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Résumé

Il existe un intérêt croissant pour le développement d’outils de prédiction du risque

de chute chez les personnes âgées. Ces outils peuvent être utilisés à des fins préventives.

Les principaux objectifs de cette thèse sont d’étudier les aspects cyclostationnaires des

signaux de pression de la semelle intérieure et d’extraire les caractéristiques essentielles

indicatives du risque de chutes futures. D’autre part, cette thèse vise à mettre en œuvre

et à comparer différentes méthodes d’apprentissage automatique supervisé pour classer

les sujets âgés en sujets avec ou sans risque de chute dans le futur.

L’ensemble de données se compose de signaux de pression collectés à partir des

semelles intérieures de 519 personnes âgées qui ont fait l’objet d’un questionnaire médical

préalable incluant leur propension à la chute. Notre étude propose les caractéristiques

indicatives des chutes futures, les modèles d’apprentissage automatique et les méthodes

d’optimisation pour développer l’évaluation du risque de chute dans la communauté

des personnes âgées.

Enfin, notre étude propose une nouvelle méthode pour représenter les signaux

de la semelle intérieure de pression cyclostationnaire et les utiliser dans un modèle

d’apprentissage en profondeur pour prévoir les chutes potentielles dans la communauté

des personnes âgées.
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Abstract

There is an increasing interest in developing elderly fall-risk prediction models that

can be used as a preventive approach to prevent future risk of falling in the elderly

community.

The primary objectives of this thesis are to study the cyclostationary aspects of the

pressure insole signals of older adults and extract essential features indicative of the

risk of future falls. In addition, this thesis aims to implement and compare different

supervised machine-learning methods to classify elderly subjects as subjects with or

without risk of falling in the future.

The data-set consists of pressure signals collected from the innersoles of 519 elderly

people who reported whether they had experienced previous falls. Our study proposes

the features indicative of future falls, the machine learning models, and optimization

methods to develop fall risk assessment in the elderly community.

Finally, our study proposes a novel method for representing cylcostationary pressure

insole signals and using them in a deep learning model to predict prospective falls in

the elderly community.
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General Introduction

Introduction

French version

L’Organisation mondiale de la santé (OMS) a déclaré (en avril 2021) que les chutes

étaient la deuxième cause de décès par blessures non intentionnelles dans le monde

[OAU08]. Selon l’OMS une chute est un incident entraînant la chute d’un individu au

repos par inadvertance sur le sol ou à d’autres niveaux inférieurs. Elles peuvent parfois

avoir une issue fatale. Environ 646 000 personnes dans le monde meurent chaque année

de chutes accidentelles et environ 37,3 millions de cas de chute nécessitent une assistance

et des soins médicaux chaque année. La plupart des chutes mortelles concernait les

personnes âgées de plus de 65 ans [OAU08].

Rubenstein a étudié les causes fréquente de chutes chez des personnes âgées [Rub06].

Ses résultats ont révélé que certains de ces facteurs de risque comprennent, sans toutefois

s’y limiter : l’âge (80 ans ou plus), les anomalies musculaires, l’arthrite, la dépression,

les chutes antérieures, la prise de plusieurs médicaments, l’utilisation d’un appareil



2 General Introduction

d’assistance, les troubles de la foulée, du mouvements, de l’équilibre, de la cognition et

de la vision. La plupart des chutes accidentelles chez les personnes âgées surviennent

en raison d’une combinaison de divers facteurs. Chez les personnes agées, l’importance

des chutes est non seulement liée à leur fréquence qui augmente avec l’âge mais aussi à

la gravité des blessures (plus élevé chez les sujets les plus âgés ayant des antécédents

de multiples chutes antérieures). Cela entraîne un recours plus important aux services

médicaux et des frais de ré-éducation. Plus important encore, cela augmente le risque

d’invalidités et de décès [Rub06]. Par conséquent, la réduction du risque de chute

accidentelle des personnes âgées est vitale d’un point de vue social et économique. Aussi,

la mise en œuvre de stratégies de prévention devrait mettre l’accent sur l’éducation, la

formation, la création d’environnements plus sûrs, l’établissement de politiques efficaces

pour réduire ce risque et encourager la recherche liée aux chutes chez les personnes

âgées [Rub06].

Dans de nombreux programmes de prévention une première étapes consiste a évaluer

le risque de chute [PNG+01]. Les "Centers for Disease Control and Prevention" (CDC)

et l’"American Geriatric Society" conseillent un dépistage annuel des chutes pour tous

les adultes de 65 ans et plus [MM17]. L’évaluation du risque de chute est une procédure

dans laquelle le risque de chutes futures est estimée [PNG+01] en effectuant une série de

tests conçus pour examiner la force, l’équilibre et la démarche des patients. L’évaluation

du risque de chute est généralement effectuée dans un environnement clinique et basée

sur des questionnaires et des tests fonctionnels de mobilité [PNG+01], tels que le "Timed

Up and Go" (TUG) [SCBW00] ou le test "Berg Balance Scale" [LRNP18]. Bien que

ces tests donnent une bonne idée de la mobilité optimale et de l’exécution des tâches,

leur capacité à prédire le risque chutes est limité [RLJ17] en raison de leur dépendance

à l’analyse subjective du personnel effectuant les tests [RLJ17]. De plus, ces tests

fonctionnels présentent d’autres inconvénients : ils sont long à réaliser et ne sont pas
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standardisés [RLJ17].

Dans ce contexte, nous souhaiterions prévoir le risque de chutes des personnes âgées

pour anticiper. Swanenburg et al. [SdBUM10] ce sont interessés aux données issues de

plate-formes de force afin de prévoir le risque de chute à l’aide d’une analyse statistique.

Ils ont noté que l’amplitude des mouvements médio-latéraux dans des conditions à tâche

unique était un indicateur indépendant significatif chez les chuteurs âgés (en plus des

antécédents de chutes multiples) [SdBUM10]. Howcroft et al. [HLKM17] a trouvé des

différences statistiquement significatives dans les mesures de posturographie statique

entre ceux qui ont subi des chutes accidentelles dans le passé et ceux qui ne l’ont pas fait.

Dans leur étude, ils ont étudié la posturographie debout les yeux ouverts et les yeux

fermés avec des adultes âgés et ont pu identifier les différences et déterminer les scores

seuils de mesure pour classer les chuteurs potentiels, les chuteurs simples, les chuteurs

multiples et les non-chuteurs. [HLK18] ont également étudié la prédiction des chuteurs

âgés à l’aide d’algorithmes d’apprentissage automatique où leur meilleur modèle de

classification a atteint une précision de 65% et une sensibilité de 59%, en utilisant

la semelle intérieure à détection de pression et l’accéléromètre à tige gauche comme

prédicteurs [HLK18]. Les semelles à détection de pression ont également été utilisées

dans la littérature pour prédire ou analyser les conditions médicales chroniques et les

maladies de la communauté des personnes âgées, telles que la maladie de Parkinson, la

démence, et les chutes accidentelles.

Dans les études liées à la locomotion humaine, la marche humaine peut être décrite

comme un mouvement qui consiste en une série répliquée et répétée d’actions physiques

cycliques ou de foulées. La définition d’un processus cyclostationnaire est un signal qui

a des propriétés statistiques variant cycliquement avec le temps. Ainsi, l’analyse des

caractéristiques cyclostationnaires des signaux de pression exercé sur la semelle peut

introduire de nouvelles caractéristiques significatives pour prévor le risque de chute chez
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les personnes âgées. Les propriétés de cyclostationnarité dans les signaux de marche

ont également été utilisées dans la modélisation et l’analyse des signaux de marche

humaine et de force de réaction au sol (GRF) [SEBG+10, ZTEB+14, TEBS15]. Sabri

et al. [SEBG+10] a proposé un cadre alternatif pour l’étude des signaux GRF, basé

sur des caractéristiques cyclostationnaires plutôt que sur l’analyse traditionnelle du

domaine temporel, qui suppose des composantes de signal statistiquement stationnaires.

Le cadre proposé a pu modéliser la périodicité des statistiques de signal et a montré

des résultats améliorés en démontrant le développement de la détection de la fatigue

des coureurs. Zakaria et al. examiné et exploité les propriétés et caractéristiques

cyclostationnaires (CS) telles que la fonction d’autocorrélation cyclique. Leurs travaux

ont démontré qu’il existe une différence significative dans l’autocorrélation cyclique

des chuteurs et des non-chuteurs [ZTEB+14]. Un indicateur de cyclostationnarité est

le degré de cyclostationnarité (DS) [ŽG91] [ZEBM+13] qui s’est avéré être un bon

indicateur pour la prévision des chutes futures [BNB+21]. De plus, dans cette thèse,

nous avons montré que l’utilisation d’images de cartes thermiques de la corrélation

spectrale comme entrées dans des réseaux de neurones convolutifs d’apprentissage en

profondeur montre des résultats prometteurs à proposer comme nouvelle méthode pour

évaluer le risque de chutes futures dans la communauté des personnes âgées.

English version

The World Health Organization’s (WHO) facts sheet (updated in April 2021)

declared falls as the second leading cause of unintentional injury deaths worldwide

[OAU08]. The WHO defines falling as an incident resulting in an individual falling

at rest inadvertently on the ground or at other lower levels. Unfortunately, fatality

can occur due to injuries caused by falls. In summary, an estimated number of 646

thousand people worldwide die annually from accidental falls and round 37.3 million

fall cases demand medical assistance and attention yearly. The most significant number
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of fatal falls involved older adults over 65 years old [OAU08].

Rubenstein studied the common causes for falls in the elderly community [Rub06].

His results revealed that some of these risk factors include, but are not limited to,

being 80 years old or above, muscle defects, arthritis, depression, prior falls, the use of

multiple medications, the use of an assistive device, impairments in stride movements,

balance, cognition, and vision. Most inadvertent elderly falls occur due to a combination

of various factors. He also mentioned that the significance of falls within the elderly

community is not just limited to the point that the frequency of number of falls increases

as age increases, but also that the severity of the injury is highest among the oldest

subjects with a history of multiple prior falls. This leads to an increase in medical services

and rehabilitation expenses. More importantly, it increases the possibility of disabilities

and fatalities [Rub06]. Therefore, reducing the risk of accidental elderly falls is vital

from a social and economic point of view. Hence, implementing prevention strategies

should emphasize education, training, building safer environments, establishing effective

policies to lower susceptibility, and encouraging elderly fall-related research [Rub06].

In many intervention programs suggested to deter future falls, fall risk assessment

is conducted as the first step to determine individuals at risk of falling[PNG+01]. In

addition, the Centers for Disease Control and Prevention (CDC) and the American

Geriatric Society advise yearly fall assessment screening for all adults 65 years and

older [MM17]. Fall risk assessment is a procedure where the possibility of future falls

is estimated [PNG+01] by performing a series of tests designed to examine patients’

strength, balance, and gait. The assessment of fall risk is typically done in a clinical

environment and based on questionnaires and functional tests of mobility [PNG+01],

such as the Timed Up and Go (TUG) [SCBW00] or the Berg Balance Scale test

[LRNP18]. Although these tests have been found to give a good sense of optimal

mobility and task execution, their capability to predict the occurrence of future falls
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is limited [RLJ17] due to their reliance on the subjective analysis of the personnel

conducting the tests [RLJ17]. In addition, these functional tests have other drawbacks,

such as requiring much time and the lack of a standardized approach with concise and

straightforward instruction for both patients and providers [RLJ17].

In this context, there is growing interest in the prediction of future elderly falls to

help reduce its risk. Swanenburg et al. [SdBUM10] studied whether force plate variables

can be employed to predict multiple fallers using statistical analysis. They noted that

the amplitude of medial-lateral movements in single-task conditions was a significant

independent predictor of elderly fallers, along with having a history of multiple falls

[SdBUM10]. Howcroft et al. [HLKM17] found statistically significant differences in

the static posturography measures between those that experienced accidental falls in

the past and those who had not. In their study, they investigated eyes open, and eyes

closed standing posturography with elderly adults and were able to identify differences

and determine the measure cut-off scores for classifying prospective fallers, single-

fallers, multi-fallers, and non-fallers [HLKM17]. Howcroft et al.[HLK18] also studied

the prediction of elderly fallers using machine-learning algorithms where their best

classification model achieved 65% accuracy and 59% sensitivity, using pressure-sensing-

insole and left-shank-accelerometer as predictors [HLK18]. Pressure sensing insoles

have been also used throughout the literature to predict or analyze chronic medical

conditions and diseases in the elderly community, such as Parkinson’s disease, dementia,

and accidental falls.

In studies related to human locomotion, the human walk can be described as a

movement that consists of repeated replicated series of cyclic physical actions or strides.

The definition of a cyclostationary process is a signal that has statistical properties

varying cyclically with time. Thus, analyzing the cyclostationary characteristics of

the foot plantar pressure signals can introduce new features that signify the risk of
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falling in the elderly. Properties of cyclostationarity in gait signals have been also

used in modeling and analyzing human walk and ground reaction force (GRF) signals

[SEBG+10, ZTEB+14, TEBS15]. Sabri et al. [SEBG+10] proposed an alternative

framework for the study of GRF signals, based on cyclostationary characteristics

rather than the traditional time domain analysis, which assume statistically stationary

signal components. The proposed framework was able to model the periodicity of the

signal statistics and showed improved results in demonstrating the development of

runners’ fatigue detection. Zakaria et al. examined and exploited the Cyclostationary

(CS) properties and features such as the cyclic autocorrelation function. Their work

demonstrated that there is a significant difference in the cyclic autocorrelation of

fallers and non-fallers [ZTEB+14]. One indicator of cyclostationarity is the degree of

cyclostationarity (DS) [ŽG91] [ZEBM+13] that has shown to be a good indicator for

prediction of future falls [BNB+21]. In addition, in this thesis we showed that utilizing

heat map images of the spectral correlation as inputs to deep learning convolutional

neural networks shows promising results to be proposed as a novel method to assess

the risk of future falls in the elderly community.

Objectives

The main objective of the work carried out in this thesis is to propose a method

for assessing the risk of future falls in older adults using the cyclostationary aspect of

pressure insole signals and machine learning.

Cyclostationary analysis is conducted on the pressure insole signals of participants

after proper noise filtering, normalization, and speed fluctuation compensation. Then

the degree of cyclostationarity is extracted as a feature to be included among other

time and frequency domain features used in the literature.
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Feature selection methods such as Relief-F and Sequential backward selection (SBS)

are explored and compared. In addition, hyperparameter optimization methods are

used to set the optimal hyperparameters for each classification model.

Finally, the novel approach of using heat map images of the average spectral

correlation of the pressure insole signals is explored to be used as inputs to a deep

learning convolutional neural network (CNN) for predicting future falls in the elderly.

Motivations and Contributions of this Doctoral Thesis

This doctoral thesis proposes methods for predicting future falls in the elderly

community using cyclostationary components of pressure insole signals. Nevertheless, we

cannot achieve this purpose without a good understanding of the existing literature, the

data-set provided, and the physical phenomena that generate these signals. Therefore,

the first task to be accomplished is exploring the previous similar work, performing

analytical modeling, and describing the cyclostationary aspect of the signals. Then,

after a deep understanding of the mentioned two issues, we can proceed with the task

of developing prediction methods and experimenting with the data-set provided.

The primary interest behind the methods developed is having an automated assess-

ment method that provides an early diagnosis of elderly patients, whether they are at

risk of falling or not. The existing fall risk assessment tools (such as the Berg Balance

Scale) require a long time to perform, and several qualified staff to overlook the process.

The results are sometimes considered subjective depending on the team conducting the

tests. The use of machine learning will support specialists in their decision-making. The

existing literature on utilizing machine learning to predict future falls has not achieved

high enough accuracy to be used in the medical field. Our study shows that including

the cyclostationary aspect of walking signals can help improve system performance
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(around 94% accuarcy, 92.5% sensitivity, 96.3% specificity and 96% precision) as it

provides essential features for predicting future falls in the elderly.

Organization of the Manuscript

This thesis manuscript is organized as follows:

— Chapter 1 presents the existing literature on the prediction of elderly fallers

using machine learning with the comparison of the different techniques and their

performances. The work in this chapter will be submitted to IEEE Transactions

on Biomedical Engineering.

— Chapter 2 introduces cyclostationary signals, their analysis, and how the are

related to gait signals.

— Chapter 3 describes the data, and the experiment conducted to gather the

pressure insole signals of the 519 participants above the age of 65.

— Chapter 4 is dedicated to describing data preparation, which includes signal

pre-processing, extraction of time and frequency domain features, cyclostationary

analysis and related features, heat map representation of the spectral correlation,

and feature selection methods.

— Chapter 5 clarifies in detail the different classification methods used throughout

this thesis, including Artificial Neural Networks (ANN), Support Vector Machines

(SVM), K-Nearest Neighbors (KNN), Logistic Regression, Decision Trees, and

Convolutional Neural Networks (CNN).

— Chapter 6 addresses the optimization of the classification models used in chapter

5 using Grid Search and ADAM Optimization Algorithm for Deep Learning.

— Chapter 7 showcases the results of the models built, their analysis, and discussion.

— Finally, the conclusions section lists our general findings, conclusions, future
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perspectives, and recommendations.
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Chapter 1
Literature Review

Ce chapitre résume les études existantes sur la prédiction et l’évaluation

des chutes des personnes âgées utilisant principalement des techniques

d’apprentissage automatique. De plus, nous analysons les différentes

méthodes de collecte de données, les différentes approches statistiques

et d’apprentissage automatique utilisées pour prédire les chutes, et les

caractéristiques qui contribuent au risque de chute.

This chapter summarizes existing studies on the prediction of elderly

falls mainly using machine learning techniques. Furthermore, we analyze

the different methods for collecting data-sets, the various statistical and

machine learning approaches used to predict elderly falls, and the features

that contribute to the risk of elderly falls.
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1.1 Elderly Falls and Their Prediction

The World Health Organization’s (WHO) facts sheet (updated April 2021) identifies

falls as the second leading cause of unintentional injury deaths worldwide [OAU08].

WHO defines falling as an event that results in an individual becoming at rest involun-

tarily on the ground or lower levels. Unfortunately, injuries caused by falls can lead

to fatality. In 2008, approximately 680 thousand people worldwide die each year from

accidental falls. In addition, around 37 million fall cases demand medical assistance

and attention yearly. The most significant number of fatal falls involved adults above

60 years old [OAU08].

Early studies of human anatomy and physiology demonstrate that the aging process

in humans, with the recession of nervous system function and physiological function,

reduces older people’s walking ability. Therefore an aged person may easily be injured

during walking, leading to other physical impairments and senile diseases [ASS18].

Therefore, fall risk evaluation and prediction are indispensable while the elderly popula-

tion surges. It is also asserted that effective physiotherapy and fall prevention programs

are cost-effective and appropriate to maximize the quality of life and support the

independence of older adults [GRG+12]. The foremost action to take for an effective

fall prevention program is identifying those at risk of falling and determining the most

appropriate interventions to reduce or eliminate falls [ASS18]. Unfortunately, there are

currently no convenient solutions to identify the risk of falling in individuals. Doctors

mostly rely on visual examination and experience to inspect patients’ gait stability

and symmetry in a clinical setting. This assessment is time-consuming and lacks

neutrality and effectiveness in detecting gait abnormality and the future risk of falling.

Furthermore, wrong diagnosis in these cases can lead to not taking the appropriate

preventive measures for accident falls, which can often lead to serious physical injury or
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even death. It is therefore imperative to, as early as possible, try to identify unstable

gait to apply the necessary preventive measures.

There is growing interest in predicting future elderly falls to help reduce their

risk of occurrence. More than 400 risk factors for elderly falls have been reported in

[DLB+10]. Most risk factors have been evaluated in laboratory settings or clinical test

situations, and fall risk assessment systems have been designed to serve as screening

tools for fall risk [OBS+97, RHPC00, TPS+01, NPC+04]. Considerable studies have

demonstrated a relationship between falls and risk factors such as being a female,

old age, diminished cognitive functions, muscle weakness, and gait abnormalities. In

particular, gait abnormalities in the elderly population, including slow walking speed,

more significant gait variability, and shorter steps, are considered the most significant

risk factors for elderly falls.

Currently, there is no single measurement device that can evaluate all elements of

fall risk factors. However, it may be possible that a single tool can optimally identify

people at high risk for falling [ASS18]. The Berg Balance Scale (BBS) [LRNP18] is a

valid and reliable scale for assessing the balance state of elderly people. However, there

are a few inconveniences involved in relying on the BBS: it requires 14 balance tasks,

takes a long period of assessment (12 months), and demands much work following up

with each patient and collecting data for each balance task. The British STRATIFY

tool [OPG+08] was developed to predict falls in a hospital setting. Although the tool

exhibits several strengths, specific limitations exist which may not be acclimatized

to other countries such as reported limited accuracy for predicting falls in hospital

and rehabilitation settings [Kas09, PR91]. Considerable clinical balance and mobility

performance tests, such as the Timed Up and Go (TUG) [SDH+13], sit-to-stand, and

alternate step tests, have been proposed as fall risk screening tools [Boh06, TLS10].

Also, in Australia, four fall risk assessment tools have been studied, and the conclusion
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is that the tools have poor clinical properties for identifying fall risk factors for those

most at risk of falling [MHB+12].

More recently, statistical analysis and machine learning techniques have gained

attention for recognizing essential features for predicting elderly falls and building

classification models. Proper experimentation design (criteria for participants, involve-

ment of secondary tasks or not), data collection (labeling of data using retrospective

or prospective approach), and feature extraction (clinical data or data collected from

wearable or non-wearable sensors) must be done to build reliable classification models.

The machine learning techniques use features extracted from clinically relevant data,

allowing computer algorithms to form a predictive model. In addition, the machine

learning algorithms can be used to extract the optimal features affecting the risk of

falls from the gait features.

In this chapter, we present our review of recent research papers investigating the

various techniques in the process of classifying elderly fallers and non-fallers. This

process includes data collection experimentation, feature extraction, feature selection,

and classification algorithms.

1.2 Methods for Search Strategy and Criteria

This review was performed following the Preferred Reporting Items for Systematic

Reviews and Meta-Analysis statement (PRISMA) [MSC+15]. In addition, a systematic

electronic search was conducted in IEEE, Scopus, Web of Science, and PubMed databases

in April 2022. The search algorithm was designed to include all possible combinations

of keywords from the following: fall risk, fall prediction, fall assessment, gait, old, aged,

and elderly. Finally, reference lists from the identified publications were reviewed to
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identify additional research articles. The criteria set for the studies to be included in

this review were (i) peer-reviewed publication in the English language, (ii) published

after 2010, (iii) studying fall risk prediction, (iv) age of participants is above 60 years

old, and (v) the fall risk prediction involves a structured, supervised experiment and not

free daily-living activity tracking. In addition, studies were excluded from the review

if they met any of the following criteria: (i) studies that focused on momentarily fall

detection, (ii) studies that investigated fall risk specifically for neurologically impaired

patients, and (iii) studies that did not include proper performance metrics to report.

The results of this search are illustrated in Figure 1.1.

Figure 1.1 – Articles Selection Flow Chart

1.3 Datasets used for Prediction of Fallers

Existing studies in fall prediction are different in many aspects, such as the choice

of the dataset, whether using a pre-existing dataset or starting with designing an
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experiment, recruiting participants, and collecting data from scratch. They also vary

in the population size and the ratio of fallers (F) and non-fallers (NF). In addition,

the studies were different in terms of data used, whether it is purely clinical data or

measurement-driven data. Clinical data involve the patients’ medical records, medication

consumption, gender, diseases, and functional test scores. In contrast, measurement-

driven data are signals or data extracted from sensors used during the experiment. The

experiments conducted to investigate falling in the elderly community involved different

approaches, such as having the participants perform a single walking task or perform

dual tasks (secondary tasks) while walking. The following sections explain further the

different approaches in the experimentation strategies in the concerned studies.

1.3.1 Human Gait Analysis

Human gait is a manner of walking and a better-suited medical term to describe

human locomotion [Wil14]. Walking gait is defined as repetitive cyclic gestures consisting

of periodic movements of each foot from one position to another. In addition, human

balance while walking is achieved by sufficient ground reaction forces exerted by the

feet [Vau09].

This bipedal locomotion (means of movement by two limbs or legs) is enhanced

by body parts such as the bones, the muscles, and the nervous system. Consequently,

each limb contributes to braking and propulsive forces to maintain balance, the forward

velocity, and the body’s vertical support forces [SRA+]. Therefore, any defect in one of

those parts may lead to a pathological gait and cause higher risks of future falls.

In addition, gait can be affected by many other variables, such as old age, past

injuries, medications, lack of physical activities, etc.

The normal human gait cycle can be seen in figure 1.2 with two main phases: Stance



Chapter 1. Literature Review 17

Figure 1.2 – Human Gait Cycle[NMMR18]

and Swing. The human gait cycle comprises two main phases: the stance phase and the

swing phase. The stance phase, which occurs around 60% of the average human walking

cycle, occurs when the foot is in contact with the ground, whereas the swing phase refers

to the period when the foot is in the air. Measuring and analyzing human gait can be

done using clinical assessment tools or wearable and non-wearable sensors.[NMMR18]

1.3.2 Clinical Fall Risk Assessments Tools

A few fall risk assessment tests are currently used in a clinical setting to determine

if a person has a risk of falling in the future. During these assessments, the medical

staff examines patients’ strength, balance, and gait. Some of these fall assessment tools

are explained briefly below.

The Timed Up-and-Go (TUG) is a test that checks the patient’s gait. The patient

starts the test sitting in a chair, then is asked to stand up and walk for about 10 feet at

a regular pace. Then they sit down again. The duration of these tasks is of interest. If

all these tasks take 12 seconds or longer, this indicates a risk of falling.[SDH+13]

The 30-Second Chair Stand Test examines patients’ strength and balance. This test

starts with the subject sitting on a chair with arms crossed over the chest. They are

later instructed to stand up and sit again. This task is repeated for 30 seconds. The
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person conducting the test counts how many times the patient can perform the test.

Lower numbers indicate a higher risk for future falls. The threshold that indicates a

risk depends on the age of the patient [JSM+15].

The 4-Stage Balance Test (4-stage) examines how well patients can keep their balance.

The patient is asked to stand in four positions, holding each one for 10 seconds. The

positions will get more challenging as the test resumes.

— Position 1: Standing with feet side-by-side.

— Position 2: Moving one foot halfway forward, so the instep touches the other

foot’s big toe.

— Position 3: Moving one foot in front of the other, so the toes touch the other

foot’s heel.

— Position 4: Standing on one foot.

If the subject cannot hold position 2 or position 3 for 10 seconds or they cannot

stand on one leg for 5 seconds, the patient has a future risk of falling.[SKS+21]

1.3.3 Wearable and Non-Wearable Sensors

Various sensors were used throughout the literature for fall risk assessment or

prediction. These sensors provide an opportunity to capture the fall-related biomechanics

of elderly people. Sensors used in the studies reviewed were either wearable sensors,

such as Inertial Measurement Units (IMUs) (as shown in figure 1.3: accelerometers

(accel.) [RTP+13, HLK16], gyroscopes (as shown in Figure 1.4 [DWF+13], and pressure

insoles [BND+21], or non-wearable, such as Microsoft Kinect [CRS+14, KMS+14], Wii

balance boards (as shown in Figure 1.5 [KCP15, YAN+11], and pressure platforms

[SMT+17].
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Figure 1.3 – Example of IMUs Used for Gait Analysis

Figure 1.4 – Example of Accelerometers Gyroscopes Used for Gait Analysis
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Figure 1.5 – The Wii Balance Board Used for Gait Analysis

To this end, several studies have demonstrated the ability of such sensors to capture

biomechanical measures associated with fall risk in the elderly community, such as

walking speedand stride time variability, and demonstrate correlations with clinical

assessments.

While considerable devices that measure gait data exist, triaxial accelerometers have

several desirable characteristics for screening purposes. It has been shown that raw

data can provide accurate gait measurements when motion sensors sample at 30 Hz or

higher.

1.3.4 Retrospective and Prospective Faller/Non-Faller Study

Most studies in this field have adopted the retrospective (retrospec.) approach

in faller/ non-faller data [HKL13, SRNL11, GRC16, HLK16], in which each subject

self-reported his/her history of falling prior to the fall risk prediction. Thus, the data

was labeled as faller and non-faller and underwent supervised machine learning to

classify between fallers and non-fallers. In contrast, only few works have adopted a

prospective (prospec.) approach. The prospective strategy is when the experiment

for collecting measurement first takes place. After a certain period, the subjects were

followed up to report whether they experienced falling during this period. Once that

information is collected, the data would be labeled and ready to input into a supervised
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machine learning algorithm [SdBUM10, GFG+14, MRW+11, GDW+12].

In [GMC14], Greene et al. compared the retrospective and prospective fall data

approaches using the same data-set. Interestingly, their results suggest that the retro-

spective procedure in falls risk assessment outperforms the prospective one in identifying

fallers and non-fallers.

1.3.5 Experiments Involving Secondary Tasks

There has been a proliferation of research reporting various sensor-based methods for

assessing fall risk in older adults in recent years. These are usually based on measured

quantitative data obtained during an experiment of prescribed tasks, such as regular

walking, walking while de-counting from 50, or a TUG (timed-up-and-go) test.

[CTPC13] presented a review to examine the influence of the type and complexity

of a secondary task on falls prediction in the elderly population. They divided the

secondary tasks into five groups: reaction time tasks, discrimination and decision-making

tasks, mental tracking tasks, verbal fluency tasks, and manual tasks.

— Reaction time tasks refer to tasks that involve measuring the elapsed time between

a sensory stimulus and a behavioral response (such as time spent to stand up and

sit down). These tasks have typically measured processing speed when slowed

processing might underlie a general attentional deficit.

— Discrimination and decision-making tasks refer to tasks that require selective

attention and response to a specific stimulus or feature (such as answering

mathematical questions). These tasks have typically been used to examine

attention and response inhibition.

— Mental tracking tasks refer to tasks that require holding information in the mind



22 1.4 Features Involved in Fall Risk Prediction

while carrying out a mental process, such as de-counting from 50. These tasks

have typically been used to examine sustained attention, information procession

speed, and working memory.

— Verbal fluency tasks refer to tasks that require spontaneous word production

under prespecified search conditions, such as calling out loud names of animals

that they can remember.

— Manual tasks refer to balancing tasks of one or both arms, such as cup- or tray-

taking tasks. Results of this meta-analysis[CTPC13] showed that the mental

tracking task yielded significant dual-task-related changes for fall prediction.

Most studies successively used an appropriate level of task complexity specific to

the specified population of interest and the objectives of the study.

1.4 Features Involved in Fall Risk Prediction

Raw signal from datasets can not be exploited directly and some processing should

be done to create or extract features. In the literature on predicting future falls in the

elderly community, two types of features are mainly used:

1. clinical features from patients’ medical profiles and clinical tools test scores, and,

2. features extracted from wearable and non-wearable sensors.

1.4.1 Clinical Fall Risk Factors

The clinical fall risk factors for elderly include, but are not limited to, the following:

prior falls, balance impairment, decreased muscle strength, visual impairment, use of

multiple medications, use of multiple psychoactive drugs, impairment or difficulty in

walking, depression, dizziness or orthostasis, functional limitations, old age (above 80
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years old), female gender, cognitive impairment, arthritis, diabetes, and physical pain

[AB21].

The risk of falling escalates with the increase in the number of risk factors found in

an older person. A recent meta-analysis recognized the following risk factors as having

the strongest association with falling: previous falls, Parkinson’s disease, the need to

use walking aids, gait problems, and antiepileptic drugs.

[DLB+10] showed that the risk of falling increases with the severity of pain caused

by chronic musculoskeletal, the number of damaged joint groups, and the extent of their

interference with patients’ lifestyles. In addition to data related to the medical profile

of patients, results of clinical assessment tools are also considered clinical features. 17

of the 25 reviewed studies included in their features evaluated the test scores of clinical

tests, such as TUG, Tinetti, Palliative Performance Scale (PPS), STS5 (Five Times Sit

to Stand Test), Functional Reach, Berg Balance Scale (BBS), Five Chair Stands, and

Romberg test scores.

Table 1.1 outlines the clinical and demographic features included in the reviewed

studies.
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Clinical and Demographic Features Number of Studies out of the 25

Age 8

Gender 6

Height 4

Weight 3

Body Mass Index (BMI) 5

Previous Falls 4

Muscle Performance 1

Visual Function 2

Physical State 4

Cognitive Function 4

Cardiovasclar Health 2

number of medicines 2

number of health conditions 1

fear of falling 1

Education Level 1

TUG Scores 14

Tinetti test scores 3

PPS test scores 1

STS5 test scores 3

Functional reach test 1

Berg Balance Scale BBS 2

FCS Five Chairs Stands 1

Romberg test scores 1

Table 1.1 – Clinical and Demographic Features Used in the Studies Reviewed
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1.4.2 Features Extracted from Sensor-Measured Data

The use of features extracted from sensor data permits the generalization of the

assessment of elderly fall risks and the overcoming of the drawbacks of known threshold-

based techniques in which several parameters need to be manually estimated according

to the specific features of the end-user. Another advantage of the use of sensor data is

limiting the workload required for the process [RLS13].

Tables 1.2, 1.3, 1.4, and 1.5 summarize the attributes extracted from the four types

of sensors used in the papers reviewed.

Accelerometer features were the most popular as they have been used for gait

analysis in older studies than other sensors (16 of the 25 studies). In addition, 5 studies

out of the 25 included pressure insole extracted features. On the other hand, Kinect

and laser infrared sensors are relatively new sensors used for elderly faller assessment.

They offer ease of use as they do not require wearable sensors.

1.4.3 Cyclostationary Properties in Pressure Insole Signals

In the research field of human locomotion, the human walk can be thought of

as a movement that consists of replicated sequences of cyclic physical movements or

strides[ZTEB+14].

Figure 1.6 shows various measurements associated with the walk (pressure signal)

and the run (force and acceleration).

The force signal comes from an instrumented treadmill that measures Ground

Reaction Force during walking. The pressure signal comes from an instrumented sole

that measures the pressure of the left heel. The acceleration signal comes from a MEMS
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Sensors Features Number of Studies
Gait Speed 14
Gait Symmetry 3
Step Variability 3
Stride Variability 3
Step Root 1

Mean Square (RMS)
Stride (RMS)

Step count 6
Stride Length 4
Step Length 2
Sway Length 1
Stride time 6
Stance time 3
Stance phase 2
Percentage Stance time 1
Swing time 4

Accelerometers Sway Velocity 2
Sway Area 1
Maximum and minimum Sway 1
Sway Frequency 1
Foot Angle 1
Frequency of steps 3
Frequency of steps 1
Variation of Step Period 1
Max, min, mean, median, 16

std, and RMS acceleration
Max, min, mean, median, 15

std, and RMS angular velocity
AP ratio of even to odd harmonics 1
Fundamental harmonic of FFT 2
Fundamental amplitude of FFT 2

Table 1.2 – Features Extracted from Accelerometers Used in the Studies Reviewed
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Sensors Features Number of Studies
Energy 5
Entropy 5
Skewness 5
Kurtosis 5
Mean and std of the Stride Time 1
Max, mini, mean, median, 5

std, and RMS pressure signal
CoP position coordinates 2
mean and std CoP positions 2

Pressure displacement of CoP 1
Insoles and Mean and std 1

Platforms velocity of CoP displacement
ML CoP path stance phase CoV 1
Pulse Width 1
Undershoot 1
Duty Cycle 1
Slew Rate 1
Range 1
Pressure Difference between 2

different pressure points
Average Degree of Cyclostationarity 1

Table 1.3 – Features Extracted from Pressure Sensors Used in the Studies Reviewed

Sensors Features Number of Studies
Center of Mass (CoM) 2

Kinect Human movement tracking 2
ML Standard Deviation 2
AP Standard Deviation 2

Table 1.4 – Features Extracted from Kinect Used in the Studies Reviewed

Sensors Features Number of Studies
Infrared Reaction time 1

Laser Stepping time 1
Device Step length 1

Percentage of correct steps 1

Table 1.5 – Features Extracted from Sensors Used in the Studies Reviewed
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accelerometric sensor placed on the tibia of the subject. Scales are unit less.

The left column shows amplitude variation against the time, and the right column

shows the Power Spectral Density (i.e., the power associated with each frequency). The

stride period is indicated by alternative black and white patterns on the left. Vertical

lines in the right figures materialize the stride rhythm and its harmonics. Since the

sensor is fixed on one leg, there is only one shape per stride for the pressure and

acceleration sensor. With the treadmill, both left and right foot shapes appear in a

stride.

A slight difference in the shape enables us to distinguish the two feet. On each signal,

a periodic pattern can be identified. This pattern is associated with a cyclic process of

the human walk. If the signals are observed during a sufficiently short time to have a

constant walking speed, the process associated with the signal will be cyclostationary.

Considering the process as stationary (i.e., not taking care of the periodicity) is

equivalent to ignoring all the fluctuations in the cycle. Considering the process as a

non-stationary (more general approach) enables us to take care of the signal variations

but without considering that these variations are periodic.

The cyclostationary approach consists of taking advantage of the cycles present in

the signal to analyze it. Cyclostationary results of a coupling of a periodic process (the

walk) and a random process that introduces some variation (physical state, disease,

additional task during the walk, type of ground).

1.5 Data Analysis and Prediction of Falls

The prediction methods mainly used for the prognosis of future falls in the elderly

are statistical analysis or machine learning strategies. Statistical approaches are used
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Figure 1.6 – Walking Signals in Time and Frequency Domain [BEB10]

in older research studies in this field. However, more recent studies rely on machine

learning and are moving towards more improvement and robust techniques with the

advancement in machine learning.

1.5.1 Statistical Analysis

In the literature on assessing the risk of falling in the elderly, several studies use

statistical analysis to identify essential input features to the classification models. In

contrast, some used statistical analysis as a classification method to identify elderly

fallers and non-fallers by finding the proper threshold.

In [SdBUM10], they investigated the ability of force platform variables in single

and dual tasks (with eyes closed) to predict multiple falls in 270 older people. Force

platform is an instrument commonly used in gait analysis that gives the total force

applied by the foot to the ground. Seven force plate variables were assessed to predict

the risk of multiple falls. Falls were prospectively recorded during the following year.



30 1.5 Data Analysis and Prediction of Falls

The force platform variables such as the root-mean-square amplitude in media-lateral

directions (RMS-ML), in the single-task condition predicted multiple falls together

with the following covariables: history of multiple falls, use of medications (fall-risk

medications or multiple medicine use), and gender. In addition, multiple fallers had a

narrower stance width than non-fallers.

[OBS+97] suggested a simple assessment tool to be used in a hospital setting to

target prevention programs for elderly patients at high risk of falling. First, they

conducted a case-control study to investigate 21 possible risk factors for falling in

the elderly. As a result, five factors were identified as significantly associated with

falls. Next, they compared the fallers and controls; they used Student’s t-tests for

continuously distributed data, Wilcoxon’s non-parametric test for categorical scales (such

as abbreviated mental test score), and logistic regression for categorical data. Finally,

they calculated the odds ratios for all differences to select variables for constructing

the risk assessment tool. The obtained five factors were: report of previous falls by

patients; a transfer and mobility score (judged by the nursing staff); judgment that the

patient was agitated (visual assessment done by the nurse); required frequent toileting;

and has visual impairment (as indicated by the physician).

A risk assessment score (range 0-5) was developed by scoring one point for each

factor. In the final phases, a risk assessment score >2 was used to define the high risk

of falling: the sensitivity and specificity of the score to predict falls during the following

week were 93% and 88%, respectively, in phase 2 and 92% and 68% in phase 3. The

results look promising based on the performance; however, the number of subjects is

low, the data used is subjective, and the method requires a lot of time for each subject

in need of a diagnosis.
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1.5.2 Machine Learning Classification Methods

Using clinical data and sensor data as inputs to machine learning algorithms was

introduced as an alternative to statistical analysis to quantify kinematics precisely and

predict future falls.

Building the machine learning models requires a long-term evaluation of large

samples of subjects’ locomotion and complex feature engineering of sensor kinematics.

Once the machine learning model is built, it provides a faster and more objective

diagnosis than the statistical methods that require a lot of time to spend with each

patient to collect data. In addition, clinical tools and statistical methods have the

disadvantage of being subject to a clinician’s judgment. Therefore, creating an objective

fall-risk detection model that can efficiently measure risk factors with minimal costs is

critical.

Supervised Machine learning techniques have been used to classify fall risk based on

fall history using data from wearable sensors during gait. The classification methods

used in the 25 studies reviewed were: Radial basis function network (RBFN), Support

Vector Machines (SVM), k-nearest neighbors (kNN), Naive Bayes (NB), Multilayer

perceptron (MLP), Locally Weighted Learning (LWL), neuroevolution of augmenting

topologies (NEAT), Decision Trees (DT), Linear Discriminant, Discriminate analysis,

discriminate classifier, Majority Classifier, Random Forest, Artificial Neural Networks

(ANN), XGBoost, and Convolutional Neural Networks (CNN). Table 1.6 indicates the

classification model used in these papers.
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Ref. Labeling Sensors Experiment Clinical Feature Classification Model Acc. Sens. Spec. AUC
F:NF Method Protocol Features Selection Model Valid. % % %

[BJVKM11] retrospec. accel. walking TUG - Logistic - 77 78 78 0.83
40:41 straight, TUG metrics Regression

[CKdSH+11] retrospec. accel. 6 functio functional Forward RBFN,SVM Leave-one out 95 100 80 -
15:05 -nal tests test metrics Wrapper kNN, NB cross-valid.

[JTB+11] retrospec. accel. walking - NB, MLP, SVM, 10 fold 61-82 58-80 62-84 -
40:40 straight LWL DT NEAT cross-valid.

[MRW+11] prospec. accel. walking TUG Forward DT, Logistic 10 fold 80 74 96 0.87
19:27 straight, TUG metrics Wrapper Regression cross-valid

[LRNL11] prospec. accel. TUG, gender, age, SFFS MLP, linear Leave-one out 78 59 90 -
22:46 STS5 tests’ metrics discriminant cross-valid.

[PHL11] prospec. accel. walking - Logistic - 67 74 58 -
54:43 on a circuit Regression

[WHP+11] retrospec. accel. TUG TUG - Logistic - 63-88 65-91 50-83 -
23:18 metrics Regression

[YAN+11] retrospec. Wii balance game - Discriminate - 89 -
16:29 Balance while scores Analysis

Board standing
[GDW+12] prospec. accel. TUG TUG - Discriminate - 73-83 56-90 73-96 -

83:143 metrics Classifier
[GMW+12] retrospec. accel. standing balance SVM 10-fold 63-72 68-82 59-67 -

65:55 balance metrics cross-valid.
[SSG+12] Tinetti accel. walking Linear - - - - 0.85

50:50 test straight Regression
[DWF+13] retrospec. accel. STS5 STS5 scores Logistic Leave-one out 74 69 80 0.7

19:20 gyros. Regression cross-valid.
[HOT+13] prospec.. accel. walking Logistic - 69 84 - 0.81

16:57 straight Regression
[RTP+13] retrospec. accel. treadmill Logistic - 73 21 97 -

44:90 walking Regression
[NYU+13] retrospec. laser choice Logistic - 70 - 0.73

41:111 range stepping Regression
finder test

[CRS+14] Tinetti standing postural Majority
22:44 BBS Kinect sitting sway Relief-F Classifier, DT bootstrap 48-84 48-91 48-83 -

BESTest balance SVM, kNN, NB
[KMS+14] physician’s Kinect GUGT GUGT metrics - SVM Leave-one out 67 67 68 -

07:05 assessment and posture cross-valid.
[KCP15] Wii balance TUG Logistic

18:55 prospec. Balance and metrics - Regression - - - - 0.71
Board TUG and BMI

[HLK16] accel. normal walk MLP, NB,
24:76 retrospec. pressure and with - SVM - 72-84 33-100 74-100 -

insoles cognitive
load

[SMT+17] accel. TUG, STS age, gender, kNN,NB,Random 10 fold
51:245 retrospec. pressure 4-stage BMI, Forward Forest,DT cross-valid.

platform medication, Selection ANN,SVM, Lin- with random 88 - - -
and health ear, and Logistic split

Regression
[GRC16] gender, height, nested Logistic 10x 10-fold

11:11 retrospec. accel. TUG weight, age cross- Regression cross-valid. 72.7 90.91 54.50 -
vision, health valid.
TUG metrics

[HLK18] accel. normal walk 10,000 random
28:47 prospec. pressure and with Relief-F ANN, NB, 75:25 train 65 59

insoles cognitive SVM :test stratified
load holdouts

[NYG+21] retrospec. accel. slower, age, height 10-fold
290:456 pressure faster, weight, BMI, - XGBoost cross-valid. 67-70 43-53 77-84 0.7

insoles normal education
walking level

[RJBB21] physician’s accel. TUG, age, gender,
53:45 assessment 4-stage BMI - CNN - 66 87 42 0.75

balance functional
test scores

[BND+21] retrospec. pressure normal walk kNN, SVM, 100x 10-fold
54:54 insoles and with cog- gender Relief-F ANN, DT, Log- cross-valid. 81 80 78 -

nitive load istic Regression

Table 1.6 – Characteristics of the Reviewed Studies for the Prediction of Fall Risk in
the Elderly
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1.6 Discussion

This literature review investigated 25 existing studies in the period from 2011 to 2022

concerning machine learning techniques using clinical features and features extracted

from sensors in fall risk prediction in the elderly community. Table 1.6 summarizes our

findings.

The population size ranged from 12 to 746. It should be noted that the choice of the

population and its size affect the classification models’ performance and generalization

potential. Larger sample sizes provide more reliable, precise, and dependable results,

but with the cost of more computational energy, time and money. The authors in

[CKdSH+11] (accuracy of 95%), [KMS+14] (accuracy of 67%), and [GRC16] (accuracy

of 72.7%) used a low population size of 20, 12, and 22, which makes their suggested

approach unlikely to achieve their reported performance in a clinical setting.

Another issue is the population age. In [BJVKM11], they studied 40 fallers versus

41 non-fallers which is good population size. However, the average age between the two

groups was very different: the fallers had an average age of 21.6 while the non-fallers

had an average of 79.1. They achieved high accuracy in their classification model (77%).

However, it is also unlikely to perform that well dealing with fallers and non-fallers in

the same elderly age group.

The studies were also different in terms of labeling methods. For example, 6 out of

25 studies involved prospective fall event tracking, and 14 out of 25 studies applied

retrospective fall history. In comparison, only 4 out of the 25 studies used clinical

assessment tests and physician’s assessments.

Even though the retrospective fall recall is relatively widely used and has been

proven to lead to a better performance in classification models of fallers and non-fallers,
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it may suffer from a lack of reliability because of the patient’s poor memory. In addition,

a long history of falling may lead to a change in the original gait pattern due to injury

or psychological fear of falling. It is also believed that the clinical assessment tools

(TUG, Tinetti, BBS, and STS5) still do not achieve perfect diagnostic accuracy. While

prospective fall occurrence follow-ups are relatively time-consuming and inconvenient to

achieve. They are recommended to be employed in future fall risk assessment research

with a follow-up period of at least 6 months after the initial assessment.

The studies also varied in the sensor technologies used, whether wearable sensors

such as accelerometers, gyroscopes, pressure insole, and non-wearable sensors such as Wii

Balance Boards and Microsoft Kinect. Non-wearable sensors have the benefits of making

the participants feel in a more normal setting, walking freely without having anything

attached to them. However, they have just recently entered this field of research. That

said, they have yet to prove if they can provide equal or better accuracies than wearable

accelerometers and pressure sensors, which have been used extensively in measuring

human gait for a long time. Sensor technology has proven to be a practical, affordable,

and somewhat accurate tool for fall risk assessment.

Some studies included in their input features clinical factors such as measurements

made from traditional functional tests and physiological aspects of patients such as

gender, BMI, age, diseases, and medications. Including more clinical risk factor as

features in the classification model in future studies is believed to improve performance

[GRC16].

Moreover, each study’s experimental movement protocol during data collection

differed. Some adopted the task of walking straight, others while performing functional

tests or walking on a treadmill, with or without cognitive tasks. The involvement of

cognitive tasks has shown to bring out more significant statistical difference between

fallers and non-fallers [HLK18]. The metrics extracted during the experiments included
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the duration and smoothness of specific movements and the continuous signals extracted

from the sensors utilized. However, a large pool of variables may not be clinically

relevant or confounding to other existing variables [SWL+15]. Including many features

in the classification model can also be very exhaustive. Thus, selecting valuable features

based on research evidence and feature selection methods is essential.

Therefore, some studies included in their classification models some feature selection

methods, especially those dealing with large feature sets [NYG+21, BND+21, HLK18].

Applying feature selection methods when dealing with a large feature may help in

decreasing the computational cost of the model significantly and thus leads to a faster

diagnosis. After feature selection, the classification methods were applied.

12 out of 25 studies did not apply proper model validation procedures, which can

lead to exaggerated diagnostic accuracy and are unlikely to maintain their reported

performance during practical use in the concerned elderly population [SWL+15]. This

observation emphasizes the need for proper guidelines and standardized model construc-

tion/validation procedures in future research [SWL+15].

Consequently, future work in this field needs to consider improved classification

model performance, minimal preparation time, simple instructions, user-friendliness,

and real-time result display have been reported as critical factors for the continued use

of technologies [50]. However, the disconnection between clinical functionality and user

experience evaluation remains a significant gap that needs to be addressed.

1.7 Conclusion

Implementation of accurate fall risk assessment and prediction methods in the elderly

community has the potential to improve the quality of care and lead to a reduction in
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associated hospital costs due to fewer admissions and reduced injuries due to falling.

However, the literature on the prediction and assessment of elderly fallers shows that

not enough research covering the topic is available. Furthermore, the existing studies

require further improvement in terms of performance and convenience to be used in a

clinical setting with simplicity in data collection and reduced duration. In addition, the

gap between functional evaluation and user experience with this technology should be

addressed.

Therefore, the extension of such research is crucial. Furthermore, the highly extraor-

dinary predictive power associated with the help of direct measurements of cognitive

function (such as mental tracking as a dual task) highlights an essential avenue for

future research in fall risk prediction.
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Chapter 2
Cyclostationary Analysis

Après la bibliographie détaillée présentée sur la prédiction des chuteurs

âgés, nous commençons par donner quelques définitions sur la cy-

clostationnarité pour mieux comprendre le mécanisme à l’origine des

phénomènes qui seront abordés dans les chapitres suivants. Ce chapitre

vise à introduire le concept de cyclostationnarité et les outils nécessaires

au développement de modèles analytiques pour la prédiction de chutes

chez les personnes âgées.

After the in-depth literature review presented on the prediction of

elderly fallers, we start with giving some definitions of cyclostation-

arity to understand better the mechanism behind the phenomena,

which will be considered in the following chapters. This chapter aims

to introduce the concept of cyclostationarity and the tools necessary

for developing analytical models to predict future falls in the elderly.
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2.1 Introduction

Diagnostic tools based on signal processing are increasingly sophisticated and provide

exciting results in several fields, such as mechanics and biomechanics. However, in

the beginning, many of these tools were established, assuming that the process being

treated is stationary, whereas most processes encountered in nature, such as walking,

have time-evolving parameters. This makes the tools, assuming stationarity, unable to

extract specific information related to the non-stationary character of these processes

resulting from nature. Thus, the diagnostic tools dedicated to non-stationary processes

seem adequate to extract the maximum information.

Classical analysis tools approach the signal from a stationary point of view. Therefore,

they are unable or insufficient to deal with the non-stationary processes encountered

during this thesis. Several algorithms and methods have been proposed to deal with non-

stationary signals and processes. These tools include the sliding Fourier transform, the

spectrogram, the Wigner-Ville representation, quadratic time-frequency distributions,

and methods based on wavelet theory.

The signals processed in our work have a cyclostationary character, a particular case

of non-stationarity. Cyclostationarity is defined as a pairing between a deterministic

periodic phenomenon and a random one. This particularity makes it possible to add

dimension to the traditional indicators characterizing its cyclical evolution. Thus, to

exploit the cyclostationarity, it is essential to analyze this cyclical evolution through

the periodicity of the statistical moments of the process.
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2.2 History of cyclostationarity

Cyclostationary signals from nature are sometimes characterized by periodic and

random behavior. In other words, cyclostationary signals are random processes with

a periodic structure in time. A signal is characterized as cyclostationary if its statis-

tical properties vary periodically over time. However, it is impossible to detect these

periodicities through classical tools based on stationarity, hence their name of hidden

periodicities. The processing tools developed within the framework of cyclostationarity

have made it possible to have information on these hidden periodicities despite the

presence of considerable noise in specific processes. Thus, one of the advantages of

cyclostationary analysis lies in its robustness and performance in noisy environments.

The notion of cyclostationarity appeared in 1958 in a theoretical context in the field of

telecommunications with Bennett [Ben58]. Soon after, several Russian mathematicians

introduced vital concepts necessary to represent cyclostationary processes. The first was

Gudzenko [Gud59], who studied nonparametric spectral estimation of cyclostationary

processes. Then, between 1961 and 1963, Gladyshev conducted a study on the analysis

of spectral properties and the relationship between cyclostationary processes and

stationary vector sequences [Gla61]. The latter also introduced the concept of nearly-

cyclostationary processes in [Gla63]. Subsequently, the notion of cyclo-ergodicity for

cyclostationary processes, having a single periodicity, was introduced by Nedoma in

1963 [Ned63]. Finally, this notion was generalized, in 1983, by Boyles and Gardner for

cyclostationary processes with multiple periodicities [BG83].

Over time, cyclostationarity has gained its place in the field of signal processing, so

several works, theses, and books have addressed the new concept of cyclostationarity.

In 1962, Franks devoted a whole part of his book to cyclostationary processes in
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the theory of telecommunications [Fra69]. Hurd’s thesis [Hur70] is considered a good

introduction to continuous-time cyclostationary processes after studying the nature

of the spectral support in this case of processes. During this work, he established a

link between cyclostationary processes and processes having the possibility of being

stationary by applying a time shift (i.i.d.). In 1975, Gardner and Franks [GF75] studied

the advantages of different representations of cyclostationary processes in the context

of optimal filtering. Indeed, Gardner made significant contributions to the theory

of cyclostationarity and applications of cyclostationary analysis. Two of his works

are dedicated to the treatment of cyclostationary processes following two different

approaches, namely a (classical) probabilistic approach [Gar86] and an approach called

Fraction Of Time [Gar88]. A detailed synthesis of the two approaches was established

by Gardner himself in 1991 [Gar91].

In 2006, Gardner, Napolitano, and Paura published a work gathering the devel-

opments of cyclostationarity during the previous fifty years [GNP06]. Since then,

cyclostationarity and its tools have been widely used in different fields. Indeed, cyclo-

stationarity has also been applied in climatology [LHBS95], in mechanics [ABRB04],

in econometrics [PP79], in biology [FJ91], and more recently in biomechanics [CSL17].

Serpedin, Panduru, Sari, and Giannakis have published an excellent bibliographic

article [SPSG05] containing a huge part of the work done on cyclostationarity and its

applications in many fields.
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2.3 Definitions and properties

2.3.1 Stochastic processes

A stochastic approach is essential for modeling certain processes resulting from

nature, often non-stationary. A random (stochastic) process, denoted by {X(t, w), t ∈

R, w ∈ Z}, is defined as a set of continuous-time processes. This set is called realizations

of X(t) and indexed by w. Furthermore, stochastic processes are characterized by their

probability densities.

The first stochastic processes studied are stationary processes, given their ease of

processing and their constant statistical properties over time. Despite their efficiency in

dealing with a few processes, they remain insufficient to extract much of the information

related to the non-stationarity of several processes. Hence the usefulness of cyclostation-

ary processes, which include stationary processes as a particular case. Unlike stationary

processes, the statistical properties of cyclostationary processes depend on time. This

allows access to additional information across time-varying moments and cumulants.

Consider a continuous-time random process with real values X(t) admitting as

distribution function FX(t)(x) (with x ∈ R) and defined by:

FX(t)(x) = Prob{X(t) < x} (2.1)

The random process X(t) is said:

— Cyclostationary in the strict sense at order n, if these statistical properties up
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to order n are periodic (∀ the period T ) according to time [Gar94]:

FX(t)(x) = FX(t+T )(x) (2.2)

— Cyclostationary in the broad sense at order n, if these statistical properties up

to order n are periodic for the same period T0 according to time [Gar94].

FX(t)(x) = FX(t+T0)(x) (2.3)

2.3.2 Cyclostationarity of order one and two

The statistical properties of a cyclostationary process are periodic in time. The

distribution function FX(t)(x) makes it possible to describe a stochastic process fully.

Unfortunately, it is usually impossible to determine the distribution function in an

experimental setting with natural processes. To overcome this problem, most stochastic

processes are often characterized by the process’s first-order and second-order statistical

properties. Thus, the periodicity of the latter is necessary to characterize the processes

as first-order and second-order cyclostationary.

2.3.2.1 Cyclostationarity of order one

The first moment of a random process X(t) corresponds to the mean. A random

process is said to be cyclostationary of order one if its average is periodic in time:

µX(t) = µX(t + T0) (2.4)

Where µX(t) = E{X(t)} represents the first-order statistic of a random process X(t),

and T0 denotes the cyclic period.
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2.3.2.2 Cyclostationarity of order two

The cross-correlation function makes it possible to measure the correlation between

two real random variables X and Y at two different instants t1 and t2. Thus, we can

understand the intensity of the connection between these variables. This function is

expressed as follows:

RX,Y (t1, t2) = E{X(t1)Y ∗(t2)} (2.5)

Where (.)∗ denotes the conjugate. By replacing Y (t) by X(t − τ), we obtain the

instantaneous autocorrelation function of the random process X(t) as a function of

the delay τ . The advantage of this function is that it allows the detection of repeated

profiles in a random process. There are two versions of the instantaneous autocorrelation

function, namely:

— The symmetric version RX(t, τ) = E{X(t − τ/2)X∗(t + τ/2)}

— The asymmetric version RX(t, τ) = E{X(t)X∗(t − τ)}

It is important to note that the instantaneous autocorrelation functions RX(t, τ) repre-

sent a statistic of order 2. Thus, we say that a random process X(t) is cyclostationary

of order two if its instantaneous autocorrelation function is periodic according to time:

RX(t, τ) = RX(t + T0, τ) (2.6)

where T0 represents the cyclic period. Moreover, if the mean µX(t) and the instantaneous

autocorrelation RX(t, τ) are periodic at the same period T0, the process X(t) is said to

be cyclostationary in the broad sense and T0 is its cyclic period.

If a stochastic process is cyclostationary of order two, its instantaneous autocorrela-

tion function is periodic with time. Consequently, the instantaneous autocorrelation
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RX(t, τ) admits a Fourier series decomposition according to time t:

RX(t, τ) =
∑
α∈D

Rα
X(τ)ej2παt, with D = {α = k

T0
, k ∈ Z} (2.7)

Here the sum is performed over the set D of cyclic frequencies α that are multiples of the

fundamental cyclic frequency α0 = 1
T0

. Thanks to this decomposition, we have access

to the Fourier coefficients Rα
X(τ), called the cyclic autocorrelation function [Gar86].

Indeed, this function makes it possible to see the fundamental cyclic frequency and its

harmonics clearly, and is expressed as follows:

Rα
X(τ) = lim

T →+∞

1
T

∫ T/2

−T/2
RX(t, τ)e−j2παtdt (2.8)

It is important to note that the cyclic autocorrelation function Rα
X(τ) is discretized

along α and continuous along τ . Indeed, it is non-zero only for the fundamental cyclic

frequency α0 and its harmonics in addition to α = 0. This is due to the periodicity

of the instantaneous autocorrelation function RX(t, τ) according to time. For α = 0,

the cyclic autocorrelation function is reduced to the classical autocorrelation function.

Thus for a stationary process, Rα
X(τ) is zero everywhere except at α = 0.

2.3.3 Second-order frequency descriptors

According to the Wiener-Khintchin theorem, a stationary process’s power spectral

density (PSD) is defined as the Fourier transform of its autocorrelation function. The

extension of this theorem in the cyclostationary case [Gar88] makes it possible to

establish the following relation:

SX(t, f) = Fτ {RX(t, τ)} (2.9)
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Where SX(t, f) denotes the instantaneous power spectral density (Wigner Ville spec-

trum) and Fτ represents the Fourier transform for the delay τ . In the case of a second-

order cyclostationary process, the instantaneous autocorrelation functions RX(t, τ) is

periodic according to time which implies that the instantaneous PSD SX(t, f) is also

periodic over time. Thus, the quantity SX(t, f) admits a Fourier series decomposition

according to time:

SX(t, f) =
∑
α∈D

Sα
X(f)ej2παt, with D = {α = k

T0
, k ∈ Z} (2.10)

Where T0 represents the cyclic period. Furthermore, the Fourier coefficients Sα
X(τ) are

called the spectral correlation function and are expressed as follows:

Sα
X(f) = lim

T →+∞

1
T

∫ T/2

−T/2
SX(t, f)e−j2παtdt (2.11)

By simple calculations and substitutions using the equations 2.7, 2.9, and 2.10, we

arrive at the following relation:

Sα
X(f) = Fτ {Rα

X(τ)} (2.12)

Thus, to calculate the spectral correlation function Sα
X(τ) it suffices to calculate the

Fourier transform of the cyclic autocorrelation function Rα
X(τ) with respect to the

delay τ . Therefore, Sα
X(τ) inherits the same properties as Rα

X(τ). As for the cyclic

autocorrelation function, the spectral correlation Sα
X(f) is discretized on the axis of the

cyclic frequencies α and non-zero only for the fundamental frequency α0 = 1
T0

and its

harmonics. When α = 0, the spectral correlation is reduced to the classic DSP defined

for stationary processes.
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2.3.4 Ergodicity and cycloergodicity

Computing first- and second-order statistical properties requires computing the

process’s mean. Furthermore, the estimation of statistical properties requires the

probability densities obtained by exploiting several identical systems called realizations.

However, in reality, it is often very difficult to have access to a large number of

achievements. On the other hand, observing a process for a long time is possible and

exploitable. This makes it possible to calculate temporal averages, which can replace

ensemble averages. Thus, a stochastic process is said to be ergodic if the temporal

and ensemble averages are equal for a single realization [CL90]. Theoretically, the

temporal average is calculated over an infinite window in time. However, in practice,

this is impossible, and we must content ourselves with measuring the average over

sufficiently long windows. Consequently, for an ergodic process, the ensemble means

are approximated by the time means as follows:

E{X(t)} = ⟨X(t)⟩t (2.13)

Where ⟨.⟩t represents the time average operator and is expressed by:

⟨.⟩t = lim
T →+∞

1
T

∫ T/2

−T/2
(.)dt (2.14)

With the appearance of the notion of cyclostationarity, Gardner and Boyles [BG83]

became interested in studying ergodicity in the case of cyclostationary processes. Thus,

the concept of cycloergodism was born through the extension of the notion of ergodism

to the case of cyclostationary processes. This concept implies that asymptotically the

time averages of a process and the time averages of the statistical properties of the

same process are equal if they are multiplied by a complex sinusoid. This is expressed
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mathematically by:

⟨E{X(t)ej2παt}⟩t = ⟨X(t)ej2παt⟩t (2.15)

In the case where the process is assumed to be cyclostationary and cycloergodic, the

relationship can be exploited to estimate the cyclic autocorrelation function via the

following two expressions:

— The symmetrical version Rα
X(τ) = ⟨X(t − τ

2 )X∗(t + τ
2 )e−j2παt⟩t

— The asymmetrical version Rα
X(τ) = ⟨X(t)X∗(t − τ)e−j2παt⟩t

With the cycloergodicity hypothesis, one can estimate the statistical descriptors of a

cyclostationary process from the synchronous time averages (or synchronous averaging)

of a single realization. This is very useful in estimating second-order statistical properties

for processes assumed to be cyclostationary and cycloergodic.

2.4 Conclusion

Through this chapter, we have defined the concept of cyclostationarity and its

analysis tools. For the study of cyclostationary processes, several cyclostationary tools

are proposed in the literature. In the following chapters, cyclostationary tools are

exploited for modeling cyclostationary properties of pressure insole signals for fall

prediction.
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Chapter 3
Experiment and Data-set Description

Les précédents chapitres ont présenté le contexte de cette thèse a travers

une étude bibliograpique et l’analyse cyclostationnaire. Dans ce chapitre,

nous décrivons en détail l’ensemble de données utilisé dans cette thèse:

la conception de l’expérience, la collecte de données et les propriétés

statistiques de la population.

The background of this thesis related to previous literature and cyclo-

stationary analysis has been covered in the previous chapters. In this

chapter, we describe in detail the data-set used in this thesis, including

the experiment design, the data collection, and the statistical properties

of the population.
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3.1 Introduction

In clinical research, the main goal is to design a study that would be able to derive

a valid and meaningful scientific conclusion using appropriate methods that can be

translated to the "real world" setting [LH07]. Prior to designing an experiment, one

must establish the aims and objectives of the study and choose an appropriate target

population that is most representative of the studied population. The research study’s

conclusions aim to improve health care and diagnosis procedures. Hence, this requires

a well-designed clinical research study that rests on a solid foundation of a detailed

methodology and is governed by ethical principles [UMG11].

This study aims to explore the cyclostationary properties of the pressure insole

signals of the elderly and develop methods to diagnose risks of future falls. Therefore,

the targetted population is the older people. The total number of participants was 519

people. They have all provided consent to participate in this study. This database

is from the original series of the study by the LPE (Laboratoire de Physiologie de

l’Exercice), and CHU (Centre Hospitalier-Universitaire) of Jean Monnet St-Etienne

University. The below sections explain the steps dedicated to experimental design and

data collection.

3.2 Experiment Design

519 elderly adults were recruited to partake in this experiment at the Hospital

University of Saint Etienne. They were instructed to walk in the same straight 20

meters hallway while wearing insole pressure sensors. They follow a protocol :

— At first, they walked for a test trial.
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— After that, each participant was asked to walk this same distance three times.

— The first time, which formed the baseline in this study, they simply walked

without performing secondary tasks, which is denoted the MS walking condi-

tion.

— The second time, they walked the same distance again, but while de-counting

from the number 50. It is denoted the MD walking condition. The counting

backward task depends on working memory. Working memory is a system for

temporarily holding and manipulating information while performing various

cognitive tasks such as comprehension, learning, and reasoning.

— The third time, they walked while enumerating aloud as many animal names

as they could remember, which is denoted the MF walking condition. The

verbal fluency task relies on semantic memory. Semantic memory refers to

general world knowledge accumulated throughout our lives.

The last two types of walks included secondary tasks to simulate an everyday

life situation. Typically, when one walks, they are not focusing all their

attention on walking but rather are occupied by other thoughts. Also, it has

been shown in the literature that involving secondary tasks brings out a more

significant statistical difference between fallers and non-fallers.

In addition, specific measures were taken while collecting the data to block other

factors that could influence participants’ walk. These measures included ensuring proper

lighting, a quiet area, and the use of comfortable flat shoes.

3.3 Data Collection

The data collected during the experiment were clinical data and sensor data. Clinical

data were information regarding the participants’ demographics, lifestyle, and medical
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profiles. On the other hand, the sensory data were the signals recorded by the insole

pressure signals during the three types of walks that the participants completed in the

experiment.

3.3.1 Clinical Data

In the database, 410 subjects out of 519 reported whether they had previous falls or

not. Moreover, out of 410, only 54 reported that they had fallen in the past, while the

rest reported that they had not. One of the challenges faced in this thesis is the case of

highly unbalanced data.

The demographic data collected about the subjects include gender and age. At the

same time, lifestyle information included alcohol consumption and smoking. Physical

information included height, weight,and Body Mass Index (BMI). The below figure

3.1 shows the distribution of labeled data between fallers and non-fallers according to

gender, BMI class, alcohol consumption and smoking status.

3.3.2 Sensor Data

The participants wore a pair of innersole pressure sensors fitted inside their shoes.

Each innersole contains two independent SMTEC pressure sensors. These sensors were

fixed in specific positions to record the pressure signals from the heels and toes of

the participants’ left and right feet while walking. These sensors were connected to a

portable data logger that the participants wore at their waist. In this setup, a pressure

above 4 kilo-Pascal (kPa) activates the sensors and defines the contact with the ground.

For each step, the activation of the heel sensors establishes the first contact, whereas

the last contact with the ground corresponds to when the toes sensor stops measuring.
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Figure 3.1 – Data-set Description
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Figure 3.2 – The sensor system and pressure signal recorded from a participant’s foot.

As mentioned by the manufacturer, the data from foot switches is sampled at a

frequency of 100 Hz allowing a temporal resolution of 10 ms. The signals collected

were processed using software designed specifically for the task by SMTEC software.

The system measures four independent pressure signals: left heels, left toes, right heels,

and right toes. Figure 3.2 displays the setup along with the obtained signal from the

pressure sensors while the subject is walking.

Some patients do not necessary succeed to walk 20 meters due to elderly and health

problems. It means a poor number of steps.

3.4 Conclusion

This chapter describes the data-set studied throughout this thesis from the experi-

mental design perspective. The different characteristics recorded about participants will

be studied in later chapters to see which of them qualify to serve as essential features for
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future fall prediction. The setup used to record the signals studies was also explained.

In addition, the data-set brings out one main challenge addressed in this thesis: the

unbalance of data.
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Chapter 4
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Feature Extraction and Selection

L’extraction d’indicateurs correspond au processus de transformation des

données brutes en caractéristiques qui peuvent être traitées pour classer

ou prévoir un résultat. Ce pré-traitement permet d’avoir de meilleurs

résultats pour l’apprentissage automatique par rapport à l’utilisation de

données brutes. La sélection d’indicateurs, est une méthode de réduction

de variable d’entrée conservant uniquement les données pertinentes et

éliminant ainsi le bruit dans les données. Il s’agit du processus de

sélection automatique des fonctionnalités pertinentes pour le modèle

d’apprentissage en fonction de l’objectif de l’étude. Ce chapitre présente

les techniques utilisées pour l’extraction et la sélection des caractéristiques

afin de prévoir le risque de chutes chez les personnes âgées en mettant

l’accent sur les caractéristiques cyclostationnaires.

Feature extraction refers to the process of transforming raw data into

features that can be processed to classify or predict an outcome. As a

result, it yields better results than applying machine learning directly to

the raw data. As for feature selection, it is the method of reducing the

input variable to a model by using only relevant data and getting rid of

noise in the data. It is the process of automatically choosing relevant

features for the machine learning model based on the study’s objective.

This chapter presents the techniques used for feature extraction and

selection to predict the risk of future falls in the elderly with focus on

cyclostationary features.
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4.1 Introduction

Machine learning helps to find complex and potentially useful patterns in data

automatically. These patterns are condensed in a machine learning model that can

then be used on new data points—a process called making predictions or performing

inference. Building a machine learning model is a multi-step process. Each step presents

its own technical and conceptual challenges.

This thesis focuses on the supervised learning task and the process of selecting,

transforming, and augmenting the source data to create a powerful predictive ability

for the target variable, which is the risk of future falls in the elderly. These operations

combine domain knowledge with machine learning techniques and are the essence of

feature engineering. When a machine learning model is used to make predictions, one

should apply the same transformations used for the training data on the new subjects

that require a diagnosis. By applying the same transformations, the machine learning

model receives the data as expected.

Pre-processing the data for machine learning involves both data engineering and

feature engineering. Data engineering converts raw data (the data in its source form,

without any prior preparation for machine learning) into prepared data (this involves

signal pre-processing such as removal of outliers). Feature engineering or feature

extraction then tunes the prepared data to create the features expected by the ML

model. Engineered features are created by performing specific machine learning-specific

operations on the columns in the prepared data-set and creating new features for the

model during training and prediction. These operations include scaling numerical

columns to a value between 0 and 1 and clipping values. The following diagram, Figure

4.1, shows the steps involved in preparing the data before feeding it to the machine
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Figure 4.1 – The flow of data from raw data to prepared data to engineered features to
machine learning.

learning models.

This chapter addresses the methodology of transforming raw data into engineered

feature sets ready to be used in a machine learning model. This process comprises data

pre-processing, filtering, normalization, feature extraction, and selection of feature sets.

4.2 Data Engieering and Pre-Processing

This section addresses the raw data preparation and pre-processing steps taken

before the feature engineering process.

4.2.1 Removal of Signal Outliers

As a first step in pre-processing the signals and preparing them for feature extraction,

the first 3 seconds of all recordings were cropped to avoid possible noise caused by the

system or its surroundings upon the beginning of the recording.

The second step in data pre-processing is dealing with outliers. Outliers are a
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common problem in data science and signal processing. There are many popular

methods for identifying outliers, such as the standard score method [GV12] or John

Tukey’s fences [Tuk93]. This thesis identified outliers as a point beyond the low and high

percentiles used to define a given threshold. After identifying the outliers, two standard

approaches are used to deal with them: Trimming or Winsorizing [GV12]. Winsorizing

data means replacing the extreme values of a data set with a specific percentile value

from each end, while Trimming or Truncating involves removing those extreme values.

Winsorizing refers to changing the outliers to the minimum and maximum percentiles

or the average between the previous and the next sample. Although trimming is the

most common method for dealing with outliers, Winsorizing is worth discussing in

dealing with our data because trimming has a potential drawback: loss of data collected

from other sensors. The most straightforward way to remove outliers is to drop the

observations from the data-set. In addition, dropping the outliers from one signal leads

to dropping those observations from the other signals recorded simultaneously from

different sensors (left and right heels and toes). Since observations that are outliers

from one sensor may be inliers for others, one could trim more inliers than outliers.

Data loss can be avoided by setting outliers to null values instead of dropping them.

However, since many modeling software cannot manage null values, this could lead

to another problem. An essential advantage of Winsorizing is that there is no loss of

data. Winsorizing outliers does not lead to dropping other inliers from other sensors.

Another essential property of Winsorizing is preserving some of the original information.

Since Winsorizing reduces the weight of outliers without eliminating them, the former

outliers still influence models or statistical calculations. For example, the pseudo-code

of the function that removes the outliers in Python is shown below. The outliers, once

identified, are replaced by the average of the previous and preceding samples (the

"smooth" option is chosen rather than the "saturate").
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def removeOutliers(signal,q=[5,95],k=2,replace=’smooth’):

1. Input the raw signal with outliers.

2. Define what are the low and high percentiles thresholds.

5 and 95 are chosen as percentile[0] and percentile[1] respectively.

3. Set k which is a coefficient used to define outliers.

For this application k is set to 2.

3. Calculate the pmid which is the midpoint between the two percentiles.

3. A sample is an outlier if:

* it is greater than pmid+k.(percentile[0]-pmid)

* it is lower than pmid+k.(percentile[1]-pmid)

4. replace the outlier:

* ’saturate’: replace by computed threshold value

* ’smooth’ : replace by average of previous and

next sample

In this application the option ’smooth’ is only used.

5. Return a clean signal

4.3 Feature Engineering

This section explains the steps taken to extract features after cleaning the data and

before the feature selection phase.
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4.3.1 Extraction of Time-Domain Features

The classical features extracted from the pressure signals were previously explored

in the literature and are: mean, rise time, fall time, pulse width, overshoot, undershoot,

duty cycle, slew rate, mid-cross, autocorrelation, standard deviation, band power,

median, root mean square, range, Pwelch, skewness, interquartile range, kurtosis, and

95 percentile of the signal distribution. The definition of each feature is explained

below.

• Mean

The mean, indicated by µ, is the average value of a signal. It can be calculated

by adding all of the values for each sample together, and divide by the total

number of samples (N). Its mathematical form is shown below:

µ = 1
N

N−1∑
i=0

xi (4.1)

• Standard Deviation

The standard deviation (σ) is a measure of how far the signal fluctuates from the

mean (µ). A low standard deviation indicates that the values tend to be close to

the mean of the set. In contrast, a high standard deviation indicates that the

values are spread over a broader range. It is calculated using the below equation.

σ =

√√√√ 1
N − 1

N−1∑
i=0

(xi − µ)2. (4.2)

• Median

The median (Med) is the middle value in a sorted, ascending, or descending list

of values (X). The median is sometimes used instead of the mean when there

are outliers in the sequence that might skew the average of the values. It is the
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point above and below which half (50%) of the observed data fall and represents

the data’s midpoint. If there is an odd amount of sample points (N), the median

value is the number in the middle, with the same amount of sample points below

and above. If there is an even number of sample points (N) in the data, the

middle pair must be determined, added, and divided by two to find the median

value. In a normal distribution, the median is the same as the mean and the

mode.

Med(X) =


X[N+1

2 ], if N is odd

X[ N
2 ]+X[ N+1

2 ]
2 , if N is even

(4.3)

• Root Mean Square

The Root Mean Square (RMS) is the square root of the arithmetic mean of the

squares of a set of values. Its formula is mentioned below.

RMS =

√√√√ 1
N

N−1∑
i=0

x2
i (4.4)

• Range

The range is defined as the difference between the signal’s maximum and minimum

values in amplitude.

Range(X) = Max(X) − Min(X) (4.5)

• Rise Time

The rise time is the time a signal crosses from a specified low value to a specified

high value. For example, in analog and digital electronics, the specified lower

and higher values are 10% and 90% of the final or steady-state value. So the

rise time is how long it takes for the signal to go from 10% to 90% of its highest
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value as shown in Figure 4.2.

• Fall Time

The fall time is the opposite of the rise time. It is the time taken for the

amplitude of a pulse to decrease from a specified value (90% of the peak value)

to another specified value (10% of the maximum value)as shown also in Figure

4.2.

Figure 4.2 – Rise time and fall time indicate the length of time a signal takes to change
voltage between the low level and high level. In addition the slew rate represents the
the slope of the line connecting the 10% and 90% reference levels.

• Pulse Width

The pulse width measures the elapsed time between a single energy pulse’s

leading and trailing edges. The below figure shows an example of measured pulse

width in the signal.

• Overshoot

In control theory and signal processing, the manifestation of a signal that exceeds

its target is known as the overshoot. The overshoot is the greatest absolute

deviation larger than the final state levels or the expected peak of each transition

in the signal. An overshoot is expressed as the percentage difference between
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the state levels. The overshoot length corresponds to the number of transitions

in the input signal. The sample instants in the signal correspond to the vector

indices.

• Undershoot

Overshoot occurs when the transitory values exceed the target or expected value.

However, when they are lower than their target, the phenomenon is called the

undershoot. Undershoot is the greatest deviation below the final state levels

of each transition in the signal. An undershoot is described as a percentage

difference between the state levels. The length of the undershoot corresponds to

the number of transitions detected in the signal.

• Duty Cycle

The duty cycle of a signal computes the portion of time a given source is

transmitting a signal. This portion of time determines the overall power delivered

by the signal. The duty cycle is the pulse width ratio to the pulse period for

each positive-polarity pulse in the signal. It identifies all regions that cross the

upper-state boundary of the low state and the lower-state boundary of the high

state.

• Slew Rate

In electronics, the slew rate is defined as the maximum rate of change of the

output voltage per unit of time. The slew rate is the slope of the line connecting

the 10% and 90% reference levels as shown in Figure 4.2.

• Mid-Cross

It is the time instants where each transition of the input signal crosses the 50%

reference level as shown in Figure 4.3.

• Autocorrelation

Autocorrelation is a mathematical depiction of the similarity between a given

time series and a lagged version of itself over consecutive intervals of time. The
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Figure 4.3 – The x defining the mid cross points in the left foot signal (heel sensor)

relationship between a variable’s current value and its past values is measured.

The average autocorrelation at different lags is calculated for each participant.

• Band Power

Band power is the average power of the input signal. The power of a signal is

the sum of the absolute squares of its time-domain samples divided by the signal

length or, equivalently, the square of its RMS level.

• P-Welch

The energy variation that takes place within a vibrating signal is known as power

spectral density (PSD). It’s derived as the frequency per unit of mass. In other

words, for each frequency, the spectral density function shows whether the energy

that is present is higher or lower. The average P-Welch power spectral density

estimate is calculated for each participant in the data-set.

• Skewness
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Skewness measures a signal’s asymmetrical spread about its mean value. A signal

is considered symmetric if it looks the same to the left and right of the center

point.

When a data set has outliers, variability is often summarized by a statistic

called the interquartile range, which is the difference between the first and third

quartiles IQR=Q3-Q1.

• Kurtosis Kurtosis estimates whether the data distribution is heavy-tailed or

light-tailed relative to a normal distribution. Data points with high kurtosis tend

to have heavy tails or outliers. Whereas data sets with low kurtosis tend to have

light tails or lack outliers. A uniform distribution would be the extreme case.

4.3.2 Extraction of Cyclostationary Features

4.3.2.1 Resampling: Walk Signal Synchronization Techniques

In order to process the walking pressure insole signals, we intended to benefit from

the advantage of their repetitive or cyclic aspect. The technique for synchronization is

demonstrated in this section.

Synchronizing the signals is equivalent to displaying the signals based on the stride

number instead of time. Since then, the synchronized element will always appear in the

same position inside the stride. To achieve this synchronization, it is essential to first

identify the signals’ significant and identical elements at each stride, for example, the

maximum peaks. Once an event is identical to each stride, it is possible to re-adjust the

signal by stretching or contracting it by interpolation to make all the events coincide

periodically.

One technique consists of detecting the maximum peaks present in the signal. The
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search for the maximum peaks is done by looking for the change of signs (positive or

negative) in the derivative.

Figure 4.4 – Detection of Maximum Peaks to be used for synchronization of the signals

In order to combat the sensitivity of the derivative to noise, the derivative is estimated

by performing a regression at each point polynomial by the method of Savitzky and

Golay [SG64] on a neighborhood of 80 ms and eliminating slopes less than 30%. The

results are materialized by the red dots shown in Figure 4.4.

This maximum peaks detection enables us to estimate the average walking period

which is different for each person. Therefore, we can make automatic resampling.

The first step is to transform the signal x(t) into an exponential :

ỹ(t) = a(t).ejϕ(t) (4.6)

Where :

— a(t) is the amplitude of the envelope signal,

— ϕ(t) is the phasis.

Two steps are necessary to obtain ỹ(t) :
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— Band pass filter the signal x(t) around the stride frequency in order to obtain

a sine wave with a frequency modulated by the stride rhythm. We obtain the

signal shown in Figure 4.5.

— Transform this sine wave into an exponential by using analytic signal (by simply

removing negative frequency in Fourier Transform).

Figure 4.5 – Sine wave (red) vs. pressure insole signal (blue)

The interesting information is contained in the phase ϕ(t) of the sine wave and the

exponential. This phase can be estimated by computing the angle of the analytic signal,

and performing phase unwrapping.

Physically, the phase will increase to 2π at every stride and enables us to have the

stride number according to the time (by dividing phase by 2π). Non-integer values from

could be seen as a progression in the walk movement (physical interpretation could be

difficult).

Since the stride number (i.e. ϕ(t)/(2π)) and amplitude x(t) are known for every

instant t, it is possible to reconstruct the amplitude associated to a given walk stride n°

as shown in Figure 4.6.

Estimating the signal against the stride number x(θ) could be done by using

interpolation :

x(θ) = interp1(θ(t)/(2π), x(t), θ) (4.7)

Where :
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— θ(t)/(2π) is the stride number,

— θ is a vector which indicate the stride number (it goes from 0 to the total number

of strides with a constant step increment)

Working with walk "position" enables us to synchronized walking signal as shown in

figure 4.7.

Figure 4.6 – Compensation of Speed Fluctuation

Once the maximum peaks are detected, the angular resampling algorithm is applied

to align the peaks and obtain the synchronous average which displays the average

pattern of the signal as shown in Figure 4.7.

4.3.2.2 Degree of Cyclostationarity

A cyclostationary process is a signal that holds statistical properties that varies

cyclically with time. In the research field of human locomotion, the human walk can

be thought of as a movement that consists of replicated sequences of cyclic physical

movements or strides [ZTEB+14]. Analyzing the cyclostationary characteristics of the

pressure insoles obtained during walking can can be used to assess the risk of prospective

falls in the elderly community [ZTEB+14].
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Figure 4.7 – The Effect of the Synchronization Technique and the Synchronous Average
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Utilizing the properties of cyclostationarity demands a constant number of samples

for every stride. Hence, it is crucial to preprocess the signal obtained to compensate

for the speed oscillation. Preprocessing the signal can be done by estimating this

fluctuation as described in the previous section[BEBR+05] and using interpolation to

stretch the signal and offset speed fluctuation.

The work in [SG94] define the first two orders of cyclostationarity in a signal [SG94].

A signal S(t) is regarded to be cyclostationary of order 1 with cycle T if the expectation

µS(t) of S(t), is periodic with period T :

µS(t)(t) = µS(t)(t + T ) (4.8)

µS(t) designates the repetitive pattern in the signal. The residual signal r(t) can be

calculated by subtracting µS(t) from the whole signal:

r(t) = S(t) − µS(t)(t) (4.9)

A signal is declared to be cyclostationary of order 2 if the autocorrelation CS(t) of

the signal S(t) is periodic with period T :

CS(t)(t1, t2) = CS(t)(t1 + T, t2 + T ) (4.10)

where t is defined as,

t = (t1 + t2)/2 (4.11)

By defining τ as

τ = t2 − t1 (4.12)
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We can write,

CS(t)(t2, t1) = CS(t)(t1 + T, t2 + T ) = CS(t)(t2 − t1) = CS(t, τ) (4.13)

In cases where a signal is proven to be cyclostationary of order 2, such as the pressure

insole signals analyzed in this study, the instantaneous autocorrelation function of the

signal is periodic. It, therefore, can be represented as a Fourier series as shown below

[ŽG91].

CS(t)[t, τ ] =
∑

α

CAFS[α, τ ]e(−j2παt) (4.14)

where, α is the cyclic frequency that belongs to the set of cyclic frequencies such

that, α=k/T and k ∈ Z. The cyclic autocorrelation function (CAF ) is defined as:

CAFS[α, τ ] = lim
T →∞

1
T

T −1∑
t=0

CS[t, τ ]e(−j2παt) (4.15)

To minimize the effect of order 1 cyclostationarity in the cyclic autocorrelation, we

can calculate the cyclic autocorrelation CAFR[α, τ ] of the residual signal r(t), from

Equation 4.7, instead of the autocorrelation CAFS[α, τ ] of the whole signal S(t).

With the CAF being a 3-dimensions representation of the cyclostationarity of the

pressure walking signal, it is also feasible to generate another 3-dimension model called

the spectral correlation SCDR(α, f). This is done by applying the Fourier Transform of

τ to get the frequency f . Therefore, the entire data is held within the cyclic frequencies

α associated with the characteristic cycles of the signal. At other cyclic frequencies, the

spectral correlation should have null energy. In Fig.4.8, the cyclic frequencies unrelated

to signal cycles are not entirely flat but considered negligible since this is an estimated
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Figure 4.8 – The Spectral Correlation of the average insole pressure signals while walking
without involving any secondary tasks (MS)

representation. The method use for the estimation of the spectral correlation is found

in [AXH17].

4.3.3 Heat Map Representation of the Spectral Correlation

The analysis of the graph in Figure 4.8 of the spectral correlation is complicated. In

addition, it is difficult to use this graph directly as input to machine learning algorithms.

Therefore, we investigated the transformation of this graph into a 2-dimensions heat-map

in which colors represents the magnitude of the spectral correlation. The x-axis in the

heat maps obtained represents the cyclic frequencies α order and the y-axis represents

the frequency f order. Figure 4.9 shows an example of heat-map images, which will be

used as input to the CNN to classify individuals with high and low risk of prospective

falling. Fig. 4.10 shows 5 examples of each of the two classes of participants with and

without risk of falling. The differences between the two classes can be noticed visually

as the straight lines corresponding to the high modulus of spectral correlation at α=k/T

and k ∈ Z can be seen clearly in cases of participants without risk of falling and vaguely

in cases of patients with risk of falling. but can be captured computationally using
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CNN.

Figure 4.9 – The Heat Map representation of the Spectral Correlation in Figure 4.8

Figure 4.10 – 5 Examples of the Raw Heat Maps (colored) of the two classes: (a)
without risk and (b) with risk of falling during MD walking condition

4.3.4 Heat Map Image Quality improvement

We sought to further improve the heat map image quality by trying to make the

lines differentiating between cases of fallers and non-fallers more visible. In addition,

we attempted to reduce their complexities before feeding them to the CNN model.
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Therefore, two types of transformations were explored: the grey-scale and the log

transformations.

The main reason why gray-scale representations are often used for CNNs and

extracting descriptors instead of color images is that gray-scale simplifies the algorithm

and reduces computational requirements, which is worth exploring.

The log functions are beneficial when the input grey-level values may have a vast

range of values. This can be seen in the example in Figure 4.11 of the Fourier transform

of an image is put through a log transform to reveal more details. And this can also be

seen in the two images in Figure 4.12. The images obtained after performing the log

transform on the colored raw heat map images are shown in Figure 4.13. The images

obtained after only applying grey-scale on the heat map images are shown in Figure

4.14. The resulted images of applying both grey-scale and log transformation are shown

in Figure 4.15.

Figure 4.11 – An Example of a Log Transformation on a Grey-Scale Image

4.4 Statistical Analysis Techniques

4.4.1 Student t-test

Student’s t-test, in statistics, is a method for testing hypotheses related to the mean

of a small sample from a normally distributed population with an unknown standard
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Figure 4.12 – An Example of a Log Transformation on a Colored Image

Figure 4.13 – 5 Examples of the Log Transformation of the Colored Heat Maps of the
two classes: (a) without risk and (b) with risk of falling during MD walking condition
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Figure 4.14 – 5 Examples of the Grey-Scale Heat Maps of the two classes: (a) without
risk and (b) with risk of falling during MD walking condition

Figure 4.15 – 5 Examples of the Log Transformation of the Grey-Scale Heat Maps of the
two classes: (a) without risk and (b) with risk of falling during MD walking condition
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deviation It is an inferential statistic used to determine if there is a significant difference

between the means of two groups and how they are related [Rux06].

In 1908 William Sealy Gosset developed the t-test and t-distribution [FL01]. The

t distribution consists of a family of curves where the number of degrees of freedom

(number of independent observations in the sample minus one) determines a specific

curve. As the sample size (and the number of degrees of freedom) increases, the t

distribution approaches the bell shape of the standard normal distribution [FL01].

Technically, the normal distribution is usually applied for tests concerning the mean of

a sample size greater than 30 [Rux06].

It is usually first to formulate a null hypothesis, which indicates that there is no

practical difference between the observed sample mean. The hypothesized or stated

population means that any measured difference is due only to chance. Generally, a t-test

may be either two-sided (two-tailed), stating that the means are not equal, or one-sided,

determining whether the observed mean is different from the hypothesized mean. The

test statistic t is then computed [Rux06]. The null hypothesis is rejected when the

observed t-statistic is more extreme than the critical value specified by the relevant

reference distribution. The relevant reference distribution for the t-statistic is the t

distribution. The critical value relies on the tests’ significance level (the probability of

wrongly rejecting the null hypothesis) [Rux06].

A second application of the t-distribution tests the hypothesis that two independent

random samples have similar means. The t distribution is also used to produce confidence

intervals for the actual mean of a given population or the difference between two sample

means [Rux06].
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4.4.2 Analysis of variance (ANOVA)

Analysis of variance (ANOVA) is a statistical method used to split an observed

aggregate variability within a data set into two parts: systematic and random factors.

The systematic factors statistically influence the given data set, while the random

factors do not. Analysts use the ANOVA test to determine independent variables’

influence on the dependent variable in a regression study [SW+89].

The ANOVA test is considered the first step in analyzing factors that influence a

given data set. Once the test is complete, an analyst conducts further testing on the

methodical factors that measurably affect the data set’s inconsistency. Finally, the

analyst uses the ANOVA test results in an f-test to develop additional data that aligns

with the suggested regression models [SW+89].

The ANOVA statistical test permits a comparison of more than two groups simulta-

neously to resolve whether a relationship between them exists or doesn’t exist. The

result of the ANOVA formula, the F statistic (F-ratio), allows the analysis of multiple

data groups to determine the variability between samples and within [SW+89].

If no difference exists between the tested groups (null hypothesis), the outcome of

the ANOVA’s F-ratio statistic will be near 1. The distribution of all potential values of

the F statistic is the F-distribution. This is a group of distribution functions with two

characteristic numbers: the numerator and denominator degrees of freedom [SW+89].

4.5 Feature Selection Methods

In machine learning, feature selection, also called attribute selection, variable

selection, or variable subset selection, includes techniques to reduce the input variable



80 4.5 Feature Selection Methods

to the machine learning model by using only relevant data and eliminating noise in

data. It is the process of automatically choosing relevant features for the classification

or prediction model depending on the problem that needs to be solved. The motivation

behind using feature selection techniques is that the data comprises some redundant or

irrelevant features and should be removed without causing a loss of information.

Feature selection techniques are different from feature extraction. Feature extraction

produces features from the input data, whereas feature selection outputs a subset of

the extracted features as shown in Figure 4.16. Feature selection techniques are often

used in cases with many features and comparatively few samples, such as the analysis

of handwritten words and genetic sequencing [SH12], where there are many thousands

of features and just a few tens to hundreds of samples.

Figure 4.16 – An Illustration of the feature selection process. (A) The original dataset
may contain excessive number of features (SNPs) that are irrelevant. (B) Feature
selection reduces the dimensionality of the data-set by excluding irrelevant features and
including only those relevant for prediction [PFKLO22].
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There are many benefits to including feature selection in a machine-learning algo-

rithm; this includes:

— Simplification and reduction of machine learning models’s complexity, which

makes them easier to interpret, faster to train, and less computationally ex-

penssive.

— Avoiding the curse of dimensionality. The curse of dimensionality is a phenomenon

observed in machine learning fields. It describes the explosive nature of increasing

data dimensions and its resulting exponential increase in computational efforts

required for its processing and analysis. Bellman [BK59] first introduced this

term to explain the increase in the volume of Euclidean space associated with

adding extra dimensions in the area of dynamic programming. An increase in the

dimensions can, in theory, add more information to the data, thereby improving

the quality of data but practically increasing the noise and redundancy during

its analysis as shown in Figure 4.17.

Figure 4.17 – The classifier’s performance continues to increase with the number of
features until the optimal number is attained. Then, further increasing the number
of features without increasing the number of samples leads to a decreased classifier
performance [Spr14].
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4.5.1 Relief-F

The Relief algorithm was proposed in 1992 by Kira and Rendell [KR92a][KR+92b].

According to Kira and Rendell, the Relief algorithm weights each feature according

to its relevance to the class. Initially, all weights are set to zero and then updated

iteratively. In each iteration, this non-deterministic algorithm chooses a random instance

i in the data-set and estimates how well each feature value of this instance distinguishes

between instances close to i. In this process, two groups of instances are selected: some

closest instances belonging to the same class and some belonging to a different category.

With these instances, Relief will iteratively update each feature’s weight, differentiating

data points from other classes while simultaneously recognizing data points from the

same category. In the end, a certain number of features with the highest weights is

selected. An alternative version sets a threshold, so only the features with weights

above this value are selected.

The Relief algorithm was described as a simple, fast, and practical approach to

attribute weighing [KR92a][KR+92b]. The output of the Relief algorithm is a weight

between −1 and 1 for each attribute, with more positive weights indicating more

predictive attributes. The pseudo-code for Relief is shown in Figure 4.18. The weight

of an attribute is iteratively updated as follows:

1. A sample is selected from the data.

2. The nearest neighboring sample that belongs to the same class (nearest hit) and

the nearest neighboring sample that belongs to the opposite class (nearest miss)

are identified by Euclidean distance.

3. A change in attribute value accompanied by a change in class leads up to the

weighting of the attribute based on the intuition that the attribute change could
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be responsible for the class change.

4. On the other hand, a change in attribute value accompanied by no change in

class leads to a down weighting of the attribute based on the observation that

the attribute change did not affect the class.

This procedure attribute weight updating is performed for a random set of samples

in the data or every sample in the data. The weight updates are then averaged so

that the final weight is in the range [−1 , 1]. The attribute weight estimated by

Relief has a probabilistic interpretation. It is proportional to the difference between two

conditional probabilities, namely, the probability of the attribute’s value being differently

conditioned on the given nearest miss and nearest hit, respectively [KR92a][KR+92b].

Figure 4.18 – The Pseudo-code of the basic Relief algorithm [KR92a][KR+92b].

Kononenko et al. proposed several updates to Relief to the method now called

Relief-F [KRSP96] with the pseudo-code shown in Figure 4.19.

1. Relief-F used the near-hit and near-miss instances using the Manhattan (L1)

norm rather than the Euclidean (L2) norm. Furthermore, it utilized the absolute

differences between xi and near-hit and xi and near-miss to be sufficient when

updating the weight vector (rather than the square of those differences).

2. In Relief-F, the contribution of missing values to the feature weight is determined

using the conditional probability that two values should be the same or different,
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approximated with relative frequencies from the data set. This can be calculated

if one or both features are missing.

3. Instead of using Kira and Rendell’s proposed Relief decomposition of a multino-

mial classification into several binomial problems, Relief-F searches for k near

misses from each class and averages their contributions for updating W, weighted

with the prior probability of each class.

Figure 4.19 – The Pseudo-code of the extended Relief-F algorithm [KRSP96].

4.5.2 Sequential Backward Propagation

Sequential backward selection is a wrapper method to select the most relevant

features for optimal model performance. Its evaluation uses criteria related to the

classification algorithm used. The objective function is a pattern classifier, which

evaluates feature subsets by their predictive accuracy (recognition rate on test data) by

statistical re-sampling or cross-validation.

1. The criterion function is computed for all n features.

2. Each feature is deleted one at a time, the criterion function is computed for all

subsets with n-1 features, and the worst feature is discarded.
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3. Each feature among the remaining n-1 is deleted one at a time, and the worst

feature is discarded to form a subset with n-2 features.

4. This procedure continues until a predefined number of features are left.

An example of using SBS is shown in Figure 4.20.

Figure 4.20 – An example of SBS for identifying feature subsets that maximize the
performance of a machine learning model.
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4.6 Conclusion

This chapter illustrated the steps taken before feeding the data to the machine

learning models in the following chapter. The first steps included data cleaning from

noise and outliers. Then, the feature extraction step is executed, including classical

features previously explored in the literature and cyclostationary features. Statistical

and machine learning feature selection is then applied to reduce dimensionality, improve

the model’s performance, and reduce computational costs.
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Chapter 5
Machine Learning Classification Methods

Les outils de classification vont faire correspondre à chacune des donnée

la catégorie à laquelle elle appartient. Une mise en correspondance des

données d’entrée et des variables de sortie discrètes est réalisée. L’objectif

principal est de déterminer à quelle classe/catégorie les nouvelles données

appartiendront. Ce chapitre explique les différents outils de classification

supervisée basés sur l’apprentissage automatique utilisés dans cette thèse.

Machine learning classification models categorize a given set of data into

classes. The classification predictive modeling task approximates the

mapping function from input data to discrete output variables. The

main objective is to determine which class/category the new data will

belong to. This chapter explains the different supervised classification

machine learning classification models used in this thesis.
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5.1 Introduction

Machine learning is a subfield of artificial intelligence (AI). It generally seeks to

understand the structure of data and fit that data into models that people can easily

understand and use [Zho21].

Machine learning can be used for a large variety of applications and is a constantly

evolving area. Even though machine learning is a field of computer science, it is different

from traditional computational techniques. In conventional computing, algorithms

are packs of explicitly programmed instructions used by computers to compute or

predict [Zho21]. Instead, machine learning algorithms allow computers to train on data

inputs and use statistical analysis to predict outputs within a precise range. Machine

learning simplifies computers’ ability to build models from sample data to automate

decision-making procedures from input data [Zho21].

In machine learning, methods are generally classified into broad categories. These

categories are based on the learning process or how the feedback is given to the system

developed. For example, two widely adopted machine learning categories are supervised

learning and unsupervised learning. Supervised learning trains algorithms based on

example input and output data humans label. On the other hand, unsupervised learning

provides algorithms with no labeled data, allowing it to find structure within its input

data [Zho21].

5.1.1 Unsupervised Machine Learning

Unlike in supervised learning, in unsupervised machine learning the input data is

without labels (Figure 5.1), so the learning algorithm is forced to find commonalities
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within its input data points [AAJM+20].

The objective of unsupervised learning may be as straightforward as discovering

hidden patterns within a data-set. However, it may also have a feature learning goal,

allowing the computational machine to discover the representations needed to classify

raw data automatically [AAJM+20].

Figure 5.1 – Supervised and Unsupervised Machine Learning

5.1.2 Supervised Machine Learning

In supervised machine learning, the algorithm is given example data inputs with

labeled classes [Kad19]. The algorithm then learns by comparing the data’s actual

category with the predicted output to find errors and adjust the model accordingly.

Supervised learning, therefore, uses patterns to predict labels for new unlabeled input

data [Kad19]. The data-set used in this thesis is provided with labels considering that

participants’ responses to whether they have fallen n the past or not are accurate.

In this thesis, five classical supervised machine learning algorithms were used on

the data-set to classify elderly people with risk and no risk of future falls. These five

classification methods were chosen based on the methods used in the literature of elderly

fallers prediction detailed in the first chapter. The primary purpose was to compare

the performances of each method.
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Other types of well-known machine learning classification models were not explored

in this thesis because of some characteristics they have that do not fit the type of

data-set this thesis worked on. An example is the Naive Bayes machine learning

algorithm, which was not used since it is better suited for categorical input variables

than numerical variables [VSD15].

The below sections explain the algorithm of each supervised machine learning method

used in this thesis: Logistic Regression, Support Vector Machine (SVM), K-Nearest

Neighbors (KNN), Decision Trees, and Artificial Neural Networks (ANN). The Table

5.1 summarizes the pros and cons of each method.

Table 5.1 – The Pros and Cons of Each Classification Algorithm

Method Pros Cons
Logistic Easy to implement,interpret, assumes linearity between the

Regression and efficient to train. dependent and the
independent variables.

Support Vector Robust to overfitting Computationally expenssive
Machine (SVM) and noise and runs slow.

useful in non-linear problems
K-Nearest Easy to understand Limitation of memory

Neighbors(KNN) Robust to noisy data
Decision Trees Interpretable, can handle Greedy (may not find

missing data the best tree)
Artificial Neural Able to manage abundant requires a large amount of data
Networks (ANN) number of data, appealing for accuarte predictions,

attributes of non-linear takes timein training
identification and control

5.2 Logistic Regression

Logistic regression is a type of supervised machine learning that is often utilized for

classification and predictive applications [HJLS13]. Logistic regression calculates the
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probability of an occurrence of an event based on a given data-set with independent

variables [HJLS13]. The output dependent variable is between 0 and 1 since it is a

probability.

In Logistic Regression, a log transformation is applied to the odds, which is the

probability of success divided by the probability of failure, which is also commonly

known as the log odds or the natural logarithm of odds. The below equation represents

the logistic function:

f(x) = 1
1 + exp(−x) (5.1)

Logistic Regression is named after the logistic function used at the method’s core.

The logistic function is an S-shaped curve that can take any real-valued number and

map it into a value between 0 and 1, but never precisely at those limits. For example,

the below Figure 5.2 shows a plot of the numbers between -5 and 5 transformed into

the range 0 and 1 using the logistic function [HJLS13].

Figure 5.2 – The Plot of the Logistic Function.

Logistic regression uses an equation as the representation where the input values x

are combined linearly using weights or coefficient values βs to predict an output value

y. A key difference from linear regression is that the modeled output value is a binary



92 5.2 Logistic Regression

value (0 or 1) rather than a numeric value. Below is an example logistic regression

equation [HJLS13]:

y(x) = exp(β0 + β1x)
1 + exp(β0 + β1x) (5.2)

Where :

— y is the predicted output,

— β0 is the bias or intercept term,

— and β1 is the coefficient for the single input value x.

Therefore, each column in the input data has an associated β coefficient (a real

constant parameter) that must be learned from the training data [HJLS13].

The actual model representation used for future inputs is the coefficients in the

equation (5.2). This model’s β parameters, or coefficient, is commonly estimated via

maximum likelihood estimation (MLE). This method tries different beta values through

multiple iterations to optimize for the best fit of log odds. All of these iterations produce

the log-likelihood function, and logistic regression seeks to maximize this function to find

the best parameter estimate. Once the optimal coefficients are found, the conditional

probabilities for each observation can be estimated, logged, and summed together to

generate a predicted probability. For example, for binary classification, a probability

less than 0.5 will predict 0, while a probability greater than 0 will predict 1. After the

model has been computed, it is best practice to evaluate how well the model predicts

the dependent variable, called goodness of fit [HJLS13].

Logistic regression is a discriminative model which attempts to distinguish between

classes (or categories). As mentioned earlier, logistic regression maximizes the log-

likelihood function to estimate the beta coefficients of the model. Within the context of

machine learning, logistic regression uses the negative log-likelihood as the loss function,
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using a gradient descent approach to find the global maximum [SV21].

Logistic regression is considered prone to overfitting, mainly when there are many

predictor variables within the model. Therefore, regularization penalizes parameter-

significant coefficients when the model possesses high dimensionality [SV21]. Regular-

ization is a term used in machine learning refering to modifications made to a learning

algorithm intended to reduce its generalization error but not its training error. It is

used to train models that generalize better on new data by preventing the algorithm

from overfitting the training dataset.

5.3 Support Vector Machine (SVM)

Support Vector Machines (SVMs) were initially designed to solve binary classification

problems and later extended and applied to regression and unsupervised learning

[Nob06]. As a result, they have shown success in solving many complex machine-

learning classification problems [Nob06]. SVM is used for classification and regression

applications by finding a hyperplane in an N-dimensional space that distinctly classifies

the data points with maximum marginal distances that contribute to more confidence

in classifying new data points [Nob06].

The SVM assumes a linear decision boundary between two different classes and

aims to find a hyperplane that delivers the maximum separation between the two

categories as shown in Figure 5.3. For this reason, the alternate term maximum margin

classifier occasionally refers to an SVM. The perpendicular distance between the nearest

data point and the decision boundary is referred to as the margin. When the margin

completely separates the positive and negative samples and does not accept any errors,

it is called the hard margin [PS20].
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Figure 5.3 – SVM Example

Suppose a training dataset is available (with labeled data) {(x1, y1), . . . , (xn, yn)},

where yi =


1 if belonging to class 1

−1 if belonging to class 2

The mathematical expression for a hyperplane is shown below. wj’s are the coeffi-

cients, and w0 is the arbitrary constant that determines the distance of the hyperplane

from the origin [PS20].

wT xi + w0 = 0 (5.3)

For the ith 2-dimensional point (xi1, xi2), the above expression is reduced, as shown

below.

w1xi1 + w2xi2 + w0 = 0 (5.4)

While looking to maximize the margin between positive and negative samples, the

positive data points are required to satisfy the following constraint [PS20]:
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wT x+
i + w0 ≥ +1 (5.5)

Similarly, the negative data points are required to satisfy the below constraint:

wT x−
i + w0 ≤ −1 (5.6)

The below uniform equation can be written for both the positive and negative data

points by using ti being either −1 or +1 to predict the class label of data point xi

[PS20].

ti(wT xi + w0) ≥ +1 (5.7)

The below equation is for the perpendicular distance di of a data point xi from the

margin.

di = |wT xi + w0|
||w||

(5.8)

To maximize this distance, we can minimize the square of the denominator to give

us a quadratic equation shown below.

min
1
2 ||w||2 (5.9)

which is subject to the below condition.

ti(wT xi + w0) ≥ +1, ∀i (5.10)
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To maximize this distance, the square of the denominator needs to be minimized to

give us a quadratic programming problem given by [PS20]:

L(w, w0, α) = 1
2 ||w||2 +

∑
i

αi(ti(wT xi + w0) − 1) (5.11)

To solve the above, the following need to be set:

∂L

∂w
= ∂L

∂α
= ∂L

∂w0
= 0 (5.12)

Plugging above in the Lagrange function gives us the following optimization problem:

Ld = −1
2

∑
i

∑
k

α1αktitk(xi)T (xk) +
∑

i

αi (5.13)

The above needs to be maximized with subject to the following [PS20]:

w =
∑

i

αitixi (5.14)

and,

0 =
∑

i

αiti (5.15)

The classification of any test point x can be determined using the below expression:

y(x) =
∑

i

αitix
T xi + w0 (5.16)
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where a positive value of y(x) implies that x belongs to class +1 and a negative

value of y(x) means that x belongs to class -1.

For w0 , any support vector xs can be selected and solve for the below [PS20]:

tsy(xs) = 1 (5.17)

giving us the below equation:

ts(
∑

i

αitix
T
s + w0) = 1 (5.18)

Non-linear SVM is used for linearly inseparable data. It is identical to the above

algorithm, but with every dot product substituted with a nonlinear kernel function to

better fit the maximum margin hyperplane in a transformed feature space [PS20].

5.4 K-Nearest Neighbors (KNN)

KNN algorithm is a pattern recognition, non-parametric method used for both

classification and regression [Pet09]. The KNN algorithm operates by storing the

previous known cases and classifies new instances based on a similarity measure of

distance functions (such as Euclidean, Manhattan, and Minkowski) [Pet09]. After

obtaining the K nearest neighbors, a simple majority of these KNNs are selected in the

prediction of the new instance [Pet09].

The example below in Figure 5.4 demonstrates how KNN algorithm works as we

change K. The point in question is the green point.

— Based on 1-nearest neighbor, the data point in question is classifies as red.
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— Whereas, based on 2-nearest neighbor, KNN will not be able to classify the point

since the second nearest point is blue. As for setting K to 5 leads to classifying

the point in question to red as the number of votes for the red are 3 and the

number of votes for blue are 2.

Figure 5.4 – A KNN Example

KNN models are considered straightforward to implement and handle non-linearities

well. Fitting the model also tends to be fast as the computer does not have to calculate

any particular parameters or values. The trade-off here is that while the model is fast

and straightforward to set up, it is slower to predict since, to predict an outcome for a

new input data, it will have to search through all the data points in its training dataset

every time to find the nearest ones. As a result, KNN can be a relatively slow method

for large datasets compared to other algorithms that may take longer to fit but will

make their predictions with relatively simple computations [Pet09].

5.5 Decision Trees

Decision trees are used in machine learning for both classification and regression

applications [KS08]. They have a structure that resembles a flow chart mechanism,
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where each internal node represents an assessment of a feature, each branch denotes

the result of the assessment, and each terminal node outputs the label [KS08].

Constructing a decision tree learning algorithm works from top to bottom in the

sense of selecting a feature that would best split to the rest of the features as shown in

Figure 5.5. The decision of how the architecture of the tree should be is achieved by

the Gini impurity or using information gain[KS08].

— The Gini impurity would be an assessment of the likelihood of the wrong

classification of a new instance of a random variable if that new instance was

randomly classified according to the distribution of class labels from the data

set. To calculate the Gini impurity for a set of data points with J classes, and

pi are the items that belong to class i [KS08].

IG(p) =
J∑

i=1
(pi

∑
k ̸=i

pk) =
J∑

i=1
pi(1 − pi) =

J∑
i=1

(pi − p2
i ) =

J∑
i=1

pi −
J∑

i=1
p2

i = 1 −
J∑

i=1
p2

i

(5.19)

Examples :

— If there is only item that belong to one class {50, 0, 0} : G=0,

— if there is the same number {50, 50, 50} : G=2/3,

— G will decrease when the elements of one class increase {70, 30, 50} : G=0.63.

— Information gain is a measure of how much “information” a certain feature can

provide about a class. The decision trees algorithm tries to maximize information

gain making the attribute with the highest information gain be split first [KS08].

IG(T, a) = H(T ) − H(T |a) = −
J∑

i=1
pilog2pi −

∑
a

p(a)
J∑

i=1
−Pr(i|a)log2Pr(i|a)

(5.20)
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Where, H(T) is the Entropy of parent and H (T|a) is the weighted sum of Entropy

of children.

Entropy measures the discriminatory power of a feature for the classification task. It

defines the amount of randomness in the attribute for a classification task. Information

Gain is used for ranking features or attributes for filtering at a given node in a decision

tree. The ranking is done based on high information gain entropy in decreasing order.

Some of the advantages of using decision trees for classification problems are that

they can capture nonlinear relationships and do not require any transformation of

the features. They are also considered fast and efficient compared to KNN and other

classification algorithms. In addition, they are easy to understand, interpret, and

visualize. Moreover, it provides information about the relative importance of attributes

[KS08]. On the other hand, decision trees take much time to train, especially with

large datasets and many features. In addition, overfitting is the main problem of the

Decision Trees. In order to fit the data (even noisy data), it generates new nodes,

and ultimately the tree becomes too complex to interpret. As a result, it loses its

generalization capabilities. As a result, it performs well on the trained data but makes

many mistakes on future input data [KS08].

5.6 Neural Networks

5.6.1 Artificial Neural Networks(ANN)

Artificial Neural Networks (ANN) is a branch of Artificial intelligence that has been

accepted as a new technology in computer science [GVRP10]. It is a mathematical model

that tries to simulate the structure and functionalities of biological neural networks.
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Figure 5.5 – Decision Trees Example

ANNs design and functionalities are derived from observing a biological neuron that is

the basic building block of biological neural networks, including the brain, spinal cord,

and peripheral ganglia [KBK11].

Artificial Neural Networks (ANN) have been widely employed in a large variety of

applications in various fields in the last two decades owing to their remarkable capabili-

ties, such as; pattern recognition in complex biological data sets that cannot be detected

with conventional linear statistical analysis [AAIO18], modeling non-linear systems and

making a generalized conclusion from data similar to the human brain reaction. Some

examples of applications that use ANNs are in pharmaceutical applications [AKB00],

diagnostic medical applications [Suz11], skin diseases, sclerosis, anesthesia, and cardio-

vascular; in clinical and other applications such as remote telemedicine [Hua11] and

medical image processing [AAIO18]. Furthermore, technology has rapidly evolved in

recent times [GVRP10]. This development has led to a new approach to solving many

data processing-based problems [KAM13].

An Artificial Neural Network is a group of interconnected nodes, similar to the

network of neurons in an animal brain. ANNs are characterized in principle by network
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topology, a connection pattern, neural activation properties, and a training strategy

to process data [AD11]. Every Artificial Neural Network has a fundamental building

block called artificial neuron organized in layers, which is a simple mathematical model

composed of three simple sets of rules, namely; multiplication in which every individual

input is multiplied with individual weight at the entrance, summation of all weighted

inputs and bias (bias in machine learning refers to the erroneous assumption that some

aspects of a dataset are given more weight and/or representation than others.) in the

middle section, and lastly, activation, where the result obtained from the middle section

is taken through a process called transfer or activation function as illustrated in the

Figure 5.6 below.

Figure 5.6 – Principle of An ANN

A biological neuron is composed of branched structures known as dendrites; a

processing unit called the cell body and a long axon through which the impulses are

transmitted as an output to the peripheral [EA13]. Thus, the dendrites receive impulses

from neighboring dendrites, transmit the impulses to the processing unit and pass the

processed impulses via the long axon to give output [EA13] as shown in Figure 5.7.
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Figure 5.7 – Model of a Biological Neuron [EA13]

Similarly, an artificial neuron receives information via weighted inputs, then transmit-

ted to the body, where the weighted inputs and bias are summed up. The information

is then processed with the transfer function, and the output is obtained, as shown

in Figure 5.6. The model described can be mathematically depicted using the below

equation:

y(t) = F (b +
N∑

i=1
wi(t)xi(t)) (5.21)

where y(t) is the output in discrete time t, F is the activation function, wi is the weight

of the input in discrete time t, x(t) is the input value in discrete time t, and b is the

bias. The activation function f decides whether a neuron should be activated or not. In

other words, an activation function decides whether the neuron’s input to the network is

essential or not in the prediction process using straightforward mathematical operations.

The primary role of the activation function is to convert the summed weighted input

from the node into an output value to be fed to the subsequent hidden layer or as the

final output. There are many activation functions to choose from to build an ANN,

such as binary step function, linear activation function, Sigmoid activation function,

Tanh function (Hyperbolic Tangent), ReLU Function, and others.
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Neural Networks are modeled as collections of neurons connected in an acyclic graph

such that the outputs of some neurons can become inputs to other neurons. Neural

Network models are often organized into distinct layers of neurons. The most common

layer type for regular neural networks is the fully-connected layer in which neurons

between two adjacent layers are fully pairwise connected, but neurons within a single

layer share no connections.

Figure 5.8 – Left: A 2-layer Neural Network (one hidden layer of 4 neurons and one
output layer with 2 neurons), and three inputs. Right: A 3-layer neural network with
three inputs, two hidden layers of 4 neurons each and one output layer.

Artificial Neural Networks possess the ability to solve complex real-life problems by

processing information in their basic building blocks (artificial neurons) in a non-linear,

distributed, parallel, and local way. How individual artificial neurons are interconnected

is called topology, architecture, or graph of an artificial neural network [KBK11]. Two

examples of Neural Network topologies are presented in Figure 5.8 that use a stack of

fully-connected layers.

Scientists have come up with a variety of ANN topologies that are suitable for various

kinds of applications selected based on the requirements of problem at hand [AAIO18].

For example, in Feed-Forward Neural Network FNN, the flow of information is in one

direction from input nodes through the hidden nodes and then to output nodes without

back loops [Zel94]. On the other hand, Recurrent Neural Networks RNN permits the
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backflow of information with back loops. As such, they are multidirectional and can

use their internal state (memory) to process sequences of inputs. These properties

make them suitable for tasks such as unsegmented, connected handwriting recognition

[GLF+08] or speech recognition [SSB14, LW15]. In addition, the RNNs have been

modified for better suitability in exceptional cases of information backflow, such as;

Hopfield, Elman, Jordan, bi-directional and other networks[SCD13].

A selected ANN topology is taken through a learning process in which the ANN

is taught how to perform the required task effectively [Sim99]. Learning is done by

updating the weights and bias levels at the network’s input layer as it is simulated in a

given data environment, and the actual result obtained is compared with the expected

result [Sim99].

Supervised, unsupervised, and reinforcement learning are the various ANN learning

paradigms available [NJT01] whose selection is dependent on the kind of problem.

— Supervised learning is also called learning with a teacher [Sim99]. It involves

modification of the synaptic weights of a neural network by applying a set of

labeled training samples or task examples (input-output pairs) and learning

a function that maps from input to output [Sim99]. It is used for pattern

recognition (classification), Sequential data (handwriting, speech, and gesture

recognition), and Regression (Function approximation).

— In unsupervised learning, also called learning without a teacher, [Sim99] the

network learns patterns in the input even when no explicit feedback or label

is supplied. Once the network is tuned to the statistical regularities of the

input data, the network develops the ability to form internal representations for

encoding features of the input and, thereby, to create new classes automatically

[KRSS01]. It is used for filtering, compression, and commonly for clustering

tasks.
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— In reinforcement learning, the learning of an input-output mapping is executed

through continued interaction with the environment in order to minimize a scalar

index of performance [JLDN19].

5.6.2 Deep Learning

The concept of deep learning is not novel. However, its hype has recently increased,

and deep learning is getting more attention. Deep Learning is a subfield of machine

learning motivated by artificial neural networks [NNFM14].

Deep Learning achieves exceptional power and flexibility by learning to describe

the world as a nested hierarchy of concepts or abstractions. It simply takes in data

connections between all artificial neurons and modifies them according to the data

pattern. More neurons are needed with larger datasets. It automatically select features

at multiple abstraction levels, allowing a system to learn complex functions mapping

without depending on any specific algorithm. Now that the world has reached a

technological level with fast enough computers and enough data to train large neural

networks, deep learning is possible to achieve [NNFM14].

One particular benefit of using deep learning is related to scalability [NNFM14].

As we construct more extensive neural networks and train them with more and more

data, their performance continues to increase. This is generally not possible from other

machine learning techniques that reach a plateau in terms of performance as shown in

Figure 5.9.

In addition to scalability, another often cited advantage of deep learning models

is their capacity to perform automatic feature extraction from raw data, also called

feature learning. Deep learning algorithms aim to manipulate the unknown structure in

the input distribution in order to discover reasonable representations, often at multiple
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levels, with higher-level learned features described in terms of lower-level features

[Ben12].

Figure 5.9 – A Comparison between the Performance of Deep Learning against that of
Other Machine Learning Algorithms

5.6.3 Convolutional Neural Networks (CNN)

Convolutional layers are the primary building blocks used in convolutional neural

networks [AMAZ17]. A convolution is a simple filter applied to an input that results in

an activation. Repeated application of the same filter to an input results in a map of

activations called a feature, indicating the locations and strength of a detected feature

in an input, such as an image [AMAZ17].

The innovation of convolutional neural networks is the ability to automatically learn

many filters in parallel specific to a training dataset under the constraints of a specific

predictive modeling problem, such as image classification. The result is particular

features detected anywhere on input images [AMAZ17].

5.6.3.1 Convolution in CNN

Convolutional Neural Network is a unique neural network model under deep learning

as shown in the heirarchy diagram in Figure 5.10. CNN is designed for working with
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Figure 5.10 – Convolutional Neural Networks Belonging in Deep Learning Methods

two-dimensional input image data. However, it can be used with one-dimensional and

three-dimensional data [LLY+21]. The convolutional layer in the network executes an

operation referred to as a convolution. Under the context of a convolutional neural

network, convolution is a linear operation that involves the multiplication of a set of

weights with the input, the same as a traditional neural network. However, since the

technique was designed for two-dimensional input, multiplication is applied between an

array of input data and a two-dimensional array of weights, called a kernel or a filter

[LLY+21]. The filter is much smaller than the input data, and the type of multiplication

applied between a filter-sized patch of the input, and the filter is called dot product.

A dot product is an element wise multiplication between the filter sized patch of the

input and filter, which is then summed, always resulting in a single value. Because it

results in a single value, the operation is usually named the "scalar product" [LLY+21].

Employing a filter smaller than the input is intended to allow the same filter to be



Chapter 5. Machine Learning Classification Methods 109

multiplied by the input array multiple times at different points on the input. Mainly,

the filter is applied systematically to each overlapping part or filter-sized patch of the

input data, left to right, top to bottom. This systematic application of the same filter

across the entire image is a vital concept. For example, if the filter is developed to detect

a precise type of feature in the input, then the application of that filter systematically

across the input image allows the filter to identify that feature in the image. This

ability is commonly referred to as translation invariance, where the general interest is

whether the feature is present instead of where it was [LLY+21].

Figure 5.11 – How the Feature Map is Created

The output resulting from multiplying the filter with the input array one time is

a single value. However, as the filter is applied multiple times to the input array, the

result is a two-dimensional array of output values representing the filtered input called a

feature map [Mur16]. To summarize the concept of convolution in convolutional neural

networks, with an input image of pixel values and a filter (set of weights), the filter is

systematically applied to the input image to create a feature map as shown in Figure

5.12.
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Figure 5.12 – A 4x4x3 RGB Image [Sah18]

In Figure 5.12, an RGB image is separated by its three color planes: Red, Green,

and Blue. There are several color spaces in which images exist, such as Grayscale

and RGB. The role of the CNN is to reduce the images into a form that is easier to

process without losing features essential for obtaining a good prediction. Reducing

image complexity is important when designing an architecture that is good at learning

features and scalable to massive data-sets .

5.6.3.2 Setting Up a Convolutional Neural Network Architecture

Many decisions need to be made to build a CNN. These decisions will ultimately

affect the performance of the model. For example, there are different types of layers,

such as the convolutional layer, pooling layer, fully connected layer, softmax layer, and

dropout layer. In addition, it’s pretty common to have multiple layers of the same type.

Further, most of the different types of layers can be customized, and you’ll usually

have to set the number of input and output nodes and other parameters. This section

explains how to select an appropriate number for the different types of layers and set
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reasonable parameter values.

— Convolutional layers perform convolutions, which, as explained earlier, are

operations where a filter is moved over an input image, calculating the values

in a resulting feature map. A convolutional layer is usually built of multiple

filters, producing multiple feature maps. During the training of the CNN, the

model will learn the weights to apply to the different feature maps and, hence,

be able to identify which features to extract from the input images. An example

is shown in Figure 5.13 [Mur16] where the green part represents a 5x5x1 input

image. The element involved in the convolution operation in the first part of

a Convolutional Layer is the Kernel/Filter, K, depicted using yellow color. In

this example, K is a 3x3x1 matrix. The Kernel shifts 9 times since the stride

length is 1. With every shift, a matrix multiplication operation occurs between

K and the portion of the image over which the Kernel is hovering. The filter

moves toward the right direction with a particular stride value till it parses the

complete width [Sah18]. Then, moving on, it goes down to the far left side of

the image with the same stride value and repeats this process until the entire

image is crossed as shown in the below Figure 5.14 [Sah18].

Figure 5.13 – Convolution of a 4x4x3 RGB Image [Sah18]
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Figure 5.14 – A 4x4x3 RGB Image Convolution Filter Movement[Sah18]

In images with multiple channels, such as RGB, the Kernel has the same depth as

the input image. Then, matrix multiplication is performed between Kn and the

image stack, and all the results are summed with the bias to give us a squashed

one-depth channel Convoluted Feature Output as shown in Figure 5.15 [Sah18].

The convolution operation’s purpose is to extract high-level features, such as

edges, from the input image. Therefore, CNNs should not be limited to only one

convolutional layer. Conventionally, the first convolutional layer is responsible

for capturing the low-level features such as edges, color, and gradient orientation.

Then, with additional layers, the architecture adapts to the high-level features,

giving us a network that has a generalized understanding of images in the dataset,

similar to how we would [Sah18].

There are two kinds of results to the convolution operation. The first is Valid

Padding, where the convolved feature is reduced in dimensionality compared to

the input. The other result is the Same Padding in which the dimensionality is

either increased or remains the same. An example of the Same Padding (Figure

5.16) is when a 5x5x1 image is augmented into a 6x6x1 image, and then the 3x3x1

kernel is applied over it; the convolved matrix turns out to be of dimensions

5x5x1. On the other hand, if the same operation is performed without padding,
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Figure 5.15 – A Convolution Operation on an MxNx3 Image Matrix with a 3x3x3
Kernel [Sah18]
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the result is a matrix with dimensions of the kernel (3x3x1) itself. This is an

example of Valid Padding [Sah18].

Figure 5.16 – An Example of Same Padding: 5x5x1 Image is Padded with 0s to Create
a 6x6x1 Image Convolution Operation on an MxNx3 Image Matrix with a 3x3x3 Kernel
[Sah18]

By increasing the number of convolutional layers in the CNN, the model can

detect more complex features in an image. However, more layers will take

more time to train the model and increase the likelihood of overfitting. So,

two convolutional layers will usually be enough while setting up a relatively

simple classification task. And then, the number of layers can be increased if

the resulting accuracy is considered unsatisfactory.

The suitable number of nodes is also highly dependent on the complexity of the

images and the task at hand. By altering the number of nodes and evaluating

the resulting accuracy, the model can be run multiple times until an acceptable

performance is achieved.

— Pooling Layers are layers that help reduce the computational cost of the model

and aim to minimize overfitting by decreasing the dimensionality of its input.
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There are two different types of pooling layers, listed below and shown also in

Figure 5.17:

— Max pooling, which chooses the largest value in the matrix;

— Average pooling, which chooses the mean of the values in the matrix.

Max Pooling performs as a noise suppressant. It discards noisy activations and

performs de-noising and dimensionality reduction. Max pooling helps extract

prominent features such as edges. On the other hand, average pooling adds a

small amount of translation invariance, which translates the image by a small

amount that does not significantly affect the values of most pooled outputs.

In addition, it extracts features more smoothly than Max Pooling. Therefore,

Max Pooling is thought to perform much better than Average Pooling and is

used more often in CNNs especially when edge detection is important in the

classification task.

Figure 5.17 – The Two Types of Pooling Layers [Alj18].

In a pooling layer, a filter is passed to the entire image. The window size and

stride will determine the output size and how the filter is moved over the input
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matrix. The most standard is to choose a window size of 2x2. There is no

straightforward answer for how often to include a pooling layer in a CNN, and

iterations should be executed until an adequate performance is achieved. For

example, the well-known computer vision model VGG-16 operates using two to

three convolutional layers between the pooling layers, while VGG-19 operates

using up to four [AEV20],

The Convolutional Layer and the Pooling Layer jointly constitute a CNN’s i-th

layer. Depending on the complexities in the images, the number of such layers

may be increased for capturing low-level details more, but at the cost of more

computational power. Now that the model understands the features, the final

output will be flattened and fed to a regular ANN for classification purposes.

— Fully Connected Layers transform their inputs to the preferred output format.

For example, a classification task normally contains converting a matrix of

image features into a 1xC vector where C is the number of classes. There is

not necessarily a correct answer to how many fully connected layers should be

chosen in a CNN model. For most models, however, starting with one or two

fully connected layers would be sufficient, later optimizing the number depending

on the resulting performance.

— Softmax Layers are commonly used after the fully connected layers. A Softmax

Layer takes a vector of size 1xC as an input, where C is the number of classes,

and all numbers add up to 1. The softmax layer then utilizes this vector and

builds a new vector where each input denotes a probability for the image to be

of that particular class. A softmax is, therefore, mainly used in classification

tasks. For most computer vision projects, one softmax layer will be sufficient

[LWYY16].

— Dropout Layers involve turning off nodes randomly with a probability during

training as shown in Figure 5.18. Such layers are especially helpful in fighting
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overfitting in models with much complexity. Dropout layers can be suitable to

apply to fully connected layers and convolutional layers [ZPST18].

Figure 5.18 – An Example of a Dropout operation with drop rate 0.5 [Alj18]

The correct number of layers and nodes is usually determined by experimentation and

trying a different number of layers and nodes. The step is to add the first convolutional

layer. Next, is to add the Leaky ReLU activation function, which helps the network

learn non-linear decision boundaries.

The ReLU activation function is utilized extensively in neural network architectures,

especially in CNNs, where it has proven to be more effective than the widely used

logistic sigmoid function.

As of 2017, this activation function is the most popular for deep neural networks.

The ReLU function allows the activation to be thresholded at zero. However, during the

training, ReLU units can "die." This is possible when a large gradient flows through a

ReLU neuron: it can cause the weights to update so that the neuron will never activate

on any data point again. If this happens, the gradient flowing through the unit will

always be zero. Leaky ReLUs attempt to avoid this problem by setting a slight negative

slope so the function will not be zero.

Next, the max-pooling layer is added, and so on. The fully connected layer’s purpose

is to flatten the high-level features learned by convolutional layers and combine all the

features. Finally, it passes the flattened output to the output layer, where a softmax

classifier or a sigmoid is used to predict the input class label.
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The last layer is a Dense layer with a softmax activation function with two units,

which is needed for this binary class classification problem.

After the model is created, it is compiled using the Adam optimizer, one of the most

popular optimization algorithms. Adam is a machine learning optimization algorithm

recently introduced in 2015 to be utilized rather than the classical stochastic gradient

descent method to update network weights iteratively based on the training data. Adam

is further explained in Chapter 6.

Figure 5.19 – A CNN Example of Classifying Images of Vehicles [Sah18]

Figure 5.19 shows an example of a CNN to classify images into different classes

of vehicles. The first part of the CNN is dedicated to feature learning which is then

followed by the classification. The layers: Convolutional layer + ReLu and Pooling

layers are repeated until satisfactory performance of the model is reached.

Another example is the CNN shown in Figure 5.20 used to classify handwritten

numbers. The input is a 28x28 image first fed to a convolutional layer with a 5x5 kernel

and then to a 2x2 max pooling layer. Other convolutional and max pooling layers are

used before feeding the data to a fully connected layer with ReLU activation. The data

is flattened and then entered into another fully connected layer with dropout to finally

reach the output.
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Figure 5.20 – A CNN Example of Classifying Handwritten Digits [Sah18]

5.7 Machine Learning Performance Metrics

Evaluating the performance of a Machine learning model is one of the essential

steps while building an effective Machine learning model. Different metrics are used to

evaluate the model’s performance or quality, known as performance or evaluation metrics.

These performance metrics help us understand how well the model has performed for

the given data. This way, the model’s performance can be improved by tuning the

hyperparameters. In addition, each Machine learning model aims to generalize well

on new data, and performance metrics help determine how well the model generalizes

[JS15].

Figure 5.21 – A Confusion Matrix.



120 5.7 Machine Learning Performance Metrics

5.7.1 The Confusion Matrix

A confusion matrix is a table layout that allows visualization of the performance

of a supervised machine learning algorithm. Each row of the matrix represents the

instances in an actual class while each column represents the instances in a predicted

class, or vice versa (as shown in Figure 5.21).The name stems from that it makes it easy

to see whether the system is confusing or is mislabeling two classes [JS15]. It has two

dimensions ("actual" and "predicted") and identical sets of "classes" in both dimensions.

There are 4 cases in the confusion matrix:

— True positive (TP): The prediction is positive, and the subject has a risk of

falling. (correct prediction)

— True negative (TN): Prediction is negative and the subject does not have a

risk of falling. (correct prediction)

— False positive (FP): Prediction is positive and the subject does not have a

risk of falling. (bad prediction)

— False negative (FN): Prediction is neagtive and the subject has a risk falling.

The below supervised machine learning parameters are extracted from the confusion

matrix:

— Accuracy is the ratio of the correctly labeled subjects to the whole pool of

subjects. Accuracy answers the following question: How many subjects were

correctly labeled out of all the subjects?

Accuracy = (TP + TN)/(TP + FP + FN + TN) (5.22)

— Numerator: all correctly labeled subjects (All trues)

— Denominator: all the subjects

— Sensitivity is the ratio of the correctly positive labeled by the algorithm to
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all who are diabetic in reality. Sensitivity answers the following question: Of

all the subjects who are with risk of falling, how many of those were correctly

predicted?

Sensitivity = TP/(TP + FN) (5.23)

— Numerator: positive labeled diabetic people.

— Denominator: all people who have the risk of falling (whether detected by

our program or not)

— Specificity is the correctly negative labeled by the algorithm to all who do not

have a risk of falling in reality. Specificity answers the following question: Of

all the people who do not have a risk of falling, how many of were correctly

predicted?

Specificity = TN/(TN + FP ) (5.24)

— Numerator: negative labeled people with no risk of falling.

— Denominator: all people who do not have a risk of falling in reality (whether

positive or negative labeled)

— Precision is the ratio of the correctly positive labeled by the algorithm to all

positive labeled. Precision answers the following: How many of those who we

labeled as fallers are actually fallers?

Precision = TP/(TP + FP ) (5.25)

— Numerator: positive labeled people with risk of falling.

— Denominator: all positive labeled by our program (whether they have a risk

of falling or not in reality).
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5.8 Conclusion

Early and more accurate disease detection, better diagnosis, and preventable painful

treatments could all be made possible by utilizing machine learning to detect future falls

in the elderly. After performing feature extraction and selection, the machine learning

algorithms used in this thesis were explained in this chapter. Proper optimization of the

hyperparameters follows as they play a significant role in optimizing the performance

of the classification models.
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Chapter 6
Model Optimization Methods

L’optimisation de l’apprentissage automatique consiste à ajuster les hy-

perparamètres pour minimiser la fonction de coût (écart entre l’étiquette

réelle et ce que le modèle a classifié). Ce chapitre explique deux techniques

utilisées dans cette thèse pour l’optimisation de l’apprentissage automa-

tique : la validation croisée "Grid Search" et la méthode d’optimisation

Adam pour l’apprentissage en profondeur.

Machine learning optimization is adjusting hyperparameters to minimize

the cost function. It is essential to minimize the cost function as it

describes the discrepancy between the actual label and what the model

has classified. This chapter explains two techniques used in this thesis

for machine learning optimization: Grid Search Cross-Validation and the

Adam Optimization Method for Deep Learning.
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6.1 Introduction

This thesis used supervised machine learning to predict the risk of falling in elderly

people. Supervised learning is considered similar to learning from mistakes. It uses an

iterative approach to find the conditions to achieve the minimum prediction error of a

machine learning model for a given input data. The error is usually expressed as the

difference between the output predicted by the model and the actual/target or labeled

output (included in the training data). This error is calculated using the so-called loss

function. The mathematical procedure for minimizing error/loss function is known

as the optimization method. Following this general outline, as shown in Figure 6.1,

different machine learning algorithms can be implemented using different models, loss

functions, and optimization methods.

Figure 6.1 – Optimization method based on minimizing the Error/Loss Function
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6.1.1 Parameters and Hyperparameters of the Model

It is essential not to be confused between model parameters and hyperparameters

(Figure 6.2). The main difference is that hyperparameters must be set before training

the model [YS20]. In contrast, the model’s parameters are obtained during training.

Some examples of model hyperparameters include the learning rate (α), the number of

layers, and the number of nodes in each hidden layer of an artificial neural network. The

hyperparameters describe the structure of the model [YS20]. The hyperparameters of

each of the classification methods used in this thesis are listed in Table 6.1. On the other

hand, the model’s parameters are obtained while training the model. Some examples

of model parameters are the weights and biases for artificial neural networks. These

values are internal data to the model and are altered based on the inputs. Therefore,

Hyperparameter optimization needs to be performed to tune the model. The error can

be decreased by finding the optimal combination of their values [YS20] .

Figure 6.2 – The difference between model parameters and hyperparameters.

6.2 Hyperparameters Optimization Techniques

As mentioned previously, the hyperparameters are set before training. However, it

is impossible to know in advance, for instance, which is the best learning rate to use
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Table 6.1 – The Hyperparameters for each Classification Algorithm

Method Hyperparameters
Logistic Regularization(C)

Regression Learning rate(α)
Support Vector Regularization(C)
Machine (SVM) Kernel Coefficient (gamma)

Degree
Weights:’uniform’ or ’distance’

k-Nearest Distance metric:’euclidean’
Neighbors(KNN) or ’manhattan’

Number of neighbors k
Criterion: ’gini’ or ’entropy’

Decision Trees Maximum depth
Minimum samples at a leaf node

Artificial Neural learning rate (α)
Networks (ANN) Number of neurons

in the hidden layer
Number of hidden layers
the activation function

for specific scenarios or cases in the data-set. Therefore, a starting value needs to be

set; then, hyperparameters should be optimized to improve the model’s performance.

Hyperparameter tuning is done by comparing the output with the expected results,

assessing the accuracy, and adjusting the hyperparameters if necessary with every

iteration. This repeated process can be done manually or by using optimization

techniques, which can be helpful, especially when dealing with large datasets.

6.2.1 Hyperparameters Tuning Using Grid Search Cross-

Validation

Grid search is the most straightforward algorithm for hyperparameter tuning. First,

the domain of the hyperparameters is divided into a discrete grid, as shown in Figure

6.3. Then, every combination of values of this grid is run, calculating some performance
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metrics using cross-validation [SD19].

Grid search is an exhaustive algorithm that spans all the combinat Also, it is

essential to note that every point in the grid needs k-fold cross-validation, which

requires k training steps. So, tuning the hyperparameters of a model in this way can be

complex and expensive. However, in cases where accuracy is essential, such as diagnostic

applications in the medical field, using the grid search to find the best combination,

time is an acceptable price to pay for finding the best combination of values of the

hyperparameters [SD19].

Figure 6.3 – An Example of a Grid Search

6.3 Adam Optimization Algorithm for Deep Learn-

ing

The choice of optimization algorithm for deep learning models can significantly

impact the model’s performance. The Adam optimization algorithm is an extension
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to stochastic gradient descent that has recently seen wider adoption for deep learning

applications in medical diagnosis, natural language processing, and computer vision

[JIN19]. This section addresses the use of the Adam optimization algorithm in deep

learning applications, how it works, how it can be configured, the commonly used

configuration parameters, and its benefits in optimizing learning models [JIN19].

6.3.1 Gradient Descent Optimization Method

Gradient descent is the most popular optimization method. It is a first-order

optimization algorithm that explicitly uses the first-order derivative of the objective

target function [Rud16]. The first-order methods rely on gradient information to help

direct the search for a minimum. The first-order derivative is the rate of change or

slope of the target function at a specific point [Rud16].

If the target function holds multiple input variables, it is called a multivariate

function, and the input variables can be considered a vector. In turn, the derivative of

the multivariate target function can also be considered a vector and is generally called

the gradient [Rud16].

The gradient is the first-order derivative for a multivariate objective function: the

derivative or the gradient points toward the steepest ascent of the target function for

specific input. Gradient descent is a minimization optimization algorithm that follows

the negative gradient downhill of the target function to locate the minimum point of

the function [Rud16].

The gradient descent algorithm demands a target function that is being optimized

and the derivative function for the objective function. The target function f() gives a

score for a given set of inputs, and the derivative function f’() returns the derivative of

the target function for a given data set [Rud16].
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The gradient descent algorithm needs a starting point x in the problem, such as a

randomly selected point in a given set of inputs. The derivative is then computed, and

a step is taken in the input space intended to lead to a downhill movement in the target

function, assuming we minimize the target function [Rud16]. A downhill movement is

made by first computing how far to move in the input space, estimated as the step size

or learning rate (referred to as α) multiplied by the gradient. This is then subtracted

from the current point, guaranteeing we move against the gradient or down the target

function [Rud16].

x(t) = x(t − 1) − (αf ′x(t − 1)) (6.1)

The steeper the objective function is at a given point, the larger the magnitude

of the gradient and, in return, the larger the step is taken in the search space. The

step size carried out is scaled using a step size hyperparameter. The Step Size (α) is a

hyperparameter that controls how far to move in the search space against the gradient

of each iteration performed by the algorithm [Rud16].

In case the step size is too small, the movement in the search space will be slight,

and the search will take longer. On the other hand, if the step size is too large, the

search may bounce around the search space and might risk skipping the optima [Rud16].

6.3.2 Adam Optimization Algorithm

Adaptive Movement Estimation algorithm, or Adam for short, is an extension to

the gradient descent optimization algorithm. The algorithm was described in [KB14].

Adam is designed to accelerate the optimization process, e.g. decrease the number

of function evaluations required to reach the optima, or to improve the capability of

the optimization algorithm, e.g. result in a better final result. This is achieved by



130 6.3 Adam Optimization Algorithm for Deep Learning

calculating a step size for each input parameter that is being optimized. Importantly,

each step size is automatically adapted throughput the search process based on the

gradients (partial derivatives) encountered for each variable [KB14].

First, we must maintain a moment vector and exponentially weighted infinity norm

for each parameter being optimized as part of the search, referred to as m and ν

respectively. They are initialized to 0 at the start of the search [KB14].

The algorithm is executed iteratively over time t starting at t = 1, and each iteration

involves calculating a new set of parameter values x, e.g. going from x(t − 1) to x(t).

It is perhaps easy to understand the algorithm if we focus on updating one parameter,

which generalizes to updating all parameters via vector operations [KB14].

First, the gradient (partial derivatives) are calculated for the current time step.

g(t) = f ′(x(t − 1)) (6.2)

Next, the first moment is updated using the gradient and a hyperparameter β1.

m(t) = β1m(t − 1) + (1 − β1)g(t) (6.3)

Then the second moment is updated using the squared gradient and a hyperparameter

β2.

ν(t) = β2ν(t − 1) + (1 − β2)g(t)2 (6.4)

The first and second moments are biased because they are initialized with zero
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values. These moving averages are initialized as vectors of null values, leading to moment

estimates biased towards null values, especially during the initial time steps and when

the decay rates are low (the betas are close to 1). Fortunately, this initialization bias

can be easily counteracted, resulting in bias-corrected estimates. [KB14].

Thus, the first and second moments are bias-corrected, starting with the first

moement:

m̂(t) = m(t)/(1 − β1(t)) (6.5)

And then the second moment:

ν̂(t) = ν(t)/(1 − β2(t)) (6.6)

Note that β1(t) and β2(t) refer to the β1 and β2 hyperparameters that are decayed

on a schedule over the iterations of the algorithm. A static decay schedule can be used,

although the paper recommend the following:

β1(t) = βt
1 (6.7)

β2(t) = βt
2 (6.8)

Finally, the moving averages are used to scale the learning rate individually for each

parameter. The way it’s done in Adam is the following:

x(t) = x(t − 1) − αm̂(t)/(
√

ν̂(t) + ϵ) (6.9)
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Where α is the step size hyperparameter, ϵ is a small value such as 1e-8 that ensures

we do not encounter a divide by zero error.

A more efficient reordering of the update rule is mentioned in the paper and can be

used:

α(t) = α
√

1 − β2(t)/(1 − β1(t)) (6.10)

x(t) = x(t − 1) − α(t)m̂(t)/(
√

ν̂(t) + ϵ) (6.11)

It should be noted that there are three hyperparameters for the algorithm, they are:

α: Initial step size (learning rate), a typical value is 0.001.

β1: Decay factor for first momentum, a typical value is 0.9.

β2: Decay factor for infinity norm, a typical value is 0.999.

6.4 Conclusion

Hyperparameters are essential because they directly control the training algorithm’s

behavior and significantly impact the performance of the model being trained. Hy-

perparameters are the knobs or settings that can be tuned before running a training

assignment to control the behavior of a machine learning algorithm. As a result,

they can significantly impact model training regarding training time, infrastructure

resource requirements, computational cost, model convergence, and model accuracy.

The following chapter demonstrates the results obtained throughout this thesis.



133

Chapter 7
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Results and Discussion

La prévention des chutes chez les personnes âgées est considérée comme

l’un des sujets de santé publique les plus critiques au vu de la population

importante de personnes agées. L’identification du risque de chute chez

les personnes âgées est considérée comme la première étape de la préven-

tion. Dans cette thèse, nous avons exploré plusieurs indicateurs pour voir

si ils sont indicatifs de futures chutes chez les personnes âgées. Nous nous

sommes spécifiquement concentrés sur le degré de cyclostationnarité et

sur une méthode alternative de représentation de la cyclostationnarité du

signal sous forme d’images de carte thermique. Nous avons également ex-

ploré différentes méthodes de sélection de caractéristiques, des algorithmes

de classification et des méthodes d’optimisation d’hyperparamètres. Ce

chapitre présente les résultats obtenus grâce à cette thèse et une interpré-

tation de ces résultats.

Falls prevention among the elderly community is regarded as one of the

most critical public health topics in today’s aging society. Identifying

the risk of falling in elderly individuals is considered the first step in

prevention. In this thesis, we explored several features to study if they

are indicative of future falls in the elderly. We specifically focused on

the degree of cyclostationary and an alternative method of representing

signal cyclostationarity as heat-map images. We also explored different

feature selection methods, classification algorithms, and hyperparameter

optimization methods. This chapter presents the results obtained through

this thesis and an interpretation of these results.
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7.1 The Degree of Cyclostationarity as an Impor-

tant Feature for Predicting Eledrly Falls

As a first step in working with the unbalanced data-set and exploring features

relevant to falling risk in the elderly and methods for classification, we dealt with the

data-set as balanced, meaning having the same number of fallers(54) and non-fallers(54).

The Cyclostationarity properties used in the analysis of walking signals with light shed

on the degree of cyclostationarity, using ANOVA for selecting the ten best classical

features for prediction of fallers and non-fallers, and the five different machine learning

models used for classification. The results of the ANOVA tests and the classification

models are presented and discussed.

7.1.1 ANOVA Test for Statistically Significantly Features

Two sets of features are compared in this section of this chapter. The features are

extracted from the innersole pressure signals of the 108 subjects divided equally between

fallers and non-fallers. The features were extracted separately from the signals of each

foot (left and right) The first set includes 10 already studied classical features (10 CF),

while the second set includes a single feature, which is the degree of cyclostationarity

(DC).

The classical features extracted from the pressure signals were: mean, rise time,

fall time, pulse width, overshoot, undershoot, duty cycle, slew rate, midcross, autocor-

relation, standard deviation, band power, median, root mean square, range, Pwelch,

skewness, interquartile range, and kurtosis. The statistical significance of these features

for elderly falling risk were tested using a one-way repeated measures ANOVA [Gad98].
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Eledrly Falls

The results showed that 10 features out of those had statistical significant differences

between fallers and non-fallers, in at least 1 type of walking condition. These were:

pulsewidth (right foot), undershoot (right and left feet), duty cycle (left foot), slew rate

(right and left feet), range (right and left feet), and skewness (right and left feet).

Figure 7.1 – The boxplot of average degree of cyclostationarity between fallers and
non-fallers

A one-way repeated measures ANOVA [Gad98] was also conducted to determine

whether there was a statistically significant difference in the DC between fallers and

non-fallers in the three different cases of walking. There were relatively few outliers

(the red Xs on the figure) in the three cases. No statistical significant differences were

found between faller and non-fallers (Figure 7.1) in the cases of MS and MF walking

conditions. Whereas in the case of MD case of de-counting while walking, the average

DC was statistically significantly different between fallers and non-fallers (p<0.05).



Chapter 7. Results and Discussion 137

7.1.2 Results of the Classification1 Models with 10 Classical

Features versus the Degree of Cyclostationarity as a

Single Feature

Five classifier models were used with default hyperparameters set: KNN, SVM with

polynomial kernels of degree 3, ANN with 10 nodes in a single hidden layer, Decision

Trees, and Logistic Regression.

The results of a 100 times 10 folds cross validation was compared to the 10 times 10

folds cross validation and found to have no statistical significant differences using the

t-student test. Therefore, a 10 times 10 folds cross validation process was chosen to

be used in all classification models. This is to prevent over-fitting by partitioning the

data-set into folds and evaluating their performance at each fold.

Model evaluation parameters included accuracy, sensitivity, specificity, and precision

with their standard deviation (SD). Table 7.1 shows the results of the different supervised

classification models with 3 different walking conditions, 2 different feature sets, and 5

different classification methods. The best performance with the ten classical features

as inputs was 61.85% accuracy, 53.52% sensitivity, 70.19% specificity, and 64.24%

precision using K-nearest neighbors as a classifier. The use of the averaged degree of

cyclostationarity as a single feature instead of the ten classical features improved model

performance with 68.43% accuracy, 54.26% sensitivity, 82.59% specificity, and 75.83%

precision using K-nearest neighbors.

The statistical t-test for pairwise comparison was computed and it was confirmed that

there is statistical significant differences between the KNN model of highest accuracy

and the other models listed in the table.
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Eledrly Falls

Table 7.1 – Results of the Classification Models using 10 Classical Features and the
Degree of Cyclostationarity as a Single Feature

Walking Condition Feature Set Classification Model Accuracy%±SD% Sensitivity%±SD% Specificity%±SD% Precision%±SD%
MS 10 CF 52.04% ± 2.54% 39.07% ± 13.04% 65% ± 14.14% 53.24% ± 4.90%

DC 63.06% ± 1.27% 55.56% ± 2.14% 70.56% ± 2.54% 65.40% ± 1.75%
MF 10 CF KNN 48.06% ± 2.20 % 29.07% ± 20.62% 60.56% ± 9.24% 38.61 %±18.23 %

DC 48.52% ± 5.37% 36.48% ± 15.02% 67.04% ± 22.88% 46.58% ± 8.07%
MD 10 CF 61.85% ± 2.17% 53.52% ± 3.32% 70.19% ± 2.95% 64.24% ± 2.68%

DC 68.43% ± 1.66% 54.26% ± 0.89% 82.59% ± 3.05% 75.83% ± 3.38%
MS 10 CF 58.15% ± 1.62% 77.41%± 7.19% 38.89%± 7.15% 55.95% ±1.31 %

DC 62.78% ± 1.62% 80.37% ± 1.79% 45.19% ± 1.79% 59.45% ± 1.20%
MF 10 CF SVM 50.56% ± 5.51% 52.22%± 5.08% 48.89% ± 7.16% 50.65% ± 5.28%

DC 56.85% ± 2.70% 59.07% ± 20.22% 54.63% ± 16.22% 56.93% ± 1.90%
MD 10 CF 59.91% ± 0.62% 70.19% ± 4.32% 28.70% ± 2.66% 56.10% ± 0.33%

DC 63.33% ± 1.81% 90.63% ± 3.24% 56.48% ±6.25% 61.87% ± 2.23%
MS 10 CF 60.00%± 5.55% 63.15% ± 16.76% 56.85% ± 12.92% 59.37% ± 6.05%

DC 62.69% ± 6.83% 72.22% ± 26.99% 53.15% ± 24.65% 60.39% ± 5.81%
MF 10 CF ANN 57.31% ± 7.20% 54.07% ± 19.96% 60.56% ± 18.06% 58.36%± 6.72%

DC 56.48% ± 6.16% 72.96% ± 12.35% 40.00% ± 13.92% 55.09% ± 5.44%
MD 10 CF 59.91% ± 0.62% 60.93% ±26.12% 70.93% ± 11.84% 69.73% ± 12.45%

DC 65.93% ± 8.83% 91.11% ± 3.24% 28.70% ± 2.66% 56.10% ± 0.33%
MS 10 CF 54.44% ± 2.86% 55.00% ± 5.02% 53.89% ± 3.54% 54.36% ± 2.67%

DC 64.63% ± 2.95% 62.41% ± 5.52% 66.85% ± 2.82% 65.26% ± 2.52%
MF 10 CF Decision Trees 51.85% ± 4.39v 50.74% ± 7.67% 52.96% ± 5.03% 51.75% ± 4.37%

DC 44.44% ± 5.38% 44.81% ± 7.45% 44.07% ± 5.84% 44.35% ± 5.62%
MD 10 CF 56.76% ± 4.56% 56.11% ± 6.18% 57.41% ± 6.05% 56.88% ± 4.45%

DC 58.33% ± 1.85% 54.81% ±3.83% 61.85% ± 2.50v 58.95%± 1.82%
MS 10 CF 56.11% ± 3.09% 62.22% ± 3.29% 50.00% ± 4.09% 55.47% ± 2.85%

DC Logistic 50.28% ± 3.15% 75.19%± 5.32% 25.37% ± 4.46% 50.17% ± 20.8%
MF 10 CF Regression 55.00% ± 4.46% 57.96%± 4.79% 52.04% ± 6.79% 54.85% ± 4.36%

DC 49.72% ± 2.55% 73.33% ± 5.87% 26.11%± 4.66% 49.79% ± 1.69%
MD 10 CF 59.81% ± 0.48% 62.96% ± 2.31% 30.74% ± 0.62% 56.21% ± 0.34%

DC 60.56% ± 2.06% 88.89% ± 0.36% 58.15% ± 3.40% 60.11% ± 2.06%
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From the above results, one can conclude that utilizing the degree of cyclostationarity

improved model predictive performance while reducing its complexity. Therefore, we

advocated its inclusion for elderly fall-risk prediction. In addition, the MD walking

condition (de-counting as a dual task) improved model prediction accuracy in the KNN,

SVM, ANN, and Logistic Regression classifiers. KNN achieved the highest accuracy

using a single cyclostationary feature during the MD walking condition. A drawback

that needs to be noted, is that KNN compared to other classification methods requires

a large real time computation as it needs the complete data for every classification.

This opened the door to look into further improvement and optimization.

Results of this section was published in [BNB+21] and won Best Paper Award.

7.2 Relief-F Feature Selection with Different Walk-

ing Conditions

In the previous section, we showed using both statistical and machine learning

methods that the features selected by ANOVA can be used to detect fallers in elderly

people. After conducting further statistical analysis on the data-set, we were able to

identify two new categories of features: gender and stride time. Stride time is defined

as the time elapsed between the first contact of two consecutive footsteps of the same

foot and is expressed in milliseconds. In particular, we found the mean and standard

deviation of the stride time are significant features to detect fallers and non-fallers.

Therefore, we included these three features in our model.

Then, we constructed a second set of features using Relief-F method, which ranks

the features according to their importance. The number of ranked best predictors were

selected based on the number that yielded the highest classification accuracy in each
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set of features associated with each type of walking condition. The features used in this

section are shown in Table 7.2.

Table 7.2 – Features for Each Type of Walking Condition: MS, MF, and MD

Feature Reference Feature Feature
Number Abbreviation Description

1 PW_R Pulse Width of the Right Foot
2 US_R Undershoot of the Right Foot
3 US_L Undershoot of the Left Foot
4 DTC_L Duty Cycle of the Left Foot
5 SR_R Slew Rate of the Right Foot
6 SR_L Slew Rate of the Left Foot
7 Range_R Range of the Right Foot
8 Range_L Range of the Left Foot
9 Skw_R Skewness of the Right Foot
10 Skw_L Skewness of the Left Foot
11 Gender Male or Female
12 M_ST Mean of the Stride Time
13 STD_ST Standard Deviation of the Stride Time
14 DC Degree of Cyclostationarity

In this section, we used the same five classification methods as the section before

also with the same default settings. A 100 times 10 folds cross-validation was applied

on all classifier models.

The results obtained are shown in Table 7.3 for the MS normal walking condition,

Table 7.4 for the MF condition, and Table 7.5 for the MD walking condition. Finally,

Table 7.6 shows the results for all the features in all types of walking conditions. The

first feature set includes all the 14 features mentioned in Table 1. The second feature

set were selected using Relief-F. The number of best predictors used in the models

was chosen based on the combination, leading to the highest classification accuracy, as

shown in figures7.2, 7.3, 7.4, and 7.5.

Table 7.3 shows the results in the MS walking condition. The best performance with
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Table 7.3 – Results of the Classification Models for the MS Walking Condition

Feature Set Classification Model Accuracy% ±SD% Sensitivity% ±SD% Specificity%±SD% Precision% ±SD%
All Features (14) 66.72 % ± 2.55% 62.96% ± 1.23% 70.37% ± 7.96% 68.00% ± 3.85%
Selected Features KNN 70.43% ± 1.65% 68.52% ± 4.69% 72.22% ± 8.74% 71.15% ± 3.56%

(12,3,13,6,9)
All Features (14) 69.40 % ± 5.55% 74.07% ± 7.21% 64.81% ± 4.14% 67.80% ± 5.73%
Selected Features SVM 71.32% ± 2.53% 77.78% ± 5.74% 64.81% ± 6.39% 68.85% ± 8.06%

(12,3,13,6,9)
All Features (14) 75.92 % ± 5.41% 76.92% ± 1.35% 75.00% ± 4.21% 74.07% ± 6.42%

Selected Features ANN 78.70% ± 4.57% 78.18% ± 4.29% 79.25% ± 6.35% 79.63% ± 7.58%
(12,3,13,6,9)

All Features (14) 63.12% ± 4.37% 68.52% ± 5.84% 57.41% ± 7.53% 61.67% ± 4.47%
Selected Features Decision Tree 62.35% ± 4.02% 59.26% ± 3.78% 64.81% ± 7.58% 62.75% ± 5.71%

(12,3,13,6,9)
All Features (14) 68.54% ± 2.12% 74.07% ± 5.78% 62.96% ± 7.14% 66.67% ± 5.98%
Selected Features Logistic Regression 69.44% ± 5.01% 75.93% ± 2.30% 62.96% ± 7.84% 67.21% ± 6.33%

(12,3,13,6,9)

Table 7.4 – Results of the Classification Models for the MF Walking Condition

Feature Set Classification Model Accuracy% ±SD% Sensitivity% ±SD% Specificity%±SD% Precision% ±SD%
All Features (14) 68.72 % ± 3.46% 60.04% ± 5.63% 76.17% ± 5.79% 71.32% ± 7.80%
Selected Features KNN 72.00% ± 2.28% 65.39% ± 4.87% 78.02% ± 3.67% 75.24% ± 5.35%

(12,13,14,3,6,
11,4,9)

All Features (14) 67.92% ± 5.23% 69.02% ± 6.16% 67.91% ± 5.13% 67.56% ± 8.49%
Selected Features SVM 72.37% ± 4.05% 80.55% ± 2.57% 63.83% ± 6.00% 69.68% ± 7.08%

(12,13,14,3,6,
11,4,9)

All Features (14) 71.86 % ± 2.77% 75.63% ± 4.69% 70.06% ± 5.84% 64.96% ± 5.63%
Selected Features ANN 75.37% ± 6.41% 74.37% ± 6.72% 76.54% ± 7.08% 76.95% ± 6.57%

(12,13,14,3,6,
11,4,9)

All Features (14) 63.21% ± 5.32% 58.62% ± 7.63% 66.06% ± 7.65% 63.05% ± 6.84%
Selected Features Decision Tree 68.64% ± 6.12% 76.37% ± 5.64% 63.07% ± 5.32% 67.33% ± 6.97%

(12,13,14,3,6,
11,4,9)

All Features (14) 56.58% ± 3.04% 60.32% ± 2.63% 55.56% ± 8.32% 60.51% ± 3.19%
Selected Features Logistic Regression 68.37% ± 3.64% 74.98% ± 5.63% 62.33% ± 4.97% 66.36% ± 7.63%

(12,13,14,3,6,
11,4,9)
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Table 7.5 – Results of the Classification Models for the MD Walking Condition

Feature Set Classification Model Accuracy% ±SD% Sensitivity% ±SD% Specificity%±SD% Precision% ±SD%
All Features (14) 69.90 % ± 6.19% 60.07% ± 7.01% 79.94% ± 6.88% 75.00% ± 7.24%
Selected Features KNN 70.90% ± 4.22% 63.52% ± 4.68% 78.81% ± 5.64% 74.01% ± 4.46%

(3,14,12,11,5,
13)

All Features (14) 67.98% ± 5.00% 67.24% ± 2.36% 69.52% ± 4.59% 68.39% ± 5.63%
Selected Features SVM 73.57% ± 6.18% 72.94% ± 6.49% 73.03% ± 4.81% 72.84% ± 5.39%

(3,14,12,11,5,
13)

All Features (14) 75.06 % ± 5.61% 72.67% ± 6.74% 73.12% ± 2.94% 75.99% ± 3.78%
Selected Features ANN 79.93% ± 2.56% 77.81% ± 5.72% 77.78% ± 5.28% 78.43% ± 5.34%

(3,14,12,11,5,
13)

All Features (14) 70.26% ± 2.37% 73.11% ± 3.61% 65.64% ± 4.88% 68.20% ± 4.67%
Selected Features Decision Tree 71.31% ± 5.41% 71.33% ± 4.85% 71.36% ± 5.23% 72.66% ± 5.23%

(3,14,12,11,5,
13)

All Features (14) 67.17% ± 3.21% 67.81% ± 5.74% 67.24% ± 5.99% 67.83% ± 6.41%
Selected Features Logistic Regression 68.63% ± 6.27% 70.35% ± 2.91% 69.83% ± 6.31% 69.11% ± 5.44%

(3,14,12,11,5,
13)

Table 7.6 – Results of the Classification Models for All the Walking Conditions

Feature Set Classification Model Accuracy% ±SD% Sensitivity% ±SD% Specificity%±SD% Precision% ±SD%
All Features (40) 63.45 % ± 5.12% 55.23% ± 5.61% 75.62% ± 7.59% 70.56% ± 6.14%
Selected Features
(12_MS, 14_MD,

11. 13_MS, KNN 68.53% ± 1.92% 60.32% ± 4.58% 70.55% ± 6.33% 74.54% ± 6.81%
12_MF, 12_MD,
13_MD, 3_MS,

13_MF, 14_MF)
All Features (14) 64.82% ± 3.67% 68.73% ± 4.38% 62.75% ± 5.64% 64.26% ± 5.32%
Selected Features
(12_MS, 14_MD,

11. 13_MS, SVM 66.59% ± 3.88% 68.96% ± 2.37% 62.40% ± 5.07% 64.78% ± 5.48%
12_MF, 12_MD,
13_MD, 3_MS,

13_MF, 14_MF)
All Features (14) 75.51 % ± 2.74% 70.62% ± 2.99% 73.83% ± 5.20% 76.82% ± 4.17%

Selected Features
(12_MS, 14_MD,

11. 13_MS, ANN 81.16% ± 2.87% 79.63% ± 5.63% 78.23% ± 5.11% 79.81% ± 4.82%
12_MF, 12_MD,
13_MD, 3_MS,

13_MF, 14_MF)
All Features (14) 63.47% ± 4.27% 63.98% ± 3.75% 65.32% ± 5.84% 63.71% ± 4.27%
Selected Features
(12_MS, 14_MD,

11. 13_MS, Decision Tree 72.69% ± 2.86% 71.41% ± 3.78% 73.47% ± 5.21% 73.20% ± 3.68%
13_MD, 3_MS,

13_MF, 14_MF)
All Features (14) 64.50% ± 4.87% 68.87% ± 4.34% 59.89% ± 3.33% 63.11% ± 3.96%
Selected Features
(12_MS, 14_MD,

11. 13_MS, Logistic Regression 70.71% ± 3.04% 73.28% ± 3.85% 68.21% ± 4.25% 68.57% ± 5.42%
12_MF, 12_MD,
13_MD, 3_MS,

13_MF, 14_MF)
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Figure 7.2 – Number of Best-Ranked Features in MS Walking Condition

Figure 7.3 – Number of Best-Ranked Features in MF Walking Condition

Figure 7.4 – Number of Best-Ranked Features in MD Walking Condition
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Figure 7.5 – Number of Best-Ranked Features in All Walking Conditions

all the 14 features as inputs was 75.9%accuracy, 76.92% sensitivity, 75.00% specificity,

and 74.07% precision using ANN as a classifier. This performance was improved using

Relief-F where, as shown in figure 7.2, performed best with the first 5 best predictors

for this model (12, 3, 13, 6, 9). With feature selection, the ANN model performance

improved to 78.7% accuracy, 78.18% sensitivity, 79.25%specificity, and 79.63% precision.

Table 7.4 shows the results in the MF walking condition. The best performance with

all the 14 features as inputs was 71.86% accuracy, 75.63% sensitivity, 70.06% specificity,

and 64.96% precision also using ANN as a classifier. This performance was improved

using the best 8 predictors for this model, as shown in figure 7.3 (which were: 12, 13,

14, 3, 6, 11, 14, 9). With feature selection, the ANN model performance improved to

75.37% accuracy, 74.37% sensitivity, 76.54% specificity, and 76.95%precision.

Table 7.5 shows the results in the MD walking condition. The best performance with

all the 14 features as inputs was 75.05% accuracy, 72.67% sensitivity, 73.12% specificity,

and 75.99% precision, also using ANN as a classifier. This performance was improved

using Relief-F, which selected the best 6 predictors for this model, as shown in figure

7.4. (These features were: 3, 14, 12, 11, 5, 6). With feature selection, the ANN model

performance improved to 79.93% accuracy, 77.81% sensitivity, 77.78% specificity, and

78.43% precision.
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The results shown in Table 7.6 show the performance of the model using all the

predictors from the 3 walking conditions combined. As shown in figure 7.5, the model

accuracy scored the highest with the first 10 best-ranked features: 12_MS, 14_MD,

11, 13_MS, 12_MF, 12_MD, 13_MD, 3_MS, 13_MF, 14_MF. The best performance

with all the 40 features as inputs was 75.51 % accuracy, 70.62% sensitivity, 73.83%

specificity, and 76.82% precision, also using ANN as a classifier. The ANN model

performance improved to 81.16% accuracy, 79.63% sensitivity, 78.23% specificity, and

79.81% precision with the feature reduction done using Relief –F.

The results show that the ANN classification model performed the best out of the

classification models explored in our study using the features chosen as inputs for the

models. This performance was generally improved using the Relief-F feature reduction

method. Furthermore, the MD walking condition helped achieving the highest accuracies

compared to the MS and MF conditions. This points out that in the MD walking

condition, which is walking while de-counting from 50, there are higher differences

that can be captured between faller and non-fallers compared to the baseline and the

secondary task of naming animals.

It is noticeable that the common most important features in prediction of elderly

people at risk of falling were: The mean stride time (M_ST), standard deviation stride

time (STD_ST), and Undershoot of left foot (US_L) in all the three walking conditions.

The Degree of Cyclostationarity (DC) and gender were important features in the MF

and MD walking conditions only.

Using all the features from all walking conditions improved system accuracy after

applying Relief-F and achieved the best performance in terms of accuracy with the

ANN machine-learning algorithm. 10 features were selected out of the 40 features: one

of them is gender, and 3 features from each type of walking condition. This points out

that combining the 3 types of walking conditions in one classification model helped in
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achieving better performance than considering each type of walk condition by itself.

The statistical paired t-test for pairwise comparison was computed and it was

confirmed that there were statistical significant differences between the ANN model

in each type of walking condition and the other classification models with the same

type of walking condition. In addition, the statistical independent t-test was applied to

confirm statistical significant differences between the ANN models in the MS, MF, MD,

and the case involving all walking conditions.

To summarize, in this section, we included three additional features: Mean of the

stride time, Standard Deviation of the stride time, and Gender. In addition, we used

Relief-F method for feature selection. We compared the results of different classification

models in terms of feature, type of walking condition, and methods of classification.

The use of the Relief-F method reduced the features and selected the best out of them.

This step generally improved and optimized the classification model. Results show that

some of the best features for prediction of elderly people at risk of falling were the stride

time in all walking conditions, and the degree of cyclostationariy and gender in the MF

and MD walking condition. Combining the features of all types of walking conditions

in the ANN classification model along with using Relief-F feature selection method lead

to the best performance in terms of accuracy. The results of of this section was publish

in a journal [BND+21].

7.3 Hyperparameter Tuning and Feature Selection

to Improve Model Performance

This section is an extension of the previous sections. Combining the features of

all types of walking conditions mentioned in Table 7.7 in an Artificial Neural Network
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(ANN) classification model and using the Relief-F feature selection method led to

improved performance in terms of accuracy that reached 81.16% [BND+21]. In this

section we introduce a new feature, which is the average difference in pressure between

toes and heels, use two feature selection methods, and use grid search cross-validation

as a hyperparameter tuning method to improve and optimize the classification model.

A 100 times 10 folds cross-validation was applied on all classifier models. For

each classification algorithm 3 different feature sets from all walking conditions were

used: all features, features selected by Relief-F, and features selected by SBS. The

Hyperparameters chosen for each classification model are shown in Table 7.8.

Table 7.7 – Features for Each Type of Walking Condition: MS, MF, and MD

Abbreviation Description
PW_R Pulse Width of the Right Foot
US_R Undershoot of the Right Foot
US_L Undershoot of the Left Foot

DTC_L Duty Cycle of the Left Foot
SR_R Slew Rate of the Right Foot
SR_L Slew Rate of the Left Foot

Range_R Range of the Right Foot
Range_L Range of the Left Foot
Skw_R Skewness of the Right Foot
Skw_L Skewness of the Left Foot
Gender Male or Female
M_ST Mean of the Stride Time

STD_ST Standard Deviation of the Stride Time
Diff_P Difference in Pressure in Toes and Heels

DC Degree of Cyclostationarity

The features selected by each feature selection technique are shown in Table 7.9.

It is noticeable that the common most important features include: the difference in

pressure between toes and heel, mean stride time, standard deviation of stride time, and

undershoot of left foot, degree of Cyclostationarity and gender. The results also show

that the features extracted during the MD walking condition were more than that of MS
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and MF among the important selected features. This suggests that in the MD walking

condition (de-counting from 50), higher differences can be captured between fallers and

non-fallers compared to the baseline and the secondary task of naming animals.

Table 7.8 – Hyperparameters Tuned Using Grid Search CV

Algorithm Hyperparameters Chosen
KNN Leaf size= 5, K=7,

Euclidean distance
SVM Gaussian RBF, Kernel,

C(regularization)= 10, Gamma=0.1
number of neurons=30,

ANN activation function= Sigmoid,
optimizer, learning rate=0.07,
batch size=9, and epochs =50

Decision criterion= gini, splitter=best,
Trees Min samples required to split= 2,

min samples required to be at leaf node = 1
Logistic

Regression C=0.3 and Alpha=0.2

The results shown in Table 7.10 exhibit the performance of the classification models

using the different feature sets. When using all the 43 features, ANN achieved the best

performance with all the 43 features as inputs with 75.93% accuracy, 77.78% sensitivity,

74.07% specificity, and 75.00% precision.

The ANN model performance improved to 84.11% accuracy, 79.63% sensitivity,

88.68% specificity, and 87.76% precision with the feature reduction done using Relief-F.

Furthermore, the SBS improved the performance to 89.81% accuracy, 90.74% sensitivity,

88.89% specificity, and 89.09% precision.

The results show that the ANN classification model performed the best out of the

classification models explored in our study. This performance was improved by around

10% using the SBS feature selection technique.
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Table 7.9 – Feature Sets Selected by Relief-F and SBS

Feature ML Feature Sets
Selection Algorithm

M_ST (MS), DC (MD),Diff_P (MD),
Relief-F All Gender, STD_ST (MS), M_ST (MF),

Diff_P (MF) M_ST (MD),STD_ST (MD)
M_ST (MS), DC (MD), Gender,

SBS KNN SR_R (MF), STD_ST (MD),
M_ST (MD), Diff_P (MD), US_L (MD)

Diff_P (MD), DC (MD), Gender,
SBS SVM Diff_P (MF), M_ST (MS), SR_L (MD)

STD_ST(MD), DTC_L (MD), PW_R (MD)
DC (MD), Gender, Diff_P (MD),

SBS ANN US_L (MD), SR_R (MD), M_ST (MS)
Diff_P (MF), M_ST(MF), STD_ST( MD)

Decision DC (MD), Gender, Diff_P (MD),
SBS Trees M_ST (MD), STD_ST (MD), US_L (MF),

Skx_R (MS), Diff_P (MF),
Range_L (M), M_ST (MS)

Logistic M_ST (MS), Gender, PW_R (MD),
SBS Regression M_ST(MD), STD_ST(MD),

Diff_P (MD), Diff_P (MF), DC (MD),
Skw_L (MF), DTC_L (MS), Range_R (MF)

Table 7.10 – Results of the Classification Models

Feature Set Classification Model Accuracy%±SD% Sensitivity%±SD% Specificity%±SD% Precision%±SD%
All 63.89% ± 0.98% 61.11% ± 1.27% 66.67% ± 0.26% 64.71% ± 0.99%

Selected by Relief-F KNN 70.37% ± 2.78% 66.60% ± 3.74% 74.07% ± 2.27% 72.00% ± 1.88%
Selected by SBS 84.266% ± 2.73 % 90.74% ± 2.95% 77.78% ± 2.08% 80.33% ± 3.11 %

All 65.74% ± 0.47% 61.11% ± 0.52% 70.37% ± 0.85% 67.35% ±0.37 %
Selected by Relief-F SVM 73.15% ± 1.35% 66.67% ± 2.14% 79.63% ± 3.07% 76.605% ± 2.72%

Selected by SBS 85.19% ± 0.84% 83.33% ± 0.68% 87.04% ± 1.24% 86.54% ± 0.86%
All 75.93% ± 1.34% 77.78% ± 2.47% 74.07% ± 1.39% 75.00% ± 1.52%

Selected by Relief-F ANN 84.11% ± 3.95% 79.63% ± 3.01% 88.68% ± 2.41% 87.76% ± 2.56%
Selected by SBS 89.81% ± 2.78% 90.74% ± 2.14% 88.89% ± 3.06% 89.09% ± 2.67%

All 65.74% ± 0.88% 61.11% ± 1.24% 70.37% ± 0.52% 67.35% ± 1.81%
Selected by Relief-F Decision Tree 73.15% ± 3.27% 64.8% ±2.11% 81.48% ± 3.58% 77.78% ± 2.49%

Selected by SBS 83.33% ± 1.48% 81.48% ± 2.13% 85.19% ± 1.11% 84.62% ± 2.06%
All 64.81% ± 0.46% 61.11% ± 0.67% 68.52% ± 0.99% 66.00% ± 1.02%

Selected by Relief-F Logistic Regression 72.22% ± 3.13% 65.81% ±3.38% 79.63% ± 2.47% 76.09% ± 2.64%
Selected by SBS 80.56% ± 2.32% 83.33% ± 2.14% 77.78% ± 2.68% 78.95% ± 2.04%
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The statistical paired t-test for pairwise comparison was computed to test the

differences between the different algorithms, and it was confirmed that there were

statistically significant differences between the ANN model and the other classification

models with 95% confidence.

Results in this study show that the Degree of Cyclostationarity, gender, the mean and

standard deviation of stride time of pressure walking signals are significant predictors

for elderly fallers. We also showed that using feature selection methods improved the

performance of the model and implementing hyperparameter tuning using grid search

on each of the five classification models to obtain an optimized architecture for each

classification model. Our analysis showed that the proposed model outperforms existing

models by at least 10%. It is worth noting also that all performance measures of the

selected model are above 88%, which is not the case for most existing models that

increases one measure while reducing the others. The results obtained in this section

were presented in two conferences Congrès National de la Recherche des IUT (CNRIUT)

2022 and GRETSI 2022.

7.4 Heat Map Representation of Spectral Correla-

tion as Inputs to CNN

In this section we present an alternative method of representing signal cyclosta-

tionarity as heat-map images and using convolutional neural network (CNN) with the

ADAM optimization method to predict the risk of falling in 411 subjects over the age

of 65.

Table 7.11 shows the performance of the CNN in 3 different walking conditions

using the default hyperparameters, whereas Table 7.12 displays the improvement in
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Figure 7.6 – 5 Examples of each of the two classes: (a) without risk and (b) with risk
of falling during MD walking condition

CNN performance when using ADAM Optimization. In both tables, the MD walking

condition achieves the best performance out of the three walking modes. In our previous

work, using the same dataset but using conventional machine learning methods, the

best model performance was able to achieve an accuracy of 81.16%, sensitivity of

79.63%, specificity of 78.23%, and precision of 79.81% using an artificial neural network

and including cyclostationary, time and frequency domain features from all walking

conditions. The suggested CNN model was able to surpass the latter’s performance

with the use of only one type of walking conditions. The proposed CNN model might

make the data collection of future patients simpler and faster with only one walking

mode rather than having three types of walking conditions.

Table 7.11 – Performance of the CNN Models without using ADAM Optimization

CNN Performance Without ADAM Optimization
Walking Condition Accuracy%±SD% Sensitivity%±SD% Specificity%±SD% Precision%±SD%

MS 68.89% ± 0.98% 67.11% ±1.27% 68.67% ± 0.26% 68.71% ± 0.99 %
MF 70.37% ± 2.78% 66.60% ±3.74% 74.07% ± 2.27% 72.00% ± 1.88 %
MD 79.93% ± 2.56% 77.81% ±5.72% 77.78% ± 5.28% 78.43% ± 5.34 %

The statistical t-test for pairwise comparison was calculated and a statistically

significant difference was confirmed between the CNN model during MD walking
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Figure 7.7 – CNN architecture with 3 layers

Table 7.12 – Performance of the CNN Models using ADAM Optimization

CNN Performancde With ADAM Optimization
Walking Condition Accuracy%±SD% Sensitivity%±SD% Specificity%±SD% Precision%±SD%

MS 83.33% ± 1.23% 87.04% ±1.47% 79.63% ± 1.55% 81.03% ± 1.73 %
MF 86.11% ± 2.04% 88.89% ±2.14% 83.33% ± 2.12% 84.21% ± 2.31 %
MD 87.96% ± 0.14% 85.19% ±0.27% 90.74% ± 0.21% 90.20% ± 0.47 %

condition and the other models with other walking conditions mentioned n the table.

Previous results in this thesis advocated the inclusion of cyclostationary properties

of insole pressure walking signals in predicting the risk of falling within the elderly

community. The above mentioned results suggested a novel method of representing

cyclostationary properties of walking signals as images to be used as inputs to a CNN

model. The suggested model outperformed the previous conventional machine learning

models, reduced the complexity with fewer needed inputs, and saved time using one

single walking condition (walking while de-counting from 50) instead of three. The

results obtained in this section is accepted as a conference paper IECBES 2022 that

will be presented in December 2022.
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7.5 The Performance of the CNN with Different

Types of Input Images: Combination Walking

Modes, Grey Scale and Log-Transformation

Table 7.13 – Performance of the CNN Models with Different Input Images and without
using Adam Optimization

CNN Performance Without ADAM Optimization
Images Walking Modes Accuracy%±SD% Sensitivity%±SD% Specificity%±SD% Precision%±SD%

MS 68.89% ± 0.98% 67.11% ±1.27% 68.67% ± 0.26% 68.71% ± 0.99 %
Colored MF 70.37% ± 2.78% 66.60% ±3.74% 74.07% ± 2.27% 72.00% ± 1.88 %

MD 79.93% ± 2.56% 77.81% ±5.72% 77.78% ± 5.28% 78.43% ± 5.34 %
All Walking Modes 80.74% ± 3.12% 80.89% ± 3.35% 80.59% ± 4.08% 80.31% ± 3.26%

MS 70.74% ± 0.47% 61.11 % ± 0.52% 70.37% ± 0.85% 67.35% ± 0.37%
Grey Scale MF 73.15% ± 1.35% 66.67% ± 2.14% 79.63% ± 3.07% 76.60% ± 2.72%

MD 81.19% ± 0.84% 79.33% ± 0.68% 80.04% ± 1.24% 80.54% ± 0.86%
All Walking Modes 82.52% ± 2.44% 82.59% ± 2.56% 82.44% ± 2.77% 82.34% ± 2.89%

MS 73.57% ± 6.18% 72.94% ± 6.49% 73.03% ± 4.81% 72.84% ± 5.39%
Log-T MF 75.05% ± 5.61% 72.67% ± 6.74% 73.12% ± 2.94% 75.99% ± 3.78%

Colored MD 83.26% ± 2.73% 82.74% ± 2.95% 84.78% ± 2.08% 84.33% ± 3.11%
All Walking Modes 85.59% ± 1.71% 84.74%± 1.84% 85.44% ± 2.07% 85.23% ± 2.39%

MS 75.93% ± 1.34% 77.78% ± 2.47% 74.07% ± 1.39 % 75.00 % ± 1.52%
Log-T MF 84.11% ± 3.95% 83.63% ± 3.01% 84.68% ± 2.41% 84.76% ± 2.56%

Grey Scale MD 85.81% ± 2.78% 85.74% ± 2.14% 85.89% ± 3.06% 85.09% ± 2.67%
All Walking Modes 86.44% ± 2.35% 85.59% ± 2.64% 86.3% ± 2.72% 86.15% ± 2.51%

Table 7.14 – Performance of the CNN Models with Different Input Images and using
Adam Optimization

CNN Performancde With ADAM Optimization
Images Walking Modes Accuracy%±SD% Sensitivity%±SD% Specificity%±SD% Precision%±SD%

MS 83.33% ± 1.23% 87.04% ±1.47% 79.63% ± 1.55% 81.03% ± 1.73 %
Colored MF 86.11% ± 2.04% 88.89% ±2.14% 83.33% ± 2.12% 84.21% ± 2.31 %

MD 87.96% ± 0.14% 85.19% ±0.27% 90.74% ± 0.21% 90.20% ± 0.47 %
All Walking Modes 90.74% ± 0.11% 88.89% ± 0.45% 92.59% ± 0.32% 92.31% ± 0.64%

MS 85.19% ± 2.44% 87.04 % ± 2.17% 83.33% ± 2.36% 83.93% ± 2.78%
Grey Scale MF 88.89% ± 1.58% 87.04% ± 1.34% 90.74% ± 1.72% 90.38% ± 1.04%

MD 92.59% ± 1.07% 96.3% ± 1.42% 88.89% ± 1.06% 89.66% ± 1.12%
All Walking Conditions 93.52% ± 1.28% 92.59% ± 1.63% 94.44% ± 1.04% 94.34% ± 1.44%

MS 84.26% ± 3.10% 83.33% ± 3.14% 85.19% ± 3.67% 84.91% ± 3.44%
Log-T MF 87.04% ± 2.04% 85.19% ± 2.11% 88.89% ± 2.35% 88.46% ± 2.71%

Colored MD 91.67% ± 3.65% 92.59% ± 3.29% 90.74% ± 3.22% 90.91% ± 3.48%
All Walking Modes 92.59% ± 1.44% 90.74% ± 1.26% 94.44% ± 1.37% 94.23% ± 1.69%

MS 86.11% ± 2.77% 85.19% ± 2.54% 87.04% ± 2.31% 86.79% ± 2.19%
Log-T MF 89.81% ± 2.59% 88.89% ± 2.37% 90.74% ± 2.25% 90.57% ± 2.67%

Grey Scale MD 93.98% ± 1.07% 92.59% ± 1.33% 94.44% ± 1.41% 94.34% ± 1.27%
All Walking Modes 94.44% ± 3.46% 92.59% ± 3.28% 96.30% ± 3.61% 96.15% ± 3.08%

The results in the previous section showed that using heat map images of the
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Combination Walking Modes, Grey Scale and Log-Transformation

average spectral correlation as input to a CNN model can be employed to predict future

falls of elderly people. In addition, incorporating the Adam technique to optimize the

hyperparameters also helped improve performance, which can also be seen in Tables

7.13 and 7.14.

In this section, we present the results of the same CNN model in the previous section

but with different types of images. These images differed in their treatment, whether

they were kept colored, used in greyscale, or with log translation. Also, these images

were different in the walking mode, whether the image involved a single mode of walking

(MS, MF, or MD) or the three walking modes in one image, which contained the MS,

MF, and MD images attached next to each other, as explained in Chapter 4.

The best obtained performances appear to be in the cases of the log transformed

greyscale images and involving the All Walking Conditions modes (bold font). The

statistical t-test for pairwise comparison was calculated in both tables between the MD

and All Walking Modes in the Log Transformed Greyscale images and a statistically

significant difference was confirmed in Table 7.13 where Adam was not used. Whereas,

no statistically significant difference was obtained in Table 7.14 where Adam was used.

The results obtained in this section will be submitted to the Journal of Biomedical

and Health Informatics (JBHI).
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Conclusion and Perspectives

General Conclusion

French Version

Les chutes chez les personnes âgées constituent un grave problème de santé qui

entraîne des conséquences malheureuses et dévastatrices. Cependant, certaines chutes

peuvent être évitées grâce à des interventions, une thérapie physique, une gestion

appropriée et des précautions. Par conséquent, identifier le risque de chutes à l’avance

peut minimiser le risque de leur occurrence et la gravité des blessures résultant de ces

chutes. De même, l’identification des patients à risque fait partie intégrante de la prise

en charge, car l’application de mesures préventives à cette population vulnérable peut

affecter profondément la santé publique. Dans cette thèse, différents indicateurs ont été

étudiées en mettant l’accent sur la cyclostationnarité pour identifier les personnes âgées

à risque de chute. De plus, différentes méthodes d’apprentissage automatique ont été

appliquées et comparées à cette fin.

Dans toute les publications sur la prédiction des chuteurs âgés, l’utilisation

d’indicateurs classiques extraits de capteurs portables dans des algorithmes

d’apprentissage automatique ont permis d’atteindre au mieux une précision d’environ

70% ; atteindre une précision supérieure à cela semblait difficile. Les travaux menés

dans cette thèse portent sur la prévision des risques de chute chez les personnes âgées

à l’aide de signaux de semelles de pression. Ces signaux détiennent des propriétés de

cyclostationnarité ainsi que d’autres caractéristiques classiques précédemment explorées

dans la littérature, ensemble semblent atteindre des performances de classification
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améliorées.

Une étude bibliographique approfondie a été présentée dans cette thèse, suivie d’un

traitement du signal et de l’extraction de diverses caractéristiques mettant en évidence

celles qui sont liées à l’analyse cyclostationnaire. Les performances des modèles de

classification se sont améliorées avec l’ajout de techniques de sélection de caractéristiques

(Relief-F et SBS) et l’optimisation des hyperparamètres.

Il a également été noté que les données de la condition de marche MD (marche en

décomptant à partir de 50) conduisaient à de meilleures performances de classification

du modèle que la MS (marche sans tâches secondaires) et la MF (marche en appelant

les noms des animaux). Cela peut être interprété comme le fait que les tâches cognitives,

plus spécifiquement la mémoire de travail, aident à faire ressortir les différences dans

les habitudes de marche des personnes âgées avec et sans risque de chute.

Une nouvelle méthode de représentation des propriétés cyclostationnaires des signaux

de marche sous forme d’images à utiliser comme entrées d’un modèle CNN a été étudiée.

Le modèle suggéré a surpassé les modèles d’apprentissage automatique conventionnels

précédents avec l’optimisation Adam, a réduit la complexité avec moins d’entrées

nécessaires et a permis de gagner du temps en utilisant une seule condition de marche

(MD) au lieu de trois. De plus, de simples transformations logarithmiques et en échelle

de gris ont entraîné une amélioration supplémentaire des performances de classification

du modèle.

English Version

Elderly falls are a severe health problem that leads to unfortunate and devastating

consequences. However, some falls are preventable through interventions, physical

therapy, proper management, and precaution. Therefore, identifying the risk of falls

ahead of time can minimize the risk of their occurrence and the severity of injuries
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resulting from these falls. Similarly, identifying at-risk patients is an integral part

of management, as applying preventive measures in this vulnerable population can

profoundly affect public health. In this thesis, different features were studied with a

focus on cyclostationarity to identify elderly people with fall risk. In addition, different

machine learning methods were applied and compared for this purpose.

Throughout the literature on the prediction of elderly fallers, using classical features

extracted from wearable sensors in machine learning algorithms were able to achieve at

best accuracies of around 70%; achieving accuracies higher than that seemed challenging.

The work carried out in this dissertation concerns the prediction of prospective risks

of falling in the elderly community using pressure insole signals. These signals hold

properties of cyclostationarity along with other classical features previously explored in

the literature, together appear to achieve improved classification performances.

A thorough systematic literature review was presented in this thesis, followed by

signal treatment and extraction of various features highlighting those that are related

to cyclostationary analysis. The performance of the classification models improved with

the addition of feature selection techniques (Relief-F and SBS) and hyperparameter

optimization.

It was also noticed that data from the MD walking condition (walking while de-

counting from 50) led to better model classification performance than the MS (walking

without secondary tasks) and MF (walking while calling out names of animals). This

can be interpreted as that cognitive tasks, more specifically working memory, does help

bring out differences in walking patterns of elderly people with and without the risk of

falling.

A novel method of representing cyclostationary properties of walking signals as

images to be used as inputs to a CNN model was investigated. The suggested model
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outperformed the previous conventional machine learning models with Adam Opti-

mization, reduced the complexity with fewer needed inputs, and saved time using one

single walking condition (MD) instead of three. In addition, simple log and grey scale

transformations caused further improvement in the model’s classification performance.

Perspectives et travaux futurs

— Explorer des caractéristiques supplémentaires qui indiquent des risques de chutes

et les incorporer dans les modèles de classification.

— Étudier d’autres caractéristiques liées à la cyclostationnarité qui sont liées au

risque de chute chez les personnes âgées.

— Analyse d’autres méthodes pour la sélection des fonctionnalités et l’optimisation

des hyperparamètres.

— Étudier d’autres méthodes d’optimisation des hyperparamètres de CNN.

— Recherche d’autres images représentatives de cyclostationnaire à insérer dans le

CNN.

— Explorer d’autres méthodes de traitement des données déséquilibrées.

— Explorer des méthodes d’apprentissage automatique non supervisé pour utiliser

les sujets non étiquetés dans l’ensemble de données.

— Obtenir le point de vue du domaine médical sur les performances obtenues du

modèle et obtenir leur point de vue sur la détermination de la validité temporelle

de ce diagnostic ou sur les moyens de le déterminer.

— Proposer les images de la carte thermique à utiliser dans une application médicale

différente pour mesurer les progrès des patients après une thérapie physique ou

simplement mesurer la détérioration de leur mode de marche avec l’âge pour

évaluer les cas nécessitant une intervention médicale.
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Perspectives and Future Work

— Exploring additional features that are indicative of risks of falls and incorporating

them in the classification models.

— Investigating other features related to cyclostationarity that are related to falling

risk in the elderly.

— Analyzing other methods for feature selection and hyperparameter optimization.

— Studying other methods for hyperparameter optimization of CNN.

— Researching other images representative of cyclostationarty to input into the

CNN such as the synchronous average pattern of the signal produced by insole

pressure sensors while walking.

— Exploring other methods of dealing with unbalanced data.

— Exploring Unsupervised Machine Learning methods to use the unlabeled subjects

in the data-set.

— Getting the medical field’s perspective on the achieved performance of the model

and getting their viewpoint on determining the time validity of this diagnosis or

on ways to determine that.

— Proposing the heat map images to be used in a different medical application

of measuring patients’ progress after physical therapy or simply measuring the

deterioration of their walking pattern with age to assess cases that require medical

intervention.
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Caractérisation et analyse des signaux de pression cyclostationnaire
générés lors de la marche : prédiction des chutes chez les personnes âgées

Résumé : Il existe un intérêt croissant pour le développement de modèles de

prédiction du risque de chute chez les personnes âgées qui peuvent être utilisés comme

approche préventive pour prédire le risque futur de chute dans la communauté des

personnes âgées.

Les principaux objectifs de ce travail sont, premièrement, d’étudier les aspects

cyclostationnaires des signaux de pression de la semelle intérieure des personnes âgées.

Deuxièmement, pour extraire les caractéristiques essentielles indicatives du risque de

chutes futures. Troisièmement, mettre en œuvre et comparer différentes méthodes

d’apprentissage automatique supervisé pour classer les sujets âgés en sujets avec ou

sans risque de chute dans le futur.

L’ensemble de données se compose de signaux de pression collectés à partir des

semelles intérieures de 519 personnes âgées qui ont indiqué si elles avaient déjà fait des

chutes. La première étape de cette étude a consisté en une revue approfondie de la

littérature des travaux antérieurs partageant des objectifs principaux similaires. La

section suivante explique l’aspect de la cyclostationnarité et sa caractérisation dans

les signaux de pression de semelle étudiés. Après cela, l’ensemble de données est

analysé statistiquement pour extraire des caractéristiques utiles. Ensuite, notre étude

propose les caractéristiques indicatives des chutes futures, les modèles d’apprentissage

automatique et les méthodes d’optimisation pour développer l’évaluation du risque de

chute dans la communauté des personnes âgées.

Enfin, notre étude propose une nouvelle méthode pour représenter les signaux

de la semelle intérieure de pression cylcostationnaire et les utiliser dans un modèle
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d’apprentissage en profondeur pour prédire les chutes potentielles dans la communauté

des personnes âgées.

Mots-clés : parcimonie, cyclostationnarité, déconvolution, approximation parci-

monieuse, diagnostic, défaut de roulement, phonocardiogramme.

Characterization and Analysis of the Cyclostationary Pressure Signals

Generated during Walking: Predicting Falls for the Elderly

Abstract : There is an increasing interest in developing older adult fall-risk

prediction models that can be used as a preventive approach to predicting the future

risk of falling in the elderly community.

The primary objectives of this thesis are, first, to study the cyclostationary aspects of

the pressure insole signals of older adults. Second, to extract essential features indicative

of the risk of future falls. Third, to implement and compare different supervised machine-

learning methods to classify elderly subjects as subjects with or without risk of falling

in the future.

The data set consists of pressure signals collected from the innersoles of 519 elderly

people who reported whether they had experienced previous falls. The first stage

of this study consisted of a thorough literature review of prior work sharing similar

main objectives. The following section explains the aspect of cyclostationarity and

its characterization in the studied pressure insole signals. After that, the data set is

analyzed statistically to extract useful features. Then our study proposes the features

indicative of future falls, the machine learning models, and optimization methods to

develop fall risk assessment in the elderly community.
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Finally, our study proposes a novel method for representing cylcostationary pressure

insole signals and using them in a deep learning model to predict prospective falls in

the elderly community.

Keywords : sparsity, cyclostationarity, deconvolution, sparse approximation, diag-

nostic, bearing failure, phonocardiogram.
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