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Abstract

The success of the CoRoT, Kepler and TESS space-borne missions has opened a new era for stellar
physics. Asteroseismology provides unique information on stars, which is crucial for probing their
structure and evolution, but also for understanding the Galaxy evolution and for assessing the physical
properties of the exoplanets they host. To this end, studying the global seismic parameters of an ensem-
ble of stars gives us the opportunity to analyse the variation of stellar internal properties along stellar
evolution.

Among the diverse evolutionary stages of stars, the Asymptotic-Giant Branch (AGB) stage is impor-
tant in many aspects. On the one hand, AGB stars provide unique constraints for the mixing processes in
all previous burning stages, which modify their core and surface composition. On the other hand, AGB
stars are important contributors to Galactic enrichment. Indeed, their circumstellar envelopes supplied
by mass loss have a complex chemical composition. Nevertheless, performing a seismic study of these
stars is demanding since it requires long observation periods for the seismic signal to be exploitable.
Hopefully, the four-year time series of Kepler allow us to decipher in detail the oscillation spectrum of
AGB stars, based on the pressure-mode pattern. Moreover, Kepler data clearly exhibit an excess of AGB
stars that can be identified as the AGB bump (AGBb). The AGBb not only provides constraints for stel-
lar physics but it could also be taken as a standard candle if its luminosity is independent of metallicity,
which has to be confirmed.

First, this thesis focuses on a thorough analysis of the oscillation spectrum of evolved red giants,
including Red-Giant Branch (RGB) and AGB stars. I show how the typical signature of the helium
second-ionisation zone in mode frequencies makes a seismic classification between RGB and AGB stars
possible. I discuss the extent to which an asymptotic pattern is valid for interpreting the oscillation
spectrum of high-luminosity red giants. Besides, I examine potential additional damping contributions
to the non-radial modes. These modes probe the innermost layers of stars during the early-AGB, which
brings valuable constraints to the damping mechanisms on the AGB. Finally, I investigate the main
structural differences between RGB and AGB stars by complementing this seismic study with stellar
models and their oscillation frequencies calculated with the codes MESA and ADIPLS, respectively.

Second, this thesis is dedicated to assessing the potential of the AGBb to be a suitable standard
candle as well as to constraining mixing processes in stellar interiors. To this end, I characterise the
AGBb position in the seismic Hertzsprung-Russell diagram as a function of stellar mass and metallicity
by combining Kepler and TESS data. Then, I compute a grid of stellar models with MESA, considering
a sample of input physics including convective core and envelope overshooting, thermohaline mixing,
and rotation. Accordingly, I evaluate the needs for these mixing mechanisms to reproduce the AGBb
location according to the stellar mass. At last, I discuss the implications of this work on astrometry and
Galactic archaeology.
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Résumé

Le succès des missions spatiales CoRoT, Kepler et TESS a mené à de nouvelles opportunités pour
la physique stellaire. L’astérosismologie fournit des informations uniques sur les étoiles qui sont non
seulement essentielles pour sonder leur intérieur et leur évolution, mais aussi pour suivre l’évolution de
la Galaxie et pour estimer les propriétés physiques des exoplanètes qu’elles abritent. Pour cela, l’étude
des paramètres sismiques globaux d’un ensemble d’étoiles donne accès aux variations de leurs pro-
priétés internes au fil de leur évolution.

Parmi les différents stades évolutifs que les étoiles entreprennent, la branche des géantes asympto-
tique (AGB) est importante par plusieurs aspects. D’une part, les étoiles AGB fournissent des contraintes
uniques sur les processus de mélange qui modifient la composition de leur cœur et de leur enveloppe,
en passant de la séquence principale aux phases de brûlage d’hélium. D’autre part, les étoiles AGB
contribuent significativement à l’enrichissement Galactique. En effet, leur enveloppe circumstellaire
alimentée par la perte de masse renferme une composition chimique complexe. Néanmoins, l’étude
sismique de ces étoiles est exigeante puisqu’il est nécessaire de les observer suffisamment longtemps
afin que leur signal sismique soit exploitable. Heureusement, les séries temporelles collectées par Kepler
pendant quatre ans nous permettent de déchiffrer en détail le signal sismique des étoiles AGB en se
basant sur le spectre d’oscillation des modes de pression. De plus, les données de Kepler montrent net-
tement la présence d’une accumulation d’étoiles AGB assimilable au bump de l’AGB. Non seulement,
ce dernier apporte des contraintes pour la physique stellaire, mais il pourrait aussi être utilisé comme
chandelle standard si la luminosité à ce stade est indépendante de la métallicité, ce qui reste à confirmer.

L’un des objectifs principaux de ma thèse concerne l’analyse complète du spectre d’oscillation des
géantes évoluées, qui inclut les étoiles de la branche des géantes rouges (RGB) et de l’AGB. A par-
tir de cette analyse, j’expose en quoi la signature caractéristique de la zone de seconde ionisation de
l’hélium dans la fréquence des modes d’oscillation permet la classification des étoiles RGB et AGB.
Ensuite, j’explore dans quelle mesure l’approche asymptotique est valide pour interpréter le spectre
d’oscillation des géantes rouges lumineuses. Par ailleurs, j’examine les traces éventuelles de contri-
butions supplémentaires à l’amortissement des modes non radiaux. Ces derniers sondent les couches
les plus profondes des étoiles pendant le début de l’AGB, apportant des contraintes inestimables sur
les mécanismes d’amortissement pendant l’AGB. Finalement, j’investigue les principales différences de
structure entre les étoiles RGB et AGB en couplant cette analyse sismique avec des modèles stellaires
et leurs fréquences d’oscillation associées calculées à partir des codes MESA et ADIPLS, respectivement.

La seconde facette importante de ma thèse consiste à évaluer la pertinence d’utiliser le bump de
l’AGB comme chandelle standard ainsi que comme contrainte pour les processus de mélange dans les
intérieurs stellaires. Pour y arriver, je caractérise la position du bump de l’AGB dans le diagramme
Hertzsprung-Russell sismique en fonction de la masse et de la métallicité, tout cela en combinant les
données de Kepler et TESS. Puis, je calcule une grille de modèles stellaires avec MESA, en consid-
érant un ensemble de mécanismes physiques tels que l’extension de la zone convective du cœur et de
l’enveloppe, la convection thermohaline et la rotation. Ainsi, nous évaluons le besoin de ces processus
physiques pour reproduire la position du bump de l’AGB en fonction de la masse. Enfin, je passe en
revue les implications de ce travail sur les domaines de l’astrométrie et de l’archéologie Galactique.
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Chapter 1

Introduction

1.1 What is asteroseismology?

1.1.1 The needs for stellar constraints

Stars, approximated by self-gravitating spheroids composed of plasma, provide essential information
through electromagnetic radiations they emit. This radiative energy is mainly produced by thermonu-
clear reactions in the core and because of the strong interaction between photons and matter, photons
reach the stellar surface several million years after being produced. These radiations are well known
for providing constraints on the stellar surface composition through the analysis of absorption lines in
the electromagnetic spectrum. Not only analysing the light is essential for the understanding of stellar
evolution and classification, but also for other fields of astrophysics such as the characterisation of exo-
planets and galactic archaeology. In other words, we are able to give a global picture of stars simply by
examining their light emission. However, the information carried by the light is limited to integrated
quantities or reduced to the stellar surface, which is not sufficient to understand stellar evolution and
structure. Further measurements are needed to probe the deepest layers of stars, this is exactly where
asteroseismology comes into play.

1.1.2 Behind the scene

Below the slowly changing surface, stellar interiors are far from being quiet. Stars periodically swell
and contract, get cooler and hotter due to the propagation of waves in their interiors, which justifies
the designation of pulsating stars and pulsation cycle. Asteroseismology is dedicated to the probing
of stellar interiors through the study of their pulsations, as indicated by the Greek etymology “seiein”
and “logos”, which stands for “shake” and “study”, respectively. At first glance, those waves are out
of reach due to their inability to travel in the vacuum. In other words, unlike photons they cannot be
directly observed. Nevertheless, they can be detected by our telescopes thanks to the periodic changes
in the star’s brightness and surface velocity that they cause. More exactly, it is the superposition of
waves that propagate in the stellar cavity that can be detected. Due to the finite size of stars, waves are
trapped and propagate in well-defined regions. This allows waves to constructively interfere at specific
frequencies in stellar interiors, giving rise to stationary waves: the so-called stellar oscillation modes.
Assuming spherical symmetry, these constructive interferences lead to the existence of only a discrete
set of solutions that in the most general case are characterised by three quantum numbers: the radial
order n, the mode degree ℓ, and the azimuthal order m. A given set {n, ℓ, m} defines a mode that is
susceptible to develop in stellar interiors. The stellar modes can be approached as those of an organ
pipe in 1-D with one end closed and the other opened, as illustrated in Fig. 1.2. A powerful tool to
highlight the periodicity of the star’s brightness is the Fourier’s transform applied to the time series.
Those periodicities in temporal space are translated into spectral responses at specific frequencies: the
stellar oscillation mode frequencies νn,ℓ,m.



2 Chapter 1. Introduction

FIGURE 1.1: Three examples of oscillation modes in stars. The red regions correspond to
the swelling up and heating up zones while the blue regions correspond to the contracting

and cooling zones. Credit: CEA/Irfu

FIGURE 1.2: Organ pipe with one end closed and one end opened. The solid line indicates
the motion along the pipe and the dashed lines is its antiphase counterpart. On the left is
the fundamental mode with a node at the closed end and on the right is the first overtone,

which has two nodes. Credit: Aerts, Christensen-Dalsgaard, and Kurtz (2010)
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1.2 Asteroseismology, for what purpose?

Asteroseismology has made a breakthrough in our understanding of stellar structure. The waves carry
signatures of some localised structures, for instance the base of convective envelopes, the boundary
of convective cores, and ionisation zones of hydrogen and helium (Monteiro, Christensen-Dalsgaard,
and Thompson, 1994; Monteiro and Thompson, 2005; Deheuvels et al., 2016). The valuable information
brought on stellar interiors by asteroseismology is studied all along this manuscript, and a specific at-
tention is paid on the second helium ionisation zone in Chapter 4.

The study of stellar pulsations not only has implications in our understanding of stellar structure
and evolution, but also in many other fields of astrophysics. Probably one of the most dynamic asso-
ciation with asteroseismology currently is Galactic archaeology. On the one hand, the determination
of mode frequencies in stars leads to estimates of global asteroseismic parameters that can be used as
proxies for stellar age, as illustrated in Fig. 1.3. On the other hand, physical mechanisms considered
in stellar models such as mixing processes can be calibrated to reproduce the observed asteroseismic
parameters (Bossini et al., 2015). These calibrations impact the surface abundance of stars, hence the
enrichment of the stellar environment through mass loss mechanisms. Precise stellar ages and chemical
abundances are crucial for the study of different stellar populations in the Galactic disc, in particular to
trace the history of the Galaxy formation and evolution (Borre et al., 2022).

FIGURE 1.3: An asteroseismic HR diagram showing several evolutionary tracks with dif-
ferent masses (black solid lines). In this diagram, two combinations of mode frequencies
are used: the large separation ∆ν and the small separation δν. The large separation ∆ν is
mostly sensitive to mass while the small separation δν is rather sensitive to stellar age. The
dashed lines are plotted at constant hydrogen mass fraction in the core, and the associated
values are indicated in the figure. The full knowledge of ∆ν and δν allows us to deter-
mine stellar ages and masses in case of well separated tracks. Credit: Aerts, Christensen-

Dalsgaard, and Kurtz (2010)

The other major active field taking advantage of asteroseismology is exoplanetology. Several tech-
niques allows for determining the parameters of companions orbiting around their host stars in exo-
planetary systems. For instance, the transit method is a photometric method that consists of regularly
measuring the stellar luminosity in order to detect a decrease of luminosity associated to the passing of
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the exoplanet in front of the host star. Then, the amplitude and the period of the luminosity variation can
be used to infer the companion’s radius and revolution period, respectively. Nevertheless, the estimate
of stellar parameters plays a non-negligible role in the inference of orbiting companion’s parameters.
The radial velocity method is a spectroscopic method that consists in measuring the shift of the host
star’s spectrum due to its radial velocity induced by the presence of the companion. The radial velocity
data, i.e. the amplitude of the velocity variation and the orbital period can be used to derive the mass of
the orbiting companion. However, a precise estimate of the host star’s mass is necessary to derive the
orbiting companion’s mass (Perryman, 2011). Precise mass of the companion is crucial for determining
its nature, which can be a hot Jupiter, hot Neptune, a terrestrial planet, brown dwarf. Finally, precise
ages of the host stars can be derived from stellar models based on asteroseismic parameters (Lebreton
and Goupil, 2014). These age estimates are crucial for the understanding of planet formation and evo-
lution (Havel et al., 2011).

In the following, we focus on the inputs brought by asteroseismology of red giants, which are one of
the stellar pulsators known up to date.

1.3 Categories of stellar pulsators

We focus on stars whose pulsations have been detected with an amplitude above some ∼ 1 µmag in
photometry and ∼ 10 cm.s−1 in radial velocity. These limits correspond to the precision level of obser-
vations. The diversity of pulsating stars is rich across the Hertzsprung-Russell (HR) diagram: the period
of the oscillations spans few minutes up to several years. So far, two driving mechanisms are known for
the origin of stellar pulsations:

➛ The κ mechanism, which is a thermal instability caused by rapid variations in the opacity, called
bumps, in the ionisation layers of H and He. This mechanism drives the oscillations in the so-
called classical pulsators.

➛ The stochastic driving, which results from the turbulent motion of convection cells at the sound
speed near the stellar surface. The excitation is caused by a large number of convective elements,
causing the random aspect of the driving. Since the stochastic movements drives the Sun’s oscil-
lations, stars exhibiting stochastically excited oscillations are called solar-like pulsators.

An overview of stellar pulsators across the HR diagram is shown in Fig. 1.4.

1.3.1 Classical pulsators

The most abundant oscillators covering the HR diagram are the classical pulsators, as depicted by
Fig. 1.4. Their pulsations are driven by the κ mechanism at specific layers that gain heat during the
contracting part of the pulsation cycle in stellar interiors. As a global picture, they behave as heat
engines, converting thermal energy into mechanical energy so that this type of driving is referred to
as heat-engine mechanism. The latter creates intrinsically unstable oscillations, which grow until some
amplitude-limiting mechanism emerges. As a result, those pulsators exhibit oscillations with large am-
plitudes that can reach a few km.s−1 in radial velocity, which makes them easier to observe and justifies
their ‘classical’ designation. The characteristic time determining if the modes can be excited is the local
thermal timescale of the driving zone, which is the time this region can radiate with the gravitational
energy as the only source of energy (Aerts, Christensen-Dalsgaard, and Kurtz, 2010):

τth =
∫ R

rd

cp(r)T(r)dm
L(R)

, (1.1)

where rd is the distance from the stellar centre of the driving zone, R is the stellar radius, cp(r) is the
heat capacity of the gas at constant pressure, dm is the infinitesimal mass of a thin layer at radius r, T(r)
is the temperature at radius r and L(R) is the luminosity at the stellar surface. If this thermal timescale
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is lower than the oscillation period, the driving zone remains in thermal equilibrium and modes cannot
be excited. The oscillation period depends on the type of classical pulsators, it can be several minutes
up to several days (see Table. 1.1).

FIGURE 1.4: Hertzsprung-Russell diagram with different types of pulsators. Solar-like
pulsators are indicated in the low-temperature part, they are low-mass main-sequence stars
and red giants. The remaining pulsators spread in the HR diagram are classical pulsators.
Type of oscillations are indicated in color, in blue for pressure modes and red for gravity
modes (further details of these types of modes are presented in Sec. 3.3). Credit: Aerts,

Christensen-Dalsgaard, and Kurtz (2010)

1.3.2 Solar-like pulsators

Solar-like pulsators have an outer convective envelope, in which oscillations can be excited. Near-
surface convective motions with near-sonic speed are an efficient source of acoustic noise. Large number
of uncorrelated convective cells, which play the role of the external forcing, cause the mode excitation.
Then, a fraction of the stochastic noise is transferred to energy of global oscillation, and the star res-
onates in some of its natural oscillation frequencies (Aerts, Christensen-Dalsgaard, and Kurtz, 2010).
The resulting oscillations have their period close to the characteristic timescale of vigorous convective
motions in the near-surface layers: few minutes (typically for Sun-like stars) to several years (typically
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Name Approx. Periods Discovery/Definition
Mira variables 100 - 1000 d Fabricius (1596)

Semiregular (SR) variables 2 0 - 2000 d Herschel (1782)
δ Cephei stars 1 - 100 d 1784, Pigott, Goodricke (1786)
RR Lyrae stars 0.3 - 3 d Fleming (1899)

δ Scuti stars 0.3 - 6 h Campbell & Wright (1900)
β Cephei stars 2 - 7 h Frost (1902)

ZZ Ceti stars (DAV) 2 - 20 min 1964, Landolt (1968)
GW Virginis stars (DOV) 5 - 25 min McGraw et al. (1979)

Rapidly oscillating Ap (roAp) stars 5 - 25 min 1978, Kurtz (1982)
V777 Herculis stars (DBV) 5 - 20 min Winget et al. (1982)

Slowly Pulsating B (SPB) stars 0.5 - 3 d Waelkens & Rufener (1985)
V361 Hydrae stars (sdBVr) 2 - 10 min 1994, Kilkenny et al. (1997)

γ Doradus stars 0.3 - 1.5 d 1995, Kaye et al. (1999)
V1093 Herculis stars (sdBVs) 1 - 2 hr Green et al. (2003)

Pulsating subdwarf O star (sdOV) 1 - 2 min Woudt et al. (2006)
Solar-like oscillators 3 - 15 min Kjeldsen et al. (1995)

Semiregular variables seen as solar-like oscillators 200 - 2000 d Christensen-Dalsgaard et al. (2001)
Early RGB oscillators 1 - 18 hr Frandsen et al. (2002)

Intermediate RGB and He-core burning oscillators 30 - 150 d De Ridder et al. (2009)

TABLE 1.1: Classes of pulsating star. Credit: Handler (2013)

for high-luminosity red giants). Given the turbulent convection in the envelope, solar-like pulsations are
stochastically excited and intrinsically stable. The resulting amplitude depends on the balance between
the energy input from the forcing and the damping. In terms of radial velocity, the amplitudes can fall
to a few cm.s−1 and reach a few m.s−1. Among stellar pulsators, red giants were found to exhibit clear
stochastically excited modes. They will be the central objects in this thesis.

1.4 From the beginning of helioseismology to the emergence of asteroseis-
mology

1.4.1 The discovery of pulsating stars

Periodic variable stars have been discovered in the 17th century, when Jan Fokkens Holwarda realised
that the star Mira (also called “o Ceti” and discovered 40 years earlier by David Fabricius) disappears
from the visible sky every ∼ 11 months due to a brightness drop. The cause of this variability due to
intrinsic pulsations came almost three centuries later. Until 1914 enough evidence has been collected to
make the connection between variability and radial pulsations (Shapley, 1914). In the meantime, Leavitt
and Pickering (1912) pointed out that the Cepheids in the Small Magellanic Clouds follow a period-
luminosity relation, which paved the way for the determination of distances in the visible Universe.
Since then, this period-luminosity relation is one of the major astrophysical applications of pulsating
stars, and also marked the beginning of stellar seismology.

1.4.2 The birth of helioseismology

During the decades following the discovery by Henrietta Leavitt, theoretical studies were conducted
to formalise the mathematical framework of stellar pulsators and understand the driving mechanism
behind their oscillations (e.g. Pekeris, 1938; Cowling, 1941). In the early 1960s, solar oscillations have
been highlighted by the Doppler shift of spectroscopic lines (Evans and Michard, 1962; Leighton, Noyes,
and Simon, 1962). These authors measured that the solar pulsations were periodic, with a period of 5
minutes. At this stage, the cause of this periodicity, namely the existence of acoustic modes in the Sun’s
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interior, was not known. In the next decade, additional works reached that conclusion, and revealed
that the signature of oscillations in timeseries could be used to probe the Sun’s interior (Ulrich, 1970;
Leibacher and Stein, 1971).
Nevertheless, astronomers were confronted to a major complication while extracting the solar oscilla-
tion mode properties: the Sun needs to be observed as long as possible to bring the oscillation modes out
of the oscillation spectrum. On the one hand, the signal-to-noise ratio must be high enough to observe a
large number of modes. On the other hand those modes can only be resolved with a sufficiently long ob-
servation time, which is essential to reach precise mode characterisation. To this end, several networks
of ground-based telescopes have been deployed to overcome these difficulties such as the International
Research on the Interior of the Sun (IRIS) (Fossat, 1991), the Global Oscillation Network Group (GONG)
(Hill et al., 1994a; Hill et al., 1994b) and the Birmingham Solar-Oscillations Network (BiSON) (Chaplin
et al., 1996). Then, helioseismology has been marked by the launch of space borne telescopes enabling to
bypass the limitations of ground-based observations, particularly since 1995 with the instrument Global
Oscillations at Low Frequencies (GOLF) of the Solar and Heliospheric Observatory (SoHO) telescope
(Gabriel et al., 1995). Accordingly, more than a thousand of Solar oscillation modes with different de-
gree ℓ have been detected (see Fig. 1.5), making a breakthrough on our understanding of stellar interiors
such as the internal rotation profile of the Sun (Schou et al., 1998; Di Mauro and Dziembowski, 1998).

FIGURE 1.5: Oscillation power spectrum of the Sun, obtained by the network of ground-
based telescopes BiSON. Credit: Elsworth et al. (2015)

1.4.3 From helioseismology to asteroseismology

After the detection of solar oscillation modes, a serious challenge was to extend the helioseismology
techniques to stars. This was not expected to be an easy task because of their faint apparent magnitude.
Finally, the first evidence of solar-like oscillations in stars has been found in 1998 by the 10 days observ-
ing runs of Procyon (Martić et al., 1999; Barban et al., 1999): asteroseismology was born.
In the meantime, the first exoplanet has been discovered by Mayor and Queloz in 1995 (Mayor and
Queloz, 1995). This exoplanet (referred as hot jupiter) being massive and orbiting very close to its host
star unlike in the Solar system, it raised many questions about planetary system formation. As a con-
sequence, exoplanetologists needed to evaluate the recurrence of those hot jupiters in the Galaxy. They
needed higher precision photometric observations to detect the luminosity drop caused by the transit of
the planet in front of its host star. Given their shared needs, exoplanetologists and asteroseismologists
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collaborated and planned incoming space missions together. Since then, several space missions have
made asteroseismology one of the most active field in stellar physics. Among them, the Convection,
Rotation and planetary Transits (CoRoT) satellite launched by CNES observed more than 160,000 stars
with a visual magnitude mV ∈ [5.4, 9.5] between January 2007 and November 2012. Those stars have
been observed for six months, leading to a frequency resolution of ∼ 0.1 µHz and allowing us to explore
the oscillation spectrum of main-sequence stars and red giants. This was the first opportunity to per-
form ensemble asteroseismology, which consists in highlighting solar-like oscillations in a large sample
of stars and use the global seismic properties to constrain stellar evolution.
In the same period, the Kepler mission was launched in 2009 by NASA to monitor more than 170,000
stars with a visual magnitude mV ∈ [9, 15] over a period of four years, providing the best frequency
resolution up to date, of ∼ 8 nHz. Not only it enabled us to improve the precision on the seismic con-
straints used in stellar models, but it also permitted us to probe the internal structure of high-luminosity
red giants. In the next section, we will see that this mission has revolutionised red-giant seismology.
Presently, the Transiting Exoplanet Survey Satellite (TESS) by NASA is at work since April 2018, but it
mainly focuses on the detection of exoplanets (Ricker et al., 2015). It is expected to monitor more than
200,000 main-sequence dwarf stars showing planetary transits and 6,000 solar-like pulsators mainly
composed of main-sequence stars and subgiants with a visible magnitude mV ≤ 7.5. Each star will be
observed between 1 month to 1 year, providing a frequency resolution of ∼ 0.05 µHz. The next high-
precision photometric data will be collected by the PLAnetary Transits and Oscillations of stars (PLATO)
space mission to be launched in 2026 by ESA, whose goal is to derive precise stellar ages, masses, and
radii.

FIGURE 1.6: Simulation of the oscillation spectrum of a 1.3-M⊙ star on the RGB, with
different observation durations and telescopes. In all panels, the 4-year long spectrum
obtained with Kepler is indicated in grey as a reference. Credit: Mosser, Miglio, and CoRot

Team (2016)
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1.5 The emergence of red-giant seismology

The success of solar-like star seismology has motivated attempts for detecting solar-like oscillations
in red giants. The first detections were reported with the ground-based Swiss Euler telescope for the
red giants ξ Hya, ε Oph, and η Ser (Frandsen et al., 2002; Barban et al., 2004). However, the mode
identification remained under debate because of the unexpected presence of short-lived modes in the
oscillation spectrum. Theoretical works could neither solve if radial and non-radial modes were equally
excited, nor provide reliable information on the damping mechanisms that could justify these short
mode lifetimes. Since those objects have large radius, hence low mean density, the period of oscillations
are long and reach several days. Accordingly, one necessary ingredient is a long observation time to
fully resolve red-giant oscillation modes (see Fig. 1.6).

Ground-based observations could fulfil this requirement but were affected by day/night aliases.
High-quality photometry of red giants could be achieved with the successful space-borne telescopes
CoRoT and Kepler. They could prove the presence of non-radial modes in the oscillation spectrum of
red giants, which was controversial before the launch of the associated space missions (see e.g. Dziem-
bowski et al., 2001; Christensen-Dalsgaard, 2004).
CoRoT and Kepler not only allowed us to lift the uncertainties on the structure of red-giant oscillation
spectrum, but also revealed the presence of modes that have a non negligible amplitude both in the
envelope and the core: the so-called mixed modes. The particularity of the mixed modes is that they
are able to develop both in the stellar envelope and core cavities, then they carry precious information
on the deepest layers of stars. They were not expected to be detectable because of their strong damping
and the closeness between consecutive modes, forming a very dense oscillation spectrum. But finally,
the high precision and long time series collected by those telescopes were so excellent that they could be
detected without ambiguity. They revolutionised red-giant seismology notably through the elaboration
of a classification method of red giants, including H-shell burning stars and He-burning stars (Bedding
et al., 2011; Stello et al., 2013; Mosser et al., 2014), as well as the study of the internal rotation profile of
red giants (Beck et al., 2012; Mosser et al., 2012c; Gehan et al., 2018).

1.6 Contextualisation of my Ph.D.

The AGB is a key stage of stellar evolution in many aspects. First, it is the last phase of stellar evolution
before the envelope is ejected through stellar winds, forming a planetary nebula and a remnant compact
object. The seismic study of AGB stars provides information not only on their structure, but also on the
physical mechanisms they experienced to reach their current state. On the other hand, AGB stars play
a major role in Galactic archaeology: they allows for inferring the activity of star formation in the past
0.5-1.0 Gyr. Finally, they are fundamental contributors to the chemical enrichment of the galaxy through
stellar nucleosysthesis.

The characterisation of AGB oscillation spectrum provides valuable information on regions char-
acterised by strong gradients of the sound speed such as helium ionisation zones. In case of resolved
modes, i.e. when the oscillation period is lower than the observation duration, the mode width can be
measured, then used to infer the physical mechanisms behind mode damping at evolved stages of stellar
evolution. In this part, we present a global picture of high-luminosity red-giant seismology, unveiling
our current progress of their oscillation spectrum analysis and structure modelling.

1.6.1 Overview of evolved red giants

Oscillation spectrum

The nature of the variability of high-luminosity red giants has been first investigated in ground-based
observations with the microlensing surveys MACHO (Massive Compact Halo Objects Wood et al., 1999)
and OGLE (Optical Gravitational Lensing Experiment Wray, Eyer, and Paczyński, 2004; Soszyński
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FIGURE 1.7: Period-Luminosity Sequences of Long-period Variables. Left: Reddening-free
magnitude WJK as a function of the primary oscillation period from observations. Right:
same figure but the periods are derived from linear, radial, nonadiabatic pulsation models.
Those periods are associated to the highest peak in the power spectrum. Different colours
represent periods of different modes, red points contain Mira variables while other markers
are associated to semi-regular variables including RGB and AGB stars. Solid lines help to
identify the approximate location and slope of observed sequences. Credit: Trabucchi et al.

(2017)

and Wood, 2013). Given their proximity with both Mira variables and solar-like giants, those high-
luminosity red giants, also called semi-regular variables (SRs, see Fig. 1.4), were tested to be either
classical pulsators with self-excited pulsations or solar-like pulsators with stochastically excited pul-
sators (Dziembowski et al., 2001; Christensen-Dalsgaard, Kjeldsen, and Mattei, 2001). Finally, by using
the OGLE-III Catalog of Variable Stars based on photometric data collected during 8 years (2001-2009),
Dziembowski and Soszyński (2010) found that high-luminosity red giants were solar-like pulsators,
showing modes in the frequency range that is consistent with solar-like oscillations. These modes corre-
spond to pressure modes that are excited by the turbulent motions of convection near the stellar surface
(Goldreich and Keeley, 1977; Belkacem et al., 2006). Those modes revealed to be crucial for the in-
terpretation of the period-luminosity diagram. Indeed, different branches as represented in Fig. 1.7 are
associated to different radial orders n, which helps to distinguish Mira variables, semi-regular variables,
and less evolved RGB stars. Both radial (ℓ = 0) and non-radial (ℓ = 1, 2) modes could be detected in
evolved red giants at low radial order n ≤ 5 (Mosser et al., 2013b; Yu et al., 2020). This gives us the
opportunity to test the validity of the asymptotic relation (presented in Chapter 3) that provides an ana-
lytical expression for the mode frequencies in the limit n ≫ ℓ. Accordingly, models have been computed
to follow the evolution of the frequency pattern near the luminosity-tip of the RGB (Stello et al., 2014),
showing that departure from the asymptotic regime are expected at the RGB tip. On the other hand,
global seismic parameters could be estimated such as the frequency at maximum oscillation power νmax
and the frequency spacing ∆ν (also called large separation) between modes of consecutive radial order
n at fixed degree ℓ (see Fig. 1.8). Those parameters have been used to test the validity of the scaling
relations (Kjeldsen and Bedding, 1995) at evolved stages that provide estimates of stellar parameters
such as mass and radius (Yu et al., 2020).
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FIGURE 1.8: Oscillation spectrum of the RGB star KIC 1719297 observed by Kepler with
∆ν = 1.22 µHz. The red dashed lines indicates the location of the radial modes (ℓ = 0)
while the blue and green dashed lines locate the non-radial modes, i.e. dipole (ℓ = 1) and
quadrupole modes (ℓ = 2), respectively. The grey dotted line represents the underlying
Gaussian envelope of the observable modes, where the maximum reached at νmax marks
the maximum oscillation power. The mode identification is based on the method described

in Chapter 7.

Internal structure

Evolved RGB and AGB stars have similar luminosity, effective temperature and radius. These global
similarities are caused by similar dynamics of the core and the envelope: while the core contracts be-
cause the temperature is too low to continue the nuclear-chain burning reactions, the envelope dilates.
This makes the classification of H-shell burning stars and He-shell burning stars challenging due to the
lack of observables that differentiate one star from another. Despite these similarities, RGB and AGB
have clear structure differences (see Fig. 1.10). Indeed, AGB stars exhibit an additional He-shell burning
compared with their RGB counterparts. Moreover, AGB stars suffered from significant mass loss as they
passed the RGB luminosity tip. Such important mass loss is expected at the luminosity tip where the
envelope expands up to the point that it is weakly bound by gravitational interaction. Accordingly, the
extent of the convective envelope differs before and after the He-core burning phase.

The seismic study of RGB and clump stars has brought valuable parameters for the investigation of
structure differences between RGB and AGB stars. The detection of mixed modes that probe the deep-
est layers of stars have been found to be sensitive to the growing convective core that settles during the
He-core burning phase (Bedding et al., 2011). Their signature in seismic parameters, particularly in the
gravity-mode period spacing ∆Π1 between modes of consecutive radial order n at degree ℓ = 1, is so
strong that an unambiguous classification of H-shell burning stars and He-core burning stars is possible
(see Fig. 1.9). Another classification method exists, which is based on the impact of ionisation zones on
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FIGURE 1.9: Spacing in period ∆Pobs between gravity modes of consecutive radial order
n at degree ℓ = 1 as a function of spacing in frequency ∆ν between pressure modes of
consecutive radial order n at degree ℓ = 0. H-shell burning stars are indicated in blue while
He-core burning stars are represented in red for primary clump stars with M ≤ 2 M⊙ and
orange for secondary clump stars with M ≥ 2 M⊙. Three evolutionary tracks with different

initial mass are represented on the RGB. Credit: Bedding et al. (2011)

pressure modes in the stellar envelope. The variations of the sound speed caused by the ionisation of
helium introduce a signature in mode frequencies, whose characteristics are linked to the properties of
the envelope and the helium ionisation region (Kallinger et al., 2012; Vrard et al., 2015). These classifica-
tion methods help to understand the structure changes that stars undergo between H-shell burning and
He-burning phases, providing clear seismic constraints for stellar models. For instance, they offered the
possibility to track the evolution of rotation from the early-RGB up to the He-core burning phase, show-
ing a clear slowing down of the core rotation rate (Mosser et al., 2012c; Deheuvels et al., 2014). Even
now, the study of stellar structure signature in ∆Π1 still leads to fruitful results, such as the discovery of
intermediate-mass red giants with degenerate cores induced by a substantial mass transfer from a close
companion (Rui and Fuller, 2021; Deheuvels et al., 2021), and the investigation of lithium depletion in
red giants (Deepak and Lambert, 2021).

The AGB bump

One of the key event in the early-AGB that can strongly constrain physical mechanisms in stellar in-
teriors is the luminosity bump. The AGB bump (AGBb) manifests as a drop of luminosity as a star
evolves on the AGB after the He-core burning phase (see Fig. 1.11) and is associated with the ignition
of the He-burning shell source (further details in Sect. 2.5.1). Due to the additional time spent in the
luminosity range of the AGBb, a local excess of stars can be observed in the luminosity distribution
of stellar population. Such overdensity of stars has been first predicted by stellar evolutionary models
(Caputo, Castellani, and Wood, 1978), then identified in the colour-magnitude diagram (CMD) of a few
Galactic globular clusters (Ferraro, 1992) and of the Large Magellanic Cloud (Gallart, 1998) as illustrated
in Fig. 1.12.
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FIGURE 1.10: Kippenhahn diagrams that represent the mass coordinate in star interiors
(m/M⊙ = 0 is the centre and m/M⊙ = 1 is the surface) as a function of the stellar age.
These diagrams are computed with the MESA models described in Chapter 6. Left panel
(respectively, right panel) is from the early-RGB (respectively, early-AGB) up to the lumi-
nosity tip of the RGB (respectively, high-luminosity AGB). Green-shaded area correspond
to convective zones while blank ones are radiative zones. The thick black line marks the
limit of the stellar surface and dotted lines locate the burning shells: in blue the H-burning
shell and red the He-burning shell. The colourbar indicates the energy produced by nuclear

reactions.
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FIGURE 1.11: Evolutionary track computed with MESA of a 1M⊙-mass star in the
Hertzsprung-Russell Diagram (HRD). The track is represented in blue for the RGB, in or-
ange for the Red Clump (RC), and in red for the AGB. The arrows indicate the evolution
direction along the evolutionary track. The inset is a zoom-in portion of the large panel
at the AGBb location. The numerous turning-backs in blue located before the red clump
correspond to the He burning phases in unstable conditions (also called subflashes), which

are so rapid that they are hardly visible in observations.

According to theoretical work, the AGBb luminosity is expected to vary with stellar parameters:
the higher the mass, the higher the luminosity at the AGBb (Alves and Sarajedini, 1999). On the other
hand, the metallicity dependence of the AGBb luminosity is still under debate. The AGBb luminosity
may be independent of the metallicity (Pulone, 1992; Ferraro, 1992) or slightly increasing when the
metallicity decreases (Alves and Sarajedini, 1999). Shedding light on the metallicity dependence would
have important implications for astrometry and the study of stellar populations. Indeed, AGBb stars
with identical mass formed in the same cluster could be suitable candidate for standard candles if their
luminosity is independent of metallicity (Pulone, 1992; Ferraro, 1992).
Finally, the AGBb revealed to be an ideal constraint for stellar models, in particular for mixing processes.
Indeed, Bossini et al. (2015) could extract the AGBb luminosity in a sample of Kepler stars of mass M ∈
[1.3, 1.7]M⊙ and metallicity [Fe/H] ∈ [−0.4, 0.4]dex. They showed that an additional mixing region
above the convective core during the He-core burning phase is necessary to reproduce both the AGBb
luminosity and the distribution of seismic parameters. This way, by improving our understanding of
convection, we can predict not only the properties of the deep layers of He-core burning stars but also
the chemical composition of stellar envelopes, which has implications on the evolution of the stellar
environment.
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FIGURE 1.12: M31 halo field CMD (left) and the corresponding synthetic CMD (right). In
this CMD, the magnitude in the I-band is represented as a function of the colour index V

− I. The arrow indicates the AGBb location. Credit: Gallart (1998)

1.6.2 Goals of the thesis

Each of the topics approached in this section unveiled the potential of the seismic analysis of evolved
red giants to constrain stellar models and open new prospects for other fields of astrophysics. Cur-
rently, such studies have been so far approached for low- and intermediate-luminosity red giants only,
but need to be extended to high-luminosity red giants. As described in Sect. 1.6, the oscillation spectrum
of evolved giants including high-luminosity RGB and AGB stars has been described through their global
seismic parameters (Mosser et al., 2013b). Nevertheless, an individual analysis of oscillation modes of
those stars still needs to be performed, particularly to study the mode damping and the second he-
lium ionisation zone. In low- and intermediate-luminosity red giants, Vrard et al. (2018) identified a
clear mass and temperature dependence of the radial (ℓ = 0) mode damping and a clear distinction be-
tween H-shell burning stars and He-core burning stars. Our aim is to perform a similar analysis but for
high-luminosity red giants, including RGB and AGB stars. On the other hand, the classification method
illustrated in Fig. 1.9 is the most powerful to distinguish H-shell burning stars and He-core burning
stars as it relies on modes that are able to probe the deepest stellar layers. However, the former is no
longer applicable for evolved RGB and AGB stars since the seismic coupling between the core and the
envelope is weaker, which makes the extraction of core properties out of reach. Still, other stellar iden-
tification methods are available for those evolved red giants. Vrard et al. (2015) have shown that the
classification method proposed by Kallinger et al. (2012) and based on the radial mode pattern between
RGB and clump stars in fact relies on a difference in the second helium ionisation zone. This suggests
that RGB and AGB can be disentangled with the signature of the second helium ionisation in mode
frequencies, but this needs to be confirmed. Accordingly, the first part of my thesis is dedicated to the
seismic analysis of the evolved RGB and AGB stars. With a sample of thousands of stars observed by
the Kepler telescope, we aim at extending the previous works to evolved RGB and AGB stars. We want
to carry out an exhaustive characterisation of their oscillation spectrum to inspect the similarities and
differences between those stars, and discuss the physical mechanisms on the line.
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Such seismic analysis provides us new sets of constraints for stellar models. Stellar models are com-
puted with the stellar evolution code MESA (Paxton et al., 2011; Paxton et al., 2013; Paxton et al., 2015;
Paxton et al., 2018; Paxton et al., 2019) to make stellar models evolve from the pre-main sequence phase
up to the luminosity tip of the AGB. Physical ingredients are updated in MESA such as mass loss on
the RGB and AGB, convective core overshooting, and rotation. In parallel, we calculate the mode fre-
quencies associated to MESA models with the stellar oscillation code ADIPLS (Christensen-Dalsgaard,
2008). This gives us the opportunity to compare seismic parameters from observations to those from
models, and test the effects of the physical ingredients on stellar oscillations. Computing the p-mode
frequencies near the luminosity tip of the RGB also allows us to test the relevance of the asymptotic
framework (n ≫ ℓ), which is not expected to be valid for those low-frequency p-mode pulsators.

Finally, the study led by Bossini et al. (2015) opened new prospects for the AGBb to be a calibra-
tor of mixing processes in the He-core burning phase. Nevertheless, they could not explore the mass
and metallicity dependence of the AGBb occurrence due to the small number of stars simultaneously
observed by Kepler and subject to a spectrometric study with available effective temperature and metal-
licity. This is important since theoretical models predict the AGBb luminosity to be sensitive to stellar
parameters, as summarised in Sect. 1.6. With the increasing number of stars observed by TESS, we are
now able to detect the AGBb in several bins of mass and metallicity. Subsequently, we intend to investi-
gate the mass and metallicity dependence of the AGBb location in luminosity and effective temperature,
and discuss the possibility of the AGBb to be a suitable standard candle. In possession of these AGBb
locations, we would like to explore how the mass and metallicity dependences impact the calibration
of the He-core overshooting, and quantify the uncertainty of this calibration regarding other physical
ingredients. In a perspective view, the study of the AGBb brings valuable information for the study of
stellar populations and Galaxy evolution. They will be discussed by way of opening.
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Chapter 2

Evolution of low-mass stars (M ≤ 2.5M⊙)

Studying stellar interiors of RGB and AGB stars obviously implies the understanding of physical mech-
anisms taking place during their respective branches. Nevertheless, those stars are the results of stellar
evolution from the beginning of their formation, going through the main sequence up to their current
state. They experienced many structure changes associated to nuclear reaction burning phases, core
contraction and envelope expansion. Then, an accurate understanding of their interiors not only re-
lies on the knowledge of the current physical mechanisms they experience, but also of the earlier steps
they went through. Accordingly, this chapter is devoted to summarise the different steps stars undergo
throughout their evolution up to the AGB. In the meantime, we introduce the physical ingredients of
stellar models that play a role in the structure changes experienced by the star during its evolution. To
this end, we illustrate stellar evolution with two different diagrams: the Hertzsprung-Russell diagram
(HRD), which describes how the luminosity L and the effective temperature Teff vary with stellar age
(see Fig. 2.1), and the Kippenhahn diagram, which schematically shows the evolution of the internal
structure with age.

2.1 Main sequence

2.1.1 Reaching the H-core burning phase

Stars are formed by the gravitational collapse of interstellar gas clouds. This collapse is caused by several
mechanisms such as the passing of a shock wave produced by a supernova, or the collision with another
interstellar gas cloud. Those perturbations create local overdensities, where the hydrodynamic stability
breaks. Under the assumption of a spheroid isothermal ideal gas cloud, a fraction of this interstellar
cloud collapses under gravitational instability if its mass exceeds the critical mass named the Jeans
mass (Kippenhahn, Weigert, and Weiss, 2012)

MJ = 1.1M⊙

(
T

10K

)3/2 ( ρ

10−19g.cm−3

)−1/2 ( µ

2.3

)−3/2
, (2.1)

where µ is the mean molecular weight, i.e. the average number of atomic mass units per particle. The
typical values in molecular clouds where stellar formation is active are ρ = 10−19 g.cm−3, T = 10 K, and
µ = 2.3. Once the collapse begins, the density increases and the Jeans mass decreases following Eq. 2.1.
Eventually, local regions become more massive than the Jeans mass and local collapses begin. Then, the
interstellar cloud breaks up to form several stars in a cluster.
A few steps after the fragmentation, the new born star is fully convective and reaches the pre-main se-
quence (PMS). Pre-main sequence stars evolve on a characteristic Kelvin-Helmoltz timescale tKH, which
is the time necessary for a thermal fluctuation to propagate from the centre to the surface. It reads

tKH =

∣∣Eg
∣∣

L
=

GM2

RL
, (2.2)

where Eg is the gravitational energy released by the star contraction. Next, the star adiabatically con-
tracts and the density becomes high enough for the infrared radiations to be trapped in the central
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FIGURE 2.1: Evolutionary tracks of stellar models computed with MESA. Top: models of
initial mass 1 M⊙. Bottom: models of initial mass 2 M⊙. Different evolutionary stages are
colour-coded: the main sequence in black, the subgiant phase in grey, the RGB in blue, from
the luminosity tip of the RGB up to the start of He-core burning in light blue, the He-core
burning phase in green, from the end of the He-core burning phase up to the early AGBb in
orange, and toward high-luminosity phases of the AGB in red. The thick dots correspond
to the beginning of each evolutionary stage with the associated colour code. The light red

thick dot marks the beginning of the AGBb.
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layers: the star becomes opaque to its own radiations. In these conditions, the core temperature in-
creases to such an extent that the radiative gradient ∇rad becomes lower than the adiabatic gradient
∇ad. Consequently, central layers become convectively stable and a radiative core in hydrostatic equi-
librium grows (Lamers and Levesque, 2017). Moreover, thermonuclear reactions are triggered when
the core temperature reaches ∼ 106 K, starting with deuterium burning. The initial carbon that was
present in the interstellar cloud is consumed in an incomplete Carbon Nitrogen Oxygen (CNO) chain-
reaction processing, releasing an important flux of energy and stopping the star contraction. When the
temperature reaches ∼ 107 K, the burning of hydrogen into helium starts and the star enters the main
sequence.

2.1.2 During the main sequence

The hydrogen main sequence is a stable phase of H-core burning where the nuclear-chain reactions
provide sufficient energy to the gas to counterbalance the gravitational collapse. The Zero Age Main-
Sequence (ZAMS) is reached when the luminosity Lnuc generated by nuclear reactions is dominant
compared to that released by the star contraction Lg, typically when Lg/Lnuc ≤ 1%. Contrary to the
core where nuclear reactions modify the composition, the composition of the envelope does not change
except under the influence of mixing processes such as rotational mixing, overshooting, and atomic dif-
fusion. In the following, we do not consider very low-mass stars (M ≤ 0.5 M⊙) as these fully convective
stars do not reach the helium burning phases (including the AGB phase).
For higher mass stars (0.5 M⊙ ≤ M ≤ 2.5 M⊙), the hydrogen burning in the central layers makes
the mean molecular weight µ increase and the structure evolve slowly. Namely, the radius and effec-
tive temperature weakly vary and the evolutionary track is almost stationary below the characteristic
nuclear-reaction time for a star to burn 10% of its hydrogen supply (Maeder, 2009)

τnuc =
Enuc

L
= 0.1

ηMc2

L
, (2.3)

where Enuc is the energy released by nuclear-chain reactions, c is the light speed, and η = 0.7% repre-
sents the efficiency of energy production by the nuclear-chain reactions of hydrogen into helium rela-
tively to the total rest energy. This is the timescale for the energy loss by radiation to be counterbalanced
by the energy supplied by nuclear-chain reactions. Although stars spend most of their life in the MS,
their lifetime on the MS strongly depends on the mass. For instance, the 1M⊙ model spends roughly 9.8
Gyrs in the MS while the 2M⊙ leaves the MS after 1.2 Gyrs since the hydrogen ignition (see Fig. 2.2).

Low-mass stars M ≤ 1.2M⊙

The convective core developed during the PMS vanishes due to the weak central temperature that pre-
vents CNO nuclear-chain reactions from setting up. Accordingly, the energy is transported by photons
in the core and the proton-proton (PP) nuclear-chain reactions are dominant. Eventually, these stars
have a convective envelope and a radiative core, as illustrated in Fig. 2.2. In the envelope, the energy
is transported by convection since the opacity is so high that chemical elements are partially ionised,
which makes the radiative gradient higher than the adiabatic gradient and fulfils the convection insta-
bility criterion ∇rad > ∇ad. Given the absence of a mixing process (equivalently absence of convection),
the core of low-mass stars are more heterogeneous while helium is produced through hydrogen burn-
ing.

Intermediate-mass stars M ≥ 1.2M⊙

The major part of the nuclear energy is no longer produced by the PP chain as the central temperature
is higher than the threshold TPP−CNO = 1.7 107 K above which the CNO cycle dominantly produces
energy. This nuclear energy is produced following the CNO cycle in the most central layers due to the
intense sensitivity of the energy production rate with the central temperature εnuc ∝ T16−20

c (Maeder,
2009).
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FIGURE 2.2: Kippenhahn diagrams representing the mass coordinate in star interiors
(m/M = 0 is the centre and m/M = 1 is the surface) as a function of the stellar age. Both
panels show the structure evolution during the main sequence for a 1 M⊙ model (top) and
a 2 M⊙ model (bottom). The green-shaded area corresponds to convective zones while
blank ones are radiative zones. The colorbar indicates the energy produced by nuclear re-
actions. An additional core-overshooting region above the convective core is present in the
purple hatched area for the 2 M⊙ star. The black solid line shows the stellar surface. These

models are computed with the stellar evolution code MESA, as described in Chapter 6.
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Consequently, the energy transport is efficient and the convective core continues to grow. Con-
vection induces instantaneous mixing and homogenises the composition in the core, which causes a
composition discontinuity between the convective core and the radiative envelope. Eventually, these
intermediate-mass stars have a convective core, surrounded by a radiative zone and a convective en-
velope as illustrated in Fig. 2.2. At the end of the hydrogen burning phase, the central convective zone
starts to vanish as the nuclear energy production rate gradually decreases.

On top of the spontaneous mixing in the core, extra mixing region can be induced in the radiative
zone due to the momentum of the convecting materials that carries the material beyond the convec-
tive core. This additional mixing from the core into the envelope is named core overshooting (Kip-
penhahn, Weigert, and Weiss, 2012). Its extent is usually expressed in fraction of the pressure scale
height HP = −(d log P/dr)−1 evaluated at the boundary of convective instability in the core where the
Schwarzschild condition ∇rad > ∇ad is fulfilled. The amount of H-core overshooting αov,H has been
calibrated to reproduce observed properties of eclipsing binaries (e.g. Claret and Torres, 2016; Claret
and Torres, 2017; Claret and Torres, 2018; Claret and Torres, 2019). Similarly, values of αov,H lower than
0.2 have been derived from the calibration of ℓ = 1 modes in low-mass stars by Deheuvels et al. (2016).
Finally, recent theoretical predictions based on 3D numerical hydrodynamics simulations of penetrative
convection also give αov,H < 0.2 for masses M < 3 M⊙ (Anders et al., 2022; Jermyn et al., 2022). It has
been shown that the calibration of H-core overshooting depends on the stellar mass, as illustrated in
Fig. 2.3. This mixing process has significant impact on the core mass as it brings additional hydrogen
that can participate to nuclear reactions, then can increase the lifetime on the MS. In Chapter 10, we
highlight that the physical ingredients taking place in the H-core burning phase also impact the struc-
ture of He-burning stars. Particularly, we investigate how H-core overshooting modifies the luminosity
of clump and AGBb stars.

FIGURE 2.3: H-core overshooting distance in units of the pressure scale height HP above
the edge of the convective core as a function of the stellar mass M. The size of the points
is proportional to the metallicity [Fe/H], which varies between -1.01 dex and +0.01 dex
(metal-poor stars have smaller symbols). Typical error bars for dwarfs and giants are
shown on the bottom right. Stars for which the inferred age difference between observa-
tions and models exceed 5% are represented by triangles. Credit: Claret and Torres (2016)

For both low-mass and intermediate-mass stars, the Terminal Age Main Sequence (TAMS) is reached
when the central hydrogen mass fraction is lower than Xc ≈ 10−4. Namely, stars leave the main se-
quence when their central hydrogen supply through nuclear-chain reactions is not abundant enough
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to counterbalance gravitation. Then, their envelope expands, their effective temperature Teff decreases,
and the hydrogen burning gradually takes place in a shell around the inert helium core. At this moment,
they enter the Subgiant phase.

2.2 The subgiant phase

Because hydrogen is depleted in their core, subgiant stars can no longer generate nuclear energy in their
cores. As a result, the layers where T ≥ 107 K, which include the core and H-burning shell, contract and
release gravitational energy. The H-burning shell plays a crucial role in the core and envelope dynamics
as it acts like a mirror. In that sense, the region within the burning shell (i.e. the core) contracts while
the region outside the shell (i.e. the envelope) expands. This observation supported by the results
of numerical simulations is known as the mirror principle (e.g. Hekker et al., 2020). Although this
mechanism is empirical, it can be approached in a simple way as follows. By considering that the Virial
theorem1 and the conservation of the total stellar energy are valid, both gravitational and thermal energy
are conserved. Since most of the stellar mass is concentrated in the core, we can consider that Mc ≫
Menv, where Mc and Menv are the core and envelope masses, respectively. Then, the total gravitational
energy Eg can be decomposed as the sum of the contribution of the core Eg,c and that of the envelope
Eg,env. If we assumed that the binding energy of the envelope is dominated by the gravity of the core,
we have

∣∣Eg
∣∣ =

∣∣Eg,c + Eg,env
∣∣ ≈ GM2

c
Rc

+
GMc Menv

R
, (2.4)

where Rc is the core radius and R is the stellar radius. Finally, under the assumption that the masses Mc
and Menv remain constant but the radii Rc and R vary with time, it yields

dR
dRc

= −
(

Mc

Menv

)(
R
Rc

)2

. (2.5)

From Eq. 2.5, the core contraction leads to the envelope dilatation. As a consequence, the stellar ra-
dius increases and the boundary between the convective envelope and radiative core sinks in the deep
layers. The H− ions contribute to increase the opacity and the convective envelope develops. Despite
these important structure changes, the stellar luminosity remains constant as the effective temperature
decrease is counterbalanced by the radius increase (see Fig. 2.1).

At this stage, subgiant stars have an isothermal core, surrounded by an hydrogen-burning shell (see
Fig. 2.4). The ashes of hydrogen-shell burning are deposited on the helium inert core, then the core mass
increases (Catelan, 2007). Nevertheless, there is a maximum relative core mass that an isothermal and
non-degenerate core can have. Indeed, the core mass cannot indefinitely increase while maintaining
hydrostatic and thermal equilibrium when the star derives all its energy from a nuclear shell burning
source. This threshold is called the Schönberg-Chandrasekhar limit and reads (Schönberg and Chan-
drasekhar, 1942)

Mc

M
= 0.37

(
µenv

µc

)2

, (2.6)

where µenv is the mean molecular weight in the envelope. For instance, this limit is Mc ∼ 0.08M for
a pure helium core surrounded by an envelope with solar-like abundances. Without additional pres-
sure support such as electron degeneracy to counterbalance gravitation, contraction takes place on a
Kelvin-Helmoltz timescale once the core mass exceeds this Schönberg-Chandrasekhar limit. Such a re-
structuring is necessary for the star to maintain equilibrium between energy generation and losses at
the surface. Given the short timescales, stars do not spend a lot of time in this evolutionary phase. As

1In a system dominated by gravitation, ⟨Eg⟩+ 2⟨Ec⟩ = 0, where Ec and Eg are the total thermal energy and gravitational
energy of the star, respectively.
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FIGURE 2.4: Same label as in Fig. 2.2, but during the subgiant phase for a 1M⊙ model (top)
and a 2M⊙ model (bottom). The dotted blue line locates the H-burning shell.
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a result, this region of the HR diagram is devoid of stars, and referred to as the Hertzsprung gap. The
envelope continues expanding and cooling until the star reaches the Hayashi line, which is the location
in the HR diagram where fully convective stars cannot decrease their temperature further otherwise
they cannot maintain hydrostatic equilibrium. The position of the Hayashi line mainly depends on the
stellar mass and chemical composition. Once subgiants reach the Hayashi line, their envelope continues
to expand while their effective temperature hardly decreases. The star is now on the Red-Giant Branch,
with a large convection envelope on top of a small radiative core.

2.3 The ascent on the Red-Giant Branch

In alignment with the subgiant phase, the mirror principle continues to apply on the RGB because of
the H-burning shell. While the RGB star evolves alongside the Hayashi line, the base of the convective
zone still sinks towards deep interiors. The core contracts, which leads to a core temperature increase.
Meanwhile, the envelope dilates, the radius significantly increases and the envelope temperature slowly
decreases without passing the limit fixed by the Hayashi line (Fig. 2.1). Then, the convective envelope
represents a major part in the star. Given the proximity of the core, the hydrogen burning shell is carried
at sufficiently high temperature so that the hydrogen dominantly burns following the CNO cycle. While
ascending the RGB, the hydrogen burning shell becomes thinner as hydrogen is gradually transformed
into helium through nuclear reactions (see Fig. 2.5). Again, the way stars ascent the RGB noticeably
depends on the stellar mass as the core and envelope properties differ.

Mass lower than M ≤ 2M⊙

The core of low-mass stars is sufficiently cool and dense so that the electron degeneracy is important
(Kippenhahn, Weigert, and Weiss, 2012). The latter can be so high that the main source to oppose
gravitation is the electron degeneracy pressure. This pressure results from the Pauli exclusion princi-
ple stating that two identical fermions cannot simultaneously occupy the same quantum state. As a
result, the electrons occupy different quantum states associated to the lowest accessible energy levels,
defining the minimal total energy the electron gas in the core can have. Then, the electron gas cannot
reorganise itself and the latter efficiently opposes the effect of gravitational collapse. Nevertheless, this
only concerns the innermost parts of the core and the superficial layers of the core continue to contract.
Consequently, the pressure in the central parts of the core only varies with the density since the equa-
tion of state is that of a degenerate electron gas. The former is no longer linked to the temperature, so
the temperature is no longer self-regulated as the core evolves. Owing to the core contraction and the
efficient energy transport by electronic conduction, the core temperature increases and the temperature
gradient is weak. The core is therefore isothermal. The density contrast between the degenerate core
and the envelope is so large that the envelope has very limited influence on the core properties. The
properties of the hydrogen burning shell are then determined by those of the inert helium core. Being
the main source of energy produced in the star, the luminosity provided by the hydrogen burning shell
depends on the core mass and radius as follows (Refsdal and Weigert, 1970; Kippenhahn, Weigert, and
Weiss, 2012)

L ∝ M7
c R−16/3

c . (2.7)

All in all, the ascent on the RGB is gently achieved in hydrostatic and thermal equilibrium.

Mass higher than M ≥ 2M⊙

Similarly to their low-mass counterparts, stars of mass M ≥ 2M⊙ develop a deep convective envelope,
which prevents the star from cooling beyond the Hayashi line. In the same time, core and envelope are
still coupled. The core contracts and heats, the envelope dilates and cools. Contrary to their low-mass
counterparts, the core of high-mass stars is not degenerate and the evolution on the RGB is faster. In that
sense, the core temperature reaches more rapidly the ignition temperature of helium (∼ 108 K). So the
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FIGURE 2.5: Same label as in Fig. 2.2, but during the RGB phase for a 1M⊙ model (top) and
a 2M⊙ model (bottom).
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star does not experience key events such as the Red-Giant Branch bump that highly impact the structure
evolution and the composition of the envelope (further details are given in Sect. 2.3.2). Since the core is
not degenerate, the core pressure and temperature are related through the ideal gas equation of state,
which guarantees the self-regulation of the temperature and the helium gently ignites in the core.

2.3.1 The first dredge-up

While the base of the convective zone keeps moving towards the deep interior in an environment made
of the same composition as the stellar surface, there is a point where the former reaches helium-rich re-
gions that have been subject to nuclear reactions during the main sequence. Then, convection efficiently
brings materials produced by nuclear reactions. The initial surface composition is mixed with chemicals
produced by the hydrogen burning, which marks the first dredge-up event (Kippenhahn, Weigert, and
Weiss, 2012). This event affects the element abundances of the stellar surface, essentially those of C, N,
Li, and He. Both abundances of N and He elements increase, but those of C and Li decrease. This is
caused by the mixing of the envelope composition with inner layers where the CN-cycle produced N
elements but consumed C and Li elements. The study of these compositions along evolution is mean-
ingful as they can be used as an age indicator and track the chemical properties of stars across different
Galactic stellar populations, particularly the ratio [C/N] (Salaris et al., 2015; Lagarde et al., 2017). The
first dredge-up also marks the maximum inward penetration of the convective envelope, which begins
to retreat because of the rising of the hydrogen burning shell to upper layers. This leaves a chemical dis-
continuity between the fully mixed envelope and the helium-rich regions formed by nuclear reactions.

2.3.2 The Red-Giant Branch bump (RGBb)

The H-burning shell continues to progress outward in mass, making the size of the inert helium core
grow. At some point, the former encounters the chemical discontinuity left by the maximum inward
penetration of the convective envelope during the first dredge-up (e.g. Iben, 1968). Namely, the H-
burning shell switches from a region where H is already being consumed to a region that presents an
extra H supply coming from the stellar envelope, making the mean molecular weight decrease in that
shell. This event has crucial impacts on the structure as it suddenly readjusts to this new environment.
The whole stellar structure is affected as it evolves in the reversed direction that it used to since the
beginning of the ascent on the RGB. The core swells and cools, the envelope contracts and heats up. As
a results, it causes a temporary drop in luminosity as a star evolves on the RGB. This event announces
the beginning of the RGBb (Catelan, 2007). Once the excess of hydrogen brought by the envelope is
burnt, the star goes back to its ascent on the RGB as it was before the RGBb, with a contracting core
and an expanding envelope. Stars that experience the RGBb spend additional time in the evolutionary
track as they cross three times the luminosity bin where the RGBb occurs. This produces an excess of
stars in that specific luminosity bin, which can be detected in the observed CMD of stellar populations
(King, Da Costa, and Demarque, 1985). The RGBb could be identified in stellar clusters that include
low- and intermediate-mass stars with a maximum mass roughly about M ≤ 2.2M⊙. Higher-mass stars
with M ≥ 2.2M⊙ burn their helium in the core before the H-burning shell could reach the composition
discontinuity left by the first dredge-up, which explains the absence of such a luminosity drop in stellar
models and the associated excess of stars in observations.
The specific conditions for the RGBb to occur essentially depend on the precise abundance profile in
the H-burning shell. As illustrated in Fig. 2.6, the adding of diffusive processes changes the profile
of the RGBb and the location in luminosity at which the RGBb occurs. In this respect, it offers the
possibility to calibrate mixing processes such as envelope overshooting for stellar populations with
different masses and metallicities, as could be done with Kepler observations (Khan et al., 2018). The
sensitivity of the RGBb to diffusive processes is related to the strong change of the mean molecular
weight µ at the chemical discontinuity left by the base of the convective zone during the first dredge-
up, and to the dependence of the H-burning on µ. Strong discontinuity profiles significantly affect H-
burning efficiency, then the surface luminosity. To sum up, the RGBb is a key observable to investigate
the chemical profile in star interiors, and a powerful diagnostic of the maximum depth reached by the
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base of the convective zone during the first dredge-up. In Chapter 10, we emphasise that the calibration
of envelope overshooting by the RGBb does not impact the AGBb luminosity.

FIGURE 2.6: Left: Evolutionary track in the CMD at the RGBb phase. The dashed line
refers to a standard model (M/M⊙ = 1.0, Y = 0.23, Z = 0.006) that does not include dif-
fusive processes at the H-discontinuity (neither atomic diffusion nor envelope overshoot-
ing). The solid line refers to models computed with the same input parameters but the
H-discontinuity is smoothed out over a region of 0.5 Hp, where Hp is the pressure scale
height. Right: Hydrogen abundance profile (in mass fraction) as a function of the stellar
mass fraction around the lower edge of the convective zone at its maximum extent for both

models (same label). Credit: Cassisi, Salaris, and Bono (2002)

2.3.3 Thermohaline instability

Not only the first dredge-up but also other mixing processes govern the photospheric chemical composi-
tion by bringing materials produced in the deep interiors to the surface. Among them, the thermohaline
instability significantly modifies the surface composition of red giants after the first dredge-up when
they pass the RGBb (Charbonnel and Zahn, 2007). Thermohaline convection develops in regions that
are stable against convection (according to the Ledoux criterion) and where the molecular weight gradi-
ent becomes negative, i.e. when ∇µ = d ln µ/d ln P < 0 (Ulrich, 1972). The thermohaline mixing effects
are noticeable notably after the first dredge-up as a molecular weight inversion is created by the reaction
3He(3He,2p)4He in the external wing of the H-burning shell when the latter enters the chemically ho-
mogeneous part of the envelope (see Fig. 2.7). This mixing process affects the surface composition only
if the additional mixing region induced by thermohaline convection connects the H-burning shell and
the convective envelope. Otherwise thermohaline instability is not efficient. This condition is fulfilled
during the He-core burning phase for low-mass stars (M ≤ 1.5M⊙), but it does not happen for higher-
mass stars (M > 1.5M⊙) because of the lower 3He abundance that results in a smaller µ-inversion then a
slower thermohaline mixing (Cantiello and Langer, 2010). When the additional mixing region connects
the H-burning shell to the stellar surface, the latter undergoes a decrease of 3He, the chemical elements
13C and 14N diffuse outwards while 12C diffuse inwards, hence the ratio [C/N] decreases (Charbon-
nel and Lagarde, 2010). As a result, thermohaline instability has non negligible effect on the surface
composition, but marginally shifts the clump and AGBb location (see Chapter 10).
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FIGURE 2.7: Zoom-in portion of the left panel of Fig. 2.5 during the RGB, when thermoha-
line mixing is present in the 1M⊙ model. The dotted blue line locates the H-burning shell.

The orange hatched area correspond to the thermohaline mixing.

2.3.4 High-luminosity RGB stars

After all these episodic phases at intermediate luminosity, stars continue their ascent on the RGB while
their core contracts and their envelope dilates. Accordingly, the radius increases, as does the luminosity,
up to the point where the surface gravity becomes weak (see Fig. 2.1). In Chapters 6−10, we perform a
full seismic analysis of those stars that reached high-luminosity stages on the RGB and beyond, includ-
ing He-core and He-shell burning phases. We study their oscillation mode pattern in order to learn more
about the origin of mode damping in those stars and the behaviour of the He-second ionisation zone
with stellar evolution. For those high-luminosity RGB stars, the envelope is weakly bound to the star.
As a consequence, the star loses mass due to the radiative pressure exerced by the photon flux, pushing
the envelope outwards. Mass loss is an essential parameter for the understanding of stellar evolution
as it induces restructuring of the star interiors. More importantly, it directly affects the fate of stars
as their mass is the main parameter that determines the evolutionary track they follow all along their
evolution. Presently, the physical mechanisms behind mass loss are not fully understood, so theoretical
models suffer from this lack of knowledge. Most of the information we have come from observational
constraints, which allow us to calibrate empirical relations to quantify the mass loss in RGB models.
RGB mass-loss is generally parameterised by simple relations. One of the most commonly used is that
of Reimers (1975), which is based on Population I giants. It reads

ṀR = −4 × 10−13 ηR
L

L⊙

R
R⊙

(
M

M⊙

)−1

M⊙.yr−1 (2.8)

where ηR is a scaling factor that determines the mass loss efficiency on the RGB. Typical integrated
mass loss estimates in old-open clusters NGC 6791, NGC 6819 and M67 suggest a Reimers parameter
ηR ≤ 0.25 (Miglio et al., 2012; Stello et al., 2016b; Handberg et al., 2017; Miglio et al., 2021a). From
Eq. 2.8, it is clear that mass loss is important at the luminosity tip of the RGB, where the luminosity
and radius are maximum (see the evolution of the surface limit in Fig. 2.5). We also notice that the
lower the mass, the higher the mass loss. With this mass dependence, we would expect to find very
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low-mass stars in the He-core burning phase that suffered strong mass loss at the RGB tip. This is in
agreement with observations that report stars having a mass M = 0.6 − 0.7M⊙ at this stage. Indeed,
stars with initial mass M = 0.6 M⊙ do not reach the clump phase since the core temperature does not
attain the temperature threshold for He burning. Then, He-core burning stars of mass M = 0.6− 0.7M⊙
necessarily are stars whose initial mass is larger than their current mass but suffered high mass loss.
Notwithstanding the mass loss they endure, RGB stars are getting closer to the luminosity tip, where
the central temperature attains the ignition threshold of helium and marks the beginning of helium
burning phases.

2.4 All the way through the He-core burning phase

2.4.1 From the RGB tip to the He-core burning phase

Once the core temperature is close to 108 K, helium starts to burn in a triple-α process, which consists
in consuming 3 atoms of 4He and 2 atoms of 8Be to form an atom of 12C. However, this nuclear-chain
reaction cannot be fully completed since 8Be is an unstable element that fast decays into 2 atoms of
4He (with a half-life on the order of 8.19 10−17 seconds). For the triple-α nuclear-chain reaction to be
complete, the temperature must be high enough to maintain a sufficient supply of 8Be. The energy
released by nuclear reactions is too weak to yield major structure changes and the star continues getting
closer to the RGB tip. Eventually, once at the RGB tip the core temperature reaches 108 K and allows a
large number of 8Be to be present. Again, two scenarios are possible depending on the stellar mass.

Mass lower than M ≤ 2M⊙

The full triple-α nuclear-chain reaction can now be completed. However, at this stage the helium burn-
ing takes place in a degenerate core, where the pressure is not related to the temperature. The helium
burning releases energy that leads to a temperature increase. Consequently, the latter cannot be regu-
lated via a potential pressure increase that would make the core expand, that would lead to a cooling.
The temperature cannot stop increasing and a thermal runaway process is created for a short time where
the helium burns in unstable conditions (Catelan, 2007). This is the helium flash, which starts when the
core mass is Mc ≃ 0.45 − 0.47 M⊙ in degenerate conditions, regardless the stellar mass (Sweigart and
Gross, 1978).
Because of energy loss caused by neutrino emissions in the innermost layers near the RGB tip, the cen-
tral temperature does not reach the threshold of helium burning and nuclear reactions do not take place
in the centre of the star (Kippenhahn, Weigert, and Weiss, 2012). They develop in a shell where the core
degeneracy is partially lift. In those regions, the pressure becomes again related to the temperature and
the nuclear energy production now leads to the expansion and the cooling of the core, hence a decrease
of energy production: the temperature evolution is now regulated. Next, the temperature gradually
increases towards the centre, and the core degeneracy is completely lifted. This temperature increase
may be caused by follow-up subflashes (Fig. 2.8), but they have not been confirmed by observations.
Nevertheless, few Kepler targets have been suspected to be in the He-flash stage (Mosser et al., 2014),
and about 30 He-flash stars are expected to be present in the sample of ∼ 6,000 stars studied by Vrard,
Mosser, and Samadi (2016) according to theoretical predictions (Deheuvels and Belkacem, 2018). In this
thesis, we do not focus on these stars, but they will be part of an exhaustive study by extending the
methods developed in Chapter 7. Finally, the helium burning settles in the whole stellar core, which
expands in response of the additional heat brought by nuclear reactions. By the mirror principle, the
envelope contracts and cools, with a remarkable luminosity decrease. Given the strong restructuring
the star undergoes, the evolutionary track is not as smooth as it has ever been.

Mass higher than M ≥ 2M⊙

The ignition of helium is by far smoother for high mass stars as is reflected by the continuous evolu-
tionary track (Fig. 2.1). The stellar core is not degenerate, so the nuclear reactions are stable. The energy
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FIGURE 2.8: Top: same label as in Fig. 2.2, but during the He-flash phase for a 1M⊙ model.
The dotted blue line locates the H-burning shell. The orange and purple hatched area
correspond to the thermohaline mixing and He-core overshooting regions, respectively.
Bottom: zoom-in portion in the He-burning phases of the evolutionary track with initial
mass 1 M⊙ (left panel of Fig. 2.1). The numerous light blue turning-backs are associated to

the He subflashes.
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released by nuclear reactions is followed by an expansion of the core, and a contraction of the envelope
by the mirror principle. No thermal runaway process occurs and helium is gently burnt in the whole
core.

2.4.2 The He-core burning phase

While He-core burning settles, the H-burning shell shifts outwards as the core expands. Therefore, the
temperature and density in the shell decreases and less energy is generated. Nevertheless, the H burning
shell remains the main source of energy generation in the star, and participates to the star restructuring.
Once the helium burning takes place in stable conditions in the core, the star enters the clump phase.

Mass lower than M ≤ 2M⊙

For these stars, helium burning started in degenerate conditions, where the pressure and temperature
are independent. Consequently, the physical conditions in which helium is ignited regardless the stellar
mass are quite similar in degenerate conditions (when the core mass is Mc ≃ 0.45 − 0.47 M⊙). Those
stars evolve towards a specific region in the HR diagram, called the Red Clump (RC) or equivalently the
Horizontal Branch (HB). The latter manifests as an overdensity of stars at fixed luminosity that is clearly
identifiable in the CMD, and can be used to constrain stellar models. However, the amount of mass lost
during the ascent of the RGB tip depends on the stellar mass (see Eq. 2.8), which implies that low-mass
stars suffer a stronger mass loss than their high-mass counterparts. As a result, low-mass stars have the
same luminosity, but smaller radius and higher effective temperature than high-mass stars Ṫhe former
are shifted toward high effective temperature, which justifies the designation horizontal branch.

Mass higher than M ≥ 2M⊙

These stars did not ignite helium in degenerate conditions, meaning that pressure and temperature are
related. As the core properties can be different depending on the stellar mass at helium ignition, high-
mass stars do not get in the same group as red-clump stars. Instead, they form another group of stars at
lower luminosities and effective temperature, designated as secondary clump (Girardi, 1999).

For both stellar populations, the He-core burning is performed in conditions of thermal and hy-
drodynamical equilibrium, which induces minor structure changes and makes the evolutionary track
smooth as depicted by Fig. 2.9) (Lamers and Levesque, 2017). At this stage, there are two main sources
of energy: the H-shell burning and the He-core burning (see Fig. 2.9). Due to the core expansion, the
hydrogen burning shell is expelled outwards.
Stars spend less time in the clump phase than in the stable H-core burning phase. Indeed, the lifetime of
stars on the clump phase relies on the central helium supply to burn and the characteristic timescale for
the star to evolve on the clump phase is that of the nuclear timescale given in Eq. 2.3. He-core burning
stars have higher luminosities than H-core burning stars, so their evolution is shorter. Stellar models
indicate that the evolution speed before and after the clump phase is faster for low-mass stars, as sug-
gested by Eq. 2.3. We have confirmed it in Kepler observations, where a clear depletion of low-mass stars
is present between the He-core and He-shell burning phases (Dréau et al., 2021). This is discussed in
Chapter 10.

The energy production rate of helium burning is highly sensitive to the temperature, then the main
source of nuclear energy is located in the innermost layers where the temperature is maximum. The
opacity is dominated by free-free interactions, i.e. free electrons both before and after the interactions
with ions, and increases as the core enhances its C and O reservoirs. This opacity increase makes the
radiative gradient larger in the core, which finally gives rise to a convective core (see Fig. 2.9) as the
region is no longer convectively stable following the Schwarzschild criterion (Kippenhahn, Weigert,
and Weiss, 2012). Similarly, as in the H-core burning phase, extra mixing processes are induced by
the convecting materials from the convective core into the radiative envelope. This phenomenon is re-
ferred to as He-core overshooting and its extent is usually expressed in units of pressure scale height
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FIGURE 2.9: Same label as in Fig. 2.2, but during the He-core burning phase for a 1M⊙
model (top) and a 2M⊙ model (bottom). The dotted blue line locates the H-burning shell.
The orange and purple hatched areas correspond to the thermohaline mixing and He-core
overshooting regions, respectively. In the presence of a He-core overshooting, an incom-
plete treatment of the He-semiconvection may induce artificial small convection layers
above the convective core, as we can see in these figures. These physical effects are dis-

cussed in Chapter 6.
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HP = −(d log P/dr)−1 (isothermal atmosphere scenario) at the boundary between the convective part
and the radiative part. The efficiency of this overshooting can be calibrated with specific events of stellar
evolution that occurs during He burning phases such as the AGB bump (Bossini et al., 2015). In Chap-
ter 10, we show that this calibration by the AGBb depends on the stellar mass and metallicity, and the
He-core overshooting alone cannot reproduce the observations at high mass M ≥ 1.5 M⊙. Additional
mixing may be caused by the presence of a gradient of mean molecular weight in convectively unstable
regions according to the Schwarzschild criterion. These semi-convection regions are typically created
by the advance of the shell sources or by the presence of He-core overshooting during the clump phase
(e.g. Castellani, Giannone, and Renzini, 1971a; Robertson and Faulkner, 1972; Sweigart and Gross, 1973;
Salaris and Cassisi, 2017). Since a molecular weight gradient tends to slow down convection, these un-
stable regions are slowly mixed, which leads to a readjustment of the chemical composition by moving
light elements downward and heavy elements upward.

The end of the clump phase is attained when the nuclear production rate is no longer able to provide
sufficient energy to the core to counterbalance gravitation, i.e. when helium is sufficiently depleted
(typically Yc ≃ 10−4). At this moment, the inert core composed of C and O is under the influence of
contraction and by the mirror principle, the envelope dilates. The effective temperature decreases and
the luminosity increases in a similar way as in the early ascent of the RGB. The star is entering the
Asymptotic-Giant Branch (AGB).

2.5 The prelude of the final stage: The Asymptotic-Giant Branch

With core contraction, the central pressure increases, as does the central temperature and the core be-
comes more and more degenerate. Like RGB stars, the mirror effect rules the evolution of the core and
envelope dynamics in the AGB phase. Due to the cooling of the envelope, the opacity increases and
the envelope spreads deeper in the interior. As a result, the envelope represents a large fraction of the
star’s extent (see Fig. 2.10) and the evolutionary track closely follows the Hayashi line (see Fig. 2.1)).
Because stars suffer important mass loss at the RGB tip, the radius of AGB stars is smaller than that of
RGB stars at fixed luminosity. Then the evolutionary track on the AGB is shifted towards high effective
Teff relatively to that on the RGB. Similarly as for RGB stars, AGB stars experience several events that
result from the structure changes and impact the stellar properties.

2.5.1 The AGB bump

The layers above the core are also affected by core contraction, and these regions reach the temperature
threshold to ignite helium in a shell. Then, the star has two sources of nuclear energy: the hydrogen and
helium burning shells. In the early AGB, the He-burning shell is thermally unstable and the onset of He
burning in a shell causes the H-burning shell to expand and cool (Catelan, 2007). As a consequence, the
H-burning shell only supplies a small fraction of energy and most of the stellar luminosity is produced
by the He-burning shell. This allows the base of the convective zone to penetrate inward. As a result,
the onset of the He-shell burning induces a temporary reversal of the star’s evolutionary direction (see
Fig. 1.11) as the core briefly swells and cools and the envelope contracts and heats. This produces a
drop of luminosity as the star evolves on the AGB (Castellani, Chieffi, and Pulone, 1991). Meanwhile,
the matter at the base of the convective zone heats up, until the H-shell burning reignites and makes the
convective envelope move outward in mass above the H-shell burning. The luminosity increases again
and the star resumes its ascent on the AGB. This event is called the AGB bump or AGB clump. Like
the RGBb, the AGBb causes an excess of stars due to the additional time spent in the luminosity bin
where the AGBb occurs. This local excess of stars can be identified in the CMD of stellar populations,
as illustrated in Fig. 1.12 (Ferraro, 1992; Pulone, 1992). The specific conditions for the AGBb to occur
depend on the chemical composition of the radiative zone below the convective envelope. Indeed, the
adding of mixing processes such as He-core overshooting brings products of He-burning reactions in the
radiative zone where the He-shell burning takes place. These changes in the chemical composition shift
the luminosity and effective temperature at which the AGBb occurs (Bossini et al., 2015). Chapter 10 is
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FIGURE 2.10: Same label as in Fig. 2.2, but during the He-shell burning phase for a 1M⊙
model (top) and a 2M⊙ model (bottom). The dotted blue and red lines locate the H-burning
and He-burning shells, respectively. Here, the evolution is stopped before the TP-AGB

phase.
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specifically dedicated to the dependence of the AGBb location on the stellar mass and metallicity. We
highlight that the AGBb occurs at higher luminosity and lower effective temperature for high-mass and
metal-poor stars.

2.5.2 The Thermally Pulsing (TP) AGB phase

After the AGBb occurrence, the He-shell burning still provides most of the energy to the stellar surface.
This shell advances towards the H-burning shell until they become close to each other. At a given
point, the He-burning shell reaches the chemical composition discontinuity near the H-burning shell
and helium ceases to burn. The H-burning shell is no longer pushed away by the He-burning shell,
contracts and reignites. The latter yields a deposition of He ashes that are compressed and heated,
then ignited in a thermal runaway process once they reach a critical value (Salaris and Cassisi, 2005).
The latter event is called thermal pulse and marks the beginning of the Thermal Pulsing AGB (TP-
AGB) phase. The TP-AGB phase is composed of long periods of quiescent hydrogen burning in a shell
followed by instabilities of the helium-burning shell. This phase can be summarised by a cycle that
is repeated several times when a thermal pulse occurs. This cycle is composed of four distinct phases
(Hekker and Christensen-Dalsgaard, 2017):

FIGURE 2.11: Kippenhahn diagram of a star of mass M = 2.5 M⊙ centred in a thermal
pulse during the TP-AGB phase. The H-burning and He-burning shells are labelled by
H → 4He and 4He → 12C, respectively. The dark grey areas with wavelets refer to the
convective envelope while black areas with wavelets show the intershell convection zone,
respectively. The blank and light grey areas correspond to the radiative zones and regions
containing H/He-burning ashes, respectively. The left side shows an interpulse with H-
shell burning and the right side is associated to the pulse phase. In the afterpulse, the
nucleosynthesis products are brought to the surface as indicated by the arrows. Credit:

Maeder (2009)

➛ A pulse-driven intershell convection zone grows and the products of the triple-α process occurring
in the He-burning shell are driven into the region below the H-burning shell (see Fig. 2.11). The
entire matter between the two shells is mixed into the He-burning shell.

➛ The flash instability in the He shell occurs in a non-degenerate region of the stellar interior. Then,
the energy generated by the flash helps drive expansion of the star, extinguishing the H-burning
shell. Also, the expansion lowers the rate at which He is burning since the He-burning region
expands and cools down. This leads to a phase of quiescent He burning.
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➛ The intershell convection zone may attain the He/H discontinuity, dredge hydrogen into the in-
tershell region, and enrich the outer layers with products of the helium-burning reactions such
as carbon. As the star expands and cools, the convective envelope penetrates the former location
of the He/H discontinuity into inter-shell region between the H- and He- burning shells. Then,
the products of He burning are brought back to the envelope where they can be observed at the
surface. The occurrence of this mixing process not only depends on the core mass, but also on
the total mass and metallicity (Iben and Renzini, 1983). This mixing process plays an important
role in the chemical enrichment of galaxies since the additional amount of carbon raises the C/O
abundance ratio at the stellar surface.

➛ During the quiescent He-burning phase, the He that has been created by the previous H-burning
shell is consumed by the advancing He-burning shell. This process continues until the He-burning
shell encounters a He/H discontinuity region again. H-shell burning resumes and a thermal pulse
is engaged.

This thermal pulse loops until the envelope mass is insufficient to allow thermal pulses to continue.
Mass loss is then one of the major factor that determines the fate of AGB stars. The TP-AGB phase
occurs at so high luminosities, for stars with a so large radius that they oscillate at frequency too low to
be monitored by Kepler. Then, we do not study TP-AGB stars in this work.

2.5.3 Nucleosynthesis on the AGB

The mixing induced by the intershell convection zone leads to regions that both contain the products
of the nuclear-chain reactions of H and He burning. At high temperatures of several 107K to 108K,
the simultaneous presence of protons and α-particles leads to a complex nucleosynthesis network on
the AGB, producing and consuming elements from C to Ne (Kippenhahn, Weigert, and Weiss, 2012).
First, the He-shell converts 4He into 12C and 16O. Thanks to the mixing induced in the intershell region,
these elements can be brought to the hydrogen shell source, where they react with protons to give 14N.
When the H-shell expands and burns outwards between two consecutive thermal pulses, the previously
formed 14N is left behind and the next intershell convective zone takes the 14N nuclei to the helium shell
source. In this place, 14N can interact with α-particles to form 18O and 22Ne. Moreover, if the hydrogen-
rich material from the bottom of the convective envelope is mixed into the 12C-rich region, the protons
can be captured by the 12C nuclei to produce 13C. When the H-burning shell is inactive, the formation
of 13C is possible and the 13C supply can be transported to the helium shell source. Here, the 13C can
interact with α-particles to form 16O and neutrons through a slow s-process. All in all, the presence
of the H- and He- burning shells and the details of mixing episodes in the intershell convective zone
participate to the unique complexity of nucleosynthesis on the AGB.

2.5.4 Mass loss

Mass loss is believed to be caused by the combination of atmospheric levitation by long-period stellar
pulsations and the radiation pressure on dust forming in the star’s environment. This coupling creates a
strong wind, also known as superwind that is correlated with the increasing luminosity and decreasing
effective temperature. The stellar winds are so intense that a dusty circumstellar envelope is formed
(e.g. Iben and Renzini, 1983). This dusty envelope has the potential to absorb the radiations in the visible
electromagnetic spectrum and mostly emits infrared radiations. The observations of circumstellar CO
line emission and stellar light scattered by dust in circumstellar envelopes can then be used to quantify
the mass loss rate on the AGB (e.g. Knapp et al., 1998; Mauron and Huggins, 2006; Ramstedt et al.,
2008). The superwind causes a mass loss rate that typically ranges from 10−7M⊙/yr to 10−4M⊙/yr.
As a consequence, the envelope is gradually blown away and participates to the interstellar medium
enrichment with the products of stellar nucleosynthesis. As already stated for the mass loss on the
RGB, there is no up-to-date theoretical model that allows us to carefully describe mass loss on the AGB
by stellar wind. Most of the information come from observations that can be used to derive empirical
scaling relation to quantify mass loss as a function of stellar parameters. The Blöcker’s prescription that
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is based on dynamical calculations of the atmosphere of Mira-like stars is often used to quantify the
mass loss on the AGB (Blocker, 1995). It reads

ṀB = −1.93 × 10−21ηB

(
M

M⊙

)−3.1 R
R⊙

(
L

L⊙

)3.7

M⊙.yr−1, (2.9)

where ηB is the Blöcker’s scaling factor of the order of 0.1 (Choi et al., 2016) that sets the mass loss
efficiency on the AGB. This prescription is similar to the Reimers’ prescription but with a revised de-
pendence on luminosity and mass. The Blöcker’s prescription was developed to consider the strong
increase in mass loss for AGB stars at high luminosity (Bowen, 1988).

2.6 On the way to the final stage: from the post-AGB to the white dwarf
phase

As the star climbs up the AGB, the envelope decouples from the core and the envelope mass significantly
decreases when it approaches the high-luminosity stages of the AGB. The outer layers of the AGB star
are ejected by the superwind and when the envelope mass drops below few percent of the total mass
(∼ 5%), the remaining envelope contracts and the burning shell extinguishes. This forms the post-AGB
star, surrounded by a circumstellar shell created by the ejected gas. The resulting star mainly composed
of C and O is in equilibrium while its radius decreases, its effective temperature increases at constant
luminosity. With the increasing Teff, a high number of UV photons emerge from the star and can ionise
the circumtellar matter, this leads to the formation of a planetary nebula. The star horizontally moves
toward high effective temperature in the HR diagram until the envelope totally vanishes. Eventually,
the remaining core enters the white dwarf cooling sequence that is the final stage of low-mass stars.

At this moment, white dwarfs are compact objects composed of C and O2 in which the gravitational
collapse is counterbalanced by the electron degeneracy pressure. The stratified layers of these stars
cause a strong mode trapping and allow them to pulsate. Then, multiperiodic variations can be seen
in the light curve of white dwarfs. These variations are induced by low degree ℓ and high order n
gravity modes, which originate from the balance between the gravity force and the buoyancy force after
a perturbation of the stellar structure (see Sect. 3.3). These modes especially bear the signature of core
chemical stratification in white dwarf stars (Córsico et al., 2002; Giammichele et al., 2017). Indeed, the
regions that contribute to the period of the modes depend on the degree ℓ and radial order n, to such
an extent that modes with different degrees ℓ and radial orders n are differently impacted by the inner
chemical profile. Not only these modes can be used to constrain the deep chemical structure of white
dwarf stars, but also physical processes that these stars experienced in previous evolutionary stages
(Giammichele et al., 2017; Charpinet et al., 2021). On the one hand, the overshooting during the He-core
burning phase inevitably affects the stratification of white dwarfs, and its effects can be measured in
the period spectrum of white dwarfs (Córsico and Althaus, 2005; Charpinet et al., 2021). On the other
hand, mixing events during the TP-AGB phase such as overshooting change the chemical structure of
the helium-rich progenitors of white dwarfs, altering their cooling track (Althaus et al., 2015; Miller
Bertolami, 2016; Althaus et al., 2017). As a result, the study of white dwarf stars not only allows us
to understand the final stage of stellar evolution, but also the prior evolutionary stages the star went
through, including the clump and AGB phases.

2This is particularly true for stars having been through the AGB, as described above. Low-mass stars may reach the white
dwarf stage following other evolutionary paths. For instance, RGB stars may circumvent the He burning phases if the He core
does not fulfil the conditions for He ignition, in which case a He white dwarf is formed. Stars may also attain the white dwarf
stage by skipping the AGB if they arrive on the horizontal branch at high effective temperature (see Fig. 1.4) or by ignoring
the thermal pulsing phase on the early AGB (Greggio and Renzini, 1990; Brocato et al., 1990).
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Chapter 3

Mode properties in solar-like stars

The goal of this chapter is to recall the mode properties of solar-like stars. To make the most of the po-
tential diagnostic of stellar oscillations, we need to understand the links between the oscillation modes
and the properties of stellar interiors. We first define the theoretical framework to derive the local and
global mode parameters that can be extracted from the oscillation spectrum of solar-like stars.

3.1 Equations and approximations

The plasma in stellar interiors can be treated as a fluid, whose properties is described as a function of the
position r⃗ and time t. The theory of stellar oscillations relies on the hydrodynamic equations where the
physical properties are perturbed by the propagation of the seismic waves. The relevant set of physical
parameters is: local pressure p, local density ρ, the local velocity field v, the gravitational potential Φ, the
internal energy E, and the heat q supplied to the system per unit mass. The conservation laws require
that in a non-rotating, inviscid and non-magnetic fluid, the set of variables is bound by the following
set of equations (Cunha, 2018):





∂ρ
∂t + ρ

−→∇ .−→v = 0 Continuity equation

ρ ∂
−→v
∂t + ρ[−→v .

−→∇v] = −−→∇ p − ρ
−→∇Φ Equation of motion

∇2Φ = 4πGρ Poisson equation
dq
dt = dE

dt + p d(1/ρ)
dt Energy conservation

(3.1)

The energy conservation can also be expressed in terms of temperature T, specific entropy s per unit
mass, rate of energy generation per unit mass εn and the flux of energy F⃗. It reads

ρT
∂s
∂t

+ ρT
[
v⃗.∇⃗s

]
= ρεn − ∇⃗.F⃗ (3.2)

In the framework of solar-like oscillations, we adopt the following approximations and simplifica-
tions perturbations that vary on relatively short scales (much smaller than the radius of the star)

➛ Effects of rotation, magnetic fields, turbulent pressure, and diffusive processes are ignored.

➛ Cowling approximation. We neglect the perturbation to the gravitational potential. This largely
simplifies the complexity of the system of equations as it reduces the general equations from fourth
order to second order, with a reduction in the number of boundary conditions. The Cowling
approximation (Cowling, 1941) reveals to be adequate for perturbations that vary on scales much
smaller than the stellar radius, when the mode degree ℓ and the radial order n are large. In case
of red giants where the mode degree ℓ and the radial order n are close to unity, the Cowling
approximation may be too crude (Takata, 2006).

➛ Adiabatic approximation. We neglect the energy exchanged between the seismic wave and the fluid.
This approximation is justified when the temporal evolution of the seismic wave is much rapid
than the characteristic time of any mechanism transferring energy between the different fluid ele-
ments. Therefore, the heating term in the energy equation can be neglected. Near the surface, the
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density is so low that it exists a region called the super-adiabatic region, where the thermal and
convective time scales are of the order of the oscillation period. For those regions, the full energy
equation must be taken into account.

➛ JWKB approximation. The Jeffreys, Wentzel, Kramers and Brillouin (JWKB) method is commonly
used to approach the Schrödinger equation in quantum mechanics, but can be generalised to any
quasi-harmonic equations. This method consists in finding a quasi-harmonic solution under the
assumption that the wavelength of the oscillation is larger than the scale heights of the parameters
describing the equilibrium structure in the environment.

3.2 Derivation of the dispersion equation

FIGURE 3.1: The spherical polar coordinate system. Credit: Aerts, Christensen-Dalsgaard,
and Kurtz (2010)

The linear theory of stellar oscillations describes the oscillations as the result of small perturbations
to the stellar structure initially at hydrostatic equilibrium. The equilibrium structure is assumed to be
static and all time derivatives are neglected. The perturbations to the physical parameters can be treated
in the Eulerian description, in which the observer focuses on specific locations in the space, through
which the fluid flows as time elapses. For any physical parameter X at a given position r⃗ and time t, we
have in the Eulerian description

X(⃗r, t) = X0(⃗r) + X′ (⃗r, t) with
X′

X0
≪ 1, (3.3)

where the subscript “0” refers to the value taken at equilibrium and the prime corresponds to the Eule-
rian perturbation to the parameter X associated to the oscillation. The stellar properties at equilibrium
are considered to be static on the relevant time scale of the oscillations, which justifies the independence
of X0 on t. Equivalently, the physical properties of the star can be treated in the Lagrangian descrip-
tion, which is that of an observer who follows the motion of the gas. In such conditions, the physical
parameters can be expressed as follows

X(r⃗0, t) = X0(r⃗0) + δX(r⃗0, t) with
δX
X0

≪ 1, (3.4)
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where δX is the Lagrangian perturbation associated to the oscillation and r⃗0 is the position at equilibrium
of the tracked fluid element. The two descriptions are linked by the relation

δX(⃗r, t) = X′ (⃗r, t) + ξ⃗.∇⃗X0, (3.5)

where ξ⃗ = r⃗ − r⃗0 is the displacement vector provoked by the perturbation associated to the oscillation.
Based on the absence of any mechanism that would break the spherical symmetry, the equilibrium
model is spherically symmetric. Then, we describe the star in spherical polar coordinates (r, θ, ϕ),
where r is the distance to the centre, θ is the angle from the polar axis, and ϕ is the longitude (see
Fig. 3.1). Since the equilibrium is independent of the coordinates θ and ϕ, the solution can be separated
in these coordinates. Accordingly, we decompose the displacement vector on this spherical basis as
follows

ξ⃗ = ξ⃗r + ξ⃗h, (3.6)

where ξ⃗r and ξ⃗h are the radial and horizontal displacement vectors, respectively. On the other hand, the
spherical symmetry allows us to decompose the oscillation modes following the spherical harmonics
basis Ym

ℓ that reads

Ym
ℓ (θ, ϕ) = (−1)m

√
(2ℓ+ 1)

4π

(ℓ− m)!
(ℓ+ m)!

Pm
ℓ (cos θ)eimϕ. (3.7)

Pℓ,m are the Legendre polynomials, the angular degree ℓ corresponds to the number of nodal lines at the
stellar surface while the azimuthal order m is the number of those nodal lines that go through the stellar
poles (see Fig. 1.1). By injecting the perturbed physical parameters into Eq. 3.1 and keeping the linear
terms of the perturbation, we have





ρ′ + ∇⃗.
(

ρ0ξ⃗
)
= 0 Continuity equation

ρ0
∂2 ξ⃗
∂t2 = −∇⃗p′ − ρ′∇⃗Φ0 − ρ0∇⃗Φ′ Equation of motion

∇2Φ′ = 4πGρ′ Poisson equation

ρ0T0

(
∂s′
∂t + ∂ξ⃗

∂t · ∇⃗s0

)
= ρ0ε′n +

ρ′

ρ0
(∇⃗ · F⃗0)− ∇⃗ · F⃗′ Energy conservation

(3.8)

Then, we are looking for the oscillation modes of a spherical star where the spatial and temporal coor-
dinates are separable. The perturbations to physical parameters have an harmonic form

Eulerian : X′ (⃗r) = X′ (⃗r)eiωt Lagrangian : δX(⃗r) = δX(⃗r)eiωt, (3.9)

where X′ and δX are the complex amplitude of the Eulerian and Lagrangian perturbations, respectively,
and ω is the pulsation frequency of the mode.

By developing the system of equations 3.8 under the assumptions presented in Sect. 3.1, the radial
part of this system of four equations simplifies in a system of two equations. Moreover, for large radial
orders n, the mode wavelength in the radial direction is small relatively to the pressure scale height Hp =
−(d log p0/dr)−1 (isothermal atmosphere scenario), except in the central and superficial layers. In the
following, we neglect the derivative of physical parameters at equilibrium to simplify the understanding
of the behaviour of oscillation modes and the propagation of seismic waves in stellar interiors. The set
of Eqs. 3.8 leads to (Mosser, 2015)





dξr
dr = 1

ρ0c2
0

(
S2
ℓ

ω2 − 1
)

p′

dp′
dr = ρ0

(
ω2 − N2

BV

)
ξr,

(3.10)

where c0 =
√
(∂P0/∂ρ0)s is the sound speed at equilibrium and constant entropy. The Lamb frequency

Sℓ and the Brunt-Väisälä frequency NBV are two characteristic frequencies that limit the propagation of
the seismic waves, they are defined by
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S2
ℓ =

ℓ(ℓ+1)c2
0

r2

N2
BV = g0

(
1
Γ1

d ln p0
dr − d ln ρ0

dr

)
,

(3.11)

where Γ1 = (d ln p0/ ln ρ0)s is the first adiabatic exponent and the subscript s indicates that the deriva-
tive is taken at constant specific entropy. In a regularly stratified region, the Brunt-Väisälä frequency
NBV represents the frequency at which a fluid element oscillates around its equilibrium position. By
using the ideal gas law for a fully ionised gas, which is valid for the interiors of not too cool stars, the
Brunt-Väisälä frequency NBV can be alternatively written

N2
BV =

g0ρ0

p0

(
∇ad −∇T +∇µ

)
, (3.12)

where T is the temperature, µ is the mean molecular weight, and

∇ad =

(
∂ ln T0

∂ ln p0

)

ad
∇T =

d ln T0

d ln p0
∇µ =

d ln µ0

d ln p0
. (3.13)

Finally, the two equations in Eq. 3.10 can be combined to form a single second-order differential equation
in ξr. By neglecting the derivative of the physical parameters at equilibrium, we have

dξr

dr2 =
ω2

c2
0

(
1 − N2

BV
ω2

)(
S2
ℓ

ω2 − 1

)
ξr. (3.14)

The previous equation leads to the dispersion equation

c2
0k2

r = ω2
(

1 − N2
BV

ω2

)(
S2
ℓ

ω2 − 1

)
, (3.15)

from which we can infer the fundamental properties of the waves.

3.3 Propagation diagram

The equation 3.15 shows that the propagation condition (k2
r > 0) implies





ω2 > S2
ℓ and ω2 > N2

BV
or

ω2 < S2
ℓ and ω2 < N2

BV

(3.16)

From these conditions, we can define the nature and the propagation region of two types of seismic
waves, as illustrated in Fig. 3.2.

3.3.1 Acoustic waves

The first condition of Eq. 3.16 defines the acoustic waves. The same condition tells us that acoustic waves
can propagate both in radiative zones and in convective zones. They are generated by the turbulent flux
at the near-surface convection zone. In that case, local pressure perturbations are induced and the main
restoring force of acoustic waves is linked to the pressure gradient.

3.3.2 Gravity waves

The second condition of Eq. 3.16 defines the gravity waves. When a blob of fluid is perturbed away
from its equilibrium position, its density is different from the one of the stratified environment. The
restoring force, which is the buoyancy force, tends to take the fragment of fluid back to its equilibrium
position. This requires that the region is convectively stable, i.e N2

BV > 0. Otherwise, convection takes
the fragment of fluid away from its equilibrium position and the oscillation vanishes, as reflected by the
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FIGURE 3.2: Simplified picture of the interior of a Sun-like star, with a large radiative core
surrounded by a convective envelope. Gravity waves are represented by the orange solid
lines in the radiative zone while pressure waves are represented by blue, green and brown

solid lines throughout the star. Credit: IAC

second condition of Eq. 3.16. Consequently, gravity waves result from the balance between the gravity
force and the buoyancy force, the inertia of the neighbouring fluid make the fragment of fluid oscillate
around its equilibrium position. Contrary to acoustic waves, gravity waves cannot propagate every-
where: Eq. 3.16 tells us that they can only propagate in regularly stratified regions in density where
N2

BV > 0, corresponding to radiative zones.

In the context of a finite cavity with specific boundary conditions, the waves can interfere. At spe-
cific frequencies, these interferences are constructive, forming standing waves, also called stellar modes.
These modes develop both in the p- and g-wave cavities, and are referred to as p and g modes, respec-
tively (e.g., Unno et al., 1989; Mosser, Belkacem, and Vrard, 2013). Radial modes, defined with the degree
ℓ = 0 are pure pressure modes. P- and g-wave cavities do not interact if their resonant frequencies are
different. In this case, they can be studied separately. Fig. 3.2 enables us to visualise where p and g
waves propagate in the Sun. In solar-like stars, g waves are trapped in the radiative zone and they have
an evanescent behaviour outside this zone. Therefore, it is very difficult to detect them at the stellar
surface. As illustrated in Fig. 3.3, the typical frequency of p modes is relatively large compared to that
of g modes in Sun-like stars. Luckily, g waves can couple with p waves in red giants, giving rise to the
so-called mixed modes, which can be detected at the surface.

3.3.3 Mixed modes

A sharp gradient of chemical composition at the base of the convective zone is formed after the H-core
burning phase, which increases the Brunt-Väisälä frequency NBV according to Eq. 3.12. Then, the fre-
quency of g modes increases (see right panel of Fig. 3.3). In parallel, the convective envelope dilates
and its density decreases. The frequency range of the excited p modes is shifted towards low frequency,
up to a point where it overlaps that of the excited g modes. Gravity waves propagating in the stellar
core can couple with pressure waves propagating in the envelope if their frequencies are close to each
other and the evanescent region between the two cavities is not important. Such coupling gives rise
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FIGURE 3.3: Propagation diagrams for a solar model (left) and a 1.4 M⊙ model on the
subgiant branch (right). The solid lines correspond to the Brunt-Väisälä frequency NBV
and the Lamb frequencies Sℓ at different angular degree ℓ. The dashed lines delimit the
regions where p and g modes can develop (p modes of degree ℓ = 2, 20 are represented on
the left panel). The frequency domains of solar-like oscillations is located in-between the

dotted lines. Credit: Lebreton and Montalbán (2009)

to the so-called mixed modes, behaving as gravity modes in the core and as pressure modes in the en-
velope. A simple mechanical model can be used to understand the presence of mixed modes (Mosser,
Belkacem, and Vrard, 2013). This toy model contains a chain of two masses mg and mp that represent
the gravity and pressure mode inertia, respectively, linked by three springs (see Fig. 3.4). The stiffness
of the coupling spring between mg and mp represents the coupling between the p- and g-wave cavities.
In case of a moderate coupling, the energy input from the oscillation is not highly perturbed by the leak
through the coupling between mp and mp. Then, pressure waves are efficiently excited and have enough
energy to excite gravity waves, and mixed modes can be observed. In the absence of coupling between
mg and mp, the excitation mechanisms at the stellar surface are able to move mp without impacting mg,
and no mixed modes are observed. Frequencies of mixed modes are shifted relatively to pure pressure
or gravity modes by an amount that depends on the coupling strength between the gravity and pres-
sure oscillation cavities (Unno et al., 1989). In red giants, modes with a degree ℓ ≥ 1 are mixed, only
radial modes are pure p modes. In the upper RGB and Asymptotic Giant Branch (AGB), the conditions
for the p- and g-mode cavities to couple are no longer met and mainly pressure-dominated modes are
observable (Mosser et al., 2019).

The propagation conditions presented in Eq. 3.16 precisely delimit the cavity in which modes can
develop. This is illustrated in Fig. 3.3 for the Sun where the p- and g-mode cavities are uncoupled, and
for a subgiant branch star where these cavities are coupled and give rise to mixed modes. Neverthe-
less, Eq. 3.16 does not provide an upper limit restraining the propagation of acoustic waves in case of
a convective envelope. Near the surface, acoustic waves are unable to propagate when their vertical
wavelength is too long compared to the density scale height Hρ = −(d ln ρ0/dr)−1 in the equilibrium
structure. This defines a frequency called cut-off frequency νc = c0/Hρ below which waves are evanes-
cent. The highest value of νc is reached at the level where the density scale height is minimum (Cunha,
2018), close to the level where the temperature is minimum. This defines the ’seismic surface’, and im-
plies that waves are reflected there. The cut-off frequency shows large values and a steep profile at the
surface. This ensures that all waves are approximately reflected at the same location.
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FIGURE 3.4: Toy model to represent the coupling of gravity and pressure waves, with two
masses and three coils. Top: the intermediate-case coupling, which explains most of the
observed gravity-dominated mixed modes in red giants. Middle: very strong coupling
case, which can explain the presence of mixed modes with weak amplitude. Bottom: very
weak coupling case, only pressure modes are observed, for example in high-luminosity red

giants. Credit: Mosser, Belkacem, and Vrard (2013)

3.4 Properties of p modes

3.4.1 Asymptotic relation of p-mode pulsators

For a mode to resonate, specific boundary conditions must be fulfilled at the edges of the resonant cavity
(i.e. the turning points). In the JWKB approximation, the eigenfunctions are developed around the turn-
ing points of the cavity. Then, these solutions are asymptotically connected to form the eigenfunction
in the whole cavity. In order to form a standing wave, the change in phase of the eigenfunction in the
radial direction must fulfil the condition (Shibahashi, 1979)

∫ rp,ext

rp,int

krdr = π(n + α(ω)), (3.17)

where rp,int and rp,ext are the inner and outer turning points of the propagation cavity, respectively, n
is an integer, and α(ω) is a frequency-dependent parameter that captures the phase changes the wave
experience at the internal turning point and at the surface.

Eq. 3.17 leads to the relation for frequencies of low-degree p modes (n ≫ ℓ). The development
performed in this chapter is led at first order and does not consider that the properties of the equilibrium
state of the star may vary on a scale that is smaller than the radial wavelength of the modes. Particularly,
the latter assumption is not verified near the stellar surface, where the density significantly varies. By
carrying the asymptotic expansion further, which is valid for ℓ ≪ n, it can be shown that the p-mode
frequencies are given by the asymptotic pattern (Tassoul, 1980; Scherrer et al., 1983)

νn,ℓ ≃ (n + εas + ℓ/2)∆νas −
ℓ(ℓ+ 1) + δ

n + ℓ/2 + ϵas
A, (3.18)

where ∆νas is the asymptotic large separation, namely the asymptotic frequency spacing between con-
secutive radial modes, ϵas is the asymptotic acoustic offset that allows us to locate the radial modes, δ is
a small correction term predominantly related to the near-surface regions, and A is a second-order term
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accounting for the fact that non-radial modes do not probe the innermost regions, contrary to radial
modes. It can be expressed by

A =
1

4π2

(
c(R)

R
−
∫ R

0

dc
dr

dr
r

)
. (3.19)

The universal oscillation pattern enables us to identify the mode frequency at a given radial order n
and degree ℓ, ℓ = 0 corresponding to a pure pressure mode while ℓ ≥ 1 corresponds to a pressure-
dominated mode.

Typically, in red-giants, the radial order is n ≤ 15 and it becomes even smaller when the star ascends
the RGB. Consequently, the asymptotic condition ℓ ≪ n is no longer satisfied and the observed large
separation differs from its asymptotic value ∆νas. The p-mode oscillation pattern of red giants no longer
matches the asymptotic pattern, but rather follows the pattern (Mosser et al., 2011)

νn,ℓ =

(
n +

ℓ

2
+ ε − d0ℓ +

αcurv

2
[n − nmax]

2
)

∆ν, (3.20)

where ε is the observed acoustic offset, d0ℓ is a reduced small separation defined as d0ℓ = δν0ℓ/∆ν
where δν0ℓ is the small frequency separation between a mode of degree ℓ and its neighbouring radial
mode. These parameters are interesting because they are sensitive to the stellar structure, hence to
the evolutionary stage of a star. The radial order1 nmax = νmax/∆ν − ε corresponds to the equivalent
radial order where the oscillation power is maximum. The curvature of the radial mode pattern noted
αcurv corresponds to the signature of the non-negligible second-order asymptotic terms, which induces
a significant gradient in the frequency spacing between consecutive radial modes. Eq. 3.20 correctly
describes the observed oscillation spectrum of red giants, in particular the large separation ∆ν and the
acoustic offset ε. The deviations from the asymptotic relation (Eq. 3.18) are quantified following the
relations (Mosser et al., 2013a)

{
∆νas = ∆ν

(
1 + nmaxαcurv

2

)

εas =
ε−n2

maxαcurv
1+nmax

αcurv
2

.
(3.21)

We remind that the p-mode oscillation pattern of red giants Eq. 3.20 has been calibrated for low- and
intermediate-luminosity red giants (i.e. ∆ν ∈ [2, 10] µHz). Accordingly, some deviations may be visible
for more evolved red giants.

3.4.2 The large separation ∆ν

As illustrated in Fig. 1.8, the oscillation spectrum of p-mode pulsators is regularly spaced. At a given
radial order n, radial (ℓ = 0), dipole (ℓ = 1), and quadrupole (ℓ = 2) modes are observed in the
oscillation spectrum of evolved red giants. They form a pattern of three modes that recreate every ∆ν
intervals. The asymptotic value of the large separation ∆νas is related to the inverse of the time for a
pressure wave to travel from one turning point of the cavity to the other. The former is defined by

∆νas =

(
2
∫ R

0

dr
c0(r)

)−1

, (3.22)

where R is the stellar radius. The large separation can also be related to the frequency difference between
pressure modes of consecutive radial order at the same degree ℓ

∆ν ≃ ⟨∆νn,ℓ⟩ = ⟨νn+1,ℓ − νn,ℓ⟩. (3.23)

The large separation ∆ν is a crucial parameter in asteroseismology as it is a direct probe of the sound
speed, hence of the mean density as (Ulrich, 1986)

1Note that nmax is not an integer
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∆νas ∝
√

ρ ∝

√
GM
R3 . (3.24)

3.4.3 The frequency at maximum oscillation power νmax

The oscillation power spectrum of p-mode pulsators is modulated by an envelope whose shape and
maximum are determined by the balance between the driving and damping of oscillations. The modes
that are efficiently excited lies in this power excess envelope, which is centred around the frequency at
maximum oscillation power νmax. This frequency is set by resonance between the local thermal time-
scale τth in the super-adiabatic region and the period of oscillations (Belkacem et al., 2011)

νmax =
1

2πτth
. (3.25)

The local thermal time scale τth depends on the time scale of energy transport processes in the super-
adiabatic region, i.e. radiative and convective thermal time scales. This relation implies that the fre-
quency at maximum oscillation power νmax scales as the cut-off frequency νc = c0/HP (Brown et al.,
1991; Belkacem et al., 2011). Since the pressure scale height at the surface is related to the effective tem-
perature Teff and the gravitational acceleration g0 by HP ∝ T/g0, the frequency νmax scales as (Kjeldsen
and Bedding, 1995)

νmax ∝
g0√
Teff

∝
M

R2
√

Teff
. (3.26)

3.4.4 Ensemble asteroseismology: a key diagnostic

Ensemble asteroseismology turned out to be of major interest when highlighting the evolutionary stages
of a star. The former consists in studying the correlation between seismic parameters in an ensemble of
stars, allowing us to build scaling relations between these parameters. With a large set of stars, we are
able to deliver key information on the stellar interior structure, even restricted to global seismic param-
eters.
Among the scaling relations derived with ensemble asteroseismology, the ∆ν − νmax relation is interest-
ing to infer stellar parameters such as the stellar mass and radius. Indeed, we can extract the stellar
mass and radius thanks to a seismic diagnostic, combining Eqs. 3.24, 3.26 with spectroscopic estimates
of Teff:





M
M⊙

=
(

νmax
νmax,⊙

)3 (
∆ν

∆ν⊙

)−4 ( Teff
Teff,⊙

)3/2

R
R⊙

=
(

νmax
νmax,⊙

) (
∆ν

∆ν⊙

)−2 ( Teff
Teff,⊙

)1/2
.

(3.27)

Here, the scaling relations are normalised by the Sun’s parameters. The former have provided relevant
estimates of the stellar mass and radius of main sequence stars, subgiants and red giants, reaching the
precision of interferometry (Kallinger et al., 2010; Huber et al., 2012). While ∆ν can be extracted with
high precision using the autocorrelation of stellar oscillation time series (e.g. Mosser and Appourchaux,
2009), the inference of νmax is not as precise as ∆ν. This is mainly due to the way to extract νmax, which
is not based on a physical definition of this parameter. These scaling relations must be calibrated to the
evolutionary stage of a star, because they may change accordingly (Mosser et al., 2013b; Coelho et al.,
2015; Sharma et al., 2016; Zinn et al., 2019).

3.4.5 The acoustic offset ε

The acoustic offset ε is a parameter that is sensitive to the structure changes of a star, just as in the core as
in superficial layers. Indeed, the eigenfrequency Eq. 3.18 can also read (Roxburgh and Vorontsov, 2000;
Roxburgh and Vorontsov, 2003)
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νn,ℓ

∆νas
≃
(

n +
ℓ

2

)
+

αℓ(νn,ℓ)− δℓ(νn,ℓ)

π
, (3.28)

where αℓ is an outer phase shift primarily determined by the mode propagation in the outer layers
(including the atmosphere) of the star and δℓ is an inner phase shift determined by the structure of the
inner regions. For radial modes (with ℓ = 0), equations (3.18) and (3.28) are equivalent, adopting

εas =
1
π
(α0 − δ0) . (3.29)

Hence, ϵas is clearly sensitive to the inner structure, the site of the most fundamental differences
between evolutionary stages. However, the envelope contribution is dominant, by more than a factor
of 6 in the RGB and clump phases (Christensen-Dalsgaard et al., 2014). Although εas is predominantly
determined by the surface layers, it has been shown that the acoustic offset ε in the asymptotic pattern of
red giants (Eq. 3.20) could be used to distinguish He-core burning stars and AGB stars from RGB stars.
This classification method is presented in Sect. 5. Despite its clear dependence with stellar structure, the
acoustic offset ε is a phase term that is not only marked by signature of internal structures but also by the
upper layers of the surface, which are poorly understood. Consequently, the acoustic offset ε defined in
Eq. 3.20 is not suited to constrain physical mechanisms in stellar interiors.

3.4.6 The reduced small separation d0ℓ

One can highlight a characteristic frequency separation between modes of different degree ℓ. The so
called small frequency separation between radial and dipole modes; between radial and quadrupole
modes are defined by

{
δν01(n) = 1

2 (νn,0 − 2 νn,1 + νn+1,0)
δν02(n) = νn,0 − νn−1,2

(3.30)

These small separations are defined by frequency differences, which makes them even more sensitive
to sharp variation region of the sound speed according to Eq. 3.18. Indeed, the small separation δνℓ ℓ+2
between modes of degree ℓ and ℓ+ 2 is related to the integral of the sound speed gradient as follows
(Gough, 1986)

δνℓ ℓ+2(n) = νn,ℓ − νn−1,ℓ+2 ≃ −(4ℓ+ 6)
∆νas

4π2νn,ℓ

∫ R

0

dc
dr

dr
r

. (3.31)

We also define dimensionless parameters, based on the ratio between small frequency separations and
∆ν

d0ℓ(n) =
δν0ℓ(n)

∆νn
. (3.32)

Both reduced small separations can be used as a powerful diagnostic to probe stellar interiors. Indeed,
these dimensionless small separations are less sensitive to gradients in the frequency differences and are
less perturbed by poorly modelled features such as the surface effects (Roxburgh and Vorontsov, 2003).
By relating equations (3.18) and (3.28), one can find

d0ℓ =
∆νas

π
(α0 − αℓ + δℓ − δ0) . (3.33)

Reduced small separation d01

In a Fourier spectrum, dipole modes are located approximately mid-way between consecutive radial
modes, as illustrated in Eq. 3.30. Conventionally, the small separation δν01 locates the acoustic ℓ = 1
mode in comparison of the middle point between two consecutive radial (ℓ = 0) modes.
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Reduced small separation d02

Conventionally, δν02 locates the acoustic ℓ = 2 mode in comparison to the closest radial mode. The
asymptotic approximation of δν02 (see Eq. 3.31) shows that the small separation between ℓ = 0 and ℓ = 2
modes depends on the sound-speed gradient. Being sensitive to any change of slope of the sound-speed
in the deep interiors, d02 can be used as an age indicator (Christensen-Dalsgaard, 1988). Particularly, the
cores of RGB and clump stars, being slightly different, affect d02 differently as illustrated in Fig. 3.5.

FIGURE 3.5: Reduced small separation d02 as a function of the large separation of radial
modes ∆ν for the RGB phase (cross) with masses 1.0 and 1.5 M⊙; metallicity Z = 0.006,
0.01, 0.02,0.03; fractional helium abundance Y = 0.25 and 0.278. Dots correspond to models
burning He in the centre, with masses between 0.7 and 2.3 M⊙ and between 2.5 and 4.0 M⊙

and chemical composition Z = 0.02, Y = 0.278. Credit: Montalbán et al. (2012)

3.5 Properties of g modes

3.5.1 Asymptotic relation of g-mode pulsators

The turning points of the g-mode cavities are determined by the condition NBV = ω. Still in the JWKB
approximation, the trapping condition for the g waves to form a standing wave is (Shibahashi, 1979)

∫ rg,out

rg,in

krdr =
(

n − 1
2
+ αg,ℓ

)
π, (3.34)

where rg,in and rg,out are the inner and outer turning points of the g-mode cavity, and αg,ℓ is a phase term
that captures the details of the boundaries of the g-mode cavity. Similarly as p modes, a proper analysis
for g modes leads to the dispersion relation

kr =
ℓ(ℓ+ 1)

r

(
N2

BV
ω2 − 1

)1/2

. (3.35)
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We can also highlight a characteristic pattern for gravity waves. In the asymptotic approximation, grav-
ity modes of degree ℓ appear with near constant separation in period. In case of a radiative core sur-
rounded by a convective envelope, the g-mode periods Πn,ℓ are given at first order by the asymptotic
pattern (Tassoul, 1980; Provost and Berthomieu, 1986)

Πn,ℓ =
Π0√

ℓ(ℓ+ 1)

(
|ng|+

ℓ

2
− 1

2
− ϵg

)
, (3.36)

where ng is the radial order of gravity modes2, ϵg is a term sensitive to the behaviour near the turning
points of the cavity (Pinçon, Takata, and Mosser, 2019) and

Π0 = 2π2
(∫ rout

rin

NBV
dr
r

)−1

. (3.37)

3.5.2 The period spacing ∆Πℓ

By analogy with the large separation ∆ν of p modes, the period spacing is the period difference between
modes of consecutive radial order at the same degree ℓ

∆Πnℓ = Πn+1,ℓ − Πn,ℓ, where Πn,ℓ = 1/νn,ℓ. (3.38)

With the asymptotic period of g modes (Eq. 3.36), we can extract the asymptotic period spacing at degree
ℓ

∆Πℓ,as =
Π0√

ℓ(ℓ+ 1)
. (3.39)

The asymptotic period spacing ∆Πℓ,as is a constant parameter at a given degree ℓ for gravity modes.
Then, gravity modes are evenly spaced at a given degree ℓ. In case of a radiative core, the period spacing
is a direct probe of the deepest layer of stars as it expresses as an integral of the Brunt-Väisälä frequency
NBV over the whole g-mode cavity. This is how H-shell burning stars and He-core burning stars can
be disentangled as their core have different properties and different sizes (Bedding et al., 2011; Stello et
al., 2013; Mosser et al., 2014). Moreover, period spacings carry the signature of sharp variation regions
of chemical composition. In red giants, these signatures can be extracted from the mode frequencies,
providing valuable information of these regions (Cunha et al., 2015; Vrard and Cunha, 2019). However,
in solar-like oscillators, no pure gravity modes can be observed. In red giants, only mixed-modes can be
observed, hence the spacing in period deviates from the asymptotically predicted value for pure gravity
modes.

3.6 Properties of mixed modes

In red giants, the asymptotic analysis must take the coupling between the acoustic and buoyancy cav-
ities into consideration. In the JWKB approximation, the matching of the solution between the two
cavities leads to the resonance condition (Shibahashi, 1979; Unno et al., 1989)

tan θp cot θg = q, (3.40)

where q is an estimate of the coupling strength between the two cavities (i.e. q = 0 if the seismic waves
strongly decay in the region between the cavities, q = 1 otherwise), θp and θg are the phase terms that
depend on the properties of the p- and g-mode cavities, respectively. These phase terms quantify the
closeness of the mixed modes with the associated pure p and g modes following (Mosser et al., 2012b;
Deheuvels et al., 2015; Mosser et al., 2015)

2The radial order of gravity modes is defined by a negative integer while that of p modes is defined by a positive integer
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θp =
∫ rp,out

rp,in
krdr = π

∆ν

[
ν − νp

]

θg =
∫ rg,out

rg,in
krdr = π

∆Π1

(
1
ν − 1

νg

)
,

(3.41)

where νp and νg are the expected frequencies of the pure p and g modes, respectively. By injecting the
expressions of θp and θg in Eq. 3.40, we recover the asymptotic pattern of mixed modes in red giants

ν = νp +
∆ν

π
arctan

[
q tan

(
π

[
1

ν∆Π1
− 1

νg∆Π1

])]
(3.42)

The previous equation is an implicit equation for ν that can be computed by iteration.

3.6.1 The mode inertia I
The capability of a mode to be excited depends on how the mode displacement vector ξ⃗ is able to put
the environment into motion. This can be quantified by the mode inertia I , which is defined by

I =
∫ mout

min

∣∣∣ξ⃗
∣∣∣
2

dm. (3.43)

In the previous equation, min and mout are the inner and outer mass coordinates that delimit the extent
of the mode cavity. Mode inertia are useful to compare the mode amplitudes. Indeed, two modes with
similar degree ℓ and close frequencies show similar amplitudes only if they have close inertia, which is
not the case for dipole mixed modes in red giants (Dupret et al., 2009; Grosjean et al., 2014). In fact, the
coupling between the acoustic and buoyancy cavities in red giants gives rise to several modes. They can
be either g-dominated or p-dominated modes depending on the difference between their frequency and
the expected p- mode frequency. Due to their low inertia, the amplitude of p-dominated modes is more
intense than that of g-dominated modes, p-dominated modes easily resonate relatively to g-dominated
modes. Then, we can define the fraction ζ of the mode inertia that comes from the innermost layers Ig
relatively to the total mode inertia Itot in the star. It reads

ζ =
Ig

Itot
=

∫ mg,out
mg,in

∣∣∣ξ⃗
∣∣∣
2

dm
∫ M

0

∣∣∣ξ⃗
∣∣∣
2

dm
, (3.44)

where mg,in and mg,out are the mass coordinates of the inner and outer turning points of the g-mode
cavity, respectively. In the asymptotic analysis, it can be shown that the ratio between the mode inertia
coming from the envelope Ip,as and that coming from the core Ig,as is (Shibahashi, 1979; Goupil et al.,
2013; Deheuvels et al., 2015)

Ip,as

Ig,as
= q−1 cos2 θg

cos2 θp

∆Π1ν2

∆ν
. (3.45)

Knowing that the total inertia is the sum of the inertia coming from the core and that coming from the
envelope Itot = Ig + Ip, by injecting Eq. 3.45 into Eq. 3.44 we get the first-order asymptotic mode inertia
fraction

ζas =

(
1 +

Ip,as

Ig,as

)−1

=


1 +

1
q

ν2∆Π1

∆ν

cos2
(

π 1
∆Π1

(
1
ν − 1

νg

))

cos2
(

π
ν−νp

∆ν

)



−1

. (3.46)

or equivalently (Hekker and Christensen-Dalsgaard, 2017)

ζas =


1 +

q∆Π1ν2
p

∆ν

1

q2 cos2
(

π
ν−νp

∆ν

)
+ sin2

(
π

ν−νp
∆ν

)



−1

, (3.47)
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The asymptotic ζas is a powerful tool to analyse the period spacings of mixed modes. Indeed, the period
spacing is linked to the asymptotic mode inertia fraction via the relation

Πn,1 − Πn+1,1 = ζas∆Π1. (3.48)

The previous equation has been verified with the ζas and period spacings estimates of red-giant models
(see Fig. 3.6). The relative contributions of mode inertia in the core and in the envelope of the star is also
linked to the mode splitting caused by rotation, providing valuable information on the core rotation
rate (Mosser et al., 2015). Nevertheless, the asymptotic derivation of ζas requires a slow variation of
the equilibrium quantities in the JWKB method. Some sharp variation regions in the Brunt-Väisälä
frequency NBV can invalidate the hypothesis of slowly varying equilibrium quantities. In these cases,
the asymptotic expression Eq. 3.46 is no longer appropriate and a more complex analysis is required
(Cunha et al., 2015; Cunha et al., 2019).

FIGURE 3.6: Ratio ζ of mode inertia in the core and that in the envelope as a function of
frequency for a synthetic RGB mixed-mode spectrum. The red line shows the asymptotic
value ζas while the blue crosses correspond to the period spacings ∆Πnℓ scaled to ∆Π1.
The dashed line shows the maximum value of ζ reached by p-dominated modes while the
dotted line shows the maximum value of ζ reached by g-dominated modes. Credit: Mosser

et al. (2015)

3.6.2 g-dominated versus p-dominated modes

A mode is p-dominated when its frequency is close to that of an expected pure p mode while a g-
dominated mode has its frequency far from a pure p-mode frequency. The number N of g-dominated
modes associated with a given acoustic resonance at frequency νp is defined by

N =
∆ν

ν2
p∆Π1

. (3.49)

For example, the typical number of mixed modes that can be observed in a ∆ν-frequency range for a
red clump star with ∆ν = 3.5 µHz and ∆Π1 = 300 s at the frequency of its maximum oscillation power
νmax = 28 µHz is N = 15. Nevertheless, the observability of gravity-dominated mixed modes is limited
by the frequency resolution in the oscillation spectrum. Indeed, if these mixed modes are too close, i.e.
the spacing between consecutive mixed modes is of the order of the frequency resolution, they overlap.
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In this case, instead of forming several distinct mixed modes, they appear as a jumble of several mixed
modes. Gravity-dominated mixed modes can only be observed if the condition

N ≤ 1
4q

(
π

2
Γ0

δνres
− 5
)

(3.50)

is satisfied (Mosser et al., 2018), where Γ0 is the radial mode width and δνres is the frequency resolution.

3.7 Stochastic excitation of oscillations

3.7.1 Derivation of the stochastic and damped nature of modes

In low-mass stars with a convective envelope, near-sonic speed convective motions reach the near-
surface layers. A large number of those convective cells creates an efficient source of acoustic radiation,
which can transfer part of the stochastic energy to stellar modes, then excite the acoustic modes of the
star. Due to the large number of convective cells, the driving is random. The mechanism of acoustic
noise generation by turbulence has already been studied in fluid mechanics (e.g., Lighthill, 1962). A
simple analysis can be led to approach the stochastic excitation in solar-like stars (Aerts, Christensen-
Dalsgaard, and Kurtz, 2010). We consider a damped linear oscillator model O(t) driven by a random
forcing function f (t) that satisfies the equation

d2O
dt2 + 2ηn,ℓ

dO
dt

+ ω2
n,ℓO(t) = f (t), (3.51)

where ηn,ℓ is the damping rate and ωn,ℓ = 2πνn,ℓ is the pulsation frequency at degree ℓ and radial order
n. By introducing the Fourier transforms of O and f

Õ(ω) =
∫

O(t)e−iωtdt, f̃ (ω) =
∫

f (t)e−iωtdt, (3.52)

we get

−ω2Õ(ω) + 2iωηn,ℓÕ(ω) + ω2
n,ℓÕ(ω) = f̃ (ω). (3.53)

In Eq. 3.52, we do not take initial transients into account in the solution so we omit the limits of integra-
tion. The power spectrum P(ω) is simply defined as the squared modulus of Õ(ω), giving

P(ω) =
∣∣Õ(ω)

∣∣2 =
f̃ (ω)

(ω2
n,ℓ − ω2)2 + 4η2

n,ℓω
2

. (3.54)

Eq. 3.54 represents the power spectrum that we would have from one realisation of the forcing. In
fact, several realisations for the forcing of a single mode occur in a long observation window. Then,
Eq. 3.51 must be averaged over several such realisations. By assuming that the damping rate ηn,ℓ is
small relatively to the pulsation frequency ωn,ℓ, which is valid for most solar-like oscillators including
red giants, we have

⟨P(ω)⟩ = 1
ω2

n,ℓ

⟨
∣∣ f̃ (ω)

∣∣2⟩
(ω − ωn,ℓ)

2 + η2
n,ℓ

. (3.55)

If the power spectrum of the forcing function ⟨Pf ⟩ = ⟨
∣∣ f̃ (ω)

∣∣2⟩ is a slowly varying function of frequency,
then Eq. 3.55 shows that a mode can be modelled by a Lorentzian-shape function located at frequency
νn,ℓ, of height Hn,ℓ, and width Γn,ℓ. It reads

⟨P(ν)⟩ = Hn,ℓ

1 + 4
(

ν−νn,ℓ
Γn,ℓ

)2 , (3.56)

where
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νn,ℓ =
ωn,ℓ

2π
, Hn,ℓ =

⟨Pf (ω)⟩
4ω2

n,ℓη
2
n,ℓ

, Γn,ℓ =
ηn,ℓ

π
. (3.57)

In the oscillation spectrum, Eq. 3.56 tells us that the stellar modes have a mean Lorentzian profile. This
is a major characteristic of solar-like modes, contrary to unstable modes observed for classical pulsators
that have a square sinus cardinal shape. Owing to the stochastic excitation, modes do not show the
characteristic Lorentzian profile, but a scattered profile similar to speckles of width δνres

3 randomly
distributed in the mean Lorentzian profile. Nevertheless, the Lorentzian profile presented in Eq. 3.56
can be used to fit observations, then derive the mode properties as illustrated in Fig. 3.7.

FIGURE 3.7: Solar radial mode in the oscillation spectrum from Doppler observations ex-
tending over 8 yr with BiSON (Birmingham Solar Oscillations Network). The white curve
shows the fitted Lorentzian profile, and the grey curve shows the same fit multiplied by

three for clarity. Data courtesy of W. J. Chaplin.

3.7.2 The mode damping

While the physical mechanism causing pressure mode excitation is identified as the Reynolds stresses
(equivalently additional momentum fluxes) induced by turbulent convection (Goldreich and Keeley,
1977; Belkacem et al., 2006), the physical mechanisms behind the mode damping are not fully under-
stood. The difficulty of identifying the main contributors to the mode damping can be illustrated by
analysing the expression of the mode-damping rate. The analytic expression of the mode damping can
be extracted from the perturbed system of equations 3.8, but adding the damping rate η in the perturbed
physical parameters as follows

δX(⃗r, t) = δX(⃗r) eiωt−η , (3.58)

where δX is the complex amplitude of the Lagrangian perturbation. By following the developments
adopted in, Samadi, Belkacem, and Sonoi (2015), the mode-damping rate can be expressed as an integral
over the mass

η =
1

2ωI
∫ M

0
Im
[

δρ∗

ρ

δP
ρ

]
dm, (3.59)

3the spectral resolution δνres is linked to the duration of the time series T through δνres = 1/T
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where Im denotes the imaginary part, the exponent ‘*’ refers to the complex conjugate, δρ and δP are the
Lagrangian perturbations of the density and the pressure, respectively. Equation 3.59 can be developed
further to emphasise four main contributors as follows

η = ηturb + ηconv + ηrad − ηdiss. (3.60)

The first term ηturb corresponds to the turbulent pressure, created by the perturbation of the Reynolds
stress tensor4 and induced by the turbulent convection. The second term ηconv is the damping associ-
ated to the perturbation of the convective heat flux. This contribution depends on the coupling between
the oscillation and convection, i.e. the perturbation induced by the oscillations on convection and con-
sequent feedback of perturbed convection on oscillations. The third contribution ηrad comes from the
perturbation of the radiative flux caused by the temperature fluctuations δT. Finally, the fourth term
ηdiss is associated to the perturbation of the dissipation rate of turbulent kinetic energy into heat that
acts to compensate the perturbation of the turbulent pressure.
Eq. 3.60 contains what are considered as the main contributors to mode damping in solar-like pulsators.
Their weights have been investigated in several studies (see e.g., Gough, 1980; Goldreich and Kumar,
1991; Balmforth, 1992; Dupret et al., 2006; Belkacem et al., 2012), but their relative contributions and
possible cancellations are still under debate. Moreover, additional possible sources of damping have
been investigated (e.g., Houdek et al., 1999). Accordingly, mode properties need to be extracted from
observations to constrain stellar models and help to identify the relevant contributors in mode damping.

3.7.3 The mode energy

In the following, we admit that the conservation equation for the mean mode energy En,ℓ is ruled by the
driving P and the damping D following (Samadi, Belkacem, and Sonoi, 2015)

dEn,ℓ

dt
= P +D, (3.61)

where the mode energy is defined by

En,ℓ =
∫

ρ0v⃗n,ℓ
2(⃗r, t)d3⃗r, (3.62)

and v⃗n,ℓ is the mode velocity. The driving P is the energy that a given source provides to a mode by
unit of time while the damping D is the energy lost by the mode per unit of time. Damping and driving
occur on two different time scales, so they can be studied separately in time. By assuming a constant
and linear damping on a time scale much larger than the characteristic time of mode driving, we have
(Samadi, Belkacem, and Sonoi, 2015)

dv⃗n,ℓ(t)
dt

= −ηn,ℓv⃗n,ℓ(t), (3.63)

where the time derivative is performed over a time scale much larger than the characteristic time over
which the driving occurs. We can infer that the mode damping term D is obtained by combining the
time derivative of Eq. 3.62 with Eq. 3.63:

dEn,ℓ

dt
(t) = P − 2ηn,ℓEn,ℓ(t). (3.64)

Unlike classical pulsators, solar-like pulsators show stable oscillations over time. This implies that the
mean mode energy cannot grow on time scales that are much larger than the characteristic times of the
driving and damping processes, i.e. dEn,ℓ/dt = 0 for any t longer than the two time scales. Finally, the

4The Reynolds stresses are the second terms of the total turbulent stress tensor given by σ∗
ij = σij − ρu′

iu
′
j, where i, j refer

to the spatial coordinates, σij are the mean components of the stress tensor, the terms u′
i are the unsteady components of the

velocity field with zero time average, and the overline indicates that the parameters are averaged over a period more larger
than that of the turbulent fluctuations.
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steady state implies that the mean mode energy is determined by the balance between the driving and
the damping following

En,ℓ =
P

2ηn,ℓ
. (3.65)

In parallel, it can be shown that the mean mode energy can be related to the mode amplitude following

En,ℓ =
1
2

A2
n,ℓIn,ℓω

2
n,ℓ, (3.66)

where A2
n,ℓ is the mean squared amplitude of the mode and I is the mode inertia (see Sect. 3.6.1). By

injecting Eq. 3.66 in Eq. 3.65, we see that the driving term is related to the mean mode amplitude follow-
ing

A2
n,ℓ =

P
ηn,ℓIn,ℓω

2
n,ℓ

. (3.67)

Accordingly, the mode amplitude is a valuable information to constrain the driving mechanism. How-
ever, the former also depends on the mode damping ηn,ℓ, the mode inertia I , and the pulsation fre-
quency ωn,ℓ: the higher those parameters, the smaller the mode amplitude. When the frequency resolu-
tion and the signal-to-noise ratio are satisfactory, the oscillation modes can be meticulously characterised
through their frequency νn,ℓ, height Hn,ℓ, and width Γn,ℓ. Also, the mean squared mode amplitude can
be measured on the oscillation spectrum as it corresponds to the value of the integral along the mode
profile. In the case of a Lorentzian profile with the notation introduced in Eq. 3.56, we have

A2
n,ℓ = πHn,ℓΓn,ℓ. (3.68)

In practice, the mode profile is modified by several factors such as the observational technique and ge-
ometrical effects. When measuring the mode amplitude in observation data, a multiplicative factor Cobs
is necessary to quantify these effects.

3.7.4 Mode visibility

In observations, the energy is not equally distributed between modes of different degree ℓ. This implies
that in an observation time series, modes of different degree ℓ do not have the same amplitude, noted
Aℓ. Consequently, at a given observation duration some modes may be visible while others are not
intense enough to be detected. This leads us to define visibility factors, noted V2

ℓ , as the ratio between
the mode amplitude of degree ℓ and that of the radial mode ℓ = 0,

V2
ℓ =

A2
ℓ

A2
0

. (3.69)

The visibility factor depends on geometrical factors, particularly the angle M̂CO, where M is the con-
sidered point at the stellar surface, C is the stellar centre, and O is the observer (Gizon and Solanki,
2003). The higher the amplitude of the radial displacement vector relatively to that of the horizontal
displacement vector, the higher the visibility factor. Typically, in red giants we have V2

0 = 1 by def-
inition, V2

1 ≃ 1.5, V2
2 ≃ 0.6, and V2

3 ≃ 0.1 (Ballot, Barban, and van’t Veer-Menneret, 2011). Despite
the unequal energy distribution in modes of different degree ℓ, because of the symmetry of a star in
spherical equilibrium without rotation and magnetic field the energy equipartition should be satisfied
between modes of even and odd degrees. Since mainly radial, dipole, quadrupole, and octupole modes
are visible in the oscillation spectrum of red giants, the energy equipartition reads

V2
0 + V2

2 = V2
1 + V2

3 . (3.70)
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Any departure from this equality suggests that non-symmetric mechanisms are present, differently af-
fecting the mode visibility depending on the degree ℓ. For instance, in red giants the presence of a
strong magnetic field can cause an additional dissipation of dipole modes in the core, which leads to
lower dipole mode visibility and breaks the energy equipartition (e.g., Fuller et al., 2015; Stello et al.,
2016a; Cantiello, Fuller, and Bildsten, 2016; Bugnet et al., 2021).

3.7.5 Relation between properties of pure pressure and gravity-dominated modes

Due to the high mode inertia of g-dominated modes in the core (see Fig. 3.6), the g-mode amplitude
and width are weaker than those of the pure pressure modes. However, the properties of the pure p
and g-dominated modes can be related thanks to the ζ factor. By labelling the properties of the pure p
modes with a ‘p’ and those of g-dominated modes with ‘g’, we extract the ratio between the amplitudes
of pure p- and g-dominated dipole (ℓ = 1) modes using Eq. 3.67. This relation reads (Benomar et al.,
2014)

A2
1,g

A2
1,p

=
P1,g

P1,p

Γ1,p

Γ1,g

I1,p

I1,g
, (3.71)

where we assume that the frequencies ν1,p and ν1,g are very close to each other (typically
∣∣ν1,p − ν1,g

∣∣ ≤
∆ν/2). In this case, the shape of the eigenfunctions in the upper layers are very similar (i.e. |ξ⃗1,p(R)| =
|ξ⃗1,g(R)|). This implies that (Dupret et al., 2009)

P1,pM1,p = P1,gM1,g, (3.72)

where we introduced the mode mass M = I/|⃗ξ(R)|2. Eq 3.72 shows that at similar frequencies the
work done by the driving source on the modes is the same. Since |ξ⃗1,p(R)| = |ξ⃗1,g(R)|, the mode inertia
is proportional to the mode mass and Eq. 3.71 leads to

M1,g

M1,p
≃ I1,g

I1,p
=

A1,p

A1,g

√
Γ1,p

Γ1,g
. (3.73)

The previous equation shows that the ratio of mode inertia can be extracted from the properties of
the pure pressure mode and its neighbouring g-dominated mixed mode. In red giants where the mode
is either evanescent or of acoustic type in the envelope above the core, the mode inertia ratio I1,g/I1,p
can be related to the ζ factor following Goupil et al. (2013) and Benomar et al. (2014)

I1,g

I1,p
=

1
1 − ζ

. (3.74)

Finally, Eq. 3.73 allows us to directly relate the width and amplitude of pure pressure and g-dominated
modes. Those properties are related following

Γ1,p =
Γ1,g

1 − ζ
, A1,p =

A1,g√
1 − ζ

. (3.75)

By measuring the mixed mode properties, i.e. the ζ factor, the width Γ1,g and amplitude A1,g, we can
infer the properties a mode would have in the hypothesis that it was a pure pressure mode.

3.8 Overview of stellar oscillation through evolution

3.8.1 During the main sequence

The nature of oscillations observed in main-sequence stars depends on their mass. Indeed, stars with
a mass M ≤ 1.2 M⊙ have a radiative core surrounded by a convective envelope while stars with a
mass M ≥ 1.2 M⊙ possess a convective core surrounded by a radiative envelope and a near-surface
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convective layer. As a consequence, we can define three type of pulsators for stars with a mass M ≤
2.5 M⊙: solar-like stars, γ Doradus stars, and δ Scuti stars. Solar-like pulsators exhibit stable oscilla-
tions with a clear p-mode pattern, which are predicted for the lowest mass main-sequence stars up to
stars situated near the cool edge of the classical instability strip (see Fig. 1.4) with masses near about
1.6 M⊙ (Christensen-Dalsgaard, 1982; Houdek et al., 1999). As for γ Doradus stars that have a mass
M ∈ [1.5, 1.8]M⊙, they show stable oscillations associated to high order non-radial g modes. Finally,
oscillations in δ Scuti stars are unstable as they are situated in the instability region of stellar oscillation
where the classical instability strip crosses the main sequence (see Fig. 1.4). Their class members with
masses in the range 1.5 − 2.5 M⊙ exhibit p modes in their oscillation spectrum, both radial and non
radial. Their oscillation pattern is complex as their modes have variable amplitudes from non-linear
resonant mode coupling, making their identification challenging (e.g., Breger et al., 1999; Arentoft et al.,
2001; Breger and Pamyatnykh, 2006). As illustrated in Fig. 3.3, the inner cavity is uncoupled to the outer
cavity in the frequency range of observable modes since the modes that develop in those cavities have
different frequencies.

3.8.2 After the main sequence

When stars with a mass M ≥ 1.2 M⊙ leave the main sequence and reach the RGB, the radiative envelope
gradually fades to give rise to a convective envelope. As a consequence, the p-mode cavity extends up
to the stellar surface while the g-mode cavity is confined to the deep layers. At this stage, g modes are
no longer visible in the oscillation spectrum. Nevertheless, as the base of the convective zone recedes
and the envelope expands, the frequency range of observable modes decreases up to a point where it
corresponds to the frequency range of high order g modes in the g-mode cavity (see right panel of 3.3).
Then, the waves that propagate in both cavities can couple and give rise to mixed modes. Both radial
modes and mixed non-radial modes are visible in the oscillation spectrum of red giants, as depicted by
Fig. 3.8. In this figure, we notice that the higher the star on the RGB, the less visible the mixed modes
are. The disappearance of mixed modes is due to the combination of two factors. First, the radiative
contribution to the damping (see Eq. 3.60) increases through evolution, so the modes in the g-mode cav-
ity are efficiently damped and the gravity-dominated mixed modes cannot reach the stellar surface with
a sufficiently high amplitude to be detected. Second, the coupling between the two cavities decreases
due to the core contraction and the envelope expansion. Consequently, non-radial modes visible in the
oscillation spectrum are pressure-dominated modes for high-luminosity RGB stars.

Once helium burning sets on, the coupling between the p- and g-mode cavities gets stronger, the
core expands and the envelope dilates to such an extent that the evanescent region between the g- and
p-mode cavities gets thinner. As a result, mixed modes become detectable again during the He-core
burning phase. These mixed modes bring crucial information since they allow for an effective classifi-
cation between He-burning stars (including clump and AGB stars) and H-shell burning stars (further
details in Chapter 5). Finally, when the helium supply is exhausted, the star enters the AGB phase, the
core contracts and the envelope dilates. The coupling between the inner and outer cavities decreases
and mixed modes slowly disappear in the oscillation spectrum, leaving solely the p-dominated non ra-
dial modes detectable. Then, distinguishing RGB and AGB stars is challenging. In my thesis, we intend
to identify the physical basis on which RGB and AGB stars can be disentangled (see Chapters 5, 8). To
this end, I perform a comprehensive analysis of the oscillation spectrum of RGB and AGB stars. I extract
the seismic parameters that characterise the p-mode pattern in Chapters 6, 7 and look for signatures of
stellar evolution in Chapter 8. Besides, part of my work is dedicated to the study of the mode damping
on the AGB in Chapter 9. I aim at measuring the mode properties of radial and p-dominated non-radial
modes that would help to identify the main contributors to mode damping on the AGB, in analogy with
the analysis performed on the RGB (Vrard et al., 2018).
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FIGURE 3.8: Theoretical (left) and observed (right) power spectra of Kepler RGB stars. Ra-
dial, dipole, and quadrupole modes are indicated in red, blue, and green, respectively.
The width of pressure-dominated dipole modes is large relatively to that of mixed dipole
modes. The theoretical models are computed for RGB stars of mass 1.5 M⊙, the panels are
ordered in increasing age from top to bottom. At a given row, the theoretical and observed
power spectral density have similar ∆ν, νmax, and M. The heights in the theoretical power
spectral density are given in m2.s−2.µHz−1 while those in the observed spectra are given
in ppm2.µHz−1 divided by a factor 6000 to have similar scales with the theoretical spectra.
Top: ∆ν = 14.1 µHz, νmax = 190 µHz, Middle: ∆ν = 8.4 µHz, νmax = 97 µHz, Bottom:

∆ν = 4 µHz, νmax = 37 µHz. Credit: Grosjean et al. (2014)
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Chapter 4

Structural discontinuities in stellar interiors

As presented in Chapter 3, the asymptotic analysis provides valuable tools to decipher the oscillation
spectrum of solar-like oscillations. Since seismic parameters depend on the radial profile of physical
parameters such as the sound speed, density, and temperature, they offer the possibility to probe the
stellar structure. Nevertheless, the asymptotic analysis assumes that the gradients of these physical
parameters are not important, i.e. these parameters do not change on a scale substantially smaller than
the wavelength of the oscillations. Yet, sharp variations of physical quantities are clearly present and
their effects are detectable in the oscillation spectrum of solar-like stars. In this chapter, we consider the
deviations to the asymptotic analysis induced by such strong gradients in stellar interiors.

4.1 What is a glitch?

Specific localised events in stellar interiors can generate sharp variations in the radial profile of physical
parameters, especially the first adiabatic exponent Γ1 (equivalently the sound speed cs)

Γ1 =

(
∂ log P
∂ log ρ

)

ad
= c2

s
ρ

P
, (4.1)

where cs =
√
(∂P/∂ρ)ad. These sharp variations take place on a scale that is smaller than the local

wavelength of the seismic oscillations (Gough, 1990), to the extent that the seismic wave“see” the en-
vironment changes while propagating. These sharp features are called glitches (Gough, 2002; Cunha
et al., 2015) and cause a shift in the mode frequencies with respect to the asymptotic pattern of p modes
(Eq. 3.18), g modes (Eq. 3.36), or mixed modes (Eq. 3.42). This shift is a frequency-dependent modu-
lation so the mode frequencies are not equally affected, as illustrated in Fig. 4.1. Characterising this
modulation allows for obtaining information on the glitch characteristics. The period of the modulation
depends on the location of the feature, while its amplitude depends on the amplitude of the structural
glitch (Gough, 1990; Monteiro, Christensen-Dalsgaard, and Thompson, 1994; Basu et al., 2004; Houdek
and Gough, 2007; Cunha et al., 2015). Glitches can be efficiently probed by combination of frequencies
that are sensitive to gradients of composition or sound speed like the large frequency separation ∆ν
(Eq. 3.23) or the reduced small frequency separations (Eq. 3.30).

4.2 Measuring the glitch effects

4.2.1 The observation of glitch signatures

The existence of such sharp variation regions has been first predicted (Vorontsov, 1988; Gough, 1990).
Theoretical studies showed that the signature of glitches provides valuable information on the region
where they lie. Some of them started to investigate the existence of an overshooting region in the
Sun through the signature of the base of the convective envelope, where a strong composition gra-
dient hence sound speed gradient is expected (Christensen-Dalsgaard, Gough, and Thompson, 1991;
Monteiro, Christensen-Dalsgaard, and Thompson, 1994). In parallel, other theoretical studies explored
the potential of the helium ionisation zone signature to constrain the helium abundance in the enve-
lope (Dziembowski, Pamiatnykh, and Sienkiewicz, 1991; Perez Hernandez and Christensen-Dalsgaard,
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FIGURE 4.1: Left: Modulation in frequency induced by the helium second-ionisation zone.
The points correspond to ℓ = 0 (black circles), ℓ = 1 (open circles), ℓ = 2 (diamonds).
The solid line shows a fit to the modulation induced by the helium second-ionisation zone
and the dotted line is the same fit but including the effects of the base of the convective
zone. Credit: Mazumdar et al. (2014). Right: Typical Γ1 profile in the ionisation region
as a function of the acoustic depth τ relatively to the surface (τ = 0 is the surface). The
contributions of the three main ionisation zones are shown, i.e. , the hydrogen (H), the first
(HeI), and helium second ionisation (HeII) zones. They cause a deviation from the standard

value 5/3. Credit: Houdayer et al. (2021)

1994; Monteiro and Thompson, 2005). The signatures of these sharp variation regions have been first
confirmed for the Sun (Ballot, Turck-Chièze, and García, 2004; Houdek and Gough, 2007), then for main-
sequence stars (Lebreton and Goupil, 2012; Mazumdar et al., 2012; Mazumdar et al., 2014; Verma et al.,
2014; Deheuvels et al., 2016), and for red giants (Miglio et al., 2010; Broomhall et al., 2014; Vrard et al.,
2015; Corsaro, De Ridder, and García, 2015). In the case of red giants, the dominant glitch has its origin
in the helium second-ionisation zone. As the base of the convective zone sinks toward the deep interior
in red giants, the effects of this sharp feature is no longer visible in the mode frequencies. Instead, effects
of buoyancy glitches have been highlighted near the core of red giants both with theoretical models and
Kepler observations (Cunha et al., 2015; Vrard and Cunha, 2019). In this chapter, we focus on the helium
second ionisation (HeII) zone located in the envelope. This sharp feature in the sound speed profile
impacts the stellar modes that develop in the envelope, i.e. p modes, which justifies their designation
as acoustic glitches.

4.2.2 Probing the properties of the helium second-ionisation zone

Theoretical studies aimed at finding links between the helium second-ionisation zone signature and the
properties of the stellar envelope, where the helium ionisation zone lies. Indeed, the signature of the
HeII zone can be exploited to extract the helium abundance of the envelope of low-mass stars (Basu
et al., 2004; Houdek and Gough, 2007). The amplitude of the glitch signature has been tested as an
indirect way to estimate the helium abundance in main-sequence stars (Verma et al., 2014; Verma et
al., 2019) and in red giants (Broomhall et al., 2014; Dréau et al., 2020). The asteroseismic estimates of
helium abundance are valuable since the spectroscopic determination of this quantity is not possible
for low-mass stars. Their effective temperature is not high enough for the helium to be excited, and
He-absorption lines cannot be detected. Nonetheless, expressing the signature of the HeII zone in terms
of helium abundance is not an easy task since the theoretical connection between these quantities is
not straightforward, i.e. other parameters influence the signature of the HeII zone. Houdayer et al.
(2021) could derive an analytical expression of Γ1 from thermodynamic relations, including chemical
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equilibrium between ionised species of hydrogen and helium in stellar interiors. They showed that the
profile of Γ1 can be expressed in the presence of the hydrogen and helium ionisation zones as

Γ1 =
5
3
− 2

3
γ1 (Ys, ψCZ, εH) , (4.2)

where γ1 is a term with a complex expression depending on several parameters. Among them, there
are the helium mass fraction at the surface Ys, the electron degeneracy parameter ψCZ

1 from the centre
up to the ionisation region, and the parameter εH that is the ratio between the ionisation energy for the
hydrogen (13.6 eV) and the thermal energy at the centre. The effects of those physical parameters on the
Γ1 profile are shown in Fig. 4.2.

FIGURE 4.2: Γ1 profiles as a function of the acoustic depth t relatively to the surface (t =
0 is the surface) by considering various sets (Ys, ψCZ, εH) that cover the range of values
encountered in solar-like pulsators. (a) Dependence of the profile on Ys, (b) dependence
of the profile on ψCZ, and (c) dependence of the profile on εH. Figure courtesy of Pierre

Houdayer.

The surface helium abundance clearly impacts the strength of the Γ1 variations in the helium ioni-
sation zone, as does the electron degeneracy ψCZ. The parameter εH controls the location where helium
ionisation takes place. As a result, these physical parameters are related to the location, the width, and
the amplitude of the helium second-ionisation zone. This induces a shift in the mode frequencies that
can be expressed as (Houdek and Gough, 2007; Houdayer, Reese, and Goupil, 2022)

δω2 =

∫
V

δxΓ1
Γ1

ρc2
s(∇⃗.⃗ξ)2dV

∫
V ρ
∣∣∣ξ⃗
∣∣∣
2

dV
, (4.3)

where V is the volume, ξ⃗ is the displacement vector, and δxΓ1 is the perturbation of Γ1 relatively to
the model without glitch at fixed normalised radius x = r/R. Equation 4.3 precisely quantifies the
frequency shift in response to a perturbation of stellar structure caused by the helium ionisation. How-
ever, the use of this expression is not suited for the analysis of observational data because it requires
the knowledge of the perturbation of Γ1 from a reference model. This reference model is defined in the

1the analytical expression is ψCZ = ln(neλ3
e /2), where ne is the electron volume density and λe is the de Broglie wavelength.



66 Chapter 4. Structural discontinuities in stellar interiors

absence of the helium glitch, and cannot be extracted from observations.

Instead of using these complex expressions, the perturbation in Γ1 can be modelled by a parame-
terised function. Several theoretical works aimed at modelling the shape of the induced structural per-
turbation, as illustrated in Fig. 4.3. Assuming a model-dependent perturbation of the glitch structure
significantly simplifies the problem. In this scenario, the glitch parameters cannot be directly interpreted
in terms of internal structure parameters. For instance, several parameters play a role in the amplitude
of the variations in the Γ1 profile, as depicted by Fig. 4.2, so the knowledge of the glitch amplitude does
not guarantee precise constraints for stellar parameter such as the helium abundance. Nevertheless, the
use of these model dependent perturbations allows us to derive an expression of the signature in mode
frequencies. The most commonly used model is a Gaussian perturbation (see Fig. 4.3), which reads
(Houdek and Gough, 2007)

δΓ1

Γ1
= − 1√

2π

ΓHeII

∆HeII
e
− (τ−τHeII)

2

2∆2
HeII , (4.4)

where ∆HeII, ΓHeII, and τHeII are the standard deviation, the area, and the acoustic depth from the surface
of the distribution, respectively. This Γ1 perturbation yields the expression of the frequency shift

δν = AHeII ν e−8π2∆2
HeIIν

2
cos [2 (2πτHeIIν + εHeII)] , (4.5)

where AHeII = ΓHeII ∆νas, and εHeII is a phase term that captures the phase changes of the seismic wave
at the upper turning point of the cavity. Equation 4.5 can then be used to extract the signature of the
helium second-ionisation zone in observational data, as shown in Fig. 4.1. Nevertheless, a meticulous
work is needed to interpret the observed glitch signatures in terms of stellar properties because of the
model dependent treatment.

FIGURE 4.3: Shape of the parameterisations that are used to describe a structural pertur-
bation. (a) Dirac function used in Monteiro, Christensen-Dalsgaard, and Thompson (1994)
to model the variations in the acoustic potential (in presence of an overshooting region)
passing from a radiative to a convection region. The sharp feature is modelled by a discon-
tinuity of amplitude Aδ at the acoustic depth τd from the surface. (b) Triangular function
used to reproduce the Γ1 variations induced by the helium second-ionisation zone (Mon-
teiro and Thompson, 2005). An additional parameter is necessary, which is the width β of
the Γ1 perturbation. (c) Gaussian function of the Γ1 perturbation induced by the helium
second-ionisation zone (Houdek and Gough, 2007). The parameters ∆II and ΓII are the
standard deviation and the area of the distribution, respectively. Credit: Houdayer et al.

(2021)
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4.3 The helium ionisation signature in low- and intermediate-luminosity
red giants

4.3.1 Extracting the glitch signature

As described in the previous sections, the helium second-ionisation zone introduces a modulation term
to the mode frequencies relatively to the asymptotic pattern given by Eq. 3.20. By including the glitch
contribution to the universal pattern of p modes in red giants, Eq. 3.20 can be rewritten

νn,ℓ =

(
n +

ℓ

2
+ ε − d0ℓ +

αcurv

2
[n − nmax]

2 + dgl
n,ℓ

)
∆ν, (4.6)

where dgl
n,ℓ is the glitch modulation induced in mode frequencies. For example, the glitch contribution

to the radial mode frequencies used by Vrard et al. (2015) has a constant amplitude, as follows

dgl
n,0 =

AHeII GHeII

2π
sin
(

2π
n − nmax

GHeII
+ ΦHeII

)
, (4.7)

where AHeII and GHeII are the amplitude and period of the modulation in units of ∆ν, and ΦHeII is the
phase of the modulation centred on nmax = νmax/∆ν− ε. However, the modulation term dgl

n,0 arises from
a small perturbation to the reference model in the absence of the helium ionisation zone. Consequently,
the modulation signal in the mode frequencies due to the sharp variations of the sound speed caused
by HeII is very small relatively to the leading order terms in Eq. 3.20. To enhance the glitch signature,
we can work with combinations of frequencies. For instance, Vrard et al. (2015) highlighted the glitch
signature in the local large frequency separation

∆νn,ℓ =
νn+1,ℓ − νn−1,ℓ

2
. (4.8)

computed with radial (ℓ = 0) modes only. By assuming that the value of ∆νn,ℓ is given by the sum of two
terms: one from the universal pattern of red giants Eq. 3.20 noted ∆νRG

n,ℓ and the other from the glitch

signature δ∆ν
gl
n,ℓ, we have

δ∆ν
gl
n,ℓ = ∆νn,ℓ − ∆νRG

n,ℓ , (4.9)

where

∆νRG
n,ℓ =

(
1 + αcurv

(
n − nmax +

1
2

))
∆ν, (4.10)

nmax is the equivalent radial order where the oscillation power is maximum, and αcurv is the curvature of
the radial-mode pattern. In low- and intermediate-luminosity red giants, there are typically modes with
7 different radial orders that can be observed in their oscillation spectrum. Too many free parameters
are used in Eq. 4.5 , which complicates the fit of the glitch modulation as there are too few modes
to reproduce the damped behaviour of the glitch modulation. Owing to the low number of measured
modes, a simpler frequency-dependent amplitude is preferred. According to Eq. 4.7, the glitch signature
in dgl

n,0 in mode frequencies has a constant amplitude. Then, Vrard et al. (2015) used a constant amplitude
term for the modulation in the local large separation, which reads

δ∆ν
gl
n,ℓ = AHeII ∆ν cos

(
2π

ν − νmax

GHeII∆ν
+ ΦHeII

)
. (4.11)

4.3.2 Characterising the helium second-ionisation zone

The results for low- and intermediate-luminosity red giants obtained by Vrard et al. (2015) are shown in
Fig. 4.4, 4.5. At a given ∆ν, the amplitude of the modulation is weaker for RGB stars than for He-
core burning stars. The difference observed in the modulation amplitude AHeII between RGB and



68 Chapter 4. Structural discontinuities in stellar interiors

He-burning phases is correlated with a difference of temperature at the level of the helium second-
ionisation zone (Christensen-Dalsgaard et al., 2014). This difference causes a different dip in the first
adiabatic exponent, which is shallower during the clump (see right panel of Fig. 4.5) then explains why
the glitch amplitude is a bit larger for He-core burning stars. The mean glitch period is higher by ap-
proximately 30% for He-core burning stars relatively to RGB stars (GHeII,RGB = 3.08 ± 0.65 for RGB
versus GHeII,clump = 3.83 ± 0.88 for clump stars). This difference arises from a density difference in the
bulk of the convective zone, with lower density in clump stars (Christensen-Dalsgaard et al., 2014). The
difference of density is related to the fact that a larger fraction of the mass is contained in the helium
core in the clump phase. This produces an increase in the degree of ionisation, hence to the outward
shift of the helium ionisation zone in clump stars (see Fig. 4.5).

FIGURE 4.4: Dimensionless amplitude (left) and period (right) of the modulation as a func-
tion of ∆ν. RGB and He-core burning stars are shown in blue and red, respectively. The
black dashed line indicates the maximum number of radial modes that can be observed at

given ∆ν. Credit: Vrard et al. (2015)

FIGURE 4.5: Left: Phase of the modulation as a function of ∆ν. Same label as in Fig. 4.4.
Credit: Vrard et al. (2015). Right: First adiabatic exponent Γ1 as a function of the acoustic
depth from the surface. The solid line is for the RGB model while the dashed line is for the

He-burning model. Credit: Christensen-Dalsgaard et al. (2014)

Finally, the phase of the glitch modulation is shifted between clump stars and RGB stars. While the
glitch phase is included between 1 and 3 radians for RGB stars, the former takes value between −2 and
1 radians for clump stars. This phase difference is so important that the glitch modulation given by
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Eq. 4.9 significantly differs between RGB and clump stars at fixed ∆ν. This phase shift can be used to
measure the evolutionary status of red giants, particularly for distinguishing RGB and clump stars. This
is discussed in detail in the next chapter.
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Chapter 5

Classification techniques of evolved stars

Disentangling RGB and AGB stars with photometric and spectrometric global parameters is challenging.
Indeed, RGB and AGB stars have close luminosities and effective temperatures, as illustrated in the
colour-magnitude diagram of the globular cluster M5 (Fig. 5.1). This resemblance is not only noticeable
in observations, but also in stellar models (Fig. 2.1). Despite these similarities, the internal structure
of RGB and AGB stars is noticeably different. The extent of the convective envelope is smaller during
the AGB phase because of the important mass loss that stars endure at the luminosity tip of the RGB.
Moreover, an additional energy supply is available during the AGB, guaranteed by the He-shell burning
(Fig. 1.10). Thus the crucial question arises of the enhancement of the structure differences between RGB
and AGB stars, given their similar surface parameters. Hopefully, these differences can be highlighted
with the seismic parameters presented in Chapter 3. These seismic parameters carry the signature of
internal structures. Accordingly, asteroseismic classification methods based on seismic parameters can
be established to identify those stars. In this chapter, we present the classification methods provided by
asteroseismology to disentangle RGB and AGB stars.

FIGURE 5.1: Colour-magnitude diagram of M5 with the CFHT data showing the intensity
in the I band as a function of the colour index B−I. RGB stars are plotted with triangles
while AGB or post-AGB stars are plotted with squares. Clump stars and RR Lyrae variables

are plotted with circles and asterisks, respectively. Credit: Sandquist and Bolte (2004)
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5.1 Distinguishing hydrogen- and helium-burning red giants with mixed
modes

The stellar core undergoes significant changes from the subgiant phase up to the AGB phase. In period
of quiescent core-nuclear burning, the core expands while in absence of energy supply it contracts. This
core dynamic corresponds to distinct evolutionary stages, which can be evaluated with the signature of
core properties in the seismic parameters. Especially, the detection of mixed modes is beneficial as they
carry valuable information on the deepest layers of stars. The observed pattern of dipole mixed modes
is characterised by the period spacing ∆Π1, which is directly related to the size of the radiative region
through Eqs. 3.37−3.39, where g modes can develop. Then, measuring the period spacing of red giants
helps to track the properties of the g-mode cavity along evolution. Accordingly, stars can be classified
depending on their ∆Π1 values, as illustrated in Fig. 5.2.

Mixed modes start being visible in the oscillation spectrum when the resonant frequencies of the p-
and g-mode cavities are close. This means that the coupling between the inner and outer cavities is high
enough for the mixed modes to have sufficiently high amplitude in the outer cavity. This condition is
first met when the star reaches the subgiant phase (Benomar et al., 2013). As the star enters the RGB, the
mean core density and the large separation decrease, while the core contracts and the period spacing
decreases. The properties of stellar interiors become strongly dominated by the physical conditions of
the degenerate helium core and the envelope properties are related to the core mass. The transition from
subgiant to red giant is marked when the core becomes degenerate, i.e. when the period spacing does
no longer vary with the stellar mass but with the core mass (see Fig. 5.2). Accordingly, as the RGB star
evolves its core contracts and the period spacing slowly decreases (Montalbán et al., 2013).
For stars that encounter the He-flash stage (i.e. M ≤ 2.0 M⊙), the He burning in degenerate conditions
makes the stars evolve rapidly on the ∆Π1 − ∆ν diagram. Next, stars settle in a narrow region in that
diagram when He gently burns in the core, around ∆Π1 = 300 s and ∆ν = 4 µHz. Once He burning
ends in stars with mass M ≤ 2.0 M⊙, the core contracts and becomes degenerate again. They follow the
same trajectory regardless their mass and are located near ∆ν = 3 µHz and ∆Π1 = 220 s. These stars
prepare to ascend the AGB (see Fig. 5.2).
For RGB stars with a mass M ≥ 2.0 M⊙, He burning starts in non degenerate conditions. These stars
have different luminosity and radius, so they cover a large zone in the ∆Π1 − ∆ν diagram, where
∆Π1 ∈ [150, 300] s and ∆ν ∈ [5.5, 9] µHz. When He-shell burning starts and He-core burning ends,
the high-mass stars occupy a wider range in the ∆Π1 − ∆ν diagram compared to their low-mass coun-
terparts, but can still be identified as AGB stars due to their high value of ∆Π1 with decreasing ∆ν.

As depicted by the evolution of ∆Π1 with ∆ν in Fig. 5.2, stars can be efficiently classified depending
on the combination of their ∆Π1, ∆ν, and mass M. In particular, RGB and AGB stars have distinct ∆Π1
at fixed ∆ν so they can be unambiguously identified (Mosser et al., 2014). Obviously, this classification
method is applicable when mixed modes are present in the oscillation spectrum, so that ∆Π1 can be
estimated. Unluckily, the height of mixed modes decreases when ∆ν decreases because g modes are
highly damped at the outer turning point of the g-mode cavity (Dupret et al., 2009; Grosjean et al.,
2014). Consequently, the mixed modes are no longer visible at low ∆ν, as shown in Sect. 3.8.2 and
Fig. 3.8. The mixed-mode properties of evolved RGB and AGB stars can no longer be extracted, and
the ∆Π1 − ∆ν diagram can no longer be employed to classify these stars. Of course, the ∆Π1 value that
reflects the radial profile of the Brunt-Väisälä frequency NBV and the size of the radiative core is one of
the differences between RGB and AGB stars. Other structure differences can be highlighted, specifically
the helium second-ionisation zone.

5.2 The state of the helium second-ionisation zone as classifier

All along their evolution, stars carry the signature of physical processes that occur in their interiors.
The presence of He burning and additional mixing between the core and envelope contributes to the
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FIGURE 5.2: Top: Period spacing ∆Π1 as a function of the large frequency separation ∆ν.
The stellar mass is colour-coded and symbols are associated to different evolutionary states:
S for subgiant branch, R for RGB, f for suspected stars in the He subflash stage, C for red
clump, p2 for pre-secondary clump, 2 for secondary clump, and A for early-AGB. The
errorbars at different ∆Π1 values on the right side indicate the mean uncertainties for RGB
stars while those on the left side show the mean uncertainties for clump stars. The dotted
lines mark the limits between different evolutionary stages. Bottom: zoom in the He-

burning region. Credit: Mosser et al. (2014)
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differences between the convective envelopes of RGB and clump stars. Helium ionisation takes place
in different physical conditions in the envelope of RGB and clump stars (Christensen-Dalsgaard et al.,
2014). Consequently, the signature of the helium second-ionisation zone in mode frequencies differs
between those stars, as presented in Sect. 4.3.2. The amplitude of the modulation introduced by the
helium second-ionisation zone in mode frequencies is more intense for clump stars. Moreover, a phase
difference between clump and RGB stars is noticeable in the glitch modulation. Vrard et al. (2015) have
shown that the glitch modulation δ∆ν

gl
n,ℓ given by Eq. 4.11 typically modifies the local large frequency

separation with a mean relative variation of δ∆νRGB = −0.5% for RGB stars and δ∆νclump = 1% for
clump stars at ∆ν = 4 µHz. Although this shift seems anecdotal, the relative difference between RGB
and clump stars is sufficiently high for a classification of those stars to be possible (Kallinger et al., 2012).
Indeed, the glitch signature in mode frequencies dgl

n,ℓ (Eq. 4.7) can be seen as an additional term in the
acoustic offset ε, which quantifies the near-surface effects. Then, we define an effective acoustic offset
εeff that encompasses both the near-surface effects and the glitch modulation, which reads

εeff = ε + δε = ε + dgl
n,ℓ. (5.1)

FIGURE 5.3: Top: The effective acoustic offset εeff as a function of ∆ν for a sample of 923 Ke-
pler targets. These parameters are averaged over the three central radial modes with radial
orders n around nmax. H-shell burning stars are shown with red circles, while red clump,
secondary clump and AGB stars are indicated by blue triangles, green squares, and yellow
diamonds, respectively. The dotted line divides the different groups, which expression is
given by 0.532 + 0.649 log ∆ν. Bottom: Same figure as the top panel but parameters are
averaged over all the observed modes. The label is the same, except for He-burning stars
that are indistinctly represented by blue triangles. The dashed line is the scaling relation
derived from Mosser et al. (2011), but shifted by −0.05 for better visibility. Credit: Kallinger

et al. (2012)
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The perturbation caused by the glitch in the acoustic offset δε and that in the local large separation
δ∆ν

gl
n,ℓ can be related by differentiating Eq. 3.20 as follows

δε = dgl
n,ℓ = − (n + ε)

δ∆ν
gl
n,ℓ

∆ν
. (5.2)

Accordingly, the mean relative variation in the local large frequency separation caused by the glitch is
equivalent to δεRGB = 0.05 for RGB stars and δεclump = −0.1 for clump stars when the radial order
n is about 10. The difference between RGB and clump stars in the effective acoustic offset, which is
∆ε = 0.15, can be highlighted in observations with local measurements of ε as shown in Fig. 5.3.

As observed by Kallinger et al. (2012), the typical difference between clump (both red and secondary
clumps) and RGB stars is similar to the difference expected from the glitch signature through Eq. 5.2.
Moreover, the classification based on the acoustic offset is efficient only when local measurements of ε
are performed. As illustrated in Fig. 5.3, the evolutionary effects is visible only when an average on the
three central modes closest to the frequency of maximum oscillation power νmax is performed. When the
average is computed over all the observed modes, the evolutionary effects fade and both H-shell burn-
ing stars and He-burning stars have the same seismic parameters. Therefore, the evolutionary effects
are encoded in the fine structure of the p-mode pattern. This property matches with what we expect
from the signature of the helium second-ionisation zone. Indeed, the average value of the modulation
induced by the glitch is close to zero when the average is computed with a high number of modes (see
for example Eq. 4.7). As a result, the classification method proposed by Kallinger et al. (2012) relies on
the physical state of the helium second-ionisation zone. However, the classification has been justified
between He-core burning stars and H-shell burning stars only. Because of the inappropriate frequency
resolution, the previous study could not extract the p-mode frequencies of evolved stars at low ∆ν with
sufficient precision. Hence, the identification methods could not classify RGB and AGB stars with abso-
lute certainty. But now, the about 1470-day time-series of Kepler gives access to an excellent frequency
resolution reaching 7.8 nHz, which gives the opportunity to decipher the p-mode oscillation pattern of
evolved giants with unprecedented precision. In my thesis, we aim at extending the conclusions raised
by Vrard et al. (2015), but between RGB and AGB stars at low ∆ν. Namely, we investigate the physical
basis of the identification of RGB and AGB stars, which is suspected to rely on the signature of the he-
lium second-ionisation zone in the p-mode pattern.

5.3 The Envelope AutoCorrelation Function (EACF) signal

The autocorrelation function of observational time series is thoroughly used for estimating the large
frequency separation, which gives a measure of the stellar acoustic diameter (Mosser and Appourchaux,
2009). The former simply corresponds to the Fourier spectrum of the Fourier transform of the time
series. By adopting a filter F of width δνH around the frequency at maximum oscillation power νmax in
the Fourier transform of the time series X(ν), the autocorrelation function C reads

C(τ) =
∫ νmax+δνH

νmax−δνH

X(ν)X∗(ν)F (ν)e2iπντdν. (5.3)

The amplitude AC of the autocorrelation signal can be expressed with the dimensionless square modu-
lus of the autocorrelation function in units of the noise level σH:

AC(τ) =
1

σH

∣∣C(τ)2
∣∣

|C(0)2| . (5.4)

As a wavepacket spends a time τ∆ν = 2/∆ν to cross the stellar diameter twice, we expect to see the
signature of the seismic signal every interval of τ∆ν in the autocorrelation function. An example of
autocorrelation peak in the profile of AC is shown in Fig. 5.4. The maximum amplitude of the first peak
in the autocorrelation function at τ∆ν is noted E . The former provides an estimate of the strength of the
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seismic signal in given time series, which is useful for defining thresholds for asteroseismic detection
and measurement of stellar properties (Mosser et al., 2019). In evolved stars, stellar properties dominate
the signal strength in the seismic index E . It has been shown that the seismic index E depends on the
height-to-background ratio R (Mosser and Appourchaux, 2009) defined as

R =
Hmax

Bmax + Bnoise
, (5.5)

where Hmax is the height of the oscillation power excess at νmax, Bmax is the background contribution
associated to stellar granulation, and Bnoise includes the photon flux noise and instrumental noises. The
seismic performance index E also linearly depends on the observation duration D since the frequency
resolution is inversely proportional to D. Then the number of frequency bins linearly increases with D,
which leads to a linear increase of any relevant signal with D (Hekker et al., 2012). Because the number
of observed modes depends on the frequency range where the oscillation power excess is observed, the
signal E is expected to vary with νmax. Accordingly, Mosser et al. (2019) derived a calibration of this
index for the evolved stars observed by Kepler, which reads

Esimu = 0.065R0.9 ν1.1
max D, (5.6)

where νmax is expressed in µHz, and D in months. By comparing the seismic performance index E of
a star with the predicted value Esimu according to Eq. 5.6, two populations could be enhanced: H-shell
burning and He-burning stars. Indeed, clump stars have lower values of E , typically diminished by a
factor 2.5 relatively to the predicted value Esimu (see Fig. 5.4).

As a consequence, Mosser et al. (2019) established a classification method based on the EACF signal,
evaluated by a parameter ηE that is the ratio between the observed EACF and the predicted value

ηE =
E

Esimu
. (5.7)

The star is then identified as a RGB star above the threshold ηE ,lim = 0.7, as a red-clump star otherwise.
The low value of ηE for clump stars is due to their low ratio Hmax/Bmax as reported by Mosser et al.
(2012a), which is caused by a strong mode damping in those stars (Vrard et al., 2018). Given the low
values of ηE for AGB stars, the classification can be extended to high-luminosity red giants to identify
RGB and AGB stars. This classification method is advantageous since it does not require a full seismic
characterisation of the oscillation pattern to derive the classifying term ηE . Nevertheless, this method
relies on an empirical characterisation of the modes, i.e. the height-to-background ratio. Then, this dif-
ference cannot be easily interpreted in theoretical models to characterise the stellar structure differences
between those stars.

5.4 Comparison between classification methods of RGB and AGB stars

5.4.1 Agreements and disagreements

In this section, we perform a comparison between the method based on the EACF (Mosser et al., 2019)
and that based on the glitch signature (Kallinger et al., 2012). First, we visualise the distributions of
agreements and disagreements in Fig. 5.5. At ∆ν ≥ 2.0 µHz, it seems that both identification methods
mostly agree, with a fraction below 10% of disagreements that are distributed near the cut between RGB
and clump stars in ε. Nevertheless, at ∆ν ≤ 2.0 µHz, this is no longer systematic and many disagree-
ments are visible. In order to quantitatively describe the disagreements, two types of graphs are shown
in Fig. 5.6:

➛ One graph highlights the number of agreements for the stellar evolution identification, the number
of disagreements is superimposed on top of the number of agreements.

➛ Another graph showing the percentile of disagreements, normalised by the total number of stars
in each bin.
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FIGURE 5.4: Top: Profile of the first peak in the amplitude of the autocorrelation function
AC(τ) (solid line) calculated from the power spectrum of the star HD 49933 and a filter
width δνH = 0.2 mHz. Theoretical and cosine model are shown with dashed and dotted
lines, respectively. Credit: Mosser and Appourchaux (2009). Bottom: Ratio ηE defined
by Eq. 5.7. Blue and red symbols indicate RGB and clump stars, respectively, identified
by Vrard, Mosser, and Samadi (2016) with the method described in Sect. 5.1. Grey symbols
correspond to stars with unidentified evolutionary status. The dotted line is the cut ηE ,lim =
0.7 between RGB and red-clump stars. The horizontal dashed lines indicate the mean value
of ηE for both evolutionary status. Histograms of those stars with the same colour code are

shown as a function of ηE on the right. Credit: Mosser et al. (2019)



78 Chapter 5. Classification techniques of evolved stars

FIGURE 5.5: Identification methods used to classify stars, with an emphasis on the agree-
ments (blue) and disagreements (red). Left: method based on the glitch signature, on the
value of εeff as a function of ∆ν, νmax, and ηE . The dotted black line is the cut that separates
RGB stars (above) and He-burning stars (below). Right: method based on the EACF, on
the parameter ηE . The black dotted line is the cut ηE ,lim = 0.7, separating RGB stars (above)

from He-burning stars (below).

When looking at the agreements and the disagreements as a function of ∆ν (resp. νmax), it is clear
that the number of disagreements sharply increases while ∆ν (resp. νmax) decreases. This implies that
the identification methods are less efficient at low ∆ν, showing that RGB and AGB stars are more likely
to be misclassified. In fact, the efficiency of these classification methods are certainly limited by the
precision with which the seismic parameters ε and ηE are inferred because of the frequency resolution
in observations. On the other hand, there is a peak of disagreements around ηE ,lim = 0.7, which corre-
sponds to the separation criterion between H-shell burning and He-burning stars. This is expected since
this limit is empirical and has been set to match as much as possible the distribution of ηE both in the
H-shell burning and He burning phases in Fig. 5.4. Of course, few RGB stars with low EACF parameter
ηE or He-burning stars with high EACF parameter ηE may be misidentified. Since the identification is
based on an empirically calibrated cut, we need to evaluate the robustness of the classification methods.

5.4.2 Robustness of the classification methods

Previously, we did not mention any uncertainty on the identification. The uncertainties on the seismic
parameters εeff and ηE are higher at low ∆ν. Then, we expect the identification methods to be less
reliable at low ∆ν. Taking uncertainties into account is essential when evaluating the robustness of the
identification methods since they are based on a hard cut in εeff and in ηE . If a star has an x = {εeff, ηE}
close to the hard cut xcut with large uncertainties σx = {σεeff , σηE }, the identification may be biased.
Accordingly, we need to introduce a parameter that can evaluate the robustness of the identification,
for both methods. We can compute the probability px of how reliable the classification is. We convert
the distance between the parameter εeff (resp. ηE ) and the hard cut in units of σεeff (resp. σηE ) into a
probability. We assume that the uncertainties σεeff and σηE follow a normal distribution. Let x be the
measured parameter (εeff or ηE ) and xcut be the hard cut. Then, we can define the probability px such
that the star is correctly classified with x, assuming the cut xcut as follows

px =
∫ x

−∞

1
σx
√

2π
e
− |x−xcut |2

2σ2
x dx = 0.5

(
1 + erf

( |x − xcut|
σx
√

2

))
, (5.8)

where erf is the error function. We adopt absolute value in the distance between x and xcut in order
to keep positive probabilities. According to this definition, a star has a probability px to be correctly
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FIGURE 5.6: Agreements on the stellar evolution identification between methods based on
the EACF function ηE and on the acoustic offset εeff. Left: number of agreements (green)
and disagreements (red) as a function of ∆ν. Right: percentile of disagreements, nor-
malised to the total number of stars in each bin. The total number of stars (agreements
+ disagreements) per bin is indicated in blue over each bin. The bin sizes in ∆ν, νmax, and

ηE are 0.5 µHz, 4 µHz, and 0.2, respectively.
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classified and a probability 1 − px to be misclassified. In this framework, the star is either a RGB star
or a He-burning star. As a guideline one can say that a px > 0.97 is very strong evidence, px > 0.91 is
strong evidence, px > 0.75 is substantial evidence (Jeffreys, 1939).

5.4.3 Classification with strong evidence

The previous results took into account all stars having ∆ν ≤ 5.0 µHz, whatever their probability to be
correctly classified. Hereafter, we only select the stars which have been robustly classified with both
identification methods. In Fig. 5.7, the disagreements are shown as a function of ∆ν, in the cases with
strong evidence (pεeff ≥ 0.91 and pηE ≥ 0.91) on the one hand and very strong evidence (pεeff ≥ 0.97 and
pηE ≥ 0.97) on the other hand. The stars that fulfil these conditions have their seismic parameters εeff
and ηE far enough in units of the uncertainty from the cut that separate populations (see upper panels in
Fig. 5.7). Both identification methods agree very well above ∆ν ≥ 2 µHz. And yet, despite the fact that
the seismic parameters are sufficiently far from the cut, the disagreements grow fast below ∆ν ≤ 2 µHz.
This means that the methods to classify RGB and AGB stars are less efficient at low ∆ν, certainly because
of the frequency resolution in observations that is not adequate to extract the p-mode pattern of those
stars with satisfying precision. Indeed, by selecting stars at ∆ν ≤ 2 µHz, we see that the disagreements
are systematically important whatever the probability levels pεeff and pηE (see lower panels in Fig. 5.7).

5.4.4 Implications for this work

To sum up, the methods based on the EACF (Mosser et al., 2019) and that based on the glitch signature
(Kallinger et al., 2012) give robust classification for stars with ∆ν ≥ 2 µHz. However, when ∆ν ≤
2 µHz the frequency resolution hampers the precise characterisation of the p-mode pattern, and the
classification methods are less reliable. In this work, the evolutionary status is defined only if both
classification methods agree on the evolutionary status, otherwise stars are defined as unclassified. This
will reduce the uncertainties on the evolutionary status and the dispersion of seismic parameters for
both RGB and He-burning stars.

5.5 Spectroscopic classification of red giants

Other classification techniques are available as a complement to the asteroseismic methods described
herebefore. For instance, stars can be classified according to their spectroscopic parameters such as ef-
fective temperature Teff, surface gravity log g, and metallicity [M/H]1 (Holtzman et al., 2015). Indeed, at
given surface gravity and metallicity red- and secondary-clump stars are hotter than RGB stars. How-
ever, the knowledge of the temperature only does not allow us to differentiate RGB from clump stars
since the effective temperature is correlated to the surface gravity and metallicity. Then, these parame-
ters can shift the RGB closer to the clump location, hampering the distinction between RGB and clump
stars. Nevertheless, the metallicity and surface gravity effects can be mitigated by defining a reference
effective temperature Teff,ref expected for a typical RGB star with given surface gravity and metallicity
(Holtzman et al., 2018). This identification method works if RGB and clump stars have sufficiently dif-
ferent effective temperature. For cool clump stars that reach a minimum distance from the RGB, the
identification of the evolutionary status becomes intricate. In this case, detailed chemical abundances is
required to provide a separation between RGB and red-clump stars. Indeed, the surface abundance of
C and N is modified during the RGB by the first dredge-up. The latter brings to the surface the prod-
ucts of nuclear H-burning during the main sequence. Accordingly, the combination of the [C/N] ratio
and previously defined spectroscopic parameters can be employed for evolutionary state classification
(Holtzman et al., 2018). This is illustrated in Fig. 5.8, where stars are classified in the clump if the two
following conditions

1Instead of using the ratio [Fe/H], the global metallicity ratio [M/H] is often preferred to take the enhancement in the
α-elements into account. It reads [M/H] = [Fe/H] + log (0.638 fα + 0.362), where fα is the average enhancement factor of the
α-elements (Salaris, Chieffi, and Straniero, 1993).



5.5. Spectroscopic classification of red giants 81

FIGURE 5.7: Top: Same label as in Fig. 5.5, but considering only stars that are considered
as robustly classified (pεeff ≥ 0.91 and pEACF ≥ 0.91.) Middle: Same label as the right
panels in Fig. 5.6, but selecting stars with robust classification. Middle left: pεeff ≥ 0.91
and pηE ≥ 0.91. Middle right: pεeff ≥ 0.97 and pηE ≥ 0.97. Bottom: Same label as in

Fig. 5.6, but representing pεeff and pηE and only selecting stars with low ∆ν ≤ 2.0 µHz.
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FIGURE 5.8: Left: Spectroscopic HR diagram for stars from the APOKASC catalog. RGB,
red-clump, and secondary-clump stars are shown in red, blue, and green, respectively.
Stars in between the red and secondary clumps are indicated in magenta. Right: Ratio
[C/N] as a function of the separation criterion defined in Eq. 5.9, where the separation line
between H-shell burning and He-core burning stars is indicated by the blue line. Credit:

Holtzman et al. (2018)

{
2.38 < log g < 3.5

[C/N] > −0.08 − 0.5[M/H]− 0.0039∆T (5.9)

are fulfilled, in the RGB otherwise. In the previous equation, ∆T = Teff,raw − Teff,ref is the difference
between the uncalibrated effective temperature Teff,raw and the reference effective temperature given by

Teff,ref = 4444.14 + 554.311 (log graw − 2.5)− 307.962 [M/H]raw, (5.10)

where the subscript ‘raw’ refers to the uncalibrated values. This spectroscopic classification is effective
when distinguishing RGB and clump stars (Elsworth et al., 2019), but is still preliminary to distinguish
RGB and AGB stars.

5.6 Summary

In this chapter, we present the asteroseismic classification methods of RGB and AGB stars. Currently,
the most powerful method to classify RGB and AGB stars is based on the diagram ∆Π1 − ∆ν. Indeed,
the radial profile of the Brunt-Väisälä frequency NBV changes and the size of the radiative core differs
between RGB and AGB stars. This impacts the mixed-mode pattern, especially the value of ∆Π1, making
a classification of RGB and AGB stars possible. Nonetheless, this classification is no longer applicable
below ∆ν ≤ 2.0 µHz, i.e. between RGB and AGB stars, since mixed modes have too low heights in the
oscillation spectrum to be detected. Accordingly, we have to turn to other methods to identify RGB and
AGB stars. Currently, two options are possible. One focuses on the signature of the He second-ionisation
zone in p-mode frequencies, while the other is based on the strength of the seismic signal in the time
series. Basically, AGB stars have a lower envelope autocorrelation signal and a phase difference in the
glitch modulation relatively to RGB stars at similar ∆ν. Unfortunately, these classification methods are
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less efficient at low ∆ν due to the insufficient frequency resolution in the oscillation spectrum that causes
large uncertainties on the seismic parameters. In the following, we retain the evolutionary status only
if both classification methods agree, otherwise we consider that it is undefined. Work is still in progress
to improve our ability to identify RGB and AGB stars at high luminosity.
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Chapter 6

Stellar evolution and oscillation codes

To bridge the gap between the observations and physical conditions in stellar interiors, we use the stellar
evolution code MESA and the stellar oscillation code ADIPLS. The MESA code addresses the physical
structure in stellar models from the PMS up to the AGB while the ADIPLS code determines the oscilla-
tion spectrum expected for these models. By coupling these codes, we are able to explore the evolution
of the stellar structure in evolved red giants and its implications on the oscillation spectrum. This chap-
ter is dedicated to the presentation of these codes, with an emphasis on the physical ingredients used in
stellar models from the PMS up to the AGB and on the tools to extract the p-mode oscillation spectrum
of high-luminosity red giants.

6.1 The stellar evolution code MESA

Modules for Experiments in Stellar Astrophysics (MESA, Paxton et al., 2011; Paxton et al., 2013; Paxton
et al., 2015; Paxton et al., 2018; Paxton et al., 2019) is an ensemble of open source libraries for a wide
range of applications in computational stellar astrophysics. This code is constantly improving thanks to
the MESA team and the contributions of the growing MESA users community. My work has been led
with the release 12778. MESA aims at modelling the structure and evolution of stars with elaborated
computational methods and up-to-date input physics, opening the possibility to consistently evolve
stellar models from the birth stage to the death stage of stars. This includes the modelling of challeng-
ing phases of stellar evolution, such as the He-core flash in low-mass stars where helium starts burning
in unstable conditions.
In further details, MESA builds one-dimensional and spherically symmetric models, for which the struc-
ture is divided into cells. The full set of structure and composition equations is solved for all cells from
the surface to the centre. In each cell, some variables are defined at the cell edges while others are mass-
averaged between the edges of consecutive cells as illustrated in Fig. 6.1. Defining the internal struc-
ture parameters in this way improves the stability and efficiency of the numerical methods because of
the flux conservation formulation of the equations (Sugimoto, Nomoto, and Eriguchi, 1981). The inner
boundary of the innermost cell is defined as the centre of the star, at null radius, luminosity and velocity.

The number of cells depends on the complexity of nuclear burning and the gradient of internal
structure parameters such as pressure, temperature and composition. The mesh may be adjusted if
the structure and composition profiles abruptly change between consecutive timesteps. Remeshing
is adaptive and based on allowed changes between adjacent cells. Accordingly, cells can be splitted
in several subcells, or merged to form larger cells. Mesh refinement ensures that the magnitude of
differences in physical parameters between any two adjacent cells are lower than the specific thresholds.
Several options are available for the user to control the number of cells, especially in local regions where
the gradient of physical parameters is steep, i.e. near the boundaries of convection zones or sharp
variation regions in chemical composition. This allows the users to better resolve targeted regions in
stellar interiors. By default, the mesh resolution is increased in regions of nuclear burning, where the
composition gradient is important.
All the internal structure parameters are evaluated within a timestep δτ. The timestep selection is crucial
for stellar modelling. Indeed, the timestep δτ should be large enough to let the model evolve efficiently,
but it should be small enough to ensure that the structural differences are not too important for the
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FIGURE 6.1: Schematic describing how internal structure parameters are defined in MESA.
Here, the cell mass-averaged variables are the density ρk, temperature Tk, mass fraction
vectors Xi,k, pressure Pk, ... The boundary variables are the mass interior to the face mk,

radius rk, luminosity Lk, velocity vk, ... Credit: Paxton et al. (2011)

numerical code to converge. In MESA, the returned solution is rejected if any physical change exceeds its
specific threshold and the code is forced to retry or back up. Alternatively, the timestep can be reduced
proportionally for the forthcoming models if the absolute or relative change in a physical parameter
exceeds its specific threshold. This allows for studying specific events in stellar evolution, especially the
AGB bump that manifests as two turning-backs of the evolutionary track in the HR diagram after the
He-core burning phase.

6.2 Modelling evolution from the PMS up to the AGB

6.2.1 The test suite case 1M_pre_ms_to_wd

In MESA package, several test cases are available to study a wide range of applications. Among them,
the test suite case 1M_pre_ms_to_wd computes the evolution of a star of mass 1M⊙ from the pre-main
sequence to the white dwarf stage. We first use the presets of this test case to let models evolve from
the PMS up to the AGB and then we consider additional physical ingredients to model the physical
mechanisms that impact the evolution of low-mass stars. In this test case, five inlist files are used to
control step by step the physical ingredients at specific evolutionary stages.

➛ The first file ‘inlist_start’ initialises the global properties of the model, especially its initial mass and
composition fractions. With these parameters, it creates a starting model with uniform composi-
tion and core temperature below Tc ≤ 106 K so that no nuclear reaction is allowed. Then, this fully
convective model evolves under the influence of a uniform contraction up to the star birthline,
which is the locus in the HR diagram where the PMS star appears as a visible object, a quasi-static
contraction phase begins along the Hayashi line. Typical values of luminosity at the birthline are
shown for different masses in Table 6.1.
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M/M⊙ 0.8 0.9 1.0 1.1 1.2 1.5 1.75 2.0 2.2 2.5
log L/L⊙ 1.2 1.15 1.1 1.15 1.2 1.3 1.4 1.5 1.52 1.55

TABLE 6.1: Locus of the birth line in log L as a function of the initial stellar mass M. Credit:
Fig. 1 of Villebrun et al. (2019)

➛ The second file ‘inlist_to_end_core_h_burn’ lets the model evolve from the birthline up to the end
of the H-core burning phase, which is marked when the central hydrogen mass fraction reaches
Xc = 10−4.

➛ The third file ‘inlist_to_start_he_flash’ controls the evolution of the star from the subgiant phase up
to the luminosity-tip of the RGB, just before the He-flash stage. The start of the He flash is marked
when the total power from He-burning reactions is larger than 10 L⊙.

➛ The He-flash and He-core burning phases are handled by the file ‘inlist_to_end_core_he_burn’. The
He-core burning phase ends when the central helium mass fraction reaches Yc = 10−4.

➛ Finally, the AGB phase is taken care of by the fifth inlist file ‘inlist_to_end_agb’ until the envelope
mass drops below 0.01 M⊙, marking the end of the AGB phase and the transition towards the
white dwarf stage.

6.2.2 The physical ingredients

In each inlist file, we add physical ingredients to model internal mechanisms that affect the structure
and fate of low-mass stars. All the physical processes are sorted by numerical and physics modules, for
which the parameters can be initialised in inlist files. Below we describe the physical mechanisms and
parameters we consider.

Mixing-Length Theory (MLT) formalism

Convective transport of energy in stellar interiors occurs through the exchange of macroscopic mass
elements called “blobs”. The convective velocity and flux with which the blobs are transported in our
models are set following the formulation of Henyey, Vardya, and Bodenheimer (1965). The Henyey
prescription lets the convective efficiency vary with the opaqueness of the convective element, which is
important in regions where the opacity significantly changes, particularly near the outer stellar layers.
The hotter blobs move upwards while the cooler ones descend over a characteristic distance ℓMLT before
dissolving and delivering their excess or deficiency of energy to the environment. This characteristic
distance is called the mixing length and is depicted in Fig. 6.2. The latter is usually expressed in units
of the pressure scale height HP = −(d log P/dr)−1 by introducing the mixing-length parameter αMLT
defined as

ℓMLT = αMLTHP. (6.1)

In order to describe convection in stellar envelopes, Magic, Weiss, and Asplund (2015) studied the rela-
tion between the 1D atmosphere models that rely on the mixing length theory and atmosphere models
based on full 3D radiative hydrodynamic calculations. By matching 1D and 3D models, they found that
the mixing-length parameter αMLT used in 1D models depends on the evolutionary stage and stellar pa-
rameters, such as effective temperature Teff, surface gravity log g, and metallicity [Fe/H]. Rigorously, the
mixing-length parameter αMLT should be set as a function of these stellar parameters. To simplify, other
authors assume that αMLT does not vary with stellar parameters or evolutionary status (e.g. Gustafsson
et al., 2008; Pietrinferni et al., 2013; Choi et al., 2016). Accordingly, we keep the mixing-length parame-
ter αMLT constant. Since its value cannot be analytically determined, a reasonable value is obtained by
calibrating it with the Sun, i.e. to reach solar luminosity, radius and surface metallicity at solar age. In
practice, αMLT depends on the treatment of the atmosphere. The value of αMLT we adopt results from
the calibration of our model to the Sun, which is discussed in Sect. 6.2.3.
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FIGURE 6.2: Timelaps of a fluid parcel that crosses a distance ℓMLT before blending in with
the surrounding fluid. The bar on the left side shows the mixing length ℓMLT. Credit:

Mixing length model, Wikipedia

Nuclear-reaction network

Along evolution, the composition of stars is modified due to the complex nuclear-reaction network.
As evolution proceeds, the network gets more complex due to the increase of the core temperature. It
starts with the H burning on the main sequence through the PP chain and CNO cycle for stars of mass
M ≤ 1.2 M⊙ and M ≥ 1.2 M⊙, respectively. Next, it passes through the burning of heavier elements
such as the helium burning via the triple-α reaction

{ 4
2He + 4

2He → 8
4Be + γ

8
4Be + 4

2He → 12
6C + γ

(6.2)

and α-particle capture reactions such as 12
6C + 4

2He → 16
8O + γ in the clump phase and on the AGB. In

our model, we use a network of 32 nuclear reactions involving 23 stable or unstable species from 1H to
24Mg. This allows us to consistently follow the chemical changes and the production of nuclear energy
up to the TP-AGB phase. The thermonuclear reaction rates are available in MESA files and are taken
from NACRE (Angulo et al., 1999) and CF88 (Caughlan and Fowler, 1988), with priority on NACRE
rates when available. We take into account updated rates for crucial reactions at evolved stages such
as 14

7N(p, γ)15
8O that is the bottleneck reaction for the CNO cycle (Imbriani et al., 2004) and the triple-α

chain reaction for helium burning (Fynbo et al., 2005).

Opacity treatment

The opacity κ quantifies the opaqueness of a material, i.e. the absorption of the light as it passes through
it. The opacity κ of the environment is related to the cross section σcs that is the mean area around a
particle for a photon to interact with it. The former reads

κ = σcs
nV

ρ
, (6.3)
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where nV is the number of particles per unit volume, and ρ is the density. In stellar interiors, opacities
are essential to compute the energy transport in regularly stratified regions, i.e. radiative zones. The
cross section σcs depends on the chemical composition of the environment as photons do not interact
similarly with different particles. From Eq. 6.3, the opacity then varies with the chemical composition of
the environment. In stellar models, opacities values are tabulated as a function of the density ρ, temper-
ature T, and chemical composition. At low temperature (log T < 3.95) we use the opacity tables from
AESOPUS (Marigo and Girardi, 2007) while at high temperature (log T > 4.05) we took those from
OPAL1 and OPAL2 (Iglesias and Rogers, 1996). The use of the AESOPUS opacity tables at low tem-
perature is motivated by the fact that they treat the dense chemical pattern in the photosphere of stars,
particularly of AGB stars, taking into account continuum and discrete sources such as molecular ab-
sorption bands and collision-induced absorption. The AESOPUS and OPAL1 tables are for the Asplund
et al. (2009) solar mixture, while the OPAL2 tables allow to account for the metal abundance changes
due to the C and O enhancements that result from He burning. These tables are already generated and
available in the MESA directories. In MESA, a blend (see Eq. 1 of Paxton et al. (2011)) is performed in
regions where two distinct values exist for the opacity so that the derivatives smoothly vary relatively
from one opacity table to the other. The delimitation of existing tables is shown in Fig. 6.3.

FIGURE 6.3: Sources of the MESA opacity tables depending on the temperature T and the
density ρ. The sources AESOPUS (Marigo and Girardi, 2007), OPAL (Iglesias and Rogers,
1996), and COMPTON (Buchler and Yueh, 1976) are labelled in the specific regions of appli-
cation. The orange solid lines delimit regions where input tables exist for radiative opac-
ities, while the black solid lines delimit regions where algorithms are used to derive the
total opacities. The opacity in the right hand side of the dashed blue lines is dominated by
electron conduction. The contribution from pair production of electrons and positrons to
opacity tables is accounted for and becomes noticeable when their number exceeds that of
electrons from ionisation above the red dashed line. Several stellar evolutionary tracks are
shown in grey solid lines (three main sequences with M = 0.1, 1.0, and 100 M⊙ and one

track of a contracting M = 0.01 M⊙ brown dwarf). Credit: Paxton et al. (2011)

Induced overshooting

In the classical bare-Schwarzschild mixing scheme, the border of the convective zone is defined accord-
ing to the Schwarzschild criterion, that is where the difference ∇rad −∇ad changes sign (Schwarzschild,
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1958; Straniero et al., 2003). In this case, no extra mixing is allowed beyond the convective border and a
strong discontinuity in the chemical composition develops. This discontinuity grows as stellar evolution
proceeds while nuclear reactions modify the core composition. Nevertheless, the bare-Schwarzschild
convective border is in unstable equilibrium, meaning that a small expansion of the convective core
may make ∇rad larger than ∇ad at the new border (Castellani, Giannone, and Renzini, 1971b; Gabriel
et al., 2014). For this reason, an extra mixing layer must be taken into account beyond the boundary
of the convective zone defined in the sense of bare-Schwarzschild, extending the mixing beyond the
classical border of convective zones. This additional mixing is called induced overshooting, or equiva-
lently convective overshooting. This process relies on the hypothesis that the convective elements that
reach the classical border of the convective zone where ∇rad = ∇ad still have a residual kinetic energy,
to such an extent that they can penetrate the surrounding radiative zone and induce additional mixing
by convection (Fig. 6.4). Then, two different schemes can be adopted to model this additional mixing
region (Zahn, 1991).

➛ The classical step function overshooting: this scheme consists in extending the mixed region
beyond the classical border of the convective zone by a fixed fraction of the pressure scale height
HP = −(d log P/dr)−1, with the temperature gradient ∇T equal to the radiative gradient ∇rad in
the mixed region (Maeder, 1975). The extent of this extra mixed region is parameterised by the
overshooting parameter αov such that the size of this region is dov = αovHP. In stellar evolution
codes, the overshooting region is efficiently mixed by convection with respect to the characteristic
timestep of the evolution. Then, in MESA we assume that the overshooting region is fully mixed.
In case of a thin convective core during the H/He-core burning phases, the pressure scale height at
the classical convective boundary may diverge due to its asymptotic behaviour at r → 0, making
the treatment tricky for small convective cores. To get around this difficulty, we use an option in
MESA that sets the extent of the extra mixing region to dov = αovHP if HP ≤ Rcc, where Rcc is the
convective core radial thickness, and dov = αovRcc otherwise.

➛ The penetrative convection: this scheme is overall similar to the step function overshooting scheme,
but the thermal stratification differs. Instead of imposing ∇T = ∇rad in the extra mixed region, we
require ∇T = ∇ad. This change does not significantly impact the global properties of stars, such
as their luminosity and effective temperature, but clearly modifies the seismic parameters that are
sensitive to the inner structure near the border of the convective core.

Both mixing schemes can be used in MESA to model an additional mixed region beyond convective
zones. However, these mixing schemes have different impact on the structure parameters, especially
the Brunt-Väisälä frequency squared NBV. This implies that they differently affect seismic parameters,
for instance the period spacing ∆Π1, which is expressed as an integral of the Brunt-Väisälä frequency
through Eq. 3.39. Then, seismic parameters can be used to constrain the mixing scheme in the over-
shooting region, as performed by Bossini et al. (2017). They noticed that the period-spacing distribution
of He-core burning stars observed by Vrard, Mosser, and Samadi (2016) better matches the one obtained
when considering a model that includes an overshooting region with a radiative stratification.
In this work, we explore the effects of convective overshooting on the seismic parameters and the evo-
lutionary track, especially the location of the AGBb. We consider overshooting at two different locations
in stellar interiors: one from the convective core to the radiative zone, as illustrated in Fig. 6.4 during
the H-core burning and He-burning phases, and the other from the convective envelope to the radiative
core also called envelope undershooting (Khan et al., 2018) from the H-core burning phase to the AGB.

He-semiconvection and modified overshooting

Stellar evolution models reveal a coupling between the physical and chemical evolution of the convec-
tive core and the behaviour of the surrounding radiative layers. The quick mixing in the overshooting
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FIGURE 6.4: Top: Structure of a convective boundary in the convective penetration scheme
as found by Anders et al. (2022). Convective elements in the penetration zone that hit the
boundary of the radiative zone are braked by the buoyant restoring force, so they slightly
penetrate the radiative zone. Meanwhile, motions that start in the convection zone un-
dergo a weak restoring force when crossing the penetration zone, allowing the latter to
remain thermally well mixed. Credit: Jermyn et al. (2022). Bottom: Schematic description
of the temperature gradient in the two schemes of convective overshooting near the con-
vective core boundary. The profile of ∇T in the extra mixed region is shown in red for the
penetrative convection scenario and in blue for the classical overshooting scenario. Figure

courtesy of Diego Bossini.
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region induces an overall decrease of the radiative temperature gradient in this region. This global de-
crease is due to the fact that the propagation of convective elements becomes more efficient and helium-
rich materials are mixed in the overshooting region. On the other hand, the induced overshooting gen-
erates a local minimum in ∇rad within the mixed region and a local maximum at the extra-mixing border
above the location of the local minimum, as illustrated in Fig. 6.4 in the classical treatment of overshoot-
ing (Bossini et al., 2017). These extrema are caused by the increasing opacity of the overshooting region
due to the additional C and O elements formed in the convective core and brought by mixing processes.
The overall decrease of the radiative gradient ∇rad brings its local minimum to values lower or equal
to that of ∇ad in the mixed region. If the local maximum of the ∇rad profile exceeds the ∇ad value, a
layer that is convectively unstable in the sense of Schwarzschild develops. In MESA, this additional
convective layer induces a numerical problem since it is connected to the overshooting region, which is
interpreted as part of the convective core. This leads to a non-physical injection of helium in the core
(see Fig. 6.5). This problem can be lifted by considering an intermediate region called semi-convection
zone between the local minimum of ∇rad and the outer radiative zone (Castellani, Giannone, and Ren-
zini, 1971a). Semi-convection is related to the presence of a region that is unstable against convection,
but tends to be stabilised by partial mixing. This partial mixing is induced by the convectively unstable
core between the location of the minimum of ∇rad and the outer radiative zone. In stellar models, a
smooth gradient of chemical composition is created by the partial chemical mixing in the overshooting
region to satisfy ∇rad = ∇ad.

In the general case, the boundary of the convective core is set in the sense of Schwarzschild, i.e.
where ∇rad = ∇ad. In our work, we follow the modified prescription described in Bossini et al. (2017) to
avoid any artificial injection of helium in the core. This prescription consists in defining the convective
border at the location of the local minimum of ∇rad if it has increased over ∇ad in the overshooting
region, and at the location where ∇rad = ∇ad otherwise (see Fig. 6.6). In parallel, we consider the He-
semiconvection routine in MESA. We follow the diffusion scheme of Langer, El Eid, and Fricke (1985)
that introduces the diffusion coefficient

Dsc = αsc
κr

6cPρ

∇T −∇ad

∇L −∇T
, (6.4)

where αsc is the efficiency for the semiconvective diffusion, cP is the specific heat at constant pressure,
ρ is the density, κr is the radiative conductivity, and ∇L = ∇ad + [β/(4 − 3β)]∇µ where β is the ratio
of gas pressure to total pressure and ∇µ = d ln µ/d ln P. We adopt the typical value αsc = 0.1 for
well developed semiconvection (Langer, El Eid, and Fricke, 1985) and compute Dsc with ∇T = ∇rad
in the semiconvection region. Without this treatment of semiconvection, the evolutionary track in the
HR diagram and the Brunt-Väisälä frequency profile are noisy at the end of the He-core burning phase.
Another effect of a unadapted semiconvection treatment is that the luminosity drop at the AGBb is
less important and the star spends less time in the AGBb. Then, the treatment of He-semiconvection is
crucial for our study of the AGB bump in the presence of overshooting.

Most of the 1D stellar codes make use of the diffusion scheme to cope with semiconvection during H-
and He-core burning phases (e.g., Noels et al., 2010; Silva Aguirre et al., 2011; Choi et al., 2016). In paral-
lel, other treatments have been investigated to deal with the mixing in the semiconvective layer, for in-
stance the one that consists in changing the composition until the convective neutrality (i.e. ∇rad = ∇ad
according to the Schwarzschild criterion) is obtained (Crowe and Matalas, 1982). In this scenario, the
discontinuity in the profile of chemical elements such as hydrogen during the H-core burning phase
is smoothed out. Nevertheless, these 1D schemes are incomplete as they reduce the semiconvective
mixing efficiency to a free parameter (αsc in the diffusion treatment), leading to a lack of information
about this mixing process in stellar interiors. In order to circumvent this difficulty, 3D hydrodynamical
simulations has been released to quantify the transport of heat and composition behind semiconvection
(Mirouh et al., 2012; Wood, Garaud, and Stellmach, 2013). In this case, semiconvection is often referred
to as oscillatory double-diffusive (ODD) convection. In these semiconvective layers, the mean fluxes
and kinetic energy vary quasi-periodically, which is caused by large-scale gravity-wave motions. These
partial mixing regions are dependent of a double-diffusive instability, where two diffusion coefficients
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are needed to describe the fluid motions (Stern, 1960; Walin, 1964; Veronis, 1965; Kato, 1966). Under
specific conditions1, layered convection may settle, affecting the transport of heat and composition and
leading to a stair-like chemical stratification (Mirouh et al., 2012). Then, this 3D hydrodynamical treat-
ment of semiconvective zones has been adapted to provide a 1D prescription in stellar evolution codes
(Wood, Garaud, and Stellmach, 2013; Moore and Garaud, 2016).

Thermohaline convection

The thermohaline mixing has a significant role in the surface composition of red giants, as introduced
in Sect. 2.3.3. After the first dredge-up, the H-burning shell advances towards the surface while the base
of the convective envelope recedes toward the interior. Once the shell source reaches the homogeneous
part of the envelope, an inversion of molecular weight is created by the reaction 3He(3He, 2p)4He in
the outer wing of the H-burning shell (Ulrich, 1972). At that point, thermohaline convection sets in a
stably stratified region that satisfies the Ledoux criterion for convective stability, where the inversion of
molecular weight occurs. Then, the conditions for thermohaline convection reads

{ ∇ad −∇T +
( φ

δ

)
∇µ > 0

∇µ = d ln µ
d ln P < 0,

(6.5)

where φ = (∂ ln P/∂ ln µ)P,T, δ = − (∂ ln ρ/∂ ln T)P,µ, and the subscripts P, T, and µ indicate that the
partial derivatives are taken at constant pressure, temperature, and mean molecular weight, respec-
tively. The extent of the thermohaline mixing region depends on the strength of the µ-inversion, which
determines the efficiency of thermohaline mixing. For low-mass stars M ≤ 1.5 M⊙, the thermohaline
mixing region is large enough to connect the H-burning shell to the convective envelope (see Fig. 6.7),
bringing the products of H burning in the stellar envelope then changing the stellar surface composi-
tion. In MESA, thermohaline mixing is treated as a diffusive process where the diffusion coefficient
reads (Paxton et al., 2013)

FIGURE 6.5: Ratio between the radiative gradient ∇rad and the adiabatic gradient ∇ad
as a function of the mass coordinate. The profiles are computed for consecutive 1.50 M⊙
models in the He-core burning phase when the standard overshooting scheme of MESA
is applied (αov,He = 0.3). The consecutive panels show how the gradient profiles evolve
with time from left to right. The black arrows show the position of the classical convection
border while the two-sided red arrows delimit the overshooting region. In the third panel,
we can see that the classical convection border is misidentified at the outer edge of the
overshooting region, so in the next step (fourth panel) the overshooting region is artificially
extended. This numerical problem generates an injection of helium in the core. Credit:

Bossini (2016)

1We can define the inverse density ratio R−1
0 as the ratio between the destabilising thermal stratification and the stabilising

compositional one by R−1
0 =

∇µ

∇T−∇ad
, where ∇µ is the molecular weight gradient defined in Eq. 6.5. If R−1

0 becomes lower
than a specific threshold, then ODD convection is changed into layered convection
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FIGURE 6.6: Same label as Fig. 6.5, but the modified overshooting scheme implemented
by Bossini et al. (2017) is adopted. In this scenario, the classical convection border is taken
at the point where ∇rad = ∇ad, except if the local minimum in ∇rad inside the convective
region becomes larger than ∇ad (which is what we can see in the third panel). Then, the
overshooting region is not extended and no artificial helium injection is noticeable. Credit:

Bossini (2016)

Dth = αth
3κr

2ρcP

K
∇T −∇ad

. (6.6)

In the previous equation, κr is the radiative conductivity, cP is the specific heat at constant pressure, αth
is the efficiency parameter for the thermohaline mixing, and

K = − 1
χT

N−1

∑
i=1

(
∂ ln P
∂ ln Xi

)

ρ,T,{Xj ̸=i}

d ln Xi

d ln P
, (6.7)

where χT = (∂ ln P/∂ ln T)ρ, and Xi represents the mass fraction of atoms of species i in the N-component
plasma. The species j is eliminated in the sum so that the constraint ∑N−1

i=1 Xi + XN = 1 is fulfilled. We
follow the diffusive scheme of Kippenhahn, Ruschenplatt, and Thomas (1980), which assumes that ther-
mohaline mixing is performed with blobs of size L that diffuse while travelling over a mean free path L
before dissolving, with the efficiency parameter αth = 2.

Rotation

In stellar models, rotation is one of the main ingredients that affect lifetimes, surface abundances and
evolutionary fates. Indeed, rotation induces mixing that brings the products of nuclear reactions to the
envelope. In MESA, rotation is treated in 1D in the shellular approximation, i.e. the angular veloc-
ity is constant on isobars whose shapes are spherical surfaces (e.g., Zahn, 1992; Meynet and Maeder,
1997). This assumption is valid because of the presence of a strong anisotropic turbulence acting along
isobars, which is caused by a differential rotation and efficiently erases gradients along isobars. With
the shellular rotation, MESA calculates the modification brought by the centrifugal acceleration in 1D
stellar equations (Kippenhahn and Thomas, 1970; Endal and Sofia, 1976). In our work, we implement
rotation from the ZAMS up to the AGB phase with a rotation rate that gradually reaches the maximum
value ΩZAMS at the ZAMS. The value that we use is motivated by observations of B stars (Huang, Gies,
and McSwain, 2010), which is ΩZAMS/Ωcrit = 0.3, where Ωcrit is the surface critical angular velocity for
the star to be dislocated. Including rotation with this rate produces evolutionary tracks that are simi-
lar to those when adding H-core overshooting αov,H ≈ 0.25, which is slightly higher than the optimal
value obtained by calibration (see Fig. 2.3). Nevertheless, we do not include rotation for stars of mass
M ≤ 1.5 M⊙ since magnetic braking is not implemented in MESA, which is necessary to reproduce slow
rotation rates of low-mass stars (Kawaler, 1988).
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FIGURE 6.7: Evolution of the internal structure of a 1.0 M⊙ star including thermohaline
mixing and He-semiconvection, from the onset of thermohaline mixing on the RGB up
to the AGB. Green, yellow and red hatched regions indicate convection, semiconvection,
and thermohaline mixing, respectively. Blue shaded areas shows regions where nuclear

burning proceeds. Credit: Cantiello and Langer (2010)

As mentioned herebefore, rotation induces transport of chemicals and angular momentum through-
out the star. These transport mechanisms are treated in a diffusion approach through instabilities (Endal
and Sofia, 1978; Pinsonneault et al., 1989; Heger, Langer, and Woosley, 2000). Six rotational instabilities
are considered, which are dynamical shear, secular shear, Solberg-Høiland, Goldreich-Schubert-Fricke
instabilities, Eddington-Sweet circulation, and Tayler-Spruit dynamo. The dynamical shear instability
arises when the energy gained by shear flows is comparable to the work necessary for a mass element to
adiabatically counterbalance the gravitational potential. If thermal adjustments of radial perturbations
are allowed, then this instability is relaxed on a thermal timescale and is therefore a secular shear insta-
bility. The Solberg-Høiland instability occurs when an adiabatically displaced mass element undergoes
a total force that is parallel to the direction of the displacement. The Goldreich-Schubert-Fricke insta-
bility emerges from axisymmetric perturbations, where the rotational velocity depends on the distance
from the equatorial plan, creating meridional flows. In a rotating star, surfaces of constant temperature
and pressure do not coincide. As a consequence, rotating stars cannot be simultaneously in thermal
and hydrostatic equilibrium (Baker and Kippenhahn, 1959) and large-scale circulations develop called
Eddington-Sweet circulations. Finally, the Tayler-Spruit dynamo is driven in presence of differential ro-
tation by the Tayler instability that implies an axisymmetric toroidal magnetic field (Spruit, 1999; Spruit,
2002). The Tayler instability can generate a radial field displacement that is rewinded by differential ro-
tation into a toroidal field, creating a dynamo loop, hence the Tayler-Spruit dynamo. These instabilities
are represented by diffusion coefficients and are added to the diffusion coefficient in absence of rotation.

The atmosphere and mass loss

As presented in Chapter 3, seismic parameters are sensitive to the near-surface structures with a strong
sound-speed gradient. The modelling of the stellar atmosphere is then essential as the latter directly
impact the seismic parameters. Here, we take a simple grey atmosphere with an Eddington T − τ
relation
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T4 =
3
4

T4
eff

(
τ +

2
3

)
, (6.8)

where τ is the optical depth. The outermost meshpoint of the models is defined at the layer where the
optical depth τ = 2/3, which is at the limit of the photosphere. As introduced in Chapter 2, high-
luminosity giants experience an important mass loss due to the radiative pressure exerced by photons
that push the envelope outwards. In MESA, we used the Reimers’ prescription (Eq. 2.8) from the RGB
up to the He-core burning phase with a scaling factor ηR = 0.3, which is the maximum mass loss rate
reported for composite populations, i.e. for a mixture of several stellar-cluster populations with different
ages and chemical compositions (Miglio et al., 2021a). On the AGB, we use the Blöcker’s prescription
(Eq. 2.9) with a scaling factor equal to ηB = 0.1, which is the typical value used to reproduce the initial-
final mass relation, i.e. the total mass loss integrated over the lifetime from the initial stage to the final
stage of stellar evolution (Choi et al., 2016). In the atmosphere, we tested a varying opacity computed by
numerical integration of the hydrostatic equilibrium equation, but the model could not evolve further
than the He-flash stage because of convergence issues of the solution. As a consequence, we choose a
uniform opacity, fixed to the opacity of the outermost cell of the interior model, which is the standard
option in MESA.

6.2.3 The solar calibration

With the high-quality data available of the present-day Sun including seismic data, the global properties
of the Sun such as its mass and age are well constrained (e.g., Bahcall, Pinsonneault, and Wasserburg,
1995; Brown and Christensen-Dalsgaard, 1998; Fröhlich, 2006). This makes the Sun an adequate refer-
ence point for testing new input physics and comparing them with different studies. For this reason,
the stellar evolutionary tracks are calibrated so that the global solar parameters are recovered for the
model computed at the solar age. This procedure is called a solar calibration. The initial model used for
the solar calibration is a star on the pre-main sequence with an homogeneous chemical composition at
a given helium abundance Y0, metallicity [Fe/H] and mixing length parameter αMLT. In our study, we
keep the mass M and H-core overshooting αov,H fixed at the values M = 1 M⊙ and αov,H = 0.2. Then, we
compute the evolution of the corresponding model up to the present solar age. If the model at the solar
age fits the solar parameters within the desired accuracy then the set of parameters {Y0, [Fe/H], αMLT}
is assumed to be satisfyingly calibrated to the Sun. If not, MESA computes in an iterative process the
track of an other initial model with different parameters Y0, [Fe/H], and αMLT. The agreement of the
computed model at the solar age is evaluated by a χ2 method, which consists in minimising the param-
eter χ2 that encompasses differences between the model and observations. This parameter is defined
as

χ2 =
N

∑
i=1

(yi − yi,obs)
2

σ2
yi,obs

, (6.9)

where yi,obs are the observed solar parameters, yi are the corresponding parameters from stellar mod-
els, σyi,obs are the uncertainties on yi,obs, and N is the number of total solar parameters. In MESA, the
optimisation method to find the minimal χ2 follows the Nelder-Mead simplex algorithm (Nelder and
Mead, 1965), which adapts itself to local extrema and where new combinations of initial parameters
{Y0, [Fe/H], αMLT} are chosen based on the previous comparison between the model at solar age and
observations. Here, the observed solar parameters are the luminosity L⊙ = 3.8418 × 1026 W, the ra-
dius R⊙ = 6.9598 × 105 km (Bahcall et al., 2005), and the ratio between the metal mass fraction and
hydrogen mass fraction at the surface (Z/X)⊙ = 0.01812. The latter value corresponds to the determi-
nation of the solar composition by Asplund et al. (2009). Usually, many studies use the target solar age
τ⊙ = 4.567 × 109 yr presented in, e.g., Chaussidon (2007), which corresponds to the solar age derived
from the abundances and daughter products of radioactive nuclides in meteoritic material. In MESA,

2the metal mass fraction Z is related to the metal abundance ratio [Fe/H] by [Fe/H] = log
(

(Z/X)
(Z/X)⊙

)
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the default target solar age is τ⊙ = 4.61 × 109 yrs, which takes into account the time spent after the
ZAMS τ = 4.57 × 109 yrs and the time spent during the pre-main sequence τPMS = 4 × 107 yrs. These
different options for the target solar age induce insignificant differences in the calibrated parameters
{Y0, [Fe/H], αMLT} (Sackmann, Boothroyd, and Fowler, 1990). With our set of physical inputs presented
in Sect. 6.2 including H-core overshooting, we obtain the calibrated values Y0 = 0.253, Z = 0.0133, and
αMLT = 1.927.

6.3 The stellar oscillation code ADIPLS

The Aarhus adiabatic oscillation package ADIPLS (Christensen-Dalsgaard, 2008) provides an efficient
way for the computation of adiabatic oscillation frequencies and eigenfunction of stellar models. Indeed,
radial and non-radial oscillations can be computed in the Cowling approximation, leading to a second-
order set of equations (Eq. 3.10) or in the full case, corresponding to a fourth-order system of equations
(Eq. 3.8). The code also includes a meticulous treatment of the boundary conditions. The former allows
the user to consider a full model, including the core and the envelope with the regularity conditions at
the boundary meshpoints, or a truncated model at a finite distance from the centre with different types
of conditions that can be parameterised. In parallel, the code can adjust the treatment to different surface
conditions. In vanishing surface pressure models (for example in full polytropic models), the surface
is a singular point so regularity conditions are imposed. In non-vanishing surface pressure models (for
instance models truncated at a suitable point in the atmosphere), various conditions can be chosen.
This code is directly incorporated in MESA package and the models returned by MESA can be used as
inputs to ADIPLS to compute the adiabatic frequencies corresponding to these models. ADIPLS offers
multiple options to determine all frequencies of a given model in a given range of degree and frequency.
The programme is controlled by various parameters, which are divided in several categories:

➛ The mod group, which is devoted to reading the stellar models returned by MESA and controlling
the equilibrium model. For the computation of the adiabatic frequencies, the model can be read
with a specific spacing in the stellar mesh or truncated at a specific location.

➛ The osc group, dedicated to controlling the mode degrees ℓ to be computed as well as the trial
frequencies used to find the adiabatic oscillation frequencies of the models. Especially, we can
choose the way trial frequencies are determined, the frequency window in which they can vary,
and the way they are incremented at each step of the iteration process to reach the best solution.

➛ The rot group includes the effects of rotation.

➛ The cst group defines the fundamental constants, especially the value of the gravitational constant
G = 6.6732 × 10−8 g−1.cm3.s−2.

➛ The int group, which controls the equations, the boundary conditions and the numerical integra-
tion method of the oscillation equations. The latter can be solved by using the Cowling approx-
imation or the full set of equations. Several boundary conditions can be adopted at the surface,
either implying the pressure perturbation or the radius perturbation. The maximum number of
iterations to find the solution and the precision with which the frequencies are assumed can also
be initialised. The integration method can either be set following a shooting method or a relax-
ation technique. The shooting method assumes that for a set of two (respectively four) equa-
tions, a unique solution satisfies (respectively two linearly independent solutions satisfy) the in-
ner boundary conditions and a unique solution satisfies (respectively two linearly independent
solutions satisfy) the outer boundary conditions. The final solution can then be obtained by re-
quiring that the solutions agree at a suitable matching point x f = r f /R∗, where r f is the radial
coordinate of the matching point and R∗ is the radius of the star. In the case where one of the
boundary conditions is dropped, the relaxation technique can be used to avoid ill-behaved solu-
tion where the latter is found separately for x < x f and x ≥ x f by introducing a double point
x−f = x(k f ) = x(k f + 1) = x+f , where k f is the kth

f point in the mesh. Further details about the
mathematical implementation of these methods can be found in Christensen-Dalsgaard (2008).
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➛ The out group, which handles the outputs. The code returns the adiabatic mode frequencies,
degree, the radial order, and the inertia. Parameters are available to designate the radial order and
the normalisation factor for the mode energy. Finally, the frequencies are returned in a specified
frequency window and the displacement eigenfunctions can be returned at provided meshpoints.

6.3.1 Computation of p-modes in evolved giants

The extraction of the pure pressure non-radial modes

To compute the adiabatic frequencies of p modes, we initialise the parameters in the control file of
ADIPLS to optimise the computation of these modes in red giants. Nevertheless, computing p modes in
red giants is not straightforward. In red giants, the p- and g-mode cavities are coupled, so the non-radial
p modes are not directly accessible. Instead, non-radial modes are mixed modes, for which the displace-
ment eigenfunctions is non-zero both in the envelope and in the core. The p-mode frequencies could be
approximated from the mixed-mode pattern, especially with the mode of lowest inertia. But resolving
the mixed modes is demanding since their displacement eigenfunctions rapidly vary in the core. For
example, more than 20,000 cells are needed to resolve the displacement eigenfunctions of mixed modes
in case of an intermediate red giant, and even more cells is required for a high-luminosity red giant.
Alternately, this difficulty can be circumvented by a specific treatment of non-radial modes. Mixed
modes can develop because of the presence of a radiative zone where NBV > 0, which is responsible
of the g-mode behaviour of mixed modes in the core. In the absence of a radiative zone, mixed modes
cannot develop and non-radial modes are pure p modes. By setting the square of the Brunt-Väisälä
frequency N2

BV equal to zero in the convectively stable regions, the g modes in the core would be sup-
pressed. Ball, Themeßl, and Hekker (2018) have shown that modifying the dimensionless square of the
Brunt-Väisälä frequency in the ADIPLS files defined as

A =
r
g

N2
BV =

1
Γ1

d ln P
d ln r

− d ln ρ

d ln r
, (6.10)

and setting it to zero wherever A > 0 in the core allowed them to consistently extract the p-mode
frequencies of dipole and quadrupole modes in RGB models. In Eq. 6.10, r is the distance to the centre,
g is the local gravity, Γ1 is the local first adiabatic exponent, P is the local pressure, and ρ is the local
density. In Fig. 6.8, we can see how the frequencies of the modes of lowest inertia for non-radial modes
in the unmodified model compare with those of the non-radial p modes obtained by setting A = 0
in the core. We notice that the quadrupole modes are accurate since they do not deviate far from the
modes of lowest inertia in the unmodified model. For dipole modes, a deviation of 0.1 µHz is noticeable
around ν ∼ 40 µHz, which is equal to 2% of the value of ∆ν, which tends to confirm that the frequencies
of the non-radial pure p modes are correct. These observations have been validated for several RGB
models at low ∆ν = 2.97, 3.15, 4.56 µHz. As a result, setting A = 0 allows us to extract the pure p mode
frequencies of non-radial modes in evolved RGB stars with ∆ν ≤ 4.5 µHz. Accordingly, we compute the
frequencies of the pure p dipole and quadrupole modes by setting A = 0 in the core for both H-shell
burning and He-burning stars. In Sect. 6.3.3, we evaluate the consistency of the method for He-burning
stars. This modification is not brought to the MESA models, but only achieved in the ADIPLS file, as
described in Appendix A of Ball, Themeßl, and Hekker (2018). This method is efficient since we do not
require a large number of cells to resolve the displacement eigenfunctions as they do not rapidly vary
for pressure modes of low-radial order.

ADIPLS settings

In the osc group, the mode degrees that we compute are set to ℓ = 0, 1, 2. When the MESA models
are close to the luminosity tip of the RGB before undergoing the He burning, the code fails to return
consistent frequencies for the non-radial modes. We reach the same conclusion for models evolving
on the AGB after the AGB bump. As a consequence, we do not compute the non-radial modes near
the luminosity tip of the RGB and after the AGB bump, but the radial modes only. On the other hand,
trial frequencies are provided to the code to efficiently compute the p-mode frequencies. The first trial
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frequency is taken very low to catch the first radial order, then the next trial frequencies are based on
the mode frequencies computed at the previous radial order n − 1. In the int group, we do not assume
the Cowling approximation and solve the full oscillation equations. The type of integration for solving
the differential equations is set following the shooting method with centred difference equations. In this
scenario, the differential equations are replaced by difference equations and the numerical problem is
formulated by

yi(k + 1)− yi(k)
x(k + 1)− x(k)

=
1
2

I

∑
j=1

[
ai,j(k)yj(k) + ai,j(k + 1)yj(k + 1)

]
, (6.11)

where i = 1, ..., I, I is the order of the system, x = r/R∗, k is the kth point in the mesh, yi are the variables
in the oscillation equations to be determined, and ai,j are linear coefficients.

FIGURE 6.8: Demonstration of the effects of suppressing g modes in the core by setting
the dimensionless square of the Brunt-Väisälä frequency A = 0 for an RGB model of mass
M = 1.47 M⊙, large separation ∆ν = 4.56 µHz, and frequency at maximum oscillation
power νmax = 46.4 µHz. Upper panel: mode inertia as a function of frequency. The dashed
blue and solid orange lines refers to the ℓ = 1, 2 modes, respectively, before the g modes
are suppressed. The black circles, blue squares, and orange diamonds show the ℓ = 0, 1, 2
modes after the g modes are suppressed. Lower panel: differences between the mode
frequencies before and after the g mode suppression. For the non-radial modes, the differ-
ences are shown relatively to the modes of lowest inertia obtained in each ∆ν interval in
the unmodified model. For two dipole modes (at 30.6 and 53.6 µHz), two modes with low
inertia are close to the expected pure p mode, they are both displayed in the figure. Credit:

Ball, Themeßl, and Hekker (2018)
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The numerical errors in the computed frequencies scale as N−2, where N is the number of mesh-
points. The computed pulsation frequencies ω are improved by using the Richardson extrapolation
(Shibahashi and Osaki, 1981). If we define the dimensionless frequency σ by

ω =

√
GM
R3 σ, (6.12)

it can be shown that the eigenfrequencies obtained from models with N/2 and N meshpoints noted
σ(N/2) and σ(N), respectively, can be used to improve the accuracy of the eigenfrequencies. The
leading-order error term cancels when considering the frequency σRi defined by

σRi =
1
3
[4σ(N)− σ(N/2)] , (6.13)

which is called the Richardson extrapolation. If this correction is applied, the errors on the eigenfre-
quencies do no longer scale as N−2 but as N−4, which reveals to be noticeable for low-order p modes in
red giants.

6.3.2 Mesh redistribution

As mentioned in Sect. 6.1, the mesh resolution in MESA depends on the local gradient of the physi-
cal parameters. Typically, the number of cells is more important in the nuclear burning regions, and
more generally in regions where the composition gradient is sharp. Nevertheless, computing the evo-
lutionary track of a star with a large number of cells is time consuming and requires a lot of disk space
while not always necessary to study the internal stellar structure. In parallel, an adequate number of
cells is required to compute the solution of the oscillation equations so that the displacement eigenfunc-
tions are properly resolved, especially for evolved giants that have a large convective envelope and a
small radiative core. In our case, since we aim at studying pressure modes for which the displacement
eigenfunctions smoothly vary, we do not need a large number of cells in the mesh. Still, we need to
redistribute the mesh to optimise the computation of the pulsation frequencies. To this end, an auxiliary
program is provided in complement of ADIPLS, with a control file that includes a sample of parameters
to specify how the mesh must be redistributed. Several options are available to optimise the computa-
tion of the solution depending on the outputs of ADIPLS the user seeks. The user can choose the mesh
to be optimised either for the computation of p or g modes. Other parameters are dedicated to control
the number of meshpoints near sharp variation regions and at the base of the convective envelope, and
the fraction of points that should be kept for the near surface.

Since we aim at analysing the p-mode pattern in red giants, we perform a mesh redistribution that
optimise the computation of p-modes. In this case, most of the parameters can be set to the default
values of the program, except the number of meshpoints. At a given number of meshpoints, it happens
that ADIPLS fails to compute some non-radial modes especially at low-radial orders. In this case, the
data at the corresponding radial orders are missing. To maximise the number of non-radial modes, we
run the ADIPLS code for models with several mesh redistributions with different number of points.
Typically, we vary the number of meshpoints between 2,000 and 8,000 with a increment of 500 points
by step. For each model, we compute the set of non-radial modes and we keep the model that includes
as many modes as possible. This allows us to minimise the number of missing non-radial modes at low
radial order, which is essential for evolved giants where the maximum oscillation power is located at
low radial order.

6.3.3 Testing the computation of pure p modes in He burning stars

As introduced in Sect. 6.3.1, the pure pressure non-radial modes are computed by setting the squared
Brunt-Väisälä frequency N2

BV equal to zero in the core in the ADIPLS code. This trick has revealed to be
powerful to assess the pure pressure dipole and quadrupole modes in H-shell burning stars (Fig. 6.8)
with ∆ν ≤ 4.5 µHz (Ball, Themeßl, and Hekker, 2018), but needs to be confirmed for He-burning stars.
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Therefore, we verify how the pure pressure dipole and quadrupole modes inferred by setting N2
BV = 0

compare to the mixed dipole and quadrupole modes of lowest inertia, as illustrated in Fig. 6.8. To this
end, we have to compute the mixed modes, which implies that we need to increase the number of
meshpoints to resolve the rapid variations of their displacement eigenfunctions. Then, we redistribute
the mesh and build a new mesh composed of 20,000 points. We configure the ADIPLS control file to
compute mixed modes in red giants, especially the step for the trial frequencies which is not taken uni-
form in frequency but in period. As a result, we obtain a set of several mixed modes per radial order
n, or equivalently per ∆ν interval. The mixed modes of lowest inertia are the modes that are closest
to the expected pure pressure modes. They can be taken as a reference to evaluate the potential of the
mode frequencies computed with the method N2

BV = 0 to reproduce the expected pure pressure mode
frequencies (Broomhall et al., 2014).

In Fig. 6.9, we compare the mode frequencies computed with the method N2
BV = 0 in the core to the

frequencies of the mixed modes of lowest inertia during the He-burning phase. Globally, it seems that
the frequencies of the pure pressure modes are correctly derived by setting N2

BV = 0 in the core. Most
of these frequencies are extracted with a spacing lower than 0.05 ∆ν relatively to the frequencies of the
mixed modes of lowest inertia. Concerning the dipole modes, we notice a bias of ∼ 0.02 ∆ν between
those frequencies. This bias does not have important consequences for our study because the offset is
present in all computed ℓ = 1 modes. When studying the signature of glitches, we compute differences
of frequencies at consecutive radial order n at the same degree ℓ so this bias is reduced. Nevertheless, the
dispersion of differences is about ∼ 0.05 ∆ν, which may impact the amplitude of the glitch modulation
that is typically equal to a fraction of ∆ν. In Chapter 8, we show that these differences do not prevent us
from accurately reproducing the shape of the modulation. On the other hand, the quadrupole modes are
accurately derived, with unbiased measurement of their frequencies. The differences that we observe
between mode frequencies computed with the method N2

BV = 0 in the core and the frequencies of the
mixed modes of lowest inertia can be explained by several factors:

➛ The method employed to compute the non-radial modes by setting N2
BV = 0 in the core introduces

an error with respect to the expected pure pressure modes

➛ Some mixed modes are poorly estimated because the ADIPLS settings we choose are not adapted
for any ∆ν. For instance, the mesh redistribution could be improved at low ∆ν ≤ 1 µHz

➛ Although the modes of lowest inertia are the mixed modes closest to the expected pure pressure
modes, they still deviate a bit from the latter

Overall, the errors that are introduced in the dipole and quadrupole mode frequencies by setting
N2

BV = 0 in the core are in average the same as the largest errors reported by Ball, Themeßl, and Hekker
(2018) with the same technique but applied for RGB models. Therefore, in the following we use the
dipole and quadrupole mode frequencies obtained by setting N2

BV = 0 in the core as the reference
frequencies for the pure pressure dipole and quadrupole modes, both for H-shell burning and He-
burning stars. In parallel, we compute the radial modes with the unmodified MESA models. These
radial, dipole and quadrupole modes constitute the set of modes that we use to reproduce and interpret
the observations in terms of stellar structure changes.

6.4 Summary

In this work, we use the stellar evolution code MESA to compute the evolution of 1D models of initial
mass M ∈ [0.8, 2.5]M⊙ and metallicity [Fe/H] ∈ [−1.0, 0.25]dex from the pre-main sequence up to the
AGB. Several inputs physics are adopted to explore their impact on specific phases of stellar evolution.
The convection efficiency is set following the mixing-length theory (Henyey, Vardya, and Bodenheimer,
1965), where blobs travel over a characteristic distance ℓMLT before dissolving and delivering their excess
or deficiency of energy to the environment. At low temperature (log T ≤ 3.95), the opacity tables are
from AESOPUS (Marigo and Aringer, 2009) while at higher temperature (log T ≤ 4.05), they are from
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OPAL1 and OPAL2 (Iglesias and Rogers, 1996). AESOPUS and OPAL1 tables are appropriate for the
solar mixture from Asplund et al. (2009), while the OPAL2 tables are suitable when the metal mixture
changes due to the enhancement of C and O elements during He-burning phases. Besides, we consider
additional mixing regions beyond the boundary of convection zones (core and envelope) with the step
overshooting scheme, whether in H-burning or He-burning phases. However, this extra mixing can
artificially inject helium in the core during the He-burning phase, making the evolutionary track noisy
at the AGBb phase. To mitigate this issue, a He-semiconvection layer connected to the overshooting
region must be considered, which is unstable against convection but stabilised by partial mixing. From
the RGB up to the early-AGB, we include thermohaline mixing that settles in the radiative zone in the
outer wing of the H-burning shell, where an inversion of molecular weight occurs according to the
scheme of Kippenhahn, Ruschenplatt, and Thomas (1980). The effects of rotation on the stellar structure
are also explored in the 1D shellular approximation (Zahn, 1992; Meynet and Maeder, 1997), but only
for high-mass stars (M ≥ 1.5 M⊙). For low-mass stars (M ≤ 1.5 M⊙), magnetic braking is an essential
physical ingredient for modelling their rotation profile, but is not implemented in MESA yet. So we do
not consider rotation for stars of mass M ≤ 1.5 M⊙. Finally, the Reimers’ (Reimers, 1975) and Blöcker’s
(Blocker, 1995) prescriptions are adopted to account for mass loss on the RGB and AGB, respectively.

In parallel, we adopt the stellar oscillation code ADIPLS, which allows us to solve the fourth-order
system of oscillation equations without using the Cowling approximation (Eq. 3.8). Then, we are able to
extract the adiabatic mode frequencies associated to the MESA models. In red giants, non-radial modes
are mixed so the pure p-mode frequencies could be approximated by the frequencies of the p-dominated
non-radial modes with lowest inertia in each ∆ν-interval. Nonetheless, this would require a mesh with
a gigantic number of cells to resolve the displacement eigenfunctions of mixed modes, up to 100,000
cells for the most luminous red giants. Instead, we follow the treatment proposed by Ball, Themeßl,
and Hekker (2018), which consists in suppressing the g modes in the core by setting the squared Brunt-
Väisälä frequency N2

BV = 0 in the core. This trick reveals to be powerful to assess the p-mode frequencies
of dipole and quadrupole modes not only in the H-shell burning phase, but also in He-burning phases.
These p-mode frequencies can be used to compute the seismic parameters described in Chapter 3. In
Chapter 8, we discuss how these parameters can probe the structure changes between RGB and AGB
stars.
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FIGURE 6.9: Comparison of the mode frequencies computed with the method N2
BV = 0 to

the frequencies of the mixed modes of lowest inertia in each ∆ν interval, without modify-
ing the outputs of MESA. Upper left: Model frequencies of ℓ = 1 modes in units of the
large frequency separation ∆ν for the 8 first radial orders and for a 1 M⊙ track during the
He-core burning and the early He-shell burning phase. The dipole modes computed with
the method N2

BV = 0 are shown in blue circles while the mixed dipole modes of lowest
inertia are exhibited in blue crosses. Upper right: histogram of the differences between
the dipole mode frequencies ν1, p computed with the method N2

BV = 0 (blue circles) and
the frequencies ν1, g of the dipole modes of lowest inertia (blue crosses). This histogram is
computed for the whole He-burning phase and all radial order up to n = 8. These differ-
ences are expressed as a percentile of ∆ν. The black solid line localises the median of the
distribution, while the dotted lines show the 16th and 84th percentiles of the distribution.
Lower left and lower right: same label as the upper panels, but for the ℓ = 2 modes. Some
modes could not be computed because they were missing or because they were inconsis-
tent. This explains why some symbols are missing, especially the mixed non-radial modes

of lowest inertia at n = 1.
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Chapter 7

Fitting the oscillation spectrum of evolved
red giants

As depicted in Chapter 5, the oscillation spectrum of red giants is sensitive to stellar evolution. For
early-RGB stars, it is marked by the presence of radial and mixed non-radial modes that result from
the coupling between the p- and g-mode cavities. As stars ascend the RGB, this coupling becomes
weaker and mostly p-dominated non-radial modes are visible, including dipole, quadrupole, and oc-
tupole modes potentially. These patterns are also seen in AGB stars. As a result, the oscillation spectrum
of high-luminosity red giants contains considerable information on their interiors. Nonetheless, measur-
ing the seismic parameters introduced in Chapter 3, 4 is challenging since the analysis of the oscillation
spectrum is hampered by the frequency resolution. Long time series are needed so that stellar oscillation
modes can be resolved and fitted with satisfactory precision. Here, we aim at extracting the seismic pa-
rameters of high-luminosity RGB and AGB stars. This set of seismic parameters will help us to constrain
the physical ingredients in red-giant models.

This chapter uses the concepts presented in the article 1. The later summarises the methods
used to extract the seismic parameters. Besides, we explore how physical properties of the internal
structure can be inferred from the analysis of the oscillation spectrum of evolved red giants. Sect. 3.1,
3.2, 3.4 of the attached article 1 present the methods to identify the pressure modes of high-luminosity
red giants. In this chapter, we focus on the techniques to analyse the oscillation spectrum of red
giants, to fit their p-mode pattern, and extract their glitch signature.

7.1 Structure of the Fourier spectrum

Stellar oscillations are not the only signal that is present in the Fourier spectrum of the time series.
As illustrated in Fig. 7.1, the convection currents at the stellar surface and the surface rotation induce
a signal in the time series, hence a clear signature in the power spectral density (PSD). Other non-
periodic signals are present such as the photon noise, instrumental effects, and non-periodic effects of
the granulation signal. All the components of the PSD that are not related to stellar oscillations are
treated as the background signal.

7.1.1 The full global spectrum

At very-low frequency, the PSD is dominated by the signature of the surface differential rotation through
the modulation induced by the stellar spots when they cross the visible stellar surface García (2015).
These rotation modulations cause series of high-amplitude peaks and their harmonics, as shown in
Fig. 7.1. At higher frequencies, granulation is the main contributor to the background signal. This is the
signature of surface convection taking place in the outer part of the convection zone, where bright and
hot gas cells rise to the photosphere and form granules. At the granule’s edges, materials cool down
and descend back into the interior. These convection motions of characteristic timescale τgran create a
signal in the Fourier spectrum with a characteristic frequency (2πτgran)−1, which is closely correlated
with νmax since it varies as ν0.89

max (Mathur et al., 2011). Finally, beyond the frequency range where stellar
oscillations are observed, the spectrum is flat and is dominated by the photon noise of the source.
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The full global spectrum P0 including both the photon noise, non-periodic and periodic components
can be modelled by (Harvey, 1985; Harvey et al., 1993; Vázquez Ramió, Roca Cortés, and Régulo, 2002;
Lefebvre et al., 2008)

P0(ν) = Nph +
N

∑
i=1

4σ2
i τi

1 + (2πντi)
βi
+

M

∑
j=1

Hj


 Γ2

j(
ν − ν0j

)2
+ Γ2

j




γj

, (7.1)

where Nph is the photon noise that is assumed to be constant, i and j correspond to the N non-periodic
and M periodic components, respectively, σi and τi are the root mean square variations and the char-
acteristic time of the non-periodic background components i, respectively, βi and γj are the decay rates
of the components i and j, respectively, and Hj, ν0j, and Γj are the height, central frequency and width
of the Lorentzian profiles used to fit the periodic components, respectively. Non-periodic sources that
contributes to the background signal are attributed to convection motions, which were first modelled
by Harvey (1985). As for periodic sources, they are attributed to the extra power coming from the
photospheric and chromospheric oscillations at high frequency (Harvey et al., 1993). In the following,
the photon noise and the incoherent component are referred to as the background B and the periodic
components are attributed to the stellar oscillation modes Posc
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so that P0(ν) = B(ν) + Posc(ν).

FIGURE 7.1: Power spectral density (in ppm2.µHz−1) of the Kepler target KIC 3733735 ob-
served during three years. The different physical contributions to the PSD associated to
each frequency range are illustrated. There are the stellar oscillations, the convection mo-
tion at the surface (granulation), the photon noise, and the rotation modulation through
the spot cycles. The granulation is fitted with the orange solid line while the photon noise

is shown with the red dashed line. Credit: García (2015)
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7.1.2 Structure of a typical oscillation spectrum of red giants

The power excess envelope of stellar oscillations is added on top of the background components in the
PSD. The general structure of an oscillation spectrum of evolved red giants is illustrated in Fig. 7.2.
Given the weak coupling between the stellar envelope and core in evolved RGB and AGB stars (Dupret
et al., 2009; Grosjean et al., 2014), only modes that develop in the convective envelope can be detected
(see Fig. 3.8). They correspond to pressure modes that are excited by the turbulent motion of convection
near the stellar surface (Goldreich and Keeley, 1977; Belkacem et al., 2006). They manifest as scattered
profiles similar to speckles of width δνres = 1/Tobs randomly distributed in their intrinsic Lorentzian
profile due to their stochastic excitation, where Tobs is the observation duration. In those evolved stars,
no signature of asymmetric mechanisms such as rotation and magnetism in mode frequencies have been
reported yet.

FIGURE 7.2: Oscillation spectrum of the RGB star KIC 1719297 with ∆ν = 1.22 µHz. The
red dashed lines indicates the location of the radial modes (ℓ = 0) while the blue and green
dashed lines locate the non-radial modes, i.e. dipole (ℓ = 1) and quadrupole modes (ℓ =
2), respectively. The grey dotted line represents the underlying Gaussian envelope of the
observable modes, where the maximum reached at νmax marks the maximum oscillation

power.

In this case, modes are labelled with their radial order n and degree ℓ. Mainly radial (ℓ = 0), dipole
(ℓ = 1), and quadrupole (ℓ = 2) are observable in evolved red giants. In the best-case scenario, octupole
modes (ℓ = 3) can be observed, but sufficiently high signal-to-noise ratio and long observation duration
are required. These observable modes have their frequency close to the characteristic frequency associ-
ated to the timescale of the long convective motions in the near-surface layers (Belkacem et al., 2011).
The frequency at which the oscillation power is maximum is noted νmax. The modes with a frequency
far from νmax are not efficiently excited by the near-surface convection so they are not seen in the oscilla-
tion spectrum. Thus, the mode heights are distributed along a power distribution envelope centred on
νmax that determines the mode observability (Mosser et al., 2012a). This envelope can be modelled by a
Gaussian following

Penv(ν) = Hνmaxe−
(ν−νmax)2

2σ2 , (7.3)
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where Hνmax is the maximum height of the power excess envelope at νmax, and σ is related to the full-
width at half-maximum of the Gaussian envelope δνenv = 2

√
2 ln 2σ. As illustrated in Fig. 7.2, con-

secutive radial, dipole and quadrupole modes at a given radial order n form a pattern of three modes
that repeats every ∆ν-intervals. The frequency spacing ∆ν is called the large separation. Typically,
the pressure modes for which the signal-to-noise ratio is sufficient to be observed lie within the range
νmax ± 0.75 δνenv (Broomhall et al., 2014), which corresponds to a number of ∼ 6 radial orders (equiva-
lently 6 intervals of ∆ν) at ∆ν = 4 µHz.

7.2 Enhancing the seismic signal

The light curves are optimised for the asteroseismic study of solar-like oscillating stars according to pro-
cessing procedures described in García et al. (2011). By computing the Lomb-scargle periodogram of the
unevenly spaced data of light curves (Scargle, 1982), we can access the signature of stellar oscillations,
as reflected by Fig. 7.1. Nevertheless, several components of the background are also present in the
frequency range of the observable stellar oscillations such as granulation and photon noise. To correctly
characterise the oscillation spectrum, we need to reduce the effects that could bias the identification of
the stellar modes.

7.2.1 Modelling the background component

In case of red giants, the background is dominated by the granulation signal near the frequency range
of observable stellar oscillations. Accurately, its contribution in the Fourier spectrum can be modelled
by a Lorentzian function (second term of Eq. 7.1). In fact, the background smoothly decreases with
frequency in the vicinity of νmax, so we can adopt a simpler model to reproduce the granulation signal.
We approximate the background by a polynomial of the form

B(ν) = Bνmax

(
ν

νmax

)αb

, (7.4)

which provides a model of sufficient precision (Mosser et al., 2012a) and where Bνmax is the value of the
background at νmax, and αb controls the dependence of the background with frequency. Reducing the
background effects when extracting the mode characteristics is essential due to the frequency depen-
dence of the background component. Indeed, modes at low frequency tend to have higher amplitude
than at high frequency as the background component is more important at low frequency. To help the
identification of the radial order n and degree ℓ performed in Sect. 7.3, we weaken the background
component in the oscillation spectrum. Instead of subtracting the background model to the oscillation
spectrum, we divide the latter by the background model. This allows us to reduce the background
effects and keep positive values of the PSD in fraction of the background signal.

7.2.2 Mitigating the stochastic appearance of modes

As highlighted in the previous sections, the modes are stochastically excited in the star so they manifest
as speckles randomly distributed in the mean predicted Lorentzian profile. Modes may not be present in
the oscillation spectrum due to their stochastic nature, which makes the mode identification challenging.
In order to smooth out the stochastic appearance and emphasize the distribution of the mode energy,
the observed oscillation spectrum P is convolved with a Gaussian kernel G

Ps(ν) =
∑m=Nν

m=0 G(νm) · P(ν − νm)

∑m=Nν
m=0 G(νm)

, (7.5)

where P is the observed oscillation spectrum, G is the Gaussian kernel, Ps is the oscillation spectrum after
convolution1 and Nν the number of frequencies. This convolution clearly smooths out the oscillation

1Note that we normalise Ps by ∑m=Nν
m=0 G(νm)
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spectrum leading to more accurate adjusted mode frequencies (see Fig. 7.3). However, the width at
half maximum of the Gaussian kernel must be adequately chosen. It should not be too large to avoid
combining two modes, especially a radial mode and a quadrupole mode because they are close one
from the other. On the other hand, it should not be too small otherwise the oscillation spectrum is not
sufficiently smoothed out for the stochastic nature to be diminished. As the oscillation spectrum appears
to be more or less dense depending on the frequency separation ∆ν between modes of consecutive
radial order, we also need to adjust the width of the Gaussian kernel as a function of ∆ν. We found that
convolving the observed oscillation spectrum with a Gaussian kernel of width

∆G =
δν02

4
(7.6)

is an adequate response to the requirements described herebefore, where δν02 is the small frequency
separation between a radial mode and its neighbouring quadrupole mode.

FIGURE 7.3: Oscillation spectrum of the star KIC 1719297, in grey at full resolution and in
black after smoothing out the PSD with a Gaussian kernel of width ∆G given by Eq. 7.6.

7.3 Identification of the stellar modes

7.3.1 Cross-correlation with a template spectrum

After smoothing out the PSD, the modes can be efficiently identified. To this end, we build a template
spectrum based on the universal pattern of red giants (Eq. 3.20). The shape of the template oscillation
spectrum is entirely controlled by ∆ν, especially the spacing between consecutive radial modes and the
spacing with their neighbouring dipole and quadrupole modes. By fine-tuning the value of ∆ν, we com-
pute the maximum cross-correlation between the template and the observed oscillation spectra. Then,
the best-matching template spectrum provides the location of the modes of different degree ℓ as well as
the global measurement of ∆ν (see Fig. 7.4). Further information on the structure of the best-matching
template spectrum are presented in Sect. 3.1 of the attached publication 1.
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7.3.2 Detection thresholds

In Dréau et al. (2021), we also define criteria for a mode to be detected. This detection process is divided
into two steps: one is dedicated to the most intense peaks and the other concerns the peaks that are
less intense but are located close enough to the expected location of the pure pressure modes (Appour-
chaux et al., 2006). First, we select the peaks with high signal-to-noise ratio with a restrictive detection
threshold. From these peaks we can extract a first set of seismic parameters that can be used to derive
an estimate of the expected other mode frequencies through Eq. 3.20. Second, we apply a less restrictive
detection threshold to select the peaks that are potentially present with a lower height-to-background
ratio. Nevertheless, these peaks must be not too far from the expected frequency derived in the first step
with Eq. 3.20. On the one hand, the larger ∆ν, the larger the spacing between modes of consecutive ra-
dial order n at fixed degree ℓ. On the other hand, radial (ℓ = 0) and quadrupole (ℓ = 2) modes are close
to each other (see for example in Fig. 7.2). Consequently, the maximum distance between the detected
and the expected mode frequencies is set according to the large separation ∆ν and the degree ℓ (Fig. 7.5).

FIGURE 7.4: Correlation method to adjust the best-matching template spectrum to the ob-
served oscillation spectrum. Left: Cross-correlation product C between the observed and
the template oscillation spectra of the star KIC 1719297 as a function of ∆ν. The red dashed
line shows the optimal ∆ν that provides the best-matching template spectrum to the ob-
served oscillation spectrum. Right: Two examples of template spectra with different ∆ν.
One corresponds to the best-matching case at ∆ν = 1.22 µHz and the other is associated
to a bad overlapping at ∆ν = 1.08 µHz between the template spectrum (blue) and the ob-

served oscillation spectrum (black).

7.3.3 In the presence of mixed modes

The template spectrum that we use is only made of pressure modes, which implies that the cross-
correlation method is therefore expected to be less effective when mixed dipole modes are present.
Indeed, mixed modes are very close to each other and if their heights are high enough, some of them
could be confused with radial and quadrupole modes. In case of evolved stars with ∆ν ≤ 4 µHz, the
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presence of mixed modes does not significantly perturb the identification process since g-dominated
mixed modes have low amplitudes compared to the p-dominated mode. Accordingly, we adjust the
dipole mode with the highest amplitude among the closest p-dominated dipole mode to the expected
frequency of the pure p mode.

7.3.4 Limitations of the identification method

As mentioned herebefore, the mode identification is based on a template spectrum that includes pres-
sure modes with a degree ℓ = 0, 1, 2. The template spectrum may not be suitable if the observed
spectrum does not exhibit the clear pattern made of radial, dipole and quadrupole modes. This is typi-
cally what we observe when ∆ν ≥ 4 µHz since the coupling factor q between the p- and g-mode cavities
is sufficiently high for the g-dominated mixed modes to be detectable. Since these mixed modes are
very close to each other, they may be confused with the pattern made of radial and quadrupole modes
in the template spectrum. With this respect, we do not include stars with ∆ν ≥ 4 µHz in our sample as
we restrict our analysis to the p-mode pattern.

FIGURE 7.5: Example of detection thresholds for the modes to be detected. The PSD di-
vided by the background given by Eq. 7.4 is shown as a function of ν for the star KIC
1719297 at radial order n = 5 for the radial mode and n = 4 for the non-radial modes.
The raw and smoothed PSD are shown in grey and black, respectively. The vertical dashed
lines indicates the expected location of the modes, in red for ℓ = 0, in blue for ℓ = 1, in
light green for ℓ = 2, and light blue for ℓ = 3. The orange solid line is the restrictive height-
to-background level that a peak must reach to pass the first step of the selection process. If
these peaks fulfil this condition, they are considered intense enough to be identified as os-
cillation modes. The orange dashed line is a less restrictive detection threshold. Peaks that
attain this level must not be located too far from the expected frequency given by Eq. 3.20
to be considered. The height-to-background levels are applied to the raw PSD. The vertical
dotted lines delimits the region in which the peak must be located to be considered. The

colour code is the same as the dashed lines.

On the other hand, at low ∆ν ≤ 0.5 µHz, the seismic analysis is limited by the frequency resolution
of the PSD. Indeed, the 1470-day time series of Kepler gives access to a frequency resolution reaching
7.8 nHz, which is close to the typical mode width at ∆ν ≤ 0.5 µHz. This complicates the seismic analysis
of those evolved red giants since the stellar modes are not resolved (see Fig. 7.6). Moreover, at low ∆ν,
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stars oscillate at low frequency and the modes that are efficiently excited are close to the fundamental
mode, i.e. n = 1 (Mosser et al., 2013b; Yu et al., 2020). In this case, the asymptotic assumption n ≪
ℓ is invalid and the p-mode pattern is expected to significantly deviate from the asymptotic pattern
shown in Eq. 3.20. The template spectrum, which is based on the universal pattern of red giants, is
no longer adapted at low ∆ν ≤ 0.5 µHz. Accordingly, we restrict our seismic analysis to stars with
∆ν ∈ [0.5, 4.0] µHz. Our work could be extended to low ∆ν ≤ 0.5 µHz in a further work with the help
of ground-based observations. In fact, ground-based telescopes collected light curves of stars during a
decade in the framework of the microlensing surveys MACHO (Wood et al., 1999) and OGLE (Wray,
Eyer, and Paczyński, 2004). With these long time series, the frequency resolution is suitable for the study
of these evolved red giants, reducing the risks of confusing radial and non-radial modes.

FIGURE 7.6: Superimposition of red-giant oscillation spectra indicated by different colours
from the bottom to the tip of the RGB. The oscillation spectrum of the Sun in black and that
of another main-sequence star in grey are added for comparison. Each oscillation spectrum
is labelled by the observed large separation ∆ν, from ∆ν = 0.05 µHz to ∆ν = 135 µHz.
The fit of the background Bνmax and mean height Hνmax at νmax are indicated with dashed
lines. The typical radius in the observed frequency range is provided along the upper axis.

Credit: Mosser, Samadi, and Belkacem (2013)

7.4 Mode fitting

7.4.1 The extraction of mode parameters

Once the modes are identified, they are fitted by Lorentzian functions following the maximum like-
lihood estimator technique presented in Toutain and Appourchaux (1994). This technique consists in
finding the most likely values of the free parameters of the Lorentzian functions, i.e. the mode heights
Hn,ℓ, widths Γn,ℓ, and frequencies νn,ℓ. We introduce the probability density function f (ν) that describes
the distribution of the observed power spectrum P(ν) around the Lorentzian profiles of the modes. This
probability density function follows a χ2 probability distribution with two degrees of freedom and is
related to the expected profile of the oscillation spectrum P0 following

f (ν) =
1

P0(ν)
e−

P(ν)
P0(ν) . (7.7)
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The modes are fitted radial order per radial order (equivalently every ∆ν-interval), meaning that 3
modes are fitted at most per iteration, i.e. the radial, dipole, and quadrupole modes (see Fig. 7.7). The
octupole modes (ℓ = 3) are omitted due to their low signal-to-noise ratio at low ∆ν. Then, the expected
spectrum in a ∆ν-interval reads

P0(ν) = ∑
ℓ=0,1,2

Hn,ℓ

1 + 4
(

ν−νn,ℓ
Γn,ℓ

)2 + B(ν), (7.8)

where B is the background component described by Eq. 7.4. The background is extracted separately and
is kept fixed during the mode fitting. Finally, the optimal mode parameters are extracted by maximising
the probability density function f with the Broyden–Fletcher–Goldfarb–Shanno (BFGS) algorithm. This
algorithm makes use of the second-order derivative of the objective function log f to find the parameters
of the optimal profile P0. The former requires the calculation of the Hessian matrix composed of the
partial second-order derivatives of the expected profile P0 with respect to the mode parameters. It can
be shown that the Hessian elements hij read (Toutain and Appourchaux, 1994)

hij ≃
N

∑
k=1

1
P0(νk)

∂P0

∂λi

∂P0

∂λj
, (7.9)

where the summation is performed on the frequencies and λi; λj are the mode parameters.

7.4.2 Inferring the p-mode parameters from the observation of mixed modes

This fitting technique provides a complete characterisation of the p-mode characteristics. When mixed
dipole modes are present, as mentioned in Sect. 7.3 we fit the mixed dipole mode that has the highest
amplitude among the p-dominated modes that are closest to the expected location of the pure p mode.
For stars with ∆ν ≤ 4 µHz, the frequency of the p-dominated mode does not deviate significantly from
that of the pure p mode. However, the width and amplitude of the p-dominated mode are lower than
those of the expected pure p mode. We can infer the amplitude and the width that the dipole mode
would have if it was a pure pressure mode with the knowledge of the mode inertia fraction ζ (Beno-
mar et al., 2014). Characterising the mixed-mode pattern is beyond the scope of this work, so we do
not directly extract the mode inertia fraction ζ from the oscillation spectrum. Instead, we deduce the
asymptotic value of the mode inertia fraction ζas given by Eq. 3.47. To this end, we need an estimate for
the coupling factor q, the period spacing ∆Π1, which are deduced by means of the scaling relations





qRGB = −0.0034 + ∆Π1,RGB
597 s ; ∆Π1,RGB = 76

(
∆ν

10 µHz

)0.26

qRC = 0.082 + ∆Π1,RC
1450 s ; ∆Π1,RC = 297

(
∆ν

4 µHz

)−0.23
,

(7.10)

where the dependence of q with ∆Π1 is presented in Mosser et al. (2017) and the scaling relations be-
tween ∆Π1 and ∆ν have been calibrated with the seismic parameters reported in Vrard, Mosser, and
Samadi (2016). The subscripts ‘RGB’ and ‘RC’ mean that the scaling relations are given for RGB and red
clump stars, respectively. These values are then injected in Eq. 3.47 so that we can infer the asymptotic
value of the mode inertia fraction ζas, with the expected p-mode frequency νp taken from the asymptotic
pattern of red giants (Eq. 3.20). With Eq. 3.75, we can deduce the width and amplitude that the mode
would have if it was a pure pressure mode.

7.4.3 Correcting instrumental biases

Through Eq. 3.68, we are able to infer the mode amplitude An,ℓ, height Hn,ℓ and width Γn,ℓ. However, the
apparent mode amplitude deduced from the PSD is affected by the spectral response of the instrument.
In order to compare the observed amplitudes from Kepler with those from other telescopes and theoreti-
cal predictions, we need to weaken the instrumental effects. The corrected bolometric amplitude An,ℓ,bol
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can be recovered by reducing the wavelength dependence of the photometric variation integrated over
the Kepler bandpass. This corrected bolometric amplitude can be obtained with the relation (Ballot,
Barban, and van’t Veer-Menneret, 2011)

An,ℓ,bol = An,ℓ

(
Teff

5934 K

)0.80

. (7.11)

FIGURE 7.7: Left: fit of the detected modes with Eq. 7.8 in orange in the same frequency
range as Fig. 7.5 for the star KIC 1719297. The background given by Eq. 7.4 is shown in
blue. Due to their low amplitudes, octupole (ℓ = 3) modes are not fitted. Right: fit of the
glitch modulation with Eq. 7.13. All the detected modes of the star KIC 1719297 are used to
fit the glitch modulation. The glitch contribution δ∆ν

gl
n,ℓ in radial, dipole and quadrupole

modes are shown with red, blue, and green diamonds, respectively.

7.5 Glitch inference

7.5.1 Extracting the glitch parameters

After extracting the p-mode characteristics, we study the signature of the helium second-ionisation
zone. By computing the local large frequency separation ∆νn,ℓ, we are able to highlight the modulation
induced by the helium second-ionisation zone. The procedure is quite similar to that adopted for less
evolved red giants introduced in Sect. 4.3 (Vrard et al., 2015). The method we adopt is fully described in
Sect. 3.2 of the attached paper 1, here we present the main differences between our technique (adapted
for high-luminosity red giants) and that from Vrard et al. (2015) (adapted for less evolved red giants).

Owing to the low number of observed modes in high-luminosity red giants, computing the local
large frequency separation ∆νn,ℓ with Eq. 4.8 is restrictive since it requires the knowledge of two adjacent
mode frequencies at radial orders n − 1 and n + 1. Instead, we prefer computing ∆νn,ℓ as

∆νn,ℓ = νn+1,ℓ − νn,ℓ. (7.12)

As we typically observe 6 radial orders at ∆ν ≤ 4 µHz, we have 5 measurements of ∆νn,ℓ at fixed degree
ℓ with Eq. 7.12 instead of 4 measurements with Eq. 4.8, which is not negligible. As in the study of Vrard
et al. (2015), we do not have enough data points to use an elaborate fitting function such as Eq. 4.5 for
the glitch modulation in ∆νn,ℓ. Instead, we use a simpler modulation model that reads

δ∆ν
gl
n,ℓ = AHeII

(νmax

ν

)2
∆ν cos

(
2π

ν − νmax

GHeII∆ν
+ ΦHeII

)
, (7.13)
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where we consider a frequency dependence in the amplitude in contrast with Vrard et al. (2015) who
adopted a constant amplitude. The fit is performed with the function curve_fit2 from the python pack-
age scipy.optimize3. This function optimises the parameters of the model with a Levenberg–Marquardt
(LM) algorithm, which is well suited for solving non-linear least squares problems. The LM algo-
rithm adaptively varies the parameters between those obtained with the gradient descent and the
Gauss-Newton methods4. The form of the frequency dependence in 1/ν2 is chosen to reproduce the
damped behaviour of the modulation (see Fig. 7.7), and motivated by the theoretical work of Monteiro,
Christensen-Dalsgaard, and Thompson (1994) who studied the variations of the acoustic potential pass-
ing from a radiative to a convective zone. This frequency dependence is expected in case of a step profile
of the structural perturbation.

7.5.2 The use of p-dominated mixed modes

Vrard et al. (2015) only used radial modes to fit the modulation because non-radial modes are mixed
modes in their sample of stars. The modulation induced by the glitch differently affects the mode fre-
quencies, depending on the nature of the mode (Broomhall et al., 2014). Then, adding mixed modes
in the data set deteriorates the fit of the modulation and bias the glitch signature, especially for low-
luminosity red giants (Dréau et al., 2020). In case of high-luminosity red giants, non-radial modes are
p-dominated modes. They are more efficiently trapped in the acoustic cavity with a weak coupling be-
tween the p- and g-mode cavities Dupret et al. (2009) and Grosjean et al. (2014), so they interact with the
helium second-ionisation zone in a similar way as radial modes. In particular, adding the p-dominated
modes of lowest inertia in each ∆ν-interval in the data set remarkably improves the extraction of the
glitch parameters (Broomhall et al., 2014). Among mixed modes, they are the closest modes to the
expected pure pressure modes in terms of frequency. Then, the signature left by the helium second-
ionisation zone in those modes is approximately the same as that induced in radial modes.

7.5.3 The Nyquist criterion

Considering the non-radial modes not only improves the precision but also the accuracy with which the
glitch characteristics are inferred. This is particularly crucial for high-luminosity red giants since the
period of the modulation induced by the glitch is short. Indeed, the period of the modulation becomes
lower than 2∆ν. In this case, considering only radial modes is not sufficient to correctly reproduce
the modulation. In the left panel of Fig. 7.8, we see that the spacing between consecutive frequencies
of radial modes, which is of the order of ∆ν, is of the order of the period of the modulation. Then,
the Nyquist criterion is not fulfilled and the glitch parameters cannot be accurately extracted. This
criterion provides the minimum periodicity ∆min that can be robustly extracted by fitting a model given
the sampling of a data set. This minimum periodicity is ∆min = Cℓ∆ν, where Cℓ quantifies the spacing
between consecutive data points in fraction of ∆ν. The factor Cℓ depends on the nature of the modes that
are included in the data set. If only radial modes are included, the mean spacing between consecutive
mode frequencies is ∆ν, so the periodicity of the modulation cannot be determined with accuracy if the
former is lower than 2∆ν, then Cℓ = 2. If both radial and dipole modes are used, the mean spacing
between consecutive mode frequencies is reduced by a factor of 2 because dipole modes are nearly
located halfway between two consecutive radial modes, so Cℓ = 1. The periodicity of our fitting model
defined in Eq. 7.13 is ∆model = GHeII∆ν. Finally, the Nyquist criterion reads

∆model ≥ ∆min ⇒ GHeII ≥ Cℓ, (7.14)

where Cℓ = 2 if only radial modes are included and Cℓ = 1 if both radial and dipole modes are in-
cluded. As illustrated in Fig. 7.8, the modulation profile is clearer when considering both radial and

2https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.curve_fit.html
3https://docs.scipy.org/doc/scipy/tutorial/index.html
4The gradient descent method updates the parameter values in the “downhill" direction, i.e. the opposite direction to the

gradient of the objective function. As for the Gauss-Newton method, it minimises a sum-of-squares objective function that is
presumed to be approximately quadratic in the parameters near the optimal solution.
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non-radial modes in the data set. This helps to provide more accurate amplitude, period, and phase of
the glitch signature. In high-luminosity red giants, those non-radial modes are in fact essential because
their parameter GHeII is lower than 2, which is the minimum period that can be confidently reproduced
when only radial modes are used to fit the glitch modulation. Then, we use both radial, dipole, and
quadrupole modes to fit the glitch signature.

FIGURE 7.8: Fit of the glitch modulation in the second difference defined as ∆2νn,ℓ =
νn+1,ℓ − 2νn,ℓ + νn−1,ℓ from a red-giant model with νmax = 12.71 µHz, mass M = 1.5 M⊙,
initial helium mass fraction Y = 0.278, and initial metal mass fraction Z = 0.020. Ra-
dial, dipole and quadrupole modes are shown in black crosses, green triangle and blue
squares, respectively. Left: only radial modes are used to fit the acoustic glitch modu-
lation. Right: both radial, dipole and quadrupole modes are used to the acoustic glitch

modulation. Credit: Broomhall et al. (2014)

7.6 Summary

In this chapter, we developped an automated method for fitting the oscillation spectrum of high-luminosity
red giants. This method is suitable for stars with ∆ν ∈ [0.5, 4.0]µHz that mainly show radial and p-
dominated non-radial modes in their oscillation spectrum. First, we enhance the seismic signal by con-
volving the oscillation spectrum with a Gaussian kernel in order to mitigate the stochastic appearance of
modes. Then, the modes are identified by matching the observed oscillation spectrum with a template
spectrum made of radial, dipole, and quadrupole modes expected from the asymptotic pattern of red
giants (Eq. 3.20). The peaks in the oscillation spectrum are considered as oscillation modes if the signal-
to-noise ratio is high enough and if their frequency is not too far from the expected p-mode frequencies
given by Eq. 3.20. The background component, made of both the photon noise and the incoherent com-
ponent, is approximated by a power law around νmax while the stellar oscillation modes referred to
as the periodic components are fitted by Lorentzian functions with a maximum likelihood estimator
technique. However, we are confronted to two complications. First, at low frequency the frequency
resolution does not allow us to fit the stellar modes with Lorentzian functions below ∆ν ≤ 0.5 µHz.
Moreover, the template spectrum that relies on the asymptotic pattern of red giants (Eq. 3.20) may be
invalid at low ∆ν. Longer time series are required to tackle these high-luminosity red giants, for in-
stance with ground-based observations (Wood et al., 1999; Wray, Eyer, and Paczyński, 2004). Second,
at high frequency mixed dipole modes are visible for ∆ν ≥ 3 µHz in He-burning stars. In this case, we
consider the dipole mode with the highest amplitude among the p-dominated modes that are closest to
the expected pure p mode. Finally, the glitch signature is extracted in a similar way as in Vrard et al.
(2015), that is we fit the glitch modulation in the local large separation ∆νn,ℓ with a damped oscillator
model. In this process, we take both radial and p-dominated non-radial modes into account, which
allows us to better reproduce the periodicity of the glitch signature then improves the precision of the
glitch parameters.
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ABSTRACT

Context. The space-borne missions CoRoT and Kepler opened up a new opportunity for better understanding stellar evolution by
probing stellar interiors with unrivalled high-precision photometric data. Kepler has observed stellar oscillation for four years, which
gave access to excellent frequency resolution that enables deciphering the oscillation spectrum of evolved red giant branch and
asymptotic giant branch stars.
Aims. The internal structure of stars in the upper parts of the red and asymptotic giant branches is poorly constrained, which makes
the distinction between red and asymptotic giants difficult. We perform a thorough seismic analysis to address the physical conditions
inside these stars and to distinguish them.
Methods. We took advantage of what we have learnt from less evolved stars. We studied the oscillation mode properties of ∼2.000
evolved giants in a model described by the asymptotic pressure-mode pattern of red giants, which includes the signature of the helium
second-ionisation zone. Mode identification was performed with a maximum cross-correlation method. Then, the modes were fitted
with Lorentzian functions following a maximum likelihood estimator technique.
Results. We derive a large set of seismic parameters of evolved red and asymptotic giants. We extracted the mode properties up to the
degree ` = 3 and investigated their dependence on stellar mass, metallicity, and evolutionary status. We identify a clear difference in
the signature of the helium second-ionisation zone between red and asymptotic giants. We also detect a clear shortage of the energy of
` = 1 modes after the core-He-burning phase. Furthermore, we note that the mode damping observed on the asymptotic giant branch
is similar to that observed on the red giant branch.
Conclusions. We highlight that the signature of the helium second-ionisation zone varies with stellar evolution. This provides us with
a physical basis for distinguishing red giant branch stars from asymptotic giants. Here, our investigation of stellar oscillations allows
us to constrain the physical processes and the key events that occur during the advanced stages of stellar evolution, with emphasis on
the ascent along the asymptotic giant branch, including the asymptotic giant branch bump.

Key words. asteroseismology – stars: evolution – stars: late-type – stars: interiors – stars: AGB and post-AGB – stars: oscillations

1. Introduction

Red giant star seismology has proved to be a good tool for
constraining the stellar internal structure with the ultra-high
precision photometric data recorded by Convection, Rotation
and planetary Transits (CoRoT, Baglin et al. 2006), Kepler
(Borucki et al. 2010; Gilliland et al. 2010), Kepler 2 (K2,
Howell et al. 2014), and now Transiting Exoplanet Survey Satel-
lite (TESS, Ricker et al. 2015). In the case of evolved giants
observed by Kepler, recent studies have found an equiva-
lence between the solar-like oscillation ridges and the period-
luminosity sequences (Mosser et al. 2013a; Stello et al. 2014;
Yu et al. 2020) that have first been identified in the ground-
based observations with the microlensing surveys Massive Com-
pact Halo Objects (MACHO, Wood et al. 1999) and Optical
Gravitational Lensing Experiment (OGLE, Wray et al. 2004;
Soszyński & Wood 2013). Nevertheless, deciphering the oscil-

? Full Table C.1 is only available at the CDS via anonymous ftp
to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsarc.
u-strasbg.fr/viz-bin/cat/J/A+A/650/A115

lation spectrum of evolved red giant branch (RGB) and asymp-
totic giant branch (AGB) stars is challenging because it requires
long time-series for the modes to be resolved; the lifetime of the
modes is longer than one year. Fortunately, with the unrivalled
four-year time series of Kepler, it is now possible to decipher
the low-frequency oscillation spectrum of evolved red giants and
asymptotic giants in detail. The pressure modes of red giants fol-
low a clear oscillation pattern. The so-called universal pattern
(UP) of red giants reads (Mosser et al. 2011)

νUP
n,` =

(
n +

`

2
+ ε − d0` +

α

2
[n − nmax]2

)
∆ν, (1)

where n is the mode radial order, ` is the degree, ε is the acous-
tic offset that allows locating the radial modes, ∆ν is the mean
large frequency separation, which is the mean frequency spac-
ing between consecutive radial modes, d0` is a reduced small
separation defined as d0` = δν0`/∆ν, where δν0` is the small fre-
quency separation between a mode of degree ` and its neigh-
bouring radial mode, α = (d log ∆ν/dn) is the curvature term
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that accounts for the linear dependence of the large frequency
separation on the radial order, and nmax = νmax/∆ν is the equiva-
lent radial order corresponding to the frequency of the maximum
oscillation power νmax. The reduced small separations d0` are
sensitive to any structure change that impacts the gradient of the
sound speed in the deep interior (Gough 1986). These reduced
small separations can be used to distinguish different stellar evo-
lutionary stages (Christensen-Dalsgaard et al. 1988).

Firstly identified in red giants by Beck et al. (2011), mixed
modes that result from the coupling between gravity waves
trapped in the stellar core and pressure waves trapped in the
stellar envelope carry valuable information on the physical
conditions inside the stellar core. The use of mixed modes
enables distinguishing core-helium-burning giants and shell-
hydrogen-burning giants (Beck et al. 2011; Bedding et al. 2011;
Elsworth et al. 2017). However, constraining the internal inner-
most structure of evolved giants is challenging because their
oscillation spectrum only exhibits pure pressure modes. Mixed
modes can no longer be identified because the inertia of the
g modes in the core becomes too high (Grosjean et al. 2014) and
the strength of the coupling between p and g modes decreases
(Mosser et al. 2017a). Despite the absence of mixed modes in
evolved RGB and AGB stars, some methods can still be used
to distinguish shell-H-burning stars from He-burning stars1. On
the basis of a local analysis, Kallinger et al. (2012) showed that
we can distinguish stars with different evolutionary stages using
the central acoustic offset εc

2. In addition, Mosser et al. (2019)
found that He-burning stars have a lower envelope autocorrela-
tion function than their RGB counterparts3, making the separa-
tion between these stellar populations possible.

The stellar evolution effects reported by Kallinger et al.
(2012) in the acoustic offset ε can be linked to clear stellar
structure differences. The acoustic offset is expected to contain
a contribution from the stellar core, hence the signature of struc-
ture changes (Roxburgh & Vorontsov 2000, 2003). However, it
also contains a contribution from the stellar envelope that is
dominant (Christensen-Dalsgaard et al. 2014). Then, the effects
of structure changes in the stellar envelope such as acoustic
glitches can be seen in the acoustic offset ε. We recall that a
glitch is a sharp structural variation inside the star that causes
a modulation in the frequency pattern. The existence of such
regions was first predicted (Vorontsov et al. 1988; Gough 1990)
and then confirmed for the Sun (Houdek & Gough 2007) for
main-sequence stars (Mazumdar et al. 2012, 2014; Verma et al.
2014; Deheuvels et al. 2016) and for red giants (Miglio et al.
2010; Broomhall et al. 2014; Vrard et al. 2015; Corsaro et al.
2015a). In stellar interiors, three regions with sharp varia-
tions have been studied: the base of the convective envelope,
the boundary of the convective core, and the helium second-
ionisation zone (Monteiro et al. 1994; Monteiro & Thompson
2005; Houdek & Gough 2007; Deheuvels et al. 2016). In the
case of red giants, it has been shown that the dominant
glitch has its origin in the helium second-ionisation zone
(Miglio et al. 2010). The modulation in the mode frequencies
has been measured for RGB stars and clump stars (Vrard et al.
2015). Vrard et al. (2015) showed that the different modulations
between these populations are linked to stellar evolution effects

1 We use the expressions shell-H-burning stars and RGB stars in an
equivalent manner. Core-He-burning stars and shell-He-burning stars
refer to clump and AGB stars, respectively. He-burning stars indistinctly
refer to core-He-burning stars and shell-He-burning stars.
2 This central acoustic offset εc is a local measurement of ε that is
computed with the central three radial modes that are closest to νmax.
3 Counterparts refer to stars that have the same ∆ν and νmax.

in the local acoustic offset ε. One of the guidelines of the present
work is to perform such an analysis for stars in evolved stages
on the RGB and the AGB.

Other physical processes can be constrained through the
analysis of oscillation spectra, such as mode excitation and
damping, especially by measuring the mode amplitudes and the
widths. While the physical mechanism causing pressure mode
excitation is identified as the Reynolds stresses induced by tur-
bulent convection (Goldreich & Keeley 1977; Belkacem et al.
2006), the physical mechanisms behind the mode damping are
not fully understood. Nevertheless, recent studies have been con-
ducted to compare modelled and observed mode widths across
the Hertzsprung–Russell (HR) diagram (Belkacem et al. 2012;
Houdek et al. 2017; Aarslev et al. 2018). They highlighted that
the perturbation of turbulent pressure is the dominant mech-
anism of mode damping in solar-like pulsators. Several stud-
ies have already provided mode widths for main-sequence stars
(e.g., Appourchaux et al. 2012, 2014; Lund et al. 2017) and red
giant stars (e.g., Baudin et al. 2011; Corsaro et al. 2012, 2015b;
Handberg et al. 2017), but their samples of stars are small. With
a larger sample of stars having ∆ν ∈ [3, 15] µHz, Vrard et al.
(2018) showed that the pressure mode widths of RGB stars
and clump stars are differently distributed and have notice-
able mass and temperature dependences. We performed such an
analysis for stars in the most evolved stages on the RGB and
the AGB.

In this framework, we analysed the oscillation spectrum of
∼2000 evolved red giants, clump stars, and asymptotic giants
observed by the Kepler telescope in detail. We extend the anal-
ysis of Vrard et al. (2015) and Vrard et al. (2018) to the most
evolved stages of stars on the RGB and on the AGB. We charac-
terised the pressure modes of evolved stars and the modulation
induced by the helium second-ionisation zone in order to obtain
seismic constraints for the stellar modelling of evolved red giants
and asymptotic giants.

This article is organised as follows. In Sect. 2 we describe
our set of data. In Sect. 3 we describe the methods we used
to extract the seismic parameters from the oscillation spectra,
namely the seismic parameters involved in Eq. (1), the signa-
ture of the helium second-ionisation zone, the visibilities of the
modes, the pressure mode widths, and the pressure mode ampli-
tudes. The analysis of these quantities is performed in Sect. 4.
Finally, Sects. 5 and 6 are devoted to discussion and conclusions,
respectively.

2. Data set

We selected the long-cadence data from Kepler, including the
very last data up to quarter Q17. The about 1470-day time-
series gives access to a frequency resolution reaching 7.8 nHz.
We focus on advanced stages of stellar evolution, including
RGB, clump, and AGB giants. We selected 2103 stars from
Kallinger et al. (2012) and Mosser et al. (2014, 2019) that have
∆ν ≤ 4.0 µHz. We then extracted their ∆ν and νmax from
the database of the previous works. The distribution of their
∆ν is shown in Fig. 1. The classical properties of these stars,
such as their mass and effective temperature, were extracted
from the APOKASC catalogue (Pinsonneault et al. 2014), which
is a survey of Kepler asteroseismic targets complemented by
spectroscopic data. More precisely, the stellar masses were
computed according to the semi-empirical asteroseismic scaling
relation presented in Kjeldsen & Bedding (1995) as corrected by
Pinsonneault et al. (2018). The correcting factor was computed
star by star and is a function of the stellar parameters. For some
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stars, the classical properties are not listed in the APOKASC
catalogue either because no asteroseismic data were returned for
them or because the power spectra were too noisy. This con-
cerns roughly 5% of our sample of stars, with half of this fraction
being associated with very low ∆ν-values (i.e., ∆ν ≤ 0.5 µHz). In
this case, we nevertheless obtained rough estimates of the stellar
mass and effective temperature using semi-empirical and empir-
ical scaling relations implying both the frequency at the maxi-
mum oscillation power νmax and large frequency separation ∆ν
(Kjeldsen & Bedding 1995; Kallinger et al. 2010; Mosser et al.
2010).

In order to identify the evolutionary status, we used two
classification methods. The first method is based on the esti-
mate of differences between RGB stars and He-burning stars
in the pressure-mode pattern, mainly through the acoustic off-
set ε (Kallinger et al. 2012). The second method is based on
the estimate of differences in the envelope autocorrelation func-
tion (Mosser et al. 2019). However, the disagreement between
these two classification methods rapidly grows at low ∆ν. For
example, we reach 35% disagreement for 112 stars having ∆ν ≤
1.0 µHz. Accordingly, we decided to only retain the evolutionary
status so obtained if both classification methods agree.

3. Method

Acoustic modes dominate in the oscillation spectrum of evolved
RGB and AGB stars. Gravity-dominated mixed modes start to
disappear in the oscillation spectrum when ∆ν ≤ 3 µHz because
of their high radiative damping and inertia (Dupret et al. 2009).
The oscillation pattern of evolved stars can then be described by
the asymptotic expression of the frequency of acoustic modes
(Eq. (1)).

3.1. Adjusting the mode frequencies νn,`

3.1.1. Best-matching template spectrum

The first step to be performed is the identification of the modes in
the oscillation spectrum, which is ensured by using Eq. (1). First,
we refined the analysis of the observed spectrum as follows. The
background component that is dominated by the stellar granula-
tion (Michel et al. 2008) was parametrised in the vicinity of νmax
by a power law of the form

B(ν) = Bmax

(
ν

νmax

)αB

, (2)

where Bmax and αB are free parameters (Mosser et al. 2012).
Then, we divided the observed spectrum by the background con-
tribution. For the sake of visibility, we reduced the stochastic
appearance of the oscillation pattern by smoothing the spec-
trum with a Gaussian function, for which the full width at half
maximum (FWHM) is FWHM = d02∆ν/4. We estimated d02
following an iterative process, starting with a rough estimate
extracted from the scaling relation d02 = 0.162 − 0.013 log ∆ν
(Mosser et al. 2013b).

Second, we built a template spectrum composed of radial,
dipole, and quadrupole pressure modes located at the pressure
mode frequencies derived from Eq. (1). The seismic parame-
ters ε and d0` were set following a scaling relation of the form
A + B log ∆ν, where the guess values of A and B were taken
from Mosser et al. (2013a). Then, the modes were modelled by
Lorentzian functions. The heights of the Lorentzian functions
were fixed by the underlying power excess distribution, which

Fig. 1. Upper panel: distribution of our sample of stars as a function
of ∆ν, with red giants in blue and He-burning stars in red. Stars with
unidentified or uncertain evolutionary stage are plotted in grey. The
inset is a zoom-in portion of the large panel. Lower panel: seismic dia-
gram of our sample of stars with the same colour code as in the upper
panel, where 1/νmax is a proxy for the luminosity. The solid black line
is the evolutionary track of a 1 M� model computed with MESA, using
the 1M_pre_ms_to_wd test suite case. Some key events are highlighted:
the RGB bump (RGB-b), the luminosity tip of the RGB (RGB-tip), and
the AGB bump (AGB-b).

we modelled by a Gaussian function centred on the frequency
of maximum oscillation power νmax (Mosser et al. 2012). Fur-
thermore, the curvature term was set following the curvature of
the red giant radial oscillation pattern as follows (Mosser et al.
2013b):

α = 0.015 ∆ν−0.32. (3)

We did not adjust the parameters in the expression of α since pre-
cise measurement of α is not crucial (Vrard et al. 2015). Finally,
we found the best-matching template spectrum by computing
the maximum cross-correlation with the smoothed spectrum.
Then, the observed mode frequencies were identified at the local
maxima close to the optimised frequency pattern. When mixed
dipole modes were present, the most intense of the closest modes
of the expected pure-pressure mode was adjusted. We report
that the best-matching template spectrum is less reliable when
∆νobs ≤ 0.4 µHz. In this case, most spectra do not exhibit a clear
and intense pattern of ` = 0, 1, 2 modes, making the mode iden-
tification difficult. Nevertheless, a mode identification could be
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performed for these stars by vertically stacking their power spec-
trum with increasing νmax (see e.g., Yu et al. 2020).

3.1.2. Detection thresholds

Because of the stochastic nature of the modes, some modes are
not sufficiently intense to be detected. Once the best-matching
template spectrum was found with the method described in
Sect. 3.1.1, we obtained a set of candidate modes. Then, in
order to reduce biases, we applied the robust detection method
of Appourchaux et al. (2006) to this set. To this end, the most
intense modes were selected by evaluating the S N function,
which corresponds to the most restrictive detection threshold
in terms of height-to-background ratio in the power spectrum
(Appourchaux et al. 2006). S N reads

S N = −
(

sdet

ln
(
PH1

) + 1
)
, (4)

where PH1 is the probability of accepting that the observed peak
is a mode and sdet is the rejection level relative to noise. We
chose PH1 such that the height-to-background ratio S N reached
20 when sdet = 8, and the rejection level sdet was defined by

sdet ≈ ln(T ) + ln(∆ν) − ln(pdet), (5)

where T is the observation time in units of 106 s, ∆ν is given
in µHz, and pdet is the rejection probability that we kept equal
to 5%. Second, we retained the candidate mode frequencies that
were close to the expected pressure-mode frequencies with a less
restrictive height-to-background ratio, which is given by Eq. (5).
Owing to the small amplitudes of the ` = 3 modes due to geo-
metric cancellation, we used a less restrictive detection threshold
for the ` = 3 modes. The threshold for selecting ` = 3 modes is
25% lower than for the other degrees.

3.2. Glitch inference

When the best-matching template spectrum is found, we can
search for the signature of glitches. To extract the signature of the
helium second-ionisation zone in evolved giants, we followed
the same technique as Vrard et al. (2015) for less evolved giants.
As the oscillation spectrum of evolved red giants shows a limited
number of radial orders, we calculated the frequency difference
considering all degrees as follows:

∆νn,` = νn+1,` − νn,`, (6)

which is different from Eq. (4) of Vrard et al. (2015) because it
is only based on radial modes. The frequency reference for these
local large frequency separations was taken as the mid-point
between consecutive mode frequencies. We isolated the glitch
signature δg,obs

n,` by computing the difference between the mea-
sured and the expected local large frequency separations accord-
ing to the universal pattern (Eq. (1))

δ
g,obs
n,` = ∆νn,` − ∆νUP

n,` , (7)

with ∆νUP
n,` =

(
1 + α

(
n − nmax + 1

2

))
∆ν (Mosser et al. 2013b).

We then fitted a damped oscillatory component of δg,obs
n,` accord-

ing to

δ
g,obs
n,` = A

(
νmax

ν

)2
∆ν cos

(
2π (ν − νmax)
G∆ν

+ Φ

)
, (8)

Table 1. Boundaries for the integration of the power spectral density.

νinf(n, `) νsup(n, `)

` = 0 (νn,0 + νn−1,2)/2 (3 νn−1,3 + νn,0)/4
` = 3 (3 νn−1,3 + νn,0)/4 (7 νn−1,3 − νn,0)/6
` = 1 (7 νn−1,3 − νn,0)/6 (4 νn−1,2 − νn,0)/3
` = 2 (4 νn−1,2 − νn,0)/3 (νn,0 + νn−1,2)/2

Notes. The boundaries are equivalent to the mid-point between consec-
utive modes, except when ` = 1 and ` = 3 modes are involved. This
is illustrated in Fig. 2. The boundary between the ` = 1 and the ` = 3
modes is chosen close to the ` = 3 mode frequency. We made this
choice to avoid any confusion between a ` = 3 mode and the neigh-
bouring dipole mixed-modes because the dipole mixed-modes extend
up to the ` = 3 modes.

where A and G are the amplitude and the period of the modu-
lation expressed in units of ∆ν, respectively, and Φ is the phase
centred on νmax (Vrard et al. 2015). Many studies have used a
more complicated function for the amplitude of the modulation.
As we are restricted by the low number of observed modes, we
preferred to use a simple frequency-dependent amplitude as was
used before in the study of the base of the solar convective zone
(Monteiro et al. 1994).

In evolved giants, quadrupole modes essentially behave as
pure pressure modes. The case of dipole modes is compli-
cated: They are most often reduced to a pressure-dominated
mixed mode or to a cluster of modes very close to the pressure-
dominated mixed mode. Because in most cases we have no way
to identify the mixed-mode pattern, in practice we also consider
dipole modes as pure pressure modes. This hypothesis is dis-
cussed below. We can add them in the fit of the glitch modu-
lation without deteriorating the fit of the modulation. Then, the
Nyquist criterion, which states that the frequency of the mod-
ulation must be strictly less than half the sample rate, writes
G ≥ 1 instead of G ≥ 2 when only radial modes are used.
When ∆ν ' 3 µHz, dipole modes are no longer pure-pressure
modes. It has been shown that adding the dipole modes of low-
est inertia in each ∆ν range could bias the fit of the modula-
tion, especially for the least evolved red giants (Broomhall et al.
2014; Dréau et al. 2020). Nevertheless, for the range of ∆ν we
consider here, Broomhall et al. (2014) reported that the use of
dipole modes of lowest inertia remarkably improves the robust-
ness of the fit. When mixed modes are present, we then took into
account the most intense dipole mode of the modes closest to the
expected location of the pure-pressure mode.

3.3. Computation of mode visibilities

We investigated the energy distribution among modes of differ-
ent degree ` in the case of evolved stars. The technique we used
to compute the mode visibilities is described in Mosser et al.
(2012). First, we computed the total mode energy, noted A2

` (n),
for which the radial order n lies between the lowest and highest
observed radial orders. This was done by subtracting the back-
ground component and integrating the power spectral density
over the whole spectral range where the mode is expected, that is,
around the p-mode frequency inferred from Eq. (1) (see Table 1
and Fig. 2). Then we computed the visibility V2

` of a mode of
degree ` as

V2
` =
〈A2

`〉
〈A2

0〉
, (9)
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Fig. 2. Oscillation spectrum of the star KIC 2695975 (∆ν = 1.538 µHz,
and νmax = 10.11 µHz), with an emphasis on the spectral range where
the power spectral density is integrated for each mode. Red, blue,
green, and light blue are associated with radial, dipole, quadrupole, and
octupole modes, respectively. This star has been classified as an RGB
star with the two identification methods adopted in this work.

where 〈A2
`〉 is the squared amplitude of the mode of degree `.

When mixed modes are present, the procedure was the same:
The energy A2

` (n) corresponds to the total energy of the mixed
modes associated with the radial order n. The errors on the visi-
bilities were computed from the errors on the boundary frequen-
cies listed in Table 1: The energy contained in the 1σ error region
of the boundary frequencies is interpreted as the error on the
parameter A2

` (n).

3.4. Mode fitting

The mode amplitudes and widths derived from the fit of
the modes provide unique constraints on the mode excita-
tion and damping. In this context, we adopted a frequentist
approach. The modes were fitted with Lorentzian profiles fol-
lowing the maximum likelihood estimator technique described
in Toutain & Appourchaux (1994). The fit was performed radial
order by radial order, so that we have three modes at most to fit
per iteration. Owing to their very low amplitudes, ` = 3 modes
cannot be fitted. Radial, dipole, and quadrupole modes were fit-
ted on top of the background using

L(n) =
∑

`=0,1,2

Hn,`

1 +
(
2 ν−νn,`

Γn,`

)2 + B(ν), (10)

where Hn,`, νn,`, and Γn,` are the height, frequency, and width
of the mode of radial order n and degree `, respectively. We
point out that the background was extracted separately, and we
kept it fixed when fitting the modes. The mode amplitude can be
deduced from the mode height and the width by

An,` =
√

Hn,`πΓn,`. (11)

Because of the low signal-to-noise ratios, the presence of mixed
modes, and the stochastic excitation, some modes were not cor-
rectly fitted. The measurements were rejected when the width
was too close to the frequency resolution (i.e., when Γn,l ≤
1.1δνres) or when the width was overestimated (i.e., when Γn,l ≥
∆ν/7). When mixed modes were present, we fitted the clos-
est mixed modes to the expected pure-pressure mode. Then,

following Benomar et al. (2014), Belkacem et al. (2015), and
Mosser et al. (2018), we inferred the mode width and the mode
amplitude that the mode would have if it were purely acoustic
through

Γ
p
n,` =

Γn,`

1 − ζ and Ap
n,` =

An,`√
1 − ζ

, (12)

where ζ depends on the inertia of the fitted mixed mode. Char-
acterising the mixed-mode pattern is beyond the scope of this
work. However, we estimated the mode inertia that is defined
in Mosser et al. (2018), for example, using scaling relations
(Eqs. (17) and (18) from Mosser et al. 2017a for the coupling
factor q and the database from Vrard et al. 2016 for the period
spacings ∆Π1).

We finally computed the mean mode amplitude 〈A`〉 using
the three p modes of degree ` closest to νmax. We corrected the
wavelength dependence of the photometric variation integrated
over the Kepler bandpass according to

〈A`,bol〉 = 〈A`〉
(

Teff

TK

)0.80

, (13)

where TK = 5934 K (Ballot et al. 2011a). The average mode
width 〈Γ`〉 was computed as the weighted mean of the three
p modes of degree ` closest to νmax, where the mode amplitude
was used as weight (see e.g., Vrard et al. 2018).

4. Results

In this section, we characterise the oscillation spectrum of
evolved giants as precisely as possible. We compare our mea-
surements with previous studies that focused on less evolved
stages and with theoretical predictions.

4.1. Acoustic offset ε and reduced small separations d0`

From the fit of the spectrum described by Eq. (1) we derived
the global acoustic offset ε and the reduced small separations
d0` associated with the detected modes (see Fig. 3). Scaling rela-
tions were adjusted to our sets of seismic parameters in the form
A` + B` log (∆ν), where A` and B` are free parameters that are
summarised in Table 2, and ∆ν is given in µHz.

4.1.1. Acoustic offset ε

The oscillation spectrum of radial modes is depicted by the
global acoustic offset ε as shown in Fig. 3. The trend that we
observe for RGB stars is similar to what has been obtained
in previous studies (Mosser et al. 2013a; Yu et al. 2020). With
our method, which uses a global fit of the oscillation pat-
tern, we derive similar values of ε for RGB and He-burning
stars, in contrast to Kallinger et al. (2012), who used a local
approach. As they showed, the glitches have limited effect on
global measurements of the seismic parameters but they affect
local measurements considerably. In Sect. 4.2 we investigate
the local effects on the mode frequencies by studying the mod-
ulation left by the helium second-ionisation zone in p-mode
frequencies.

4.1.2. Reduced small separations d0`

Theoretical models predict that the effects of stellar evolution
are reflected in the reduced small separations d0`. They are sen-
sitive to any internal structure change that affects the gradient
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Fig. 3. Seismic parameters of the asymptotic pattern of red giants (Eq. (1)) after adjusting ∆ν with the best-matching template following the
procedure described in Sect. 3. Upper left panel: acoustic offset ε as a function of ∆ν, where blue triangles indicate RGB stars and red diamonds
He-burning stars. Stars with either an unidentified evolutionary stage or disagreement between the two classification methods described in Sect. 2
are represented in grey. Upper right panel: reduced small separation d02 as a function of ∆ν; the stellar mass is colour-coded. Bottom panels: same
labels as for the upper right panel, but for d01 and d03 as a function of ∆ν. The solid blue and red lines are the median values in 0.4 µHz ∆ν bins
for low-mass stars (M ≤ 1.2 M�) and for high-mass stars (M ≥ 1.2 M�), respectively. The dashed orange lines represent the scaling relations from
Mosser et al. (2013a), and the solid dark blue lines are the scaling relations derived in this study (listed in Table 2). The dot-dashed pink and dark
green lines correspond to the scaling relations for less evolved stars from Corsaro et al. (2012) and Huber et al. (2010), respectively. Mean error
bars estimated at low ∆ν (∆ν ≤ 1.0 µHz) and at high ∆ν (∆ν ≥ 1.0 µHz) are represented at the bottom of each panel.

Table 2. Fit of the seismic parameters ε and d0`, and the dimensionless
glitch parameters.

` A` B`
0 ε 0.614 ± 0.002 0.578 ± 0.003
1 d01 −0.081 ± 0.002 0.083 ± 0.005
2 d02 0.156 ± 0.001 −0.031 ± 0.003
3 d03 0.374 ± 0.002 −0.059 ± 0.005

C D
A 0.072 ± 0.003 −0.411 ± 0.006
G 1.879 ± 0.001 0.045 ± 0.002

Notes. The fits were performed for RGB stars alone. The acoustic
offset and the reduced small separations were fitted by a linear fit
A` + B` log (∆ν) , while the glitch parameters were fitted by a power
law C∆νD.

of the sound speed (Tassoul 1980; Roxburgh & Vorontsov 2003)
in the deep interiors. While a star ascends the RGB, the stellar
core contracts but does not undergo important structure changes.

Therefore the reduced small separations vary only slowly along
the RGB.

Figure 3 shows that d01 decreases when ∆ν decreases, as
observed by previous observational studies on less evolved stars
(Huber et al. 2010; Corsaro et al. 2012; Mosser et al. 2013a).
This points out the fact that during stellar evolution, dipole
p modes approach the doublet formed by ` = 0 and ` = 2
modes, in agreement with theoretical models (Montalbán et al.
2010; Stello et al. 2014). The variation of d01 during late stellar
evolution can be linked to the location of the turning points of
` = 1 modes. By examining the structure of low-mass red giant
models, Montalbán et al. (2010) found that d01 takes negative
values when the turning points of ` = 1 modes are deep in the
convective envelope. This is exactly what we observe and allows
us to extend the interpretation made for RGB stars to AGB
stars, which have negative d01. Stellar models of Montalbán et al.
(2010) also predict that core-He-burning stars have both positive
and negative d01, and that the turning points of ` = 1 modes are
located inside the radiative region. The determination of d01 in
clump stars is more difficult because the observed large spread
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Fig. 4. Modulation amplitude A, modulation period G, and modulation phase Φ as a function of ∆ν, with the same labels as in Fig. 3. The thick
solid lines are the median values in 0.5 µHz ∆ν bins, shown in blue for RGB stars and in red for He-burning stars. In the upper panels, dashed
blue lines are the fits presented in Table 2. In the upper left panel, the dashed orange line is the fit obtained for less evolved stars (Vrard et al.
2015), corrected with a factor that accounts for the differences between the methods we used to fit the modulation as described in Sect. 4.2. In the
upper right panel, dotted black lines delimit the domain of reliable measurements of G, which are described in Sect. 3, and the thin solid line is
the modulation period inferred from MESA models for a 1 M� star and starting from the RGB up to the AGB. The error bars are computed in the
same way as in Fig. 3. In the lower right panel, the stellar mass is colour-coded, and medians are represented by solid lines for low-mass stars
(M ≤ 1.2 M�) and by dashed lines for high-mass stars (M ≥ 1.2 M�). Because Φ varies with stellar evolution, we calculated the medians for RGB
and He-burning stars separately. We show them in blue for RGB and in red for He-burning stars.

in d01 mainly reflects the presence of mixed modes that perturb
the adjustment of the acoustic dipole modes.

The reduced small separation d02 is sensitive to the structure
differences between core He-burning stars and RGB stars: We
report that d02 is larger on average for core He-burning stars than
for RGB stars, as has been reported by Kallinger et al. (2012).
We note a clear mass effect: the lower the mass, the larger d02.
The first evidence of this mass dependence in red giants has been
discussed in Huber et al. (2010), in agreement with the theo-
retical models (Montalbán et al. 2012). We find that this mass
dependence is also visible for d01 and d03, as predicted by the
theoretical models of Montalbán et al. (2010), despite the pres-
ence of mixed modes that cause the values of these parameters to
become more scattered. However, Montalbán and collaborators
did not discuss the origin of this mass dependence. Further work
is therefore needed to physically understand this behaviour.

As for ` = 3 modes (see the bottom panel of Fig. 3), we
note that the reduced small separation d03 increases when ∆ν
decreases, as shown by the observations of Kepler (Huber et al.
2010) and stellar models (Montalbán et al. 2010). This expresses

the fact that the ` = 3 modes approach the left-hand side of
` = 0, 2 modes during stellar evolution. Further theoretical work
is needed to investigate and understand this behaviour.

4.2. Signature of the helium second-ionisation zone

The results obtained after fitting the modulation left by the
helium second-ionisation zone in ∆νn,` are shown in Fig. 4. In
Table 2 we present the scaling relations found for the dimension-
less amplitude A and period G, computed for RGB stars alone,
in the form C∆νD, where C and D are free parameters and ∆ν is
given in µHz.

4.2.1. Modulation amplitude A
When a star ascends the RGB or AGB (∆ν . 3 µHz for the
early AGB), the dimensionless amplitude of the modulation A
notably increases. During the clump phase, it is more difficult
to conclude because of the large spread of the amplitudes. We
verified that most of the stars with A ≥ 0.09 also have a dim
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Kepler magnitude, hence their oscillation spectrum is recorded
with a low signal-to-noise ratio, so that the measurement of
A is quite noisy. Globally, the amplitude of the modulation is
larger for He-burning stars than for RGB stars. This is consistent
with the results presented in Vrard et al. (2015) between clump
and RGB stars having ∆ν ≥ 3.0 µHz. We note that the val-
ues of the modulation amplitude are larger in our work than
in Vrard et al. (2015), as expected from the different methods
with which ∆νn,` and δg,obs(n, `) were computed. To compare our
results with those of Vrard et al. (2015), we then estimated how
different the modulation amplitudes are between the two meth-
ods. We note that our modulation amplitudes are 1.8 times larger
on average than those extracted in Vrard et al. (2015). Then, we
multiplied the fit reported in the latter study by 1.8 and com-
pared it with ours, as plotted in the upper left panel of Fig. 4.
Our results are also consistent with stellar evolution models that
indicate that the difference observed in the modulation ampli-
tude A between RGB and He-burning phases is correlated with
a difference of temperature and density at the level of the helium
second-ionisation zone (Christensen-Dalsgaard et al. 2014).

4.2.2. Modulation period G
We note that the modulation periodG slightly decreases through-
out the stellar evolution (Fig. 4). This means that the helium ioni-
sation zone slowly sinks into the stellar interior during evolution,
as predicted by stellar models (Fig. 6 of Broomhall et al. 2014).
The typical period does not globally differ between He-burning
stars and their RGB counterparts. Our measurements were com-
pared to the results derived with the stellar evolution code Mod-
ules for Experiments in Stellar Astrophysics (MESA) using the
1M_pre_ms_to_wd test suite case (Paxton et al. 2011, 2013,
2015, 2018, 2019). In Appendix A we describe how we extracted
the modulation period G from stellar models. Stellar mod-
els indicate that RGB stars and He-burning stars of the same
mass and same large separation should have the same mod-
ulation period G, in agreement with observations. However,
He-burning stars have more scattered G values than their RGB
counterparts. The large spread does not appear to stem from
the presence of mixed modes because Vrard et al. (2015) also
reported a spread like this for clump and RGB stars, although
they only used radial modes in the modulation fits. As reported
for the modulation amplitude A, the spread is rather well
explained by the dim magnitudes, hence by the low signal-to-
noise ratios in the oscillation spectra.

4.2.3. Modulation phase Φ

The modulation phase Φ differs depending on the evolution-
ary stage. By letting the phase vary in the interval [−π,+π], we
observe that He-burning stars globally show a negative phase
difference compared to their H-burning counterparts. This dif-
ference has been reported by Vrard et al. (2015) for clump
and RGB stars. The authors showed that the phase differ-
ence is related to the difference in ε reported in the study of
Kallinger et al. (2012) between clump and RGB stars. The link
between Φ and ε, which depends on the evolutionary stage,
is discussed in Sect. 5. Similarly to the modulation amplitude
A and the modulation period G, the spread of the modula-
tion phase Φ is larger for He-burning stars than for H-burning
stars. We verified that the spread of Φ becomes important when
the Kepler magnitude exceeds 11. The large spread of Φ could
then be explained by low signal-to-noise ratios in the oscillation
spectra.

4.2.4. Mass dependence of the glitch parameters

We also investigated the stellar mass dependence of the glitch
modulation parameters. We find evidence of a mass depen-
dence for the modulation amplitude, which varies as ARGB ∝
∆ν−0.41±0.01M−0.34±0.02 on the RGB with a similar dependence
during He-burning phases. Conversely, the modulation period is
weakly correlated with the stellar mass on the RGB and follows
GRGB ∝ ∆ν−0.05±0.01M−0.04±0.01, while it is practically indepen-
dent of the stellar mass during the He-burning phase. The mass
dependence of the modulation phase Φ is illustrated in Fig. 4.
We note a negative phase difference between low-mass and high-
mass RGB stars for ∆ν ≤ 2.0 µHz. The lack of data for He-
burning stars at low ∆ν prevents us from drawing any conclusion.
In case of less evolved stars, Vrard et al. (2015) did not find any
correlation between the stellar mass and the glitch parameters,
except for the modulation phase for clump stars. These mass
dependences remain empirical, and further theoretical work is
needed to determine their physical basis.

4.3. Mode widths

The mode widths 〈Γ`〉 were fitted by the function

〈Γ`〉 = a`
( Teff

4800 K

)b`
, (14)

where a` and b` are free parameters. The fits are presented in
Fig. 5 and summarised in Table 3.

We note that clump stars globally have larger radial mode
widths with a larger spread than those observed for RGB
stars, as mentioned in previous studies (Corsaro et al. 2012;
Vrard et al. 2018). However, when core-He-burning ends and
the star ascends the AGB (∆ν . 3 µHz), the radial mode widths
decrease and become comparable to measurements made on the
RGB.

In Fig. 5 we compare the dipole mode widths 〈Γ1〉 to the
radial mode widths 〈Γ0〉. On the RGB, we note that 〈Γ1〉 val-
ues are globally 20% higher than 〈Γ0〉 above ∆ν ≥ 3.5 µHz,
while they are globally similar below. For He-burning stars, the
` = 1 modes have larger widths than the ` = 0 modes above
∆ν ≥ 1.5 µHz. We identified three reasons that might explain
this behaviour. First, as mentioned in Sect. 3, we applied the
correction expressed by Eq. (12) to 〈Γ1〉 when the fitted modes
are mixed modes. However, the term ζ is close to 1, there-
fore the correction to 〈Γ1〉 introduces large uncertainties on the
inferred dipole p-mode widths. Second, most of the unexpect-
edly high 〈Γ1〉 values are in fact highly perturbed by mixed
modes. Gravity-dominated mixed modes can only be observed
if the condition

N ≤ 1
4q

(
π

2
Γ0

δνres
− 5

)
(15)

is met (Mosser et al. 2018), where N = ∆ν/(ν2∆Π1) is the num-
ber of gravity modes per radial order n, ∆Π1 is the period spac-
ing, q is the coupling factor, Γ0 is the radial mode width, and δνres
is the frequency resolution. Using typical values of q (see e.g.,
Mosser et al. 2017a) and 〈Γ0〉, we can infer that the right-hand
side term of Eq. (15) is close to 20 at ∆ν ∼ 3 µHz for He-burning
stars. Then, Eq. (15) is hardly verified and only p-dominated
modes are mainly visible. In these cases, the mixed modes are
so close that the fits rather reproduce several confused mixed
modes than a unique pure pressure mode. Third, we note that all
the highest values of 〈Γ1〉 are systematically associated with low
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Fig. 5. Upper panels: 〈Γ0〉 as a function of ∆ν and Teff . Middle panels: ratio of 〈Γ1〉 and 〈Γ0〉 as a function of ∆ν and 〈Γ1〉 as a function of Teff . For
convenience, horizontal dotted black lines are plotted at specific values of 0.5, 1.0, 1.5, and 2.0. Bottom left panel: 〈Γ2〉 as a function of Teff . The
colours and symbols are the same as in Fig. 4. Mean error bars on the widths have been computed both at low Teff (Teff ≤ 4200 K) and at high Teff

(Teff ≥ 4200 K). These limits are equivalent to the limits in ∆ν chosen in Fig. 3. The fits presented in Table 3 are plotted with dashed light blue
lines for RGB stars. Bottom right: 〈Γ1〉 as a function of ∆ν with the dipole mode visibilities colour-coded. The solid and dashed lines correspond
to the median values for low-visibility dipole modes (V2

1 ≤ 1.5) and for high-visibility dipole modes (V2
1 ≥ 1.5), respectively, in blue for RGB

stars and in red for He-burning stars. The turquoise, dark blue, light blue and green stars are the individual stars KIC 6847371, KIC 11032660,
KIC 5461447, and KIC 6768042, respectively. They are studied in Sect. 5.3 to test the reliability of the measurements of the dipole mode width.
The median values are computed in 0.2 µHz wide ∆ν bins and in 50 K wide Teff bins.
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Table 3. Scaling relations for the mode widths and for the mode
amplitudes.

Population a` b`

〈Γ0〉 (µHz) RGB 10.8 (∗)
RGB 0.13 ± 0.02 6.36 ± 0.37

〈Γ1〉 (µHz) RGB 0.18 ± 0.01 9.73 ± 0.34
〈Γ2〉 (µHz) RGB 0.14 ± 0.02 7.41 ± 0.40

c` d`
〈A0,bol〉 (ppm) M ≤ 1.2 M� 1013 ± 20 −0.64 ± 0.02

M ≥ 1.2 M� 902 ± 36 −0.68 ± 0.03
〈A1,bol〉 (ppm) M ≤ 1.2 M� 928 ± 19 −0.59 ± 0.02

M ≥ 1.2 M� 853 ± 35 −0.64 ± 0.03
〈A2,bol〉 (ppm) M ≤ 1.2 M� 1090 ± 31 −0.74 ± 0.02

M ≥ 1.2 M� 1031 ± 30 −0.75 ± 0.02

Notes. The mode widths 〈Γ`〉 and the mode amplitudes 〈Abol,`〉 are fitted
by Eqs. (14) and (16), respectively. (∗)The exponent b`=0 indicated in
the first row for 〈Γ0〉 is the value expected on the RGB (Belkacem et al.
2012).

Fig. 6. Radial mode amplitude 〈A0,bol〉 computed from Eq. (13) as a
function of νmax with the stellar mass colour-coded. The dashed lines
are the fits presented in Table 3, shown in blue for low-mass stars (M ≤
1.2 M�) and in red for high-mass stars (M ≥ 1.2 M�). The error bars are
computed in the same way as in Fig. 5.

` = 1 mode visibilities in the interval ∆ν ∈ [1.5, 2.5] µHz. These
dipole modes with a low amplitude are unexpectedly large and
are further discussed in Sect. 5.3. The comparison between 〈Γ2〉
and 〈Γ0〉 is not discussed here because 〈Γ0〉 ∼ 〈Γ2〉, as expected.

We also investigated the temperature dependence of 〈Γ`〉
(Fig. 5). The fits performed on each stellar population (cf.
Table 3) indicate that 〈Γ`〉 and Teff are strongly correlated,
regardless of the degree `. Vrard et al. (2018) also reported that
〈Γ0〉 is correlated with Teff for less evolved giants, but this cor-
relation is not as pronounced as in the present study. A strong
correlation like this is expected across the HR diagram accord-
ing to theoretical work (Belkacem et al. 2012).

4.4. Mode amplitudes

The radial mode amplitude 〈A0,bol〉 defined in Eq. (13) is plotted
as a function of νmax in Fig. 6 and was adjusted by the scaling
relation

〈A`,bol〉 = c` νd`
max, (16)

where c` and d` are free parameters and νmax is given in µHz.
The radial mode amplitudes follow the same trend as high-
lighted in recent studies (e.g., Huber et al. 2011; Stello et al.
2011; Mosser et al. 2012; Vrard et al. 2018). The radial mode
amplitude does not differ between RGB stars and He-burning
stars. For both stellar populations, the radial mode amplitude fol-
lows a power law with an exponent roughly equal to −0.70. Fur-
thermore, the previous studies reported a clear mass dependence
regardless the evolutionary stage: the higher the mass, the lower
the radial mode amplitude (see Fig. 6).

4.5. Mode visibilities

The energy distribution between modes of different degree ` can
be studied through the mode visibilities (Eq. (9)). They are pre-
sented in Fig. 7 and were fitted by the linear function

V2
` = α + β(Teff − 4800 K), (17)

where α and β are free parameters and Teff is given in K (see
Table 4).

We verified that the high values of V2
1 and V2

2 can be
explained by very weak radial mode amplitudes. For some He-
burning stars, the dipole mixed modes extend up to the frequency
range where ` = 3 modes are located. When mixed modes are
too close to the ` = 3 modes, a fraction of the energy asso-
ciated with mixed modes can be accidentally accounted for as
part of the energy of ` = 3 modes. Consequently, some V2

1 val-
ues may be underestimated, and V2

3 is inevitably overestimated.
In the case of less evolved stars, Mosser et al. (2012) suggested
that the scatter in V2

1 could be related to the conditions that gov-
ern the coupling between g modes and p modes, giving rise to
mixed modes. In the case of He-burning stars, this could explain
the spread we obtain because these stars clearly exhibit mixed
modes when ∆ν & 3.0 µHz.

Although we note a large spread for the mode visibilities,
it is clear that the non-radial mode visibilities increase when
Teff decreases both for RGB stars and He-burning stars, as
expected from theoretical predictions (Ballot et al. 2011a). The
only exception is the visibility of ` = 1 modes in He-burning
stars. This is due to the presence of several dipole modes with
very low visibilities in the interval Teff ∈ [4200, 4500] K, as
reflected by the gap between the medians computed for RGB
and He-burning stars. The mode visibilities in evolved stars
similarly behave as in less evolved stars, except in the case of
` = 3 modes, since we note that V2

3 increases towards low Teff ,
whereas Mosser et al. (2012) observed the opposite trend.

The visibility of dipole modes V2
1 is represented as a function

of νmax in the upper right panel of Fig. 7. We observe a clear dif-
ference between RGB stars and He-burning stars in the interval
νmax ∈ [7, 20] µHz, with He-burning stars having weaker V2

1 than
their RGB counterparts. In parallel, we previously reported that
Γ1 is greater for He-burning stars in this interval (Fig. 5). It is cer-
tain that mixed modes perturb the extraction of the pure pressure
dipole mode widths when ∆ν ≥ 1.5 µHz, but the presence of low-
visibility dipole modes reflects a shortage of dipole mode energy,
which could be linked to a higher dipole mode damping, hence
to a higher dipole mode width. We study this question in Sect. 5.
Furthermore, we find that quadrupole modes have larger ampli-
tudes in the H-burning phases than on the He-burning phases in
the interval νmax ∈ [15, 35] µHz, as represented in the middle
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Fig. 7. Upper panels: visibility of the ` = 1 modes as a function of Teff in the left panel and of νmax in the right panel. The colours and symbols
are the same as in Fig. 5. The error bars are computed in the same way as in Fig. 5. Similarly, error bars on the visibilities are given for both low
νmax (νmax ≤ 4.5 µHz) and high νmax (νmax ≥ 4.5 µHz). The dashed lines are the fits presented in Table 4, in light blue for RGB stars and in light
red for He-burning stars. The thin solid light blue and light red lines are the fits obtained for less evolved stars (Mosser et al. 2012) for RGB stars
and for He-burning stars, respectively. The thin solid black line is the theoretical prediction (Ballot et al. 2011b). Middle panels: same labels as in
the upper panels, but for the visibility of ` = 2. Lower left panel: same labels as in the upper left panel, but for the visibility of ` = 3 modes. The
median values are computed in 50 K wide Teff bins and in 1.5 µHz wide νmax bins.

right panel of Fig. 7. This difference may be linked to the mixed
character of the quadrupole modes, which is more pronounced
during the clump phase in the interval νmax ∈ [15, 35] µHz.

Nevertheless, we note a large spread of the dipole mode
visibilities. The dipole mode visibilities of He-burning stars
become comparable with those measured on the RGB at low ∆ν
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Table 4. Fits of the mode visibilities presented in Fig. 7.

Population α β (103 K−1)

V2
1 Solar-like (∗) 1.54 −0.06

RGB 1.13 ± 0.02 −1.006 ± 0.012
He-burning 1.33 ± 0.05 −0.261 ± 0.013

V2
2 Solar-like (∗) 0.58 −0.07

RGB 0.66 ± 0.12 −0.148 ± 0.058
He-burning 0.55 ± 0.01 −0.390 ± 0.006

V2
3 Solar-like (∗) 0.036 −0.02

RGB 0.07 ± 0.02 −0.007 ± 0.005
He-burning 0.07 ± 0.01 −0.041 ± 0.006

Notes. The mode visibilities are fitted by Eq. (17). (∗)The expected
coefficients are derived for solar-like oscillators, including RGB stars
(Ballot et al. 2011a).

(∆ν ≤ 1.5 µHz), when mixed modes disappear in the oscillation
spectrum. The physical mechanisms that govern the coupling
between the p-mode and the g-mode cavities might therefore be
linked to the observation of low dipole mode visibilities. Even
if the presence of depressed modes in advanced stages of stellar
evolution is not clear, the simultaneous presence of low dipole
mode visibilities and dipole mixed modes could help to identify
the physical processes that cause the depressed modes in less
evolved stages, which are still under debate (Fuller et al. 2015;
Stello et al. 2016; Cantiello et al. 2016; Mosser et al. 2017b).

4.6. Comparison with other peak-bagging methods

The measurements inferred from our frequentist peak-bagging
are compared with those4 of the automated Bayesian peak-
bagging algorithm A

B

BA (Kallinger 2019), which uses the
Bayesian nested sampling algorithm MULTINEST (Feroz et al.
2009). The average radial mode widths and bolometric ampli-
tudes derived in the Bayesian approach were computed in the
same way as in Sect. 3.4. The comparison is shown in Fig. 8.

The radial mode widths 〈Γ0〉 derived with our frequen-
tist peak-bagging are globally larger than those obtained with
A

B

BA by about 25%. This overestimate is frequency depen-
dent because it increases for higher values of 〈Γ0〉. Conversely,
our radial bolometric mode amplitudes are weakly underesti-
mated by about 5% with respect to the A

B

BA values. Vrard et al.
(2018) also reported that the radial mode width was overesti-
mated by about 10% in the frequentist approach with respect to a
Bayesian approach. Moreover, we approximated the background
component by Eq. (2) around νmax, while Kallinger (2019) mod-
elled it with two super-Lorentzian functions (Kallinger et al.
2014). The background parametrisation has a non-negligible
impact on the mode fitting, and stellar background bias is one of
the main sources of frequency-dependent systematic errors in the
measurements of mode widths and heights (Appourchaux et al.
2014). The way that the stellar background was modelled may
therefore partly explain the differences we find between mea-
surements.

5. Discussion

5.1. Stellar classification at advanced stages

Using a global measurement of the large separation ∆ν and the
oscillation pattern of red giants (Eq. (1)), we did not find any

4 https://github.com/tkallinger/KeplerRGpeakbagging

Fig. 8. Top panel: ratio of the average radial mode widths 〈Γ0〉 obtained
in this study and those obtained with a Bayesian method (Kallinger
2019). The median values are computed in 0.015 µHz wide Γ0,freq bins.
Bottom panel: same as in the upper panel, but for the average radial
mode bolometric amplitude 〈A0,bol〉. The colours and symbols are the
same as in Fig. 4. The median values are computed in 20 ppm A0,freq
bins. The dotted line represents the 1:1 agreement. Mean error bars are
represented at the top of each panel.

difference in the acoustic offset ε between RGB stars and He-
burning stars. In parallel, we highlighted a difference in the sig-
nature of the helium second-ionisation zone between these stel-
lar populations, especially in the modulation phase Φ. This phase
difference locally affects the measurement of ∆ν according to
Eq. (7). A local change in ∆ν can be linked to a local change in
ε by differentiating Eq. (1), leading to

δε = −(n + ε)
δ∆ν

∆ν
· (18)

In the case of RGB and clump stars, Vrard et al. (2015) showed
that the values of δε inferred from δ(log ∆ν) that is related with
the helium second-ionisation zone match the typical difference
in ε between RGB and clump stars. They identified the glitch
signatures as the physical basis of the stellar population iden-
tification method based on the acoustic offset ε. We extended
the conclusions raised by Vrard et al. (2015) to more advanced
evolutionary stages, that is, between RGB and He-burning stars,
including clump and AGB stars. The difference in the local
measurements of ε between RGB and AGB stars reported by
Kallinger et al. (2012) is caused by the different glitch signature
of the helium second-ionisation zone, especially for the modula-
tion phase Φ.
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Fig. 9. Left panel: distribution of He-burning stars in terms of νmax. In blue we show the number of low-mass He-burning stars (M ≤ 1.2 M�),
and in green we show the number of high-mass He-burning stars (M ≥ 1.2 M�). The colour bar indicates the location in νmax where we expect the
AGB bump for a given mass following Eq. (19) and adopting Teff = 4800 (νmax/40.0)0.06 (Mosser et al. 2010). The blue and green arrows roughly
indicate the location of the AGB bump for low-mass and high-mass stars, respectively, which is characterised by a local excess of stars. Right
panel: Evolution speed dνmax/dτ, where τ is the stellar age, as a function of νmax for different stellar masses. The models computed with MESA
start from the end of the clump phase, which is marked by a diamond. The start and the end of the AGB bump are marked by a circle and a star,
respectively.

5.2. AGB bump

After leaving the clump phase where helium-burning takes place
in the core, the star enters the AGB phase. During the early
asymptotic giant branch (eAGB) and in the case of low-mass
and intermediate-mass stars, two turning-backs of the evolution-
ary track can be seen in a narrow interval of luminosity, sim-
ilarly to what can be seen during the RGB bump: This is the
so-called AGB bump (AGBb). It is caused by the onset of the
shell-He burning and was first identified in the Large Magellanic
Cloud colour–magnitude diagram (Gallart 1998). The AGBb is
observationally characterised by a local excess of stars in the
luminosity distribution of stellar populations. Such an incre-
ment has been identified at log (L/L�) ∼ 2.2 (Bossini et al.
2015). For a star of M = 1.0 M� and Teff = 4500 K, this is
equivalent to νmax ∼ 8 µHz according to the scaling relation
(Kjeldsen & Bedding 1995)

νmax

νmax,�
=

M
M�

(
L
L�

)−1 (
Teff

Teff,�

)7/2

. (19)

Accordingly, we selected He-burning stars that left the clump
phase (i.e., νmax . 25 µHz). Their distribution as a function of
νmax is shown in Fig. 9. By tracking stellar evolution towards
low νmax, we note a depleted region followed by a peak for
low mass-stars (at νmax ∼ 8 µHz) and for high-mass stars (at
νmax ∼ 11 µHz). The depleted region could be explained by a dif-
ference in the evolution speed. We have computed models with
the MESA code, using the 1M_pre_ms_to_wd test suite case to
investigate the evolution speed between the end of the clump
phase and the ascent on the AGB. The results are presented in
the right panel of Fig. 9. For a given mass, we note that the evo-
lution is faster between the end of the clump phase and the start
of the AGBb than right after the AGBb since the variation of νmax
with time is more important before the AGBb. The fast evolution
speed before the AGBb results in a small statistical probability to
meet low-mass stars in the interval νmax ∈ [8, 15] µHz and high-
mass stars in the interval νmax ∈ [14, 18] µHz. Investigating the
AGBb in depth is part of our future work.

5.3. A strong damping during the eAGB phase?

Very low degree modes have similar eigenfunctions in the stel-
lar outer layers, so that they are excited in similar conditions
and show similar power spectral densities. However, as men-
tioned in Sect. 4.5, many He-burning stars have very low dipole
mode visibilities below νmax = 20 µHz. In parallel, we found that
most of the He-burning stars with low dipole mode visibilities
have larger dipole mode widths. These low dipole mode visi-
bilities reflect a lack of energy that could be linked to a strong
dipole mode damping. Accordingly, we analysed the correlation
between low visibility and large damping of dipole modes in
detail by fitting the mixed-mode pattern during the early-AGB
phase.

To this end, we considered single stars that have been iden-
tified as eAGB stars according to the classification method of
Mosser et al. (2014). We selected five eAGB stars that have both
low visibility dipole modes and a mixed-mode pattern clear
enough to fit individual mixed modes and measure their widths
(KIC 6847371, 11032660, 5461447, 10857623, and 6768042).
We compared these widths to the pure-pressure dipole-mode
width with Eq. (12). The results shown in Appendix B are unfor-
tunately not unequivocal. Three of these eAGB stars present
a strong dipole-mode damping, which is within the 1σ uncer-
tainty for KIC 6847371 and KIC 5461447 and within the 2σ
uncertainty for KIC 11032660. Nevertheless, this is not what we
observe for KIC 10857623 and KIC 6768042. We face several
constraints to reduce the uncertainties (or to fit other spectra),
such as a low signal-to-noise ratio, a high ratio ζ of the mode
inertia in the core and the total mode inertia (which leads to high
uncertainties through Eq. (12)), limited frequency resolution,
rotational splittings, and buoyancy glitch signature. We therefore
tested another method to process these constraints together.

In a star in spherical equilibrium (thus non-rotating and with-
out magnetic field), we expect the energy equipartition between
modes of even and odd degrees to be satisfied. The lack of energy
observed for dipole modes can be studied by comparing the
energy of even-degree modes to that of odd-degree modes. To
this end, we computed the ratio between the visibilities of odd
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Fig. 10. Ratio of the mode visibilities of odd and even degrees as a
function of νmax. Same labels as in Fig. 4. For convenience, horizontal
dashed black lines are plotted at specific values of 0.75, 1.00, and 1.25.
The error bars are computed in the same way as in Fig. 3. The median
values are computed in 1.5 µHz νmax bins.

and even degrees,

V`,odd2

V`,even2
=

V2
1 + V2

3

1 + V2
2

. (20)

Modes that have a degree of same parity are close one to each
other, as illustrated in Fig. 2. As a result, studying the global
contribution of the energy then limits the impact of the energy
leakage between individual degrees. We use the measurement
of the odd/even visibility ratio as an indicator of the variation
of the visibilities of ` = 1 modes (Fig. 10). The variation is in
fact dominated by the dipole modes for two reasons. On the one
hand, the visibility of the octupole modes is very low for geomet-
rical reasons. On the other hand, the quadrupole modes essen-
tially behave as pure pressure modes for evolved giants, and
always have a more pronounced pressure character than dipole
modes. Below νmax = 20 µHz, the energy equipartition seems
to be invalid for He-burning stars. The dipole mode visibility is
weaker than predicted by theory for He-burning stars. This lack
of dipole mode energy is linked to a large dipole mode damping
according to our study, and invalidates the energy equipartition
between the different low-degree modes.

For RGB stars we can note that the visibility of ` = 1 modes
is globally lower at high νmax (see Fig. 7) and is especially lower
than the expected value (1.54), which makes V`,even2 greater than
V`,odd2 above νmax = 25 µHz. This difference was first observed
by Mosser et al. (2012) for less evolved red giants and can the-
oretically be explained by a difference of dipole mode damping
(Dziembowski 2012). The radiative damping causes an energy
loss at the envelope base that decreases when the star ascends
the RGB (Dziembowski 2012, see Figs. 6 and 7). For a star with
an initial mass M0 = 2 M�, the energy loss by gravity wave
emission at the envelope base is expected to cancel out when
νmax ' 28 µHz on the RGB. This is consistent with our obser-
vations because we note that V2

1 increases with evolution below
νmax ≤ 28 µHz (see the upper right panel of Fig. 7). On the RGB,
radiative damping may explain the damping of energy of dipole
modes observed at high νmax. On the AGB, the dipole mode visi-
bility evolves in the opposite direction. Given that the evanescent
region between the g-mode and the p-mode cavities grows while
the star ascends the AGB, mixed modes become less visible, and

consequently, the only visible dipole modes are trapped in the
envelope, as observed on the RGB. It might therefore be rel-
evant to investigate the radiative damping in order to determine
whether it can explain the damping of dipole modes on the AGB.

6. Conclusion

So far, we have performed the first exhaustive study of the seis-
mic analysis of evolved giants, including ∼2000 stars ascending
the RGB towards the luminosity tip and He-burning stars both in
the clump phase and ascending the AGB. We successfully char-
acterised the oscillation spectrum of stars with ∆ν ≥ 0.5 µHz and
extracted the radial, dipole, and quadrupole mode parameters.
By investigating the signature of the helium second-ionisation
zone, we identified the physical origin on which the classifica-
tion method based on ε and presented in Kallinger et al. (2012)
relies at low ∆ν, that is, between RGB and AGB stars. We found
that the amplitude and phase of the modulation introduced in the
mode frequencies differ in RGB and in He-burning stars, that
is, in core-He-burning and AGB stars. Work is in progress to
investigate these differences with modelling. These differences
affect local measurements of ε and enable classifying RGB and
He-burning stars. Thus, we extended the work of Vrard et al.
(2015), who drew the same conclusions, but considering RGB
stars versus clump stars. As a consequence, we now have two
methods relying on the same physical basis to decipher stellar
evolution effects in evolved giant stars. On the one hand, we can
adopt a local analysis where the signature of the helium second-
ionisation zone is included in the acoustic offset ε. In this case,
the possible values of ε reflect stellar evolution effects. On the
other hand, we can adopt a global analysis where the values
taken by ε are squeezed together and the stellar evolution effects
in ε fade. However, in this case, we can still emphasise the stel-
lar evolution effects by considering an additional term in Eq. (1)
representing the signature of the helium second-ionisation zone
on mode frequencies.

Having access to seismic diagnoses of evolved giants is
promising for the understanding of stellar evolution, espe-
cially during the AGBb. The AGBb is expected to occur at
log (L/L�) ∼ 2.2 after the core He-burning phase. The investi-
gation of the AGBb will be approached in a forthcoming paper.
Furthermore, we highlighted that after the core He-burning
phase, (i) the evolution is faster for low-mass stars, (ii) the dipole
mode energy decreases, and (iii) the pressure-mode damping
slowly becomes comparable to that measured on the RGB. This
suggests that other physical processes need to be investigated in
order to understand the mode damping and the observed visi-
bilities as soon as core He-burning stops, that is, when the core
becomes radiative again.
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Appendix A: Location of the helium
second-ionisation zone

The modulation period G defined in Eq. (7) can be linked to
the location of the helium second-ionisation zone. The structural
variations caused by the helium glitch can be seen in the first
adiabatic exponent profile, defined by

γ1 =

(
d log P
d log ρ

)

s
, (A.1)

where P and ρ are the pressure and the density, respectively,
and the subscript s indicates that the derivative is taken at con-
stant entropy. It is commonly assumed that the signature of
the helium glitch arises from the dip in the γ1 profile caused
by the helium second-ionisation zone (Monteiro & Thompson
2005; Houdek & Gough 2007). In stellar models, we therefore
took the acoustic radius at this local minimum as the location of
the helium second-ionisation zone, for instance, tHeII, defined by

tHeII =

∫ rHeII

0

dr
cs(r)

· (A.2)

In this expression, rHeII is the distance of the local minimum
from the centre of the star, and cs is the adiabatic sound speed.
The helium glitch introduces an oscillatory component in the
eigenfrequency pattern of the star, which is proportional to
(Gough & Thompson 1988; Vorontsov et al. 1988; Gough 1990)

δν ∝ sin
(
4πτHeIIνn,` + ΦHeII

)
, (A.3)

where φHeII is the phase of the glitch modulation and τHeII is the
acoustic depth of the helium glitch relative to the surface of the
star of radius R∗,

τHeII =

∫ R∗

rHeII

dr
cs(r)

· (A.4)

The modulation introduced in the local large separation
(Eq. (6)) can also be expressed in the form of Eq. (A.3) with
a phase shift compared to ΦHeII. Consequently, the modulation
period G and the acoustic depth τHeII can be linked according to

τHeII =
1

2G∆ν
· (A.5)

Furthermore, the total acoustic length of the stellar cavity is
defined by

T0 =
1

2∆ν
, (A.6)

so that we can convert the acoustic depth τHeII into the acoustic
radius tHeII with the relation tHeII = T0 − τHeII. This transforma-
tion allows us to reduce the biases that result from the unknown
exact position of the stellar surface (Christensen-Dalsgaard et al.
1995; Ballot et al. 2004). Finally, the modulation periodG can be
inferred from the location of the helium second-ionisation zone
with the expression

G =
1

1 − tHeII/T0
· (A.7)

Appendix B: Mixed-mode measurements in the
eAGB phase

We selected individual stars identified as eAGB stars accord-
ing to the classification method of Mosser et al. (2014) and fit-
ted their mixed dipole modes near νmax to extract an estimate
of the mode widths. The mixed dipole mode widths were then
used to infer the pure-pressure dipole mode widths according to
Eq. (12).

Results are shown in Figs. B.1 and B.2, and in the fifth
column of Table B.2. Their average values are presented in
Table B.1.
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Fig. B.1. Mixed-mode pattern for KIC 6847371 (V2
1 = 1.23 ± 0.10) at radial order n = 5 (top left) and at n = 6 (top right), for KIC 11032660

(V2
1 = 1.14 ± 0.10) at n = 5 (middle left) and at n = 6 (middle right), for KIC 5461447 (V2

1 = 1.15 ± 0.15) at n = 6 (bottom left), and for
KIC 10857623 (V2

1 = 1.01 ± 0.12) at n = 7 (bottom right). The stars are marked by stars in the lower right panel of Fig. 5 except for KIC
10857623 because we were unable to reliably extract its dipole mode widths following the method described in Sect. 3.4. Resolved modes are
plotted by individual Lorentzians in blue, with the parameters given in Table B.2, while the unresolved modes at ν = 18.246 µHz (KIC 11032660),
ν = 20.913 µHz, and ν = 20.984 µHz (KIC 10857623) are plotted by sinc2 functions.
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Fig. B.2. Same labels as in Fig. B.1 for KIC 6768042 (V2
1 = 1.38±0.13)

at radial order n = 7 (top) and at n = 8 (bottom). The mode located at
ν = 24.873 µHz is unresolved and has been fitted by a sinc2 function.

Table B.1. Pressure dipole mode widths compared to the radial mode
widths.

KIC ∆ν νmax 〈Γp
n,1〉 〈Γ0〉

(µHz) (µHz) (µHz) (µHz)

6847371 2.69 19.84 0.189 ± 0.070 0.128 ± 0.032
11032660 2.83 19.66 0.142 ± 0.051 0.121 ± 0.026
5461447 2.97 21.76 0.163 ± 0.051 0.088 ± 0.017
10857623 2.49 16.11 0.083 ± 0.029 0.121 ± 0.023
6768042 2.96 23.37 0.138 ± 0.069 0.150 ± 0.024

Notes. The average value of the dipole mode widths is computed as
the arithmetic mean of the pressure mode widths Γ

p
n,1 presented in

Table B.2.

Table B.2. Estimates of the ratio ζ between the mode inertia in the core
and the total mode inertia, the mixed dipole mode widths Γn,1, heights
Hn,1 and the pressure dipole mode widths Γ

p
n,1 for the stars KIC 6847371

at radial order n = 5 and 6, KIC 11032660 at n = 5 and 6, KIC 5461447
at n = 6, KIC 10857623 at n = 7, and KIC 6768042 at n = 7 and 8.

KIC ν ζ Γn,1 Γ
p
n,1 Hn,1

(µHz) (nHz) (µHz) (ppm2 µHz−1)

6847371
17.221 0.912 14.0 0.173 148 042
17.312 0.933 8.9 0.134 119 977
17.385 0.951 12.6 0.256 185 682
17.444 0.961 12.8 0.330 132 426
19.763 0.917 10.8 0.130 142 715
19.836 0.900 13.5 0.135 185 918
19.916 0.895 8.1 0.077 595 653
19.981 0.908 17.5 0.190 419 721
20.056 0.929 18.0 0.254 114 214
20.121 0.944 9.1 0.163 272 377
20.198 0.958 9.8 0.233 121 588

11032660
18.054 0.901 9.1 0.092 66 802
18.103 0.906 11.9 0.126 223 603
18.176 0.922 14.7 0.189 223 744
18.246 0.940 8.1 (∗) 0.135 147 870
18.300 0.956 8.5 0.191 149 941
18.365 0.967 8.2 0.246 156 975
20.836 0.892 12.3 0.113 106 265
20.918 0.872 13.5 0.105 108 367
20.999 0.881 8.2 0.069 231 565
21.092 0.911 14.1 0.158 200 770

5461447
21.715 0.947 13.9 0.263 65 961
21.844 0.902 12.9 0.131 88 352
22.007 0.835 15.5 0.094 39 418
22.121 0.879 14.9 0.123 110 662
22.218 0.925 13.7 0.183 118 859
22.315 0.954 18.4 0.398 49 835

10857623
20.745 0.924 9.7 0.127 63 988
20.820 0.891 8.8 0.081 56 137
20.913 0.848 7.8 (∗) 0.051 140 292
20.984 0.851 7.8 (∗) 0.052 99 708
21.065 0.882 12.1 0.103 163 003

6768042
24.763 0.839 22.1 0.138 70 787
24.873 0.832 7.9 (∗) 0.047 80 691
24.967 0.878 16.6 0.136 155 491
25.088 0.928 16.3 0.225 101 482
25.204 0.953 11.5 0.243 107 916
27.504 0.927 10.5 0.143 35 161
27.639 0.863 11.3 0.082 45 895
27.780 0.790 14.5 0.069 87 860
27.904 0.820 8.7 0.048 174 133
28.037 0.899 14.0 0.138 45 005
28.070 0.909 11.7 0.129 32 445
28.182 0.940 15.3 0.254 39 866

Notes. The different estimates of Γ
p
6,1 are inferred from Eq. (12). For

these particular stars, the term ζ is not derived from scaling relations as
described in Sect. 3, but is extracted from the database of Mosser et al.
(2018). (∗)The measurement of the modes located at ν = 18.246 µHz
(KIC 11032660), ν = 20.913 µHz and ν = 20.984 µHz (KIC 10857623),
and ν = 24.873 µHz (KIC 6768042) are limited by the resolution.
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Appendix C: Table available at the CDS with results
of pressure mode-fitting

The approach described in Sect. 3 allowed us to thoroughly
characterise the pressure modes of 2103 evolved red giants
observed by Kepler with ∆ν ≤ 4.0 µHz. A selection of the seis-
mic parameters, obtained in Sect. 4, is shown in Table C for
25 stars. The complete set of global seismic parameters of the
whole sample of stars is available at the CDS. The stellar mass
and effective temperature were extracted from the APOKASC

catalogue (Pinsonneault et al. 2014). For some stars, the stel-
lar mass and the effective temperature are not listed in the
APOKASC catalogue. It concerns roughly 5% of our sample,
with half of this fraction being associated with very low ∆ν-
values (i.e., ∆ν ≤ 0.5 µHz). For these stars, we nevertheless
obtained rough estimates of the stellar mass and effective tem-
perature using semi-empirical and empirical scaling relations
implying both the frequency at the maximum oscillation power
νmax and large frequency separation ∆ν (Kjeldsen & Bedding
1995; Kallinger et al. 2010; Mosser et al. 2010).

Table C.1. Seismic parameters.

KIC ∆ν M Teff ε δε d01 δd01 d02 δd02 d03 δd03
(µHz) (M�) (K)

01026309 1.944 2.58 4514 0.795 0.011 −0.043 0.017 0.126 0.007 0.391 0.016
01160789 3.524 0.86 4724 0.950 0.014 −0.053 0.021 0.144 0.011 0.389 0.022
01162746 3.804 0.85 4762 0.956 0.016 −0.093 0.023 0.173 0.012 0.343 0.026
01163359 2.644 1.67 4560 0.855 0.012 −0.013 0.017 0.143 0.008 0.342 0.017
01432587 1.082 0.85 4295 0.635 0.011 −0.042 0.017 0.171 0.009 0.378 0.017
01435573 3.587 0.90 4698 0.945 0.017 −0.091 0.023 0.181 0.013 0.358 0.022
01572780 2.693 0.97 4738 0.854 0.013 −0.054 0.022 0.171 0.012 0.392 0.023
01719297 1.215 1.29 4255 0.664 0.010 −0.083 0.016 0.157 0.009 0.362 0.017
01720425 3.667 1.09 4798 0.945 0.015 −0.044 0.021 0.169 0.011 0.382 0.022
01725552 1.221 1.53 4344 0.654 0.010 −0.090 0.020 0.146 0.010 0.362 0.018
01725732 0.707 0.87 4100 0.565 0.010 −0.148 0.014 0.182 0.008 0.396 0.014
01726211 3.720 1.32 4862 0.963 0.016 −0.010 0.024 0.162 0.014 0.338 0.022
01865595 1.815 1.34 4386 0.755 0.011 −0.044 0.018 0.128 0.009 0.406 0.019
01868101 3.785 1.28 4633 0.966 0.015 −0.030 0.017 0.149 0.009 0.376 0.021
01872517 3.299 1.14 4543 0.915 0.015 −0.043 0.019 0.148 0.011 0.356 0.020
01995358 3.238 1.17 4824 0.930 0.015 −0.029 0.020 0.155 0.011 0.429 0.020
02011582 3.863 2.15 4684 0.943 0.015 −0.060 0.020 0.130 0.010 0.328 0.020
02017541 1.457 1.33 4242 0.690 0.011 −0.055 0.018 0.155 0.009 0.364 0.018
02018392 3.789 1.52 4669 0.943 0.015 −0.035 0.021 0.136 0.009 0.316 0.019
02141932 3.013 1.37 4429 0.894 0.014 −0.017 0.019 0.146 0.009 0.426 0.021
02142095 3.694 1.17 4839 0.932 0.015 −0.046 0.019 0.151 0.009 0.391 0.019
02156178 3.824 0.95 4853 0.932 0.018 −0.047 0.030 0.188 0.016 0.391 0.031
02157059 3.002 1.27 4424 0.874 0.013 −0.056 0.017 0.161 0.009 0.353 0.017
02157901 3.795 1.05 4760 0.933 0.017 −0.049 0.027 0.205 0.017 0.374 0.031
02164874 1.779 1.45 4447 0.765 0.011 −0.029 0.019 0.142 0.009 0.359 0.018

Notes. The columns correspond to, from left to right, the KIC number, the large separation ∆ν, the stellar mass M, the effective temperature Teff ,
the acoustic offset ε, the uncertainty on ε, the reduced small separations d0` and the uncertainties on d0`. The list of the full data set, including the
glitch parameters, the mean mode widths, amplitudes, visibilities and the evolutionary stages, is available at the CDS.
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Chapter 8

Analysis of the seismic parameters at
evolved stages on the RGB and AGB

The seismic parameters derived from the oscillation spectrum allow a fruitful diagnostic of the stellar
interiors. They offer unique information on the stellar core and envelope properties, which is comple-
mentary to that carried by photometric and spectrometric parameters that probe the superficial layers
of stars. With the 1470-day time series of Kepler, we are able to accurately extract the seismic param-
eters of stars with ∆ν down to 0.5 µHz. Tracking the structure changes between RGB and AGB stars
is now within reach by studying the global behaviour of the seismic parameters in a large sample of
stars. In the attached paper 1, we analyse the seismic parameters that are obtained with the data fitting
technique presented in Chapter 7. With a set of thousands of high-luminosity red giants observed by
Kepler including RGB, clump and AGB stars, we follow the dependence of the stellar parameters on
stellar evolution. This in turn helps us to identify the physical basis on which the classification of RGB
and AGB stars relies on. Hereafter, we mainly exploit the p-mode frequencies obtained with ADIPLS
by applying the method described in Sect. 6.3.1. This gives us the opportunity to compare the seismic
parameters derived from observations to those from stellar models as well as to extend the analysis up
to the luminosity-tip of the RGB (∆ν = 0.06 µHz).

The dependence of the observed seismic parameters on the mass and evolution stage is analysed
in Sect. 4.1, 4.2 and 5.1 of the attached article 1. We suggest the reader to refer to them for a detailed
discussion. Here, we focus on stellar models, studying the implications of these observations on the
evolution of the stellar structure, including on the structure differences between RGB and AGB stars.

8.1 Seismic inference with the asymptotic pattern of red giants

8.1.1 Evolution of the structure of the oscillation spectrum

The pressure-mode frequencies computed with ADIPLS can be used to follow the evolution of the struc-
ture of the oscillation spectrum. This concerns the frequency spacing ∆ν between modes of consecutive
radial order n and same degree ℓ, but also the dimensionless small frequency spacing d0ℓ between non-
radial modes and their neighbouring radial mode. In stellar models, we compute the large frequency
separation as the gradient of the radial-mode frequencies with respect to the radial order n

∆ν =
dνn,0

dn
. (8.1)

The local acoustic offset ε(n), which corresponds to the frequency spacing at radial order n between the
radial mode at frequency νn,0 and n∆ν, is computed as

ε(n) =
νn,0 − n∆ν

∆ν
. (8.2)

The local small frequency separations in fraction of ∆ν are obtained by combining Eq. 3.30 with Eq. 3.32.
Then, the global seismic parameters ε and d0ℓ are taken as the average local value of the 7 modes for
which the frequencies are closest to the maximum oscillation power, which is representative of the
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number of observed modes per degree ℓ around ∆ν ∼ 4 µHz. The dependence of these seismic pa-
rameters on stellar evolution is shown in Fig. 8.1. Overall, we see that the acoustic offset ε decreases
as the star evolves on its respective branch, meaning that the frequency of the radial mode of order
n comes closer to n∆ν. In absolute value, the dimensionless small separations d01 and d02 increase as
∆ν decreases, implying that the non-radial modes get closer to the neighbouring radial mode as the
star gradually evolves. This behaviour coincides with the observations of evolved stars presented in
Sect. 4.1 of the publication 1. Moreover, the evolutionary effects can easily be highlighted when the
seismic parameters are averaged over few radial orders. Indeed, we notice that the difference between
RGB and clump/AGB in the ε values is more important when the three central radial modes closest to
the maximum oscillation power are selected. This point is discussed in further details in Sect. 8.1.2.

FIGURE 8.1: Synthetic seismic parameters extracted from the p-mode frequencies com-
puted with ADIPLS, as described in Chapter 6. The MESA models are computed with the
reference input physics listed in Table 10.1. Upper left: variation of the acoustic offset ε
as a function of ∆ν, with an emphasis on the evolutionary stage. RGB, clump and AGB
are colour-coded in blue, orange and red, respectively. The arrows indicate the direction of
evolution between two consecutive models. We have used the seven ℓ = 0 modes closest
to the maximum oscillation power to compute ε. Upper right: same as upper left, but the
acoustic offset ε has been computed with the average of the three ℓ = 0 modes closest to
the maximum oscillation power. Lower panel: the dimensionless small separations d0ℓ as
a function of ∆ν, computed with the seven radial order n closest to nmax. Mean error bars

estimated for ∆ν below or above 1 µHz are represented on each panel.
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FIGURE 8.2: Model frequencies from radial order n = 1 up to n = 8 computed with
ADIPLS for a 1 M⊙ track at solar metallicity. The MESA models are computed with the
reference input physics listed in Table 10.1. Radial, dipole and quadrupole modes are
shown in red circles, blue triangles and green squares, respectively. The non-radial modes
(ℓ = 1, 2) are computed by setting the squared Brunt-Väisälä frequency N2

BV = 0 in the
core, as described in Sect. 6.3.1. Modes of the same degree ℓ and same radial order n are
connected by dotted lines, in red for ℓ = 0, in blue for ℓ = 1, and in green for ℓ = 2. The
radial orders are indicated at the lower edge of each branch, with the same colour code
as the mode degree ℓ. The magenta dashed lines delimit the typical frequency range that
can be observed on the oscillation spectrum. They correspond to the location of 75% and
125% of νmax. Top: on the RGB. Bottom: during the He-burning phase. Note that with the
method “N2

BV = 0 in the core", the code could not find out the ℓ = 1 modes during the
clump phase and the early-AGB (νmax ∈ [10, 25] µHz). Because the code had troubles to re-
turn the non-radial modes for high-luminosity AGB models, we stopped the computation

of non-radial modes below νmax ≤ 0.5 µHz after the He-core burning phase.
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As presented in the models performed by Stello et al. (2014), the evolution of these frequency sep-
arations can also be observed in the radial and non-radial ridges (Fig. 8.2). Along a specific ridge at
fixed radial order n, we can see that as the star evolves (equivalently, νmax decreases), the ℓ = 1 and
ℓ = 2 ridges get closer to the neighbouring ℓ = 0 ridge. Moreover, non-radial ridges are even closer to
the neighbouring radial ridge at low radial order n. Since the frequency range of the maximum oscil-
lation power changes with νmax, low radial orders are more easily observable at low νmax. These ridge
behaviours explain why the observed frequency spacings between non-radial modes and the neigh-
bouring radial mode shrink while stars gradually evolve.

The small frequency separations are sensitive to the distance between the inner turning point of the
cavity and the base of the convective zone (Montalbán et al., 2010). Indeed, the convective envelope
represents a large fraction of the stellar radius during the RGB, so the turning point of the dipole mode
cavity falls in the convective envelope. When He-core burning starts, the radiative core grows and the
extent of the convective envelope shrinks. In this case, the inner turning point of dipole modes falls in
the radiative zone. We can define the acoustic radius as

t(r′) =
∫ r′

0

dr
c

, (8.3)

which corresponds to the time a sound wave spends to travel from the centre up to a distance r′ from the
centre, where c is the sound speed. By noting the acoustic radius of the inner turning point of the ℓ = 1
mode cavity ttp1 and that of the base of the convective zone tBCZ, ttp1 is larger than tBCZ in the H-shell
burning phase, and lower than tBCZ in the He-core burning phase. This leads to different values of the
dimensionless frequency spacing d01, as illustrated in Fig. 8.3. The scatter of d01 is small on the RGB
but becomes more important once the inner turning point of the ℓ = 1 modes reaches the base of the
convective zone during the He-core burning phase. This explains the dispersion of the dimensionless
small separations d0ℓ that are presented in Fig. 3 of the article 1.

FIGURE 8.3: Dimensionless small frequency separation d01 as a function of the distance in
acoustic radius between the inner turning point of the ℓ = 1 cavity ttp1 and the base of
the convective zone tBCZ. Negative values of ttp1 − tBCZ mean that the inner turning point
is located in the radiative zone while positive values indicate that the inner turning point
is in the convective envelope. Several low-mass RGB and He-core burning models with
Z = 0.02, Y = 0.278, αMLT = 1.9, between 0.7 and 2.3 M⊙, are shown with colour-coded

points. The lighter the colour, the higher the mass. Credit: Montalbán et al. (2010)
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8.1.2 Global analysis versus local analysis

In Fig. 3 of the paper 1, we see that the seismic parameters follow a clear trend with ∆ν, especially the
acoustic offset ε. The ε estimates distribute closely around the scaling relation, without strong differ-
ences between RGB and He-burning stars. In parallel, Kallinger et al. (2012) found clear differences in
the ε estimates of RGB and He-burning stars as depicted by Fig. 5.3, allowing a classification between
those stars. Nevertheless, the way Kallinger et al. (2012) extract these seismic parameters is based on a
different approach. In their work, they individually fit the observed stellar modes and compute the seis-
mic parameters with the individual frequencies near the maximum oscillation power. Their approach
is based on local measurements of the seismic parameters, which contain the signature of sharp varia-
tions regions of the sound speed. As discussed in Sect. 5.2, this signature substantially shifts the seismic
parameters, which differs between H-shell burning and He-core burning stars, making a classification
method possible (Vrard et al., 2015).
Conversely, the technique presented in Sect. 7.3 that we use to identify the degree ℓ and radial order n
of all observed modes is based on a global analysis of the oscillation spectrum. In that sense, the whole
template oscillation spectrum is parameterised by a global ∆ν and is adjusted to reach the maximum
cross-correlation with the observed oscillation spectrum. Then, the seismic parameters describing the
asymptotic pattern of red giants Eq. 3.20 are inferred by taking the optimised global measurement of ∆ν
as the reference large frequency separation. In this global analysis, since these seismic parameters are
averaged over the whole frequency range of observable modes, the signature of localised regions with
sharp variations in the sound speed (see Chapter 4) is smoothed out. Indeed, the signature of those
regions is a frequency-dependent modulation, for which the average over a large frequency range is
close to zero (see Eq. 7.13). In this case, the evolutionary effects fade and both RGB and clump stars
have the same seismic parameters. As a result, this reduces the spread of the seismic parameters around
the asymptotic values. For instance, the difference between RGB and clump/AGB stars computed with
ADIPLS is more significant when the acoustic offset ε is averaged over three radial orders instead of
seven radial orders (top panels of Fig. 8.1). In this scenario, the signature of those sharp variation re-
gions is not included in the seismic parameters and an additional term must be accounted for in the
asymptotic pattern of red giants, as described in Eq. 4.6.

To sum up, there are two ways of analysing the oscillation spectrum (Vrard et al., 2015):

➛ On the one hand, a local analysis can be adopted, where seismic parameters are inferred from
a few number of individual frequencies. In this scenario, the seismic parameters deviate a bit
from the asymptotic pattern as they contain signatures of sharp variation regions, which differ
depending on the evolutionary stage.

➛ On the other hand, a global analysis can be followed, where seismic parameters are inferred from
the whole set of observable modes. In this scenario, the signature of sharp variation regions fades
and seismic parameters closely follow the asymptotic pattern of red giants. However, an addi-
tional term (see Eq. 4.6) reflecting the glitch signature must be accounted for in the asymptotic
pattern so that the oscillation spectrum of red giants is accurately characterised.

8.2 The signature of the helium second-ionisation zone in high-luminosity
red giants

8.2.1 Characterising the helium second-ionisation zone

As presented in Chapter 4, sharp variation regions of sound speed, such as the HeII zone, leave a signa-
ture in the stellar modes that probe these regions. This signature depends on the characteristics of the
HeII zone and is expected to be more important as the sound speed profile gets steeper. In our work, we
fit the variation caused by He second ionisation in the first adiabatic exponent Γ1 profile (related with
the sound speed profile following Eq. 4.1) by a Gaussian, as represented in case (c) of Fig. 4.3. Then,
we characterise the HeII zone by three parameters, which are the amplitude HHeII of the Γ1 variation,
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its acoustic radius tHeII, and the width ∆HeII over which the Γ1 variation caused by HeII extends. We
extract these parameters by fitting the Γ1 profile all around the HeII zone with

LHeII(t) = −HHeII e
− (t−tHeII)

2

2∆2
HeII + a0 + a1t, (8.4)

where t is the acoustic radius, a0 and a1 are the coefficients of the polynomial that reproduces the baseline
of the Γ1 profile (see Fig. 8.4). In the previous equation, we keep the parameter HHeII positive, so we
consider a negative Gaussian function. We notify that both tHeII and ∆HeII are dimensionless parameters,
they are normalised by the total acoustic length of the stellar cavity T0 = 1/(2∆ν). In the fitting process,
both HHeII, tHeII, and ∆HeII are left as free parameters, but the polynomial coefficients a0 and a1 are fixed
by connecting the local maximum after the dip caused by HeII with the Γ1 profile before the dip. By
fitting the Γ1 dip, we are able to track the evolution of the HeII characteristics from the RGB up to the
AGB, especially to investigate how they relate to the parameters of the glitch modulation introduced in
mode frequencies.

FIGURE 8.4: Γ1 profile of a 1 M⊙ model computed with MESA. The parameters of the Γ1
variations (HHeII, tHeII, and ∆HeII), are directly shown in the figure. The green solid line is
the Γ1 profile throughout the star. The thick orange dashed line indicates the baseline that
connects the local maximum after the dip caused by HeII with the Γ1 profile before the dip.

The thin red dashed line gives the fit of the Γ1 profile with Eq. 8.4 around the dip.

8.2.2 Inferring the glitch parameters from stellar models

After computing the mode frequencies with the oscillation code ADIPLS, we are able to extract the
parameters of the modulation induced by the HeII zone in mode frequencies. The procedure we follow
to derive the glitch parameters with the ADIPLS mode frequencies is similar to that used with the
observed mode frequencies presented in Sect. 7.5. Nevertheless, there are two main differences in the
fitting method:

➛ The set of the ADIPLS mode frequencies is not based on the range of frequencies over which
modes are intense enough to be detected (i.e. ν ∈ [νmax − 0.75 δνenv, νmax + 0.75 δνenv], where
δνenv is the full-width at half maximum of the power excess envelope, see Sect. 7.1.2). Instead,
we directly select a fixed number of modes during the whole evolutionary track from RGB to
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AGB. We select the 7 radial orders that are the closest to the maximum oscillation power, i.e. 7
modes per degree ℓ = 0, 1, 2 for which the frequencies are closest to νmax. This number of modes
is obviously representative of the number of observed modes for the least evolved stars in our
sample (near ∆ν ∼ 4 µHz) but overestimated for the most evolved RGB and AGB stars, for which
the number of observed modes can drop to 3. We choose to select a fixed number of modes to keep
the oscillatory component of the glitch signature clear, then optimise the extraction of the glitch
modulation, regardless the evolutionary status.

➛ The most difficult parameter to converge is the glitch period because the optimisation function
that we need to minimise have several local extrema as a function of the modulation period. So the
fitting process largely depends on the initial values given to the glitch parameters. In parallel, the
range of all possible values taken by the glitch parameters is large throughout the evolution from
the RGB up to the AGB. In order to mitigate the bias induced by the choice of initial conditions,
the optimised glitch parameters at step N − 1 are given as initial guesses for the glitch parameters
at step N. This allows us to extract glitch parameters that smoothly evolve between consecutive
stellar models.

FIGURE 8.5: Synthetic glitch and structure parameters computed with MESA and ADIPLS.
The MESA models are computed with the reference input physics listed in Table 10.1. Top
left: dependence of the glitch amplitude AHeII on stellar evolution. Mean error bars esti-
mated for ∆ν below or above 1 µHz are represented. Top right: same as top left but for the
amplitude HHeII of the Γ1 variation. Bottom left: same as top left but for the width ∆HeII of
the HeII zone. Bottom right: dependence of the amplitude HHeII on the average temper-
ature log THeII in the HeII zone. The arrows indicate the direction of the evolution, while
blue, orange and red solid lines refer to the H-shell, He-core and He-shell burning phases,

respectively. The evolution has been computed with a mass 1 M⊙ and solar metallicity.
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This way, we can investigate the dependence of the glitch parameters on stellar parameters, in order
to evaluate their potential to provide structure changes with stellar evolution. Particularly, we study the
correlation between glitch parameters and the HeII zone characteristics.

8.2.3 Understanding the strength of the glitch signature

The evolution of the modulation amplitude of the glitch signature is shown in Fig. 8.5. We notice that
the amplitude of the modulation is higher during the He-burning phase than on the RGB, by an average
factor of 40%. These ADIPLS results support the analysis of the modulation amplitude measured in
high-luminosity red giants (see Fig. 4 of paper 1). This difference between RGB and clump/AGB can
be attributed to the strength of the Γ1 variation at the HeII zone. Indeed, the depth HHeII and the width
of the Γ1 dip are larger on the clump/AGB than on the RGB, which demonstrates that the signature
of the HeII zone in mode frequencies is stronger once He burning occurs. In parallel, we identify a
clear correlation between the amplitude of the Γ1 variation and the average temperature at the HeII
zone. As depicted in Fig. 8.5, we highlight an unequivocal relation between those two parameters,
where the depth HHeII linearly depends on log THeII whatever the evolutionary stage. The difference of
glitch amplitude reported between He-burning and H-shell burning phases is related to a difference of
temperature at the HeII zone, reflecting a difference of physical conditions and degree of ionisation in
the envelope. This confirms and expands the conclusions raised for less evolved red giants presented in
Sect. 4.3.

8.2.4 Deciphering the glitch period

The link between the location of the HeII zone tHeII and the modulation period GHeII

FIGURE 8.6: Synthetic glitch period and acoustic radius of HeII computed with the stellar
codes MESA and ADIPLS for the same evolutionary sequences as in Fig. 8.5. Left: depen-
dence of the modulation period GHeII on stellar evolution. Mean error bars estimated for
∆ν below or above 1 µHz are exhibited. The additional light grey solid line is the modula-
tion period expected from the location of the HeII zone tHeII, which is computed according

to Eq. 8.7. Right: same as left panel, but for the acoustic radius tHeII of the HeII zone.

The modulation period of the glitch signature computed with ADIPLS decreases when stars evolve
on their branches (equivalently when ∆ν decreases, see Fig. 8.6). Moreover, the modulation period
does not depend on the evolutionary stage. This reproduces the evolution of the glitch period that
is measured with the Kepler high-luminosity stars, as reported in Sect. 4.2 of the article 1, but with a
stronger dependence on ∆ν. In parallel, the HeII zone sinks into the interior as ∆ν decreases both on the
RGB and AGB, meaning that the temperature required to ionise helium is reached deeper in the interior.
This is not mere coincidence, since the glitch period is directly related to the HeII location. Indeed, the
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oscillatory component in the mode frequency is given by (Gough and Thompson, 1988; Vorontsov, 1988;
Gough, 1990)

δνgl ∝ sin (4πτHeIIνn,ℓ + ΦHeII) , (8.5)

where τHeII is the acoustic depth of the HeII zone. The glitch modulation introduced in the local large
separation δ∆ν

gl
n,ℓ can be expressed in the form of Eq. 8.5, but with a phase shift relatively to ΦHeII. Then,

the modulation period GHeII can be related to τHeII according to (see Eqs. 4.7, 4.11)

τHeII =
1

2GHeII∆ν
. (8.6)

By definition, the acoustic radius can be inferred from the acoustic depth with tHeII = T0 − τHeII, where
T0 = 1/(2∆ν) is the total acoustic length of the stellar cavity. Then, the modulation period GHeII can be
inferred from the acoustic radius tHeII of the HeII zone by

GHeII =
1

1 − tHeII/T0
. (8.7)

In this way, we can derive an estimate of the modulation period with an independent method that does
not make use of the mode frequencies. In Fig. 8.6, we superimpose the modulation period inferred from
Eq. 8.7 with that inferred from fitting the glitch modulation induced in the local large separation δ∆ν

gl
n,ℓ

by Eq. 7.13. We obtain identical values with both methods, which confirms that the glitch signature
is properly extracted. This similarity supports that the mode frequencies computed by ADIPLS are
sufficiently accurate to study the glitch signature.

FIGURE 8.7: Period of the glitch modulation from Kepler data as a function of ∆ν, where
the stellar mass is colour-coded. Mean error bars estimated for ∆ν below or above 1 µHz
are represented on each panel. The thick solid lines are the median values in 0.5 µHz ∆ν
bins, shown in blue for low-mass stars (M ≤ 1.2 M⊙) and in red for high-mass stars (M ≥

1.2 M⊙).
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The dependence of the glitch period on stellar parameters

As reported in Sect. 4.2 of the publication 1, the glitch parameters are sensitive to stellar parameters,
especially the mass. In Fig. 8.7, we present in more details the dependence of the modulation period on
the stellar mass obtained with the sample of Kepler evolved stars. We notice that low-mass stars prefer-
ably have a lower modulation period than their high-mass counterparts, implying that the HeII zone is
located deeper in the interior for low-mass stars. This behaviour is accentuated by stellar models (top
panels of Fig. 8.8), where we see that both GHeII and tHeII are larger at fixed ∆ν for high-mass stars. The
medians presented in Fig. 8.7 are computed regardless the evolutionary stage since in Sect. 4.2 of the
article 1, we did not find any correlation between the modulation period and the evolutionary stage.

FIGURE 8.8: Synthetic glitch period and acoustic radius of HeII computed with the stellar
codes MESA and ADIPLS during the RGB. The MESA models are computed with the
reference input physics listed in Table 10.1. Top left: dependence of the modulation period
GHeII on the stellar mass as a function of ∆ν. The mass is shown with different shades of
grey. Mean error bars estimated for ∆ν below or above 1 µHz are shown. Top right: same
as the upper left panel but for the acoustic radius tHeII. Bottom left: same as the upper left
panel but for GHeII as a function of log Teff. Bottom right: same as the upper left panel but

for tHeII as a function of log Teff.
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The difference in the modulation period, hence in the acoustic radius of the HeII zone between low-
mass and high-mass stars can be explained by a difference of effective temperature Teff. Indeed, in the
bottom panels of Fig. 8.8, we see that there is an almost unequivocal relation between the modulation
period and the effective temperature for any stellar mass M. Such behaviour is also visible in the acous-
tic radius of the HeII zone. In parallel, we know that high-mass stars have higher effective temperature
than their low-mass counterparts at fixed ∆ν. Therefore, the higher the mass, the higher the effective
temperature, the higher the modulation period hence the more superficial the HeII zone. In fact, the
HeII zone is located in the region where the physical conditions for helium ionisation are fulfilled, which
means that helium ionisation is expected to occur close to the surface if the effective temperature is high.
Low-mass stars have low effective temperature, so the internal temperature reaches the threshold for
helium ionisation deep in the interior.

8.2.5 Stellar classification by evaluating the modulation phase

In Sect. 4.2 of the paper 1, we highlight a clear difference in the modulation phase of the glitch signa-
ture between H-shell burning and He-burning stars, including clump and AGB stars observed by Kepler.
There is a negative phase difference between He-burning and H-shell burning stars of about −1 radians
during the clump phase, which becomes −0.5 radians during the AGB. Through Eq. 5.2, this difference
in ΦHeII translates into a difference in the acoustic offset ε. By defining a cut that depends on the acoustic
offset ε and the large separation ∆ν, we are able to draw up a classification method of H-shell burning
and He-burning stars, as illustrated in Fig. 5.3. By measuring the glitch signature in evolved stars, we
therefore extend the conclusions raised by Vrard et al. (2015), not only between RGB and clump stars
but more generally between RGB and He-burning stars, including clump and AGB stars.

In order to understand the modulation phase difference in terms of physical parameters, we analyse
the glitch signature computed with ADIPLS mode frequencies. The dependence of the modulation
phase on stellar evolution is shown in Fig. 8.9. For the 0.9 M⊙ evolutionary track, we clearly recover
the negative modulation phase difference observed between H-shell burning and He-burning stars.
Nevertheless, with the same input physics in stellar models we do not meet the same phase difference
when the mass increases (see right panel of Fig. 8.9). When M ≥ 1.5 M⊙, we do not find any phase
difference between H-shell burning and He-burning stars. Concurrently, we report a clear modulation
phase difference between those stars observed by Kepler, not only at low-mass M ≤ 1.2 M⊙, but also
at high-mass M ≥ 1.5 M⊙ (see lower right panel of Fig. 4 in paper 1). In this regard, additional input
physics are needed at high mass to reproduce the phase difference between RGB and clump/AGB stars.
To reproduce this phase difference at high mass, we would need input physics that affect the stellar
structure on the RGB/clump phase. For instance, low-mass stars experience an important mass loss
at the luminosity tip of the RGB, while that of high-mass stars is less significant. The difference ∆M =
MRGB − MHe between the mass on the RGB, MRGB, and the final mass reached on the clump phase, MHe,
may be a possible explanation to the phase difference ΦHeII,RGB − ΦHeII,He. At this stage, understanding
the phase difference between H-shell burning and He-burning stars in terms of stellar parameters is still
in progress.

8.3 Validity of the asymptotic approach at low ∆ν

Until now, we restricted our analysis to stars with ∆ν ≥ 0.5 µHz, for which we could successfully extract
the glitch signature in the asymptotic assumption. In stellar models, we could infer the frequencies of
the pressure radial, dipole, and quadrupole modes in an efficient way down to ∆ν ∼ 0.06 µHz (equiv-
alently νmax ∼ 0.1 µHz) with the code ADIPLS (see Fig. 8.2). This offers the opportunity to test the
relevance of the asymptotic expansion at low ∆ν, which is based on the assumption n ≫ ℓ. In this
approach, the ionisation-induced dip of the first adiabatic exponent Γ1 is treated as a structural pertur-
bation to a reference model in absence of the effects of helium ionisation on the stellar structure. The
glitch signature, that is a decaying periodic function in frequency given by Eq. 4.5, is then obtained as a
perturbation to the asymptotic expansion. Accordingly, we expect the amplitude of the glitch signature
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FIGURE 8.9: Synthetic modulation phase computed with the code ADIPLS for the same
evolutionary sequences as in Fig. 8.5. Left: evolution of the modulation phase ΦHeII with
∆ν for models of initial mass 0.9 M⊙ at solar metallicity, with an emphasis on the evolu-
tionary stage. The RGB, clump, and AGB phase are shown in blue, orange, and red solid
lines, respectively. The arrows indicate the direction of the evolution between consecutive
models. Right: same as left, but for models of initial mass 1.5 M⊙. Mean error bars esti-

mated for ∆ν below or above 1 µHz are represented on each panel.

to be small relatively to the large separation ∆ν. In Fig. 8.10, we show the trend of the modulation am-
plitude AHeII with stellar evolution at very low ∆ν. We remind that AHeII is a dimensionless parameter
expressed in fraction of ∆ν, as depicted by Eq. 7.13. Below ∆ν ≤ 0.5 µHz, we note that the amplitude
AHeII of the glitch modulation becomes larger than 0.1, and eventually reaches 0.5 at the luminosity-tip
of the RGB, corresponding to a modulation amplitude in µHz equal to half the value of ∆ν. This means
that the large separation ∆ν is perturbed by 50% of its global value. So, the glitch modulation δ∆ν

gl
n,ℓ

given by Eq. 7.13 is no longer a small perturbation to ∆ν. We identified two reasons for this intense
glitch modulation:

➛ The asymptotic expansion of the mode frequencies must not be valid below ∆ν ≤ 0.5 µHz (equiv-
alently νmax ≤ 2 µHz) because modes at low-radial orders are used to fit the glitch signature (see
Fig. 8.2), and the assumption n ≫ ℓ is not met. If so, then the usual decaying periodic functions in
frequency to fit the glitch signature are no longer relevant since they are derived in the asymptotic
approach.

➛ The perturbative approach must not be adapted at low ∆ν. By checking the evolution of the HeII
zone characteristics at low ∆ν, we notice that the amplitude HHeII of the dip in the Γ1 profile is
larger and the extent ∆HeII of the dip is narrower when ∆ν ≤ 0.5 µHz (see Fig. 8.10). The variation
in the Γ1 profile caused by helium ionisation is stronger and located deeper in the interior. Then,
the HeII zone may leave a stronger imprint in mode frequencies, and the approach to derive the
glitch signature must be revisited.

It is likely that both the asymptotic expansion and the perturbation approach of the signature of HeII
in mode frequencies are not adapted at low ∆ν. Surely, the accuracy on the mode parameters is affected
by the frequency resolution of Kepler observations that is insufficient for a comprehensive seismic study
of these red giants. In particular, we cannot robustly extract the width and amplitude of the modes, but
still their frequency can be correctly inferred.
On the one hand, we clearly detect modes with low-radial orders n ≤ 5 at low ∆ν ≤ 0.5 µHz (Mosser
et al., 2013b; Yu et al., 2020; Dréau et al., 2021). In our work, we encounter difficulties to match the ob-
served and the template oscillation spectra when identifying the oscillation modes according to Sect. 7.3
when ∆ν ≤ 0.5 µHz. At the optimal ∆ν that maximises the cross correlation between the observed and
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template oscillation spectrum, the modes from observations and models do not overlap for all radial
orders n. This is because the template spectrum is based on the asymptotic p-mode frequencies of red
giants (Eq. 3.20), which is not suitable at low ∆ν. Therefore, we have some observational evidence that
the asymptotic expansion is not appropriate to describe the oscillation spectrum of evolved red giants
with ∆ν ≤ 0.5 µHz.
On the other hand, the glitch amplitude in Kepler observations becomes significant at low ∆ν, as de-
scribed in Sect. 4.2 of Dréau et al. (2021) (see Appendix 1). Indeed, the amplitude of the glitch mod-
ulation introduced in the local large separation δ∆ν

gl
n,ℓ at ∆ν = 1.0 µHz is ∼ 0.07 ∆ν on the RGB and

∼ 0.08 ∆ν on the AGB. This means that the HeII zone induces an additional term δ∆ν
gl
n,ℓ in the local large

separation ∆νn,ℓ that becomes significant relatively to the mean value ∆ν. This tends to confirm that
the perturbation approach to the asymptotic pattern is not appropriate to account for the signature of
the HeII zone in mode frequencies at low ∆ν ≤ 0.5 µHz. As a result, the efficiency of the classification
method based on the signature of the HeII zone (Sect. 5.2) may not be only affected by the insufficient
frequency resolution at low ∆ν, but also by the inadequate scheme to derive p-mode frequencies. Ac-
cordingly, we need a more adapted framework to interpret the oscillation spectrum of high-luminosity
red giants with ∆ν ≤ 0.5 µHz. Investigating the limits of our method to characterise the HeII zone and
extract its signature in mode frequencies at low ∆ν is in progress.

FIGURE 8.10: Same models as Fig. 8.5, but the AHeII axis is logarithmic and the ∆ν axis
is extended at very low values attained near the luminosity-tip of the RGB. The MESA
models are computed with the reference input physics listed in Table 10.1. Bottom right:

acoustic radius tHeII of the HeII zone as a function of ∆ν.
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8.4 Summary

In this chapter, we present a complete analysis of the p-mode oscillation spectrum of high-luminos- ity
red giants, including stars ascending the RGB towards the luminosity tip and He-burning stars both
in the clump phase and ascending the AGB. We compare the p-mode frequencies computed with stel-
lar models with those detected in thousands of evolved stars observed by Kepler. The structure of the
oscillation spectrum of these red giant changes with stellar evolution. This can be connected with the
underlying structure changes of the core and envelope, which impacts the distance between the inner
turning point of the p-mode cavity and the base of the convective zone. The ℓ = 1 and ℓ = 2 modes get
closer to the neighbouring ℓ = 0 modes as stars ascend their branch, forming a triplet with the ℓ = 2
mode in between the ℓ = 0 mode on the right and ℓ = 1 on the left, as described in Stello et al. (2014).
We successfully extract the glitch signature induced in the large frequency separation ∆ν by the helium
second-ionisation zone. We find differences in the glitch signature between RGB and clump/AGB stars
with the Kepler observations. Then, by jointly computing the internal structure with MESA and the as-
sociated stellar pressure modes with ADIPLS, we can understand the cause of these differences in terms
of structure changes. First, the amplitude of the glitch signature is larger during He-burning phase. This
difference of glitch amplitude between H-shell burning and He-burning phase is related to a stronger
dip in the Γ1 profile during the He-burning phase, which is correlated with a lower temperature at the
HeII zone. The amplitude of the glitch signature then reflects the physical conditions in the envelope
that are different between RGB and clump/AGB stars.
Second, the period of the glitch signature, which is related to the acoustic radius of the HeII zone, does
not differ between the H-shell burning and He-burning phase. Nevertheless, we identify a clear differ-
ence between low-mass and high-mass stars. The physical conditions for helium ionisation are fulfilled
closer to the surface when the effective temperature Teff is high, typically in high-mass stars.
Third, a classification of RGB/AGB stars is possible by analysing the glitch signature. Indeed, we iden-
tify a clear negative phase difference between the glitch signature of He-burning and H-shell burning
stars. This difference can be highlighted either in a global analysis by considering an additional term
reflecting the glitch signature in the asymptotic pattern of red giants, or in a local analysis by including
the glitch signature in the local acoustic offset ε. Then, we extend the work of Vrard et al. (2015), who
drew the same conclusions but considering RGB versus clump stars.
Finally, we notice that the asymptotic pattern of red giants established for low- and intermediate-
luminosity red giants does not match the p-mode pattern of red giants with ∆ν ≤ 0.5 µHz. Further-
more, the amplitude of the glitch modulation is too intense to be treated in a perturbative approach
when ∆ν ≤ 0.5 µHz. In this case, we suspect the asymptotic pattern to be irrelevant to characterise
the p-mode oscillation spectrum of these evolved red giants at low ∆ν, where the assumption n ≫ ℓ is
invalid.
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Chapter 9

Mode energetics in high-luminosity red
giants

Fitting the oscillation spectrum of red giants allows us to extract the width and amplitude of the pressure
modes that develop in their interiors. These seismic parameters provide valuable information on the
excitation and damping mechanisms of stellar modes, as described in Chapter 3. This offers the oppor-
tunity to follow the mode lifetime across the HR diagram, and examine the main physical mechanisms
that play a part in the mode energy, hence in the mode visibility. Hereafter, we study the dependence
of the mode width and mode energy on stellar evolution with the same sample of red giants studied in
Chapter 8. Then, we investigate potential supplementary damping, especially during the ascent on the
AGB.

Sect. 3.3, 3.4, 4.3−4.6 and 5.3 of the attached article 1 present the dependence of the mode energy
and width on stellar parameters as well as the damping of modes at different degrees ℓ. In this
chapter, we focus on the implications of our observations on the damping mechanisms from RGB to
AGB.

9.1 Deriving the seismic parameters

9.1.1 The mode visibilities

Studying the mode visibilities in red giants provides fruitful information on how the energy is dis-
tributed among modes of different degrees ℓ. By definition, the visibility of a mode of degree ℓ is equal
to its squared amplitude in fraction of the squared amplitude of ℓ = 0 modes as given by Eq. 3.69. In
order to compute the energy of a mode, we first need to locate the modes in the oscillation spectrum,
which is done by the identification technique described in Sect. 7.3. Then, we are able to bracket the
frequency range where ℓ = 0, 1, 2, 3 modes are expected. This precise delimitation of the spectral range
where modes are expected is detailed in Table 1 of the paper 1 and illustrated in Fig. 9.1.
The individual squared amplitude A2

n,ℓ of a mode of radial order n and degree ℓ is estimated by in-
tegrating the power spectral density P across the frequency range where the energy of this mode is
distributed, with the integral being corrected from the background contribution B defined in Eq. 7.4.
This yields

A2
n,ℓ =

∫ νsup

νinf

(P(ν)− B(ν))dν, (9.1)

where νinf and νsup delimit the frequency range where the modes are expected. The mean squared
amplitude of a mode of degree ℓ is obtained by averaging the individual squared amplitudes A2

n,ℓ over
all observed radial orders n, weighted by the Gaussian power excess envelope as follows

A2
ℓ =

∑
nsup
ninf A2

n,ℓ

∑
nsup
ninf exp

[
− (νn,ℓ−νmax)

2

2σ2

] , (9.2)
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where σ is related to the full-width at half-maximum of the Gaussian envelope δνenv = 2
√

2 ln 2σ
(Eq. 7.3), ninf and nsup are the minimum and maximum radial orders that are detected, respectively.
We notify that the weighting is not performed before the summation in order to reduce the dispersion
of the average squared amplitudes caused by the stochastic excitation of modes. Moreover, we consider
all the modes for which the radial order is included between ninf and nsup, whether they are detected
or not. Accounting for the undetected modes in the mean squared amplitude A2

ℓ is necessary because
some of these modes can have an unexpected low amplitude due to additional damping. Particularly,
the depressed modes, which are modes with very-low amplitudes certainly due to the presence of a
magnetic field in the core of red giants (Loi and Papaloizou, 2018; Loi and Papaloizou, 2020), can be left
undetected with our detection thresholds (Sect. 7.3.2). Finally, the mode visibility V2

ℓ are inferred from
A2
ℓ through Eq. 3.69. The analysis of the mode visibilities is presented in Sect. 4.5 of the publication 1.

FIGURE 9.1: Oscillation spectrum of the red-giant star KIC 2695975 (∆ν = 1.538 µHz,
νmax = 10.11 µHz), with an emphasis on the spectral range where modes are expected
to be located and where the power spectral density is integrated for each mode. Red, blue,
green, and light blue are associated with radial, dipole, quadrupole and octupole modes,

respectively.

When mixed modes are present, we follow the same procedure i.e. we define the boundaries between
which we expect the mixed modes to be detected, and we integrate the total power spectral density P in
this range of frequency. Accordingly, A2

n,ℓ is the sum of the individual squared amplitude of all mixed
modes of pressure radial order n at degree ℓ. Thus, we can infer the average squared amplitude A2

ℓ and
the mode visibility V2

ℓ by averaging A2
n,ℓ over all pressure radial orders n according to Eq. 9.2. These

quantities are comparable to the squared amplitude and visibility that the mode would have if it was a
single pure pressure mode.
Modes for which the degrees have the same parity have their frequencies close one to the other, as
illustrated in Fig. 9.1. For instance, ℓ = 2 modes are close to their neighbouring ℓ = 0 modes and
some mixed ℓ = 1 modes spread near the ℓ = 3 modes and can be misidentified subsequently. As we
sum the power spectral density between boundaries that delimit the energy distribution of modes, a
fraction of the energy of a mode of degree ℓ can be mistakenly considered as part of the energy of the
neighbouring mode near the boundaries. In order to limit the impact of the energy leakage between
individual degrees, we can study the ratio between the visibility of odd and even degrees
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V2
ℓ,odd

V2
ℓ,even

=
V2

1 + V2
3

1 + V2
2

, (9.3)

where the visibility of ℓ = 0 modes is taken equal to 1 by definition. In a star in spherical equilibrium
(thus non-rotating and without magnetic field), this ratio is useful when studying the energy distribu-
tion between modes of different degrees since for symmetry reasons we expect the energy equipartition
between modes of even and odd degrees to be satisfied (V2

ℓ,odd = V2
ℓ,even).

9.1.2 Sensitivity of the mode width estimation to the stellar background

The technique we use to fit the modes and extract their width and height is a maximum likelihood es-
timator as described in Sect. 7.4. As depicted by Eq. 7.8, the power spectral density is reproduced by a
pattern of three modes at different degrees ℓ on top of the background signal. With the polynomial term
Eq. 7.4, we are able to satisfyingly reproduce the stellar background signal. Nevertheless, this polyno-
mial form only approximates the background component around νmax, and may not be as precise as the
full expression Eq. 7.1 at the edges of the observation window. Especially, Appourchaux et al. (2014)
highlighted that the expression chosen for modelling the background has a non-negligible impact on
the mode width and height. As illustrated in Sect. 4.6 of the article 1, our method provides measure-
ments that are larger by about 25% compared to those derived in Kallinger (2019), who used a different
model to fit the background component. This is the typical difference that can be found between differ-
ent stellar background models, which is of the order of 30% in the worst-case scenario and 10% in the
best-case scenario (Appourchaux et al., 2014). Moreover, this difference is frequency-dependent since
the deviations between our measurements and those from Kallinger (2019) depends on the radial mode
width Γ0, which varies with ∆ν. Such effects produced by different estimated stellar backgrounds must
be kept in mind when comparing theoretical mode width and height with the observed values in order
to understand the physical nature of these parameters.

9.2 Mode damping from the RGB up to the AGB

9.2.1 Dependence of the mode width Γ0 on the effective temperature Teff

Theoretical models predict that the main contributions to the mode damping in red giants is determined
by four main contributors presented in Eq. 3.60, which can be rewritten (Grigahcène et al., 2005)

η =
1

2ωI
∫ M

0
Im
[(

∂T0

∂ρ0

)

s

δρ∗

ρ0
T0δS +

δρ∗

ρ0

δPturb

ρ0

]
dm, (9.4)

where Im denotes the imaginary part, the exponent ‘*’ refers to the complex conjugate, P0, ρ0, T0 are
the pressure, density, and temperature at equilibrium, respectively, ω is the pulsation frequency, I is
the mode inertia, δS is the Lagrangian perturbation of the entropy, and δPturb is the perturbation of
turbulent pressure. In the previous equation, the first term, which is found to be negative, is thus a
driving contribution and includes the perturbations of the radiative and convective fluxes, as well as
that of the dissipation rate of turbulent kinetic energy into heat. The second term is associated to the
perturbation of the turbulent pressure already presented in Eq. 3.60. Both contributions approximately
have the same order of magnitude and the contribution of the perturbation of turbulent pressure is
partly compensated by that of entropy. The maximum compensation between the two contributions
leads to the characteristic depression in the profile of the damping rate η as a function of the frequency
ν (Belkacem et al., 2012) as seen in Fig. 9.2 around ν = 32.5 µHz. This behaviour of the damping rate
η with frequency is clearly visible for stars with ∆ν ≥ 3.0 µHz, where at least 6 radial modes have
sufficiently high amplitudes to be detected. Nevertheless, this tendency is hardly visible in evolved red
giants with ∆ν ≤ 3.0 µHz since too few modes are observable.

Next, we can directly compare the predicted mode width with those observed for the sample of stars
we consider in the paper 1 (see right panel of Fig 9.3). We notice that the mode widths predicted by the
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FIGURE 9.2: Variation of the radial mode width Γn,0 (or equivalently π−1η) as a function
of the frequency ν. The mode frequencies and widths have been computed with the fitting

technique described in Sect. 7.4 for KIC 11250152 identified as a RGB star.

theoretical models of Belkacem et al. (2012) satisfyingly reproduce the radial mode widths measured in
H-shell burning and He-burning stars. However, the mode widths measured in cool red giants (Teff ≤
4200 K) are a bit smaller by about ∼ 30% than predicted by theory. In this case, we may be limited by the
frequency resolution, the modes may not be fully resolved, which could provide underestimated widths.
This could also be linked to the choice of the background model that distinctly affects the measurement
of mode characteristics, as described in Sect. 9.1.2. Finally, as discussed in Sect. 4.3 of the publication 1,
the mode widths Γℓ are strongly correlated with the effective temperature following the scaling relation
Γℓ ∝ Tbℓ

eff, with bℓ ≥ 6− 10 depending on the mode degree ℓ. This agrees with the theoretical predictions
of Belkacem et al. (2012), who report a correlation of

η ∝ T10.8
eff g−0.3, (9.5)

where g is the surface gravity. Altogether, the mode damping profile with frequency and effective
temperature predicted by the theoretical models of Belkacem et al. (2012) are in agreement with the
observations of evolved red giants, which suggests that the contributions to mode damping described
in Eq. 9.4 are likely to explain mode damping in evolved red giants. This finding is valid for radial and
quadrupole modes, but additional contributions to mode damping are necessary to address the ℓ = 1
modes, as we will see in Sect. 9.3.

9.2.2 Mode damping and stellar evolution

As reported in the previous section, the main sources of damping for pressure modes are the action
of turbulent pressure and those of the convective and radiative fluxes, which are partly compensated
by that of the dissipation rate of turbulent kinetic energy into heat. As depicted by Fig. 9.3, the total
mode damping in RGB star decreases as the star gradually evolves on its branch (equivalently as Teff
decreases). This means that the driving term, i.e. the action of entropy, is more important in absolute
value. The former becomes closer to the action of turbulent pressure, which makes them compensate
even more and the total damping η decreases. When the star reaches the stage of He-core burning, the
effective temperature increases, the mode damping increases and becomes larger than that observed
on the RGB. Vrard et al. (2018) also reported a clear difference between the radial mode width of less
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FIGURE 9.3: Left: radial mode width Γ0 computed as the weighted mean of the three
modes of degree ℓ = 0 closest to νmax with the mode amplitude A0 used as a weight,
as a function of ∆ν. Mean error bars on the mode widths have been computed both at
low ∆ν (∆ν ≤ 1.0 µHz) and at high ∆ν (∆ν ≥ 1.0 µHz). Right: same as left panel but
the radial mode width Γ0 is plotted as a function of the effective temperature Teff. Mean
error bars on the mode widths have been computed both at low Teff (Teff ≤ 4200 K) and at
high Teff (Teff ≥ 4200 K). Blue triangles and red diamonds indicate indicate RGB stars and
clump/AGB stars, respectively. The thick solid lines are the median values in 0.2 µHz wide
∆ν bins and 50 K wide Teff bins, in dark blue for RGB stars and dark red for clump/AGB
stars. Theoretical predictions for RGB stars from Belkacem et al. (2012) are indicated by

black squares. Credit: Dréau et al. (2021)

evolved RGB and clump stars at similar effective temperature. In a way, this difference could be ex-
plained by the theoretical models of Belkacem et al. (2012). Indeed, Eq. 9.5 tells us that the mode damp-
ing not only depends on the effective temperature Teff, but also on the surface gravity g to a lesser extent
(η ∝ g−0.3). At fixed Teff, clump stars have a lower surface gravity than RGB stars. Then, the mode
damping η is expected to be larger during the clump phase, as the former is inversely proportional to g.
Still, given the significant structure changes between H-shell and He-core burning phases, further work
would be desirable to investigate potential additional contributors to mode damping during the clump
phase. For example, this could be a radiative damping, as described in the next subsection.
After the He-core burning phase, the He-shell burning phase starts and the mode damping gradually
becomes similar to that observed on the RGB as ∆ν decreases (Fig. 9.3). RGB and AGB stars have similar
Teff and g at high luminosity, which could explain why RGB and AGB stars have a similar mode damp-
ing at low ∆ν. As a conclusion, the theoretical models of Belkacem et al. (2012) allow us to understand
the evolution of the mode damping across the HR diagram from the RGB up to the AGB.

9.2.3 Radiative damping for non-radial modes

In red giants, non-radial modes are mixed modes, which means that they are sensitive to the interac-
tion between p- and g-mode cavities. This introduces additional contributions to the mode damping.
Particularly, the radiative damping corresponds to the energy loss caused by gravity wave emission es-
pecially around the bottom of the H-burning shell (Dupret et al., 2009). On the one hand, the modes that
could develop in the g-mode cavity would have low amplitude because of their large inertia and sig-
nificant radiative damping at the bottom of the H-burning shell. On the other hand, non-radial modes
trapped in the envelope experience weak radiative damping. As a result, the oscillation spectrum of
non-radial modes is composed of p-dominated modes with similar widths and heights as radial modes,
and low-height g-dominated modes. When the star reaches high-luminosity stages on the RGB, the
modes trapped in the core experience an increasing radiative damping. Meanwhile, the energy loss by
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gravity wave emission near the base of the convective envelope for modes trapped in the envelope is
negligible (Dziembowski, 2012). As a consequence, g-dominated modes cannot be detected and only
p-dominated modes trapped in the envelope can be observed. When He-core burning starts, the radia-
tive damping is small enough for the mixed modes to be detectable again (Dupret et al., 2009; Grosjean
et al., 2014). Then, the structure of the oscillation spectrum in the He-core burning phase is similar to
that of an intermediate-luminosity red giant, but with different seismic parameters at a given Teff (mode
frequencies, widths, heights) due to structure changes.

9.3 A strong non-radial mode damping during the early-AGB

In spherical equilibrium in absence of rotation and magnetic field, we expect the mode energy to be
equally distributed between odd and even degrees, since they are excited and damped in the same
physical conditions. That being said, in red giants we observe modes that are excited by the turbulent
motions near the surface and are strongly trapped in the envelope. In this situation, we expect the
conditions

{
1 + V2

2 = V2
1 + V2

3
Γ0 = Γ1 = Γ2 = Γ3

(9.6)

to be fulfilled. In order to identify potential contributions to non-radial mode damping that may inval-
idate the energy equipartition, we study the behaviour of the non-radial mode visibilities and widths
with stellar evolution.

9.3.1 Dipole modes

In Fig. 9.4, we examine the ratio between dipole and radial mode widths from the RGB up to the AGB.
We note that the widths of dipole modes are larger than those of radial modes by a factor of 1.5 − 2.0
on the early-AGB in the interval ∆ν ∈ [1.5, 3.0]µHz. As discussed in the article 1, several reasons could
explain these large dipole mode widths Γ1. First, additional contributions to dipole mode damping
may be at work, which would make dipole mode widths larger than those of radial modes. Second,
most of the detected dipole modes are mixed for He-burning stars with ∆ν ≥ 2.5µHz. In this case, we
fit the mixed mode with the highest amplitude among the other mixed modes closest to the expected
pure pressure mode (see Sect. 7.4). Then, we infer the width Γ1 that would have the dipole mode if it
was a pure pressure mode through Eq. 3.75. Nevertheless, the factor ζas introduced in this equation is
close to 1, which means that the correction (Eq. 3.75) used to infer the width of the pure pressure dipole
mode introduces large uncertainties on Γ1. Third, the observability of mixed modes is limited by the
frequency resolution around ∆ν ∼ 3.0 µHz (see Sect. 3.6.2). The criterion given by Eq. 3.50 to determine
the observability of gravity-dominated modes may not be fulfilled and most of the g-dominated modes
may overlap. In this case, the mixed modes are so close that the fits rather reproduce several confused
mixed modes than a unique pure pressure mode. To be properly reproduced, these mixed modes need
to be fitted with a different function made of several Lorentzian functions. In Appendix 2 of the paper 1,
we carefully fit all the observed mixed modes of five stars that have been identified on the early-AGB
following the method of Mosser et al. (2014). Then, we deduce the width Γ1 that the modes would
have if they were pure pressure modes following Eq. 3.75. Nonetheless, our measurements of Γ1 are
affected by large uncertainties due to the use1 of Eq. 3.75, to low signal-to-noise ratio, to the insufficient
frequency resolution, to the presence of rotational splittings and to buoyancy glitch signatures. As a
result, measuring the widths of dipole mixed modes does not allow us to certify the presence of a strong
dipole mode damping on the early-AGB. In order to check if the additional dipole mode damping that
we measure is not caused by large uncertainties, we investigate the energy distribution between modes
of different degrees.

1because ζas introduced in this equation is close to 1, as discussed herebefore
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FIGURE 9.4: Top left: ratio between the dipole and radial mode widths. Blue triangles,
red diamonds, and grey dots correspond to RGB stars, clump/AGB stars, and stars with
unidentified evolutionary stages with the methods of Mosser et al. (2019) and Kallinger et
al. (2012), respectively. The mode widths are computed as the weighted mean of the three
modes closest to νmax with the mode amplitudes used as weights. Mean error bars have
been computed both at low ∆ν (∆ν ≤ 1.0 µHz) and at high ∆ν (∆ν ≥ 1.0 µHz). The thick
solid lines are the median values in 0.4 µHz wide ∆ν bins, in dark blue for RGB stars and
dark red for clump/AGB stars. For convenience, horizontal dotted black lines are plotted
at specific values of 0.5, 1.0, 1.5, and 2.0. Top right: dipole mode width as a function
of ∆ν, where the dipole mode visibility V2

1 is colour-coded. The solid and dashed lines
correspond to the median values for low-visibility dipole modes (V2

1 ≤ 1.5) and for high-
visibility dipole modes (V2

1 ≥ 1.5), respectively, in blue for RGB stars and in red for He-
burning stars. In fact, we separate low-visibility and high-visibility dipole modes since
they are likely to experience a different damping rate. The turquoise, dark blue, light blue
and green stars are the individual stars KIC 6847371, KIC 11032660, KIC 5461447, and KIC
6768042, respectively, which are studied in Appendix 2 of the paper 1. Bottom left: ratio
between the visibilities of odd and even degrees as a function of νmax. Bottom right: dipole
mode visibility V2

1 as a function of νmax. The median values are computed in 1.5 µHz wide
νmax bins. Error bars on the visibilities are given for both low νmax (νmax ≤ 4.5 µHz) and

high νmax (νmax ≥ 4.5 µHz).
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If the additional dipole mode damping is real, we expect the first condition of Eq. 9.6 to be invalid. In
the bottom left panel of Fig. 9.4, we remark that the energy equipartition between even and odd degrees
is invalid during the early-AGB when νmax ∈ [7, 20]µHz, which coincides with the interval where we
report a strong dipole mode damping in He-burning stars. This implies that the modes of odd degrees
(ℓ = 1, 3) carry less energy than the modes of even degrees. Given that the ℓ = 3 modes have weak
visibilities (V2

3 ∼ 0.05 − 0.10), the low visibilities of odd degree modes is caused by a lack of energy in
dipole modes. Indeed, in the bottom right panel of Fig. 9.4 we note a similar difference between the
dipole mode visibility of RGB and clump/AGB stars. He-burning stars have smaller V2

1 than their RGB
counterparts at fixed νmax, which justifies the difference between the visibilities of odd and even degrees.
To sum up, we observe both large dipole mode widths and low dipole mode visibilities on the early-
AGB, which implies a strong mode damping in the regions that are probed by dipole modes. In the next
section, we see that the damping of quadrupole modes is not as pronounced as that of dipole modes.
This implies that the extra damping observed in dipole modes is mainly caused near the inner turning
point of the dipole mode cavity, which is not probed by quadrupole modes. Then, it may be relevant to
investigate the radiative damping as a possible additional damping to non-radial modes after the He-
core burning phase. For instance, the radiative damping causes an energy loss near the H-burning shell
on the RGB. This damping experienced by dipole modes trapped in the envelope decreases as the RGB
star ascends its branch, and for a RGB star of mass M = 2 M⊙ the energy loss by gravity wave emission
near the H-burning shell cancels out when νmax = 28 µHz (Dziembowski, 2012). This explains why the
dipole mode visibilities increase as νmax decreases on the RGB (see right panel of Fig. 9.4). At the end of
the He-core burning phase, dipole modes that can be observed are those that are mainly trapped in the
envelope, similarly as on the RGB when ∆ν ≤ 4 µHz. The physical conditions in which dipole modes
develop on the AGB are similar to those on the RGB, which justifies that the radiative damping may be
at work on the early-AGB.

9.3.2 Quadrupole modes

FIGURE 9.5: Left: Visibility of ℓ = 2 modes as a function of ∆ν. Right: Ratio of the
quadrupole and radial mode widths as a function of ∆ν. The mode widths are computed
as the weighted mean of the three modes closest to νmax with the mode amplitudes used
as weights. For convenience, horizontal dotted black lines are plotted at specific values
of 0.5, 1.0, 1.5, and 2.0. Blue triangles, red diamonds, and grey dots correspond to RGB
stars, clump/AGB stars, and stars with unidentified evolutionary stages with the methods
of Mosser et al. (2019) and Kallinger et al. (2012), respectively. Mean error bars have been
computed both at low ∆ν (∆ν ≤ 1.0 µHz) and at high ∆ν (∆ν ≥ 1.0 µHz). The thick solid
lines are the median values in 0.4 µHz wide ∆ν bins, in dark blue for RGB stars and dark

red for clump/AGB stars.
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Similarly as for dipole modes, we investigate potential additional damping in quadrupole modes. In
Fig. 9.5, we note that the visibility of ℓ = 2 modes is a bit lower during the He-burning phase than during
the H-shell burning phase, but remains close to the theoretical expected value V2

2 ∼ 0.6 (Ballot, Barban,
and van’t Veer-Menneret, 2011). Moreover, quadrupole modes have approximately the same width as
radial modes, except for He-burning stars in the interval ∆ν = [1.5, 3.0] µHz where quadrupole are
slightly larger by an average factor of 1.25. This corresponds to the same ∆ν interval where we report a
strong dipole mode damping, but the difference between quadrupole and radial mode is not as strong as
that between dipole and radial modes. The inner turning point of the ℓ = 2 outer cavity is located closer
to the surface than that of the ℓ = 1 outer cavity. Then, ℓ = 2 modes do not experience the damping
coming from the inner layers that ℓ = 1 modes probe. Accordingly, quadrupole modes experience a
damping close to that of radial modes, both during the H-shell burning and He-burning phases.

9.4 Summary

In this chapter, we extend the seismic analysis of the p-mode oscillation spectrum led in Chapter 8
in order to understand the evolution of mode energetics in high-luminosity red giants. We measure
the width, amplitude and visibility of radial and non-radial modes and study their dependence on the
effective temperature Teff and the large frequency separation ∆ν. First, we notice that the theoretical
predictions of Belkacem et al. (2012) aimed at understanding the mode damping across the HR diagram
totally reproduce the radial mode widths observed for RGB and clump/AGB stars. We observe the
typical depression in the profile of Γ0 as a function of the mode frequency caused by the competition
between the driving and damping terms. Moreover, we also remark the strong dependence on effective
temperature Γℓ ∝ T6−10

eff expected from theoretical predictions. These results tend to confirm that the
main sources of mode damping from RGB to AGB are the action of turbulent pressure and those of the
convective and radiative fluxes, which are partly compensated by the action of the dissipation rate of
turbulent kinetic energy into heat.
Besides, the mode damping depends on stellar evolution. The former decreases as the star gradually
evolves on its respective branch, either on the RGB or AGB. This implies that the role of turbulent pres-
sure to mode damping is more compensated by that of the dissipation rate of turbulent kinetic energy
into heat. On top of that, the structure changes between RGB and clump stars induce different surface
gravities g at fixed effective temperature Teff. This difference combined with potential additional contri-
bution to mode damping, which needs further investigation, makes the mode damping more important
during the He-core burning phase compared to the H-shell burning phase. Despite the structure dif-
ferences between RGB and AGB stars, the mode damping remains similar at high-luminosity stages
(∆ν ≤ 1.5 µHz).
The previous paragraph is valid for modes that are strongly trapped in the envelope. This concerns
radial modes regardless the evolutionary stage, and also non-radial modes when the coupling between
the p- and g-mode cavity is weak, i.e. in high-luminosity RGB and AGB stars. In the clump and early-
RGB/AGB, dipole modes are mixed so they are sensitive to the interaction between the inner and outer
cavities, which adds a damping contribution. Indeed, we highlight a clear additional damping to non-
radial modes, in particular for dipole modes. Dipole modes have larger widths than radial modes and
low visibilities on the early-AGB. This additional damping is not as pronounced in quadrupole modes
as in dipole modes, which means that the former is introduced in the innermost layers mostly probed by
dipole modes. Then, the energy equipartition between modes of odd and even degrees is not fulfilled
on the early-AGB. Further work is needed to identify this additional mode damping, but the similari-
ties in the p-mode cavities of RGB and AGB stars tend to point out the radiative damping as potential
candidate for this extra damping, i.e. energy loss by gravity waves emission near the H-burning shell.
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Chapter 10

Seismic study of the AGBb

As introduced in Chapter 1, the AGBb manifests as a drop of luminosity along the AGB, causing a
local excess of stars in the luminosity distribution of stellar population. Recently, such an overden-
sity of stars has been detected in a sample of Kepler stars of mass M ∈ [1.3, 1.7]M⊙ and metallicity
[M/H] ∈ [−0.4, 0.4]dex, which allowed for a precise location of the AGBb in terms of surface lumi-
nosity L (Bossini et al., 2015). Because of the clear identification of the AGBb overdensity in the Kepler
data, these authors could replicate the AGBb position in stellar models with a specific combination of
physical ingredients. They showed that the AGBb has a strong potential to constrain stellar models,
especially the mixing processes during the He-core burning phase. Nevertheless, the previous study
focuses on a single bin of mass and metallicity because the number of stars observed by Kepler at that
very moment was insufficient for a proper determination of the mass and metallicity dependence of
the AGBb occurrence. Presently, on top of the about 1470-day time-series by Kepler, we have access to
the recent observations of TESS. By combining Kepler and TESS data, we are able to study a sample of
∼ 4, 100 RGB and AGB stars, which allows us to investigate the mass and metallicity dependence of
the AGBb location. Hereafter, we extract the AGBb spot among Kepler and TESS targets in several bins
of mass and metallicity. We also compute models with different input physics in order to identify the
combination of physical ingredients that are needed to reproduce the observed AGBb spot for all range
of mass and metallicity.

The organisation of this chapter is based on the article 2. The later describes the approach to
derive the AGBb position in the HR diagram and illustrates how the AGBb position can be used
to constrain mixing processes in stellar interiors. Sect. 4, 5, and 6 of the attached article 2 present
the dependence of the AGBb location on the stellar mass and metallicity. We investigate how the
calibration of stellar models to observations changes with mass and metallicity.

10.1 Theoretical predictions of the AGBb

10.1.1 The potential of AGBb stars to be standard candles

Standard candles are astronomical sources that have a well-known luminosity due to some characteris-
tics of a specific class of objects. The specificity of standard candles is that their apparent magnitude mb
in a given bandpass b, which can be measured in photometry, only depends on the distance d between
the object and Earth through

mb − Mb = 5 log
d

10 pc
, (10.1)

where absorption is omitted, Mb is the absolute magnitude of the source in the photometric bandpass b,
and d is given in parsec (pc). Here, we would like to assess the potential of the AGBb to be a suitable
standard candle. To this end, we need to characterise the AGBb as a function of stellar parameters such
as mass and metallicity. Since the AGBb is marked by a turning-back in the evolutionary track, the
former is easily identifiable in stellar models. Therefore, the AGBb position can be extracted from tracks
at different masses and metallicities. The dependence of the AGBb location on mass M and metallicity
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[Fe/H] can then be predicted using stellar models. The theoretical results of Alves and Sarajedini (1999)
lead to the relation

log
(

LAGBb

L⊙

)
= 1.90 + 0.215

(
M

M⊙

)
− 0.155

(
M

M⊙

) (
[Fe/H]

1 dex

)
− 0.047

(
[Fe/H]

1 dex

)2

, (10.2)

where log LAGBb is the surface luminosity at the AGBb. The dependence of log LAGBb on M and [Fe/H]
is shown in Fig. 10.1. From these theoretical results, we expect the AGBb to occur at higher luminos-
ity for high-mass stars. Moreover, the lower the metallicity, the higher the luminosity at the AGBb.
Nevertheless, the luminosity at the AGBb approximately remains constant below [Fe/H] ≤ −1.5 dex
at fixed stellar mass M. Accordingly, the luminosity of metal-poor stars at the AGBb is expected to be
independent of the metallicity ([Fe/H] ≤ −1.5 dex) at fixed mass. Then, theoretical work suggests that
metal-poor AGBb stars could be used as standard candles (Ferraro, 1992; Pulone, 1992). By being poten-
tial standard candles, metal-poor AGBb stars could be suitable distance indicators and asteroseismology
of those stars could bring valuable constraints for astrometry.

FIGURE 10.1: Theoretical models for the AGBb luminosity as a function of the mass (left)
and metallicity (right). The solid lines are extracted from the analytic fit given by Eq. 10.2

to theoretical data. Credit: Alves and Sarajedini (1999)

10.1.2 The evolution speed after the He-core burning phase

The synthetic colour-magnitude diagrams computed with the models of Pulone (1992) revealed that the
evolution speed is fast from the end of the He-core burning phase to the beginning of the AGBb. After
inspection of the left panel of Fig. 10.2, we note that the evolution rate |dνmax/dτ| is larger before the
AGBb than after the AGBb, where τ is the stellar age, regardless the stellar mass M. This means that
for the same timestep dτ, the change |dνmax| is larger after the AGBb than before, hence the evolution is
faster after the clump phase. This induces two effects in the observational data:

➛ Very few stars are observed between the end of the clump phase and the beginning of the AGBb.
There is a low statistical probability to find a He-burning star between the end of the clump phase
and the AGBb, and a gap is visible.

➛ Due to the turning-back of the evolutionary track at the AGBb and the lower evolution speed rate
dνmax/dτ at the end of the AGBb, an excess of stars is detectable at the AGBb

In their work, Bossini et al. (2015) have located the AGBb at log(LAGBb/L⊙) = 2.2 in the bin of mass
M ∈ [1.3, 1.7]M⊙ and metallicity [M/H] ∈ [−0.4, 0.4]dex. In the right panel of Fig. 10.2, we assume that
the AGBb spot log(LAGBb/L⊙) = 2.2 is the same at low mass M ≤ 1.2 M⊙ and high mass M ≥ 1.2 M⊙
and infer the position of the AGBb in νmax through 1 (Kjeldsen and Bedding, 1995)

1This only serves as a crude estimate of the AGBb spot in νmax. As described in Sect. 10.1.1, we expect the AGBb location
to vary with the mass, and this will be shown in the next sections.
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νmax

νmax,⊙
=

M
M⊙

(
L

L⊙

)−1 ( Teff

Teff,⊙

)7/2

. (10.3)

The depletion of stars between the end of the clump phase and the AGBb can be highlighted in our
sample of stars. In the right panel of Fig. 10.2, a depleted region followed by a peak is noticeable both
for low-mass stars (at νmax ∼ 8 µHz) and for high-mass stars (at νmax ∼ 11 µHz). Nevertheless, the
sample used in Fig. 10.2 is made of He-burning stars that have been classified by the methods of Mosser
et al. (2019) and Kallinger et al. (2012). Since both identification methods are inefficient at low νmax (see
Sect. 5.4), we do not have a lot of stars identified in the He-burning phase with νmax ≤ 8 µHz. Then,
we must keep in mind that the maximum of these peaks may provide biased estimates for the AGBb
location.

FIGURE 10.2: Left: absolute value of the evolution speed |dνmax/τ| as a function of νmax
after the He-core burning phase, for models that have been computed with the test suite
case 1M_pre_ms_to_wd of MESA. The end of the clump phase, the start and the end of
the AGBb are marked by a diamond, a circle and a star, respectively. Right: histogram
of the sample of He-burning stars used in the paper 1 that leave the clump phase and
begin their ascent on the AGB. We show in blue the number of low-mass He-burning stars
(M ≤ 1.2 M⊙) and green the number of high-mass He-burning stars (M ≥ 1.2 M⊙). The
colour bar indicates the location of the AGBb in νmax according to Eq. 10.3 by considering
log(LAGBb/L⊙) = 2.2 and Teff = 4800 (νmax/40.0)0.06 (Mosser et al., 2010). The blue and
green arrows roughly indicate the spot of the AGB bump respectively for low-mass stars
and high-mass stars, which is characterised by a local excess of stars. From Dréau et al.

(2021)

10.2 Detecting the AGBb in Kepler and TESS data

10.2.1 Determining the sample of stars

In order to study the AGBb, the sample of stars must be carefully selected. Indeed, the overdensity of
stars caused by the turning-backs in the evolutionary tracks is small compared to the number of clump
stars. According to the stellar models with initial mass M = 1 M⊙ computed with MESA, stars spend
∼ 100 Myrs in the He-core burning phase compared to ∼ 5 Myrs in the AGBb phase. This results in
a small statistical probability to meet AGBb stars in a sample of He-burning stars. In Fig. 10.3, we
can see that the He-burning Kepler targets are mainly dominated by clump stars around ∆ν ∼ 4 µHz
(equivalently νmax ∼ 30 µHz). However, since the overdensity of stars associated to the AGBb is well
separated from the peak associated to He-core burning stars, the latter can be rejected in our final sample
so that the AGBb overdensity unambiguously appears. Accordingly, we reject stars with ∆ν ≥ 2.7 µHz
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(equivalently νmax ≥ 22 µHz) so that our fitting method is not impacted by the clump peak.
Furthermore, we note an increasing number of stars with unidentified or uncertain identification of the
evolutionary stage at ∆ν ≤ 2.0 µHz. As discussed in Sect. 5.4; 8.3, this is due to the classification methods
that are less efficient at low ∆ν because they rely on stellar parameters, for example the acoustic offset
ε, that are affected by large uncertainties and on the asymptotic approach that may be invalid for these
stars. This inevitably reduces the number of AGB stars that we could classify. In order to avoid these
complications, we decide not to reject RGB stars and keep stars regardless their evolutionary stages.
Despite the presence of RGB and unclassified stars, the local excess of AGBb stars is still visible on top
of the background made of RGB and He-burning stars that do not belong to the AGBb overdensity
(Bossini et al., 2015). This allows us to include as many AGB stars as possible, whether they have been
successfully classified or not. Classifying RGB/AGB stars is demanding because long time-series are
required to extract precise seismic parameters for the stars to be confidently classified. Since our sample
is no longer based on the evolutionary stage but only on νmax, we can include additional RGB/AGB
stars that have been recently observed by TESS, but not classified yet. Therefore, we combine the Kepler
targets analysed in Dréau et al. (2021) with the TESS targets investigated in Mackereth et al. (2021), for
which νmax estimates are available.

FIGURE 10.3: Distribution of the sample of stars as a function of ∆ν used in Dréau et al.
(2021), classified with the identification methods of Mosser et al. (2019) and Kallinger et
al. (2012) with RGB stars in blue and clump/AGB stars in red. Stars with unidentified or
uncertain evolutionary stage are shown in grey. The inset is a zoom-in portion of the large

panel.

All in all, our final sample of stars is composed of ∼ 4, 100 Kepler and TESS targets, for which νmax ≤
22 µHz, regardless their evolutionary stage. As depicted by Table 1 in the publication 2, this final sample
allows us to have hundreds of stars in sixteen bins of mass and metallicity, which is sufficient to detect
the AGBb and study its dependence with stellar parameters.



10.2. Detecting the AGBb in Kepler and TESS data 167

10.2.2 Detecting the AGBb

We aim at characterising the AGBb with seismic parameters inferred from the Kepler and TESS oscillation
spectra to bring new asteroseismic constraints on the AGBb phase. In this context, we opt for locating
the AGBb with the frequency at maximum oscillation power νmax. This choice is motivated by the
close connection between the surface luminosity L and νmax through the scaling relation (Kjeldsen and
Bedding, 1995)

νmax

νmax,⊙
=

M
M⊙

(
L

L⊙

)−1 ( Teff

Teff,⊙

)7/2

. (10.4)

FIGURE 10.4: Probability distribution functions of our data set in the log Teff − log νmax
plane, in the bins M ∈ [0.9, 1.2]M⊙ and [Fe/H] ∈ [−0.25, 0.0]dex. Upper left panel: 2D
histogram where the AGBb is located by a blue diamond. Dark blue and light blue el-
lipses correspond to the 1σ and 2σ regions of the bivariate Gaussian, respectively. The red
solid line reproduces the linear term belonging to the RGB/AGB background and the pink
dashed lines correspond to the normal scatter around the linear term. Upper right panel:
the normalised 1D histogram in log νmax is shown in black. The ordinate axis is the same as
in the upper left panel. The blue line corresponds to the probability distribution function
associated to the overdensity in log νmax (see Sect. 4.1 of the article 2 for further informa-
tion). Lower left panel: same label as in the upper right panel but in terms of log Teff. The
abscissa axis is the same as in the upper left panel. Lower right panel: difference between
log νmax and the linear term in the 2D histogram (shown by the red solid line). The blue

line illustrates the normal distribution around the same linear term.

Then, we expect to characterise the overdensity of stars associated to the AGBb in νmax, similarly as
Khan et al. (2018) who could locate the RGBb with the seismic parameters νmax and ∆ν. To this end,
we adopt the statistical mixture model presented in Hogg, Bovy, and Lang (2010). This approach is a
statistical framework where the data set is assumed to be multimodal, i.e. with several regions of high
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probability separated by regions of low probability. In this situation, we modelled the data with a mix-
ture of several components, where each data point belongs to one of these components. We distinguish
two categories, which are the foreground and background data points. The background component
referred to as the RGB/AGB background sample contains stars that are ascending the RGB/AGB while
the foreground component quoted AGBb sample includes AGBb stars, which are localised in the over-
density stage caused by the luminosity drop. Given these two different categories, the mixture statistical
model aims at fitting the whole data set with two different models at once, one associated to the fore-
ground and the other to the background. For illustration, the 2D histogram of our sample of RGB/AGB
stars with M ∈ [0.9, 1.2]M⊙ and [Fe/H] ∈ [−0.25, 0.0]dex is shown in Fig. 10.4, where the foreground is
modelled by a bivariate Gaussian and the background is fitted by a normal scatter around a linear term
in νmax (see Sect. 4.1 of paper 2 for the exact expression of the foreground and background components).
Then, both models are weighted by a parameter, say Pbg for the background model and 1 − Pbg for
the foreground model, where Pbg represents the probability of a data point to belong to the RGB/AGB
background. The full fitting function to reproduce the 1D and 2D histograms in log νmax and log Teff is
detailed in Sect. 4.1 of the paper 2. The free parameters of the model are extracted in a Bayesian ap-
proach, where the posterior probability distribution function fpost is generated by the prior probability
fprior times the mixture probability distribution function fmix

fpost ∝ fprior × fmix, (10.5)

within a normalisation factor. The prior probabilities fprior are chosen to be uniform for all free parame-
ters while the mixture probability distribution is defined as

fmix = (1 − Pbg) fbiv + Pbg fbg, (10.6)

where fbiv and fbg are the probability distribution functions of the foreground and background models,
respectively. Then, the posterior probability distribution function is marginalised with a Markov Chain
Monte-Carlo (MCMC) sampler. The MCMC algorithm generates random walkers in the parameter
space that draw a representative set of samples from the posterior probability distribution function.
Once the samples are computed, the marginal probability distribution of a given parameter X can be
approximated by the histogram of the samples projected into the parameter subspace of all possible X.
The average value of X as well as its dispersion can then be extracted from these histograms, assuming
that the posterior probability distribution function fpost correctly describes the distribution of the data
set. Before accepting the outputs of the fitting process, we check that the walkers that explore the
parameter space converge for all free parameters. We make sure that the outputs are consistent with
the 1D and 2D histograms, as depicted by Fig. 10.4. Among the sixteen bins of mass and metallicity, we
could not extract the AGBb parameters for M ∈ [0.6, 0.9]M⊙ and [Fe/H] ∈ [0.0, 0.25]dex because we
lack some stars to properly fit the AGBb overdensity and the RGB/AGB background.

10.3 Can AGBb stars be standard candles?

In Sect. 5.1 of the article 2, we analyse in detail the dependence of the AGBb location on stellar mass and
metallicity. They are depicted in Fig. 10.5. To summarise, the higher the mass, the lower the frequency
νmax (equivalently, the higher the luminosity), and the lower the effective temperature. This dependence
in log νmax is clear since the variation of the AGBb location with the mass is larger than the typical uncer-
tainty with which we extract the AGBb spot. Moreover, the dependence of the AGBb position on mass
is less important at high metallicity [Fe/H] ≥ 0.0 dex. Thus, these observations confirm the theoretical
results of Alves and Sarajedini (1999) shown in Fig. 10.1. In log Teff, a larger sample of stars is desirable
to confirm or infirm the dependence of the AGBb location on stellar mass because of large uncertainties.
Since the frequency at maximum oscillation power νmax during the clump phase is higher for high-mass
stars (Bedding et al., 2011; Stello et al., 2013; Mosser et al., 2014), our observations show that the νmax
difference between clump and AGBb stars increases with the mass.
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FIGURE 10.5: Location of the AGBb in log νmax (left) and in log Teff (right) from obser-
vations, as a function of the metallicity [Fe/H]. The AGBb occurrence is marked by
dots and the stellar mass is colour-coded. AGBb spots obtained in the same bin of mass
M ∈ [0.6, 0.9], [0.9, 1.2], [1.2, 1.5], [1.5, 2.5]M⊙ are connected by dark blue, light blue, light
green, and red lines, respectively. Mean error bars on the position of the AGBb in log νmax
and in log Teff are shown in black. Data in the bin (M ∈ [0.6, 0.9]M⊙, [Fe/H]∈ [0, 0.25]dex)
are not shown because there are not enough stars to perform the statistical mixture analy-

sis. From Dréau et al. (2022)

In parallel, we observe some variations of the AGBb spot with [Fe/H] for metal-rich stars ([Fe/H] ≥
−0.5 dex), which is especially remarkable for stars of mass M ≥ 1.2 M⊙. The higher the metallicity, the
higher the frequency νmax (equivalently, the lower the luminosity). Although we observe a smooth in-
crease of log νmax with [Fe/H] for stars of mass M ≤ 1.2 M⊙, this behaviour seems weaker for low-mass
stars. These observations are in agreement with the theoretical results of Alves and Sarajedini (1999)
shown in Fig. 10.1. This tends to show that the luminosity of metal-rich stars ([Fe/H] ≥ −0.5 dex) varies
with metallicity, hence the apparent magnitude mb may not only depend on the distance d between the
star and Earth as depicted by Eq. 10.1, but also on metallicity at fixed stellar mass. Using metal-rich
stars in the AGBb phase as standard candles may be questionnable since Eq. 10.1 is subject to metallicity
biases. However, our work is essentially based on stars with [Fe/H] ≥ −1.0 dex since too few metal-
poor stars with [Fe/H] ≤ −1.0 dex have been subject to an asteroseismic study with the Kepler and TESS
missions. Initially, the potential of AGBb stars as standard candles was highlighted for metal-poor stars
with [Fe/H] ∈ [−2.0,−0.65]dex (Ferraro, 1992; Pulone, 1992). In the right panel of Fig. 10.1, we in-
deed notice that the luminosity at the AGBb remains approximately constant when [Fe/H] ≤ −1.0 dex
(respectively [Fe/H] ≤ −1.5 dex) for stars of mass M ≤ 1.1 M⊙ (respectively M ≥ 1.3 M⊙). Further
asteroseismic observations of metal-poor AGB stars are needed to expand the seismic characterisation
of the AGBb at low metallicity. Meanwhile, Yu et al. (2022) derived the stellar radius R and luminos-
ity L of about 1.5 million stars for which spectroscopic estimates of the effective temperature Teff are
available. Many low-metallicity AGB stars are expected to be present in this sample, as illustrated by
Fig. 10.6. Then, the next step is to extract the position of the AGBb in log L or log R at low metallicity
[Fe/H] ≤ −0.5 dex and conclude about the potential of metal-poor AGBb stars as standard candles.

10.4 Constraining the physical ingredients with the AGBb

10.4.1 Method

Since the AGBb is identified at a specific position in log νmax and log Teff, the AGBb event can be used
as a constraint for stellar models. Indeed, the AGBb is easily identifiable since it manifests as a turning-
back of the evolutionary track in stellar models after the He-core burning phase. By choosing a specific
set of physical ingredients, we can replicate the observed AGBb location with models. Accordingly, we
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FIGURE 10.6: Radius estimates derived from spectral energy distribution (SED) fitting as
a function of the effective temperature. Top: the normalised number density is colour-
coded. Some key events of stellar evolution are highlighted. Bottom: the metallicity is

colour-coded. Credit: Yu et al. (2022)
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aim at identifying the physical ingredients that would allow us to reproduce the observed AGBb spot.

In Fig. 10.4, the most obvious signature of the AGBb is the overdensity of stars in the 1D histograms.
With a large sample of stars, these histograms give us an approximation of the probability of finding a
star at a given log νmax or log Teff. In order to evaluate how far the models are able to replicate obser-
vations, we compute the probability density function PDFM,[Fe/H](x) of finding a model of mass M and
metallicity [Fe/H] at a given x = log νmax or log Teff. Actually, the additional time spent by a star in the
AGBb phase due to the turning-back in the evolutionary track leads to an increased probability to find
a star in the AGBb phase. So the AGBb is identifiable by the increased time spent in the evolutionary
track after the He-core burning phase. The probability density function PDFM,[Fe/H](x) can be inferred
by computing the fractional time δτM,[Fe/H](x) that is spent in a given bin of x = log νmax or log Teff. To
this end, we cut the evolutionary track from the RGB up to the AGB in several bins of log νmax or log Teff
(see Fig. 10.7).

FIGURE 10.7: Evolutionary track of the reference model defined in Table 10.1 at mass M =
1 M⊙ and solar metallicity in the plane log Teff − log νmax. The blue and red solid lines are
the RGB and AGB, respectively. The light blue solid line is the evolutionary track between
the luminosity tip of the RGB (light blue dot) and the He-core burning phase. The AGBb is
delimited by the pink dot (start) and dark red dot (end). The horizontal dotted lines delimit
the bins of log νmax that are used to compute the fractional time δτM,[Fe/H](log νmax) spent
in those bins. We omit the binning in log Teff for clarity, but the procedure is similar as for

log νmax.

Then, the fractional time δτM,[Fe/H](x) is simply taken as the sum of the timesteps between consec-
utive models, for which x is contained in a specific bin. The probability density function PDFM,[Fe/H] is
obtained by normalising this fractional time by the total time spent by the star on its evolutionary track

PDFM,[Fe/H](x) =
δτM,[Fe/H](x)

∑xmax
x′=xmin

δτM,[Fe/H](x′)
, (10.7)

where x can be log νmax or log Teff. Since Eq. 10.7 is defined for one combination of mass M and metal-
licity [Fe/H], PDFM,[Fe/H] is not directly comparable to observations. The 1D histograms are observed
for stars with different masses and metallicity in a given bin, so the probability distribution function
must be averaged with several evolutionary tracks obtained at different masses and metallicities. Then,
the average probability distribution function PDF to be compared with observations is computed as the
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sum of all individual PDFM,[Fe/H](x), for which the mass M and metallicity [Fe/H] are contained in the
considered bin. We have

PDF(x) =
1

Anorm
∑

M,[Fe/H]

PDFM,[Fe/H], (10.8)

where Anorm is a normalisation factor. In the sample of Kepler and TESS stars, the mass is not uniformly
distributed between 0.8 M⊙ and 2.5 M⊙, i.e. we do not have as many low-mass stars as high-mass stars.
When computing the probability distribution function PDF, we do not take the observed mass and
metallicity distributions into account and we assume that they are uniformly distributed. This treatment
could be improved, but we checked that the inferred AGBb peak in log νmax and log Teff are consistent
with the location of the turning-back in the evolutionary tracks. An example of PDF computed for the
reference model (defined in Sect. 10.4.2) in the bin M ∈ [0.9, 1.2]M⊙ and [Fe/H] ∈ [−0.25, 0.0]dex is
shown in Fig. 10.8. In the left panel, we see that the local maximum of PDF associated to the AGBb does
not match the observed AGBb overdensity. Our goal is to make the observations and models overlap
by changing the physical parameters of the model, as illustrated in the right panel of Fig. 10.8. This
procedure allows us to study the impact of the physical parameters on the AGBb location.

FIGURE 10.8: Distribution of log νmax in the bins of mass M ∈ [0.9, 1.2]M⊙ and metallicity
[Fe/H] ∈ [−0.25, 0.0]dex. The 1D histograms extracted from observations are indicated in
blue, while the probability density functions extracted from models are shown in green.
The number of stars per bin from observations is written in blue on top of the histogram
while the black thin line is the convolution between PDF from Eq. 10.8 and a Gaussian
function. The arrows show the AGBb location in log νmax from observations in blue and
stellar models in green. Left: The model 1D histogram is obtained with the reference model
defined in Table 10.1 and associated to the evolutionary track in Fig. 10.7. Right: Same as
left figure but the model 1D histogram is obtained by adding He-core overshooting. The

overshooting parameter is αov,He = 0.5.

10.4.2 Reproducing the AGBb overdensity with stellar models

In the following, we define a reference model with a specific set of physical parameters (see Table 10.1).
Individual changes are brought to the reference model to inspect how physical parameters affect the
AGBb position. A thorough analysis of the sensitivity of the AGBb location to physical parameters is
presented in Sect. 5 and 6 of the publication 2. To sum up, we highlight that the reference model in
absence of mixing processes is not able to recreate the AGBb spot both in log νmax and log Teff, whatever
the stellar mass and metallicity considered. As examined by Bossini et al. (2015), an additional mixing
region above the convective core of He-core burning stars is required to reproduce the observed AGBb
luminosity. These authors calibrated the extent of the He-core overshooting region in fraction of the
pressure scale height HP and found 0.5 HP for the specific mass and metallicity domain, defined by
M ∈ [1.3, 1.7]M⊙ and [M/H] ∈ [−0.4, 0.4]dex. Here, we extend their work to a broader range of
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masses and metallicities in order to explore how the calibration of those mixing processes varies with
these stellar parameters.

TABLE 10.1: Specifications of the MESA reference model

Y0 αMLT ηR αov,H αov,He αov,env αth ΩZAMS/Ωcrit

0.253 1.92 0.3 0.2 0 0 0 0

Notes: Y0 is the initial helium mass fraction; αMLT is the mixing length parameter; ηR is the Reimers’
scaling factor for the mass loss prescription on the RGB in Eq. 2.8; αov,H, αov,He, and αov,env are the H-core
overshooting, He-core overshooting, and envelope undershooting parameters, respectively, in units of
HP; αth is the efficiency of thermohaline convection following Eq. 6.6; ΩZAMS/Ωcrit is the ratio between
the angular velocity at the ZAMS and the surface critical angular velocity for the star to be dislocated.
These physical ingredients are described in details in Chapter 6.

Stars of mass M ≤ 1.5 M⊙

Adding He-core overshooting to the reference model is sufficient to recreate observations of low-mass
stars. Different He-core overshooting parameters are needed depending on the mass. For instance,
αov,He ∈ [0.25, 0.50] satisfyingly reproduces the AGBb position in log νmax in the mass bin M ∈ [0.6, 1.2]M⊙
while αov,He ∈ [0.5, 1.0] is more appropriate for M ∈ [1.2, 1.5]M⊙. Then, the AGBb can be used to
constrain mixing processes taking place in the He-core burning phase, as presented in Bossini et al.
(2015). However, we do not exactly replicate the observed AGBb position simultaneously in log νmax
and log Teff with He-core overshooting only. We find that modifying the mixing length parameter αMLT
mainly shifts the AGBb position along the log Teff axis. Indeed, by decreasing αMLT the energy trans-
port via convection in the envelope is less efficient, then the stellar radius increases and the effective
temperature decreases. According to the scaling relation

νmax

νmax,⊙
=

M
M⊙

(
R

R⊙

)−2 ( Teff

Teff,⊙

)−1/2

, (10.9)

increasing the radius R and decreasing the effective temperature Teff simultaneously has limited effect
on νmax. Then, adjusting αMLT mainly shifts the evolutionary track in log Teff, which can help to match
the effective temperature at the AGBb in stellar models with the observed value.

Stars of mass M ≥ 1.5 M⊙

Adding He-core overshooting to the reference model alone does not allow us to match observations
with models for stellar masses above 1.5 M⊙. In fact, a large overshooting parameter αov,He = 2.0 could
help us to diminish the differences in log νmax, but such value would induce an extra mixing region that
is clearly larger than the convective core. Currently, we do not have theoretical arguments to justify
such strong He-core overshooting. Accordingly, we investigate other sources of mixing. We find that
the mixing processes taking place in the envelope (envelope undershooting and thermohaline mixing
as described in Chapter 6) insignificantly impact the AGBb location. Then, we focus on the mixing pro-
duced near the core.

In stars of mass M ≥ 1.2 M⊙, the convective core is sufficiently developed to enable H-core over-
shooting during the main sequence. By combining high He-core overshooting αov,He = 1.0 and H-core
overshooting αov,H = 0.6, we could match observations with models. However, this H-core overshoot-
ing appears to be too large considering that 0.2 HP is the maximum extent of the extra mixing region
when M ≤ 2.5 M⊙ according to the observed properties of eclipsing binaries (e.g. Claret and Torres,
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2016; Claret and Torres, 2017; Claret and Torres, 2018; Claret and Torres, 2019) and the seismic con-
straints provided by ℓ = 1 modes of main-sequence stars (Deheuvels et al., 2016). Such a maximum
extent is also supported by recent theoretical predictions based on 3D numerical hydrodynamics simu-
lations of penetrative convection (Anders et al., 2022; Jermyn et al., 2022).

FIGURE 10.9: Evolutionary tracks from the clump phase up to the AGB for 2 M⊙ models at
solar metallicity with different rotation rates during the main sequence. The input physics
is that indicated in Table 10.1, but we disable H-core overshooting and add rotation rate
as indicated on the figure. The lighter the colour, the larger the rotation rate. The arrows

indicate the AGBb turning-backs.

Finally, we study the influence of rotation, which creates transport of chemicals and angular mo-
mentum throughout the star. The rotational mechanisms responsible for mixing and the prescrip-
tion adopted in MESA for rotation are presented in Chapter 6. Initially, we tested the rotation rate
ΩZAMS/Ωcrit = 0.3 from the ZAMS up to the AGB, which is motivated by observations of B stars
(Huang, Gies, and McSwain, 2010). This value is equivalent to having a surface rotational velocity
of veq,ZAMS = 145 km.s−1 for a ZAMS star of mass M = 2.0 M⊙ at solar metallicity. However, we
noticed that the turning-back shape of the AGBb in the evolutionary track is then noisy. We also re-
marked that the position of the AGBb turning-back does not change if rotation is included during main
sequence only. Therefore, we apply rotation during the main sequence only. In that case, the surface
rotational velocity at the TAMS is veq,TAMS = 140 km.s−1 for a 2 M⊙ star at solar metallicity, which cor-
responds to a rotation rate2 ΩTAMS/Ωcrit = 0.45. These rotation rates are consistent with those obtained
in the stellar grids of Ekström et al. (2012). By considering rotation during the main sequence with a
rate ΩZAMS/Ωcrit = 0.3 at the ZAMS, we note that rotationally-induced mixing has similar effects as
He-core overshooting on the AGBb value of νmax. By combining rotation with a high He-core over-
shooting αov,He = 1.0 we are able to replicate the AGBb location in νmax. This suggests that several
mixing processes must be simultaneously considered in order to reproduce the observed AGBb spot
when M ≥ 1.5 M⊙. Nonetheless, we point out that the shift of the AGBb location induced by rotation is
visible only with a rotation rate ΩZAMS/Ωcrit ≥ 0.25. Indeed, the AGBb location is not impacted when
considering a rotation rate ΩZAMS/Ωcrit = 0.2. In parallel, we note that the envelope abundance mass
fractions of H and He are not modified from the ZAMS up to the TAMS when setting ΩZAMS/Ωcrit = 0.2,

2the surface critical angular velocity decreases as the star reaches the TAMS, which explains why Ω/Ωcrit is higher at the
TAMS than at the ZAMS
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but they significantly change with ΩZAMS/Ωcrit = 0.3 (Fig. 10.10). Consequently, the capability of rota-
tion to affect the AGBb location can be attributed to the potential of the rotationally-induced mixing to
bring additional chemicals from the core to the envelope.

FIGURE 10.10: Profiles of the abundance mass fractions of 1H and 4He as a function of the
mass coordinate in the interior (m/M⊙ = 0 is the centre). The solid lines are associated to
distinct stages in the H-core burning process. The darker the colour, the closer to the ZAMS
the star is. Conversely, the lighter the colour, the closer to the TAMS the star is. Top: we
consider the reference MESA model defined in Table 10.1, we disable H-core overshooting
and we adopt a rotation rate ΩZAMS/Ωcrit = 0.2. Bottom: same as the top panels but we

take the rotation rate ΩZAMS/Ωcrit = 0.3.

It is noteworthy that this work remains exploratory since we mainly identify the physical parame-
ters needed to recreate the observed AGBb in log νmax with stellar models. In fact, we do not precisely
quantify the weights of these physical parameters required to reproduce the AGBb position in log νmax
and log Teff for all bins of mass and metallicity. We only provide rough estimates of these physical
parameters depending on the stellar mass. In stars of mass M ≤ 1.2 M⊙, the convective core is either
absent or very small, which explains why H-core overshooting has small impact at low mass. Moreover,
magnetic braking is not implemented in MESA, which would be necessary to reproduce slow rotation
rates of low-mass stars (Kawaler, 1988). Then, we could not explore the effects of rotationally-induced
mixing in stars of mass M ≤ 1.5 M⊙.

All the physical ingredients considered here not only influence the AGBb position but also other key
events of stellar evolution. Several observational parameters could be employed simultaneously to con-
strain physical parameters with better precision. Theoretical models report a weak dependence of the
luminosity ratio between the AGBb and red clump phase on metallicity and initial helium abundance
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(Castellani, Chieffi, and Pulone, 1991; Bono et al., 1995). Then, combining the position of the clump
phase in log νmax and log Teff with that of the AGBb could help to improve the calibration of physical
ingredients. In Appendix B inserted in article 2, we explore how physical parameters impact the νmax
ratio between the AGBb and clump phase. We remark that mainly He-core overshooting modifies this
νmax ratio, which suggests that the νmax difference between the AGBb and clump phase is affected. For
stars of mass M ≥ 1.5 M⊙, we saw that mixing processes such as H-core overshooting and rotationally-
induced mixing impact the νmax and Teff at the AGBb. In parallel, we report that the νmax ratio between
AGBb and clump phase do not change after adding these mixing processes. This implies that these
input physics not only impacts the AGBb position but also that of the clump phase. This illustrates the
potential of using several observational features to accurately quantify the relevance of physical ingre-
dients in stellar models, which have crucial impact on the evolution of stars up to the white dwarf stage
as introduced in Sect. 2.6.

10.5 Summary

The observations of Kepler can be handled to extract the seismic characteristics of AGBb stars. In par-
ticular, the AGBb luminosity (equivalently νmax) could be extracted from these observations (Bossini
et al., 2015). Nevertheless, the sample of Kepler stars was not sufficient to infer the AGBb position in
νmax in several bins of mass and metallicity, preventing us from following the dependence of the AGBb
value of νmax on stellar parameters. Now, studying the mass and metallicity dependence of the AGBb
luminosity is possible with the additional seismic observations of TESS. Here, we combine Kepler and
TESS observations, which allows us to gather more than 4, 100 RGB and AGB stars where the AGBb can
be detected. We highlight a fast evolution between the end of the He-core burning phase and the AGBb,
leading to a weakly populated region between these events. Similarly as in the work done for studying
the RGBb (Khan et al., 2018), we characterise the AGBb in the plane log Teff − log νmax in fifteen distinct
bins of mass and metallicity with the statistical model of Hogg, Bovy, and Lang (2010).

First, we notice that the AGBb occurs at lower νmax (equivalently higher luminosity) and lower Teff
for high-mass stars, in agreement with theoretical results (Alves and Sarajedini, 1999). This suggests
that the νmax difference between clump and AGBb stars increases with mass. Second, we report metal-
licity effects on the AGBb spot in log νmax for stars of metallicity [Fe/H] ∈ [−1.0, 0.25]dex, which are
particularly notable at high mass M ≥ 1.2 M⊙. The higher the metallicity, the higher the νmax (equiv-
alently the lower the luminosity) at the AGBb. This implies that the luminosity of AGBb stars with
[Fe/H] ∈ [−1.0, 0.25]dex varies with stellar parameters, so does their apparent magnitude. Accord-
ingly, using AGBb stars as standard candles may be questionable if [Fe/H] ≥ −1.0 dex. Neverthe-
less, the AGBb luminosity is expected to be independent of the metallicity for metal-poor stars with
[Fe/H] ≤ −1.0 dex (Ferraro, 1992; Pulone, 1992). To address this concern, further work is dedicated to
detect the AGBb in the luminosity distribution of metal-poor stars derived from spectral energy distri-
bution fitting (Yu et al., 2022).

Finally, we show that He-core overshooting is needed to reproduce the AGBb location in log νmax for
any mass M ∈ [0.6, 2.5]M⊙ and metallicity [Fe/H] ∈ [−1.0, 0.25]dex, as initially highlighted by Bossini
et al. (2015) in stars of mass M ∈ [1.3, 1.7]M⊙ and metallicity [M/H] ∈ [−0.4, 0.4]dex. Precisely, αov,He ∈
[0.25, 0.50] is adapted to reproduce the AGBb position in log νmax in the mass bin M ∈ [0.6, 1.2]M⊙ while
αov,He ∈ [0.5, 1.0] is more appropriate for M ∈ [1.2, 1.5]M⊙. Yet, He-core overshooting alone cannot
recreate the AGBb location in log νmax for stars of mass M ∈ [1.5, 2.5]M⊙. Additional mixing processes
are needed to match models with observations. For instance, we identify that rotationally-induced
mixing during the main sequence combined with He-core overshooting is able to replicate the log νmax
at the AGBb. This work remains exploratory and additional work is required to quantify the weight
of those mixing processes in stellar models, for example by considering other observational constraints
such as the clump stage position.
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ABSTRACT

Context. In the 90’s, theoretical studies motivated the use of the asymptotic-giant branch bump (AGBb) as a standard
candle given the weak dependence between its luminosity and stellar metallicity. Because of the small size of observed
asymptotic-giant branch (AGB) samples, detecting the AGBb is not an easy task. However, this is now possible thanks
to the wealth of data collected by the CoRoT, Kepler, and TESS space-borne missions.
Aims. It is well-known that the AGB bump provides valuable information on the internal structure of low-mass stars,
particularly on mixing processes such as core overshooting during the core He-burning phase. Here, we investigate the
dependence with stellar mass and metallicity of the calibration of stellar models to observations.
Methods. In this context, we analysed ∼ 4,000 evolved giants observed by Kepler and TESS, including red-giant branch
(RGB) stars and AGB stars, for which asteroseismic and spectrometric data are available. By using statistical mixture
models, we detected the AGBb both in frequency at maximum oscillation power νmax and in effective temperature Teff .
Then, we used the Modules for Experiments in Stellar Astrophysics (MESA) stellar evolution code to model AGB stars
and match the AGBb occurrence with observations.
Results. From observations, we could derive the AGBb location in 15 bins of mass and metallicity. We noted that the
higher the mass, the later the AGBb occurs in the evolutionary track, which agrees with theoretical works. Moreover,
we found a slight increase of the luminosity at the AGBb when the metallicity increases. By fitting those observations
with stellar models, we noticed that low-mass stars (M ≤ 1.0M�) require a small core overshooting region during the
core He-burning phase. This core overshooting extent increases toward high mass, but above M ≥ 1.5M� we found that
the AGBb location cannot be reproduced with a realistic He-core overshooting alone, and instead additional mixing
processes have to be invoked.
Conclusions. The observed dependence on metallicity complicates the use of the AGBb as a standard candle. Moreover,
different mixing processes may occur according to the stellar mass. At low mass (M ≤ 1.5M�), the AGBb location can
be used to constrain the He-core overshooting. At high mass (M ≥ 1.5M�), an additional mixing induced for instance
by rotation is needed to reproduce observations.

Key words. asteroseismology − stars: oscillations − stars: interiors − stars: evolution − stars: late-type − stars: AGB
and post-AGB

1. Introduction

The asymptotic-giant branch (AGB) is a key stage of
stellar evolution that can be used to constrain both the
stellar structure and environment. On the one hand,
observations of circumstellar CO line emission and stellar
light scattered by dust in circumstellar envelopes allow
us to estimate the mass-loss rate on the AGB, which is
crucial to understand the final stages of stellar evolution
and the metal enrichment in the interstellar medium,
hence the chemical enrichment of galaxies (e.g. Knapp
et al. 1998; Mauron & Huggins 2006; Ramstedt et al. 2008;
McDonald et al. 2018; McDonald & Trabucchi 2019). On
the other hand, the AGB provides valuable constraints for
stellar interiors with the help of stellar models (Bossini
et al. 2015). Current stellar models suffer from systematic

uncertainties due to our limited understanding of physical
processes in stellar interiors. Particularly, constraining
mixing processes in advanced burning stages is demanding
because it requires to implement helium semiconvection to
take into account the additional helium captured by the
growing He-core (e.g. Castellani et al. 1971a; Robertson &
Faulkner 1972; Sweigart & Gross 1973; Salaris & Cassisi
2017). Then, the use of observational constraints linked
to stellar interiors is crucial to test the reliability of
stellar models. With this in mind, several studies aimed
at constraining stellar parameters of red giants with
asteroseismic observables (di Mauro et al. 2011; Baudin
et al. 2012; Lagarde et al. 2015). Using the global seismic
parameters, i.e. the large frequency separation ∆ν and
the frequency of the maximum oscillation power νmax,
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these authors could infer the mass and radius of red giants
and reduce their uncertainties by a factor of more than 3
compared with those based on spectroscopic constraints
only. On top of these asteroseismic observables, the use
of both the mode inertias and coupling factor between
the g- and p- mode cavities in red giants provides unique
constraints on the mode trapping, hence on the innermost
stellar structure (Benomar et al. 2014; Pinçon et al. 2020).
However, all the studies mentioned herebefore focus on the
early stages of red giants, so that additional work needs to
be done to constrain stellar structure during the helium
burning stages.

One of the key events happening in the helium burning
phase that still needs to be constrained is the AGBb.
This is now possible with the recent seismic constraints
obtained for high-luminosity RGB and AGB stars with
∆ν ≤ 4.0 µHz (Dréau et al. 2021). The AGBb manifests
through a luminosity drop as a star evolves on the AGB
and is associated with the ignition of the He-burning
shell source. The AGBb is then characterised by a local
excess of stars in the luminosity distribution of stellar
populations. While the AGBb has been first predicted by
stellar evolutionary models (Caputo et al. 1978), it has
then been identified in the colour-magnitude diagram of
a few Galactic globular clusters (Ferraro 1992). Bossini
et al. (2015) have shown that the AGBb can be used
to constrain the core mixing scheme during the core
He-burning phase. They could reproduce both the seismic
constraints and the AGBb luminosity of observed Kepler
red clump stars by considering core overshooting of the
mixed He core with a moderate value of core overshooting
(αov,He = 0.5 where αov,He is the ratio of the overshooting
length to the pressure scale height). Using the AGBb
luminosity as a stellar model constraint allows to reduce
the systematic uncertainties on the mixing processes
beyond the boundary of the convective envelope, which are
essential to predict stellar lifetime in the core He-burning
phase (e.g., Castellani et al. 1971b; Chiosi 2007).

The characterisation of the luminosity bump on the
RGB with seismic data has already been achieved (Khan
et al. 2018). By combining Kepler and APOGEE data of
thousands of red giants, these authors highlighted that
the location of the red-giant branch bump (RGBb) is
sensitive to the stellar mass and metallicity. Moreover,
they showed that significant overshooting from the base of
the convective envelope during the main sequence must be
considered to reproduce the location of the RGBb, with
an efficiency that increases with decreasing metallicity.
A similar description of mixing beyond the convective
envelope during He-burning phases would help to predict
the third dredge-up efficiency on the thermally pulsing
AGB (TP-AGB) phase (Herwig et al. 2000; Marigo &
Girardi 2007; Wagstaff et al. 2020). Moreover, a precise
characterisation of the AGBb would confirm or disprove
the potential of the AGBb to be a suitable candidate for
standard candles (Pulone 1992; Ferraro 1992).

In this study, we aim at detecting and characterising the
AGBb. First, we investigate its dependence with the stellar
mass and metallicity by using Kepler and TESS asteroseis-
mic targets. Then, we use the AGBb as a calibrator for
mixing processes, particularly for core overshooting during

the He-burning phase. The article is organised as follows.
The data set is described in Sect. 2. In Sect. 3, we define
the macrophysics and microphysics implemented to model
stellar evolution up to the AGB phase. Methods used to
locate and characterise the AGBb in models and observa-
tions are presented in Sect. 4. The results are analysed in
Sect. 5. They illustrate the needs to take He-core overshoot-
ing into account in stellar models to reproduce the observed
location of the AGBb. We discuss our results and explore
the impact of other parameters on the AGBb location in
Sect. 6. Eventually, Sect. 7 is devoted to conclusions.

2. Data set

In order to detect the AGBb, we selected evolved stars
that have been observed by the Kepler and TESS tele-
scopes, including RGB and AGB stars. In order to reject
red clump stars from the sample, we only kept stars with
νmax ≤ 22 µHz (or equivalently ∆ν . 2.7 µHz) because
no AGBb is expected to occur above this limit (Dréau
et al. 2021, their Fig. 9). It has been shown that at low
νmax ≤ 10 µHz (or equivalently ∆ν . 1.5µHz), it is difficult
to safely distinguish AGB stars from RGB ones (Kallinger
et al. 2012; Mosser et al. 2019). On the other hand, the
local excess associated to the AGBb is well visible on top
of the background composed of RGB and He-burning stars
(Bossini et al. 2015). Therefore, since we wished to work
on a sample containing as many AGB stars as possible, we
decided not to reject any (suspected) RGB star from the
initial sample. Considering more stars, even unclassified,
allowed us to include more AGB stars in our sample. The
evolved Kepler targets around this evolutionary stage have
been the subject of an exhaustive seismic analysis (Mosser
et al. 2013, 2014, 2019; Stello et al. 2014; Yu et al. 2020,
2021; Dréau et al. 2021), providing estimates of νmax. Then,
we used the νmax estimates from Mosser et al. (2014, 2019)
while we selected their mass M from the APOKASC cata-
logue (Pinsonneault et al. 2014, 2018). The later is a sur-
vey of Kepler targets complemented by spectroscopic data.
The effective temperatures Teff and stellar metallicities are
taken from the catalogues of APOGEE DR17 (Abdurro’uf
et al. 2021), GALAH DR3 (Buder et al. 2021), and RAVE
DR6 (Steinmetz et al. 2020). We took the stellar masses
derived from the semi-empirical asteroseismic scaling rela-
tion presented in Kjeldsen & Bedding (1995), and corrected
by a factor that is adjusted star by star when available1

(Pinsonneault et al. 2018). When stellar masses are not
available, which concerns about 10% of our Kepler targets,
we estimated them with the semi-empirical relation with-
out any correction factor. As for the TESS targets, they
have been studied in Mackereth et al. (2021). We picked
νmax as the mean value between three pipelines (Mosser
& Appourchaux 2009; Mathur et al. 2010; Elsworth et al.
2020). We extracted the mass M , effective temperature Teff ,
and metallicity [Fe/H] in the same way as for the Kepler
targets. To sum up, roughly 70% of the spectroscopic es-
timates are from the APOGEE DR17 catalogue, 2% are
from GALAH DR3, and 28% are from RAVE DR6. The
typical uncertainties on so obtained global parameters are

1 This correction is applied to capture the deviations from
the asteroseismic scaling relations between the stellar mass M ,
radius R, large frequency separation ∆ν, and frequency at max-
imum oscillation power νmax.
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Fig. 1: Seismic HR diagram of our sample of stars in the bin of mass M ∈ [0.9, 1.2]M� (left) and in the bin of metallicity
[Fe/H] ∈ [−0.25, 0.0] dex (right). In both panels, stars with different metallicities (left) and masses (right) are represented
with different colours. On top of those observations, stellar evolutionary tracks along the AGB are represented with black
lines at different metallicities at 1M� (left) and masses at [Fe/H] = −0.25 dex (right).

σM = 12%, σ[Fe/H] = 0.06 dex, σTeff
= 64K, σνmax = 9%.

Our final sample is composed of 4099 stars, including RGB
and AGB stars, as well as stars leaving the clump phase.
Some of them are shown in given bins of mass and metal-
licity in Fig. 1.

3. Stellar models

Evolutionary tracks and stellar models are derived
with the release 12778 of the stellar evolution code
Modules for Experiments in Stellar Astrophysics
(MESA, Paxton et al. 2011, 2013, 2015, 2018, 2019).
We computed a grid of stellar models with initial mass
M = [0.8, 0.9, 1.0, 1.1, 1.2, 1.5, 1.75, 2.0, 2.5]M� and ini-
tial metallicity [Fe/H] = [−1.0,−0.5,−0.25, 0.0, 0.25] dex.
The initial fractional abundance of metals in mass was
set following the solar chemical composition described
in Asplund et al. (2009). The treatment of convection is
based on the mixing-length formalism presented in Henyey
et al. (1965), which takes the opacity of the convective
eddies into account. The initial helium abundance Y0, the
metallicity [Fe/H] and the mixing-length parameter αMLT

were calibrated to reproduce the present solar luminosity,
radius, and surface metal abundance. To this end, we
adapted the MESA test suite case simplex solar calibration
and took the logL, logR and Z/X terms2 into account in
the χ2 value. We performed the solar calibration without
microscopic diffusion. This gave us the solar-calibrated
values Y0 = 0.253, [Fe/H] = 0 (equivalently Z0 = 0.0133),
and αMLT = 1.92 at a solar age of 4.61 Gyrs 3. We do

2 Z/X = (Z/X)� 10[Fe/H], where the solar value (Z/X)� =
0.0181 is taken from Asplund et al. (2009)

3 This value corresponds to the default solar age in MESA,
taken as the sum of the time spent on the MS starting on the
ZAMS (4.57 × 109 yrs) and that spent on the PMS (0.04 ×
109 yrs). It is larger than the value commonly adopted τ� =
4.57× 109 yrs (see, e.g., Chaussidon 2007). However, we do not
account for the PMS in the calibration and it has been shown
that adopting those two target solar ages does not impact the

not assume any coupling of Y and Z through the ∆Y/∆Z
helium-to-metal Galactic enrichment ratio, but rather
explore different values of the couple (Y,Z).

We started from the 1M pre ms to wd test suite case
and customised the physical ingredients to model stel-
lar evolution up to the AGB. To follow chemical changes
and the production of nuclear energy, we used a network
of 32 nuclear reactions involving 23 stable or unstable
species from 1H to 24Mg. The thermonuclear reaction rates
are taken from NACRE (Angulo et al. 1999) and CF88
(Caughlan & Fowler 1988), with priority on NACRE rates
when available. We took into account some updates to cru-
cial reaction rates at evolved stages, such as 14N(p, γ)15O
(Imbriani et al. 2004) and triple-α (Fynbo et al. 2005).

Opacities are needed to compute the energy transport
in regularly stratified regions, that is in radiative zones.
At low temperatures (log T < 3.95), we used the opacity
tables from AESOPUS (Marigo & Aringer 2009) while
at high temperatures (log T > 4.05), we took either the
OPAL1 or OPAL2 opacity tables (Iglesias & Rogers 1996).
The AESOPUS and OPAL1 tables are for the Asplund
et al. (2009) solar mixture, while the OPAL2 tables allow
to account for the metal mixture changes due to the C
and O enhancements that result from He burning. In the
region around log T = 4.00 ± 0.05, we performed a blend
as described by Paxton et al. (2011) (see their Eq. (1))
between AESOPUS and OPAL1 tables. Furthermore, in
the regions with C and O enhancements where the initial
metallicity Z0 is increased by an amount dZ we used
the OPAL2 opacity tables. A blend between OPAL1 and
OPAL2 is made in the region where dZ ∈ [0.001, 0.01].
Finally, the resulting opacity is combined with the electron
conduction opacity, as prescribed in Cassisi et al. (2007).

We considered convective core overshooting during the
main sequence following a step scheme (e.g. Maeder 1975).

solar calibration significantly (see Table 2 of Sackmann et al.
1990).
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It means that the mixing region extends over a distance
dov toward the surface from the boundary of convective
instability in the core where the Schwarzschild condition
∇rad > ∇ad is fulfilled. If HP ≤ Rcc, where HP is the
pressure scale height at the boundary of the convective
core and Rcc is the convective core radial thickness, then
we keep dov = αov,HHP , otherwise dov = αov,HRcc. We
adopted the overshooting parameter αov,H = 0.2 in the
reference model. Similarly, we computed evolutionary
tracks with and without convective core overshooting
during core He-burning phase following two scenarii.
Either the temperature gradient ∇T is kept equal to the
radiative gradient ∇rad (usual overshooting scenario) or
it is kept equal to the adiabatic temperature gradient
∇ad (penetrative convection scenario) in the overshooting
region (Zahn 1991). The Schwarzschild convective border
is in an unstable equilibrium in the sense that a small
expansion of the convective core may make ∇rad larger
than ∇ad at the new border (Castellani et al. 1971b).
Adding core overshooting during the core He-burning
phase induces a possible local minimum and maximum
in ∇rad in the extra-mixing region due to the increasing
opacity that results from the transport of C and O ele-
ments in that region. Should this maximum increase above
∇ad, a separate convective instability would occur in the
overshooting region in absence of an appropriate treatment
of semi convection. To address this issue, we allowed a
partially mixed He-semiconvection region between the
minimum of ∇rad and the outer radiative zone (Castellani
et al. 1971a) following the diffusion scheme of Langer et al.
(1985) with the efficiency factor αsc = 0.1. In parallel, we
followed the treatment proposed by Bossini et al. (2017)
to consider a stable convective border and suppress such
spurious convective instabilities. This treatment consists in
defining the convective border at the point where ∇rad has
reached its local minimum if the local maximum of ∇rad

created by adding He-core overshooting has increased over
∇ad in the extra-mixing region, otherwise the convective
boundary is set at the point where ∇rad = ∇ad.

We also explored the effect of envelope undershooting,
which induces an extra-mixing region of extent αov,envHP

below the convective envelope into the radiative core.
Similarly as convective core overshooting, we adopted a
step scheme and applied envelope undershooting from the
main sequence up to the AGB, with ∇T = ∇rad in the
extra-mixing region. The typical value for low-mass red
giants (M ≤ 1.6M�) at solar metallicity recommended by
Khan et al. (2018), i.e. αov,env = 0.3 is considered.
Other transport processes arise in stellar interiors, such
as thermohaline mixing and rotation-induced mixing.
Thermohaline convection starts along the RGB in regions
that are stable against convection (according to the
Ledoux criterion) and where the molecular weight gradient
becomes negative (i.e. ∇µ = d lnµ/d lnP < 0) between the
H-burning shell surrounding the degenerate core and the
convective envelope. This composition gradient inversion is
induced by the 3He(3He, 2p)4He reactions that take place
around the H-burning shell (Ulrich 1972; Eggleton et al.
2006, 2008; Charbonnel & Zahn 2007). Here, thermohaline
mixing is treated in a diffusion approximation based on the
work of Kippenhahn et al. (1980), where the corresponding

diffusion coefficient reads (Paxton et al. 2013)

Dth = αth
3K

2ρcP

B

∇T −∇ad
. (1)

In the previous equation,K is the radiative conductivity, cP
is the specific heat at constant pressure, αth is the efficiency
parameter for the thermohaline mixing, and

B = − 1

χT

N−1∑

i=1

(
∂ lnP

∂ lnXi

)

ρ,T,{Xj 6=i}

d lnXi

d lnP
, (2)

where χT = (∂ lnP/∂ lnT )ρ, and Xi represents the mass
fraction of atoms of species i in the N -component plasma.
The species j is eliminated in the sum so that the con-

straint
∑N−1
i=1 Xi+XN = 1 is fulfilled. We adopted αth = 2,

which corresponds to the prescription of Kippenhahn et al.
(1980) where blobs of size L diffuse while travelling over a
mean free path L before dissolving. We checked that the
extent of the extra mixing regions caused by thermohaline
convection is in agreement with the one obtained by
Cantiello & Langer (2010). Especially, we verified that
the extra mixing region is large enough to connect the
H-burning shell and the convective envelope during the
core He-burning phase for stars with a mass below 1.5M�.

We investigated the effects of rotation on the AGBb
location since rotation is known to impact lifetimes, surface
abundances and evolutionary fates. Rotation is treated in
1D in the shellular approximation (e.g. Meynet & Maeder
1997). Further information can be found in Paxton et al.
(2013) to learn more about how rotation is implemented in
MESA where it is treated as a diffusive process. We took
rotation into account from the zero-age main sequence
(ZAMS), as often done in stellar evolution codes (e.g.
Pinsonneault et al. 1989), up to the terminal-age main
sequence (TAMS). First, we implemented rotation up
to the early AGB phase, but it made the evolutionary
track noisy at the AGBb without modifying its position.
Therein, we only kept rotation during the main sequence.
The rotation rate gradually reaches the maximum value
ΩZAMS/Ωcrit = 0.3, where Ωcrit is the surface critical
angular velocity for the star to be dislocated, which is the
typical rotation rate motivated by observations of B stars
(Huang et al. 2010). For a 2M� star, the evolutionary
track that includes the rotation rate ΩZAMS/Ωcrit = 0.3
during the main sequence is equivalent to that including
a H-core overshooting αov,H ≈ 0.25. We checked that the
evolution of the surface rotation rate so obtained along the
main sequence is similar to that obtained in Ekström et al.
(2012). We only studied rotating models with M ≥ 1.5M�
since magnetic braking is not included in MESA, which
does not allow to reproduce slow rotation rates of low-mass
stars (Kawaler 1988).
Rotation induces both chemical and angular momentum
transports through instabilities that are treated in a
diffusion approximation (Endal & Sofia 1978; Pinsonneault
et al. 1989; Heger et al. 2000). In our models, we included
six equally weighted instabilities induced by rotation
which are dynamical shear, Solberg-Høiland, secular shear,
Goldreich-Schubert-Fricke instabilities, Eddington-Sweet
circulation, and Tayler-Spruit dynamo. Then, each diffu-
sion coefficient associated to those rotationally induced
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Table 1: Number of stars per mass and metallicity bins

[Fe/H] (dex) ∈ [−1.0,−0.5] [−0.5,−0.25] [−0.25, 0.0] [0.0, 0.25]
M/M� ∈
[0.6, 0.9] 122 174 204 107(∗)

[0.9, 1.2] 130 344 432 213
[1.2, 1.5] 108 322 426 244
[1.5, 2.5] 143 346 518 266

Notes: (∗) refers to mass and metallicity bins for which the fit could not converge

instabilities is added to the diffusion coefficient in absence
of rotation. On top of this resulting diffusion coefficient,
two free parameters need to be fixed in diffusion equations:
the factor fc that scales the efficiency of composition mix-
ing relatively to that of the angular momentum transport,
and the factor fµ that encodes the sensitivity of rotational
mixing to the mean molecular weight gradient. Typical
values from Heger et al. (2000) such as fc = 1/30 and
fµ = 0.05 are adopted.

We took a grey atmosphere with an Eddington T (τ)
relation. We defined the outermost meshpoint of the models
as the layer where the optical depth τ verifies τ = 2/3,
which is at the limit of the photosphere. Another important
parameter that impacts the fate of stars is the mass-loss
rate. We used Reimers’ prescription (Reimers 1975)

ṀR = −4× 10−13 ηR
L

L�

R

R�

(
M

M�

)−1

M�.yr−1 (3)

from the RGB up to the core He-burning phase, where ηR is
the Reimers’ scaling factor that we take equal to ηR = 0.3
(Miglio et al. 2021). On the AGB, we use the Blöcker’s
prescription (Blocker 1995)

ṀB = −1.93×10−21ηB

(
M

M�

)−3.1
R

R�

(
L

L�

)3.7

M�.yr−1, (4)

where ηB is the Blöcker’s scaling factor taken equal to
ηB = 0.1. In both Reimers’ and Blöcker’s prescriptions, L,
R and M are expressed in solar units.
The screening factors were computed with the implemen-
tation of Chugunov et al. (2007) for weak and strong
screening conditions. We kept the default coverage of
the equation of state in the log ρ − log T plane, they are
summarised in Fig. 50 of Paxton et al. (2019).

4. Characterisation of the AGBb

4.1. Observations

Herebefore we found that the AGBb manifests as a local
excess of stars on top of a background composed of RGB
and AGB stars. In order to infer the AGBb location in
νmax and Teff , in the way Khan et al. (2018) proceeded to
characterise the RGBb, we adopted the statistical mixture
model presented in Hogg et al. (2010). This approach is
a statistical framework where the data set is assumed to
be multimodal, i.e. with several regions of high probability
separated by regions of low probability. In this situation, we

modelled the data with a mixture of several components,
where each data point belongs to one of these components.
This allowed us to use multiple models to fit our data set.
We distinguished the inliers, which are stars belonging to
the AGBb overdensity and the outliers, which are stars that
belong to the RGB/AGB background and do not lie in the
AGBb phase. The fit was performed using the Python mod-
ule Emcee, which is an affine invariant Markov Chain Monte
Carlo (MCMC) ensemble sampler (Foreman-Mackey et al.
2013). The likelihood function is defined as

L = (1−Pbg)fbiv(log Teff , log νmax)+Pbgfbg(log Teff , log νmax), (5)

where fbiv describes the AGBb foreground with a bivariate
normal distribution function, fbg describes the RGB/AGB
background with the product of a normalised rising expo-
nential in log νmax and a linear term with a normally dis-
tributed scatter, and Pbg is the mixture model weighting
factor that gives the probability for a star to belong to the
RGB/AGB background. The foreground and background
probability distribution functions are

fbiv(x1, x2) =
1

2πσ1σ2

√
1− ρ2

12

e
− z

2(1−ρ212) , (6)

with z =
(x1 − µ1)2

σ2
1

+
(x2 − µ2)2

σ2
2

− 2ρ12(x1 − µ1)(x2 − µ2)

σ1σ2

and

fbg(x1, x2) =
1√

2πσbg

e
− (x2−(abgx1+bbg))2

2σ2
bg ×Aexp ecbgνmax , (7)

respectively. In the previous equations, x1 = log Teff and
x2 = log νmax, µ1 and µ2 are the AGBb locations in
log Teff and log νmax, respectively, σ1 and σ2 are the AGBb
standard deviations in log Teff and log νmax, respectively,
ρ12 is the correlation of the bivariate Gaussian, abg and
bbg are the linear coefficients, σbg is the standard deviation
of the normal distribution of the linear term, cbg and Aexp

are the coefficient and the normalisation factor of the
exponential term, respectively.
Given the small amplitude of the AGBb overdensity in
log νmax (see Fig. 2), σ2 failed to converge when we used
the fitting method described above. Consequently, we
estimated σ2 separately by fitting the AGBb overdensity
with a normal distribution function in the 1D histogram
of log νmax. We took this estimate and kept it fixed
during the MCMC process. Then, the posterior probability
distributions of our set of 9 free parameters, which are µ1,
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µ2, σ1, ρ12, abg, bbg, σbg, cbg, and Pbg, were visualised
with the Python module Corner (Foreman-Mackey 2016).
First, the guess values of the bivariate Gaussian and the
exponential term were extracted from the 1D histograms
in log νmax and log Teff and those of the linear term were
obtained from the 2D histogram, as seen in Fig. 2. Then,
parameters were left free to vary according to a uniform
prior probability distribution.

We performed this fitting method in the log Teff −
log νmax plane, in restricted bins of mass and metallicity,
which are M ∈ [0.6, 0.9], [0.9, 1.2], [1.2, 1.5], [1.5, 2.5]M�
and [Fe/H] ∈ [−1.0,−0.5], [−0.5,−0.25], [−0.25, 0.0],
[0.0, 0.25] dex. The bins are wider at high mass and low
metallicity to include enough stars and hence ensure the
free parameters to converge. The number of stars per bin
is shown in Table 1. We show in Fig. 2 the results for the
bin M ∈ [0.9, 1.2]M� and [Fe/H] ∈ [−0.25, 0.0] dex.

4.2. Models

To extract the probability for a star to lie in a given bin of
νmax and Teff along its evolutionary track, we computed
the inverse of the evolution speeds dτ/dνmax and dτ/dTeff ,
where τ is the stellar age. Then, we integrated dτ/dνmax

and dτ/dTeff over νmax and Teff , respectively. This gives
us the fractional time that is spent in a given bin of νmax

and Teff , respectively. We used this fractional time as a
proxy of the probability distribution for a star to lie in a
given bin of νmax and Teff . The procedure was repeated
for each pair of mass and metallicity in our grid of stellar
models presented in Sect. 3. We summed the probability
distributions of all pairs of mass and metallicity lying
in the considered bin of mass and metallicity, and we
normalised the resulting probability distribution. Because
the grid of stellar models is discontinuous compared to
observations and because the probability distributions are
narrow at the turning-backs of the AGBb (i.e. where the
quantities dτ/dνmax and dτ/dTeff change sign), we con-
volved the resulting probability distribution by a normal
one. Eventually, the maximum of the convolved probability
distribution was interpreted as the AGBb location.

With the aim to investigate the potential of the AGBb
to constrain physical processes in stellar interiors, we at-
tempted to make the observed AGBb location match the
expected AGBb one as well as possible by comparing the 1D
histograms of log νmax and log Teff from observations with
the corresponding probability distributions derived from
stellar models. To this end, we defined a reference model
and varied the stellar parameters to explore their impact on
the expected AGBb location in log νmax and log Teff . The
results are presented in the following section.

5. Results

We applied the procedure described in Sect. 4 both to the
data set and the stellar models and examined the AGBb
location for all the bins of mass and metallicity previously
introduced. The results are presented in Fig. 3−7 and
Tables A.1−A.4 in Appendix A.

5.1. The AGBb seen from observations

From observations, we can highlight a clear mass depen-
dence in the AGBb location: the higher the mass, the lower
the νmax associated to the AGBb, whatever the range of
metallicity (see left panel of Fig. 3). Namely, the higher
the mass, the farther the distance between the AGBb and
the clump phase along the evolutionary track. We find the
AGBb to occur around log νmax ∼ 0.84 (νmax ∼ 6.9 µHz)
at M ∼ 1M� and log νmax ∼ 0.52 (νmax ∼ 3.3 µHz) at
M ∼ 2M�, with a typical standard deviation of σ2 = 0.06
and uncertainty on the log νmax measurements of σlog νmax

= 0.02. According to seismic scaling relations, the luminos-
ity L depends on νmax following

L

L�
=

M

M�

(
νmax

νmax,�

)−1(
Teff

Teff,�

)7/2

. (8)

Then, the higher the mass, the higher the luminosity,
which totally agrees with theoretical predictions since
the AGBb luminosity has been found to increase with
mass at fixed metallicity (Alves & Sarajedini 1999, their
Fig. 3). This behaviour has also been found by Yu et
al. 2022 (in prep), who observed that the overdensity of
stars associated to the AGBb is shifted between Kepler,
APOGEE and GALAH stars. This overdensity shift is
correlated with a shift of the stellar mass distribution,
resulting in a different mean stellar mass in those samples.
Besides, we notice in the right panel of Fig. 3 that the
AGBb occurs at lower temperature for high-mass stars
(around log Teff ∼ 3.630 at M ∼ 1M� and log Teff ∼ 3.610
at M ∼ 2M�). Although this temperature dependence is
clear in Fig. 3, it may be subject to the uncertainty on
the log Teff measurements of σlog Teff

= 0.01− 0.02 and our
ability to precisely delimit the overdensity, with a standard
deviation σ2 = 0.01− 0.02.

Beyond that mass dependence, we can see in Fig. 3 a
weak metallicity effect on the AGBb location in νmax. At
fixed mass, the AGBb location in νmax slowly increases
with metallicity at low mass (M ≤ 1.2M�) and notice-
ably increases at high mass (M ≥ 1.2M�). This obser-
vational trend is consistent with the theoretical results
of Alves & Sarajedini (1999). Indeed, for low-mass stars
(M ≤ 1.2M�), these authors showed that a change of
metallicity does not highly impact the luminosity of the
AGBb whereas for high-mass stars (M ≥ 1.2M�) metal-
licity effects are more important, which is what we ob-
serve. Nevertheless, these trends are mainly valid for high-
metallicity stars since our sample only contains a small
number of metal-poor stars (with [Fe/H] ≤ −0.5 dex, see
Table 1). Besides, we can see in Fig. 3 that the AGBb tends
to occur at lower log Teff when the metallicity increases.
However, the log Teff variations with metallicity are close to
the typical uncertainty on log Teff , so this behaviour needs
to be confirmed. Overall, our results tend to confirm that
the AGBb occurrence slightly depends on the metallicity
which would make the use of AGBb as standard candle
questionable (Pulone 1992; Ferraro 1992), at least at high
metallicity. This is discussed in Sect. 6.
To sum up, we find a clear mass dependence of the AGBb
location, the higher the mass, the lower νmax and Teff at
which the AGBb occurs, i.e. the later the AGBb occurrence.
Moreover, the AGBb tends to occur at slightly higher νmax

and lower Teff for metal-rich stars.
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Fig. 2: Probability distribution functions of our data set in the log Teff − log νmax plane, in the bins M ∈ [0.9, 1.2]M�
and [Fe/H] ∈ [−0.25, 0.0] dex. Upper left panel: 2D histogram where the AGBb is located by a blue diamond. Dark blue
and light blue ellipses correspond to the 1σ and 2σ regions of the bivariate Gaussian, respectively. The red dashed line
reproduces the linear term belonging to the RGB/AGB background. Upper right panel: the normalised 1D histogram in
log νmax is shown in black. The ordinate axis is the same as in the upper left panel. The blue line corresponds to the
probability distribution function made of the Gaussian associated to the overdensity in log νmax, multiplied by the rising
exponential in log νmax. Lower left panel: same label as in the upper right panel but in terms of log Teff . The abscissa axis
is the same as in the upper left panel. The blue line shows the Gaussian associated to the overdensity in log Teff . Lower
right panel: difference between log νmax and abg log Teff + bbg. The blue line illustrates the normal distribution around
the linear term.

5.2. The necessity to calibrate the core overshooting
parameter

In order to estimate the amount of core overshooting
αov,He needed to reproduce the observations, we computed
evolutionary tracks without core overshooting (αov,He = 0).
In Fig. 4−7, we can see that the AGBb locations in ob-
servations and models without core overshooting during
the clump phase do not overlap at all, neither in the
M − [Fe/H] − log νmax nor in the M − [Fe/H] − log Teff

plane. However, we notice that for a given set of stellar
parameters, the larger the mass, the larger the differences
between observations and models in νmax and Teff at the
AGBb. This is also what we observe toward low metal-
licity, but only in Teff . As highlighted in Sect. 5.1 and in
theoretical works (Alves & Sarajedini 1999, their Fig. 3),

the metallicity effects are small but still impacts the
frequency νmax at which the AGBb occurs. Consequently,
we can conclude that models with different masses and
metallicities have to be differently calibrated.

Then, we adopted a moderate and high core overshoot-
ing parameter αov,He = 0.5 and 1.0, which are the values
that provide the best matching of the period-spacing
and luminosity distributions between observations and
stellar models during He-burning phases in the range
M ∈ [1.3, 1.7]M� (Bossini et al. 2015). From Fig. 4−7, we
can conclude that core overshooting has to take place dur-
ing the core He-burning phase to reproduce observations.
Adding core overshooting during the clump phase increases
the distance between the latter and the AGBb location

7
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Fig. 3: Location of the AGBb in log νmax (left) and in log Teff (right) from observations, as a function of the metallicity
[Fe/H]. The AGBb occurrence is marked by dots and the stellar mass is colour-coded. AGBb locations obtained in the
same bin of mass M ∈ [0.6, 0.9], [0.9, 1.2], [1.2, 1.5], [1.5, 2.5]M� are connected by dark blue, light blue, light green, and
red lines, respectively. Mean error bars on the location of the AGBb in log νmax and in log Teff are shown in black. Data
in the bin (M ∈ [0.6, 0.9]M�, [Fe/H]∈ [0, 0.25] dex) are not shown because there are not enough stars to perform the
statistical mixture model.

along the evolutionary track, which makes the AGBb occur
at lower νmax and lower Teff . We note that αov,He = 0.5
(respectively αov,He = 1.0) gives a nice agreement between
models and observations for stellar mass M ∈ [0.9, 1.2]M�
(respectively M ∈ [1.2, 1.5]M�) for all metallicities. This
tends to confirm that the higher the mass, the higher the
core overshooting αov,He must be for the models to agree
with observations. Nevertheless, for high-mass stars adding
He-core overshooting seems inadequate to reproduce
observations. The value αov,He = 1.0 in units of HP ,
which quantifies the extent of the mixing region beyond
the boundary of convective instability, may be unrealistic
since the overshooting region then becomes larger than the
convective core. Consequently, the inclusion of additional
physical processes may be necessary to make models and
observations match at high mass.
In log Teff , the AGBb location varies with metallicity at
fixed mass in stellar models, see Fig. 4−7 and Tables
A.1−A.4. Therefore, other model parameters have to be
fine-tuned in order to make observations and models agree
both in log νmax and log Teff for all bins of metallicity.
This raises the question of degeneracies and uncertainties
on stellar parameters. In Sect. 6, we explore the effects
of model input physics that could influence the AGBb
location.

6. Discussion

6.1. Calibration of physical parameters at low mass

In Sect. 6, we explore the effects of model input physics
that could influence the AGBb. Up to this point, we
investigated the impact of He-core overshooting on the
AGBb by taking ∇T = ∇rad in the overshooting region.
Following Bossini et al. (2015), we also investigated the
penetrative convection scenario defined as ∇T = ∇ad

in the overshooting region. According to Fig. 4−6 there

is no difference in the location of the AGBb between
those two scenarios. Bossini et al. (2015) reached the
same conclusion, nevertheless Bossini et al. (2017) noticed
that the period-spacing distribution of He-burning stars
observed by Vrard et al. (2016) better matches the one
obtained with a radiative transport in the overshooting
region. Therefore, seismic constraints support the use
of overshooting with radiative transport during core
He-burning phase, without any impact on the calibration
of the AGBb.

6.1.1. Efficiency of convection

Besides, by changing the mixing length parameter αMLT,
we noted that the convection efficiency considerably im-
pacts the AGBb location in Teff . In Fig. 4−6, we can see
that a ∆αMLT decrease of 0.3 induces a shift of the AGBb
toward low Teff , but marginally modifies its luminosity. In
fact, when the mixing length parameter decreases, the en-
ergy transport in the envelope is less efficient, the stellar
radius R increases and the effective temperature Teff de-
creases. Then, the evolutionary track is shifted toward low
Teff , including the AGBb location. On the other hand, by
considering the scaling relation

νmax

νmax,�
' M

M�

(
R

R�

)−2(
Teff

Teff,�

)−1/2

, (9)

we see that at fixed mass, increasing the radius R and de-
creasing the effective temperature Teff simultaneously has
limited effect on νmax, which justifies the minor impact of
∆αMLT on the AGBb location in νmax.

6.1.2. Other model inputs

We checked that some physical mechanisms do not modify
the AGBb location. They are summarised below:
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Fig. 4: Location of the AGBb in the plane log Teff − log νmax

in the mass bin M ∈ [0.6, 0.9]M� and metallicity bins [Fe/H]
∈ [−1.0,−0.5], [−0.5,−0.25], [−0.25, 0.0] dex. The metallicity
bin [Fe/H]∈ [0.0, 0.25] dex is missing because we have not enough
stars to perform a statistical study. Observations are marked by
blue dots, the dark blue and light blue ellipses correspond to the
1σ and 2σ regions, respectively. The reference model presented
is shown by a light blue square. Other models are shown with
different symbols listed in the labels, they have been obtained
by individually changing the parameters of the reference model.
The changes are indicated in the label of each panel. The black
dot with errorbars indicates the mean uncertainty we have for
all models. The uncertainty on the AGBb location in log νmax

and log Teff for each model is taken as the standard deviation of
the Gaussian function that reproduces the overdensity caused
by the AGBb in the 1D histograms. The numerical values are
listed in Table A.1 in Appendix A. Ranges of the axes vary in
the different panels.

– Modifying the H-core overshooting αov,H during the MS
does not shift the AGBb location for low-mass stars
(M ≤ 1.5M�) since their convective core is either not
developed yet or very small.

– Interestingly, adding an amount of envelope undershoot-
ing of αov,env = 0.3HP (i.e. overshooting from the con-
vective envelope into the radiative core) from the main
sequence up to the AGB does not impact the AGBb lo-
cation, while it does impact the RGBb location (Khan
et al. 2018). This implies that the calibrations of mixing
processes brought by the RGBb (envelope undershoot-
ing) and AGBb (He-core overshooting) are independent.

– On the other hand, adding thermohaline convection
from the main sequence up to the early AGB with
αth = 2 marginally modifies the AGBb location. Mixing
processes between the convective envelope and the ra-
diative core do not seem to significantly impact the
AGBb.

– Changing the mass loss rate on the RGB from ηR =
0.3 to ηR = 0.1 slightly shifts the AGBb location. This
suggests that the changes the star experienced due to
mass loss do not impact the AGBb occurrence. Only the
final mass reached at the AGBb matters for determining
the AGBb location.

– By varying the initial helium mass fraction from Y0 =
0.253 to Y0 = 0.303, the AGBb occurs at slightly lower
νmax, i.e. at higher luminosity. This is consistent with
expectations since an increased initial helium mass frac-
tion enlarges the lifetime of the core He-burning phase.
More thermonuclear energy is released, then the lumi-
nosity is higher at this evolutionary stage.

As a conclusion, we are able to reproduce the AGBb
location of low-mass stars with stellar models, particu-
larly by including He-core overshooting αov,He as inves-
tigated by Bossini et al. (2015). We find that a helium
core overshooting parameter αov,He ∈ [0.25, 0.50] is needed
to make observations and models match in the mass bins
M ∈ [0.6, 0.9], [0.9, 1.2]M� while αov,He ∈ [0.50, 1.0] is more
appropriate in the mass bin M ∈ [1.2, 1.5]M�. Deviations
of models from observations in Teff can be captured by
adjusting the mixing length parameter αMLT. The main
sources of uncertainty on the calibration of He-core over-
shooting come from the initial helium mass fraction and
potential other mixing processes such as rotational mixing.
Additional observational constraints could be used to re-
duce these uncertainties, in particular the location of the
red clump phase. The physical parameter changes we ex-
plored also have an impact on the location of the red clump
phase, so combining the observed AGBb location with that
of the red clump phase would lead to a more precise calibra-
tion. In Appendix B, we explore how physical ingredients
impact the ratio of location in log νmax and log Teff between
the AGBb and the red clump phase. We note that only the
adding of He-core overshooting modifies the distance be-
tween the AGBb and the red clump locations along the
evolutionary track, while the other parameters leave this
distance unchanged. Some parameters not only have an ef-
fect on the AGBb location but also on the red clump lo-
cation, such as the initial helium abundance. Additional
work is required to improve the calibration of the simulta-
neous investigations of the red clump and AGBb locations.
On the other hand, we did not explore rotation-induced
mixing in low-mass stars since physical ingredients such as
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G. Dréau, Y. Lebreton, B. Mosser, D. Bossini, J. Yu: The AGBb

Fig. 5: Same label as in Fig. 4, but for the bins of mass M ∈ [0.9, 1.2]M� and metallicity [Fe/H] ∈ [−1.0,−0.5],
[−0.5,−0.25], [−0.25, 0.0], [0.0, 0.25] dex. The numerical values are listed in Table A.2 in Appendix A. Ranges of the
axes vary in the different panels.

surface magnetic braking (Ekström et al. 2012) are miss-
ing to correctly model rotational mixing in low-mass stars
(M ≤ 1.5M�) in the default MESA files.

6.2. Calibration of physical parameters at high mass

The location of the AGBb derived from observations and
stellar models are represented in Fig. 7 for high-mass stars.
Modifying the reference model in a similar way as for low-
mass stars leads to the same effects highlighted in Sec. 5.2.
Adding He-core overshooting increases the distance be-
tween the AGBb occurrence and the core He-burning phase
along the evolutionary track, decreasing the mixing length
parameter αMLT makes the AGBb occur at lower Teff , and
modifying the other parameters does not highly impact
the AGBb location except for the H-core overshooting
parameter. Indeed, for stellar masses above 1.5M� the
convective core during the main sequence is sufficiently
developed so that H-core overshooting can occur. In Fig. 7,
it can be seen that increasing αov,H from 0.2 to 0.6 has
roughly the same effect on the AGBb location as adding
He-core overshooting αov,He = 0.5. Nevertheless, a high

efficiency of H-core overshooting appears to be unrealistic
considering the latest values calibrated with observational
constraints in eclipsing binaries (e.g. Claret & Torres
2016, 2017, 2018, 2019) which do not exceed αov,H ∼ 0.2.
Similarly, values of αov,H lower than 0.2 have been derived
from the calibration of dipole modes in low-mass stars by
Deheuvels et al. (2016). Finally, recent theoretical predic-
tions based on 3D numerical hydrodynamics simulations
of penetrative convection also give αov,H < 0.2 for masses
M < 3 M� (Anders et al. 2022; Jermyn et al. 2022). The
additional effects of this unrealistic H-core overshooting
can be mimicked by taking into account additional mixing
processes at work between the convective core and the ra-
diative core. For instance, we found that adding rotational
mixing during the main sequence with a rotation rate
ΩZAMS/Ωcrit = 0.3 roughly produces the same changes in
the AGBb location (see Fig. 7, for the metallicity bins
[Fe/H] ∈ [−0.25, 0.0], [0.0, 0.25] dex).

None of the physical mechanisms added to the reference
model is enough to reproduce observations. Even the model
closest to observations that is obtained by adding a high
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Fig. 6: Same label as in Fig. 5, but for the bins of mass M ∈ [1.2, 1.5]M� and metallicity [Fe/H] ∈ [−1.0,−0.5], [−0.5,−0.25],
[−0.25, 0.0], [0.0, 0.25] dex. The numerical values are listed in Table A.3 in Appendix A. Ranges of the axes vary in the different
panels.

He-core overshooting cannot reproduce the observed AGBb
location. Choosing a higher efficiency of He-core overshoot-
ing may be unrealistic since the extent of the extra mixing
region would be even higher than that of the convective
core, but it suggests that additional mixing processes are
needed to match models and observations. To investigate
those effects a bit further, we combined the two mixing
processes that mostly impact the AGBb location, i.e. core
overshooting during the core He-burning phase and rota-
tional mixing during the main sequence, and added them
to the reference model. As illustrated in Fig. 7, by adding
rotational mixing with a rotation rate ΩZAMS/Ωcrit = 0.3,
He-core overshooting αov,He = 1.0, by taking H-core over-
shooting away αov,He = 0 and decreasing the mixing length
parameter of ∆αMLT = 0.3, we are able to reproduce the
observed AGBb location.
To sum up, several mixing processes such as rotational mix-
ing and He-core overshooting need to be simultaneously
taken into account and calibrated to reproduce observations
of high-mass stars. However, rotational mixing during the
main sequence remains exploratory and further work is re-
quired to quantify its significance relatively to other mixing
processes such as He-core overshooting.

6.3. The AGBb as a distance indicator

In Sect. 5.1, we noticed that the AGBb location in νmax

slightly changes with metallicity at fixed mass, especially
for high-mass stars, which implies that the luminosity at the
AGBb varies with metallicity. This agrees with the theoret-
ical results of Alves & Sarajedini (1999), where the AGBb
luminosity is expected to significantly vary with metallic-
ity, especially for high-mass stars with M ≥ 1.2M�. At first
glance, our conclusions seem to be in disagreement with the
results of the models of Pulone (1992) and Ferraro (1992) as
they justified the use of the AGBb as standard candle by its
independence from metallicity. However, these studies are
based on a sample of low-metallicity stars in Galactic glob-
ular clusters with [Fe/H] . −0.5 dex while ours is mainly
composed of high-metallicity stars with [Fe/H] & −0.5 dex
(see Table 1). This tends to confirm that the AGBb lo-
cation changes at high metallicity. Therefore, metal-rich
AGBb stars cannot be used as standard candles. However,
this behaviour needs further inspections at low metallic-
ity. We do not have a large enough number of metal-poor
AGB stars with [Fe/H] < −0.75 dex to create additional
metallicity bins, which limits the analysis of the metallicity
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Fig. 7: Same label as in Fig. 5, but for the bins of mass M ∈ [1.5, 2.5]M� and metallicity [Fe/H] ∈ [−1.0,−0.5], [−0.5,−0.25],
[−0.25, 0.0], [0.0, 0.25] dex. An additional model represented by a black cross has been computed to explore the effects of rotation by
taking the rotation rate ΩZAMS/Ωcrit = 0.3 during the main sequence, relatively to the reference model, where Ωcrit is the surface
critical angular velocity for the star to be dislocated. Another model labelled ‘test’ and represented by a black pentagon has been
computed to check if combining several changes could allow us to reproduce observations. Relatively to the reference model, these
changes are the adding of rotation ΩZAMS/Ωcrit = 0.3, He-core overshooting αov,He = 1.0, the removal of H-core overshooting
αov,H = 0.2→ 0, and the decrease of αMLT = 1.92→ 1.62. The numerical values are listed in Table A.4 in Appendix A. We warn
that the range of the axes are not the same between panels.

dependence of the AGBb. A larger sample of stars would be
desirable to confirm or infirm this metallicity dependence
at low metallicity. In parallel, it could be interesting to eval-
uate the potential of the AGBb as a distance indicator, and
test if any metallicity bias is identifiable.

7. Conclusion

With the excellent precision of photometric data collected
by Kepler and TESS, we are now able to perform aster-
oseismic studies of high-luminosity red giants. This gives
access to oscillation mode properties of those stars, which
can be used to constrain stellar interiors. In this work, we
took advantage of the νmax estimates from Kepler and
TESS targets and combined them with spectroscopic data
to characterise the AGBb in the widest range and most
resolved bins of mass and metallicity explored so far. This
would not have been possible without combining targets

from several catalogs given the small number of evolved
giants subject to a seismic study and the uncertainties
on the classification methods between RGB and AGB
stars. We detected and accurately located the AGBb in
the log Teff − log νmax plane, using a statistical method
to distinguish stars belonging to the AGBb and to the
AGB background. We highlighted that the occurrence of
the AGBb depends on the stellar mass: it clearly takes
place at lower νmax (i.e. at higher luminosity) and occurs
within uncertainty at cooler temperature for high-mass
stars, in agreement with theoretical models. In parallel, the
dependence of the AGBb location on metallicity implies
that using it as a standard candle requires some care.

Then, we were able to use the AGBb location in the
log Teff − log νmax plane as a constraint for parameters
in stellar models in limited bins of mass and metallicity.
Mainly the mixing-length parameter and mixing processes
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such as He-core overshooting affect the location of the
AGBb. Some stellar parameters do not affect the AGBb
location, or slightly only, such as the initial helium
abundance Y0, the mass-loss rate on the RGB ηR, the
envelope undershooting αov,env and the thermohaline
convection αth. Those stellar parameters contribute to
the uncertainty of the calibration of mixing processes to
match observations. We confirmed that models without
core overshooting during the core He-burning phase
cannot reproduce observations, as already shown in
Bossini et al. (2015). Moreover, we reported that the
amount of He-core overshooting needed to match ob-
servations and models depends on the stellar mass, and
increases with it. Indicatively, the core overshooting value
αov,He ∈ [0.25, 0.50] nicely suits observations for stars with
M ∈ [0.6, 1.2]M� while αov,He ∈ [0.5, 1.0] better suits those
for stars with M ∈ [1.2, 1.5]M�. However, for high-mass
stars M ≥ 1.5M�, modifying the He-core overshooting
only does not allow us to reproduce observations. In this
case, we explored additional mixing processes, especially
rotational mixing during the main sequence, and we
found that we could match models and observations by
combining rotation-induced mixing and He-core overshoot-
ing. Further work is needed to investigate the possible
degeneracy between those mixing processes at high mass,
and quantify their weight.
The core overshooting calibration does also depend on
the metallicity, but not as strongly as the mass in terms
of log νmax, which makes the values previously cited well
suited to all bins of metallicity studied. However, because
the AGBb location in log Teff varies with metallicity in
models, we need to calibrate other parameters such as
the mixing-length parameter αMLT in stellar models so
that observations and stellar models match in log Teff and
log νmax in the same time.

In the future, new space-borne missions will be helpful
to fill the sample of evolved red giants targets, hence to take
into account more low-metallicity stars ([Fe/H]≤ −0.5 dex)
and high-mass stars (M ≥ 1.5M�). This will give the op-
portunity to improve the precision on the observed AGBb
location for those bins of mass and metallicity where we
lack asteroseismic and spectroscopic data. Besides, it will
confirm or disprove the potential of the AGBb to be a suit-
able standard candle.
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Appendix A: Effects of stellar parameters on the
AGBb occurrence

The AGBb locations in log Teff and log νmax presented
in Fig. 4, 5, 6, 7 in the mass bins M ∈ [0.6, 0.9],
[0.9, 1.2], [1.2, 1.5], [1.5, 2.5]M� and metallicity bins [Fe/H]
∈ [−1.0,−0.5], [−0.5,−0.25], [−0.25, 0.0], [0.0, 0.25] dex are
summarised in Table A.1, A.2, A.3, A.4.

Appendix B: Distance between the AGBb and
clump phase

Another relevant property of the AGBb to investigate is
the distance in log νmax and log Teff between its location
and that of the core He-burning phase. Indeed, theoretical
models report a weak dependence of the luminosity
ratio between the AGBb and red clump locations on the
metallicity and initial helium abundance (Castellani et al.
1991; Bono et al. 1995). Accordingly, we inspected how the
ratio of log νmax and log Teff between the AGBb and red
clump phase varies with a change in physical parameters.
To this end, we needed to extract the location of the red
clump. We proceeded in the same way as that described
in Sect. 4.2, but we adapted it for the overdensity of
stars in the clump phase. We only included stellar models
for which the core helium abundance lies in the interval
Yc ∈ [0.01, 0.95] in the histogram. Then, we extracted the
clump location independently from that of the AGBb. The
ratios in log νmax and log Teff between the AGBb and the
red clump phase for our set of stellar models are shown in
Table B.1, B.2, B.3, B.4.

Overall, the ratio in log Teff is almost constant and the
ratio in log νmax weakly decreases (equivalently the ratio
in logL weakly increases) when the metallicity increases
with a given set of physical ingredients. This agrees with
the typical difference between metal-poor and metal-rich
models obtained with the theoretical models of Castellani
et al. (1991) (their Fig. 7). These ratios do not significantly
change within uncertainties when a specific change in phys-
ical parameter is performed, except when adding He-core
overshooting. Indeed, both ratios in log νmax and log Teff

substantially decrease (namely the ratio in logL increases)
when adding He-core overshooting. This implies that the
adding of He-core overshooting causes an increase of the
distance between the AGBb and the red clump locations
along the evolutionary track, but a change in other physi-
cal parameters leave this distance constant.
Given that some physical ingredients have an effect on the
AGBb location but leave the ratio of location between the
AGBb and the red clump unchanged, it means that some
of those physical ingredients also impact the red clump lo-
cation. This is not surprising for physical parameters such
as the initial helium abundance, as it determines how much
helium burning contributes to the stellar luminosity during
the red clump phase. Consequently, this ratio in log νmax

could also be used in combination with the AGBb location
in log νmax as calibrators for mixing processes to reproduce
both the AGBb and the red clump locations in the same
time.
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Table A.1: AGBb location for observations and models with M ∈ [0.6, 0.9]M�

M (M�) [0.6, 0.9]
[Fe/H] (dex) [−1.0,−0.5] [−0.5,−0.25] [−0.25, 0.0] [0.0, 0.25]
Observations log Teff 3.643 ± 0.019 3.639 ± 0.011 3.632 ± 0.010 -

log νmax 0.831 ± 0.031 0.882 ± 0.075 0.887 ± 0.077 -
Reference model log Teff 3.688 ± 0.011 3.674 ± 0.014 3.660 ± 0.018 3.642 ± 0.014

log νmax 1.089 ± 0.060 1.089 ± 0.037 1.089 ± 0.065 1.055 ± 0.064
αMLT = 1.92→ 1.62 log Teff 3.670 ± 0.018 3.653 ± 0.019 3.635 ± 0.015 3.628 ± 0.012

log νmax 1.071 ± 0.060 1.037 ± 0.076 1.003 ± 0.057 1.003 ± 0.040
ηR = 0.3→ 0.1 log Teff 3.681 ± 0.011 3.670 ± 0.011 3.656 ± 0.015 3.642 ± 0.015

log νmax 1.123 ± 0.045 1.089 ± 0.038 1.089 ± 0.069 1.089 ± 0.067
αov,He = 0→ 0.5 log Teff 3.660 ± 0.019 3.649 ± 0.022 3.632 ± 0.023 3.617 ± 0.021

log νmax 0.743 ± 0.099 0.743 ± 0.099 0.711 ± 0.090 0.743 ± 0.184
αov,He = 0→ 1.0 log Teff 3.649 ± 0.020 3.632 ± 0.020 3.617 ± 0.021 3.603 ± 0.018

log νmax 0.535 ± 0.108 0.504 ± 0.116 0.504 ± 0.124 0.504 ± 0.120
αov,H = 0.2→ 0.4 log Teff 3.685 ± 0.014 3.678 ± 0.015 3.663 ± 0.019 3.646 ± 0.017

log νmax 1.122 ± 0.053 1.087 ± 0.062 1.087 ± 0.063 1.087 ± 0.044
αov,H = 0.2→ 0.6 log Teff 3.688 ± 0.013 3.678 ± 0.015 3.660 ± 0.020 3.642 ± 0.016

log νmax 1.122 ± 0.050 1.087 ± 0.034 1.087 ± 0.061 1.087 ± 0.071
αpen conv,He = 0→ 0.5 log Teff 3.660 ± 0.019 3.649 ± 0.022 3.632 ± 0.023 3.617 ± 0.021

log νmax 0.743 ± 0.099 0.743 ± 0.099 0.711 ± 0.090 0.743 ± 0.184
αth = 0→ 2 log Teff 3.688 ± 0.013 3.674 ± 0.014 3.660 ± 0.013 3.646 ± 0.014

log νmax 1.157 ± 0.062 1.123 ± 0.073 1.123 ± 0.072 1.089 ± 0.072
αov,env = 0→ 0.3 log Teff 3.685 ± 0.014 3.674 ± 0.014 3.660 ± 0.017 3.642 ± 0.015

log νmax 1.089 ± 0.065 1.089 ± 0.044 1.089 ± 0.040 1.055 ± 0.080
Y0 = 0.253→ 0.303 log Teff 3.685 ± 0.014 3.670 ± 0.012 3.660 ± 0.013 3.642 ± 0.015

log νmax 1.030 ± 0.061 1.030 ± 0.062 0.997 ± 0.059 0.997 ± 0.077

Notes: The AGBb locations are plotted in Fig. 4. Models have been obtained by individually changing the parameters of the
reference model. These changes are indicated by the arrow.

Table A.2: AGBb location for observations and models with M ∈ [0.9, 1.2]M�

M (M�) [0.9, 1.2]
[Fe/H] (dex) [−1.0,−0.5] [−0.5,−0.25] [−0.25, 0.0] [0.0, 0.25]
Observations log Teff 3.645 ± 0.015 3.636 ± 0.010 3.629 ± 0.010 3.624 ± 0.008

log νmax 0.783 ± 0.054 0.860 ± 0.078 0.869 ± 0.086 0.924 ± 0.076
Reference model log Teff 3.681 ± 0.010 3.670 ± 0.011 3.656 ± 0.013 3.642 ± 0.014

log νmax 1.190 ± 0.048 1.157 ± 0.066 1.157 ± 0.071 1.157 ± 0.063
αMLT = 1.92→ 1.62 log Teff 3.667 ± 0.016 3.649 ± 0.013 3.635 ± 0.014 3.621 ± 0.013

log νmax 1.138 ± 0.062 1.104 ± 0.058 1.104 ± 0.051 1.071 ± 0.048
ηR = 0.3→ 0.1 log Teff 3.681 ± 0.010 3.670 ± 0.010 3.656 ± 0.013 3.642 ± 0.013

log νmax 1.190 ± 0.050 1.190 ± 0.057 1.157 ± 0.070 1.157 ± 0.063
αov,He = 0→ 0.5 log Teff 3.663 ± 0.016 3.649 ± 0.017 3.632 ± 0.019 3.617 ± 0.019

log νmax 0.871 ± 0.055 0.839 ± 0.042 0.807 ± 0.062 0.807 ± 0.082
αov,He = 0→ 1.0 log Teff 3.653 ± 0.018 3.635 ± 0.019 3.621 ± 0.018 3.603 ± 0.018

log νmax 0.659 ± 0.112 0.628 ± 0.114 0.597 ± 0.110 0.597 ± 0.110
αov,H = 0.2→ 0.4 log Teff 3.685 ± 0.011 3.670 ± 0.011 3.660 ± 0.013 3.639 ± 0.014

log νmax 1.225 ± 0.076 1.191 ± 0.073 1.156 ± 0.065 1.156 ± 0.068
αov,H = 0.2→ 0.6 log Teff 3.685 ± 0.009 3.674 ± 0.012 3.660 ± 0.013 3.646 ± 0.015

log νmax 1.260 ± 0.058 1.225 ± 0.071 1.191 ± 0.073 1.191 ± 0.084
αpen conv,He = 0→ 0.5 log Teff 3.663 ± 0.016 3.649 ± 0.017 3.632 ± 0.019 3.617 ± 0.019

log νmax 0.871 ± 0.055 0.839 ± 0.042 0.807 ± 0.062 0.807 ± 0.082
αth = 0→ 2 log Teff 3.685 ± 0.009 3.670 ± 0.011 3.660 ± 0.012 3.642 ± 0.014

log νmax 1.190 ± 0.065 1.190 ± 0.068 1.190 ± 0.065 1.157 ± 0.069
αov,env = 0→ 0.3 log Teff 3.685 ± 0.010 3.670 ± 0.011 3.656 ± 0.013 3.642 ± 0.013

log νmax 1.190 ± 0.057 1.157 ± 0.043 1.157 ± 0.043 1.157 ± 0.073
Y0 = 0.253→ 0.3 log Teff 3.685 ± 0.009 3.674 ± 0.010 3.660 ± 0.013 3.642 ± 0.013

log νmax 1.097 ± 0.066 1.097 ± 0.067 1.063 ± 0.073 1.063 ± 0.077

Notes: The AGBb locations are plotted in Fig. 5. Models have been obtained by individually changing the parameters of the
reference model. These changes are indicated in the first column.
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Table A.3: AGBb location for observations and models with M ∈ [1.2, 1.5]M�

M (M�) [1.2, 1.5]
[Fe/H] (dex) [−1.0,−0.5] [−0.5,−0.25] [−0.25, 0.0] [0.0, 0.25]
Observations log Teff 3.638 ± 0.015 3.637 ± 0.012 3.621 ± 0.009 3.622 ± 0.009

log νmax 0.674 ± 0.046 0.781 ± 0.091 0.712 ± 0.058 0.935 ± 0.084
Reference model log Teff 3.688 ± 0.011 3.678 ± 0.010 3.667 ± 0.012 3.653 ± 0.011

log νmax 1.284 ± 0.033 1.284 ± 0.078 1.284 ± 0.078 1.319 ± 0.074
αMLT = 1.92→ 1.62 log Teff 3.681 ± 0.014 3.660 ± 0.013 3.646 ± 0.014 3.632 ± 0.016

log νmax 1.288 ± 0.066 1.288 ± 0.066 1.252 ± 0.060 1.252 ± 0.063
ηR = 0.3→ 0.1 log Teff 3.688 ± 0.010 3.678 ± 0.011 3.663 ± 0.014 3.649 ± 0.013

log νmax 1.284 ± 0.066 1.284 ± 0.072 1.249 ± 0.079 1.249 ± 0.071
αov,He = 0→ 0.5 log Teff 3.667 ± 0.015 3.656 ± 0.011 3.642 ± 0.019 3.624 ± 0.019

log νmax 0.935 ± 0.078 0.935 ± 0.081 1.000 ± 0.071 0.935 ± 0.057
αov,He = 0→ 1.0 log Teff 3.656 ± 0.016 3.646 ± 0.015 3.632 ± 0.019 3.614 ± 0.017

log νmax 0.753 ± 0.108 0.721 ± 0.112 0.753 ± 0.089 0.753 ± 0.092
αov,H = 0.2→ 0.4 log Teff 3.688 ± 0.010 3.678 ± 0.011 3.670 ± 0.012 3.653 ± 0.013

log νmax 1.323 ± 0.051 1.288 ± 0.053 1.323 ± 0.052 1.323 ± 0.095
αov,H = 0.2→ 0.6 log Teff 3.688 ± 0.009 3.678 ± 0.010 3.667 ± 0.013 3.653 ± 0.014

log νmax 1.323 ± 0.074 1.323 ± 0.088 1.323 ± 0.097 1.288 ± 0.089
αpen conv,He = 0→ 0.5 log Teff 3.667 ± 0.015 3.656 ± 0.011 3.642 ± 0.019 3.624 ± 0.019

log νmax 0.935 ± 0.078 0.935 ± 0.081 1.000 ± 0.071 0.935 ± 0.057
αth = 0→ 2 log Teff 3.688 ± 0.010 3.678 ± 0.010 3.667 ± 0.010 3.653 ± 0.014

log νmax 1.284 ± 0.023 1.284 ± 0.060 1.319 ± 0.076 1.319 ± 0.083
αov,env = 0→ 0.3 log Teff 3.688 ± 0.011 3.678 ± 0.010 3.667 ± 0.011 3.653 ± 0.015

log νmax 1.284 ± 0.066 1.284 ± 0.063 1.319 ± 0.050 1.284 ± 0.049
Y0 = 0.253→ 0.303 log Teff 3.688 ± 0.010 3.678 ± 0.012 3.667 ± 0.014 3.656 ± 0.011

log νmax 1.252 ± 0.105 1.217 ± 0.133 1.183 ± 0.073 1.183 ± 0.095

Notes: The AGBb locations are plotted in Fig. 6. Models have been obtained by individually changing the parameters of the
reference model. These changes are indicated in the first column.
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Table A.4: AGBb location for observations and models with M ∈ [1.5, 2.5]M�

M (M�) [1.5, 2.5]
[Fe/H] (dex) [−1.0,−0.5] [−0.5,−0.25] [−0.25, 0.0] [0.0, 0.25]
Observations log Teff 3.624 ± 0.010 3.632 ± 0.013 3.616 ± 0.009 3.619 ± 0.009

log νmax 0.609 ± 0.064 0.677 ± 0.090 0.639 ± 0.085 0.848 ± 0.090
Reference model log Teff 3.702 ± 0.009 3.692 ± 0.009 3.681 ± 0.013 3.670 ± 0.014

log νmax 1.493 ± 0.065 1.531 ± 0.065 1.493 ± 0.062 1.510 ± 0.088
αMLT = 1.92→ 1.62 log Teff 3.685 ± 0.012 3.674 ± 0.012 3.663 ± 0.013 3.646 ± 0.015

log νmax 1.450 ± 0.037 1.450 ± 0.078 1.493 ± 0.089 1.450 ± 0.071
ηR = 0.3→ 0.1 log Teff 3.702 ± 0.009 3.692 ± 0.009 3.681 ± 0.012 3.670 ± 0.014

log νmax 1.493 ± 0.027 1.493 ± 0.086 1.493 ± 0.085 1.510 ± 0.080
αov,He = 0→ 0.5 log Teff 3.681 ± 0.011 3.674 ± 0.011 3.663 ± 0.015 3.649 ± 0.016

log νmax 1.175 ± 0.042 1.175 ± 0.062 1.175 ± 0.070 1.175 ± 0.075
αov,He = 0→ 1.0 log Teff 3.674 ± 0.013 3.663 ± 0.013 3.653 ± 0.017 3.639 ± 0.017

log νmax 1.084 ± 0.082 1.051 ± 0.073 1.018 ± 0.084 1.018 ± 0.112
αov,H = 0.2→ 0.4 log Teff 3.695 ± 0.010 3.688 ± 0.010 3.681 ± 0.012 3.670 ± 0.014

log νmax 1.355 ± 0.067 1.392 ± 0.087 1.432 ± 0.069 1.468 ± 0.095
αov,H = 0.2→ 0.6 log Teff 3.685 ± 0.013 3.681 ± 0.012 3.670 ± 0.011 3.663 ± 0.012

log νmax 1.116 ± 0.155 1.221 ± 0.110 1.249 ± 0.060 1.288 ± 0.088
αpen conv,He = 0→ 0.5 log Teff 3.681 ± 0.011 3.674 ± 0.011 3.663 ± 0.015 3.649 ± 0.016

log νmax 1.175 ± 0.042 1.175 ± 0.062 1.175 ± 0.070 1.175 ± 0.075
αth = 0→ 2 log Teff 3.702 ± 0.008 3.695 ± 0.007 3.685 ± 0.011 3.670 ± 0.014

log νmax 1.493 ± 0.090 1.531 ± 0.080 1.531 ± 0.082 1.547 ± 0.090
αov,env = 0→ 0.3 log Teff 3.702 ± 0.010 3.692 ± 0.010 3.681 ± 0.011 3.670 ± 0.014

log νmax 1.493 ± 0.079 1.531 ± 0.077 1.493 ± 0.085 1.510 ± 0.057
Y0 = 0.253→ 0.303 log Teff 3.706 ± 0.013 3.695 ± 0.012 3.685 ± 0.014 3.674 ± 0.014

log νmax 1.381 ± 0.129 1.456 ± 0.102 1.456 ± 0.108 1.472 ± 0.086
ΩZAMS/Ωcrit = 0→ 0.3 log Teff 3.688 ± 0.006 3.678 ± 0.009 3.678 ± 0.011 3.667 ± 0.013

log νmax 0.833 ± 0.061 0.894 ± 0.017 1.159 ± 0.091 1.249 ± 0.081
test log Teff 3.619 ± 0.017 3.622 ± 0.035 3.619 ± 0.030 3.614 ± 0.019

log νmax 0.559 ± 0.066 0.559 ± 0.059 0.628 ± 0.167 0.742 ± 0.077

Notes: The AGBb locations are plotted in Fig. 7. Models have been obtained by individually changing the parameters of the
reference model. These changes are indicated in the first column. The model labelled ‘test’ is obtained with the following changes:
ΩZAMS/Ωcrit = 0→ 0.3, αov,H = 0.2→ 0, αov,He = 0→ 1.0, and αMLT = 1.92→ 1.62.

Table B.1: Ratio between the AGBb location and the clump location for models with M ∈ [0.6, 0.9]M�

M (M�) [0.6, 0.9]
[Fe/H] (dex) [−1.0,−0.5] [−0.5,−0.25] [−0.25, 0.0] [0.0, 0.25]
Reference model log Teff,AGBb/ log Teff,clump 0.993 ± 0.006 0.993 ± 0.008 0.993 ± 0.008 0.992 ± 0.007

log νmax,AGBb/ log νmax,clump 0.757 ± 0.058 0.757 ± 0.042 0.757 ± 0.061 0.734 ± 0.060
αMLT = 1.92→ 1.62 log Teff,AGBb/ log Teff,clump 0.994 ± 0.009 0.993 ± 0.008 0.993 ± 0.007 0.993 ± 0.005

log νmax,AGBb/ log νmax,clump 0.767 ± 0.061 0.743 ± 0.074 0.741 ± 0.057 0.741 ± 0.043
ηR = 0.3→ 0.1 log Teff,AGBb/ log Teff,clump 0.994 ± 0.005 0.994 ± 0.005 0.993 ± 0.007 0.993 ± 0.007

log νmax,AGBb/ log νmax,clump 0.781 ± 0.041 0.757 ± 0.036 0.757 ± 0.059 0.757 ± 0.061
αov,He = 0→ 0.5 log Teff,AGBb/ log Teff,clump 0.986 ± 0.009 0.986 ± 0.009 0.985 ± 0.009 0.985 ± 0.008

log νmax,AGBb/ log νmax,clump 0.502 ± 0.076 0.502 ± 0.080 0.480 ± 0.073 0.502 ± 0.133
αov,He = 0→ 1.0 log Teff,AGBb/ log Teff,clump 0.985 ± 0.007 0.982 ± 0.007 0.980 ± 0.008 0.981 ± 0.008

log νmax,AGBb/ log νmax,clump 0.372 ± 0.081 0.350 ± 0.086 0.350 ± 0.093 0.350 ± 0.091
αov,H = 0.2→ 0.4 log Teff,AGBb/ log Teff,clump 0.994 ± 0.007 0.995 ± 0.007 0.994 ± 0.008 0.994 ± 0.007

log νmax,AGBb/ log νmax,clump 0.780 ± 0.054 0.756 ± 0.058 0.756 ± 0.057 0.756 ± 0.045
αov,H = 0.2→ 0.6 log Teff,AGBb/ log Teff,clump 0.994 ± 0.006 0.994 ± 0.007 0.993 ± 0.006 0.993 ± 0.007

log νmax,AGBb/ log νmax,clump 0.780 ± 0.049 0.756 ± 0.038 0.756 ± 0.058 0.756 ± 0.066
αpen conv,He = 0→ 0.5 log Teff,AGBb/ log Teff,clump 0.986 ± 0.009 0.986 ± 0.009 0.985 ± 0.009 0.985 ± 0.008

log νmax,AGBb/ log νmax,clump 0.502 ± 0.076 0.502 ± 0.080 0.480 ± 0.073 0.502 ± 0.133
αth = 0→ 2 log Teff,AGBb/ log Teff,clump 0.995 ± 0.007 0.995 ± 0.006 0.994 ± 0.006 0.994 ± 0.007

log νmax,AGBb/ log νmax,clump 0.805 ± 0.059 0.781 ± 0.064 0.781 ± 0.063 0.757 ± 0.064
αov,env = 0→ 0.3 log Teff,AGBb/ log Teff,clump 0.994 ± 0.007 0.994 ± 0.007 0.993 ± 0.007 0.993 ± 0.007

log νmax,AGBb/ log νmax,clump 0.757 ± 0.060 0.757 ± 0.045 0.757 ± 0.043 0.734 ± 0.068
Y0 = 0.253→ 0.303 log Teff,AGBb/ log Teff,clump 0.995 ± 0.006 0.994 ± 0.005 0.994 ± 0.006 0.993 ± 0.007

log νmax,AGBb/ log νmax,clump 0.761 ± 0.061 0.761 ± 0.062 0.736 ± 0.059 0.736 ± 0.074

Notes: Models have been obtained by individually changing the parameters of the reference model. These changes are indicated
in the first column.
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Table B.2: Ratio between the AGBb location and the clump location for models with M ∈ [0.9, 1.2]M�

M (M�) [0.9, 1.2]
[Fe/H] (dex) [−1.0,−0.5] [−0.5,−0.25] [−0.25, 0.0] [0.0, 0.25]
Reference model log Teff,AGBb/ log Teff,clump 0.995 ± 0.004 0.994 ± 0.005 0.993 ± 0.006 0.993 ± 0.007

log νmax,AGBb/ log νmax,clump 0.804 ± 0.053 0.782 ± 0.061 0.782 ± 0.064 0.782 ± 0.057
αMLT = 1.92→ 1.62 log Teff,AGBb/ log Teff,clump 0.995 ± 0.007 0.993 ± 0.006 0.994 ± 0.007 0.993 ± 0.006

log νmax,AGBb/ log νmax,clump 0.791 ± 0.054 0.768 ± 0.052 0.768 ± 0.049 0.745 ± 0.049
ηR = 0.3→ 0.1 log Teff,AGBb/ log Teff,clump 0.995 ± 0.005 0.994 ± 0.005 0.993 ± 0.006 0.993 ± 0.006

log νmax,AGBb/ log νmax,clump 0.804 ± 0.055 0.804 ± 0.056 0.760 ± 0.063 0.760 ± 0.061
αov,He = 0→ 0.5 log Teff,AGBb/ log Teff,clump 0.990 ± 0.006 0.988 ± 0.006 0.987 ± 0.008 0.986 ± 0.008

log νmax,AGBb/ log νmax,clump 0.589 ± 0.052 0.567 ± 0.039 0.530 ± 0.049 0.530 ± 0.064
αov,He = 0→ 1.0 log Teff,AGBb/ log Teff,clump 0.987 ± 0.006 0.984 ± 0.007 0.984 ± 0.007 0.982 ± 0.008

log νmax,AGBb/ log νmax,clump 0.445 ± 0.086 0.424 ± 0.082 0.403 ± 0.081 0.392 ± 0.080
αov,H = 0.2→ 0.4 log Teff,AGBb/ log Teff,clump 0.996 ± 0.005 0.994 ± 0.005 0.994 ± 0.006 0.993 ± 0.004

log νmax,AGBb/ log νmax,clump 0.805 ± 0.086 0.783 ± 0.075 0.781 ± 0.057 0.781 ± 0.061
αov,H = 0.2→ 0.6 log Teff,AGBb/ log Teff,clump 0.995 ± 0.004 0.995 ± 0.005 0.993 ± 0.006 0.994 ± 0.007

log νmax,AGBb/ log νmax,clump 0.764 ± 0.093 0.762 ± 0.113 0.762 ± 0.089 0.762 ± 0.087
αpen conv,He = 0→ 0.5 log Teff,AGBb/ log Teff,clump 0.990 ± 0.006 0.988 ± 0.006 0.987 ± 0.008 0.986 ± 0.008

log νmax,AGBb/ log νmax,clump 0.589 ± 0.052 0.567 ± 0.039 0.530 ± 0.049 0.530 ± 0.064
αth = 0→ 2 log Teff,AGBb/ log Teff,clump 0.996 ± 0.004 0.995 ± 0.005 0.994 ± 0.006 0.994 ± 0.007

log νmax,AGBb/ log νmax,clump 0.804 ± 0.065 0.804 ± 0.066 0.804 ± 0.063 0.782 ± 0.065
αov,env = 0→ 0.3 log Teff,AGBb/ log Teff,clump 0.996 ± 0.005 0.994 ± 0.005 0.993 ± 0.006 0.993 ± 0.006

log νmax,AGBb/ log νmax,clump 0.804 ± 0.059 0.782 ± 0.045 0.782 ± 0.044 0.782 ± 0.064
Y0 = 0.253→ 0.303 log Teff,AGBb/ log Teff,clump 0.996 ± 0.004 0.995 ± 0.004 0.994 ± 0.006 0.993 ± 0.006

log νmax,AGBb/ log νmax,clump 0.786 ± 0.069 0.786 ± 0.065 0.761 ± 0.068 0.739 ± 0.068

Notes: Models have been obtained by individually changing the parameters of the reference model. These changes are indicated
in the first column.

Table B.3: Ratio between the AGBb location and the clump location for models with M ∈ [1.2, 1.5]M�

M (M�) [1.2, 1.5]
[Fe/H] (dex) [−1.0,−0.5] [−0.5,−0.25] [−0.25, 0.0] [0.0, 0.25]
Reference model log Teff,AGBb/ log Teff,clump 0.995 ± 0.005 0.995 ± 0.004 0.994 ± 0.006 0.995 ± 0.006

log νmax,AGBb/ log νmax,clump 0.821 ± 0.067 0.799 ± 0.091 0.779 ± 0.057 0.800 ± 0.055
αMLT = 1.92→ 1.62 log Teff,AGBb/ log Teff,clump 0.997 ± 0.006 0.994 ± 0.006 0.995 ± 0.007 0.994 ± 0.007

log νmax,AGBb/ log νmax,clump 0.846 ± 0.088 0.824 ± 0.054 0.801 ± 0.049 0.801 ± 0.049
ηR = 0.3→ 0.1 log Teff,AGBb/ log Teff,clump 0.995 ± 0.004 0.995 ± 0.005 0.994 ± 0.006 0.993 ± 0.006

log νmax,AGBb/ log νmax,clump 0.821 ± 0.086 0.821 ± 0.093 0.799 ± 0.095 0.777 ± 0.081
αov,He = 0→ 0.5 log Teff,AGBb/ log Teff,clump 0.990 ± 0.006 0.989 ± 0.004 0.987 ± 0.008 0.986 ± 0.008

log νmax,AGBb/ log νmax,clump 0.614 ± 0.083 0.598 ± 0.079 0.622 ± 0.053 0.567 ± 0.041
αov,He = 0→ 1.0 log Teff,AGBb/ log Teff,clump 0.987 ± 0.006 0.986 ± 0.005 0.985 ± 0.008 0.983 ± 0.007

log νmax,AGBb/ log νmax,clump 0.495 ± 0.096 0.461 ± 0.095 0.469 ± 0.061 0.469 ± 0.064
αov,H = 0.2→ 0.4 log Teff,AGBb/ log Teff,clump 0.995 ± 0.005 0.994 ± 0.005 0.994 ± 0.004 0.993 ± 0.006

log νmax,AGBb/ log νmax,clump 0.802 ± 0.105 0.762 ± 0.080 0.763 ± 0.105 0.782 ± 0.070
αov,H = 0.2→ 0.6 log Teff,AGBb/ log Teff,clump 0.995 ± 0.004 0.994 ± 0.004 0.994 ± 0.005 0.993 ± 0.007

log νmax,AGBb/ log νmax,clump 0.782 ± 0.106 0.763 ± 0.085 0.763 ± 0.092 0.762 ± 0.113
αpen conv,He = 0→ 0.5 log Teff,AGBb/ log Teff,clump 0.990 ± 0.006 0.989 ± 0.004 0.987 ± 0.008 0.986 ± 0.008

log νmax,AGBb/ log νmax,clump 0.614 ± 0.083 0.598 ± 0.079 0.622 ± 0.053 0.567 ± 0.041
αth = 0→ 2 log Teff,AGBb/ log Teff,clump 0.996 ± 0.005 0.995 ± 0.004 0.995 ± 0.005 0.995 ± 0.007

log νmax,AGBb/ log νmax,clump 0.821 ± 0.065 0.799 ± 0.085 0.821 ± 0.058 0.821 ± 0.063
αov,env = 0→ 0.3 log Teff,AGBb/ log Teff,clump 0.995 ± 0.005 0.995 ± 0.004 0.994 ± 0.005 0.995 ± 0.007

log νmax,AGBb/ log νmax,clump 0.821 ± 0.087 0.821 ± 0.078 0.821 ± 0.047 0.799 ± 0.043
Y0 = 0.253→ 0.303 log Teff,AGBb/ log Teff,clump 0.995 ± 0.005 0.995 ± 0.005 0.994 ± 0.006 0.994 ± 0.005

log νmax,AGBb/ log νmax,clump 0.823 ± 0.135 0.800 ± 0.144 0.777 ± 0.099 0.777 ± 0.108

Notes: Models have been obtained by individually changing the parameters of the reference model. These changes are indicated
in the first column.
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Table B.4: Ratio between the AGBb location and the clump location for models with M ∈ [1.5, 2.5]M�

M (M�) [1.5, 2.5]
[Fe/H] (dex) [−1.0,−0.5] [−0.5,−0.25] [−0.25, 0.0] [0.0, 0.25]
Reference model log Teff,AGBb/ log Teff,clump 0.996 ± 0.004 0.995 ± 0.004 0.995 ± 0.006 0.994 ± 0.007

log νmax,AGBb/ log νmax,clump 0.841 ± 0.109 0.823 ± 0.083 0.803 ± 0.075 0.812 ± 0.099
αMLT = 1.92→ 1.62 log Teff,AGBb/ log Teff,clump 0.996 ± 0.005 0.995 ± 0.005 0.994 ± 0.006 0.994 ± 0.008

log νmax,AGBb/ log νmax,clump 0.837 ± 0.105 0.817 ± 0.099 0.821 ± 0.099 0.798 ± 0.094
ηR = 0.3→ 0.1 log Teff,AGBb/ log Teff,clump 0.996 ± 0.004 0.995 ± 0.003 0.995 ± 0.005 0.994 ± 0.007

log νmax,AGBb/ log νmax,clump 0.841 ± 0.090 0.803 ± 0.092 0.803 ± 0.085 0.812 ± 0.093
αov,He = 0→ 0.5 log Teff,AGBb/ log Teff,clump 0.990 ± 0.005 0.991 ± 0.004 0.990 ± 0.006 0.988 ± 0.007

log νmax,AGBb/ log νmax,clump 0.695 ± 0.110 0.646 ± 0.075 0.646 ± 0.070 0.632 ± 0.076
αov,He = 0→ 1.0 log Teff,AGBb/ log Teff,clump 0.989 ± 0.005 0.988 ± 0.004 0.987 ± 0.006 0.985 ± 0.007

log νmax,AGBb/ log νmax,clump 0.641 ± 0.128 0.592 ± 0.080 0.560 ± 0.074 0.547 ± 0.091
αov,H = 0.2→ 0.4 log Teff,AGBb/ log Teff,clump 0.997 ± 0.005 0.996 ± 0.004 0.996 ± 0.005 0.995 ± 0.006

log νmax,AGBb/ log νmax,clump 0.890 ± 0.159 0.823 ± 0.105 0.807 ± 0.101 0.807 ± 0.101
αov,H = 0.2→ 0.6 log Teff,AGBb/ log Teff,clump 0.999 ± 0.007 0.998 ± 0.006 0.996 ± 0.006 0.996 ± 0.006

log νmax,AGBb/ log νmax,clump 0.865 ± 0.221 0.875 ± 0.178 0.844 ± 0.131 0.801 ± 0.118
αpen conv,He = 0→ 0.5 log Teff,AGBb/ log Teff,clump 0.990 ± 0.005 0.991 ± 0.004 0.990 ± 0.006 0.988 ± 0.007

log νmax,AGBb/ log νmax,clump 0.695 ± 0.110 0.646 ± 0.075 0.646 ± 0.070 0.632 ± 0.076
αth = 0→ 2 log Teff,AGBb/ log Teff,clump 0.997 ± 0.004 0.995 ± 0.003 0.995 ± 0.005 0.994 ± 0.008

log νmax,AGBb/ log νmax,clump 0.841 ± 0.127 0.823 ± 0.101 0.805 ± 0.086 0.813 ± 0.089
αov,env = 0→ 0.3 log Teff,AGBb/ log Teff,clump 0.996 ± 0.005 0.995 ± 0.004 0.995 ± 0.005 0.994 ± 0.007

log νmax,AGBb/ log νmax,clump 0.841 ± 0.101 0.842 ± 0.085 0.803 ± 0.095 0.812 ± 0.087
Y0 = 0.253→ 0.303 log Teff,AGBb/ log Teff,clump 0.998 ± 0.005 0.996 ± 0.005 0.995 ± 0.005 0.995 ± 0.006

log νmax,AGBb/ log νmax,clump 0.859 ± 0.197 0.840 ± 0.124 0.820 ± 0.103 0.810 ± 0.081
ΩZAMS/Ωcrit = 0→ 0.3 log Teff,AGBb/ log Teff,clump 0.999 ± 0.004 0.995 ± 0.005 0.995 ± 0.005 0.994 ± 0.006

log νmax,AGBb/ log νmax,clump 0.820 ± 0.200 0.754 ± 0.150 0.783 ± 0.174 0.777 ± 0.118
test log Teff,AGBb/ log Teff,clump 0.985 ± 0.007 0.985 ± 0.012 0.984 ± 0.010 0.985 ± 0.007

log νmax,AGBb/ log νmax,clump 0.733 ± 0.275 0.508 ± 0.136 0.464 ± 0.183 0.474 ± 0.096

Notes: Models have been obtained by individually changing the parameters of the reference model. These changes are indicated
in the first column. The model labelled ‘test’ is obtained with the following changes: ΩZAMS/Ωcrit = 0 → 0.3, αov,H = 0.2 → 0,
αov,He = 0→ 1.0, and αMLT = 1.92→ 1.62.
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Chapter 11

Conclusions and prospects

The main concern of this thesis was to investigate the signature of structure differences between Red-
Giant Branch (RGB) and Asymptotic-Giant Branch (AGB) stars. This is made possible with asteroseis-
mology, which consists in studying the stellar oscillations caused by the propagation of internal waves.
These stellar oscillations induce variations of the surface luminosity that can be detected with high-
precision photometry. The recent space-borne telescopes CoRoT by CNES (Baglin et al., 2006), Kepler
(Borucki et al., 2010; Gilliland et al., 2010) and TESS (Ricker et al., 2015) by NASA have collected tens of
thousands of lightcurves of red giants with unprecedented quality, which paved the way for the under-
standing of the structure of these stars. Indeed, the stellar oscillations of red giants manifest as a power
excess in the power spectral density referred to as the oscillation spectrum, in which a repetitive struc-
ture of peaks is visible. These peaks correspond to the stellar modes, which result from the constructive
interferences of the internal waves. The fine structure of the oscillation spectrum, particularly the mode
frequencies, widths, and amplitudes carry the imprints of the stellar structure probed by the internal
waves. Accordingly, we are able to study the physical mechanisms that govern the stellar interior of red
giants.

High-luminosity RGB and AGB stars are targets of interest since they are the site of an important
mass loss that not only impacts their structure and evolution but also contributes to the chemical enrich-
ment of the Galaxy. In spite of the difference of mass due to substantial mass loss at the luminosity-tip
of the RGB and the additional He-burning shell in AGB stars, disentangling RGB and AGB stars is chal-
lenging since their luminosity and effective temperature are close. Hopefully, the structural differences
between those stars can be probed by analysing the properties of their oscillation spectra. The latter
are marked by the presence of pressure modes that are excited by the turbulent motion of convective
cells at the near surface. The fine structure of the p-mode pattern contains the signature of the helium
second-ionisation (HeII) zone (Kallinger et al., 2012; Vrard et al., 2015), which can be used to distinguish
H-shell and He-core burning stars. This signature varies with the evolutionary stage since the physical
conditions in the envelope of those stars are different (Christensen-Dalsgaard et al., 2014). These works
suggest that RGB and AGB stars could still be identified from their different seismic signatures of the
HeII zone. However, they lacked a comprehensive seismic study of AGB stars, they did not confirm
how the differences observed between RGB and AGB stars are related to their structure differences. The
lack of seismic constraints on the AGB is adverse not only for the classification of RGB and AGB stars,
but also for the understanding of the physical processes that govern their interiors. In particular, the
AGB bump (AGBb) is poorly constrained due to the limited number of AGB stars subject to a seismic
study. Yet, AGBb stars reveal to provide valuable constrain on the mixing processes in the He-core burn-
ing phase (Bossini et al., 2015). Moreover, theoretical models suggest that AGBb stars could be suitable
standard candles, allowing for consistent estimates of distances. All in all, the study of AGB stars pro-
vides keys to understand the final stages of stellar evolution, before the formation of compact objects,
as well as the chemical evolution of the Galaxy.
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11.1 What did we learn?

In this thesis, I performed a thorough analysis of the oscillation spectra of high-luminosity RGB and
AGB targets observed by Kepler with a cumulative duration of four years. I developed an automated
code to decipher the p-mode spectrum of these stars, which is suitable for ∆ν ∈ [0.5, 4.0]µHz. This code
is dedicated to measuring the p-mode frequencies, widths, amplitudes and signature of the HeII zone in
these stars. This allowed us to extract the signature of structure differences between RGB and AGB stars,
and investigate the physical mechanisms behind mode damping in these stars. In order to interpret the
differences between RGB and AGB stars highlighted in the p-mode pattern, I computed a grid of stellar
models with MESA, including a large set of physical ingredients from the main sequence up to the AGB.
Among these physical processes, we followed the prescription of Bossini et al. (2017) to consider He-
core overshooting. Their routine addresses the incomplete treatment of He-semiconvection in MESA,
to mitigate artificial injections of helium in the core. In conjunction with MESA models, I computed the
adiabatic oscillation frequencies with ADIPLS. We extracted the adiabatic p-mode frequencies following
the prescription of Ball, Themeßl, and Hekker (2018). It consists in suppressing the g modes in the core
by setting the squared Brunt-Väisälä frequency N2

BV = 0 in the core. The extracted p-mode frequencies
reveal to be accurate for RGB stars with ∆ν ≤ 4.5 µHz (Ball, Themeßl, and Hekker, 2018), we checked
that they are valid for He-burning stars as well. Last but not least, I characterised the AGBb with
a sample of Kepler and TESS targets as a function of the stellar mass and metallicity in a statistical
framework. Hereafter, I summarise the main conclusions of this thesis.

11.1.1 Classification of RGB and AGB stars

A classification of RGB and AGB stars is possible with the seismic parameters inferred from their oscil-
lation spectra. Initially, Kallinger et al. (2012) proposed a method to classify cold giants in RGB, clump
and AGB stages based on the acoustic offset ε that defines the frequency of radial modes according
to the asymptotic pattern of red giants (Mosser et al., 2011). However, this seismic parameter is pre-
dominantly determined by the envelope properties, including the upper layers of the surface that are
poorly understood. This hampers the identification of the physical mechanism behind this classifica-
tion method. In fact, the asymptotic pattern of red giants relies on the assumption that the gradients of
the physical parameters such as sound speed, density, temperature, are not important on a scale of the
order of the wavelength of the oscillations. In the asymptotic approach, any strong gradient inevitably
introduces a deviation from the asymptotic pattern. Vrard et al. (2015) examined the deviation of the
observed radial-mode frequencies with the expected asymptotic frequencies of RGB and clump stars.
They highlighted that the magnitude of the frequency shift induced by the HeII zone was equivalent
to the typical acoustic offset ε shift reported by Kallinger et al. (2012). Therefore, they identified the
HeII imprint on the mode frequencies as the physical basis to distinguish RGB and clump stars with
∆ν ≥ 3 µHz. In this work, we broaden the conclusions raised by Vrard et al. (2015) at lower ∆ν ≤ 3 µHz,
showing that RGB and AGB stars can be disentangled on the basis of the signature of the HeII zone in
the p-mode frequencies.

In parallel, by comparing this identification method to that based on the strength of the seismic
signal in time series (Mosser et al., 2019), we could see that they agree when classifying H-shell and
He-burning stars with ∆ν ≥ 2.5 µHz (≤ 10% of disagreements). Nevertheless, the number of disagree-
ments substantially increases at low ∆ν, reaching ∼ 30% when ∆ν ≤ 1.0 µHz. This implies that these
classification methods are less efficient at low ∆ν, making the disentanglement of RGB and AGB stars
complicated. Actually, we identified two arguments that could explain this low efficiency rate at low ∆ν.
First, the seismic parameters on which the classification techniques rely are affected by large uncertain-
ties due to the limited frequency resolution. Second, the classification method based on the signature of
the HeII zone rests on the asymptotic expansion, which may be unsuitable at low ∆ν ≤ 1.0 µHz.
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11.1.2 Is the asymptotic expansion valid for evolved red giants?

In the asymptotic expansion, regions with strong gradients of physical parameters cannot be addressed.
In low- and intermediate-luminosity red giants, the deviations induced by such sharp variations struc-
tures are small relatively to the leading terms of the asymptotic expansion, to the extent that they are
commonly treated as a small perturbation to the asymptotic expansion. Notwithstanding, we found
that the amplitude of the HeII signature in the local large separation δ∆ν

gl
n,ℓ represents a large fraction of

the mean value ∆ν for evolved red giants observed by Kepler, reaching ∼ 0.08 ∆ν when ∆ν ≤ 1.0 µHz.
This finding is reinforced by stellar model analysis since we reached the same conclusion when fitting
the glitch signature with the p-mode frequencies returned by ADIPLS. This shows that the perturbation
approach to take the glitch signature into account in the mode frequencies cannot apply at low ∆ν.
When identifying the modes, the template we use to match the observed oscillation spectrum is based
on the asymptotic p-mode frequencies of red giants, where the radial order n is assumed to be large rela-
tively to the degree ℓ. Although the assumption n ≫ ℓ is not valid for low- and intermediate-luminosity
red giants, the asymptotic expansion is still appropriate to decipher their oscillation spectrum. Though,
we encountered complications to identify the stellar modes by cross correlating the template with the
observed oscillation spectrum of high-luminosity red giants when ∆ν ≤ 0.5 µHz (equivalently when
the radial order at maximum oscillation power nmax ≤ 4). In fact, the dipole (ℓ = 1) and quadrupole
(ℓ = 2) modes get closer to the neighbouring radial (ℓ = 0) mode as ∆ν decreases, forming a triplet
structure (Stello et al., 2014). On top of that, as the triplet structure shrinks, the amplitude of the modes
is affected and the relative difference of mode heights between different degree ℓ differs when red giants
reach high-luminosity stages (Yu et al., 2020). Therefore, the template spectrum based on the asymp-
totic pattern of low- and intermediate-luminosity red giants is no longer adequate for high-luminosity
red giants. In order to extract the mode characteristics, we need to define several template oscillation
spectra with different patterns and find the best-matching model, which is work in progress.
As a conclusion, the asymptotic expansion must be inaccurate when interpreting the oscillation spec-
trum of red giants at low ∆ν ≤ 0.5 µHz. We need a more appropriate framework for a comprehensive
physical understanding of their oscillation spectrum.

11.1.3 Structure differences between RGB and AGB stars

By studying the HeII signature in the local large separation δ∆ν
gl
n,ℓ, we were not only able to confirm the

physical basis of the classification method proposed by Kallinger et al. (2012), but also to probe the dif-
ferent physical conditions in RGB and AGB stars. Indeed, the amplitude of the glitch signature is more
important during the He-burning phase than during the H-shell burning phase, at fixed ∆ν. Through
stellar models computed with MESA, we could show that this difference is related to a stronger variation
of the first adiabatic exponent Γ1 in the HeII zone during the He-burning phase. This strong variation is
correlated with the fact that the helium second ionisation occurs at lower temperature in the He-burning
phase, while the acoustic radius of the HeII zone is left unchanged.
Moreover, the period of the glitch modulation is slightly lower for low-mass stars than for high-mass
stars at fixed ∆ν according to Kepler observations and MESA models. Because glitch modulations with
short periods are associated to deep structures in the interior, this means that the helium second ioni-
sation occurs deeper in low-mass red giants. Actually, the physical conditions for helium ionisation are
reached closer to the surface for high-mass stars with higher effective temperature, which explains our
observations.

11.1.4 Additional damping on the early-AGB

By measuring the radial mode widths in Kepler observations, I collected evidence that the p-mode damp-
ing in high-luminosity red giants is ruled by the action of turbulent pressure, partly compensated by that
of entropy. Indeed, these measurements reproduce the values expected from theoretical models, in par-
ticular the strong dependence on the effective temperature during the H-shell burning stage (Belkacem
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et al., 2012). The radial mode damping increases once the He burning in the core sets in, as highlighted
by Vrard et al. (2018). When stars leave the He-core burning phase and gradually ascend the AGB, the
radial mode damping becomes similar to that measured on the RGB. This can be explained by the fact
that RGB and AGB stars have close effective temperature and surface gravity.

The previous remarks are also valid when considering non-radial modes. Nonetheless, we detected
a larger damping for dipole modes when stars leave the clump and begin their ascent on the AGB.
When ∆ν ≤ 1.25 µHz, the dipole mode widths become similar on the RGB and AGB. This suggests that
an additional contribution to the mode damping must be taken into account on the early-AGB for non-
radial modes, especially for dipole modes. Some mixed dipole modes are still visible in the oscillation
spectrum of He-burning stars around ∆ν ∼ 2.5 µHz, meaning that dipole modes probe deep layers.
Then, this additional contribution could be a radiative damping near the H-burning shell, as proposed
in Dziembowski (2012) who explained the evolution of dipole mode damping on the RGB.

11.1.5 The need for mixing processes to reproduce the observed AGBb

By combining the seismic observations of Kepler and TESS, we could study the dependence of the AGBb
location in νmax and Teff on stellar parameters such as mass and metallicity. On the one hand, the AGBb
occurs at higher luminosity L and lower effective temperature Teff when the mass increases. Since the
He-core burning takes place at lower luminosity when the mass increases, this means that the lumi-
nosity difference between the clump and AGBb phases is more important at high mass. On the other
hand, we emphasised that the AGBb occurs at lower luminosity when the metallicity increases, which
is mostly visible for stars of mass M ≥ 1.2 M⊙ in our metallicity sample [Fe/H] ∈ [−1.0, 0.25]dex.

This dependence on stellar parameters has implications on the calibration of physical ingredients in
stellar models. Indeed, the observed position of the AGBb can be used to calibrate mixing processes
in stellar interiors. Specifically, Bossini et al. (2015) demonstrated that an extra mixing region above
the core is necessary to reproduce the AGBb luminosity in the range of mass M ∈ [1.3, 1.7]M⊙ and
metallicity [M/H] ∈ [−0.4, 0.4]dex. Here, we explored how the calibration changes with respect to the
mass and metallicity. For stars of mass M ≤ 1.5 µHz, we found that He-core overshooting is needed
to recreate the observed AGBb location in νmax. Precisely, we showed that the overshooting region
should extend over a distance αov,He in fraction of the pressure scale height HP from the boundary of the
convective core, with αov,He ∈ [0.25, 0.5] if M ∈ [0.6, 1.2]M⊙ and αov,He ∈ [0.5, 1.0] if M ∈ [1.2, 1.5]M⊙.
For higher masses (M ≥ 1.5 M⊙), the He-core overshooting alone is not sufficient to justify the AGBb
position in νmax. Additional physical ingredients are needed to reproduce observational constraints,
such as rotationally-induced mixing. This calibration of stellar models at high mass remains exploratory
and more comprehensive work is needed to quantify the weights of physical processes that come into
play, for instance by considering additional observational constraints such as the clump position.

11.2 Paving the way for future projects

11.2.1 Near the luminosity-tip of red-giant stars

The seismic analysis of red giants near the luminosity tip is essential not only to understand the phys-
ical mechanisms behind the variability of the different red-giant categories, but also to characterise the
mass-loss rate that substantially sets in at pulsation periods above ∼ 60 days, i.e. when the dominant
mode is of radial order n ≤ 2 (Yu et al., 2021). With Kepler observations, RGB and AGB stars classified
as semi-regular variables based on the regularity and amplitudes of their light curves could be inter-
preted as solar-like oscillators, with a small number of observed stochastically excited oscillation modes
(Mosser et al., 2013b; Yu et al., 2020). Such semi-regular variables are present in our sample of Kepler
red giants with ∆ν ≤ 0.5 µHz. Unfortunately, we highlighted that we could not robustly extract the
mode characteristics of red giants with ∆ν ≤ 0.5 µHz. Two main restricting factors make the seismic
analysis of red giants complicated in this ∆ν domain. First, the modes are not resolved because the
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Kepler telescope did not monitor these stars long enough. Second, addressing their oscillation spectrum
with the asymptotic p-mode pattern of low- and intermediate-luminosity red giants does not seem to
be an adequate method. Nevertheless, a global analysis of the oscillation spectrum could still be per-
formed. Especially, the mode identification can be led and the large frequency separation ∆ν as well as
the frequency at maximum oscillation power νmax can be extracted. In my code, I would need to build
template spectra that are no longer based on the asymptotic p-mode pattern of low- and intermediate-
luminosity red giants, but on the modelled p-mode frequencies returned by ADIPLS (Stello et al., 2014).
In order to help the interpretation of the oscillation spectrum of red giants near the luminosity tip, the
analysis of Kepler observations could also be complemented with ground-based observations. For ex-
ample, the OGLE-III Catalog of Variable Stars contains about 80,000 low-amplitude red-giant variables
(called OGLE Small Amplitude Red Giants, OSARG), which have been continuously observed during
eight years (Soszyński et al., 2009). This would offer a better frequency resolution, but at the cost of a
complex processing of observational data due to atmospheric effects and day/night aliases.

11.2.2 On detecting He-flash stars

The physical conditions in which He ignites in degenerate conditions in the central layers at the He-
subflash stage are still poorly understood. Due to the rapid evolution (tenth of a megayear) between the
tip of the RGB and the RC, we have too little information to constrain the structure evolution in the He-
subflash stage. However, theoretical studies have highlighted a clear signature of the innermost layers
of He-subflash stars in their oscillation spectrum (Deheuvels and Belkacem, 2018). The He burning in
unstable conditions creates a convective shell in the core, leading to two g-mode cavities separated by an
evanescent zone in the core, referred to as g1- and g2-mode cavities. Consequently, a three-cavity mixed-
mode pattern is expected, carrying valuable information on the cavities in which mixed modes develop.
Of course, detecting the mixed modes that develop in the innermost cavity is challenging because they
have very low amplitudes at the surface. On the one hand, the g-dominated mixed modes have large
inertias in the core so their heights in the power spectrum are weaker than those of p-dominated modes.
On the other hand, the coupling factor between the g1- and g2-mode cavities must be high enough for
the mixed modes to have non-negligible contribution from the g1-mode cavity. Nevertheless, with the
time-series of about 1470 days collected by Kepler, the mixed modes that have a significant contribution
from the g1-mode cavity are expected to have high enough heights in the power spectrum to be detected
(Deheuvels and Belkacem, 2018).
By fitting the mixed-modes pattern of red giants, few Kepler targets have been suspected to undergo
He subflashes as they have different period spacings ∆Π1 relatively to clump stars near ∆ν ∼ 3.0 µHz
(Mosser et al., 2014). Yet, we currently lack a seismic characterisation of these stars, which is crucial to
understand the evolution of the structure and the physical conditions in which the ignition of He takes
place. At the moment, the fitting technique I use is limited to p modes, but could be properly extended
to mixed modes. After extracting the mixed-mode parameters, I could look for two distinct mixed-mode
patterns with different period spacings ∆Π1. This could be done by means of period échelle diagrams1

based on the stretched periods of modes (Mosser et al., 2015). For a specific parameterisation of the
stretching, the periods exhibit a nearly vertical ridge in the échelle diagram if the mixed modes follow
the same pattern. If two distinct vertical ridges can be enhanced, then they would reflect the presence of
two g-mode cavities in the interior. In this scenario, the links between seismic parameters and internal
structure, especially between the observed mixed-mode pattern and the size of the two inner g-mode
cavities, could be investigated with the grid of stellar models presented in the Appendix 2.

1These diagrams exhibit the mode frequencies as a function of the mode periods modulo ∆Π1. They are useful to enhance
evenly spaced periods, to visualise regular patterns or departures to regularity (attributed to signatures of rotation or core
structural discontinuities) in the oscillation spectrum.
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11.2.3 On determining the helium abundance

Precise and accurate masses of stars are crucial for estimating their evolutionary stage (Eggenberger,
Carrier, and Bouchy, 2005; Provost et al., 2006) and inferring the mass of orbiting companions in exo-
planetary systems (Perryman, 2011). Mass can be inferred from stellar models but even with precise
asteroseismic constraints, a strong anticorrelation between mass and the initial helium abundance of
the star limits the power of modelling (Lebreton and Goupil, 2014; Noll, Deheuvels, and Ballot, 2021).
Therefore, accurate stellar helium abundance is essential to reduce the uncertainties on stellar masses.
Notwithstanding, assessing the helium abundance in cool stars is challenging since helium lines do not
form in the spectra of cool stars, preventing the surface helium abundance to be inferred. In this context,
the asset of asteroseismology is to provide unique contraints on the helium abundance of these stars.
Specifically, estimates of the envelope helium abundance can be extracted from the signature of the he-
lium second-ionisation zone in mode frequencies (Verma et al., 2014; Verma et al., 2019; Verma et al.,
2022). Since the amplitude of the glitch signature depends on the helium abundance in the stellar en-
velope, the helium mass fraction can be calibrated to reproduce the glitch amplitude with stellar model
grids. Yet, theoretical work uncovered the dependence of the glitch signature on stellar parameters,
showing that the glitch amplitude not only depends on the helium mass fraction but also on the elec-
tron degeneracy from the centre up to the helium-ionisation region (Houdayer et al., 2021; Houdayer,
Reese, and Goupil, 2022). Consequently, a direct connection between the glitch amplitude and the he-
lium abundance may not be straightforward. In this regard, I will be part of a future project, with Pierre
Houdayer, aimed at assessing our ability to extract the helium abundance from the glitch amplitude and
at investigating potential biases caused by electron degeneracy. We will explore how the electron degen-
eracy near the helium-ionisation region varies as stellar evolution proceeds. Specifically, we would like
to check whether the glitch signature changes can be linked to variations of the electron degeneracy or
helium abundance in the envelope. Then, I will make use of stellar models to study the possible impact
of physical processes on the mode frequencies and glitch signature. This way, I intend to identify the
physical parameters that can play a role in the electron degeneracy near the helium-ionisation zone.

11.2.4 On using AGBb as standard candle

Standard candles are astronomical sources that have a well-known luminosity as being part of a specific
category of objects. They are of major importance since they can be used as distance indicators. As
a matter of fact, their apparent magnitude mainly depends on their distance2 from Earth as their sur-
face luminosity is independent of a given set of parameters. Particularly, theoretical models motivated
the use of metal-poor AGBb stars as standard candles since their luminosity is expected to be indepen-
dent of the metallicity at a given mass (Ferraro, 1992; Pulone, 1992). In case of stars with metallicity
[Fe/H] ∈ [−1.0, 0.25]dex, we obtained that the AGBb location in νmax varies with metallicity, which is
mostly noticeable for stars with mass M ≥ 1.2 M⊙. This confirms the theoretical results of Alves and
Sarajedini (1999), who enhanced a pronounced metallicity dependence of the AGBb luminosity for stars
of mass M ∈ [0.9, 1.5]M⊙ in the metallicity range [Fe/H] ∈ [−1.0, 0.25]dex. Then, the apparent magni-
tude of these stars must not only depend on the distance, but also on the metallicity, so that AGBb stars
with [Fe/H] ∈ [−1.0, 0.25]dex are not suitable standard candles.
However, these observations only concern stars of metallicity [Fe/H] ∈ [−1.0, 0.25]dex. The use of the
AGBb as standard candle was initially proposed for metal-poor stars with [Fe/H] ∈ [−2.0,−0.65]dex
at low mass M ≤ 1.0 M⊙ (Ferraro, 1992; Pulone, 1992), which is in line with the theoretical pre-
dictions of Alves and Sarajedini (1999). Unfortunately, we cannot investigate the dependence of the
AGBb location on metallicity with seismic data since too few metal-poor Kepler and TESS targets with
[Fe/H] ≤ −1.0 dex have been subject to an asteroseismic study. Hopefully, the effects of metallicity on
the AGBb position could still be examined with the global parameters extracted from spectral energy
distributions. Indeed, Yu et al. (2022) derived the radius R and luminosity L of more than 1.5 millions
stars observed by APOGEE (Abdurro’uf et al., 2021), GALAH (Buder et al., 2021), and RAVE (Steinmetz
et al., 2020), for which spectroscopic estimates of the effective temperature Teff are available. Among

2assuming that there is no absorption in the line of sight
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them, many AGB stars with metallicity down to −1.5 dex are expected to be present. The next step of
this work is to spot the AGBb location in log L in a wider range of metallicity, which would in turn allow
us to conclude about the potential of the AGBb as standard candle.

11.2.5 Chemical enrichment of the Galaxy

In the last decade, the Kepler, CoRoT and TESS space-photometry missions have revealed the potential
of asteroseismology not only to constrain stellar structure and evolution, but also to derive precise and
accurate stellar parameters that impact Galactic astrophysics. The seismic parameters of ensembles of
stars provides mass and age estimates of tens of thousands of stars across the Galaxy (e.g., Miglio et al.,
2013; Casagrande et al., 2016; Anders et al., 2017). By complementing asteroseismic constraints with
astrometric and spectroscopic data, it is possible to follow the chemical and dynamical evolution of the
Milky Way, open and globular clusters (Silva Aguirre et al., 2018; Mackereth et al., 2021).
In the same way as Bossini et al. (2015), we could calibrate He-core overshooting in stellar models by
reproducing the AGBb position in νmax. In particular, the He-core overshooting efficiency depends
on the mass, additional mixing processes are needed to explain the observed AGBb position at mass
M ≥ 1.5 M⊙. These physical mechanisms directly impact the chemical abundances in the core, bringing
additional chemicals in the radiative zone. In parallel, Khan et al. (2018) have shown that the luminosity
bump on the RGB can be used to calibrate overshooting below the convective envelope. On top of
that, the dredge-up events on the RGB and AGB bring materials produced by nuclear reactions to the
surface as the base of the convective zone progresses deeper in the interior. Altogether, these mixing
mechanisms affect the composition of the stellar surface. Finally, the chemical composition of the stellar
environment is enriched through mass-loss mechanisms. This illustrates how mixing processes in stellar
interiors are essential to understand the chemodynamics of the Galaxy. Additional work would be
desirable to quantify the chemical enrichment of the Galaxy induced by stellar mixing processes. This is
one of the science objectives of the small/medium class space mission High-precision AsteroseismologY
in DeNse stellar fields (HAYDN, Miglio et al., 2021b), which will observe stars in dense environments
that are hardly observed by previous and current photometric missions.
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Wray, J. J., L. Eyer, and B. Paczyński (Apr. 2004). “OGLE small-amplitude variables in the Galactic bar”.
In: MNRAS 349, pp. 1059–1068. DOI: 10.1111/j.1365-2966.2004.07587.x.

Yu, Jie et al. (Mar. 2020). “Asteroseismology of luminous red giants with Kepler I: long-period variables
with radial and non-radial modes”. In: MNRAS 493, pp. 1388–1403. DOI: 10.1093/mnras/staa300.

Yu, Jie et al. (Mar. 2021). “Asteroseismology of luminous red giants with Kepler - II. Dependence of mass-
loss on pulsations and radiation”. In: MNRAS 501.4, pp. 5135–5148. DOI: 10.1093/mnras/staa3970.
arXiv: 2012.12414 [astro-ph.SR].

Yu, Jie et al. (May 2022). “Revised extinctions and radii for 1.5 million stars observed by APOGEE,
GALAH, and RAVE”. In: arXiv e-prints, arXiv:2206.00046, arXiv:2206.00046. arXiv: 2206.00046 [astro-ph.SR].

Zahn, J. P. (Dec. 1991). “Convective penetration in stellar interiors.” In: A&A 252, pp. 179–188.
— (Nov. 1992). “Circulation and turbulence in rotating stars”. In: A&A 265, pp. 115–132.

https://doi.org/10.1088/0004-637X/790/2/138
https://arxiv.org/abs/1405.7512
https://arxiv.org/abs/1405.7512
https://doi.org/10.1093/mnras/sty3374
https://arxiv.org/abs/1812.02751
https://arxiv.org/abs/1812.02751
https://doi.org/10.1093/mnras/stac1860
https://arxiv.org/abs/2207.00235
https://doi.org/10.3402/tellusa.v17i1.9005
https://doi.org/10.1051/0004-6361/201833545
https://arxiv.org/abs/1810.12803
https://doi.org/10.1051/0004-6361/201527259
https://arxiv.org/abs/1602.04940
https://arxiv.org/abs/1602.04940
https://doi.org/10.1051/0004-6361/201425064
https://arxiv.org/abs/1505.07280
https://doi.org/10.1051/0004-6361/201732477
https://arxiv.org/abs/1805.03690
https://arxiv.org/abs/1805.03690
https://arxiv.org/abs/1911.05175
https://doi.org/10.3402/tellusa.v16i3.8930
https://doi.org/10.1088/0004-637X/768/2/157
https://arxiv.org/abs/1212.1218
https://doi.org/10.1111/j.1365-2966.2004.07587.x
https://doi.org/10.1093/mnras/staa300
https://doi.org/10.1093/mnras/staa3970
https://arxiv.org/abs/2012.12414
https://arxiv.org/abs/2206.00046


Zinn, Joel C. et al. (Nov. 2019). “Testing the Radius Scaling Relation with Gaia DR2 in the Kepler Field”.
In: ApJ 885.2, 166, p. 166. DOI: 10.3847/1538-4357/ab44a9. arXiv: 1910.00719 [astro-ph.SR].

https://doi.org/10.3847/1538-4357/ab44a9
https://arxiv.org/abs/1910.00719




 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ABSTRACT 

 

Asteroseismology provides unique information on stars, which is crucial for probing their 

structure and evolution, but also for understanding the Galaxy evolution and for assessing 

the physical properties of the exoplanets they host. To this end, studying the global seismic 

parameters of an ensemble of stars gives us the opportunity to analyse the variation of stellar 

internal properties along stellar evolution. The four-year time series of Kepler allow us to 

decipher in detail the oscillation spectrum of Asymptotic-Giant Branch (AGB) stars. Moreover, 

Kepler data clearly exhibit an excess of AGB stars that can be identified as the AGB bump. 

First, this thesis focuses on a thorough analysis of the oscillation spectrum of evolved red 

giants. I investigate the main structural differences between Red-Giant Branch (RGB) and 

AGB stars by complementing this seismic study with stellar models and their oscillation 

frequencies calculated with the codes MESA and ADIPLS, respectively. Second, this thesis is 

dedicated to assessing the potential of the AGB bump to be a suitable standard candle as well 

as to constraining mixing processes in stellar interiors. At last, I discuss the implications of 

this work on astrometry and Galactic archaeology. 

 

MOTS CLÉS 

 

astérosismologie – étoiles : oscillations – étoiles : intérieurs – étoiles : évolution – étoiles 

: phases évoluées − étoiles: AGB et post-AGB 

RÉSUMÉ 

 

L'astérosismologie fournit des informations uniques sur les étoiles qui sont non seulement 

essentielles pour sonder leur intérieur et leur évolution, mais aussi pour suivre l'évolution de 

la Galaxie et pour estimer les propriétés physiques des exoplanètes qu'elles abritent. Pour 

cela, l'étude des paramètres sismiques globaux d'un ensemble d'étoiles donne accès aux 

variations de leurs propriétés internes au fil de leur évolution. Les séries temporelles collectées 

par Kepler pendant quatre ans nous permettent de déchiffrer en détail le signal sismique des 

étoiles de la branche des géantes asymptotiques (AGB). De plus, les données de Kepler 

montrent nettement la présence d'une accumulation d'étoiles AGB assimilable au bump de 

l'AGB. L'un des objectifs principaux de ma thèse concerne l'analyse complète du spectre 

d'oscillation des géantes évoluées. J'investigue les principales différences de structure entre 

les étoiles de la branche des géantes rouges (RGB) et de l’AGB en couplant cette analyse 

sismique avec des modèles stellaires et leurs fréquences d'oscillation associées calculées à 

partir des codes MESA et ADIPLS, respectivement. La seconde facette importante de ma thèse 

consiste à évaluer la pertinence d'utiliser le bump de l'AGB comme chandelle standard ainsi 

que comme contrainte pour les processus de mélange dans les intérieurs stellaires. Enfin, je 

passe en revue les implications de ce travail sur les domaines de l'astrométrie et de 

l'archéologie Galactique. 

KEYWORDS 

 
asteroseismology − stars: oscillations − stars: interiors − stars: evolution − stars: late-

type − stars: AGB and post-AGB 
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