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Résumé 

La barrière hémato-encéphalique (BHE) formée par la microvasculature cérébrale peut être 

contournée lors de l'invasion du système nerveux central (SNC) par des virus neurotropes. 

L'entérovirus A71 (EV-A71) est décrit comme un agent pathogène capable de migrer via les 

nerfs périphériques vers le cerveau par transport axonal rétrograde. Cependant, nous ne 

savons toujours pas si l'EV-A71 est capable d'envahir le SNC via la BHE. Dans cette thèse, 

nous avons utilisé un modèle in vitro de la BHE humaine co-cultivant des cellules endothéliales 

cérébrales (BLEC) et des péricytes. Grâce à ce modèle, nous avons montré que l'EV-A71 

n'affecte pas les principales caractéristiques de la BHE telles que la perméabilité 

paracellulaire, car peu de cellules endotheliales sont infectées. Le virus infectieux est libéré 

principalement par le pôle luminal. Cependant, nous avons aussi détecté la libération de 

quelques particules virales infectieuses par le pôle baso-latéral et la présence d’ARN viraux 

dans ce compartiment baso-latéral. Ce travail ouvre des perspectives d’étude vers d’autres 

modes de franchissement de la BHE par l’EV-A71.  

Mots-clés : Barrière hémato-encéphalique ; Entérovirus A71 ; Maladie pieds-mains-bouche ; 

Neuroinflammation ; Infection neurologique.  

Abstract 

The blood-brain barrier (BBB) formed by the brain microvasculature can be circumvented 

during the invasion of the central nervous system (CNS) by neurotropic viruses. Enterovirus 

A71 (EV-A71) is well reported as a pathogen capable of migrating to the brain through 

peripherical nerves via retrograde axonal transport. However, we still do not know whether EV-

A71 is capable of invading the CNS through the BBB. In this thesis we used an in vitro model 

of the human BBB by co-culture brain-like endothelial cells (BLECs) and pericytes. With this 

model, we showed that EV-A71 does not affect the main characteristics of the BBB, such as 

paracellular permeability because few BLECs are productively infected. High amounts of 

infectious viruses are released from the luminal side. However, we also detected leakage of 

infectious viruses from the baso-lateral side and the presence of viral RNAs in the baso-lateral 

compartment. This work provides opportunities to the analyses of other mechanisms of BBB 

crossing by EV-A71. 

Key words: Blood-brain barrier; Enterovirus A71; Hand, foot and mouth disease; 

Neuroinflammation; Neurological disease
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1) Introduction 

Non-polio enteroviruses represent a public health concern for causing a wide range of 

human infections, occasionally severe and associated with neurological complications 

(Baggen et al., 2018; Owino & Chu, 2019; and Harvala et al., 2021). After the almost 

complete eradication of poliomyelitis and wild poliovirus types, non-polio enteroviruses 

such as enterovirus A71 (EV-A71) emerged as a pathogens responsible for spreading 

a polio-like disease (Fig. 1) during outbreaks reported worldwide (Bitnun & Yeh, 2018; 

Gilsdorf, 2019; Brown et al., 2020; and Wang et al., 2022). 

 

 

Fig. 1.  Global incidence of non-polio enteroviruses. The figure indicates 
records of genomic sequences collected from 2000 to 2018. The sequences are 
classified as enterovirus species A (blue), B (green), C (brown), and D (red). The 
distribution pattern is highlighted in nine regions of the world. The total number of 
sequences within each virus group is proportional to the size of pie graphs. Figure from 
Brown et al., 2020. 

HFMD is a highly contagious, communicable infectious disease caused by several 

enterovirus types – notably those assigned to the EV-A species (see below) – that 

affect predominantly infants and young children below 5 years (McMinn, 2014 and Zhu 

et al., 2014). The patients generally manifest low-grade fever, malaise and myalgia for 

a few days followed by appearance of rashes, vesicular and maculovesicular eruptions 

on hands, feet, mouth, buttocks and oral cavity (Fig. 2) (Goksugur & Goksugur, 2010 

and Gu et al., 2017). In the most cases, HFMD is a benign illness, however, EV-A71 
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infections represent a high risk of developing severe neurological complications, such 

as aseptic meningoencephalitis, poliomyelitis-like acute flaccid paralysis, respiratory 

difficulties, and fatal outcomes (Tee et al., 2010; Mirand et al., 2015; and Nayak et al., 

2022). 

 

Fig. 2.  Typical symptoms of hand, foot and mouth disease. HFMD may 
cause vesicular and maculovesicular eruptions (a-b), exfoliation of soles (c), 
maculopapular lesions (d), and onychomadesis (e). Figure from Ślebioda & Dorocka-
Bobkowska, 2018. 

The main manifestations of severe HFMD are cardiopulmonary failure in consequence 

of damages in the brainstem, especially medulla oblongata and hypothalamus (Shen 

et al., 1999; Jiang et al., 2012; and Phan et al., 2019). Children under 2 years old are 

more vulnerable to severe EV-A71 infections and may develop cognitive sequelae 

(Chang et al., 2007).  

In 1998 in Taiwan, an EV-A71 outbreak was monitored and the report of clinical 

features served as a robust panel for characterization of severe EV-A71 infections. 

Patients infected with EV-A71 generally manifest persistent fever, vomiting, ulcerative 

lesions in buccal mucosa, oral cavity, tong, hands, and feet. These symptoms are self-

limited, but it may progress to neurological complications similar those caused by 

a) b) c)

d)

e)
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poliomyelitis. The neurological complications may be classified in three syndromes: 

aseptic meningitis, acute flaccid paralysis, and rhombencephalitis (Huang et al., 1999). 

Aseptic meningitis is characterized by headache, vomiting, fever, and stiffness of the 

neck. Among the neurological syndromes characterized, aseptic meningitis presents 

the highest chance of favorable evolution. 

Acute flaccid paralysis of the arms or the legs, may occur without loss of senses, such 

as pain, heat or cold. Transient symptoms of rhombencephalitis (myoclonus, tremor, 

and ataxia) may occur before the paralysis. The magnetic resonance imaging (MRI) 

shows that patients with acute flaccid paralysis may present lesions on spinal cord. A 

complete recovery is possible, but patients may persist with limb weakness and 

atrophy.  

During the rhombencephalitis, the patients manifest myoclonus, jerks even during 

sleep, tremors, ataxia, hallucinations, and respiratory abnormalities. Patients with 

rhombencephalitis may present MRI with signal lesions at the brainstem. The severity 

of rhombencephalitis vary in three grades: romboencephalitis of grade I are 

characterized by generalized myoclonic jerks with tremor and ataxia. In the grade II, 

the myoclonus involves cranial-nerves. Patients may present ocular and facial 

involuntary movements. The grade III is the most severe manifestation of EV-A71 

infection. Patients present a transient myoclonus followed by respiratory distress, 

cyanosis, apnea, loss of doll's eye reflex , shock, and coma. Patients with grade III 

requires mechanical ventilation after admission due the risk of fulminant pulmonary. 

Overall, the location of lesions on CNS defines the severity of the infection. The white 

cell counting, the levels of glucose, and protein, in CSF are similar among the 

neurological syndromes caused by EV-A71. 

A special attention in patients less than five years old presenting vomiting, 

restlessness, and unconsciousness is required in early diagnosis of severe HFMD (Tu 

et al., 2015 and van Hinsbergh et al., 2020). The main causes of medical consultation 

are persistent high fever, restlessness, loss of appetite, discomfort while eating, and 

intense cutaneous lesions for up to one week (Gu et al., 2017 and Ślebioda & Dorocka-

Bobkowska, 2018). In the most severe cases, patients are admitted with neurological 
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symptoms such as headache, vomiting, lethargy, altered consciousness, paralysis, 

spasms, or convulsions (Hohmann & Kim, 2012 and Long et al., 2016). Monitoring of 

the blood pressure, platelets and phosphatase levels, and when possible 

neuroimaging and electroencephalography examinations, are important for patient 

management (Kovacs et al., 2001; Hohmann & Kim, 2012; and R. Li et al., 2014).  

Treatments for severe HFMD are still not available, therefore developing antiviral drugs 

is an urgent need (Aylward et al., 2003 and Ludlam et al., 2006). There is no specific 

treatment for mild EV infections other than symptomatic, mostly to control the body 

temperature (Foli-Andersen et al., 2022). Antibiotic treatment is unnecessary and may 

expose the community to the risk of selection of resistant microorganisms, which have 

been emerging as a cause of mortality among neonates (Hollander et al., 2005; 

D’Acremont et al., 2014; and Saha et al., 2018). Severe EV infections require 

hospitalisation for specialised management.  

The sequelae reported with severe CNS infections include dysfunctional aerodigestive 

tract, neurological sequelae, delayed neurodevelopment, impaired cognition, as well 

as psychosocial problems. The long-term monitoring with complete clinical 

assessment of young children with historic of severe HFMD or other CNS infections 

are recommended to improve the outcomes (van Hinsbergh et al., 2020). 

EV-A71 is a common etiologic agent of HFMD. When the virus reaches the central 

nervous system (CNS), a neuroinflammatory process is triggered, affecting 

permeability of brain microvasculature, which form the blood brain barrier (BBB) 

(Coyne et al., 2007 and Wang et al., 2020). EV-A71 may invade the CNS by axonal 

retrograde transport, inside infected leukocytes or crosses the BBB of brain 

microvasculature (Mizutani et al., 2016 and Wiatr et al., 2019). Different EV types can 

effectively infect brain microvascular endothelial cells. However, in a study from our 

group, these cells were reported to be resistant to EV-A71 infection (Volle et al., 2015). 

In the present study, we reexamined whether EV-A71 can infect cerebral 

microvascular endothelial cells within an in vitro model of human BBB including 

pericytes. The results obtained are consistent with those obtained earlier (Volle et al., 

2015) and suggest that EV-A71 does not cross efficiently the human BBB. 
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2) Bibliography 

I. Epidemiology and diversity of enterovirus A71 (EV-A71) 

a. Incidence and surveillance of HFMD  

The first description of HFMD and detection of EV-A71 were reported at a time when 

most outbreaks of EV neurological diseases were caused by poliovirus, 

coxsackievirus, and echovirus strains (Robinson et al., 1958; Johnson et al., 1960; 

Duncan, 1961; Flewett et al., 1963; and Portnoy et al., 1965). Since then, 

epidemiological studies of HFMD outbreaks have suggested that severe HFMD is 

significantly associated with an infection caused by EV-A71. 

HFMD outbreaks happen due to several determinants, such as rapid population 

growth, climate change, socioeconomic changes, and other lifestyle changes (Puenpa 

et al., 2019 and Abdul Wahid et al., 2021). In countries of the Asia-Pacific region, 

HFMD outbreaks occur in a cyclical pattern of every three years. In this geographic 

region, HFMD outbreaks has been associated with the co-circulation of coxsackievirus 

A16 and EV-A71 (Xu et al., 2010 and Nayak et al., 2022). In China, outbreaks of HFMD 

associated with EV-A71 have affected millions of children, and represent a serious 

public health concern (Liu et al., 2011). After several large HFMD outbreaks in the 

Asia-Pacific region, some countries established a sentinel surveillance program for EV-

A71 (Podin et al., 2006; Koh et al., 2018; Chiu et al., 2020; and F. He et al., 2022). In 

this epidemiological context, HFMD is a notifiable disease in several Asian countries, 

including Singapore since 2000 and China since 2008. Investigations in Europe are 

scarce because HFMD do not benefit from a specific and active surveillance. In France, 

the ambulatory paediatric surveillance of HFMD between 2014 and 2015 showed that 

the mean age of infection is 2.1 years, regardless of the EV type (Mirand et al., 2015). 

In addition, EV-A71 represents only sporadic cases among the reported HFMD cases. 

The surveillance protocols can provide important data and information: giving support 

to diagnosis, monitoring virus identification and the circulation of EV-A71, and 

characterising clinical features in patients (Benschop et al., 2021; Harvala et al., 2021). 

The profiles of virus circulation in a population can be traced in the serum of individuals 

through seroprevalence investigations. This screening is performed by searching 
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neutralizing antibodies against EV-A71. In China, the low incidence of HFMD in the 

adult population correlates with a seroprevalence rate of 74.6 % (Koh et al., 2016). The 

analysis of sera collected between 2006 and 2017, in the United Kingdom, showed 

EV-A71 seroprevalence rates of 32% at 6 to 11 months and of >75% by the age of 10 

years (Kamau et al., 2021). In Southern Vietnam, 23.5% of 1-year-old children have 

been infected by EV-A71, and the median age of infection was 3 years (Kuo et al., 

2020). These data and other studies indicate that the lack of protective antibodies may 

contribute to the high susceptibility and fatality rate in the youngest children. 

Public health officials can also correlate data of HFMD incidence and strain prevalence 

with potential risk factors for developing a predictive surveillance (He et al., 2020; Ding 

et al., 2021; Sun et al., 2021; and Wahid et al., 2021). Moreover, samples isolated from 

throat, rectal, vesicle and other swabs have been genotyped to raise precise 

information on circulating EV-A71 strains (Song et al., 2018; Yang et al., 2019; and 

Volle et al., 2020). 

b. Picornaviridae family 

Human enterovirus diseases were initially understood as enteric infections caused by 

pathogens that could colonize the gastro-intestinal tract, such as polioviruses, 

coxsackieviruses, and echoviruses. Later, the term “Picornaviruses” was attributed for 

grouping enteroviruses and rhinoviruses in a family of small RNA virus (Horstmann, 

1965). Members of the Picornaviridae family associated with human diseases are 

known for causing mucocutaneous manifestations, respiratory and gastrointestinal 

infections, cardiopathies, hepatitis, poliomyelitis, meningitis, and encephalitis 

(Tapparel et al., 2013 and Zell, 2018). The Picornaviridae family includes human and 

animal viruses that are classified in 68 genera (https://www.picornaviridae.com/). The 

initial taxonomic classification was developed by considering the ecological 

relationships between these entities and their hosts (tropism, diseases, syndromes, 

symptoms…) and their physicochemical properties – temperature susceptibility, acid 

lability, cross antigenicity (Wenner, 1982). 
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c. The genus Enterovirus 

Further, molecular tools and first generation sequencing were at the root of major 

updates in the classification of the picornavirus diversity, and notably within the 

Enterovirus genus (Oberste et al., 2004 and Simmonds et al., 2020). Rhinovirus strains 

– initially classified in a separate genus – were integrated the Enterovirus genus 

because of the close nucleotide similarities and were assigned to three species 

designated Rhinovirus A to C (Brouwer et al., 2021). Currently, the Enterovirus genus 

classifies the members (coxsackievirus, echovirus, and poliovirus, and enteroviruses 

discovered later) among four taxonomic species designated Enterovirus A (EV-A) to 

Enterovirus D (EV-D). EV-A71 belongs to the EV-A species. 

d. The  enterovirus A (specie EV-A) 

Overall, the EV-A species includes 25 (sero)(geno)types designated coxsackievirus 

(CVA2 to CVA8, CVA10, CVA12, CVA14, and CVA16) and numbered enteroviruses 

(EV-A71, EV-A76, EV-A89 to EV-A92, EV-A114, EV-A119 to EV-A125) (Brouwer et 

al., 2021). 

e. Enterovirus A71 

In 1969, an outbreak of neurological manifestations in California allowed the 

identification of a new EV strain (designated BrCr) because its antigenic properties 

were different from those of the other EV types (Schmidt et al., 1974). It was designated 

“Enterovirus 71” (Melnick et al., 1974) and later “Enterovirus A71”. The EV-A71 strains 

are currently classified among eight genotypes named A to H (Bessaud et al., 2014). 

The prototype strain BrCr is assigned to genotype A, the vast majority of epidemic 

viruses reported over the world are scattered among genotypes B and C, and the other 

genotypes include viruses reported sporadically over the world (Bessaud et al., 2014; 

Mirand et al., 2015; and Mandary & Poh, 2018) (Fig. 3). The strains within the B and 

C genotypes are further assigned to subgenotypes B0 to B5, and C1 to C6, 

respectively (Y. Liu et al., 2022). Overall, the phylogenetic analyses are performed by 

comparing and clustering the VP1 capsid protein sequences; alternatively, the VP4-

VP2 sequences can also be used. 
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Fig. 3.  Diversity of the EV-A71 species based on comparison of the 
complete nucleotide sequences encoding the VP1 capsid protein. The genotypes 
and subgenotypes are indicated with the exception of genotypes G and H for which 
only partial sequences were known. The scale indicates genetic distances (nucleotide 
substitutions per site). Figure from Bessaud et al., 2014. 

II. EV-A71 circulation 

Strains assigned to subgenotypes B0, B1, and B2 circulated from 1963 to 1986 

affecting distant geographical regions such as USA, European countries, and 

Australia. A shift to the circulation of subgenotypes C1 and C2 in 1987, was reported 

in the Netherlands (van der Sanden et al., 2010). These two subgenotypes were found 

recently in Europe. Outbreaks involving C1-like virus strains are reported since 2015 

(Hassel et al., 2015). The C1-like virus infections are associated with benign rapidly 

self-limiting infections and severe infections, highlighting the need for enhanced EV-

A71 surveillance (Casas-Alba et al., 2017 and Ngangas et al., 2019). 

The EV-A71 strains circulating in the Asia-Pacific region are much more diverse (Fig. 
4). Subgenotypes B3, B4, C1, C2, and C4 are reported throughout this region, 

subgenotype C4 being predominant in China (Puenpa et al., 2019). 
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Fig. 4.  Prevalence of the EV-A71 subgenotypes in South East Asia. In 
countries of the Asia-Pacific region, EV-A71 triggers recurrent outbreaks, mainly 
caused by circulation of virus strains from genogroups B and C. In countries such as 
China and Australia, strains of subgenotype C4 are predominant. Figure from (Puenpa 
et al., 2019). 

The analysis of circulating strains from different outbreaks in Sarawak (Malaysia) 

revealed that despite the predominance of genotype B, the strains from each outbreak 

belong to various subgenogroups (Chua & Kasri, 2011). Nucleotide sequence analysis 

of the VP1 gene showed that after the emergence of subgenotype B5 in 1997, 

subgenotypes B4, C1, C2, C4, and C5 were reported in the years 2000s (Chua & Kasri, 

2011). 

III. Evolution 

The worldwide circulation of EV-A71 and the error-prone RNA polymerase contribute 

to viral evolution and is associated with the emergence and re-emergence of 

genetically different strains (Bible et al., 2007; Y. Zhang et al., 2011; and Nhu et al., 

2021). The analysis of genotypic changes in circulating strains revealed that amino 

acid variations at specific positions in capsid proteins are involved in phenotypic 

polymorphism and virulence of EV-A71 strains. In particular, amino acid polymorphism 

at position 145 in the VP1 protein is associated with variations in virus attachment to 
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leukocytes (see below, the paragraph “Viremia”). The A289T amino acid substitution 

decreases the interaction with cell surface vimentin and may contribute to a reduced 

infection of the CNS (Zhu et al., 2019). Evolutionary analyses of the VP1 capsid 

sequences provided little evidence of positive selection, but they showed continuous 

virus strain and lineage replacement over time, and frequent variations were detected 

at several immunogenic sites (Tee et al., 2010). Amino acid changes in nonstructural 

proteins were also reported. Notably, the N69D in the 3C protease and the V263I 

changes in the 3D polymerase were associated with a decrease in EV-A71 virulence 

(Li et al., 2017). The data indicate that single amino acid variation occurring during 

interindividual and intraindividual virus spread may be associated with changes in 

virological properties.  

Genetic recombination between strains has long been recognized as a major process 

contributing to the evolutionary dynamics of EVs, including EV-A71 (Huang et al., 2009 

and Liu et al., 2015). Analyses of full-length genome sequences indicate that CVA co-

circulating with EV-A71 introduce genetic elements within the EV-A71 genome (Huang 

et al., 2009 and McWilliam Leitch et al., 2012). Recently a newly subgenotype C6 

emerged in China. The genomic P1 region of this C6 virus displays high identity with 

C4 strains (Liu et al., 2022). The data indicate that C6 strain emerged through intratypic 

recombination within the genomic P2 and P3 regions. The P2 locus harbors evidence 

of recombination events between strains from the EV-A71 subgenotypes B and C. 

Intertypic recombination events can occur with a large array of CVA strains (CVA4, 

CVA5, CVA14, and CVA16) (Zhou et al., 2021).  

The P2 and P3 loci are important sites of recombination. European countries like 

Germany and France reported the widespread circulation of a multirecombinant strain 

from subgenotype C1 that emerged through recombination events with strains of other 

CVA types such as CVA2, CVA4, CVA5, CVA6, and CVA8 (Fig. 5) (Karrasch et al., 

2016 and Ngangas et al., 2019). Recombination may represent a potential risk for 

outbreaks of severe infections. The fitness and virulence of EV-A71 are associated 

with recombination events, mutations, and natural selection (Mandary & Poh, 2018; 

Huang et al., 2019; and Ang et al., 2021). 
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Fig. 5.  Evidence of intertypic recombination. The P3 locus of a 
multirecombinant strain from subgenotype C1 present high level of similarity with the 
genomes of strains of other enterovirus types, such as coxsackievirus CVA2 and 
CVA6. In contrast, the P2 locus has low similarity with these two viruses and other 
coxsackievirus types. Figure from Ngangas et al., 2019. 

IV. Genetic and epidemiological features of EV-A71 strain used in the study 

The Virology Service of the University Hospital Gabriel Montpied (CHU) in Clermont-

Ferrand provided all EV-A71 isolates used in this study. The EV-A71 clinical isolates 

used in this study were obtained from three patients: isolate CF1920113_FRA04 from 

a patient with meningitis and other neurological complications, isolate 

09_PMB250102_FRA16 from a patient with HFMD, and isolate CR210042_FRA06 

from an asymptomatic infection case (Table 2). The first virus is representative of the 

C4 subgenogroup and was designated throughout the study as C4-04. The C4 strain, 

has an accumulation of mutations in the gene encoding the VP1 protein, which may 

be associated with the high infectivity potential (He et al., 2016). The second strain is  

a C1-like virus (it was designated C1-16 in this study); the strain C1-16 is a 

multirecombinant strain reported during outbreaks, which emerged as a consequence 

of recombination events between viruses from subgenegroup C1 and other EV types 

(Ngangas et al., 2019). The third virus strain is assigned to the C1 sugenogroup, a 

parental C1 strain; it was designated C1-06. 
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Table 1.  Characteristics of EV-A71 strains used in this study. The accession 
number indicated is linked to the nucleotide sequence of the P1 genomic region. Each 
strain was characterized by sequencing the complete genome. The nucleotide 
sequences for the complete genomes of the C1-06 and C4-04 strains have not been 
deposited in GenBank. 

V. Vaccine 

In China, three inactivated vaccines were approved by a national regulatory authority 

(Chiu et al., 2020 and Li et al., 2021). Following their implementation, the seasonality, 

geographical distribution, and etiologic agents of HFMD outbreaks changed completely 

(Jiang et al., 2021 and Huang et al., 2022). Outbreaks of CVA6 and CVA10, as well as 

re-emerging of rare serotypes such as echovirus 11 and echovirus 30 were reported 

(Tong et al., 2021). The current inactivated vaccines are highly protective against EV-

A71, but do not offer cross-protection for other EV types. Therefore, the development 

of additional vaccines with polyvalent spectrum are still necessary (Mao et al., 2016; 

Takahashi et al., 2016; and Apostol et al., 2019). 

VI. EV-A71: capsid structure and genome 

EV-A71 is a non-polio EV type, formed by a nonenveloped icosahedral capsid, 

composed by 60 copies of the four structural proteins VP1, VP2, VP3, and VP4 (Liu et 

al., 2013; Zhang et al., 2017 ; Cao et al., 2019 ; and Zhao et al., 2021). VP4 forms an 

internal protein, while the VP2, VP3, and VP1 proteins are exposed at the virion surface 

(Fig. 6) (Li et al., 2011 and Yuan et al., 2015). The sequence of the VP4 protein is 

Table 1. Characteristics of EV-A71 strains used in this study
Clinical

manifestation
Specimen
isolation

Accession 
number

Year of 
isolation Subgenogroup Designation

Assymptomatic Pharynx 
sample

CF210042/2006 
(LR027547.1) 
(HG934219.1)

2006 C1 C1-06

Mild hand, foot 
and mouth 

disease 
(HFMD)

Throat 
swab

PMB250102/2016 
(LR027524.1) 2016 C1 C1-16

Severe HFMD 
with 

neurological 
complication

Stool 
sample

CF192013/2004 
(HG934208.1) 2004 C4 C4-04
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extremely well conserved among different EV types, and is under investigation for 

developing broad-spectrum antivirals (Tan et al., 2016 and Cao et al., 2020). VP1 

protein is also a target for drug discovery, but its variability between EV types makes 

development even more difficult and expensive (Ke et al., 2006 and Sun et al., 2020). 

 

Fig. 6.  Capsid structure of EV-A71. The image shows the proteins that form 
the icosahedral capsid of EV-A71. The structure of EV-A71 capsid is formed by an 
internal layer of VP4 proteins, and external units composed of the VP2, VP3, and VP1 
proteins. Figure from Yee & Poh, 2015. 

 

The tridimensional arrangement of the VP1 proteins within the viral capsid forms an 

excavated area (commonly designated the canyon), which interacts with cellular 

receptors (see below). At the bottom of the canyon, there is a local area filled with a 

hydrophobic, lipid, also known as ‘pocket factor’ that stabilizes the virion (Fig. 7) 

(Ranganathan et al., 2002). Unlike in other enterovirus types, the EV-A71 pocket has 

a unique conformation flushing the canyon floor (Ke et al., 2006 and Plevka et al., 

2012). Accordingly, since the head of the EV-A71 pocket factor interacts with polar 

residues on the canyon floor, EV-A71 antivirals may require a hydrophilic head group. 
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Fig. 7.  Capsid canyon. The image shows specific areas of the capsid structure. 
In this illustration, it is highlighted regions of interaction between the VP1, VP2, and 
VP3 proteins. The tridimensional organisation of these proteins forms a deep area in 
the capsid structure (also called canyon) that passes through the VP1 and VP3 
proteins, and which harbors an important lipid molecule, the pocket factor. The canyon 
is in contact with different molecular structures such as cellular receptors. Figure from 
Hafenstein et al., 2007. 

The EV-A71 genome is a positive single-stranded RNA of approximately 7400 

nucleotides (Han et al., 2010). The EV-A71 genome consists in a unique open reading 

frame (ORF) flanked by two untranslated region (UTR), the 5’ and 3’-UTRs (Meng et 

al., 2012). The ORF region encodes the capsid (or structural) proteins VP1, VP2, VP3, 

and VP4, and the non-structural proteins 2A, 2B, 2C, 3A, 3B, 3C, and 3D (Guo et al., 

2019 and Brown et al., 2020). The 5’-UTR contains secondary structures, formed by 

RNA folding generating stem loops (I–VI) that play important roles on the viral life cycle 

and influence directly on EV-A71 fitness and virulence (Chang et al., 2018 and Dong 

et al., 2019). Stem loop I is involved in the replication of the viral RNA and stem loops 

II–VI, in the translation of the viral RNA (Fig. 8). The nucleotide sequence of the 3’-

UTR also forms secondary structures called X, Y, and Z that are cis-acting elements 

capable to interact with host cell and viral proteins (Zoll et al., 2009). 
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Fig. 8.  Genome structure of EV-A71. The EV-A71 genome harbors genes that 
encode structural and non-structural proteins, and is flanked by the 5’ and 3’-
untranslated regions (UTR). The 5’-UTR forms secondary structure domains (stem 
loops I–VI). The positions of the first and last nucleotide of each stem loop, are 
indicated. The loops II–VI forms the internal ribosomal entry site (IRES). 3’-UTR has 
three secondary structure domains (Z, Y, and X) and a polyadenylated tail. Figure from 
Yuan et al., 2018. 

 

VII. Life cycle 

a. Surface attachment 

The VP1 protein mediates the attachment of EV-A71 to several host receptors 

(Tseligka et al., 2018 and Earley et al., 2019). Variations in amino acid sequences of 

the VP1 protein at position 145 (VP1-145) showed the relevance of electrical charges 

in sustaining binding to the heparan sulfate residues (Fujii et al., 2018). Amino acids at 

VP1-145 are in close contact with conserved lysine residues, which have positive 

charges (Nishimura et al., 2013). Amino acids of negative or neutral charges, such as 

glycine and glutamine, respectively, may affect the orientation of lysine residues at 

VP1-145.  

b. Cell entry 

The human scavenger receptor class B member 2 (hSCARB2), a type III 

transmembrane protein classified within the CD36 family, is the main mediator of entry 

into the host cell for EV-A71 and most of the other EV types within the EV-A species 
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(Yamayoshi et al., 2012). hSCARB2 is involved in membrane transport and 

reorganization of the endosomal-lysosomal compartment; it is predominantly localized 

in the lysosomal membrane and in small amount in the plasma membrane. The 

structure of EV-A71 complexed to SCARB2 was determined at a 3.4 Å resolution using 

cryo-electron microscopy (Zhou et al., 2019). The analysis of the virion-SCARB2 

complex provides evidence that SCARB2 does not bind inside the canyon but with two 

loops exposed at the virion surface: the VP1 G-H and the VP2 E-F loops. The analysis 

also revealed that the human SCARB2 helices α5 (amino acid residues 153–163) and 

α7 (amino acid residues 183–193) are the binding sites on the viral protein loops (Fig. 
9). 

 

Fig. 9.  Interaction between VP1 protein and human SCARB2. The loop 
structures of VP1 proteins sustain molecular interactions with to α-helices of hSCARB2 
receptor. Figure from Zhou et al., 2019. 

 

c. Humanization of mouse for elucidation of EV-A71 pathogenicity 

Studies in transgenic mice expressing hSCARB2 allow mimicking the natural route of 

infection in humans, and has been performed to evaluate the potential spread, tissue 

tropism, pathogenesis, and neurovirulence (Lin et al., 2021). In these models, the 

severity of EV-A71 infection is influenced by the route of infection. Therefore, to access 
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properly the pathogenicity and cell tropism, infections are performed intravenously. To 

study the neuropathogenicity, the animals are subjected to intracranial inoculation (Zhu 

et al., 2018). Infections of hSCARB2 mice with a large array of mutant strains suggests 

that virulence determinants are located throughout the viral genome, in the regions 

encoding the structural and non-structural proteins, as well as in the untranslated 

regions (Tee et al., 2019; Ang et al., 2021; and Kobayashi et al., 2021). Even with the 

possibilities to reproduce infectious scenarios, the interpretation of the virulence may 

be controversial, because EV-A71 adapt quickly to various host environments 

(Kobayashi et al., 2021). 

d. Uncoating 

The interactions between virion surface and cellular receptor are fundamental to 

stabilize the complex and activate a clathrin-dependent endocytosis pathway (Fig. 10) 

(Ang et al., 2016; Chen et al., 2019; and Chang et al., 2021). 
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Fig. 10.  Entry of EV-A71 into the host cell. The interaction between EV-A71 
and surface receptors, such as hSCARB2, activates clathrin receptors that are 
responsible for packing extracellular content in endocytic vesicles. This clathrin-
dependent endocytosis is essential for the internalization of virions. Figure from 
Yamayoshi et al., 2012. 

 

The endosomal vesicle is subject to acidification, which causes alteration of the virion 

structure, and results in the expulsion of the VP1 pocket factor from the virion capsid 

(Dang et al., 2014 and Lyu et al., 2014). The lysosomal pH also regulates the activity 

of isomerases, such as cyclophilin A (CypA), which promotes proteolytic deformations 

on the virion capsid (Qing et al., 2014; Meng et al., 2019; and Swain & Mohanty, 2019). 

These mechanisms result in the formation of a channel in the capsid structure 

surrounded by negatively charged amino acid residues, essential for expulsion of viral 

genome (Fig. 11) (Shingler et al., 2013; Peters et al., 2015; Ross et al., 2018; and 

Ohka et al., 2022).  
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Fig. 11.  Viral uncoating. The figure shows experimental observation of virion 
capsid. Under low pH occurs an expansion of capsid proteins and expulsion of VP4-
associated factor (Myristoyl-VP4). These alterations result in the RNA expulsion and 
formation of empty capsid (a). Further the internalization, the virion anchored at 
endosomal vesicles expulses the ‘’pocket factor’’. In consequence of capsid 
destabilization, the N terminus region of VP1 protein is exposed; establishing adhesion 
to endosomal vesicle, while VP4 protein forms pores that together other with host 
proteins (Group XVI phospholipase A2, PLA2G16) mediates the expulsion of virion 
genome (b). Figure from Baggen et al., 2018. 

 

e. Translation 

After the uncoating stage, the viral RNA is translated through an unconventional 

mechanism. Within the 5’-UTR, stem loops II to VI form the internal ribosomal entry 

site (IRES) that initiates the translation of the EV-A71 genome (Lin & Shih, 2014 and 

Lai et al., 2020). The viral IRES hijacks the cell machinery for translation of viral 

genome (Zhang et al., 2018; Lee et al., 2017; Tolbert et al., 2017; and Gunaseelan et 

al., 2019). The EV-A71 interacts with several host trans-acting factors (ITAFs), some 

of them like Far Upstream Element-Binding Protein 1 (FBP1) result from the proteolytic 

activity of the viral protease 2A (Fig. 12). Some ITAFs are protein processors 

(helicases and chaperones), therefore the proteolytic activities are enhanced, driving 

the cell metabolism in benefit of viral replication (Dong et al., 2018 and Dan et al., 

2019). The 2A protease also targets other key host components that enhance IRES 

activity (Li et al., 2018; Visser et al., 2019; and Fan et al., 2021). 
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Fig. 12.  IRES activity. This figure is a proposition of model that explains the IRES 
function. The host factor FBP1 (Far Upstream Element-Binding Protein 1) is recruited 
to 5’-UTR region for enhancing the translation of virion genome. As long as the levels 
of viral protein 2A increases the FBP1, a host factor is cleaved. The products of this 
protein cleavage forms functional subunits enhancing IRES translation. Figure from 
Hung et al., 2016. 

 

As a consequence of viral genome translation, a single polyprotein is generated and 

processed into the three major precursors P1, P2, and P3 (Lai et al., 2020).  Finally, 

ten functional proteins are produced, including the capsid (structural) proteins (VP0, 

VP1 and VP3), the nonstructural proteins (2A–2C and 3A–3D) (Fig. 13). The non-

structural proteins 2A and 3C cleave the polyprotein into intermediate precursors and 

functional viral proteins (Kean et al., 1990 and Lin et al., 2015). Three stable protein 

intermediates (2BC, 3AB, and 3CD) generated during translation, are functional and 

recruited during viral RNA replication. 



Bibliography 

 

 p. 47 

 

Fig. 13.  Translation of the viral genome. The EV-A71 genome encodes three 
protein precursors (P1, P2, and P3), which are further processed into subunits of 
functional viral proteins. The image shows the translation of viral ORF, which results 
in the production of P1, P2, and P3, and the products of cleavage of these precursors. 
P1 encodes capsid proteins, such as VP0, VP3, and VP1. The cleavage of VP0 
releases the VP4 and VP2 proteins that constitute the mature viral capsid. The P2 and 
P3 regions produces non-structural proteins that are involved in the replication cycle. 
The 2BC protein is cleaved into the 2B and 2C proteins, the cleavage of protein 3AB 
releases the 3A and 3B proteins, and the cleavage of protein 3CD releases the proteins 
3C and 3D.  Figure from Jin et al., 2018. 

 

f. Replication of the viral genome 

Non-structural proteins are involved in the replication of the EV-A71 genome (Yang et 

al., 2019). Owing to their hydrophobic domains, the 2BC and 3A proteins are involved 

in the formation of replication organelles during infection (see below). The RNA-

dependent RNA polymerase 3D initiates the genome replication by synthesizing a 

negative-strand copy of the viral genome, generating a double-stranded (ds)RNA. The 

negative copies serve as templates for genome replication, and the newly-synthetized 

(+)RNAs may serve as template for protein synthesis or can be encapsidated to form 

the virus particles of a new progeny (Baggen et al., 2018). Structural proteins VP0, 

VP1, and VP3 assemble into pentamers to form the EV-A71 provirion. At the final 

stage, the viral RNA induces processing of VP0 into VP2 and VP4, which forms the 

mature virion (Tan et al., 2014).  

Non-structural proteins 2B and 2C promote mitochondrial clustering and trigger the 

formation of autolysosome (Lai et al., 2017 and Yang et al., 2019). Both non-structural 

and structural proteins contribute for activating autophagy by regulating mTOR 

signaling (Zhang et al., 2018; Liu et al., 2019; and Lu et al., 2021). During the EV-A71 
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infectious cycle, the autophagic vesicles are hijacked and used as membranous 

scaffolds (replication organelles) for the replication of the viral RNA (Lin & Huang, 2020 

and Rattanakomol et al., 2022). The 3A and 3D proteins mediate the assembly of 

replicative complexes at surface of replication organelles (Fig. 14) (Morosky et al., 

2016; Lei et al., 2017; Wang et al., 2017; Lee et al., 2020; and Zhang et al., 2021). 

 

 

Fig. 14.  Formation of replicative organelles. The figure shows host proteins 
associated with the Golgi complex. The complex C10orf76-PI4KB activates regulatory 
molecules (GBF1, Golgi Brefeldin A Resistant Guanine Nucleotide Exchange Factor 1 
and Arf1, ADP-ribosylation factor 1) for increases the levels of PI4P 
(phosphatidylinositol-4-phosphate), an effector molecule that mediates the membrane 
transport. C10orf76-PI4KB complex is linked to ACBD3 (Acyl-CoA Binding Domain 
Containing 3), a protein that it anchors to Giantin, a resident protein of Golgi. EV-A71 
hijack key proteins of Golgi, such as ACBD3 and GBF1 to form replicative organelles. 
Figure from McPhail et al., 2020. 

 

Replication organelles may give the additional advantage to protect viral RNAs from 

cytoplasmic sensing proteins involved in early innate immune detection of viral RNAs. 

g. Virion assembly 

The formation of new capsids depends on cleavage of the P1 precursor. A short and 

highly conserved motif near C-terminus of P1 precursor is targeted by chaperones, 

which exposes the motif to activity of the viral 3C protease (Kristensen & Belsham, 

2019). Cleavage of the P1 precursor releases three subunits (VP0, VP1, and VP3) that 

self-assemble into a protomer, and five protomers into a pentamer (Fig. 15) (Chung et 

al., 2006; Kim et al., 2019; and Kristensen et al., 2022). 
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Fig. 15.  Virion maturation. The processing of precursor P1 forms a protomer 
composed of VP0, VP1, and VP3, which self-assemble into empty capsid (pro-capsid). 
Two mechanisms may explain how the viral genome is integrated: (A) integration after 
the procapsid is formed and (B) interaction with the pentamers. This interaction 
catalyzes the cleavage of VP0 to generate the functional VP2 and VP4 proteins, 
allowing the formation of a mature virion. Figure from Cifuente et al., 2013. 

 

The final step of maturation is characterized by the encapsidation of viral RNA to form 

a mature infectious virion (Ansardi & Morrow, 1993 and Vance et al., 1997). VP0, is a 

precursor protein containing a conserved histidine residue that participate in RNA 

packing (Curry et al., 1997 and Cifuente et al., 2013). 

h. Virion release 

EV-A71 is a cytolytic virus that can also be released through a non-lytic process (Gu 

et al., 2020). In few cell types, the newly formed virions inside vesicles take advantage 
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of autophagic flux for escaping from the extracellular environment (Fig. 16) (Luo et al., 

2020). 

 

Fig. 16.  Virion release. During physiological cell metabolism, the fusion of an 
autophagosome (double-membrane vesicles) with a lysosome induces the 
degradation of the autophagosome content. This stage is inhibited during the infectious 
cycle of several picornaviruses (FMDV, foot-and-mouth disease virus; EMCV, 
encephalomyocarditis virus) and EV types, including EV-A71, PV (poliovirus), CVB3 
(coxsackievirus B3), and HRV (human rhinovirus). As a consequence, the 
autophagosome with its unaltered content can fuse its membrane with the cell plasma 
membrane. This mechanism triggers the release within a single-membrane vesicle, of 
virus particles inside a single-membrane vesicle. Figure from Sun et al., 2019.  

 

During this process, double-membrane autophagosome englobing virion particles are 

formed, which inhibit the fusion to lysosomes and the degradation of infectious virus 

(Giansanti et al., 2020). The knowledge of mediators of non-lytic cycle is scarce. 

Carbohydrate residues, such as Galectin-1 can be related with fusion of 

autophagosome to plasma membrane and the virion is released within a single-

membrane vesicle (Lee et al., 2015). 

VIII. Pathogenicity of severe HFMD caused by EV-A71 

a. Brainstem encephalitis 

During brainstem encephalitis associated with EV-A71 infection, the CNS autonomic 

functions are impaired and this is associated with pulmonary edema mediated by pro-

inflammatory cytokines (Wang et al., 2008; Finsterer, 2019; and Liao et al., 2019). At 
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the initial stages of infection, the IL-6 production orchestrates a protective inflammatory 

response (Wang et al., 2017). Then with disease progression, the systemic response 

intensifies and the plasma levels of IL-6 are elevated, as well as other important pro-

inflammatory cytokines, such as IL-1b, TNF-α, and IL-10 (Wang et al., 2003; Wang et 

al., 2006; Zheng et al., 2014; and Zheng et al., 2017). During brainstem encephalitis 

these cytokines present high concentrations in cerebrospinal fluid (CSF) (Jubelt et al., 

2011). Elevated levels of IL-8 in CSF are highly associated with disease severity (Wang 

et al., 2008 and Wang et al., 2014). In brain parenchyma of infected mice, the pro-

inflammatory cytokine IL-12p40 was demonstrated as a key mediator of 

neuropathogenic process. IL-12p40 activates the microglial response, leading to an 

excessive activity of inducible nitric oxide synthase (iNOS), in consequence, the 

production of nitric oxide (NO) cause a serious neural damage (Fig. 17) (Lai et al., 

2022). However, is important to highlight that the findings in human suggest that the 

response mediated by IL-12p40 is nonspecific. A study performed by Y. Xu et al., 2019 

compared the levels if IL-12 in the CSF of patients with neurological complications 

caused by EV-A71 infection with patients with febrile convulsion. The respective study 

did not observe significative difference between the groups. 



Bibliography 

 

 p. 52 

 

Fig. 17.  Neuroinflammatory response associated with EV-A71 infection. This 
figure shows the progression of neuroinflammatory process in mice experimentally 
infected with EV-A71 via oral or intraperitoneal. The mice outcomes and infection 
severity are associated with different inflammatory profiles in the brainstem. The 
proinflammatory cytokine IL-12p40 is highlighted as an important factor in this process. 
The presence of sensor proteins in glial cells, such as TLR9 riggers the production of 
inducible nitric oxide synthase (iNOS) that causes death of neural cells. The authors 
also observed an impairment on neural damage by targeting TLR9 and IL-12p40 with 
ODN2088 and Anti-p40 antibody, respectively. Figure from Lai et al., 2022. 

 

b. Genetic background of patients associated with severe EV-A71 infections 

The role of genetic polymorphisms in the progression from mild EV-A71 infections to 

brainstem encephalitis was investigated among Chinese infants due the high incidence 

of severe HFMD (Li et al., 2017 and Li et al., 2021). Infants carrying certain alleles 

respond differentially to EV-A71 infections due to possible variations in expressing 

mediators of inflammatory process (Li et al., 2018 and Chen et al., 2021). Genetic 

polymorphisms in genes involved in the release of chemokines (CCL2 and CCL10) 

and cytokines (IL-6, IL-8, IL-4, IL-10, and IL-17) as well as production of NOS are often 
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reported as a risk factor for development of brainstem encephalitis (Yang et al., 2012; 

Han et al., 2014; Li et al., 2014; Li et al., 2015; Yuan et al., 2015; and Li et al., 2018). 

The polymorphisms are associated with the increase of pro-inflammatory mediators in 

serum and CSF. 

However, some polymorphisms may also have a protective effect to EV-A71 infections. 

Alterations in encoding gene of mitochondrial protein carnitine palmitoyltransferase 2 

(CPT2) are frequent in patients manifesting mild disease. This protein participates of 

β-oxidation of fatty acids, and therefore may affect the efficiency of viral replication 

(Guo et al., 2019). Interestingly, the IL-17 gene also main present alterations 

associated with reduced inflammatory response (Lv et al., 2013). 

An observational study performed with Chinese infants compared the difference 

between the immune response of young children with polymorphism in the TLR3 gene 

(A.-Y. Yuan et al., 2017). Despite the absence of direct correlation between TLR3 

polymorphism and brainstem encephalitis, the serum levels of TLR3 in children below 

1 year were lower than in children aged ≥1 year. Low levels of TLR3 in serum may be 

indicative of the development of encephalitis in infants. 

c. Evasion of EV-A71 from the host innate immunity 

Immune evasion mechanisms rely on virus-encoded proteins that target pattern-

recognition receptors (PRRs) and signaling molecules involved in innate immune 

response. These interactions between viral and host components may lead to clinical 

and pathological outcomes in the body. EV-A71 evades the host immune defenses by 

affecting interferon (IFN) signaling at different levels (Fig. 18). Viral proteases 2A and 

3C are the two main antagonists of type I IFN. These proteases impair functioning of 

type I IFN cell receptors and the nuclear translocation of transcription factors involved 

in antiviral signaling (Wang et al., 2015; Rasti et al., 2019; and Dong et al., 2022). 
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Fig. 18.  Evasion of immune system. The viral proteins 2A and 3C interact with 
several host factors to block the IFN signaling. MDA5: Melanoma-differentiation-
associated protein5, RIG-I: Retinoic acid-inducible gene 1, MAVS: Mitochondrial 
antiviral-signaling protein, TBK1:TANK-binding kinase 1, IRF3/7:Interferon Regulatory 
Factor 3/7, TRIF: TIR-domain-containing adapter-inducing interferon-β, TLR: Toll-like 
receptors, DAMPs: Danger associated molecular patterns, eIFG4: eukaryotic 
translation initiation factor 4G, TRAF6: TNF receptor-associated factor 6, 
TAK1:Transforming growth factor-β activated kinase 1, TAB2/3: TGF-β Activated 
Kinase 2/3, IFNAR: Interferon-α/β receptor, TAK1: Janus kinase 1, TYK2: Tyrosine 
Kinase 2, STAT1/2: Signal transducer and activator of transcription 1/2, ISG: 
interferon-stimulated genes, ISRE: Interferon-sensitive response element, IFNs: 
Interferons. Figure from Pathinayake et al., 2015. 

 

Melanoma differentiation-associated protein 5 (MDA5) is a key PRR for detecting 

single-stranded viral RNAs within the infected cells (Kuo et al., 2013). After binding to 

viral RNAs, MDA5 interacts with mitochondrial antiviral-signaling protein (MAVS), 

which induces signaling for the induction of type I IFNs (Blank et al., 2016). The EV-

A71 protease 2A disrupts the cytoplasmic signal transduction by targeting the MDA5 

receptor. The MDA5 disruption decreases activation of interferon regulatory factor 3 

(IRF3) and down-regulates type I IFN production. MAVS protein is also targeted by 2A 

protease (Wang et al., 2013 and Feng et al., 2014). The EV-A71 2A protease cleaves 
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MAVS at Gly209, Gly251, and Gly265, generating by-products in the cytosol. The 

cleavages abolish the IRF3 phosphorylation and type I IFN production, thereby 

increasing virus replication.  

Like MDA5, retinoic acid-inducible gene I (RIG-I) is another intracellular sensing 

protein involved in the detection of intracellular viral RNAs. During EV-A71 infection, 

the 3C protease binds to the N terminal domain of RIG-I, which compromises its 

interaction with MAVS protein and results in decreased activation of IRF3 and low type 

I IFN production (Chen & Ling, 2019). However, another study showed that RIG-I 

knockdown using siRNA does not prevent the activation of IRF3 after EV-A71 RNA 

transfection, suggesting that interaction between 3Cpro and RIG-I plays little role 

during EV-A71 infection.  

TIR-domain-containing adapter-inducing interferon-β (TRIF), interferon regulatory 

factors 7 (IRF7), and other intracellular proteins (Transforming growth factor-β (TGF-

β)-activated kinase 1 (TAK1) and TAK1-binding proteins TAB1, TAB2, and TAB3) are 

other targets of the EV-A71 protease 3C. The protease cleaves TRIF between amino 

acid residues Q312-S313, attenuating IRF3 and NF-κB-mediated IFN-β induction (Lei 

et al., 2011). Cleavage of IRF7 impairs the induction of type I IFNs and the subsequent 

production of interferon-stimulated genes (ISGs) in a dose-dependent effect. The EV-

A71 3C protease directly binds to and cleaves TAK1 and TAB2, thereby impairing 

activation of NF-κB and induction of inflammatory cytokines (Lei et al., 2016). 

In conclusion, cellular proteins targeted by the viral 2A and 3C proteases and micro-

RNA molecules are considered key molecules for enhancing viral replication through 

the inhibition of the IFN pathway (Ho et al., 2014 and Pathinayake et al., 2015). 

IX. Mediators of inflammation during the neuro-infection caused by EV-A71 

The invasion of the CNS by EV-A71 triggers an acute inflammatory process, which is 

followed by neurological involvement. The neuroinflammation is characterized by 

infiltrate of immune cells into the CNS structures, activation of adaptative response, 

and further neurodegeneration (Nguyen et al., 2022). The EV-A71 neuropathogenesis 

involve an intense inflammatory response associated with increased levels of several 

proinflammatory cytokines (Chen et al., 2012 and Suanpan et al., 2022). 
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a. TNF-a 

TNF-a is mainly secreted by macrophages and involved in immune regulation, fever, 

and inflammation. Patients with severe EV-A71 infections, compared with those with 

mild infection, present higher levels of TNF-a in the serum. Such features suggest a 

participation of TNF-a in disease severity (Zheng et al., 2017). Patients with severe 

complications, including brainstem encephalitis, neurogenic pulmonary edema, and 

sepsis, have high levels of TNF-α, which then decreased with disease progression (Xie 

& Duan, 2016). In another study, patients with critical condition (convulsions, coma, 

brain hernia, pulmonary rales, or circulatory insufficiency) also have higher levels of 

TNF-α than the severe patient (acute flaccid paralysis or convulsions) and mild groups 

(Zheng et al, 2017). TNF-α is a crucial cytokine in severe EV-A71-infected HFMD. 

b. IFN-g 

For defending the organism against intracellular pathogens or tumoral cells, immune 

cells generate an adaptative response. Activated T cells, natural killer (NK) cells, and 

NKT cells produce IFN-γ, a distinctive cytokine of type I helper T cells (Th1 cells), which 

have antivirus, immune regulation, and antitumor properties (Fenimore & A Young, 

2016). Elevated levels of IFN-g in the serum of patients with brainstem encephalitis 

and pulmonary edema suggest an involvement of this cytokine in the progression of 

EV-A71 to neurological complications (Wang et al., 2003). Sun et al., 2018 observed 

that among patients with severe HFMD, the serum level of IFN-g was distinctively 

higher in those who presented neurogenic pulmonary edema. Such clinical findings 

indicate IFN-g as factor associated with life-threatening complications of patients 

infected with EV-A71. 

c. Members of the interleukin 1 cytokine family 

IL-1b is a proinflammatory cytokine produced in response to infections by cells of the 

innate immune system, mainly monocytes, endothelial cells, and fibroblasts. IL-1b can 

stimulate the local antigen-presenting cells, activate T cells, and promote the 

proliferation of B cells (Wang et al., 2003; Shang et al., 2017; and Griffiths et al., 2012). 

Patients with brainstem encephalitis and cardiorespiratory abnormalities caused by 

EV-A71 infections present elevated levels of IL-1b compared with those with aseptic 
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meningitis and acute flaccid paralysis (Griffiths et al., 2012). A study performed by Ye 

et al. (2015) correlates the high levels of IL-1b in the plasma of patients with respiratory 

failure, circulatory collapse, and even coma. Overall, IL-1b may play an important role 

in severity of infections caused by EV-A71. 

In response to infections, several tissues can produce IL-18 that mediates the switch 

between the innate and adaptative response. IL-18 can induce Th1 cells to secrete 

cytokines to active NK cells and to promote T cell proliferation. Patients infected with 

EV-A71 present elevated levels of IL-18 in the serum, especially those with pulmonary 

edema, gastrointestinal symptoms (vomiting and diarrhea), and myocardial injury (Li 

et al., 2017). 

Finally, a study found a marked increase in the levels of IL-33 in patients with severe 

(myoclonus, vomiting, ataxia, irritability, and hypersomnia) and critical (acute 

respiratory failure and PE) symptoms associated with neurological manifestations 

(Zhang et al., 2013).  

d. Members of the interleukin 2 cytokine family 

Severe forms of HFMD with encephalitis symptoms are characterised by higher levels 

of IL-4 than those found in patients with HFMD alone. In addition, the serum level of 

IL-13 are consistently elevated when patients with severe HFMD manifest pulmonary 

edema or cardiopulmonary failure (Wang et al., 2003 and Zhang et al., 2020). These 

cytokines might contribute to the pathogenesis of EV-A71 infection. 

e. Interleukin 6 (IL-6) 

IL-6 is produced by macrophages, fibroblasts, endothelial cells, and T helper 2 (Th2) 

cells. This cytokine participates in Th2 and Th1 responses, therefore, IL-6 activates B 

and T cells, and stimulates the synthesis of acute phase proteins. Due the participation 

in multiples biological functions, immune responses mediated by IL-6 are unspecific. 

Several studies reported high levels of IL-6 in patients with severe EV-A71 infection 

(Zheng et al., 2017 and Chen et al., 2014). Increased levels of IL-6 in CSF is observed 

in the early stages of neurological manifestations, including encephalitis, poliomyelitis-

like syndrome, meningitis, and pulmonary edema. High levels of IL-6 are also observed 

in patients with cardiopulmonary failure (Chen et al., 2014). Patients with aseptic 
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meningitis associated with EV-A71 infection were evaluated in a study performed by 

Lee et al. (2018). These authors suggest a cutoff value of 66 pg/mL for IL-6 as an 

indicator of severity. 

f. Members of IL-12 cytokine family 

Macrophages and B cells produces IL-12. This cytokine stimulates the proliferation and 

activation of T cells, inducing the differentiation of Th0 cells into Th1 cells (Sun et al., 

2015). The cytotoxic activity of NK cells are also activated by IL-12, and activated NK 

cells secretes cytokines, such as TNF-a, IFN-g, and GM-CSF. The levels of IL-12 in 

patients with severe EV-A71-associated HFMD (encephalitis and pulmonary edema) 

were higher than the levels detected in patients with encephalitis alone or with mild 

HFMD (Shang et al., 2017). 

The participation of other members of the IL-12 cytokine family was suggested in the 

progression of mild HFMD caused by EV-A7 to encephalitis, cardiopulmonary failure, 

and cardiorespiratory dysfunction. The occurrence of these neurological 

manifestations correlate to high levels of IL-23, IL-27, and IL-35 in the serum (Zhang 

et al., 2020 and Huang et al., 2017). 

g. Members of IL-10 cytokine family 

IL-10 is an anti-inflammatory cytokine produced by macrophages and Th2 cells. 

IL-10 levels are modulated in acute neuropathological conditions (Wang et al., 2006 

and Yang et al., 2012). Patients with pulmonary edema present high plasma levels of 

IL-10, compared with those detected in patients with nervous system dysregulation 

and brainstem encephalitis group (Wang et al., 2003). Thus, enhanced IL-10 may have 

a protective effect in the development of pulmonary edema by influencing the 

pulmonary capillary permeability. 

A large array of immune cells involved in the innate and adaptive immunity produce IL-

22, as a response of the synthesis of acute phase proteins (Perusina Lanfranca et al., 

2020). Compared with mild EV-A71 infections, the plasma levels of IL-22 are elevated 

in severe cases (Cui et al., 2017). 
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h. Chemokines 

IL-8, also known as chemokine CXCL8 is produced by macrophages and other cell 

types, and has the function of attract and activate neutrophils. Patients with brainstem 

encephalitis or pulmonary edema present elevated levels of IL-8 at the moment of 

admission (Wang et al., 2014). Elevated concentration of IL-8 in the serum is 

associated with the most critical manifestations of the EV-A71 infections, such as 

convulsions, coma, brain hernia, and pulmonary rales. 

CXCL10, or interferon gamma-induced protein 10 (IP-10) is a member of C-X-C family 

cytokine produced by different cell types under IFN-g stimulation, such as monocytes, 

dendritic cells, and NK cells. The role of CXCL10 is to mediate inflammatory response 

Th1. A study performed by Zhang et al. (2013) compared the levels of CXCL10 in 

healthy individuals with those in HFMD patients, diagnosed with EV-A71 infection. The 

authors observed a significant increase in the levels of CXCL10 in EV-A71 HFMD 

patients compared with healthy controls.  

Two other chemokines are closely associated with severe forms of EV-A71 infections: 

CCL2 (also known as monocyte chemoattractant protein (MCP)-1) that is produced by 

monocytes macrophages, fibroblasts, and CCL5 (also named RANTES, regulated on 

activation, normal T cell expressed and secreted), a main chemotactic factor for a large 

array of immune cells. Both CCL2 and CCL5 levels are elevated in children with severe 

EV-A71 infection associated with neurological manifestations such as encephalitis or 

paralysis (Shang et al., 2017). 

i. Granulocyte colony-stimulating factor (G-CSF) 

Monocytes and macrophages activated by endotoxins, TNF-a, and IFN-g produce G-

CSF. G-CSF is a stimulatory blood factor that induces the proliferation, differentiation, 

and activation of neutrophils. Patients with EV-A71 infection associated with acute 

respiratory failure present high levels of G-CSF in the plasma (Zhang et al., 2013). The 

GCSF levels are remarkably higher in the CSF than in the plasma of patients with 

neurological manifestations. The G-CSF is suggested as a main inflammatory mediator 

during neurological damage (Griffiths et al., 2012).  
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X. Viremia 

Systemic dissemination into the bloodstream (viremia) and draining lymph nodes is a 

well-known feature of EV diseases, which results in infection of peripheral tissues 

including for instance the gastrointestinal tract, skin, oral mucosa. In an earlier study, 

we showed that viremia occurs early after the onset of symptoms and is of short 

duration (Lafolie et al., 2018). A prospective investigation of a pediatric population 

suggests that EV-A71 viremia occurred more frequently in infants (below one year) 

and viremia detected beyond three days after the onset of disease correlated with more 

severe disease compared with mild infection cases (Cheng et al., 2014). Beyond this 

study, data on viremia are lacking in patients infected by EV-A71. 

In animal models, systemic spread of EV-A71 (viremia and/or RNAemia) have been 

detected. In a mouse model, inoculation through the oral route results in viral infection 

in the intestine, viremia, and EV-A71 spreads to peripheral tissues via blood circulation 

(Chang et al., 2019). Viremia is also detected in a neonatal rhesus macaque model 

infected via the respiratory route, EV-A71 infection is observed in the respiratory tract 

epithelium and the associated lymphoid tissues, and subsequently into a dendritic cell 

population (Zhao et al., 2017). Evidence suggest that EV-A71 is spread in the blood of 

another non-human primate model (Cynomolgus Monkey) infected with a virus variant 

harboring a glutamic acid in the VP1 protein at position 145, suggesting the 

involvement of amino acid polymorphism in the in vivo viral replication and 

pathogenesis (Kataoka et al., 2015). To conclude, even though virus and/or viral RNA 

is detected in the blood or serum, the temporal kinetics of viremia and whether this 

occurs only during severe disease require further investigations. 

XI. Access of EV-A71 to the central nervous system (CNS) 

Several receptors contribute for the EV-A71 spread throughout the body (Table 2). 

Structures of extracellular matrix offer initial binding sites that facilitate the attachment 

of EV-A71 to surface receptors (Pankov & Yamada, 2002; Bae et al., 2004; and Tayyari 

et al., 2011). These receptors are present in many cell types, and mediates different 

steps of EV-A71 infectivity (surface attachment, cell entry, uncoating, and replication) 

(Yamayoshi et al., 2013). In particular, some EV-A71 strains may use P-selectin 

glycoprotein ligand-1 (PSGL1; CD162) to infect circulating blood leukocytes. Receptor 
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binding and/or pH alterations in the endosomal vesicles induce virus uncoating and the 

release into the cytoplasm of the viral genome through the formation of pores in the 

endosomal membrane (Baggen et al., 2018). 

 

Table 2. Cell surface receptors associated with EV-A71 tropism reported in the literature. 

Receptor Cell type Cell 
compartment 

Biological 
function 

Role on 
EV-A71 
infection 

Target strategy Source 

hSCARB2 

Present in 
gastrointestinal, 
pulmonary, and 
brain cells 

Expressed at 
plasma 
membrane and 
lysossomes 

Participates 
of 
endocytosis 
and 
directoning 
of 
intracellular 
vesicles to 
lysossomes 

It is 
involved in 
viral 
endocytosis 
and 
uncoating 

Evaluating subunits of 
virion capsid by 
gradient centrifugation 
analysis 

Yamayoshi et 
al., 2009; 
Yamayoshi et 
al., 2013; and 
Jiao et al., 2014. 

PSGL-1 
Expressed 
amog 
leukocytes 

It is found at 
plasma 
membrane 

Mediates the 
initial 
adhesion of 
leukocytes 
on 
inflammed 
endothelium 

Participates 
of cell entry 

Costaining viral 
particles with early 
endossomal markers 

Somers et al., 
2000; Nishimura 
et al., 2009; and 
Yamayoshi et 
al., 2013. 

Heparan 
sulfate 

Present in 
many cell 
types, including 
immune and 
endothelial 
cells 

Present at cell 
surfaces and 
extracellular 
matrix 

Gives 
support to 
molecular 
interactions 
mainly during 
cell adhesion 

Furnish 
initial 
binding site 
to cell 
surface 

Neutralization of 
electrical charges of 
cell surface 

Lindahl et al., 
1998; Tan et al., 
2013; and Li & 
Kusche-
Gullberg, 2016. 

Vimentin 

Present in 
mesenchymal 
cells, such as 
fibroblas as 
well as 
endothelial and 
immune cells 

Expresset at 
cytoplasm and 
plasma 
membrane 

Constitute 
the 
intermediate 
filaments 

Facilitates 
the cell 
attachment 

Coimmunoprecipitation 
assays 

Du et al., 2014 
and Feliksiak et 
al., 2020. 

Annexin II 

Expressed by 
epithelial, 
endothelial, 
and immune 
cells 

Present at cell 
surface 

Has an 
important 
role in 
organizing 
intracellular 
structures 

Interact 
with viral 
proteins 
enhancing 
the cell 
entry and 
viral 
replication 

Blocking receptor with 
antibodies 

S.-L. Yang et al., 
2011); 
Grindheim et al., 
2017; 
Dallacasagrande 
& Hajjar, 2020); 
and Q. Zhang et 
al., 2021. 

Sialylated 
glycans 

Present in 
gastrointestinal 
and respiratory 
cells 

It is bound to 
proteins of cell 
surface 

Participates 
of post-
translational 
modification 
of proteins, 
important for 
recognizing 
antibodies 

It is 
important 
for surface 
attachment 

Hamperingthe access 
to binding sites by 
using other glycans 

Yang et al., 
2009 and Ohmi 
et al., 2021. 

CypA 

Expressed by 
smooth muscle, 
immune, and 
endothelial 
cells 

Expressed in 
cytoplasm, but 
can be excreted 

Regulate 
mitochondrial 
functions and 
when 
secreted act 

Mediates 
the cell 
entry and 
viral 
replication 

Using inhibitory 
compounds 

Qing et al., 2014 
and Liang et al., 
2021. 
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as 
chemokine 

WARS 
Higly 
expressed in 
intestine, lung, 
and liver 

Expressed as a 
cytoplasmic 
factor that can be 
excreted 

Act as a 
regulator of 
IFN signaling 

Play a role 
in cell entry inhibition via siRNA 

Yeung et al., 
2018 and Lee et 
al., 2020. 

Prohibitin 

Higly 
expressed in 
progenitor and 
mature neural 
cells 

Expressed at 
mitochondria 

Mediates 
mitochondrial 
biogenesis 
and 
degradation 

Participates 
of viral 
replication 

inhibition via siRNA 

Hernando-
Rodríguez & 
Artal-Sanz, 
2018; Huang et 
al., 2021; and 
Too et al., 2018. 

Nucleolin 

Present in 
immune and 
endothelial 
cells 

Distributed in 
nucleus, 
cytoplasm, and 
cell surface 

Regulates 
the 
metabolism 
of nucleic 
acids 

Facilitates 
the cell 
attachment 

Purification by 
chromatografy 
followed by 
immunoprecipitation 
with EV-A71 particles 

Tajrishi et al., 
2011; Tayyari et 
al., 2011; Su et 
al., 2015; and 
Fang et al., 
2020. 

Fibronectin 

Produced by 
many cell types 
including 
fibroblasts, 
hepatocytes, 
and endothelial 
cells 

Component of 
extracellular 
matrix 

Participates 
of 
extracellular 
interactions 
during cell 
growth, 
migration and 
differentiation 

Mediates 
the surface 
attachment 
and 
enhances 
the cell 
entry 

Hamperingthe access 
to binding sites by 
using syntetic peptides 

Pankov & 
Yamada, 2002; 
Bae et al., 2004; 
Andrews et al., 
2018; and He et 
al., 2018. 

Human scavenger receptor class B member 2 (hSCARB2); P-selectin glycoprotein ligand-1 (PSGL-1); Cyclophilin A 
(CypA); and tryptophanyl-tRNA synthetase (WARS). 

 

 

The main transmission route of EV-A71 infections is fecal-oral. Therefore, the virus 

proliferates initially in the oral cavity and digestive tract, and further invades other 

tissues and organs, including the CNS (Fig. 19) (Ooi et al., 2010). 
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Fig. 19.  Entry of EV-A71 into the CNS. Following replication within primary 
replication sites, such as intestinal mucosa, EV-A71 can spread to different tissues and 
reach the CNS. EV-A71 can infect terminal nerves and migrate to CNS by retrograde 
axonal transport. The brain invasion can also occur by hematogenous route. The 
image shows the possible routes of EV-A71 spreading and the respective cell 
receptors that may be associated with the tissue tropism. SCARB2 is widely expressed 
in human tissues, such as intestine, smooth muscule, and neurons. Expression of other 
receptors is more limited: PSGL-1 is expressed exclusively in blood cells, while 
vimentin and prohibitin is found in the CNS. Figure adapted from Peters et al., 2015. 

 

EV-A71 may gain access to the CNS through two routes: i) a neural route by using the 

retrograde axonal transport, and ii) the hematogenous route. The latter may involve 

crossing of the BBB by infected leukocytes in a mechanism commonly known as “trojan 

horse’’, or direct crossing of brain microvascular endothelial cells by free virus particles 

(Huang & Shih, 2015; Chen et al., 2020; and Yang et al., 2022). 
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a. CNS invasion by retrograde axonal transport 

EV-A71 hijack the retrograde axonal transport – the transport of vesicles and 

substances along microtubules from terminal nerves to the cell body (Fig. 20) 

(Millecamps & Julien, 2013). 

 

Fig. 20.  Retrograde axonal transport. During the retrograde axonal transport, 
EV-A71 can access the axons terminations and migrate to the cell body of motor 
neurons into the CNS. The image shows the passage of EV-A71 from muscle to the 
neuromuscular junction, and the utilization of Peripherin for migrating into the neuron 
body. In the neuron body, EV-A71 replicates and produces new infectious particles. 
Figure from Lim et al., 2021. 

 

Retrograde axonal transport is well described as a major mechanism for virus 

spreading to the CNS during EV-A71 infection (Chen et al., 2007). Sensory, autonomic, 

and mainly motor nerves are targeted by EV-A71 (Xing et al., 2016). Magnetic 

resonance imaging (MRI) scans of the nervous system in children with severe HFMD 

associated with proven EV-A71 show lesions in the brainstem, the spinal nerve roots, 

the brainstem plus cervical spinal cord, the cervical spinal cord, the brainstem plus 

spinal nerve root (Li et al., 2019). The data agree with the hypothesis of retrograde 

axonal transport in EV-A71 pathogenesis involving tropism for pharyngeal branch of 

the vagus nerve.  

A recent study reports that peripherin, a type III intermediate neurofilament, is an 

attachment factor for EV-A71 at the surface of neuron-like and neuroblastoma cell lines 
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(Lim et al., 2021). In addition, intracellular peripherin may enhance the replication of 

viral genome through interactions with structural and non-structural viral components. 

b. CNS invasion by hematogenous route 

Leukocytes carrying intracellular pathogens can become vehicles for spreading the 

infection to the CNS (Fig. 21) (Constant et al., 2022). During neuroinfection, immune 

cells coming from the blood and perivascular space of the brain microvasculature or 

from fenestrated vasculature of the plexus choroid, can migrate to the brain 

parenchyma (Carson et al., 1999). 

 

Fig. 21.  The Trojan horse pathway. Neurotropic viruses can use leukocytes as 
vehicles to invade the CNS. During a neuroinflammatory context the cellular infiltrate 
into the brain parenchyma may carry virus into the CNS through infected leukocytes. 
The image shows infected leukocytes migrating through the BBB carrying virus into 
the CNS Figure from Tee et al., 2021. 

 

The release of inflammatory mediators increases the expression of adhesion 

molecules on vasculature, which facilitates the transmigration of leukocytes through 

endothelial cells (Stamatovic et al., 2008 and Spindler & Hsu, 2012). EV-A71 may 

effectively infect leukocytes, binding to the N-terminal region of the PSGL-1 receptor 

(Miyamura et al., 2011 and Kataoka et al., 2015). This interaction is mediated by VP1 

protein, notably the VP1-145 position (see above). Therefore, the data suggest that 

leukocytic infection occurs in a strain-dependent manner (Nishimura et al., 2009 and 

Nishimura et al., 2013). In addition, few studies at molecular level show possible 

involvement of mi-RNAs in mediating trans-endothelial migration during EV-A71 

infections (Deng et al., 2012; Tang et al., 2016; and Yang et al., 2022). 
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Cell-free viruses in the blood, can reach the CNS by simply passing through the brain 

microvascular endothelial cells (Spudich & González-Scarano, 2012 and Constant et 

al., 2022). These cells can be equally infected and release viruses to the brain 

parenchyma (Fig. 22) (Dittmar et al., 2008; Papa et al., 2017; Verma et al., 2010). EV-

A71 infect endothelial cells without causing macro alterations in functions and cellular 

structures, however, it was reported that VP1 induces cytoplasmic redistribution of 

intracellular structures (Jheng et al., 2016 and Luo et al., 2019).  

A study conducted by Volle et al. (2015) compared the infectivity potential of different 

species of enterovirus, including EV-A71. The authors performed investigations in 

monolayers of endothelial cells and observed that strains of echovirus 6 (E6) are 

potentially cytolytic, causing disruption of the cell monolayer and inducing considerable 

levels of cell death by necrosis and apoptosis. In contrast, EV-A71 infection affect a 

limited number of endothelial cells and the rare presence of necrotic and apoptotic 

bodies are incapable of affecting the paracellular permeability functions. 

The vimentin receptor is targeted by EV-A71 during infections in endothelial cells (Du 

et al., 2014; Zhu et al., 2019; Kobayashi & Koike, 2020; and Wang et al., 2020). 

Vimentin is an intermediate filament that mediates a crosstalk with actin microfilaments 

and microtubules, the main structures of the cellular cytoskeleton (Chang & Goldman, 

2004; Patteson et al., 2020; and Ramos et al., 2020). 
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Fig. 22.  Crossing through the brain microvasculature. Neurotropic viruses 
can cross the brain microvasculature through paracellular spaces, a mechanism 
known as paracellular migration. Neurotropic viruses may also infect endothelial cells 
and spread into the CNS through the process of transcellular migration. The schematic 
figure shows virions crossing freely across the paracellular spaces between adjacent 
cells (at left) or crossing the BBB through endothelial cells (at right). Figure from Tee 
et al., 2021. 

 

The attachment of EV-A71 on the cell surface vimentin activates the inflammasome 

and triggers an inflammatory response (Xiao et al., 2018). The inflammasome is a 

complex of cytosolic proteins and a critical component of the innate immune responses 

because it mediates the release biologically active interleukin-1β/IL-18 through 

caspase-1 activation (Wang et al., 2015). Nod-like receptor protein 3 (NLRP3) is the 

best-characterized inflammasome. 

The inflammasome activation depends of phosphorylation of extracellular signal-

regulated kinases 1/2 (Shao et al., 2016 and Yu et al., 2017). In response to this signal, 

NF-κB translocate rapidly into the nucleus and activates the assembly of the 

multiprotein inflammasome (Fig. 23). Overall, the NLRP3 inflammasome is a ring-

shape complex composed by the association between NLRP3 with caspase-1, and the 

adaptor protein apoptosis-associated speck-like protein (ASC), which mediates 

cleavage of pro-IL-1β into mature IL-1β (Wang et al., 2017). 
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Fig. 23.  The structure of NRLP3 inflammasome. The inflammasome is a group 
of intracellular multimeric protein complexes that activate the inflammatory caspase-1 
(Cap-1). A two-domain adaptor protein, apoptosis-associated speck-like protein (ASC) 
containing a caspase-recruitment domain, facilitates the recruitment of pro-caspase-1 
to the inflammasome complex. NLRP3 is a tripartite protein that consists of an amino-
terminal pyrin domain (PYD), a central nucleotide-binding and oligomerization domain 
(NOD or NACHT), and a C-terminal leucine-rich repeat (LRR) domain. CARD, caspase 
activation and recruitment domain. Figure from Seok et al., 2021. 

 

XII. The blood-brain barrier (BBB) 

The BBB is a dynamic interface between the blood and the brain parenchyma that 

removes xenobiotics and metabolites from the brain interstitial fluid, controls substance 

exchanges and supplies the brain with essential molecules to ensure homeostasis 

(Redzic, 2011 and Benz & Liebner, 2022). Brain microvasculature confers the 

functions to the BBB that has a unique architecture compared to the microvasculature 

of other organs of the human body (Hayashi et al., 1997 and Langen et al., 2019). The 

brain endothelial cells in association with astrocytes, pericytes, and glial cells, form 

together a complex multi-cellular structure, the neurovascular unit (NVU), which 
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regulates CNS functioning (McConnell et al., 2017; Kugler et al., 2021; Benz & Liebner, 

2022). Endothelial cells of the brain microvasculature lay on a basement membrane, 

in which pericytes are embedded. End feet of astrocytes cover this arrangement and 

the direct contact with neurons and microglia forms the core functional NVU (Fig. 24) 

(McConnell et al., 2017; Kugler et al., 2021; and Benz & Liebner, 2022). 

 

Fig. 24.  Structure and function of NVUs. Endothelial cells of NVUs are 
surrounded by pericytes and maintain close contact with astrocytes end feet and other 
cell types of brain parenchyma. The unique architecture of NVUs induces the 
expression of specialized junctions and transporters at endothelial cells, shaping the 
BBB phenotype. The figure shows the expression of specialized proteins between 
adjacent cells, expression of transporters in both luminal and abluminal membrane, 
low vesicular transport, and low expression of leukocyte adhesion molecules in the 
BBB under physiological conditions. Figure from Langen et al., 2019. 

 

XIII. Molecular components of the human BBB 

a. Membrane transporters 

Membrane transporters expressed by NVU endothelial cells play an important role in 

maintaining BBB properties (Suhy et al., 2017). The ATP-binding cassette (ABC) is a 

superfamily of transporters consisting of the multidrug resistance proteins (MRP, 

ABCC), breast cancer resistance protein (BCRP, ABCG2), and P-GP (ABCB1) (Fig. 
25) (Eng et al., 2022). The P-gp efflux pump actively eliminate drug, toxins, and 

xenobiotics from the brain parenchyma (Balzer et al., 2022). 



Bibliography 

 

 p. 70 

 

Fig. 25.  Localization of the ATP-binding cassette (ABC) transporters. The 
ABC membrane transporters are expressed differently in the luminal and abluminal 
sides of the brain microvascular endothelial cells. P-gp and MRP2 is expressed in both 
luminal and abluminal membrane, other transporters, such as BCRP and MRP4 are 
expressed exclusively at luminal membrane of endothelial cells. BCRP: Breast cancer 
resistance protein; MRPs: Multidrug resistance proteins; P-gp: P-glycoprotein. Figure 
from Nilles et al., 2022. 

 

Solute carriers (SLC) also participate in the transport of a wide range of molecules 

such as organic and inorganic ions, sugars, and amino acids across the BBB. The 

delivery of energy sources for the neuronal cells is carried specifically by the glucose 

transporter 1 (GLUT-1) (Szablewski, 2017 and Koepsell, 2020). This insulin insensitive 

receptor is expressed in endothelial cells, and enable the passive transport of D-

glucose from blood to brain parenchyma (Cornford & Hyman, 2005; Ishida et al., 2006; 

and Vulturar et al., 2022). The glucose uptake is directly associated with the 

manutention of the AMP-activated protein kinase (AMPK), an important regulator of 

metabolic pathways (Veys et al., 2020). Organic anion transporting polypeptides 

(OATPs) as well as organic cation transporters (OCTs) are other transporter proteins 

in the BBB (Abdullahi et al., 2017; Kadoguchi et al., 2022; and Nilles et al., 2022). They 

are differentially expressed at the luminal and abluminal membranes of brain 

microvascular cells (Fig. 26) (Girardin, 2006 and Geier et al., 2013). 
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Fig. 26.  Localization of proteins transporting organic ions. The image shows 
the distribution of ion transporters. OAT3 is located in both luminal and abluminal 
membrane and can transport ions in either direction luminal-abluminal or abluminal-
luminal. Oatp2 is located only at the abluminal membrane, and expulses 
glucoronidates, sulfates, glutathione conjugates from the brain parenchyma into the 
blood flow. Oatp14 is located in luminal membrane and transport organic anions from 
blood flow into the brain parenchyma. OCT1 and 2 is located only at the luminal 
surface, and transport organic cations from blood to the brain parenchyma. OCTN2 is 
located in luminal and abluminal membrane and transport carnitine and organic cations 
from the blood to the brain, and from the brain to the blood. Figure from Nałęcz, 2017. 

 

b. Gap junctions 

Gap junctions are macromolecular complexes made by the assemblage of connexin 

proteins (Gaete et al., 2014 and Nalewajska et al., 2020). Gap junctions form poorly 

selective channels that connects the cytoplasm of two adjacent cells (Fig. 27) 

(Stamatovic et al., 2016). Gap junctions promote ion exchange and circulation of small 

metabolites between endothelial cells and contribute to tissue homeostasis (Beyer & 

Berthoud, 2018 and Burboa et al., 2022). 
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Fig. 27.  Localization of connexin proteins and gap junctions. Endothelial 
cells communicates with theirs pairs. It is important for the cell homeostasis the 
interchange of electrolytes for performing physiological functions. These cells has 
hemichannels that allows the entrance of calcium from extracellular environment to 
cytoplasm the calcium may pass from one cell to other through the gap junctions. The 
image shows the entrance of calcium from extracellular environement in cytoplasm of 
endothelial cells by Pannexins and the passage of this ion between adjacent cells 
through Connexins. IP3, inositol 1,4,5-trisphosphate; NAD, nicotinamide adenine 
dinucleotide. Figure from Vega et al., 2013. 

 

c. Adherens junctions 

Adherens junctions are made of cadherin transmembrane proteins, cadherins, mostly 

responsible for the adhesion between cells and cytoplasmic/scaffolding proteins, 

catenins, involved in supporting cadherin association and regulating out-in signaling 

processes. VE-cadherin is the main protein within the adherens junctions, and plays 

an important role in maintaining the endothelial integrity (Castro Dias et al., 2019). The 

cytoplasmic domains of VE-cadherin bind to α-catenin and β-catenin, which acts as a 

bridge between other cadherins and reorganize structures of actin cytoskeleton (Fig. 
28) (De Bock et al., 2014). VE-cadherin also regulates the expression of transcription 

factors, and its stabilization is considered a prerequisite for the formation of tight 

junctions (Tietz & Engelhardt, 2015). 
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Fig. 28.  Cytoskeleton anchorage. At basal level of endothelial cells cadherin 
proteins project their structures at extracellular spaces. The extracellular domains of 
cadherins attach to their counterparts to maintain the adherence between adjacent 
cells. The intracellular domains of cadherins is associated with a and b-catenins, this 
molecular complexes is anchored in actin cytoskeleton, which is important for 
maintaining the stability of adherens junctions. Figure from Sisto et al., 2021. 

 

d. Tight junctions 

A complex arrangement of cytoskeleton molecules sustains the formation of 

intercellular tight junctions (Hawkins & Davis, 2005 and Kealy et al., 2020). Zonula 

occludens (ZO) are intracellular proteins that comprise three isoforms: ZO-1, ZO-2, 

and ZO-3. These proteins belong to the large family of membrane-associated 

guanylate kinase (MAGUK)-like proteins (Qiao et al., 2014). The classification of these 

proteins is based on sequence similarity and characteristic of cytoplasmic domains 

(Hervé et al., 2014). The first PDZ domain of ZO proteins interacts with the claudin C-

terminal domain and their GUK domains to occludin (Fig. 29). 
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Fig. 29.  Domain organization of zonula occludens (ZO) proteins. ZO-1 is 
considered an important marker of the BBB. This protein is situated at intracellular level 
and its function is basically furnish physical surface for tight junction proteins. This 
protein is subdivided in amino acid domains (PDZ, SH3, GuK, and ZU5). The image 
shows the comparison between ZO-1 and other members of the family of proteins 
zonula occludens, such as ZO-2 and 3. Basically, The primary structure of ZO-1 protein 
is composed by three PDZ domains followed by a SH3, GuK, and ZU5 domain. The 
two first PDZ domains are site of interaction with claudins, while the third PDZ domain 
in association with SH3 and GuK domains form a ‘’core’’ known as MAGUK, important 
for interact with occludins. Figure adapted from Pan et al., 2011. 

ZO proteins are thus essential for the assembly of claudins and occludin at tight 

junctions, allowing anchoring of this multimolecular complex to the actin cytoskeleton. 

During the brain angiogenesis, ZO-1 proteins acts as a signaling transducer that 

interfere on the gene expression and cell behavior, as well as structural component of 

cell architecture (Bauer et al., 2010). Some cytoplasmic domains of ZO-1 are 

associated to Wnt–β-catenin regulation and orientation of centrioles during the cell 

division (Kuo et al., 2021; Liu et al., 2022; and Ram & Vairappan, 2022). Other domains 

regulate the gene expression by affecting the cytoplasmic availability of transcription 

factors that are sequestered to assemble ZO-1 scaffolds, known as perijunctional 

complexes (González-Mariscal et al., 2000 and Spadaro et al., 2014).  

During tight junction formation, cytoplasmic domains of ZO-1, such as ZU5 and U6 

domains recruits several cytoskeleton-associated and cytoplasmic proteins (CGN, 

CGNL1, F-BAR) to perijunctional complexes (Fanning & Anderson, 2009; Ahmed et 

al., 2010; and Vasileva et al., 2022). Tight junction-associated marvel proteins 

(TAMPs), such as occludin, MarvelD3 and tricellulin are recruited as well to stabilize 

the ZO-1 scaffold (Ikenouchi et al., 2008; Günzel & Fromm, 2012; and Saito et al., 

2021). This molecular interaction allows the further assembly of tight junction networks 

(Pulimeno et al., 2011; Van Itallie et al., 2015; and Vasileva et al., 2022). 

Claudins and occludin are localized at the lateral membrane of endothelial cells and 

define the limit between the luminal and abluminal cytoplasmic space (Fig. 30). Some 
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members of claudin family can form paracellular channels that mediates selective flow 

of ions and solutes between adjacent cells (Fromm et al., 2017 and Rosenthal et al., 

2017). In contrast other claudin proteins, such as claudin-5 and claudin-1 prevent the 

paracellular transport (Günzel & Fromm, 2012 and Tanaka et al., 2017). The 

extracellular regions of claudin-5 interact with claudin-1 counterparts anchored in the 

membrane of the adjacent cells. These interactions seal the paracellular spaces and 

restricts the passive diffusion of small molecules across the BBB (Suzuki et al., 2015 

and Sasson et al., 2021). 

 

 

Fig. 30.  Junctional complex. The architecture of brain microvasculature 
exposes endothelial cells to direct contact with pericytes, astrocyte end-feet, and other 
neuronal cells. This complex microenvironment induces the expression of specialized 
proteins in endothelial cells. Overall, these proteins associates into cytoskeleton 
structures. At apical region, the class of proteins ZO-1 forms an intracellular foundation, 
which Claudin-5 and occludin attaches and forms bridges that connect adjacent cells, 
this molecular complex is known as tight junction, and seal the paracellular spaces. At 
basal region, cadherins and catenins form adherens junctions, important for 
connecting adjacent cells. Figure adapted from Murayi & Chittiboina, 2016. 
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XIV. BBB dysfunctions 

a. Leakage of ATP 

Systemic and neuro-inflammatory responses may affect the BBB and lead to the 

leakage of molecules into the CNS (Coisne & Engelhardt, 2011 and Butsabong et al., 

2021). Microglia cells respond to extracellular alterations by releasing TNF-α and IL-

1β, potent proinflammatory cytokines implicated in the induction and progression of 

neuro-inflammation (Rodrigues & Granger, 2015 and Monif et al., 2016). Cytokine 

stimulation open connexin channels, releasing ATP to extracellular environment (Fig. 
31) (Bennett et al., 2021 and McDouall et al., 2022). The release of ATP is self-

sustained by micro-environment sensors, such as pannexins and P2XR7 receptors, 

which increases ATP release and induces death signals within brain cells by 

inflammasome activation (Takenouchi et al., 2011; Dubyak, 2012; Davidson et al., 

2015; Yang et al., 2016; Willebrords et al., 2017; and Zhang et al., 2021). 
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Fig. 31.  Activation of inflammatory response. Extracellular ATP is sensed by 
P2X purinoceptor 7 (P2XR7) and the downstream signal induces the inflammasome 
assembly that triggers a pro-inflammatory response. Two major receptors are indicated 
in this schema: P2XR7 that mediates the inflammasome assembly and TLR4 that 
mediates the production of pro-IL18 and pro-IL-1b. ASC (apoptosis-associated speck-
like protein), HMGB1 (high-mobility group protein 1), IkBa (factor kappa light 
polypeptide gene enhancer in B-cells inhibitor, alpha), IRAK1/4 (interleukin-1 receptor-
associated kinase 4), MyD88 (myeloid differentiation primary response 88), NEK7 
(NIMA related kinase 7), NF-Kb (factor nuclear kappa B), NLRP3 (NOD-like receptor 
family, pyrin domain containing 3), TRAF6 (TNF Receptor Associated Factor 6). Figure 
from Panicucci et al., 2020. 

 

b. Phosphorylation of adherens junctions 

Neuro-inflammatory responses increase calcium entry within the endothelial cells, 

which causes an electrochemical imbalance affecting the endothelial paracellular 

permeability (Soni et al., 2017; Galinsky et al., 2018; and Panattoni et al., 2021). The 

increase in cytoplasmic levels of calcium triggers signals that activates the 

phosphorylation and disassembly of VE-cadherin (Fig. 32) (Tiruppathi et al., 2006; 

Sundivakkam et al., 2013; Rho et al., 2017; and Soni et al., 2017). Several signaling 

pathways are involved in the phosphorylation of the intercellular junctional proteins. 

Key mediators, such as protein kinase C-delta (PKCδ) and Rho kinase (RhoK) are 

involved in the disassembly of adherens junctions (Yamamoto et al., 2008; Kim et al., 

2010; and Chun et al., 2021). PKCδ activation is a trigger event within endothelial cells 

for inducing structural and functional changes in the BBB, vascular alteration, and 

inflammation-induced tissue damage (Jiao et al., 2011). 
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Fig. 32.  Cadherin disassembling. The intracellular imbalance of Ca+ activates 
signaling pathways that phosphorylate and disassemble junctional proteins. The 
increase in intracellular levels of Ca+ activates the formation of actin stress fibers 
through myosin light-chain kinase (MLCK) and RhoA-Rho kinase-dependent 
pathways. This contributes to VE-cadherin disassembly. In addition, End-binding 
protein 3 (EBP3), Protein kinase C (PKC), and Src increases the dynamic of 
microtubules, which also contributes to cadherin disassembly. On the opposite, other 
intracellular factors block RhoA activity, favoring the reasembly of adherens junctions. 
The association of actin-related protein 2/3 (Arp2/3), focal adhesion kinase (FAK), 
neural Wiskott–Aldrich syndrome protein (N-WASP), and p120-catenin induces the 
formation of cortical actin and may restore the adherens junctions. Figure from Sukriti 
et al., 2014. 

 

c. Tight junction alteration 

In neuroinflammation, pericytes and astrocytes release IL-6 and other factors, such as 

vascular endothelial growth factor (VEGF), and matrix metalloproteinases (MMPs), 

which affect the endothelial paracellular permeability (Chen et al., 2014 and Chang et 

al., 2015). IL-6 and astrocyte-derived VEGF are stressors of endothelial cells, which 

activate janus kinase-2 (JAK2), a signaling effector inducing the expression of 

transcription factor STAT3 (Fig. 33) (Ozawa et al., 2008 and Babon et al., 2014). This 

transduction signal promotes ubiquitination and degradation of ZO-1 (Sasaki et al., 

2006; Chen et al., 2014; and Chang et al., 2015). 
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Fig. 33.  Tight junction degradation. Pro-inflammatory cytokines, such as IL-6 
activates JAK-STAT (Janus kinase 2, signal transducer and activator of transcription 
3) signaling that induces a succession of intracellular reactions, which result in the 
degradation of tight junction proteins. The scheme illustrates the cell signaling 
triggered by IL-6. Following this stimulation, JAK proteins mediates the activation of 
intracellular transcription factos, such as Akt, Erk, STAT3, and Src. The activity of 
STAT3 and Src are determinants for the degradation of ZO-1. Akt, V-akt murine 
thymoma viral oncogene homolog; Erk, Extracellular signal-regulated kinase; and 
MEK, Mitogen-activated protein kinase kinase. Figure from Alsaffar et al., 2018. 

 

In vivo and in vitro evidence show that the levels of active MMP-2 and MMP-9, which 

are extremely low in normal brain tissue, mediate occludin degradation in pathological 

conditions (Yuan et al., 2020). For instance, the expression of occludin is significantly 

decreased by the MMP-2/MMP-9 activation in brain microvascular endothelial cells, 

after stimulation of the mitogen-activated protein kinase pathway (Liu et al., 2012). 

d. BBB dysfunction in viral infections  

Neurotropic viruses disrupt the BBB by different mechanisms. The interaction between 

HIV protein such as Tat and endothelial cells increases the expression of IL-6, a potent 

neuroinflammatory cytokine (Bhargavan & Kanmogne, 2018). The expression of IL-6 

involves the activation of STAT pathway that is associated with the decreased 
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expression of tight junction proteins claudin-5 and ZO-1 (Chaudhuri et al., 2008). More 

recently, the newly severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) 

was also reported as neurotropic virus capable of interact with the human BBB. In 

patients infected with SARS-CoV-2 and manifesting neurological symptoms, BBB 

disruption and leakage were reported. In vitro studies associates the interaction 

between the spike protein, the main protein of SARS-CoV-2 pathogenicity with the 

downregulation of tight junction proteins of endothelial cells. SARS-CoV-2 may also 

cause an indirect disruption of the BBB through the hypoxia caused by lung injury, the 

coagulopathy, and systemic inflammation (Chen et al., 2022). The Japanese 

Encephalitis Virus invades the CNS by neural routes and the neuroinflammatory 

process disrupts the BBB (Li et al., 2015). Similarly, the West Nile Virus (WNV) also 

induces an indirect disruption of the BBB, however WNV crosses directly the BBB 

(Verma et al., 2010). An in vitro study performed showed that WNV increase the 

expression of adhesion molecules in endothelial cells, which may facilitate the 

migration of inflammatory cells in the brain parenchyma (Verma et al., 2009). 

XV. Studying the BBB 

a. Assessment of the paracellular BBB permeability in animal models 

Experimental insults in animals disrupt the BBB and increases passage of molecules 

into the brain parenchyma (Kaya & Ahishali, 2011). The functional and structural 

alterations of the BBB can be analyzed by intravascular injection of exogenous tracers 

(Fig. 34) (Ahishali & Kaya, 2021). Evans blue is the most common tracer used to 

estimate the blood volume, map lymph nodes, localize tumor lesions, and analyze 

breakdown of the BBB. This dye has high-water solubility, binds tightly to serum 

albumin, and present a slow excretion (Yao et al., 2018 and Ryu et al., 2018). Other 

tracers, such as albumin-Alexa fluorine conjugates, cadaverine-Alexa fluorine, sodium 

fluorescein, horseradish peroxidase, and FITC-dextran can be used solely or even in 

association to visualize BBB leakage (Xu et al., 2019 and Ahishali & Kaya, 2021). BBB 

studies were mostly performed in rodents that provided several important physiological 

BBB features (Roux & Couraud, 2005). 
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Fig. 34.  BBB leakage. The intact BBB limit the massage of molecules from blood 
to brain parenchyma. The intravenous administration of Evans blue, a tracer that binds 
to serum albumin is unable to cross the BBB. Further an injury, as an example a 
ischemic shock, the brain of animals present intense signs of tracer. The image shows 
the leakage of tracer in the brain of animals with disrupted BBB (left), and the brain of 
healthy mice (right). Figure adapted from Panahpour et al., 2018. 

 

Animal models can reproduce a number of aspects of neurological syndromes seen in 

humans, upon infection with EV-A71. The intramuscular infection of vervet monkeys 

with clinical isolates of EV-A71 induces signs of neurological manifestations with 

cytologic evidence of lymphocytic and monocytic infiltration in brain parenchyma. The 

impairment of CNS caused by EV-A71 infections is reproduced by experiments in rats 

as well (Koroleva et al., 2014). Despite of important insights to elucidate mechanisms 

associated with EV-A71 spreading, animal models present limitations in demonstrating 

realistic pathogenicity of EV-A71 infection. A study performed by Zhao et al. (2017), a 

chimeric fluorescent EV-A71 strain was used to trace the route of infection in neonatal 

rhesus macaques. The authors demonstrated an efficient viral replication in epithelial 

cells of the respiratory tract but the model did not present evidence of infection in the 

alimentary tract, while EV-A71 is considered an enteric pathogen. To solve such 

limitation, SCARB2 transgenic mice are used to facilitate the EV-A71 infection. 

However,  Shih et al. (2018)  reviewed animal models used to study the EV-A71 

pathogenesis and indicate that SCARB2 transgenic mice appears to be limited to 

certain EV-A71 strains.  
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b. Modeling the BBB in vitro 

In vitro models of the BBB are traditionally performed in transwell systems where 

endothelial cells are cultured on a semi-permeable membrane to form a confluent 

monolayer (Strazza et al., 2016 and Deligne et al., 2020). These models are well-

established and there is a large body of evidence showing their reproducibility (Shayan 

et al., 2011; Wilhelm et al., 2011; Helms et al., 2016; Guo et al., 2018; Jamieson et al., 

2019; Cegarra et al., 2022; Gubern-Mérida et al., 2022; and Rado et al., 2022).  

The integrity of in vitro BBB models can be addressed by measuring the trans-

endothelial electrical resistance (TEER) (Fig. 35) (Cohen-Kashi Malina et al., 2009). 

Devices, such as cellZscope® and chopstick electrodes of voltohmmeter type (EVOM) 

are both used to measure the cell membrane capacitance and resistance, determined 

by transcellular and paracellular ionic transport, respectively (Czupalla et al., 2014). 
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Fig. 35.  TEER measurement of in vitro BBB model. The BBB model behaves 
like a closed system. In consequence of difference (in terms of volume and 
composition) between the culture medium of the luminal and abluminal side of the 
model the ionic distribution is not the same in these compartments. The principle of the 
TEER measurement is to apply a electrical current from luminal to abluminal 
compartment, that in turn will promote an ordered ionic movement. Confluent cell 
monolayers are more restrictive to ionic passage, therefore, there will be higher 
difference of potential (ddp) between the luminal and basolateral compartments. The 
resistance is calculated according the Ohm law rationing the ddp by the electrical 
current. In summary, confluent monolayers are restrictive to ionic passage, form higher 
ddp, and consequently present higher resistance. Figure adapted from Paradis et al., 
2016. 

 

The protein transporters are assessed by functional assays based on small drug-like 

compounds, which demonstrate the uptake and efflux transport of the cell monolayers 

(Fig. 36) (Yusof et al., 2014). Assays based on lipophilic compounds often formation 

of aqueous boundary layer due inefficient homogenization. This troubleshooting is 

compensated by associating paracellular permeability assays to calculations and 

software analysis, which improves the estimation of mechanistic information about the 

paracellular BBB permeability (Deli et al., 2005 and Yusof et al., 2014). 

 

Fig. 36.  Investigating the endothelial paracellular permeability in vitro. The 
endothelial cells are traditionally cultured in semi-permeable membranes for 
reproducing aspects of the human BBB. The ability of cellular barrier to restrict the 
passage of molecules may be evaluated by using ‘’drug-like’’ fluorescent compounds. 
These small molecules cross the barrier slowly when the cell monolayer is confluent. 
Figure adapted from Hajal et al., 2018. 
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c. BBB model based on primary cells 

Cell isolation from the CNS of humans and animals is a consolidated method that was 

important to overcome animal testings and establish cellular and molecular 

mechanisms of BBB function in vitro (Abbott et al., 2012; Bernard-Patrzynski et al., 

2019; and Lynch & Gobbo, 2021). However, cell isolation methods frequently result in 

suboptimal cellular purity. Animal species such as cow and pig are used as high-

throughput sources of CNS cells (Thomsen et al., 2015 and Bernard-Patrzynski et al., 

2019). The comparisons between in vitro models based on primary cells isolated from 

mouse, rats, and pigs indicate a wide applicability of these models, which display a 

number of in vitro differences (TEER values, claudin expression) and some similarities 

such as the expression and functionality of the P-GP efflux transporter (M. S. Thomsen 

et al., 2021). Accordingly, the choice of animal primary cells to build an in vitro BBB 

model will depend on the downstream applications (Perrière et al., 2007; Shayan et 

al., 2011; and Molino et al., 2014). 

 

d. BBB model based on immortalized cells 

Immortalized cell lines have been extensively used to develop in vitro BBB models 

(Roux & Couraud, 2005; Watanabe et al., 2013; and Guo et al., 2018). However, they 

lack crucial BBB characteristics and are rarely fully characterized. The hCMEC/D3 cell 

line is one of the most characterized and well-studied cell lines, and it is widely used 

as a BBB research tool. hCMEC/D3 was derived from normal human brain endothelial 

cells transduced by a lentiviral vector containing the telomerase gene, and therefore 

grows indefinitely without manifest alterations on karyotype or differentiation status. 

Several important tight junction proteins are expressed but the levels of claudin 5, 

occludin, and junctional adhesion molecule 2 are low (Weksler et al., 2005). 

Immortalized cells have the advantage to be low-cost but they display low TEER values 

and paracellular permeability to small molecules, which indicates that tightness is quite 

remote from in the vivo BBB (Boveri et al., 2005; Delsing et al., 2020; and Sun et al., 

2022). 



Bibliography 

 

 p. 85 

e. BBB model based on human induced pluripotent stem cells (iPSCs) 

Human induced pluripotent stem cell (iPSCs) emerged as an unlimited source of cells, 

which can differentiate in endothelial cells to form tighter cell layers with superior BBB 

properties (Hollmann et al., 2017; Delsing et al., 2020; Wellens et al., 2021; and Sun 

et al., 2022). Differentiation methods were developed from various iPSCs lines in 

defined culture medium by activating Wnt/β-catenin signaling pathway (Qian et al., 

2017). iPSCs are usually cultured onto coating matrices such as Matrigel, a 

commercial component isolated from mouse sarcoma cells. The iPSCs differentiation 

is quite laborious and lack the expression of adhesion molecules, in addition the 

variation among lots of cellular components may impact the efficiency of endothelial 

differentiation (Aoki et al., 2020). Fully defined substrates were developed to improve 

cell culture conditions (Patel & Alahmad, 2016) iPSCs-based models display TEER 

range from 1500 to 4000 Ω cm2, and resemble a more physiological BBB functions 

(Qian et al., 2017 and Jamieson et al., 2019). 

f. BBB model based on co-culture systems 

Several arrangements can be adopted to upgrade an in vitro BBB model, and the 

selection of each of them can vary according the study aims (Menaceur et al., 2021 

and Rice et al., 2022). A major improvement of a BBB model is the co-culture of 

endothelial cells with other cellular components of the NVU by using different 

approaches (Fig. 37). This can be performed with standard semi-permeable 

membrane devices (Thomsen et al., 2015 and Mossu et al., 2019), through organoid 

or spheroid development (Nzou et al., 2018), assembly in hydrogel scaffolds (Weber 

& Clyne, 2021), and culture in microfluidic systems (Bhalerao et al., 2020). Shear 

stress can be generated in microfluidic devices allowing the development of improved 

barrier properties (Fig. 37). Each of these approaches are useful to mimic the NVU 

architecture (Thomsen et al., 2015; Mossu et al., 2019; Nzou et al., 2018; Bhalerao et 

al., 2020; Weber & Clyne, 2021; Raut et al., 2022; and Wei et al., 2022. Overall, the 

co-culture systems expose endothelial cells to signals involved in cell communication 

existing at NVUs (Abbott et al., 2012 and Rizzi et al., 2021). Transwell models provided 

evidence that endothelial cells are stimulated by the abluminal environment, through 

secretion of extracellular mediators from astrocytes and pericytes (Siddharthan et al., 

2007 and Colgan et al., 2008). 
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Fig. 37.  Co-culture systems. The BBB may be recapitulates by different cellular 
approaches. The cells that form the NVUs are classically cultured in transwell systems. 
This method is based on culturing cells in a semi-permeable membrane (a). NVU cells 
may also be immersed onto biocompatible matrices for resemble the structural 
architecture of the brain microvasculature (b). NVU cells may also be cultured in 
microchips dispositives coupled to fluidic systems in order to evaluate the influence of 
biophysical forces of blood flow in the wall of brain microvasculature (c). NVU cells 
may simply be culture together in non-adherent environement. As cells harbor a 
‘’biological memory’’ of their respective anatomical sites, they self-organize spheroidic 
structures with pattern similar of that observed in NVUs (d). Figure adapted from 
Weber & Clyne, 2021. 

 

g. Use of hematopoietic progenitors for modeling the BBB 

The proper development of an in vitro BBB identity at the functional and transcriptional 

levels requires the induction of signals that closely resemble those reported during the 

human development (Motallebnejad & Azarin, 2020; Roudnicky et al., 2020; Lu et al., 

2021; and Wellens et al., 2021). Hematopoietic stem and progenitor cells (HSPCs) are 

characterised in adult tissues like umbilical cord blood by expressing the CD34 surface 

protein (Pedroso et al., 2011). Blood and ECs have a common ancestor in 

developmental hierarchy and HPSCs represent a promising source of physiologically 

relevant ECs (Fig. 38) (Tsuji-Tamura & Ogawa, 2018). 
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Fig. 38.  Ontogeny of endothelial cells. Blood and endothelial cells are 
originated from a common mesodermal progenitor. The scheme demonstrates the 
derivation of two different progenitors: hemangioblasts, cells with potential to form 
hematopoietic and endothelial cells, and angioblasts with potential to form endothelial 
cells. The expression of transcription factors Etv2 and Foxc is associated to endothelial 
differentiation. The endothelial maturation and further formation of vascular network 
are conducted by the activation ow key signaling pathways, such as PI3K-Akt-mTOR 
and Notch, respectively. During these processes, the transcription factors Foxo and 
Mef2c play important role in the mediation of cell differentiation. Figure adapted from 
Tsuji-Tamura & Ogawa, 2018. 

 

The isolation and differentiation of CD34+-derived endothelial cells and the co-culture 

with pericytes induces the expression of a strong BBB phenotype. For this reason 

these CD34+-derived ECs are also designated brain-like endothelial cells (BLECs). 

The co-culture of BLECs with pericytes mediates the expression of BBB markers via 

Wnt/β-catenin signaling pathway and sustain the BBB phenotype for at least 20 days 

(Fig. 39) (Cecchelli et al., 2014). This model has been applied to a large array of 

research areas: to investigate the toxicity of potential xenobiotics (Ravid et al., 2018), 
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explore vascular leakage (Loiola et al., 2021), assess the activity of drug transporters 

(Versele et al., 2020), study the passage of immune T cells across the BBB (Mossu et 

al., 2019), and address the issue of endocytosis in endothelial cells (Moya et al., 2022). 

The co-culture of human BLECs derived from HSPCs with pericytes in a transwell 

system provides a reproducible in vitro BBB model for validating pre-clinical studies 

(Cecchelli et al., 2014 and Curtaz et al., 2020). 

 

 

Fig. 39.  Co-culture of endothelial cells and pericytes. Hematopoietic 
progenitors CD34+ are collected from umbilical cord blood and differentiated in 
endothelial cells. These cells are co-cultured in transwell systems with pericytes for 
expressing the phenotype of the human BBB, for this reason this model is called brain-
like cells (BLECs). The indirect immunofluorescence reveal the protein expression of 
ZO-1 and Claudin-5 in BLECs. The identity of pericytes was confirmed by the protein 
expression of platelet-derived growth factor (PDGFR)-b, Desmin, and alpha smooth 
muscle actin (a-SMA). Figure adapted from Deligne et al., 2020. 
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3) Objectives 

I. Main objective 

Determine if EV-A71 could cross the human BBB. 

II. Secondaire objectives 

• Investigate whether EV-A71 infection is associated with BBB changes, 

 

• Analyze the influence of the inflammatory context on the infectivity of EV-A71, 

 

• Measure the passage of EV-A71 through the BBB. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

METHODS 



Methods 

 

 p. 92 

4) Methods 

I. Cell culture 

The human RD (Rhabdomyossarcoma), an immortalized cell line isolated from smooth 

muscle, was obtained from European Collection of Authenticated Cell Cultures. These 

cells were cultured in Dulbecco's Modified Eagle's Medium (DMEM), high glucose 

(Dutcher, Cat L0103) supplemented with 10% Fœtal Bovine Serum (FBS). The 

endothelial cells and bovine pericytes were obtained from the Laboratory of Blood-

brain barrier (Université D'Artrois, Prof. Fabien Gosselet). The BLECs were cultured in 

Endothelial Cell Medium (ECM) (ScienCell, Cat 1001) supplemented with 1% ECGS 

(ScienCell, Cat 1001), 5% FBS, and 50 ug/ml gentamicin (Sigma-Andrich, Cat G1272); 

while the bovine pericytes were cultured in DMEM GlutaMAX (ThermoFisher, Cat 

31966021) supplemented with 20% FBS and 50 ug/mL gentamicin (Sigma-Andrich, 

Cat G1272). Both EC and pericytes expanded onto 0.2% porcine gelatin (Merck, Cat 

G2500) in T75 culture flasks. 

For cell passages, the cells were washed twice with PBS for two minutes followed by 

incubation with two mL of a trypsin-EDTA mixture (Dutscher, Cat L0930-100) until most 

cells adopted a round shape, approximately six minutes (depends on the cell type). 

The process was stopped by adding six mL of DMEM (Dutcher, Cat L0103). The cells 

were counted before using the suspension in downstream applications. 

II. Viral strains used in this study and preparation of viral stocks 

The laboratory is equipped with class 2 biosafety cabinets and authorization for 

manipulation of infectious agents for research propose. Informed consent was 

obtained from all subjects involved in the study. The study was approved by the review 

committee of the University Hospital of Clermont-Ferrand, France 2022/ CE19. A viral 

stock was prepared to expand each virus isolate in ten T-75 flasks seeded with 3x106 

RD cells. After incubation for two days at 37°C, the cell monolayers were inoculated. 

The flasks were maintained at 37°C until lysis of 90% of the cells. After performing 

three cycles of freezing/thawing, the cells were scraped and transferred into 50 mL 

Falcon tubes. Each tube was supplemented with HEPES (Dutscher, cat L0180) (20 

uL/mL) and centrifuged at 10,000 ´ g 4°C for 10 minutes to eliminate cell debris. Then, 
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the supernatants were transferred into two ultrafiltration units (Vivaspin 20 mL, 

Sartorius) to carry out successive two-hour centrifugation cycles at 6000 ´ g at 4°C to 

concentrate the viral particles. The virus stock suspensions were titrated as described 

in the paragraph below to perform inoculation assays under a defined multiplicity of 

infection (MOI). 

III. Building the blood-brain barrier model 

To recapitulate aspects of the BBB we co-cultured endothelial cells previously 

differentiated from hematopoietic progenitors isolated from umbilical cord blood with 

bovine pericytes in opposite side of semi-permeable 0.4 µm polyester membranes 

(Deligne et al., 2020). The inserts were placed upside down at the lid of the culture 

plate and treated with 100 µL Collagen type I (RD systems, Cat 3440-100-01) for one 

hour. Next, we dissociated the bovine pericytes with Trypsin-EDTA (Dutscher, Cat 

L0930-100) for approximately six minutes at 37°C. We tap the flask gently and then 

observed the cell detachment at the microscope. The trypsinization was neutralized by 

adding culture medium. We homogenized the cell suspension gently, and after 

numbering we prepared a cell suspension at 5 x 105 cells/mL. A drop of 100 µL of cell 

suspension was dispensed onto abluminal side of the inserts and the cells were 

incubated at 37°C for three hours. To avoid the evaporation of culture medium we 

humidified the lid of the culture plate with a dry paper towel. We observed the cell 

attachment at the microscope and removed the excess of culture medium. The inserts 

were transferred for a culture plate containing 1.5 mL Dulbecco’s Modified Eagle 

Medium (DMEM) GlutaMAX (ThermoFisher, Cat 31966021) supplemented with 10% 

FBS and 50 mg/mL gentamicin (Sigma-Andrich, Cat G1272). We add 500 µL Matrigel® 

dilution (9 mg/mL) (Corning, Cat 356237) and incubated the inserts at 37°C for one 

hour. We dissociated the endothelial cells with Trypsin-EDTA (Dutscher, Cat L0930-

100) for six minutes at 37°C. We tap the flask and observed the cell detachment on 

the microscope, and after numbering we prepared a cell suspension at 1.6 x 105 

cells/mL. Further removing the Matrigel solution and washing the inserts, we dispensed 

500 µL cell suspension in luminal side of each insert (Fig. 40). The cells were 

maintained at 37°C and the culture medium was changed every two days.  
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Fig. 40.  Co-culturing BLECs and bovine pericytes in close contact. The 
transwell inserts were initially pre-coated with collagen type I at abluminal side for 
culturing the bovine pericyes. Next, the luminal side of the same inserts were treated 
with Matrigel® and cultured with BLECs. 

IV. Cell inoculation 

Firstly, we dissociated the endothelial cells with Trypsin-EDTA (Dutscher, Cat L0930-

100) for eight minutes at 37°C and counted the cells to prepare the inoculum as a 

proportion of approximately one infectious particle per cell (MOI =1). The in vitro BBB 

model was infected by inoculating endothelial cells with the inoculum for on e and half 

hour. To assure the optimal condition of the cell monolayers, we changed the culture 

medium (without antibiotic) two hours before the experiment.  

The cryotubes containing viral stock suspensions were thawed on ice. Each of them 

had a previous indication of quantity of infectious particles, expressed as: particles/50 

µL). Further preparing the inoculum at MOI = 1 in DMEM without FBS and without 

antibiotics, we rinsed the cells and incubated with it at 37°C for 1h30. The cell 

monolayers were washed with PBS and incubated with antibiotic-free culture medium 

at 37°C (Fig. 41). 

Coating of collagen type I 
for one hour at 37°C

Seeding pericytes for 
three hours at 37°C

Coating of Matrigel for 
one hour at 37°C

Seeding CD34+-derived ECSeeding BLECs
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Fig. 41.  Infection of the BBB model. The culture medium was changed two 
hours before starting the inoculation. During this period, the numbering we estimated 
the number of BLECs for preparing an inoculum of MOI = 1. Further the inoculation of 
BLECs, we changed the culture medium of luminal compartment and transferred it for 
a new plate containing fresh medium without antibiotics.  

V. Trans-endothelial electrical resistance 

The trans-endothelial electrical resistance (TEER) was measured with an EVOM2 

epithelial voltammeter (World Precision Instruments, Sarasota, FL). This equipment 

applies an alternating electrical current across the cell monolayer. The EVOM2 was 

used with the STX2 chopstick electrode. Each stick of the electrode contains a 

silver/silver-chloride pellet for measuring voltage and a silver electrode for passing 

current. The STX2 electrode was used according to the provider’s recommendations: 

cleaning and disinfecting the electrode before positioning it carefully between the cell 

monolayer. Before the TEER measurement, the EVOM2 was calibrated for 1000 Ω. 

For TEER measurement, the plate containing inserts was placed on a warming plate 

(SP SCIENCEWARE, Cat F37015-0000) at 37°C. We measured a firstly a blank 

(inserts without cells), and then the inserts containing the cell monolayers. For each 

insert we performed the measurement in triplicate. 

Within a circuit composed by an ionic solution, the electrical charge propagates and 

promotes an organized movement of ions that migrate towards electrical fields of 

During the incubation… 

Changing culture medium (without antibiotics) and incubation 
for two hours at 37°C

Counting of CD34+-derived EC and inoculum preparation

Rinsing cells and inoculation for 1h30 at 37°C

Rinsing cells and
change medium of apical sideMove the inserts for a new plate 

Counting of BLECs and inoculum preparation

During the incubation… 

Changing culture medium (without antibiotics) and incubation 
for two hours at 37°C

Counting of CD34+-derived EC and inoculum preparation

Rinsing cells and inoculation for 1h30 at 37°C

Rinsing cells and
change medium of apical sideMove the inserts for a new plate 

Counting of BLECs and inoculum preparation

During the incubation… 

Changing culture medium (without antibiotics) and incubation 
for two hours at 37°C

Counting of CD34+-derived EC and inoculum preparation

Rinsing cells and inoculation for 1h30 at 37°C

Rinsing cells and
change medium of apical sideMove the inserts for a new plate 

Counting of BLECs and inoculum preparation

Counting of BLECs and inoculum preparationChanging culture medium (without antibiotics) and incubation for two
hours at 37°C
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opposite charges. During the course of electric current, it is possible to have obstacles 

(called resistors) impairing passage of current and ions. A cell monolayer grown on a 

semi permeable membrane separating two compartments behaves like resistors in a 

closed circuit. Each compartment contains ionic solutions (culture medium) and 

represents different poles of such a circuit. Once ions have an elemental charge, an 

ionic solution has an electrical potential, which translates into the potential to transport 

energy through the matter movement. Therefore, according to Ohm's law resistance is 

the ratio of the potential difference between two circuit poles (expressed in volts) and 

electric current (expressed in amperes). 

𝑅 =
𝑈
𝐼  

R = Resistance 

U = Potential difference 

I = Electric current 

A discontinuity in the cell monolayer facilitates the ionic movement between the two 

compartments, so the potential difference between the two poles of the circuit 

decreases and reflects a resistance weakness. Therefore, a continuous cell monolayer 

restricts the ionic movement and accentuates the potential difference between the 

poles, evidencing a greater resistance. 

VI. Lucifer Yellow assay  

The Lucifer Yellow (LY) assay consist in incubating cell monolayers with a fluorescent 

compound for performiong a fluorometric-based analysis. LY CH dilithium salt (Merck, 

Cat L0259-25MG) is a hydrophilic fluorescent dye commonly used to test the barrier 

efficiency of cell monolayers cultured onto semi-permeable membranes. Cell 

monolayers retain the LY in the luminal compartment; however, there is minimal 

passage to the abluminal compartment. It means that tighter monolayers retard the 

passage of LY, consequently the fluorescence signal detected in the abluminal 

compartment will be weaker. 

The LY compound was diluted in 1 mL water to prepare a stock solution (54.67 mM) 

and stored at 2°C following provider’s recommendations. All LY assays were 

performed starting from stock solution.  
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To perform a LY assay we diluted 10 µL of stock solution in 10 mL Hank’s balanced 

salt solution (HBSS) (Sigma-Aldrich, Cat H8264) supplemented with 1% sodium 

pyruvate (Sigma-Aldrich, S8636) and 1% HEPES buffer 1M (Dutscher, Cat L0180) pre-

heated. 

Prior to start the experiment, we prepared a 12-well plate with 1.5 mL HBSS (at 1% 

sodium pyruvate and 1% HEPES buffer 1M) pre-heated. This plate is used to incubate 

the inserts treated with LY. Each insert used in the experiment requires three wells with 

HBSS (at 1% sodium pyruvate and 1% HEPES buffer 1M) pre-heated and one empty 

well to receive the LY solution from the cell incubation. To test the paracellular 

permeability, we removed the culture medium of each insert and added 500 µL LY 

solution. Empty inserts were also used as control. We always worked with a triplicate 

for each experimental condition. 

Before receiving the LY solution, each insert was rapidly transferred to the first well 

containing HBSS (at 1% sodium pyruvate and 1% HEPES buffer 1M) for an incubation 

of 20 minutes at 37°C. Every 20 minutes of incubation, the inserts were transferred to 

the next well. After 60 minutes of incubation, the LY solution from the inserts were 

transferred to the empty well. 

At the end of the incubation step, we prepared a 96-well plate for reading the 

fluorescence signal. The work volume in this plate was 200 µL. We firstly prepared 

eight wells with a standard courve with (dilution factor 1/2). We also reserved three 

wells for the LY solution and three wells for HBSS (at 1% sodium pyruvate and 1% 

HEPES buffer 1M), our “start’’ and our “blank’’. Then, we completed this plate with 

samples of LY incubation every in triplicate. LY fluorescence was measured with a 

Fluoroskan microplate reader (Thermo Scientific) with an excitation and emission 

wavelength 428 and 540 nm, respectively. 

To calculate the clearance volume, we used a method described by Siflinger-Birnboim 

et al., 1987. In summary, we divided the amount of LY that crossed the inserts during 

the incubation time points by its concentration at the beginning of the experiment. To 

estimate the slope, a linear regression was performed by potting the average 

cumulative volume cleared versus time. This analysis generated a mean and the 

standard deviation. In this calculation, we correlate the clearance curve of the area of 
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empty inserts with the area of the inserts (PSf) with the cell monolayer (PSt). The result 

of this notation is equivalent to clearance curve of the cell monolayer (PSe), which is 

expressed in microliters per minute per square centimeters. The PSe value was 

obtaines as follows: 

1/PSe = 1/PSt − 1/PSf 

The endothelial coefficient (Pe) is then calculated by dividing the PSe by the surface 

area of the insert and the value is expressed in cm per min.   

VII. Rhodamine 123 assay  

To investigate the functionality of efflux pumps of the BBB model, we washed the 

BLECs and we added 500 µL of a solution containing 5 mM Rhodamine 123 (Merck, 

Cat R8004) or a solution containing 5 mM Rhodamine 123 and 0.5 mM Elacridar 

(Merck, Cat SML0486). The cellular inserts were incubated at 37°C for two hours. 

Then, we dissociated the cells by using a solution of 650 µL lysis buffer (Ripa) at 4°C 

for 30 minutes. The lysis buffer was collected from each insert and was subjected to a 

centrifugation at 14.000 x g for 15 minutes. Each supernatant was collected and split 

into three wells of 96 well plate (200 µL). We measured the luminescence of the 

supernatants by using an excitation wavelength of 501 nm and emission wavelength 

of 538 nm. 

VIII. Viability assay  

We prepared an EC suspension of 100,000 cells/mL. 100 µL of cell the suspension 

was dispensed in each well of 96 well plate. We cultured the cells until forming a 

complete monolayer, and then we performed the inoculation with our respective 

strains, as described above. To check the cell viability, we used the CellTiter-Fluor™ 

Cell Viability Assay (Promega, Cat G6881) kit. The principle of this assay is to incubate 

cells with a proteinase K substrate (GF-AFC, Glycyl-phenylalanyl-

aminofluorocoumarin). Briefly the viability assay consists in incubating the cells with 

GF-AFC for 30 minutes at 37°C followed by reading of luminescence by using 

excitation wavelength of 380-400 nm and emission wavelength of 505 nm. 
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IX. Sampling of virus-infected BLEC monolayers 

The BLEC monolayers were infected at a defined MOI and the infection was followed 

over three days; the culture medium was not changed during the test period. Four 

infection time points were analyzed: 6, 24, 48, and 72 hours post-infection (h.p.i). For 

each time point, three inserts were prepared. The culture medium was collected 

separately from the luminal and abluminal compartments. All the samples were stored 

at –20°C for further analyses. 

X. Extraction of total nucleic acids 

An aliquot of 200 µL of each sample collected in the two compartments at the indicated 

time points was subjected to total nucleic acids purification. Nucleic acids were 

extracted using the NucliSens® EasyMAG platform (bioMérieux, Marcy l'Etoile, 

France) or the Maxwell platform (Promega). The nucleic acids were recovered in a final 

volume of 50 µL of molecular grade water and stored immediately at –80°C until future 

applications. 

XI. Quantification of the number of enterovirus genome copies 

The nucleic acid extracts obtained from the supernatants were tested for the 

quantitative detection of the EV-A71 genomes by a quantitative real-time RT-PCR. The 

technique was derived from the one-step real-time RT-qPCR reported earlier (Volle et 

al., 2012). The forward and reverse primers and the TaqMan probe designed for 

targeting the EV 5’ UTR were adapted from those described previously. The real-time 

RT-PCR assay allows an absolute quantification with an external standard. The 

standard is a recombinant RNA synthesized in vitro from a DNA fragment covering the 

amplification target, cloned in a plasmid DNA. 

A reaction mix containing all enzymes, oligonucleotides, and substrates necessary for 

one-step reverse transcription, amplification, and detection reactions was prepared 

with Luna® Probe One-Step RT-qPCR 4X Mix with UDG. In this mix, the primers were 

set at 20 µM and the probe at 5 µM. Each reaction was performed in a final volume of 

20 µL, containing 5 µL of the nucleic acid extract to be analysed. 
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XII. Viral titration 

The limiting dilution method was used to estimate the number of infectious particles in 

the virus suspensions. A serial dilution (ratio 1/4) of the viral suspensions was 

performed in eight tubes containing 600 μL of culture medium, then 50 μL from each 

dilution were transferred to 11 wells in a 96-well plate. Negative control cells (with only 

culture medium) were included in all titration plates. A RD cell suspension was 

prepared at 80,000 cells/mL and 150 µL from that placed into each well, and the plates 

were incubated at 37°C. After seven days, the wells were scored for the presence of 

lysed cells and the number of infectious particles was calculated using an “in-house 

algorithm” and expressed as the most probable number of infectious units (MPNCU). 

XIII. Confocal analyses 

The BLECs were stained and analyzed by indirect immunofluorescence. The inserts 

were rinsed with PBS twice under manual agitation for two minutes and fixed during 

10 minutes with 2% of paraphormaldehyde solution. The cells were rinsed as descried 

before and permeabilized for 10 min with 0.5 % Triton X (ThermoFisher Scientific, Cat 

85111). We rinsed the cells and blocked the cellular epitopes to avoid nonspecific 

reactions during our staining by incubating the cells for 30 minutes with 5% of goat 

serum solution (ThermoFisher Scientific, Cat 16210064). Further the blocking step we 

rinsed the cells and performed a quenching reaction in order to reduce the self-

fluorescence of cellular structures and improve the background of the images. The 

quenching consists in incubation of the cells with a glycine solution (0.1 M) during 15 

minutes. Then, we rinsed the cells and incubated with 5% of goat serum solution 

containing primary antibodies: rabbit anti-ZO-1 (1:400) (Cell Signaling Technology, 

Danvers, USA, Cat 13663) and mouse anti-dsRNA (1:500) (Sciscons, Szirák, Hungary, 

Cat 10010200). At the next day, further rinsing the cells we performed an incubation of 

40 minutes protected from the light with 5 % of goat serum solution containing the 

secondary antibodies: goat anti-rabbit AF647Cy5 (1:500) (gently donated by iGReD) 

and goat anti-mouse Alexa Fluor 488 (1:500) (Thermo Fisher Scientific, Waltham, 

USA, Cat 11001) and DAPI (for nuclear staining) (STEMCELL technologies, 

Vancouver, Canada, Cat 75004). At the end of the staining we rinsed the cells carefully 

for five times. The acquisition of the images was performed by using a confocal 

microscope Leica (Molecular Devices, California, USA). 
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XIV. Automatized quantification of immunofluorescence images 

We quantified our image set by using the open source platform CellPrifiler® (Broad 

Institute, Massachusetts, USA). From the confocal acquisition we obtained CZI files. 

Each image on CZI is a ‘’content’’ composed by grey scale acquisitions obtained from 

different channels at different focal planes. Therefore, to analyze our image set 

automatically we elaborated three independent pipelines: i) for extracting the images, 

ii) for defining the optimal focal plane of each channel, and ii) for perform our analysis 

(identification and quantification of objects). 

We extracted the images referring to each channel by matching the metadata with the 

stack frame. This allowed obtain from each channel a single image, designated as 

“Movie/Stack”. Each stack corresponds to synchronization of all focal planes. Next, we 

set the focal plane of our interest by defining the “Sum” as a selection criterion. This 

rule sums the intensity of each focal plane of a stack for projecting a single image, as 

format TIFF. In our third pipeline, we used all our TIFF images for matching the 

respective channels. From each image we set up rules for delineate the margins of cell 

nuclei, designated as primary objects. We used modules for expanding the primary 

objects in three pixels, and them projecting larger objects, designated as secondary 

objects (used to estimate the perimeter of each cell). The segmentation of dsRNA was 

also performed (tertiary objects). We them relate the object secondary with the object 

tertiary to identify: among secondary objects (cell), which of them correlated with the 

tertiary object (infected cells). The number of cells and infected cells was then achieved 

from each image during our analysis.  

XV. Statistical analysis 

The appropriate statistical analysis was applied according to the data set 

characteristics using the Prism 9 software (GraphPad Software, San Diego,CA, USA). 

The paired t test was used to compare two groups. For comparisons of three or more 

groups the one-way ANOVA test was applied. Longitudinal analysis comparing 

multiple groups, the mean of each time point was bulked and compared among the 

groups by Kruskal-Wallis analysis. 
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5) Results 

Neurotropic RNA viruses commonly target the human BBB during the invasion of CNS 

(Miller et al., 2012; Al-Obaidi et al., 2017; and Chen & Li, 2021). Here we used a cellular 

model based on co-culture of endothelial cells and pericytes to evaluate the interaction 

between the EV-A71 and the BBB (Stone et al., 2019; Heymans et al., 2020; and Kim 

et al., 2022). 

I. Characterisation of the in vitro BBB model 

The close contact co-culture of endothelial cells and pericytes resemble aspects of the 

human BBB (Fig. 42) (Boveri et al., 2005; Colgan et al., 2008; Barar et al., 2010; Wang 

et al., 2019; and Balzer et al., 2022). We reproduced a cellular model of the BBB, 

including brain-like endothelial cells (BLECs) and bovine pericytes (Cecchelli et al., 

2014; Clé et al., 2020; Curtaz et al., 2020; Versele et al., 2020; and Loiola et al., 2021). 

The two cell types were co-cultured on the opposite sides of the same membrane of 

transwell inserts, to maintain a close contact (as described in the section materials and 

methods) (Kulczar et al., 2017). The restrictive character of the BBB is consolidated 

due the protein expression of highly specialized proteins that seals the intercellular 

spaces between adjacent cells (Krause et al., 1991; Cai et al., 2015; and Zeng et al., 

2022). The indirect immunofluorescence (IF) staining revealed that BLECs expresses 

protein F-actin filaments and Zonula occludens 1 (ZO-1). These proteins form the 

foundations of tight junctional complexes; essential for anchoring of proteins involved 

in sealing extracellular domains (Watson et al., 1991; Gao & Shivers, 2004; Luo et al., 

2006; Liu et al., 2008; Wu et al., 2008; and Helms et al., 2010). The passage of organic 

molecules electrically charged across the BBB model was measured by applying of 

electrical charges among the luminal and abluminal compartments (Jurkiewicz et al., 

2017 and Meuren et al., 2022).  

The difference of electrical potential among the compartments was investigated 

through transendothelial electrical resistance (TEER). Overall, the BBB model 

presented TEER values near 40 W*cm2 along 14 days of cell culture. The low 

permeability of the BBB model to small molecules was evaluated by the lucifer yellow 

assay (LY) (Zhao et al., 2019). Our analysis showed a low rate of small molecules 

crossing through the BBB model, represented by a mean of permeability coefficient 
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near to 0.5 x 10-3 cm/min. The monitoring of the permeability coefficient of the BBB 

model did not present any alteration during 11 and 14 days of cell culture, indicating a 

considerable stability of the endothelial permeability. The BBB actively expulses 

exogenous components from the brain thanks to the presence of efflux pumps. We 

assessed the function of these transporters by providing the labeled substrate 

Rhodamine 123 (Rho 123) (Ito et al., 2019). After treating the BLECs with an efflux 

pump inhibitor (Elacridar), we observed a significant intracellular accumulation of Rho 

123, showing that the BBB model displays functional P-gp. 

 

BLECs

Nuclei
F-actin

Nuclei
ZO-1 Merge

Day
 7

Day
 11

Day
 14

0

20

40

60

80

100

TE
ER

 (Ω
*c

m
²)

P < 0.0001

P < 0.0001

Rho 12
3

Rho 12
3 +

 E
lac

rid
ar

0

50

100

150

200

R
el

at
iv

e 
flu

or
es

ce
ns

e 
un

it 
(R

FU
) o

f R
ho

 1
23

P < 0.0001

Day
 7

Day
 11

Day
 14

0.0

0.5

1.0

1.5

P
er

m
ea

bi
lit

y 
co

ef
fic

ie
nt

 (x
 1

0-3
 c

m
.m

in
-1

)



Results 

 

 p. 105 

Fig. 42.  Close contact co-culture of BLECs and pericytes mimicking aspects 
of the human BBB. After 14 days of cell culture, BLECs showed protein expression 
of F-actin filaments and tight junction ZO-1. The monitoring of the BBB at the days 7, 
11, and 14 showed low variations of TEER (range from 35 to 40 W*cm2). The incubation 
of luminal cells with fluorescent dye of small molecular weight displayed at day 11 and 
14 a low permeability coefficient (0.5 x 10-3 cm/min). The BBB model, when treated 
with transporter protein inhibitor (elacridar) showed intracellular accumulation of Rho 
123 substrate, showing functional efflux pumps. The scale barr represent 100 µm. 
Comparisons between two groups were analyzed by Paired T-student test, while 
comparisons three or more groups were analysed by using One-way ANOVA. 

 

II. Infectivity of EV-A71 in endothelial cells 

EV-A71 has a limited capacity to infect endothelial cells (Volle et al., 2015). The BLECs 

were cultured for 11 days, and then were infected with the C1-16 strain by using a MOI 

= 1. As a positive control, we infected the BLECs with a cytolytic strain of echovirus 6 

(E6). After 24 hours of infection, the infected BLECs were imaged, and the open source 

software CellProfiler® was used to estimate the number of infected cells (Fig. 43). The 

indirect IF staining of dsRNA in BLECs confirmed active viral replication. We observed 

a reduced cell density in the model infected with the E6 and C4-04 strains. Qualitatively 

the ratio of cells infected by the C1-06 strain were quite higher than other EV-A71 

strains. However, the percentage of cells infected by EV-A71 did not exceed 5 % (Fig. 
44a).  

To check the susceptibility of BLECs to EV-A71, we used these cells cultivated as 

monolayers on glass slide chambers and tested the protease activity of living cells with 

the GF-AFC compound. The fluorescence levels of GF-AFC emitted by all infected 

BLECs was elevated and similar to MOCK condition at 24 hours post infection (h.p.i). 

The infection with E6 caused a drastic reduction on GF-AFC fluorescence at 48 h.p.i. 

In contrast, BLECs infected with EV-A71 strains decreased reasonably the GF-AFC 

fluorescence of living cells at 72 h.p.i (Fig. 44b). 
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Fig. 43.  The number of infected BLECs was estimated from nuclear and 
dsRNA segmentations. We segmented the nuclei staining (primary objects) of IF 
image and expanded their limits to secondary objects – used to estimate the number 
of cells. Tertiary objects also were generated from the segmentation of dsRNA staining. 
Next, the combination between secondary and tertiary objects evidence cells 
harbouring dsRNA stain, designated as infected cells. 
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Fig. 44.  EV-A71 presents a limited potential to infect BLECs. At 24 h.p.i, the 
total number of BLECs from model infected with the E6 and C4-04 strains were 
significantly lower compared with the models infected with C1-06 and C1-16 strains, 
but overall, a low number of cells were infected by EV-A71 (below 5%) (a). The scale 
barr represent 100 µm. Comparisons between two groups were analyzed by One-way 
ANOVA. A viability assay was performed in the BLECs cultured as monolayer. The 
BLECs infected with EV-A71 strains displayed high fluorescence of GF-AFC until 48 
h.p.i, indicating large number of living cells. At 72 h.p.i the GF-AFC decreased 
significantly in infected cells compared to MOCK-infected cells (b). The mean values 
of each experimental group were compared to MOCK and analyzed by Kruskal-Wallis 
test. 

 

III. Phenotypic evaluation of infected BBB model 

EV-A71 does not cause substantial alterations at the BBB. In order to mimic a systemic 

inflammatory response, we stimulated the BBB model with TNF-a (10 ng/mL) via 

luminal or abluminal sides during 6 hours followed by infection with the C1-16 (Lu et 

al., 2020; Voirin et al., 2020; and Versele et al., 2022). The indirect IF staining of BLECs 

showed a similar pattern of protein expression of ZO-1 between uninfected condition 

(MOCK) and the E6 infection. However, inserts stimulated with TNF-a presented a 

visible alteration in protein expression of ZO-1 after 24 hours, mainly those which 

received TNF-a stimulation at the luminal side (Fig. 45a). We observed that TNF-a 

stimulation causes a slight increase in endothelial permeability of the BBB model that 

behaves like a wave of 24 hours of action. The stimulation at the abluminal side 

presents a delay until manifests. Apparently, the infection of the stimulated model with 

C1-16 strain prolonged the TNF-a effect on Pe of the BBB model. However, the C1-06 

infection of the BBB model exclusively, was not sufficient to cause alterations at the 

endothelial permeability (Fig. 45b). A comparative analysis among the EV-A71 strains 

tested in our experiments showed intact ZO-1 structures of infected BLECs, and Pe 

values similar to MOCK condition (Fig. 45c). 
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Fig. 45.  EV-A71 does not disrupt the in vitro BBB model. The BBB model was 
treated with TNF-a via luminal or abluminal sides followed by infection with the C1-06 
strain. The indirect IF staining of BLECs showed a disruption of protein expression of 
ZO-1 at 24 h.p.i (a). This effect was accompanied by a slight increase in the endothelial 
permeability caused by TNF-a stimulation (b). The EV-A71 strains were not capable 
to produce any expressive alteration on the BBB phenotype (c). The scale barr 
represent 100 µm. Comparisons among three or more groups were analyzed by One-
way ANOVA. 
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IV. Measurement of the viral replication 

The BBB model infected with EV-A71 releases infectious particles rather at the luminal 

side. The titration assays were performed to evaluate the infectious virus produced by 

ECs with human rhabdomyosarcoma cells susceptible to EV-A71 infection. The 

analysis of serial dilutions estimates the virus yields, expressed as most probable 

number of cytopathogenic units (MPNCU). The titrations of luminal supernatants at 6 

h.p.i evidenced low amounts of infectious particles: the MPNCU estimation were near 

the limit of detection (values below 500 MPNCU). The TNF-a stimulation did not cause 

any effect on the release of EV-A71 infectious particles in the luminal supernatant 

during the course of 48 h.p.i. The MPNCU estimation in luminal supernatants of the 

model infected with EV-A71 strains showed an expressive increasement on infectious 

particles releasing between 24 h.p.i. and 72 h.p.i (Fig. 46). The cell supernatants from 

abluminal compartment were capable to induce cytopathogenic in a number of units 

below the limit of detection of titration. Therefore, the viral yield at abluminal 

supernatant was detected, but not quantifiable (data not shown). 
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Fig. 46.  The infected BBB model releases infectious virus particles into the 
luminal compartment. Titration analysis from luminal supernatants showed that 
under TNF-a effect the release of infectious virus particles was not affected, and had 
an expressive increasement starting from 24 h.p.i, regardless of the EV-A71 strain. 
Comparisons among three or more groups were analyzed by One-way ANOVA. 

 

The infected BBB model releases EV-A71 genomes at both the luminal and abluminal 

sides (Fig. 47). The BLECs of the BBB model were maintained in a commercial culture 

medium, which carry a supplementation containing growth factors, and hormones. To 

investigate if these factors compete with EV-A71 for receptors, we evaluated the 

performance of the BBB model culturing the BLECs with or without supplementation. 

Any difference at the endothelial permeability of the BBB model was observed. After 

collecting cell supernatants of the infected BBB model, we detected the viral genome 
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by using a RT-qPCR assay. The availability of viral genome particles in the cell 

supernatants limits the time in which the amplification reaction occurs, expressed by 

cycles of quantification (CQ). The RT-qPCR analysis showed that availability of viral 

genome at luminal supernatant limited the amplification reaction to a mean of 20 CQ. 

In contrast, for the analysis of abluminal supernatants, in which the lower availability of 

viral genome allowed the extension of amplification reaction until approximately 30 CQ. 

Both culture conditions: with or without supplementation; showed this same 

amplification pattern regarding the detection of viral genome at luminal and abluminal 

supernatants (Fig. 47a). The cell supernatants did not evidenced differences related 

to releasing of viral genome from the BBB model infected with C1-16 strain, 

independently of presence or absence of TNF-a stimulation (Fig. 47b). The 

comparison of cell supernatants also revealed that the pattern viral genome releasing 

from the infected BBB model is similar among EV-A71 strains (Fig. 47c). 
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Fig. 47.  The BBB model infected with EV-A71 releases viral genome at both 
luminal and abluminal sides. The supplementation of culture medium was essayed 
to verify if growth factors competes with EV-A71 for receptors. No significant alteration 
was observed in the endothelial permeability of the BBB model. Independent of 
supplementation, the viral genome was detected in both luminal and abluminal 
supernatants at similar levels (a). The TNF-a stimulation also did not affect the release 
of viral genomes from the infected BBB model (b). The viral genome releasing occurred 
in a similar pattern for all EV-A71 analysed (c). The scale bar represents 100 µm. 
Comparisons of three or more groups were analysed by One-way ANOVA. 
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6) Discussion 

This study used an in vitro BBB model for studying the pathogenicity of EV-A71. 

Despite EV-A71 does not alter the expression of ZO-1 protein neither increases the 

endothelial permeability, the infection of in vitro BBB model lead to the release of viral 

particles in both luminal and abluminal compartments. Concerning the release of 

virions, we noticed that infectious particles were mainly released in the luminal 

compartment. Titration analyses showed an exponential increase of virions in the 

luminal compartment between 6 and 24 h.p.i followed by a stationary phase. We 

detected infectious virus in the abluminal compartment as well but the amounts were 

not quantifiable. The cell supernatants also revealed that the infected BBB model 

releases viral RNAs in both luminal and abluminal compartments. The release of EV-

A71 genome in the luminal compartment entered in the stationary phase at 48 h.p.i; a 

plateau is also observed in the abluminal compartment since 6 h.p.i (Fig. 48).  

We highlight that the limitations on our study design must be taken in consideration 

before interpreting the data obtained. Here we adopted only ZO-1 as BBB marker. This 

protein forms molecular complexes at the intracellular domains of endothelial cells. 

Tight junction proteins, such as claudin-5 and occludin, anchor to ZO-1 to seal 

paracellular spaces. We can not affirm what is the effect of EV-A71 directly on tight 

junction proteins. In our experiments we infected BLEC by using a unique MOI (MOI = 

1). This scenario reproduces a viremia with a low viral load of circulating virus in the 

blood flow, however, the lack of experiments at higher MOIs prevent us from 

reproducing a scenario of higher viral loads. Moreover, our study does not assess cell 

receptors that are used by EV-A71 in the present BBB model. 
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Fig. 48.  Schematic representation of the release of viral particles from 
infected BBB model. The BLECs were infected at MOI = 1 and the releasing of viral 
particles in both luminal and abluminal compartments was monitored during a course 
of 72 h.p.i. The releasing of virions in luminal compartment increased exponentially 
until 24 h.p.i, followed by a stationary phase. The levels of virions released in abluminal 
compartment were below the limit of detection of titration. A similar standard was 
observed for the releasing of particles of viral genome. The releasing of EV-A71 
genome in luminal compartment entered in a stationary phase at 48 h.p.i. This plateau 
was observed at 6 h.p.i in the abluminal compartment. 

 

The invasion on the CNS is the most critical scenario of severe EV-A71 infections. The 

main route to access the CNS occurs through retrograde axonal transport due the 

cellular tropism of EV-A71 for neural cells (Chen et al., 2007; Tan et al., 2014; and Li 

et al., 2019). EV-A71 also can infect leukocytes, which could carry the virus to the 

CNS, but this mechanism happens in response to pro-inflammatory stimulus; probably 

when the brain infection is already established (Nishimura et al., 2013). Therefore, the 

chance of infected leukocytes to promote a primary brain infection is low. To evaluate 

the participation of the BBB in the neuropathogenesis of EV-A71, our work focused on 

direct interaction between EV-A71 and the human BBB.  

Our experiments show that EV-A71 infects a limited number of endothelial cells and 

does not affect the BBB phenotype. EV-A71 infections are capable to induce non-lytic 

replicative cycles and propagate among cells inside extracellular vesicles (Lee et al., 

2014; Mao et al., 2016; Gu et al., 2020; Gu et al., 2020; Lin & Huang, 2020; and Wang 
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et al., 2020). Experimental conditions near to our study design revealed that EV-A71 

can cross the BBB model inside infected extracellular vesicles, and these vesicles are 

capable to infect astrocytes (J. Gu et al., 2022). Previous transcriptomic analysis of 

human umbilical vein endothelial cells infected with EV-A71 revealed a differential 

expression of micro-RNA molecules (miRNA) associated with the regulation of BBB 

functions (Song et al., 2017 and Song et al., 2019). Among these molecules, miR-126, 

miR-204-5p, and miR-619-5p distinguishes for participating of extracellular vesicles 

biogenesis (Schneider et al., 2018; Tapia-Castillo et al., 2019; Kim et al., 2020; Sabo 

et al., 2020; Yao et al., 2020; Hu et al., 2021; Matsuzaki et al., 2021; Bordin et al., 

2022; Ma et al., 2022; Wu et al., 2022; and Xu et al., 2022). 

We demonstrated that the in vitro BBB model infected with EV-A71 releases viral RNA 

genome through both luminal and abluminal cell supernatants. The delivery of viral 

RNA has been considered as a mechanism of induction of innate immune responses 

(Kesimer et al., 2009; Schwab et al., 2015; Kouwaki et al., 2016; and Kouwaki et al., 

2017). Hence, could the EV-A71 genome induce responses on resident cells of brain 

parenchyma? We suggest that the traffic of the EV-A71 genome across the BBB may 

be a possible signaling from the BBB to brain parenchyma, which is related with the 

neuroinflammation caused by severe EV-A71. 

Exogenous extracellular RNA molecules are recognized by Toll Like Receptors (TLRs) 

expressed by astrocytes and microglia (Scumpia et al., 2005; Yoshida et al., 2007; Kim 

et al., 2008; Lee et al., 2009; Lehmann et al., 2012; Scumpia et al., 2014). The 

activation of multiple TLRs contributes to neuroinflammatory processes caused by viral 

infections (Olson & Miller, 2004; Lee et al., 2007; Lewis et al., 2008; Nazmi et al., 2014; 

and Dembny et al., 2020). Severe infections caused by EV-A71 are characterized by 

neuroinflammatory responses, and the low indices of viral antigens into the CNS. 

These findings suggest the efficiency of neuroinflammation in promoting the viral 

clearance (P. Yu et al., 2015). However, for reasons still unknown some patients loose 

fine tune regulation of neuroinflammatory process and develop neurological 

complications. 

Here we suggest that the BBB resist to EV-A71 infections and the viral RNA genome 

released in the abluminal supernatant may be an evidence of a communication system 

between the BBB and the brain parenchyma (Martins et al., 2016; Bhowmick et al., 
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2019; Yao et al., 2020; and Kriaučiūnaitė et al., 2021). We refuse the hypothesis of 

that EV-A71 crosses directly the human BBB. However, the interaction between EV-

A71 and the BBB may result in a releasing of viral RNA genome into the brain 

parenchyma. We argue that the viral genome released from the BBB might not be 

sufficient for triggering a severe neuroinflammation by itself, but it could eventually 

contribute for enhancing a previously established neuroinflammatory responses. Our 

interest is to investigate whether implication the viral RNA genome of EV-A71 on the 

brain parenchyma. 
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7) Conclusions & Perspectives 

The development of neurological complications associated with the EV-A71 infections 

is a multifactorial phenomenon that can be related to innate characteristics, or even 

strain-dependent factors. In this work, I investigated the role of the BBB in EV-A71 

pathogenesis. The BBB functions are essential for maintaining the brain homeostasis. 

In a context of a neuroinflammatory disease, the BBB mediates the infiltration of 

inflammatory cells on the brain parenchyma, which contributes for neurodegeneration. 

I evaluated the interaction of EV-A71 with a cellular model physiologically relevant that 

resembles key aspects of the human BBB. The study mimics a viremia context, when 

free virions are circulating within the blood flow. This allowed to investigate if EV-A71 

can directly induce some alterations in the human BBB. In the experiments, EV-A71 

did not affect significantly this barrier, neither was capable cross the in vitro BBB in 

large amounts. Curiously, there is a passage of viral RNA genomes across the in vitro 

BBB. Here, I conclude that EV-A71 within the blood flow does not present a high risk 

of disrupting the human BBB or crossing it. However, during a context of viremia 

associated with EV-A71 infections, viral RNA genomes may be released from the BBB 

into the brain parenchyma. 

Neuroinflammation is also associated with the neurological damages caused by severe 

EV-A71 infections. Most of the information relating to the effects of these infections on 

the brain come from investigations of post mortem infection cases. However, little is 

known about how the brain effectively reacts to acute phase of neuroinfections caused 

by EV-A71. Despite the low ability of EV-A71 to affect or cross the human BBB, the 

viral RNA genome may be released into the baso-lateral side of the endothelial cells. 

In vivo, resident cells into the brain parenchyma, such as astrocytes and microglial 

cells that actively responds to stimulus, therefore, there is a need to understand if this 

phenomenon could participate in EV-A71 neuropathogenesis. 

In the appendix VII (pages 199 – 221), I propose a project that aims to understand 

cellular and molecular mechanisms existing between the human BBB and the brain 

parenchyma during EV-A71 neuropathogenesis. In this project, I suggest to 

characterize how the BBB may release viral RNA genome from the baso-lateral side 

of endothelial cells, and evaluate if this phenomenon may induce an immune response 

in the brain parenchyma. To elevate my study to superior levels of physiological 
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complexity, the key challenge is to integrate the current in vitro BBB model with 

cerebral organoids. 

The project is structured in two axes. Axis 1 aims to evaluate the effect of EV-A71 in 

the human brain. To investigate the neuropathogenesis of EV-A71, I propose to deliver 

a study platform with high level of physiological similarity with the human brain: 

“microglia-enriched cerebral organoids’’. During the human development, 

hematopoietic progenitors migrate to different sites of the embryo, including the brain. 

we hypothesize that the transplantation of hematopoietic progenitors into cerebral 

organoids may enhance the population of microglia and improve the neural 

development in vitro. The microglia-enriched cerebral organoids could be infected with 

various EV-A71 strains to trace a parallel with the brain infection. Axis 2 aims to 

investigate the communication between the BBB and the brain parenchyma during EV-

A71 infections. We hypothesize that the BBB release viral RNA genome into the brain 

parenchyma, and this may induce the production of immune mediators. Thus, we 

propose to merge the current in vitro BBB model with microglia-enriched cerebral 

organoids. This will enable investigation of the release of viral RNA genomes inside 

extracellular vesicles. We also propose to block signaling mechanisms associated to 

this phenomenon. Moreover, placing inserts of the in vitro BBB under microglia-

enriched cerebral organoids will allow to evaluate the impacts of brain infection on the 

BBB.  Such investigations have potential to aid us to better understand the neural 

damages caused by EV-A71. 
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9) Annexes 

I. Source of data: Fig. 46 

TEER 

Day 7 Day 11 Day 14 

45,79556 31,60889 52,26667 

48,03556 31,60889 46,66667 

42,43556 30,48889 38,82667 

48,03556 32,72889 36,58667 

37,95556 32,72889 48,90667 

51,39556 34,96889 44,42667 

49,15556 31,60889 44,42667 

45,79556 32,72889 55,62667 

52,51556 30,48889 35,46667 

42,43556 34,96889 35,46667 

30,11556 30,48889 39,94667 

35,71556 31,60889 32,10667 

49,15556 23,76889 28,74667 

36,83556 34,96889 33,22667 

36,83556 31,60889 36,58667 

46,91556 27,12889 39,94667 

37,95556 31,60889 48,90667 

40,19556 40,56889 43,30667 

 

Pe 
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Day 7 Day 11 Day 14 

0,43 0,67 0,44 

0,75 0,68 0,43 

1 0,51 0,43 

0,69 0,46 0,74 

0,63 0,45 0,66 

0,77 0,7 0,69 

 

Rho 123 Rho 123 + Elacridar 

82,89001 113,2901 

106,202 129,4558 

105,793 110,9572 

88,23253 111,8512 

106,1313 124,6507 

105,3792 111,2577 

84,82108 111,3941 

116,4282 128,6167 

104,1228 109,5096 

108,3591 154,392 

106,3425 155,9162 

102,0727 145,8333 

104,6556 148,1699 

107,3693 140,2002 

102,177 77,35893 



Annexes 

 

p. 172 

 

107,6037 172,3746 

104,0424 184,6304 

57,37772 124,0756 
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II. Source of data : Fig. 47 
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III. Source of data: Fig. 48 

Cell counting 

24 h.p.i 

E6 C1-06 C1-16 C4-04 

122 151 131 114 

137 153 172 123 

123 156 189 112 

156 130 188 115 

121 157 179 111 

103 176 184 40 

130 162 179 130 

142 151 179 120 

143 169 191 100 

126 153 181 125 

 

Percentage of infected cells 

24 h.p.i 

E6 C1-06 C1-16 C4-04 

8,19672131 5,9602649 0 2,63157895 

17,5182482 7,18954248 3,48837209 1,62601626 

17,8861789 6,41025641 2,11640212 0 

13,4615385 3,84615385 0 1,73913044 
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23,1404959 6,36942675 2,23463687 5,40540541 

18,4466019 2,27272727 0,54347826 12,5 

13,8461539 6,17283951 2,23463687 3,07692308 

18,3098592 5,29801325 0 3,33333333 

6,29370629 5,91715976 2,61780105 6 

11,9047619 8,49673203 0 0,8 

 

GF-AFC 

24 h.p.i 

MOCK E6 (MOI = 0.25) E6 (MOI = 0.625) C1-06 C1-16 C4-04 

94,05229 85,82492 93,38064 95,5408

3 

94,2582 105,3633 

92,79787 83,68687 93,58405 93,0345

2 

89,76831 101,7748 

90,77868 83,48652 89,59128 95,8115

7 

96,02218 100,0039 

102,0048 97,77163 95,75617 94,5466 103,603 100,0707 

92,48392 100,5349 85,4554 98,2507

3 

87,35906 90,50855 

123,6928 99,74034 71,68597 94,9202

6 

101,4167 93,11245 

101,4154   102,367

3 

99,44625 94,39285 

95,64376   103,601 98,1784 99,23613 
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98,65123   99,8109

4 

98,88901 95,28793 

102,2483   98,1805

4 

100,9282 87,99257 

101,9616   94,6562 93,86757 91,63926 

104,2694   103,971

9 

97,63275 100,1189 

 

GF-AFC 

48 h.p.i 

MOCK E6 (MOI = 0.25) E6 (MOI = 0.625) C1-06 C1-16 C4-04 

105,461 32,14043 35,98144 97,6088

6 

89,11664 81,88005 

94,97463 31,21847 35,81258 96,1831

6 

87,32582 87,22499 

103,7811 31,01564 34,17476 92,7422

1 

83,01186 83,85274 

100,7389 28,12497 56,73373 90,4468

9 

90,8743 79,97198 

100,0267 33,28742 38,25028 94,1076

8 

95,02625 79,72502 

106,3765 27,59218 64,29977 93,8095 87,0423 79,33718 

96,85578   95,6346

1 

85,24036 82,97675 
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95,01418   90,9336

8 

80,26758 82,66233 

99,10264   89,6911

2 

83,18177 82,50178 

95,17029   91,6749 80,26837 74,51421 

102,4961   94,5048

3 

76,74817 79,54124 

100,0023   92,885 78,64347 79,45298 

 

GF-AFC 

72 h.p.i 

MOCK E6 (MOI = 0.25) E6 (MOI = 0.625) C1-06 C1-16 C4-04 

110,4761 23,29674 27,94464 91,2821

8 

82,6175 67,76555 

106,3631 26,20621 31,71628 86,5385

8 

84,83362 77,85591 

108,4293 29,2632 31,92564 81,2353

8 

76,59178 68,71039 

115,8323 17,2491 17,0046 83,8869

4 

86,45916 68,46096 

116,1802 18,71165 18,85892 87,5939

6 

71,52853 78,38561 

111,9583 14,95225 24,76085 82,7150

1 

80,0715 71,22897 
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88,68599   76,0208

1 

65,81566 59,04411 

86,64038   74,5454 68,5703 59,47415 

88,40452   76,1882

9 

63,92529 50,59396 

90,301   74,8263

4 

66,44009 44,51641 

89,81691   75,231 64,24619 47,85986 

86,91179   79,6234

7 

62,7632 43,52036 

 

IV. Source of data: Fig 49 

Pe 

24 h.p.i 

TNF-𝛼 

luminal 

TNF-𝛼 

abluminal 

TNF-𝛼 luminal 

+ C1-16 

TNF-𝛼 

abluminal + 

C1-16 

C1-16 

2,4 1,01 2,52 1,04 0,91 

2,37 0,99 2,25 0,85 0,95 

1,66 0,91 1,53 0,99 0,91 

1,36 1,22 1,86 2,89 0,68 

1,23 1,06 1,44 2,06 0,68 

2,39 1,63 1,54 2,46 0,75 
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Pe 

48 h.p.i 

TNF-𝛼 

luminal 

TNF-𝛼 

abluminal 

TNF-𝛼 luminal 

+ C1-16 

TNF-𝛼 

abluminal + 

C1-16 

C1-16 

0,99 1,57 2,94 3,16 0,71 

1,08 1,56 2,54 4,41 0,73 

0,89 1,11 4 3,66 0,71 

0,87 1,26 2,84 2,43 0,78 

1,02 1,1 2 5,56 0,69 

3,68 1,34 6,23 1,51 0,72 

 

Pe 

24 h.p.i 

E6 C1-06 C1-16 C4-04 

1,29 0,76 0,91 0,98 

1,07 0,78 0,95 0,91 

1,37 0,76 0,91 0,92 

1,21 0,78 0,68 1 

1,42 0,74 0,68 0,79 

1,66 0,79 0,75 0,81 

 

Pe 

72 h.p.i 
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C1-06 C1-16 C4-04 

1,1 0,68 1,29 

1,1 0,64 1,12 

1,05 0,66 0,99 

3,21 0,87 0,68 

1,87 0,92 0,57 

3,45 0,82 0,64 

 

V. Source of data: Fig 50 

MNCPU 

Luminal 

6 h.p.i 

E6 TNF-𝛼 luminal 

+ C1-16 

TNF-𝛼 

abluminal + C1-

16 

C1-16 

39,81072 91,20108 165,9587 186,2087 

23,98833 75,85776 125,8925 125,8925 

34,67369 173,7801 131,8257 407,3803 

39,81072 83,17638 162,181 204,1738 

48,97788 213,7962 389,0451 323,5937 

22,90868 257,0396 162,181 269,1535 

 

MNCPU 

Luminal 



Annexes 

 

p. 185 

 

24 h.p.i 

E6 TNF-𝛼 luminal 

+ C1-16 

TNF-𝛼 

abluminal + C1-

16 

C1-16 

407420,1 4365,158 2187,762 1819,701 

660717,4 3235,937 724,436 3019,952 

588878,3 7244,36 1778,279 4073,803 

269193,3 11481,54 13803,84 1778,279 

489827,8 20892,96 39810,72 2344,229 

204196,7 15488,17 5754,399 2511,886 

 

MNCPU 

Luminal 

48 h.p.i 

TNF-𝛼 luminal + 

C1-16 

TNF-𝛼 

abluminal + 

C1-16 

C1-16 

8317,638 4265,795 5011,872 

5888,437 1778,279 2818,383 

9332,543 4365,158 2570,396 

36307,81 18197,01 10715,19 

25703,96 61659,5 16595,87 

17782,79 21877,62 3981,072 

 



Annexes 

 

p. 186 

 

MNCPU 

Luminal 

6 h.p.i 

C1-06 C1-16 C4-04 

22,90868 186,2087 169,8244 

22,38721 125,8925 204,1738 

39,81072 204,1738 165,9587 

33,11311 323,5937 316,2278 

44,66836 269,1535 323,5937 

 

MNCPU 

Luminal 

24 h.p.i 

C1-06 C1-16 C4-04 

3801,894 1819,701 3235,937 

1348,963 3019,952 4570,882 

2570,396 4073,803 1412,538 

4073,803 1778,279 8317,638 

3235,937 2344,229 7585,776 

 

MNCPU 

Luminal 

48 h.p.i 

C1-06 C1-16 C4-04 
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4073,803 5011,872 7244,36 

3162,278 2818,383 7413,102 

3467,369 2570,396 8511,38 

3235,937 10715,19 8128,305 

3019,952 3981,072 14454,4 

 

MNCPU 

Luminal 

72 h.p.i 

C1-06 C1-16 C4-04 

4073,803 2290,868 6165,95 

3162,278 2137,962 6025,596 

3467,369 2570,396 3162,278 

3235,937 1513,561 10715,19 

3019,952 4365,158 10964,78 

 

VI. Source of data: Fig 51 

Pe 

C1-16 

with 

C1-16 

without 

C1-16 

with 

C1-16 

without 

Day 7 Day 7 Day 11 Day 11 

0,43 0,79 0,67 0,81 

0,75 0,75 0,68 0,59 

1 0,74 0,51 0,63 
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0,69  0,46  

0,63  0,45  

0,77    

 

Cycle of quantification (CQ) 

Luminal 

6 h.p.i 

C1-16 with C1-16 without 

20,49 23,4132615 

21,77 22,3997466 

23,75 23,9304961 

23,79 24,1631755 

21,72 23,1907897 

22,83 23,0868496 

 

Cycle of quantification (CQ) 

Luminal 

24 h.p.i 

C1-16 with C1-16 without 

19,17 21,2494954 

17,67 19,0207156 

19,82 19,7425548 

17,8 20,1686501 

17,93 20,4681451 
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18,12 20,1098475 

 

Cycle of quantification (CQ) 

Luminal 

48 h.p.i 

C1-16 with C1-16 without 

19,83 22,9798041 

20,29 21,4101305 

18,13 20,390002 

17,32 19,3056627 

15,12 22,8010239 

16,18 20,9825043 

 

Cycle of quantification (CQ) 

Luminal 

72 h.p.i 

C1-16 with C1-16 without 

21,13 23,9354751 

20,65 22,1777812 

21,31 20,5731024 

16,66 20,3477745 

16,65 23,2994298 

18,17 21,402791 
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Cycle of quantification (CQ) 

Abluminal 

6 h.p.i 

C1-16 with C1-16 without 

33,3 31,9029037 

30,02 32,6049635 

31,29 31,6486487 

32,15 33,0467397 

25,08 29,9107273 

25,64 35,7210619 

 

Cycle of quantification (CQ) 

Abluminal 

24 h.p.i 

C1-16 with C1-16 without 

30,03 33,4583594 

28,33 34,3564518 

28,09 34,2190228 

33,74 34,536208 

30,04 34,0589093 

31,04 35,9738811 

 

Cycle of quantification (CQ) 

Abluminal 
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48 h.p.i 

C1-16 with C1-16 without 

34,43 33,7236504 

30,65 32,2794381 

28,01 33,0338693 

32,27 31,3959402 

29,19 33,3090929 

31,4 33,8343133 

 

Cycle of quantification (CQ) 

Abluminal 

72 h.p.i 

C1-16 with C1-16 without 

33,58 31,7490162 

31,84 31,4629417 

30,45 32,3983217 

30,79 29,3949262 

30,95 32,1366809 

31,23 34,4845085 

 

Cycle of quantification (CQ) 

Luminal 

6 h.p.i 
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E6 TNF-𝛼 luminal + 

C1-16 

TNF-𝛼 

abluminal + 

C1-16 

C1-16 

32,89 24,06 24,09 20,49 

32,74 24,27 24,71 21,77 

32,19 23,04 23,23 23,75 

31,71 25,32 23,67 23,79 

30,58 24,3 23,19 21,72 

31,27 25,01 24,19 22,83 

 

Cycle of quantification (CQ) 

Luminal 

24 h.p.i 

E6 TNF-𝛼 luminal + 

C1-16 

TNF-𝛼 

abluminal + 

C1-16 

C1-16 

18,35 17,94 17,64 19,17 

17,91 18,35 16,64 17,67 

18,01 18,26 18,49 19,82 

16,65 18,63 20,36 17,8 

19,65 25,6 21,03 17,93 

19,12 19,46 19,34 18,12 

 

Cycle of quantification (CQ) 
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Luminal 

48 h.p.i 

TNF-𝛼 luminal + 

C1-16 

TNF-𝛼 

abluminal + 

C1-16 

C1-16 

17,34 16,17 19,83 

18,11 16,13 20,29 

16,6 17,03 18,13 

18,06 19,22 17,32 

19,94 21,07 15,12 

19,59 19,8 16,18 

 

Cycle of quantification (CQ) 

Abluminal 

6 h.p.i 

E6 TNF-𝛼 luminal + 

C1-16 

TNF-𝛼 

abluminal + 

C1-16 

C1-16 

36,46 33,45 31,52 33,3 

39,67 32,27 33,74 30,02 

36,57 35,1 34,69 31,29 

36,57 32,44 29,48 32,15 

38,37 32,12 28,1 25,08 

35,26 34,56 30,65 25,64 
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Cycle of quantification (CQ) 

Abluminal 

24 h.p.i 

E6 TNF-𝛼 luminal + 

C1-16 

TNF-𝛼 

abluminal + 

C1-16 

C1-16 

39,69 35,31 34,39 30,03 

40,77 37,43 32,97 28,33 

38,95 33,53 33,92 28,09 

38,68 26,47 31,83 33,74 

38,87 19,5 33,57 30,04 

37,24 27,93 29,28 31,04 

 

Cycle of quantification (CQ) 

Abluminal 

48 h.p.i 

TNF-𝛼 luminal + 

C1-16 

TNF-𝛼 

abluminal + 

C1-16 

C1-16 

32,97 31,27 34,43 

32,95 32,07 30,65 

31,77 31,32 28,01 

29,7 33,6 32,27 
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29,55 30,23 29,19 

31,12 31,29 31,4 

 

Cycle of quantification (CQ) 

Luminal 

6 h.p.i 

C1-06 C1-16 C4-04 

21,8 20,49 22,41 

23,49 21,77 21,55 

22,46 23,75 22,23 

22,32 23,79 21,98 

21,75 21,72 22,01 

20,7 22,83 21,74 

 

Cycle of quantification (CQ) 

Luminal 

24 h.p.i 

C1-06 C1-16 C4-04 

17,75 19,17 18,59 

19,03 17,67 18,39 

18,34 19,82 18,44 

17,86 17,8 19,68 

20,04 17,93 19,43 

18,35 18,12 18,15 
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Cycle of quantification (CQ) 

Luminal 

48 h.p.i 

C1-06 C1-16 C4-04 

17,07 19,83 17,12 

16,88 20,29 16,49 

15,76 18,13 17,03 

15,72 17,32 17,33 

15,75 15,12 16,84 

15,43 16,18 15,59 

 

Cycle of quantification (CQ) 

Luminal 

72 h.p.i 

C1-06 C1-16 C4-04 

17,39 21,13 17,73 

17,14 20,65 18,77 

16,7 21,31 17,89 

17,07 16,66 16,8 

14,95 16,65 15,32 

15,96 18,17 17,28 

 

Cycle of quantification (CQ) 



Annexes 

 

p. 197 

 

Abluminal 

6 h.p.i 

C1-06 C1-16 C4-04 

24,7 33,3 25,08 

25,41 30,02 26,54 

28,06 31,29 24,8 

25,21 32,15 28,18 

25,25 25,08 24,14 

24,44 25,64 23,42 

 

Cycle of quantification (CQ) 

Abluminal 

24 h.p.i 

C1-06 C1-16 C4-04 

26,91 30,03 27,77 

27,96 28,33 29,68 

26,39 28,09 27,03 

30,78 33,74 29,92 

27,35 30,04 28,21 

31,26 31,04 28,2 

 

Cycle of quantification (CQ) 

Abluminal 

48 h.p.i 
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C1-06 C1-16 C4-04 

30,92 34,43 28,99 

29,41 30,65 30,11 

29,44 28,01 28,42 

30,84 32,27 30,49 

32,07 29,19 31,15 

30,63 31,4 29,81 

 

Cycle of quantification (CQ) 

Abluminal 

72 h.p.i 

C1-06 C1-16 C4-04 

29,11 33,58 30,27 

30,99 31,84 30,18 

28,22 30,45 30,19 

29,7 30,79 29,6 

30,99 30,95 30,24 

27,02 31,23 30,49 
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A pathogenicity study  
The comprehension of cellular and molecular mechanisms that underlies the human 

diseases is fundamental for building solid pillars, in which scientific community can 

solve questions and inspire the development of appropriate clinical interventions. The 

box 1 summarize the main study platform that can be adopted for performing 

biomedical researches. These approaches complement themselves, and their 

respective choice depends on the addressed questions.   

In vitro studies 
Primary cells: cells isolated from primary tissues of animals or human biopsies 

Immortalized cell lines: cell lines originated from tumors or genetic modification to 

allows the in vitro long-term propagation 

Embryonic stem cells (ESCs): undifferentiated cells isolated from inner cell mas of 

blastocist (cellular structure that precedes the implantation). ESCs are able to 

perform long-term replication without lose their phenotype, and differentiate in 

whether cell type of human body under appropriate stimulation. This property is 

known as pluripotency. 

Multipotent stem cells and progenitor cells: undifferentiated cells isolated from 

adult tissues with potential of differentiation tissue-specific. 

Induced pluripotent stem cells (iPSC): reprogramed cells that achieved pluripotent 

status by cytoplasmic introduction of factors without any genetic manipulation. 

Organoids: tridimensional cellular structures originated from primary tissues or 

iPSC. Organoids resemble organizational patterns and physiological functions of 

embryony organs. 

 
In vivo studies 
Animal models: several species of animals are widely used to validate information 

from in vitro observations in a complex living organism. 

Box 1. Summary of strategies for biomedical investigations 
 
Research background 
During the last three years I performed my PhD stage at Université Clermont Auvergne 

(UCA), in Clermont-Ferrand, in the center of France. UCA is a young University created 

in 2017 further the fusion of two ancient universities - Université d'Auvergne (Clermont-



Annexes 

 

p. 201 

 

I) and Blaise-Pascal (Clermont-II). Currently I am associated to the Laboratoire 

Microorganismes: Génome Environnement (LMGE), which has a particular interest in 

microbial interactions. The Epidemiology and Physiopathology of Enterovirus Diseases 

(EPIE) group is responsible for an expressive surveillance of enteroviruses, a group of 

pathogens close-related to the polio virus.  

My PhD project was part of a consortium (OrganoVIR) created in 2019 by Marie 

Skłodowska-Curie Actions with an objective of moving the viral research forward 

through advanced cellular studies with organoids. Such experience gave me 

opportunity to immerse in the field of virology research and reflect about the complexity 

of cortical brain microvasculature, as well as it role in regulating neural functions 

through the blood-brain barrier (BBB) (Fig. 48).  

 

Fig. 49.  Anatomy of cortical brain microvasculature. The brain cortex is 
perfused by microvessels that tailor a unique configuration. The endothelial cells that 
form the blood vessel walls are hanged by pericytes. This vascular circuit embedded 
on neural environment exposes the endothelium to astrocyte end feet, microglia and 
neurons; defined as neurovascular units (NVUs), which induces the expression of 
highly specialized proteins on endothelial cells. This complex phenotype limits the 
passage of cells, molecules and pathogens from blood to brain; regulating neural 
functions through the establishment of the blood-brain barrier (BBB). Author image. 

An in vitro BBB model was used in previous experiments to investigate the its 

interaction with the EV-A71. The cell supernatants of both luminal and abluminal 

compartments were exposed to cells susceptible to EV-A71, Rhabdomyosarcoma 

(RD) cells. We performed serial analysis to check if the cell supernatant could induce 
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the death of RD cells. This analysis indicated the minimal number of cytopathogenic 

units (MNCPU), which is used as a parameter for estimate the number of infectious 

particles present in a sample. We could able to observe cytopathogenic units only in 

cells exposed to luminal supernatant. The assays performed with the abluminal 

supernatant presented a MNCPU below the levels of detection. The cell supernatants 

were also summited to molecular analysis based on amplification of viral genome by 

the technic of reverse transcription of polymerase chain reaction, or simply RT-qPCR. 

Surprisingly, we detected viral genome in cell supernatants from both luminal and 

abluminal compartment. Therefore, our results suggest that EV-A71 does not cross 

freely the BBB, but during this infectious context the human BBB may releases viral 

genome in the brain parenchyma. 

Gap 
Some investigations show that EV-A71 may cross the BBB inside extracellular 

vesicles, and these vesicles may be capable to infect cells of CNS, such astrocytes. 

We do not know if the detection of the viral RNA genome on the abluminal supernatant 

may be an indirect evidence of extracellular vesicles, or if endothelial cells are actually 

releasing viral genome into the extracellular environment by some other mechanism. 

Moreover, the implications of this phenomenon on the brain parenchyma is poorly 

understood. 

 
Hypothesis 
Endothelial cells may affect the viral life cycle by a mechanism of premature viral 

genome releasing. During a viremia context, endothelial cells that form the BBB may 

be infected by EV-A71 and activates a polarized flux of content directed to the brain 

parenchyma. We hypothesize that endothelial cells may harbor mechanisms so far 

unknown that may affect the viral life cycle of EV-A71 and cause a premature viral 

genome releasing. Among intracellular mechanisms that may participate of this 

phenomenon we suggest signaling pathways that converge in apoptotic processes, 

mitochondrial mobilization, lysosomal metabolism, as well as activation of endoplasmic 

reticulum, and Golgi complex. Thus, we suggest that during a context of EV-A71 

infection the BBB may releases viral RNA molecules inside extracellular vesicles. 
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Moreover, we suggest that this phenomenon may induce cellular responses on the 

brain parenchyma, such as production of immune mediators (Fig. 49). 

 

Fig. 50.  Hypothesis of premature viral genome release. When EV-A71 
infections progress to a viremia the BBB trigger a flux of content that can release viral 
genome without encapsidation into the brain parenchyma. We are interested on 
investigating if it may induce parenchymal response, and eventually participate of EV-
A71 neuropathogenesis. Copyright image. 

Goal 
Main goal: Understand cellular and molecular mechanisms existing between the 

human BBB and the brain parenchyma associated with the neuropathogenesis of EV-

A71. 
 

• Goal #1: Evaluate how the BBB releases viral genome of EV-A71; 

• Goal #2: Exploring the communication between the blood-brain barrier and the 

brain parenchyma; 

• Goal #3: Integrate an in vitro model of the human BBB to cerebral organoids; 

• Goal #4: Implement in our laboratory a protocol of cerebral organoid 

manufacturing for studying aspects of neuropathogenesis of EV-A71. 
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The proposition 
We propose to use a cell-based system as platform for studying neuropathogenesis of 

EV-A71. To validate our hypothesis, ascertain the neuropathogenesis of EV-A71, our 

study design consists in integrate a cellular model of the human BBB already 

established in our laboratory to cerebral organoids (Fig. 1).  

 

Fig. 51.  Interaction of BBB model to cerebral organoid. The respective study 
design purpose to co-culture endothelial cells and pericytes in opposite sides of semi 
permeable membranes placed above cerebral organoids. Copyright image. 

We subdivided this project in two axes. The Axis I will produce and characterize 

cerebral organoids while, and the Axis II will focus on the integration of cerebral 

organoids into BBB model. This project is designed as a Post-doc training that will be 

responsible for advising two Ph.D students. Each Ph.D student will conduct one of the 

axis of this project, and transfer their technical expertise for a master student. 

 

Axis I: Evaluate the effect of 
Enterovirus 71 on the human brain 

Axis II: Investigate the communication 
between the blood-brain barrier and 
the brain parenchyma during 
Enterovirus 71  

Goal 1: Elaboration of microglia-

enriched cerebral organoid; 

Goal 5: Merge in vitro blood-brain barrier 

with microglia-enriched cerebral 

organoids; 

Goal 2: Evaluate the influence of 

hematopoietic progenitors in cerebral 

organoids; 

Goal 6: Investigate how the viral RNA 

genome is released from the BBB; 

Endothelial cells
Pericytes
Cerebral organoid
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Goal 3: Standardize an infection assay in 

microglia-enriched cerebral organoids; 

Goal 7: Analyze if infection of the BBB 

affects microglia-enriched cerebral 

organoids; 

Goal 4: Characterize the immune 

response of microglia-enriched cerebral 

organoids. 

Goal 8: Evaluate the if response of 

microglia enriched cerebral organoid 

affects the BBB. 

 
The flowchart below summarizes the main strategies for achieving our milestones. 

 

 

 

Goal 1: Elaboration of microglia-enriched
cerebral organoid

Goal 8: Evaluate the if response of 
microglia enriched cerebral organoid

affects the BBB 

Goal 2: Evaluate the influence of 
hematopoietic progenitors in cerebral

organoids

Goal 3: Standardize an infection assay in 
microglia-enriched cerebral organoids

Goal 4: Characterize the immune 
response of microglia-enriched cerebral

organoids

Goal 5: Merge in vitro blood-brain barrier
with microglia-enriched cerebral

organoids

Goal 6: Investigate how the viral RNA 
genome is released from the BBB

Goal 7: Analyze if infection of the BBB 
affect microglia-enriched cerebral

organoids

Goal 6: How the viral genome is
released from the BBB?

In vitro BBB model

mTOR activation
Can we detect viral genome
on the basal side of the BBB 

model?
Endothelial cells

Pericytes

( Yes )

( No )

The viral genome is released by a 
mecanism independent of extracellular

vesicles

The viral genome is released by inside
extracellular vesicles

Goal 7: Does the infection of BBB affects 
microglia-enriched organoids?

In vitro BBB model

Endothelial cells

Pericytes

Microglia-
enriched organoid

EV-A71 infection

Does the BBB function is
affected?

( Yes )

( No )

The organoid is producing factors that
affect the BBB

The organoid is not producing factors that
affect the BBB

Does the organoid undergo
any change?

( Yes )

( No )
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Value proposition (Canvas model) 

 
Budget 
Detailed budget 

Category Subject Company 
Referenc
e 

Unitary 
price 

Quantit
y 

Total price 

Employee Post-doc/five years 

Université 

Clermont 
Auvergne 

 
260 000,0

0 € 
1 260 000,00 € 

Employee PhD/three and half years 

Université 

Clermont 
Auvergne 

 
140 000,0

0 € 
2 280 000,00 € 

Employee Master/two years 

Université 

Clermont 
Auvergne 

 
60 000,00 

€ 
2 120 000,00 € 

Personal 

development 
Rewild yourself 

The power 

of time off 
 275,00 € 6 1 650,00 € 

Goal 4: How does the organoid respond
to EV-A71?

EV-A71 infection
Microglia-

enriched organoid

Does the organoid produce
immune mediators? ( Yes )

Goal 8: Does the response of organoid
affects the BBB?

In vitro BBB model

Endothelial cells

Pericytes

Microglia-
enriched organoidEV-A71 infection( No )

The brain parenchyma does
not participate activaly of 
the neuropathogenesis of 

EV-A71

( Yes )( No )

The response of brain
parenchyma solely is not 

sufficient for affecting the BBB

Immune mediators from the 
brain parenchyma affects the 

BBB

Background Question Value proposition Objective Custommer
segments

Cosats Perspectives

Enterovirus 71 is a 

neurotropic pathogen

of pediatric interest;

Recently we detected

viral RNA genome

being released from

the in vitro blood-brain

barrier;

We are interested in 

explore if this

phenomen may cause 

immune responses on 

human brain.

How Enterovirus 71 

affect the human

brain?

‘’Better knows, better

care’’ 

Understing

mechanisms related

to neuropathogenesis

of Enterovirus 71

Train human

resources specialized

in virology research

Investigate

mechanisms

associated to EV-A71 

neuropathogenesis

• Employees

• Personal development

• Professional training

• Divulgation and network

• University fees

• Infra-structure

• Research activities

Find targets that can become

treatments for neuroinfectious

diseases.
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Personal 

development 
Stress less with yin 

The power 

of time off 
 275,00 € 6 1 650,00 € 

Personal 
development 

Eat well: be well 
The power 
of time off 

 275,00 € 6 1 650,00 € 

Personal 

development 
Master your mind 

The power 

of time off 
 275,00 € 6 1 650,00 € 

Professional 

training 

Pluripotent Stem Cell 

Maintenance & Cell Quality 

STEMCEL

L 

technologi

es, 
Vancouve

r, Canada 

 # 500-

0171 
365,00 € 2 730,00 € 

Professional 

training 
Pluripotent Stem Cell Training 

STEMCEL
L 

technologi

es, 
Vancouve

r, Canada 

 # 
00223NL.

2 

1 468,00 € 1 1 468,00 € 

Professional 

training 

Hematopoietic Colony-Forming 
Unit Assay Set-up & 

Enumeration 

STEMCEL
L 

technologi

es, 
Vancouve

r, Canada 

 # 500-

0223 
315,00 € 3 945,00 € 

Professional 

training 

Human Intestinal Organoid 
Maintenance & Downstream 

Applications 

STEMCEL
L 

technologi

es, 
Vancouve

r, Canada 

 # 500-

0224 
450,00 € 3 1 350,00 € 

Professional 

training 

Stage of 90 days for technical 

training (Hosting) 
  

13 500,00 

€ 
2 27 000,00 € 

Professional 

training 

Stage of 90 days for technical 

training (University fees) 
  

15 000,00 

€ 
2 30 000,00 € 

Professional 
training 

Stage of 90 days for technical 
training (Travel expenses) 

  7 800,00 € 2 15 600,00 € 

Divulgation International congress (Fees)   700,00 € 3 2 100,00 € 

Divulgation International congress (Hosting)   750,00 € 3 2 250,00 € 

Divulgation 
International congress (Travel 

expenses) 
  1 860,00 € 3 5 580,00 € 

Divulgation Local congress (Fees)   350,00 € 5 1 750,00 € 
Divulgation Local congress (Hosting)   450,00 € 5 2 250,00 € 

Divulgation 
Local congress (Travel 

expenses) 
  660,00 € 5 3 300,00 € 
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Divulgation Publication fees   
100 000,0

0 € 
1 100 000,00 € 

University 

fees 
Tercerized services 

Université 
Clermont 

Auvergne 

 
20 000,00 

€ 
1 20 000,00 € 

Infra-structure Falcon® Conical Tubes, 50 mL 

STEMCEL
L 

technologi

es, 

Vancouve
r, Canada 

 # 38010 206,00 € 2 412,00 € 

Infra-structure Falcon® Conical Tubes, 15 mL 

STEMCEL

L 
technologi

es, 

Vancouve
r, Canada 

 # 38009 195,00 € 2 390,00 € 

Infra-structure 
Corning® Cryogenic Vials with 

Orange Caps 

STEMCEL

L 
technologi

es, 

Vancouve
r, Canada 

 # 38053 343,00 € 2 686,00 € 

Infra-structure 
Corning® Cryogenic Vial Cap 

Inserts 

STEMCEL

L 
technologi

es, 

Vancouve
r, Canada 

 # 38081 82,00 € 2 164,00 € 

Infra-structure 
Corning® Lambda™ Plus Multi-
Channel Pipettor, 8-Channels 

STEMCEL

L 

technologi
es, 

Vancouve

r, Canada 

 # 38110 507,00 € 1 507,00 € 

Infra-structure 
Corning® Lambda™ Plus Multi-
Channel Pipettor, 12-Channels 

STEMCEL

L 

technologi
es, 

Vancouve

r, Canada 

 # 38064 706,00 € 1 706,00 € 

Infra-structure 
Corning® Lambda™ Plus 
Pipettor 

STEMCEL

L 

technologi

 # 38063 942,00 € 1 942,00 € 



Annexes 

 

p. 209 

 

es, 

Vancouve

r, Canada 

Infra-structure 
Corning® Lambda™ Plus 
Pipettor, 2 uL 

STEMCEL

L 

technologi
es, 

Vancouve

r, Canada 

 # 38062 245,00 € 1 245,00 € 

Infra-structure Axygen® Reagent Reservoir 

STEMCEL
L 

technologi

es, 
Vancouve

r, Canada 

 # 38080 173,00 € 2 346,00 € 

Infra-structure 
Corning® Filtered Pipette Tips, 

2 uL 

STEMCEL
L 

technologi

es, 
Vancouve

r, Canada 

 # 38035 152,00 € 2 304,00 € 

Infra-structure 
Corning® Filtered Pipette Tips, 

10 uL 

STEMCEL
L 

technologi

es, 
Vancouve

r, Canada 

 # 38034 147,00 € 2 294,00 € 

Infra-structure 
Corning® Filtered Pipette Tips, 

30 uL 

STEMCEL
L 

technologi

es, 

Vancouve
r, Canada 

 # 38033 141,00 € 2 282,00 € 

Infra-structure 
Corning® Filtered Pipette Tips, 

200 uL 

STEMCEL

L 
technologi

es, 

Vancouve
r, Canada 

 # 38032 169,00 € 4 676,00 € 

Infra-structure 
Corning® Filtered Pipette Tips, 
1000 uL 

STEMCEL

L 
technologi

es, 

 # 38031 158,00 € 4 632,00 € 
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Vancouve

r, Canada 

Infra-structure 
Costar® Microcentrifuge Tubes, 

0.65 mL 

STEMCEL
L 

technologi

es, 
Vancouve

r, Canada 

 # 38088 119,00 € 3 357,00 € 

Infra-structure 
Costar® Microcentrifuge Tubes, 

1.7 mL 

STEMCEL

L 
technologi

es, 

Vancouve
r, Canada 

 # 38038 389,00 € 1 389,00 € 

Infra-structure 
Axygen® PCR Tube Storage 

Rack with Lid, Spectrum Pack 

STEMCEL

L 
technologi

es, 

Vancouve
r, Canada 

 # 38109 205,00 € 2 410,00 € 

Infra-structure 
Falcon® Serological Pipettes, 2 

mL 

STEMCEL

L 
technologi

es, 

Vancouve
r, Canada 

 # 38002 271,00 € 1 271,00 € 

Infra-structure 
Falcon® Serological Pipettes, 5 

mL 

STEMCEL

L 
technologi

es, 

Vancouve

r, Canada 

 # 38003 83,00 € 5 415,00 € 

Infra-structure 
Falcon® Serological Pipettes, 
10 mL 

STEMCEL

L 

technologi
es, 

Vancouve

r, Canada 

 # 38004 84,00 € 5 420,00 € 

Infra-structure 
Falcon® Serological Pipettes, 
25 mL 

STEMCEL

L 

technologi
es, 

Vancouve

r, Canada 

 # 38005 160,00 € 3 480,00 € 
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Infra-structure 
Station MSC Advantage 1.8, 

230V, 50HZ, certification EN 

Thermo 

Fisher 

Scientific, 
Waltham, 

USA 

23264 
12 038,00 

€ 
1 12 038,00 € 

iPSCs culture mTeSR™ Plus 

STEMCEL
L 

technologi

es, 

Vancouve
r, Canada 

 # 100-

0276 
368,00 € 9 3 312,00 € 

iPSCs culture CryoStor® CS10 

STEMCEL

L 
technologi

es, 

Vancouve
r, Canada 

 # 100-

1061 
404,00 € 2 808,00 € 

iPSCs culture 
Gentle Cell Dissociation 

Reagent 

STEMCEL

L 
technologi

es, 

Vancouve
r, Canada 

 # 100-

0485 
51,00 € 1 51,00 € 

iPSCs culture Trypan Blue 

STEMCEL

L 
technologi

es, 

Vancouve
r, Canada 

 # 07050 86,00 € 1 86,00 € 

iPSCs culture 
Corning® Matrigel® hESC-
Qualified Matrix 

Corning, 

New York, 

USA 

354277 316,47 € 2 632,94 € 

Hematopoieti

c 

differentiation 

STEMdiff™ Hematopoietic Kit 

STEMCEL

L 

technologi
es, 

Vancouve

r, Canada 

 # 05310 642,00 € 15 9 630,00 € 

Hematopoieti

c 

differentiation 

MethoCult™ SF H4636 

STEMCEL

L 

technologi
es, 

Vancouve

r, Canada 

 # 04636 536,00 € 15 8 040,00 € 
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Hematopoieti

c 

differentiation 

STEMdiff™ Microglia 
Differentiation Kit 

STEMCEL

L 

technologi
es, 

Vancouve

r, Canada 

 # 100-
0019 

711,00 € 15 10 665,00 € 

Cerebral 

organoid 

STEMdiff™ Cerebral Organoid 

Kit 

STEMCEL

L 

technologi

es, 
Vancouve

r, Canada 

 # 08570 352,00 € 15 5 280,00 € 

Cerebral 

organoid 

D-PBS (Without Ca++ and 

Mg++) 

STEMCEL
L 

technologi

es, 
Vancouve

r, Canada 

 # 37350 40,00 € 10 400,00 € 

Cerebral 

organoid 
Y-27632 (Dihydrochloride) 

STEMCEL
L 

technologi

es, 
Vancouve

r, Canada 

 # 72302 159,00 € 1 159,00 € 

Cerebral 

organoid 

Costar® 24-Well Flat-Bottom 

Plate, Tissue Culture-Treated 

STEMCEL
L 

technologi

es, 
Vancouve

r, Canada 

 # 38017 184,00 € 1 184,00 € 

Cerebral 

organoid 

Costar® 24-well Clear Flat 

Bottom Ultra-Low Attachment 

Corning, 

New York, 
USA 

3473 548,29 € 1 548,29 € 

Cerebral 

organoid 

Corning® 96-well round-bottom 

ultra-low attachment microplate 

Merck, 

Darmstadt
, Germany 

CLS7007-

24EA 
633,00 € 1 633,00 € 

Cerebral 

organoid 

Ultra-Low Adherent Plate for 

Suspension Culture 

STEMCEL

L 
technologi

es, 

Vancouve
r, Canada 

 # 38071 601,00 € 3 1 803,00 € 

Cerebral 

organoid 

Axygen™ 200 µL wide bore 

universal pipette tips 

Fisher 

Scientific, 

14-222-

730 
675,00 € 2 1 350,00 € 
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Hamton, 

USA 

Cerebral 

organoid 
100 mm Dish, Non-Treated 

STEMCEL
L 

technologi

es, 
Vancouve

r, Canada 

 # 38045 203,00 € 2 406,00 € 

Cerebral 

organoid 

Fluo-4 Direct™ Calcium Assay 

Kit 

Thermo 

Fisher 
Scientific, 

Waltham, 

USA 

F10471 524,00 € 1 524,00 € 

Cerebral 
organoid 

L-Glutamine Solution 200 mM 

Merck, 

Darmstadt

, Germany 

59202C-
100ML 

26,00 € 1 26,00 € 

Cerebral 
organoid 

Tetanus Toxoid 

Merck, 

Darmstadt

, Germany 

582231-
25UG 

302,00 € 1 302,00 € 

Cerebral 
organoid 

PARAFILM® M 

Merck, 

Darmstadt

, Germany 

P7793-
1EA 

45,90 € 4 183,60 € 

Cerebral 

organoid 
Celltron orbital shaker 

Infors AG, 

Bottminge

n, 
Switzerlan

d 

69222 4 818,80 € 1 4 818,80 € 

In vitro blood-
brain barrier 

BLECs LBHE /// 100,00 € 10 1 000,00 € 

In vitro blood-

brain barrier 
Bovine pericytes LBHE /// 75,00 € 10 750,00 € 

In vitro blood-
brain barrier 

Fœtal bovine serum for BBB 
model 

LBHE /// 73,50 € 2 147,00 € 

In vitro blood-

brain barrier 
Endothelial Cell Medium 

ScienCell, 

Carlsbad, 
Canada 

 #1001 126,00 € 3 378,00 € 

In vitro blood-
brain barrier 

Collagen type I 

R&D 

Systems, 
Minneapol

is, USA 

3440-005-
01 

52,00 € 1 52,00 € 

In vitro blood-

brain barrier 

10 X D-PBS (Without Ca++ and 

Mg++) 

STEMCEL
L 

technologi

es, 

 # 37354 77,00 € 1 77,00 € 
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Vancouve

r, Canada 

In vitro blood-

brain barrier 
Gibco™ Distilled Water 

Fisher 
Scientific, 

Hamton, 

USA 

15-230-

196 
199,00 € 2 398,00 € 

In vitro blood-

brain barrier 
1 N Sodium hydroxide solution 

Merck, 

Darmstadt

, Germany 

S2770-

100ML 
38,10 € 1 38,10 € 

In vitro blood-

brain barrier 
DMEM/F-12 with 15 mM HEPES 

STEMCEL
L 

technologi

es, 
Vancouve

r, Canada 

 # 36254 47,00 € 9 423,00 € 

In vitro blood-

brain barrier 

Hanks′ Balanced Salt solution 

(HBSS) 

Merck, 
Darmstadt

, Germany 

H6648-1L 54,00 € 15 810,00 € 

In vitro blood-

brain barrier 
HEPES Buffer Solution (1 M) 

STEMCEL
L 

technologi

es, 
Vancouve

r, Canada 

 # 07200 179,00 € 3 537,00 € 

In vitro blood-

brain barrier 
Pyruvate de sodium (100 mM) 

Fisher 
Scientific, 

Hamton, 

USA 

11360070 15,58 € 3 46,74 € 

In vitro blood-

brain barrier 
Lucifer Yellow CH dilithium salt 

Merck, 

Darmstadt

, Germany 

L0259-

25MG 
220,00 € 1 220,00 € 

In vitro blood-

brain barrier 
Rhodamine 123 

Merck, 
Darmstadt

, Germany 

83702 210,00 € 1 210,00 € 

In vitro blood-

brain barrier 
Elacridar 

Merck, 
Darmstadt

, Germany 

SML0486-

10MG 
146,00 € 1 146,00 € 

In vitro blood-

brain barrier 
Rapamycin 

GLPBIO, 
Montclair, 

Canada 

GC15031 50,00 € 1 50,00 € 

In vitro blood-

brain barrier 
GS-9620 

GLPBIO, 
Montclair, 

Canada 

GC12555 79,00 € 1 79,00 € 
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In vitro blood-
brain barrier 

Formoterol Fumarate Dihydrate 
(FFD) 

GLPBIO, 

Montclair, 

Canada 

GC19858 90,00 € 1 90,00 € 

In vitro blood-
brain barrier 

Corning® Transwell® polyester 
membrane cell culture inserts 

Merck, 

Darmstadt

, Germany 

CLS3460-
48EA 

393,00 € 8 3 144,00 € 

In vitro blood-

brain barrier 

Corning® CellBIND® Multiple 

Well Plate 

Merck, 

Darmstadt

, Germany 

CLS3336 238,00 € 4 952,00 € 

Viral genome 

detection 
Enterovirus R-GENE® 

BioMérieu
x, Marcy-

l’Étoile, 

France 

Réf.69-

005B 
1 829,00 € 4 7 316,00 € 

Viral genome 

detection 
easyMAG® navette cônes 

BioMérieu

x, Marcy-

l’Étoile, 
France 

Ref. 

280135 
1 829,00 € 4 7 316,00 € 

Extracellular 

vesicles 
research 

Extracellular Vesicle SEC 

Columns 

STEMCEL

L 
technologi

es, 

Vancouve
r, Canada 

 # 100-

0414 
481,00 € 2 962,00 € 

Immune 

response 

analysis 

Human IL-6 Quantikine ELISA 
Kit 

R&D 

Systems, 
Minneapol

is, USA 

D6050 649,00 € 9 5 841,00 € 

Immune 

response 

analysis 

Human IL-1 beta/IL-1F2 

Quantikine ELISA Kit 

R&D 
Systems, 

Minneapol

is, USA 

DLB50 614,00 € 9 5 526,00 € 

Immune 

response 
analysis 

Quantikine Immunoassay 

Control Group 1 

R&D 
Systems, 

Minneapol

is, USA 

QC01-1 162,00 € 9 1 458,00 € 

Immune 
response 

analysis 

Human TNF-alpha Quantikine 

ELISA Kit  

R&D 

Systems, 

Minneapol
is, USA 

DTA00D 614,00 € 9 5 526,00 € 

Immune 

response 

analysis 

Quantikine Immunoassay 

Control Set 248 for Human TNF-

alpha 

R&D 

Systems, 
Minneapol

is, USA 

QC248 162,00 € 9 1 458,00 € 
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Immune 
response 

analysis 

Total Nitric Oxide and 
Nitrate/Nitrite Parameter Assay 

Kit 

R&D 

Systems, 

Minneapol
is, USA 

KGE001 419,00 € 9 3 771,00 € 

Immune 

response 

analysis 

Parameter Immunoassay 
Control Set 849 for Nitrate 

R&D 

Systems, 
Minneapol

is, USA 

QC134 162,00 € 9 1 458,00 € 

Immune 

response 

analysis 

Parameter Immunoassay 
Control Set 904 for Nitrite 

R&D 

Systems, 
Minneapol

is, USA 

QC135 162,00 € 9 1 458,00 € 

Gene 

expression 

analys 

Kit TURBO DNA-free™ 

Thermo 
Fisher 

Scientific, 

Waltham, 
USA 

AM1907 210,00 € 9 1 890,00 € 

Gene 
expression 

analys 

Réactif TRIzol™ 

Thermo 

Fisher 
Scientific, 

Waltham, 

USA 

15596026 290,00 € 9 2 610,00 € 

Gene 

expression 
analys 

Transcriptase inverse 

SuperScript™ III 

Thermo 

Fisher 

Scientific, 
Waltham, 

USA 

18080044 434,00 € 9 3 906,00 € 

Gene 
expression 

analys 

RT² SYBR Green Fluor qPCR 

Mastermix 

QIAGEN, 
Venlo, 

Holland 

330513 1 983,00 € 9 17 847,00 € 

Immunofluore

scense 
microscopy 

DeadEnd™ Fluorometric 

TUNEL System 

Promega, 

Madison, 
USA 

G3250 672,00 € 2 1 344,00 € 

Immunofluore

scense 
microscopy 

Caspase-Glo® 3/7 3D Assay 

Promega, 

Madison, 
USA 

G8981 397,00 € 2 794,00 € 

Immunofluore

scense 

microscopy 

2N Hydrochloric Acid 

Fisher 

Scientific, 
Hamton, 

USA 

SA431-
500 

106,00 € 1 106,00 € 

Immunofluore
scense 

microscopy 

Paraformaldehyde Solution, 4% 

in PBS 

Thermo 
Fisher 

Scientific, 

J19943.K

2 
59,80 € 1 59,80 € 
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Waltham, 

USA 

Immunofluore

scense 
microscopy 

15mL Sucrose Standard 

Solution, Brix 30% 

Fisher 
Scientific, 

Hamton, 

USA 

12613166 69,55 € 1 69,55 € 

Immunofluore

scense 

microscopy 

Triton X-100 (1%) 

Thermo 

Fisher 

Scientific, 

Waltham, 
USA 

HFH10 96,50 € 1 96,50 € 

Immunofluore

scense 

microscopy 

Normal Donkey Serum 

Fisher 

Scientific, 
Hamton, 

USA 

OB00300
1 

57,00 € 1 57,00 € 

Immunofluore

scense 

microscopy 

Donkey anti-Rabbit, Alexa 
Fluor™ 647 

Thermo 
Fisher 

Scientific, 

Waltham, 
USA 

 # A-
31573 

335,00 € 1 335,00 € 

Immunofluore
scense 

microscopy 

Donkey anti-Rabbit, Alexa 

Fluor™ 488 

Thermo 

Fisher 
Scientific, 

Waltham, 

USA 

 # R37118 180,00 € 1 180,00 € 

Immunofluore

scense 
microscopy 

Donkey anti-Rabbit, Alexa 

Fluor™ 568 

Thermo 

Fisher 

Scientific, 
Waltham, 

USA 

 # A10042 307,00 € 1 307,00 € 

Immunofluore
scense 

microscopy 

Donkey anti-Goat, Alexa 

Fluor™ 568 

Thermo 

Fisher 
Scientific, 

Waltham, 

USA 

 # A-

11057 
306,00 € 1 306,00 € 

Immunofluore

scense 
microscopy 

Donkey anti-Mouse, Alexa 

Fluor™ 488 

Thermo 

Fisher 

Scientific, 
Waltham, 

USA 

 # R37114 180,00 € 1 180,00 € 

Immunofluore
scense 

microscopy 

Donkey anti-Mouse, Alexa 

Fluor™ 647 

Thermo 
Fisher 

Scientific, 

 # A-

31571 
335,00 € 1 335,00 € 
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Waltham, 

USA 

Immunofluore

scense 

microscopy 

Hoechst 34580 

Thermo 
Fisher 

Scientific, 

Waltham, 
USA 

H21486 309,00 € 1 309,00 € 

Immunofluore

scense 
microscopy 

SlowFade™ Gold Antifade 

Mountant 

Thermo 

Fisher 

Scientific, 
Waltham, 

USA 

S36940 60,50 € 1 60,50 € 

Immunofluore
scense 

microscopy 

Corning® cover glasses 
Merck, 
Darmstadt

, Germany 

CLS28451

8 
137,00 € 1 137,00 € 

Immunofluore
scense 

microscopy 

BRAND® microscope slide 
Merck, 
Darmstadt

, Germany 

BR474702 262,00 € 1 262,00 € 

Immunofluore
scense 

microscopy 

Anti-Sox2 Antibody, Rabbit 
Merck, 
Darmstadt

, Germany 

AB5603-

25UG 
144,00 € 1 144,00 € 

Immunofluore

scense 
microscopy 

Anti-Tubulin β 3 (TUJ1), Mouse 

BioLegen
d, San 

Diego, 

USA 

801213 142,00 € 1 142,00 € 

Immunofluore

scense 

microscopy 

Anti-GFAP, Rabbit 

Cell 

Signaling 

Technolog
y, 

Danvers, 

USA 

12389S 407,00 € 1 407,00 € 

Immunofluore
scense 

microscopy 

Anti-Iba1, Goat 
Abcam, 
Cambridg

e, UK 

ab48004 545,00 € 1 545,00 € 

Immunofluore

scense 

microscopy 

Anti-ZO-1, Goat 

Thermo 
Fisher 

Scientific, 

Waltham, 
USA 

 # PA5-
19090 

473,00 € 1 473,00 € 

Immunofluore

scense 
microscopy 

Anti-MPM-2, Mouse 

Abcam, 

Cambridg
e, UK 

ab14581 465,00 € 1 465,00 € 
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Immunofluore

scense 
microscopy 

Anti-LAMP2, Rabbit 

Thermo 

Fisher 

Scientific, 
Waltham, 

USA 

 # PA1-

655 
455,00 € 1 455,00 € 

Immunofluore
scense 

microscopy 

Anti-LC3B, Rabbit 
Abcam, 
Cambridg

e, UK 

ab192890 640,00 € 1 640,00 € 

Immunofluore
scense 

microscopy 

Anti-CLDN5, Mouse 

Thermo 

Fisher 
Scientific, 

Waltham, 

USA 

 # 

CF500843 
492,00 € 1 492,00 € 

Immunofluore

scense 

microscopy 

Anti-GRP94, Goat 

Abcam, 

Cambridg

e, UK 

ab52031 485,00 € 1 485,00 € 

Immunofluore

scense 

microscopy 

Anti-SEC23IP, Rabbit 

Abcam, 

Cambridg

e, UK 

ab224546 475,00 € 1 475,00 € 

Immunofluore

scense 

microscopy 

Anti-GM130, Rabbit 

Abcam, 

Cambridg

e, UK 

ab52649 635,00 € 1 635,00 € 

Immunofluore

scense 

microscopy 

Anti-ARF1, Mouse 

Abcam, 

Cambridg

e, UK 

ab183576 495,00 € 1 495,00 € 

     Total 
1 040 813,82 
€ 

 

Summarized  budget 
Category Coast 
Employees 660 000,00 € 

Personal development 6 600,00 € 

Professional training 77 093,00 € 

Divulgation 117 230,00 € 

University fees 20 000,00 € 

Infra-structure 21 366,00 € 

Research activities 138 524,82 € 

Total coast 1 040 813,82 € 
 

Risks 
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The production of cerebral organoids requires expertise, and this is the first experience 

of our laboratory in working with this approach. The main challenge of the Axis I is 

related to downstream applications of the cerebral organoids, such as the 

standardization of the infection and the phenotypic characterization; during the first 

year of this project. Another key point of this project is the evaluation of the mechanism 

of viral releasing from the BBB during the second year of our activities. The main risk 

of our investigation is to raise inconclusive informations to the validation of the 

hypothesis that the BBB releases viral genome inside extracellular vesicles. 

 

Competitors 
Here, we list few groups that lead researches on the themes proposed by this project: 

 

Penn Neuroscience 
Bennett ML, Song H, Ming GL. Microglia modulate neurodevelopment in human 

neuroimmune organoids. Cell Stem Cell. 2021;28(12):2035-2036. 

doi:10.1016/j.stem.2021.11.005 

 

OrganoVIR LABS 
https://organovirlabs.com/ 

Depla JA, Mulder LA, de Sá RV, et al. Human Brain Organoids as Models for Central 

Nervous System Viral Infection. Viruses. 2022;14(3):634. doi:10.3390/v14030634 

 

Center for Research and Innovation, Mahidol University 
https://mt.mahidol.ac.th/en/departments/center-for-research-and-innovation/ 

Jintana K, Prasertsopon J, Puthavathana P, Lerdsamran H. Antiviral effect in 

association with anti-apoptosis and anti-autophagy of repurposing formoterol fumarate 

dihydrate on enterovirus A71-infected neuronal cells. Virus Res. 2022;311:198692. 

doi:10.1016/j.virusres.2022.198692 

 

Lancaster Lab 
https://www2.mrc-lmb.cam.ac.uk/groups/lancaster/ 
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Lancaster MA, Renner M, Martin CA, et al. Cerebral organoids model human brain 

development and microcephaly. Nature. 2013;501(7467):373-379. 

doi:10.1038/nature12517 

 

Pasterkamp Lab 
www.jeroenpasterkamplab.com 

Ormel PR, Vieira de Sá R, van Bodegraven EJ, et al. Microglia innately develop within 

cerebral organoids. Nat Commun. 2018;9(1):4167. doi:10.1038/s41467-018-06684-2 

 

NOW Lab 
https://nowakowski-lab.squarespace.com/ 

Popova G, Soliman SS, Kim CN, et al. Human microglia states are conserved across 

experimental models and regulate neural stem cell responses in chimeric organoids. 

Cell Stem Cell. 2021;28(12):2153-2166.e6. doi:10.1016/j.stem.2021.08.015 

 

Organo Therapeutics 
http://organo-therapeutics.com/ 

Sabate-Soler S, Nickels SL, Saraiva C, et al. Microglia integration into human midbrain 

organoids leads to increased neuronal maturation and functionality. Glia. 

2022;70(7):1267-1288. doi:10.1002/glia.24167 

 

Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences 
https://cnilas.org/en/TeamDesc/717_4641 

Zhang Q, Zhao B, Chen X, et al. GS-9620 inhibits enterovirus 71 replication mainly 

through the NF-κB and PI3K-AKT signaling pathways. Antiviral Res. 2018;153:39-48. 

doi:10.1016/j.antiviral.2018.02.002 
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Chronogram 

 
Perspectives 

• Assess possible involvement of immune mediators in EV-A71 

neuropathogenesis; 

• Investigate how the BBB releases the EV-A71 genome; 

• Analyze how the brain parenchyma react to infected BBB; 

• Evaluate if immune mediators originated from brain parenchyma may affect the 

blood-brain barrier; 

• Investigate if infected BBB may intensify cellular responses of pre-established 

neuroinfections. 

Implement in our laboratory a platform physiologically relevant based on cerebral 

organoids for studying neuroinfectious disease 

Chronogram for achievement of milestones
Year Category Purpose

2024 Short-term Assessment of viral genome particles released from infected BBB barriers
2025 Short-term Identify a panel of cytokines released by the human blood-brain barrier during EV-A71 

infection
2026 Mid-term Validate the hypothesis that the human blood-brain barrier could release the EV-A71 

genome inside extracellular vesicles
2027 Mid-term Explain the possible roles of human leukocytes in neuroinflammation caused by EV-

A71
2028
2029 Long-terme Establish a three-dimensional cellular model of the human brain to validate 

neuropathogenicity studies of EV-A71



 

 

Résumé 

La barrière hémato-encéphalique (BHE) formée par la microvasculature cérébrale peut être 

contournée lors de l'invasion du système nerveux central (SNC) par des virus neurotropes. 

L'entérovirus A71 (EV-A71) est décrit comme un agent pathogène capable de migrer via les 

nerfs périphériques vers le cerveau par transport axonal rétrograde. Cependant, nous ne 

savons toujours pas si l'EV-A71 est capable d'envahir le SNC via la BHE. Dans cette thèse, 

nous avons utilisé un modèle in vitro de la BHE humaine co-cultivant des cellules endothéliales 

cérébrales (BLEC) et des péricytes. Grâce à ce modèle, nous avons montré que l'EV-A71 

n'affecte pas les principales caractéristiques de la BHE telles que la perméabilité 

paracellulaire, car peu de cellules endotheliales sont infectées. Le virus infectieux est libéré 

principalement par le pôle luminal. Cependant, nous avons aussi détecté la libération de 

quelques particules virales infectieuses par le pôle baso-latéral et la présence d’ARN viraux 

dans ce compartiment baso-latéral. Ce travail ouvre des perspectives d’étude vers d’autres 

modes de franchissement de la BHE par l’EV-A71.  

Mots-clés : Barrière hémato-encéphalique ; Entérovirus A71 ; Maladie pieds-mains-bouche ; 

Neuroinflammation ; Infection neurologique.  

Abstract 

The blood-brain barrier (BBB) formed by the brain microvasculature can be circumvented 

during the invasion of the central nervous system (CNS) by neurotropic viruses. Enterovirus 

A71 (EV-A71) is well reported as a pathogen capable of migrating to the brain through 

peripherical nerves via retrograde axonal transport. However, we still do not know whether EV-

A71 is capable of invading the CNS through the BBB. In this thesis we used an in vitro model 

of the human BBB by co-culture brain-like endothelial cells (BLECs) and pericytes. With this 

model, we showed that EV-A71 does not affect the main characteristics of the BBB, such as 

paracellular permeability because few BLECs are productively infected. High amounts of 

infectious viruses are released from the luminal side. However, we also detected leakage of 

infectious viruses from the baso-lateral side and the presence of viral RNAs in the baso-lateral 

compartment. This work provides opportunities to the analyses of other mechanisms of BBB 

crossing by EV-A71. 

Key words: Blood-brain barrier; Enterovirus A71; Hand, foot and mouth disease; 

Neuroinflammation; Neurological disease 


