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Directeur de thèse: Pr. Christian PAULY.

Rapporteurs:

• M. Xiaotao SUN, Professeur, Université de Tianjin.
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Abstract

Zakaria OUARAS

Parabolic Hitchin connection

Let C{S be a smooth family of projective complex curves of genus g ě 2 parameterized
by a complex variety S and take a divisor on C of relative degree N given by N disjoint
sections of C{S. For a fixed parabolic type α˚ “ pk,~a, ~mq we associate SMpar

C{Spr, α˚, δq the
relative moduli space of parabolic rank-r vector bundles of parabolic type α˚ with fixed
determinant δ P PicdpC{Sq. This moduli space is equipped with a polarization given by
Θpar the parabolic determinant line bundle (which depends on the parabolic type α˚).

In this dissertation we study the existence of a projective connection, the so called
Hitchin connection on the pushforward of Θpar to S with algebro-geometric techniques.
The main tool is the notion of Heat operators in algebraic geometry introduced by van
Geemen and de Jong. We take the quadratic part of the parabolic Hitchin system, we
call parabolic symbol (which depends only on the quasi-parabolic type ~m and not on the
weights ~a). We prove that it is invariant under Hecke modifications and that it satisfies
the van Geemen-de Jong criterion for the existence of a heat operator with this symbol.
Thus we obtain a projective connection, which turns out to be flat.

To do this we define two Atiyah-type exact sequences in the parabolic context that al-
low us to prove a deformation theorem for marked curves equipped with a quasi-parabolic
vector bundle. Hence we get a factorisation of the Kodaira-Spencer map of the family of
moduli spaces SMpar

C{Spr, α˚, δq along the Kodaira-Spencer map of the family of marked

curves C{S and a description of the Atiyah class of the pullbacks of the determinant line
bundles under the forgetful maps to the moduli space SUC{Spr, ˚q of semi-stable rank-r vec-
tor bundles with fixed determinant ˚. The key ingredient to conclude is a decomposition of
the parabolic determinant bundle Θpar and of the canonical bundle over the moduli space
SMpar

C{Spr, α˚, δq.

Key Words: Parabolic vector bundles, Filtered vector bundles, Moduli spaces, Determi-
nant parabolic line bundle, Heat operator, Hitchin connection.
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Résumé

Connexion de Hitchin parabolique

Soit C{S une famille lisse de courbes projectives complexes de genre g ě 2 paramétrées
par une variété complexe S et prenons un diviseur sur C de degré relatif N, donné par N
sections différentes de la famille C{S. Pour un type parabolique α˚ “ pk,~a, ~mq fixé, on
considère SMpar

C{Spr, α˚, δq l’espace de modules relatif des fibrés vectoriels paraboliques de

rang-r de type parabolique α˚ et de déterminant fixe δ P PicpC{Sq. Cet espace de modules
est muni d’une polarisation donnée par Θpar le fibré parabolique déterminant (dépendant
du type parabolique α˚).

Dans cette thèse nous étudions l’existence d’une connexion projective que nous ap-
pelons la connexion de Hitchin sur l’image direct de Θpar sur S avec des techniques
algébro-géométrique. L’outil principal est la notion d’opérateur de la Chaleur en géométrie
algébrique introduite par van Geemen-de Jong. On prend la partie quadratique du système
de Hitchin parabolique ρpar, que l’on appelle le symbole parabolique (qui ne dépend que
du type quasi-parabolique ~m et non des poids ~a). Nous prouvons qu’il est invariant sous
les modifications de Hecke et qu’il satisfait le critère de van Geemen et de Jong, donc il se
relève à un opérateur de la chaleur à valeurs dans Θpar et de symbole ρpar. Donc on obtient
une connexion projective sur l’image direct de Θpar sur S, qui s’avère être une connexion
plate.

Pour ce faire nous définissons dans le contexte parabolique deux suites exacte de type
Atiyah, qui nous permettent de démontrer un théorème de déformation pour des courbes
marquées munies d’un fibré vectoriel quasi-parabolique. On obtient donc une factorisation
du morphisme de Kodaira-Spencer de la famille des espaces de modules SMpar

C{Spr, α˚, δq le

long du Kodaira-Spencer de la famille des courbes marquées C{S et une description de la
classe d’Atiyah des pull-backs des fibrés déterminants sous les applications d’oubli vers les
espaces des modules SUC{Spr, ˚q de fibrés vectoriels semi-stables de rang-r et de déterminant
fixe ˚. L’ingrédient clef pour conclure est la décomposition du fibré déterminant parabolique
Θpar et du fibré canonique sur l’espace de modules SMpar

C{Spr, α˚, δq.

Mots-clefs: Fibrés paraboliques, Fibrés filtrés, Espaces de modules, Fibrés déterminants
parabolique, Opérateur de la chaleur, Connexion de Hitchin.
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et Sorin Dumitrescu, pour leur attention constante à mes progrès et à mes difficultés, ainsi
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exprimer ma profonde gratitude pour votre soutien inconditionnel. Votre amour, vos en-
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pour son professionnalisme et son efficacité remarquables. Je remerci Emmanuel Barbera
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Introduction

The main object of study of this thesis is the Hitchin connection on the sheaf of non-
abelian theta functions on a family of smooth projective curves. In this manuscript we will
extend Hitchin’s construction of the connection to the sheaf of parabolic non-abelian theta
functions on a family of marked curves.

In the first part of this introduction we start with recalling Hitchin’s original work
and present in chronological order the main contributions leading to an algebro-geometric
construction of Hitchin’s connection for parabolic bundles.

In a second part we will outline a new approach based on an interpretation of parabolic
bundles as R-filtered bundles and a thorough study of the Picard group of the moduli space
of parabolic bundles.

Part I

I-1) Hitchin’s original construction: Hitchin in [Hit90a] constructed a projective
flat connection in the context of geometric quantization, motivated by the invariant of
3-manifolds introduced in Witten [Wit89] in the study of quantum Chern-Simons theory,
which can be seen as a vector space V canonically associated to a closed topological surface
X, a compact Lie group G and an integer k, called the level. The vector space V is related
to the geometric quantization of a (real) symplectic manifold M . For a given Lie group
G one associates the irreducible representations of the fundamental group π1pXq into G
modulo conjugation

Homirr pπ1pXq, Gq {G

which is canonically a symplectic manifold pM,ωq by the Atiyah-Bott-Goldman form
[AB83]. Hitchin quantizes this manifold with a Kähler polarization since a conformal
structure on the surface X induces a complex structure on M , hence a Kähler polarisa-
tion. By the Narasimhan-Seshadri Theorem M is identified with the moduli space of stable
holomorphic GC-bundles 5 over the Riemann surface C “ pX, Jq and for each Kähler po-
larization the vector space V (defined up to a scalar factor) can be seen as the space of

5GC is the complex Lie group with compact form G
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global sections of a pre-quantum line bundle L.

pX, Jq; pMJ , LJq; VJ :“ H0
pMJ , LJq

Hitchin gives conditions of existence of a projectively flat connection for a family of Kähler
polarisations on M induced by a family of complex structures J on X.

Theorem 0.0.1 (Hitchin [Hit90a], Theorem 1.20) Given a family of Kähler polari-
sation on M , such that for each polarisation we have

1. The map given by cup-product with the class rωs of L

Yrωs : H0
pM,TMq ÝÑ H1

pM,OMq

is an isomorphism ( This means that there is no global vector field fixing L, i.e.

H0pM,Dp1qM pLqq “ H0pM,OMq).

2. For each s P H0pM,Lq and a tangent vector I to the base of the family there exists a
smoothly varying

ApI, sq P H1
pM,Dp1qM pLq

¨s
ÝÑ Lq

such that the symbol ´i∇1 pApI, sqq equals the Kodaira-Spencer class rIs in H1pM,TMq.

Then this defines a projective connection on the bundle of projective spaces PpH0pM,Lqq
over the base of the family.

Here Dp1qM pLq is the sheaf of first order differential operators on L and ∇1 its symbol map to

TM . H1 stands for the first hypercohomology group of the two-term complex Dp1qM pLq
¨s
ÝÑ L

given by evaluation on s which parameterizes the infinitesimal deformations of the triple
pM,L, sq, for s P H0pM,Lq ( [Wel83], Proposition 1.2).

Moreover, Hitchin showed that pM,ωq satisfies the condition of the theorem, where
pM,Lq is the space of flat unitary trace-free connections on the trivial rank-r bundle (case
G “ SUprq) over a closed oriented surface X of genus g ě 2 (exception r “ g “ 2), which
is not a manifold but its smooth locus is equipped with a canonical symplectic form and
L – Lk is the k-th power of the ample generator of the Picard group. By the Narasimhan-
Seshadri Theorem M is the moduli space of semi-stable rank-r vector bundles with trivial
determinant, thus a projective variety. The symplectic form ω is a Kähler form and the
inverse of the determinant line bundle provides a pre-quantum line bundle. See rQui85s.
In this case we can describe the map

Ap´, sq : H1
pC, TCq ÝÑ H1

pM,Dp1qM pL
k
q
¨s
ÝÑ Lkq,

as follows: take the short exact sequence of complexes

0 // Dp1qM pLkq //

¨s
��

Dp2qM pLkq //

¨s
��

Sym2
pTMq //

��

0

0 // Lk // Lk // 0 // 0

2
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with connecting morphism

δ1 : H0
pM, Sym2

pTMqq ÝÑ H1
pM,Dp1qM pL

k
q
¨s
ÝÑ Lkq. (0.0.1)

Thus the map Ap´, sq is given by δ1 pre-composed with the quadratic part of the Hitchin
system ρ

ρ : H1
pC, TCq ÝÑ H0

pM, Sym2
pTMqq.

Hitchin proved that 1
r`k

Ap´, sq satisfies the second condition of Theorem 0.0.1, hence the

existence of a projectively flat connection over Vk, the push-forward of Lk to the Teichmüller
space. In [Hit90b] Hitchin generalizes his construction of the connection to the parabolic
case over the projective line.

I-2) A first generalization to parabolic bundles: Scheinost and Schottenloher [SS95]
generalize Hitchin’s construction to any dimension and also deal with the case of parabolic
vector bundles in dimension one. Take X a Kähler manifold, and for Lie group G associate
the space H1pX,Gq (non-abelian cohomology). They study the case whereG “ SUprq hence
the space H1pX,Gq can be identified with the moduli space M of semi-stable holomorphic
rank-r vector bundles E on X with total Chern class cpEq “ 1 and detpEq “ OX . For a
compact Kähler manifold this space is a compact, complex variety with singularities and
not necessary connected and equipped with a natural Kähler form that represents in some
cases the Chern class of natural ample line bundle L that generalises the determinant line
bundle in dimension one.

Theorem 0.0.2 Let M a smooth connected and simply-connected component of
H1pX, SUprqq. Let pIt, ωtqtPB be a family of Kähler structures on M , induced by an algebraic
family of Kähler structures of X, such that

1. ωt “ ωM is a fixed integral form,

2. pItqtPB is a holomorphic family of complex structures on M given by holomorphic
map $ : M ÝÑ B.

Let L be a universal bundle over M, such that L|Mt is the generalized theta line bundle

over Mt “ pM, Itq for t P B. Let c1pMq “ 0 modr2s, and K
1{2
M a square root of the

canonical bundle. Then for all integer k ą 0:

1. The direct image sheaf Wk :“ $˚

´

Lk bK1{2
M

¯

is locally free.

2. There exists a natural projectively flat connection on the vector bundle Wk on B.

The twist by K
1{2
M is what they call a metaplectic correction.

A special case is the case of elliptic surfaces which is related to parabolic vector bundles
over curves. We recall the definition

3
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Definition 0.0.3 An elliptic surface is a smooth compact complex surface X with a fibra-
tion (proper surjective holomorphic morphism) onto Riemann surface C

f : X ÝÑ C,

such that the generic fibre is an elliptic curve.

Bauer [Bau91] gives a description of the space H1pX,SUprqq for X an elliptic surface in
term of objects over the Riemann surface C.

Theorem 0.0.4 Let f : X ÝÑ C be an elliptic fibration with

b1pXq even, χpOXq ą 0, and kodpXq “ 1.

Then there is an isomorphism between

• The moduli space of semi-stable rank-r parabolic bundles of degree 0 on the curve C
with N marked points x1, x2, ..., xN and with certain rational weights.

• A corresponding component of the moduli space of semi-stable rank-r vector bundles
on X with cpEq “ 1 and detpEq “ OX .

Thus by applying Theorem 0.0.2 under the assumption that the canonical bundle admits a
square root, they get a projectively flat connection over the pushforward of the generalized
determinant line bundle with a metaplectic correction 6. Bjerre [Bje18] (Theorem 10.1)
removed this restriction and proved the existence of the Hitchin connection over the space
W0

k :“ $˚
`

Lk
˘

in Theorem 0.0.2 by working on different moduli spaces of parabolic bun-
dles, and using a general construction of the Hitchin connection in geometric quantization,
as done in [And12] and the Hitchin connection in the setting of metaplectic quantization,
as done in [AGL12].

I-3) The use of heat operators by van Geemen and de Jong: Hitchin uses methods
from differential geometry and Kähler geometry. There exist several works related to
algebro-geometric constructions of the Hitchin connection: Faltings [Fal93], Ran [Ran06],
Sun-Tsai [ST04]. In this manuscript we mainly use the approach given by van Geemen-de
Jong [GdJ98]. One of their main results is an algebraic criterion for the existence of the
Hitchin connection. One of the three conditions of their criterion is the following

µL ˝ ρ “ ´κM{S,

where κM{S is the Kodaira-Spencer map of a family M ÝÑ S parameterized by a variety
S an µL is a map associated to the line bundle L over M and ρ a symbol map (for the
details see chapter 3). It should be noted that van Geemen-de Jong do not show that the
family of moduli spaces of vector bundles satisfies their criterion, this was done later in
[BBMP23]. They only construct by different methods Hitchin’s connection in rank two,
genus two.

6Note that we don’t know how the generalized determinant bundle introduced in [SS95] and the
parabolic determinant bundle are related
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I-4) The work of Baier-Bolognesi-Martens-Pauly [BBMP23] give an algebro-geometric
construction of the Hitchin connection over the relative moduli space SUC{Sprq of semi-
stable rank-r vector bundles of trivial determinant over a family of complex projective
curves of genus g ě 2 (except the case r “ g “ 2) parameterized by a variety S using the
so-called trace complexes [BS88], the Bloch-Esnault quasi-isomorphism [BE99], [ST04] to
give a description of the Atiyah class of the determinant line bundle L. The setting is the
following

X “ C ˆS SUC{Sprq
pn //

pw

��

SUC{Sprq

pe

��
C ps

// S

They prove that: For a virtual universal bundle U over C ˆS SUC{Sprq one has an isomor-
phism of sheaves

R1pn˚

´”

A0
X {SUC{Sprq

pUq
ı_¯

– ASUC{Sprq{S pLq ,

where L is the ample generator of the relative Picard group Pic
`

SUC{Sprq{S
˘

, ASUC{Sprq{S pLq
its Atiyah algebra and R1pn˚

´”

A0
X {SUC{Sprq

pUq
ı_¯

the first direct image of the traceless

dual of the Atiyah algebra of the virtual universal bundle U with respect to the projection
pn˚ . As symbol map they take a multiple of the quadratic part of the Hitchin system ρHit

which is the classical Hitchin symbol, they prove that it satisfies the van Geemen-de Jong
criterion for Lk a positive power of the determinant line bundle L.

µLk ˝
1

pr ` kq

`

ρHit ˝ κC{S
˘

“ ´κSUC{Sprq{S,

where κC{S and κSUC{Sprq{S are the Kodaira-Spencer maps of the family of curves and of the
relative moduli space respectively.

I-5) Setting of the problem: Let πs : C ÝÑ S be a smooth family of projective
curves of genus g ě 2 parameterized by a projective variety S and let σi : S ÝÑ C
for i P I “ t1, 2, ..., Nu N disjoint sections of πs, i.e. ,@i ‰ j and @s P S, we have:
σipsq ‰ σjpsq. We note D “

řN
i“1 σipSq the associated divisor of relative degree N .

A rank-r parabolic type with respect to D is a triple α˚ :“ pk,~a, ~mq, given by

• A quasi-parabolic type ~m “ p`i,mpiqqiPI , where `i P N˚, a sequence of integers

mpiq “ pm1piq,m2piq, ...,m`ipiqq, mjpiq P N˚ and satisfies the relation
`i
ř

j“1

mjpiq “ r.

• A system of parabolic weights pk,~aq, where k P N˚ and ~a “ pajpiqq iPI
1ďjď`i

a sequence

of integers satisfying for each i P I

0 ď a1piq ă a2piq ă ... ă a`ipiq ă k.
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For a fixed rank-r parabolic type α˚ “ pk,~a, ~mq with respect to the parabolic divisor
D and a relative line bundle δ P PicdpC{Sq (i.e. line bundles over C relatively to S), we
denote by

πe : SMpar
C{S :“ SMpar

C{Spr, α˚, δq ÝÑ S,

the relative moduli space of parabolic rank-r vector bundles over pC, Dq{S of determinant δ

and parabolic type α˚ equipped with the ample line bundle Θpar P Pic
´

SMpar
C{S{S

¯

called

the parabolic determinant bundle.

X par :“ C ˆS SMpar
C{S

πn //

πw

��

SMpar
C{S

πe

��
pC, Dq πs:“ps

// S

σi

hh

(0.0.2)

Question: For any data as above is there for ν P N˚ a projective flat connection on the
vector bundle Vparpα˚, δ, νq :“ πe˚

`

Θν
par

˘

over S associated to a heat operator ?.

Motivation: In the theory of conformal blocks, Tsuchiya-Ueno-Yamada [TUY89] con-

structed for the Lie algebra slrpCq the vector space VCpD,~λ, kq, called the space of confor-

mal blocks, where ~λ “ tλxuxPD is an N-tuple of dominant weights of slrpCq, k is an integer
and pC,Dq denotes a marked curve. This vector spaces can be glued to a vector bundle of

conformal blocks VpD,~λ, kq over the moduli space Mg,N parameterizing N -pointed curves
of genus-g. In [TUY89] they constructed a projective flat connection over the vector bundle

VpD,~λ, kq. Moreover Beauville-Laszlo [BL94] proved that the vector spaces VJ in Hitchin’s

constructions are canonically identified with VCpD,~λ, kq over a curve with one point and
trivial weight. It is natural to inquire whether the Hitchin connection [Hit90a] and the
Tsuchiya-Ueno-Yamada connection [TUY89] coincide. This question was addressed and
proven by Laszlo [Las98]. Pauly [Pau96] gave a generalization of Beauville-Laszlo’s iden-
tification of the space of non-abelian parabolic theta functions H0pSMpar

C ,Θparq with the

conformal blocks VCpD,~λ, kq, where the dominant weights ~λ and the integer k depend on
the parabolic weights. By Tsuchiya-Ueno-Yamada [TUY89] we know that the vector bun-

dle VpD,~λ, kq is equipped with a flat projective connection, hence it is natural to ask the
above question, and then to compare the two connections via the projective isomorphism.
This problem has been solved in [BMW21a] and [BMW21b] for semi-simple structure group
G which correspond to trivial determinant parabolic bundles.

I-6) Work of Biswas-Mukhopadhyay-Wentworth: In [BMW21a] the authors give a
proof of the existence of the Hitchin connection for parabolic G-bundles ( we present here
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the case G “ SLr
7) following [BBMP23]. Their strategy uses Galois coverings as following:

Let h be a Galois covering

h : pC // pC,Dq,

where D “ tx1, x2, ..., xNu is a subset of the ramification divisor and let Γ be the Galois

group of the covering such that pC{Γ “ C. Then we have the following correspondence.
See [MS80], [Bho89] and [BR93].

Theorem 0.0.5 ([Ses77]) There is an isomorphism between the two moduli spaces

• SMpar
C pr, dq the moduli space of parabolic rank-r vector bundles over pC,Dq of fixed

degree and parabolic type with certain rational weights.

• SUΓ
pC
pr, dq the moduli space of Γ-bundles over pC of fixed local type.

They use this theorem for trivial determinant vector bundles. Take the forgetful map

Q : SMpar
C prq – SUΓ

pC
prq ÝÑ SU

pCprq,

which associates to a parabolic bundle over C the Γ-bundle by the Galois covering and
forget the Γ-linearisation to get a rank-r vector bundle over pC.

Now let h : pC ÝÑ C be a family of Galois coverings parameterized by a variety S. By
[BBMP23] Proposition 4.7.1 over the space SU

pC{Sprq applied to the determinant line bundle

pL, we have the equation

Y r pLs ˝
`

pρHit ˝ κC{S
˘

“ ´κSUC{Sprq{S, (0.0.3)

where pρHit is the Hitchin symbol map over the family of curves pC{S. Their idea is to
use the map Q to transport the equation (0.0.3) to the space SMpar

C{Sprq. They prove in

[BMW21a] Theorem 5.3 the following equality (metaplectic correction) for pLQ :“ Q˚p pLq

Yr pLQs ˝
`

ρpar ˝ κC{S
˘

“ ´κSMpar
C{Sprq{S

,

where ρpar is the quadratic part of the parabolic Hitchin system, the parabolic Hitchin
symbol map, and κC{S (resp. κSMpar

C{Sprq{S
) is the Kodaira-Spencer map of the family of

marked curves (resp. the Kodaira-Spencer map of the family of relative moduli space
which depends on the Galois cover). To conclude they prove that the map µ

pLQ is an

isomorphism, hence define a modified symbol map for the line bundle p pLQqa for a positive
integer a by

ρHitpar,Γpaq :“ µ´1

p pLQqa
˝

´

Yr pLQs ˝ ρpar ˝ κC{S
¯

. (0.0.4)

7Correspond to parabolic bundles with trivial determinant.
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In a second paper [BMW21b] they prove that the map Yr pLQs is independent of the
parabolic weights in the full flag case, using abelianization and parabolic Higgs bundles.
Hence the modified symbol map (0.0.4) is independent of the parabolic weights (as ρpar
and κC{S are independent on the weights) using the equality pLQ :“ Q˚p pLq – Θ

|Γ|{k
par , given in

[BR93] (Proposition 4.14), where Γ is the Galois group of the Galois covering h : pC ÝÑ C,
|Γ| its order and k :“l.c.m {denominators of the rational parabolic weights}. This modified
symbol can be written for any positive integer a P N˚ as follow

ρHitpar,Γpaq :“ |Γ| µ´1
Θa ˝

`

YrΘs ˝ ρpar ˝ κC{S
˘

,

where Θ is the pull-back of the determinant line bundle by SMpar
C{Sprq ÝÑ SUC{Sprq the

forgetful map (forget the parabolic structure) over the family of curves C{S.

We follow the same strategy as in [BBMP23]: first we take as symbol map ρpar, the
quadratic part of the parabolic Hitchin system, and we prove the van Geemen-de Jong
criterion for the parabolic determinant line bundle, which is the equation

µΘpar ˝
`

ρpar ˝ κC{S
˘

“ ´pk ` rq κSMpar
C {S.

Our work is independent of the work of [BMW21a]. The objects that we define Apar
X pEq

the parabolic Atiyah algebroid and Apar,st
X pEq the strongly parabolic Atiyah algebroid are

intrinsically attached to the marked curve and the quasi-parabolic type. Our proof is over
SMpar

C{Spr, α˚, δq the relative moduli space of parabolic rank-r vector bundles with fixed

parabolic type α˚ and fixed determinant δ P PicdpC{Sq, where as [BMW21a] assume that
δ “ OC.

Part II: Main results

We first define two Atiyah-type algebroids and exact sequences that we denote Apar
X pEq

and Apar,st
X pEq called respectively parabolic and strongly parabolic Atiyah algebroids that

depends only on the marked curve and the quasi-parabolic structure. See section 4.1 for
definitions.

II-1) Filtered bundles

Let α˚ be a fixed rank-r parabolic type. Our strategy is to use the description of parabolic
bundle as filtered bundles via Hecke modification 1.3. See chapter 2 for more details on
filtered bundles.

Definition (Filtered bundles) Let pC,Dq be a marked curve and E a vector bundle over
C. A filtered bundle structure on E is given by E‚ “ pEλqλPR a left continuous decreasing
R-filtration of locally free rank-r bundles over C where E0 “ E, and such that

1. The length of the filtration is finite over r0, 1s.

8
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2. Periodic: For all λ P R, we have Eλ`1 “ Eλp´Dq.

A system of weights λ‚ of a filtered bundle E‚ is given by:

1. The jumping real numbers in the real interval r0, 1s; that we suppose rational, and

2. The lengths of the torsion sheaves E{Eλ at the points of the divisor D for λ P r0, 1s.

Yokogawa-Maruyama [Yok91] constructed for a fixed system of weights λ‚ over a smooth
family of marked curves πs : pC, Dq ÝÑ S a moduli space M‚pr, λ‚, δq parameterizing semi-
stable rank-r filtered bundles of determinant detpE0q “ δ P PicdpC{Sq. For a fixed rank-r
parabolic type α˚ with respect to the divisor D we can associate a filtered system of weights
λ‚ and get an isomorphism of S-varieties

SMpar
C{Spr, α˚, δq ÝÑ M‚pr, λ‚, δq

where we associate to a parabolic bundle E˚ its Hecke filtration

Ep´σipSqq “ H`i
i pEq Ă H`i´1

i pEq Ă ¨ ¨ ¨ Ă H2
i pEq Ă H1

i pEq Ă H0
i pEq “ E .

where Hj
i pEq are Hecke modifications of the vector bundle E with respect to the pj ` 1q-th

element of the flag at the i-th section σi : S ÝÑ C of the map πs (see section 2.2.1). We
define for each rational number γ P Q a shift map Hγ, as follows

Hγ : M‚pr, λ‚, δq ÝÑ M‚pr,Hγpλ‚q,Hγpδqq
E‚ “ pEλqλPR ÞÝÑ Erγs‚ “ pEλ`γqλPR

where Hγpλ‚q is the shifted system of weights and Hγpδq :“ detpEγq.

II-2) A parabolic version of Beilinson-Schechtman-Bloch-Esnault theorem

For E‚ “ pEλqλPR a “virtual universal” filtered bundle over X‚ :“ C ˆS M‚pr, λ‚, δq
(see Definition 1.2.14). For each λ P R we associate the following exact sequence

0 // R1πn˚pKX‚{M‚
q // R1πn˚

´”

A0,par,st
X‚{M‚

pEλqpDq
ı_¯

// R1πn˚pparEnd0
pEλqq // 0

given by taking the first direct image of the dual of the strongly parabolic trace free Atiyah
sequence twisted by the divisor D :“ D ˆS M‚pr, λ‚, δq, we denote its extension class by
∆pλq and we set Bλ :“ Y∆λ.

We denote by Θpλq the pull-back of the ample generator of the relative group
Pic pSUCpr, δpλqq{Sq by the classifying rational map

φλ : M‚pr, λ‚, δq ÝÑ SUC{Spr, δpλqq

E‚ ÞÝÑ Eλ

9
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we set dpλq “ deg δpλq and npλq “ gcdpr, dpλqq.

We prove a parabolic version of [BBMP23] Theorem 4.4.1.

Theorem 4.3.3: For each λ P R, we have the following isomorphism of short exact
sequences over M‚pr, λ‚, δq – SMpar

C{Spr, α˚, δq

R1πn˚

´

KX par{SMpar
C{S

¯

� � //

»
r

npλq

��

R1πn˚

´”

A0,par,st
X par{SMparpEλqpDq

ı_¯

// //

–

��

R1πn˚
`

parEnd0
pEλq

˘

–

��
OSMpar

C

� � // ASMpar
C {S pΘpλqq

∇1 // // TSMpar
C {S

This isomorphism is equivalent to the equality of extension classes

r

npλq
∆λ “ rΘpλqs P H0

`

S,R1πe˚
`

Ω1
M‚{S

˘˘

.

II-3) Description of the parabolic Kodaira-Spencer map

Let E˚ be a virtual universal bundle over C ˆS SMpar
C{Spr, α˚, δq (see diagram (0.0.2)), take

the first direct image of its traceless parabolic Atiyah exact sequence with respect to the
map πe : SMpar

C{Spr, α, δq Ñ S.

0 // TSMpar
C{S{S

// R1πn˚

ˆ

A0,par
X par{SMpar

C{S
pEq

˙

// R1πn˚
`

π˚w
`

TC{S p´Dq
˘˘

// 0,

We denote by Φpar the first connecting morphism of the long exact sequence in cohomology
with respect to πe˚ . We prove in Proposition 4.5.4 that the map Φpar commutes with the
Kodaira-Spencer maps of the two families

Φpar
˝ κC{S “ κSMpar

C{S{S
,

where κC{S and κSMpar
C{S{S

are the Kodaira-Spencer of the family of marked curves and the

family of relative moduli space respectively. We call the map Φpar the parabolic Kodaira-
Spencer map.

This factorization follows from the deformation theory of the triple pC,D,E˚q given
by a smooth marked projective curve of genus g ě 2, D a reduced divisor of degree N
equipped with a quasi-parabolic rank-r vector bundle E˚ of fixed quasi-parabolic type ~m.
Then we prove that the infinitesimal deformations of pC,D, pE,F ˚˚ pEqq are parameterized
by H1 pC,Apar

C pEqq. This result is proven independently in [BDHP22] using Galois covers.
Our proof follows [Mar09].
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Parabolic Hitchin symbol map: We take for the Hitchin symbol ρpar the quadratic
part of the parabolic Hitchin system. We prove that the trace of parabolic endomorphism is
invariant under Hecke modification.i.e., for all i P I and j P t1, 2, ..., `iu, then trpHj

i pfqq “
trpfq for all parabolic endomorphisms f of a parabolic vector bundle E˚. Hence ρpar is
invariant under Hecke modifications. Now let B be the first connecting morphism of the
long exact sequence for πe of the sequence

0 // OSMpar
C{S

// R1πn˚

´”

A0,par,st
X par{SMpar

C{S
pEq pDq

ı_¯

// TSMpar
C{S{S

// 0,

where D :“ π˚wpDq “ D ˆS SMpar
C{Spr, α˚, δq.

We prove a parabolic version of Proposition 4.7.1 [BBMP23]. Then

Proposition 4.5.5: The following diagram commute

R1πs˚
`

TC{Sp´Dq
˘ ´Φpar //

ρpar ))

R1πe˚

´

TSMpar
C{S{S

¯

πe˚Sym2
´

TSMpar
C{S{S

¯

B

55

ie: Φpar ` B ˝ ρpar “ 0.

As a corollary we get the following theorem.

Theorem 4.5.7: For all i P I and j P t1, 2, ..., `iu, we have the equations

Y rΘjpiqs ˝ ρpar “ ´
r

njpiq
Φpar, and Y rΘs ˝ ρpar “ ´

r

njpiq
Φpar.

Here, Θjpiq is the pull-back of the ample generator of the relative Picard group
Pic

`

SUC{Spr, δjpiqq{S
˘

under the classifying map

φj,i : SMpar
C{Spr, α˚, δq ÝÑ SUC{Spr, δjpiqq

E˚ ÞÝÑ Hj
i pEq

and where Hj
i pEq is the Hecke modification of the vector bundle E˚ with respect to the

pj ` 1q-th element of the flag at the i-th section σi : S ÝÑ C of the map πs, Θ is the
pull-back of of the ample generator of the relative Picard group Pic

`

SUC{Spr, δq{S
˘

under
the forgetful map and njpiq :“ gcdpr, deg δjpiqq and n :“ gcdpr, degδq.
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II-4) Some line bundles over the space SMpar
C{Spr, α˚, δq

In order to obtain the van Geemen-de Jong equation for the line bundle Θpar we need to
study the relation between Θpar and the line bundles Θjpiq, this is done in the following
propositions.

Proposition 4.6.3 (Parabolic determinant bundle and Hecke modifications)
Let E˚ be a family of parabolic rank-r vector bundles with determinant δ P PicpC{Sq of
parabolic type α˚ over a smooth family of curves πs : C ÝÑ S parameterized by a S-variety
T . Then

λparpE˚qr “ Θa
b

˜

N
â

i“1

`i´1
â

j“1

Θjpiq
qjpiq

¸

,

where, for all i P I and j P t1, 2, ..., `i ´ 1u

• Θ is the pull-back of the ample generator of PicpSUC{Spr, δq{Sq by the classifying map
φT and n “ gcdpr, dq.

• Θjpiq is the pull-back of the ample generator of Pic
`

SUC{Spr, δjpiqq{S
˘

by the classi-
fying maps φTi,j and njpiq “ gcdpr, djpiqq.

• pjpiq “ aj`1piq ´ ajpiq and qjpiq “ njpiqpjpiq.

• a “ n

˜

k ´
N
ř

i“1

`i´1
ř

j“1

pjpiq

¸

.

For a virtual universal parabolic bundle over C ˆS SMpar
C{Spr, α˚, δq and by the previous

proposition, the parabolic theta line bundle over SMpar
C{Spr, α˚, δq, satisfies the equation

Θr
par “ Θ

n

˜

k´
N
ř

i“1

`i´1
ř

j“1
pjpiq

¸

N
â

i“1

`i´1
â

j“1

Θjpiq
njpiqpjpiq.

With the same methods we give a description of the relative canonical line bundle.

Proposition 4.6.5: The relative canonical bundle of the space SMpar
C{Spr, α˚, δq is given as

follows

KSMpar
C{S{S

“ Θ
´n

˜

2`degpDq´
N
ř

i“1
`i

¸

b

N
â

i“1

`i´1
â

j“1

Θjpiq
´njpiq.

Using these decompositions and the van Geemen-de Jong equation over the space
SUC{Spr, ˚q of fixed determinant ˚ P PicpC{Sq, we prove that the van Geemen-de Jong cri-
terion is fulfilled for the parabolic determinant line bundle over the space SMpar

C{Spr, α˚, δq.
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Theorem 4.7.1: Let ν P N˚. The ν-th power of the parabolic determinant line bundle
Θν
par satisfies the van Geemen-de Jong equation, i.e.,

µΘνpar ˝ ρpar “ ´pνk ` rqΦpar.

We define the flag part of the parabolic determinant line bundle Θpar, as follow

Fpα˚q :“
N
â

i“1

`i´1
â

j“1

`

Θ´n
bΘjpiq

njpiq
˘pjpiq

,

such that
Θr
par “ Θnk

b Fpα˚q,
and take the cup-product map

Y rFpα˚qs : πe˚Sym2TSMpar{S ÝÑ R1πe˚TSMpar{S.

Then as a corollary of the previous theorems we get that the cup- product with the flag
part is zero. Hence the parabolic system of weights ~a does not contribute.

II-5) Main theorems:

Theorem 4.7.5: Let ν be a positive integer. We consider a smooth family πs : pC, Dq ÝÑ S
of complex projective marked curves of genus g ě 2, D a reduced divisor of relative degree
N and α˚ “ pk,~a, ~mq a fixed rank-r parabolic type with respect to the divisor D without
trivial parabolic points. We denote by πe : SMpar

C{Spr, α˚, δq ÝÑ S the relative moduli space

of parabolic rank-r vector bundles over pC, Dq{S with determinant δ P PicdpC{Sq, equipped
with the parabolic determinant bundle Θpar. Then there exists a unique projective flat
connection on the vector bundle πe˚pΘ

ν
parq of non-abelian parabolic theta functions, induced

by a heat operator with symbol

ρHitpar pνq :“
1

pνk ` rq

`

ρpar ˝ κC{S
˘

.

For D “ H and α˚ “ k P N˚ the trivial parabolic type, we have the identification of the
moduli space SMpar

C{Spr, α˚, δq with SUC{Spr, δq the moduli space of semi-stable rank-r vec-

tor bundles with determinant δ, hence Θ
r{n
par “ Lk for n :“ gcdpr, degpδqq and ρpar “ ρHit.

We obtain the following special case for non-parabolic vector bundles.

Theorem 4.7.6: Let k be a positive integer. Suppose a smooth family ps : C ÝÑ S
of complex projective curves of genus g ě 2 (and g ě 3 if r “ 2 and degpδq even), set
n :“ gcdpr, degpδqq. Let L be the ample generator of the Picard group of SUC{Spr, δq. Then
there exists a unique projective flat connection on the vector bundle pe˚pLkq of non-abelian
theta functions, induced by a heat operator with symbol

ρpkq :“
n

rpk ` nq

`

ρHit ˝ κC{S
˘

.
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In fact for k P N˚, we have Θ
r{n
par “ Lk, hence ρpkq “ ρHitpar p

r
n
q.

Note that for δ “ OC we recover the classical case proved in [Hit90a].

Document structure

Chapter 1: We recall the definition of parabolic vector bundles, some of their proprieties
such as semi-stability conditions and Mehta-Seshadri theorem of the existence of a relative
moduli space of semi-stable parabolic vector bundles of fixed parabolic type over a family
of smooth projective complex curves. In the second part we study the stability criterion
under the forgetful maps, the description of the determinant line bundle and the definition
of the parabolic determinant line bundle.

Chapter 2: We present the Yokogawa-Maruyama and Simpson point of view of filtered
vector bundles and the identification of their moduli space with the space of parabolic vec-
tor bundles. We give some of their properties and we give a study of the group of parabolic
transformations and their action on the parabolic weights.

Chapter 3: In this chapter we present the main theorems that we need in our work: the
van Geemen-de Jong criterion of existence of Hitchin connection and the flatness criterion.
We recall the definitions of Atiyah classes, sheaves of differential operators on vector bun-
dles and associated morphisms and the definition of heat operators.

Chapter 4: We present an algebro-geometric construction of Hitchin’s connection in the
sheaf of parabolic non-abelian theta functions. We give a decomposition of the parabolic
determinant line bundle. We prove a factorisation theorem of the Kodaira-Spencer map
of the relative moduli space of parabolic bundles. Using these decompositions, we prove
that the parabolic determinant line bundle satisfies van Geemen-de Jong equation over
the moduli space of parabolic vector bundles, where we take as symbol map the quadratic
part of the parabolic Hitchin system. Hence we construct the existence of a flat projective
connection on the sheaf of parabolic non-abelian theta functions. We prove that this
connection is flat.
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Chapter 1

Parabolic vector bundles and their
moduli spaces

1.1 Parabolic bundles

Let C be a smooth projective complex curve of genus g ě 2 and D=tx1, x2, ..., xNu a finite
set of points xi P C. The set D will also be called a parabolic divisor.
We set I “ t1, 2, ..., Nu, where N “ degpDq.

Parabolic type of a vector bundle

A parabolic type for a rank-r vector bundle over C with respect to the parabolic divisor
D is the following numerical data α˚ “ pk,~a, ~mq consisting of :

• A quasi-parabolic type ~m “ p`i,mpiqqiPI , where

1. `i P N˚ called the length at the point xi P D.

2. a sequence of integers, called the flag type at xi P D

mpiq “ pm1piq,m2piq, ...,m`ipiqq.

with mjpiq P N˚.

3. we have for every i P I the relation
`i
ř

j“1

mjpiq “ r.

• A system of parabolic weights pk,~aq, where k P N˚ and ~a “ pajpiqq iPI
1ďjď`i

a sequence

of integers satisfying for each i P I

0 ď a1piq ă a2piq ă ... ă a`ipiq ă k.

15



1.1. PARABOLIC BUNDLES

We say that xi P D is a trivial point if `i “ 1, which implies that m1piq “ r and mpiq “ prq.

We say that α˚ is full flag parabolic type if `i “ r for all i P I, thus mjpiq “ 1 @i, j.

The notion of parabolic vector bundle was introduced by Seshadri in rSes77s.

Definition 1.1.1 (Parabolic vector bundles) Let E be a rank-r vector bundle over C.
A quasi-parabolic structure of quasi-parabolic type ~m “ pli,mpiqqiPI on E with respect to
the parabolic divisor D is given by a filtration of length `i on the fibre Exi for each i P I,
by linear subspaces

F ˚˚ pEq : Exi “ F 1
i pEq Ą F 2

i pEq Ą ¨ ¨ ¨ Ą F `i
i pEq Ą F `i`1

i pEq “ t0u

such that for j P t1, 2..., `iu we have

dimC
`

F j
i pEq{F

j`1
i pEq

˘

“ mjpiq.

We denote a quasi-parabolic bundle by pE,F ˚˚ pEqq.

A parabolic structure on E with respect to the parabolic divisor D is the data pE,F ˚˚ pEq, α˚q
where α˚ “ pk,~a, ~mq a fixed parabolic type and pE,F ˚˚ q is a quasi-parabolic structure over
E of type ~m with respect to the parabolic divisor D. We denote a parabolic vector bundle
by E˚ and α˚ is called its parabolic type.

For all i P I and j P t1, 2, ..., `iu, we define the following quotients

Grji pEq :“ F j
i pEq{F

j`1
i pEq,

of dimension mjpiq and
Qj
i pEq :“ Exi{F

j`1
i pEq.

We denote their dimensions by

rjpiq “ dimC Q
j
i pEq “

j
ÿ

q“1

mqpiq.

Note that r`ipiq “ r.

Definition 1.1.2 (parabolic degree, slope and Euler characteristic)

Let E˚ be a parabolic vector bundle over C. We define

1. The parabolic degree

pardegpEq “ degpEq `
1

k

N
ÿ

i“1

`i
ÿ

j“1

mjpiqajpiq.

16
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2. The parabolic slope

µparpEq “
pardegpEq

rankpEq
.

3. The parabolic Euler characteristic

χparpEq “ χpEq `
1

k

N
ÿ

i“1

`i
ÿ

j“1

mjpiqajpiq

“ degpEq ` rankpEqp1´ gq `
1

k

N
ÿ

i“1

`i
ÿ

j“1

mjpiqajpiq

“ pardegpEq ` rankpEqp1´ gq.

Definition 1.1.3 (parabolic quotient and subbundles) Let E˚ be a parabolic bundle
over C of parabolic type α˚ with respect to the divisor D.

1. A parabolic subbundle is the following data:

(a) a parabolic vector bundle F˚ of parabolic type β˚ with respect to the parabolic
divisor D such that F is a vector subbundle of E.

(b) for all i P I and q P t1, 2, ..., lipF qu, let j is the greatest integer such that

F q
i pF q Ă F j

i pEq,

then we have
bqpiq “ ajpiq.

2. A parabolic quotient bundle of E˚ is the following data: a parabolic bundle F˚ of
parabolic type β˚ with a surjective morphism f : E ÝÑ F such that:

(a) for all i P I and q P t1, 2, ..., lipF qu there is an element j P t1, 2, ..., lipEqu such
that

fxipF
j
i pEqq “ F q

i pF q.

(b) if j is the greatest integer such that the equality holds, we have

bqpiq “ ajpiq.

Remark 1.1.4 Let E 1 be a subbundle of a parabolic bundle E˚. Then E 1 is equipped with a
canonical parabolic structure as follows: the filtration F ˚i pE

1q consists of the distinct terms
of the filtration F j

i pEq X E
1
xi

and the parabolic weights are taken as

a1˚piq “ maxtaqpiq { F
q
i pEq X E

1
xi
“ F ˚i pE

1
qu

We denote the induced parabolic structure by E 1˚ and the associated parabolic weights by
α1˚. We define the same canonical parabolic structure for quotient bundles.

When we consider subbundles (resp. quotient bundles) of a parabolic bundle E˚, they
will be equipped with the canonical parabolic structures.

17



1.2. MODULI SPACES OF PARABOLIC BUNDLES

Definition 1.1.5 (parabolic and strongly parabolic endomorphisms)

Let E˚ be a parabolic bundle over C and let f P EndpEq then

1. f is a parabolic endomorphism if for all i P I and j P t1, 2, ..., `iu we have

fxi
`

F j
i pEq

˘

Ă F j
i pEq.

We denote the sheaf of parabolic endomorphism by parEndpEq.

2. f is a strongly parabolic endomorphism if for all i P I and j P t1, 2, ..., `iu we have

fxi
`

F j
i pEq

˘

Ă F j`1
i pEq.

We denote the sheaf of parabolic endomorphism by SparEndpEq.

The sheaves introduced above are locally free and by definition we have the following sheaf
inclusions

SparEndpEq ãÑ parEndpEq ãÑ EndpEq. (1.1.1)

Remark 1.1.6 The definitions of parabolic and strongly-parabolic endomorphisms depend
only on the quasi-parabolic structure and not on the the system of parabolic weights.

Proposition 1.1.7 ([Yok91]) Let E˚ be a parabolic vector bundle over C with respect to
the parabolic divisor D. Then we have a canonical isomorphism of locally free sheaves

parEndpEq_ – SparEndpEq bOCpDq.

This isomorphism is given by the non-degenerate trace paring

Tr : parEndpEq b SparEndpEq ÝÑ OCp´Dq
φb ψ ÞÝÑ Trpφ ˝ ψq.

And by dualizing (1.1.1) we get

EndpEq_ – EndpEq ãÑ SparEndpEqpDq ãÑ parEndpEqpDq.

1.2 Moduli spaces of parabolic bundles

To construct the moduli space of parabolic vector bundles over a curve C, we need a notion
of semi-stability and stability which will depend on the parabolic type α˚. In this section
we recall the definition of stability and the theorem of existence of a coarse moduli space
parameterizing parabolic bundles. The main reference is rSes82s.

Definition 1.2.1 (stability) A parabolic bundle E˚ over a curve C is said to be parabolic
stable (resp. parabolic semi-stable) with respect to the parabolic type α˚ if for all proper
vector subbundles F equipped with the canonical parabolic structure we have

µparpF˚q ă µparpE˚q presp. ďq.

18
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We will from now on abbreviate parabolic (semi-)stable by (semi-)stable when considering
parabolic vector bundles.

Remark 1.2.2 Let E˚ be a rank-r parabolic bundle with respect to a parabolic divisor D.

1. Suppose there is i0 P I such that xi0 P D is a trivial point. Then there a natural
parabolic structure on E denoted E 1˚ with respect to the parabolic divisor Dztxi0u of
type α1˚ (we forget the weight on xi0). We have the following relation

pardegpE 1˚q “ pardegpE˚q ´ r
a1pi0q

k
,

hence

µparpE
1
˚q “ µparpE˚q ´

a1pi0q

k
and we have the following equivalence

E 1˚ stable presp. semi´ stableq ðñ E˚ stable presp. semi´ stableq.

2. Let L be a line bundle over C, thus E bL can be equipped with a canonical parabolic
structure induced by the parabolic structure of E˚, we denoted this structure by
pE b Lq˚ which is also of parabolic type α˚ and we have the equivalence

pE b Lq˚ stable presp. semi stableq ðñ E˚ stable presp. semi stableq.

Proposition 1.2.3 (Jordan-Hölder filtration) Let E˚ be a semi stable parabolic bundle
over C. There exists a filtration of E by subbundles called the Jordan-Hölder filtration

0 “ Ep`1 Ă Ep Ă ... Ă E2 Ă E1 Ă E0 “ E (1.2.1)

such that for all 1 ď i ď p, the vector bundle Ei{Ei`1 equipped with the canonical parabolic
structure is stable and

µparppEi{Ei`1q˚q “ µparpE˚q.

We define the parabolic graded bundle

GrpE˚q :“ ‘pi“1pEi{Ei`1q,

equipped with the canonical parabolic structure.

It can be shown that the isomorphism class of GrpE˚q does not depend on the filtration
(1.2.1).

Definition 1.2.4 (S-equivalence) We say that two semi-stable parabolic rank-r vector
bundles E˚ and E 1˚ over the curve C of parabolic type α˚ with respect to the parabolic
divisor D are S-equivalent (and we denoted E˚ ∼S E

1
˚) if their associated graded GrpE˚q

and GrpE 1˚q are isomorphic as parabolic vector bundles. Moreover if E˚ is stable then
GrpE˚q “ E˚.
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Mehta and Seshadri constructed the moduli space of semi-stable parabolic vector bun-
dles over a smooth projective complex curve C.

Theorem 1.2.5 (Mehta-Seshadri rMS80s) For a fixed parabolic type α˚, there is a
coarse moduli space Mpar

C :“ Mpar
C pr, α˚, dq which is a projective irreducible normal va-

riety, parameterizing semi-stable parabolic rank-r vector bundles and of degree-d modulo
S-equivalence over the curve C. Moreover, the subspace Mpar

s ĂMpar of stable parabolic
bundles is an open subset included in the smooth locus.

Assuming g ě 2 (see remark 4.7.7 for the cases of genus=0,1), the dimension of the
moduli space Mpar

C “Mpar
C pr, α˚, dq is

dimC Mpar
C pr, α˚, dq “ r2

pg ´ 1q ` 1`
1

2

N
ÿ

i“1

˜

r2
´

`i
ÿ

j“1

mjpiq
2

¸

.

For a line bundle δ P PicdpCq we define the subspace

SMpar
C pr, δq “ tE˚ PMpar

C pr, α˚, dq { detpEq – δu

parameterizing rank-r S-equivalence classes of vector bundles over C of determinant δ,
which is also projective irreducible normal variety of dimension

dimC SMpar
C pr, δq “ pr2

´ 1qpg ´ 1q `
1

2

N
ÿ

i“1

˜

r2
´

`i
ÿ

j“1

mjpiq
2

¸

.

Remark 1.2.6

1. The dimension does not depend on the system of weights.

2. For i P I “ t1, 2, ..., Nu the integer 1
2

˜

r2 ´
`i
ř

j“1

mjpiq
2

¸

, is the dimension of a flag

variety of type mpiq.

1.2.1 Families of parabolic vector bundles

Let T be a Noetherian scheme over C and C a smooth projective complex curve equipped
with a parabolic divisor D. We also fix a parabolic type α˚ with respect to the parabolic
divisor D and let δ P PicdpCq.

Definition 1.2.7 A family of parabolic rank-r vector bundles of fixed degree d (resp. fixed
determinant δ) over C parameterized by T is a locally free sheaf E over C ˆ T together
with the following data: for each i P I, we give a filtration of the locally free sheaf

Exi :“ E |txiuˆT
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by locally free subsheaves

Exi “ F 1
i pEq Ą F 2

i pEq Ą ¨ ¨ ¨ Ą F `i
i pEq Ą F `i`1

i pEq “ t0u,

such that

rank
`

F j
i pEq{F

j`1
i pEq

˘

“ mjpiq,

and for all closed points t P T the rank-r vector bundle Et :“ E |Cˆttu is of degree d (resp.
determinant δ) and equipped with the induced parabolic structure is a semi-stable parabolic
bundle of type α˚ with respect to the parabolic divisor D.

Two families of parabolic bundles E˚ and E 1˚ of parabolic type α˚ parameterized by T
are equivalent if there is an invertible sheaf L over T such that

E˚ – E 1˚ b p˚2pLq,

where p2 : C ˆ T ÝÑ T the second projection map.

We get a functor

Mpar :“Mparpr, α˚, dq : C´ schemes ÝÑ Set

T ÞÝÑ MparpT q,

which associate to a Noetherian C-scheme T the set of equivalent families of parabolic
rank-r vector bundles over C parameterized by T of parabolic type α˚ with respect to the
parabolic divisor D and of fixed degree d.

For a line bundle δ P PicdpCq we define a sub-functor

SMpar
pr, α˚, δq ĂMparpr, α˚, dq,

which associate to a noetherian C-scheme T the set of equivalent families of parabolic rank-
r vector bundles over C parameterized by T of parabolic type α˚ and fixed determinant δ,
i.e. for any Noetherian C-scheme T we have

SMpar
pr, α˚, δqpT q :“ tE˚ PMparpr, α˚, dqpT q { detpEtq – p˚1pδtq @t P T u,

where p1 : C ˆ T ÝÑ C is the first projection map.

Theorem 1.2.8 rMS80s The functors

Mparpr, α˚, dq and SMpar
pr, α˚, δq,

are representable respectively by the varieties Mpar
C pr, α˚, dq and SMpar

C pr, α˚, δq given in
the Theorem 1.2.5.

21
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By representable we mean that there is a functorial morphism

ψ : Mpar
pT q ÝÑMorpT ,Mpar

pr, α˚, dqq,

which is universal in the following sense :

1. for each algebraic variety N and a functorial morphism

φ : Mpar
pT q ÝÑMorpT ,N q,

there is a unique morphism

f : Mpar
pr, α˚, dq ÝÑ N ,

making the following commute

MparpT q ψ //

φ **

MorpT ,Mparpr, α˚, dqq

f

��
MorpT ,N q

The pair pMparpr, α˚, dq, ψq is uniquely determined by this condition.

2. We note by Spr, α˚, dq the set of isomorphism classes of semi-stable parabolic rank-r
vector bundles of degree d and parabolic type α˚. Then ψ induces a map of sets

ψ : Spr, α˚, dq –Mpar
pSpecpCqq ÝÑMpar

pr, α˚, dq.

The second point means that the map surjects and fibers are S-equivalence classes of
semi-stable parabolic bundles. Same for the functor SMpar

pr, α˚, δq.

1.2.2 Relative moduli spaces

In this subsection we will recall the existence of a relative version of the moduli spaces
of semi-stable parabolic vector bundles over a family of smooth projective complex curves
equipped with a family of parabolic divisors.

Let πs : C ÝÑ S be a smooth family of projective curves of genus g ě 2, parameterized
by an algebraic variety S over C and let

σi : S // C, i P I “ t1, 2, ..., Nu,

be N -sections of πs, such that

@i ‰ j P I and @s P S, we have: σipsq ‰ σjpsq.
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We denote by
D :“

ÿ

iPI

σipSq,

the associated divisor (as the relative dimension of the map πs is one), which will be
seen as a family of parabolic degree N divisors parameterized by the variety S and let
δ P PicdpC{Sq (See rFGI`05s for definition of relative Picard groups).

Let πe : T ÝÑ S be a S-variety. A relative family of parabolic rank-r vector bundles
and fixed degree d (resp. determinant δ) over C{S of parabolic type α˚ parameterized by
T {S is a locally free sheaf E over C ˆS T together with the following data:

• For each i P I, we give a filtration of the vector bundle Eσi :“ E |σipSqˆST over
σipSq ˆS T – T by subbundles as follow

Eσi “ F 1
i pEq Ą F 2

i pEq Ą ¨ ¨ ¨ Ą F `i
i pEq Ą F `i`1

i pEq “ t0u,

0 ď a1piq ă a2piq ă ... ă a`ipiq ă k,

such that for each j P t1, 2, ..., `iu we have

rank
`

F j
i pEq{F

j`1
i pEq

˘

“ mjpiq.

Thus we get a parabolic structure over E , denoted by E˚.

• For each t P T we set Ct :“ π´1
s pπeptqq. Then the vector bundle E˚|Ct is a semi-stable

parabolic bundle of parabolic type α˚ of degree d (resp. determinant δt :“ δ|Ct P
PicdpCtq) with respect to the parabolic divisor

Dt :“
ÿ

iPI

σipπeptqq.

We define the same notion of equivalence of relative families as before. We get a functor

Mpar
C{S :“Mpar

C{Spr, α˚, dq : S ´ schemes ÝÑ Set

T ÞÝÑ Mpar
C{SpT q,

which associates to a Noetherian S-scheme T the set of equivalent families of parabolic
rank-r vector bundles over C{S parameterized by the scheme T {S of parabolic type α˚ and
fixed degree d.

As before we define a sub-functor

SMpar
C{Spr, α˚, δq Ă Mpar

C{Spr, α˚, dq,

parameterizing parabolic rank-r vector bundles over C{S of type α˚ with respect to the
parabolic divisor D and of fixed determinant δ P PicdpC{Sq.
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Maruyama and Yokogawa constructed a relative version of the moduli space of semi-
stable parabolic vector bundles over a smooth family of projective curves in rYok93s,rMY92s
and rYok95s.

Theorem 1.2.9 The functors Mpar
C{Spr, α˚, dq and SMpar

C{Spr, α˚, δq, are representable by

proper S-schemes that we denote respectively by

Mpar
C{S :“Mpar

C{Spr, α˚, dq and SMpar
C{S :“ SMpar

C{Spr, α˚, δq.

Their closed points parameterize relative S-equivalence classes of rank-r semi-stable parabolic
vector bundles of fixed type α˚ and degree d respectively fix determinant δ over the family
of curves πs : C ÝÑ S. As a S-schemes they are equipped with a surjective proper maps

π̃e :Mpar
C{Spr, α˚, dq ÝÑ S,

πe :SMpar
C{Spr, α˚, δq ÝÑ S.

And for each s P S we get

π̃e
´1psq “Mpar

Cs pr, α˚, dq and π´1
e psq “Mpar

Cs pr, α˚, δsq,

the moduli space of semi-stable rank-r parabolic bundles of parabolic type α˚ and degree-d
(resp. determinant δs) over the curve Cs “ π´1

s psq with respect to the parabolic divisor
Ds “

ř

iPI

σipsq.

We also define the following fiber products over S of the relative moduli spaces with the
family of curves

X par :“ C ˆS SMpar
C{Spr, α˚, δq

πn //
� _

��

SMpar
C{Spr, α˚, δq� _

��
C ˆS Mpar

C{Spr, α˚, dq
πn //

πw

��

Mpar
C{Spr, α˚, dq

πe

��
C πs

// S

Definition 1.2.10 (Universal family) A universal parabolic vector bundle (or a parabolic
Poincaré bundle) over CˆSMpar

C{Spr, α˚, dq is a family E˚ of parabolic vector bundles of rank-r

and degree d of parabolic type α˚ over the family of curves C{S parameterized by the moduli
space Mpar

C{Spr, α˚, dq, such that

@ rE˚s PMpar
C{Spr, α˚, dq,
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we have

E˚|CE˚ ∼S E˚,

over the curve

CE˚ “ π´1
s pπe prE˚sqq .

Same definition over the variety SMpar
C{Spr, α˚, δq, for a line bundle δ P PicdpC{Sq.

Remark 1.2.11 1. The universal parabolic bundle may not exist.

2. When it exists, the universal parabolic bundle is unique up to equivalence of families.

3. In fact, existence of universal family is equivalent to the isomorphism of functors

Mpar
C{Spr, α˚, dqp´q » Hom

´

´,Mpar
C{Spr, α˚, dq

¯

.

In this case we say that the moduli space is a fine moduli space.

Proposition 1.2.12 (rBY99s, Proposition. 3.2) The moduli space of parabolic-stable
bundles is fine if and only if we have: gcdtd,mjpiq|i P I, 1 ď j ď `iu “ 1.

As universal bundles do not exists in general, we define a weaker notion.

Proposition 1.2.13 ([NS75], Proposition. 2.4) We fix a parabolic type α˚. Then there
is a non-singular S-variety SM1 equipped with a family of parabolic stable rank-r vector
bundles E˚ of parabolic type α˚ with determinant δ, such that the map

ψ : SM1
ÝÑ SMpar,stab

C{S pr, α˚, δq

t ÞÝÑ

”

E˚|π´1
n ptq

ı

is étale and surjective.

Definition 1.2.14 (Virtual universal bundle) The family given in the above proposi-
tion is what we call a virtual universal parabolic bundle of parabolic type α˚ over the variety
SMpar

C{Spr, α˚, δq.

Remark 1.2.15 As SMpar
C{Spr, α˚, δq is a good quotient of a Hilbert quotient scheme, de-

noted Zss, then there is a universal bundle E˚ on C ˆS Zss. E˚ may not descend to
C ˆS SMpar

C{S, but objects such End0
pEq,parEnd0

pEq and A0pEq etc. , descend. Recall

that a sheaf F on C ˆS Zss descends to C ˆS SMpar
C{S if the action of scalar automorphisms

of F relative to Zss is trivial. Hence without confusion we will be assuming existence of
universal bundle E˚ over C ˆS SMpar that we call a virtual universal bundle.
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1.3. HECKE MODIFICATIONS

1.3 Hecke modifications

Let E˚ ÝÑ C be a rank-r parabolic vector bundle of parabolic type α˚ with respect to
the parabolic divisor D of determinant δ P PicdpCq . We associate the following exact
sequences

0 ÝÑ Hj
i pEq ãÑ E ÝÑ Qj

i pEq ÝÑ 0

where for all i P I and j P t1, 2, 3, ..., `iu

Qj
i pEq :“ Exi{F

j`1
i pEq

the quotient sheaf supported on xi of length

rjpiq “
j
ÿ

q“1

mqpiq.

The subsheaves Hj
i pEq are locally free of rank-r and their determinant is given by

δjpiq :“ δ bOC p´rjpiqxiq .

We denote their degree by

djpiq :“ deg δjpiq “ d´ rjpiq,

and we set for all i P I and j P t1, 2, ..., `iu the integers

njpiq “ gcdpr, djpiqq. and n “ gcdpr, dq.

Definition 1.3.1 (Hecke modifications) We call the vector bundle Hj
i pEq the Hecke

modification of the parabolic bundle E˚ with respect to the subspace F j`1
i pEq Ă Exi for all

i P I and j P t1, 2, 3, ..., `iu. We set H0
i pEq “ E.

Proposition 1.3.2 (Hecke filtrations) Let E˚ be a parabolic rank-r vector bundle with
respect to the parabolic divisor D. Then for each i P I the Hecke modifications over xi P D,
satisfy the following inclusions for all j P t1, 2, ..., `iu

Ep´xiq “ H`i
i pEq Ă H`i´1

i pEq Ă ¨ ¨ ¨ Ă H2
i pEq Ă H1

i pEq Ă H0
i pEq “ E.

Proof. We take the Hecke modifications over a point xi P D for i P I and let j P t1, 2, ..., `iu,
the j-th Hecke exact sequence

0 //Hj
i pEq

� � // E // // Qj
i pEq

// 0,

where the last arrow is given by the composition

E
evxi // Exi

// // Qj
i pEq “ Exi{F

j`1
i pEq.
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The inclusions
F j`1
i pEq Ą F j`2

i pEq

give surjective maps

Qj`1
i pEq // // Qj

i pEq.

Then we get

0 //Hj`1
i pEq �

� //
� t

q

''

E // //

id

��

Qj`1
i pEq //

����

0

0 //Hj
i pEq

� � // E p
// // Qj

i pEq
// 0

As the right diagram commutes and the map p ˝ q “ 0, we get that the image of the map
q is in the subsheaf Hj

i pEq. So as a conclusion, we get a filtration by rank-r locally free
subsheaves

Ep´xiq “ H`i
i pEq Ă H`i´1

i pEq Ă ¨ ¨ ¨ Ă H2
i pEq Ă H1

i pEq Ă H0
i pEq “ E.

˝

Remark 1.3.3 By the last proposition a rank-r parabolic structure with respect to a parabolic
divisor D is equivalent to the following data: pE,H˚

˚pEq, α˚q such that

• E a rank-r vector bundle over C.

• α˚ “ pk,~a, ~mq is a parabolic type with respect to the divisor D.

• For all i P I, we give a filtration by rank-r locally free subsheaves

Ep´xiq “ H`i
i pEq Ă H`i´1

i pEq Ă ¨ ¨ ¨ Ă H2
i pEq Ă H1

i pEq Ă H0
i pEq “ E,

such that the torsion sheaves
Hj
i pEq{H

j`1
i pEq

are supported at xi P D and of length

length
`

Hj
i pEq{H

j`1
i pEq

˘

“ mjpiq.

1.4 Line bundles over the moduli spaces SUC{Spr, δq

In this section we recall the description of the Picard group of the relative moduli space
of semi-stable vector bundles of fixed rank and determinant and also its ample generator
and its canonical line bundle. See rFGI`05s for relative Picard groups.
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1.4. LINE BUNDLES OVER THE MODULI SPACES SUC{SpR, δq

Let πs : C ÝÑ S be a smooth family of projective complex curves of genus g ě 2. We
suppose that the parabolic divisor is of degree one given by one section σ of the family
πs and that the parabolic type is trivial (see Remark 1.4.2 below for a definition). Note
that the trivial parabolic structure is just the structure of a vector bundles and in this
case parabolic semi-stability (resp. stability) coincide with semi-stability (resp. stability)
of vector bundles. Thus the relative moduli space Mpar

C{Spr, 0˚, dq in Theorem 1.2.5 of rank
r and degree d parabolic bundles coincides with the coarse relative moduli space of semi-
stable rank-r and degree-d vector bundles that we denote by

UC{Spr, dq :“Mpar
C{Spr, 0˚, dq,

which is of dimension

dimC UC{Spr, dq “ r2
pg ´ 1q ` 1.

If we fix a line bundle δ P PicpC{Sq, we define a subvariety of UC{Spr, dq which is a coarse
moduli space parameterizing semi-stable rank-r vector bundles with determinant δ, given
as follow

SUC{Spr, δq :“ tE P UC{Spr, dq { detpEsq – δs, @s P Su.

SUC{Spr, δq is an irreducible normal variety over S.

Proposition 1.4.1 We have the following

1. The subspace U s
C{Spr, dq of stable vector bundles is a smooth open subset.

2. If r and d are coprime i.e. n=1, we have UC{Spr, dq “ U s
C{Spr, dq, thus UC{Spr, dqis a

smooth variety over S.

3. In the case of genus-2 curves, rank-2 and even degree vector bundles, the moduli space
UC{Sp2, 0q is smooth and isomorphic to a P3

C-bundle over the variety S.

4. Except the previous case, we have that the smooth locus of the moduli space UC{Spr, dq
coincides with the stable locus U s

C{Spr, dq.

The determinant map induces a morphism over S

det : UC{Spr, dq ÝÑ PicdpC{Sq
E ÞÝÑ detpEq.

For a line bundle δ P PicdpC{Sq, we get

SUC{Spr, δq – det´1
pδq.

which is of dimension

dimC SUC{Spr, δq “ pr
2
´ 1qpg ´ 1q.
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CHAPTER 1. PARABOLIC VECTOR BUNDLES AND THEIR MODULI SPACES

We also define the following fiber products X and X 1 over S of the relative moduli
spaces with the family of curves

X – C ˆS SUC{Spr, δq
pn //

� _

��

SUC{Spr, δq� _

��
X 1 – C ˆS UC{Spr, dq

pn //

pw

��

UC{Spr, dq

pe

��
C ps“πs

// S

Remark 1.4.2

• By trivial parabolic type over a parabolic divisor D we mean that each point in D is
trivial (see definition 1.1) and that the system of weights is trivial in the following
sense

a1piq “ 0 for all i P I and k “ 1.

We denote a trivial parabolic type by 0˚.

• Taking a parabolic divisor of degree one with a trivial parabolic type is just to use
the constructions in the subsection 1.2.2 otherwise modulo the deformation of the
parabolic divisor it is equivalent to an empty parabolic divisor thus no parabolic struc-
ture.

1.4.1 Generalized theta divisor

Let r ě 2 and d P Z. We note n “ gcdpr, dq. Let F be a vector bundle over the curve C
such that for all vector bundles E over C of rank r and relative degree d (with respect to
the map πs), we have

χpE b F q “ 0,

which is equivalent by Riemann-Roch to

degpE b F q ` rankpE b F qp1´ gq “ 0,

rankpF q d` r degpF q ` r rankpF qp1´ gq “ 0,

rankpF q pd` rp1´ gqq ` r degpF q “ 0,
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1.4. LINE BUNDLES OVER THE MODULI SPACES SUC{SpR, δq

Hence we get the relation

degpF q “ ´
rankpF qpd` rp1´ gqq

r
,

degpF q “ ´
rankpF qχpEq

r
.

As we want F with the smallest rank with this propriety, it is sufficient to take

rankpF q “ r
n

and degpF q “ ´χpEq
n

.

By rHir88s we can find such a vector bundle F for which there is a vector bundle E
over C such that

H0
pE b F q “ H1

pE b F q “ 0.

In this condition for δ P PicdpCq we set

Θs
F,δ :“ tE P SUCpr, δq { H

0
pE b F q ‰ 0u,

we denote its closure by ΘF,δ.

Drezet and Narasimhan give the description of the ample generator of the Picard group
PicpSUCpr, δqq and they describe the canonical bundle to the moduli space SUCpr, δq for
a line bundle δ over the curve C.

Theorem 1.4.3 ([DN89], Theorems B and F) We have the following proprieties

1. ΘF,δ is a relative hypersurface, which is called the theta divisor.

2. The line bundle L :“ OpΘF,δq is independent of F .

3. PicpSUCpr, δqq is isomorphic to Z and it is generated by L.

4. The dualizing sheaf of SUCpr, δq is

KSUCpr,δq – Op´2nΘF,δq “ L´2n.

where n “ gcdpr, dq.

1.4.2 Determinant line bundle

Let E be a family of semi-stable rank-r vector bundles over C ˆS T with fixed determinant
δ P PicdpC{Sq parameterized by a S-variety T . We get a cartesian diagram

C ˆS T
pn //

pw

��

T

pe

��
C πs“ps

// S
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Definition 1.4.4 (Determinant line bundlerKD76s) Let E ÝÑ CˆS T be a family of
vector bundles as above. We define

detR‚pn˚ pEq :“ pdet pn˚pEqq
´1
b detR1pn˚pEq,

which is an element of PicpT {Sq as T is a S-variety and we call it the determinant line
bundle associated to E with respect to the map pn : C ˆS T ÝÑ T .

We have the following lemmas that summarise some proprieties of the determinant line
bundle (see [KD76], see also [Pau98]).

Lemma 1.4.5

• For any short exact sequence of vector bundles over C ˆS T

0 ÝÑ E 1 ÝÑ E ÝÑ E2 ÝÑ 0,

we have the equality

detR‚pn˚pEq “ detR‚pn˚pE 1q b detR‚pn˚pE2q.

• Let σ : S ÝÑ C be a section of the map ps and let ισ be the closed immersion

σpSq ˆS T – T � � // C ˆS T .

For a vector bundle F over T , we have

detR‚pn˚pισ˚Fq “ pdetFq´1,

where ισ˚F is the push-forward of the vector bundle F by the map ισ.

Lemma 1.4.6 (Serre duality)

The determinant line bundle of E with respect to the map pn satisfies Serre duality

detR‚pn˚pEq – detR‚pn˚
`

E_ b p˚wKC{S
˘

,

where KC{S is the relative canonical line bundle of the family C{S. We note that

p˚wKC{S – KCˆST {T .

Lemma 1.4.7 Let E be a vector bundle over C ˆS T and F a vector bundle over C{S. If
detpEtq is independent of t P T , then for σ : S ÝÑ C a section of ps we have

1. det
`

E |σpSqˆST
˘

is independent of the section σ.

2. If we denote υ the relative degree of the bundle F i.e. υ :“ degpF |p´1psqq, then

detR‚pn˚ pE b p˚wF q – pdetR‚pn˚pEqq
rankpF q

b pdet Eσq´υ,

where Eσ “ E |σpSqˆST .
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Lemma 1.4.8 For any base change by a S-morphism f : T 1 ÝÑ T , we have an isomor-
phism

detR‚p1n˚pf
˚
pEqq – detR‚pn˚pEq,

where p1n : C ˆS T 1 ÝÑ T 1 is the projection map over T 1.

Remark 1.4.9 Let LT be a line bundle over T . Then the projection formula leads to the
isomorphism

detR‚pn˚ pE b p˚npLT qq – detR‚pn˚pEq b L´χpEtqT ,

where Et is the restriction of E to the curve p´1
n ptq. Note that the Euler-characteristic χpEtq

does not depend on t.

From now on and for simplicity we will denote the determinant line bundle with respect
to a morphism π : C ˆS T ÝÑ T as follow

λπpEq :“ detR‚π˚pEq,

and we omit the reference to the map if the context is clear.

Suppose S “ SpecpCq. Let E a virtual universal bundle over SUCpr, δq, then

• The ample generator of the Picard group is expressed as follow

L “ λpE b p˚wpF qq.

where F is a vector bundle given in the section 1.4.1.

• The canonical bundle satisfy the equalities rLS97s

L´2n
“ KSUCpr,δq “ λ

`

End0
pEq

˘´1
.

In the relative case, by Theorem 1.4.3 there is a relative line bundle L such that we have
an isomorphism

PicpSUC{Spr, δq{Sq – ZL,
where L a relative ample generator (determined modulo line bundles over S). By relative
ample we mean for each closed point s P S we have

Ls is the ample generator of the group PicpSUCspr, δsqq.

1.5 Classifying maps

Let E˚ be a family of rank-r parabolic vector bundles of fixed parabolic type α˚ over
C ˆS T with parabolic structure at the divisor D with fixed determinant δ P PicdpC{Sq
parameterized by a S-variety T . As the semi-stability is an open condition we get rational
maps from T over S, we assume the existence of parabolic bundles having semi-stable
underlying vector bundles.
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CHAPTER 1. PARABOLIC VECTOR BUNDLES AND THEIR MODULI SPACES

• To the relative moduli space of parabolic semi-stable rank-r vector bundles with fix
determinant δ and parabolic type α˚

ψT : T 99K SMpar
C{Spr, α˚, δq

t ÞÝÑ rEt˚s

where rEt˚s is the S-equivalence class of the semi-stable parabolic bundle Et˚ :“ E˚|Ct
over the curve Ct :“ π´1

s pπeptqq.

• To the relative moduli spaces of semi-stable rank-r vector bundles with fixed deter-
minant δjpiq P PicdjpiqpC{Sq for all i P I and j P t1, 2, ..., `iu by associating the Hecke
modifications (see subsection 1.3)

φT
i,j : T 99K SUC{Spr, δjpiqq

t ÞÝÑ rHj
i pEtqs

defined as follow

Hj
i pEtq :“ kertE ÝÑ Qj

i pEqu.
δjpiq :“ δ p´rjpiqσipSqq .

• The forgetful rational map (we forget the parabolic structure)

φT : T 99K SUC{Spr, δq

t ÞÝÑ rEts

We call these maps the classifying morphisms.

Remark 1.5.1

1. Suppose T is a Noetherian integral separated locally factorial and regular in codimen-
sion one S-scheme. Let V an open subset with compliment Vc, then

codimpVc, T q ě 2 ùñ PicpT {Sq » PicpV{Sq.

See rHar13s Chapter 2. Section 6, for the definitions and proprieties.

2. Let T be a S-scheme satisfying the proprieties of the previous remark, then

(a) If k is large enough, which is equivalent to the existence of a reel number ε small
enough such that

1

k

˜

N
ÿ

i“1

`i
ÿ

j“1

mjpiq ajpiq

¸

ă ε

Then there exists an open subset V Ă T satisfying codimpVc, T q ě 2 where the
maps φ is defined and the pull-back φ˚T pLq extends from V to T . i.e., one has
the implication
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E˚ parabolic stable ùñ E is semi-stable (as vector bundle)

(b) If k is large enough, such that for all i P I and j P t1, 2, ..., `iu, there is an open
subsets Vjpiq Ă T and codim pVjpiqc, T q ě 2 where the maps φi,j are defined.
Then the pull-backs φT

i,j
˚
pLi,jq extends to all the space T .

If T “ SMpar
C{Spr, α˚, δq is smooth,1 then it satisfies all the conditions in the first point in

the previous remark. Then for k large enough, there is a big open subset such that:

E˚ is parabolic semi-stable ùñ E and Hj
i pEq are semi-stable.

The pull-backs under the classifying morphisms φi,j, φ (we drop the reference to the pa-
rameter space) of the ample generators of PicpSUC{Spr, δjpiqq{Sq and PicpSUC{Spr, δq{Sq
respectively extends to all the space SMpar

C{Spr, α˚, δq. We denote them by Θjpiq and Θ
respectively.

Theorem 1.5.2 ([NR93]) Let E be a relative family of rank-r vector bundles with fixed
determinant δ P PicdpC{Sq parameterized by a S-scheme T over the family ps : C ÝÑ S of
curves, then we have

φ˚T pLq “ λpEq
r
n b det pEσqℵ ,

where

ℵ “ d` rp1´ gq

n
and n “ gcdpr, dq.

φT : T ÝÑ SUC{Spr, δq is the classifying morphism to the relative moduli space of semi-
stable rank-r bundles of determinant δ and σ : S ÝÑ C a section of the map ps.

Remark 1.5.3 The determinant line bundle depends on the choice of the relative family
in the following sense: for a line bundle L P PicpT {Sq we have

λpE b p˚nLq “ pdet pn˚ pE b p˚nLqq
´1
b detR1pn˚pE b p˚nLq,

by the projection formula we get

λpE b p˚nLq “ pdet ppn˚pEq b Lqq
´1
b det

`

R1pn˚pEq b L
˘

,

hence
λpE b p˚nLq “ pdet pn˚pEqq

´1
b detR1pn˚pEq b L´pd`rp1´gqq,

which gives the following relation

λpE b p˚nLq “ λpEq b L´nℵ.

So the line bundle
λpEq

r
n b det pEσqℵ ,

1See [BY99] for more details.
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is independent of the choice of the equivalence class of the family E.ie. for any line bundle
L P PicpT {Sq we have the relation

λpE b p˚nLq
r
n b det pEσ b Lqℵ “ λpEq

r
n b L´rℵ b det pEσqℵ b Lrℵ

“ λpEq
r
n b det pEσqℵ .

Remark 1.5.4 By applying Theorem 1.5.2 for T “ SUC{Spr, δq, we get for any virtual
universal bundle E a relative ample generator L of the Picard group given by the formula

L :“ λpEq
r
n b detpEqℵ.

1.6 Parabolic determinant line bundle

Let E˚ be a relative family of parabolic rank-r vector bundles over C ˆS T of determinant
δ P PicdpC{Sq and fixed parabolic type α˚ over a smooth family of curves pC, Dq{S param-
eterized by a S-variety T . Let πn : C ˆS T ÝÑ T be the projection map.

We assume the following condition

p‹q

˜

kd`
N
ÿ

i“1

`i
ÿ

j“1

mjpiqajpiq

¸

P rZ.

Definition 1.6.1 rBR93s We define the parabolic determinant line bundle as following

λparpE˚q :“ λpEqk b
N
â

i“1

`i
â

j“1

!

det
`

F j
i pEq{F

j`1
i pEq

˘´ajpiq
)

b detpEσq
kχpar
r ,

which is a line bundle over T {S, where

• Eσ :“ E |σpSqˆST for some section σ of the map πs : C ÝÑ S.

• The determinant line bundle bundle with respect to the map πn :

λpEq :“ detR‚πn˚pEq :“ pdetπn˚Eq
´1
b detR1πn˚pEq.

• χpar “ d` rp1´ gq ` 1
k

N
ř

i“1

`i
ř

j“1

mjpiqajpiq.

Remark 1.6.2 If p‹qis not satisfied, the bundle λparpEq is not well-defined over T . In
this case, we take as a definition its r-th power which is a line bundle over T .
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Theorem 1.6.3 ([Pau96]) Let E˚ be a relative family of rank-r parabolic vector bundles
over C ˆS T with fixed determinant δ P PicdpC{Sq and of parabolic type α˚ parameterized
by a S-scheme T over a family of smooth projective curves πs : C ÝÑ S equipped with a
family of degree N parabolic divisors given by N-sections of the map πs. Then there is a
relatively ample line bundle

Θpar P Pic
´

SMpar
C{Spr, α, δq{S

¯

such that
ψ˚T pΘparq “ λparpE˚q,

where ψT : T ÝÑ SMpar
C{Spr, α˚, δq is the classifying morphism to the relative moduli space

of semi-stable rank-r parabolic vector bundles with determinant δ and parabolic type α˚.

If we apply this theorem to a virtual universal parabolic bundle E˚ over T “ SMpar
C{Spr, α˚, δq

we get the expression of a relative ample line bundle

Θpar “ λpEqk b
N
â

i“1

`i
â

j“1

!

det
`

F j
i pEq{F

j`1
i pEq

˘´ajpiq
)

b detpEσq
kχpar
r .

36



Chapter 2

The Yokogawa-Maruyama point of
view of parabolic vector bundles

In this chapter we give the Yokogawa point of view on parabolic vector bundles and their
moduli space. Simpson in[Sim90] gives another description of parabolic vector bundles as
filtered bundles which can be generalized to higher dimension. Maruyama and Yokogawa
in [MY92], [Yok91] and [Yok93] give the construction of the relative moduli space of semi-
stable parabolic vector bundles with the new description and they prove that the moduli
space they constructed is isomorphic to the moduli spaces of semi-stable parabolic bundles.

Let C a complex projective smooth curve and D “
N
ř

i“1

xi a reduced divisor of degree N

on C and set I “ t1, 2, ..., Nu.

Definition 2.0.1 (Filtered vector bundles [Sim90] ) A filtered rank-r bundle over the
marked curve pC,Dq is a rank-r vector bundle E over C together with filtrations
E‚ “ pEλ,iqi,PI

λPR
, satisfying for all i P I the following conditions

1. Local freeness: Eλ,i are locally free of rank-r, @λ P R and E0,i “ E.

2. Decreasing: Eλ,i Ă Eβ,i for all λ ě β.

3. Left continuous: for ε ą 0 sufficiently small real number, Eλ´ε,i “ Eλ,i.

4. Finiteness: the length of the filtration for 0 ď λ ď 1 is finite.

5. Periodicity: for all real number λ, we have Eλ`1,i “ Eλ,ip´xiq.

Definition 2.0.2 (System of weights) Let pEλ,iqiPI,λPR be a filtered vector bundle with
respect to the divisor D. Then we define the system of weights on xi for i P I as the ordered
jumping real numbers in the real interval r0, 1s ie. 0 ď λ ď 1 such that

for ε ą 0 small enough we have Eλ,i ‰ Eλ`ε,i.

37



We will assume that the jumping numbers are rational numbers. So we get for each i P I
an ordered sequence of rational numbers

0 ď λ1piq ă λ2piq ă ... ă λ`ipiq ă 1,

where `i is the number of jumps at the point xi.

We set mjpiq :“ length
`

Eλj ,i{Eλj´1,i

˘

the length of the torsion sheaf Eλj ,i{Eλj´1,i supported
on xi. We call mjpiq the multiplicity of the weight λjpiq.

Finally we set λ‚ :“ pλjpiq,mjpiqq iPI
1ďjď`i

the vector of weights and multiplicities.

Remark 2.0.3 By definition 2.0.1, we set

Eλ “
N
č

i“1

Eλ,i. (2.0.1)

So we get a filtration E‚ :“ pEλqλPR of E by vector subbundles satisfying the first five points
in definition 2.0.1 and for the periodicity we get for each λ P R, Eλ`1 “ Eλp´Dq.
We can illustrate a filtered vector bundle in the following graph

λ` ´ 1 λ1 λ2 λ3
¨ ¨ ¨¨ ¨ ¨ 1λ` λ1 ` 1¨ ¨ ¨

R

E “ Eλ1

Eλ2

Eλ3

Eλ``1 “ Ep´Dq

0

E‚

Definition 2.0.4 (Morphisms of filtered bundles) Let E‚ “ pEλqλPR and F‚ “ pFλqλPR
be two filtered vector bundles over the smooth marked curve pC,Dq. A morphism of filtered
bundles is a family of OC-linear morphisms

fλ : Eλ ÝÑ Fλ

such that for all λ ě β the diagram commute

Eλ
fλ //

� _
Fλ� _

Eβ fβ
// Fβ
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We denote the sheaf of morphisms of filtered bundles by HompE‚, F‚q.

Definition 2.0.5 (filtered subbundles) A filtered bundle F‚ is a filtered subbundle of a
filtered bundle E‚ if the following conditions holds

1. F is a sub bundle of E.

2. Fλ Ă Eλ for all λ P R.

3. If Fλ Ă Eβ for some β ą λ, Then Fλ “ Fβ.

Equivalently, let E‚ be a filtered bundle and Fa subbundle of E :“ E0, If we put Fλ :“
EλXF , then we get a structure of filtered bundle F‚ over F induced by the structure of E‚.

Definition 2.0.6 (quotient of filtered bundles) Let E‚ be a filtered bundle over the
marked curve pC,Dq a quotient of filtered bundle, is the following data

1. A filtered bundle F‚.

2. A surjective filtered bundles morphism f‚ : E‚ ÝÑ F‚.

i.e. @α P R, the map fα : Eλ ÝÑ Fλ is surjective.

3. If we have fλpEλq Ă Fβ for some β ą λ, then Fλ “ Fβ.

Remark 2.0.7 Every vector bundle E can be equipped by a natural filtered structure, given
by

Eλ :“ Ep´tλuDq @λ P R.

This structure is called the special filtered structure.

Definition 2.0.8 (degree and slope) Let E‚ “ pEλqλPR be a filtered rank-r bundle over
the marked curve pC,Dq. Then we define the

1. Filtered degree

degpE‚q “

ż 1

0

degpEλqdλ.

2. Filtered slope

µpE‚q “
degpE‚q

r
.
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2.1. MODULI SPACE OF FILTERED VECTOR BUNDLES

2.1 Moduli space of filtered vector bundles

In this subsection we give Yokogawa and Maruyama’s [MY92] construction of the moduli
space of filtered vector bundles for a rational fixed system of weights (see Definition 2.0.2).

Definition 2.1.1 (Stability) Let E‚ “ pEλqλPR be a filtered vector bundle over the marked
curve pC,Dq. Then E‚ is said to be stable (resp. semi-stable) if for all filtered proper sub-
bundles F‚, we have

µpF‚q ď µpE‚q presp. ăq.

Let πs : C ÝÑ S be a smooth family of projective curves of genus g ě 2, parameterized
by an algebraic variety S over C and let

σi : S // C, i P I “ t1, 2, ..., Nu,

be N sections of πs such that

@i ‰ j P I and @s P S, we have: σipsq ‰ σjpsq.

We denote by
D :“

ÿ

iPI

σipSq,

the associated divisor (as the relative dimension is one). We consider the couple pC, Dq as
a family of marked curves parameterized by the variety S and let δ P PicdpC{Sq a relative
line bundle of degree d over C.

Let πn : T ÝÑ S be a S-variety. We get a Cartesian diagram

C ˆS T
πn //

πw

��

T

πe

��
C πs

// S

σi

__

Definition 2.1.2 (Relative family of filtered bundles) A relative family of filtered rank-
r vector bundles over pC, Dq parameterized by a S-variety T is the following data: a filtered
rank-r vector bundle E‚ “ pEλqλPR over C ˆS T with respect to the divisor D, such that for
all t P T we have

E‚|Cs is a semi-stable filtered bundle over the marked curve pCs, Dsq.

where s “ πeptq, Cs :“ π´1
s psq and Ds :“ D|Cs.
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Theorem 2.1.3 rYok91s For a fixed system of weights λ‚. There is a coarse moduli
space M‚pr, λ‚, dq which is a projective irreducible normal variety, parameterizing semi-
stable filtered rank-r vector bundles of degree d with fixed system of weights λ‚ modulo
S-equivalence over the smooth family of marked projective curves pC, Dq. Moreover, the
subspace Ms

‚pr, λ‚, dq Ă M‚pr, λ‚, dq of stable filtered bundles is an open subset and coin-
cides with the smooth locus.

For δ P PicdpC{Sq we denote by

M‚pr, λ‚, δq :“ tE‚ PM‚pr, λ‚, dq { detpE0q “ δu ĂM‚pr, λ‚, dq,

the subvariety of filtered bundles with determinant δ.

Remark 2.1.4 We will not give the proof of this theorem as we will see that filtered bundles
correspond to parabolic bundles and that this moduli space equals the moduli space of semi-
stable parabolic bundles.

2.2 Filtered bundles as Parabolic bundles

Proposition 2.2.1 Over a smooth marked curve pC,Dq. Filtered rank-r vector bundle is
equivalent to a parabolic rank-r vector bundle with respect to the same divisor D.

Proof. Let D “ tx1, x2, ..., xNu be a parabolic divisor over the curve C. Let E˚ be a
parabolic rank-r vector bundle over C of type α˚ “ pk,~a, ~mq with respect to the parabolic
divisor D. We take its Hecke filtrations 1.3.2 for each i P I

Ep´xiq “ H`i
i pEq Ă H`i´1

i pEq Ă ¨ ¨ ¨ Ă H2
i pEq Ă H1

i pEq Ă H0
i pEq “ E,

k ą a`ipiq ą ... ą a2piq ą a1piq ě 0.

We set

a0piq “ a`ipiq ´ k.

a`i`1piq “ a1piq ` k.

a`i piq

k
´ 1

a1piq
k

a2piq
k

a3piq
k

¨ ¨ ¨¨ ¨ ¨ 1a`i piq

k

a1piq
k
` 1

¨ ¨ ¨
R

E “ H0
i pEq

H1
i pEq

H2
i pEq

H`i
i pEq “ Ep´xiq

0
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And we associate to each λ P R and j P t0, 1, ..., `i ` 1u such that

aj´1piq

k
ă λ´ tλu ď

ajpiq

k
,

the vector bundles
Eλ,i “ Hj´1

i pEqp´tλuxiq.

We get filtrations pEλ,iqiPI,λPR that satisfy the definition 2.0.1. So a filtered bundle with
respect to the divisor D. Note that the system of weight is given by the parabolic weights
~a “ pajpiqq iPI

1ďjď`i
and the multiplicities are the quasi-parabolic type ~m “ pmjpiqq iPI

1ďjď`i
.

Conversely, let pEλ,iqλPR,iPI be a filtered rank-r vector bundle over the curve C with re-
spect to the divisor D. By definition for each i P I there is a finite filtration for λ P r0, 1s
that we denote as follow

Ep´xiq “ Eλ`i ,i Ă Eλ`i´1,i Ă ... Ă Eλ1,i Ă E0,i “ E,

where the αj,i P Q are the jumps for i P I and satisfies

1 ą λ`i,i ą λ`i´1,i ą ... ą λ1,i ě λ0,i “ 0.

We set for all i P I and j P t1, 2, ..., `iu
$

’

’

&

’

’

%

F j
i pEq :“ kerpExi ÝÑ E{Eλj´1,i

q.

F `i`1
i pEq “ ker

ˆ

E ÝÑ E
Eλ`i,i

“ E
Ep´xiq

˙

“ t0u.

and the numerical data:

pk,~a, ~mq “

$

’

’

’

’

&

’

’

’

’

%

k :“ `.m.ctthe denominators of the λj,iui,j.

ajpiq :“ kλj,i.

mjpiq :“ dimCpF
j
i pEq{F

j`1
i pEqq.

So this data defines a parabolic structure on E of parabolic type α˚ “ pk,~a, ~mq over the
divisor D. ˝

Remark 2.2.2 In [MY92] the following equality is proved

degpE‚q :“

ż 1

0

degpEλqdλ “ pardegpE˚q ` rankpEq degpDq.

Proposition 2.2.3 Let E‚ “ pEλqλPR be a filtered vector bundle over the marked curve
pC,Dq. Then we have the equivalence
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E‚ is stable (resp. semi-stable) as filtered bundle
õ

E˚ the associated parabolic bundle is stable (resp. semi-stable).

By Propositions 2.2.1, 2.2.3 and the above remark, we get the following theorem.

Theorem 2.2.4 Let πs : C ÝÑ S be a smooth family of projective complex curves equipped
with a divisor D “

ř

iPI σipSq of relative degree N given by N sections pσiqiPI of the map
πs. For fixed parabolic weights α˚ “ pk,~a, ~mq we have an isomorphism of S-schemes

$ : M‚pr, λ‚, dq ÝÑ Mpar
C{Spr, α˚, dq

E‚ ÞÝÑ $pE‚q “ E˚

where to the system of filtered rational weights λ‚ is given as follow

1 ą λ`i,i ą λ`i´1,i ą ... ą λ1,i ě λ0,i “ 0,

we associate the system of parabolic weights, for all i P I and j P t1, 2, ..., `iu

ajpiq :“ kλj,i and k :“ `.m.ctthe denominators of the λj,iu@i,@j.

Classifying maps Let E‚ be a family of filtered rank-r bundles over the smooth family
of marked curves pC, Dq over S parameterized by a S-variety T with fixed determinant
δ P PicdpC{Sq and fixed weights, we get for each λ P R a rational map to the moduli space
of semi-stable rank-r vector bundles of fixed determinant

φT
λ : T 99K SUC{Spr, δpλqq

t ÞÝÑ Eλ|Ct

where for each t P T we associate the curve

Ct :“ π´1
n ptq “ π´1

s pπeptqq

and for each λ P R we associate the line bundle

δpλq :“ detpEλq P PicdpλqpC{Sq

we set npλq “ gcdpr, dpλqq.

If T “ M‚pr, λ‚, δq is the moduli space of filtered bundles by Remark 1.5.1 the maps φT
λ

are defined over big open spaces that depend on λ P R so the pull-backs of any line bundle
extends and we denote by Θpλq the pull-back of ample generator of the relative Picard
group of the moduli space SUC{Spr, δpλqq by the map φTλ . Note that φT

0 coincides with the
map φT given in Subsection 1.5.
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2.3 Some proprieties of filtered bundles

Let pC,Dq be a smooth marked projective curve. Let E‚ “ pEλqλPR be a filtered vector
bundle over pC,Dq and let γ P R we define the γ-shift filtered bundle E rγs

‚
by

E rγsλ :“ Eλ`γ, @λ P R.

Definition 2.3.1 (Tensor product) Let E‚ and F‚ be two filtered vector bundles. For
each λ P R, we set

pE‚ b F‚qλ :“ Span

˜

ğ

λ1`λ2“λ

Eλ1 b Fλ2

¸

.

Proposition 2.3.2 rYok95s Let E‚ and F‚ be two filtered bundles. Then the tensor product
and the shift operation commutes, i.e. For γ P R, we have

pE rγs
‚
b F‚q‚ – pE‚ b F rγs‚q‚ – pE‚ b F‚q rγs‚ .

Definition 2.3.3 rYok95s Let E‚ and F‚ two filtered bundles. For each λ P R we set

HompE‚, F‚qλ :“ HompE‚, F rλs‚q.

Remark 2.3.4 If we denote by E˚ the associated parabolic bundle to E‚, we get

HompE‚, E‚q0 “ parEndpE˚q.

Proposition 2.3.5 rYok95s Let E‚ and F‚ be two filtered bundles, then
For each γ P R, there are natural isomorphisms

HompE‚, F‚q rγs‚ – HompE r´γs
‚
, F‚q‚ – HompE‚, F rγs‚q‚.

To define the dual of a filtered bundle and a notion of filtered morphisms that cor-
responds on the parabolic side to strongly-parabolic morphisms, we define the following
operation on filtered bundles. Let E‚ be a filtered bundle over pC,Dq

• We associate for each λ P R the following filtered bundle

pEλ :“ lim
βąλ

Eβ

which is a right-continuous filtered bundle denoted pE‚. Thus a parabolic bundle by
Proposition 2.2.1. In fact if the filtration of E‚ is

Ep´Dq “ Eλ` Ă Eλ`´1
Ă ... Ă Eλ1 Ă E0 “ E,
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with weights
1 ą λ` ą λ`´1 ą ... ą λ1 ě 0.

Then pE˚ is given by the filtration
$

&

%

Eλ “ Eλj´1 for all λj´1 ď λ ă λj for j P t1, 2, ..., `` 1u

where λ0 “ λ` ´ 1 and λ``1 “ λ1 ` 1.

λ` ´ 1 λ1 λ2 λ3
¨ ¨ ¨¨ ¨ ¨ 1λ` λ1 ` 1¨ ¨ ¨

R

E “ pEλ`´1

pEλ1
pEλ2

pEλ` “ Ep´Dq

0

pE˚

• We define the dual filtered bundle E_‚ by

E_‚ :“ HompE‚,OCq‚

where the trivial line bundle is equipped with the special structure.

Remark 2.3.6 If we denote by E˚ the associated parabolic bundle to E‚, we get

HompE‚, pE‚q0 “ SparEndpE˚q.

Proprieties 2.3.7 Let E‚ be a filtered bundle. Then we have

1. For a vector bundle F equipped with the special structure 2.0.7, we have

HompE‚, F qλ – Homp pE r´1s
´λ , F q – Homp pE´λpDq, F q.

2. E__‚ is canonically isomorphic to E‚.

3. There is a canonical isomorphism

HompE‚, F‚q‚ – pE_‚ b F‚q‚ .

Remark 2.3.8 Let E‚ a filtered bundle over the marked curve pC,Dq.
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1. We note that the underlying bundle of E_‚ is E_p´Dq.

2. We have the following isomorphism of filtered bundles

HompE‚, E‚q_‚ – HompE‚, E‚q‚,

but, in general
HompE‚, E‚q_ fl HompE‚, E‚q.

2.4 Parabolic transformation group of SMpar
C pr, α˚, δq

Let C be a smooth projective complex curve and D “ tx1, x2, ..., xNu a degree N reduced
divisor. Let E˚ be a parabolic bundle of parabolic type α˚ with respect to the divisor D.
We recall that for each i P I and j P t1, , 2, ..., `iu the Hecke modification Hj

i pEq is equipped
with a natural quasi-parabolic structure induced by the structure of E˚ as follows

1. Over Cztxiu we have an isomorphism of sheaves

f : Hj
i pEq|Cztxiu ÝÑ E|Cztxiu.

2. For q ‰ i, we take the pullback by f of the filtration over xq

F ˚q pH
j
i pEqq :“ f´1

pF ˚q pEqq.

3. At the point xi we associate

0 //Hj
i

`

F j`1
i pEq

˘

� � //Hj
i pEq|xi

f //

%%

Exi
// Exi{F

j`1
i pEq // 0

F j`1
i pEq

$$

;;

0

88

0

We call the linear subspace

Hj
i

`

F j`1
i pEq

˘

:“ kerpHj
i pEq|xi ÝÑ F j`1

i pEqq

the Hecke transform of F j`1
i pEq.

4. Take the filtration at xi

E|xi “ F 1
i pEq Ą F 2

i pEq Ą ¨ ¨ ¨F
j
i pEq Ą ¨ ¨ ¨ Ą F `i

i pEq Ą F `i`1
i pEq “ t0u

as the image of f is in F j`1
i pEq, we associate
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• for s ě j ` 1, we take the pull-back by f

Hj
i pEq|xi “ f´1

`

F j`1
i pEq

˘

Ą ¨ ¨ ¨f´1
pF s

i pEqq Ą ¨ ¨ ¨ Ą f´1
`

F `i
i pEq

˘

Ą f´1
pt0uq

• for s ď j ` 1, we get a filtration of E|xi{F
j`1
i pEq

E|xi
F j`1
i pEq

“
F 1
i pEq

F j`1
i pEq

Ą ¨ ¨ ¨ ¨ ¨ ¨
F s
i pEq

F j`1
i pEq

Ą ¨ ¨ ¨ ¨ ¨ ¨ Ą
F j
i pEq

F j`1
i pEq

Ą
F j`1
i pEq

F j`1
i pEq

“ t0u

Note that

Hj
i

`

F j`1
i pEq

˘

–
E|xi

F j`1
i pEq

bOCp´xiq|xi

thus, Hj
i pEq|xi gets the induced filtration of same length as that of E|xi .

Hence Hj
i pEq gets a quasi-parabolic structure of same type as E˚ over the same divisor.

Definition 2.4.1 (Basic transformations [AG21]) A basic transformation of a quasi-
parabolic vector bundle is a tuple T “ pτ, s, L,Hq consisting on

• An automorphism τ : C ÝÑ C and τpDq “ D.

• A sign s P t1,´1u.

• A line bundle L P PicpCq.

• Hecke modifications. That can be expressed for full flag quasi-parabolic structure as

follows: Let H “
N
ř

i“1

hixi be an effective divisor supported on D such that 0 ď hi ď

pr ´ 1q for all i P I.

Given a quasi-parabolic vector bundle E˚, then a basic transformation T acts as follow

T pE˚q :“

$

&

%

τ˚ pLbHHpE˚qq s “ 1

τ˚ pLbHHpE˚qq
_ s “ ´1.

where we define the transformation HHpE˚q as follow

HH :“ Hhi
1 ˝H

h2
2 ˝ ¨ ¨ ¨ ˝HhN

N .

and Hhi
i is given by

Hhi
i :“ H2

i ˝H2
i ˝ ¨ ¨ ¨ ˝H2

i
loooooooooomoooooooooon

hi

H2
i is the standard Hecke modification at the point xi with respect to the subspace F 2

i pEq.

If detpEq “ δ, we set T pδq :“ det pT pE˚qq the determinant of the transformation.

47
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Example 2.4.2 (Full flag case) we have

1. H`i
i “ E˚ bOCp´xiq.

2. T pδq :“ det pT pE˚qq “

$

&

%

τ˚ pLr b δp´Hqq s “ 1

τ˚ pLr b δp´Hqq_ s “ ´1.

Parabolic system of weights under basic transformations

Let E˚ be a parabolic rank-r bundle over the curve C of a full flag parabolic type α˚ “
pk,~a, ~mq with respect to the parabolic divisor D “

ř

iPI xi. (see Alfaya-Gomez[AG21]).

1. Let τ : C ÝÑ C be an automorphism and τpDq “ D, then

τ˚pajpiqq :“ ajpτ
´1
piqq.

we denote the associated parabolic type by τpα˚q.

2. Take the parabolic dual E_˚ , then we associate the weights

a_j piq :“ 1´ ajpiq.

we denote the associated parabolic type by α_˚ .

3. Twisting with a line bundle does not affect the parabolic weights.

4. Let H “
N
ř

i“1

hixi be an effective divisor supported on D such that 0 ď H ď pr´ 1qD.

We define HHp~aq

HHp~aq :“

$

&

%

aj`hipiq ´ a1`hipiq j ` hi ď r

aj`hi´rpiq ´ a1`hipiq ` 1 j ` hi ą r.

we denote the associated parabolic type for all i P I and j P t1, 2, ..., `iu by Hj
i pα˚q.

So, if ~a is a parabolic system of weights with respect to the divisor D over C, we define
for a basic transformation T “ pτ, s, L,Hq

T p~aq :“

$

&

%

HHp~aqjpτ
´1piqq s “ 1

1´HHp~aqr´j`1pτ
´1piqq s “ ´1.
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Chapter 3

Hitchin connection in algebraic
geometry

In this chapter we introduce the van Geemen-de Jong approach to the construction of a
connection on a direct image of a line bundle by giving a heat operator on the line bun-
dles. We will define connections, heat operators, the relation between them and the van
Geemen-de Jong theorem, which is the algebraic geometry analogue of Hitchin’s theorem
in Kähler geometry. We follow [GdJ98].

Throughout this section we take π : M ÝÑ S, a smooth surjective morphism of regular
C-schemes, we have the natural exact sequence on the tangent bundles

0 // TM{S
// TM

dπ // π˚ pTSq // 0. (3.0.1)

We define the sheaf of differential operators and the sheaf of relative operators.

Definition 3.0.1 (Differential operators) Let E be a locally free sheaf over M. We

define the sheaf DpkqM pEq of differential operators of order at most k over E by induction
on the degree as follow:

• @k P N, we have
DpkqM pEq ãÑ EndCpEq.

is a sub-sheaf of C-linear maps of E.

• Dp0qM pEq “ EndOMpEq.

• An element P P DpkqM pEq is a C-linear map

P : E ÝÑ E

such that for each f P OM we have

rP, f s :“ Pf ´ fP P Dpk´1q
M pEq.

The element rP,Qs is called the commutator of the differential operators P and Q.
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We define the sheaf DpkqM{SpEq of relative differential operators with respect to the map

π : M ÝÑ S as a the sub-sheaf of operators that are π´1pOSq-linear.

Definition 3.0.2 (Symbol map) We have the natural inclusion for each k P N

Dpk´1q
M pEq ãÑ DpkqM pEq.

Thus we get a short exact sequence

0 // Dpk´1q
M pEq // DpkqM pEq

// Symk
pTMq b EndpEq // 0.

where Symk
pTMq is the k-th symmetric power of the tangent bundle. The natural map

∇k : DpkqM pEq ÝÑ Symk
pTMq b EndpEq,

is what we call the symbol map of order k.

By restriction to the subsheaf DpkqM{SpEq of relative differential operators, we get a map

∇k : DpkqM{SpEq ÝÑ Symk
pTMq b EndpEq

with image in the sub-sheaf Symk
pTM{Sq. Hence

∇k : DpkqM{SpEq ÝÑ Symk
pTM{Sq b EndpEq.

we call it the relative symbol map.

3.1 Connections on vector bundles

We follow Atiyah’s description of Atiyah algebroids and exact sequences rAti57s in the
context of vector bundles rather than principal bundles.

3.1.1 Atiyah classes

Definition 3.1.1 (Atiyah Class) Let E be a vector bundle over M. Then the Atiyah
exact sequence associated to E is given by the following pull-back

0 // EndpEq // AMpEq
∇1 //

� _

��

TM //
� _

´bid

��

0

0 // EndpEq // Dp1qM pEq
∇1// TM b EndpEq // 0

The sheaf AMpEq is called the Atiyah algebroid of E. We denote its extension class by
atMpEq. As an extension

atMpEq P Ext1
pTM,EndpEqq » H1

pM,Ω1
M b EndpEqq

as we deal with locally free sheaves.
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For a line bundle L P PicpMq the Atiyah sequence coincides with the sequence

0 // OM // Dp1qM pLq
∇1 // TM // 0 (3.1.1)

and its extension class

atMpLq P H1
pM,Ω1

Mq.

Note that the Atiyah class can be given as follows: we tensorize the Atiyah class (3.1.1)
with the cotangent sheaf Ω1

M, we get

0 // EndpEq b Ω1
M

// AMpEq b Ω1
M

∇1 // TM b Ω1
M

// 0

the connecting morphism in the long exact sequence in cohomology is

δ1 : H0
pM,EndpTMqq ÝÑ H1

`

M,EndpEq b Ω1
M
˘

the class atMpEq is given by δ1pIdq. We have the following lemma. [Ati57].

Lemma 3.1.2 Let X be a smooth algebraic variety, L a line bundle and k a positive
integer. Then we have an isomorphism of short exact sequences

0 // OX
//

��

AXpL
kq

∇1 // //

��

TX //

id

��

0

0 // OX
1{k // AXpLq

∇1 // TX // 0

For π : M ÝÑ S an S-scheme and E a vector bundle over M, there is a relative version
of the Atiyah algebroid denoted by AM{SpEq, given by taking the pull-back

0 // EndpEq // AM{SpEq //
� _

��

TM{S
//

� _

ι

��

0

0 // EndpEq // AMpEq
∇1 // TM // 0

As an extension, we have atM{SpEq is a global section of the sheaf R1π˚pΩ
1
M{S b EndpEqq

over S.i.e.,

atM{SpEq P H0
`

S, Ext1pTM{S,EndpEqq
˘

» H0
`

S,R1π˚pΩ
1
M{S b EndpEqq

˘

.

For a line bundle L P PicpMq, we denote its relative Atiyah class by rLs P H0
´

S,R1π˚pΩ
1
M{Sq

¯

.

For our purpose we need the trace-free Atiyah algebroid of vector bundles with fix
determinant. We have a direct sum decomposition EndpEq “ End0

pEq ‘ OM and let
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denote by q : EndpEq Ñ End0
pEq the first projection map. Then the trace-free Atiyah

algebroid is given by the push-out of the standard Atiyah sequence by the map q as follows

0 // EndpEq //

q

��

AMpEq //

��

TM //

��

0

0 // End0
pEq // A0

MpEq
// TM // 0,

With the same method we define the trace-free relative version Atiyah algebroid A0
M{SpEq.

Definition 3.1.3 (Lie algebroid structure) The sheaf Dp1qM pEq is equipped with a nat-

ural Lie brackets given by the commutator. In fact for any P,Q P Dp1qM pEq we have

rP,Qs P Dp1qM pEq.

Thus we get a C-bilinear application

r¨, ¨s : Dp1qM pEq ˆDp1qM pEq ÝÑ Dp1qM pEq.

3.1.2 Connections / Curvature

We will follow Atiyah’s approach to define connections on vector bundles as splitting of
the associated Atiyah sequence.

Definition 3.1.4 (Connection) Let E be a vector bundle on M. A (Koszul) connection
∇ on E is a OM-linear splitting of the Atiyah exact sequence associated to the vector bundle
E

0 // EndpEq // AMpEq // TM

∇

aa
// 0.

Definition 3.1.5 (Projective connection) A projective connection is a OM-linear split-
ting ∇ of the exact sequence

0 // EndpEq{OM // AMpEq{OM // TM

∇

cc
// 0.

Definition 3.1.6 (Flat connection)

A (projective) connection is said to be flat (or integrable) if it preserves the Lie bracket.
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3.2 Heat operators

Let L P PicpMq be a line bundle over M such that π˚L is a locally free sheaf over S. We
are interested in the subsheaf of differential operators of degree 2 given by

WM{SpLq :“ Dp1qM pLq `Dp2qM{SpLq Ă Dp2qM pLq.

We also denote ∇2 the restriction of the symbol map to this sub-sheaf

∇2 : WM{SpLq ÝÑ Sym2
pTM{Sq,

and define the sub-principal symbol

σS : WM{SpLq ÝÑ π˚TS,

such that for s a local section of L and f a local section of OS we have, for all D PWM{SpLq

xσSpDq, dpπ
˚fqy “ Dpπ˚fsq ´ π˚fDpsq.

The elements of the sheaf WM{SpLq satisfy the Leibniz rule (this follow from proprieties
of the second order symbol map)

Dpfgsq “ x∇2pDq, df b dgy s` fDpgsq ` gDpfsq ´ fgDpsq.

Thus we get a short exact sequence

0 ÝÑ Dp1qM{SpLq ÝÑWM{SpLq
σS‘∇2
ÝÑ π˚pTSq ‘ Sym2

pTM{Sq ÝÑ 0. (3.2.1)

We now define the heat operators.

Definition 3.2.1 (Heat operator [GdJ98]) A heat operator H on L is an OS-linear
map of coherent sheaves

H : TS ÝÑ π˚WM{SpLq

such that σS ˝ H̃ “ Id, where H̃ is the OM-linear map associated to H by adjunction

H̃ : π˚TS ÝÑWM{SpLq.

Definition 3.2.2 (Projective heat operator) A projective heat operator H on L is an
OS-linear map of coherent sheaves

H : TS ÝÑ
`

π˚WM{SpLq
˘

{OS

such that σS ˝ H̃ “ Id. The map H̃ is associated to H by adjunction.

Definition 3.2.3 (Symbol of heat operators) The symbol map of a (projective) heat
operator H is the map

ρH :“ π˚pσ2q ˝H : TS ÝÑ π˚Sym2
pTM{Sq.
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3.3 The van Geemen-de Jong approach

Let π : M ÝÑ S be a smooth surjective morphism of smooth schemes and let L be a line
bundle over M{S, such that π˚L is a vector bundle over S and let H be a (projective) heat
operator over L. We define a (projective) connection on π˚L by associating a covariant
derivative

∇θ : π˚L ÝÑ π˚L,

which we define as follows: locally on U an open subset in S, let θ P TSpUq a vector
field on S we denote by π´1pθq the corresponding section of π´1pTSqpπ

´1pUqq and for all
s P π˚LpUq, we define

∇θpsq :“ Hpπ´1
pθqqpsq.

And as the sub-principal symbol of Hpπ´1pθqq is π´1pθq, the Leibniz rule is satisfied. In
fact for any f P OSpUq we have

∇θpfsq “ Hpπ´1
pθqqpπ˚pfqsq

“ π˚pθpfqqs` π˚pfqHpπ´1
pθqqpsq

“ θpfqs` f∇θs.

If the (projective) heat operator preserves the Lie bracket then, the associated (projective)
connection is flat.

3.3.1 A heat operator for a candidate symbol

In [GdJ98], van Geemen and de Jong give conditions which imply that a candidate symbol

ρ : TS :ÝÑ π˚Sym2
pTM{Sq,

can be lifted to a (projective) heat operator, i.e. , there exists a (projective) heat operator
H such that we have

ρH :“ σS ˝H “ ρ.

For any line bundle L P PicpMq, we have the exact sequence

0 ÝÑ TM{S ÝÑ Dp2qM{SpLq{OM ÝÑ Sym2
pTM{Sq ÝÑ 0,

The first connecting morphism on cohomology with respect to the map π give rise to a
map

µL : π˚Sym2
pTM{Sq ÝÑ R1π˚

`

TM{S

˘

.

Proposition 3.3.1 ([Wel83] and [BBMP23]) For a line bundle L P PicpMq. The map
µL is given by the following formula

µL “ Y rLs ´ Y

ˆ

1

2

“

KM{S

‰

˙

.

where KM{S is the relative canonical line bundle of π : M ÝÑ S.
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The Kodaira-Spencer map is given by the first connecting morphism of the short exact
sequence 3.0.1

κM{S : TS ÝÑ R1π˚TM{S.

Now we can state the following theorem.

Theorem 3.3.2 (van Geemen–de Jong, [GdJ98], §2.3.7)

Let L P PicpMq be a line bundle and π : M ÝÑ S as before, we have that if, for a given
map ρ : TS ÝÑ π˚Sym2TM{S

1. κM{S ` µL ˝ ρ “ 0,

2. cupping with the relative Atiyah class

YrLs : π˚TM{S ÝÑ R1π˚OM

is an isomorphism, and

3. π˚OM “ OS.

Then there exists a unique projective heat operator H whose symbol is ρ.

Proof. We start by noting that the map Y rLs in the second hypothesis can be seen as the
connecting homomorphism in the long exact sequence associated the short exact sequence

0 // OM // Dp1qM{SpLq
∇1 // TM{S

// 0

So by the second and third hypotheses we get

OS – π˚OM – π˚Dp1qM{SpLq.

Now, consider the long exact sequence associated to the short exact sequence 3.2.1

0 // π˚Dp1qM{SpLq
// π˚WM{SpLq // TS ‘ π

˚Sym2
pTM{Sq

δ

rr
R1π˚Dp1qM{SpLq

// R1π˚WM{SpLq // ¨ ¨ ¨

we obtain a commutative diagram with exact rows and columns

0 // π˚OM //

��

π˚OM //

��

0

��
0 // π˚Dp1qM{SpLq

//

��

π˚WM{SpLq //

��

Kerδ // 0

0 // 0 //
`

π˚WM{SpLq
˘

{OS
//

��

Kerδ //

��

0

0 0
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therefore an isomorphism
`

π˚WM{SpLq
˘

{OS – Kerδ.

Now a projective heat operator with symbol ρ is a lift of ρ relative to the second order
map

`

π˚WM{SpLq
˘

{OS

∇2

��
TS ρ

//

H

99

π˚Sym2
pTM{Sq

which exists (using the second and third point ) if and only if the image of the map

TS ÝÑ TS ‘ π˚Sym2
pTM{Sq, θ ÞÑ pθ, ρpθqq.

is in the kernel of δ. It remains to prove that this is equivalent to the first hypothesis. In
order to do this , let us decompose δ “ δ1 ` δ2 into its two component

δ1 : TS ÝÑ R1π˚Dp1qM{SpLq and δ2 : π˚Sym2
pTM{Sq ÝÑ R1π˚Dp1qM{SpLq.

We can check that

R1π p∇1q ˝ δ1 “ κM{S and R1π p∇1q ˝ δ2 “ µL.

Take the long exact sequence associated to the Atiyah sequence 3.1.1 of L, we get

¨ ¨ ¨ Ñ π˚TM{S
YrLs
ÝÝÝÑ π˚OM ÝÑ R1π˚Dp1qM{SpLq ÝÑ R1π˚TM{S Ñ ¨ ¨ ¨

the natural map
R1π p∇1q : R1π˚Dp1qM{SpLq ÝÑ R1π˚TM{S,

is injective as by the second hypothesis. Thus

pθ, ρpθqq P Kerδ ô R1π p∇1q δpθ, ρpθqq “ 0

ô
`

κM{S ` µL ˝ ρ
˘

pθq “ 0,

for any local section θ. ˝

3.3.2 Flatness criterion

Theorem 3.3.3 ([Hit90a]; [BBMP23], Theorem 3.5.1) Under the assumptions of The-
orem 3.3.2 the projective connection associated to the symbol ρ is projectively flat if the
following conditions holds
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1. For all local sections θ, θ1 of TS, we have

tρpθq, ρpθ1quT˚M{S
“ 0,

i.e. , the symbol, Poisson-commute with respect to the natural symplectic form over
the relative cotangent bundle T ˚M{S.

2. The morphism µL is injective.

3. There are no vertical vector fields, π˚TM{S “ 0.

Proof. We denote by H the projective heat operator, its flatness is equivalent to the van-
ishing of the operator

rHpθq, Hpθ1qs ´Hprθ, θ1sq P π˚

´

Dp3qM{S pLq `Dp2qM{S pLq
¯

{OS.

its symbol is
∇3 prHpθq, Hpθ

1
qsq P π˚Sym3

pTM{Sq

by the isomorphism of Poisson-algebras given by the natural map

π˚ Symm
pTM{Sq – π˚pOMqm

where the right hand side is the weight m part under the action of Gm-action equipped
with the natural Poisson-structure. And the Poisson-structure on right hand side is given
by the commutators over the sheaf of operators of order at most m. Then by the first
hypothesis, we get

t∇2pHpθqq,∇2pHpθ
1
qquT˚M{S

“ tρpθq, ρpθ1quT˚M{S
“ 0.

Thus the operator is at most of degree 2 and acts only on the fibres of the map π : M ÝÑ S

rHpθq, Hpθ1qs ´Hprθ, θ1sq P π˚

´

Dp2qM{SpLq
¯

{OS.

Now we take the exact sequence

0 ÝÑ TM{S ÝÑ Dp2qM{SpLq{OM ÝÑ Sym2
pTM{Sq ÝÑ 0,

the associated long exact sequence

0 ÝÑ π˚TM{S ÝÑ π˚

´

Dp2qM{SpLq{OM

¯

ÝÑ π˚Sym2
pTM{Sq ÝÑ

µL
R1π˚

`

TM{S

˘

Ñ ...,

by the second and third hypothesis we get the isomorphisms

0 “ π˚TM{S – π˚

´

Dp2qM{SpLq{OM

¯

– π˚

´

Dp2qM{SpLq
¯

{OS .

thus concluding the proof. ˝
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Chapter 4

The Hitchin connection for parabolic
non-abelian theta functions

In this chapter we prove the main theorem which generalises the algebro-geometric con-
struction of Hitchin’s connection given in [BBMP23] over SUC{Sprq the relative moduli
space of rank-r vector bundles with trivial determinant over a smooth family of complex
projective curves of genus g ě 2, to SMpar

C{Spr, α˚, δq the relative moduli space of parabolic

rank-r vector bundles of fixed determinant δ P PicdpC{Sq and of fixed parabolic type α˚.

Let S be a smooth complex algebraic variety. We take a smooth family of projective
curves πs : C ÝÑ S of genus g ě 2 and take D a divisor given by N sections of the map πs
such that the relative degree is N , with no non-trivial points (i.e. @i P I such that `i ą 1).
Let δ P PicdpC{Sq a line bundle over the family of curves. Let E˚ be a family of rank-r
parabolic vector bundles of fixed parabolic type α˚ and fixed determinant δ over pC, Dq{S
parameterized by a S-schemes T . We shall denote the fibered product by the diagram:

X :“ C ˆS T
πn //

πw

��

T

πe

��
pC, Dq πs

// S

σi

jj

We set D :“ π´1
w pDq “ D ˆS T .

§ As a working hypothesis, we suppose that the parabolic system of weights α˚=pr,~a, ~mq
is generic 1 in the following sense: α˚-parabolic semi-stability ô α˚-parabolic stability.

1See [BY99] for more details on genericness of parabolic weights
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With this working hypothesis, the moduli space SMpar
C{Spr, α˚, δq is smooth over S, and

the Picard group is maximal.i.e., all line bundles on the Quot scheme multiplied by the
universal flag varieties descend to the moduli space. See [Pau96], [LS97].

4.1 Parabolic Atiyah sequences and algebroids

We define the quasi-parabolic and strongly quasi-parabolic Atiyah sequences and alge-
broids, that we use to study deformation of marked curves equipped with quasi-parabolic
vector bundles and to show existence of the Kodaira-Spencer map in the parabolic case.
We recall Yokogawa’s isomorphism (Proposition 1.1.7)

parEndpEq_ – SparEndpEq bOCpDq.

Definition 4.1.1 (Quasi-parabolic Atiyah algebroid (QPA))

We take the push-out of the relative Atiyah exact sequence of the parabolic bundle E˚ by
the inclusion End0

pEq ãÑ SparEnd0
pEq_ – parEnd0

pEqpDq. We get

0 // End0
pEq //
� _

��

A0
X {T pEq ////

��

TX {T // 0

0 // SparEnd0
pEq_ // A1

// π˚wTC{S // 0

Then the QPA sequence is given by tensorizing the exact sequence above by OX p´Dq:

0 // parEnd0
pEq // A0,par

X {T pEq // π˚wpTC{Sp´Dqq // 0,

and the QPA algebroid is given by

A0,par
X {T pEq :“ A1 bOX p´Dq .

Definition 4.1.2 (Strongly quasi-parabolic Atiyah algebroid (SQPA))

We take the push-out of the Atiyah exact sequence of the parabolic bundle E˚ by the inclusion
End0

pEq ãÑ parEnd0
pEq_ – SparEnd0

pEqpDq. We get

0 // End0
pEq //
� _

��

A0
X {T pEq //

��

TX {T // 0

0 // parEnd0
pEq_ // A2

// π˚wTC{S // 0

Then the SQPA exact sequence is given by tensorizing the exact sequence above by OX p´Dq:

0 // SparEnd0
pEq // A0,st,par

X {T pEq // π˚wpTC{S p´Dqq // 0,
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and the SQPA algebroid is given by

A0,st,par
X {T pEq :“ A2 bOX p´Dq .

Remark 4.1.3 The definitions of A0,par
X {T pEq and A0,st,par

X {T pEq are canonically attached to

the family of marked curves pC, Dq and depend only on the quasi-parabolic structure and
not on the parabolic weights ~a. In particular by construction these Atiyah algebroids are
invariant under Hecke modifications.

4.2 Trace complexes theory

The main ingredient in [BBMP23] is the description the Atiyah class of the relative am-
ple generator L of the relative Picard of the moduli space SUC{Spr, δq using the theory
of complex trace, Sun-Tsai isomorphism (Theorem 4.2.1), Beilinson-Schechtman isomor-
phism and Bloch-Esnault complex (Theorem 4.2.2). Here we do not need the definition
of the complex trace, we use Sun-Tsai characterization of the (-1)- Bloch-Esnault term as
definition.
We recall the following fibre product

X :“ C ˆS SUC{Spr, δq
pn //

pw

��

SUC{Spr, δq

pe

��
C ps“πs

// S

Let U be a universal vector bundle over C ˆS SUC{Spr, δq. The following theorem give
a characterization of the (-1)-Bloch Esnault algebra 0B´1

SUC{S{S
pUq, that we will use as a

definition.

Theorem 4.2.1 ([ST04]) There is a canonical isomorphism of short exact sequences

0 // T_X {SUC{S
//

–

��

A0
X {SUC

pUq_ //

–

��

EndpUq_ //

–´Tr

��

0

0 // KX {SUC{S
// 0B´1

SUC{S{S
pUq // EndpUq // 0

where KX {SUC{S is the relative canonical bundle with respect to the map pn.
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Theorem 4.2.2 (Beilinson- Schechtman & Bloch-Esnault [BS88], [ET00])

Let U be a virtual universal bundle over X “ CˆS SUC{Spr, δq. Then we have the following
isomorphism of exact sequences over SUC{Spr, δq

0 // R1pn˚pKX {SUC{Sq
//

2r¨id –

��

R1pn˚p
0B´1pUqq //

–

��

R1pn˚pEnd0
pUq_q //

´Tr–

��

0

0 // OSUC{S
// ASUC{S{S

`

λpEnd0
pUq

˘

// TSUC{S{S
// 0

Combining these two results we get the following theorem, proven in [BBMP23] for
δ “ OC, but their proof work for any relative line bundle δ P PicdpC{Sq.

Theorem 4.2.3 We have the following isomorphism of short exact sequences over SUC{Spr, δq

0 // R1pn˚pKX {SUq //

r
n

Id –

��

R1pn˚

´

A0
X {SUpUq_

¯

//

–

��

R1pn˚
`

End0
pUq_

˘

Id–

��

// 0

0 // OSUC
// ASUC{SpLq

∇1 // TSUC{S
// 0

where L is the relative ample generator of the group Pic pSUCpr, δq{Sq and n “ gcdpr, degpδqq.

Proof. By Theorem 4.2.1 and 4.2.2, one has the following isomorphism of short exact
sequences SUC{Spr, δq

0 // R1pn˚
`

KX {SUC

˘

//

2r¨id –

��

R1pn˚

´

A0
X {SUC

pUq_
¯

//

–

��

R1pn˚
`

End0
pUq_

˘

– ´Tr

��

// 0

0 // OSUC
// AM{S

`

λpEnd0
pUqq

˘ ∇1 // TSUC{S
// 0

By Drezet-Narasimhan 1.4.3 theorem and [LS97], we have

λpEnd0
pUqq “ KSUC “ L´2n.

Hence we get the following isomorphism

0 // R1pn˚
`

KX {SUC

˘

//

2r¨id –

��

R1pn˚

´

A0
X {SUC

pUq_
¯

//

–

��

R1pn˚
`

End0
pUq_

˘

– ´Tr

��

// 0

0 // OSUC
// AM{S pL´2nq

∇1 // TSUC{S
// 0
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and by applying Lemma 3.1.2 (for k “ ´2n and L “ L), we get

0 // R1pn˚
`

KX {SUC

˘

//

2r¨id –

��

R1pn˚

´

A0
X {SUC

pUq_
¯

//

–

��

R1pn˚
`

End0
pUq_

˘

– ´Tr

��

// 0

0 // OSUC
//

–

��

ASU{SpL´2nq
∇1 //

–

��

TSUC{S

–

��

// 0

0 // OSUC

1
2n //

–

��

ASUC{SpL´1q
∇1 //

–

��

TSUC{S

–

��

// 0

0 // OSUC

1
2n // ASUC{SpLq

´∇1 // TSUC{S
// 0

The right vertical map is ´Tr, the vertical left map is 2rId and the extension class of

the last exact map is ´2n rLs in H0
´

S,R1π˚

´

Ω1
SUC{Spr,δq{S

¯¯

. Hence we conclude that the

extension class of the exact sequence

0 // R1pn˚
`

KX {SUC

˘

// R1pn˚

´

A0
X {SUC

pUq_
¯

// R1pn˚pEnd0
pUq_q // 0

equals n
r
rLs. ˝

4.3 Parabolic Bloch-Esnault complex

Now, we work over SMpar
C{S :“ SMpar

C{Spr, α˚, δq the relative moduli space of semi-stable

rank-r parabolic vector bundles of fixed parabolic type α˚ with determinant δ P PicdpC{Sq
over C{S. We have the following fibre product

X par πn //

πw

��

SMpar
C{S

πe

��
pC, Dq πs

// S

σi

jj

We denote by E˚ a virtual universal parabolic bundle over X par “ C ˆS SMpar
C{S. For our

need we define the p´1q-term of the parabolic Bloch-Esnault complex.

Definition 4.3.1 We define the (-1)-term of the parabolic Bloch-Esnault 0P´1pEq, as a
pull-back of the (-1)-term of the Bloch-Esnault complex 0B´1pEq, by the natural inclusion
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parEnd0
pEq ãÑ End0

pEq, as follows

0 // KX par{SMpar // 0P´1pEq //

��

parEnd0
pEq //

��

0

0 // KX par{SMpar // 0B´1pEq // End0
pEq // 0

where KX par{SMpar is the relative canonical line bundle relatively to the map πn.

We apply R1πe˚ to the (-1)-Bloch-Esnault term exact sequence

0 // OSMpar
C

// R1πn˚ p
0P´1pEqq //

��

R1πn˚
`

parEnd0
pEq

˘

» TSMpar
C {S

//

��

0

0 // OSMpar
C p

// R1πn˚p
0B´1pEqq // R1πn˚pEnd0

pEqq // 0

The exact sequence below is the pull-back of the Bloch-Esnault exact sequence of the vector
bundle E seen as a family over the space SUC{Spr, δq by the forgetful morphism map

φ : SMpar
C{Spr, α˚, δq ÝÑ SUCpr, δq

which can be lifted to a map on the fibre product

φ : C ˆS SMpar
C{Spr, α˚, δq ÝÑ C ˆS SUC{Spr, δq

we can choose a virtual universal bundle U over C ˆS SUC{Spr, δq, such that

φ˚ pUq – E

Moreover the differential map

dφ : TSMpar
C {S ÝÑ φ˚

`

TSUC{S

˘

is given by applying R1πn˚ to the natural inclusion parEnd0
pEq ãÑ End0

pφ˚ pUqq .

So we get an identification theorem in the parabolic configuration of Theorem 4.2.1.

Proposition 4.3.2 For a virtual universal parabolic bundle E˚ over SMpar
C{Spr, α˚, δq. There

is an isomorphism 0P´1pEq » A0,par,St
X par{SMparpEq pDq_, such that

0 // KX par{SMpar //

–

��

0P´1pEq //

–
��

parEnd0
pEq //

–

��

0

0 // KX par{SMpar //
”

A0,par,st
X par{SMparpEq pDq

ı_
// parEnd0

pEq // 0
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Hence we get the following parabolic version of [BBMP23] Theorem 4.4.1.

Theorem 4.3.3 Let E‚=pEλqλPR be a virtual universal parabolic bundle over M‚ “ SMpar
C{Spr, α˚, δq.

Then for each λ P R, we have the following isomorphism of short exact sequences over
SMpar

C{Spr, α˚, δq

R1πn˚
`

KX par{M‚

˘

� � //

»
r

npλq

��

R1πn˚

´”

A0,par,st
X par{M‚

pEλqpDq
ı_¯

// //

»

��

R1πn˚
`

parEnd0
pEλq

˘

–

��
OM‚

� � // AM‚{S pΘpλqq
∇1 // // TM‚{S

where Θpλq is the pullback of the ample generator of the group Pic
`

SUC{Spr, δλq{S
˘

by the
classifying maps

φλ : M‚ :“M‚pr, λ‚, δq ÝÑ SUC{Spr, δpλqq
E‚ ÞÝÑ Eλ

set dpλq “ deg δpλq and npλq “ gcd pr, dpλqq, which is equivalent to the equality

r

npλq
∆λ “ rΘpλqs P H0

`

S,R1πe˚
`

Ω1
M‚{S

˘˘

,

where we denote by ∆λ the extension class of the first exact sequence.

The Theorem is equivalent in the parabolic representation to the following theorem
using Hecke modification, we recall that Hecke modification acts over the moduli spaces
SMpar

C{Spr, α˚, δq, we get an isomorphism over S

Hj
i : SMpar

C{Spr, α˚, δq ÝÑ SMpar
C{S

`

r,Hj
i pα˚q,H

j
i pδq

˘

E˚ ÞÝÑ Hj
i pEq˚

(4.3.1)

We denote by Θjpiq the pull-backs of the ample generators of the Picard groups Pic
´

SMpar
C{S{S

¯

under the composition of the maps Hi
j followed by the forgetful maps to the moduli

spaces SUC{Spr, δjpiqq where Hj
i pδq “ δjpiq and Θ the pull-back of the ample generator

of the Picard group of SUC{Spr, δq by the forgetful map. Set n “ gcdpr, degpδqq and
njpiq :“ gcdpr, degpδjpiqqq

Theorem 4.3.4 Under the same hypothesis. Let E˚ be a virtual universal parabolic bundle,
we have the following isomorphism of short exact sequences over SMpar

C pr, α˚, δq

R1πn˚

´

KX par{SMpar
C

¯

� � //

–
r

njpiq

��

R1πn˚

´”

A0,par,st
X par{SMpar

C
pHj

i pEqqpDq
ı_¯

// //

–

��

R1πn˚
`

parEnd0
`

Hj
i pEq

˘˘

–

��
OSMpar

C

� � // ASMpar
C {S pΘjpiqq

∇1 // // TSMpar
C {S
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We denote the extension class of the first exact sequence by ∆jpiq and the Atiyah class of
a line bundle L by rLs. Then the theorem is equivalent to the equality of global sections

r

njpiq
∆jpiq “ rΘjpiqs P H0

`

S,R1πe˚pΩ
1
Mpar{Sq

˘

.

With the same hypothesis we have

R1πn˚pKX par{SMpar
C
q
� � //

r
n–

��

R1πn˚

´”

A0,par,st
X par{SMpar

C
pEqpDq

ı_¯

// //

–

��

R1πn˚pparEnd0
pEqq

–

��
OSMpar

C

� � // ASMpar
C {SpΘq

∇1 // // TSMpar
C {S

which is equivalent to the equality

r

n
∆ “ rΘs P H0

´

S,R1πe˚pΩ
1
SMpar

C {Sq

¯

.

Proof. Modulo shifting by a rational number λ in the filtered configuration which corre-
sponds to Hecke modifications in the parabolic sitting, it is sufficient to prove the theorem
for λ “ 0. Hence take the forgetful map

φ : SMpar
C{Spr, α˚, δq ÝÑ SUC{Spr, δq

which can be lifted to the fibre product over S

C ˆS SMpar
C{S

φ //

πn

��

C ˆS SUC{S

pn

��
SMpar

C{S φ
// SUC{S

let E˚ be a universal parabolic bundle over C ˆS SMpar
C{S and let denote by U a virtual

universal bundle over C ˆS SUC{S such that φ˚ pUq – E . Take the pull-back of the exact
sequence given in Theorem 4.2.3 by the forgetful map φ, we get

0 // φ˚
`

R1pn˚pKX {SUq
˘

//

r
n

Id –

��

φ˚
´

R1pn˚

´

A0
X {SUpUq_

¯¯

//

–

��

φ˚
`

R1pn˚
`

End0
pUq_

˘˘

Id–

��

// 0

0 // OSMpar // φ˚
`

ASUC{SpLq
˘ ∇1 // φ˚

`

TSUC{S

˘

// 0

take the differential map
dφ : TSMpar{S ÝÑ φ˚

`

TSUC{S

˘

which correspond to taking the first direct image R1πn˚ of the natural inclusion of sheaves

parEnd0
pEq ãÑ End0

pEq “ φ˚
`

End0
pUq

˘

66



CHAPTER 4. THE HITCHIN CONNECTION FOR PARABOLIC NON-ABELIAN
THETA FUNCTIONS

Now, we take the pull-back of this isomorphism of exact sequences by dφ by the two
realisations as follows

0 // OSMpar
C

// R1πn˚p
0P´1pEqq //

��

R1πn˚pparEnd0
pEqq //

dφ

��

0

0 // OSMpar
C

// R1πn˚p
0B´1pEqq // R1πn˚pEnd0

pEqq // 0

0 // φ˚
`

R1pn˚pKX {SUCq
˘

//

r
n

Id –

��

φ˚
´

R1pn˚

´

A0
X {SUC

pUq_
¯¯

//

–

��

φ˚
`

R1pn˚
`

End0
pUq_

˘˘

Id–

��

// 0

0 // OSMpar
C

// φ˚
`

ASUC{SpLq
˘ ∇1 // φ˚

`

TSUC{S

˘

// 0

0 // OSMpar
C

// ASMpar{Spφ
˚pLqq //

OO

TSMpar{S
//

dφ

OO

0

By construction the first and the last exact sequences are isomorphic as they are pull-backs
of isomorphic exact sequences by the differential map

0 // R1πn˚pKX par{SMpar
C
q //

r
n

Id

R1πn˚p
0P´1pEqq //

–

��

R1πn˚pparEnd0
pEqq //

–

��

0

0 // OSMpar // ASMpar{Spφ
˚pLqq // TSMpar{S

// 0

where L is the ample generator of the Picard group of the space SUC{Spr, δq that we denote
by Θ. Note that we have the equalities

KX par{SMpar
C
– π˚w

`

KC{S
˘

– φ˚
`

KX {SUC

˘

.

We conclude the proof by applying Proposition 4.3.2, to obtain

R1πn˚pKX par{SMpar
C
q
� � //

r
n–

��

R1πn˚

´”

A0,par,st
X par{SMpar

C
pEqpDq

ı_¯

// //

–

��

R1πn˚pparEndpEqq

–

��
OSMpar

C

� � // ASMpar
C {SpΘq

∇1 // // TSMpar
C {S

Hence this conclude the proof. ˝

4.4 Parabolic Hitchin symbol map

Let E˚ ÝÑ C ˆS SMpar
C{Spr, α˚, δq be a virtual universal parabolic vector bundle of fixed

parabolic type α˚ over pC, Dq{S a smooth family of projective marked curves over S. We
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want a parabolic version of the Hitchin symbol map given in [BBMP23] in section 4.3.

We suppose throughout this section that there is no trivial parabolic points (see section
1.1).i.e. For al i P I we suppose `i ą 1. We will use the following notation

SMpar
C{S :“ SMpar

C{Spr, α˚, δq

First approach: We take the trace map which we denote by B as follow

πn˚
`

End0pEq b π˚wKC{SpDq
˘

b πn˚
`

End0pEq b π˚wKC{S pDq
˘

B

��

pφ, ψq
_

��
πn˚π

˚
w

´

Kb2
C{S p2Dq

¯

Bpφ, ψq “ Tracepφ ˝ ψq

we take its restriction to the subsheaf SparEnd0
pEq Ă End0

pEq so the left hand side is the
cotangent bundle T_SMpar

C {S
, so we get

B : T_SMpar
C {S

b T_SMpar
C {S

// πn˚π
˚
w

´

Kb2
C{Sp2Dq

¯

.

A simple calculation gives

ImagepBq Ă πn˚π
˚
w

´

Kb2
C{SpDq

¯

.

We denote by B the following restriction

B : T_SMpar{S b T
_
SMpar{S

// πn˚π
˚
w

´

Kb2
C{SpDq

¯

We dualize and by Serre’s duality relative to πn we get

B_ : π˚e
`

R1πs˚
`

TC{S p´Dq
˘˘

Ñ TSMpar
C {S b TSMpar

C {S.

Definition 4.4.1 (Parabolic Hitchin Symbol map)

The parabolic Hitchin symbol ρpar is the morphism given by applying πe˚

ρpar : R1πs˚
`

TC{Sp´Dq
˘

ÝÑ πe˚Sym2
`

TSMpar{S

˘

.
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Second approach: Consider the evaluation map of the sheaf: SparEnd0
pEqbπ˚w

`

KC{SpDq
˘

,

composed with the injection map SparEnd0
pEq Ă parEnd0

pEq, we get

π˚n πn˚
`

SparEnd0
pEq b π˚wKC{SpDq

˘ ev
ÝÑ parEnd0

pEq b π˚w
`

KC{SpDq
˘

We dualize

parEnd0
pEq_ b π˚w

`

TC{Sp´Dq
˘ ev_
ÝÑ π˚n

`

πn˚
`

SparEnd0
pEq b π˚w KC{SpDq

˘˘_

This morphism gives a map which we denote by ev_

π˚w
`

TC{Sp´Dq
˘ ev_
ÝÑ parEnd0

pEq b π˚n
`

πn˚
`

SparEnd0
pEq b π˚w

`

KC{SpDq
˘˘˘_

By Serre’s duality relatively to πn

π˚w
`

TC{Sp´Dq
˘ ev_
ÝÑ parEnd0

pEq b π˚n
`

R1πn˚
`

parEnd0
pEq

˘˘

We apply πe˚ ˝R
1πn˚ and by the projection formula, we get

πe˚
`

R1πn˚ pev
_
q
˘

: R1πs˚
`

TC{S p´Dq
˘

ÝÑ πe˚ pTMpar b TMparq

Finally we get the morphism:

πe˚
`

R1πn˚ pev
_
q
˘

: R1πs˚
`

TC{Sp´Dq
˘

ÝÑ πe˚Sym2
`

TSMpar{S

˘

Lemma 4.4.2 This application coincide with the parabolic Hitchin symbol ρpar.i.e.

ρpar :“ πe˚
`

R1πn˚ pev
_
q
˘

: R1πs˚ pTC p´Dqq ÝÑ πe˚Sym2
pTMparq .

Proof. The lemma follows from commutativity of the diagram

R1πn˚pparEnd0
pEqq bR1πn˚

`

parEnd0
pEq

˘

IdbpR1πn˚Tr
´1q

_

��

R1πn˚π
˚
w

`

TC{Sp´Dq
˘

R1πn˚ pev
_q ++

B_
33

TMpar{S b TMpar{S

This follows if we in turns dualize, apply Serre duality, for which

`

R1πn˚pev
_
q
˘_
“ πn˚pev b Idq,

˝
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Proposition 4.4.3 The symbol map ρpar is invariant under Hecke modifications.

The proposition is a consequence of the following: Take E˚ a parabolic vector bundle over
a curve C of parabolic type α˚ with respect to a divisor D. Let g P parEndpEq be a
parabolic endomorphism. Then

Lemma 4.4.4 The trace is invariant under Hecke modifications.i.e.

trpHj
i pgqq “ trpgq for all i P I and j P t1, 2, ..., `iu.

Proof. For i P I and j P t1, 2, ..., `iu take the Hecke modification of E with respect to the
subspace F j`1

i pEq so we get a sub sheaf

f : Hj
i pEq ãÑ E

which is an isomorphism over Cztxiu, thus

trpHj
i pgqq “ trpgq over Cztxiu.

The vector bundle Hj
i pEq inherits a parabolic structure, see Section 2.4, and Hj

i pgq is a
parabolic endomorphism with respect to this parabolic structure.

E
g // E

Hj
i pEq Hj

i pgq

//

f

OO

Hj
i pEq

f

OO

Now we describe the map Hj
i pgqxi : Hj

i pEqxi Ñ Hj
i pEqxi . We have the decomposition of

the map g with respect to the quotient exact sequence

0 // F j`1
i pEq //

g|
F
j`1
i

pEq
��

Exi
//

gxi

��

Qj
i pEq :“ Exi{F

j`1
i pEq //

g
��

0

0 // F j`1
i pEq // Exi

// Qj
i pEq :“ Exi{F

j`1
i pEq // 0

thus we have

gxi “

ˆ

g|F j`1
i pEq ˚

0 g

˙

ùñ trpgxiq “ trpg|F j`1
i pEqq ` trpgq.

the Heck modification Hj
i pEq fit in the same diagram

0 // Qj
i pEq

//

g
��

Hj
i pEq

//

Hj
i pgqxi

��

F j`1
i pEq //

g|
F
j`1
i

pEq
��

0

0 // Qj
i pEq

//Hj
i pEqxi

// F j`1
i pEq // 0
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hence we get

Hj
i pgqxi “

ˆ

g 0
˚ g|F j`1

i pEq

˙

ùñ trpHj
i pgqxiq “ trpgq ` trpg|F j`1

i pEqq “ trpgxiq,

There for one has globally the equality

trpgq “ trpHj
i pgqq P OC .

This ends the proof. ˝

Proposition 4.4.5 The parabolic Hitchin symbol map ρpar is an isomorphism.

Proof. Take the relative cotangent bundle over SMpar
C{S

q : T_SMpar
C{S{S

ÝÑ SMpar
C{S

one gets the following isomorphism

pπe ˝ qq˚ OT_
SMpar

C{S {S
–
à

qě0

πe˚Symq
´

TSMpar
C{S{S

¯

and take the Gm-action over the moduli space of the parabolic Higgs bundles HiggsP pα˚q
that contain the cotangent space T_SMpar

C{S{S
as a big open space. Thus elements of

πe˚Symq
´

TSMpar
C{S{S

¯

can be seen as regular functions over T_SMpar{S of degree 2 with respect

to the action of Gm that can be extend by Hartog’s theorem to all the space HiggsP pα˚q.
As the parabolic Hitchin system is equivariant, they are obtained from the quadratic part
of the parabolic Hitchin base given by the space

πs˚K
b2
C{S pDq – R1πs˚

`

TC{S p´Dq
˘

˝

4.5 Kodaira-Spencer map

4.5.1 Infinitesimal deformations

We study the infinitesimal deformations of a triple E :“ pC,D,E˚q given by a smooth
marked projective curve C of genus g ě 2 and D a reduced divisor of degree N equipped
with a quasi-parabolic rank-r vector bundle E˚ of fixed quasi-parabolic type ~m. We follow
rWel83s to prove the following theorem. See also rMar09s.

Theorem 4.5.1 The infinitesimal deformations of E are parameterized by H1 pC,Apar
C pEqq.
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Proof. Let U “ tUλuλ be an affine cover of the curve C such that any open affine set
contains at most one point of the divisor D, we set Uλ,µ “ SpecpAλ,µq.

1. First we recall the infinitesimal deformations of a marked curve pC,Dq: As the in-
finitesimal deformations of an affine scheme are trivial, the infinitesimal deformation
Cε of the curve C is locally trivial and globally given by the transition maps

θλ,µ : Uλ,µ ˆ Spec pCrεsq θµ
ÝÑ C |Uλ,µ

θ´1
λ
ÝÝÑ Uλ,µ ˆ Spec pCrεsq

which is equivalent to an isomorphism of rings

θλ,µ : Aλ,µrεs ÝÑ Aλ,µrεs
a` εb ÞÝÑ a` ε pϑλ,µpaq ` bq .

where Aλ,µrεs :“ Aλ,µ b Crεs “ Aλ,µ ` εAλ,µ, and ϑλ,µ : Aλ,µ ÝÑ Aλ,µ are C-
derivations, hence tϑλ,µu is a 1-cocycle with values in TC . The latter gives the
Kodaira-Spencer class of the deformation Cε in H1pC, TCq. Let denote pCε, Dεq an
infinitesimal deformation of the couple pC,Dq. On an open set Uλ,µ a point x P D is
given by a maximal ideal Iλ,µ Ă Aλ,µ, hence the 1-cocycle tϑλ,µu must preserve the
ideal Iλ,µrεs which means ϑλ,µpIλ,µq Ă Iλ,µ. Hence a derivation over Iλ,µ. Therefore
the 1-cocycle tϑλ,µu has values in TCp´Dq and gives the Kodaira-Spencer class of the
deformation pCε, Dεq in H1pC, TCp´Dqq.

2. Now, let us study the infinitesimal deformation of the triple pC,D,Eq, without the
quasi-parabolic structure: we choose the affine covering such that we have E|Uλ,µ “
OC |

‘r
Uλ,µ

, so over the affine open subset Uλ,µ the vector bundle E is given by an Aλ,µ-

module Mλ,µ. Let pCε, Dε, Eεq be an infinitesimal deformation of the triple, where
the deformation pCε, Dεq is given by the cocycle tϑλ,µu with values in TCp´Dq and
the vector bundle Eε in given by the gluing isomorphisms that induce the identity
over Mλ,µ

τλ,µ : Mλ,µrεs ÝÑ Mλ,µrεs
m` εn ÞÝÑ m` ε pξλ,µpmq ` nq .

which is an Aλ,µrεs-linear map via the isomorphism θλ,µ. This is equivalent to the
following equality for all a P Aλ,µ and m PMλ,µ

ξλ,µpamq ´ a ξλ,µpmq “ ϑλ,µpaq m,

this can be written for all a P Aλ,µ as follows

rξλ,µ, as “ ϑλ,µpaqIdMλ,µ
.

Hence tξλ,µu yields a 1-cocycle with values in the sheaf {ACpEq given by the pull-back

0 // EndpEq //

��

ACpEq // TC // 0

0 // EndpEq // {ACpEq //
?�

OO

TCp´Dq //
?�

OO

0

(4.5.1)

72



CHAPTER 4. THE HITCHIN CONNECTION FOR PARABOLIC NON-ABELIAN
THETA FUNCTIONS

3. Finally, we study the infinitesimal deformations of E: LetpCε, Dε, E˚εq be such a
deformation of E, where the deformation pCε, Dεq is given by the 1-cocycle tϑλ,µu
and the vector bundle Eε is given by the 1-cocycle tξλ,µu. By definition, a parabolic
bundle is given for all i P I by the Hecke filtration (see Proposition 1.3.2)

H`i
i pEq Ă H`i´1

i pEq Ă ¨ ¨ ¨ Ă H2
i pEq Ă H1

i pEq Ă H0
i pEq “ E. (4.5.2)

Hence the parabolic vector bundle E˚ε is given also for all i P I by filtrations of
locally free sheaves

H`i
i pEεq Ă H`i´1

i pEεq Ă ¨ ¨ ¨ Ă H2
i pEεq Ă H1

i pEεq Ă H0
i pEεq “ Eε,

and the 1-cocycle tτλ,µu must preserve this filtrations, locally the sheaf Hj
i pEq is

identified with a Aλ,µrεs-submodule denoted by M i,j
λ,µrεs ĂM0

λ,µrεs “Mλ,µrεs,

Mλ,µrεs
τλ,µ //Mλ,µrεs

M i,j
λ,µrεs

//
?�

M i,j
λ,µrεs
?�

The fact that the diagram commutes is equivalent to the fact that the 1-cocycle tξλ,µu
preserve the filtration given by the Aλ,µ-modules tM i,j

λ,µu associated to the filtration

(4.5.2). Hence the 1-cocycle tξλ,µu has values in the sheaf {Apar
C pEq defined as the

subsheaf of {ACpEq given locally by differential operators preserving the subsheaves
Hj
i pEq. Hence the infinitesimal deformations of E “ pC,D,E˚q are given by the

cohomology group H1pC, {Apar
C pEqq. Note that the sheaf {Apar

C pEq can be included in
an exact sequence

0 // parEndpEq // {Apar
C pEq

∇1 // TCp´Dq

where the map ∇1 is the restriction of the natural map : {ACpEq Ñ TCp´Dq given in
the exact sequence (4.5.1).

To conclude the proof we need to show the following isomorphism {Apar
C pEq – Apar

C pEq.
Note that by definition of Apar

C pEq as push-out we have

Apar
C pEq :“ tpf, Bq { f P parEndpEq B P ACpEqp´Dq and pf, 0q „ p0, fq if f P EndpEqp´Dqu.

Thus we can define an OC-linear map % as follows

% : Apar
C pEq ÝÑ {Apar

C pEq
pf, Bq ÞÝÑ f ` B.

Clearly the map % induces identity map on parEndpEq. Let us prove that % is an isomor-
phism:
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1. Injectivity: Let pf, Bq P Apar
C pEq such that %pf, Bq “ 0 ô f ` B “ 0 ô B “ ´f , hence

B, f P EndpEqp´Dq by definition of Apar
C pEq, we have pf, Bq “ pf,´fq „ pf ´ f, 0q “

0 P Apar
C pEq.

2. Surjectivity: Let B P {Apar
C pEq we associate its symbol ∇1pBq P TCp´Dq. Take a lifting

{∇1pBq P Apar
C pEq (modulo parEndpEq), which can be written {∇1pBq “ pf,pBq, where

pB P ACpEqp´Dq with ∇1p
pBq “ ∇1pBq and f any element in parEndpEq . Note that

B,pB P ACpEqp´Dq ñ B ´ pB P parEndpEq. For f “ B ´ pB, one has qpB ´ pB,pBq “ B.

Hence we get an isomorphism of exact sequences

0 // parEndpEq //

Id

Apar
C pEq //

% –
��

TCp´Dq //

Id

0

0 // parEndpEq // {Apar
C pEq // TCp´Dq // 0

This concludes the proof. ˝

Remark 4.5.2 Note that rBDHP22s studied the infinitesimal deformations of E “ pC,D,E˚q
a marked curve equipped with a quasi-parabolic vector bundle of type ~m. Where they defined
AtpE˚q a parabolic Atiyah algebroid as following: Let

Dp1qparpE,Eq Ă Dp1qC pEq,

be the coherent sheaf of all differentiable operators BU : E|U Ñ E|U , where U Ă C is
any open subset, satisfying the condition that for any section s P ΓpUHi

jpEqq of a Hecke
modification of E, we get BUpsq P ΓpUHi

jpEqq. Now, we define the sheaf AtpE˚q by

AtpE˚q :“ tB P Dp1qparpE,Eq { ∇1pBq P TCp´Dqu,

where ∇1 : D1
CpEq ÝÑ TC is the first symbol map. And they prove the following result

Theorem 4.5.3 (Lemma 3.1 [BDHP22])

The infinitesimal deformations of E are parameterized by H1 pC,AtpE˚qq.

For the proof they use Seshadri’s identification (see introduction Theorem 0.0.5) hence
for π : X Ñ C a Galois covering with Galois group Γ, they identify

1. Infinitesimal deformations of pC,D,E˚q, and

2. Infinitesimal deformations of pX,F :“ π˚pEqq equipped with the natural Γ-linearisation.
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The second point is given by H1pX,AtXpF qq
Γ the Γ-invariant part of the cohomology

group H1pX,AtXpF qq, that parametrises the infinitesimal deformations of the couple pY, F q,
where AtXpF q is the Atiyah algebroid of the vector bundle F over X. They conclude the
proof by the following remark: the sheaf AtpE˚q is the vector bundle underlying the parabolic
bundle corresponding the Γ-equivariant bundle AtXpF q over X. i.e. AtpE˚q “ πΓ

˚ pAtXpF qq.
Hence we get

TDefpX,F,Γq – TDefE – H1
pX,AtXpF qq

Γ
– H1

pC, πΓ
˚ pAtXpF qq – H1

pC,AtpE˚qq.

where TDefpX,F,Γq is the space of infinitesimal deformations of pY, F,Γq a curve and a Γ-
linearised bundle F on X. Note that the last isomorphism depends on the chosen Galois
cover. This concludes the proof. Note that the sheaf AtpE˚q given in rBDHP22s is by

definition the sheaf {Apar
C pEq given in the proof of theorem 4.5.1, hence isomorphic to the

parabolic Atiyah algebroid Apar
C pEq.

4.5.2 Parabolic Kodaira-Spencer map

Let πs : pC, Dq ÝÑ S be a smooth family of projective marked curves parametrized by
an algebraic variety S and let πe : SMpar

C{Spr, α˚, δq ÝÑ S the relative moduli spaces of

parabolic rank-r vector bundles of fixed parabolic type α˚ and determinant δ P PicdpC{Sq.
Let E˚ be a virtual universal parabolic vector bundle over X par :“ C ˆS SMpar

C pr, α˚, δq.
We shall denote the fiber product by the diagram

X par πn //

πw

��

SMpar
C{Spr, α˚, δq

πe

��
pC, Dq πs

// S

σi

ee

We use the following notation SMpar
C :“ SMpar

C{Spr, α˚, δq. We have two fundamental maps

• The Kodaira-Spencer of the family of marked curves:

κC{S : TS ÝÑ R1πs˚
`

TC{Sp´Dq
˘

,

given as the first connecting morphism on cohomology of the short exact sequence

0 ÝÑ TC{Sp´Dq ÝÑ T ÝÑ π˚sTS ÝÑ S.

where the sheaf T is given as follow:

T :“ tυ P TC | υpIDq Ă IDqu Ă TC

where ID is the ideal sheaf of the divisor D.

75



4.5. KODAIRA-SPENCER MAP

• The Kodaira-Spencer of the family πe : SMpar
C ÝÑ S:

κSMpar
C {S : TS ÝÑ R1πe˚

`

TSMpar{S

˘

where
TSMpar{S – R1πn˚

`

parEnd0
pEq

˘

given as the first connecting morphism on cohomology of the short exact sequence

0 ÝÑ TSMpar
C {S ÝÑ TSMpar

C{S
ÝÑ π˚eTS ÝÑ S.

Take the QPA sequence of the bundle E˚ over X par

0 // parEnd0
pEq // A0,par

X par{SMpar
C
pEq // π˚w

`

TC{S p´Dq
˘

// 0

As πe˚ pπ
˚
w pTC p´Dqqq “ 0 and R2πn˚

`

parEnd0
pEq

˘

“ 0 (the relative dimension of πn is
1), we apply R1πn˚ we get an exact sequence on SMpar

C{Spr, α˚, δq

0 // TSMpar
C {S

// R1πn˚

´

A0,par
X par{SMpar

C
pEq

¯

// R1πn˚
`

π˚w
`

TC{S p´Dq
˘˘

// 0

Proposition 4.5.4 The first connecting homomorphism with respect to πe˚ denoted Φpar

commutes with the Kodaira-Spencer maps of the two families

Φpar ˝ κC{S “ κSMpar
C {S.

We call the map Φpar the Kodaira-Spencer map.

Let B is the first connecting homomorphism of the long exact sequence for πe of the
sequence

0 // OSMpar
C

� � // R1πn˚

´”

A0,par,st
X par{SMpar

C
pEq pDq

ı_¯

// // TSMpar
C {S

// 0

given by applying R1πn˚ to the dual of the SQPA sequence tensorized by OχparpDq

0 // Ω1
χpar{SMpar

C

� � // A0,par,st
X par{SMpar

C
pEq pDq_ // // parEnd0

pEq // 0

We prove a parabolic version of proposition 4.7.1 in [BBMP23]

Proposition 4.5.5 The following diagram commute

R1πs˚
`

TC{Sp´Dq
˘ ´Φpar //

ρpar ))

R1πe˚

´

TSMpar
C {S

¯

πe˚Sym2
´

TSMpar
C {S

¯

B

55

i.e.: Φpar ` B ˝ ρpar “ 0.
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Proof. We need the following lemma

Lemma 4.5.6 ([BBMP23] lemma 4.5.1 page 23. ) Let X a scheme, V and L respec-
tively a vector and a line bundle on X. Moreover let F P Ext1 pL, V q

0 // V
i // F

π // L // 0

by taking the dual and tensorizing with V b L, we get

0 ÝÑ V ÝÑ F ˚ b V b L ÝÑ V ˚ b V b L ÝÑ 0

consider the injection
ψ : L ÝÑ V ˚ b V b L

t ÞÝÑ IdV b t

then there exist a canonical injection φ : F ÝÑ F ˚bV bL such that the following diagram
commutes

0 // V // F� _

φ
��

´π // L� _

ψ
��

// 0

0 // V // F ˚ b V b L // V ˚ b V b L // 0

Now, we prove the proposition. Take the parabolic Atiyah sequence on X par of the universal
bundle E relative to πn. We note : Apar :“ A0,par

X par{Mpar pEq and Astr :“ A0,par,str
X par{Mpar pEq, and

take the evaluation map composed with the inclusion SparEndpEq ãÑ parEndpEq

π˚n πn˚
`

SparEnd0
pEq b π˚wKC{S pDq

˘ ev
ÝÑ parEnd0

pEq b π˚wKC{S pDq

We dualize

parEnd0
pEq_ b π˚w TC{S p´Dq

ev˚
ÝÑ π˚n πn˚

`

SparEnd0
pEq b π˚wKC{S pDq

˘_

We get the following morphism of exact sequences

0

��

0

��
parEnd0

pEq

��

parEnd0
pEq

��
parEnd0

pEq bApar_ b π˚wTC{S p´Dq

��

q // parEnd0
pEq b π˚nπn˚

`

Astr b π˚wKC{S pDq
˘_

��

parEnd0
pEq b parEnd0

pEq_ b π˚wTC{S p´Dq
ev_//

��

parEnd0
pEq b π˚n πn˚

`

SparEnd0
pEq b π˚wKC{S pDq

˘_

��
0 0
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The map q is given by taking the dual of the evaluation map

ev : π˚nπn˚
`

Apar
b π˚wKC{S pDq

˘

ÝÑ Apar
b π˚wKC{S pDq

and composite with the natural inclusion Astr ãÑ Apar. We apply the lemma 4.5.6 to the
left exact sequence ( for V “ parEnd0

pEq, L “ π˚w TC{Sp´Dq and F “ Apar), and we apply
the Serre duality relative to πn for the right exact sequence we get the morphism of exact
sequences

0

��

0

��
parEnd0

pEq

��

parEnd0
pEq

��
Apar

��

// parEnd0
pEq b π˚n R1πn˚ pAstrpDq_q

��
π˚w TC{Sp´Dq //

��

parEnd0
pEq b π˚n R1πn˚

`

parEnd0
pEq

˘

��
0 0

The left exact sequence is the parabolic Atiyah sequence where we multiply the map
Apar ÝÑ π˚wp TC{S p´Dqq by ´1, see Lemma 4.5.6 .

We apply R1πn˚ to get

0

��

0

��
TSMpar

C {S

��

TSMpar
C {S

��
R1πn˚ pAparq

��

// TSMpar
C {S bR

1πn˚ pAstrpDq_q

��
R1πn˚

`

π˚w
`

TC{S p´Dq
˘˘

//

��

TSMpar
C {S b TSMpar

C {S

��
0 0

The right exact sequence is the R1πe˚ applied to the dual of strongly parabolic Atiyah
sequence tensorized by TSMpar

C {S, and the first connecting homomorphism in cohomology
with respect to πe is given by cup product with the class ∆.
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We take the first connecting homomorphism of the long exact sequence with respect to
the map πe, we get

πe˚R
1πn˚

`

π˚w
`

TC{S p´Dq
˘˘

˝

//

��

πe˚

´

TSMpar
C {S b TSMpar

C {S

¯

Y∆

��

R1πe˚

´

TSMpar
C {S

¯

R1πe˚

´

TSMpar
C {S

¯

we have

πe˚R
1πn˚

`

π˚w
`

TC{S p´Dq
˘˘

» R1πs˚
`

TC{S p´Dq
˘

we get the following commutative diagram

R1πs˚
`

TC{S p´Dq
˘

˝

ρpar //

´Φpar

��

πe˚

´

TSMpar
C {S b TSMpar

C {S

¯

B

��

R1πe˚

´

TSMpar
C {S

¯

R1πe˚

´

TSMpar
C {S

¯

Thus conclude the proof. ˝

4.5.3 Some equalities and consequences

We recall the equalities given in Theorem 4.3.4. For all i P I and j P t1, 2, ..., `iu one has

1. r
n
∆ “ rΘs P H0

´

S,R1πe˚pΩ
1
SMpar{Sq

¯

. We denote the associated application given

by the contraction with this class by

B :“ Y∆ : πe˚
`

Sym2
`

TSMpar{S

˘˘

ÝÑ R1πe˚
`

TSMpar{S
˘

,

2. r
njpiq

∆jpiq “ rΘjpiqs P H0
´

S,R1πe˚pΩ
1
SMpar{Sq

¯

. We denote the associated applica-

tion given by the contraction with this class, as follows

Bjpiq :“ Y∆jpiq : πe˚
`

Sym2
`

TMpar{S

˘˘

ÝÑ R1πe˚
`

TMpar{S
˘

.

Combining the above equalities, we get the following result.
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Theorem 4.5.7 Assume that the family πs : pC, Dq Ñ S is versal 2. Then for all i P I
and j P t1, 2, ..., `iu we have the equalities over the moduli space SMpar

C{Spr, α˚, δq

1. YrΘs ˝ ρpar “ ´
r
n
¨ Φpar.

2. YrΘjpiqs ˝ ρpar “ ´
r

njpiq
¨ Φpar.

Proof. The first equality is a direct consequence of Proposition 4.5.5, where we have

B ˝ ρpar “ ´Φpar,

we multiply the equality by r
n

and use the first equality above

r

n
B ˝ ρpar “ YrΘs ˝ ρpar “ ´

r

n
Φpar.

Fix i P I and j P t1, 2, ..., `iu. We take the Hecke isomorphism over S

Hj
i : SMpar

C{Spr, α˚, δq
– //

πe

''

SMpar
C{S

`

r,Hj
i pα˚q,H

j
i pδq

˘

πi,je
vvS

ö

where the map Hj
i is given in (4.3.1). Then by Proposition 4.5.4 applied over SMpar :“

SMpar
C{Spr, α˚, δq and SMpar

i,j :“ SMpar
C{S

`

r,Hj
i pα˚q,H

j
i pδq

˘

, the following diagram commute
under the assumption that the map κC{S is an isomorphism

R1πe˚
`

TSMpar{S

˘

– Hj
i

��

TS –

κC{S //

κπe ..

κ
π
i,j
e

00

R1πs˚
`

TC{Sp´Dq
˘

Φpar
55

Φi,jpar ))

R1πi,je˚

´

TSMpar
i,j {S

¯

In fact by Proposition 4.5.4 applied over SMpar and SMpar
i,j , one has

Φpar ˝ κC{S “ κπe

Φi,j
par ˝ κC{S “ κπi,je

Hj
i ˝ κπe “ κπi,je

κC{S isomorphism

,

/

/

/

/

/

/

/

/

.

/

/

/

/

/

/

/

/

-

ùñ Hj
i ˝ Φpar “ Φi,j

par. (4.5.3)

2The Kodaira-Spencer of the family of marked curves is an isomorphism
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Now we define the parabolic Hitchin symbol map ρi,jpar over the moduli space SMpar
i,j (see

definition 4.4.1). We have the following commutative diagram

ö

πe˚
`

Sym2TSMpar{S

˘ YrΘjpiqs //

– Hj
i

��

ö

R1πe˚
`

TSMpar{S

˘

– Hj
i

��

R1πs˚
`

TC{Sp´Dq
˘

ρpar 22

ρi,jpar
,,
πe˚

´

Sym2TSMpar
i,j {S

¯

YrΘjpiqs
// R1πi,je˚

´

TSMpar
i,j {S

¯

The first diagram commute by Proposition 4.4.3. Hence by the above diagram one has

YrΘjpiqs ˝ ρpar “
`

pHj
i q
´1
˝ YrΘjpiqs ˝Hj

i

˘

˝ ρpar

“ pHj
i q
´1
˝
`

YrΘjpiqs ˝ ρ
i,j
par

˘

We apply Proposition 4.5.5, to get

YrΘjpiqs ˝ ρpar “ pHj
i q
´1
˝

ˆ

´
r

njpiq
Φi,j
par

˙

,

and by equation (4.5.3)

YrΘjpiqs ˝ ρpar “ ´
r

njpiq
Φpar.

This concludes the proof. ˝

4.6 Line bundles over SMpar
C{Spr, α˚, δq

4.6.1 Parabolic determinant bundle

Let E˚ be a family of parabolic rank r vector bundles of fixed parabolic type α˚ over a
smooth family of curves C{S parametrized by a S-variety T . Let p : C ˆS T ÝÑ T the
projection map. We recall the definition of the parabolic determinant line bundle under
the hypothesis (1.6)

λparpE˚q :“ λpEqk b
N
â

i“1

`i
â

j“1

!

det
`

F j
i pEq{F

j`1
i pEq

˘´ajpiq
)

b detpEσq
k
r
χpar

which is a line bundle over T , where

• Eσ “ E |σˆST , for some section σ : S ÝÑ C.
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• χpar “ d` rp1´ gq `
N
ř

i“1

`i
ř

j“1

mjpiqajpiq..

Pauly in rPau96s gives another definition as following

Definition 4.6.1 (Parabolic determinant bundle) Let E˚ be a family of parabolic rank-
r vector bundles of parabolic type α˚ over a smooth family of curves πs : C ÝÑ S parame-
terized by a S-variety T , then we have

ΘparpE˚q :“ λpEqk b
N
â

i“1

`i´1
â

j“1

!

det
`

Eσi{F
j`1
i pEq

˘pjpiq
)

b detpEσqe

where the determinant is with respect to the projection C ˆS T ÝÑ T and for all i P I and
j P t1, 2, ..., `i ´ 1u

• Eσi :“ E |σipSqˆST , where σi : S ÝÑ C the parabolic section of πs.

• pjpiq “ aj`1piq ´ ajpiq.

• rjpiq :“
q
ř

i“1

mipqq “ dimCpEσi{F
j`1
i pEqq.

• re “ kχ´
N
ř

i“1

`i´1
ř

j“1

pjpiqrjpiq, where χ “ d` rp1´ gq.

We prove in the following Proposition that the two definition are the same.

Proposition 4.6.2 Let E˚ be a family of parabolic rank-r vector bundles of parabolic type
α˚ over a smooth family of curves πs : C ÝÑ S parameterized by a S-variety T , then

ΘparpE˚q – λparpE˚q.

Proof. To prove the equality of the line bundles over T , we begin by replacing det
`

F j
i pEq{F

j`1
i pEq

˘

by det
`

Exi{F
j`1
i pEq

˘

. In fact we have for all i P I and j P t1, 2, ..., `iu the equality

det
`

F j
i pEq{F

j`1
i pEq

˘

“
`

det
`

Exi{F
j
i pEq

˘˘´1
b det

`

Exi{F
j`1
i pEq

˘

. (4.6.1)

for the proof, we take for all i P I and j P t1, 2, ..., `iu, the quotient exact sequences

0 // F j
i pEq

� � // Eσi // // Qj´1
i pEq :“ Eσi{F

j
i pEq // 0,

0 // F j`1
i pEq � � // Eσi // // Qj

i pEq :“ Eσi{F
j`1
i pEq // 0,

We calculate the determinants line bundles

detF j
i pEq “ detpEσiq b

`

detQj´1
i pEq

˘´1

detF j`1
i pEq “ detpEσiq b

`

detQj
i pEq

˘´1
.
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Now we calculate the determinant using the above equalities

det
`

F j
i pEq{F

j`1
i pEq

˘

“ detF j
i pEq b

`

detF j`1
i pEq

˘´1

“ detpEσiq b
`

detQj´1
i pEq

˘´1
b

´

detpEσiq b
`

detQj
i pEq

˘´1
¯´1

“
`

detQj´1
i pEq

˘´1
b detQj

i pEq

“
`

det
`

Eσi{F
j
i pEq

˘˘´1
b det

`

Eσi{F
j`1
i pEq

˘

.

Now we can proof the proposition

λparpE˚q :“ λpEqk b
N
â

i“1

`i
â

j“1

 

det
`

F j
i pEq{F

j`1
i pEq

˘(´ajpiq
b detpEσq

k
r
χpar

“ λpEqk b
N
â

i“1

`i
â

j“1

!

det
`

Eσi{F
j
i pEq

˘´1
b det

`

Eσi{F
j`1
i pEq

˘

)´ajpiq

b detpEσq
k
r
χpar

By rearranging the terms, we get

λparpE˚q “ λpEqk b
N
â

i“1

#

detpEσiqa`i piq b
`i´1
â

j“1

det
`

Eσi{F
j`1
i pEq

˘pjpiq

+

b detpEσq
k
r
χpar

As detpEσq is independent of the section σ, we get

λparpE˚q “ λpEqk b
N
â

i“1

`i´1
â

j“1

det
`

Eσi{F
j`1
i pEq

˘pjpiq
b detpEσq

˜

k
r
χpar´

N
ř

i“1
a`i piq

¸

Now we observe the following equality:

N
ÿ

i“1

`i
ÿ

j“1

ajpiqmjpiq “ ´
N
ÿ

i“1

`i´1
ÿ

j“1

djpiqrjpiq ` r
N
ÿ

i“1

a`ipiq (4.6.2)

So the exponent

k

r
χpar ´

N
ÿ

i“1

a`ipiq “
k

r

˜

χ`
1

k

N
ÿ

i“1

`i
ÿ

j“1

ajpiqmjpiq

¸

´

N
ÿ

i“1

a`ipiq

“
k

r
χ`

1

r

˜

N
ÿ

i“1

`i
ÿ

j“1

ajpiqmjpiq ´ r
N
ÿ

i“1

a`ipiq

¸

By (4.6.2) we get

k

r
χpar ´

N
ÿ

i“1

a`ipiq “
k

r
χ´

1

r

N
ÿ

i“1

`i´1
ÿ

j“1

djpiqrjpiq.
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which is equivalent to the equality:

kχpar ´ r
N
ÿ

i“1

a`ipiq “ re.

This concludes the proof. ˝

We give another description of the parabolic determinant line bundle.

Proposition 4.6.3 (Parabolic determinant bundle and Hecke modifications)

Let E˚ be a family of parabolic rank-r vector bundles and determinant δ P PicpC{Sq of
parabolic type α˚ over a smooth family of curves πs : C ÝÑ S parameterized by a S-variety
T . Then

λparpE˚qr “ Θa
b

N
â

i“1

`i´1
â

j“1

Θjpiq
qjpiq (4.6.3)

where, for all i P I and j P t1, 2, ..., `i ´ 1u

• Θ is the pull-back of the ample generator of PicpSUC{Spr, δq{Sq by the classifying map
φT and n “ gcdpr, dq.

• Θi,j is the pull-back of the ample generators of PicpSUC{Spr, δjpiqq{Sq by the classify-
ing maps φT

i,j and njpiq “ gcdpr, djpiqq, where djpiq “ degpδjpiqq.

• pjpiq “ aj`1piq ´ ajpiq and qjpiq “ njpiqpjpiq.

• a “ n

˜

k ´
N
ř

i“1

`i´1
ř

j“1

pjpiq

¸

.

Proof. By the Proposition 4.6.1, we prove the equality

ΘparpE˚qr “ Θa
b

N
â

i“1

`i´1
â

j“1

Θ
njpiqpjpiq
i,j .

we have by definition

ΘparpE˚q “ λpEqk b
N
â

i“1

`i´1
â

j“1

!

det
`

Eσi{F
j`1
i pEq

˘pjpiq
)

b detpEσqe

Take the Hecke exact sequences

0 //Hj
i pEq

� � // E // // Qj
i pEq :“ Eσi{F

j`1
i pEq // 0,

By Lemma 1.4.5, we get

λpEq “ λpHj
i pEqq b

`

det
`

Eσi{F
j`1
i pEq

˘˘´1
.
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We rearrange the terms and by the above equality and take the r-th power

ΘparpE˚qr “ λpEqrk b
N
â

i“1

`i´1
â

j“1

 

λ
`

Hj
i pEq

˘

b λpEq´1
(rpjpiq

b detpEσqre

“

#

λpEqk
N
â

i“1

`i´1
â

j“1

λpEq´pjpiq
+r

b

N
â

i“1

`i´1
â

j“1

λ
`

Hj
i pEq

˘rpjpiq
b detpEσqre

“
 

λpEq
r
n b detpEσqℵ

(a
b

N
â

i“1

`i´1
â

j“1

!

λpHj
i pEqq

r
njpiq b detpEσqℵjpiq

)njpiqpjpiq

b detpEσqq

where

p˚q

$

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

%

a “ n

˜

k ´
N
ř

i“1

`i´1
ř

j“1

pjpiq

¸

and re “ kχ´
N
ř

i“1

`i´1
ř

j“1

pjpiqrjpiq.

χ “ d` rp1´ gq and n ℵ “ χ for n “ gcdpr, dq

χjpiq “ djpiq ` rp1´ gq and njpiq ℵjpiq “ χjpiq for njpiq “ gcdpr, djpiqq

djpiq “ d´ rjpiq.

Thus

q “ re´ ℵa´

˜

N
ÿ

i“1

`i´1
ÿ

j“1

ℵjpiqpjpiqnjpiq

¸

,

By p˚q, we get

q “

˜

kχ´
N
ÿ

i“1

`i´1
ÿ

j“1

pjpiqrjpiq

¸

´ χ

˜

k ´
N
ÿ

i“1

`i´1
ÿ

j“1

pjpiq

¸

´

N
ÿ

i“1

`i´1
ÿ

j“1

pjpiqχjpiq

“

N
ÿ

i“1

`i´1
ÿ

j“1

pjpiq p´rjpiq ` χ´ χjpiqq

“

N
ÿ

i“1

`i´1
ÿ

j“1

pjpiq

¨

˚

˝

´rjpiq ` d´ djpiq
looomooon

rjpiq

˛

‹

‚

q “ 0.

Hence for qjpiq “ njpiqpjpiq one has: ΘparpE˚qr “ Θa b
N
Â

i“1

`i´1
Â

j“1

Θjpiq
qjpiq. ˝
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Remark 4.6.4 We apply this proposition for T “ SMpar
C{Spr, α˚, δq and E˚ a virtual uni-

versal parabolic bundle, we get

Θr
par “ ΘparpE˚qr “ Θ

n

˜

k´
N
ř

i“1

`i´1
ř

j“1
pjpiq

¸

b

N
â

i“1

`i´1
â

j“1

Θjpiq
njpiqpjpiq

4.6.2 Canonical bundle

In this section we calculate the canonical bundle of the relative moduli space of semi-stable
parabolic bundles for a fixed parabolic type SMpar

C :“ SMpar
C{Spr, α˚, δq{S over a smooth

family of marked projective curves parameterized by a scheme S.

Canonical bundle in the Grassmannian case

We suppose that the divisor is of degree one and the flag type is of length one. Let E˚ be
a virtual universal parabolic vector bundle

X par πn //

πw

��

SMpar
C{S

πe

��

φ // SUC{Spr, δq

pe

zz
pC, Dq πs

// S

σi

jj

where D “ σpSq. In this case the map φ is a Grassmannian bundle over the stable locus
of SUC{S (the relative moduli space of semi-stable rank-r vector bundles of determinant δ)
and we set D :“ π˚w pDq “ D ˆS SMpar

C . Then we have the Hecke exact sequence

0 ÝÑ HpEq ãÑ E ÝÑ QpEq “ E |D{F pEq ÝÑ 0 (4.6.4)

and the natural exact sequence supported over D

0 ÝÑ F pEq ãÑ E |D ÝÑ QpEq ÝÑ 0 (4.6.5)

The relative tangent bundle of the fibration φ is given as follow

Tφ “ Hom pF pEq, QpEqqq “ F pEq´1
bQpEq

So the relative canonical bundle is

Kφ “ detpT´1
φ q “ det

`

F pEqq bQpEq´1
˘

We put r1 :“ rankpQpEqq “ r ´ rankpF pEqq, we get

Kφ “ detpTφq
´1
“ detpF pEqqr1 b detpQpEqq´pr´r1q
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The short exact sequence (4.6.5)

detpEDq “ detpF pEqq b detpQpEqq

which is equivalent to
detF pEq “ detpEDq b detpQpEqq´1

We replace in the previous equation

Kφ “ detpEDqr
1

b detpQpEqq´r

so Lemma 1.4.5 applied to the Hecke modification sequence (4.6.4) gives the equality

λpEq “ λpHpEqq b detpQpEqq´1

which implies that
Kφ “ detpEDqr

1

b λpHpEqq´r b λpEqr

Kφ1 “

”

λpHpEqq
r
n1 b detpEyq

χ1

n1

ı´n1

b

”

λpEq
r
n ˆ detpEDq

χ
n

ın

b detpEDqr
1´χ`χ1

where: n “ gcdpr, degpEqq, n1 “ gcdpr, degpGDpEqq, χ “ χpEq and χ1 “ χpGDpEqq.

χ1 ´ χ “ degpGDpEqq ´ degpEq “ ´r1 ùñ r1 ´ χ` χ1 “ 0

If we denote ΘD the pull-back of the ample generator of PicpSUCpr, δ
1q{Sq, we get:

ωφ1 “ Θn
bΘ´n1

D

KSMpar
C{S
“ KSUCpr,δ1q{S bKφ1 “ Θ´2n

b

´

Θn
bΘ´n1

D

¯

.

Hence
KSMpar

C {S “ Θ´n
bΘ´n1

D . (4.6.6)

General case: Now we can calculate the relative canonical bundle KSMpar
C {S of the mod-

uli space SMpar
C{Spr, α˚, δq of parabolic bundles.

Proposition 4.6.5 Let b “ ´n

ˆ

2` degpDq ´
N
ř

i“1

`i

˙

. Then the canonical bundle is given

by the formula:

KSMpar
C {S “ Θb

b

˜

N
â

i“1

`i´1
â

j“1

Θjpiq
´njpiq

¸

.

Proof. Let φ : SMpar
C Ñ SUCpr, δq be the forgetful map and denote its relative canonical

bundle by Kφ, then we have KSMpar
C {S “ KSUCpr,δq{S bKφ and by Drezet-Narasimhan 1.4.3

we get KSMpar
C {S “ Θ´2nbKφ, where Θ is the pull-back of the relative ample generator of

PicpSUCpr, δq{Sq by φ and n “ gcdpr, degpδqq. Now, as the map φ is generically a product
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of a flag varieties we can decompose the relative canonical bundle Kφ “
N
Â

i“1

Kφpiq, where for

all i P I the bundle Kφpiq is the canonical bundle of a flag variety. Hence as the flag variety
is embedded canonically in a product of Grassmanians and that its canonical bundle is
given by the product of the canonical bundle over the Grassmanians, then by the equality
(4.6.6), we have

Kφpiq “

`i´1
â

j“1

`

Θn
bΘjpiq

´njpiq
˘

.

We replace and rearrange the terms, to get

KSMpar
C {S “ KSUCpr,δq{S bKφ “ Θ´2n

b

N
â

i“1

Kφpiq

“ Θ´2n
b

N
â

i“1

`i´1
â

j“1

`

Θn
bΘjpiq

´njpiq
˘

“ Θ
´n

˜

2`degpDq´
N
ř

i“1
`i

¸

b

˜

N
â

i“1

`i´1
â

j“1

Θjpiq
´njpiq

¸

This proves the formula. ˝

Example: Rank 2 Parabolic bundles

Let E˚ “ pE , FipEqiPIq be a relative family of rank-2 parabolic vector bundles and degree-d
of fixed parabolic type

p0 ď a1piq ă a2piq ă kqiPI

over pC{S,Dq parameterized by an S-variety T {S, we set

• χ “ d` 2p1´ gq, n “ gcdp2, dq and n1 “ gcdp2, d´ 1q.

• ppiq “ a2piq ´ a1piq and 2e “ kχ´
N
ř

i“1

ppiq.

• a “ n

ˆ

k ´
N
ř

i“1

ppiq

˙

.

Then the parabolic determinant bundle

λparpEq “ λpEqk b
N
â

i“1

pEi{FipEqqpi b detpEσqe.

We get the following description in rank 2 case.
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Proposition 4.6.6 With the above hypothesis, we get

1. The parabolic determinant bundle is given by: Θ2
par “ Θa b

N
Â

i“1

Θpiqn
1ppiq.

2. The canonical bundle is given by: KSMpar
C {S “ Θ´np2´Nq b

N
Â

i“1

Θpiq´n
1

.

4.7 Existence and flatness of the connection

With the same hypothesis.

Theorem 4.7.1 Take the parabolic symbol map ρpar, then the parabolic determinant line
bundle Θpar satisfies the van Geemen-de Jong equation. i.e.

µΘpar ˝ ρpar “ ´pk ` rqΦpar

Proof. By Proposition 3.3.1 we have that

µΘpar “ YrΘpars ´ Y

ˆ

1

2
rKSMpar

C {Ss

˙

Thus the Theorem is equivalent to the following points

1. We prove the equality: YrΘpars ˝ ρpar “ ´k Φpar, so called the metaplectic case (or
correction)

By Proposition 4.6.3, Theorem 4.5.7 and linearity with respect to the the tensor
product, we get

YrΘr
pars ˝ ρpar “ Y

«

Θa
b

N
â

i“1

`i´1
â

j“1

Θjpiq
njpiqpjpiq

ff

˝ ρpar

“ a pY rΘs ˝ ρparq `
N
ÿ

i“1

`i´1
ÿ

j“1

njpiqpjpiq pY rΘjpiqs ˝ ρparq

“ a
´

´
r

n
Φpar

¯

`

N
ÿ

i“1

`i´1
ÿ

j“1

njpiqpjpiq

ˆ

´
r

njpiq
Φpar

˙

“ ´

˜

r

n
a`

N
ÿ

i“1

`i´1
ÿ

j“1

njpiqpjpiq

ˆ

r

njpiq

˙

¸

Φpar

Thus

YrΘpars ˝ ρpar “ ´

˜

a

n
`

N
ÿ

i“1

`i´1
ÿ

j“1

pjpiq

¸

Φpar
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and by the following identity

a

n
`

N
ÿ

i“1

`i´1
ÿ

j“1

pjpiq “

˜

k ´
N
ÿ

i“1

`i´1
ÿ

j“1

pjpiq

¸

`

N
ÿ

i“1

`i´1
ÿ

j“1

pjpiq “ k

we get the equality

Y rΘpars ˝ ρpar “ ´k Φpar (4.7.1)

2. We prove the equality: YrKSMpar
C {Ss ˝ ρpar “ 2r Φpar

By Proposition 4.6.5, Theorem 4.5.7 and linearity with respect to the the tensor
product, we have

YrKSMpar
C {Ss ˝ ρpar “ Y

«

Θ´b
b

N
â

i“1

`i´1
â

j“1

Θjpiq
´njpiq

ff

˝ ρpar

“ ´b pYrΘs ˝ ρparq `
N
ÿ

i“1

`i´1
ÿ

j“1

´njpiq pYrΘjpiqs ˝ ρparq

“ ´n

˜

2` degpDq ´
N
ÿ

i“1

`i

¸

´

´
r

n
Φpar

¯

`

N
ÿ

i“1

`i´1
ÿ

j“1

´njpiq

ˆ

´
r

njpiq
Φpar

˙

“ r

˜

2` degpDq ´
N
ÿ

i“1

`i `
N
ÿ

i“1

`i´1
ÿ

j“1

1

¸

Φpar

Thus

YrKSMpar
C {Ss ˝ ρpar “ 2r Φpar

Adding the two equations we get

ˆ

YrΘpars ´ Y
1

2
rKSMpar

C {Ss

˙

˝ ρpar “ ´k Φpar ´ r Φpar “ ´pk ` rqΦpar

thus

µΘpar ˝ ρpar “ ´pk ` rq ¨ Φpar. (4.7.2)

˝

We observe that the composition µΘpar ˝ ρpar does not depend on the parabolic weights
but depends on the level-k, in some sense what contributes in the decomposition (4.6.3) is
the term Θk, we rearrange the terms as follow

Θr
par “ Θa

N
â

i“1

`i´1
â

j“1

Θjpiq
njpiqpjpiq “ Θnk

N
â

i“1

`i´1
â

j“1

`

Θ´n
bΘjpiq

njpiq
˘pjpiq

.
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By the Definition 4.6.1 and Propositions 4.6.2, 4.6.3 the identification we get

N
â

i“1

`i´1
â

j“1

!

det
`

Eσi{F
j`1
i pEq

˘rpjpiq
)

b detpEσqpre´kχq “
N
â

i“1

`i´1
â

j“1

`

Θ´n
bΘjpiq

njpiq
˘pjpiq

.

which we call the flag part of the determinant line bundle and we denote by Fpα˚q. By
Corollary 4.5.7 for all i P I and j P t1, 2, ..., `iu we have

`

Y
“

Θ´n
‰

`Y
“

Θjpiq
njpiq

‰˘

˝ ρpar “ 0

Thus we get

Y rFpα˚qs ˝ ρpar “ 0. (4.7.3)

By Proposition 4.4.5 one has

Y rFpα˚qs “ 0. (4.7.4)

Remark 4.7.2

1. In general case (see. rSin21s) : If X is a Hitchin variety and L line bundle over X,
then we have a map

Y rLs : H0
pX, Symq TXq ÝÑ H1

pX, Symq´1TXq

which can be seen as the first connecting map in cohomology of the short exact se-
quence

0 ÝÑ Symq´1
´

Dp1qX pLq
¯

ÝÑ Symq
pDp1qX pLqq ÝÑ Symq

pTXq ÝÑ 0

which is the q-th symmetric power of the the Atiyah sequence (3.1.1), and we have
the following theorem

Theorem 4.7.3 ([Sin21], Theorem 2.2)

If L is an ample line bundle then the map above is an isomorphism.

2. The varieties SUC{Spr, δq and SMpar
C{Spr, α˚, δq are Hitchin varieties in the sense of

rSin21s, and by Theorem 1.6.3 the parabolic determinant line bundle Θpar is ample
thus the map

Y rΘpars : πe˚Sym2
´

TSMpar
C {S

¯

ÝÑ R1πe˚

´

TSMpar
C {S

¯

,

is an isomorphism.
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By equalities (4.7.2) and (4.7.4), one has

µΘpar “
n pk ` rq

r
¨ Y rΘs “

k ` r

k
¨ Y rΘpars

and for all positive integer ν, one has

µΘνpar “
n pνk ` rq

r
¨ Y rΘs “

ˆ

νk ` r

k

˙

Y rΘpars .

Thus by the previous remark, on has

Proposition 4.7.4 For ν a positive integer the map µΘνpar is an isomorphism.

We get the van Geemen and de Jong equation Theorem 4.7.1 for any positive power of the
theta line bundle

µΘνpar ˝ ρpar “ ´pνk ` rqΦpar

Theorem 4.7.5 Let ν P N˚ be a positive integer. Suppose πs : pC, Dq ÝÑ S a smooth
family of complex projective marked curves of genus g ě 2 and D a reduced divisor of
relative degree N , take α˚ “ pk,~a, ~mq a fixed rank-r parabolic type with respect to the
divisor D. We denote by πe : SMpar

C{Spr, α˚, δq ÝÑ S the relative moduli space of parabolic

rank-r vector bundles over pC, Dq{S with determinant δ P PicdpC{Sq, equipped with the
parabolic determinant bundle Θpar. Then there exists a unique projective flat connection
on the vector bundle πe˚pΘ

ν
parq of non-abelian parabolic theta functions, induced by a heat

operator with symbol

ρHitpar pνq :“
1

pνk ` rq

`

ρpar ˝ κC{S
˘

.

Proof. Let prove the theorem for ν “ 1, we denote ρHitpar :“ ρHitpar p1q.

• First we prove existence of the connection: We apply van Geemen-de Jong Theorem
3.3.2 for L “ Θpar over SMpar

C “ SMpar
C{Spr, α˚, δq. Thus by Theorem 4.7.1 and

Proposition 4.3.3, we get the first condition of Theorem 3.3.2

µΘpar ˝
`

ρpar ˝ κC{S
˘

“ ´pk ` rqΦpar ˝ κC{S

“ ´pk ` rq κSMpar
C {S.

The second condition follows by Theorem 4.7.3 for q “ 1.i.e.

Y rΘpars : πe˚TSMpar
C {S ÝÑ R1πe˚OSMpar

C {S

is an isomorphism, as the relative Picard group PicpSMpar
C {Sq is discrete then the

infinitesimal deformations of any line bundle L over SMpar
C are trivial and parame-

terized by the sheaf R1πe˚OSMpar
C

over S, thus

R1πe˚OSMpar
C
– 0,
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as consequence, we get that there are no global vector fields

πe˚pTSMpar
C {Sq – 0,

The third condition follows from the algebraic Hartogs’s Theorem and the fact that
the space SMpar

C{Spr, α˚, δq is normal variety and proper over S. Hence the smooth

locus is a big open subset of SMpar
C{Spr, α˚, δq.

• Flatness of the connection: We apply the flatness criterion Theorem 3.3.3 to the
parabolic symbol map ρpar. The first condition holds since by definition of the
parabolic Hitchin map corresponds to homogeneous functions on T_SMpar

C {S
of degree

two under the action of Gm in the parabolic Hitchin system, hence Poisson-commute.
The second point is given in Proposition 4.7.4 and the third point is given in the first
part of the proof.

˝

For D “ H and α˚ “ k P N˚ the trivial parabolic type, we have the identification
SMpar

C{Spr, 0˚, δq with SUC{Spr, δq the moduli space of semi-stable rank-r vector bundles

with determinant δ, hence Θ
r{n
par “ Lk for n :“ gcdpr, degpδqq and ρpar “ ρHit.

We obtain the following special case for non-parabolic vector bundles.

Theorem 4.7.6 Let k a positive integer. Suppose a smooth family ps : C ÝÑ S of
complex projective curves of genus g ě 2 (and g ě 3 if r “ 2 and degpδq even), set
n :“ gcdpr, degpδqq. Let L be the ample generator of the Picard group of SUC{Spr, δq. Then
there exists a unique projective flat connection on the vector bundle pe˚pLkq of non-abelian
theta functions, induced by a heat operator with symbol

ρpkq :“
n

rpk ` nq

`

ρHit ˝ κC{S
˘

.

In fact for k P N˚, we have Θ
r{n
par “ Lk hence ρpkq “ ρHitpar p

r
n
q.

Remark 4.7.7 The van Geemen-de Jong criterion cannot be applied in following cases:

1. Genus zero: not interesting case as we have

SUP1pr, δq “

$

&

%

tptu if degpδq divides r.

H otherwise.

2. Elliptic curves: we have the following description of the moduli space rTu93s

SUCpr, δq – Pm´1,

where m “ gcdpr, degpδqq, for any line bundle δ P PicpCq. Note that the case m “ 1
is not interesting.
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Hence the second condition in Theorem 3.3.2 does not hold, as on the one hand the projec-
tive space admits global holomorphic vector fields H0pPm, TPmq ‰ 0 by Euler exact sequence

0 ÝÑ OPm ÝÑ OPmp1q
m`1

ÝÑ TPm ÝÑ 0

on the other hand H1pPm,Oq “ 0 as the Picard group is isomorphic to Z hence no in-
finitesimal deformations.

Some comments We apply Theorem 4.7.6 for δ “ OC thus n “ r and Θpar “ Lk, we
get

ρpkq :“
1

pk ` rq

`

ρHit ˝ κC{S
˘

Hence we recover Theorems 4.8.1 and 4.8.2 in [BBMP23], which was generalized in [BMW21a]
and [BMW21b] to the space SMpar

C{Spr, α˚q the space of rank-r parabolic bundle with trivial
determinant and parabolic type α˚. The symbol map is given by

ρHitpar,Γpνq :“ |Γ| µ´1
Θν ˝

`

YrΘs ˝ ρpar ˝ κC{S
˘

.

for a positive integer ν. By 4.7.4 and (4.7.4), we get

|Γ|pµ´1
Θν ˝ YrΘsq “

|Γ|

pνk ` rq
Id,

hence

ρHitpar,Γpνq :“
|Γ|

pνk ` rq

`

ρpar ˝ κC{S
˘

“ |Γ|ρHitpar pνq.

The factor |Γ| is because they work over SUΓ
pCprq the moduli space of Γ-linearised bundles

for family of Galois coverings h : pC ÝÑ pC, Dq parameterized by the variety S.

Remark 4.7.8 If the system of weights α˚ is not generic in the sense of Yokogawa then
the moduli space SMpar

C{Spr, α˚, δq is not smooth, and its Picard group is not maximal. In
other words, note all line bundles on the Quot scheme descends to the moduli space. In
fact we can choose the weights α˚ in such a way that we have the following isomorphism:

Pic
´

SMpar
C{Spr, α˚, δq{S

¯

» ZΘpar

In this case, we must work over the stack of parabolic vector bundles, where the Picard
group is maximal, and the Hecke maps Hj

i and the forgetful map are maps between stacks
(no stability conditions). The decompositions of the parabolic determinant line bundle 4.6.3
and the canonical line bundle 4.6.5 still holds.

Example 4.7.9 (Non-generic weights. See [Pau98] for the details) Let’s consider
the rank two case with D being a parabolic divisor of degree N “ 2m ě 4. For all i P I, we
choose the following system of weights:

a1piq “ 0, a2piq “ 1 and k “ 2.

In this case the Picard group of the moduli space SMpar
C{Sp2, α˚,OCq is generated by the

parabolic determinant line bundle Θpar.
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Chapter A

Deformation functors

In this appendix we recall definitions of deformation theory over Artin C-algebras and their
properties. We give some examples of geometric deformations. We follow [Mar09].

A.1 Formal deformation theory

Definition A.1.1 (Deformation over Artin rings) A functor of Artin rings is a co-
variant functor F : ArtC ÝÑ Set from the category of local Artin C-algebras with residue
field C to the category of sets, such that FpCq= {fixed one point set}.

Definition A.1.2 (Tangent space) Let F a functor of Artin ring. The tangent space to
F is the set TF :“ FpC rεsq, where C rεs :“ C rxs {px2q, the dual number C-algebra.

We want to have some control over such functors, so we define a special class of functors.
Let F a functor of Artin ring. Let B ÝÑ A and C ÝÑ A be morphisms of Artin algebras
and let

ζ : FpB ˆA Cq ÝÑ FpBq ˆFpAq FpCq

be the induced morphism. The Schlessinger conditions are the following:

A) If C ÝÑ A is surjective, then ζ is surjective,

B) If C “ C rεs and A “ C, then ζ is bijective,

C) dimCFpC rεsq is finite,

D) If B “ C ÝÑ A is surjective, then ζ is bijective.

Definition A.1.3 Let F be a functor of Artin rings. F is a functor with good theory of
deformation if conditions (A) and (B) holds. F is homogeneous, if ζ is bijective, whenever
C ÝÑ A is surjective.
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Proposition A.1.4 Let F be a functor of Artin rings. The set TF has the structure of
a C-vector space. Let υ : F ÝÑ G be a morphism of functors of Artin rings. Then the
induced map υ : TF ÝÑ TG is a C-linear map.

A.2 Examples of deformation functors

A.2.1 Deformation of schemes

Definition A.2.1 Let X be an algebraic C-scheme. An infinitesimal deformation of X
over A P ArtC is a Cartesian diagram of morphisms of schemes

X �
� //

��

XA

π
��

SpecpCq � � // SpecpAq

where π is flat.

An isomorphism of infinitesimal deformations XA and X 1
A of X over A, is an isomorphism

ν : XA ÝÑ X 1
A that makes the following diagram commutative

XiI

vv

� u

((XA
ν //

π
''

X 1
A

π1ww
SpecpAq

Definition A.2.2 (Locally trivial deformations) Let X be an algebraic C-scheme. An
infinitesimal deformation XA of X over A is locally trivial, if every x P X has a neigh-
bourhood Ux Ă X, such that

Ux //

��

XA|Ux

π

��
SpecpCq � � // SpecpAq

is a trivial deformation of Ux.

We define isomorphism of locally trivial deformation as isomorphism of deformations.

Proposition A.2.3 Let X an affine scheme, then we have

1. Every infinitesimal deformation of X is affine.
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2. If X is smooth, then it is rigid, i.e. all its infinitesimal deformations are trivial.

Definition A.2.4 (Functor of deformation of schemes) Let X be an algebraic scheme.
We define the functor of infinitesimal deformations of X:

DefX : ArtC ÝÑ Set

which associates to every local Artinian C-algebra A, the set of isomorphism classes of
infinitesimal deformations of X over A.

The functor of locally trivial infinitesimal deformations of X:

Def 1X : ArtC ÝÑ Set

which associates to every local Artinian C-algebra A, the set of isomorphism classes of
locally trivial infinitesimal deformations of X over A.

Remark A.2.5 By Proposition A.2.3 if X is a non singular scheme, all its infinitesimal
deformations are locally trivial. Thus DefX – Def 1X .

Now we recall without proof, the most important results and properties of the functors
DefX and Def 1X .

Theorem A.2.6 The functors DefX and Def 1X are with a good deformation theory, and
we have the following

• TDef 1X
“ H1pX, TXq and TDefX “ Ext1pX, TXq.

• If X is smooth, DefX – Def 1X and we have TDefX – TDef 1X
– H1pX, TXq.

• The obstruction space of the functor DefX is the space H2pX, TXq.

• If X is smooth, then DefX – Def 1X and the obstruction space is H2pX, TXq.

A.2.2 Deformation of sheaves

Definition A.2.7 Let X be an algebraic scheme over C. Let E a locally free sheaf over X.
An infinitesimal deformation of E over A P ArtC is a locally free sheaf of OX b A-module
EA over X ˆ SpecpAq with a morphism of sheaves πA : EA ÝÑ E, such that πA : EA b CE
is an isomorphism.

Definition A.2.8 Two infinitesimal deformation of E on X, EA and E 1A are isomorphic,
if there exist an isomorphism of sheaves ϕ : EA ÝÑ E 1a, that commutes with the maps
πA : EA ÝÑ E and π1A : E 1A ÝÑ E, i.e. π1A ˝ ϕ “ πA.

Definition A.2.9 Let E a locally free over the scheme X. We define the Artin functor
of infinitesimal deformations of E: DefE : ArtC ÝÑ Set. Which associates to every local
Artinian C-algebra A, the set of isomorphism classes of infinitesimal deformation of E over
A.
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Theorem A.2.10 The functor DefE is a functor with good deformation theory.

Theorem A.2.11 The tangent space to the functor DefE is given by TDefE – H1pX,EndpEqq
and H2pX,EndpEqq is the obstruction space.

A.2.3 Deformation of a pair (scheme, sheaf)

Definition A.2.12 Let X a scheme over C and E a locally free sheaf. An infinitesimal
deformation of the pair pX, Eq over A P ArtC is the following

• A deformation XA of the scheme X over A, i.e.

X �
� //

��

XA

π
��

SpecpCq � � // SpecpAq

• A locally free sheaf EA over XA, with a morphism πA : EA ÝÑ E, such that πA :
EA b C ÝÑ E is an isomorphism.

two such deformation pXA, Eq and pX 1
A, E 1q over A are isomorphic, if

• there is an isomorphism of deformations ν : XA ÝÑ X 1
A.

• we have an isomorphism of vector bundles over XA, µ : E ÝÑ ν˚pE 1q, such that
πA “ π1A ˝ µ.

Definition A.2.13 Let X be a C-scheme and let E a locally free sheaf on X. The functor
of infinitesimal deformation of the pair pX, Eq is the following:

DefpX,Eq : ArtC ÝÑ Set

which associates to every local Artinian C-algebra A, the set of isomorphism classes of
infinitesimal deformations of the pair pX, Eq over SpecpAq.

Theorem A.2.14 Let X be a C-scheme and E a locally free sheaf on X. Then

1. The functor DefpX,Eq is a functor with a good deformation theory.

2. If X is a non singular projective variety, the tangent space of the functor DefpX,Eq is
isomorphic to H1pX,AXpEqq and H2pX,AXpEqq is an obstruction space for it, where
AXpEq is the Atiyah algebroid 3.1.1 associated to the locally free sheaf E.
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APPENDIX A. DEFORMATION FUNCTORS

Remark A.2.15 We have a natural transformation µ : DefpX,Eq ÝÑ DefX , which corre-
sponds to the forgetful map, for a deformation of a pair pX, Eq over SpecpAq

EA

��
X �
� //

��

XA

π
��

SpecpCq � � // SpecpAq

We associate the deformation XA of X over SpecpAq. Hence we get a C-linear map

H1
pX,AXpEqq ÝÑ H1

pX,TXq

Example A.2.16 Let X be a projective smooth complex curve of genus g ě 2 and let E
be a rank-r vector bundle. Take the Atiyah exact sequence (3.1.1)

0 // EndpEq // AXpEq // TX // 0

we associate the short-exact sequence in cohomology as dimension is one H2pX,F q “ 0 for
any locally free sheaf F and there is no global sections

0 // H1pX,EndpEqq // H1pX,AXpEqq // H1pX,TXq // 0

0 // DefEpCrεsq // DefpX,EqpCrεsq // DefXpCrεsq // 0

A.3 Deformations of a quasi-parabolic tuple

Let E “ pC,D,E˚q where
´

C,D “
řN
i“1 xi

¯

a marked complex projective smooth curve

and E˚ a quasi-parabolic vector bundle of rank-r and type ~m. Following the same pattern
we define for an Artinian C-algebra A a deformation of E over SpecpAq, as follow

Definition A.3.1 A deformation of E over T “ SpecpAq, is given by the following data:
a deformation of marked curves π : pC,Dq ÝÑ T where π is a flat morphism, D “ ΣσipSq
and E˚ a quasi-parabolic vector bundle of rank-r over pC,Dq of quasi-parabolic type ~m, we
denote such data by χ “ pC,D, E˚q. We have the following fibre product:

E˚

��
pC,Dq

ϕ //

��

pC,Dq
π

��
SpecpCq � � // T
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and
ϕ˚pE˚q » E˚

isomorphic as quasi-parabolic vector bundles over pC,Dq.

In the following we define a deformation functor for X “ pC,D,E˚q.

Definition A.3.2 (Deformation functor)

For E “ pC,D,E˚q as before, we define a deformation functor as follows:

DefE : ArtC Ñ Set
A ÞÑ DefEpAq,

which associates to every local Artinian C-algebra A, the set of isomorphism classes of
infinitesimal deformation of E over SpecpAq. And two deformations χ1 and χ2 of E over
A are isomorphic if:

1. D φ : pC1,D1q ÝÑ pC2,D2q an isomorphism of marked curves over T “ SpecpAq.

2. D ψ : E1 ÝÑ φ˚pE2q an isomorphism of quasi-parabolic vector bundles.

E1

��

E2

��
pC1,D1q

π1 %%

φ // pC2,D2q

π2yy
SpecpAq

Proposition A.3.3 The deformation functor DefE : ArtC ÝÑ Set, is a functor with a
good theory of deformation.

Proof. The proof is just an adaptation to the quasi-parabolic case of the proof given in
[Mar09] for the deformation functor for pX,Eq where X is a complex variety and E a
vector bundle over X. ˝

Remark A.3.4 The result remains true in higher dimensions for a compact variety X and
a normal crossing divisor. In this case, the space of obstructions is given by H2 pX,Apar

X pEqq
which is trivial in dimension one.
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Chapter B

Rank 2 parabolic vector bundles

In this appendix we present Bertram’s work on rank 2 parabolic bundles rBer93s.

Let C be a smooth projective complex curve of genus g and I “ tx1, x2, ¨ ¨ ¨ , xNu and
let α˚ a full flag rank two parabolic type over I, so to each i P I we have

0 ď a1piq ă a2piq ă k,

we associate the positive integer: pi :“ a2piq ´ a1piq P N.

We get a new data pC,D, kq, where

1. C a smooth projective complex curve of genus g.

2. D “
N
ř

i“1

pi xi an effective divisor of even degree.

3. An integer k ě maxtpiu.

To such data and δ P PicdpCq, we get the space

SMpar
C pD, k, δq :“ SMpar

C p2, α˚, δq

the moduli space of rank two full flag semi-stable parabolic vector bundles of determinant
δ and parabolic type α˚, of dimension

dimC SMpar
C pD, k, δq “ 3pg ´ 1q ` degpDredq

“ 3pg ´ 1q `N.

For any line bundle L over C, we get an isomorphism

´b L : SMpar
C pD, k, δq ÝÑ SMpar

C pD, k, δ b L2q

E˚ ÞÝÑ pE b Lq˚

Hence we have two cases:
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1. even degree and we take δ “ OC .

2. odd degree and take deg δ “ ˘1.

Lemma B.0.1 (rBer93s, Lemma 2.3) If k ą 1
2
degpDq, then there is a morphism

φ : SMpar
C pD, k, δq ÝÑ SUCpr, δq

such that over SU s
Cpr, δq the stable locus is a pP1

Cq
N -bundle. where N “ degpDredq.

In fact if degree of δ is odd the moduli space SUCpr, δq is smooth. Thus it has a universal
bundle U and we get the following isomorphism of moduli spaces

SMpar
C pD, k, δq » PpU_x1q ˆSUCpr,δq PpU_x2q ˆSUCpr,δq ¨ ¨ ¨ ˆSUCpr,δq PpU_xN q

where Ux “ U |txuˆSUCpr,δq, and the map φ is the natural map.

Example B.0.2 If D “ H, then we get

SMpar
C pD, k, δq “ SUCp2, δq

and the parabolic determinant bundle Θpar “ Lk, where L is the ample generator of
PicpSUCp2, δqq.

Example B.0.3 If D “ px and p ă k, then by lemma B.0.1, SMpar
C pD, k,OCq maps

to SUCp2,OCq with P1-fibres over SU s
Cp2,OCq. But by Hecke modification it maps to

SU s
Cp2,OCp´xqq as follow

Hx : SMpar
C pD, k,OCq ÝÑ SU p2,OCp´xqq

E˚ “ pE,Dx Ă Exq ÞÝÑ HxpEq “ KertE � Ex{Dxu.

as a P1-bundle.

In fact, If U is a universal bundle over C ˆ SU p2,OCp´xqq, then

SMpar
C pD, k,OCq – PpU_x q

We get the following diagram called the Hecke correspondence

SMpar
C pD, k,OCq

Hx

))

φ

vv
SU p2,OCq SU p2,OCp´xqq

Furthermore, let L and LH the ample generator of the groups PicpSU p2,OCqq and
PicpSU p2,OCp´xqqq respectively. If we denote their pull backs to SMpar

C pD, k,OCq by Θ
and ΘH respectively. Then

Θpar “ Θpk´pq
bΘ

p{2
H

KSMpar
C
“ Θ´2

bΘ´1
H .
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Proposition B.0.4 (Generalized Hecke correspondence. Lemma.2.4, [Ber93])

Suppose there is j P I, such that k ą pj ą
1
2

degD in the data pC,D, kq. Let U be a
universal bundle on C ˆ SMpar

C pD, k,OCp´xjqq, Then

1. The moduli space SMpar
C pD, k,OCq is isomorphic to the fibre product

PpU_x1q ˆSUCpr,OCp´xjqq PpU_x2q ˆSUCpr,OCp´xjqq ¨ ¨ ¨ ˆSUCpr,OCp´xjqq PpU_xN q

of P1-bundles over SUCpr,OCp´xjqq.

2. For i ‰ j, there are morphisms

φj,i : SMpar
C pD, k,OCq ÝÑ SUCpr,OCp´xj ´ xiqq

E˚ “ pE,Dx Ă Exq ÞÝÑ Hi pHjpEqq .

in addition to the projections Hj and φ given in example B.0.3. We get the following
diagram

SMpar
C pD, k,OCq

φj,i

++

φ

vv
Hj

��
SU p2,OCq SU p2,OCp´xjqq SUCpr,OCp´xj ´ xiqq

If we denote Θ, ΘHj
and Θj,i the pull backs of the ample generators of the groups

PicpSU p2,OCqq, PicpSU p2,OCp´xjqqq and PicpSU p2,OCp´xj ´ xiqqq respectively.
Then

Θpar “ Θpk´pjq bΘ
ppj´ 1

2
degpDqq

Hj
b

N
â

i‰j

Θ
pj
j,i

KSMpar
C
“ Θ´2

bΘ
pN´2q
Hj

b

N
â

i‰j

Θ´2
j,i

Proof. We give an explicit proof. Note that because of the condition k ą pj ą
1
2

degD,
every semistable parabolic bundle is stable. Thus the space SMpar

C pD, k,OCq is smooth.
And we get

E˚ is stable ùñ E, HjpEq and φj,ipE˚q “ HipHjpEqq for i ‰ j are semistable.

We recall the Hecke modification over xj with respect to the line Dxj

0 //HjpEq // E // Exj{Dxj
// 0
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so we have an isomorphism of rank-2 vector bundle over Cztxju

HjpEq|Cztxju – E|Cztxju

and by Lemma 1.4.5 we get

Exi{Dxi “ λpEq´1
b λpHjpEqq. (B.0.1)

We pull-back the parabolic structure over Iztxju, and at the point xj we get

0 //HjpDxjq
//HjpEq|xj

//

$$

Exj
// Exj{Dxj

// 0

Dxj

""

==

0
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In the above diagram the line HjpDxjq is the Hecke transform of the line Dxj . Thus we get
a parabolic structure over HjpEq with respect to the parabolic divisor I. To this parabolic
bundle we can apply Hecke modification over any element of the divisor I, thus we can
define HipHjpEqq, the associated exact sequence is

0 //HipHjpEqq //HjpEq //HjpEq|xi{HjpDxiq – Exi{Dxi
// 0

By Lemma 1.4.5 we have

Exi{Dxi “ λpHjpEqq
´1
b λpHipHjpEqqq. (B.0.2)

We recall the definition of the parabolic determinant bundle. Let E˚ “ pE , pDiqiPIq be a
virtual universal bundle over C ˆ SMpar

C pD, k,OCq. Then

Θpar :“ λpEqk b
N
â

i“1

tEσi{Diu
pi b detpEσqe

and 2e “ kχ´ degpDq. We use equations (B.0.1) and (B.0.2), to get

Θpar :“ λpEqk b tEσj{Dju
pj

N
â

i‰j

tEσi{Diu
pi b detpEσqe

“ λpEqk b
 

λpEq´1
b λpHjpEqq

(pj
N
â

i‰j

tλpHjpEqq´1
b λpHipHjpEqqqupi b detpEσqe

“

!

λpEq b detpEσq
χ
2

)pk´pjq

b
 

λpHjpEqq2 b detpEσqχj
(ppj´ 1

2
degpDqq

N
â

i‰j

!

λpHipHjpEqqq b detpEσq
χj,i
2

)pi
b detpEσqq
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where χ “ 2p1´ gq, χj “ χ´ 1, χj,i “ χ´ 2 and

q “ e´

ˆ

k ´ pj
2

˙

χ´

ˆ

pj ´
1

2
degpDq

˙

χj ´
N
ÿ

i‰j

´χj,i
2

¯

pi

“
k

2
χ´

1

2
degpDq ´

ˆ

k ´ pj
2

˙

χ´

ˆ

pj ´
1

2
degpDq

˙

pχ´ 1q ´
´χ

2
´ 1

¯

N
ÿ

i‰j

pi

“ ´

˜

´
k

2
`
k ´ pj

2
` pj ´

1

2
degpDq `

1

2

N
ÿ

i‰j

pi

¸

looooooooooooooooooooooooooomooooooooooooooooooooooooooon

0

χ`

˜

´
1

2
degpDq ` pj ´

1

2
degpDq `

N
ÿ

i‰j

pi

¸

loooooooooooooooooooooooomoooooooooooooooooooooooon

0

q “ 0.

and if we denote L, Lj and Lj,i the ample generators of the groups PicpSU p2,OCqq,
PicpSU p2,OCp´xjqqq and PicpSUCpr,OCp´xj´xiqqq, respectively then by Theorem 1.5.2,
we get

Θ :“ φ˚pLq :“ λpEq b detpEσq
χ
2

ΘHj
:“ H˚

j pLjq “ λpHjpEqq2 b detpEσqχj

Θj,i :“ φ˚j,ipLj,i “ λ pHipHjpEqqq b detpEσq
χj,i
2

Hence

Θpar “ Θpk´pjq bΘ
ppj´ 1

2
degpDqq

Hj
b

N
â

i‰j

Θ
pj
j,i.

Let calculate the canonical bundle of the space SMpar
C pD, k,OCq. First we may choose the

universal bundle U over CˆSUCpr,OCp´xjqq, such that for every point x P C, Λ2Ux “ Lj
where Ux :“ U |txuˆSUCpr,OCp´xjqq. Next we take the Euler exact sequence over

PpU_xjq ÝÑ SUCpr,OCp´xjqq

This implies that the relative canonical sheaf is

KPpU_xj q{SUCpr,OCp´xjqq
– OPpU_xj q

p´2q bH˚
j pLjq .

For this choice of universal bundle, OPpU_xj q
p1q “ φ˚j,i pLj,iq and OPpU_xj q

p´1q “ φ˚ pLq

KSMpar
C pD,k,OCq “ H˚

j

`

ωSUCpr,OCp´xjqq
˘

b
`

Θ´2
bΘHj

˘

b

N
â

i‰j

`

Θ´2
j,i bΘHj

˘

“ Θ´2
bΘ

pN´2q
Hj

b

N
â

i‰j

Θ´2
j,i .

˝
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