réalistes.

Les sous-sections suivantes sont dédiées a un résumé plus précis des résultats rassemblés dans
ce manuscrit.
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0.2 Territoire exploré avant atteinte d’une cible en confinement

Le nombre S, de sites distincts visités par un marcheur aléatoire sur réseau durant ses n premiers
pas est initialement introduit par [Dvoretzky & Erdos 1951] dans le cas de la marche normale
unidimensionnelle, pour laquelle la distribution compléte de S, est calculable explicitement.
Une dizaine d’années plus tard, Rosenstock propose son désormais classique modéle de piéges
[Rosenstock 1961] : pour une particule évoluant sur un réseau quelconque ou chaque site contient
un piége avec une probabilité X, quelle est la probabilité P, pour que la particule ne rencontre
aucun piége durant ses n premiers pas 7 Bien que P, s’exprime simplement en fonction de S,

Py = ((1=2)), (1)

son évaluation nécessite le calcul difficile de la distribution compléte de S,. Par conséquent,
Rosenstock propose d’approximer P, a ’aide du premier moment de .S,

Pn = (1 - /\)<Sn>7 (2)

et de nombreux travaux se focalisent alors sur le calcul des premiers moments de S,, dans diverses
situations : réseaux hypercubiques [Jain & Pruitt 1971, Jain & Pruitt 1974|, N marcheurs in-
dépendants [Larralde et al. 1992], ou encore marches de Riemann sur réseau unidimensionnel
[Gillis & Weiss 1970, Mariz et al. 2001].

Nous soulignons le fait que I'observable dynamique S,,, qui quantifie 'efficacité du processus
d’exploration, a été majoritairement étudiée en géométrie infinie. En effet, dans une géométrie
bornée, le domaine finit invariablement par étre visité en entier. Cependant, dans le cas d’un
domaine confinant possédant une sortie, il est légitime de se demander quel est le territoire
exploré par le marcheur avant de s’échapper; rien ne garantit que le domaine sera visité en entier
par exemple. Cette information est particuliérement pertinente dans le cadre d’applications
chimiques, et permet par exemple de quantifier la probabilité de réaction d’un catalyseur avec
un ligand avant que celui ci ne s’échappe de I'enceinte de réaction (voir figure 1).

Figure 1: La particule issue du sg (point vert) évolue sur un réseau 2D borné, possédant une sortie en sy (point rouge).
Les sites réactifs (point violets) sont distribués aléatoirement sur le réseau. Dans cet exemple de trajectoire, I'un des sites
réactifs est rencontré avant que la particule n’atteigne la sortie.

Afin de répondre a cette question, nous avons introduit une nouvelle observable de premier
passage C(sp), définie comme le territoire - ou nombre de sites distincts - visité par un marcheur
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aléatoire issu de sg, avant d’atteindre une cible fixée sp dans un espace confiné. Par conséquent,
la probabilité de survie du marcheur dans un domaine contenant des piéges distribués avec
probabilité A sur chaque site, c’est a dire la probabilité que celui-ci s’échappe sans rencontrer de
piége, est simplement donnée par:

P(survie|sg) = ((1 — A)C(0)), (3)

A nouveau, le calcul de la distribution compléte du territoire visité C(sg) est nécessaire pour
déterminer P(survie|sp).

0.2.1 Marches unidimensionnelles connectées

En premier lieu, nous avons considéré le cas particulier des processus 1D sur réseau avec span
connecté, définis comme suit : pour deux sites s1 et so visités, tout site intermédiaire s tel que
51 < s < 89 est nécessairement visité. Autrement dit, la découverte de nouveaux sites ne peut
se faire que par plus proches voisins. Dans ce cadre, nous avons montré que le nombre de sites
distincts visités avant d’atteindre la cible localisée en 0, est directement relié & la distribution
1(Sm|so) du site maximal s, atteint avant le premier passage en 0, pour le méme processus
non-confiné. Sur un anneau contenant N sites (voir figure 2(a)), la distribution de C'(sg) s’exprime
alors simplement comme

P(C =nlsg) = 1sg41<n p(n — 1|s0) + Lp>N—so+1 p(n — 1[N — s9), (4)

ot les effets de périodicité sont pris en compte en considérant indépendamment les trajectoires
de sortie horaires et anti-horaires. Pour faciliter I’évaluation de la distribution (4) de C(sg), nous
avons exprimé la distribution du maximum p(s|sg) en fonction de la probabilité de splitting
m0,s(50), définie comme la probabilité d’atteindre 0 avant s, partant de so:

p(slso) = mo,s+1(s0) — mo,s(s0)- (5)

Par conséquent, pour les marches aléatoires 1D confinées avec span connecté, le calcul de la
probabilité de splitting mg s(so) est suffisant pour obtenir la distribution compléte du territoire
visité avant d’atteindre 0. De plus, les équations (4) et (5) s’adaptent facilement au cas de
processus unidimensionnels continus. En pratique, la probabilité de splitting est calculable pour
un grand nombre de marches Markoviennes, et nous avons obtenu la distribution de C(sg) pour
de nombreux processus discrets, comme la marche normale et la marche persistante [Weiss 1994],
mais aussi continus, comme le Mouvement Brownien avec resetting |[Evans & Majumdar 2011].

Il est important de souligner que la condition de span connecté est nécessaire pour pouvoir
relier le territoire visité et le maximum. Pour aller plus loin, nous avons d’abord considéré le cas
d’une marche normale symétrique se relocalisant uniformément sur ’anneau avec probabilité A\ &
chaque pas. Dans le cas d’une relocalisation systématique (A = 1) la distribution de C'(sg) est
explicite :

1

P(C =nlsg) = N_T (6)
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Dans le cas A < 1, le résultat (4) n’est plus valable, et nous avons montré que le calcul de
la distribution de C(sg) peut se faire perturbativement en puissances de A (voir figure 2(b)).
Ensuite, pour s’affranchir des difficultés calculatoires liées aux détails microscopiques des régles de
transport et dépasser le cadre des processus 1D avec span connecté, nous nous sommes intéressés
a I’évaluation du territoire C'(sg) dans la limite de grand volume confinant, en nous focalisant
sur la classe générale des processus stochastiques invariants d’échelle.

1072 T
—
=)
£ 1078
<
.,
D 10 g
o
~— ‘,/
Q_( Random relocation s;=50, N=100
107 ',:" ——————— First order perturbation theory
! A = 0.0001
6 o A=1
107°
20 40 60 80
n

(a) Trajectoire typique d’une marche normale contribuant a
P(C = 12|sop = 6) dans le sens anti-horaire. Partant de sg, la
particule visite tous les sites grisés avant d’atteindre la cible
absorbante localisée en 0. En particulier, le lien entre C(sg)
et le maximum atteint avant le FPT en 0 est manifeste.

(b) Distribution de C(sp) pour une marche symétrique se
relocalisant aléatoirement avec probabilité A. Dans le cas de la
relocalisation systématique, la distribution de C'(sg) est bien
uniforme. Dans le cas A < 1 nous obtenons une approximation
perturbative de la distribution de C(sg).

Figure 2

0.2.2 Processus invariants d’échelle dans la limite de grand volume

Les processus invariants d’échelle [Havlin & ben Avraham 1987] forment une classe de processus
stochastiques définis par la forme de scaling du propagateur en espace infini P>°(x,t,Xq), qui
correspond a la probabilité pour que le processus soit & la position x a 'instant ¢ partant de xg :

= (pc—m> . (1)

tTw

P(x, t|xo) =

tdw

La dimension fractale dy caractérise le domaine dans lequel le processus évolue, et plus précisément
le nombre V de sites distincts accessibles & une distance donnée R, V o« R% . La dimension de
marche d,, décrit quant a elle le déplacement typique du processus z(t) t1/dw qux temps longs, et
II est une fonction dépendant spécifiquement du processus considéré. Notons que de nombreuses
marches aléatoires ont un comportement invariant d’échelle & grand temps, parmi lesquels la
diffusion normale en d-dimensions, mais également la diffusion sur graphes fractals déterministes,
comme le triangle de Sierpinski [Havlin & ben Avraham 1987] ou aléatoires, comme les clusters
de percolation [Bouchaud & Georges 1990].

De maniére générale, pour un marcheur aléatoire partant de sy sur un réseau =, le territoire
C(sp) visité avant atteinte d’une cible localisée en st se réécrit sous la forme exacte suivante
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C(s0) = Z 1(s est visité avant sr|so). (8)
se=
Nous soulignons que la difficulté provient du fait que les variables indicatrices sont fortement
corrélées, puisqu’elles sont évaluées le long d’une méme trajectoire. Concentrons nous d’abord
sur le premier moment (C(sp)) du territoire visité, qui s’exprime uniquement en fonction des
probabilités de splitting =, s, (s9), définies comme la probabilité que le marcheur issu de sg
atteigne s; avant so: a

(C(s0)) = D Tops(s0)- (9)

SEE
Dans la limite de grand volume, c’est & dire avec sg et st fixé, et le volume V du réseau
tendant vers 400, certaines observables de premier passage associées aux processus invariants
d’échelle comme le FPT [Condamin et al. 2005, Condamin et al. 2007b, Chevalier et al. 2011]
adoptent un comportement universel, uniquement régit par le ratio d,,/ds. C’est aussi le cas pour
les probabilités de splitting, qui sont asymptotiquement données par [Bénichou & Voituriez 2014|

dw—d dw—d dw—d
A+ B(rg =y =y ) i dy < dy
— w
2(A — Briv= )
A+ Blog (2202 )
Tsg,s1 (50) ~ AT sidy = dy (10)
2[A+ Blog(ri2)]
dw df dw df dw—df
T20 + 7 —T10 .
5 dy—d; sidy, > df
. 712

ou r;; correspond a la distance entre s; et s;, R est 'échelle de longueur caractéristique du
domaine confinant, telle que R% o V, et A et B sont des constantes qui ne dépendent que de la
fonction d’échelle IT définie dans (7) . En exploitant la décomposition (9), nous avons montré que
le territoire moyen visité prend également une forme universelle dans la limite de grand volume,
qui ne dépend que de dy,/dy:

(1 B .
2 92 Apdf ~ e sidy < dy
(C(rs)) 1 Blog (%)
~ 1 i dy = d 11
% 2 " 2A+ Blog(R)] f 1
df Ts dw_df .
L S— dy > d
2(2ds — du) [R} St tw > Gf

En particulier, nous avons entiérement caractérisé la dépendance fonctionnelle du territoire moyen
visité dans les paramétres géométriques du systéme, & savoir la distance source-cible rg, et la
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taille du systéme V oc R%. En outre, ce comportement universel n’est pas limité au premier
moment (C(sp)). En identifiant les contributions relatives des trajectoires s’approchant ou non
du bord du systéme, nous avons identifié deux familles de classes d’universalité distinctes pour le
comportement de la distribution compléte de la fraction C = C'/V du territoire visité

P(C = x|rs) i 2(C(rs)) +[1 = 2(C(rs))] 6(x) si dy < dy
(12)
rg1dw—ds | 1 .
P(C = x|ry) 1eSer [E] x%}) + Aul(m)] si dy > dy,

ot i1 (x) est une fonction dépendante du processus considéré, telle que uy(z) = o(z~%/%) dans
la limite x — O.

Dans les cas dits non-compact et marginal dy, < dy (aussi appelés transients), la distribution
de C est asymptotiquement quasi uniforme; dans la limite de grand volume confinant, tout les
sites du domaine deviennent équivalents, et I’ordre de découverte est distribué uniformément. En
revanche, le cas compact (ou récurrent) d,, > dy est plus difficile a caractériser. Cependant, nous
décrivons précisément la dépendance géométrique de la distribution de C en r5 et R, et obtenons
également la forme fonctionnelle précise de la distribution dans le régime de petite fraction
explorée z < 1, pour lequel la décroissance de P(C = z|rs) est algébrique, et ne dépend que de
dw — dy. En particulier, nous insistons sur le fait que le résultat (12) donne accés a la dépendance
en rg et R de tout les moments de C, et permet par exemple de quantifier 'importance de
ses fluctuations. Ces résultats analytiques sont illustrés de maniére extensive sur de nombreux
processus invariants d’échelle compacts et non-compacts sur la figure 3.

0.2.3 Statistiques jointes de temps et d’espace

Notons que la distribution du territoire visité avant l’atteinte de la cible s ne contient aucune
information sur la statistique du FPT en sy. Pourtant les deux variables sont intuitivement
corrélées : une exploration plus longue méne probablement & un territoire exploré plus vaste.
Afin de quantifier ce couplage, nous nous sommes intéressés a la distribution jointe o (s, n|sgp) du
territoire visité s et du temps n de premier passage en 0. Nous soulignons que le calcul de cette
distribution jointe donne accés a de nombreuses quantités importantes, comme les distributions
marginales et conditionnelles du territoire visité et du FPT.

A Tinstar de l'évaluation du territoire C(sg), nous nous somme d’abord focalisés sur
I’élaboration d’une méthodologie pour évaluer systématiquement o(s,n|sy) dans le cas exacte-
ment soluble des processus unidimensionnels avec span connecté. En introduisant la probabilité
Fy s(n|sp) de premiére sortie & gauche d'un intervalle (LETP pour leftward exit-time probability
en anglais), définie comme la probabilité d’atteindre 0 pour la premiére fois au n°™® pas sans avoir
atteint s précédemment, la loi jointe o (s, n|sg) se réécrit simplement en fonction de Fp s(n|sg)

o(s,n|so) = Fosy1(n|so) — Fo,s(n]so)- (13)

En d’autres termes, pour les processus 1D a span connecté, continus ou discrets, la détermination
de la LETP est suffisante pour quantifier complétement le couplage entre temps de premier
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(a) Distribution cumulative c¢(x,7s) = [ P(C = u|rs)du du territoire visité pour des processus marginaux
(marche normale 2D) et non compacts (marche normale 3D, marche de Riemann 1D). Correctement rescalée
selon ’équation (12) toutes les distributions se superposent. Le résultat dans la limite de grand volume est
valable pour des domaines confinants de forme arbitraire.
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(b) Distribution de C pour une marche de Riemann (c) Distribution de C dans le cas de clusters de percola-
(p(s1 — s2) o |s1 — s2|~(11H)) compacte avec dy = tion 2D. Les distributions sont moyennées sur différentes
# = 3/2 sur un anneau contenant N sites. Chaque paires source-cible et différent clusters générés a partir
courbe correspond & des valeurs de 75 et R différentes. de grilles de taille 1502 (bleue) et 2002 (violet). L’échelle
Lorsque = — 0, la distribution de C est algébrique et caractéristique R est également moyennée.

I’exposant est correctement prédit par I’équation (12).

Figure 3

passage et territoire exploré.
En pratique, dans le cas de processus markoviens, la LETP s’obtient en partitionnant sur la
position de la particule aprés le premier pas:

Fos(nlso) = Ls Fo,s(n — 1]s0), (14)

ou 'opérateur L, est défini par les détails microscopiques du processus considéré. Par exemple,
dans le cas de la marche normale, Lq,Fo s(n— 1]s0) = 3 [Fo,s(n — 1|sg — 1) + Fys(n — 1|so + 1)].
En combinant (13) et (14) nous avons alors calculé la loi jointe du territoire visité et du temps de
premier passage pour un certain nombre d’exemples représentatifs de processus markoviens 1D
avec span connecté, comme la marche normale, la marche biaisée ou encore la marche normale
avec resetting.

Afin de dépasser le cadre des processus Markoviens & span connecté, nous nous sommes
ensuite intéressés a la loi jointe du territoire visité et du temps de premier passage pour des
processus 1D invariants d’échelle, dans la limite de grand territoire et grand temps n — oo
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et s = oo. Soulignons le fait que cette classe de processus englobe une multitude de modéles
de transport unidimensionnels classiques, notamment des processus non-Markoviens comme
le FBM [Mandelbrot & Van Ness 1968, Molchan 1999] évoqué en introduction, mais aussi le
Random Acceleration Process |Bicout & Burkhardt 2000] ou encore des modéles de marches a
renforcement, comme la Self Avoiding True Walk (SATW) [Sapozhnikov 1994].

Les propriétés de persistance de processus 1D invariants d’échelle, c’est & dire le comportement
de la distribution Fy(n|sp) du FPT en 0, ont fait 'objet de nombreux travaux [Bray et al. 2013].
En particulier, le comportement & grand n est caractérisé par une décroissance algébrique

k(so0)

~ )
n—oo nltod

Fo(n[so) (15)
ou k(sg) est une fonction dépendant du processus considéré, et 6 est appelé exposant de persistance.
En introduisant la variable rescalée 7 = n/s%  oil d,, est la dimension de marche du processus,
et en étendant une approche initialement développée dans [Levernier et al. 2018|, nous avons
montré que le loi jointe o admet une forme de scaling universelle & grand n et grand s :

]’L(So) 1
a(s,n[so) oo W@fﬁ) (16)
n—oo
T fixé

ou h et f sont des fonctions qui dépendent spécifiquement du processus considéré. Nous avons
alors illustré numériquement ce comportement asymptotique sur de nombreux processus invariants
d’échelle Markoviens, comme les marches de Riemann, et non-Markoviens, notamment le FBM
et le Random Acceleration Process. Nous insistons sur le fait que dans la limite n et s grand, le
couplage entre temps d’exploration et espace exploré est entiérement contenu dans la variable
d’échelle 7 = n/s%. De plus, la fonction f(7) correspond exactement & la distribution de 7
conditionnée a la valeur du territoire exploré s. Par conséquent, la mesure de f(7) pour une
unique valeur de s est suffisante pour déterminer entiérement le comportement asymptotique de
la loi jointe o(s,n|sp).

Le résultat (16) présente un intérét théorique en soi, mais permet également de finement
caractériser les propriétés de persistance de certaines marches aléatoires complexes. En effet,
dans certains cas, les fonctions h(sg) et f(7) peuvent étre déterminées explicitement, et la loi
jointe donne alors accés aux distributions marginales asymptotiques du territoire exploré et du
FPT en 0. A titre d’illustration, nous avons considéré le cas de la Self Avoiding True Walk
(SATW), un modele de marche a renforcement non-Markovien récemment utilisé pour décrire la
dynamique de cellules [d’Alessandro et al. 2021]. Dans ce modéle, une particule évolue sur un
réseau 1D, par sauts sur plus proches voisins. Si 'un des sites voisins n’a jamais été visité, il est
choisi avec une probabilité 5 (0 < 8 < 1). Autrement, si les deux sites voisins ont déja été visités,
la particule effectue un saut symétrique. La dynamique stochastique dépend donc de la totalité
du territoire visité précédemment, ce qui complique I’évaluation du temps de premier passage
en zéro. En particulier, si I'exposant de persistance § = (1 — 3)/(25) a été récemment obtenu
[Barbier-Chebbah et al. 2020], le préfacteur exact de la distribution asymptotique du FPT reste
& déterminer. En calculant directement la loi jointe o pour la SATW, nous avons obtenu le
comportement asymptotique exact de Fy(n|sp =1) :
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272 L (17)

valable pour toute valeur de 3, ce qui illustre la pertinence de la loi jointe o dans le cadre de
problémes de premier passage de processus a renforcement.

Naturellement, la distribution jointe des variables d’espace s et de temps n pour des processus
invariants d’échelle en dimension dy plus grande que 1 est une observable primordiale pour mieux
comprendre le processus d’exploration avant atteinte d’une cible dans des situations physiques
réelles. En combinant les méthodes utilisées pour déterminer le comportement asymptotique
de C(sp) pour df > 1 et celui de o(s,n|sg) dans le cas 1D, nous nous attendons a identifier de
nouveaux comportements universels, mais, & ce stade, il s’agit encore d’une question ouverte.

0.3 Processus de saut unidimensionnels en confinement

Dans cette seconde partie, nous ne nous focalisons plus sur une unique observable, mais sur un
processus stochastique en particulier: les processus de saut unidimensionnels en confinement.

Un processus de saut unidimensionnel, ou jump process en anglais, est un processus stochas-
tique discret en temps et continu en espace, décrivant I’évolution sur R de la position z,, d’une
particule issue de zg. La dynamique de la particule est Markovienne, et sa position a 'instant
n + 1 est donnée par x,41 = x, + &,, ol les variables &; sont i.i.d. de distribution commune
p(€). Les processus de saut sont des modéles transverses, et apparaissent aussi bien en théorie
des files d’attente [Asmussen 2003] et en modélisation financiére qu’en biologie, pour décrire par
exemple la dynamique saccadée des bactéries chemotactiques [Koshland 1980]. Nous soulignons
que ceux-ci sont particulierement pertinents pour modéliser des données réelles, expérimentales
ou numériques, tandis qu’'une description continue ne permet pas de capturer les effets propres a
la nature discréte des jeux de données.

Dans cette thése, nous nous focalisons principalement sur les processus de saut symétriques
et continus. Plus précisément nous avons considéré ’ensemble des processus dont la transformée
de Fourier ! p(k) = [ e™p(¢)d¢ se comporte a petit k comme

PlR) =, 1= (@l + o("), (19)

et ou le paramétre p €)0,2], est appelé exposant de Levy, et caractérise les queues de la
distribution p(¢). En particulier, dans le cas p < 2, p(£) décroit algébriquement : p(¢) oc £~(1+1).
Le parametre a, correspond quant a lui a I’échelle de longueur caractéristique du processus.

Considérons tout d’abord le cas de processus de saut en milieu infini, qui peuvent évoluer
sans contraintes sur R tout entier. La distribution de la position de la particule aprés n pas est
donnée par le propagateur infini G (z, n|z¢), qui s’écrit explicitement en transformée de Fourier
et fonction génératrice [Hughes 1995]:

ok, €) = f”[ ) Gy (@, nlao)de | = ———. (19)
;) /_oo " 1 —¢p(k)

'Pour alléger les notations, la Transformée de Fourier est uniquement indiquée par 1utilisation de la variable k.
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Si ’absence de contraintes sur la dynamique de la particule permet d’exprimer facilement le
propagateur infini en fonction de p(k) (équation (19)), qu’en est-il des processus de saut semi-
infinis, dont I’évolution s’arréte dés lors qu’ils traversent 0 7 En fait, dans ce cas, le propagateur
semi-infini G(x,n|xg), correspondant a la probabilité que la particule soit en x aprés n pas sans
jamais avoir traversé 0, a aussi été calculé exactement|Ivanov 1994] :

an |:/0oo /Ooo C_sx_sleG(x,nkCo)dedl’o] _ Go(S,E)Go(Sl,f)’ (20)
n=0

S+ 51

ot Go(s,§) est défini par

Go(s,&) = exp [;r/_: de] . (21)

En outre, le résultat (20) permet d’obtenir la probabilité de survie en milieu semi-infini g(zo, n),
définie comme la probabilité que la particule reste positive durant ses n premiers pas :

G n > —sxo _ 1 S o lOg [1 - §p(k)]

nxzoﬁ {/0 e q(a:o,n)dajo] = ﬁexp [—% /_Oo Mdk] . (22)
En particulier, la probabilité de survie ¢(0,n) partant de zo = 0 est donnée par ¢(0,n) = (2:)2*2”,
et est complétement indépendante de la distribution de saut p(¢). Ce résultat combinatoire
important, connu sous le nom de théoréme de Sparre Andersen [Andersen 1954 souligne précisé-
ment les effets discrets des processus de saut. En effet, pour tout processus continu en temps et
non-smooth, la probabilité de survie ¢(©) (z0,t) jusqu’au temps t est identiquement nulle pour
zo=0: ¢9(0,t) = 0.

Intéressons nous maintenant aux processus de saut confinés dans un intervalle [0, z], et tués

(ie stoppés) dés la premiére sortie. Le propagateur confiné correspondant G 5)(u, o) satisfait
une équation intégrale obtenue en partitionnant sur la position du dernier pas :

G0, (u; |20) = 00,00 (u — 20) + [1 — b0,1] / p(u —y)Glo2)(y, n — 1]xo)dy. (23)
0

A Tinverse des cas infini et semi-infini, cette équation intégrale n’est pas soluble pour une
distribution de saut arbitraire p(¢). En réalité, il s’avére qu'il existe trés peu de résultats généraux
pour des processus de saut confinés, principalement & cause de la structure des équations intégrales
mises en jeu. En particulier, 'observable associée a la direction de sortie de I'intervalle n’est pas
connue pour un processus de saut quelconque.

0.3.1 Sortie d’un intervalle

Nous nous sommes d’abord intéressés & la probabilité de splitting mp (o) associée & un processus
de saut arbitraire, et définie comme la probabilité de quitter U'intervalle par la droite, ie a travers
x (voir figure 4(a)). Celle-ci satisfait une équation intégrale similaire a ’équation (23), obtenue
en partitionnant sur la position du dernier pas :

moa(e0) = [ ply = z0)dy + / " r0.2(u)p(y — 70)dy. (24)
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(a) Trajectoire typique d’un processus de saut contribuant a
0,2 (z0). Aprés 2 sauts a lintérieur de l'intervalle, la par-
ticule issue de xg s’échappe de l'intervalle & travers x. Nous
soulignons que ni le temps auquel la particule ne s’échappe ni
la position d’arrivée ne sont contenus dans 7o,z (o).

(b) La diffusion de photons dans un milieu hétérogéne est mod-
élisée par un processus de saut isotrope en 3 dimensions. Dans
la géométrie parallélépipédique, la probabilité de transmission,
définie comme la probabilité que la particule travers Ho avant
H1, correspond exactement a la probabilité de splitting du

processus de saut projeté selon la direction z.

Figure 4

Sauf dans le cas de quelques distributions de saut spécifiques, par exemple p(f) = %e‘”'a, la
probabilité de splitting ne semble pas pouvoir étre calculée a partir de I’équation (24). Afin
d’obtenir des résultats universels, indépendants de la forme précise de p(¢), nous nous sommes
intéressés a la limite de grand intervalle x — oco. Dans cette limite, nous avons montré que la
probabilité de splitting mp 5 (o) est asymptotiquement équivalente & la probabilité de survie
q(zp,n) évaluée a un instant n=n, correspondant au nombre typique de pas pour s’approcher de
z, qui ne dépend que de z, p1 et a,, et que nous avons explicitement déterminé. La probabilité
de splitting prend alors la forme universelle suivante :

. 7r0@(950) _i "
i [0 | - v -
w2
wio=(%) 2or ().

ot la fonction V(x¢) est explicite, et s’exprime uniquement en fonction de p(¢). Nous soulignons
le fait que le résultat asymptotique (25) est valable pour toutes les valeurs de zp telles que
0 < xp < z, et capture précisément les effets discrets qui apparaissent dans le régime 0 < xo < ay,
et qui ne peuvent étre décrits par une approche continue. En particulier, nous soulignons un
résultat important : la probabilité de splitting partant de xy = 0 est strictement non-nulle, et
s’écrit simplement en fonction de a,, p et =

122
on—1 1+p ay ?
m0.2(0) ~ N r (2 gl I (26)

En d’autres termes, my,(0) ne dépend pas des détails de la distribution de saut p(¢) mais
uniquement de son comportement & grand £, et peut donc étre facilement évaluée. Enfin, le calcul
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de 7 z(x0) présente également un intérét applicatif, notamment dans le cadre d’expériences
de diffusion de photons en milieu hétérogéne [Baudouin et al. 2014, Aratjo et al. 2021], ou la
probabilité de splitting s’identifie naturellement a la probabilité de transmission des photons &
travers un parallélépipéde en 3 dimensions (voir figure 4(b)).

Pour caractériser plus finement les événements de sortie d’un intervalle, nous avons ensuite
introduit la probabilité Fy ,(n|xzo) de premiére sortie a gauche (LETP pour leftward exit-time
probability en anglais), définie comme la probabilité que la particule traverse 0 pour la premiére
fois & 'instant n, sans avoir quitté 'intervalle auparavant, et son homologue & droite, la RETP
Fy z(n|zo). A nouveau, nous insistons sur le fait que 'équation intégrale qui définit la RETP

o0

Foz(n|zo) = [1 — 6n1] /Ox p(y — 2y) Foz(n — 1y)dy + 6n1 / p(y — x0)dy (27)

n’est a priori pas soluble pour une distribution de saut arbitraire p(¢). En considérant la variable

¥n, et en exploitant les résultats nouveaux obtenus pour la probabilité de

P a
rescalée T = [—“]
xX
splitting, nous avons caractérisé pour la premiére fois le comportement & grand n et grand x de

la RETP, qui prend une forme de scaling universelle

Fou(nlzo) |~ moz(wo)hyu(r)n", (28)

n—00
T fixé

ott hy,(7) est une fonction d’échelle qui ne dépend que de p. Nous insistons sur le fait que la
dépendance en zg de la RETP dans le régime 0 < g < a, est entiérement contenue dans la
probabilité de splitting, et les effets discrets liés & la nature des processus de saut sont correctement
décrits. En particulier, la RETP Fj ,(n|0) partant de g = 0 est strictement positive pour tout
n et x. De la méme maniére, nous avons montré que la LETP se réécrit en fonction de la
distribution connue Fy(n|zg) du temps de premier passage en 0 dans la géométrie semi-infinie

Fou(nlzo)  ~  Fo(n|zo)gu(r), (29)

00
T—00
7 fixed

ot g, est une fonction d’échelle ne dépendant que de p, et la dépendance en zg de Fp . (n|zo)
est a nouveau correctement caractérisée dans tous les régimes 0 < xyp < x. De plus, nous avons
évalué h, et g, exactement pour pu = 2, et asymptotiquement dans les régimes 7 < 1 et 7> 1
pour p < 2. Nous résumons nos résultats dans la table 1 :

Fog(nlzo) o 70,2(0)hy(T)n ! Foz(n|zo) oo Fo(n|wo)gu(T)

T—00 T—00

T fixé T fixé
pw=2| ha(r)= 272 Zzozl k2(_1)k+1efk27r2-r ga(7) = 471'%7'% Z]til ok 2

. _3
\ o | ) T sint/ 2 o)~ 1
~ I —\1287 ~ w13/2 —\12MT
hy(T) el [A12¢7] e gu(T) 3, W [A12¢7]7 % e

Table 1
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ot les constantes 7,, w, et A\; sont explicitées au chapitre 5. Nous insistons sur le fait que la table
1 fournit une description compléte du comportement jusqu’alors inconnu de la RETP et LETP a
grand n et grand x, et valable pour tout les processus de saut symétriques. En particulier, nos
résultats caractérisent complétement le comportement spécifique des processus de saut a petit
T, qui n’est pas décrit par une modélisation continue, et qui n’a pu étre obtenu qu’a partir de la
détermination de la probabilité de splitting mo 4 (o).

0.3.2 Statistiques d’extrémes des processus de saut

Le calcul de la probabilité de splitting, de la RETP et de la LETP s’inscrit dans le cadre plus
large des statistiques d’extrémes (EVS de 'anglais extreme value statistics) des processus de
saut, qui concernent les distributions jointes d’extremums et de temps d’atteinte d’extremums.

Les EVS de marches aléatoires ont été principalement étudiées dans le cas du mouvement
Brownien. A titre d’exemple, les distributions du maximum m(t) atteint par un Brownien libre
de durée t, ainsi du temps d’atteinte t,, de ce maximum ont été initialement calculées par Paul
Lévy [Levy 1937]; la distribution jointe de m(t) et ¢, a été étudiée dans [Majumdar et al. 2008,
Mori et al. 2021 pour le Brownien libre et, entre autres, le pont Brownien. Citons également
la distribution du temps d’atteinte du maximum avant le FPT en 0, qui a été calculée dans
[Randon-Furling & Majumdar 2007].

Concernant les EVS de processus de saut généraux, seule les distributions p(z|n,zg) du
maximum z atteint jusqu’au pas n, et p(nm,|n, o) du temps d’atteinte n,, de ce maximum dans
la géométrie infinie ont été obtenues [Majumdar 2010]. Dans ce contexte, nous avons calculé
la distribution jointe pi(z, ny,|n, xg = 0) du maximum x et du temps d’atteinte n,,, qui s’écrit
simplement comme p1(x,npy|n,z9g = 0) = Go(x,nm)q(0,n — ny,), ot Gy est le propagateur
semi-infini partant de 0, défini précédemment (21). De plus, nous avons montré que cette loi
jointe admet un comportement asymptotique universel qui ne dépend que de I'exposant de Levy
. Soulignons en particulier le fait que la simplicité de ce résultat découle du caractére Markovien
et discret en temps des processus de saut, qui permet un découpage trivial de la trajectoire
autour du maximum x.

De maniére générale, cette derniére remarque suggére que les statistiques d’extrémes de
processus de saut semi-infinis, pour lesquels il n’existe pas de résultats généraux, peuvent
s’obtenir & partir d'un découpage similaire. En particulier, nous avons introduit une nouvelle
brique élémentaire nécessaire a la description de trajectoires stoppées lors du premier passage
en 0 : la probabilité de strip poz(n), définie comme la probabilité que la particule partant de 0
atteigne son maximum x au n'®™€ pas exactement, tout en restant positive durant ses n premiers
pas (voir figure 5).

Bien que l'expression explicite de p,(n) dépende du propagateur borné G 4 (u, n|ze = 0)
et n’est donc pas calculable pour un processus de saut arbitraire, nous avons montré que la
probabilité de strip prend une forme asymptotique universelle dans la limite n grand et x grand.
Pour les processus de saut avec p = 2, et en définissant 7 = n/(z/a2)?, la probabilité de strip

s’écrit
2 az 21 2 S k2 1 k+1 —k272r 30
pou(n) . 2| 2] —a? Y k(e (30)
z—00 k=1
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Figure 5: Trajectoire typique contribuant & la probabilité de strip po,z(n). En exactement n pas, la particule traverse la
bande [0, z], sans s’en échapper.

Pour les processus de saut avec p < 2, et en définissant n, = (x/a,)*, poz(n) prend la forme
asymptotique suivante :

~ P (s (T [2]" 2
NO,@(”) l«<nkn,e T P('LL) St 2 xT :L“' (31)

En particulier, nous obtenons un résultat contre-intuitif : dans la limite 1 < n < ng, poz(n)
devient indépendante de n. Une multitude d’observables d’EVS pour les processus de saut
peuvent alors étre systématiquement évaluées en fonction des briques élémentaires que sont la
probabilité de survie semi-infinie g(zg,n), la probabilité de splitting 7 z(z¢), les LETP et RETP
ainsi que la probabilité de strip 19 4(n). La table 2 présente de maniére synthétique certains des
résultats obtenus dans le cas de processus généraux.

En conclusion, nous insistons sur le fait que les résultats présentés dans la table 2 ne sont
que des exemples représentatifs d’observables d’extrémes calculées au chapitre 6, et illustrent le
role clé des nouvelles observables que nous avons introduites pour caractériser les statistiques
d’extrémes des processus de saut généraux.

0.3.3 Processus de saut isotropes dans la limite de grand volume

Les résultats asymptotiques obtenus pour les observables de premier passage (comme g 5 (o)
ou Fp z(n|zg)) associées aux processus de saut confinés en une dimension peuvent en réalité
s’étendre aux processus de saut isotropes en dimension plus grande que 1. Plus précisément, nous
nous sommes intéressés au cas des processus de saut isotropes et continus, caractérisés par une
distribution de saut p(1l) et dont le comportement de la transformée de Fourier a petit vecteur
d’onde k s’écrit

plio) = 1 = laukl” +of|kl"). (32

Comme dans le cas unidimensionnel, ’exposant de Levy u caractérise les queues de la distribution,
et a, est I’échelle de longueur caractéristique. Pour un processus de saut isotrope arbitraire en
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observable

‘ Expression exacte ‘ 1 < 2 - Comportement asymptotique dans le régime 1 < n < ng,

1 =2 - Comportement asymptotique dans le régime de scaling n/n, fixé ‘

Processus de saut en milieu infini

N N i U
wu(zn, zg = 0) La(a,n) 2 gin () T(p) [2]" 2 ‘ @;\/ﬁe [az} o
_ _ 1 1
p(nm‘ﬂulo = 0) q(0, nwvr)‘](()«n nm) T \/m
5 JE I R
p1(x, nm|n, o = 0) Go(z,nm)q(0,n — np) % P éﬁﬂ sin (12&) T(u) [%L}“% ime [az} Tnm
v 12’ L —MNm

(T, nm, 0, 0) | Golz,nm)Go(z — xp,m — 1) N (n —n, )4"2 sin? (Z£) T%(p) RN [ W iﬂée{ﬁ] ﬁm’r;:/] T

P2 T, m, T f|N, 0l m )Go (s Cfs m bm m) 3 f ) F wa—zp)| @-ap) ar a2 2(a)’r(nm ()2
Processus de saut en milieu semi-infini
; “
plalzo = 0) ~m0.2(0) 2 () o (%]F
2071 D32 T(w) sin(B) ra,q % 2131 . i2n2n (9212
p3(@, Tm |0 = 0) 10,2 ) 0.5 (0) w [2]¥1 2 [2] 12 0 p2( 1)kl kit 2]
x
p) ‘ S Ta? e 2
- — , LW g (= au2p 1 51 4 ¢ 1272 kel ,— k22 n, [ 2] =272 (np—nm) [ 2
pa(@, oy ngleo = 0) | pog(nm) Fog(ng — nml0) NG [ W) gin (7*)] [a]% 1 4[22])° Lrdyoe | g2 (1)t Kot [F] R mnn)[2]
p - 2 : 2 2. [a2]? . . P
ol nlro =0) o) B st () (2] £ ot (3] Ly, 2P o ]3]

Table 2: Statistiques d’extrémes pour des processus de saut en milieu infini d’une durée de n pas, et processus de saut
semi-infinis stoppés dés le premier passage dans R* . La variable x correspond au maximum, n,, au temps d’atteinte du
maximum et ny au temps de premier passage a travers 0 (dans le cas de processus semi-infinis). Les expressions exactes
sont valables pour tous les processus de saut symétriques et continus, et ny = (a/a,)*. Les comportements marqués d’un o
sont classiques, et connus dans la littérature.

confinement, nous avons considéré le cas général d’'une observable B(xq) de premier passage,
définie comme une observable évaluée lors de la sortie du domaine confinant D de longueur
caractéristique R, dans la limite de grand volume R > a, (voir figure 6). Dans le cas le plus
simple, nous considérons que la particule sort du domaine dés le premier passage a travers la
surface confinante .

A titre d’exemple, B(xg) peut aussi bien correspondre au temps de premiére sortie d’une
enceinte quelconque, qu’a la position du processus de saut lors de sa sortie. Il est important
de souligner que 1’évaluation de telles observables en dimension plus grande que 1 présente
un intérét applicatif fort, que ce soit dans le contexte de la diffusion de photons avec pu <
2 [Baudouin et al. 2014] ou g = 2 [Savo et al. 2017|, ou encore pour mieux décrire certains
mouvements bactériaux modélisés par des processus de type Run and Tumble [Van Kampen 1992,
Patteson et al. 2015].

Dans la limite de grand volume confinant, 'approche classique pour évaluer B(xg) consiste a
identifier le processus limite continu en temps associé au processus de saut. Dans le cas y = 2,
le mouvement de la particule a grand temps est asymptotiquement décrit par un mouvement
Brownien [Redner 2001], et si u < 2, le processus limite est un processus a-stable isotrope de
paramétre p |Kyprianou & Pardo 2022|. Par conséquent, dans la limite de grand volume, et
pour une position de départ x¢ positionnée loin du bord absorbant,

P(B(Xo) =b ~

P(B© —b
R (B')(x0) = b),

(33)
ou B (x0) correspond a la méme observable, évaluée pour le processus limite. En particulier, la
distribution de B(¢) (x0) est indépendante des détails du processus de saut, et, par conséquent,
est souvent plus simple a calculer. Néanmoins, si la distance initiale d. de la particule au bord
absorbant ¥ de D (voir figure 6) est petite par rapport a I’échelle de longueur a,, du processus , la
relation B(xg) ~ B (xg) n’est plus valable. En effet, de nombreuses trajectoires sont stoppées
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Figure 6: Schéma de la méthode de raccordement. Le processus de saut isotrope part de xg, situé a une distance de
de lenceinte X. Nous considérons ici une observable B(zg) évalué lors de la premiére sortie de D, c’est a dire dés que la
particule traverse 3. Les hyperplans H; et Hz sont tangents a ¥ en xp. Si la particule traverse Hy avant Hyp, l’observable
B(zo) est alors asymptotiquement, équivalente & sa version continue B(®) (o).

trop rapidement, avant que la limite continue ne soit atteinte, et les effets discrets du processus
de saut ne sont plus négligeables. Notons que le cas B(zg) = 7 z(x0) a été traité en détail au
chapitre 4; nos résultats montrent bien que 'approche continue n’est plus valable lorsque x¢y — 0
puisque 7 5 (0) est strictement non nulle.

Afin de prendre en compte la présence d’'une frontiére absorbante proche du point de départ,
nous avons développé une méthode de raccordement pour déterminer B(xo) dans la limite de
grand volume. En introduisant deux hyperplans H; et Hy distants de a, avec a > a,, au voisinage
de la position initiale xg (voir figure 6), nous avons montré que la distribution de 1’observable
B(xg) se réécrit

P(B(xo) = b) : (34)

1 .

0, <Ca<R WO’Q(dC)ulig}h ) (u)

au<Re 0
ol xp est le projeté orthogonal de x¢ sur %, R. le rayon de courbure en xj et Wé:a(de) est la
probabilité de splitting du processus de saut associé au mouvement perpendiculaire a Hy et Hs.
Nous insistons sur le fait que le comportement discret de la particule est entiérement contenu
dans la probabilité de splitting W&a(de), que nous avons complétement caractérisée dans la limite
a > a, au chapitre 4. La méthode de raccordement est en particulier valable pour une particule
partant strictement du bord de I’enceinte, puisque 7r3‘7a(0) est strictement non nulle. Notons
enfin que le résultat (34) est transparent dans le cas B(zg) = Fo.(n|zo) : la dépendance en
de Fy z(n|zo), donnée dans la table 1, est directement contenue dans la probabilité de splitting
70,2 (%0)-

Ensemble, les équations (33) et (34) permettent d’évaluer la distribution de B(xg) dans la
limite de grand volume R >> a,, et pour toutes conditions initiales xg, a condition que celle
de ’observable B(C)(u) associée au processus limite continu soit calculable. En pratique cette
condition est satisfaite pour de nombreuses observables, aussi bien spatiales que temporelles.
Pour des processus planaires avec p = 2 partant de la surface absorbante d’un disque, nous avons
calculé la mesure harmonique, définie comme la distribution de 'angle de sortie du disque, ainsi
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que la distribution exacte du temps de sortie du disque dans la limite de grand volume. Ces
résultats, inaccessibles par une description purement brownienne, sont entiérement nouveaux
et directement applicables aux modéles de particules de type Run and Tumble par exemple.
Dans le cas pu < 2, notre méthode de raccordement nous a permis de calculer entre autres (voir
chapitre 7) le temps moyen de sortie d'un intervalle [0, ] partant de z¢p = 0, et ainsi de compléter
I'analyse asymptotique des temps de sorties Fy 5 (n|zg) et Fyz(n|zo) effectuée au chapitre 5

En conclusion, nos résultats, valables dans la limite de grand volume confinant, permettent
de déterminer de maniére explicite un grand nombre d’observables associées & un événement
de premier passage, pour des processus de saut quelconques en dimension supérieure ou égale
a 1, & partir du calcul de la méme observable pour un processus continu. Par conséquent,
les nombreux résultats concernant les temps de premier passage et probabilités de splitting
de mouvement browniens [Bénichou & Voituriez 2014] ou de processus a-stables [Getoor 1961,
Kyprianou et al. 2014| s’adaptent naturellement aux processus de saut isotropes.
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0.4 Conclusion

La description et 'interprétation d’un phénomeéne physique par un probléme de transport
aléatoire s’organise autour de deux axes : la détermination d’un processus stochastique rendant
compte de la dynamique aléatoire empirique, et le choix d’une observable statistique répondant
& une question physique précise. Ainsi, la propagation d’une épidémie peut étre modélisée par
une marche aléatoire sur un graphe (processus), et le temps de contamination compléte de la
population correspond alors au temps mis par le marcheur pour visiter I'intégralité des nceuds
(observable). Considérons un autre exemple : la longueur d’une file d’attente peut étre décrite
par un processus de Poisson (processus); la probabilité que le caissier puisse un jour rentrer chez
lui est alors donnée par la probabilité que ce processus atteigne 0 (observable).

S’appuyant sur ce découpage, ce manuscrit s’organise en deux parties, chacune reflétant
I’'un de ces deux axes. Dans une premiére partie, nous avons introduit une nouvelle observable,
le territoire visité avant 'atteinte d’une cible par un marcheur en confinement, qui quantifie
I'efficacité du processus d’exploration de ’espace, et caractérisé quantitativement sa statistique
pour la classe de processus stochastiques la plus vaste possible. A linverse, dans une seconde
partie, nous nous sommes focalisés sur un unique type de processus stochastiques, les processus
de saut unidimensionnels en confinement. Bien qu’étudiés depuis longtemps, il existe peu de
résultats analytiques les concernant, et nous avons proposé une méthode pour caractériser de
nombreuses observables dans la limite de grand volume confinant.

Le nombre de sites distincts visités par un marcheur aléatoire au bout de n pas, qui quantifie
la capacité du marcheur a explorer un territoire inconnu, a été majoritairement étudié dans une
géométrie infinie. En effet, dans un domaine confiné, celui-ci finit toujours par étre entiérement
visité. Cependant, il est légitime de se demander quelle fraction d’un domaine fermé est visitée
par un marcheur avant de s’échapper par une sortie fixée. Notons que cette question est
particuliérement pertinente dans le cadre d’applications en chimie ou biologie par exemple. Afin
d’y répondre, nous avons introduit I'observable C(sp), définie comme le territoire visité par un
marcheur aléatoire confiné issu de sy avant d’atteindre une cible fixée sp.

Nous avons tout d’abord considéré la classe des processus Markoviens, unidimensionnels et
avec span connecté, c’est a dire ne laissant pas de trous dans leur trajectoire. Cette classe de
processus englobe un nombre conséquent de marches aléatoires classiques sur réseau : la marche
normale symétrique et biaisée, la marche persistante; mais aussi de processus continus comme
le mouvement Brownien avec ou sans resetting. Dans ce cadre nous avons établi une relation
exacte entre le territoire visité avant d’atteindre la cible située en 0, et les probabilité de splitting
Ts1,s5(80), définie comme la probabilité que le marcheur atteigne sy avant s;. Ce faisant, nous
avons pu déterminer la distribution exacte du territoire visité avant d’atteindre 0 pour un grand
nombre de processus.

Pour dépasser le cadre de la dimension 1 et du span connecté, nous avons ensuite considéré la
classe plus générale des processus invariants d’échelle, dans la limite de grand volume confinant.
En particulier, cette classe rassemble les diffusions sur réseaux fractals déterministes et aléatoires,
mais également les processus avec saut a longue portée, comme les marches de Riemann. En
exploitant le comportement asymptotique des probabilités de splitting pour les processus invariants
d’échelle dans la limite de grand volume, nous avons identifié un comportement de scaling universel
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du premier moment (C(sg)) du territoire exploré, mais également de sa distribution compléte.
En particulier, nous avons entiérement caractérisé la dépendance du territoire visité dans les
paramétres géométriques du systéme, a savoir la distance source-cible, ainsi que la taille du
domaine confinant.

Enfin, il est manifeste que le territoire visité avant de trouver la cible sp est intrinséquement
lié au temps mis pour 'atteindre. Pour décrire plus finement le processus d’exploration et
quantifier les corrélations intuitives entre territoire et temps, nous avons considéré la loi jointe
o(s,n|sp) du territoire visité s et du FPT n en sy, partant de sg. Dans le cas de processus 1D
Markoviens avec span connecté nous avons élaboré une méthodologie pour calculer explicitement
o, et 'avons appliquée aux différents processus évoqués ci-dessus. De plus, dans la limite s et n
grand, nous avons montré que la loi jointe admet une forme de scaling universelle, valable pour
tout les processus unidimensionnels, connectés ou non, Markoviens ou non. En particulier, nos
résultats sont valables dans le cas de '’emblématique mouvement brownien fractionnaire.

Ces premiers résultats concernant le territoire visité avant l'atteinte d’une cible dans un
domaine confiné ouvrent la voie & de nombreuses autres questions. On pourrait par exemple
se demander si le comportement universel de la distribution jointe du territoire et du temps
est toujours valable en dimension plus grande que 1. Si 'on s’attend & retrouver des classes
d’universalité similaires & celles régissant le comportement de C(sg), cette question reste pour
I'instant ouverte. De méme, que se passe-t-il si la cible n’est pas fixée, mais est distribuée
aléatoirement dans le systéme, ou si le domaine posséde plusieurs sorties 7 Ces extensions
naturelles sont évidemment passionnantes d’un point de vue théorique, mais s’inscrivent également
dans Poptique plus large de la modélisation de phénoménes et systémes réalistes.

La seconde série de questions qui nous a intéressés concerne un processus stochastique en
particulier, les processus de saut unidimensionnels (jump process en anglais). Ce modéle décrit
I’évolution de la position z,, d’une particule issue de xq, effectuant un saut aléatoire caractérisé
par une distribution p(¢) a chaque pas de temps discret. Nous insistons sur le fait que ces modéles,
introduits dés 1905 par Pearson, sont particuliérement bien adaptés pour décrire des données
expérimentales ou numériques, qui sont intrinséquement discrétes. A contrario, une description
continue, comme le mouvement brownien, ne peut capturer les effets spécifiques liés a cette
discrétisation. Notons d’abord que les processus de saut en milieu infini sont bien compris. Par
exemple, la distribution de la position de la particule au n°™® pas s’écrit explicitement en fonction
de la distribution de saut p(¢). De la méme maniére, les processus de saut semi-infinis, c’est a dire
stoppés dés le premier passage & travers 0, ont également été longuement étudiés; en particulier,
la distribution de la position et la probabilité de survie au n®™e
générale pour tout p(¢) symétrique. En revanche, pour les processus de saut confinés, c’est a dire

pas s’expriment de maniére

stoppés dés la premiére sortie d’un intervalle [0, z], il n’existe pas de résultats généraux valable
pour tout p(¥).

Afin de caractériser plus précisément ces processus confinés, nous nous sommes intéressés aux
observables liées & la sortie de l'intervalle, dans la limite de grand intervalle £ — co. En premier
lieu, nous avons considéré 'observable la plus naturelle, la probabilité de splitting 7 5 (xo) définie
comme la probabilité que le processus s’échappe en x plutét qu’en 0. Dans la limite de grand
intervalle, nous avons montré que la probabilité de splitting admet un comportement universel
explicite, valable pour toute distribution de saut p(¢). Il est important de souligner que notre
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résultat caractérise complétement la dépendance en xy de la probabilité de splitting, et capture
précisément les effets spécifiques a la nature discréte du processus. En particulier, nous avons
montré que la probabilité de splitting partant de 0 ne dépend que des queues de la distribution
p(f) et est strictement non-nulle, ce qui n’est pas possible pour un processus continu non-smooth.

Pour obtenir une information plus fine sur les événements de sortie de 'intervalle, nous nous
sommes ensuite focalisés sur le temps de sortie & gauche et & droite, en introduisant la probabilité
de sortie a gauche (LETP) Fp . (n|zo), définie comme la probabilité que le processus sorte de
Iintervalle au n®™® pas et a travers 0, et son homologue & droite, la RETP Fp 4(n|zg). Dans
la limite de grand intervalle, nous avons montré que ces deux quantités admettent également
un comportement asymptotique universel, qui ne dépend que des queues de la distribution. A
nouveau, nos résultats quantifient précisément les effets discrets des processus de saut, et sont
valables dans tout les régimes de position initiale xg, en particulier xy = 0.

Enfin, la détermination de la probabilité de splitting ainsi que des LETP et RETP nous a
permis d’étendre nos résultats pour les processus de saut dans deux directions. Tout d’abord,
nous avons considéré les statistiques d’extrémes, associées de maniére générale a la distribution
d’extremums et de temps d’atteinte de ces extremums. L’un de nos résultats principaux a été de
montrer que les LETP, RETP et probabilités de splitting constituent des briques élémentaires
essentielles & la détermination d’observables d’extrémes. En particulier, nous avons calculé
exactement et asymptotiquement un grand nombre de distributions jointes d’extrémes et de
temps d’atteinte, pour des processus de saut arbitraires. Ensuite, nous avons adapté nos résultats
au cas de processus de saut isotropes arbitraires en dimension plus grande que 1. Pour ce
faire, nous avons développé une méthodologie valable pour toute distribution de saut isotrope,
permettant d’évaluer des observables liées & la sortie d’'un domaine confinant, dans la limite de
grand volume. A titre d’illustration, nous avons par exemple calculé la distribution du temps
d’atteinte du bord d’un disque pour une particule de type Run and Tumble initialement située
sur le bord du disque, qui ne peut étre obtenue par une approximation brownienne.

En conclusion, nos résultats brossent un tableau complet du comportement asymptotique
d’observables associées & la sortie d’'un domaine confinant en dimension 1 et plus pour des
processus de saut arbitraires. Plus précisément, nos formules se veulent exhaustives : pour
un processus quelconque, la détermination du comportement des queues de p({) est suffisant
pour évaluer le comportement de I'observable considérée. Pourtant, il reste encore beaucoup de
questions sans réponses. Si la plupart de nos résultats sont valables uniquement dans la limite de
grand volume confinant, I’évaluation de la premiére correction & ce comportement asymptotique,
a partir du big jump principle [Vezzani et al. 2019] par exemple, permettrait de caractériser
encore plus finement les processus de saut. Une autre direction qu’il nous tarde de creuser est
celle de I'asymétrie du processus. Est-il possible d’identifier des comportements universels dans
le cas ou p(¢) n’est plus symétrique ? Nous savons que c’est le cas pour la probabilité de survie
de processus semi-infinis [Majumdar et al. 2012|, et espérons que la base méthodologique que
nous avons proposée puisse s’étendre au cas asymétrique confiné.



Introduction

Ubiquitous in physical systems, random transport phenomena are observed at all temporal and
spatial scales, and across numerous fields, from biology to mechanics, finance or geology. The
scattering of photons in a heterogeneous medium [Rosenstock 1961, Savo et al. 2017], the motion
of a molecular motor along a DNA strand [Berg et al. 1981], the folding of a polymeric chain
[Lifshitz et al. 1978], the evolution of a financial asset |[Black & Scholes 1973], the structure of a
starling flight [Cavagna et al. 2010], the fluctuations of an earthquake hazard [Matthews 2002]...
All these phenomena can be described by a random motion, and their understanding is essential
to answer important questions in practice. For example, with what probability does a stock
price reach a certain threshold? How fast does genetic transcription, responsible for the synthesis
of proteins necessary for the proper functioning of the organism, take place? Or what is the
distribution of the waiting time between two earthquakes knowing the seismic history of a given
region?

Since the end of the 19" century, the scientific community has been working to categorize
and model these phenomena with a double objective: extracting relevant statistical properties
to interpret empirical results, and making quantitative predictions to answer these practical
questions. Two and a half centuries later, we summarize, admittedly brutally, the essential
ingredients needed to model and interpret a physical problem of random transport.

(i) The first step is to define the rules of transport accounting for the observed random
dynamics, and more precisely to identify the underlying stochastic process that describes the
motion of the particle under consideration (where the term "particle" is used generically, whether
it refers to a starling or a stock price).

Historically, Brownian Motion was first introduced in the early 1900 by Bachelier
[Bachelier 1900 and Einstein |Einstein 1905], to explain the erratic motion of some experi-
mental particles. While Brownian Motion is continuous in both space and time, other parallel
mathematical descriptions have emerged. For instance, Pearson [Pearson 1905] developed a
model of random walk in discrete time and continuous space, and several years later, Polya
[Polya 1921] investigated random walks on hypercubic networks that are discrete both in time
and space. Importantly, although these models are distinct, they also share strong similarities.
First, all three models are Markovian, meaning that the stochastic dynamics depend only on
the state of the particle at a given time ¢, and not on its trajectory history. Furthermore, these
processes exhibit diffusive behavior, with the particle’s mean square displacement (MSD) denoted
by (z2(t)) behaving linearly at large times, such that (z2(t)) ~ t.

It should be noted that the mean squared displacement of Markovian processes does not
always follow a linear behavior. For instance, some trajectories of foraging animals exhibit
a superlinear MSD [Reynolds 2006] with (x2(t)) o« t? and 8 > 1. To accurately model such
anomalous diffusion phenomena [Bouchaud & Georges 1990], new stochastic processes need to
be introduced. One such example is Levy flights [Levy 1937], which are Markovian random walks
with power-law distributed increments p(¢) oc £~(1F#) and p €]0,2[, and result in super-diffusive
dynamics with a typical large-time displacement z,, ~ n/#, in contrast to the diffusive case where
X, ~ y/n. Conversely, subdiffusive behavior has been observed in experimental studies of glassy
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dynamics, and can be properly modeled by considering continuous time random walks (CTRW)
[Montroll & Weiss 1965, Monthus & Bouchaud 1996], for which particles wait for a random time
7 before each move, following a power-law distribution p(7) oc 7~0+8) with g €]0,1[. In turn,
CTRWs have a sublinear MSD (22(t)) o< t¥.

Markovian models often provide a simplified representation of physical phenomena, and allow
for explicit analytical results. However, they completely disregard memory effects that could
significantly impact the dynamics of the observed particle. In turn, non-Markovian stochastic mod-
els, such as the emblematic Fractional Brownian Motion (FBM) [Mandelbrot & Van Ness 1968],
can account for such effects. More precisely, the FBM is a non-Markovian Gaussian process
characterized entirely by its auto correlation function (x(t1)z(t2)) oc (|t1]?7 + [t22H — |t1 —to|?H),
and is particularly suited to describe anomalous non-Markovian dynamics, such as those observed
in semi-flexible polymers for instance (H < 1/2). As another example, reinforcement walks
[Grassberger 2017] model phenomena where the dynamics at time ¢ depend on the geometry
of the complete trajectory, and whose n times distribution (x(¢1),...,z(t,)) is not necessarily
Gaussian. Such behavior has been evidenced in certain natural systems such as ant motion
for instance [Goss et al. 1989], where the ant movement is influenced by the geometry of the
previously visited territory.

(il) Once a stochastic process accounting for the observed random motion has been identified,
it is crucial to define a statistical observable, which is a probabilistic quantity that can be
evaluated to draw physical conclusions. Different classes of physical questions require different
observables, which can be broadly classified into two main categories.

First, dynamic observables describe the statistical properties of the trajectory associated
with the random process x(t) after a fixed deterministic time t. Although the mean square
displacement (x?(t)) is the most natural dynamic observable, it only accounts for the diffusive
or non-diffusive behavior of the particle under consideration, and other dynamic observables
can be defined to quantify the efficiency of the exploration process. For instance, in the case of
discrete random walks in time and space, the number 5,, of distinct sites visited after n steps
[Dvoretzky & Erdos 1951, Wijland et al. 1997| is a good metric to quantify the rate at which
new sites are discovered. The computation of the distribution of .S, is especially relevant to
determining the probability that a particle on a network containing randomly distributed traps
remains alive after n steps [Rosenstock 1961]. For planar processes in continuous space such as
2D Brownian motion, the area of the convex envelope of the trajectory [Majumdar et al. 2010a]
can serve as an alternative observable to characterize the extent of the visited territory.

The second category, which we refer to as first-passage observables, are related to the efficiency
of a target search process, and quantify the statistical properties of the trajectory evaluated
upon a random first-passage event. For instance, the first-passage time (FPT) on a fixed
target has garnered considerable attention since the introduction of Brownian motion. Indeed,
such FPTs are fundamental to many physical phenomena, such as cyclization of a polymeric
chain [Gooden et al. 1998]|, protein binding [Berg et al. 1981] , or queue lengths [Asmussen 2003].
Consequently, the distribution of the FPT has been extensively studied, both for discrete walks
on lattices and graphs [Montroll 1969, Haynes & Roberts 2008, as well as in the context of scale-
invariant confined processes [Bénichou et al. 2010a] and more recently, non-Markovian confined
processes |Levernier et al. 2018|. It is worth noting that first-passage observables are not limited
to the FPT alone, but also encompass preferential target search observables. For instance, the
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splitting probability, defined as the probability of reaching a given target before another, plays a
crucial role in physics, such as in quantifying the probability of allele fixation [Wright 1931].

In brief, the study and interpretation of a stochastic transport phenomenon involve two
essential aspects: the selection of a particular stochastic process, which comprises transition
rules and geometry, and the identification of a relevant stochastic observable that reflects a
physical attribute of the system of interest. In this work, we leverage this framework and tackle
two separate problems. In the first part, we concentrate exclusively on the second aspect and
introduce a novel observable - the visited territory before hitting a target in confinement - that we
analyze for the most general class of stochastic processes possible. Conversely, in the second part,
we narrow our focus to a specific type of stochastic process: one-dimensional jump processes in

Oth

confinement. Despite being introduced in the early 20" century, few observables for this system

have been computed, and we aim to fill this gap.

Part I. In the context of lattice random walks, a fundamental measure of the exploration
process is the number of distinct sites S, visited after n steps. This quantity has been
the subject of extensive research: the complete distribution of S, is known for a normal
walk on a 1D lattice [Dvoretzky & Erdos 1951], and the asymptotic large n behavior of
the first moments of S,, have been determined [Jain & Pruitt 1971, Jain & Pruitt 1974] for
higher-dimensional hypercubic networks. These findings have been further extended to near-
est neighbor walks on arbitrary graphs |[Havlin & ben Avraham 1987|, and, more recently, to
one-dimensional Riemann walks [Hughes 1995] that perform algebraically distributed jumps
[Gillis & Weiss 1970, Mariz et al. 2001].

Note that the aforementioned results mostly pertain to random walks in an infinite geometry.
Indeed, in confined spaces, the total number of sites is bounded, and the walker eventually
explores the entire domain. Nevertheless, the question of the number of distinct sites visited is
still relevant, provided that a physical stopping time is defined to evaluate S,,. For example,
consider a particle confined in a box with a single exit. It is pertinent to investigate the extent
of the territory visited by the particle before it reaches the exit, which is essential in determining
the likelihood of the particle reacting with an interior target before escaping. Therefore, in the
first part of this thesis, we determine the number of distinct sites C(sg) visited by a confined
walker issued from sg before reaching a fixed target sp. It is worth noting that the stopping time
corresponding to the target discovery is intrinsically linked to the exploration trajectory. Hence,
C(sp) is a first-passage observable.

From a theoretical perspective, determining the statistical properties of the visited territory
C'(sp) poses several technical challenges. In particular, the state (visited or not) of the site
reached on the n*® step depends on the complete history of visited sites, and the presence of an
absorbing site at sp alters the trajectory statistics. To overcome these challenges, we establish a
robust connection between evaluating the number of distinct sites visited C(sp) and determining
the splitting probabilities associated with the given process.

More precisely, we devote chapter 1 to the evaluation of the explored territory C(sg) before
reaching a target site for the specific class of Markovian 1D random walks with connected span,
e that leave no holes, for which we show that the determination of the splitting probability is
necessary and sufficient to determine the complete distribution of C(so).
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We expand on this analysis in chapter 2 by investigating the behavior of C(sg) for the broader
class of scale-invariant processes, which includes multi-dimensional normal walks, as well as
diffusion on fractal graphs and walks with long-range jumps. In the large confining volume limit,
we identify universality classes and study the asymptotic behavior of C(sg), thus extending our
previous results beyond the 1D and connected span conditions, and providing a more general
framework to analyze the explored territory before reaching a target site.

To further understand the exploration process before reaching the target s, we finally focus
in chapter 3 on elucidating the interplay between the explored territory and the time taken to do
so, which is not contained in the statistics of C(sg) alone. To that end, we introduce the joint
distribution o(s,n|sgp) of the number s of visited sites and the FPT n, and uncover universal
behaviors for 1D systems, that hold beyond the Markovian assumption.

Part II. In the second part of this thesis, we shift our focus to a specific type of stochastic
process: one-dimensional jump processes. These random walks on the real line R describe
the position x, of a particle after n steps, starting from xy, and whose random increments
are independent and identically distributed, with common symmetric distribution p(¢). One
typical example of a jump process is the exponential random walk [Van Kampen 1992|, for which
p(l) = %e*w. Importantly, these processes are particularly relevant for modeling and interpreting
experimental or numerical data, which are intrinsically discrete. They find applications in various
transverse fields such as radiative transfer problems [Milne 1921] or for describing the saccadic
motion of bacteria [Koshland 1980].

The statistical properties of jump processes in an infinite medium, which can evolve on
the entire real line R, are well known. For example, the distribution of the position of the
particle at time n can be written explicitly as a function of p(¢). Similarly, jump processes on
the semi-infinite line, ie those that are stopped as soon as they pass through 0, are also well
characterized. The distribution of the position after n steps is explicit [Ivanov 1994|, and the
survival probability, defined as the probability of remaining positive during the first n steps, is
known exactly for all values of n and z¢ [Doney 2012, Majumdar et al. 2017]. In particular, we
mention a surprising result known as Sparre Andersen’s theorem: the probability of survival
starting from xg = 0 is universal and independent of p(¢).

However, for jump processes confined to a finite interval [0, x], ie stopped at their first exit,
there is a lack of general results regarding the distribution of the particle’s position after n steps,
and the survival probability associated with the interval. The main challenge lies in the fact that
the integral equations defining these observables are not solvable for arbitrary jump processes.
Nonetheless, we have demonstrated that for large interval size x, some observables linked to the
exit events of [0, x] can be assessed in a general way, regardless of the distribution p(¢).

As a starting point, we focus in chapter 4 on the splitting probability to exit the interval
through x rather than through 0. By establishing a link between this bounded quantity and the
semi-infinite survival probability, we show that the splitting probability can be asymptotically
evaluated for all jump distributions p(¢) and initial positions xg. In chapter 5, we aim to further
refine the characterization of exit events by examining the rightward and leftward exit-time
probabilities, and we provide a comprehensive analysis of their large time asymptotic behavior.

Building upon these results, we investigate in chapter 7 the extreme value statistics of
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general jump processes. In particular, we show that the splitting probability and the exit-time
probabilities appear as essential components to determine a variety of joint distributions of
extremums and time at which they are reached, both for infinite and semi-infinite jump processes.

Furthermore, in chapter 7, we extend our findings to the more general class of confined
isotropic jump processes in higher dimensions, and introduce a systematic methodology to
evaluate first-passage observables related to exit event in the large volume limit. Our results are
valid for any isotropic jump distribution p(£) and starting position X, and include quantities
such as first exit-times of disks or overshoot distributions for heavy-tailed processes.
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As mentioned in the introduction, the number of distinct sites visited by a random walker is
a natural observable to quantify the geometry of the exploration and, as such, has received its
fair share of attention over time.

The objective of this chapter will be twofold. First, we wish to give a comprehensive overview
of known results regarding the territory explored by a random walker. We aim to highlight both
important theoretical results as well as direct application examples, in particular in the realm of
chemical sciences. Doing so, it will become apparent that the explored territory for a confined
walker before reaching a target is missing from this picture, even in the simplest case of the
symmetric random walk.

In the case of one-dimensional Markovian random walks with connected span, we develop a
general framework to provide this missing piece of information, and illustrate the method on
a variety of examples. In turn, the results obtained for this class of stochastic processes give
precious hints to address more general processes, such as processes with non-connected span,
or processes in higher dimensions, studied in chapter 2. Note that this first chapter essentially
builds up on results from [Klinger et al. 2021].
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1.1 Number of distinct sites visited - known results

The determination of the number S,, of distinct sites visited by a lattice random walker dur-
ing its first n steps has been a long lasting and difficult question, initially introduced in
[Dvoretzky & Erdos 1951] in the specific case of the one-dimensional nearest neighbor sym-
metric random walk. While the full distribution of S,, can be derived in that case, higher
dimensional lattices are much harder to deal with, because of the inherent non-Markovian nature
of S,,. Indeed, although the walk itself is Markovian, the precise set of visited sites up to time n
is a hidden variable, and the status (visited or not) of the site reached on step n + 1 is unknown.

Despite the mathematical difficulties arising in the investigation of S, even for simple
hypercubic lattices, a variety of works have been produced in an effort to make progress, stirred
by the strong relation between S, and tangible physical phenomena. Of prime importance in
this development is the celebrated Rosenstock trapping problem [Rosenstock 1961]. Consider a
particle evolving on some lattice where each vertex contains a trap with probability A € [0, 1].
Denote P, the probability of surviving during the first n steps, ie of not encountering a single
trap during the first n steps. In terms of S,, P, is simply given by:

P = (1= X)), (L1)

However, determining P, is difficult, and requires the full distribution of S,,. As a first approxima-
tion, Rosenstock proposed to rewrite P, ~ (1 — X){») launching a series of studies to determine
the first moments of S,, across various geometries and walk rules '. Hypercubic lattices were first
studied in [Jain & Pruitt 1971, Jain & Pruitt 1974] but we refer the reader to more recent texts
for a global account of results on hypercubic lattice walks [Weiss 1994, Hughes 1995|. From there,
two natural extensions emerge. The case of the territory explored by N independant walkers
was first discussed in |Larralde et al. 1992, Weiss et al. 1992, Yuste & Acedo 1999] and modified
environment or transport rules were investigated respectively in [Havlin & ben Avraham 1987]
and |Gillis & Weiss 1970, Mariz et al. 2001].

Importantly, throughout these examples, the explored territory is evaluated at some arbitrary
deterministic time n. While this is the right way to investigate the rate at which new sites are
discovered, we stress that, in light of the initial trapping problem, it is natural to wonder about
the territory explored before some random stopping time. In particular, for a confined random
walker in a domain containing traps, one could wonder about the probability of escaping the
domain, which occurs at a random first passage time, without encountering any traps. With the
exception of |Yuste et al. 2013|, in which the territory is evaluated at some external exponential
clock, it seems that this problem has been largely overlooked in the community, and we here aim
to fill that gap.

Focusing on bounded geometries, for which any target is found almost surely, we introduce the
main observable of the three following chapters. For a given fixed target site s and a starting site
S0, we consider the territory C/(sg) explored before reaching the target. We emphasize that the
random stopping time at which the territory is evaluated is intrinsically linked to the geometry
of the exploration, as the walker is killed upon reaching the target sp. In turn, the determination
of the full distribution of C(sy) yields the answer to a slightly modified Rosenstock trapping

!Typical fluctuations of S,, are usually studied alongside the first moment.
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problem. Considering a particle evolving in a domain with uniform trap distribution and an exit
located at sp, the probability P(survival|sg) to exit the system without encountering any traps
is simply given by the corresponding Rosenstock formula:

P(survival|sg) = ((1 — \)¢(0)), (1.2)

with immediate applications to determining the efficiency of chemical reactions in bounded living
media for example.

1.2 Connected random walks - general methodology

As an introductory and exactly solvable case, we focus first on Markovian one-dimensional lattice
random walks on a periodic ring of size N. Additionally, we require the walker to have a connected
span, such that, for two visited sites s; and s, all intermediate sites s € [s1, s2] are necessarily
visited. In particular, walks performing large jumps to unvisited sites do not fall into that class.
Unless otherwise specified, we consider that the random walker starts at position sg and that the
absorbing target is located at position 0, as depicted in figure 1.1.

Figure 1.1: Symmetric nearest neighbor random walk in a bounded domain of NN sites. Starting from sg, the walker evolves
until it reaches 0 for the first time. In this particular realization, all grayed-out sites have been visited, such that the
explored territory is C(sg) = 12 (by convention the target counts as visited).

1.2.1 Linking the maximum and the territory

For one-dimensional connected random walks (ie with connected span), we exhibit a direct link
between the explored territory C(sg) and the maximum reached by the random walk before
reaching zero.

Consider first a random walker starting from sp on the semi-infinite line, and stopped upon
reaching 0 for the first time. Denoting p(s|sg) the probability that the farthest site reached is s
(ie that the maximum reached is site s), the distribution of the number of distinct sites is simply
given by:
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P(C =n|sp) = p(n — 1|sp), (1.3)

where by convention we count both sg and 0 as visited sites. Consider now the same random
walker on a periodic ring of size N. Partitioning over whether the target is reached in a clockwise
or counter-clockwise manner, we obtain the complete distribution of C:

P(C =nlso) = Lsgr1<n p(n = 1|s0) + 1p>N—so+1 p"(n — 1[N = s0) (1.4)
where u"(.|sp) is the distribution of the maximum for the same random walk with reversed
rightward and leftward hopping probabilities. Note that for general symmetric random walks,
w1 (.|so) = p(.]so). Importantly, equation (1.4) indicates that the distribution of the number
of distinct sites visited is completely determined by the distribution of the maximum in the
semi-infinite geometry, provided it can be computed.

To that end, we introduce the splitting probability 7, s,(s0) [Hughes 1995,
Van Kampen 1992, defined as the probability for the walker starting from sy € [s1,s2]
to reach so before s;. Note that the splitting probability to reach s; before s9 is given by
Ts1,85(50) = 1 =g, 5,(50). In turn, for Markovian one-dimensional random walks, the distribution
of the maximum is gimply obtained as:

pi(sls0) = mo,5(50)7m0,5+1(8)- (1.5)
Combining equations (1.4) and (1.5), we finally rewrite the distribution of C' in terms of splitting
probabilities only:

P(C = n’SO) = 180+1§nW07L—1(50)7TQ7n(n — 1) + (1 6)
Ly>N—so+1TN-n—1,N(50)TN-n N (N —n + 1).

Importantly, the determination of P(C = n|sg) has been reduced to the evaluation of a single

process dependent quantity: the splitting probability s, s,(s0). We emphasize that equation

(1.4) is valid for any lattice walk with connected span. In turn, it provides a straightforward

methodology to determine the distribution of C, fully characterizing the geometry of exploration

before reaching a target in confined spaces.

Beyond the Markovian hypothesis. Note that equation (1.5) only holds for Markovian
Random walks. However, even for non-Markovian walks, the distribution of the maximum can
be expressed as a function of mp s(sp). Indeed, partitioning 7y s(s0) over the farthest site reached
before hitting 0 yields:

mo,s(s0) = Y p(s]s0). (1.7)
s=0
As a result, u(s|sg) is simply given by
1(s[s0) = 70,5+1(s0) — mo,s(s0) = Dsmo,s(s0), (1.8)

and the derivation of my ¢(sp) is still sufficient to compute p(s|sgp) and obtain the complete
distribution of C/(sp).
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1.2.2 TIllustrations

We illustrate the above given methodology by computing the distribution of C(sg) for represen-
tative examples of Markovian random walks with connected span, consistently used to model
physical phenomena. We focus on normal random walks (symmetric and biased), but also
random walks with short-range memory (persistent), or connected random walks with large
jumps (resetting).

Symmetric random walk. Consider first the classical symmetric nearest neighbor random
walk with transition probabilities p(s — s+ 1) = p(s — s — 1) = 3. Note that this case has been
studied in the limit N — oo (unconfined system) and in the continuous space approximation in
[Dayan & Havlin 1992|. The splitting probability 7y, s, (so), satisfies the following equation

275, 55 (50) — 7751,572(80 -1) - 7781,372(50 +1)=0

B (1.9)
Ts1,s2(51) =0
and is given by:
0% 0 S 51, Topaglon) = 2! L10
s1 <80 < N, 75 N(50) = %:z? | |

As a result, the distribution of C(sg) is straightforwardly obtained by combining equations (1.10)
and (1.6), and we display in figure 1.2(a) the exact distribution P(C' = n|sp) (along numerical
simulations) for given sgp and N. Importantly, the sharp discontinuity in the distribution stems
from the introduction of the confining periodic domain, in opposition to a strictly decreasing
distribution in the infinite case, recovered in the sqg < N limit.

Biased random walk. While symmetric random walks model particles undergoing free
diffusion, the biased random walk, with hopping probabilities p(s — s+1) = 1—p(s = s—1) = p,
where 0 < p < 1, is a paradigmatic model of particle diffusion in external force fields [Redner 2001].
In this case, the splitting probability obeys the following equation:

Ts1,82(50) = PTsy s (S0 + 1) — (1 = p)7s; 55 (50 — 1) = 0
Top,s(52) =1 (1.11)
Wsl,g(sl) =0

and is given by

a’ —1
ot —1
a®® — o

0 < S0 < S1, W07ﬂ(80) = (1.12)

N

51 <sp < N, 75, N(80) = oV (1.13)
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with a = =2, Similarly to the symmetric case, the distribution displays two sharp jumps when
so = O(N) or N — sp = O(N) whose interpretation is unchanged; their relative weight is now
controlled by the bias (see figure 1.2(b)).
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(a) Distribution of C(sg) for a symmetric nearest neighbor  (b) Distribution of C(sq) for a biased nearest neighbor random
random walk. The discontinuity at n = 80 corresponds to  walk. In that case, the walker is biased in a clockwise manner.
trajectories exiting clockwise, which visit at least 80 sites. In In turn, the relative weight of trajectories exiting clockwise is
turn, for n < 80, the territory distribution is identical to that increased, as shown by the high peak at n = 80.

of the maximum in the semi-infinite space.

Figure 1.2

Persistent nearest neighbor random walk. We now show that equation (1.6) is easily
adapted to deal with random walks with short-ranged memory. As a paradigmatic example of
such processes, we consider the persistent random walk [Weiss 1994, Tejedor et al. 2012], defined
as follows: at each time step the walker performs a step identical to the previous one with
probability p, and opposite with probability 1 — p. By considering two consecutive steps of the
walk, its dynamics become Markovian, and the splitting probability can be obtained explicitly.
Precisely, we introduce the conditional splitting probabilities ug ¢(s0) and vg 4(so) such that

u0,5(S0) = mo,s(So|previous step is taken rightwards) (1.14)
v0,5(80) = 7o s(So|previous step is taken leftwards), .

and associated boundary conditions given by ugs(s) = 1 and vps(0) = 0. Denoting a the
probability of taking the first step rightwards, the splitting probability mg s(so, a) is then given
by:

70,5(50,a) = aug s(so + 1) + (1 — a)vos(so — 1), (1.15)
and the distribution of C'(sp) can be rewritten as:
P(C = TL|50, CL) :180+1§n7{-0,n771(30a (Z)ng,n(n - 1ap) +

(1.16)
1n>N-so+1TN—-n+1,N(50,a)TN_nN(N —n+ 1,1 —p).
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Note that at the "maximum" of the trajectory, the walker needs to turn around, hence the
7. (.|p) and w_(.]1 — p) terms. The conditional splitting probabilities ug s(so) and vg s(s0) obey
the following set of equations (where we rewrite us, and vs, to increase readability)

Ugy = PUsg+1 + (1 _p)vso—h (1 17)
Usg = PUsg—1 T (1 - p)usoJrlv

which can be recast as:

2u80 = Usp+1 + Usg—15
1 (1.18)
Uso = ﬂ(uswl — Plisg42)-

Enforcing the boundary conditions leads to the following expressions of wg,, vs,:

us, = 1+ B(so — s),

Vso = Bso, (1.19)
B= p—1
(1—=s)(1—-p)—p’

and we finally obtain the splitting probability for 0 < sg < s:

p—1 n l-p—a
s )
1—p)(1—s)—p " 1+p(s—2)—s
In turn, the exact distribution of C'(sgp) is computed by making use of equation (1.16). Of note:

m0,5(50,a) = ( (1.20)

e The continuous counterpart of the persistent random walk is the Run and Tumble particle
model [Van Kampen 1992, Dhar et al. 2019, for which the splitting probability is known
and takes a similar form: an affine function with tumbling-rate dependent slope and
intercept.

e Taking p=a = % yields the normal walk result.

e We display numerical agreement in figure 1.3. Again, the distribution displays two sharp
jumps for n = sg+ 1 and n = N — sg + 1. Here, the corresponding peaks are sharpened as
the persistence time of the random walk (controlled by the parameter p) is increased.

Resetting random walk. We finally consider the resetting random walk, which has recently
received a lot of attention, mostly in the continuous space and time setting. While initially
introduced in [Evans & Majumdar 2011], we refer the reader to [Evans et al. 2020] for a compre-
hensive overview of advances on resetting Brownian motion. In the discrete lattice version, the
walker either performs nearest neighbor symmetric hopping with probability 1 — A, or resets to
a given fixed position s, with probability A € [0, 1]. Importantly, even if resetting events lead
to large jumps whose range can cover many sites, the span of the process remains connected,
because unvisited sites can only be reached by nearest neighbor hopping (all resetting jumps
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Figure 1.3: Distribution of C' for a given persistent random walk with p = 0.8. The singular peak at n = 90 corresponds to
trajectories taking their first step clockwise.Note that the probabilistic weight of trajectories with n > 90 is small. In that
case, the first step needs to be taken counter-clockwise, and reversal of the walk must occur within 10 steps.

lead to sp). As a result, the resetting random walk has connected span, and equation (1.6) is
still valid.

Again, we determine the splitting probability 7 ¢(s9). We emphasize that, to the best
of our knowledge, this quantity has not been given in the literature for discrete processes,
even if related quantities have been studied in the continuous setup [Chechkin & Sokolov 2018,
Pal & Prasad 2019]. Recalling that the resetting site is s, ™ s(s0) obeys the following equation:

2 2
mo,s(50 +1) = 7= 70.s(s0) + Mos(s0 = 1) = =7 70s(sp)
70.(0) = 0 (1.21)
m0,5(5) = 1,

and the solution of equation (1.21) is given by the sum of the homogeneous solution h(sp) and a
particular solution p(sp). First, the homogeneous solution reads

7’80 _ 7’80
h(so) =+ — 1.22
(s0) e (1.22)

where r4 = % =+, /ﬁ — 1. Second, we construct the particular solution using the Green
function [Barton 1989] of the problem defined by:

2
G(So +1, 52) - ﬁG(SO, 32) + G(SO -1 52) = 530,52 (1 23)

G(0,s2) = G(s,s2) = 0.

Following classical Green function calculations, we obtain

G(sla 32) - 181§82G— (Sla 82) + 181>S2G+(317 82)7 (1~24)
with
1 T ri
— S S — S S
G_(s1,82) = A(s2)” (ri! — 1), Gi(s1,82) = A(s2) m(rﬁ —rS) (1.25)
+ s
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and
(252 S2 S2 EP) ’I”j_ —1/,.52+1 82+1r-si-
A(sg) =(r? —r2)(r — 1’ T—S) (r?™ = T—S)
- - (1.26)
= )\(rf —r*?) + (rff_l — r5_2_1).
Finally, the particular solution is given by
2
p(s0) = —ﬁﬂ'oé(sp) ZG(SQ, S2). (1.27)
52
In turn, taking so = s, and writing 7o s(s,) = h(sp) + p(sp), we determine mp ¢(s,) explicitly:
h(sp)
70,5(5p) = ) (1.28)
1+ % ng G(Sp’ 82)

and derive the splitting probability for arbitrary s, and sq:

h(s,)2A G(sg, s
70,5(s0) = h(s0) — 1 _(;)f 2;552 é(ospfsl), (1.29)

which covers in particular the case of resetting to the initial position s, = s9. Once again, the
distribution of C'(sg) is obtained from equation (1.6), and we conclude this section by highlighting
an interesting behavior illustrated in figure 1.4: for sy < N/2, as the resetting rate increases,
a spike in the distribution grows at 2sg. Indeed, for A < 1, resetting jumps can be neglected
and one recovers the case of the symmetric nearest neighbor random walk. However, for A > 1,
many resetting events occur, leading to a symmetric exploration of the domain around sg before

the target is reached. The explored territory before exit is thus approximately 2sg, yielding the
observed peak in the distribution.

0.05 - Exact distribution 0.08 A - Exact distribution
Resetting random walk, sy=10, Bk Resetting random walk, sy=10,
N=100, A = 0.02 P N=100, A = 0.05
S 006 bk
@ = I
£ 0.03 S i
I I 0.04 b b
< 0 o | f 4
y &Mool it
0.01 &
0.00{ 0.00 s T —
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n

Figure 1.4: Distribution of C for a resetting random walk with fixed sg and N, for A = 0.02 and A = 0.05. As X increases,
the distribution develops a peak around 2sg, corresponding to a symmetric exploration of space around sg, until the target
is found.



42 Chapter 1. Confined 1D random walks

1.2.3 Extensions

Equation (1.4) is specific to the 1D periodic lattice geometry, but can easily be extended to other
one-dimensional geometries such as reflecting boundary conditions, as well as to continuous space
and time stochastic processes.

Reflecting boundary conditions. Let us first focus on the case of lattice walks with reflecting
boundary conditions. Consider a discrete Markovian random walk with connected span, on a
one-dimensional lattice of IV sites. The target site is still located at 0, and we assume that there
is a reflecting boundary at site N — 1: this effectively means that all nearest neighbor jumps
from site N — 1 lead to site N — 2. In that case, the clockwise/counter-clockwise partition is not
relevant, and the distribution of C(sg) is readily written as:

P(C =n|sg) = mon—1(50)m0,n(n — 1) if 5o <n < N

: (1.30)
P(C =n|sg) = mo,n—1(s0) if n = N.

Importantly, as for periodic boundary conditions, this expression only involves splitting proba-
bilities. In particular, for all random walks considered before, we have access to the explored
territory in the reflecting geometry.

Continuous space and time stochastic processes. Equation (1.4) between the maximum
and the number of distinct sites visited naturally extends to continuous space and time stochastic
processes. Consider a one-dimensional Markovian stochastic process starting from xg and evolving
in the interval [0, L] with absorbing boundary conditions at 0 and L. For processes with connected
span, the distribution of the visited domain C(xg) is simply given by a continuous version of
equation (1.4):

P(C = zlx0) = lag<e m(@]w0) + 1—zo<a p" (z|L — x0), (1.31)
such that

e 1(x|sg) is the continuous distribution of the maximum in the semi-infinite space, with
Jo° wa|zo)da = 1.

e 1" (.]zp) is the distribution of the maximum for the reversed process, which can also be
interpreted as the absolute value of the minimum, for the initial process started at position
—x0. Note that for symmetric processes (eg Brownian motion), u(.|zg) = p"(.]xo).

e P(C = x|zg) should be understood as a continuous distribution, in the sense that fOL P(C =
x|zg)de = 1.

As for lattice random walks, we express the distribution u(z|zg) of the maximum in terms
of continuous splitting probabilities 7 z(xo) only. Note that since the Markovian argument
p(xlzog) = 7o z(x0)mo, () is not valid in the continuous setup (7, (z) = 0 by definition), we
rewrite the splitting probability as a partition over the farthest point reached, whose probability
density is pu(.|zo) itself:
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moz(x0) =1 —me(z0) =1 — /OZ p(u|zo)du, (1.32)

such that

(o) =~ o (eo). (1.33)

As a result, combining equations (1.31) and (1.33), we obtain the exact distribution of the
explored territory for continuous processes with connected span, provided 7 z(xo) can be
computed. Additionally, we emphasize that equation (1.33) is valid beyond the Markovian
hypothesis. Since splitting probabilities of classical and biased Brownian motion are well known
(see [Redner 2001] for instance) we illustrate the ease of use of the continuous formalism on the
specific case of the resetting Brownian motion.
Consider a Brownian particle with diffusion coefficient D and subject to resetting events to

xp occurring with rate A\. The splitting probability obeys the following backward equation:

d’ 2 2

@770,2(1'0) —r°moz(2o) = r°moz(2p), (1.34)
where z;,, denotes the resetting position, xg the current position, and r = \/% . The complete
solution (which can also be found in [Pal & Prasad 2019)]) is given by:

sinh(rzg) = moz(xp)

m0,z(T0) = [sinh(rz) — sinh(r(z — zp)) — sinh(rzo)] . (1.35)

sinh(rz)  sinh(rz)

Taking xg = x,, the splitting probability starting from x, with resetting to x, reads

sinh(rz,)
_ 1.36
0.2 (Tp) sinh(r(z — xp)) + sinh(rzp)’ ( |
and we finally obtain
rsinh(rzy) cosh(r(z — x,))
_ ‘ 1.37
zley) (sinh(rwz,) + sinh(r(z, — )))? A

Let us conclude with a few comments:

e Equation (1.37) is much simpler than its discrete counterpart, obtained from the split-
ting probability of the discrete resetting walk (1.29). In turn, it can easily be analyzed
asymptotically.

e Asr — 0, no resetting occurs and we recover the classical Brownian result: pu(z|z,) = 2%
e As r — oo resetting events occur infinitely often, and we show that p(z|x,) = d(x — 2z,).
In turn, we obtain the analytical validation of the asymptotic concentration of C'(sg) around

2s,, displayed in figure 1.4.
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1.3 An example of disconnected random walk - the relocating
random walk

As discussed at length in the previous section, the determination of the distribution of C(sp)
relies heavily on both (i) the one-dimensional geometry and (ii) the connected span property.
While our approach is sufficient to derive exact results for a variety of classical examples across
the discrete and continuous spectrum of stochastic processes, we now wish to go beyond these
hypotheses and investigate different kinds of processes.

1.3.1 Systematic relocation - or - the exact Golden Coupon problem

As a first deviation from hypothesis (ii), we focus on the relocating walk, a typical example
of lattice random walk with non-connected span, which belongs to the family of intermittent
random walks [Benichou et al. 2008, Benichou et al. 2008, Bénichou et al. 2011]|. At each time
step, the random walker either performs a nearest neighbor hop, or relocates with probability A
to a site drawn uniformly from the set of N available sites, until 0 is found.

We first focus on systematic relocation, e A = 1. In that case, the determination of the
distribution of the territory explored before exit can be recast in solving the following coupon
problem [Holst 1986]. Assume that a coupon is drawn uniformly out of N different coupons
labeled from 0 to N — 1. The experiment is repeated until coupon 0 (the golden coupon) is
drawn. Recalling that the random walk defined above starts from a given site sg # 0, the number
of distinct sites visited is equal to the number of distinct coupons drawn before the golden one.
Importantly, all coupons are strictly equivalent, so that their order of first arrival is distributed
uniformly. In turn, the number of distinct coupons drawn before the golden one is uniform over
[0, N — 1]. The distribution of the visited territory immediately follows:

1
N -1’

where we take into account the fact that sy counts as a visited site. While seemingly trivial, this

P(C =n|sy) = (1.38)

first result for non-connected random walks will have far-reaching consequences for stochastic
processes in higher dimensions, as will be seen in chapter 2.

1.3.2 Rare relocation - perturbative results

Consider now the opposite rare relocation limit, namely A — 0. When \ = 0, the walker performs
a symmetric random walk, and the distribution of C(sg) is given by equation (1.6). The first
order correction is obtained by considering trajectories where relocation occurs only once before
0 is reached. To simplify further, we only focus on cases where the number n of visited sites is
smaller than sg, such that contributing trajectories have to relocate. The first order derivation
details are given in Appendix A and we provide numerical illustration in figure 1.5.
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Figure 1.5: Distribution of C(s¢) for the relocating random walk. In the A = 1 systematic relocation case, the distribution
is uniform. In the rare relocation case A < 1, the first order perturbation theory is accurate. We emphasize that in the case
A =0, P(C =nlsp =50) =0 for all n < 50, in contrast to the A > 0 case. For n > sq, the distribution of C is dominated
by the symmetric random walk behavior.

As a concluding remark, we emphasize that the perturbation theory has two controlled levels of
approximation:

e [t is a first order expansion in the number of relocation events: we neglect all trajectories
with more than one jump.

o We neglect crossover situations, where the set of visited sites before relocation overlaps with
the set of visited sites after relocation. Note that in the limit n < sg, this approximation
becomes exact as no overlapping configurations exist. Our estimation is thus only a lower
bound of the true distribution, since more trajectories contribute to the overall probabilistic
weight.

e In a similar fashion, a lower bound for the second order expansion in the number of jumps
can be obtained by considering trajectories where the final set of visited sites can be split
into 3 non overlapping sets.
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1.4 Conclusion

As a starting point in a general study of the territory C(sg) explored by a confined random walker
before reaching a target, we focus on the specific case of one-dimensional random walks with
connected span, ie that leave no holes. Due to the high constraints imposed by the geometry, we
derive a systematic procedure to evaluate the distribution of the visited territory P(C = n|sg)
for various bounded geometries, in terms of splitting probabilities only.

We can now answer the initial question stemming from the Rosenstock trapping problem
[Rosenstock 1961]. For a lattice random walk with traps distributed with frequency A, we recall
that the probability P(survival|sg) to escape the system without encountering any traps reads
(see equation (1.2)):

N
P(survival|sg) = » ~ P(C' = n|so)(1 — \)". (1.39)

n=1
In turn, the derivation of P(C = n|sg) provides an exact and quantitative description of such
survival probability, with potential applications to chemical reaction processes in closed reservoirs.

In a first attempt to relax the connected span hypothesis, we successively investigate two
limits of a specific non-connected intermittent random walk, the random relocating normal walk.
In the systematic relocation regime, we obtain the exact distribution of C'(s¢) by reducing its
evaluation to solving a combinatorial coupon problem. The opposite rare relocation limit is
harder to deal with, and we compute the distribution of C(sg) perturbatively. Importantly, these
examples indicate that, depending on the microscopic details of the random walk, a plethora of
behaviors can emerge.

In the following chapter, we aim to investigate further the behavior of C'(sg) across a broad
range of stochastic processes, from diffusion on fractals to lattice random walks with long ranged
jumps, as has been done for first passage times (FPT) [Bénichou & Voituriez 2014]. To that end,
we devote chapter 2 to the study of the statistics of C(sg) in the large confining volume limit,
in which the microscopic details of the transport rules become irrelevant with respect to more
general properties.
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One-dimensional systems have taught us that explicit expressions for the distribution of the
explored territory C(sg) before reaching a target can be computed. While such expressions highly
depend on the specific rules of the underlying random walk, we also exhibit a common pattern:
the strong link between the determination of C'(sg) and the splitting probability 7, ,(s0). Based
on that observation, we devote this chapter extending this relation to a broader class of stochastic
processes, namely general Markovian scale-invariant processes, among which diffusion in higher
dimension, diffusion on fractals, and diffusion in disordered media. By exploiting the universal
behavior of the splitting probability emerging in the large confining volume limit, we further
characterize the statistics of C/(sp).

As a starting point, we provide a self-consistent overview of the technical ingredients needed to
determine splitting probabilities for general scale-invariant processes. We introduce Pseudo Green
Functions H and express 7, 4,(s0) in terms of H. Making use of the large volume limit behavior
of H functions, we describe the corresponding emerging behavior of splitting probabilities.

In turn, we focus on the first moment (C(so)) of the territory, and exhibit the corresponding
universality classes, going beyond the connected one dimensional case. Finally, we show that the
full distribution of C(sg) can be recast into robust universal scaling forms.
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2.1 Splitting Probabilities of general scale-invariant processes

Most of the information contained in section 2.1 can be found in [Condamin et al. 2005,
Condamin et al. 2007b, Chevalier et al. 2011, Bénichou & Voituriez 2014, Barton 1989]. How-
ever, we find it useful to provide a self-contained manuscript, and want to emphasize the
sequential approximation schemes that lead to universal scaling forms for the splitting probabil-

ity.

2.1.1 Backward equations for the splitting probability

As a general starting point, we consider a particle evolving in some domain D of volume V,
starting at position x¢ and with reflecting boundary conditions on the surface ¥ of D. We
hereafter consider Markovian dynamics, for which one can define a backward operator Ly, (the
adjoint of the classical forward operator [Van Kampen 1992]), such that the splitting probability
Txq x5 (X0), defined as the probability that the particle reaches target 1 before target 2, obeys
the 5llowing set of equations:

Txq,x2 (X0) for xop on ¥

LxoTx1,x3(X0) =0 for xg € D
- 1)
-1 ’

Txq,x2 (X0) for xo on X9

OnTxy xz(X0) = 1 for xg on X,

where Y1 and Yo are the surfaces of respectively targets 1 and 2 located at positions x; and xs .
In the specific case of Brownian motion, the backward operator is simply given by the Laplacian
Ly, = Ax,, and we illustrate the situation in figure 2.1.

Figure 2.1: Starting from xg, the Brownian particle evolves until it reaches either 3; or ¥g. In this specific example, the
confining domain is spherical. Note that the boundary conditions on the outer shell are taken reflecting.

Importantly, we emphasize that equation (2.1) does not usually have explicit analytical solutions.
As an example, even for the simple case of Brownian motion in a disk, arbitrary target location
prevents any form of analytical solution. As a first step towards simplifying the evaluation of
splitting probabilities, we introduce the pseudo green functions of the problem.



2.1. Splitting Probabilities of general scale-invariant processes 49

2.1.2 Example: Normal walk on hypercubes

As an introductory example, consider a symmetric random walker on a periodic hypercubic
lattice of N sites, with two targets at sites s; and s3. Denoting A, the discrete Laplacian
acting on variable s; !, equation (2.1) naturally extends to the lattice geometry, and the splitting
probability 71 2(s0) to so rather than s; obeys the following equation:

Asym1,2(0)
7T172(82) =1 (2.2)
0

m2(s1) =

Pseudo green functions. For fixed s;, the pseudo green function of the problem H(s;,s;) =
H;j is defined by the following equation [Barton 1989]:

1

AiHij = b — —, 2.
J J N ( 3)
where d;; is the Kronecker delta symbol. In fact, it has been shown [Condamin et al. 2007b] that

m1,2(s0) can be expressed in terms of pseudo green functions only:

Hyy — Hio + Hi1 — Hio
Hyi + Hyy —2Hyo

m1,2(50) = (2.4)

Importantly, computing H is simpler than solving equation (2.2), as the targets s; and so have
been suppressed. We provide in Appendix B exact expressions of pseudo green functions for 2
and 3 dimensional periodic hypercubes. Of note, the simplification of first-passage time problems
with the help of H functions was first initiated in [Noh & Rieger 2004], for mean first-passage
times on complex networks.

Infinite green functions. Consider now the unbounded lattice, and define the infinite green
function G (s, s5) by

Goo(sia Sj) = ZPOO(Sj7n|Si)7 (25)
n=0

where the infinite propagator P>°(s;,n|s;) is defined as the probability for the unbounded walker
to be at s; on the n'™ step, starting from s;. Note that depending on the dimension of the lattice,
G (si,s5) may or may not be finite, but differences of G are always well defined. Importantly,
we emphasize that G satisfies the following equation:

AiGoo(Si;Sj) = 52] (26)

'The periodic boundary conditions are directly embedded in the discrete Laplacian.
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Large volume limit. Let us now fix s1, so and sp and focus on the large volume limit N — oo
of 7 2(s0). Making use of equations (2.3) and (2.6), differences of H converge towards differences
of G and we obtain [Condamin et al. 2005, Condamin et al. 2007al:

Goo(50,52) — Goo(51,50) + Goo(S1,51) — Goo(S1, 52)
~Y . 2.7
m,2(50) Goo(51,51) + Goo(52, 52) — 2Gos(s1, 52) (2.7)

Finally, defining r;; the Euclidean distance between sites s; and s;, and making use of the

translational invariance of the walk, the splitting probability is asymptotically given by:

Goo(r02) — Goo(T10) + Goo(0) — Goo(712)
m2(s0) ~ 2 (G (0) — G (r12)] . (2.8)

We emphasize that the evaluation of 7 2(sp) has been reduced to the sole evaluation of Goo(r).
In particular, the source target-distance dependence of 7 2(sp) is fully contained in Goo. In the
following subsection, we exploit the specific scaling form of G, for scale-invariant processes to
uncover universal behavior of the asymptotic splitting probability.

2.1.3 Asymptotic splitting probabilities of scale-invariant processes

Walk dimension, fractal dimension and universality classes. Ultimately, we want to
quantify the explored territory C(sg) for general Markovian scale-invariant processes. As a first
step, we assume that the space in which the stochastic process evolves is characterized by its
fractal dimension dy, such that the volume accessible at a distance R scales as:

V ~ RY. (2.9)

For hypercubic lattices or general Euclidean spaces, the fractal dimension is naturally given by
the dimension of the embedding space (eg df = 3 for three dimensional systems). However,
more complex structures such as fractal graphs or disordered media (see figure 2.3) allow for non
integer values of the fractal dimension. For more information on the topic, we refer the reader to
the classical textbook [Havlin & ben Avraham 1987].

The stochastic process z(t) is scale-invariant if, for X € R, z(t) and Mx(t/\) have the same
statistics, for some exponent h characterizing the process. In other words, scale-invariance can
be understood as the absence of any characteristic lengthscale in a given trajectory, such that its
statistical properties are preserved by zooming in or out. For such pocesses, the mean square

displacement (z2(¢)) (MSD) has a known power law scaling with time?:

(@2(t)) o ti, (2.10)

t—o00

where d,, = h™! is defined as the walk dimension. Additionally, the infinite propagator takes the
following scaling form [Havlin & ben Avraham 1987]:

1 _
P¥(x,t[xo) = —-11 (’)(1)(0‘) (2.11)

t 3w 1 dw

2When the mean squared displacement is ill-defined, in the case of a-stable processes for instance, the MSD
should be understood as the typical displacement.
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with II some process dependent function. In turn, the associated infinite Green function is given
by:

(2.12)

00
= |X1’dwdf/ 1H< 1 )du.
dy 1
0 u(iw

U dw

It is known |[Bénichou & Voituriez 2014] that the scaling function II(s) decays quickly enough
at large s to ensure convergence near 0. Additionally, since II has a finite limit as s — 0, the
behavior of the integral near 400 is dictated by the dy/d,, ratio. In turn, 3 distinct universal
regimes emerge:

e for dy > d,,, the integral is well behaved near 400, and the infinite Green function G is
finite. From equation (2.5), Goo(x1) appears as the mean number of returns to position
X1, which is thus finite. The case d; > d,, is called transient, or non-compact. Pictorially,
the space is too big for the walker, which has a non zero probability of never coming back
to a previously visited position.

e for dy < dy, the integral diverges near +o00, and G is infinite. In turn, the mean number
of returns to position x; is infinite, and this case is referred to as recurrent, or compact.
The space is now too cramped, and the walker returns to previously visited places with
probability 1.

e The case dy = d,, is called marginal. While analytically singular, its interpretation in terms
of returns to previously visited locations is no different than in the recurrent (compact)
case, since the integral diverges near +oc.

Large volume approximation of splitting probabilities We now focus on identify-
ing the universal behavior of splitting probabilities. By making use of results presented in
[O’Shaughnessy & Procaccia 1985], and in the large confining volume limit V' — oo with fixed
source and targets, equations (2.2), (2.4) and (2.8) can be shown to hold for general Markovian
processes, such that

Goo(r02) — Goo(110) + Goo(0) — Goo(r12)
Ty xa (X0) |~ o 2[Goo((1)())— o] 12 (2.13)

In the case of scale-invariant processes, differences of G, are evaluated according to equation
(2.12). As aresult, three distinct universal behaviors arise for the splitting probabilities, depending
on the d/d; ratio. Denoting r;; the distance between x; and x;, we finally obtain:
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do—d;  dp—d;  dy—dy

A+ B(rig " =g =1y ) for dy, < dy
— w
2(A — Briv= )
At Blog (5.2)
7TX2,X71(XS) ~ g T1s fOl" dw — df (214)

2[A + Blog(ri2)]
dw—df | du—d;  dw—d;

Tas ~ TTip — —Tg
2 I for d,, > dy

( 712

where A and B are constants depending only on the scaling function IT in equation (2.11), and
will be dealt with specifically for each example. Note that these three universal regimes entirely
capture the functional dependence of the splitting probability in the geometrical disposition
of the targets and source in the domain. For numerical validation, we refer the reader to
[Condamin et al. 2007b] and [Bénichou & Voituriez 2014].

2.2 First moment of C(s)

With the previous exposition, we have shown that the large volume limit allows for the emergence
of universal behavior for splitting probabilities. We now extend these results to the territory
explored before reaching a target.

2.2.1 From splitting probabilities to the explored territory

Let us first consider a multi-dimensional lattice = of N sites, with reflecting boundary conditions.
Let st be a fixed target site inside the domain, and sg the starting point of a nearest neighbor
random walk on the lattice. The visited territory before reaching sr is then simply given by a
sum of indicator random variables:

C(s9) = Z 1(s is visited before sp|sp). (2.15)
SEE
Importantly, C(sp) is evaluated along a single trajectory, such that the indicator functions 1(.|sg)
are strongly correlated random variables. Intuitively, close-by sites have a high probability of
being visited conjointly, whereas far-away sites may be considered as being independent. Taking
the expectation in equation (2.15), we obtain an exact equation for the first moment (C(sp)):

(C(s0)) = D msr,s(s0)- (2.16)
se=
Note that for hypercubic lattices, the H functions are known exactly (see Appendix B) and
we obtain explicit expressions for the mean territory visited by making use of expression (2.4).
Additionally, these exact expressions will serve as test cases against asymptotic large volume
results.
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2.2.2 Spherical assumption for fractal spaces

From now on, we consider general isotropic scale-invariant stochastic processes characterized by
the walk dimension d,,, and whose propagator obeys the scaling relation (2.11). Following the
classical treatment of diffusion in fractal spaces proposed in [O’Shaughnessy & Procaccia 1985]
and [Havlin & ben Avraham 1987], we approximate fractal media by a spherically symmetric
domain of radius R, solid angle {24, and fractal dimension dy. In turn, the volume V' of the
confining domain is given by:

V =Qq,RY, (2.17)

and the accessible volume between two shells located at radius r and r + dr reads:
dV = Qg dyr® 1. (2.18)

Note on the numerical evaluation of observables in fractal spaces. In order to satisfy
the isotropy requirement, the scale-invariance property, and the spherical assumption in the
numerical evaluation of the explored territory, C'(sg) must be averaged over all source and target
pairs (sg, s7) such that the source-target distance is constant.

Note on the definition of distances. We systematically denote the distance between two
points X;, x; as 7;;. We stress that for continuous spaces, this distance is the standard euclidean
distance, while for graphs and lattices it should be understood as the chemical distance, ie the
smallest number of steps needed to reach one point starting from the other.

Average territory for scale-invariant processes. Under the spherical assumption, the
expected visited territory for Markovian scale-invariant processes is given by:

<C(X0)>=/V7TXT,X(X0)dX (2.19)

where xT is the location of the target. In the R — oo limit, with fixed source xg and target
xT, we exploit the asymptotic behavior of the splitting probability (2.14) and exhibit universal
behavior of (C(xg)).

2.2.3 Compact case

Universal scaling form. In the compact (or recurrent) case d,, > dy, we recall the asymptotic
expression of the splitting probability (see (2.14)):

dw—dy  dy—ds  dy—dg
90 REAY) —T10

duw—dg
2riy

Txz,x1 (X0) ~ (2.20)

and denote o = d,, — dy, with o > 0. Using equation (2.19), the mean explored territory directly
reads

T‘a + 7,,04 _ ’l"a
(C(x0)) N/ o 5 101 4x;. (2.21)
v i
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Denoting the source-target distance rs = rpo, we rewrite the integral as:

1+ (M)a _
Ts

oy~ [ () (2.22)

Under the spherical assumption, the distance rg; can always be written as:

2
rop = rs\/l 4o cos(0) + [rﬂ}

Ts Ts

= rst <mv 9)
Ts

where 6 is the angle between the vectors x3 — x¢ and x1 — xg. Plugging into the integral, we

(2.23)

obtain N N
() = (e, 0)
)~z [ - dxa. (2.24)
T1
and integrating out the solid angle yields
L) ()
(C(rs)) ~ dedfTs v 9 rp o drm (2.25)
T1

where f, is the integrated version of f,. In the large volume limit, with xg and xt fixed, one
has R > rg, and we make the change of variable u = %1 to finally obtain:

£ a a
(C) ~ S dy ! [ R (226)

0 2u
Note that the determination of the upper bound of the integral relies on the fact that the target
is located far from the boundaries of the confining domain. In turn, the scaling of integral (2.26)
with R is controlled by the integrand J(u) = Iru? [ (W) dg -1,

2u™

1. We first make sure that no divergences occur near 0. As u — 0, fi(u) = 1+ Bu + o(u)
(with 8 constant), such that the integrand asymptotically behaves as

J(U) ugo umin(df—l, Qdf—dw). (227)

In all known cases, dy, < dy+1and dy > 1. As a result J(u) o u? =1 for small u, and the
integral is well-behaved near 0.

2. We now focus on divergences occurring close to +00. In that case, fi(u) ~ u, such that
the integrand is equivalent to

J(u) o u?Y—de—l, (2.28)

U—00

Since dy, < dy +1 < 2dy, we have 2df —d,, —1 > —1 and the integral diverges as R goes
to infinity.
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Making use of equation (2.26) we finally obtain the universal behavior of the mean explored
territory in the large volume limit R > r,:

d duw—d
Clra)) ! (L) ! (2.29)
V. i<re<R 2(2df —dy) \R
Note that in the specific case d,, = 2dy, the divergence is logarithmic and we obtain:
d
(C(rs)) dy re! T

Let us make a few comments:

e For a given stochastic process, dy and d,, are easily measurable from data. In turn, the
result (2.29) can be straightforwardly applied.

e In the large volume limit, the exact position of the target x becomes irrelevant. However,
the source-target distance 7 is highly relevant for the average of the visited territory. In
particular, for a compact system, starting close to the target ensures that it is found quickly,
so that only a small fraction of the total domain is visited.

e We stress that while equation (2.29) is an asymptotic result relying heavily on the spherically
symmetric description of the environment, its range of applicability is fairly wide. In the
following paragraphs, we aim to highlight its relevance across examples of representative
random walks.

Normal random walk on the periodic ring. Consider first the symmetric random walk on

a periodic one-dimensional lattice of N sites, for which dy =1, d,, = 2 and 75, 5, (so) = %

(see chapter 1). For a target site located at 0, the mean territory explored is given by:

N—-1
(C(s0)) = > mos(s0)- (2.31)
s=0

Defining the nth harmonic number as h, = > }_; %, we obtain for sg > 0:

(C(s0))y =2+ (N —s0)(hn-1 — An—so+1) + so(Hn-1 — hs,), (2.32)
which is asymptotically equivalent to
S0 S0
(C(s0)) | _~_ ~Nylos (N> . (2.33)

The spherical assumption corresponds to R = N/2, with R the farthest possible distance from
the absorbing target located at site 0. Rewriting (2.33), we obtain:

(C(s0)) 50 10g (*10) : (2.34)

N 1<so<R 2R R
in agreement with equation (2.30). As announced in chapter 1, we now focus on an example of
one-dimensional lattice walk with non-connected span.
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Riemann walks with ¢ > 1. The Riemann walk [Hughes 1995, Mariz et al. 2001] - or discrete
Levy Flight - is a classical example of discrete random walk with long ranged jumps. More
precisely, the transition kernel is given by p(s; — s3) = m\sl — 59|~ (1) where ( is the
Riemann Zeta function, needed for normalization. In the specific case 1 < pu < 2, the jump
distribution has a well defined mean but no variance. As a result, the Riemann walk displays
a super-diffusive behavior [Bouchaud & Georges 1990], such that its typical position Z,, after n
steps scales as:

- 1

Tn & nk, (2.35)
in contrast to classical diffusive systems, for which Z, X v/n (eg the normal walk). In that

case dy, = W, and choosing 1 < g < 2 on a one-dimensional periodic lattice, we obtain a
paradigmatic example of compact random walk with non-connected span. We display in figure
2.2 the agreement between numerical simulations and the universal formula (2.29).

0.6
0.5 1D Riemann Walk, p =12
d ,,
04l T -z(zdfid,,)xd” g /.—'D
N = 100000 ,—'B
4 03 o N = 1000000 s
Fle a7
gl P
0.2 P
=
P
o
70
0 ]
1074 1077 1072 107!
rs/R

Figure 2.2: Mean explored territory for a compact Riemann Walk with g = 1.2. The rs; dependence follows prediction
(2.29). Importantly, the behavior we aim to describe is only true in the 1 < rs < R limit, as indicated by the deviation
from the theory at small rs/R values.

We point out that there exists two conventions for discovering new sites: the arrival or
crossing convention [Dybiec et al. 2016]. In the arrival convention, sites are visited only when
the walker effectively lands on the site. In the crossing convention, any site that is flown over
is considered as visited. To enforce the non-connected span property, we follow the arrival
convention. In particular, the walker can fly over the target 0 a number of times before actually
landing on it.

Fractal graphs. We now consider nearest neighbor random walks on spaces with non integer
fractal dimension dy, and focus on two classical examples of deterministic fractal graphs, the
T-graph and the Sierpinski Gasket [Havlin & ben Avraham 1987] (see figure 2.3), for which the

pairs (dy,ds) are respectively equal to (Eéggg, Eig) and (igéggg, iggg;) Note that we consider

diffusion on the finite graphs of order n, such that the walker evolves in a bounded domain.

The large volume limit is obtained by increasing n. We emphasize the accuracy of the prefactor
predicted in equation (2.29) and display numerical agreement in figure 2.3(d-e). In turn, our
results highlight the relevancy of the spherically symmetric description of fractal structures.
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Disordered medium. To conclude, we investigate a paradigmatic example of trans-
port in disordered media, namely diffusion in a critical two-dimensional percolation cluster
[Havlin & ben Avraham 1987, Bouchaud & Georges 1990|. The critical percolation cluster is
obtained from a square lattice of N sites by deleting each bond with a probability p. = 1/2 and
keeping the largest connected component. In this case, dy = 91/48 is known exactly, and the
walk dimension is approximately equal to d,, ~ 2.878 [Havlin & ben Avraham 1987]. We display
agreement between simulations and theory in figure 2.3(f). Of note, each percolation cluster is
an independent realization of the percolating procedure described above, and (C(rs)) is averaged
over different clusters.

ik

.
il

£

I;

(a) The Sierpinski gasket is a de-
terministic fractal constructed by it-
eratively assembling the triangular
structure depicted above. In its fi-
nite version, generation n contains
%(1 + 377 1) sites.
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107!

(C(ry)
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(d) Mean explored territory on Sier-
pinski gaskets of increasing size.
The rs dependence follows prediction
(2.29). Importantly, the definition of
R is left to interpretation. We define
it as the longest possible distance be-
tween two nodes of the gasket.

(b) The Tgraph is a deterministic
fractal constructed by iteratively as-
sembling the tree structure depicted
above. In its finite version, genera-
tion m contains 3™ — 2 sites.

107!

(C(ry)

107 "
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(e) Mean explored territory on
Tgraphs of increasing size. The rg
dependence follows prediction (2.29).
The choice of R is made similarly to
the Sierpinski gasket.

Figure 2.3

H

(c) The critical percolation cluster is
obtained from a 2D lattice by deleting
each bond with a probability p = 0.5

and keeping the largest connected

component.

1077 102 10°

rs/R

(f) Mean explored territory on critical
percolation clusters. The rs depen-
dence follows prediction (2.29). All rs
pairs are averaged over different crit-
ical percolation clusters. The R pa-
rameter is also random and depends
on each realization.

2.2.4 Non-compact case

Consider now the non-compact case, and define o = d,, — dy, with a < 0. Plugging the large
volume limit of the splitting probability (2.14)

dw—d;  dw—d;  dy—dy
A+ B(ry, — T —r )

Txg,x (XO) ~ — (236)
o 24— Brig ™)
into equation (2.19) yields
A+ B(r{y —r3e —r%7)
C(x ~/ 10177 4x,, 2.37
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and we obtain:

(C(x0)) — g ~ /dexl. (2.38)

Similarly to the compact case, we denote ry = rpp, integrate out the angular dependence and
make the change of variable u = r1 /75 to obtain:

R
_y ads [T fe(w)* =1 4
(C(rs)) = 5 ~ BdyQa,rirs /0 2[4~ Blar.]" du (2.39)

where the definition of fi(u) is identical to the compact case, and we denote the integrand

J(u) = i gﬂg&;% uds 1.

1. As u — 0, recalling that o < 0, J(u) oc u?% =% and the integral is well-behaved since
df > dy,.

2. For large u, J(u) oc u~! and the integral diverges as R grows to infinity.

As a result, for large R and fixed source target distance ry, the mean explored territory takes the
following universal form:

() L o . B
Vv 1<<7::<<R 5 - W with Cl == ﬂ (240)

Importantly:

e A and B are constant coefficients that depend on the microscopic details of the random
walk. However, the plateauing feature displayed by equation (2.40) is universal, and the
algebraic convergence speed depends on d,, and dy only.

e The ry dependence of (C(rs)) is strikingly different from the compact case. As the source-
target distance increases, its influence on the explored territory vanishes, and the memory
of the starting point is lost.

e The limiting value (C(rs)) — V/2 has a physical interpretation; in a non-compact explo-
ration process, every site can be thought of as equivalent. In turn, the average behavior is
simply to visit half the space before finding the target.

Similarly to the compact universal class, we illustrate the universal result (2.40) across two
representative examples of non-compact processes: classical diffusion on 3 dimensional hypercubes
and non-compact Riemann Walks in one-dimension.

Normal walk on a 3D hypercube. Since the walk dimension of the Normal walk is always
dy = 2, embedding it in a 3 dimensional space makes it non-compact. The A and B constants
can be found in [Hughes 1995] and we display numerical agreement with formula (2.40) in figure
2.4(a). We emphasize that there is not fit parameter.
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Riemann walk with u < 1. We follow the same procedure as for the compact Riemann walk
and choose 0 < < 1 on a one-dimensional periodic lattice to obtain non-compact exploration.
To determine A and B, we consider the mean first-passage time (MFPT) ¢g5 to 0 starting from s at
distance 7. For compact Riemann walks, the MFPT is known both exactly [Tejedor et al. 2011]
and asymptotically reads o, ~ N(A—Brt™") for large 1 < ry < N [Bénichou & Voituriez 2014].
As a result, we identify A and B and display agreement between (2.40) and numerical simulations
in figure 2.4(b).
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(a) Normal random walk on a 3 dimensional hypercube. As the  (b) Non-compact Riemann Walk. As the volume increases, the
volume increases, the mean visited territory converges towards mean visited territory converges towards the asymptotic limit
the asymptotic limit (2.40). Note that convergence is slower (2.40). We emphasize the absence of a fit parameter.

than for the one-dimensional system. As the mean FPT scales

with the confining volume V', simulations quickly become time

consuming.

Figure 2.4

2.2.5 Marginally compact case

Having extensively covered the compact and non-compact cases, we conclude with the marginal
case dy = d,,. The large volume limit splitting probability is given by (2.14):

T T
A+ Blog (22.02)

X2,X ~ 2.41
Tt 50~ S A Blog(ro) 240
and the mean explored territory reads:
A+ Blog (—”Tﬁlgw)
C(x N/ dx;y. 2.42
\Coxol~ | STAT Bloglrm) ™ (2.42)
Similarly to the compact and non-compact cases, we denote rs = ror and 119 = rsf J_(T';L;T ,0),
integrate the angular dependence and obtain:
(C(rs)) ~ dQq, [A + Blog(rs)] /R ! r 7 dr (2.43)
® 125y BT o 2[A+ Blog(rir)] 70 T .
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The integral is convergent near 0, and integration by parts yields:

Tdf "
(C(rs)) ~ dyQq, [A+ Blog(rs)] ( 2d; [A + glog(m)]] i
0

(2.44)
R
B _
/ 27“;’1 ‘drpy |,
0o 2[A+ Blog(rir)]
from which we finally obtain the universal behavior of (C(rs)) in the large volume limit:
(C(rs)) -~ 1 Blog (%) (2.45)
V  1<rs<R 2  2[A+ Blog(R)] ’

e Asin the non-compact case, A and B are constant coefficients that depend on the microscopic
details of the random walk. However, the logarithmic rs dependence of (C(r5)) is universal
and process independent.

e The marginal case shares many similarities with the non-compact case. Indeed the mean
explored territory converges toward 1/2 as 7 increases. However, the convergence speed is
logarithmic, much slower than the corresponding algebraic decay for the non-compact case.

e Marginal systems are not as widespread as compact or non-compact ones. We here focus
on two specific examples for which both A and B can be computed: the normal walk on a
two dimensional hypercube, and the marginal one-dimensional Riemann Walk.

Normal walk on a 2D lattice. The symmetric random walk on a 2D square lattice is the
canonical example of a marginally compact system, and both A ~ 1.0293374 and B = 2/m can be
found in [Hughes 1995]. Importantly, the H functions are known exactly in this case, such that
combining equations (2.16) and (2.4) yields explicit values of (C(rs)) for any lattice size. We
display the agreement between the large volume asymptotic result (2.45), numerical simulations
and exact analytical values in figure 2.5(a).

Riemann walk with 4 = 1 on 1D lattice We finally consider a Riemann Walk with =1
on the 1D periodic lattice of N sites. As in the compact case, the MFPT ¢y, is known exactly,
and is given by tos ~ N(A + Blog(rs)) for 1 < rs < N. In turn, we obtain explicit expressions
of A and B, and display numerical agreement with simulations in figure 2.5(b).
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(a) Symmetric random walk on a 2D lattice. The rs dependence
of the mean visited territory rescaled according to equation
(2.45) collapses for various lattice sizes N. Additionally, the
values of C(rs) obtained from the exact H functions also
validate the asymptotic result (2.45) Note that the definition
of R is chosen such that the volume of the spherical disk and
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(b) 1D Riemann walk with ;4 = 1. The rs dependence of the
mean visited territory rescaled according to equation (2.45)
collapses for various lattice sizes V. Note however that while
the asymptotic normalizing factor 2(A+ Blog(R)) is correct in
V/2 9(A + Blog(n))

the V' — oo limit, we here normalize by >/ 75

(2.43) to obtain good convergence.

2D lattice match.

Figure 2.5

2.3 Complete distribution of C(s)

Let us briefly summarize the results obtained for the first moment of C(sp). In the large volume
limit V' — oo and with fixed source and target such that V > r?f > 1, we identified three
universality classes for the behavior of (C(rs)), which fully capture the functional dependence on
the geometrical parameters of the problem, independently of the microscopic details of the walk:

1 B
5 - W for dw < df
(C(rs)) 1 Blog (%ﬁ)
AA\LI/ P for dyy = d 2.46
vV 5 3[4t Blog(R)] / (2.46)
df Ts dw_df
—_— | = for dy, > d
| 2(2d; — du) [R] or tw >

Importantly, it appears from (2.46) that the rescaled variable C(rs) = C(rs)/V, defined as the
fraction of the domain visited before reaching the target, is of particular relevance. In the
following sections, we uncover the universal behavior of the full distribution of C in the large
volume limit.

2.3.1 Non-compact and marginal cases

As already noted, the marginal and non-compact cases display strong similarities with regards to
the scaling form of (C(rs)). In particular (C(rs)) converges towards 1/2 as 7, increases. Based on
that remark, we handle both cases conjointly.
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Second moment. Consider first a lattice = of N sites with a target at site s; and a source-target
distance 7. In that case, C(rs)? is given by:

1

C2(ry) = e Z 1(sq is visited before sy | sg)1(s2 is visited before st | sg), (2.47)

51,52€E

from which the second moment is obtained as:

Cr) =57 O Torses(so) (2.45)

51,52€E
where 7, s, s,(50) is defined as the three point splitting probability of reaching both s; and s2
before s7. We now focus on the large volume limit of equation (2.48).

1. Specifying the order in which the sites are visited yields the simplified exact result

Cr) =g D0 Torssal50)Topsy (52) (2.49)

S$1,52€2

2. On the one hand, the asymptotic results obtained for (C(rs)) indicate that sums of splitting
probabilities are controlled by sites located far from s and sg. Assuming further that the
divergences come from sites sy and s far apart from each other, we first rewrite 7., 51 (s2)
as:

1

Mopsi(52) ~ 5 (2.50)

On the other hand, the three point splitting probability can be exactly expressed in terms
of H functions. We show in Appendix C that when sites s; and s are far from sp, the
three point splitting probability asymptotically reads:

2(Hy — Hrs)

2.51
Hyr — Hry + 3(Ho — Hro) (251)

WST,SMQ(SO) ~ 7TST@(SO)
where Hy = H;;. Additionally, for s1, so far from sy, Hip ~ Hop, such that:

2

WST,SLQ(SO) ~ §7TST1872(30)' (2~52)

3. In the large volume limit, equation (2.49) is finally recast as:

2
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Importantly both the first and second moment of C(rs) have the same asymptotic scaling
behavior, stemming mostly from observations (2.50) and (2.52). To proceed further, we extend
this argument to higher moments of C(ry), and give a geometrical interpretation to the form of
the n-point splitting probabilities.

n-point splitting probabilities and further moments. Consider a given set (s, ..., s,) of
n targets far from each other, and far from sp, with sg at a distance rg from sp. Define 7*(r)
the probability that the walker moves far enough from sy so that all n + 1 targets (s1, .., Sn, ST)
become equivalent. As a result, we rewrite the large volume limit of the n-point splitting
probabilities as:

* 1
a <T8) and Tsr,81,08n—1 (Sn) ~ - (2~54)
e n

N

Importantly, by making use of the definition (2.16) of (C(rs)), we obtain
7 (rs) = 2(C(rs)). (2.55)
Consequently, the asymptotic behavior of the n'® moment is given by

1

(C"(rs)) = 5 T ,51,mensn (S0)
N
S1,e0,Sn €
n!
~ Nn Z W8T781-~-,8l(80) e WST7ﬂ(52)
S1y-.,SnEE (256)
n! Z m™(rs) 1 1
N”s1 o n+1ln "2
- T (rs)
n+1"

Complete distribution of C(rs) for non-compact and marginal processes. Since the
asymptotic large volume behavior of all moments is known, we derive the full distribution of
C(rs). To that end, we consider two types of trajectories: those that travel far enough from sp,
with associated probabilistic weight 7*(r,) and those that stay in the vicinity of sp. In turn, the
distribution of C is given as a sum of two conditional distributions:

P(C = alrs) = 7" (rs)p (2]rs) + [1 = 7" (rs)] pa([rs). (2.57)

e For fixed rg, as V' — 00, the explored territory for trajectories staying close to st shrinks
to 0, and pa(z|rs) — 6(x).

e In turn , the only possible form for uq(z|rs) to satisfy the scaling (2.56) of the moments of
C(rs) is p1(z|rs) = 1, hence a uniform distribution.

Finally, for non-compact and marginal processes, we uncover the universal behavior of the full
distribution of C(7s) in the large volume limit:
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P(C = x|ry) 2(C(rs)) + [1 — 2(C(rs))] 6(x), (2.58)

1ILrs<R

and we display agreement with simulations in figure 2.6 for a variety of non-compact and marginal
cases.
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Figure 2.6: Cumulative distribution c(z,rs) = [ P(C = ulrs)du for a variety of non-compact and marginal processes. The
cumulative distributions collapse on a single rs independent function when rescaled according to (2.58). Note that our
theory applies for domains of arbitrary shape. As an example we focus here on random walks in paralelepipedic domains.

A short comment on the golden coupon. The universal behavior (2.57) of C(rs) directly
parallels the golden coupon solution exhibited in chapter 1 in the case of the systematic relocation
random walk. In the large volume limit, if the walker moves far enough from the target, all
N sites of the domain become equivalent. In turn, the order in which they are discovered is
uniformly distributed over all possible permutations of [1, N], and the conditional distribution
of C(rs) is uniform.

2.3.2 Compact case

The non-compact universal form (2.58) stems mainly from assumption (2.54), which is not
expected to hold in the compact case. However, partitioning trajectories in a fashion similar to
(2.57) is still exact. In the spherically symmetric picture, we introduce the shell splitting proba-
bility 757! (r,, Ryut), defined as the probability to reach an outer shell of radius Ry, starting at
a distance r, from the absorbing target, which is asymptotically given by [Levernier et al. 2018]:

7[_shell(rs’ Rout)

R T
2 ] (2.59)

X
1<Lrs < Rout |: Rout

For a bounding domain of radius R, we partition trajectories on whether or not the outer
boundary of the confining domain is reached before st and obtain:

P(C = z|ry) = mhU (g, R) iy (]rs) + [1 _ pohell (. R)} pio(|7s). (2.60)
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On trajectories conditioned to reach the boundary. We first focus on the distribution of
C(rs) conditioned to reach the boundary. For fixed rs and R — oo, pi(x|rs) becomes independent
of r5. Indeed, the domain visited prior to reaching the boundary is negligible compared to the
domain visited after the boundary has been found. Additionally, p;(x) — 0 as x — 0, since
trajectories reaching the boundary must visit a substantial fraction of the domain.

On trajectories conditioned to never reach the boundary. Trajectories that never reach
the boundary are statistically equivalent to unbounded trajectories. Consequently, we focus
on the distribution of the number of sites visited in the infinite medium, before reaching the
target3. For unbounded processes, the distribution of the farthest shell reached before finding sr
is obtained from the shell splitting probability:

d
P(farthest reached shell is at distance Royt|rs) = — @W‘gh‘z”(rs, R)
R:Rout

dw—dy (2.61)
Ts

X —_—
1<rs< Rout Rdw —ds+1
out

Note that equation (2.61) is the spherical equivalent of the one-dimensional equation (1.33)
relating the distribution of the maximum and the splitting probability. Furthermore, for compact
exploration processes, the number of visited sites in a ball of radius R is known to scale as R%.
In turn, the distribution of the number C*°(sg) of distinct sites visited before reaching st in the
infinite medium is asymptotically given by

o=y
P(C™® =nlry) o« = (2.62)
n
As a result, the conditional distribution of the visited fraction reads:
Ts]dw_df 1
s 2.63
CEON I ) = (263)

Plugging equation (2.63) into (2.57), we finally obtain a universal scaling form for the distribution
of C(rs), valid in the large volume limit:

P(C = alr) [ s ) (264)
= X|Ts 1<<7(-)S<<<R R x% H1\T y .

where i1 is a process dependent but rs and R independent function. We conclude this part with
a few important remarks:

e The dependence of C(rs) on the geometrical parameters r5 and R is fully explicit in equation
(2.64). In turn, the scaling of all moments of C(rs) with r5 and R is explicit, and important
quantities, such as the fluctuations of C(rs), can be analyzed.

3In the compact case, the target is reached with probability 1.
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e Forz < 1, ji(z) = o(x~%/%), and the distribution of C(rs) displays an algebraic behavior,
characterized by d,, and dy only. However, as  — 1, the functional form of fi;(x) is process
dependent, and left undetermined in our approach.

e Finally, we illustrate the relevance and broad range of applicability of equation (2.64) in
figure 2.7, across the various compact processes studied in the previous section.
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(a) Distribution of C(rs) for a compact Riemann walk
with 4 = 3/2 on a ring of N sites. Upon rescaling
according to equation (2.64), the distributions collapse
to a R and rs independent function, whose small =
behavior is algebraic. R is taken equal to N/2.
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(c) Distribution of C(rs) for the Sierpinski gasket. The
distributions are averaged over different source-target
pairs. N is the number of nodes for a given generation
of the Sierpinski gasket, and R is the maximal node
distance.
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(b) Distribution of C(rs) for 2D critical percolation clus-
ters. The distributions are averaged over different source-
target pairs, and different realizations of percolation
clusters, starting from a 2D lattice with fixed number
of sites 1502 (blue) and 200? (purple). R is the mean
maximal node distance over these realizations.
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tions are averaged over different source-target pairs. N

is the number of nodes for a given generation of the
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Figure 2.7
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2.4 Conclusion

To go further than the one-dimensional random walks with connected span studied in chapter 1,
we focus on general Markovian scale-invariant processes, characterized by their fractal dimension
dy and walk dimension d,,. Guided by earlier results and emergent universal behavior for
first-passage observables in large confining domains, such as the first-passage time or splitting
probabilities [Bénichou & Voituriez 2014|, we investigate the large volume limit of the explored
territory before reaching a target. In that case, both the source sy and target sp are inside
the bulk of the domain, and the source target distance 7 is small with respect the lengthscale
R o< V45 of the confining domain.

Considering first the average (C(rs)) of the explored territory, we identify three universality
classes, namely compact, marginal and non-compact, for which the functional dependence of
(C(rs)) on the geometrical parameters rs and R is independent of the microscopic transport
details. We stress that the resulting scaling forms provide physical insight on the thoroughness
of the exploration. In particular, marginal and non-compact processes tend to dodge the target,
even for small ry.

In fact, we show that these universality classes hold for the full distribution of the visited
fraction C(rs) = C(rs)/V of the domain, which displays the following universal asymptotic

behavior:
P(C = s ~  2{C(r 1—2(C(rs))| o dr > dy
€ =aln) | _~_ 200+ -2Ce 0@ dp
TS dw—df ]_ ~ (265)
P(C = alrs) 1<<7?5<<<R [E} x‘fi—;”, + ,ul(x)] dy < .

The marginal and non-compact cases (d,, < dy) are most striking. Indeed, the distribution of
C(rs) is quasi-uniform, and the Rosenstock survival probability discussed at length in chapter 1
is straightforwardly obtained, with potential applications in realistic systems, such as chemical
reaction processes in three-dimensional gases or liquids. In the compact case, we stress that
although the fi1(x) function is process dependent, we expect its behavior near x = 1 to display
some universal features, which still need to be investigated.

Taken together, chapter 1 and 2 draw a comprehensive picture of the territory explored before
reaching a target in a confining domain. In particular, we provide a framework to evaluate its
distribution, either exactly, or asymptotically in the large volume limit, which is valid across
paradigmatic examples of stochastic processes. However, focusing on the geometrical description
of the domain exploration, we completely neglect the intrinsic dynamical aspects. In particular,
the time needed to reach the target conveys crucial information on the explored territory. For
instance, shorter explorations hint at smaller explored territory.

In the following chapter, we unveil connections between the geometrical and kinetic aspects
of exploration, by investigating the joint distribution of the explored territory and first-passage
time, which fully quantifies their coupling.
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Joint statistics of space and time
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The statistics of first-passage times (FPTs) to a target site of interest have proved to play
a key role in determining the kinetics of space exploration [Redner 2001, Metzler et al. 2014,
Bray et al. 2013|. In particular, the case of first-passage times in confined domains appears
to be highly relevant to assess the efficiency of target search processes, and has lead to an
important activity [Condamin et al. 2007b, Bénichou & Voituriez 2014, Cheviakov et al. 2010,
Schuss et al. 2007]. On the other hand, the territory explored before reaching a given target
in a confining domain, which characterizes the geometry of exploration, has been thoroughly
investigated in chapters 1 and 2. Intuitively, the FPT and territory are highly correlated random
variables: with high probability, longer exploration times lead to larger explored territories.
However, even for one-dimensional processes, the precise quantification of the coupling between
these two variables has been largely unexplored. The aim of this chapter is to fully elucidate
the interplay between the FPT and the territory explored before reaching the target, for general
one-dimensional processes.

To that end, we introduce the joint distribution (s, n|sg) of the number of sites visited s,
and the FPT n to 0, for one-dimensional lattice random walks starting from sg. Importantly,
this joint distribution completely encompasses the coupling between space and time observables.
Similarly to chapter 1, we first present a systematic methodology to derive ¢ in the case of
one-dimensional Markovian walks with connected span. In turn, we illustrate our method by
computing o for representative examples of one-dimensional lattice random walks.

We then naturally extend this methodology to continuous and reflecting one-dimensional
geometries. Additionally, in the large n and s limit, we show that the joint distribution takes a



70 Chapter 3. Joint statistics of space and time

universal scaling form, which holds for general scale-invariant processes and applies in particular
to classical non-Markovian processes, such as the Fractional Brownian Motion (FBM) or the
Random Acceleration Process (RAP) [Bicout & Burkhardt 2000].

We conclude this chapter with two important applications. First, the derivation of the joint
law grants access to conditional distributions of either the FPT or the territory, which we suggest
can be of key importance for experimental setups where only partial information is available. In
particular, one can answer questions such as: knowing that a particle came back after n steps,
how much of the space did it visit? Second, we show that the joint distribution is an essential
tool for the derivation of the persistence properties of a strongly correlated random walk, the
Self Avoiding True Walk (SATW) [Sapozhnikov 1994], for which the explicit form of the FPT
distribution has yet to be derived. Of note, the results presented here are mostly contained in
[Klinger et al. 2022a).

3.1 Joint distribution - systematic derivation

We first consider the case of Markovian lattice walks with connected span . For a Markovian
random walk, the propagator P(s,n|sg) defined as the probability for the walker to be at site s
on the n'® step, obeys the forward equation [Van Kampen 1992]

P(s,n+1]s0) = LIP(s,n|s0), (3.1)
where the forward operator £ acting on s is defined by the microscopic transport rules. In turn,

denoting the adjoint backward operator £ acting on sg, the propagator obeys the backward
equation:

P(s,n+ 1|sg) = Ls, P(s,n]|so). (3.2)
Importantly, for one-dimensional random walks with connected span, the joint distribution
o(s,n|sp) of the number of visited sites s and the FPT n to 0 is strictly equivalent to the joint
distribution of the maximum and the FPT (see figure 3.1 for a schematic illustration), and our
derivations rely heavily on this observation. Additionally, we emphasize that (s, n|sg) should
not be confused with other extreme value statistics observables, eg. the distribution of the
maximum and the time at which this maximum is reached [Randon-Furling & Majumdar 2007,
Mori et al. 2021].

3.1.1 Leftward exit-time probability

To determine o (s, n|sp), we introduce the leftward exit-time probability (LETP) Fp s(n|so), defined
as the probability that the random walker reaches 0 before s, at time n exactly. Partitioning
trajectories that contribute to that event on the value of the maximum reached before the FPT
to 0, we rewrite Fp s (shorthand for Fy s(n|sp)) as:

s—1

Fos(nlso) = Y o(s',nlso), (3.3)

s'=sq

We here recall the definition: let s; and s2 be visited sites, for any site s such that s € [s1, s2], s is visited.
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100 200 n=300

Figure 3.1: Example trajectory contributing to ¢(30,300|12) for a symmetric 1D random walk. Starting from sp = 12, the
walker reaches 0 for the first time at step n = 300. The running maximum up to n is s = 30.

and express o(s,n|sg) in terms of the LETP only:
o(s,n|s0) = Fo,s+1(nls0) — Fo,s(nlso) = DsFo,s(n]s0)- (3.4)

e Equation (3.4) has clear implications: the determination of Fy s is sufficient to obtain fully
explicit forms for the joint distribution, and characterize completely the coupling between
the FPT and the explored territory.

e Note that Fy, is not a probability distribution since Y 7, Fy s(n|so) = mo,s(s0). In fact,
equation (3.4) is a refined version of equation (1.8), which can be recovered by summing
over n.

By partitioning over the first step of the walk, we show that the LETP obeys the same
backward equation as the propagator, for all 0 < sy < s:

Fg,s(n + 1|80) = [:SOFQ,S(TL|80), (3.5)

with boundary conditions Fps(n|s) = 0 and Fp¢(n|0) = d,,0, for all n > 0. Introducing the
generating function Fp s(&|so) = D ne o & Fo,s(n|so), we obtain:

Fos(&lso) = ELo Fos(Elso)  with 0<é&<1
Fos(é]s) =0 (3.6)
FQ,S(QO) =1

Equations (3.4) together with (3.6) draw a clear road-map towards the determination of space
and time correlations for one-dimensional Markovian walks with connected span, provided that
the system (3.6) can be solved. In the following subsection, we compute o (s, n|sg) for classical
examples of random walks already encountered in Chapter 1, to which we refer the reader for
definitions of specific transport rules.
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3.1.2 Examples

Symmetric and Biased random walk. We begin with the nearest neighbor symmetric
random walk, for which the backward equation for Fp s reads:

2
3

Enforcing the boundary conditions and denoting ry = %(1 + /1 —&?) yields Fg,s(ﬂso) =

Fos(€lso + 1) — = Fos(&]s0) + Fo,s(€]so — 1) = 0. (3.7)

(ri7%0 — r*7°0)(rs. — r%) . Plugging into equation (3.4), we explicitly compute the generating
function of the joint distribution:

(5, &|s0) = Fo,s41(€]s0) — Fo,s(€]s0)

S S
re—r_ r?—r? s—s0

I A (rer-) (3.8)

S S
re—r_ 10 —r?

s _s+1 s+1°
-ry o —r

s _
T‘+ T

In turn, series expansion in powers of £ yields o (s, n|sg) for all values of n.
The biased nearest neighbor random walk is dealt with similarly. Denoting p the probability
to step rightwards, the backward equation is given by:

3 1. 3
pFos(€lso+1) — EFQ,S(£|SO) + qFo,s(€lso — 1) =0, (3.9)
with ¢ = 1 — p. Denoting now 74 = ﬁ(l + /1 — 4pg€?), the LETP reads Fy¢(£|sg) = 70 —

S (r50 — %) (r$. — r$)71, and the generating function of the joint distribution straightforwardl
+ T g g J g y

follows.

Resetting and Persistent random walks. The resetting and persistent random walks have
both been studied in Chapter 1. Consequently, we relegate the full derivation of FQS to Appendix
D, as the technical tools involved are redundant with earlier results. Making use of equation
(3.4), we then obtain explicit expressions for o(s,n|sg) and provide numerical evidence of the
validity of our approach across these 4 examples in figure 3.2.

e [t is clear from figure 3.2 that with high probability, a longer FPT leads to a larger explored
territory. In other words, giving more time to the random walk allows it to explore more
territory.

e We emphasize that the key information about o(s,n|sg) is contained in the leftward
exit-time probabilities Fp . Their determination is thus necessary and sufficient to fully
characterize the interplay between the explored territory and the time needed to do so.

o We finally stress that while the technical tools needed to derive FQS appear fairly standard,
to the best of our knowledge the LETPs for lattice systems have not yet been investigated.
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(a) Joint distribution o(s,n|sg) for a symmetric nearest neigh-
bor random walk. As n increases, the walker can go farther,
and the most probable maximum drifts to infinity.
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(c) Joint distribution o(s, n|sg) for a persistent nearest neigh-
bor random walk. The dashed lines are obtained from the
small ¢ expansion of o (s, &|sg) computed in Appendix D.

(b) Joint distribution (s, n|sg) for a biased nearest neighbor
random walk. Note the shape similarly with the unbiased
case. In fact, in the continuous setting, for fixed time ¢,
the conditioned maximum distribution can be shown to be
proportional to the unbiased case.
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(d) Joint distribution o (s, n|sg) for a resetting nearest neighbor
random walk. The dashed lines are obtained from the small £
expansion of o(s,£|sg) computed in Appendix D.

Figure 3.2

3.1.3 Extensions

We now show that the methodology for the derivation of o(s,n|sg) in the case of Markovian
one-dimensional lattice walks with connected span naturally extends to both bounded lattices as
well as continuous space and time Markovian processes.

Bounded domains. Consider first the case of a 1D bounded lattice, with an absorbing site
at 0, and a reflecting wall at site N. For all values of s such that s < N + 1, the trajectories
contributing to o (s, n|sg) are strictly identical to those in the unbounded medium. As a result, the
bounded and unbounded joint distributions are equal. We thus focus on the specific case s = N.
Defining Fp°“nd¢d(p|sq) the FPT probability to 0 in the bounded geometry, and partitioning over
whether or not the site N — 1 is reached yields:

O_bounded(]\f7 n|so) + FQ,N(”|50) = Fé)mmded(ms(])‘ (3.10)
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In turn, the joint distribution is known for s = N, provided FQbO“"ded(n|so) can be computed
(usually by solving a backward equation).

Continuous space and time. We now turn to stochastic processes defined in continuous
space and time, and adapt equation (3.4) to meet the continuous formalism:

0
o(z,t|zo) = %FQ,I(H:EO)? (3.11)

where o(z,t|xg) and Fp ,(t|zo) are the continuous counterparts of o(s,n|sg) and Fy s(n|sp). As
an illustration, we briefly discuss the Brownian case. Introducing the Laplace transform 2 of the
LETP Fy.(plzo) = [,° e "' Fo.(t|xo)dt, the classical diffusion equation reads:

2

- 92
PFo(plwo) = Do —Fox(plwo) (3.12)

with D the diffusion coefficient. Solving for Fy, with Fy.(p|z) = 0 and Fy.(p|0) = 1, we
successively obtain:

sinh [\/%(:p - :1:0)} 5. plzn) = \/?sinh [\/%:co}
’ D

Fo2(plzo) = ol [\/%w} sinh? [ %m}

(3.13)
2D & 2 kmx
_ —(km)?D7 . ) | 2(km)2Dr — 9 — 10
o(x,t|zg) 3 k§:1e k sin(kmZo) [ (km)*Dt tan (ko)

with Zo = 2¢/z and 7 = t/22. Importantly:

e Taking p — 0 in the Laplace Transform is equivalent to considering the time integrated
quantity. In turn, we recover from equation (3.13) the distribution of the maximum of the
Brownian motion u(z|zg) = zo/z%.

e The explicit determination (3.13) of o(z,t|zp) in the real variables x and ¢ is obtained from
residue analysis; the resulting sum of decaying exponentials is the hallmark of confined
systems.

e Note that for Brownian motion, an alternative determination of o(x,t|xg) can be found in
[Borodin & Salminen 1996].

Additionally, we provide explicit expressions of &(z, p|xo) for Biased Brownian motion and reset-
ting Brownian motion in Appendix D. We finally consider the case of bounded one-dimensional
continuous processes which are treated similarly to bounded lattice walks. For a reflecting
boundary located at position L, and defining the bounded distribution F2°%"4¢d(¢|z¢) of the FPT
to 0, the joint distribution in the specific case x = L is given by: -

2The Laplace transform is simply the continuous counterpart of the generating function transform in the
discrete time case
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UboundEd(L,ﬂfL’o) _ ngounded(ﬂxo) _ FQ,L(ﬂmO)- (314)

In turn, for Markovian processes, the bounded FPT distribution is derived from the corresponding
backward equation. As a concluding example, the joint distribution for a bounded Brownian
particle is given by:

bounded(L t|l’0 L2 Z (k) 2DT )IH—I]{,‘SiIl(k?TFi'O), (315)

with 7 = t/4L? and T = z0/2L.

3.2 Joint distribution in the large space and time limit

By exploiting the specifics of one-dimensional stochastic processes with connected span, we derived
in section 3.1 a general methodology to evaluate exactly the joint distribution of the explored
territory and the FPT to 0. In turn, we completely determined the intuitive correlations between
these two random observables. We focus now on more general one-dimensional scale-invariant
stochastic processes for which the previous methodology might not apply,as is the case for non-
Markovian processes. To that end, extending an approach presented in [Levernier et al. 2018|,
we identify emergent universal scaling forms of the joint distribution o(z,t|zp), in the large =
and ¢ limit. Without loss of generality, we now exclusively use the continuous formalism.

3.2.1 Universal scaling form

As a starting point, consider an unbounded stochastic process z(t) whose FPT distribution
Fy(t|zo) to 0 has an algebraic large t decay, and define the persistence exponent 6 accordingly
[Bray et al. 2013|:

Fo(tlzo)  ~ m (3.16)
where k(zg) is a process dependent function. As an illustration, the FPT distribution for a
Brownian particle is given by [Redner 2001] Fy(t|zo) = z0(2mt3)~1/2¢=75/(2) guch that Fo(t|xo)
zot—3/? at large t, and 6 = 1/2.
We now consider a secondary target at fixed position x, and introduce T}, o z% the typical
time needed for the process to reach x, where the walk dimension d,, has been defined in chapter
2. To evaluate the LETP, we distinguish two cases:

e At short times t < Ty, trajectories contributing to Fy . (t|zo) never come close to z, and

are thus identical to unbounded trajectories. In turn, Fy ,(t|zo) ~ Fy(t|zo).
- tK typ B

e For times t > T}, trajectories that reach = do not contribute to Fy . (t|xo), and we rewrite
the leftward exit-time probability as

Fy(t]20) ~ Foltlzo)gn (xi) , (3.17)
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where g1 (u) is a smooth cut off function that vanishes as u — oo, and g;(0) = 1 to recover
the short times regime. Importantly, g1 must be an dimensionless function, and cannot
depend on xj since the starting point dependence is captured in Fy(t|zg). As a result, g
can only be a function of the rescaled variable t/x%.

As a result, defining the rescaled variable 7 = t/2% and combining equations (3.11), (3.16) and
(3.17), we obtain the following scaling form for the joint distribution:

h(l’o) 1

175)00 :L‘dwe‘i‘l xdw
t—00
T fixed

f(7), (3.18)

U($7t|$0)

where h(xg) and f(7) are both process-dependent functions, and f has been normalized. Equation
(3.18) is the main result of this section, and deserves a few comments:

e While both h and f are process-dependent functions, equation (3.18) has important practical
applications. In particular, for fixed x(, empirical measurement of the joint distribution for
a given x provides the functional form of o for all (z,t) pairs.

e Since f(7) is normalized, integrating equation (3.18) over ¢ yields:

> h(x
/O oz, t]zo)dt = p(z|zo) = xdi;fl (3.19)

with p(z|zg) the marginal distribution of the maximum of the process before reaching
zero. In turn, we recover the algebraic decay of p(z|xzg) as a function of d,, and 6 only, in
agreement with known results [Majumdar et al. 2010b]. Additionally, this identification
yields the small z¢ behavior of h(z):

h(zo) o adwl (3.20)

ro—0

e The previous observation confers a clear physical interpretation to the f function: f(7)
is the distribution of the rescaled variable 7 = ¢/x% conditioned on the value of the
maximum x. Importantly, we stress that f is independent of xg.

3.2.2 Illustrations

We now illustrate the result (3.18) on representative examples of one-dimensional stochastic
processes. Importantly, we stress that the collapse of the conditional distribution of 7 = ¢/ xw,
for various values of x and x( is enough to guarantee the validity of equation (3.18).

Brownian motion. Taking the x — oo, t — oo limit with 7 fixed in the explicit joint
distribution (3.13), we obtain:
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xo fBm(T)
o(x,t|lzg) ~ 2 2
o0 , (3.21)
fem(T) = 2D7? Z e~ (bm)" D72 [2(km)?Dr — 3],
k=1

in agreement with equation (3.18), and display numerical evidence in figure 3.3(a). Importantly, we
emphasize that the asymptotic conditional distribution fpas holds for any symmetric Markovian
random walk whose i.i.d increments satisfy the central limit theorem®. We now turn to processes
for which the f(7) function cannot be computed exactly.

Riemann walks. Already introduced in Chapter 2, Riemann Walks offer a continuously
varying walk dimension d,, = u, where u characterizes the algebraic decay of the transition kernel
p(s1 — s9) o< |s1 — s2|~(1FH). We consider the crossing convention, such that all flown-over
sites are considered visited, and the process is terminated upon first crossing of 0. In that
case, the persistence exponent is known and given by § = 1/2 [Hughes 1995]. Of note, the
persistence exponent for Riemann walks is predicted by the more general Sparre Andersen
theorem [Andersen 1954, Bray et al. 2013]. We display numerical agreement with our theory in
figure 3.3(b), for p = 3/2.

Fractional Brownian Motion. Both Brownian motion and Riemann walks are Markovian
stochastic processes. As a first representative example of non-Markovian random process, we
consider the Fractional Brownian Motion (FBM). The FBM is a Gaussian process defined by its
auto-correlation function:

(((t1) — z0) (x(t2) — x0)) = 2 [t37 + 35 + |t — to|*7] (3.22)

where 0 < H < 1 is the Hurst exponent. Importantly, for H # 1/2, the FBM is non-Markovian
and displays anomalous behavior. Its walk dimension d,, = 1/H is directly read off from (3.22),
and its persistence exponent has been shown to satisfy § = 1—H [Molchan 1999, Bray et al. 2013|.
We provide simulation details in Appendix D and display numerical agreement with our theory
in figure 3.3(c).

Random Acceleration Process. Lastly, we consider the Random Acceleration process (RAP),
whose time evolution is given by the following stochastic differential equation:

i(t) = n(t), (3.23)
where 7(t) is a standard white noise with zero mean and (n(¢1)n(t2)) = 2DJ(t1 —t2). Importantly,
the RAP is a non-Markovian process and the pair (dy,6) is equal to (2/3,1/4). Note that
the RAP has been used to model the dynamics of friction-less particles whose acceleration is
continuously given random kicks, in contrast to the classical over-damped Langevin picture

3In that case the value of D must be extracted from the MSD of the process, which is asymptotically given by
(x2(t)) .~ 2Dt
—00
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x(t) = n(t). We refer the reader to |Bicout & Burkhardt 2000, Burkhardt 2007| for an overview
of RAP results, provide simulation details in Appendix D and display numerical agreement with

our theory in figure 3.3(d).

(a) Symmetric normal walk: conditional distribution of
the rescaled variable 7 = n/s? for various maximums s
and initial positions sg. For large s, the distribution con-
verges to the universal Brownian motion result fgas(7)
(3.21).
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(c) Fractional Brownian Motion: conditional distribution

of the rescaled variable 7 for various maximums z. All

distributions collapse to an unknown universal function.
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(b) Riemann walk: conditional distribution of the
rescaled variable 7 = n/st for various maximums s
and initial positions sg. All distributions collapse to an

unknown universal function.
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(d) Random Acceleration Process: conditional distribu-
tion of the rescaled variable 7 for various maximums
z. All distributions collapse to an unknown universal
function.

Figure 3.3

Supported by the numerical evidence accumulated in figure 3.3, we have shown that equation
(3.18) holds for general scale-invariant one-dimensional processes, and is even valid beyond the
Markovian hypothesis. Consequently, we emphasize that the coupling between the space explored
before reaching a target and the time needed to do so is fully governed by the scaling variable
T =t/z%,
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3.3 Applications

In this section, we investigate the implications of this emergent scaling behavior on two specific
applications. First, we focus on the derivation of conditional space and time distributions, and
their application to determining conditional survival probabilities. Second, we show that the joint
distribution appears as key tool for the evaluation of the persistence properties of a paradigmatic
example of self-interacting random walk: the Self Avoiding True Walk (SATW).

3.3.1 Conditional distributions and the Rosenstock trapping problem

As an important side product, the determination of the joint distribution o(z, t|xg) allows for
the evaluation of two conditional distributions:

o(x,t|zo)
Fy(t|zo)

o(z, t|xo)

Gt zo) = (o)

Gim(t|z, z0) = (3.24)

with G, the distribution of the explored territory before reaching a target conditioned on the
value of the FPT, and Gy, the distribution of the FPT conditioned on the value of the explored
territory 4. In turn, G sp provides an explicit solution to a conditional version of the Rosenstock
trapping problem [Rosenstock 1961, Hughes 1995], which initially motivated the study of the
explored territory C(sg) in chapter 1.

For the sake of clarity, we rephrase the Rosenstock problem to fit with the continuous space
and time notations, and provide a schematic of the situation in figure 3.4(a). Consider a catalytic
particle that enters a one-dimensional chemical reactor at xg and leaves it at 0, and assume
that the time ¢ spent in the reactor is observed, which is equivalent to conditioning with respect
to the FPT. The reactor contains Poisson distributed point-like reactive targets of density p °,
which trigger a reaction upon encounter with the catalytic particle. Furthermore, we assume that
the dynamics of the particle remain unchanged upon reaction. The efficiency of such schematic
catalytic reaction can be quantified by the Rosenstock reaction probability P; that the catalytic
particle has activated at least one reactive site before exiting the domain, given the exit-time ¢,
and reads

P = / (1 — e P)Ggp(x|t, zo)d. (3.25)
0

While an explicit expression of o(z,t|xg) is required to derive G, and P; exactly, the emergent
scaling structure for large time ¢ is sufficient to obtain quantitative results.

Making use of (3.18), the asymptotic conditional distribution of the FPT is given by
Gim(t|z, z0) ~ =% f(1) with f a process-dependent normalized function. Similarly, the con-
ditional distribution of the explored territory can be recast in a scaling form of the rescaled
variable z/ t1/dw - and is asymptotically given by:

“Fo(.|zo) and p(.|zo) are the marginal distributions of respectively the FPT and the maximum.
°In probabilistic terms, the probability of observing a target in some interval of size dz is given by pdz.
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1 x
Gip(lt, s0) ~ —¢ <1>
t dw tdw
X—dw(0+1)—1f(x—dw)
= fooo u—dw(("*‘l)—lf(u_dw)du.

(3.26)

o(x)

Numerical evidence of the scaling behavior (3.26) is provided in figure D.1 of Appendix D.
Plugging equation (3.26) into (3.25), we show that P is a function of the reduced variable pt!/®
only:

t—o00

P, o~ /N@u.—em”““q¢@0du. (3.27)
T—00 0

7 fixed

Furthermore, in the limit pt'/% < 1, the conditional reaction probability displays an algebraic
growth

P, « pt'/®. (3.28)

Importantly, equation (3.28) quantitatively describes the intuitive increase of P, with ¢. In the
specific case of Brownian motion, fgas(7) is given in equation (3.21) such that ¢ can be exactly
computed. In turn, the reaction probability in the regime 23/D < t < 1/(Dp?) is given by:

P, ~ \/7p(DY)?, (3.29)

and we conclude with numerical illustration in figure 3.4(b).

A
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(a) Starting from g, the particle evolves in the hidden grayed-  (b) Rosenstock reaction probability for Brownian motion with
out domain containing randomly distributed traps (blue dots),  varying trap density p. For large t, P; is a function of pwt

and is observed at some time t (eye) upon reaching 0 for only. The dashed line corresponds to the p?wt < 1 limit (3.29).
the first time. The conditional reaction probability quantifies Note that for ¢ too small, the scaling regime is not reached

the likelihood of trap encounter given the extra FPT to 0 and the collapse fails.
information.

Figure 3.4
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3.3.2 Persistence properties of the Self Avoiding True Walk

Transport rules. The one-dimensional Self Avoiding True Walk (SATW) [Sapozhnikov 1994]
is a lattice random walk pertaining to the family of the self-interacting random walks and
reinforcement walks, whose transport rules at step n depend on the full set of visited sites
up to step n. More precisely, at each time step, if both neighboring sites have already been
visited, the random walker hops on either of them with probability 1/2. However, if one of
them is virgin, ie has never been visited, it is chosen with probability 0 < 8 < 1. Note that
this can either be an attractive effect (5 < 1/2) or a repulsive one (5 > 1/2) (see figure 3.5).
Historically, the SATW has been studied as a prototypical example of process with long-range
memory and proved more recently to be relevant for the description of the dynamics of motile
cells [d’Alessandro et al. 2021].

Figure 3.5: One-dimensional SATW dynamics. All grayed-out sites have been previously visited, and all white sites are
virgin sites. Upon hopping, if both neighboring sites have already been visited, the jump is performed symmetrically. If one
of the sites is virgin, it is chosen with probability 3.

FPT distribution. We focus here on the specific case of the SATW starting from sy = 1, with
absorbing site at 0, and aim to explicitly derive the asymptotic large n FPT distribution Fy(n|so =
1). While the persistence exponent has recently been derived in [Barbier-Chebbah et al. 2020],
and is given by 6 = %7 the exact prefactor of Fy(n|sg = 1) has yet to be computed. We fill this
gap by considering Fy(n|sg = 1) as a marginal of the joint distribution o(s,n|1):

Rl =3 o(s,nl1) = 3 u(s1)Gum(nls, 1. (3.30)
s=1 s=1
with p(s|1) the distribution of the maximum before reaching 0, and Gyn(nls, 1) the conditional
distribution of the FPT to 0 with s fixed.

1. First, pu(s|1) is entirely determined by the splitting probability g (1), and both quantities
are asymptotically found to be given by [Barbier-Chebbah et al. 2020]:

I'(-2+2/B) 15
o) 3 T 1)
L(=2+2/B)1-p 128,

sheo T(—-1+1/B8) B

(3.31)

p(s(1)

2. Next, by partitioning over times at which virgin sites are discovered, we show that the
generating function of the joint distribution &(s,£|1) can be expressed in terms of the
LETP and RETP only:
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(s,€[1) =

N)\«/‘f‘r

(H Foy(gls' = 1) ) Fos41(E]s). (3.32)

As for the splitting probability, F07§(§|s — 1) and F973+1(§\s) can be exactly computed,
yielding an explicit expression for the joint distribution. In turn, in the large n and
s limit, we rewrite the joint distribution in the scaling form (3.18) with d,, = 2
[Barbier-Chebbah et al. 2020] and obtain:

a(s,nl)  ~  p(s|l) fsarw(n/s®)s ™2, (3.33)
n—oo
n/s?fixed
where the conditional distribution fsarw (7) of 7 = n/s? is defined by its strikingly simple
Laplace transform:

V2D )?ﬂ_

Foarw(p) = [ e foar () = (mﬁp)

(3.34)

Note that the detailed calculations leading to equations (3.31), (3.32) and (3.34) are
reproduced in Appendix E.

3. Finally, plugging equation (3.33) into equation (3.30) yields the asymptotic FPT distribu-
tion:

o T(2+2/p) (1~
w5 T(-1+1/8) 28

oo 1-p
:/ fSATW(T)T 28 dT.
0

FQ(?’L‘SO = 1) 5)14(6)?7,_W

(3.35)

Exact inversion of JESATW- For = 1/n with n € N*, the poles of fSATW(z) are given by

2, = —k*7?/2 and fsarw can be analytically inverted. For concreteness, we provide two exact
formulas:
> _k27'r27' 1
B=5: fsarw(r) = Ze 2 5(—1)k+1/€67r672
k=1
9 1
S (G R 4 S (1) R 6(—1)’”11{:%2]
- o 5.3 (3.36)
1 2.2, | k
B=: fsarw(7) gek [ 7:37— — k%7

n 251{:2%47' n 21{:6;767 7 101;4774 7 1014:2772] 7
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and display numerical agreement in figure 3.6(a). Note that, as § decreases, the polynomial part
in equation (3.36) accumulates more terms. However, careful residue analysis yields the leading
large 7 behavior, valid for any 5 = 1/n:

M)

2
. 5o
foarw () ~ e T 5L (3.37)

T—00 (

FPT prefactor - derivation of A(8). We now show that A(f) can be computed exactly.
Consider first the case where n = 1/8 is an odd integer, and rewrite A(8) = [;° fearw (7)7™dr
With m = (n—1) / 2. For a given function g(7) whose Laplace transform L[g| is defined as

= > e T8g(r)dr, one has
| srmar = -om sl (3.38)
0 s=0
and choosing ¢(7) = L [fsarw](T) yields
AB) = ()" S [ Fsarwl] ()
(3) = (1" g [ Fsarwl] )]
(3.39)

md™ (V2 "
= (_1) de <smh(\/%)>

We introduce the higher order Bernoulli polynomials Bl (z) [Adelberg 1992] defined by their
generating function:

s=0

t s =~
n=

and combine equations (3.39) and (3.40) to obtain:

(3.41)

a1 ((2m 4+ 1Y 237m!
A = B (275

2 2m!

Importantly, with the help of the generating function (3.40), the B (z) can be shown to satisfy
a number of recurrence relations. Using in particular the fact that

By, (z +1) = By (x) + nB;(2),

n—

n 3.42
Bift@) = (1= 7) Bl@) + 7@ = )Bl_ (2), 342

we finally obtain:

A(B) = (2m —1)(2m — 3)(2m — 5)... = (2m — I (3.43)

As a concluding step, we focus on general § values. While equation (3.43) has only been
obtained in the case f = 1/(2m + 1), we analytically extend it to all 8 with the help of the T"
function:
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ﬂ 1
27 1 (45)

A(B) = 3.44
3= —=" (3.44)
and provide an explicit expression for the asymptotic FPT distribution:
nNz-1 148 1-8
Folnlso=1) ~ (G0 o-sp -2 (3.45)

26 TG-D

= BI(5 1)

so=1 f=0.7
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n

(a) Conditional distribution of the rescaled variable 7 for vari-
ous maxima s. All distributions collapse to the single universal
curve (3.36). Note that there is an apparent convergence speed:
the collapse improves as s increases.

(b) Survival probability g(so,n) = >_32, 1 Fo(k|so) of
a SATW with 8 = 0.7. Both the persistence exponent 6
and prefactor obtained from equation (3.45) are correctly
recovered.

Figure 3.6
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3.4 Conclusion

To investigate further the territory explored before reaching a target, we focus in this chapter
on its coupling with the random stopping time at which it is observed, namely the FPT to the
target. To quantify the correlations between these space and time observables, we introduce their
joint distribution o(z,t|zg), derive analytical results across general one-dimensional stochastic
processes and address underlying physical implications.

We first consider one-dimensional Markovian random walks with connected span, and develop
a systematic framework to explicitly derive the joint distribution, relying on the determination of
the leftward ezit-time probability (LETP). In turn, we compute a variety of novel exact expressions
for o(z,t|zp), spanning discrete and continuous processes, as well as unbounded and bounded
geometries.

For general one-dimensional scale-invariant processes, we focus on the large space and time
limit, and uncover emergent scaling forms for the LETP, leading to corresponding universal
behavior of the joint distribution. In fact, we show that the coupling between space and time
statistics is entirely governed by a single rescaled parameter 7 = t/z%  and provide illustrations
across a broad range of one-dimensional processes, including representative examples of Non-
Markovian processes and self-interacting random walks.

Exploiting the emergent universal form of the joint distribution, we unveil similar behavior
for the conditional distributions of either the explored territory knowing the FPT, or vice-versa,
and illustrate their relevance on two specific applications. Focusing first on a conditional version
of the Rosenstock trapping problem [Rosenstock 1961], we determine the likelihood of reacting
with a trap given the FPT through 0 of a catalytic particle in a closed reactor. Second, we make
use of the joint distribution approach to explicitly compute the prefactor of the FPT distribution
for a paradigmatic example of self-interacting walk, the Self Avoiding True Walk.

We emphasize that the next natural step would be to consider the space and time coupling for
more general scale-invariant processes, in higher dimensions for instance, which is left for future
work. One can only guess, but the compact universality class could lend itself to a treatment
similar to the simple one-dimensional geometry, while in the non-compact case, a one-to-one
correspondence between the FPT and number of visited sites would seem very appealing.
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Splitting probabilities of jump processes
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The following four chapters deal exclusively with a specific type of stochastic process, namely
discrete-time and continuous space random walks, or jump processes. In turn, we take this
introductory chapter as an opportunity to briefly review and contextualize the results presented
in this manuscript.

In a first part, we provide a precise definition of one-dimensional symmetric jump processes,
and review known results for unbounded jump processes (which we also refer to as unconstrained),
and jump processes killed upon entering the negative half axis (ie whose movement is stopped
upon becoming negative). We discuss in depth the survival probability of the latter and highlight
the technical difficulties arising for bounded jump processes, ie killed upon exiting an interval.

In a second part, we present the main result of this chapter, namely the determination of
the splitting probability mg 4 (o), defined as the probability for a jump process starting from zg
to escape a confining interval [0, z] through z rather than through 0, in the large x limit. We
illustrate our result on a variety of examples, and exhibit experimental relevance in the context
of particle scattering and so-called transmission probabilities. Of note, this chapter builds up on
results presented in [Klinger et al. 2022b|.
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Figure 4.1: Example trajectories contributing to the infinite propagator G (z,n|0) (blue) and semi-infinite propagator
Go(z,n) (black). In the semi-infinite case, the whole trajectory stays above 0. In both cases the walker starts from 0 and is
located at position x after n steps.

4.1 Propagators of general jump processes

Let us consider a particle starting from xy > 0, whose successive positions are given by x,+1 =
ZTn + &, where the &;’s are independent and identically distributed (i.i.d.), with common
distribution p(¢). In the following, we focus on symmetric continuous jump processes, such
that the single jump distribution is taken to be symmetric p(¢) = p(—¢), and the cumulative
distribution is continuous.

Of note, jump processes have been used to model a variety of physical phenomena, from
polymer bead location [Rouse 1953] to financial asset values and queuing theory [Asmussen 2003].
Additionally, we emphasize that jump processes are relevant for the description of discrete time
series, which naturally arise in empirical data series. Indeed, continuous models are not well
suited to properly capture probabilistic effects arising from the discreetness of the data. As
an illustration, consider the probability of a given time series (zg,x1,..2) with zyp = 0 to be
positive at all times. Since x¢g = 0, any continuous model fitting the data yields 0 as an answer.
In contrast, a jump process fitting the data has a strictly non zero probability of being positive
at all times, as we will see shortly.

4.1.1 Unbounded jump processes

We first focus on jump processes evolving freely on R, and characterize their statistics at all
times n. We point out that the analytical results presented here are classical, and can be found
in [Van Kampen 1992, Hughes 1995| for instance.

Infinite propagator. The infinite propagator G (z,n|xg), defined as the probability for the
particle to be located at position z after n steps (see figure 4.1), fully captures the statistics
of the jump process after n steps. Importantly, since the jumps are i.i.d. and symmetric, the
propagator depends only on z — xg, and we denote Goo(z,n) = Goo(z, n|xg = 0). Partitioning
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over the last step of the walk, one obtains the forward equation:

oo

Goo(z,n) = 80.00(z) + [1 — 60, / p(z — y)Goo(y,n — 1)dy, (4.1)

—00

and introducing the Fourier transformed generating function G (k,£) =
Yoo & ffooo e G (z,n)dx of the infinite propagator, it can be shown that (see Ap-
pendix G)

1
1= &p(k)’
where p(k) = ffooo e*p(£)dl is the Fourier Transform of the single jump distribution. In turn,
the real space and time propagator Goo(x — g, n) is given by:

Go(k,§) = (4.2)

1 [ , 1 1

21

Importantly, equation (4.3) depends only on p(k). Note that the determination of explicit
expressions for Goo(x — xg,n) from (4.3) is only possible for a few specific jump distributions
p(k). However, numerical evaluation of equation (4.3) is always feasible.

Limit laws for large n and x. In the large n and =z limit, it is known
[Gnedenko & Kolmogorov 1955, Stone 1967, Feller 1971, Bouchaud & Georges 1990] that the
infinite propagator converges towards a limit continuous propagator GE,CO) (x,t|xo), defined only by
the large ¢ behavior of the single jump distribution p(¢), or equivalently by the small k£ behavior

of (k). More precisely, in the small k limit, one generally has !

=}

(k) =, 1 = (aulk])* + olh") (14)

where ;1 €]0, 2] is the Levy exponent, characterizing the tails of the jump distribution, and a, > 0
its characteristic length scale. Two situations arise:

e For ;1 = 2, the jump distribution has a finite second moment 2 and the limit continuous
process is a Brownian motion with diffusion coefficient D = a3 and propagator

1 _ (w—xq)?

G (w, tlao) = e (4.5)

where ¢ = n is now the continuous time.

e For p1 < 2, the jump process is dubbed heavy-tailed, and p(¢) has a diverging second moment.
The tails of its jump distribution behave as power laws:

1We will take this as a definition of jump processes discussed hereafter. Other cases exist but we will consider
them marginal. See [Bouchaud & Georges 1990] for a more in-depth review.

2 Again, this is not required. For instance, distributions p(£) x 173 have p = 2 and no second moment. However,
we also consider this case to be marginal.
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/w Tl x% (4.6)

and the limit continuous process is an a-stable process, whose propagator is given via its
Fourier Transform:

GO (k,t) = e thaul”, (4.7)

Importantly, the asymptotic behavior of other observables, such as first-passage times for instance,
can be extracted from these limit processes. For more details on the continuous processes, we
refer the reader to [Redner 2001]| for the Brownian case, and [Kyprianou & Pardo 2022| for the
a-stable case.

4.1.2 Jump processes on the semi-infinite line

We now turn to jump processes killed (meaning stopped) upon entering the negative half-axis,
and denote their propagator G(x,n|zo). In other words, trajectories contributing to G(x, n|zg)
are n-step long trajectories, starting from xg and ending at z, such that all intermediate positions
of the particle are positive (see figure 4.1).

Semi-infinite propagator. Similarly to the unconstrained case, G obeys a forward equation
obtained by partitioning over the last step of the walk

G(z,nlxo) = dond(z) + [1 — do ] /000 p(z —y)G(y,n — 1|z)dy, (4.8)

but the modified bounds of the integral do not allow for a direct Fourier Transform. However,
equation (4.8) belongs to the more general type of Wiener-Hopf integral equations [Hopf 1935].
As a result, by making use of specific associated technical tools, an explicit expression of the semi-
infinite propagator has been derived as a function of p(k) only in [Ivanov 1994]. For consistency
we give its expression here, and present calculation details in Appendix G, where we provide a
clear exposition of the original derivation. The semi-infinite propagator is given explicitly as a
double Laplace transform and generating function:

nz_%é-n |:/000 /OOO e_sx_slxoG(x’n|x0)dxdx0:| _ G0(37£)G0(517£)

- 5§+ s1
= — &p(k
Go(s,§) = exp [_2571-/_ de} ’

(4.9)

where Go(z,n) is defined as the semi-infinite propagator starting from z¢ = 0. Finally, depending
on the specific form of p(k), the real space and time G(z,n|xg) can either be obtained explicitly,
or numerically evaluated.
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Survival probability. A quantity of prime importance in the semi-infinite geometry is the
so-called survival probability ¢(zg,n), defined as the probability for the walker starting from
xo to stay positive during its first n steps. In terms of semi-infinite propagator G(x, n|zy), the
survival probability is given by integrating over the position of the particle on its n'" step

q(zo,n) = | G(x,n|zo)dz, (4.10)
0

and reads, in the Laplace transformed space 3:

o e o — ok
Zg” [/0 e_smoq(:co,n)dxo} = s\/llffeXp [—;T/ de . (4.11)
n=0 -

We now make a few important remarks on the survival probability stemming from equation

(4.11).

e The small xy behavior of ¢(xg, &) is obtained by identifying the leading large s behavior in
the LHS and RHS of equation (4.11). In turn, we recover the celebrated Sparre Andersen
result [Andersen 1954] of the survival probability starting from 0, initially derived using
combinatorial techniques:

> 1
" 07 - 9

(4.12)

such that
2n\ 1

We emphasize that ¢(0,n) is a purely combinatorial number, and is independent of the
single jump distribution p(¢). Importantly, due to the discrete nature of the jump process,
q(0,n) is non-vanishing for all values of n. In contrast, for continuous non-smooth processes,
q(xo,t), defined as the probability to stay positive up to time ¢, necessarily vanishes when
xg — 0.

e The large n behavior of g(xg,n) is obtained by considering the £ — 1 limit in equation
(4.11), and is given by |[Doney 2012, Majumdar et al. 2017

q(zg,n) ol \/15 [\}7? + V(wo)] , (4.14)

where V' (xg) is defined by its Laplace transform:

/OOO e~V () dxg = 3\1/7? (exp [; /Ooo SQC_lkalnu - p(k))] - 1> - (4.15)

3This is obtained from the limit Go(s — 0,€) in equation (4.9).
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e The function V(zg) can be further analyzed in the small z¢ limit [Majumdar et al. 2017,
Klinger et al. 2022b], and displays universal behavior depending only on the small scale
details of p(£)*:

— |:7['_3 /OO dklog(l — p(k))| xo + o(xo) if p(k) W o(k™1)
0 —00
_ g v v - O
V(xo) = 2 AT (LT o) cos(mr/2) 0 + o(zf) if pk) ~ Bk withv <1
- 7735/2330 In(zg) + o (xg In(xp)) if p(k) o Bk

(4.16)

Limit laws for large n and z. Similarly to the unconstrained case, jump processes on the
semi-infinite line also converge towards limit continuous processes for large n and z values. More
precisely, one needs to consider jump processes conditioned to stay positive, and introduce a
normalized propagator G(x, n|xg)/q(xo,n). A few recent papers from the mathematical literature,
among which [Caravenna 2005, Caravenna & Chaumont 2008] focus on proving convergence
theorems for conditioned jump processes towards corresponding conditioned continuous stable
processes. In turn, asymptotic results for FPT distributions of jump processes can be obtained,
as we will see shortly.

4.1.3 Jump processes in an interval

We finally consider jump processes killed upon exiting an interval [0, z]. As in the infinite and
semi-infinite cases, the bounded propagator G|y, obeys a forward equation

Glo,0](u,n|20) = d0,nd(u — 0) + [1 — do,n] / p(u —y)Glo2)(y, n — 1]zg)dy. (4.17)
0

Importantly, the bounds of the integral are now 0 and x, preventing any kind of Fourier or
Laplace transforms to simplify equation (4.17).

We emphasize that, in contrast to the infinite and semi-infinite cases, much less is known
in the bounded case. In fact, for arbitrary jump processes, no explicit form of G|y, has been

5 nor of any other observables, such as the survival probability in the interval

derived up to now
for instance, defined as the probability to stay inside the interval during the first n steps. In the
following chapters, we investigate some natural observables associated to bounded jump processes

and begin with the splitting probability, for which there is to date no general explicit expression.

4The specific case of the linear behavior was already accounted for in [Majumdar et al. 2017].
For some p(£), the bounded propagator can be derived by exploiting the specific form of the single jump
distribution. For instance, the exponential jump distribution p(¢) e~ is tractable, see [Mori et al. 2020Db].



4.2. Determination of the splitting probability 95

4.2 Determination of the splitting probability

The splitting probability mg 4 (z0) is defined as the probability to strictly exit the interval through
x rather than through 0 (hence the underlined x) starting from zy. In other words, the splitting
probability conveys information relative to the direction of exit of the interval: either rightwards
or leftwards (see schematic 4.2(a)).

(a) Example trajectory contributing to mg z(zo). Starting  (b) 3 dimensional hyperplane splitting probability: starting

from zg the walker takes two steps inside the interval, before from a distance zg from Hi, the isotropic jump process crosses

jumping over x. Hy before H;. Importantly this is strictly equivalent to the
splitting probability dew (z0o) of the effective one-dimensional
projected jump process.

Figure 4.2

By partitioning over the first step of the walk, we first show that the splitting probability obeys
a backward equation:

mo,2(T0) = / h dyp(y — zo) + /0 ' mo,2(¥)p(y — xo)dy, (4.18)

and make a few important remarks.

e Because of the integral bounds appearing in equation (4.18), the splitting probability
70,2z(20) has only been explicitly derived for a few specific single jump distributions, such
as the exponential jump distribution p(¢) = %e‘w [Van Kampen 1992].

e It is clearly apparent from equation (4.18) that mg 4(xo) is non vanishing as z9 — 0. In
other words, even when starting from zg = 0, the jump process has a non 0 probability of
escaping the interval through x rather than through 0. In contrast, splitting probabilities of
continuous processes obey a backward differential equation, and my ,(0) = 0 by definition.

To obtain explicit results, we focus in the following on the large x limit of the splitting probability,
and uncover asymptotic universal behavior of my ,(z0), valid for arbitrary symmetric continuous

p(0).
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4.2.1 Splitting and survival probabilities

The core ingredient of our asymptotic result is to exhibit a link between the splitting probability
70,2 (o) in the bounded interval [0, z], and the survival probability ¢(zo,n) in the semi-infinite
space [0, +00]. We here take the opportunity to thank Quentin Berger from the LPSM, Sorbonne
Université, for providing help and guidance in establishing a clean proof of this relation.

We first introduce 7% and 7°, the two stopping times associated with the strict crossing of
respectively x and 0, and rewrite mo . (z0) = P(7% < 7%x¢). Next, partitioning over the step at
which first exit occurs, we have

oo
P(r" < 1wg) = > P(r% =k, 70 > klxo). (4.19)
k=1
o
We now show that in the large x limit, the above given sum is controlled by steps k &< n, = [ﬁ] ,
with p and a,, defined in (4.4). Introducing an arbitrary parameter ¢ and splitting the sum in 3

parts yields ©:

ENg

P(r" < 1awg) = > P(r% =k, 70 > klxo) (A)
+ Y P(r" =k, > klx) (B) (4.20)

+ Y P =k,7">klzg) (C).

With z large and fixed, let us show that both terms (A) and (C') vanish as e goes to 0. Starting
with term (C'), we have:

)< P(min(Tx, %) > nx£1|x0>. (4.21)

For a given u, it is known that the large time leading order of the survival probability in the
interval [0, z] is given by a decaying exponential P(min(7%,79) > n|zg) & e “17 , where ¢; is a
process dependent but an x and n independent constant [Kwasnicki 2012, Dybiec et al. 2016].
In turn, we obtain

(C) < cae™ =, (4.22)
with ¢o and ¢3 some z independent constants. As a result, (C') can be arbitrarily small as e — 0,
independently of the value of z . Focusing now on the (A) term, we obtain an upper bound

(A) < P (1" < ngelxo)

(4.23)
<1— P (7% > ngelzo)

5the bounds of the sums should be understood as integer parts.
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which involves the survival probability of the jump process on the semi-infinite line. Using results
from [Doney 2012], one has

T—r00

P (1" > ngelzg) ~ / he(t)dt, (4.24)
0

where h. is the first-passage time distribution to 0 of the semi-infinite limit process defined in
the previous section, starting from € > 0. As ¢ — 0, ho(t) — 0(t), such that (A) can also be
made arbitrarily small as ¢ — 0, independently of the value of z. We now rewrite the only
non-vanishing term (B) by conditioning on the time at which x is crossed

e ng

P(r" < wg) = Y P(r" = k|r" > k,x0)q(=0, k), (4.25)

k=engy

where q(x9, k) = P(1° > k|zg) is the semi-infinite survival probability discussed above. We now
make a few remarks:

e First, for large x, k is large and x > x¢, such that g(x¢, k) takes the form (4.14)

-1
e ' ng
1

P(r" < wg) = Y P(r" =k’ > k,xg)ﬁ(l + V(z0)). (4.26)

k=engy

e Second, using results from [Caravenna & Chaumont 2008 and [Doney 2012|, the condi-
tional FPT distribution P(7% = k|7 > k,x() converges towards an z independent and
scale-invariant limit distribution

1 k
P(r* = k|7° > k,20) ~ —ht () : (4.27)

T—00 Ny Ny

We emphasize that h™ depends only on y, as the rescaling factor a, has been absorbed in
the definition of ng.

Plugging equation (4.27) into (4.26) and taking € to 0 finally yields

mo.2(z0) ~ a(o,nz) / RRALORY (4.28)

0 t

Importantly, we successfully related the splitting probability, which is an unknown observable
associated to the bounded jump process, to the semi-infinite survival probability, which has been
extensively studied in the literature. However, equation (4.28) still contains an unknown process
dependent proportionality constant fooo h*(t)t~'dt, which remains to be evaluated.

4.2.2 Prefactor identification

We emphasize that the unknown coefficient in the asymptotic result (4.28) depends only on the
value of u, which characterizes the limit continuous process. In particular, it is both independent
of zp and a.
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Continuous limit. Since equation (4.28) is valid for all g < x, we place ourselves in the
continuous limit, defined for initial x¢ condition such that a, < x¢ < x. Importantly, in this
limit, both the splitting probability and survival probability are asymptotically equivalent to
those of the limit continuous processes, denoted by 77(()?;(330) and ¢© (xo,n). In turn, we identify
the sought-after prefactor: N

(4.29)

[Ty, st ) a0
0

t T—00 q(xo,n:E) aH<<';o<<ac q(c) (go,nz)

Let us first focus on the splitting probability, whose explicit expression is given by
[Widom 1961, Blumenthal et al. 1961, Majumdar et al. 2010b]:

= L) %Ou 2T gy
200 = oy [T - (4.30)

and is valid for all g and 0 < xy < x. Note that expression (4.30) vanishes as xg — 0, as expected
of a continuous description. Considering further the small x( regime, one obtains:

(©) 20w (w02
7T07£(330) ap<KLroLe /,er(%) ( x ) ’ (431)

We next turn to the survival probability, and make use of the asymptotic behavior of ¢(xg, n)
obtained in [Majumdar et al. 2017], which yields for large n and a, < x¢

NS

a, ﬁ

1
(c) N
q‘“(xg,m) ~ 3.
0:) Vn/mh(1+8)70

N

(4.32)

Combining equations (4.29), (4.31) and (4.32), we finally obtain a universal exact asymptotic
formula for the splitting probability of arbitrary jump processes:

i [y = e v

Ay(z) =2 M/22%Hr LR
(@) (x) (%)

e Equation (4.33) is the main result of this chapter. It is valid for any symmetric continuous
jump process, and for all zg regimes such that 0 < z¢9 < . In particular, taking zo > a,,

(4.33)

one recovers the continuous limit regime.

e Of prime importance is the regime 0 < z¢ < a, in which the discrete nature of the process
is highly relevant, and is not captured by a continuous description. In this regime, the xg
behavior of 7 z(x0) is described by the universality classes defined in equation (4.16), in
strong contrast with the single behavior predicted by the continuous limit (4.31).

e Finally, we underline a striking result: the splitting probability starting from 0 takes the
following universal asymptotic form:
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m02(0) ~ 2\“/;11 (1;%1) (i:) . (4.34)

Importantly, while 7y (o) from equation (4.33) depends on the full jump distribution p(¢)
via V(zg), the splitting probability starting from zero depends on p(¢) via a, and p only.
In turn, analytical or numerical evaluation of 1 and a,, is sufficient to determine 7 ,(0).

4.3 Illustrations and applications of the asymptotic splitting prob-
ability

While equation (4.33) is an exact asymptotic result, we provide a few exactly solvable cases for
illustration.

4.3.1 Exactly solvable cases and numerical simulations

Exponential jump distribution. We first consider the jump distribution p(¢) = %e‘”'”, for
which the splitting probability is known exactly and is given by [Van Kampen 1992]:

T XTg) = ——xoY +
02(0) = om0y + g
) 1 (4.35)
Wo’g(:vo) ~ = |:x() + :| .
T—00 T 0%
In that case, the Fourier transform of p(¢) reads p(k) = W, such that g =2 and ay =y~ 1.

Furthermore, the specific form of p(k) allows for the explicit derivation of V' (z):

/Ooo 0V () leﬁ <exp H /0 - SQdszlnu ﬁ(k))] - 1)

S\f <exp [ s /UOO SQdka (In(k/72) — In(1 + k:2/72))] - 1) .

By making use of the identity f, oo In(a+8k2) g — 71 (\ /a2 + +/BA) [Majumdar et al. 2010a], we
A

(4.36)

A2+k?
obtain:
- gl
/ e "V (zo)drg = —=,
0 N Vs (4.37)
V(IEQ) 7 0.
NZS

In turn, plugging into equation (4.33) with As(z) = /m/(vx), we compute the asymptotic
splitting probability:

(4.38)
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in agreement with the direct computation (4.35).

Gamma jump process. We derive explicitly the splitting probability for the gamma jump
process defined by p({) = l;me_ﬂf‘. We stress that, to the best of our knowledge, this quantity
has not been reported in the literature. Exploiting the singular nature of p(¢), we show that the
jump distribution obeys the following differential equation

0> ?
e | =) = 2180 — ) 4 2200 - ) (4.39)
with 6 the second derivative of the Dirac delta function. Recalling the backward equation for
the splitting probability

x o0
Toaleo) = [ oy = mo)mos(u)dy + [ ply— a0)dy (4.40)
0 T
and applying the differential operator [dy — v%]? with respect to x¢ (where dy = 8‘2—;0), we obtain
a differential equation for the splitting probability:
ot 0?
aTxOWO,g(l“O) -3y 9220 mo,z(20) = 0. (4.41)

In turn, decomposing onto orthogonal solutions Ae“/g'“o, Be+‘/§7’”0, Czg, D, and inserting the
solution into the integral equation (4.40) is sufficient to identify coefficients A, B, C' and D, which
are given in Appendix F. For the sake of simplicity, we focus on the splitting probability starting
from 0. On the one hand, developing the exact solution for large x and taking x to 0 yields

70,2(0) @ (4.42)

x:oo Y )
On the other hand, the Fourier Transform of p(¢) is given by p(k) = 72%, such that p =2

and ap = v/3/v. Plugging i and as into equation (4.34), we recover the asymptotic result (4.42)
obtained from the direct calculation of 7 z(x0).

Numerical simulations. For other jump processes, the exact determination of 7 z(xo) does
not seem possible, and we resort to numerical simulations. We choose to focus on processes
with u < 2 as both the exponential and gamma jump processes belong to the p = 2 universality
class. We display in figure 4.3 results for two heavy-tailed processes: one Levy Flight with
p(k) = ek such that # =1 and a, = 1, and the F-distributed jump process, defined by
p(€) = (27/1€](1 + [¢]))~* and with g = 1/2 and a, = 2/7.

4.3.2 Transmission probability in scattering experiments

The determination of splitting probabilities for jump processes is not only of theoretical interest,
but also has direct implications in experimental situations. As an illustration, we consider
hereafter the case of photon scattering in hot atomic vapors, recently studied experimentally
in [Baudouin et al. 2014, Araajo et al. 2021, Lopez et al. 2023|. The trajectories of photons in
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(a) Algebraic decay of the large x splitting probability from  (b) z¢ dependence of g 4 (z0) in the large  limit, with z = 106
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Figure 4.3

three dimensional hot atomic vapors have been shown to be correctly modeled by isotropic
Levy Flights, with reorientation events occurring upon scattering, and jump length distribution
p(k) = e~ lankl* 7 In the specific case of hot vapors, the Levy exponent p has been experimentally
measured and is such that p ~ %

Since measuring single jump distributions for scattered photons can be difficult, recent
experimental setups have focused on the transmission probability across three dimensional slabs of
width x containing the scattering medium (see 4.2(b)). By shining a beam of photons through one
side and measuring the transmitted intensity on the other side, one can obtain the corresponding
transmission probability, defined as the probability for a photon to exit the slab through the side
opposite to its entry point. Importantly, incoming photons hit the slab from the exterior, and
the motion parallel to the two delimiting hyperplanes H; and Ha (see 4.2(b)) is irrelevant to
the direction of exit. In turn, the transmission probability is strictly equivalent to the splitting
probability from 0 of the jump process describing the motion perpendicular to H; and Hs.
Consequently, making use of equation (4.34) and identifying the effective 1D perpendicular jump
process is enough to determine the transmission probability, in the limit of large slab width z.

Effective jump process. We first focus on the specific case of 3D isotropic Levy Flights,
and derive the single jump distribution of the one dimensional jump process describing the
motion perpendicular to Hy and Ha, which we refer to as the projected process We recall that
in the 3D general case, the projected distribution p, (¢) is given by p, (¢) = 1 f o0 p(r)+p(=r) +p ") dr

[Mori et al. 2020al. In the Fourier formalism, we obtain:

"Note that to ease calculations the jump length can be negative. As a result, the distribution p; (£) of the true
jump length is given by p1(£) = p(£) + p(—¥).
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1
2/
- / SO, (1) + p(—t))al (1.43)
;/OO Smgkl)p(l)dl

We now use the specific form of the 3D jump distribution p(k) = e~1%*!" and write sin(kl) =

Im(ei*?):
1 oo ikl 1 00 ,
ﬁL(k) = k,/ |:/ —Zk l_la/l«k |Hdk_/ dl

il (k= k’
/ / Lye ot i (4.44)
7T

= k/_oo §SIgn<k ke lank 1" g

Taking the imaginary part finally yields Fourier transform of the projected jump distribution:

o T (e (ah) ;
with I'(s,x) the incomplete gamma function. The small k and large k asymptotic analysis leads
to

L) ~ 1 P

k—0 14+ p
r(1 (4.46)
k) ~ Lo
PL k—=oo k  cu ¢ k

from which the transmission probability is obtained by extracting p and a,, and making use of
equation (4.34). Importantly:

e The 2% decay of the transmission probability observed experimentally [Aratjo et al. 2021]
is in agreement with the = decay of m ;(0). By fitting the prefactor of the experimentally
observed algebraic decay and comparing with the analytical prediction (4.34) one could
extract a numerical value for a,, which characterizes the underlying scattering process.
We emphasize that measuring transmission probabilities is experimentally easier than
measuring the single jump distribution of a scattered photon. In turn our result provides
offers a simplified access to the characteristic lengthscale of the photon scattering process.

e Note that the k~! behavior of the projected jump distribution for large k leads to a non-
linear small = behavior (see equation (4.16)) of the transmission probability for photons
starting inside the slab. This analytical result is in agreement with recent experiments
[Lopez et al. 2023| focusing on the zy dependence of the transmission probability, and
where such non-linear behavior is reported.
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Isotropic run and tumble particles. We next focus on a second photon scattering model: the
isotropic Run and Tumble model (RTP) which we already discussed in chapter 1. In this model
photons - or more generally particles - perform exponentially distributed run phases followed by
isotropic reorientation. Importantly, in the original model, the particles travel at constant speed
v, such that the process is not discrete in time and runs have a duration ¢ = fv~!. However, the
splitting probability is a strictly geometrical quantity, and does not depend on time, such that
this distinction is irrelevant. Of note, the isotropic Run and Tumble model has recently received a
lot of attention |Tailleur & Cates 2008, Rupprecht et al. 2016, Mori et al. 2020a]. For the RTP,
the run length distribution is given by p(¢) = %(;%Ml’ with ~ the reorientation (tumbling) rate,
and v the particle speed. Note that, by convention, the run length can be negative. The projected
jump distribution reads:

pL(t) = 3£ (0. 21¢])

vk
v arctan ( 5 )

pulh) = ———2,

from which the asymptotic transmission probability is obtained with the help of equation (4.34).

(4.47)

We display agreement with numerical simulations of transmission probabilities through 3D slabs,
for both RTP and Levy Flights, in figure 4.4.
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(a) Transmission probability for a 3d isotropic Levy jump (b) Transmission probability for isotropic 3d processes starting
process and a Run and Tumble particle. In both cases the inside the slab. The non-linear g dependence stems from the
Levy exponent u of the projected process is identical to that distributions (4.46) and (4.47) of the projected processes.

of the initial process, and the prefactor is correctly captured.

Figure 4.4
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4.4 Conclusion

Jump processes are discrete time and continuous space stochastic processes, whose trajectories
can be decomposed into i.i.d. increments with a symmetric and continuous distribution p(¥¢).
Introduced in the early 20"
from one-dimensional particle diffusion to three dimensional photon scattering in heterogeneous

century, they have been used to model a variety of physical phenomena,

media.

One-dimensional unbounded jump processes are well understood, and characterized by their
propagator Goo(x,n|z0), defined as the probability to be at 2 on the n*® step, starting from z,
which can be explicitly written as a function of p(¢) only. For jump processes killed (ie stopped)
upon entering the negative half axis, the corresponding semi-infinite propagator G(x, n|zg) can
also be explicitly computed in terms of p(¢) only, and we reproduce the original derivation
[Ivanov 1994] in Appendix G. In turn, the determination of G yields the corresponding survival
probability ¢(xg,n), defined as the probability to stay positive during the first n steps, for which
we exhibit unreported universal g behavior in the small zg < 1 regime.

However, it appears from studying infinite and semi-infinite jump processes that very few
results exist for bounded jump processes, killed upon strictly exiting an interval [0, z]. While
asymptotic results can be extracted from limit continuous processes, defined only by the tails of
the jump distribution p(¢), these cannot properly capture the specific behavior arising from the
discrete nature of the jump process, and in particular the non vanishing value of observables for
processes starting from 0 or x.

In an effort to bridge that gap, we study the most natural observable associated to jump
processes in an interval, the splitting probability 7o ,(zo) defined as the probability to exit the
interval through x rather than through 0. Our results are valid for general symmetric continuous
jump processes. We derive a universal, exact large & asymptotic form of the splitting probability,
and obtain a fully explicit determination of the transmission probability (z¢g = 0), in striking
contrast with the trivial prediction 7'('(()2(0) = 0 obtained from the continuous limit. We illustrate
these results on paradigmatic models of jump processes, with applications to photon scattering
in heterogeneous media in realistic 3D slab geometries.

We emphasize that the splitting probability is only a geometrical observable, and does not
carry information about the dynamical aspects of interval exit events. In particular, the rightward
exit-time probability Fp z(n|xo), defined as the probability to escape through x on the nt™ step
exactly, contains refined information on the exit events. To further characterize the statistics
of bounded jump processes, we focus in the next chapter on both Fy ;(n|zg) and its leftward
counterpart Fp ,(n|zo).
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The aim of this chapter is to obtain refined information on the escape from an interval for
general symmetric continuous jump processes. While chapter 4 focused on the sole direction of
exit, quantified by the splitting probability 7 ;(x), we now investigate the dynamics of escape,
by considering jointly the direction of exit and the step n at which exit occurs.

To that end, we introduce and study the leftward and rightward exit-time probabilities
Fo o (n|zo) (LETP), Foz(n|zo) (RETP), defined as the probability that the walker escapes the
interval through 0 (respectively ) on the n'! step exactly. In the large n and 2 limit, we first
consider the continuous limit z¢ > a, where a, is the characteristic lengthscale of the jump
process. In this regime, we show that the LETP and RETP are equivalent to the continuous
leftward and rightward exit-time distributions of the limit continuous process, and we review
existing results for Brownian motion and a-stable processes.

We then focus specifically on the rightward exit-time probability in the large n and x regime
with 0 < z¢ < a,, and show that the RETP takes an asymptotic universal scaling form, valid for
general jump processes. The leftward exit-time probability is dealt with similarly. Importantly,
while asymptotic in  and n, our results properly capture the discrete nature of jump processes.
In particular, we obtain exact non-vanishing LETP and RETP values for the edge initial condition
xo = 0, which, as for mp 4(0), is not properly described by continuous models. Note that most of
the results presented in this chapter can be found in [Klinger et al. 2023].
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5.1 Asymptotic behavior of exit-time probabilities in the contin-
uous limit

In an effort to characterize further the dynamics of bounded jump processes, we first investigate
the complete exit-time probability Fpz(n|zo), defined as the probability for the walker to exit
the interval [0, x] on the n'" step exactly, whether it be through z or 0. Mimicking the treatment
of the bounded propagator, Fy z(n|zg) obeys a backward equation obtained by partitioning over
the first step of the walk:

xT

Foa(nlzo) = (1—6,) /Ompw—xo)Fo,x(n—1|y>dy+5n71 [1— /0 p(y—m)dy] (5.1)

As we have seen extensively, this type of integral equation cannot be solved exactly for arbitrary
jump distributions. To proceed further and uncover general results, we consider in the following
the asymptotic limits n — oo and z — oo. Note that, even in this limit, the z¢ dependence of
Fyz(n|zo) in the regime 0 < g < ay, is still controlled by the discrete nature of the jump process.
In particular, we emphasize that for all n and x values, Fp ;(n|0) is strictly non-vanishing. We
now briefly review existing results for limit continuous processes.

5.1.1 Brownian case

Recall that for ; = 2, jump processes converge at large n towards Brownian motion with diffusion
coefficient D = a2. In turn, in the continuous limit zo > ay, the Complete exit-time probability
converges to the corresponding continuous first exit-time distribution Fé (n|xo) of a Brownian
motion, which can be exactly computed (see [Borodin & Salminen 1996] for instance) and is
given by:

2

27\'77/
F%)(nlao) = QD”Zk (k”x(]) [1+(—1)’€+1] e E (5.2)

It is clearly seen from equation (5.2), that Féig (n|xo) vanishes as g — 0, in agreement with the

fact that Fp z(n|zg) ~ FQ(;)(MQ;O) only for zg > a,.

5.1.2 «-stable case

Let us now focus on the p < 2 case, for which jump processes converge to an a-stable process of
exponent u. Denoting G[(o) ](u, t|zo) the propagator of an a-stable process killed upon exiting

the interval [0, z], G[(g)x] is known to satisfy the fractional diffusion equation |Zoia et al. 2007,
Kwasnicki 2017]

) 217
atGE())](u t|zo) = [8%] Gis) (u, t]z0) (5.3)
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with absorbing boundary conditions at 0 and x. Denoting ¢, and Ay the eigenfunctions associated

23
to the fractional Laplacian [%] ? in the interval [0,2]! [Kwasnicki 2012], the propagator is given
by

c 2 & 2x 20\, [2em]”
Gt = 23 (52 ) v (5 ) T 5.9

from which the first exit-time distribution is obtained as

¢ d [ [%
Fy (tlao) = —— [/O Gé’;(u,ﬂxo)du]

=i@mmFﬂZMm% (5.5)

k=1
Cr(z0) = Yx (2?) /02 Vi (u)du

Let us now make a few comments on the fractional diffusion eigenvalue problem.

e Equation (5.5) is formally exact. In the case u = 2, the 1} and \; are known exactly, and
one recovers equation (5.2). However, for p < 2, no exact forms of ¢y, and Ay are known.

e Controlled approximations of the eigenvalues and eigenfunctions have been constructed in
[Kwasnicki 2012|, by combining eigenfunctions of the semi-infinite and infinite fractional
diffusion problem. We provide in Appendix H a short overview of this construction, and
refer the reader to the article for more details.

e In particular, it was shown in [Kwasnicki 2012] that the eigenvalues of the limit a-stable
process on the interval [0, 2] are approximately given by:

kr Q2= “)”} " (5.6)

Ak:[Q_ 8

e Additionally, we emphasize that the small 2y behavior of the approximated eigenfunctions
(o) is known and given by [Kwasnicki 2011]

we zy [ar @) [(5-557)a 6o

Importantly, since ¥y(zg) x l'g/ % for small xg, all first-passage observables defined for

w/2
0

bounded or semi-infinite a-stable processes vanish as x;’~. In particular, this is the case

for the first exit-time distribution, FQ(;) (n]zp), the splitting probability 7752 (zo) and the

semi-infinite FPT distribution through zero Féc) (n]zg).

'"We here consider the interval [0, 2] to match closely the results presented in [Kwasnicki 2012]. In turn, the

m
eigenvalues and eigenfunctions for an arbitrary interval [0, z] are given by )\LO’I] = Mg [%] and wLO’I] (x0) =

v (550) /3
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As in the Brownian case, in the continuous limit z¢ > a, and for large x and n, the complete
exit-time probability of heavy-tailed jump processes converges towards its continuous counterpart
Fya(nlao) ~ Fy) (neo).

We are now left to deal with the 0 < z¢ < a, regime, for which the limit process approach is not
sufficient. To that end, partitioning trajectories on the exit direction (see figure 5.1), we introduce
the leftward and rightward exit-time probabilities Fy »(n|xo) and Fp z(n|zo) (LETP/RETP) such
that:

Fogz(nlzo) = Fo.u(n|zo) + Foz(nlzo) (5-8)

Note that the LETP has already been encountered in chapter 3 in the context of general
continuous scale-invariant processes. Addressing each case separately, we exhibit universal
asymptotic behavior for Fy ,(n|zo).

Figure 5.1: Two example trajectories contributing to Fy, (3|zo) and Fy 4(3|xo). After taking two steps inside the interval,
the third step takes the walker outside, either left (purple) or right (red).

5.2 Rightward exit-time probability

5.2.1 General scaling form in the large n and z limit

We first consider the case of the RETP Fj ;(n|zo), defined as the probability that the particle
escapes the interval through x on the n'" step exactly. Importantly, we emphasize that the
RETP is not a normalized quantity, and that

o0
Z Fyz(n|zo) = mo,2(20). (5.9)
n=1
Let us introduce the normalized conditional rightward exit-time distribution h(z,n|xo) defined
by

Fo (n|xo)

0.2(20) (5.10)

h(z,n|zg) =
and proceed in three steps:

1. In the large z and n limit, based on results from [Caravenna & Chaumont 2008|, h(z, n|zo)
converges towards the first-passage time distribution through z of a limit continuous process
conditioned to stay positive. In turn, for large x, this first-passage time distribution becomes
independent of xg: h(z,n|xg) = h(x,n). In particular, h(z,n) can be evaluated for large
xq values, for which the continuous limit applies:
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h(x,n) = ~
(z,n) T0.2(T0) 2350 u—0 77(()2(”)

(5.11)

Importantly, the limit in the RHS ratio is well defined when v — 0. Indeed both the RETP
and splitting probability can be projected on the eigenfunction basis ¥, and hence have
the same leading behavior as u — 0.

2. Since the limit continuous processes conditioned to stay positive are scale-invariant (see for
instance [Chaumont 1997]), the distribution of the first-passage time through z takes the
following asymptotic scaling form

a, T
hz,n) ~_ h*(7) [f} , (5.12)
7 fixed

where 7 = n/n, and n, = (x/a,)" is the typical number of steps needed to escape the
interval. Note that the scaling function A" has already been encountered in equation (4.27)
of chapter 4.

3. Finally, In the large n and x limit, the RETP is given by:

Foz(nlzo) ~ oz (z0)hu(T)n ™, (5.13)

7 fixod
where h,(7) = h*(7)7 is a universal scaling function depending only on p. Importantly,
the specific g dependence of Fy ,(n|zg) arising from the discrete nature of jump processes
is fully contained in the splitting probability mo 4 (o), which we extensively studied in the
previous chapter. In particular, F ;(n|0) is clearly non-vanishing.

To characterize further the RETP, we derive explicit expressions of the universal function h,, for
all p < 2.

5.2.2 Brownian case

In the case p = 2, similarly to Fg(z(nbzo), FO(;)(M:CO) can be computed exactly
[Borodin & Salminen 1996| and is given by:

x

(¢) . 2D7 > _Dk%x%n k41 k’?T.’EO
Fyy(nlzo) = =5~ > e k(-1 sin : (5.14)
k=1
Making use of equations (5.11) and (5.12), ho(7) is then obtained explicitly:

ho(r) = 2rm? Y kA (—1)kFleHmr, (5.15)
k=1
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As a result, for jump processes with u = 2, we have completely characterized the large n and z
asymptotic RETP, for all 2y regimes. For the representative example of the exponential jump
process with p(¢) = %e*ﬂe', we display numerical agreement for Fp ;(n|0) in figure 5.2(a).

5.2.3 «-stable case

For u < 2, Fé;)(nuo) is not known explicitly, and h,(7) cannot be determined for all values of 7.
However, its large and small 7 behavior can be analyzed.

Large 7 behavior. Recalling the definition of n, = (/a,)*, we first consider the limit n > n,.
After a large number of steps, the jump process loses the memory of its starting point and
delocalizes itself inside the interval. In turn, rightward and leftward exit events become equally
likely, and the RETP converges towards half of the CETP:

F9(n|z
Fy(nleo)  ~ “;'0) (5.16)
We emphasize that this argument is valid for all p values, and can be explicitly checked in the
case i = 2 by comparing equations (5.14) and (5.2). In turn, making use of equation (5.5) and
evaluating the continuous splitting probability 71'((]?33@0) given in the previous chapter (equation
(4.31)), we show that the leading 7 behavior of h,(7) is given by a single decaying exponential,
with an explicit prefactor:

hpu(T) 7;1 Y [A127] e M2T

w 3D (8) [n — ) 7 2
e 2

Of note, taking p = 2 in equation (5.17) yields the correct leading behavior of ho(7). Finally, for

(5.17)

i < 2, we emphasize that while equation (5.17) is exact, neither A\; nor v; are known explicitly,
and we revert to the the approximations constructed in [Kwasnicki 2012] to compare our result
to numerical simulations. In particular, we illustrate the large 7 behavior of the RETP from 0 in
figure 5.2(b).

Small 7 behavior. Consider now the opposite limit n < n,, ie 7 < 1. While no simple
link exists between Fo(cgg (n]zp) and Fécgz (n]zo) in this limit, the small 7 behavior of h,(7) can be
extracted by exploiting the power-law behavior of p(¢). Partitioning rightward exit events over

the position of the last step yields

(e 9]

Fog(n|zo) = /0 ' Glo.01(u,n — 1]0) [ / B p(e)de] du, (5.18)

with Gg 4 (u,n — 1|zp) the bounded propagator. For the sake of simplicity, we consider hereafter
that 29 = 0. Fixing both n and u, and taking x — oo, we have G|g 5)(u,n — 1|0) ~ G(u,n — 1]0)
where we recall that G(u,n — 1|0) is the semi infinite propagator, which is known exactly (see
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chapter 4). In turn, the asymptotic RETP is given by the following convolution
x
Fou(nl0) ~ /'GWm—1mU@—um% (5.19)
- T—00 0

where U(z) = [ p(€)d/ is the cumulative distribution of p(¢). By introducing the generating
function and Laplace transform, the asymptotic RETP finally reads:

nz_:lg” [/0 e”Fo,;,;(n|0)dx} ~ G E0)U(s). (5.20)

Both G(s,£|0) and U(s) can then be analyzed in the s — 0 limit to extract the leading large x
behavior of Fy;(n|0). Recalling that in the small & limit, one has p(k) = 1 — (au|k|)* + o(|k|)*,
we obtain a comprehensive list of small s behaviors:

1_5cA%@~+4¢ﬂ

O<p<l: v1=¢ 1-¢

U(s) = cu (ap)! s+ 0(3“71)

S &\ W oa(s) 4 O(s
AT T |1 (75 ) st o) (5.21)
U(s) = f% log(s) + O(1)
- : ' s & cy(ays o(s
l<p<2: Gs,£10) = 1-¢ 1+<1—§> sin(7 /) 1_§H(u)“+ (H)]

U(s) = (p) + cu (au)" s"7" +o(s71)
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where ¢, = sec(™)/2 and (p) = [;°p(¢)dl. To leading order in s — 0, and upon Laplace
inversion, we finally obtain the following exact asymptotic form of Fp ,(n|0) valid for all values
of p < 2:

Fou(nl0) ~ g(0,n - 1)1“) sin (%) [‘;i]“ . (5.22)
where we recall that ¢(0,n) is the survival probability in the semi-infinite geometry, starting from
xo = 0. Importantly, equation (5.22) has a clear physical interpretation. For a heavy-tailed jump
process, the probability to stay in a large interval for n — 1 steps before exiting rightwards is
simply given by the n — 1 step survival probability on the semi-infinite line, times the probability
to perform a single jump large enough to cross the full interval. Of note, this single big jump
interpretation has also been used to evaluate other observables for general unbounded Levy
Flights [Foss S. 2015, Vezzani et al. 2019, Vezzani et al. 2020].

Finally, making use of the large n asymptotic behavior (4.14) of ¢(0,n), we derive the universal
small 7 behavior of h,(7)

b))~ T(u/2)sin(rp/2)7 2 /7, (5.23)

and conclude with a few remarks:

e The small 7 behavior predicted by equation (5.23) is displayed in figure 5.3(a), where we
numerically estimate Fy z(n|0) for a variety of heavy-tailed jump processes.

e As announced, the small 7 behavior of h, holds independently of the initial condition x.
In turn, we illustrate the agreement between simulations and Fp ,(n|zg) for various initial
positions zg in figure 5.3(b).

e As p — 2, the right-hand-side of equation (5.23) vanishes, in agreement with the stronger
small 7 decay of ha(7) given by equation (5.15).
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5.3 Leftward exit-time probability

Having extensively discussed the RETP, we now focus on the leftward exit-time probability
Fo+(n|zo) (LETP) for which we also derive universal asymptotic results in the large n and x
limit, valid in all ¢ regimes.

5.3.1 General scaling form in the large n and x limit

We emphasize that the argument developed here closely follows section 3.2.1 of chapter 3, in
which we derived an asymptotic scaling form of FU((’;Z (t|zo) for general continuous scale-invariant
processes. Indeed, for large n and z, the limit continuous processes are scale-invariant, and we
can directly use equation (3.17) for jump processes. Denoting 7 = n/n, with n, = (z/a,)*, we
obtain the general scaling form

Foa(nlzo) |~ Fo(nlzo)gu(r). (5.24)

oo
T—00
T fixed

where g, is a universal ¢ and a, independent function which depends only on p. Importantly,
the complete ¢ dependence is contained the first-passage time distribution through 0 in the semi
infinite geometry: Fy(n|zo) = ¢(xo,n — 1) — q(xg,n). In turn, Fy,(n|0) is clearly non-vanishing.
Finally, we stress that equation (5.24) is the direct analog of equation (5.13) for the RETP, and
proceed to characterize further the g, function.

5.3.2 Brownian case

Since g,,(7) is independent of x(, we rewrite equation (5.24) in the continuous limit g > a,,, where
both the LETP and FPT through 0 are asymptotically given by their continuous counterparts:

FyY (nu)

m (5.25)
n25e w=0 | 1 (nfu)

In turn, in the case p = 2, both continuous LETP and FPT distribution are known
[Borodin & Salminen 1996] and given by

2D S _ Dk%x%n ke (z —
Rk = 2083 e k)i (BTE )
= x‘
k=1 (5.26)
2
FlOnu) = ——2 ¢~ 1bm,
0 (nf) Vd4mDtn3
with D = a3. In turn, we obtain an explicit expression for go(7)
5 3 e
2.2
g2(1) =4m2T12 Ze_k T2, (5.27)
k=1

Taken together, equations (5.27) and (5.24) completely characterize the asymptotic LETP for
general jump processes with ¢ = 2. As an illustration, we provide numerical evidence of the xg
behavior of Fy ,(n|zg) for an exponential jump process in figure 5.4(a).
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5.3.3 «-stable case

For jump processes with 1 < 2, no explicit expression of g, can be obtained for general 7.

However, following the RETP treatment, we compute the small and large T asymptotic behavior
of g,(7):
~ 1
I (T) 7K1 ’

~ . 13/2 —A12¢T
9u(7) 1k M2Er]" e ’ (5.28)

wp = ﬁw /02 v (w)du.

As a concluding remark, we point out that in both 7 > 1 and 7 < 1 regimes, taking p — 2 in
(5.28) yields the correct asymptotic behavior of g2(7) extracted from equation (5.27), and we
illustrate the large 7 behavior in figure 5.4(b), for both heavy-tailed and narrow-tailed jump
processes.

6 Exponential jump process J:‘ < 104 ©
el I
- %(1 +20) s Jl\
o [T n =5002, & =2000 o8 T
Sl= 0 e =5002, x =125 = Ran
~ 1 - . ,."E 3 10—1 L
= O n=10000, z =200 _ s
S =X &
—_ I vy
= = -
= LS‘ ) =
= — 102 T fl@)=e™" g
S e =10 _ )
LL4 2 o o Levy jump process jo = 0.5 R
5 Levy jump process g = 1.0 \
;‘ 0 Levy jump process 1 = 1.5 RS
= = 1(]’3 O Exponential jump process p = 2 L
0 2 4 6 8 10 0 1 2 3 4 ) 6 7
o T

(a) zo dependency of the LETP for exponential jump processes (b) Large 7 behavior of the rescaled LETP for Levy jump
with p(£) e~ 1%l and fixed n and z. For the exponential jump processes with p(k) = e~ I*I" and exponential jump process.
process, Fy(n|zo) e n*S/Qﬁ [1 4 zo] (4.14). Correctly ~ With ¥ = A12#7, all curves collapse on a single exponential
rescaled by ga(7) (5.24), the LETP displays the same affine predicted by (5.28). Note that the dashed line does not contain

g behavior. any fitting parameter.

Figure 5.4
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5.4 Conclusion

Going beyond the geometrical information contained in the splitting probability m (o), the
complete exit-time probability Fpz(n|zg) quantifies the dynamical aspects of interval exit for
bounded jump processes. While in the continuous limit o > a,, the CETP converges towards
the continuous exit-time distribution Fég (n|xo) of the associated continuous limit process, this
approach is not relevant to address the z < a,, regime.

To fully characterize the CETP in all xy regimes, we find it necessary to introduce the
rightward and leftward exit-time probabilities Fy z(n|zg) and Fy 4z (n|zg), such that Fy z(n|xg) =
Foz(n|zo) + Foz(n|zo). In the large n and z limit, defining n, = (x/a,)* and keeping 7 = n/n,
fixed, we uncover universal scaling behavior for both quantities, summarized in table 5.1.

Fog(nlzo) |~ moz(zo)hu(r)n™" || Foa(nlzo)  ~  Fo(nlwo)gu(r)
e e
= 2 h2(7-) — 27'71'2 Zzozl k2(_1)k+1e—k27r27 g (,7_) — 47.‘.27_% Ezil e—k:27r27'k2
3
h ~ T 2) si 2)mr 2 ~ 1
R e () .
~ m —A1207 ~ w13/2 —X12MT
hu(r) 2 2 (1)~ wp 2 e
Table 5.1

Importantly, the small xy dependence of the RETP and LETP - and in particular the non-
vanishing values for the initial position x¢g = 0 - only appears through the splitting probability
70,z(x0) and the semi infinite FPT distribution Fy(n|zg), which we extensively discussed in
chapter 4. As a side product, we obtain the sought-after asymptotic behavior of the CETP, valid
for all xg regimes.

Recalling equation (3.11) from chapter 3, we stress that the RETP and LETP appear as
essential tools to investigate extreme value statistics. In particular, the joint distribution o(x, n|zg)
of the maximum « and FPT n through 0 straightforwardly adapts to jump processes

d
o(z,n|xy) = aFQw(n\xo), (5.29)

with the zo S a, regime correctly captured by Fy . (n|zg). In turn, we focus in the next chapter on
deriving essential building blocks to address general eztreme value problems for jump processes.
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In a broad sense, extreme value problems focus on the determination of the statistics of the
extremums of a set of random variables (z1,...z,). Studied early on for sets of independent
random variables [Fréchet 1927, Gumbel 1935], extreme value statistics (EVS) have led to fruitful
applications across statistical physics [Bouchaud & Mézard 1997, Biroli et al. 2007]. The case
of extreme value statistics of random walks has been studied in depth for continuous time
stochastic processes [Chung 1976, Randon-Furling & Majumdar 2007, Majumdar et al. 2008].
However, with the exception of the first moments of the running maximum [Spitzer 1956,
de Bruyne et al. 2021], extreme value statistics of jump processes have yet to be investigated
thoroughly.

We first review existing results regarding EVS of Markovian continuous time stochastic
processes, and analyze the technical tools involved in their computation, which we broadly refer
to as the Markovian path decomposition technique. In turn, we show how this technique is
straightforwardly adapted to deal with EVS of jump processes. In particular, we emphasize
that the survival probability and semi-infinite propagator constitute essential building blocks
to determine the distributions of the running maximum and time at which it is reached for
unbounded jump processes.
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For jump processes stopped upon crossing 0 for the first time (which we refer to as semi-
infinite jump processes), we introduce an additional essential building block to address extremums
distributions, the strip probability po z(n), defined as the probability that the walker starting
from 0 reaches its maximum z on its n'" step exactly, without crossing 0. We first provide
an exact characterization of g ;(n) in terms of the LETP and RETP, valid for general jump
processes. Next, defining the typical number of steps n, = (x/a,)" needed to reach x, we analyze
the asymptotic behavior of the strip probability in the 1 < n < n, regime for processes with
@ < 2, and in the scaling regime n/n, fixed for processes with = 2. In turn, we illustrate
the range of applicability of the strip probability 1 ,(n) by investigating various extreme value
observables of semi-infinite jump processes, as well as their span. Finally, we make use of jig 4(n)
to provide a refined description of the LETP in the 1 <« n <« n, limit.

6.1 Extreme value statistics of unbounded jump processes

6.1.1 EVS of continuous space and time stochastic processes

The running maximum M (¢) is the most natural extreme value observable for a continuous
stochastic process and, as such, has been extensively studied since the introduction of both
Brownian motion and a-stable processes. Its cumulative distribution is easily shown to be given

by

P(M(t) < xlz0) = ¢ (2 — 20, 1), (6.1)

where we recall that ¢(©) (x0,t) is the continuous survival probability up to time ¢ for a process
issued from zg and killed upon crossing 0 for the first time. In the case of Brownian motion,
the survival probability has been derived early on (see [Levy 1937| for instance) such that the
full distribution of M (t) is known. For general a-stable processes however, the derivation of
q© (zo,t) is much harder, and explicit results for the distribution of M (t) are only available in
specific cases [Darling 1956, Doney 1987, Kuznetsov 2011].

We emphasize that many other important EVS results have been obtained in the context of
Brownian motion. For instance, the distribution of the time ¢,, at which M (¢) is reached, known
as the arcsine-law, has been obtained by Levy [Levy 1937]

1
m/u(t —u)

Additionally, a variety of joint distributions of extremums and related times have been derived for
a Brownian motion B;. In particular, the joint distribution of the time ¢,, and running maximum

Pty = ult) = (6.2)

M (t) has been investigated in [Majumdar et al. 2008, Mori et al. 2021] for free Brownian motion
and constrained versions such as Brownian bridges, as well as general stationary processes; the
distribution of the time at which the maximum is reached before the FPT to 0 has been studied in
[Randon-Furling & Majumdar 2007]; the distribution of the time between the running maximum
M (t) and minimum m(t) has been derived in [Mori et al. 2020b] and, very recently, the joint
distribution of the time T" at which M (t) first crosses a fixed level m and the position By has
been investigated in [Randon-Furling et al. 2022].



6.1. Extreme value statistics of unbounded jump processes 119

In most of these cases, the computations rely on the Markovian nature of Brownian motion,
and the fact that Brownian trajectories can be decomposed into statistically independent parts,
which we broadly refer to as the Markovian path decomposition technique. As an example, we
consider the joint distribution pgc) (2, tm|t, 2o = 0) of the running maximum M (¢) and the time ¢,,
at which it is reached, for an unbounded Brownian motion issued from xy = 0. By decomposing
the trajectory around t,,, and making use of the symmetry of the trajectory, it was shown in
[Majumdar et al. 2008| that

P\ (@, tlt, 0 = 0) = lim N ()G (@, tne)g ) (e, t = ), (6.3)
E—r

where G(9)(z, t,,¢) is the propagator of the Brownian motion issued from zq = ¢ and killed upon
reaching 0 for the first time, and N () is a normalization factor so that

o0 rt
/ / ch) (x, tm|t, zo = 0)dadt,, = 1. (6.4)
0 0
Equation (6.3) deserves a few important comments:

e The introduction of the ¢ cut-off parameter is necessary to ensure that the weights
G (x,ty|e) and ¢ (e,t — t,,) of the independent parts of the trajectory do not van-
ish. Indeed, for Brownian motion, ¢ (g = 0,t) = 0 by definition.

e The determination of pgc) (2, tm|t, o = 0) necessarily implies the exact derivation of the

normalization factor AV(¢) and may, at times, require tedious computations.

Importantly, we emphasize that these two difficulties are intrinsically linked to the continuous
time nature of Brownian motion, and arise in most extreme value computations involving a
Markovian decomposition of the trajectory. However, in the case of general discrete time jump
processes, we circumvent these difficulties, and show that EVS can be directly obtained via the
Markovian path decomposition technique.

6.1.2 First results for jump processes

Running maximum. Following the previous exposition for continuous processes, we first
consider the distribution p(z|n,zg) of the running maximum x reached by an n step long general
jump process. It is clear that equation (6.1) is easily adapted in the case of symmetric continuous
jump processes, such that

d
plaln, o) = ~—a(z — 20, ) (6.5)

where we recall that ¢(x — g, n) is the survival probability in the semi-infinite geometry, and
whose expression for a general jump process is given in equation (4.11) of chapter 4 and reminded
here

—00

= n > —sx _ 1 S > log [1 B fﬁ(k)]
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We emphasize that while equation (6.5) specifically depends on the details of the jump distribution
p(f), it clearly captures the discrete nature of the jump process. In particular, u(xz|n, zy) is non
vanishing for z = x¢, in contrast to its continuous counterpart (6.1).

Importantly, we stress that the first moment of the maximum has been studied for jump
processes with g = 2 [Comtet & Majumdar 2005] and p < 2 [de Bruyne et al. 2021] in the large
n limit. However, the complete distribution p(z|n,z¢) remains to be investigated. Focusing on
the asymptotic regime n — oo and z — oo, we obtain the leading behavior of u(z|n,zg) for
general jump processes. Throughout this chapter, we take xg = 0 without loss of generality.

o We first focus on the case = 2. In the limit n — oo, the jump process converges towards
a Brownian motion with D = a3. In turn, in the scaling regime n — oo, z — oo and
7 =n/(x/az)? fixed, the distribution of the maximum converges towards the distribution

of the running maximum of the Brownian motion [Redner 2001]:

1 ,[L]ZL
zln,xg=0) ~ e Laz2l 4n, 6.7
e )Y v (6.7)
T fixed

e For heavy-tailed jump processes with p < 2, the first large x vanishing order of the survival
probability (6.6) reads

n . (T a,H
1—q(z,n ~  —sin (—)F [—} , )
gzn) ~ 5 )T |~ (6.8)
where the notation n, = (z/a,)* will now be used extensively. In turn, we obtain the
asymptotic behavior of the distribution of the maximum p(z|n,0):

_ un . (7’(‘,&) [au}u 1
z|n,xg =0 ~ —gin(— )T - -, 6.9
plaln e =0) _~ Esin () r(u [2£]" 2 (69)
valid for all p < 2. Note that the linear n dependence of the distribution of the maximum
can be interpreted in terms of the single big jump principle [Vezzani et al. 2019]. Indeed,
for the running maximum to be equal to x, the walker has exactly n chances to perform
one big jump bringing him close to x.

Time at which the running maximum is reached. We next focus on the distribution
p(nm|n, o = 0) of the time n,, at which the running maximum is reached. While the results
presented in this paragraph are not new, and can be found in eg [Majumdar et al. 2020], we
take the computation of p(n,|n,zo = 0) as an opportunity to showcase the ease of use of the
Markovian path decomposition technique for jump processes.

Consider a trajectory contributing to p(nm,|n,zo = 0) illustrated in figure 6.1(a), and
decompose the trajectory in two parts around n,,. Since the jump process is Markovian, the
two parts can be evaluated independently. In turn, by making use of the symmetry of the jump
process, the weights of the left and right parts are respectively given by the survival probabilities
q(0,ny,) and q(0,n — n,y,). Explicit expressions for the survival probabilities from 0 are obtained
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from the Sparre Andersen theorem (see equation (4.13) of chapter 4), and the distribution of n,,
is finally given by

p(nm|n, o = 0) = q(0,nm)q(0,n — np,)
C(2nm\ 1 (2(n—nm) 1 (6.10)
g ) 22\ n— oy, ) 22(n—nm)”
Note that p(nm,|n,zo = 0) is strikingly independent of the jump distribution p(¢), whether it be
heavy-tailed or not for instance. This important result stems from the underlying combinatorial

properties of jump processes, which were already illustrated in the sole Sparre Andersen theorem.
In the large n,, and n limit, with n > n,, > 1, the distribution of n,, asymptotically reads

1 1

e (6.11)
n>nm>>1 T nm(n — nm)

p(nm|n7 Zo = O)

which can be seen as a discrete version of the continuous arcsine-law (6.2). As a concluding
remark, we emphasize that in contrast to continuous time processes such as Brownian motion,
no difficulties arise from decomposing a trajectory into various independent parts. As a result,
we now show that the Markovian path decomposition is an essential technical tool to derive a
variety of EVS observables for general jump processes.

(a) Example trajectory of an unbounded jump process with  (b) Example trajectory contributing to po z(n). In exactly n
maximum reached at step n.,. The blue and green parts are steps the jump process crosses the red strip of width x.
statistically independent, and with respective probabilistic

weight ¢(0,nm) and g(0,n — 1y, ).

Figure 6.1

6.1.3 Joint distributions for infinite jump processes from Markovian path
decomposition

We illustrate the range of applicability of the previous decomposition by providing new and
explicit expressions for two important joint distributions belonging to the EVS of infinite jump
processes. Without loss of generality we hereafter choose xg = 0.
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Maximum and time of maximum for free jump processes. Consider first the joint
distribution pi(x, n;,|n,0) of the maximum z and time at which it is reached n,,, for an n step
long jump process starting from 0. Recall that the semi-infinite propagator Go(z,n), defined as
the probability that the particle issued from 0 stays positive during n steps and is at x on the
n step, is given for all p(k) by

ggn [/Ooo e”Go(az,n)dﬂﬁ] = exp [_;T/OO de ' (612

—0o0

By decomposing a trajectory contributing to pi(z, ny,|n, 0) into two parts around n,,, and making
use of the symmetry of the process, the joint distribution reads

p1(z,nm|n,0) = Go(x, 4 )q(0,n — Ny (6.13)

While equation (6.14) is exact, the joint distribution of x and n,, depends explicitly on the full
jump distribution p(k). In particular, in the specific case of the exponential jump process with
p(f) = %6_7‘4‘, Go(x,n) can be computed exactly(see [Majumdar et al. 2017] for instance) and
reads in the generating function formalism:

> Go(z,n)e" =7e VIO (1 - /1 —¢), (6.14)
n=0

so that p7*P(x,nm|n,0) can be evaluated for arbitrary n, n,, and z. As an illustration, we

numerically evaluate the cumulative distribution of p{™”(z,nm,|n,0) for fixed n and n,,, and
compare with our result in figure 6.2(a). However, for most jump processes the semi-infinite
propagator Go(x,n) cannot be written explicitly. In turn, we derive universal asymptotic results
in the n > n,, > 1 and * — oo, valid for general jump processes.

e Again, we first consider the case jump processes with y = 2. In the n > n,,, > 1 limit, the
jump process converges toward a Brownian motion, and the joint distribution p; converges
towards the joint distribution of the running maximum and time at which it is reached of a
Brownian motion, given by [Majumdar et al. 2008|:

(5l 0) ! -] v (6.15)
p1(x, np|n ~  — e la nm ]
7 ’ 2322 2 2a27m§r{2\/n — Ny,

T fixed

N >N

e For heavy-tailed processes with p < 2 we perform the asymptotic analysis of Go(z,n) in
the n > 1 and x — oo and obtain the following leading x behavior:

n2u . (T a,m 1
~ —or il Doy 6.16
Gg(x,n) l«<nKng \/; T Sln( 2 ) F(M) [ZE } x ( )

In turn, in the limit n > n,,, the joint distribution p; takes the following universal
asymptotic form:
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1 N 20 . (T au}ul
@l 0) st T\ e O ()t [y

valid for all values of p < 2. Finally, we illustrate the asymptotic result (6.17) in figure
6.2(b), where we numerically evaluate the cumulative distribution of p; for a a jump process
with p(£) oc (\/[€](1 + [€]))~! and a given set of parameters n = 20 and n,, = 30. We
emphasize the quick convergence of equation (6.17) even for small n and n,, values.

B
et

0.06 e e A e Theory : n,, =20,n =30
= N " .
Py ’ < . F-distributed jump process

n,0)du
,0)

= 0.04 =

Pl(% nm|
o
S

PL(LU; nm|n

u

0
00
u

""""" Theory : n,, =7,n=10

0.00 oy o Exponential jump process .

. [Eg -
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(a) p1 cumulative distribution for an exponential jump process (b) p1 cumulative distribution for a F-distributed jump process

with p(¢) oc e~ ¥l In this case, p1 is known exactly from  with p(£) o< (1/[€](1+1¢]))~! and corresponding = 1/2. The

equation (6.14). dashed line is obtained from (6.17), with no fit parameter. As
z increases, the 1 < n,, < ng regime is reached, and both
theory and simulations converge.

Figure 6.2

Trivariate distribution. As a second illustration of the Markovian path decomposition tech-
nique to evaluate EVS observables for infinite jump processes, we consider the joint distribution
p2(x, N, ¢|n, 0) of the maximum x, the time at which it is reached n,, and the final position
xy for a n step long jump process. The derivation of ps is straightforward: by decomposing the
trajectory around n,, and making use of the symmetry and translational invariance of the jump
process, we obtain

p2(x, N, ¢|1, 0) = Go(x, ) Go(x — 4,1 — Ny (6.18)

We emphasize that the weight of each independent part of the trajectory is well-defined, showcasing
the ease of use of the Markovian path decomposition.

Similarly to the previous joint distribution, we derive universal asymptotic behavior in the
large 1y, T, n—ny, and r—xf regime. First, for jump processes with p = 2, the joint distribution
in the scaling regime 71 = n,,,/(x/a2)? and 72 = (n —ny,)/((x — x¢)/a2)? fixed is simply given by
the corresponding distribution for the standard Brownian motion [Borodin & Salminen 1996]:

( )~ BT ! &) S e 6)
2, Mo, T £, ~ v (& nm ag n—nm) .
PRETm T ety a2 () (0 — 1))

T2 lixe
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Next, for jump processes with p < 2, the asymptotic behavior of ps is simply obtained by
plugging the asymptotic expression of Go(z,n) into equation (6.18), and we obtain

a2
p2(x, N, §|N, 0) ~ /1 (n—nm)%sl (%) () [x(:v—ua:f)] Iﬂ(ﬂ?ixf) (6.20)

As a concluding remark, we emphasize that expressions for p, p; and ps hold only because the
jump process can freely become negative, so that all distributions can be expressed in terms of
semi-infinite quantities, such as the survival probability and semi-infinite propagator. For jump
processes killed (ie stopped) upon the first crossing of 0, the determination of extreme value
statistics requires a new, additional building block, which we introduce in the next section.

6.2 Strip probability of jump processes

The strip probability 110 z(n) of a jump process is defined as the probability for a process starting
from zg = 0 to stay positive during its first n steps, and to reach its maximum x on its nt™ step
exactly. In other words, trajectories that contribute to 19 4(n) go from one end of a strip of
width z to the other end in exactly n steps, as depicted in figure 6.1(b). Importantly, pg z(n) is
not a semi-infinite observable, since the jump process cannot exit the interval [0, z| during its n
steps.

Sparre-Andersen-like behavior of the integrated strip probability. Remarkably, the
integrated strip probability p, = fooo poz(n)dz, defined as the probability that the jump process
stays positive during n steps and reaches its maximum on its last step takes a universal form,
independently of the jump distribution p(#):

1
2n’
We stress that this striking result was first brought to our attention in a conjecture from

Pn = (621)

[Mori et al. 2020b]. Although we expect that this combinatorial result has been proved in the
mathematical literature, we provide in Appendix I a custom proof of equation (6.21).

6.2.1 Exact expression of the strip probability

To derive an exact expression of the strip probability, we introduce the joint distribution o (z,n|0)
of the running maximum z and FPT n through 0, already encountered in chapter 3. By
partitioning over the step k at which x is reached, and decomposing the trajectory around k, the
joint distribution o is given by

o(z,n|0) = Z,on )Foz(n — k|0). (6.22)

Additionally, we know from equation (5.29) of chapter 5 that o(x,n|0) = dxFox(n|O) As a
result, the strip probability is given in the generating function formalism:



6.2. Strip probability of jump processes 125

%F 0,z (€ ’0)
Fo,2(£]0)
Importantly, equation (6.23) is exact, and reduces the evaluation of the strip probability to that

of the LETP Fj,(£|0) and RETP Fj,(£]|0), which have been extensively studied in chapter 5.
As a first explicit result, we compute the strip probability for one exactly solvable case.

anﬂl)@(n) = poz(8) = (6.23)
n=2

Exponential jump process. In the specific case of the exponential jump process with

p(l) = e 7, the LETP can be exactly computed from the integral equation obtained by
partitioning over the position of the walker after one step:

T 0
Foa(nfzo) = (1 = 6p,1) / Foz(n = 1u)p(u — zo)du + 61 / p(u — zo)du. (6.24)
0

—0o0

By making use of the fact that {% - 2} p(u — ) = 7?6 (u — x), we explicitly solve equation
(6.24) and obtain the LETP in the generating function formalism:

¢ (VI =¢€cosh((z — o) yv/T = &) + sinh((z — z0)yv/1 = §))
2v/1 — &cosh(zyy/1 — &) — (£ — 2) sinh(zyy/1 — &) '

In turn, since the process is symmetric, the RETP is simply given by Fp z(€|zo) = Fo»(&|z — z0),

Fo o (§lwo) =

(6.25)

and we obtain the explicit strip probability:

V(1 —€)¢
(2 — &)1 —=E&sinh (/1T —=&x) 4+ 2(1 — &) cosh (yv/1 = &x)

which we illustrate in figure 6.3(a), for a fixed number of steps n.

/10,2(5) =

(6.26)

Of note, the derivation of an explicit expression of 1, (&) is only possible because of the
specific form of the jump distribution p(¢). However, for general jump processes with arbitrary
symmetric p(¢), we expect the strip probability to display emerging universal behavior in the
large n and « limit. In the following we consider separately the case p =2 and p < 2.

6.2.2 Asymptotic behavior of the strip probability - u =2

Consider first the case of a jump process with ;4 = 2. Again, in the large n and x limit and in
the scaling regime 7 = n/(x/az)? fixed, the process converges towards a Brownian motion of
diffusion coefficient D = a3. Additionally, in the limit 2 — oo, no overshoot occurs when the
jump process crosses level z for the first time. In turn, the strip probability is asymptotically
proportional to the RETP: g ,(n) o< Fy4(n|0), and we find the proportionality constant to be
equal to 1/az. By making use of the asymptotic behavior of the RETP given in table 5.1 of
chapter 5, we obtain:

a2121 > k252,
poz(n)  ~ 2 [ﬂ —r )y R (=D (6.27)
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6.2.3 Asymptotic behavior of the strip probability - y < 2

For heavy-tailed jump processes with u < 2, overshoots occur even in the limit x — oo, such
that the identification of the strip probability and the RETP is no longer valid. Additionally, the
exact expression (6.23) cannot be used to asymptotically analyze pg z(n); indeed, the large z
leading order of the LETP Fp ,(£]|0) obtained in chapter 4 is given by Fp ,(£]0) ~ Fp(£]0) and
independent of x. To circumvent these difficulties, we introduce the cumulative strip probability

10,5z (1)

1o, >z(n) = /OO po,u(n)du, (6.28)

defined as the probability that the walker stays positive for n steps, reaches its maximum on its
last step, and that this maximum is larger than x. We now partition trajectories on the first
step k at which x is crossed, and the corresponding position u of the walker upon crossing x.

1. The probabilistic weight of the first part of the trajectory is given by the hitting distribution
Fp 2 (u, k|0) defined as the distribution of the walker’s position right after exiting the interval.
In particular, we stress that the RETP is a marginal of the hitting distribution.

/ Fo o (u, k|0)du = Fy .(|0). (6.29)

2. During the remaining n — k steps, we require the walker to stay positive,bib and reach a
maximum g > u on its last step. Considering the trajectory backwards,ie from step n to
step k, the associated probabilistic weight is given by Gg ,(y —u,n — k|0), where we recall
that Gg, is the bounded propagator of the jump process.

In turn, po,>z(n) is given by
poza(n) =3 [ Foa(u.k0) [ Gy = = KO)dyd
k:1 x u

=3 [ oo /0 Glog s — K|0)dydu.
k=177

Importantly, in the large z limit, since u > x, we have Gy 4, (y,n — k[0) ~ Go(y,n — k|0).

(6.30)

Note that this argument is identical to the one used for the asymptotic analysis of Fp ,(n|0)
in equation (5.19) of chapter 5. As a result, in the limit n, > n > 1, the cumulative strip
probability asymptotically reads

1o,>z(n Z/ Fy 2 (u, k[0) / Go(y,n — k)dydu
~ Z/ ng u, k|0)du q(0,n — k) (6.31)

~ ZFM (k[0)q(0,n — k).

k=1



6.2. Strip probability of jump processes 127

The probabilistic interpretation is clear: the walker stays in the interval [0, z] for k — 1 steps
before performing a big jump beyond x. The boundary at 0 is then too far to be seen and
the remaining probabilistic weight is simply the semi-infinite survival probability ¢(0,n — k).
Recalling the asymptotic form (5.22) of the RETP Fp ,4(n|0)

L(p) . (mp au]u
Fo.2(n[0) I q(0,n 1)T sin <7> [? ) (6.32)
we finally obtain the cumulative strip probability in the generating function formalism
1 (TN Ta, R €
10, 0 () 2] |
poss(®) |~ Tsin () [ 12 (6.33)

In turn, in the regime 1 < n < ng, the strip probability displays the following universal behavior,
valid for all 0 < p < 2:

" . (TN [ay A 1
o £ () (2]
Ho.z(n) l<n<n, T (1) sin 2 xl x

Equation (6.34) constitutes the main result of this section, and we provide numerical illustration in
figure 6.3. Note that, surprisingly, the strip probability is independent of n in the (z/a, )" > n > 1
limit. We emphasize that this specific behavior only arises when the walker is constrained to
stay positive. Indeed, the unconstrained counterpart of 19 5(n) is the probability that the walker
reaches its maximum x on its last step, without having to stay positive. In turn, this probability
is given by Go(x,n), which clearly depends on n (see equation (6.16)).

(6.34)
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(a) Distribution of the maximum for a 10 step long exponential
jump processes conditioned to stay positive and to reach its
maximum on its last step. The dashed line is computed from
series expansion of the explicit result (6.26).

(b) Cumulative strip probability for Pareto jump processes
with p(¢) 1‘g|>1|6|*(1+“). The dashed lines correspond to
the n independent large = asymptotic result (6.34).

Figure 6.3



128 Chapter 6. Extreme value statistics of jump processes

6.3 Extreme value statistics of semi-infinite jump processes

We devote this last section to the determination of EVS observables for semi-infinite jump
processes killed (ze stopped) upon crossing 0 for the first time. We emphasize that all the
results in this section are new and that the quantities derived throughout chapters 4,5 and 6,
namely the splitting probability mo 4 (o), the RETP Fp z(n|zo) and the strip probability i z(n),
constitute necessary and sufficient building blocks to analyze a variety of important extreme value
observables, for which we provide exact expressions and uncover universal asymptotic behavior.

As an introductory example, we consider the distribution p(z|zg) of the maximum reached
before crossing 0, which is given by the splitting probability:

plafzo) = —— oz (ao). (6.35)

Equation (6.35) is exact, but pu(x|zo) depends on the specific shape of the single jump distribution
p(¢). However, by making use of the large « asymptotic behavior (4.33) of mg (o), we obtain:

e () [ v 3

Importantly, equation (6.36) is valid for general symmetric jump processes with 0 < p < 2.

J22
2

%. (6.36)

Additionally, we emphasize that the xy dependence of u(x|xg) is fully contained in the function
V' (z0), which has been extensively characterized in chapter 4. Of note, we hereafter systematically
consider xg = 0.

6.3.1 Joint space and time distributions

As announced, we now investigate joint distributions of extremums and times, for processes killed
upon becoming strictly negative.

Maximum and time at which it is reached. Consider first the joint distribution ps(x,n|0)
of the maximum z and the step n at which it is reached before the first-passage across 0. By
using the Markovian path decomposition technique around step n, p3 is simply given by:

p3(,n[0) = p0,2(n)m0,2(0). (6.37)

Again, we stress that the path decomposition technique is well adapted to deal with jump
processes; the derivation of the corresponding joint distribution for Brownian motion, given in
[Randon-Furling & Majumdar 2007| is more tedious. We now focus on the emergent universal
asymptotic behavior of ps in the large n and x limit, which is easily extracted from the previous
analysis of both (i z(n) and m 4 (0).

e For jump processes in the Brownian basin of attraction, ie with u = 2, p3 displays a
universal asymptotic behavior in the scaling limit n — oo, x — oo and 7 = n/(x/az)?
fixed:
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[e.9]

31
ps(x,n]0) ~ 2 [@} “x2 3R 1)k ek (6.38)
T—00 x z k=1
T fixed

e For heavy-tailed processes with p < 2, we determined both asymptotic behaviors of o z(n)
and 7o - (0) in the ng, > n > 1 limit. In turn, we obtain the following asymptotic behavior:

201 T(E54) T(p) sin(7f) [a“}#

1
~ . - (6.39)
l<nKng T2 x

p3(z,m|0)

Note that, because of the asymptotic behavior of 9 4(n), p3 is also independent of n.
However, we recall that this only holds in the 1 < n < (z/a,)* limit.

Maximum, time at which it is reached, and FPT through 0. As a second example, we
consider the multivariate distribution p4(z,n,n|0) of the maximum =z, step at which it is reached
n and FPT n; through 0. Decomposing the trajectory yields the following exact expression:

pa(z,n, nf’O) = MO,&(”)FO,Q(nf —n|0), (6.40)

from which we extract the large x and n asymptotic behavior of py4 in the usual regimes:

ow=2 p4(x,n,nf|0) oo [7] l 4 Z k2l2 k+le—k;2ﬂ—2n[“2] —2r2(ny— n)[ 2]2
H—o0 o=

200 (6.41)

n<2 pa(e,n,ng0)

=
| — |
=
IS
<]
]
/N
)
N"t
N—
| S
SRS
SR

1<<n<<r\;lf<<nz 7T(7’Lf — n)

Maximum and first-passage time through 0. With the help of the strip probability, we
can finally evaluate the joint distribution o(x,n|0) of the maximum x and the FPT n through 0
for general jump processes.

e When p = 2, the asymptotic behavior of the joint distribution ¢ in the usual scaling regime
is obtained from the corresponding joint distribution for Brownian motion (3.13), which
we computed in chapter 3. As a result, o(z,n|0) is asymptotically given by:

o(x,n|0) ~ 22 [x }3 i Ze wnn[ 2] 2 [ 2k2n2n [%r 3] . (6.42)
7 fixed h=1

e For heavy-tailed jump processes with p < 2, we revert to the Markovian path decomposition,
and rewrite equation (6.22) in the generating function formalism to obtain:



130

Chapter 6. Extreme value statistics of jump processes

o(x,€]0) = pox (&) Fo,.(£]0).

(6.43)

Equation (6.43) is exact, and its asymptotic behavior in the limit 1 < n < (z/a,)" is finally

given by

2u/n
olanlo) ~ YR
1«nne 13
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(a) Asymptotic cumulative distribution of p3 obtained from
equation (6.39) for processes with p(k) = e~ I*¥I". We exhibit
the n independence of p3 for large = values.

s (%) 21

(6.44)
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(b) Asymptotic cumulative distribution of ps for a Pareto
jump process with p(¢) = ]l|g‘>1i\€|_3/2. We exhibit the
convergence towards result (6.41) as x — oo.

Figure 6.4

The asymptotic results (6.39) and (6.41) are numerically illustrated in figure 6.4. As a con-
cluding remark, these three examples show that the strip probabilities and splitting probabilities

are essential quantities to characterize EVS observables for semi-infinite jump processes. We now

turn to a final application example, and investigate the span of general jump processes.

6.3.2 Span of jump processes

We consider the distribution s(z,n) of the span of an n step long unbounded jump process issued

from 0, defined as the difference between its maximum M and minimum m up to step n. In view

of applying the Markovian path decomposition technique, we split trajectories contributing to
s(z,n) into three parts of respective length ni, no and ns.

e Without loss of generality we consider that the maximum M of the trajectory is reached

before the minimum m. During the first n; steps, the walker travels from its initial position

to M.

e In a second part, of duration ne, the walker travels from M to m, crossing a distance of x

exactly. Importantly, the associated probabilistic weight is equal to g z(n2).

e The remaining ng steps take the walker from m to some final position inside [m, M].
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By making use of the translational invariance of the jump process and the symmetry of the single
jump distribution, the span distribution is then given by:

s(zon)=2 ) [ /OxG[O’z](u,nﬂO)du} 1102 (122) [ /OxG[O’z](u,ngm)du}, (6.45)

ni,n2,n3
nit+nz2+nz=n

where the factor 2 arises from the interchangeability of m and M. In the generating function
formalism, we rewrite equation (6.45) as

S(,6) =2 [ | Goa <u,5\0>du] Ho.(6) [ | Goa <u,5\0>du] - (6.46)

Equation (6.46) is exact, but involves the bounded propagators Glo,] (defined as in chapter 4),
which can only be computed for specific jump distributions.

Exponential jump process. When p(¢) = fe —I the bounded propagator can be computed
(see [Mori et al. 2021] for instance) and is given by

¢ (sinh (VT —£&(z —y)) + VT —Ecosh (VI —E&(z —y)))
(€= 2)sinh (VI—€2) ~2/1—€cosh (VI-€a)

Combining the expression (6.26) of 1o, (§) and (6.47), we obtain the explicit span distribution

Glo,0)(u, Elwo = 0) = — (6.47)

of the exponential jump process:

CP(zE=1—qa)=— 4(1 — a)y/aeVo® (—a — 2y/asinh (y/az) 4+ (—a — 1) cosh (y/az) + 1) |
(—a + va + (a + va) evar)® (2y/a cosh (yaz) — (—a — 1) sinh (yaz))

Asymptotic behavior of the span distribution. For general jump processes for which the
bounded propagator cannot be computed exactly, we uncover universal asymptotic behavior in
the usual large n and large x limit.

e When p = 2, we expect the span distribution to converge towards the corre-
sponding continuous span distribution of Brownian motion, which can be found in
[Borodin & Salminen 1996|, or, more recently [Régnier et al. 2022]. In turn, defining again
7 =n/(x/az)? we obtain

2
k+1 2
s(x,n e
(,n) ;Lﬁ:g;; - \/ﬁz (6.49)
T nXe

e When p < 2 and in the limit 1 < n < n, we have Gy, (u,£[0) ~ Go(u,§). Note
that we have now used this argument three times: for the derivation of the RETP, the
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strip probability and the span distribution. As a result, the leading order behavior of
Jo Go,a(u, €]0)du is given by

| Goatweioan_~ [ Gotwau

1
~Y O = 5
v, 1(0,8) —

(6.50)

and we obtain the leading order of s(z, &), valid for general heavy-tailed jump processes:

s(z,¢)

1 \u _mpy Tauel €
1<<7:;<M2<ﬁ_5> C s () [T e (6.51)

Finally, the asymptotic span distribution in real space and time is given by

2np L (TN [a, el
o () [22] L, 652
l<nknge (M) - 2 x ( )

s(z,n)
and we display agreement with simulations in figure 6.5(a).

6.3.3 Refined information on F},(n|0) for heavy-tailed jump processes

We conclude this chapter by deriving the first vanishing order of Fy,(n|0) in the 1 < n < ny
regime, which was not contained in the asymptotic analysis of the LETP presented in chapter
5. Let us define the first vanishing correction h(z,§) = Fy(€|0) — Fp(£]0), and recall that
o(x,£]0) = %Fg,m(ﬂ()), such that

d%h@,g) — o (z,£[0). (6.53)

In turn, making use of the asymptotic behavior (6.44) of o(x,n|0), we obtain

I(p)?sin? (Z4) ra, 120 2
hag) o~ W) o & (6.54)
T—00 27 € (1 _ 5) 5
so that the LETP to first vanishing order is simply given by
D(p)?sin® (%) ra,q2e €2
Foald0) = Ry(ei) - TP ) gz &) |
ha(610), 5 Fael0) - =5 [T ot (6.55)

Importantly:

e The derivation of this first vanishing correction requires the knowledge of the asymptotic
behavior of o(x,n|0). In turn, we obtained this behavior from the analysis of the strip
probability, showcasing once more the essential role of this quantity in addressing EVS of
jump processes.
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e The algebraic  decay of the LETP, proportional to 2, is stronger than the corresponding
one for the RETP, proportional to z7#. Indeed trajectories that contribute to this first
correction need to approach the x boundary significantly, and then come back to 0, in a
back and forth motion. In contrast, trajectories contributing to the RETP simply need to

approach the x boundary.

e Applying this argument further, we expect that both RETP and LETP can be written as

series expansions in powers of a,/x:

Fo2(£]0) = Zak [a }(%H)M

Fy,(€]0) = Zbk o [2]™

where the explicit determination of the ax(§) and bg (&) would require further investigation.
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(a) Cumulative distribution of the span for three heavy-tailed
processes with p(k) = e~¥l" and fixed n = 20. The dashed
lines come from the asymptotic result (6.52).

(6.56)

—
oo T
N S| Asymptotic result . L
= pu=05n=>5 Q

K O p=1n=5 .

O p=15n=>5

10! 102 - 10°
X

(b) First vanishing order of the LETP for three heavy-tailed
processes with p(k) = e~ 1*¥I" and fixed n. The dashed lines
come from equation (6.55). Of note, since n is small here, we
exactly invert the generating function in equation (6.55) by
doing a series expansion in ¢ instead of using the asymptotic
large /n behavior.

Figure 6.5
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6.4 Conclusion

The discrete time nature of jump processes facilitates Markovian path decomposition, which
is a standard tool for the analysis of extreme value statistics. In turn, prior knowledge on the
semi-infinite survival probability ¢(0,n) and the semi-infinite propagator Go(x, n) allows to derive
exact results for a variety of extreme value observables of unbounded jump processes.

However, for semi-infinite jump processes killed (ie stopped) upon entering the negative
half-line, the trajectories contributing to the EVS cannot become negative anymore, and both
q(0,n) and Go(x,n) become irrelevant in this context. As a workaround, we introduce the
semi-infinite counterpart of Go(x,n), the strip probability j . (n) defined as the probability for
a walker starting from 0 to stay positive during n steps, and to reach its maximum x on its last
step exactly.

We provide an explicit expression of the strip probability as a function of the LETP and
RETP introduced in chapter 5, and uncover universal asymptotic behavior of pg z(n) for general
jump processes. With the help of this new building block, we derive explicit and asymptotic
results for extreme value observables of semi-infinite jump processes. In particular, we investigate
a variety of space and time joint distributions summarized in table 6.1, characterize the span of
jump processes, and provide a finer description of the asymptotic LETP than the one derived in
the previous chapter.

‘ EVS observable Exact expression

1 < 2 - Asymptotic behavior in the regime 1 < n < ng,

i =2 - Asymptotic behavior in the scaling regime n/n, fixed ‘

Infinite jump processes

(x|, zg = 0) Lg(a,n) M gin (Z4) T(p) [22]" L ‘ ﬁef[é] [
p(nm|n, zo = 0) q(0,1,)q(0, 1 — nyy) %\/ﬁ )
p1(z, n|n, zo = 0) Go(z,nm)q(0,n — nyp) % o nm —7‘} %111( ) T(u) [7}“% :Z M(; [‘:z} T
p2(x, nm, x5, 0) Go(x,nm)Go(x — ;1 — ) nm(n — 71,,,1)4%2 sin (7‘) I%(u) [%r l(%f/) é%mg’[é T ’[%} T
Semi infinite jump processes
iz = 0) ~ 5 m0.(0) pr () 2 (%) 4

p3(x, oo = 0) 10,2 (70m)70,2(0)

[azr 1 zzoo kZ( 1k+1 7k77r2nm[72]2

pa(x, N, g |zo = 0) 10,2 (Tm) Fo e (ny — 14, [0)

I T ()] raai2e 1
7‘.(71/ n)[ ™ h1n<2)] [I] x

5 . R al an12
4[] Lty KR (1) P [E B[]

o(x,nflzo =0) 7%F97,(n_f\0)

T2

272 [Tzr 1 T e —LQWQTJf[TZ] k2 [ [ k27r2nf [%}273}

ZHWFZ( )\inz <%> [%]Ul

Table 6.1: EVS observables for general jump processes. For the asymptotic behavior, n; is defined as ny = (x/a,)* for
all u values, and x, nm and ny correspond respectively to the maximum, time at which the maximum is reached, and
first-passage time across 0. Entries with a o are already given in the literature.

We emphasize that most of the results derived in chapters 4, 5 and 6 stem from the asymptotic
derivation of the splitting probability mp 4 (x¢). In particular, the characterization of 7 z (o)
in the z9 < a, limit naturally extends to the majority of first-passage observables, such as
the RETP Fp ,(n|zg) for instance. While we mostly focused on symmetric one-dimensional
jump processes, we devote the concluding chapter to general isotropic jump processes, and show
that the knowledge of the splitting probability can be used systematically to evaluate general

first-passage observables.
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In this chapter, we introduce a general methodology to investigate first-passage observables
for general isotropic jump processes in the large confining volume limit, which we will refer to as
the matching method. As in the one-dimensional case, we aim to capture the specific behavior
of jump processes starting close to absorbing boundaries, for which the continuous limit does
not apply. We first provide a formal presentation of the method for a general first-passage
observable B, and discuss the asymptotic limits in which it holds. In turn, we illustrate the range
of applicability of the methodology on a representative list of examples, spanning various jump
processes across different geometries.

We first focus on geometrical observables. As a natural extension of the splitting probability
70,z(x0) for one-dimensional heavy-tailed jump processes, we consider the hitting distribution of
the landing position upon exiting the interval. In higher dimensions, we focus on jump processes
with 4 = 2, and derive two important quantities: the harmonic measure in a disk, and the
splitting probability in an eccentric annulus.

The methodology equally applies to first-passage times. As an example, we explicitly compute
mean exit-times from intervals, which cannot be derived from the asymptotic results obtained
for exit-time probabilities in chapter 5. For jump processes with p = 2, we compute mean
absorption times in disks with fully absorbing boundary, and then show that the matching
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method is straightforwardly adapted to compute the complete absorption time distribution.
Finally we consider the FPT to small absorbing targets in arbitrary confining domains with
reflecting boundary conditions. For jump processes starting near the absorbing target, we show
that the matching method can be combined with existing continuous large volume frameworks
[Bénichou & Voituriez 2014] to compute the complete FPT distribution.

7.1 Matching method

7.1.1 First-passage observables for confined isotropic jump processes

Jump processes in dimension d > 1 describe the stochastic evolution in R? of the position xy
of a particle undergoing i.i.d. random jumps with common distribution p(l) at each discrete
time step. As we have now seen extensively, quantifying the statistics of such processes is
key in understanding real life experimental data. For example, the scattering of photons in
heterogeneous media can be correctly modeled by jump processes with isotropic heavy-tailed
jump distribution [Savo et al. 2017], and the experimentally observed Run and Tumble motion
of E. Coli [Patteson et al. 2015] can be seen as an isotropic jump process with p(|l]) = %e_%“',
where v is the tumbling rate, and v the speed of the particle.

We hereafter consider strictly isotropic jump processes in d dimensions, whose single jump
distribution p(1) depends only on the norm |1| = ¢. Additionally, the large ¢ behavior of p(1) is

equivalently given by the small k behavior of the Fourier transform p(k) of the jump distribution
1.

) = 1= |kl + of[Kl"). (1)

We recall that a, is the characteristic lengthscale of the single jump distribution, and the Levy
exponent u characterizes the tails of the distribution. In particular, when 0 < p < 2, the jump
distribution displays a power-law behavior p(¢) ¢+,

Unbounded isotropic jump processes have been well understood early on. For instance, the
infinite propagator G (X, n|Xg), defined as the distribution of the position after n steps, is known
exactly in the Fourier transformed and generating function formalism:

- n tk(x—xo) _ 1
;}s [ /R K oo (x:fx0)dk | = 7= (7.2)

In turn, knowledge of the infinite propagator grants access to a variety of dynamical and first-
passage observables, such as the FPT distribution to a given target for example. However, in a
bounded geometry, there exists no general results valid for arbitrary isotropic jump processes.

In this chapter, we provide a methodology to systematically evaluate first-passage observables
in the large confining volume limit. More precisely, we consider an isotropic jump process starting
from xg in a confining domain of volume V', whose boundary is split into a reflecting part, and an
absorbing part denoted X, as depicted in figure 7.1. We now introduce an arbitrary first-passage
observable B(xg), evaluated upon first crossing of the absorbing part ¥ of the boundary. To be
more explicit, B(xg) could equally correspond to:

'Equation 7.1 should be understood as a definition of the general class of processes we are considering.
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e The side through which a one-dimensional jump process escapes an absorbing interval [0, z],
namely the splitting probability mg 4 (o).

e The harmonic measure of a 2D jump process upon escaping a completely absorbing disk
(see figure 7.4(a)).

e The FPT to an inner absorbing target in the interior of a confining domain with reflecting
boundary conditions (see figure 7.1(b)).

In the following, we assume that the confining domain has a unique characteristic lengthscale R,
and place ourselves in the large volume limit R > a,. Importantly, B(xg) is well defined for all
initial positions xg such that xg belongs to the interior or the boundary of the domain. Indeed,
as we have seen in chapters 4 to 6, the discreetness of the jump process allows for particles to
start on the absorbing surface. To evaluate the distribution of B(xg) for all initial positions, we
investigate separately the case where xg is far or close to the absorbing boundary.

Pz == ===

(a) Two-dimensional isotropic jump process in a fully absorb-
ing disk, starting from xg. Here the absorbing boundary ¥
corresponds to the complete disk boundary, and the process
is stopped as soon as it strictly exits the disk. Because of
its discrete nature, the random walker is allowed to start on
the boundary of the absorbing disk. In general, we refer to
starting positions close to the absorbing boundary as edge
initial condition.

(b) Two-dimensional jump process in a reflecting/absorbing
confining domain, starting from xg, with an interior absorbing
target (red circle). Here ¥ only corresponds to the boundary
of the interior target and the process is stopped as soon as
it strictly penetrates the target. Since the process starts far
from the absorbing target, this sample trajectory has a bulk
initial condition.

Figure 7.1

7.1.2 Bulk initial conditions and the continuous limit

As for one-dimensional jump processes, d-dimensional isotropic jump processes are known to
converge at large times to an associated continuous process, characterized only by the large ¢
behavior of the jump distribution, or equivalently the small k behavior of the Fourier transform

p(k):

e In the case p = 2, the jump process converges at large times to a d-dimensional Brownian
motion with diffusion coefficient D = a3/d. Note that more details on this stochastic
process can be found in [Redner 2001] for instance.

e In the case u < 2, the jump process converges at large times to an isotropic a-stable process
[Kyprianou & Pardo 2022|, whose continuous space and time propagator is simply given
by its Fourier Transform:
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Goo(k,n|0) = e~ Mankl” (7.3)

We now introduce the orthogonal projection xj of xg on the absorbing surface ¥, and the
corresponding source-surface distance d. = |xp — Xo| (see figure 7.2 for a schematic of the
situation). In turn, we define the continuous limit as the regime d. > a, and R > a,. In this
limit, the starting position is considered to be in the bulk of the domain with respect to the
absorbing surface, and the observable B(xg) is simply given by

B(x0) ~ B (xq), (7.4)

where B(¢) (x0) corresponds to the same observable, evaluated for the continuous limit process.
As an illustration, we showed in chapter 4 equation (4.29), that in the regime xy > a, and
x > a, the splitting probability o ,(20) is equivalent to its continuous counterpart Wé?i(xo).
Before shifting our focus to edge initial conditions, we emphasize that equation (7.4) is only
relevant if the distribution of B(¢)(xg) can be evaluated. Note however that it is the case for a
large number of first-passage observables, as we will see shortly.

7.1.3 Edge initial conditions

~

We now consider the edge regime, defined as d. S ay, for which the continuous limit does not
apply, and equation (7.4) is not valid. This is in particular the case when x¢ € .

Projected jump process. As an important tool for the matching method, we introduce the
projected jump process associated to the isotropic d-dimensional one. Let us choose an arbitrary
d-dimensional normalized vector v, and consider the successive positions (xg,X1,...Xpn) of the
particle. The successive positions of the projected jump process are given by (wé, $1L, . ,x#) =
(Xx0.V,X1.V,...Xn.v). In turn, the projected jump process is a one-dimensional, symmetric and

continuous jump process, whose single jump distribution is given by

L) = / dup(u)d(uv — ). (7.5)

Note that since the initial jump process is isotropic, p, (¢) is strictly independent of the choice of
v. Importantly,the large ¢ decay of p, (¢) is identical to that of p(1); in the Fourier formalism,
one has

pLlk) = 1= (ap k) + oK) (76)

where p is unchanged. Additionally, in the specific 4 = 2 case, the projected characteristic length

ay is explicit, and given by

1 _ 02
ay = —, 7.7
2 \/g ( )
where d is the space dimension. We emphasize that the crucial role of the projected jump processes
has already been underlined in chapter 4. Indeed, we showed that the splitting probability in 3D
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slabs is given by the one-dimensional splitting probability of the projected jump process upon
a vector v chosen perpendicularly to the slab’s delimiting hyperplanes H; and Hs (see figure
4.2(b) of chapter 4 for a reminder of the geometrical setting).

Figure 7.2: Schematics of the matching method. The full boundary 3 is absorbing, and the starting position xg is
close to 3. The two delimiting hyperplanes H; and Hg are parallel, and H; is tangent to X. Importantly, we consider the
edge regime de S ay < a < R. In this regime, trajectories conditioned to cross Ha before H; are asymptotically equivalent
to the trajectories of the continuous limit process.

Matching method. In the case d. < ay, the discrete nature of jump processes cannot be
neglected, even in the large confining volume limit. To account for such discrete effects, we
introduce two parallel hyperplanes H; and Hs distant from an arbitrary distance a, such that
H; is tangent to ¥ at xj (see figure 7.2). Note that we consider ¥ to be a smooth surface.

To evaluate P(B(xg) = b), we partition the contributing trajectories according to whether or
not Hy is crossed before Hy. Denoting 7x, m,(xo) the hyperplane splitting probability that the
process crosses Ho before Hq, we obtain thﬁollowing exact expression:

P(B(x0) = b) =mn, 1, (x0) P(B(x0) = b|Hz crossed before H)

7.8
+7 1y 1, (%0) P(B(x0) = b|Hy crossed before Ha). 78)

In turn, the hyperplane splitting probability is strictly equal to the one-dimensional splitting
probability 7'('&2 (de) to reach a before 0 for the jump process projected perpendicularly to H;
and Hy. Consequently, we rewrite equation (7.8) as:

P(B(x0) = b) :ﬂ'd:g(de)P(B(Xo) = b|Hy crossed before Hy)

n (7.9)
+75.4(de) P(B(x0) = b|H; crossed before Ha).

Since the hyperplane distance a can be chosen arbitrarily, we place ourselves in the limit
a, < a < R and proceed in 4 steps to investigate the asymptotic behavior of P(B(xg) = b).

1. First, in the limit a, < a, we showed in chapter 4 that W&a(de) is known exactly, and all
our results are directly applicable. In particular, 7r0l7a(0) is gtrictly non vanishing, and the
d. dependence of W&a (de) depends only on the small scale details of the projected jump
distribution. -
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2. Second, in the limit a;, < a, the statistics of the jump process conditioned to cross Hj
before Hy converge towards the statistics of the continuous limit process conditioned to
cross Hs before Hq, and we have:

P(B(xq) = b|Hy crossed before H;) ~ P(B“)(xq) = b|Hy crossed before Hy). (7.10)

a,<Ka

3. To evaluate the conditional distribution of the continuous limit process, we introduce the

splitting probability w[()f;(xo) that the continuous limit process crosses Ho before Hi, such

that

P(B%(x0) = b|Ha crossed before Hy) = (7.11)

Importantly, in the large volume limit a < R, the conditional distribution of B(xg) becomes
independent of the initial position xg, and is given by:

©(u) =
P(B(x0) = b|Ha crossed before Hi) n li}m w
a U—Xp c

(7.12)
7'('079(11)

Note that we have already used this argument in equation (5.11) of chapter 5 to determine
the conditional rightward first exit-time probability Fy z(n|zo)/m0z(z0) in the z — oo
limit.

4. Lastly, we need to take into account the second term in equation (7.8), corresponding to
trajectories that cross Hi before Hy. Defining the radius or curvature R, of ¥ at xy, we
consider the limit R. > a,. In this limit, X is locally approximated by Hi; as a result,
trajectories that cross Hi before Hy are immediately absorbed in the vicinity of xy. In turn,
in the large volume limit R > a,,, the contribution of such trajectories to the statistics of
B(xg) is sub-leading ? compared to trajectories that can be absorbed on the whole surface
>, and can thus be neglected.

Finally, we obtain the large volume asymptotic behavior of arbitrary first-passage observables for
general d-dimensional isotropic jump processes:

P(B(x¢) =b) ~ mg,(de) li 713
( (XO) ) a#<<a<<R 7['079( )uig(lh 7"'(6) (u) ( )
ap<Re 0a

Together with equation (7.4), equation (7.13) is the main result of this chapter, and deserves a
few comments.

2As we will see in the following examples, this statement is observable-dependent, and will be verified
systematically.
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e The limit on the RHS of equation (7.13) is well defined. Indeed, we expect that for a
given confining domain, all the distributions of continuous first-passage observables can be
projected on an eigenfunction basis {1}

P(B(u) =b) = exop(n), (7.14)
k=1

where the ¢;, depend on both B(®) and b. In turn, the leading u behavior of P(B()(u) = b)
as u — Xy, is identical for all first-passage observables.

e We emphasize that the key ingredient of the matching method is the one-dimensional
splitting probability of the projected process, which we first derived in [Klinger et al. 2022b],
and discussed at length in chapter 4. Importantly, the microscopic details and the discrete
nature of the initial jump process are embedded in the d. dependence of ﬂé:a(de).

e Equation (7.13) has the status of a ready-to-use method, requiring a few essential ingredients.
More precisely, to evaluate the statistics of an arbitrary first-passage observable B(xg) for
a given isotropic jump process, one needs to be able to identify both the limit process and
the projected process, and to evaluate P(B()(u) = b) and 71'(()2(11).
In conclusion, we have provided a general and broadly applicable methodology to asymptotically
evaluate first-passage observables for arbitrary confined jump processes. Our results go beyond
the classical continuous approach (7.4), which fails to consider the discrete nature of jump
processes and thus cannot capture the specificity of edge initial conditions. In this context, we
derive a variety of new important results for representative examples of confined jump processes,
spanning numerous observables and geometries. In the next two sections, we demonstrate the
versatility and flexibility of the matching methodology by computing geometrical and temporal
first-passage observables in one or more dimensions, relevant to the description of real physical
systems.

7.2 Geometrical observables

In this section, we focus exclusively on geometrical first-passage observables, which only depend
on the position of the particle upon exiting the confining domain and do not provide any
information on the time needed to exit. As an example, the one-dimensional splitting probability
is a geometrical observable.

7.2.1 Hitting distributions of one-dimensional jump processes

We first consider the most natural extension of the splitting probability: the hitting distribution
fi0,2](y|zo) of the landing position y upon exiting the interval [0, z]. Without loss of generality,
we consider hereafter that x¢o=0, ie the particle starts on the absorbing boundary, and focus
on y > x values. In the large interval limit, no overshoot occurs for jump processes in the
Brownian basin of attraction (4 = 2), and the distribution of y concentrates around z, such
that flo.)(y|0) ~ d(y — )70 (0). Conversely, the hitting distribution for arbitrary symmetric
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heavy-tailed jump processes with p < 2 does not concentrate, and can be obtained from the
matching method.

1. We first determine the limit continuous process and the associated splitting probability. For
heavy-tailed processes with p < 2, the limit process is an a-stable process of parameter u,
and the continuous splitting probability is given by [Widom 1961, Blumenthal et al. 1961,
Majumdar et al. 2010b]

I3
2

c 2r i
Wévé(l‘o) zorz<a 'LJ‘Q((’ug)) (;0) ’ (7'15)

2. Next, hitting distributions for a-stable processes are known |[Blumenthal et al. 1961], and
read, for y > x

x x x (716)
/2 :
(©) 1y (= oY 4
f[—l,l](y’xo) - T s ( 9 ) < |1 — |y|2’ ’xo y’ .

Note that the continuous hitting distribution is indeed vanishing when xy — 0.

3. Lastly, we identify the projected jump process. In the one-dimensional case, the projected
process is simply the initial jump process, and the splitting probability from 0 is given by

B
ou—l 1+p a,\’
1 ~ i sl
71'0’2(0) . T Tr < 5 ) ( . ) . (7.17)

Making use of equations (7.15),(7.16) and (7.17), we finally obtain the hitting distribution for
jump processes with 0 < p < 2

K
2T (1 + &) sin(ZE) | /2y 2 21 rauh
fi0.2)(410) T 2 (w - 1) - [;} , (7.18)

and we provide numerical illustration in figure 7.3. We stress that for y > x, trajectories that
cross 0 before a do not contribute to fig 4 (y]0), and the 4*" step of the matching method is exact.

7.2.2 =2 - Geometrical observables in 2D disks

We now turn our attention to higher dimensions, and consider the case of jump processes with
i = 2 confined in a disk of radius R with fully absorbing boundary, as depicted in figure 7.1(a).
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x10~2
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Figure 7.3: Cumulative hitting distribution for a Levy distributed heavy-tailed jump process starting from xop = 0, and fixed
interval size z. The dashed line is obtained from equation (7.18).

Harmonic measure. In the large volume limit, the position of a particle issued from (rg, 6y = 7)
upon crossing the absorbing disk surface is uniquely determined by the angular position 6 (see
figure 7.4(a)), whose distribution w(ro, 6) is referred to as the harmonic measure. In the continuous
limit R — 7 > a,, (ie bulk initial conditions), the distribution of 6 is given by the corresponding
Brownian harmonic measure w(®)(rg, R, 6) in a disk [Redner 2001]:

2
1 _ Ty
(©) 0) = — L : 1
w (T07 R7 ) ot 1 + 2]1%0 COS(G) + ],%22 (7 9)

Note that since §y = 7, the harmonic measure is minimal at § = 0. However, as rg — R, equation
(7.19) vanishes, and the continuous description fails to capture the harmonic measure for initial
positions close to the absorbing boundary. Following the matching method (7.13), the asymptotic
harmonic measure is given by

(p _
w(re,0) ~ Wd‘a(R—ro)lim WO(R —u, R 0) ,
a2 R = u—0 ﬂ-(()cc)t(u)

(7.20)

where a is an arbitrary lengthscale chosen such that as < a < R. From equation (7.19), we
obtain the small u behavior of the continuous harmonic measure, and the continuous Brownian
splitting probability is known:

w(R—u,R,0) ~ L u [1},

(o) u
7TO7Q(U,) u:O E

Focusing on the specific case rg = R, the splitting probability of the projected jump process
reads

1 ‘12L
ma(0) o (7.22)
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where we recall that (12L = ay/+/2. Finally, we obtain the asymptotic harmonic measure of the
jump process starting from the boundary of the domain:

W) ~ L% [1] (7.23)

" Rooo 2 R |1 +cos(0) ]’ '
and provide numerical illustration in figure 7.4(b). Importantly, the harmonic measure (7.23)
is still minimal for § = 0, but diverges for § = 6y = 7. Indeed, in the large volume limit, most
trajectories escaping in the vicinity of the starting point (R, 6y = 7) do not penetrate the bulk
of the domain. In turn, the 4™ hypothesis of the matching method is violated, and (7.20) does
not hold in the case 6y = .

--------- Normalized harmonic measure

0.6 v=1, R=500,0)=m

(a) Isotropic jump process in a disk with a fully absorbing (b) Harmonic measure of an RTP starting from the boundary of

boundary. Starting from (R, 6o = 7), this sample trajectory a disk. The dashed line corresponds to equation (7.23). Note

intersects the disk at an angle 6 upon its first escape, con-  that the harmonic measure is normalized between [—3—7r 3

IR
tributing to w(R, ).

Figure 7.4

Splitting probabilities in eccentric disks. In the context of preferential target search,
geometrical observables quantify the probability that among a group of targets, a specific one
is reached first. We here consider the case of a jump process with u = 2 evolving between
two eccentric disks D; and Dj of respective centers z; € C and radii R; (see figure 7.5(a) for a
schematic of the situation), and compute the probability to cross the outer rim first. We emphasize
that this geometry is particularly relevant in a biophysical context, to describe transport from
and to the nuclear and cellular surfaces [Stana & Lythe 2022] for instance.

Without loss of generality, we consider that the particle starts on the smaller disk of radius
Ry, at position zg = 21 + R1€', and we denote TRy, R, (20) the splitting probability to strictly
cross the outer disk before the inner one. We now strzgghtforwardly apply the matching method
(7.13) to obtain:

TRy, Ry (20) ~ 75, (0) lim (7.24)

Ro>R1>a>>as = u—z0 71_60) (U)

with u € C. Importantly, the limit © — 2y has to be taken perpendicularly to the H; plane, ie
with fixed 6. Rewriting u = 2o + €' with ¢ € R, equation (7.24) is recast as
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ﬂgl)’ R (2o + eei)

1 .
~ Ty, (0)lim
Ro>Ri1>a>a2 0.2 )E—)O Féc) (ZO _|_€ei9o)
7@

TRy,Rs(20) (7.25)

In the small € limit, the continuous hyperplane splitting probability and projected splitting
probability are given by

ay

a>r>va2 a’ (7.26)
(20 + ee'?) = Ea
a

79.4(0)

(c
o

e~ I

)

such that mg-,(0)/ 71'(()2(20 + ee'%) ~ ag /e. Additionally, the continuous splitting probability to
the outer rim vanishes linearly with e
Ty (20 +€6™) ~ < fg, (7.27)
where fg, is a 0y, R; and Ry dependent constant. Finally, making use of equation (7.26) and
(7.27), we find that the splitting probability starting from the inner disk is given by
(c)

1 46,
e 7&(20) R2>>R;V>>a>>a2 TR, ’@(ZO Taze 0)‘ (728)

As a result, the evaluation of the Brownian eccentric splitting probability 77%1) Ry (z) for arbitrary

initial position z is sufficient to determine 7g, r,(20).

1. To compute 77%1) R, (?) explicitly, we first introduce the inter-disk distance | = |z — 2]

and define the constant A = 1/\/(R3 — R?)? — 212(R} + R3) + [*. In turn, the conformal
transformation

(7.29)

maps the eccentric region to a concentric region between two disks of radii Ry > Ry (see
[Chen et al. 2009] for more details), given by

i V1+4R3a% — 1

- 2R2a2

) =
i _ V1+4Rt? -1

1= 2R, a2

(7.30)

2. Next, since the Laplace equation satisfied by 7(© is invariant by conformal transformation,

if w € C is the image of z through the conformal mapping, ng) Ry (2) = Wg) B (w).
s 1,112

3. Finally, in the concentric geometry, the splitting probability only depends on the initial
radius 7 € [R1, Rz|, and the splitting probability is known [Redner 2001]:
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@) ") = log (1) — log(ﬁl)

« S A ' (7.31)
log(R2) — log(R1)

Ry, Ry

Applying this procedure, we obtain the following exact expression for the splitting probability of
general jump processes starting from the inner disk at position zy = z; + R;e*%:

20+ateio -
log (H T AGotale®y||) ~ log(R1)
o+ay€*?0)
TRy Ry (20) ~ = _ , (7.32)
- Ra,R1>a>a2 log(Rg) — 10g(R1>
and display numerical agreement in figure (7.5).
x10~2
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(a) Eccentric disks D1 and D3 of respective radii and centers (b) Splitting probability of a RTP in an eccentric annulus,
R; and z;. Starting on the boundary of the inner disk at starting from the inner rim at position zg = z1 + R1e*?0. The
position zg = z1 + R1e*%0 | the sample trajectory crosses the two disk centers are offset by a distance 50. The dashed line
outer rim before the inner one, contributing to g, r,(20). is obtained by following the procedure outlined above.

Figure 7.5

Constant-speed tumbling processes. As a concluding remark, we emphasize that all the
results obtained for geometrical observables of jump processes are directly applicable to isotropic
continuous time processes with a constant speed v and random reorientation events.

As an example, consider the harmonic measure of a 2D Run and Tumble particle with
tumbling rate v and constant speed v. The length of each flight is given by [ = vr, with 7 the
random flight duration, and it is easily seen that the characteristic flight length ao is given by
az = v/7. As a result, we obtain from equation (7.23) the asymptotic harmonic measure of a
Run and Tumble particle starting from (R, 60y = 7):

1 v 1
) ~ — . .
w(E,9) R>2 2w \/29R [1 + cos(@)] (7.33)

7.3 First-passage times

So far we only considered first-passage observables that depend solely on the position of the
particle upon exit. However, the matching method is naturally extended to deal with first-passage
times through the absorbing surface. We first focus on exit-times from one-dimensional intervals,
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studied at length in chapter 5, and show that the matching method allows to go beyond the
asymptotic results obtained for the RETP and LETP.

7.3.1 Mean exit-times from intervals

In this subsection, we consider the asymptotic mean exit-time ¢(z|zg) from the interval [0, ], for
an arbitrary jump process starting from xy. Note that the asymptotic rightward and leftward
exit-time probabilities have been investigated extensively in chapter 5. However, we have shown
in table 5.1 that for heavy-tailed jump processes, the RETP and LETP are expressed in terms of
unknown scaling functions h, and g,, such that one cannot explicitly evaluate t(z|xg).

Universal asymptotic behavior. To derive the asymptotic behavior of the mean exit-time,
we resort to the matching method, and consider hereafter xg = 0. As we have seen in the
previous section, the one-dimensional continuous splitting probability for limit processes Tr((fc)L(u)
is known for all ;4 < 2, and we have derived the splitting probability from zero F(J):Q(O) for all
jump processes in chapter 4. Additionally, the mean exit-time from an interval for a-stable

processes is known [Getoor 1961], and given by

(SIS

1) (zzo) = V7 [Z“F (1 + g) T <1+“>} - (zo(z — ) (7.34)

2

Of note, this result is also true for Brownian motion with diffusion coefficient D = 1. In turn,
the asymptotic mean exit-time for arbitrary jump processes is straightforwardly obtained from
equation (7.13) and reads

(c)
Halo) ~ iy (0)lim | S
T—00 = u—0 WO?Q(U)

(7.35)
270/ | x
T—00 T (H—Tﬂ> au
We stress that equation (7.35) is valid for all jump processes with p < 2. Although the = scaling
was expected, we identify the exact prefactor, and uncover a fully explicit asymptotic universal
behavior. Importantly, we emphasize that t(x|0) scales as 2/2, much slower than the typical
time n, o z* needed to approach x, which we introduced in the previous chapters. This effect
is mostly due to the fact that many trajectories contributing to ¢(x|0) never approach z, and

exit leftwards through 0. Finally, note that mean first exit-times should be understood as mean
number of steps, as indicated by the dimensionality of equation (7.35).

A short comment on the matching method. In the 4" hypothesis of the matching method,
we neglect all trajectories that cross 0 before the arbitrary lengthscale a. This hypothesis is
here validated a posteriori; in the limit z > a > qa,, it can be seen from equation (7.35) that
the scaling with a of the mean exit-time of trajectories that exit through 0 without crossing a
is bounded above by a#/2. In turn, these trajectories have a sub-leading contribution to #(z|0),
which scales as /2.
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INlustrations. We now illustrate the asymptotic result (7.35) on both analytical and numerical
examples. First, we consider the exactly solvable case of the exponential jump process with
p(f) = %e*'ﬂe', for which p = 2 and as = y~!. The associated mean exit-time t(z|zg) from [0, 2]
obeys the following backward equation:

i(aleo) =1+ [ el Je Iy, (7.36)
0

which can be solved (see [Van Kampen 1992] for instance) to obtain the exact mean exit-time,
valid for all z and x( values:

2,2 2
x Tx x
ty(zlz) = — 0 4 T 4 T (7.37)
2 2 2
As a result, in the large x limit, the mean exit-time ¢;(x|0) starting from 0 is asymptotically
given by
Ty
t1(z[0) ~ 5 (7.38)

in agreement with the asymptotic result (7.35). In the case u < 2, there does not seem to be
a process for which the integral equation (7.36) is exactly solvable. Consequently, we provide
numerical estimates of ¢(x|0) for a variety of heavy-tailed jump processes in figure 7.6, and display
agreement with equation (7.35).
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Figure 7.6: Mean exit-time for three heavy-tailed jump processes. For large x, the mean exit-time converges towards the
asymptotic behavior (7.35). Of note, the F-distributed process with p(¢) o< (1/|I[(1 + |¢|)) has p = 1/2 and a, = 2/7.

7.3.2 Mean exit-times from disks - recovering the Kac formula

By computing the harmonic measure and eccentric disk splitting probabilities, we demonstrated
that the matching method is relevant to investigate geometrical observables in dimensions greater
than one. In this subsection, we show that the matching method is equally applicable to address
higher dimensional first-passage time observables, and focus on mean exit-times from disks with
fully absorbing boundaries. Additionally, we showcase the flexibility of the method in dealing
with jump processes whose first jump is not drawn from the same distribution as the subsequent
jumps.



7.3. First-passage times 149

Kac formula. Specifically, we consider a Run and Tumble particle with speed vg and tumbling
rate v in a 2D disk of radius R. The particle starts on the boundary of the disk at position
(R,0y = 7) (see figure 7.4(b)) and evolves until it strictly escapes the disk. In turn, the Kac mean
exit-time tx 4c(R) is known to be v independent |Blanco & Fournier 2003, Bénichou et al. 2005,
Savo et al. 2017], and given exactly by the so-called Kac formula:

1 by
treac(R) = - / 40 cos(O)E(R|9) = - (7.39)
m™Jo 2'[)0
Importantly, ¢(R|6) is the conditional mean exit-time of the Run and Tumble particle with initial
speed vg = v [cos(f)ex + sin(f)ey].

Matching method with specific first jump distribution. We now determine the asymptotic
large R conditional mean exit-time ¢(R|6) for arbitrary jump processes with u = 2, and show
that applying our result to the Run and Tumble particle we recover the Kac Formula.

In the large volume limit R > ag, only the discrete part W(J):a(O) of equation (7.13) is impacted
by the distribution of the first jump, and we rewrite the conditional mean exit-time as:

(c) _
tR|O) ~ w4 (0)lim EIRIR —¢)
R>ap TVE2Y 750 7T(()C)(E)

a

: (7.40)

where 7r11q1 Hy (0) is the splitting probability to cross the hyperplane Hs before Hy, conditioned

on the first jump being taken with an angle @ (see figure 7.7 for a schematic of the situation). As
usual, t()(R|r) is the Brownian mean exit-time from the disk starting from radius r, and 7r(()2(5)
is the Brownian one-dimensional splitting probability to a.

Figure 7.7: Sample trajectory contributing to the conditional hyperplane splitting probability 71'}_11 Hoy (0). The direction of

the first jump is fixed at angle 0, and subsequent jumps are taken isotropically until Hy is crossed before Hj.

Both ¢(9(R|r) and 77(()2(5) are known and can be found in [Redner 2001, and we obtain

©(RIR —
L [HORIR=2) | Ra

e—0 ﬂ(()?;(é‘) a ﬁ’

(7.41)

In turn, we compute 7r11q17 H> (0) by partitioning over the length of the first jump, which we recall
is distributed according to p(€):
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o
Thom(®) = [ (O ccosto)r (7.42)
such that the conditional mean exit-time is finally given by

Ra

- - 1
R>as 2D p(€)my,4 (€ cos(0))dl. (7.43)

t(R|0)

We now show that in the case of the Run and Tumble particle, making use of equation (7.43)

obtained from the matching method correctly yields the Kac Formula. In this specific case,

the flight length is given by ¢ = voT, where the flight duration 7 is distributed according to

p(T) = ve~77. In turn, the corresponding diffusion coefficient and characteristic lengthscale ay

are given by D = v3/(27) and as = vy/7. Plugging equation (7.43) into (7.39), we obtain the
asymptotic the Kac mean exit-time:

1 (2 1
/2 dfcos(0)t(R|0) ~ / dé cos(0 / e g o (cos(0)voT)dT
™ Jo R—oo T 2D
Ravy
v cos(@) 7.44
R—)oo 2D’U07T/ d@/ ¢ 7'&'0 (f)df ( )

l f” / U(—2__)as,
Roo0 2 i Jo v cos(0)

where U(s) is defined as

7 _ Yo > —sl__ L
U(s) = \/iva/o ey (0)de. (7.45)

For Run and Tumble particles, the Fourier transform of the projected jump distribution is given

by 5. (k) = 1/4/1 4 [kugy~1]%, and we showed in equation (4.36) of chapter 4 that in the limit
a > ao

U( ~ ) ~ wpcos(h) o | 1 /°° dk o (1 B 1 )
vo cos(h) v P cos(0)m Jo Wl(e) + k2 & V1+ k2

Consequently, the Kac mean exit-time is asymptotically given by:

(7.46)

1 [2 R V2 [% 1 ©  dk 1

— dé Ot(R|) ~ —— 0 - —g——log (1 - ——

71'/0 cos(9)(R| )R—>oo 20 ™ Jo cos(f) exp ! COS(G)W/O COS?( ) + k2 g< /1 +k2>
(7.47)

and we finally obtain

1/’2’ df cos(0)t(R|0) ~ E, (7.48)

™ Jo R—o00 21)0
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in agreement with the Kac formula (7.39), which is valid for all R and vg. In conclusion, we
demonstrated that the matching method is well suited to address higher dimensional first-passage
time observables and is easily adapted to take into account the specific initial conditions of a
given jump process. In particular, we emphasize that the key ingredient to evaluate first-passage
observables of jump processes is the determination of the hyperplane splitting probability m, m,,
which relies heavily on the one-dimensional splitting probability. Moreover, it is worth stressinig
that the Kac mean first-passage time only serves as an example of specific initial conditions,
highlighting the broad range of applicability of the matching method.

7.3.3 =2 - Complete distributions of first-passage times in the large volume
limit

As a final application example, we consider asymptotic first-passage time distributions of jump
processes with p = 2.

2D disk with fully absorbing surface. While the Kac formula only focuses on the mean
first absorption time of a Run and Tumble particle after desorbtion from the surface of a disk,
we show that the matching method allows for the derivation of the complete first-passage time
distribution fr(n) for arbitrary jump processes with p = 2, starting from the disk boundary.
We emphasize that such distributions cannot be obtained by a direct continuous approximation.
Introducing the FPT distribution fg) (t,r) of a Brownian particle starting from radius r and

making use of the matching formula (7.13), we obtain

9, R—e¢)

fr(n) ~ mi,(0)lim |=— | . (7.49)
s IS

The continuous Brownian FPT distribution fg ) (t,r) satisfies the following diffusion equation

9 () 9 ()

Ly = DAL 19, 7.50

2 1) = a2 ) (7.50)
with boundary conditions fg ) (t,r = R) = 40(t), and can be explicitly computed in the Laplace
transformed space:

. o P 0F)
/ e st (C)(t r)dt = fg)(s,r)dt = —— (7.51)
; R

E Y R2 Y
w(VF)

with I the modified Bessel function of order k. To obtain the first non vanishing order of
fg) (t, R — ) in the large R and t limit, we consider the distribution of the rescaled variable
t =t/R% Rewriting r = R(1 — ), we obtain the small ¢ behavior of the Laplace transformed
distribution of #:
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+o(e). (7.52)

/OOO o5t (Ec)(g, R(1 —¢))di = ~(EC)(§’5) ng%o 1 E\/\/Zl()((\/\/%

The constant term in the RHS of equation (7.52) corresponds to the Dirac delta boundary
condition, such that we only consider the linearly vanishing term. In turn, making use of equation
(7.49), we obtain the asymptotic large R Laplace transformed distribution fﬁ(é) of the rescaled
variable 7 = n/R2:

r(5) >~ DL ( \/g>

valid for any jump process with u = 2. In particular, we emphasize that our result holds for
arbitrary constant-speed jump processes with speed vg and tumbling times distributed according
to p(7), for which the projected lengthscale and diffusion coefficient are respectively given by

()

) (7.53)

v/ (T?) vg(r?)
2 4(r) °

ay = (7.54)
As a concluding example, we consider the case of the Run and Tumble particle starting from
the boundary, with p(7) = ve™ 77, and display agreement between numerical simulations and
numerical inversion of equation (7.53) in figure 7.8(a).

FPT distributions to interior targets. In a large confining domain D of volume V', charac-
teristic lengthscale R, and reflecting boundary conditions (see figure 7.1(b) for a schematic of
the situation), the FPT distribution of Brownian particles starting from xg to a small spherical
target of radius r has been shown to display universal behavior in the large volume limit R > r
[Bénichou et al. 2010b, Meyer et al. 2011|. More precisely, defining the mean first-passage time
t(9)(xg) from xg to the target, and the global mean first-passage time (T) = V! I (9 (u)du,
the distribution f()(A|xg) of the rescaled variable § = t/(T) has been shown to be given by

¢ ) (xo) t)(xo) _
f( )(9’)(0) R:;oo <1 — <T>> 5(9) + We 9 (7.55)

We emphasize that t(c)(xo) vanishes as the source target distance goes to 0, such that equation
(7.55) cannot be used directly to evaluate the distribution f(n|0) of the FPT n of jump processes
starting from the surface of the interior target. However, making use of the matching method, we
extend this large volume framework to jump processes with p = 2, and compute the asymptotic
distribution f(7]0) of the rescaled variable 7 = n/(T), in the limit as < r < R.

Following the derivation of the FPT distribution to the fully absorbing disk, we straightfor-
wardly apply the main equation (7.13) and obtain:
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0a , (7.56)
Rza 70 oo | ) (xo)

where Y denotes the surface of the absorbing target. Importantly, to first order in the large
volume limit, the direction in which we take xg — ¥ is irrelevant. In turn, the evaluation of ¢(¢)
and (T) as xg — X is sufficient to obtain the complete FPT distribution f(7|0).

As an illustration, we consider a three-dimensional domain D of arbitrary shape. For Brownian
motion, the large volume behavior of #(¢)(xg) and (T') is given by [Condamin et al. 2007a]

19 (x0) v’(l— 1), T ~ YL (7.57)

Rsoco D \r 1r+¢ R—oo D 4mr’

where r is the target radius, and ¢ the distance of the Brownian particle to the target surface.
Importantly, these expressions only depend on the volume V', and not on the specific shape
of the confining volume. First, note that for a jump process starting from the surface of the
interior target, the asymptotic expression of (T') is unchanged, and only the vanishing mean FPT
#(©) (x0) needs to be dealt with. In the limit r > as, the matching method applies, and the mean
first-passage time vanishes linearly as ¢ — 0

eV
a:O AnDr?’
As a result, combining equation (7.56), (7.57) and (7.58), we obtain the distribution of the
rescaled variable 7 in the large R limit:

t(r +¢) (7.58)

ay ay _;
nl0) ~ 1— =146 —~e ™ 7.59
@) (1= ) o)+ (7.59)

In conclusion, the matching method is fully compatible with existing large volume frameworks
addressing first-passage observables for continuous processes, and allows to extend numerous
asymptotic results to jump processes, while retaining the specificity arising from their discreetness.
In this context, we have computed FPT distributions to interior targets for all initial position
regimes, including the important edge initial conditions where the particle starts close to the
absorbing target, and illustrate the general result (7.59) in figure 7.8(b), where we numerically
estimate the FPT to a small target for a Run and Tumble particle in a large confining cubic
domain.
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————————— Numerical inversion

o Numerical simulations : v =1, R = 500, vy = 10

0.000  0.005 0.010 0.015 0.020 0.025 0.030

(a) Distribution of the rescaled FPT 6 = n/R? to the boundary
of a disk of radius R, for a Run and Tumble particle with
p(T) = ve~ 77 and constant sped vg. The particle starts from
the absorbing boundary, and the theoretical dashed line comes

vy ,—u

V€

Numerical simulations : € =50, V =8.10%, y =1, vy =1

1 2 3
u

(b) Cumulative distribution of the rescaled FPT 6 = t/(T) to a
centered spherical target in a three-dimensional cubic domain
for a Run and Tumble particle starting from the target, with
ay = vo/(v/37). The dashed is computed from equation

1074

from numerical inversion of equation (7.53). (7.59).

Figure 7.8

7.4 Conclusion

Building upon results developed in chapter 4, the matching method allows to properly bind
together known results for continuous stochastic processes and the particular behavior arising
from the microscopic details of discrete time jump processes. As a result, we obtain a variety of
new asymptotic results in the large confining volume limit.

We first investigate geometrical observables. We consider one-dimensional hitting distributions
for heavy-tailed processes, and turn to disk geometries in the u = 2 case. Importantly, our two
dimensional results for the harmonic measure and splitting probabilities of Run and Tumble
particles go beyond the simple Brownian description, capturing the specifics of partly ballistic
trajectories.

The matching method naturally extends to first-passage time observables. We compute
mean exit-times from intervals, complementing the results obtained for exit-time probabilities
in chapter 5. Additionally, we showcase the flexibility of the method in dealing with varying
initial conditions by recovering the Kac formula for Run and Tumble particles in disks. Finally,
we exhibit the compatibility of the matching method with existing large volume results for
continuous processes, by computing the complete FPT distribution to a small target in a large
confining domain of arbitrary shape.

We emphasize that the results presented in this chapter are only representative application ex-
amples of the matching method, spanning various geometries and jump processes, with experimen-
tal relevance to biology [Tailleur & Cates 2008| or optics [Baudouin et al. 2014, Savo et al. 2017|.
In turn, we hope that the comprehensive framework of the matching method will be beneficial for
researchers in various fields to explain and interpret non-trivial phenomena observed in empirical
time series.



Conclusion

The description and interpretation of a physical phenomenon by a random transport problem
involves two main aspects: the determination of a stochastic process accounting for the empirical
random dynamics, and the choice of a statistical observable that addresses a specific physical
question. For example, the spread of an epidemic can be modeled by a random walk on a graph
(stochastic process), and the time for the complete contamination of the population corresponds
to the time taken by the walker to visit all the nodes (observable). Similarly, the length of
a queue can be described by a Poisson process (stochastic process); in turn, the probability
that the cashier ever goes home is given by the probability of this process eventually reaching 0
(observable).

This thesis is divided into two parts, with each part corresponding to one of these two aspects.
In the first part, we introduced a new observable, the territory visited by a confined random
walker before reaching a given target, which quantifies the efficiency of the space exploration
process, and quantitatively characterized its statistics for the broadest possible class of stochastic
processes. In a second part, we focused on a single type of stochastic process, one-dimensional
jump processes in confinement, which have been studied for some time but with limited analytical
results. In this regard, we proposed a method to provide a variety of general results in the large
confining volume limit.

The number of distinct sites visited by a random walker after n steps, which quantifies the
ability of the walker to explore an unknown territory, has been mostly studied in the infinite
geometry. Indeed, in a bounded geometry, the confining domain is eventually fully visited.
However, the question of what portion of a closed domain is visited by a walker before escaping
through a fixed exit is of particular interest in chemical and biological applications. To answer
this question, we introduced the observable C(sg), defined as the territory visited by a random
walker starting from sg before reaching a fixed target sr.

We first considered the class of 1D Markovian processes with connected span, which includes
many classical lattice random walks: the symmetric and biased normal walk, the persistent
walk; but also continuous processes such as Brownian Motion with and without resetting. By
establishing an exact relation between the territory visited before reaching the target located at
0, and the splitting probability 7y, s,(s0), defined as the probability that the walker reaches sy
before s1, we determined the exact distribution of the territory visited for numerous processes.

To go beyond the one-dimensional and connected span hypothesis, we then considered the
more general class of scale-invariant processes, in the large confining volume limit. In particular,
this includes nearest neighbor diffusion on deterministic and random fractal networks, but also
processes with long range jumps, such as Riemann walks. By exploiting the asymptotic behavior
of splitting probabilities for scale invariant processes in the large volume limit, we identified
a universal scaling behavior of the first moment (C(sg)) of the explored territory, but also of
its complete distribution. In particular, we fully characterized the dependence of the visited
territory on the geometrical parameters of the system, namely the source-target distance, as well
as the size of the confining domain.

Finally, it is clear that the territory visited before finding the target sp is intrinsically linked
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to the time needed to reach sp. To quantify precisely the intuitive correlations between territory
and time, we considered the joint distribution o(s,n|sg) of the visited territory s and the FPT n
to s7. In the case of 1D Markovian processes with connected span, we developed a methodology
to explicitly compute o, and applied it to the above given processes. Moreover, in the limit s and
n large, we showed that the joint law admits a universal scaling form, valid for all one-dimensional
processes, whether they be Markovian and with connected span, or not. In particular, our results
are valid for the emblematic fractional Brownian motion.

These initial results offer many exciting possibilities for future investigations. For example,
does the universal behavior of the joint distribution of the territory and FPT still hold in
dimensions greater than 17 If one expects to find universality classes akin to those governing the
behavior of C(sg), the answer to this question is currently unknown and represents a challenging
problem for future research. Similarly, can we say anything if the target is not fixed but randomly
distributed in the system, or if multiple targets are allowed? These natural extensions are not
only exciting from a theoretical point of view, but are also part of the broader perspective of
modeling realistic phenomena and systems.

Our second area of interest involved investigating the behavior of a specific stochastic process,
namely one-dimensional jump processes, which describe the position x,, of a particle undergoing
random jumps distributed according to a symmetric distribution p(¢) at discrete time intervals.
Importantly, these models, first introduced by Pearson in 1905, are especially useful for analyzing
experimental or numerical data, which is discrete by essence, as continuous descriptions such
as Brownian motion are unable to capture the effects of this discretization. Jump processes in
infinite and semi-infinite geometry (ie stopped upon becoming negative) have been extensively
studied: for instance the distribution of the position x, can be expressed explicitly in terms of
p(¢) in both cases. However, for bounded (or confined) jump processes, ie those that stop at the
first exit of a finite interval [0, x|, there are no general results valid for any p(¢).

To gain a better understanding of these confined processes, we first focused on observables
related to the exit of the interval, specifically the splitting probability m z(x¢) which quantifies
the likelihood of the process escaping through z rather than through 0. In the limit x — oo, we
derived an explicit universal behavior for the splitting probability, which holds for any symmetric
jump distribution. Our result provides a complete characterization of the splitting probability’s
dependence on the initial position of the particle and captures the specific effects of the process’s
discreteness. Notably, we showed that the splitting probability starting from xy = 0 depends
only on the tails of the jump distribution, and is strictly non-zero, which is not possible for a
continuous non-smooth process.

To obtain more fine-grained information on interval exit events, we investigated the leftward
and rightward exit-times of the jump process within the confined domain [0, z]. To that end, we
introduced the leftward exit-time probability (LETP) Fy ;(n|zo), defined as the probability that
the particle exits the interval through 0 on the n' step, and its rightward counterpart, the RETP
Fo z(n|zg). In the large interval limit, we demonstrated that these quantities exhibit universal
asymptotic behavior that depends solely on the tails of the distribution. We emphasize that our
findings account for the discrete effects inherent in jump processes and hold for all symmetric
jump distributions p(¢) and initial positions zg, including in particular z¢ = 0.

Finally, the investigation of the splitting probability, LETP, and RETP allowed us to extend
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our findings in two directions. Firstly, we examined extreme value statistics (EVS) of jump
processes, which are typically associated with the distribution of extremums and the time taken
to reach them. We demonstrated that the LETP, RETP, and splitting probability are essential
components in determining EVS observables. In turn, we computed a variety of exact and
asymptotic joint distributions of extremums and first-passage times for arbitrary p(¢). Secondly,
we adapted our results to the case of isotropic jump processes in dimensions larger than one. To
achieve this, we developed a methodology suitable for any jump distribution that allowed us to
evaluate general first-passage observables in the large volume limit. For example, we computed
the distribution of the time to reach the edge of a disk for a Run and Tumble particle initially
located on the disk’s edge, going beyond the classical Brownian motion approximation.

In summary, we have developed a methodology to evaluate the asymptotic behavior of
observables associated with the exit of a confining domain for arbitrary symmetric jump processes
in dimension 1 and higher. Our results are comprehensive, and we emphasize that the analysis of
the tails of p(¢) is mostly sufficient to evaluate the asymptotic behavior of the chosen observable for
any process. However, there are still many unanswered questions that we hope to explore in future
research. One such question is the evaluation of first asymptotic corrections in the large confining
volume limit, which might be achieved using the big jump principle [Vezzani et al. 2019], and
would allow for a more detailed characterization of confined jump processes. Another direction
that we are eager to explore is that of the asymmetry of the process. Is it possible to identify
universal behaviors in the case where p(¢) is not symmetric anymore? We know that this is the
case for the survival probability of semi-infinite processes [Majumdar et al. 2012], and hope to
extend our methodological basis to the confined asymmetric case.

Overall, there is still much to be explored in the field of confined jump processes, and we
hope our work can inspire further research in this area.
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APPENDIX A
Relocating random walk - first order
perturbation theory

We devote this Appendix to the derivation of the distribution of C'(s¢) for relocating random walks
with A < 1. We compute a first order perturbation approximation by considering trajectories
that relocate exactly once before reaching 0. Additionally, we neglect all trajectories where
the pre and post relocation sets of visited sites overlap. In turn, we obtain a lower bound for
P(C = nlsp).

For fixed n and sg, the contributing trajectories contain two distinct parts: a first short
diffusive motion where n; sites are visited, followed by a relocation event that takes the walker
close to 0, where the last n — ny sites are visited before the target site is reached. The probability
of such trajectories can be rewritten as follows:

n
P(C=n+1lsg) = Z P(span = n; when the first jump occurs|sg) x
ni=1

- (A.1)
N Z u(n —mng and no jump has occurred|s)
s=1

where p(ng and no jump has occurred|s) is the probability that the maximum before reaching 0
is equal to no, and no jump occurred during the whole trajectory. Of note, the % factor simply
takes into account the fact that after relocating, the walker is either left or right of 0. We now
introduce the various quantities needed to evaluate each term in equation (A.1).

e Let the propagator Gy (s1,7|s0) denote the probability to be at position s; after n
steps, starting from sg, with absorbing sites at 0 and s. We additionally define its
generating function, with £ € [0, 1]: Gjo (&, s1150) = D2 Glo,5)(7, 51]50)€™. Importantly,
the propagator is a known quantity that can be found in [Hughes 1995]:

8§1—S8 §—S8
Oél — 1

Glo,s)(51,€]80) = G[o,s](80,§|80)a,(3,80) Ry

Ea [1 — 20— ] QQ(S_SO_I)” o (A.2)

1= 7 1 — 250 1 — v2(s—s0)

Glo,5(50,&ls0) =

a=¢11-y1-¢2)
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o Let 770 (50) denote the probability to reach site s before site 0, without any relocatlng

event along the trajectory. By partitioning over the time at which s is reached, 7r07 s 7 (s0) is

given by:
o0
ﬂ'gjs(SO) = Z P(s is reached for the first time at time k)P (no jump occurs in k steps)
k=1
1-2A

= —5 =G5 = 1,1 = Also):
(A.3)

e Let g s(n|sp) denote the survival probability after n steps in the interval [0, s] with
absorbing boundary conditions. o s(n|so) is given in [Hughes 1995]:

qo,s(nlso) = 2@;@ cos” <(2j:1)ﬂ> sin <(23+31)”0> cot (W) . (A4)

o Let 71'6" s (so) denote the probability to relocate before reaching either 0 or s:

Z qo.s(k — 1|s0) P(a jump occurs on the k™ step)

A sin (@00 ot ((2phr) (A5)

5 |27+1|<s 1 —(1—\)cos (thl)ﬂ)

We now rewrite all terms in equation (A.1) as functions of Gyg 4(s1,7[s0), ng(so), qo,s(n|so) and

71'6 <(50). Making use of the translational invariance of the normal walker we obtain:

P(span = n; when the first jump occurs|sg) =

5~ nj nj (AG)
Z 7I'0 711 0n1+1(1) <7l'07n17_1(5) + 71'0,”17_1(’”1 — 1= 3>> ,

and

p(n —ny and no jump has occurred|s) = ﬂgil_m_l(s)ﬂgi_m(l). (A7)

Equations (A.6) and (A.7) can easily be evaluated. In turn, we obtain a first order approximation
for the distribution of the number of distinct sites visited in the rare relocation setup, and display
numerical agreement on figure 1.5 of chapter 1.



APPENDIX B

Exact Pseudo Green functions

We devote this Appendix to exact expressions of Pseudo green functions for random walks on
periodic lattices. These results can be found in [Bénichou & Voituriez 2014]. We recall that the
pseudo green function H(s;, sj) = H;; satisfies the following equation

1
Nv
where A; is the discrete Laplacian taking the periodicity into account, d;; the Kronecker delta,
and N the total number of sites in the domain.

AiHij = (51'3‘ — (Bl)

2D paralelepipedic domain The pseudo green function for a two dimensional periodic
paralelepipedic domain of dimensions (X,Y’) and N sites is given by

| X1 Y1 exp [Qimﬁ(;i—xj) 4 21‘”7"%}'—?/]')]
N 2 2 T oo () + oo (5]

m=0n=0mo

Hij =

(B.2)

3D paralelepipedic domain The pseudo green function for three dimensional periodic
paralelepipedic domain of dimensions (X,Y, Z) and N sites is given by:

X-1Y-1  Z-1  exp [%mﬂ()ﬂ?—%) + Znnliy) 2ip7r(?—zg')]
m

DD

Tiom 1§ [cos (%55) + cos (3) +cos (%)

1
- L (B.3)

=0 n=0 p=§
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APPENDIX C

Three point splitting probabilities

We devote this Appendix to the derivation of 3 point splitting probabilities in the large volume
limit for non-compact processes. Let s1, so and s3 be three target sites in a confining domain
=, and denote 7, 5, 54(S0) the splitting probability to reach s; before sy and s3 starting from
so. Denoting A: the discrete Laplacian acting on variable 4, 7y, 4, s,(S0) obeys the following
equation: -

Aoﬂﬂ,52,33 (50) =0

51,82,8 1
Tor.00.00 (1) (C.1)
52)

7['371752753( 2) =0

Tsy,52,53 (53) =0

In terms of pseudo green functions H;;, the 3 point splitting probability is given exactly by

Ts1,52,83 (50) =
[Hio — Hao + Ho3 — Hy3) [Hi2 — Hag + Hs3 — Hyg) — [Hio — Hso + Hzz — Hi3] [Hi2 — Hao + Hoz — Hy3]

[Hi1 — Ho1 + Hoz — Hi3) [Hio — H3p + H3z — His| — [Hi1 — Hs1 + Hss — Hys) [Hio — Hao ?- H2)3 — His]
C.2

Note that this expression can be directly checked by plugging into (C.1) and using the fact that

AiH;j = 6;5 — % Denoting r;; the distance between s; and s;, we consider the large volume
limit for which 7;; > ro1 = r, for all pairs (7, 7) # (0,1). In turn, for all pairs of sites far away
from each other, we have H;; ~ Hy;. As a result we simplify equation (C.2) and obtain:

Hyo — H3o + Hin — Hig
Hyy — H31 + 3(Hy — Hi3)’
where Vi, H;; = Hi;. Recalling the exact expression for the two point splitting probability

(C.3)

Tsy1,52,53 (s0) ~

Hyo— H3o+ Hi1 — His

= C4
we rewrite the asymptotic 3 point splitting probability as
2(Hy1 — H3y
oy (50) ~ gy (50) e 111 (©5)

Hyo — H3y + 3(Hy1 — His)'

Finally, for s1, so and s3 far from each other, we asymptotically have Hia ~ His, so that (C.5)
is simplified further:

2
Wﬂ,82783(30) ~ 577871,83 (30)' (C-6)






APPENDIX D

Joint statistics of space and time

We devote this Appendix to additional information regarding the derivations and simulations
presented in chapter 3.

D.1 Joint distribution derivations

In the following, all generating functions and Laplace transforms are identified by the variable
name (respectively £ and p), to make notations less cumbersome.

D.1.1 Persistent random walk

We first derive the RETP Fp 4(n|sg) for the persistent random walk. Similarly to the derivation
of the splitting probability, we introduce ug s(n|so) and vg s(n|sp) the RETP conditioned on the
direction of the previous step (respectively rightward and leftward.) Denoting a the probability
of taking the first step towards the right yields:

Fos(n+1,s0) = augs(n|so + 1) + (1 — a)vp s(n|so — 1). (D.1)
In the generating function formalism we obtain:
3

Dropping the ¢ dependence for brevity, we also obtain a set of equations for u and v:

= aUOé(f‘SO +1)+ (1 - a)UO,g(ﬂSO —1). (D.2)

¢ — &+ 2p¢

uU7§(80 + 2) — u()é(So + 1) + U()é(So) =0

(D.3)

1 1
ta(s0) = 1 [ Fuoalon + 1) = puos(on + )]
Note that taking & — 1 yields back the governing equations for the splitting probability to reach
s before 0, obtained in chapter 1. Simplifying equation (D.3), we show that ug s obeys a second
order difference equation whose roots read:

§—§+2p§i\/(§—§+2p§)2—4p2

D.4
S 5 , (D.4)

ry =

such that

up,s(s0) = Ar?® 4+ Br?® (D.5)
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Finally, imposing the two boundary conditions ug s(s) = 1 and vy ¢(0) = 0, we obtain the following
result:

_ (p&r— — D)r—
riry — pfrs_ri —r_ri —l—pfrgrj_ (D.6)
B = (p€T+ - 1)T+ .

e, — pErsrd —r_ri 4 ptrirs’
and Fp 5(&|so) is obtained from equation (D.2). In turn, the LETP Fp ¢ (&|so) is obtained by

making use of the symmetry sy — s — sgp and a — 1 — a, and the joint distribution o (s, n|sgp) can
be computed by performing a small £ expansion.

D.1.2 Resetting random walk

We derive Fj 4(n|so) for the discrete resetting process. Recall that, at each step, the walker
either jumps back to its initial position s, with probability A or hops on one of its neighbors with
probability % In the generating function formalism, Fy 4(£|sg) obeys the following backward
equation:

Foa(€lso + 1) — s Fos(€lso) + Foa(€lso — 1) = s Fou(elsy) (D7)

s - s sop—1)=—— s :
0,s 0 5(1 — )\) 0,s 0 0,s 0 (1 — )\) 0,s 4

with associated boundary conditions Fy 4(£|0) = 0 and Fp¢(§]s) = 1. Denoting G(s1, s2) the
Green function such that

2
G(s1+1,s2) — mG(sh s2) + G(s1 — 1,82) = s, 595 (D.8)
G(s1,s2) is given by
G(817 52) = 151§SQG_(31, 82) + 151>52G+(517 32) (D9)
where
G_(s1,82) = A(s2) 1 (r — 1)
%2 pt2 s (D.10)
Gilonsa) = Alsa) P TE T (o )
,,,.52 _ ,,,,Sgi rs
+ T
with

—1 s
M) = (g =) (12 =02 (g ) 2 g (g
(D.11)
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Introducing the homogeneous solution

750 — %0
_ e o
ho,s(s0) = R (D.12)

we finally obtain the RETP for arbitrary s,

h(sp)2A >, G(s0, 52)
L=A+2X3", G(sp,52)°
which covers in particular the case s, = sg. Again, taking £ — 1 yields back the splitting
probability derived in chapter 1. In turn, the LETP Fj 4(£|so) is obtained by making use of the
symmetry sg — s — Sg, and the joint distribution o(s,n|sg) can be computed by performing a

Fos(€]s0) = ho,s(s0) — (D.13)

small £ expansion.

D.1.3 Brownian Motion with drift

Consider biased diffusion with diffusive coefficient D and rightward drift coefficient v. The
continuous LETP Fj ,(t|zg) obeys the following backward equation:

QF (t|z )—viF (t|zo) = DO—QF (t|zo) (D.14)
ot~ Le\T0 0xg Qai™0) = (9:68 Gz A=0/- '

Introducing the time Laplace transform Fy ,(p|zo) = [y e P Fox(t|2o)dt yields

0 32
pFoz(plwo) — U%Fg,x(p|$o) 3y =5 Fo.z(plzo),

and imposing the prescribed boundary conditions on Fp . (p|zg) we obtain

sinh ((x — mo)%, /1+ 4;DD>
55 (T—x0) .

FQ,x(p|x0) =e2D
sinh< ol 1—|—4pD>

In turn, making use of equation (3.11) from chapter 3, the joint distribution is given by

i olv] 4sD
vy v AnD smh( 1+ )

o’(x,plrg) = e 2D 02‘]_L 1+ 52 5 (D.15)
smh( D\/1+4PD>

In real space and time variables we obtain:

vT —v 2D ]’C g
o (2, ) = € 35" ¢ TD" wkz (k) [ (km)%r — 2 — M] sin(kndg),  (D.16)

with 7 = Dt/2? and Z¢ = xo/x. Importantly, the joint distribution can be recast as

_vzg

w2t
o¥(z,t|w) = e" 20 e D 00(93 t|zo), (D.17)
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where ¥ denotes the joint law for symmetric diffusion. We emphasize that this proportionality
relation for fixed ¢ is apparent on figure 3.2 of chapter 3, in the discrete lattice geometry.

D.1.4 Resetting Brownian Motion

Consider finally the continuous resetting diffusion process, which diffuses with coefficient D and
resets to its initial position x, with resetting rate X\. The Laplace transformed RETP Fy 4 (p|zo)
obeys the following backward equation

0? A
g 02 (PlT0) = w? Py (plro) = =5 Fo.a(plap), (D.18)
where w? = % and the boundary conditions are given by Fp;(p|0) = 0 and Fy,(p|z) = 1.
Denoting G(x1,x2) the green function such that
82
——G(z1,22) — W2G(x1, ) = §(z1 — x2) (D.19)
821'1
and G(0,z2) = G(z,z2) = 0, Fp z(p|zo) is given by
sinh(wxg) A /r
Foo =——"2 "Iy , zo)du. D.2
nalplon) = S ) = S Fasloley) [ Gl (D.20)
Taking xg = x,, we obtain
Fo o (plo) = sinh(wzxg) 1 (D.21)
0,z\P|To) = sinh(w:z) 1+%f0m G(U,xo)du .
Finally, the green function is easily shown to be equal to
—(w0+y)w( 2zw _ 2x0w)(1 _ 2yw)
e e e e
G =H(x¢ —
(y7$0) (xU y) [ (62:110.) _ 1)2w
(D.22)

e—(mo—l-y)w e2rw _ o2yw) (1 _ p2zow
Py LS

(e2mw — 1)2w

Making use of the symmetry xg — x — x¢ to obtain the LETP, the joint distribution is finally
obtained from equation (3.11) of chapter 3, and reads

Dw?[p + A cosh (w(z — x))] sinh(wzo)

Sl (w2)p + Xcosh(wn) inh(w(z — a0)) + sih@aoP )

o(x,plwo) =

D.2 Conditional maximum distribution

1
We numerically estimate the conditional distribution ¢(x) of the rescaled variable y = x/tdw for
the scale-invariant processes studied in chapter 3. For various fixed ¢ values, all curves collapse
to t and sg independent universal functions.
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(a) Symmetric random walk: distribution of the
rescaled variable x for a fixed FPT nqz. The
dashed line is obtained from equation (3.26) of
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(b) Riemann walk: distribution of the rescaled
variable x for various fixed FPT n. All distribu-
tions collapse on a n and sg independent curve.

chapter 3 and the exact fpas(7) function.
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(c) Fractional Brownian Motion with Hurst expo-
nent H=0.75: distribution of the rescaled variable
x for various fixed FPT t. Details on the simula-
tion scheme can be found in the next section.

(d) Random Acceleration Process: distribution of
the rescaled variable x for various fixed FPT ¢.
Details on the simulation scheme can be found in
the next section.

Figure D.1

D.3 Simulation details

D.3.1 FBM

The algorithm used to sample the 1D FBM trajectories is based on the circulant matrix method
and is detailed in [Davies & Harte 1987, Wood & Chan 1994, Dietrich & Newsam 1997]. This
method allows generating exact trajectories with a constant time step At ~ 1.107%, until a
maximal time equal to t,,,, = 4000. Since the process is scale-invariant, we fix g = 1 without
loss of generality. In order to evaluate f(7) at fixed z, we keep all trajectories for which the
maximum belongs to the interval [z — dx,z + dz], with dz as small as possible. Similarly for
®(x), we only keep trajectories for which ¢ € [t — dt,t 4 dt]. We here recap the intervals chosen
for each numerical experiment:

e Figure 3.3 of chapter 3: H = 0.375, (z = 10.1, de = 0.674), (x = 21.9, dz = 1.46),
(x = 28.5, de =1.9)

e Figure D.1: H = 0.75, (t = 145, dt = 4), (t = 252, dt = 12), (¢t = 438, dt = 16)
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D.3.2 RAP

The stochastic trajectories of the random acceleration processes are generated by means of
the algorithm introduced in [Bicout & Burkhardt 2000], that computes the exact probability
function with a discrete time step. Since the velocity grows with time ¢ as v/t, we reduce the
time step at each iteration in order to keep the discrete space interval covered small and use

At = 2'192 where n is the number of steps. The process being scale-invariant, we fix o = 1
without loss of generality. To evaluate conditional distributions, we proceed similarly to the
FBM and bin trajectories according to a pair (¢, dt) or (z,dx). We recap the intervals chosen for

each numerical experiment:

e Figure 3.3 of chapter 3: (x = 402,dz = 27.7), (x = 2961.2,dz = 197),(x = 8040.7,dzx =
536)

e Figure D.1: (t =442, dt = 5), (t = 869.7, dt = 10), (t = 1711.26, dt = 50),(t = 3367.08,
dt = 80)



APPENDIX E

Self Avoiding True Walk - detailed
calculations

We reproduce in this Appendix the derivation of the splitting probability and asymptotic distri-
bution of the maximum for the SATW process introduced in chapter 3, as well as the derivation
of the joint distribution o(s,n|sp). Note that these results can be found in [Klinger et al. 2022a).

E.1 Splitting probability of the SATW

We first derive the splitting probability my s of the SATW process starting from site sg = 1,
defined as the probability to reach site s before 0. It is convenient to parameterize the SATW
dynamics in terms of the number of distinct sites already visited. To do so, we introduce g (s),
defined as the splitting probability of a walker currently at s’ and having already visited the sites
Dy =[1,s — 1]. In turn, mo 4 verifies the following recurrence relation:

0,541 = T0,570,541(8)- (E.1)

Inside the visited territory Dy, the walker performs a classical symmetric nearest neighbor random
walk such that, for 0 < s’ < s:

1 1
mos(s') = §7T0,§(8/ —1)+ §7r0,§(s’ +1). (E.2)
yielding
7o,s(s') = A+ ps, (E.3)
where A and p can be deduced from the boundary conditions at the extremities of the visited
area:
s(1)=(1- s(2
m0s(1) = (1= 5) m0,5(2) -
mos(s—1) =B+ (1 —B)ms(s —2).
such that
1—
b (E.5)

Tl G

Finally, making use of the recurrence relation (E.1), the exact spitting probability starting from
so = 1 is given by:
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s—1

B B 1-p N I’(—?—i—?/ﬁ)s_ﬂ
me= 11 <1 2+6(8’—3)>H°o rci+18)” (50

Consequently, the asymptotic distribution p(s|1) of the maximum before reaching 0 is deduced
from the splitting probability

p(s1) = mos (1 — mo,s41(s)) (E.7)

and reads:

E.2 Generating function of the joint distribution

We now consider the generating function of the joint distribution o(s,n|1) of the maximum s
and the FPT n to 0, starting from sop = 1. Let us denote Fj 4(n|so) the probability to reach site
s before 0 for the first time at step n starting from sy knowing that the sites {1,..,s — 1} have
already been visited. By partitioning over times at which new sites are discovered, we obtain in
the generating function formalism:

5l €)= (H Fouels’ - 1)) P (€]9). (.9
s'=3

We first compute F07§(§|50). For 1 < sg < n, the SATW performs a simple random walk such
that:

Fgé(f‘S()) = gﬁbé(f‘SO + 1) + §F0,§(£|SO — 1) (ElO)
and
Fos(Elso) = M0 4 prs? (E.11)
with
Tl = l — 1_52
f 1{@ (E.12)
To = E =+ z .
We now deduce A and p using the boundary conditions
{Fo,s<£1> =£(1= A)Fos(El2) (E.13)
Fos(Els —1) = BE+ (1 — B)&F0,s(Els — 2),

and obtain
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. 73 — (1= B)E) — 153 (rg — (1 — B)E
Fos(€ls — 1) = pe—1 r — { ) ; §,4( 2~ ) )2. (E.14)
ri C(r— (1= B)&)? —r3 " (r2 — (1 = B)E)
Of note, the specific cases of s = 2 and s = 3 are given by:
Foa(€)1) =4
Fos(€]2) = T—(-pre
Finally, the probabilistic weight of the last term in equation (E.9) is given by
. 1—(1=B)ré) —(1—(1-B)r
FQ75+1(§‘8) — 5§r33( ( B) 25) ( ( B) 15) (E16)
1

(r1— (L= P))2—ry3(ra — (1= B)§)?’
and plugging equation (E.16) and (E.14) into equation (E.9) yields the generating function of
the joint distribution:

sl =0 =5 —preny \ L 0 0 per —nm - - pep

o (1= (1=pB)r2f) — (1 = (1 = B)ri§)
73— (1= B2 =15 (re — (1 — B)E)?

go-les (fﬁ?ﬂh-ﬂ-ﬂk%ﬂ?%ﬁ-ﬂ—ﬁﬁv
(E.17)

E.3 Distribution of the FPT to 0 conditioned on the value of the
maximum s

In this section, we consider the asymptotic behavior of o(n|s, sp = 1) in the large n and s limit.
To derive o(nl|s,sp = 1) we analyze independently each of the terms in the convolution (E.9),
divided by the corresponding normalizing factor. Indeed, the conditional distribution can be
written as

. (T [Foss =D | | Fosn€ls)
0—(5‘87 1) - 5 (Sl_:[3 7T0757/($/ _ 1) ) 71.975_’_1(3) ] ‘ (E18)
Consider first a single term inside the product:
i a-lf : 1 rir = (1=p)8) =5 (ra = (1= B)E)
7"'0,@(Z + 3) FO,M(QZ + 3) = 1_ él;éﬂé T‘Zi(rl — (1 — 5)5)2 _ T%(T‘z _ (1 _ 5)5)2
) ri(r = (1= B)€) — Zra(ra — (1 - B)E)
= 1-3 55 7"1
1 - 553 (r—(Q1-p)§)?2 - ﬁ(rz —(1=p)§)?
(E.19)

To obtain the leading order behavior for large n and s, we consider equation (E.19) in the limit
& — 1 and i — oco. In particular, since we are looking for a scaling form in terms of the rescaled
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variable 7 = n/s%, we rewrite £ = e~%, and consider the joint limit u — 0 and s — oo with ui?
fixed. In this limit, the first vanishing order is given by

15 1-p 2u1?
7o irali +3) 1y, i+3) = 1+—=(1- + R(u,i E.20
0,i+4(1 +3)" Foi+a(§] )gio% 5@( tanh(\/m)> (u,1) (E.20)
ui® fixed

where R(u,i) is a subleading term. We now plug this asymptotic behavior in the full product
and obtain

s

[I

s§'=3

Fyg(€ls' —1) & 1-7 Qui
o, (s — 1*) ] o exp ; In (1+ i3 (1 — tanh(z\/@)))]

us? fixed

e 1-75 V2us?i ,
o P /i_O i (1_tanh(i\/2u32)>d2] (E21)

us? fixed L
(1 - 6] In V2us?
sinh(vV2us?) | |

~ ex
u—0 P /3
us? fixed L

Similarly, we obtain the leading order behavior of the last term

Fo,s+1(§|5)] Ve
uU—
2 fi

—_—. E.22
70,541(5) 04 sinh(v/2us?) ( )

X

Combining equations (E.21) and (E.22), we finally compute the small v and large s behavior of
the conditional distribution:

g&=e""slsp=1) (E.23)

~Y
u—0
us? fixed

V2us? 5
<sinh(\/ 2u52)>

from which we obtain the asymptotic distribution fsarw (7) of the rescaled variable 7 = n/s?,
given by its strikingly simple Laplace Transform:

/
V2P )>1 B. (E.24)

fSATW(p) :/0 e7p7’fSATW(7')d7' = <M



APPENDIX F
Splitting probability of Gamma jump
processes

We provide in this Appendix the exact formula for the splitting probability m (o) for a gamma
jump process with jump distribution p(¢) = g|€|6_7|€‘:

70,2(T0) = Ae= V37170 4 Be=V37%0 4 Oz 4+ D
2¢ V37w

T ((2v3+3) 72 +6v3+8) + (23~ 3) vz + 6v3 -8

(w3 0)’

B=- 3 (e\/ﬁw ((97\/5 T 168) Nz + 27673 + 478) + (7\/?3 + 12) vz + 36v/3 + 62)

C =
3y (eﬁw (e\/gw ((2\/3 + 3) NE + (11\/§+ 19) V3T 4 7/3 4 11) 33+ 5) 4 (45 - 26\/3) Nz — 633 + 109)
((VB+1) eV 4+ (2v3-3) ya+5v3—7) (e2V37% (3 (43 +T) 92 +34v/3 + 60) + 4v3eVe +3 (4v/3 = 7) 42 + 34v/3 — 60)

D=
_3eV3re (2 (\/5 - 2) Nz 4 9V3 — 17) 1 3e2V3ve ((3\/5 T 4) vz 4 113 + 17) T (47\/§+ 81) B3V3ye 43 (64 - 37\6) Nz — 269v/3 + 465

((VB+1) eV + (2v3-3) yo +5v3—7) (V317 (3 (4V3+7) vz +34V3 +60) + 4v/3ev577 43 (4V3 = T) 7 + 34v/3 — 60)
(F.1)







APPENDIX G
Infinite and semi-infinite propagators
for jump processes

We devote this Appendix to the derivation of infinite and semi-infinite propagators of symmetric
jump processes. All material presented here can be found across various classical references among
which [Ivanov 1994, Hughes 1995, Majumdar et al. 2006] and references therein. However, we
believe a comprehensive presentation is relevant to the present thesis, and choose to include some
calculations in this Appendix. Importantly, most of the material presented here is a reformulation
of calculations extracted from [Ivanov 1994].

G.1 Infinite space propagator

As a reminder, we consider here a discrete-time, one-dimensional jump process starting from
xo, whose symmetric single jump distribution is denoted p(¢) = p(—¢). We first compute the
infinite space propagator of the jump process Goo(x,n|xo), defined as the probability to be
located at position x after n steps. In the following, we will be considering generating functions,
Fourier transforms and Laplace transforms of the various probabilistic quantities involved.
To increase readability, such transforms will be indicated respectively by the corresponding
variables, ¢, k and s. As an example, we rewrite Goo(x,&|z0) = Y o0 Goo(®, n|z0)E™ and
Goo(k, &lzo) = [77 €M G (2, £|z0)d.

The infinite space propagator is straightforwardly obtained from the single jump distribution
p(¢). Indeed, for a fixed number of steps n, since the walk is unbounded, G is given by
convoluting p(¢) over R n times:

Goo(z,n|T0) = / / dzq...dapp(zr) ... p(xn)d(zo + 21+ - + 20 = ) (G.1)

In the generating function formalism, and using well-known properties of the convolution, one
obtains:

Gl f) =3(a —20)+ 5 [ T e Mo

or (G.2)
1—&p(k)
Importantly, while equation (G.2) is given in the generating function space, it is fully explicit in
terms of p(k), and can be inverted (at least numerically), to obtain G (x,n|xg) for any values
of n.
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G.2 Semi-infinite space propagator

We now consider the same jump process, but killed (ie stopped) upon entering R* ; and define
the corresponding propagator G(z,n|zg). Of note, while [ Goo(x, n|zg) = 1 for the infinite (or
unbounded) process, [p G(x,n|zg) = q(xo,n), where q(x9,n) < 1 is the survival probability of
the process, defined as the probability to stay positive during the first n steps. We now proceed
to show that similarly to G, G can also be expressed solely as a function of the single jump
distribution p(¥).

G as the green function of the semi-infinite problem. Let us first write the forward
equation for G, by partitioning trajectories over the position of the particle on its n — 1 step. In
the generating function formalism, the forward equation is directly given by

Gz, €lx0) = bz — 20) +£ /0 " bl — y)Cly. Elwo)dy, (G.3)

where the d(z — z¢) function corresponds to G(x,n = 0|zg). While equation (G.3) is not
directly solvable for arbitrary p(¢) distributions, it defines G as the green function of the general
in-homogeneous problem

fla.6) =¢ /0 T ple — ) fy )dy + S(a) (GA4)

with S(x) some arbitrary source term, such that

f(z, &) = /000 G(x,&|x0)S(zo)dxo. (G.5)

Equation (G.5) will prove useful in the following.

Expressing G as a function of the boundary propagator Gy. Since G(z,&|zy) cannot be
determined directly, our first objective is to reduce its evaluation to that of G(z,£|0) = Go(z),
where the initial condition is taken to be exactly at the origin. Note that Go(x) depends on & but
we drop that dependence to increase readability. Consider first all n-step trajectories starting
from x¢ and ending at x. Necessarily, there exists a minimum & of the trajectory such that
0 < & < min(xg,z) (see figure G.1). Using the symmetry of the single jump distribution, and
partitioning over the step k at which this minimum is reached, we obtain, in the generating
function formalism:

min(zg,z)
Gl glon) = | Golzo — 2')Golx — o')da. (G.6)
0

Let us now show that in the Laplace transformed space, equation (G.6) takes a simple product-like
form. Taking the Laplace transform with respect to the variable xg, we obtain:

00 x o

/ e G (z, E|zo)dag = / dzge 10 / Go(zg — 2")Go(z — 2')da’  (A)

’ oc " (G.7)

+ / dzge *1%0 / Go(zg — 2")Go(z — 2')da’  (B).
T 0
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Figure G.1: Example trajectory contributing to G(z,n|zo). The minimum & € [0, min(zo, z)] is reached on the k*® step.
By decomposing the trajectory in two bits around step k and making use of the symmetry of the walk, each part has a
respective probabilistic weight G(zo — Z, k|0) (blue) and G(x — &,n — k|0) (green).

In turn, we analyze terms (A) and (B) separately. Starting with (A), inverting integration order
and making a change of variables yields:

T To T T
/ dzge 170 / Go(zg — 2")Go(z — 2')da’ = / da:'/ dzoe "1 Go(zg — 2')Go(x — 2)da’
0 0 0 a!

:/ Go(x—a:’)eslm/dx’/ dxge 5170 Gy (zo)da’.
0 0
(G.8)

Term (B) is taken care of similarly

/ dxoeslxo/ Go(zg — 2")Go(x — 2')da’ = / dx’/ dzge "1 Go(zg — 2")Go(z — 2')
T 0 0 T

:/ da:’Go(x—a:’)eslx// dzoe 1" Gy (o),
0 T
(G.9)

and summing the two terms yields:

G, Els1) = Gols1) /0 "4/ Gole — Yo (G.10)

where Go(s) = [;° e Go(2')da’ is the Laplace transform of Gg. Finally, Laplace transforming
equation (G.10) with respect to z yields following factorization:

_ Go(s)Go(s1)
N s+ 81

G(S7 €|51)

Importantly, the interchangeability of x and xg in G(z,&|xo) is fully apparent in the Laplace
transformed space. Additionally, equation (G.11) indicates that Gy alone is enough to fully

(G.11)



182 Appendix G. Infinite and semi-infinite propagators for jump processes

determine G(z, £|zo).

Determination of Gy. We now determine Gy in terms of p(k) only. Consider first the
associated forward equation, obtained by partitioning over the position of the process before
taking its last step. Doing so directly in the generating function formalism we obtain:

Golx) = 6(x) + ¢ /O " ple — y)Goly)dy, (G.12)

where we recall that Go(z) is a shorthand for Go(z,§) = Y .2, §"G(z, n|zg = 0), and the d(x)
function corresponds to G(z,n = 0|zg = 0).

We now aim to find a self-consistent equation for Gg. Recalling that G can be both expressed
as a function of G and as the green function of the semi-infinite problem, we artificially generate
an in-homogeneous integral problem by differentiating (G.12) with respect to &:

0:Go(x) = ¢ /0 " (e — )0cGo(y)dy + /0 " pl@ — y)Goly)dy

o0 1 (G.13)
=& [ pla = 1)0cGalu)dy + ¢ [Gofa) = ().
0
Equation (G.13) is now of the general form (G.4) such that we obtain:
§0¢Go(z) = /00 G(z,&|zo) [Go(wo) — 6(z0)] dzo
0 (G.14)

= /000 G(z,&|70)Go(xo)dzo — Go(z).

Taking the Laplace transform with respect to the x variable, and replacing G according to
equation (G.10) yields

585(}0(3) = /OO G(S,{’m'o)Go(.%'())dm'o — Go(S)
0 - 2 (G.15)
= Go(s)/o dxo/o da'Go(zo — :B’)Go(aco)e_szl — Go(s),

such that
00 o ,
£0¢log[Go(s)]+1 = / d:):o/ da'Go(zo — 2")Go(mg)e " . (G.16)
0 0
Finally, inverting once again the integration order and making a change of variable, we obtain:
oo , o0
£0¢log [Go(s)] + 1 = / da’e™*" / dzoGo(z0)Go(zo + ). (G.17)
0 0
Equation (G.17) is close to self consistent, but is still not solvable as such. However, by focusing
on the right-hand side, once can see a strong parallel with equation (G.6). Indeed, the integrated

product of GGy functions can be recast as the unbounded infinite propagator G, with a very
similar argument. Considering all unbounded trajectories starting from 0 and ending at 2’ on
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their n*® step, and partitioning over the value of the minimum and the step at which it is reached,
we obtain, in the generating function formalism:

Goo(2,€]0) = /OOO dzoGo(z0)Go(zo + ). (G.18)

Note that the physical interpretation of this relation is the same as equation (G.6), but the value
of the minimum is now unbounded. Plugging into equation (G.17), and making use of equation
(G.2) for G, we obtain

S

€0elog [Gals)) = - [

< &p(k) 1
Re=crey: dk, (G.19)

and a final integration with respect to £ yields the sought-after closed form expression for Gy(s, £):
> log[1 —
[ lesl=0ib) )

GO(Svg) = eXp |:27_‘_ 82 + k‘2

(G.20)

Let us make a few concluding remarks:

e Together with equation (G.11), equation (G.20) yields an explicit expression of the semi-
infinite propagator as a function of the single jump distribution p(¢), similarly to the
unbounded case.

e Equation (G.20) lends itself to asymptotic analysis with respect to the parameters s and &.
In particular, taking s to 0 yields the survival probability starting from 0:

1
Vi—€

and one recovers the Sparre Andersen Theorem [Andersen 1954].

/}R Golw, €)dz = qlwo = 0,€) = (G.21)






APPENDIX H

Approximate eigenfunctions and
eigenvalues for the bounded fractional
diffusion equation

In this Appendix, we reproduce results from [Kwasnicki 2012] regarding the eigenvalues and
eigenfunctions of the fractional Laplacian. We emphasize that the Fractional Laplacian is an
important technical tool to describe Levy-like processes, but that the eigenfunctions v, and eigen-
values Aj of the operator in a bounded one-dimensional interval are not known analytically. Here
we present approximates of these quantities; we closely follow the notations of [Kwasnicki 2012],
and consider the fractional diffusion eigenvalue problem in the domain D = (—1,1). Essentially,
the objective is to find solutions to the following fractional diffusion equation:

(SIS

2
<;x2) b(x) = Mb(z) for € (~1,1) (1L.1)

=

dz?
presentation of this operator), and with ¢(—1) = #(1) = 0. Denoting A, the k' eigenvalue,
sorted in increasing order, the Ay are approximated by:

b= (- mY o (1), e

Next, approximate expressions of the corresponding eigenfunctions i, can be obtained by

where (d—2> ® is the fractional Laplacian (see [Zoia et al. 2007, Kwasnicki 2017] for a detailed

combining infinite and semi-infinite eigenfunctions of the fractional Laplacian, which are known
explicitly. It is found that

Uy(®) = a(=2) B (1 + 2) — (=1)¥q(e) Fy (1 — o), (1.3)
with
e = o 2O (H.4)

and F defined in the following way:

F\(z) = sin ()\x + (2_8“)”> — G(a). (HL.5)

Here G is the Laplace transform of a positive function ~(s):
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Visin ()

sH

v(s) =

2

X Xp
0

and ¢ is an interpolating function:

0
Ho+
q(z) = Y
2
1

1+ s2¢ — 25k cos (ﬂ)

2 (H.6)
| 1—rHst
112 \1-r2s2 )|
for z € (—o0, —3%)
for x € (—%,0
3.0 (H.7)
for z € (0, %)
for z € (3, 00).

From these combined expressions, one can numerically evaluate the approximate eigenfunctions
Y. In particular, this is used to determinate numerical values for A1, 7, and w, in table 5.1 of

chapter 5.



APPENDIX |
Sparre-Andersen-like theorem for the
integrated strip probability

We devote this Appendix to a proof of a Sparre-Andersen-like theorem arising in the context of
strip probabilities studied in chapter 6. More precisely, we denote p,, the probability that a n
step long jump process starting from 0 stays positive, and reaches its maximum on its last step.
In terms of the strip probability 0 4(n), one has

| ot =p,. (L1)
0

Remarkably, for any symmetric continuous jump process, p,, is independent of the single jump
distribution p(¢), and is given by

1
— 1.2
P =5 (L.2)

We here provide a custom combinatorial proof of equation (I.2).

I.1 Notations

We provide a few notations useful for the proof.

Notation I.1.1. Let (Xi,...,X,) be some i.i.d. random variables. We call a trajectory T
associated to (Xi,...,X,) the path generated by the partial sums (S1,...,5,). We will freely
use the abusive notation 7 = (X1,...,Xy).

Notation 1.1.2. We call a fized sign trajectory the trajectory T associated to (1 X1,...,e,Xp)
where the X; are 7.7.d. drawn from a continuous positive distribution, and (e1,... e,) € {—1,1}"
is fixed.

Notation I.1.3. We denote S the subset of trajectories that stay positive and attain their
maximum on their last step.

With the help of these notations, the theorem we aim to prove can be rephrased as follows:
let n be a fixed integer and (X7,...,X,) a set of n i.i.d. random variables such that X; follows
a symmetric continuous law. Let (Si,...,S,) be their partial sums. Then:

i=1 i=1
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In other words, for a given trajectory 7 associated to (X1,...,X,), the probability that 7 € S
is equal to 1/(2n). This applies to the case of the jump processes studied in the main text, whose
increments are 7.i.d., and follow a symmetric and continuous law. We point out that the proof is
essentially based on the decomposition of trajectories upon fized sign trajectories.

I.2 Specific case of jagged trajectories

We first prove an intermediate result. Consider (X1,...,X,) a set of i.i.d. random variables fol-
lowing a continuous positive law. Let 7 be the fixed sign trajectory associated to (Xi,..., X},)
and (1,—1,...,(=1)"). We call such a trajectory a jagged trajectory. Then:

1
P(TesS) = - if n is odd and 0 otherwise (1.4)

Proof. Consider that (X7, ..., X,) is given. Since the X;’s are equidistributed, any permutation
o of [1,n] into itself (Xy(1),---, X)), has the same probabilistic weight. In turn, these n!
permutations can be decomposed into (n — 1)! disjoint cyclic groups, containing n permutations
each. We now show that among a given cyclic group, one and only one jagged trajectory T
belongs to S.

For clarity we introduce one more subset P: the subset of trajectories staying strictly positive.
We now propose an algorithm to transform any given trajectory 7; into a trajectory 75 € S while
staying in its cyclic group. We will examine 3 distinct cases, which cover all possible trajectory
configurations. For each case, we provide the cycled trajectory, and check if it stays positive, and
reaches its maximum on its last step.

1. Suppose T1 = (X1,...,X,) € PNS. Let nyqe be such that Vi < n, S, .
Ti = (Xnpaotls- > Xn, X1y s Xnpnaw) € S. See below for figure and proof:

) Nmax

AN

Figure 1.1: sample trajectory in P NS

> 5;. Then

Positivity condition: satisfied since Ip; > [y.
Maximum condition: Iy — Iy, < Iy —Ip + 1y < Iy > Iy — 1y, which is true.

2. Suppose 71 = (X1,...,X,) € P. Let nyi, be the index of the global minimum of
T1 and Myq, be the index of the local maximum of 77 between 1 and n,,;,. Then, if
Srmas < Sn = Snpins T = (Xnpint1ys--os Xny X1y, Xn, ;) € P and we repeat the above

given procedure. See below for figure and proof:
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Figure 1.2: sample trajectory in P

Positivity condition: [; > [); true by hypothesis, so the cycled trajectory is in P.

3. Else, let mnyq: be the index of the global maximum of 77, then 7~E =
(Xnmaatls s Xn, X1y oy Xnpaw) € S.There are two cases depending on the relative

) Nmazx

position of the global maximum and minimum. See below for figure and proof

5Ys

S N - S \/ S / lf

\Z2™ by

Figure 1.3: case 1: the global minimum comes before the global maximum.

Positivity condition: Iy, + I, — 1l > 1, <= [y — [y > 0. However, by hypothesis,
Ipry, — Uy > 0 and lps > Iy, hence the result.

Maximum condition: l,,,, <y + l;, — Iy + lps. Notice that 1, <y +lp and Iy <y
by hypothesis, hence the result.

Figure 1.4: case 2: the global minimum comes after the global maximum.

Positivity condition: Iy; + Iy, — [y > I, By hypothesis, [y — Iy > 0 and [, — L, > 0.
Maximum condition: Iy + 1, < lp + 1y, — Iy + 1)y immediate by hypothesis. Note that
Iy, may or may not exist, but it does not’t change the result.

Consequently, for any given 7, we can build 7 € S such that 7 and 7 belong to the same cyclic
group. Additionally, any cyclic transformation of 7 € S leads to 7 € S. As a result, there is a
unique viable trajectory in each cyclic group, yielding the desired result.

I[.3 Partitioning upon fixed sign trajectories

Let us turn back to unconstrained trajectories of length n and decompose a given trajectory
upon fixed sign trajectories. We first start with a few examples.
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Case n = 3. Consider a trajectory of length 3. With probability 273, it belongs to fixed sign
trajectories of type:

B o o
n
n 4y
n_ 4
n_ _»
» 4y
n_

Out of these, it is clear that only trajectories of the first two kinds can belong to S, and they
do so with probability 1 and % respectively, yielding a total probability ps = %(1 + %) = é as

claimed initially.

Case n =5. Let us do the same work with trajectories of length 5 and list only the fixed sign
trajectories contributing to ps:

{"+++++}
V+—-——+""+++—-+""+—+++"}
UV++—++"7"+==++""++—-—+"}
P+—+-+"}

One notices a pattern: trajectories can be assembled into disjoints sets in which the number of
interfaces between '+’ and ’-’ is fixed. Equivalently, for each i € N all trajectories inside a set
have the same number of consecutive sign segments of length 4. In turn, we label each trajectory
with a n-tuple (k1,..., k), such that k; is the number of segments of size i. Finally, we denote
C(k1,...,ky) the set of fixed sign trajectories that are labeled exactly by (ki,...,k,). Let us be
explicit on the n = 5 example:

Y

{4+ ++++7}=0(0,0,0,0,1)
=47+ =+ =+ ++7} = C(2,0,1,0,0)
P+ =+ ==+ + — =+ 7} == C(1,2,0,0,0)
P +—+—+71=0C(5,0,0,0,0)

Notice that) ;" ; k; must be an odd number.

General case. Let (ki,...,k,) be fixed. Let us show that

kit k)l 1
Y mTesy:(lz'éﬂ )k+””+k (L5)
TEC(k,omrkn) Leeefn L n
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Consider a jagged trajectory U of length n, with n odd, whose increments U; are drawn from the
following probability distribution:

| X1 |with probability ¢;

| X1| + | X2|with probability go

> | X;|with probability ¢,

where the X; are the initial random variables and ), ¢; = 1. Since U is a jagged trajectory, we
have from earlier results:

PUeS) = % (L6)

which can be rewritten as

1
PUeS)=(a++a)"
- Y g qkn(k1+~-+kn)! 1 (1.7)
B Lot ek ki + ke
(k1 yeskin), ! L
ki1+-+kn=n

In turn, we rewrite P(U € S) by partitioning over the distributions of the U;’s, such that:

PUeS) = > .. .g Y P(TeS) (1.8)
(kl,...,kn) TGC(kl,..,kn)

Finally, identifying of the two polynomial forms yields equation (I.5).

I.4 Final summation

We are indebted to Muriel Livernet for finding a way to carry out the final summation.
We consider a trajectory T of fixed length n, and decompose T as a sequence (k1, ..., ky,) with

n n
Y kii =nand ) k; is odd. Let A, be the set of all those sequences, and rewrite p,, as:
i=1 i=1

pnz%n > S P(TeS)

(kl,...,k‘n)eAn TEC(k1,..,k2n)

1 3 (ki + ...+ kp)! 1

T on o en Ealoookp! k4. +ky

We now proceed to show that
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i Z (k1+...+kn)! 1 _i (I 10)
kil ky) ki +...+k, | 20 '

Defining g,(z) = % <1fz>r = %(z + 224 ..+ 2°+...)" and developing the polynomial form yields

1(ki 4+ +ks+...)!
gr(z) = Z Lt gkt ZRrt2kettskste.. (L.11)

r L A
i+ thgto=r

To recover the 27" factor, it is convenient to introduce h,(z) = g.(3) such that

hr(z) = me«z"

T(ki4-+ks+..)0 1 1.12
by — Z 1T(ki+-+ks+...) (L12)

kil... kg!... 2m

)

ki+-+kst--=r
i+ tsks+=n

which reads, keeping only plausible terms regarding the second condition under the sum:

by = - — 1.13
’ Z T ki!... k! 2n ( )
k14 Akn=r

k1+-4nkn=n

We now compute the by, , by defining the associated generating function:

F(z,y) =Y b’y => (Z bn:v> y". (1.14)

It is clear from equation (I.10) that p, = > by, such that:
r odd

anyn _ F(lvy) - F(_17y) (115)

2
We finally compute F(x,y):

F(z,y) = Z by = Z (Z by"> " = Z he(y)a”
“Si2) - ()

ry
= —log(1l —
(1-5%)
In turn
FLy = FELY) Lo gy ym@) = -tma-p =2y @17
2 ~ 2 Y T2 AR ‘
yielding the desired final result:
1
DPn = 5= (I.18)
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