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Résumé

Titre : Création de plans d’intérieur avec une tablette

Mots-clés : scène intérieur, plan, reconstruction 3D, mobile, smartphone, tablette, capteur de pro-
fondeur, point de fuite, nuage de points, intéraction utilisateur

L’objectif de cette thèse CIFRE est d’étudier et de tirer parti des derniers appareils mobiles du
marché pour générer des 3D des pièces observées. De nous jours, ces appareils intègrent un grand
nombre de capteurs, tel que des capteurs inertiels, des caméras RGB, et depuis peu, des capteurs de
profondeur. Sans compter la présence de l’écran tactile qui offre une interface pour interagir avec
l’utilisateur.

Un cas d’usage typique de ces modèles 3D est la génération de plans d’intérieur, ou de fichiers
CAO 3D (conception assistée par ordinateur) appliqués à l’industrie du bâtiment. Le modèle permet
d’esquisser les travaux de rénovation d’un appartement, ou d’évaluer la fidélité d’un chantier en cours
avec le modèle initial. Pour le secteur de l’immobilier, la génération automatique de plans et mod-
èles 3D peut faciliter le calcul de la surface habitable et permet de proposer des visites virtuelles à
d’éventuels acquéreurs. Concernant le grand public, ces modèles 3D peuvent être intégrés à des jeux
en réalité mixte afin d’offrir une expérience encore plus immersive, ou pour des applications de réalité
augmentée, telles que la décoration d’intérieur.

La thèse a trois contributions principales. Nous commençons par montrer comment le prob-
lème classique de détection des points de fuite dans une image, peut être revisité pour tirer parti de
l’utilisation de données inertielles. Nous proposons un algorithme simple et efficace de détection de
points de fuite reposant sur l’utilisation du vecteur gravité obtenu via ces données. Un nouveau jeu de
données contenant des photos avec des données inertielles est présenté pour l’évaluation d’algorithmes
d’estimation de points de fuite et encourager les travaux ultérieurs dans cette direction.

Dans une deuxième contribution, nous explorons les approches d’odométrie visuelle de l’état de
l’art qui exploitent des capteurs de profondeur. Localiser l’appareil mobile en temps réel est fonda-
mental pour envisager des applications reposant sur la réalité augmentée. Nous proposons une com-
paraison d’algorithmes existants développés en grande partie pour ordinateur de bureau, afin d’étudier
si leur utilisation sur un appareil mobile est envisageable. Pour chaque approche considérée, nous
évaluons la précision de la localisation et les performances en temps de calcul sur mobile.

Enfin, nous présentons une preuve de concept d’application permettant de générer le plan d’une
pièce, en utilisant une tablette du projet Tango, équipée d’un capteur RGB-D. Notre algorithme ef-
fectue un traitement incrémental des données 3D acquises au cours de l’observation de la pièce con-
sidérée. Nous montrons comment notre approche utilise les indications de l’utilisateur pour corriger
pendant la capture le modèle de la pièce.
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Abstract

Title: Room layout estimation on mobile devices

Keywords: indoor, room layout, floor plan, 3D reconstruction, mobile, smartphone, tablet, depth
sensor, vanishing point, point cloud, user interaction

Room layout generation is the problem of generating a drawing or a digital model of an existing
room from a set of measurements such as laser data or images. The generation of floor plans can find
application in the building industry to assess the quality and the correctness of an ongoing construction
w.r.t. the initial model, or to quickly sketch the renovation of an apartment. Real estate industry can
rely on automatic generation of floor plans to ease the process of checking the livable surface and
to propose virtual visits to prospective customers. As for the general public, the room layout can be
integrated into mixed reality games to provide a better immersiveness experience, or used in other
related augmented reality applications such room redecoration.

The goal of this industrial thesis (CIFRE) is to investigate and take advantage of the state-of-the
art mobile devices in order to automate the process of generating room layouts. Nowadays, modern
mobile devices usually come a wide range of sensors, such as inertial motion unit (IMU), RGB cameras
and, more recently, depth cameras. Moreover, tactile touchscreens offer a natural and simple way to
interact with the user, thus favoring the development of interactive applications, in which the user can
be part of the processing loop.

This work aims at exploiting the richness of such devices to address the room layout generation
problem. The thesis has three major contributions. We first show how the classic problem of detecting
vanishing points in an image can benefit from an a-priori given by the IMU sensor. We propose a
simple and effective algorithm for detecting vanishing points relying on the gravity vector estimated
by the IMU. A new public dataset containing images and the relevant IMU data is introduced to help
assessing vanishing point algorithms and foster further studies in the field.

As a second contribution, we explored the state-of-the-art of real-time localization and map op-
timization algorithms for RGB-D sensors. Real-time localization is a fundamental task to enable
augmented reality applications, and thus it is a critical component when designing interactive applica-
tions. We propose an evaluation of existing algorithms for the common desktop set-up in order to be
employed on a mobile device. For each considered method, we assess the accuracy of the localization
as well as the computational performances when ported on a mobile device.

Finally, we present a proof of concept of application able to generate the room layout relying on
a Project Tango tablet equipped with an RGB-D sensor. In particular, we propose an algorithm that
incrementally processes and fuses the 3D data provided by the sensor in order to obtain the layout
of the room. We show how our algorithm can rely on the user interactions in order to correct the
generated 3D model during the acquisition process.
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2 CHAPTER 1. INTRODUCTION

1.1 Ph.D. context

THIS work is the result of an industrial collaboration between the R&D company Telequid and the
VORTEX team at IRIT laboratory, in the context of a CIFRE convention. Telequid is an R&D com-
pany focused on media interaction: social TV, cloud video edition and “second screen” application
through mobile and web applications using innovative technologies for sound (1D), image (2D) and
video processing. The core applications provided by the company range from media retrieval, video
edition up to augmented reality applications. The objective of this thesis responds to the company’s
goal of exploring the 3rd dimension, in order to further enrich the visual interaction and communi-
cation capabilities of its services and integrate them in its current software and hardware platform.
Telequid wanted to leverage the new capabilities of the mobile devices in terms of sensing, specifi-
cally 3D sensors, and eventually to propose a new service. After an assessment period of some 3D
sensors, a floor plan generation application was chosen as a target application.

1.2 Room layout generation

Room layout generation is the problem of generating a drawing or a digital model to scale of an exist-
ing room. Our goal is to design a mobile application relying on mobile sensors (IMU, RGB camera,
depth camera) and, possibly, on user actions, to produce a model of the room layout. This model
would be consistent with the geometry of the observed room and at scale, i.e. the room dimensions
could be extracted from the model. Depending on the needs of the user, the model could be imported
into another application for further use.

A typical usage of room layouts is the generation of floor plans or 3D Computer Aided Design
(CAD) models for the building industry: the model can be used to sketch the renovation of an apart-
ment or to assess the quality and the correctness of an ongoing construction w.r.t. the initial model.
In the context of the real estate industry, the automatic generation of floor plans can ease the process
of checking the livable surface and to propose virtual visits to prospective customers. Some notable
rental platform and estate agencies such as AirBnB, Habiteo, and Orpi already propose 3D visits on
their website, as illustrated in Figure 1.1. Room layouts can also be used for indoor navigation to

(a) Habiteo 2.5D tour. Image courtesy of Habiteo. (b) 2.5 indoor maps generated by Pintore et al. [147]

Figure 1.1: Room layout usages for the real estate.

help people localize themselves in large areas such as shopping malls or airports, or even for robot
navigation in human-made environments. A new demand for layouts and 3D models is also coming
from companies performing energy audits to analyze and assess energy efficiency of buildings: the
3D model of the room(s) integrating building envelope (i.e. walls, doors, floors, etc.) can be fed in a
tuned thermal model to provide an estimate of the thermal efficiency of the building without costly and
time-consuming measurements. For the general public, the room layout can be integrated into mixed
reality games to provide a better immersiveness experience, or used in other related augmented reality
applications such room redecoration as shown in Figure 1.2.

The different consumers of room layouts (geometers, architects, real estate agents, individuals,
etc.) have different requirements. While geometer’s floor plans require high accuracy, architects may

https://www.habiteo.com
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(a) Samsung VuildUs virtual reality application enables to vi-
sualize virtual furniture in a reconstructed room and to check
their sizes fit the available space. Image courtesy of VuildUs.

(b) HomeAR augmented reality furniture visual-
ization. Image courtesy of HomeAR.

Figure 1.2: Room layout usages for individuals

need less accurate models that can be easily (possibly, automatically) annotated to identify and local-
ize water intakes, electrical plugs, the presence of a suspended ceiling, etc. In the next section, we
will see there are existing room layout estimation solutions which can satisfy some of these specific
requirements.

1.3 Industrial state of the art
We classified the existing solutions into two categories:

• acquisition devices, to take individual measurements or capture 3D point clouds;

• modeling software and services, to generate CAD models or floor plans from measurements or
3D point clouds.

When a product combines the two solutions, we call it an all-in-one solution. The creation of the
room layout can be performed during the acquisition, we call this workflow online, or after the acqui-
sition (offline workflow). In the case of an online process, missing data or measurements may lead to
incomplete plans, thus requiring costly do-overs on site.

1.3.1 Acquisition devices
We separated the manual measurement and the point cloud acquisitions devices. These devices can
also be classified in term of accuracy, cost, public (individuals or professionals), efficiency, etc., as we
did in Table 1.1, which also highlights all-in-one products and technologies which appeared during
this Ph.D.

1.3.1.1 Manual measurements

Laser rangefinders are individual measurement devices relying on a (usually pulsed) laser Time
of Flight (ToF) technology. They offer high accuracy (3 mm of absolute error) for prices starting at
e 70. The operator performs the measurements by holding the device at one of the extremities of
the object to measure and aims at the other extremity with the laser. Each measurement has to be
reported on a freehand sketch or a mobile application. Figure 1.3 shows the three steps of this process.
This task can be challenging when dealing with furnished or cluttered environments, preventing the
direct measurement of certain distances. The accuracy of the measurements is mainly affected by the
difficulty to hold the device perfectly level: in our experiments (see Section 5.A), we demonstrate that
the relative error of the measurements is around 1 mm m−1.

Angles and distances measurements Another method to estimate a room layout is to consider a
fixed point, seen as the origin of the scene, and to measure the angles between two successive room
corners (w.r.t. the origin), and the distances from the origin to each corner. The measurement device
performs rotational movements only. The main advantage of this approach is the automation of the
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Figure 1.3: Left: Bosh laser rangefinder. Middle and right: freehand sketch of a room and drawing with
constraints in FreeCad.

room layout drawing from the measurements, i.e. an online workflow: the user can immediately see
whether there is a problem with a measurement or not. For example, Measurix illustrated in Fig-
ure 1.4a is a solution combining a Pocket PC, a tripod, a laser rangefinder, and a system to measure its
orientation, after each measurement, a segment is displayed on the Pocket PC. The main disadvantage
of these approaches is they can only handle rooms with a geometry corresponding to a star domain
[192]1. Arkisketch (see Figure 1.4b) proposes another solution with a laser rangefinder, which can be
plugged into a smartphone using the phone IMU to estimate the laser orientation. The Magic Plan ap-
plication shown in Figure 1.4c is an alternative not requiring a rangefinder: the distances are evaluated
by trigonometry from the device orientation, the distance of the device to the floor (assumed constant
and calibrated) and optionally the ceiling height. Implementation details of a similar system can be
found in [146]. In term of accuracy, the use of a tripod guarantees to Measurix small measurement
errors, Arkisketch is affected by the imperfect rotation of the user smartphone, and Magic Plan can
suffer from high errors (superior to 10 cm) with large rooms. Very recently, augmented reality frame-
works such as ARKit and ARCore allow to track horizontal planes (usually the ground), localize the
mobile device, which is not constrained to rotational movements. They enable a new way to perform
manual measurements: the user can perform selections on a plane, such as selecting horizontal lines
or points on the plane and get the relevant measurement. The latter solution is being considered by
Occipital TapMeasure and Magic Plan (latest version for devices compatibles with ARKit). At the
time of writing the AR frameworks do not provide a simple access to the 3D data.

(a) Measurix solution.
Image courtesy of Mea-
surix.

(b) Archisketch rangefinder. Image courtesy of
Archisketch.

(c) MagicPlan application.
Image courtesy of Sensopia.

Figure 1.4: Three hardware and software solutions to perform manual room layout estimation from angles and
distances measurements.

1A set of points S is called a star domain if there exists a point p ∈ S such that all points of S are connected to p by a line
segment included in S. In our case, it means there must be at least one location from which all the wall corners are visible.
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1.3.1.2 Point clouds

Another category of devices can aggregate multiple distance measurements at a given moment and
build point clouds. The acquisition process, instead of measuring the walls, scans the full room with
as much as details as possible, and the measurements are extracted from the point cloud later.

Some devices are static: they are placed on a tripod the operator has to displace between each
acquisition. Other devices are mobile, allowing faster acquisitions and a larger diversity of viewpoints.
In both cases, the various acquisitions have to be aggregated w.r.t. the device position and orientation.
For static devices, there are only a few pose estimations to perform, generally from the point clouds or
manually with targets. On mobile devices, instead, the pose estimation must be performed at least at
the acquisition rate of the depth and image sensors. We will see later that it implies a lower accuracy
of the camera pose.

Smartphones and tablets started to integrate a depth sensor in 2014, mainly with Project Tango
devices and the Structure Sensor by Occipital. Earlier devices, such as the Phi.3D, use desktop
depth sensors. We detail depth sensors technologies for mobile devices in Section 4.2 on page 42.
Their range is limited (4.5 m maximum) and the measurement error increases with the distance (around
1 cm error at a 3 m distance). Applications to create floor plans on these devices emerged then, such
as:

• Easybuild with an online workflow where the user selects each wall in a precise order, Fig-
ure 1.5a displays the selected walls;

• MyCaptr, with an offline workflow, where at the end of the scan, the user can select an horizontal
slice of the point cloud which is processed to extract the walls, as shown in Figure 1.5b;

• Canvas.io (see Figure 1.5c), with an offline workflow where all the 3D data is sent to their
paying modeling service.

(a) Easybuild for Google Tango devices. Image
courtesy of Wosomtech.

(b) MyCaptr for Google Tango
devices. Image courtesy of Lev-
elS3D.

(c) Canvas.io for iOS devices with
the Structure Sensor. Image cour-
tesy of Occipital.

Figure 1.5: Three applications for mobile devices equipped with depth sensors to estimate room layouts.

Portable solutions combine a 2D ToF laser range scanner, an IMU and a wide angle RGB camera
such as the Paracosm PX-80 and the Kaarta Contour. Some solutions require a backpack, to carry
the acquisition unit (Geoslam Zeb-Revo) or even the sensors (Leica Pegasus). Although these
sensors are very accurate, localization errors lead to final measurements errors around a few cm. They
are designed for professionals and cost more than e 10000.

Trolleys solutions allow to carry heavier hardware and to generate more regular point clouds since
the sensors are not affected by the movements of the operators during the walk. It is more suitable for
large indoor spaces with a flat floor. Existing commercial, illustrated in Figure 1.7 include Viametris
iMS 3D, Navvis M3 Trolley, both use sensors similar to the Portable solutions mentioned earlier, and
Applanix-Trimple Timms, which uses a 3D laser sensor typical of tripods solutions.
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(a) Countour. Image courtesy
of Kaarta.

(b) PX-80. Image cour-
tesy of Paracosm.

(c) Zebrevo. Image courtesy of
Geoslam.

(d) Pegaasus backpack.
Image courtesy of Leica.

Figure 1.6: Four portables solutions to capture point clouds in indoor scenes. Although not visible, the four
solutions include a screen to monitor the point clouds acquisition and registration.

(a) iMS 3D trolley. Image
courtesy of Viametris.

(b) The M3 trolley. Image
courtesy of Navvis.

(c) The Timms trolley applica-
tion. Image courtesy of Ap-
planix.

Figure 1.7: Three trolleys solutions to capture point clouds in indoor scenes.

Scanners on tripods use generally a phase-shift laser ToF technology which offers long range
(70–1000m) and high distance accuracy (1 mm of error). They are often referred as Light Detection
And Ranging (Lidar) and their use are more suitable for large scenes, especially when high accuracy
is needed, and there are a lot of details to capture. Figure 1.8a depicts a Leica P30 Lidar. They
are very expensive (> e 20000), generally heavy and fragile, and their use is restricted to geospatial
professionals.

Matterport and iGuide shown in Figure 1.8b and Figure 1.8c propose all-in-one solutions to
generate floor plans and virtual visits, with more affordable hardware (around e 3400 for Matterport).
Matterport 3D camera uses three rotating 3D sensors similar to the Kinect for Xbox 360 (KinectSL),
which have a limited range (4.5 m maximum) and a lower accuracy, as we have seen for Smartphones
and tablets solutions. iGuide (formerly Planitar) 3D sensor is a fixed 2D laser scanner. Both products
send all the photos and 3D data to their servers where the floor plans are generated, probably with the
help of humans operator, and delivered with one or two business days. Matterport requires manual
operation from the clients to handle windows, mirrors and to clean the point cloud before generating
a floor plan.

1.3.2 Modeling software and services

The modeling step produces the CAD models and/or the floor plans. Their input can either be mea-
surements or a point cloud. In the first case, an operator can use a drawing software such as AutoCad
LT (Figure 1.9a) to report measurements, apply constraints (orthogonality, parallelism, etc.) in order
to draw a model. In the second case, a point cloud processing and drawing software is used, such
as PointCab (Figure 1.9b) and Revit (Figure 1.9c). They offer functions to create automatically or
semi-automatically CAD models from point clouds. These software applications are generally very
expensive (generally more than e 2000), and require high-end computers to load and handle several
hundreds of millions of 3D points. The creation of an apartment CAD model can take several hours
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(a) P30 Lidar. Image courtesy of
Leica.

(b) Matterport scanning solu-
tion. Image courtesy of Matter-
port.

(c) The iGuide acquisition sys-
tem. Image courtesy of iGuide.

Figure 1.8: Three tripod scanning solutions.

Cat. Product Device
motion

Accu-
racy

Workflow Cost Public Capture/Layout
time

M
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su
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m

en
ts

Laser rangefinder Free
motion

High Offline Low General public Fast / Slow

Magic Plan Rotation Low Online Low General public Fast / Fast

Measurix Rotation High Online N.A. Trained staff Fast / Fast

Magic Plan ARKit, Tap
Measure

Free
motion

Medium Online Low General public Fast / Fast

Archisketch Rotation Medium Online Medium General public Fast / Fast

Po
in

tc
lo

ud
ba

se
d

Easybuild Free
motion

Medium Online Medium General public Fast / Fast

Canvas.io, GeoCV,
MyCaptr

Free
motion

Medium Offline Medium General public Medium / Slow

Phi.3D Free
motion

Medium Offline High Professional Medium / Slow

Portable solutions Free
motion

Medium Offline Very
high

Professional Medium / Slow

Trolley solutions Wheeled Medium Offline Very
high

Professional Medium / Slow

Matterport, iGuide On tripod High Offline High Trained staff Slow / Slow

Lidars On tripod Very
high

Offline Very
high

Professional Slow / Slow

Table 1.1: Comparison of acquisition devices and services to estimate room layouts. Product names in bold refer
to all-in-one solutions. We highlight in gray the products that appeared after the beginning of this Ph.D. thesis in
2014. The cost column refers to the price of hardware and software acquisition, and it assumes the users owns a
mobile device with ARKit support.

even for an experienced user. Some companies, such as Snapkin propose services to create a model
from a point cloud using both automatic and manual operations. The delivery of the result can take
several days. All-in-one solutions such as GeoCV, MyCaptr, Canvas.io, Matterport, iGuide inter-
nalized such a service.

1.4 Another solution

In 2014, at the beginning of the Ph.D., the solutions compared in Table 1.1 showed that Magic Plan
was the only solution for the general public to offer an online workflow (i.e. where the room layout
can be generated during the acquisition). As explained earlier, online solutions are interesting as they
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(a) Floor plan drawing with AutoCAD LT.
Image courtesy of Autodesk.

(b) Automatic 2D vectorization
from a sliced point cloud. Image
courtesy of PointCab.

(c) Plane fitting on a point cloud
with Revit. Image courtesy of
Autodesk.

Figure 1.9: Drawing and point cloud processing software.

allow to have direct feedback so that errors can be immediately noticed and possibly corrected directly
on-site. The main limitation of Magic Plan was its low accuracy, which comes from the assumption
that the device height is constant, the imperfect rotation of the user and the difficulty to select a corner
hidden by furniture. We wanted to propose a new online solution designed for the general public
with higher accuracy. The choice to design a mobile application was motivated by the wide diffusion
of mobile devices and their increasing computing capabilities, which has enabled real-time image
processing and the blooming of mobile computer vision applications. Moreover, the recent trend of
equipping mobile devices with 3D sensors is making such devices a powerful tool for developing
applications that are aware of the 3D structure of the scene, beside the already existing capability of
sensing the movements and the orientation, granted by the different inertial sensors. Finally, one of
the most significant innovations introduced by modern mobile devices is the unique way of interacting
with the user through the touchscreen: the user can easily intervene and interact with the application
with the gestures on the screen, possibly avoiding or correcting errors, in a user-in-the-loop paradigm.

1.5 Contributions
The goal of this thesis is to take advantage of modern mobile devices, and in particular devices with
depth sensors. A comparison and a study of their limitation are carried out in Section 4.2. We also
investigate and propose solutions to the scientific challenges underlying the room layout generation
problem in the context of mobile devices. In particular, the interest in the user interaction field is linked
to the presence of a touchscreen. The presence of sensors such as RGB cameras, IMU, depth sensors
led us to consider various fields such as computer vision, image processing, point cloud processing,
localization and mapping issues.

In Chapter 2 we will detail the various issues related to the problem of room layout estimation
on mobile devices. This chapter articulates the rest of the thesis since each of the following chapters
will focus on particular challenges identified there. For the purpose of image understanding, we study
in Chapter 3 the problem of VP estimation in images. In Chapter 4 we will study the challenges
of real-time pose estimation and the problem of map optimization in the context of plane features.
Assuming the device can then reliably localize and map the environment, we address the problem of
layout estimation from 3D data and user inputs in Chapter 5.
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THERE are multiple paths from a problem to a solution. The path of this thesis is the reflect of the
investment performed among some scientific and technical challenges initially identified and continu-
ously updated. Thus, to explain our works, we are going to detail these different challenges, and which
chapters they are related to.

2.1 Assumptions

(a) The ideal and easiest case: an empty room of rea-
sonable size with a rectangular shape. Image courtesy
of Getty Image.

(b) The case we chose to handle: reasonable sized
room with clutter and weak Manhattan assumption.

Figure 2.1: The ideal room and a typical office room.

Scene hypotheses All rooms are not like the one in Figure 2.1a: rectangular and empty. It exists a
large variety of indoor scenes designed by architects, the most original projects may have non-vertical
walls or curved walls and ceiling, as illustrated in Figure 2.2. Open plan designs (where there are
subtle or no separation between the functional parts of the living area), erase the concept of rooms
and make the understanding of the scenes more complex. Issues can also originate from the room
decorations, as show in Figure 2.3: furniture and decorations may hide completely a wall, mirrors and
bay window may not be perceived by imaging sensors, wall cladding alter the flatness of the walls and
thus their detection.

Figure 2.2: There is a large variety of indoor rooms designed by architects. From left to right: slanted walls
in the Asymmetric Valley House, curved walls and ceiling in Perivolas hotel, mezzanine floor or the difficulty to
separate rooms. Images courtesy of PlanBureau, Perivolas, and Mint Tiny Homes.

Faced with the diversity of the rooms, it is necessary to restrict the indoor spaces we will handle.
We discarded indoor scenes with non vertical wall because they are very uncommon. The Strong/Weak
Manhattan World hypotheses correspond to two very common hypotheses on the geometry of the
room. The Weak Manhattan assumption (Figure 2.4b, sometimes called Soft Manhattan) states that
the scene is made of a horizontal planar floor, with planar walls orthogonal to the floor, and the ceiling
parallel to it. The Strong Manhattan assumption (Figure 2.4a) imposes the walls are also orthogonal or
parallel each other. Since indoor space from European cities rarely comply with the Strong Manhattan
hypothesis, we opted for the Weak one. Given the accuracy and the limited range of conventional
depth sensors, we restricted ourselves to reasonable size rooms (under 200 m2) and a ceiling height
limiter to 5 m. Objects occluding the walls (decorations, furniture, etc.) are generally referred as
clutter. We decided to handle cluttered scenes, which are very common, knowing some specific cases,
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Figure 2.3: Decorations can make the rooms very challenging to capture. From left to right: rock face wall
cladding produces non-flat surfaces, a massive furniture which prevents from capturing the wall behind, bay
windows, which cannot be perceived by imaging sensors. Images courtesy of Gosford Quarries, Produce.com.sg,
and budget-maison.com

such as full occlusion of the walls could not be handled. Figure 2.1b illustrates our room hypotheses:
a reasonable sized room, with vertical planar walls, following the Weak Manhattan assumption, and
with reasonable clutter.

(a) Strong Manhattan: the walls are orthogonal to the
floor and between themselves.

(b) Weak Manhattan: the walls are orthogonal to the
floor but can have any orientation.

Figure 2.4: Strong and weak Manhattan assumptions.

Hardware choices The choice of the device can also have an impact on the results: different com-
putational power, memory resources, quality of the sensors, developer Application Programming In-
terface (API), etc. We opted first for the Apple iPad Air tablet which was at the time a high-end
device with interesting performances. Its choice was also motivated by the reduced fragmentation of
Apple devices, the presence (at the time) of a more advanced camera API and its compatibility with
the Structure Sensor accessory. We later considered the Project Tango Tablet Development Kit
(Tango TDK), which is a more powerful device with a built-in depth sensor.

2.2 Challenges

In this section, we will introduce and overview the different challenges related to our problem. Zla-
tanova et al. [227] proposed a list of open problems that need to be taken into account when dealing
with indoor mapping. Starting from the challenges identified by Zlatanova et al., we adapt and enrich
them to the specificities of our topic. In particular, we recall that we are first considering the hypoth-
esis of Strong Manhattan scenes observed with a high-end mobile device, without depth sensor, and
then the hypothesis of Weak Manhattan scenes, observed from a high-end mobile device with a depth
camera. Moreover, our solution is considering two levels, the man and the machine, working jointly.
The machine refers to the chosen hardware and the developed software, which sense and analyze the
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scene, possibly making errors. The human controls the process and should be able to intervene and
interact to provide guidances or corrections.

2.2.1 Visualization and User interaction
The touchscreen on mobile devices is an interface between the user and the systems. It is both an input
and an output of the system. Abowd and Beale framework [44] is a model of the computer-machine
interactions presented in Figure 2.5, which also provides an interpretation of the possible issues in
using an interface. Following this model, the user formulates his intentions to the user interface input,
which is interpreted by the system. The latter performs computations and changes its state, which is
represented on the user interface output. The user observes this representation and formulates new
intentions. As we can see, the user acts in a loop with the system through the user interface. It means
the user interface (input and output) and the system should be designed jointly. Thereafter, we will
call visualization the user interface output, and user interaction its input.

SYSTEM

- Executes the actions
- Displays the system state → Output

USER

OUTPUT

INPUT
- Formulates intentions
- Specifies actions → Input

- Interprets system state
- Evaluates the system state 

with respect with the goal

INTERFACE

Figure 2.5: Abowd and Beal framework.

Augmented Reality The user interface can have different communication channels, called modali-
ties, between the system and the user. In our case, the two input modalities are the touchscreen and the
6 Degree Of Freedom (DOF) device tracking allowing Augmented Reality (AR) interactions. With AR
applications, the user can interact on the image of the camera displayed on the screen, while moving at
the same time the device, which changes the image displayed on the screen. For example, positioning
a virtual object (e.g. a wall corner) in an augmented view can be done with the touch screen (pan and
rotation gestures), by moving/rotating the mobile device until the object is located and aligned where
it should be, or by combining the two modalities. Another challenge with AR applications is to design
interactions which offer high level of accuracy, taking into account the viewpoint can be shaky due to
issues with the tracking or uncontrolled user movements.

Usability goals One important challenge consists in designing a user interface which is effective (it
makes possible to achieve the task), efficient (it enables to perform the task fast), and easy to use (can
be understood with none or little training), which are some of the usability goals defined by Rogers
et al. [151]. These criteria can be evaluated with user studies, which monitor for example the success
rate, the number of interactions, the interaction duration and user feedbacks on several groups of users.

Cooperation and interactions design Something is missing in Figure 2.5: the system receives non-
user inputs. In our case, it can capture the physical environment with its camera (and eventually a
depth sensor), which may be sufficient to find the solutions in some scenarios. When the user and
the system work jointly to produce a solution several other issues arise: how the interactions affect
the automatic process? How is used the input from the user to correct the model? At which extent
the user can override what the machine is producing? Which task can be influenced by the user and
which others are considered fully automatic? On the one hand, we can find automatic approaches
such as PolyFit [126] and Murali Scan2BIM [125], where the room layout can be estimated without
the assistance of the user. The user may intervene in the form of corrective actions at the end of the
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system processing, as in [123, 148]. On the other hand, there are user-driven approaches such as
Magic Plan Figure 1.4c and Tap Measure, which let the user selects all the corners. The system may
intervene in solutions like Easybuild and O-Snap [9] where the user manually selects each surface to
keep. The system reduces the user effort by detecting the corresponding planar surfaces and connects
them. To find a good balance between user and effort repartition, it should be known in the one hand,
what the system can achieve (e.g. localization, partially detect room corners, walls, clutter, find some
connections between walls, etc.), and in the other hand, what user interactions to consider. These user
interactions should be designed in term of behaviors, which define the place of the user with respect
to the system: initialize, validate, correct, ask, answer, finalize, etc., including manual modes (e.g.
model/create, select, edit, etc.), provided by the different modalities which enable interaction medium
such as gestures, widgets (button, scrollbar, menu, . . . ), device motion, etc.

2.2.2 System Acquisition
Acquisition is the step where information (mostly spatial, such as distances, angles, structure, etc.) of
the considered scene is captured. These data are the input of two important problems we detail later
on: localization and modeling.

As detailed by Khoshelham and Zlatanova [95], a wide range of sensors can be considered: IMU,
RGB camera, depth sensors, radio-based sensors, etc. The main challenges associated with the use of
sensors are:

• the choice of the sensor (which sensors to consider and which technologies);

• the calibration process, which should be transparent to the user or simple;

• the handling of the sensor data noise;

• data fusion between different sensors with different characteristics.

In the following, we further discuss these points for different sensors present in mobile devices.

2.2.2.1 Mobile device sensors

IMUs combine inertial (accelerometer and gyroscopes) and magnetic sensors. The fusion and inte-
gration of these sensor data can be used to estimate:

• the roll and pitch angles of the device, accurately in the long term;

• the heading angle of the device with a lower accuracy or only in the short term (i.e. during a
short period of time);

• the position of the device on the short term only as demonstrated in [133].

The choice of a high-end mobile device generally guarantees the presence of gyroscopes and higher-
quality sensors. Their calibration is performed by the manufacturer (e.g. temperature sensitivity, scale
factor error, sensor axis misalignment, etc.) to provide “usable” raw inertial data, but not noise-free.
While mobile Software Development Kits (SDKs) provide functions to retrieve the device orientation,
it can be convenient to use its own implementation, in order to add support to the device position
estimation and to handle manufacturer flaw such as the iPhone 5S orientation bias 1. It is a difficult
task because of the complexity of the filter and the addition of a custom calibration process for the
end-user.

RGB cameras offer high resolution images suitable for accurate applications such as motion esti-
mation. Again, the choice of the image sensor comes from the choice of the mobile device: higher-end
smartphones offer additional options: video image stabilization, higher Frame per Second (FPS), etc.
Mobile SDKs rarely provide the intrinsic parameters of the cameras, which imply the design of a
calibration process.

1https://gizmodo.com/heres-why-the-iphone-5s-accelerometer-is-so-screwed-up-1445966306
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Depth cameras are either built-in in some mobile devices or pluggable. We will detail in Section 4.2
the various technologies and their associated limitations. In general, the main issues for consumer
depth cameras in the context of mapping is the quality of the provided data: the measurements noise
increase significantly with the distance and some materials like glasses or reflective surface may affect
the accuracy of the measurements.

Radio sensors and Microphones can be used for the localization, but they require referenced emit-
ters and only offer a low accuracy both in the short and long term. For this reason, they are not
considered in this thesis.

2.2.2.2 Sensor fusion

When multiple and different sensors are available, it is interesting to combine them as they can com-
pensate their single limitations, thus providing more reliable measurements. We will discuss more in
detail how in Section 3.2.2 to employ multiple sensors to improve the estimation of vanishing points.
When employing multiple sensors, calibration is needed in order to address two main problems:

• time synchronization, since the sensors may not use the same clock, or time information may
not be present;

• sensor-to-sensor frame transformation and especially orientation alignment.

Again the calibration should be transparent for the end-user or easy to perform.
The main challenge is then the data fusion between the sensors, i.e. integrating the various sensor

data to produce more consistent and accurate measurements than the one provided by each individual
sensor. Usually, this requires the design of a filter to combine the sensor data with their different noise
model and acquisition rates.

2.2.3 System Localization

During the acquisition process with a hand-held device, the user may need to move around to capture
the entire space, introducing the challenge of the device localization. The use of GLONASS-GPS
signals is not possible in indoor environments because building materials significantly reduce their
signal strength, and their positioning accuracy is very low (around 2 m). We previously saw systems
relying on a radio system or an IMU only could not be considered either. Cameras (RGB and range
imaging) can, however, be used for precise indoor localization, with multiple setups (one or several
cameras, with the eventual inclusion of an IMU) and assuming good image quality and the presence
of texture. When the device visits an unknown space, the localization relies on a dead reckoning
process: the current device position is estimated from the previously estimated location. 1 Each error
leads to an offset in the subsequent positions, which may increase over time with the accumulation
of the errors. It is a component which has to be reliable: it should provide accurate result in constant
(or bounded) time, at a high frame rate, and obviously be completely crash-free and leak-free despite
the complexity of the processing. It should be also versatile, to handle well different environments
(low texture, flat scenes, low luminosity, etc.). In Chapter 4 we detail the components of an RGB-D
localization algorithm, we explain how to evaluate it, and which factors can impact their accuracy.

2.2.4 System Data interpretation and modeling

After the data is acquired by the various sensors, it has to be processed to generate a model, a simplified
geometric representation of the captured data (here a room layout) with semantic information (e.g.
doors, walls, ceiling, etc.).

1We see here the interaction scheme can have an impact on the localization accuracy. If the user is forced to revisit a place
(e.g. force to perform a trajectory which loops), the accuracy is increased. In contrast, if the user is asked to perform a long,
complex and shaky interaction, e.g. to perform a painter movement with the device to select the walls, more positional errors
may be accumulate.
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Data interpretation can be seen as a segmentation process where some parts of the data are ag-
gregated and assigned a label. The segmentation can originate from the extraction of features: for
example, planes can be detected and classified as wall, floor or ceiling. But not necessarily: individual
points or surface elements can be segmented individually as well, and then aggregated, as in [74]. The
challenge is to obtain the highest sensitivity and precision, with a low computational cost, coping with
data noise for the feature extraction process, and handling the large diversity of the indoor scenes seen
in Section 2.1 on page 10 for the segmentation process.

Data modeling takes the interpreted data and computes (in the 2D case) a polygon representing
the 2D shape of the scanned room. It should minimize both a model fitting and a model complexity
criterion. On one hand, a high weight on the complexity term enables to obtain a simplified solution
when there is for example too many outlier data, on the other hand, a complex scene may rather need
a relaxed complexity. The modeling can also take advantage of extracted features. Some monocular
approaches rely on line segments analyzed with the help of VP (detailed in Chapter 3), while methods
taking advantage of 3D data can take into consideration planar surfaces, detailed in Chapter 5).

Data interpretation and modeling are tied since generating a 2D room layout is giving a wall label
to the features generating the layout. The two processes share common challenges, such as handling
an acquisition under progress, handling missing data, and eventual speed constraints.

2.2.5 User privacy
It is quite natural to consider his own home as an intimate area and to be cautious when sharing
a picture of it. Things tend to be different with a 3D scan, though, as it combines photos, a 3D
model, and, potentially, the recognition of all the owner’s objects. Knowing the exact location of
the building, the size of the house and all the rooms, the brands of the furniture, etc., may be used
to infer or reveal the apparent wealth, tastes, and other private and sensitive information, which can
be exploited for commercial purposes. For the time being, there are concerns about possible future
sale of users’ floor plan collected by Roomba robotic vacuum iRobot are already a concern2. On
the technical side, preserving the user privacy requires identifying the sensitive data, and to protect it:
the data can be simply discarded once the processing has been completed, encrypted if needed to be
stored. Some data, even harmless in appearance such as local features extracted from images, used to
perform visual place recognition, can affect the user privacy, as demonstrated by Angelo et al. [41]
who partly recovers images from a set of features. On the user side, it is very important is to establish
a trust feeling with clear privacy policies, supported by adequate technical choices: for example, an
application that does not require an Internet connection can be perceived as “safer” as it may assure a
more control of the data (i.e. no cloud storage). Similarly, the release of the source code can help to
verify whether the software complies with the data privacy policy.

2.3 Conclusion
In this chapter, we have presented our work hypotheses and identified the different challenges of the
room layout estimation problem. To face the diversity of the indoor scenes, we categorized and re-
stricted the set of the considered scenes. In Chapter 3 we consider Strong Manhattan scenes observed
with high-end mobile device, without depth sensor and we propose a new method to estimate VP com-
bining the data from both the camera and the IMU. VPs are an important geometric cue for orientation
estimation and for image understanding tasks. In the next chapter we instead relax the Manhattan
constraint, and we consider the case of Weak Manhattan scenes using a mobile device equipped with
depth sensors. In particular, in Chapter 4 we will tackle the localization problem with the help of depth
sensors and in Chapter 5 we will study different solutions for the modeling problem while respecting
the user privacy.

2https://www.theguardian.com/technology/2017/jul/25/roomba-maker-could-share-maps-users-homes-google-amazon-
apple-irobot-robot-vacuum
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3.1 Introduction

IN the context of the estimation of the room layout of Strong Manhattan scenes (defined in Section 2.1
on page 10) without depth sensor, the understanding of the scene relies mainly on the analysis of RGB
images. Image understanding requires the analysis of the geometric properties of the image: since
the perspective projection is a non-invertible mapping between the 3D dimensional scene and the 2D
image plane, the depth information is lost, thus making image interpretation a challenging task [13].
Studying and analyzing the geometric properties of an image is thus crucial to recover the spatial
layout of the scene.

A well-known geometric entity that can be used as a strong cue for image understanding is the
vanishing point. Under the perspective projection, parallel lines in the scene are mapped to a pencil
of lines that intersect in a so-called Vanishing Point (VP), an image point that is the projection of
the intersection of the parallel lines at infinity. In a calibrated camera, a vanishing point gives the
3D direction of the pencil of lines. Detecting a VP can thus provide a strong constraint on the scene
geometry. Strong Manhattan scenes consist of three orthogonal dominant directions, i.e. there are
three main sets of parallel lines. By detecting these three orthogonal VPs associated to the sets of
parallel lines, some information about the camera and the scene can be inferred: e.g. the camera can
be calibrated [30, 212] and its rotation w.r.t. the scene can be estimated [7, 86, 101]. Vanishing points
can be used as priors to constrain the 3D reconstruction of such scenes [59], indoor and outdoor scene
understanding and reconstruction from a single image [75, 73, 100, 121] and as a fundamental cue for
recovering the spatial layout of the scene [163, 184]. Figure 3.1 illustrates these last two applications.
Recently, VPs have received a lot of interest in many works dealing with Visual Odometry (VO)
robustness [57, 226, 183, 29].

Figure 3.1: VP application examples. Top row: illustration of an outdoor scene segmentation application from
[75] and VP guided semantic VO from [57]. Bottom row: illustration of room layout (cyan lines) and box-shaped
objects (blue and red lines) estimation from [184].

Another important source of information that can help the interpretation of a scene is the iner-
tial data. In the last years, we witnessed the development and the large diffusion of mobile devices
equipped with Inertial Motion Unit (IMU), such as accelerometers, magnetometers and gyroscopes.
Thanks to such sensors, the absolute orientation and the gravity vector of the camera can be estimated
for each taken picture. Inertial data has been widely used in robotics in combination with the visual
data in order to estimate the movement and the pose of the robots [38]. The recent diffusion of mobile
devices has fostered their adoption in many computer vision and multimedia applications, such as 3D
reconstruction [200], in order to provide a better estimation of the camera movement, especially when
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the visual data is affected by, e.g., occlusions and motion blur.
In this chapter, we will mainly focus on the problem of VP estimation, we will see how to take

advantage of IMU data to ease this process. We will provide some background on VPs computation
from image processing and on inertial sensors in Section 3.2. In Section 3.3, we will describe our
approach where the IMU data is considered as a prior for estimating the VPs, and present the results of
its evaluation in Section 3.4. Section 3.5 presents a mobile application which integrates our estimation
algorithm on a stream of images and IMU data. Finally, we will present further use and limits of VP
and conclude in Section 3.6.

3.2 Background

3.2.1 Vanishing point detection
In this section we focus on the VP detection in “Manhattan scenes”, in which there exist three domi-
nant, mutually orthogonal directions. For this reason, the VPs corresponding to their converging points
in the image plane are called orthogonal VPs.

Figure 3.2: Overview of classical VPs estimation approaches relying on feature clusterization. In a first step,
features are extracted from the image, here line segments in red. In a second step, the segments are clustered.
Each color corresponds to a cluster associated with a vanishing direction. In a third step, the VPs are estimated on
each cluster (considering the three biggest clusters), here computing the mutual intersection of the line segments.
The VP corresponding to the red line segments is displayed in green.

The detection of vanishing points requires the extraction of geometric features in the image, such
as image gradients, lines or line segments. Line segments can be extracted with advanced image
processing techniques, such as the LSD algorithm [67] based on an a-contrario approach, which has
been shown to have a better control of the ratio of false-positive detection. The use of image gradients
[34] and other low-level features, provides local orientation information and are mostly used to detect
a single dominant VP.

A common approach is to cluster the features to estimate the VPs. Each cluster contains a pencil
of lines (or other features) corresponding to parallel 3D lines of the scene. This task can be considered
as a classic “chicken-and-egg” problem: if the feature clustering is known, then the VPs can be easily
estimated as the point that minimizes a certain distance measure w.r.t. the features of each cluster.
Conversely, if the VPs are given, the feature clustering is easily solved by assigning each feature to
the “closest” VP (w.r.t. a certain distance measure). Figure 3.2 illustrates this approach. Various tech-
niques have been suggested in the literature for the clusterization of the lines: Hough based methods
[13], RANdom SAmple Consensus (RANSAC) frameworks [1, 168, 213] and J-linkage algorithm
[201]. The last step relies on the estimation of the VP for each cluster as the point that minimizes
the sum of a consistency measure between the considered lines and the VP solution. The consistency
measure is a distance between a point and a line (or line segment), which evaluates the proximity of
the point to the line (or line segment.) Several formulations have been proposed for this measure, such
as point-line distance error functions [8, 168, 201], orientation error functions [42, 129, 179], or prob-
abilistic error functions [36, 216]. Figure 3.3 illustrates some of them. Finally, the VP is commonly
refined with an iterative process such as the Expectation Maximization (EM) approach proposed by
[101]. The final orthogonal triplet is then chosen among the possible solutions or, as in [168] the
orthogonality constraint can be enforced during the VP estimation process.

To perform the clusterization and compute the consistency measure, several working spaces have
been proposed: the image space [168, 201], the Gaussian sphere [13, 36, 101], and dual spaces [89,
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(a) The consistency measure is
the angular distance θ between
the great circle of the line l red
and the VP v in blue.

(b) The consistency measure considered in [201] is the perpen-
dicular distance between the line segment endpoints and the line
l̂ joining the segment centroid to the VP v. Image courtesy of
[201].

(c) The consistency measure consid-
ered in [43] is the angular distance θ be-
tween the line l and the VP v1. Images
courtesy of [216].

(d) The consistency measure considered in [216] is proportional
to the probability of displacement of the line segment endpoints
e1, e2 (modeled with 1D Gaussian) to be aligned with the line l′

joining the line segment centroid to the VP v. Images courtesy
of [216].

Figure 3.3: Four consistencies measures. Figure 3.3a is defined on the Gaussian sphere, whereas Figures 3.3b
to 3.3d are defined on the image space.

109]. The Gaussian sphere is a unit sphere centered on the optical center of the camera. The projection
of the infinite lines detected in the image space corresponds to great circles on the Gaussian sphere.
This projection requires the intrinsic parameters of the camera to be known. As illustrated in Fig-
ure 3.4, the intersection points of these circles correspond to the associated VPs. The main advantage
of this representation is that it can handle infinite points, corresponding to the red circle in Figure 3.4.
In addition, a uniform discretization of the Gaussian sphere (in spherical coordinates), offers a uni-
form angular resolution for all the vanishing directions. The projection of this grid on the image plane
generates a discretization of the image plane where the center of the image has a higher resolution,
and the distant areas have a lower one. This discretization encodes well the expected accuracy of VPs
depending on their location: VPs near to the image center are very accurate since a small perturbation
of the associated line segments leads to a small change of the VPs. Conversely, VPs farther away from
the image center can be highly changed by small perturbations of their associated line segments. On
the Gaussian sphere, it is straightforward to compute the distance between a projected line segment
and a point. Therefore, common consistency measures on this space consider a distance between a
great circle (corresponding to an infinite line) and a point. Defining a consistency measure on a sphere
is not very practical. For this reason, the image plane is the preferred space for defining a consistency
measure. Another motivation is that the VP estimation error comes mainly from the accuracy of the
extracted features. Since the extraction was performed in the image space, it is more convenient to
use this space to model the uncertainty of the features. Dual spaces allow taking advantage of specific
properties from another space: for example, the method proposed by Lezama et al. [109] is robust
as they cast the line clustering problem as a search of 2D points alignments, solved with a known
a-contrario method.

Other methods do not follow a clusterization-estimation process but they rather try to solve the
problem globally: Bazin et al. [17] try to find the rotation (i.e. a triplet of VP) that maximizes the
number of clustered segments. Antunes et al. [8] follow a global approach in which the clusterization
and the VP estimation are solved simultaneously as an Uncapacitated Facility Location problem.

More recently, the use of Convolutional Neural Networks (CNNs) has become a popular tool for
computer vision tasks, and we find such approach to estimate VPs. Zhai et al. [221] take advantage of
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Figure 3.4: The Gaussian sphere is a unit sphere centered on the optical center of the camera. Here we repre-
sented the camera coordinate axis (X , Y , Z), with Z aligned with the optical axis. Infinite points correspond to
the red circle, which is the intersection of the plane Z = 0 and the Gaussian sphere. Infinite lines of the scene
or the image plane can be projected on the Gaussian sphere, generating great circles. In this example, the inter-
sections of the vertical blue and green lines correspond to two intersection points of great circles of the sphere:
(0 ± 1 0) (zenith and nadir). The Gaussian sphere enables to easily map the dual relationship between 2D lines
and 2D points with the image space. For example, the line dual to the zenith point in the Gaussian sphere is the
great circle orthogonal the zenith direction (0 1 0).

a CNN to generate horizon line candidates, using a prior information for the detection of the horizon
line and the zenith VP from line segment features. Kluger et al. [98] propose a two-step approach
using line segments as features, where a CNN performs the clustering step. Finally, Shuai et al.
[187] propose a full neural approach, where the input is an image and the output the position of one
VP (assumed visible in the image). They obtain successful results on scenes where even few line
segments can be extracted.

3.2.2 Inertial data

In the last decades, we witnessed a notable breakthrough in microelectronics which brought low-cost
miniaturized silicon sensors to common mobile devices such as smart-phones and tablets. In partic-
ular, IMUs usually consist of accelerometers measuring the acceleration of the device, gyroscopes
measuring the rate of change of the device’s orientation and magnetometer sensitive to the Earth’s
magnetic field. The IMU measurements can provide accurate information on the device orientation,
as well as its velocity and position over a short period of time. Figure 3.5 illustrates how the device
orientation can be obtained from these sensors. Accelerometers sense the total device acceleration,
which is the sum of the translational device acceleration and the gravity. Gyroscopes sense the device
rotational speeds, which after integration give the device orientation change during a short period of
time. The fusion of the gyroscopic and the acceleration data allows separating the translational acceler-
ation from the gravity vector, the latter providing the device roll and pitch angles with a high accuracy.
The device structure and nearby ferromagnetic materials can interfere with the magnetometer. For
this reason, the yaw angle provided by this sensor is extremely noisy. The fusion of the gyroscopic
and the magnetometric data allow to stabilize the yaw, but its accuracy is far inferior to the estimated
pitch and roll. Nymoen et al. [133] evaluated the IMU data of an Apple iPod Touch with a motion
tracking system and their results corroborate these differences of accuracy. Finally, the translational
device speed can be obtained (up to a constant) by integrating the translational acceleration, with an
additional integration to obtain the position.

On the one hand, IMUs can provide measurements at a high frame rate with a low computational
cost. On the other hand, they are usually corrupted by different types of error sources such as sensor
noises, scale factor and temperature dependent bias, which are nonlinear and difficult to characterize
[186]. They provide derived measures (acceleration and angular velocity), which need to be integrated
to compute the current position and attitude, thus causing error accumulation and a significant drift in
the position and the attitude over the course of time. These problems can be mitigated by employing
optimal estimation and filtering techniques such as a Kalman filter [90].

We saw these sensors can provide a reliable pitch and roll angles on the long term, as well as
its yaw angle, speeds and device position, which can only be considered for short periods of time.
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Figure 3.5: IMU data can be used to reliably compute the pitch and roll angles of a device by fusion of the
accelerometer and the gyroscope data. The accelerometer can estimate the gravity vector alone, but it is sensitive
to translational accelerations. The gyroscope only senses the rotational speed of the device, and after integration,
it can give also the orientation of the device, up to a constant. The integrated values suffer from important drift in
the long term, but contrary to the accelerometer, it is not sensitive to translational accelerations The fusion of the
two sensors data enables to compensate each other’s weakness, and accurately estimate the pitch and roll angles.
Finally, the yaw angle (or heading) can be estimated from the fusion of the magnetometer data which is very noisy
and the integrated gyroscopic data.

Figure 3.6 illustrates the deviations of the roll, pitch and yaw angles of an iPhone 4 standing still for
53 s: the yaw angle suffers from a 4° drift, while the roll and pitch angles suffer from a 0.2° drift. All
these measurements can be obtained in real-time, and even when the device is in motion.

(a) The red and green curves correspond to the roll and
pitch angles (in degree) respectively during 53 s (1600
samples).

(b) The blue curve corresponds to the yaw angle (in
degree) during 53 s (1600 samples).

Figure 3.6: Roll, pitch and yaw angles of an iPhone 4 standing still on a table, provided by the iOS Core
Motion framework (acquisition rate at 30 Hz). Two components of the noise can be observed here. On small
windows of time (around 50 samples), the white noise makes the angular values fluctuate very rapidly. On larger
windows (500 samples), the sensor bias slowly affects the average value of the angle.

The fusion between inertial and visual data is thus becoming an interesting topic because of their
complementarity. Inertial data is indeed computationally cheap but suffers from drift and measurement
noise; visual data can provide more precise and stable measurements but it is, in general, computa-
tionally more expensive. In the case of VP detection, the orientation and gravity vector provided by
the IMU can be used as priors for driving and easing the process of VP detection.

3.3 A fast and simple VP detector using IMU data

In this section we propose a simple and fast method to estimate VPs, taking advantage of an IMU. We
will try to demonstrate then the simplicity of this method can lead to accurate results.
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Figure 3.7: In the Gaussian sphere, the three VPs form an orthogonal frame. C is the optical center of the
camera. The knowledge of the zenith enables to reduce the search of the two VPs orthogonal to the zenith, V P x
and V P y on the horizon line.

Our approach relies on the use of the IMU, which provides the gravity vector, i.e. the direction of
the vertical lines of the scene, and thus equal to the opposite of the zenith. Under the assumption of
a Manhattan scene, there are two other VPs: VPx and VPy , which form an orthogonal frame with the
zenith (see Figure 3.7). This means the detection problem of VPx and VPy can be thus reduced to the
search of two orthogonal VPs along the horizon, i.e. along a line instead of the 2D space of the image
plane.

Our method relies on the extraction of line segment features to detect the VPs. We performed a
comparison of four algorithms: [120, 201, 130, 67] and chose [67], which obtained the highest sensi-
tivity and precision. We estimate an approximated value of the zenith from the gravity vector. To refine
this VP, we use the Gaussian consistency measure (see Figure 3.3a) to filter the segments converging
to the approximated zenith, and solve the following linear least squares estimation problem:

min
v

∑
l∈L

(lTv)2 (3.1)

To estimate VPx and VPy , we consider the intersections of the remaining lines (not converging to
the zenith) with the great circle H of the horizon in the Gaussian sphere (the red circle in Figure 3.7),
which is the dual of the zenith. As mentioned earlier, working in this space enables to consider infinite
VPs (corresponding to the invisible intersection of the parallel lines in the image space), and offers a
uniform angular resolution for all the vanishing directions.

The Gaussian sphere can be divided into two hemispheres H1, H2 along the plane z = 0 (see
Figure 3.7, the two hemispheres are separated by the orange great circle), whereH1 corresponds to the
points of the Gaussian sphere with z > 0. The two hemispheres are anti-symmetric since, in projective
geometry, two homogeneous 3-vectors p and −p correspond to the same 2D point. Therefore the
search of VPx and VPy can be restricted to the semicircle corresponding to the points of H satisfying
the constraints z > 0. In addition, since VPx and VPy are orthogonal, we only search for one of the
two, let’s call it VPx, which belongs to a quarter of circle of H . The clustering is performed with a 35
bins accumulator, corresponding to 35 equal circle arcs of the quarter of circles. We refine VPx with
the same method employed for the zenith.

The parameters influencing our approach are: the intrinsic calibration parameters (a bad calibration
can deteriorate the results), the choice of the consistency measure, the threshold for the value of the
consistency measure, which determine whether the line is considered as converging or not to the VP
to refine and the number of bins: a low number of bins decreases the accuracy of the clustering, a very
high number of bins can prevent from finding the correct maxima (the intersections corresponding to
the expected maxima are spread on too many bins), and a minimal number of filtered lines by the
consistency measure to consider the VP as reliable.
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3.4 Evaluation

3.4.1 The York Urban database

We first start to evaluate our work on the York Urban Database [42, 43], published in 2008, which was
the first extensive dataset for VPs estimation algorithms evaluation in Manhattan scenes. It is the most
popular dataset used by most of the works to assess the effectiveness of the proposed method.

3.4.1.1 Results

We used the ground truth VPs to simulate pitch and roll angles. The line segments considered as
features were computed with the LSD algorithm [67]. In a second experiment, we applied a random
perturbation (3° maximum) to simulate the offset bias of IMUs. We evaluated our results on each VP
separately, considering the angular consistency measure defined in [43] (see Figure 3.3c) on the ground
truth line segments and the corresponding estimated VP. We computed the Root Mean Square (RMS)
of these measures and we generated a cumulated histogram of the RMS represented in Figure 3.8. VPz
corresponds to the zenith, while VPx,VPy correspond to the VPs on the horizon.

Figure 3.8 shows the results of our evaluation. Overall, the results obtained with the simulated
IMU are comparable to Tardif J-Linkage algorithm (JL) [201] results, whereas when we apply a ran-
dom noise on the simulated IMU, the obtained results are worse than the other two methods. This
demonstrates our approach is significantly affected by the accuracy of the IMU. For VPx, Figure 3.8a
shows JL [201] are slightly better than our best results, whereas, for VPy , Figure 3.8a shows our best
results are much better than JL. For the estimation of VPz , our results (without random noise on the
simulated IMU) should be the best ones since they correspond to the ground truth zenith. As shown
in Figure 3.8c, the results of JL [201] for the estimation of VPz are slightly better than ours without
noise. This may be surprising as we were using the GT as initial guess.
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Figure 3.8: Cumulative histograms of the RMS error for VPx, VPy , VPz respectively (higher is better).

3.4.1.2 Discussion

In this dataset, the ground truth VPs are estimated using the algorithm proposed by [36] using a
statistical framework where each VP is estimated separately. Because no orthogonality constraint
is enforced, an orthogonal frame is fitted to each triplet to enforce the constraint. This yields to
an orthogonal solution which is not necessarily optimal given the statistical distribution of the line
intersections used for the estimation. The resulting Manhattan directions, indeed, can be quite far
from the line segments intersections as it can be seen in Figure 3.9. The obtained orthogonal solution
might be a biased solution that may not be suitable to be used as a reference to evaluate and compare
VPs estimation algorithms. Other datasets, such as the PKU Campus Database [110, 111] suffer from
the same problem.

The evaluation of VPs algorithms is not consensual: some authors use their own consistency mea-
sure applied to the clustered line segments and the ground truth vanishing point as metric [42, 201, 8].
Bazin et al. [17] compare the number of inliers lines. In recent works, only the estimated horizon is
compared with the ground truth [212, 216, 221, 109, 98]. Also, these evaluation approaches assume
the provided reference VPs are not biased, which is not the case of the previously mentioned datasets.
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Figure 3.9: The green square is the estimated VP by [42] (associated horizon in red). The light green point
(associated horizon dashed) is the VP after orthogonalization of the Manhattan directions: it lies far from the
common intersection zone of the associated line segments. This last VP cannot be used as a reference to evaluate
algorithms.

This first evaluation was a proof-of-concept for testing our algorithm on the existing datasets. In
order to evaluate the effectiveness of our approach, we created a new dataset embedding IMU data as
well.

3.4.2 A new dataset
In this section, we describe how we created our dataset and the results of the evaluation we carried out
on it.

3.4.2.1 Ground truth creation

The construction of a vanishing points dataset requires two elements: photos and reference vanish-
ing points. Creating reference VP is a hard and challenging task, even if the images are manually
annotated: as pointed out in [216], many deviations from a perfect imaging system such as camera
noise, camera calibration errors, line segment extraction error, etc. affect the estimation of the ground
truth orthogonal VPs, and only optimal or sub-optimal solution can be found for them. The only way
to have real ground truth data for the VP would be the use of synthetic images, in which all the pa-
rameters are known by design, or using real images and highly accurate and costly instruments (e.g.
electronic theodolites) to measure the actual attitude of the camera w.r.t. the Manhattan scene. Also,
the generation of reference VPs from the ground truth line segments relies on an arbitrary choice of a
VP estimation algorithm. Figure 3.10 illustrates this problem.

A more meaningful approach that we are proposing in this dataset is to provide an uncertainty
region for the locations of the VPs, as opposed to single points. This information can be used to reject
or accept the solution of an algorithm (the solution is respectively outside or inside the region).

We decided to compute the reference VPs with hand-labeled line segments, which must be ac-
curately drawn. The uncertainty of a ground truth line segment comes from the selection of the two
extrema, which can be modeled with circular regions of uncertainty around the extrema (see Fig-
ure 3.11). Shufelt [188] was the first to introduce the error modeling for line segment endpoints in a
VP detection algorithm. The true position of a line segment endpoint is assumed to lie among all the
possible locations within its pixel. The lines connecting all these possible endpoints sweep an area
which is bounded by two lines, l1 and l2 as in Figure 3.11. This area is called a double wedge [19] (the
gray area in Figure 3.11). In his proposed method, the Gaussian sphere is divided into accumulators,
each wedge region is projected on the sphere and the corresponding accumulators are incremented.
The maxima on the sphere then represent the directions of the VPs.

More recently, Xu [216] introduced a probabilistic consistency measure, which models the uncer-
tainty of endpoint locations with a 1D Gaussian which is then used in an EM framework to estimate
the VPs. Contrary to Xu, we followed a geometrical approach because our objective is to compute a
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Figure 3.10: The manual creation of the line segments does not generate a single intersection point. Several VP
estimation approaches are possible, here [36, 201, 8] in blue, green and red respectively, return different solutions.
Which one is the best?

Figure 3.11: The uncertainty of a ground truth line segment is modeled with circular regions of uncertainty
around the two extrema a and b. The lines connecting all these possible endpoints sweep an area bounded by
two lines, called double wedge (the area in grey), in which the associated VP v should lie. We denote r the radius
of the circular region of uncertainty of the line segment endpoints. On the right, we represented a double wedge
corresponding to one of our ground truth line segment.

confidence region for the solution, rather than finding one VP solution. In the confidence regions, all
the possible VPs are equiprobable since we do not assume it is less unlikely to commit a two-pixels
error on an endpoint rather than one pixel. In this sense, our approach to finding the regions is closer
to [188], except we work in the image plane, and we do not use accumulators but compute the exact
geometric intersection of the double wedges.

Assuming the real line associated with the annotated line segment is contained in its double wedge,
the intersection of all the double wedges of a given line segment cluster forms a region in which the
VP should lie (see Figure 3.12). This region can be empty when an outlier line segment is created, or
when the operator who creates the ground truth is too inaccurate.

As illustrated in Figure 3.13, double wedges model the uncertainty of the line segments, as they
naturally take into account the length of the segments. In general, long line segments should be
more robust as they mitigate the annotation error of the two extrema. A long line segment, indeed,
has a thinner double wedge, and thus it will contribute to narrow down the uncertainty region of
the associated VP. Conversely, short segments have wider wedges which do not help to reduce the
uncertainty region.

We reformulate the double wedge intersection problem in term of Boolean operations on half-
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Figure 3.12: The intersection of the different double wedges w1, w2, w3 associated to the image of parallel
lines of the scene is a convex polygon in which the VP should lie. On the right, we represented on a photo from
our dataset, the intersection of the double wedges corresponding to the ground truth line segments.

Figure 3.13: Left: Long line segments provide more information: they narrow down the uncertainty region of
the VP. Right: short ones have no influence on the uncertainty region.

planes. Let l1 and l2 be the bounding lines (see Figure 3.11) of a segment a b. Without loss of
generality, consider the half-planes h1 and h2 bounded by l1 and l2 respectively, and both containing
a. The double wedge w associated to a b is defined as

w = (h1 ∩ h2) ∪
(
h{1 ∩ h{2

)
, (3.2)

where h{i denotes the complementary of hi, i.e. the other half of the plane.
The intersection of the double wedges of all the line segments thus requires the computation of

the intersections and unions of the half-planes hi of each line segment, which is a well-known com-
putational geometry problem treated in [19]. The computation of the intersection is performed in
the projective plane, which is equivalent to performing the computation on the Gaussian sphere: this
allows us to compute the intersection of parallel lines and to handle the case of VPs at infinity.

3.4.2.2 Data collection methodology

The dataset contains 114 photographs (40 indoor and 74 outdoor). The photos were taken at different
moments of the day and therefore have various exposures. A majority of the indoor scenes contain low
levels of clutter (chairs, sofas, . . . ). In contrast, a majority of outdoor scenes contain a lot of occluding
objects such as trees and vehicles, making the estimation of VP more challenging. The photos were
taken holding the camera in different attitudes in order to have a sufficient variety of poses: post-hoc
analysis revealed a mean and maximal absolute angular value between the camera principal axis and
the horizon of 6.7° and 26° respectively. Figure 3.14 shows some selected photos from the dataset.

We collected the photos using an iPad Air 1 running iOS 8 in landscape mode with a 1920×1080
resolution and using the following iOS capture presets: automatic white balance, auto exposition, and
fixed focus. The auto-focus was disabled because it can add a significant random lag between the
moment the shutter button is pressed and the effective shot of the photo.
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Figure 3.14: Some photos of the dataset with their ground truth line segments (red, green, blue), the horizon
line computed from the IMU data (cyan line) and the polygon of the uncertainty region computed on the red line
segments. In the photo on the left, the horizon line computed with the IMU data does not intersect the yellow
polygons because of the bias of the IMU data.

Instead of using the raw data values of the accelerometers, gyroscopes and the magnetometer,
we used the CMDeviceMotion class of the iOS SDK which provides high-level data such as
the gravity and the attitude of the device through sensor fusion algorithms not detailed in the official
documentation. A 30 Hz sampling rate was set to collect the IMU data. We developed a specific
application for recording the device orientation provided by the CMDeviceMotion class along
the taken photos. The source code of the application is available for download at the dataset website
http://ubee.enseeiht.fr/tvpd .

Camera and IMU calibration The camera was calibrated offline using Bouguet camera calibration
toolbox [24] to estimate the intrinsic parameters. Experiments on the IMU sensors holding the iPad on
a try square shown that in the worst case, we could obtain 2° of error on the roll and pitch values. This
bias is visible in the Figure 3.14, where the horizon lines computed with the IMU data do not intersect
the polygons of the uncertainty regions associated to the VPs orthogonal to the zenith (VPx and VPy).
In addition, no calibration of the IMU sensors is performed since our observations revealed that the
flatness of the ground is less reliable and repeatable than the orientation values returned without setting
a reference attitude, e.g. the ground.

A known issue affecting mobile devices is the synchronization between the data provided by the
IMU sensors and the image provided by the camera [71]. Our preliminary experiments demonstrated
that for our device the IMU data could be not synchronized w.r.t. the orientation computed using the
image. The mean lag between the IMU data and the camera frames was found to be 16 ms with a
standard deviation of 140 ms. To take into consideration this uncertainty and provide smoother data,
we computed the attitude matrix as the average rotation [39] over a time window covering the mean
lag measured during the preliminary experiments.

Line segments creation In order to generate the ground truth, a web application has been developed
(see Figure 3.15) to let the users accurately draw the line segments and to associate them with one of
the three Manhattan directions (as in [42]). The source code of the application is also available for
download at the dataset web-page. A post-hoc analysis revealed a mean of 16.7 segments per photo.
We assumed a 4-pixels accuracy around the endpoints clicked by the users, in other words, the radius
r of the circular region of uncertainty of the line segments endpoints is 4 pixels.

This value has been determined experimentally as the average value that ensured that the intersec-
tion of the double wedges was not empty and contained the VP solution provided by [8].

We also made comparisons on the York Urban Database, see Figure 3.16. As expected, the VPs
computed with [36] lie in our uncertainty regions. Since the orthogonalization process is indepen-
dent of the line segments, the orthogonalized VP do not always lie in the uncertainty regions (see
Section 3.4.1).
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Figure 3.15: The web application used to annotate the images with line segments.

Figure 3.16: Comparison on the York Urban Database. The red squares (VP provided by the dataset using
[36], associated horizon in red) and the blue circles (VP computed using [8]) lie in our uncertainty regions. The
orthogonalized VP are represented with pink triangles (associated horizon dashed) are not in our polygons.

3.4.2.3 Results

We saw earlier the uncertainty polygons can be used to evaluate a VP estimation algorithm: a point-
in-polygon test can be used to validate or reject the VP if it is inside or outside the polygon. Besides
the segments, the size of these polygons depends on the circle radius r of the uncertainty on the line
segment endpoints. The lower is r, the smaller is the polygon. But what if we want a test defined on
a continuous domain (independent of r) instead of a binary test? To address this question, we propose
the evaluation metric

D(v, S) = max
si∈S

DJL(v, si) (3.3)

where S is a cluster of segments and DJL(v, s) = dist(e1, l̂) is the consistency measure defined by
Tardif [201], where l̂ is the line joining the midpoint of the segment swith v, and e1 is an endpoint of s.
As illustrated in Figure 3.3b, DJL(v, s) gives the minimum values of the radius r of the double wedge
associated to the line segment s, so that the corresponding vanishing point v lies in it. Our evaluation
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metric D(v, S) gives the minimum value of the radius r of the cluster S so that the vanishing point v
lies in the corresponding uncertainty polygon. The isocontours of DJL(v, s) displayed in Figure 3.17,
correspond to the uncertainty polygons defined for different values of r.

Figure 3.17: Different uncertainty regions computed for different values of r, the radius of the circular region of
uncertainty of the line segment endpoints. Our evaluation metricD(v, S) is represented by a color map. D(v, S)
gives the minimal radius r of all the double wedges of a cluster of segments so that it lies in the associated
uncertainty polygon. The uncertainty polygons correspond to the isocontours of DJL(v, s).

Method VPx VPy VPz

JL [201] 32–44% 54–60% 75–80%
Ours 46 % 57 % 64 %

Table 3.1: Percent of VPs lying in the ground truth uncertainty polygon using the point-in-polygon test. Best
results are displayed in bold. Since JL [201] returns non-deterministic results, the worst and best results obtained
are reported.

As in the comparison on the York Urban Database, we used line segments from the LSD algorithm
[67] and compared our approach with JL [201]. Table 3.1 and Figure 3.18 shows the results obtained
on our dataset with the binary point-in-polygon test and the metric D(v, S), respectively. Given
the point-in-polygon test, our approach estimated successfully 46–64% of the VPs of our dataset.
A similar test carried out on the York Urban Database showed JL [201] and our approach obtained
70–100% of point-in-polygon success. This means the images from our dataset are more challenging
than the ones of the York Urban Database. The two evaluations show the zenith is the VP detected with
the most of success and accuracy, and again, JL approach [201] performs better than ours. Regarding
the two other VPs, our results are again very similar to the ones obtained with JL approach [201].

These results demonstrate the use of an IMU allows to accurately estimate VPs with a simple and
efficient algorithm and to achieve similar results than more complex and time-consuming approaches
such as [201].
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Figure 3.18: Cumulative histograms of the error for VPx, VPy , VPz , respectively, using the metric D(v, S)
(see Equation (3.3)) on our dataset (higher curve is better).
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3.5 Live VP estimation

We integrated our VPs estimation algorithm into a proof-of-concept mobile application on an iPhone
4 in order to evaluate our approach on a stream of images and IMU data. Since all the images from the
stream cannot be usable for VPs extraction (e.g. the image can be too blurred, or the viewpoint does
not contain enough line segments), we also tried to take advantage of the inertial data to provide an
orientation when a pure vision approach would fail.

We implemented our tracking algorithm using a Kalman filter [90] with a single state variable
representing the yaw angle correction between the orientations estimated from the inertial data and the
VPs. As we saw in Section 3.2.2, the yaw angle estimation from initial data is the least reliable and a
visual observation of this angle is enough to reveal a significant drift. Figure 3.19a shows a screenshot
of our application, which displays on the screen a visual compass based on the IMU data corrected
with the VPs estimation. The IMU data is used in the prediction step, while the orientation provided
by the VPs is used for the measurement update.

On a 2010 iPhone 4, the extraction of the line segments with [67] approach took 300 ms on
640 × 480 images, and 9 ms for the extraction of the VPs. As a reference, it must be noted that the
same code was running approximately 10 times faster on a 2013 iPad Air and we expect that it could
be as fast on a more recent version of the iPhone. Also, in comparison, the VP estimation of [201]
is 100 times slower than our approach, on a desktop computer. With the slow processing time on
the iPhone 4, there was a large difference of acquisition rate between our input data: the yaw angle
estimated from the VPs at 3 Hz, and the estimation from the inertial data provided at 30 Hz by the iOS
Core Motion framework. It also created a problem of delayed measurement illustrated in Figure 3.19b:
between the moment an image was captured at time t− k and the end of the VPs extraction at time t,
several values of the yaw angles had been obtained from the IMU.At time t, a rollback of the state at
time t − k was performed to apply the measurement update, then the predictions from the IMU data
between t− k and t were performed again, on the corrected state this time. Figure 3.20 illustrates the
results obtained with the Kalman filtering.

(a) Live VPs estimation on an
iPhone 4. The red horizontal
line corresponds to the horizon.
The blue line is the vanishing
line dual to V P y . The inter-
section of the blue and red line
corresponds to V P x.

(b) Illustration of the delayed measurement problem.

Figure 3.19
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Figure 3.20: The yaw angles estimated from the IMU and the VPs are represented by the blue and green points
respectively. The red points represent the yaw angle resulting of our filtering. As expected, the red points are
sticking to the values estimated from the VPs (with a delay equal to the time between two VPs estimation). A
smaller jitter can be observed on the red points, showing the VPs estimation were lacking accuracy, probably due
to the low resolution of the images considered. The experiment had started with 0° of difference between the
inertial and VP-based estimation of the yaw angle. After less than 11 s, there were 5° of difference.

3.6 Conclusion

In this chapter we introduced a novel VP estimation algorithm: as it takes advantage of the IMU data,
this fast and lightweight approach can be easily integrated into other mobile applications, such as the
room layout reconstruction. Our method demonstrated accurate results comparable with other state-
of-the-art algorithms such as [201]. To evaluate the effectiveness of our approach, we created a new
dataset, which, to the best of our knowledge, is the only one including IMU data. Instead of providing
real ground truth data for the VPs, we opted for a more meaningful approach consisting in computing
uncertainty regions for the location of the vanishing point. These regions are provided in the form of
polygons and are computed by intersecting the double wedges of the ground truth line segments. The
works related to the creation of this dataset have been presented at the oral session of an international
conference: [5] Vincent Angladon et al. “The Toulouse vanishing points dataset”. In: Proceedings of
the 6th ACM Multimedia Systems - MMSys 2015, ACM Press, 2015.

Vanishing points are an interesting geometric cue for image understanding, especially for the seg-
mentation of indoor scenes in order to detect the walls, the floor, and the ceiling. The segments
belonging to the wall corners can be clustered and the associated vanishing points can give an initial
guess about the orientations of the planes they belong to. This problem is in general ill-posed though,
as there are several possible spatial layouts which could explain a set of line segments. Therefore
more information should be gathered from the image to find the most coherent of the layouts. Lee
et al. [103] propose a geometric approach where the analysis of the area swept by the line segments
w.r.t. their VP define orientation maps corresponding to the orientations in the image of the planes of
the walls, ceiling, and floor. Hedau et al. [73] use contextual information from a prior segmentation
of the image to select the most appropriate layout candidate. Schwing et al. [184] jointly optimize the
layout and the detected objects, with constraints to ensure the position of the objects is coherent with
the estimated layout. More recently, real-time approaches have been proposed, such as Yang et al.
[218] who take advantage of a CNN.

Despite these efforts, the failure rate of these methods is still quite high (> 10 %) to consider their
use in an industrial application. Figure 3.21 illustrates an example of spatial layout estimation failure
on an image of our database with the method proposed in [73]. They also revealed to be quite sensitive
to outlier segments (line segments corresponding to textures and clutter in the room), and missing
(undetected) line segments.

Multi-view approaches have also been proposed, such as [56, 58, 12], but they all require as input



3.6. CONCLUSION 35

Figure 3.21: An example of spatial layout estimation failure using [73] approach.

the camera poses and a sparse point cloud, estimated from a Structure from Motion (SfM) or a Visual
Simultaneous Localization And Mapping (vSLAM) algorithm. More recently, joint approaches are
being proposed [37, 174, 219], where the vSLAM algorithm enables the room layout estimation, and
the estimated planes are used to improve the robustness of the vSLAM algorithm. At the time we
were investigating this topic, SfM or a vSLAM algorithm did not perform well on mobile devices (e.g.
ARKit and ARCore did not exist). In the following chapters, we will rather consider the use of depth
sensors for mobile devices, which allows obtaining more directly the orientation of planar structures.
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3.A Restriction of uncertainty polygons to a set of orthogonal so-
lutions

Once we have computed the uncertainty polygon for each VP, under the assumption of strong Manhat-
tan World we could refine the size of these polygons by enforcing the mutual orthogonality of the VPs.
Let P1, P2, and P3 be the polygons resulting of the double wedge intersections. We want to compute
for each Pi the regions P+

i ⊆ Pi containing all the mutually orthogonal triplets. More formally, we
would like to compute P+

1 , P
+
2 , P

+
3 so that

∀(i, j, k) ∈ {(1, 2, 3), (2, 1, 3), (3, 1, 2)},∀pi ∈ P+
i ,∃pj,pk ∈ P+

j , P
+
k :

pi
Tpj = 0

pi
Tpk = 0

pj
Tpk = 0

(3.4)

where pi, pj and pk are expressed in homogeneous normalized camera coordinates.
In order to refine the polygons to enforce the orthogonality constraints, we devised an iterative al-

gorithm, Algorithm 1, that exploits the duality of the projective space. At each iteration, it updates the
polygon as the result of the intersection of the polygon itself and the duals of the other two polygons.
Figure 3.23 illustrates the obtained polygons after the first iteration of the algorithm, while Figure 3.24
illustrates the different iterations. In practice, we remarked that, due to the uncertainty of the camera
intrinsic parameters, after several iterations, we sometimes found empty intersections of the polygons.

Algorithm 1: Restriction of the set of solutions to a set of orthogonalized solutions
Data: P1, P2, P3

Result: P̂+
1 , P̂

+
2 , P̂

+
3 an approximation of the solution

1 P1
′, P2

′, P3
′ ← P1, P2, P3;

2 while no convergence of (P1
′, P2

′, P3
′) do

3 P1
′′ ← P1

′ ∩ P2
′⊥ ∩ P2

′⊥ ;

4 P2
′′ ← P2

′ ∩ P1
′⊥ ∩ P3

′⊥ ;

5 P3
′′ ← P3

′ ∩ P1
′⊥ ∩ P2

′⊥ ;
6 P1

′, P2
′, P3

′ ← P1
′′, P2

′′, P3
′′;

7 end
8 P̂+

1 , P̂
+
2 , P̂

+
3 ← P1

′, P2
′, P3

′;

Computing the dual of a polygon The dual of a polygon P is the set of locus of points P⊥ such
that

x ∈ P⊥ ⇔ ∃y ∈ P : yTx = 0 (3.5)

where x and y are expressed in homogeneous coordinates in the image plane. On the Gaussian sphere,
P⊥ is represented by a continuous set of great circles. In order to compute P⊥ we rely on the following
property that can be proved for a generic triangle:

Property 3.1. The dual of a triangle is the dual of its border.

Proof. We recall that the dual of a point is a line (and vice-versa). For a point A in the projective
space, all the vectors li satisfying lTi A = 0 are the set of all the lines passing by A. In the dual space,
A is a line and li are all the points lying on such line.

If we now consider a line segment between two points A and B, it can be easily shown that the
dual of a line segment is a double wedge [19]. The duals of the two extremal points A and B are two
lines lA and lB that intersect in one point O, which is the dual of the line supporting the segment. As
a generic point move along the line segment from A to B, it spans on the dual space a set of lines
passing by O and limited by the two lines lA and lB. This defines a double wedge in the dual space.

Consider now a point D not lying on the segment AB and the pencil of lines passing through it.
In the dual space, this set of lines is a set of collinear points, lying on the line lD (the dual of D). If we
consider the subset of those lines of the pencil crossing the segment AB, in the dual space they are
all the points of lD that are also contained in the double wedge of AB: indeed, each of those points
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are the intersection of lD with a line of the double wedge corresponding, in the primal plane, to the
intersection point on AB.

Let’s now consider the triangle ABC in Figure 3.22. If we consider a point D inside the triangle,
by definition all the lines of the pencil passing through D cross at least one of the three segments
forming the triangle. In the dual space that means that the line lD is completely contained in the union
of the three double wedges. Hence the dual of the triangle is completely contained in the dual of the
border.

Since any polygon can be triangulated it is straightforward to extend this property to the polygon
and prove that the dual of a polygon is the union of the duals of its triangles.

A

B

C

D

E

Figure 3.22: The duals of the points A, B, C, D, E are represented on the right with magenta, cyan yellow, black
and gray lines respectively. The duals of the line segments AB,BC,AC are represented with blue, green, red
double wedges respectively.

(a) (b)

Figure 3.23: The red, green and blue polygons are intersected with their orthogonal represented with pencils of
great circles of the same color. The intersection, after one iteration, is displayed in magenta. Figure (b) is a zoom
of figure (a)
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Figure 3.24: The obtained polygons after the different iterations of Algorithm 1. In green: the original polygon,
in magenta the final polygon after 10 iterations. The blue and red lines are the boundaries of the dual of the two
other polygons.
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4.1 Introduction

IN the context of indoor scene reconstruction, the objective is to correctly identify the walls, assumed
as vertical planes, possibly while the user is moving around in the scene. This requires the ability to
keep track of the movement of the user, and, more precisely, to localize or follow the movement of the
device in the scene. Visual Odometry (VO) is the task of estimating the 3D pose (i.e., its position and
orientation) of the camera from visual data [131] and, more in general, from RGB-D data exploiting
the 3D information provided by depth sensors [127]. It is a key component which enables to consider
scenarios where the user can move freely in an environment and remains localized. Designing a VO
algorithm is a challenging task: it should be fast on the target platform in order to follow the camera
frame rate and to let CPU resources for the other component, as well as robust, since an error in the
localization can lead to incorrect interpretation of the RGB-D data (e.g. incorrect position of objects,
duplication of a wall etc.). While VO has been thoroughly addressed in the literature using desktop
computers, the limited computational power and hardware of mobile devices set new challenges for
adapting or designing new and more efficient algorithms able to process RGB-D data. It is then
interesting to evaluate the performances of current algorithms on mobile settings.

In this chapter, we introduce in Section 4.2 various range imaging cameras integrated on mobile
devices, explaining the limitation of each technology, with a focus on the sensors considered during
this thesis. In Section 4.3 we give an overview on VO and we perform an evaluation of various RGB-
D VO algorithms. The compared approaches are generic, i.e. there is no assumption on the scene.
We then consider the particular case of indoor scenes made of dominant planes in Section 4.4, which
gives details on the plane extraction problem from point cloud and describes how it is possible to take
advantage of the detected planes to improve the localization and the reconstruction.

4.2 Range imaging sensors
In the past years, we have witnessed the development of consumer-grade depth sensors such as the
Kinect for Xbox 360 (KinectSL). Although these sensors were initially meant for gaming and en-
tertainment, they found a large interest in various communities, such as computer vision, robotics,
and biomechanic communities, as they can provide 3D data at relatively low cost. In an escalating
trend, manufacturers are now focusing their efforts on reducing the size of these sensors in order to
offer mobile devices the possibility to better sense and understand the world around them. Embedding
depth sensors on everyday mobile devices can foster a whole new range of consumer applications,
from augmented reality to 3D reconstruction and scene understanding.

4.2.1 Definition of a range imaging sensor

Image
plane

Optical axisCamera
center

r

C

Y

X

P

Z

p

Figure 4.1: The camera pinhole model.

The classic camera pinhole model, illustrated in Figure 4.1, projects a 3D point P of the scene to
an image point p on the image plane. The point p corresponds to the intersection of the ray r passing
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through the camera center C and P . Thus, the 3D point P cannot be recovered from p, because any
point lying on the ray r is mapped to the same pixel p.

Range imaging sensors are a subset of the existing depth sensors, special cameras that produces
range images (also called depth map) whose pixel values are proportional to the distance between the
points C and the 3D points P along the z axis, i.e. the camera optical axis. Contrary to the classic
cameras, range imaging sensors provide dense 3D measurements, with the 3D point cloud organized
in the form of a matrix (hence the name of organized point cloud): this allows a faster processing of
the point cloud thanks to more efficient neighboring search algorithms, image integral computation,
etc.

4.2.2 Mobile range imaging technologies

First attempts of mobile range imaging products came in 2013 with desktop sensors fixed on tablets
as depicted in Figure 4.2. Later, the PrimeSense Capri, the first range imaging sensor designed for
mobile devices was unveiled during the Google I/O 2013 with demonstrations on Nexus 10. It was
followed by several sensors designed for mobile devices too, compared in Table 4.1.

Distance measurements are subject to noise, which depends on the technology adopted by the
manufacturer. In the following paragraphs, we describe different real-time1 range imaging camera
technologies, compatible with an integration on a mobile device, along with their strengths and limi-
tations. We refer the reader to [55] for further information on range imaging sensors.

Figure 4.2: Desktop range imaging sensors fixed on tablets. On the left: Lynx Laboratories tablet. On the
right, DOT Product DPI-8X.

4.2.2.1 Stereo vision

Principle Stereo vision is a passive depth perception approach which relies on triangulation. When a
scene is observed from two different viewpoints (producing two images), corresponding image points
of the scene are imaged at different points in the two images. This (apparent) displacement of cor-
responding image points is called parallax. The search of corresponding points in the two images
is called the correspondence problem and the displacement of corresponding points in the image is
called the disparity. The disparity of objects closer to the camera are larger than more distant objects
because, with the parallax effect, their displacement in the image is longer. Finding the correspon-
dences between the two images is a complex problem we will not discuss here, we refer the readers
to Szeliski’s book [198] for more details. If the transformation between the two viewpoints is known,
the 3D positions of the matched points can be computed via triangulation It is generally applied to
binocular vision systems where the camera displacement is known and constant. Its application to
monocular vision system is more complex as it requires to reliably estimate the pose of the camera.

1With a frame rate superior to 5 Hz
3Limited to 12k points
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Technology Manufacturer Product
name

Range Acquis.
rate

Resolu-
tion

Integrations

Stereo
Intel® RealSense™

Snapshot
N/A N/A N/A Dell Venue 8 7000 series (2015)

Lips® U-Focus 0.2–0.6m 30 fps 640×480 N/A

IR SL

Intel® RealSense™
3D Camera
ZR300

0.55–2.8m 30 fps 480×360 Intel RSDK (2016)

Intel® RealSense™
3D Camera
R200

0.55–3.5m 60 fps 480×360 HP Spectre X2 (2015), Mi-
crosoft Surface Pro 4 (2016)

Heptagon Mora and
Zora

0.2–1.5m N/A 640×480 N/A

Lips LIPSedge
M5

0.3–4m 60 fps 640×480 N/A

Mantis Vision MV4D 0.5–4m 5 fps 320×2403 Tango TDK (2014) and Mantis
Vision Aquila 3D tablet (2014)

Occipital Structure 0.4–3.5m 30 fps 640×480 Pluggable on iOS devices (since
2014)

PrimeSense Capri 0.5–4m 5 fps 320×240 Tango Peanut Phone (2014)

STMicroelectronics? Unknown Unknown Unknown Apple iPhone X (2017)

Bellus3d Face camera
Pro

0.25–0.6mUnknown Unknown Pluggable on Android devices
(2018)

ToF

Infineon and
PMD

Real3™ 0.1–4m 45 fps 224×172 Lenovo Phab 2 Pro (2016) and
Asus Zenfone AR (2017)

Sony Depth-
sensing Solu-
tions

DepthSense®
541

0.1–5m 60 fps 40K
points

A Sony Xperia prototype (2017)

Table 4.1: Comparison of various range imaging sensors designed for mobile devices.

Limitations and advantages Stereo vision is a passive technology, therefore it is dependent on
good lighting conditions of the scene and the presence of texture to solve the correspondence problem.
Because the two images come from different camera positions, some regions may be visible in the
first image, while being occluded in the second one. Occlusions, repetitive textures, and specular
reflections lead to mismatches and incorrect range measurements which can be partially filtered [198].
Also, transparent surfaces are obviously not sensed. As demonstrated in [55], the range measurement
errors are quadratic with the distance to the objects. The resolution of the measurements can be
improved on the software side with additional computational cost, using the highest image resolution
available and sub-pixel disparity computation.

Some approaches, such as the plane sweeping and the block matching strategies can be extremely
parallelized and are suitable for hardware implementations on FPGAs or ASICs [112], allowing real-
time stereo depth sensing capabilities to be low power and independent of the host CPU. Finally, stereo
vision has a low Bill of Material (BOM) cost and can be used outdoor, contrary to the other techniques
we describe afterward.

Integration on mobile devices Monocular dense stereo on mobile devices has been proposed by
[141, 182] with GPU implementations. They achieved real-time performances but required a high-end
device (an iPhone 6 and a Tango TDK respectively). Since 2014, the Google Camera application
can also compute range images on any Android mobile devices, but not in real-time. The depth
information is used to simulate a Bokeh effect on the photo and is stored in the EXIF data of the image
file. It can be viewed on the website http://depthy.me.

Smartphones with a stereo rig started in 2011–2012 with the HTC EVO 3D and the LG Optimus
3D series. Saez et al. [173] used one of these devices to implement a stereo vision algorithm which
could perform 30000 range measurements at 9 fps on the host CPU. Similar mobile devices were

http://depthy.me
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brought up to date in 2014 with the HTC One M8, until now with the iPhone 7 Plus and the Huawei
P10. Unfortunately, they do not necessarily integrate dedicated hardware or SDK to perform stereo
vision, thus their usage is restricted to image enhancement instead of real-time depth sensing. Since
iOS 11, the API provides live depth map on dual camera devices. However, it is not possible to access
the two camera live streams, contrary to the Android API which offers this possibility but does not
provide depth map estimation.

A three cameras rig was proposed by Intel® with the RealSense™ Snapshot, integrated in the Dell
Venue 8 7000 series tablet. The computed range images could only be used with specific applications
for photo edition (refocusing, background removal, . . . ) and taking measurements in images.

When the camera sensors are very close each other, the technology is called camera array. The
baseline is shorter, which is less optimal for long distance measurements. For example, the U-Focus
from Lips is a 4×4 camera array with a range which cannot exceed 0.6 m. Other camera arrays were
designed for mobile devices, involving LinX Imaging and Pelican Imaging before their acquisition
by Apple and Tessera FotoNation respectively.

4.2.2.2 Structured light

Principle Structured light, also called active stereo, is a particular case of stereo vision: a known
pattern considered as a reference image is projected into the scene. A camera distant from the projec-
tor observes the image of the projected pattern which is deformed by the shape of the scene. Solving
the correspondence problem between the observed pattern and the known one, followed by the tri-
angulation step, enables to perform the range measurements. We refer the reader to [14] for further
explanations. The patterns generally considered are stripes and speckles (random dots), with near IR
or visible light. For example, PrimeSense technology (behind the KinectSL among others) relies on
IR speckles as depicted in Figure 4.3a.

(a) SL pattern from the Structure Sensor. (b) SL pattern from the Tango TDK

Figure 4.3: SL patterns

Limitations and advantages The main advantage of active methods such as SL is they do not re-
quire the presence of texture in the scene unless the albedo of the material is null for the pattern
projector wavelength. In term of limitations, the SL approaches inherit some of the stereo vision: the
depth resolution (illustrated in Figure 4.4a), the sensitivity to specular reflections, and the problem of
the occlusions depicted in Figure 4.4b. Sarbolandi et al. [177] gives a complete list of the limitations
of this technique, among them, the sensibility to ambient background light: patterns should be visible
with high contrast to solve the correspondence problem, which means that it is preferable to have a
projector with a strong light power (or a dark enough scene), and to avoid strong IR lights (e.g. light
bulb, sun) when using a near IR pattern.

Integration on mobile devices SL with visible light has been attempted on mobile devices with a
built-in light projector by Pribanić, Ðonlić and Petković [153, 45]. They used two consumer-grade
mobile devices: the Samsung Galaxy Beam and the Lenovo Yoga Tab 3 Pro which were not
designed for this use, and demonstrated it was possible to compute decent range images using the host
CPU.
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(a) With the PrimeSense depth sensors, the disparity values are computed
with 1/8 of pixel accuracy. Therefore only discrete value are obtained, which
leads to a discretization of the depth data commonly called the quantization
effect. Here the building appears to be cut into slices.

(b) Stereo vision approaches (active and
passives) are sensitive to occlusions, lead-
ing to a shading effect, here on the left of
the hand and the body.

Figure 4.4: Some limitations of the SL and stereo technologies

Primesense popularized consumer grade depth sensing using near IR SL with the KinectSL. Their
technology was used in the Google Tango Peanut Phone and the Structure Sensor by Occipital
[138]. Some sensors can support outdoor scenes, such as the Intel® RealSense™ ZR300 and R200
with the addition of a second IR camera. The Table 4.1 gives a complete list of SL range imaging
sensors designed for mobile devices.

Range measurements noise Various noise models of the KinectSL have been proposed. Their pur-
pose is to study the parameters having an impact on the measurements accuracy and to estimate the
depth uncertainty for the algorithms relying on range measurements. Khoshelham et al. [94] proposed
a noise model of the KinectSL depending on the sensor to objects distance only. He validated exper-
imentally the random error measurement grows quadratically with the distance to the objects, up to
4 cm at the maximal range. His model was extended by Dryanovski et al. [49] to predict the depth
uncertainty at object boundaries and to improve the robustness of his VO algorithm. Indeed, the range
measurement errors are more important at object edges, areas which have a higher importance for
some VO approaches, as we will see in the Section 4.3. Later, Nguyen proposed [128] another noise
model that took into account the orientation of the surface w.r.t. the sensor. The derived measure-
ment uncertainty has been integrated into the KinectFusion [127] pipeline to demonstrate it can help
improve the registration the reconstruction.

4.2.2.3 Time of Flight

Principle ToF is another active technology, which senses distances by measuring the time the light
has traveled from an emitter to an object and back to the camera. The most common approaches
are the Pulsed and Continuous Wave (CW) Intensity Modulation described in [40]. An intensity-
modulated light signal is sent by the emitter, generally in the near-IR spectrum. Since the light is an
electromagnetic wave with a phase which varies periodically with the time, the travel time translates
into a phase shift which is measured for all the pixels of the camera. The phase shift is assumed not to
exceed one period of the phase.

Limitations and advantages ToF sensors do not require baseline, the emitter can be located next
to the camera, allowing very compact designs. As described in [177], these sensors share some lim-
itations with the SL approaches: incorrect measurements at objects boundaries, and sensitivity to
background ambient light and to specular reflections. Finally, when the light is scattered by a surface,
various reflected rays may indirectly reach the camera, leading to a multi-path effects (increasing the
measured distance), which is considered as one of the major error sources of ToF cameras.

Integration on mobile devices Infineon in collaboration with PMDTechnologies developed the
first ToF range imaging sensor which was integrated into consumer smartphones: the Lenovo Phab
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2 Pro and the Asus Zenfone AR. More recently, Sony SoftKinectic designed is own ToF sensor
which was integrated in Sony Xperia prototype demonstrated at the MWC 2017.

4.2.3 Considered technologies
In the rest of the thesis, the range imaging sensors considered will be the Structure Sensor from
Occipital and the Mantis Vision MV4D via the Project Tango Tablet Development Kit which were
acquired during the realization of this Ph.D.

The Structure Sensor is a SL external range imaging sensor with its own battery, which can be
fixed with a bracket on compatible iOS devices. The RGB images are provided by the rear camera of
the considered device: therefore there is no exact synchronization between the depth sensor and the
RGB camera, and the removal or the insertion of the sensor requires to run a calibration procedure in
order to obtain range images aligned with the RGB images. A free and proprietary ObjectiveC SDK
offers an RGB-D VO algorithm we evaluate in Section 4.3, as well as textured meshing. As described
in Table 4.1, this sensor offers range images at VGA resolution and 30 fps.

The Project Tango Tablet Development Kit illustrated in Figure 4.5b, integrates a RGB-IR
camera as depth sensor, with a IR pattern emitter, and a fisheye camera. Compared to the Structure
Sensor, such design does not require the user to perform a calibration between the sensors. The
downside is it prevents from obtaining depth maps and RGB images simultaneously, since the camera
is shared for the two usages: during 1 s the camera provides 17 RGB images and 5 depth images. Also,
a synchronization failure of the emitter with the camera can lead to missing depth data or the display
of the pattern on the RGB image, as occurred in Figure 4.3b. Its 5 fps frame rate and the 12k points
resolution are inferior to those of the Structure Sensor. A Java and C SDK offers a Visual Inertial
Odometry (VIO) algorithm, global map optimization and textured mesh generation.

A
BCD

(a) Structure Sensor by Occipital attached with a bracket
to our iPad Air. iPad RGB camera (A), Structure IR cam-
era (B), IR projector (C), IR light-emitting diode (D).

A B C

(b) Tango TDK image sensors – RGB-IR camera (A),
Fisheye camera (B), IR pattern emitter (C).

Figure 4.5: The two tablets and depth sensors considered along this thesis.

4.3 Visual odometry evaluation
The study of RGB-D VO algorithms occurred while we were evaluating the recently released Struc-
ture Sensor by Occipital [138]. At that moment, the focus of the company was more on objects
reconstruction than scenes reconstruction, which translated in poor localization performances. This
was penalizing, as it implied the generated floor plans would have incorrect measurements. Several
odometry algorithms designed for the KinectSL had been published and released open-source. We
wanted to perform a benchmark of these approaches, to select one with high performances in term of
accuracy and speed (for porting on a mobile device). The expected benefit was twofold: reduce the
drift issues experienced with the closed source VO algorithm provided by the Structure SDK, and use
an editable localization algorithm.
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In this section, we will study five selected real-time VO algorithms among the most accurate
in the literature and for which an implementation was available. We will present a first evaluation
and comparison of their performances in terms of accuracy and resource consumption (memory and
CPU usage) on desktop settings using a standard dataset for the evaluation of RGB-D VO algorithms
[196]. Then, we will detail the results of a second similar evaluation on mobile settings, for which
we considered the Structure Sensor. This benchmark will not include the Tango TDK, which was
not in our possession at the time of the tests, and it uses a different category of VO algorithm taking
advantage of inertial data but not using a depth sensor, as detailed in [195].

4.3.1 Taxonomy
Simultaneous Localization And Mapping (SLAM) is a process by which a system can build a map of
an environment, and at the same time, can use this map to deduce its location. A SLAM system is
divided into two part: a front-end and a back-end. The front-end is dependent on the considered sen-
sors. Assuming they include a camera, its principal component is the VO algorithm, which localizes
the camera at the sensor frame rate with a limited accuracy (i.e. the estimated trajectory is only locally
consistent). The back-end is input agnostic, it performs a global optimization of the map and the tra-
jectory by leveraging loop closures. It should be noted that sometimes, SLAM named algorithms may
only refer to the back-end. In the following, we will focus on the VO algorithm.

Visual Odometry is an incremental process which estimates the 3D pose of the camera from visual
data. The latest visual frame is registered against previous data to compute a rigid body transformation
between the current and the previous pose. Similarly to wheel odometry, the accuracy of the current
pose depends on the reliability of the previous pose. Therefore VO is prone to accumulation of errors
and the resultant trajectory can only be considered locally consistent.

A VO algorithm can be qualified small or large-baseline depending on its ability to handle large
changes of camera viewpoint between consecutive frames. Large camera displacement can occur
during fast camera movements or with a low camera frame rate. In this paper, we will focus on
small-baseline RGB-D VO using Primesense-based depth sensors with the assumption of static en-
vironments.

RGB-D
frame

Pre-
processing

Registration
Model or
previous

(key)frame

Post-
processing

Previous
camera poses

Camera
pose

Camera
pose

Figure 4.6: The different components of a VO pipeline.

Generally, a VO algorithm can be seen as a registration procedure with a preprocessing and a
post-processing step as depicted in Figure 4.6. The depth maps provided by depth sensors are noisy
and can have missing values due to occlusions. Some VO implementation [127, 161] add a filtering
preprocessing step in order to enhance the depth maps and improve the registration step. To this end,
bilateral filters [203] can be applied to the raw depth data to reduce the noise and the missing data, yet
preserving the discontinuities.

The registration process takes as input the latest RGB-D frame and a previous frame (or a model)
to compute the current pose of the camera. There are different strategies for aligning two frames. In
the frame-to-frame matching strategy [93, 194], the current RGB-D frame is aligned with the previous
one. This strategy quickly leads to a large drift of the estimated trajectory as the pose errors are
cumulated. To mitigate this effect, the frame-to-keyframe strategy samples the sequence of RGB-D
frames into keyframes, usually having a larger spatial displacement among them [81, 135, 136]. The
current frame is then aligned w.r.t. to the previous keyframe, until a new keyframe is selected. The
selection of the keyframe is important in order to have an homogeneous sampling of the scene, and
it often relies on an heuristic evaluating the image quality (e.g. no motion blur) or the redundancy of
the visual information. For example, in [81] a threshold on the number of matched visual features
is used as an indicator of the overlapping part of the scene between the frames and of the movement
of the camera. Other methods [138] uses the IMU sensor and a threshold on the estimated rotations
and translations to select the keyframe. Another strategy, called frame-to-model, consists in building a
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model of the explored scene and using this model to align the new frames. The model can be a sparse
3D point cloud, as e.g. for CCNY [49], or a voxel grid of Truncated Signed Distance Function (TSDF)
(Truncated Signed Distance Function) for KinectFusion [127]. For the latter model, a synthetic view
of the surface is generated, usually in the form of a depth map at a predicted camera pose to perform
the registration. This strategy significantly reduces the small-scale drift and it is more accurate than the
frame-to-keyframe strategy [127]. Moreover, frame-to-model strategy allows to recover after tracking
failures and relocalize the device w.r.t. the model [22]. On the other hand, they still suffer from large-
scale drift and may require a heavy memory usage, which can be reduced by using only a subset of
the model. For example, CCNY [49] subsamples the 3D point cloud and Kintinuous [211] only loads
the part of the scene taken into consideration. Aligning a frame to a model requires more computation
than aligning a frame with another one. To speed up the registration process, it is necessary to take
into consideration only the part of the model that has an overlap with the current frame. A common
approach for the voxel grid of TSDF is to generate a depth map from the model at a predicted pose and
to compare the current frame with this depth map [127, 141]. We refer the reader to [122] for more
detailed information on the different registration methods.

On some (key)frame-to-frame VO approaches [223], a local optimization post-processing step is
added to refine the latest camera pose and reduce the trajectory drift. It cannot be applied on frame-to-
model strategies, unless the model can be updated when the previous camera poses are refined by the
optimization process.

During the registration process, only two frames are taken into account in order to efficiently
compute the camera pose at the current time with a closed form expression. The idea is that the
current pose could have been computed with earlier frames than the previous (key)frame. The local
optimization process takes several (key)frames as input of an optimization problem, often a windowed
bundle adjustment problem, and returns refined camera poses [223]. We refer the reader to [178] for a
more detailed survey on camera pose optimization for monocular VO.

A taxonomy for VO registration approaches has been proposed in [53], classifying the approaches
into three main categories: image-based, depth-based and hybrid-based (see Figure 4.7). In the fol-
lowing, we briefly summarize each category w.r.t. the methods evaluated in this paper. We also recom-
mend Yousif et al. review [220] on RGB-D VO algorithms which includes monocular VO and Visual
Simultaneous Localization And Mapping (vSLAM) algorithms.

RGB-D Visual
odometry

Image based

(sparse)
Visual features

(dense)
Direct

Depth based

(sparse)
3D features

(dense)
ICP

Hybrid

Joint-
optimization

Two-stage

Figure 4.7: Summary of the three classes taxonomy of registration approaches proposed for RGB-D VO.

The image-based methods rely on the information of the RGB image [81, 93, 162] and it can be
further divided into feature-based methods and direct methods. The formers are sparse methods as
they use local image features to register the current frame w.r.t. a previous (key)frame. On desktop
computers, SIFT [115] and SURF [16] features are commonly used for their high robustness [52]. On
the other hand, their computational cost makes them unsuitable for mobile devices Hudelist et al. [83],
and other computationally cheap features such as BRISK [108], BRIEF [28] and ORB [169] must
be used. These methods perform well in highly textured scenes while they tend to fail in poor light
conditions and under fast motion of the camera, as the features are not robust to motion blur. More-
over, the features are generally located at objects boundaries where the depth information provided by
sensors based on Structured Light technology [138] is the least reliable, thus affecting the registration
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accuracy. The direct methods [93] are instead dense method, as the registration uses all the pixels
of the images. Under the assumption that the luminosity of the pixels is invariant to small viewpoint
changes, they estimate the camera motion that maximizes a photo-consistency criterion between the
two considered RGB-D frames. These methods work even in poor light conditions and low textured
scenes, and they can handle object occlusions. On the other hand, the viewpoint displacement between
the considered frames must be small, thus limiting the range of application to smooth and relatively
slow movements.

The depth-based algorithms rely mostly on the information of the depth images [162, 135, 194].
The sparse 3D feature-based methods rely on the extraction of salient features on the 3D point clouds.
The rigid body transform can be computed by matching the descriptors associated to the features
extracted in two frames. As for the feature-image-based algorithms, the majority of these features
are located at objects boundaries and areas with high curvatures. Again, due to the limitations of the
Structured Light technology, the depth values have low accuracy or can be missing in these areas,
leading to bad repeatability of the features and poor registration accuracy. The Iterative Closest Point
(ICP) methods refer to a class of registration algorithms which try to iteratively minimize the distance
between two point clouds without knowing the point correspondences [20, 33]. The alignment error is
computed with a given error metric such as point-to-point or point-to-plane distance, and the process
is repeated until this error converges or the maximal number of iterations is reached. Each iteration
improves the point clouds alignment, which in return enables the heuristic association function to
output more correct matches, and so on. Weighting strategies [170] are used for robust registration
and filtering outliers due to sensor noise or the non overlapping parts of the 3D point clouds. Similarly
to the direct-image-based methods, Iterative Closest Point (ICP) converges well under the assumption
of small viewpoint changes, as it avoids local minima and converges to the desired solution. Coarse-
to-fine approaches have also been proposed to improve the convergence [127, 160]. For an exhaustive
review of ICP algorithms, we refer the reader to [149]. Depth-based algorithms can work well in poor
light conditions as they rely on the 3D data, but on the other hand, they might fail with scenes having
low structure (e.g. only few planar surfaces).

Finally, hybrid algorithms try to combine the best of the two worlds in order to handle scenes
having either low structure or little texture [136, 159]. They can be divided into two-stage methods
and joint-optimization methods. The two-stage methods use one approach (usually a sparse method)
to compute an initial guess of the registration and use a second approach (usually a dense method)
to refine the transformation or just compute it in case of failure of the first approach [49]. The joint-
optimization strategy consists in designing an optimization problem which combines equations from
depth-based and image-based approaches [159, 211].

4.3.2 Implementations on mobile devices

Developing real-time VO algorithms is more challenging on mobile devices due to their limited mem-
ory and processing power. Fine optimizations can be performed using SIMD instructions of the em-
bedded CPU and OpenGL ES shaders can be used for processing parallelizable tasks on the GPU.
However, this highly increases the complexity of the implementation and requires low-level program-
ming skills. On modern mobile devices, one can also take advantage of the Inertial Motion Unit (IMU),
and eventually integrate the estimated rotation as a prior knowledge into the registration algorithm.

Regarding monocular VO algorithms, Schöps et al. [180] achieved a 30 FPS tracking performance
with a partial porting of the semi-dense LSD-Slam algorithm on a Sony Xperia Z1 phone. No code
was publicly released though. Commercial solutions also emerged in the past years, proposed by 13th
Lab, Metaio, and RealityCap, before their recent acquisition by Occulus VR, Apple and Intel ®
respectively. The Google Project Tango [62] also proposes a proprietary monocular Visual and Inertial
Odometry (VIO) algorithm. It is designed for dedicated hardware using, in particular, a fisheye camera
such as the Tango Yellowstone tablet and the Intel RealSense® smartphone™.

Lately, with the recent development of depth sensors for mobiles such as the Structure Sensor [138]
and Mantis Vision MV4D [119], new proprietary RGB-D VO algorithms for mobile devices have been
developed and they are available through their relevant SDKs. Presumably, these advances will lead
to more interests in the academic research on mobile RGB-D VO, even if developing algorithms that
fully exploit the low-level hardware capabilities of the device is challenging. For example, Brunetto et
al. proposed a RGB-D vSLAM algorithm based on SlamDunk which can run on a Samsung Galaxy
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Tab Pro 10.1 tablet [25], but due to the lack of low level optimizations, it could only reach 10 FPS.
Visual Odometry is, however, an important component to enable computer vision applications on

mobile devices. Klingensmith [97] proposed a real-time mapping solution for indoor scenes that takes
advantage of the depth sensor and the VIO algorithm by Google Tango. Instead of allocating a fixed
grid of 3D voxels as in the traditional approaches, he creates on-demand chunks of voxels according to
the observations of the scene, which is appropriate for indoor environments as they contain a lot of free
space. Schöps [182] addresses the outdoor mapping problem using the same hardware, which prevents
the use of the depth sensor. With the help of the provided VIO algorithm, he computes and filters
depth maps from the fisheye camera and fuse them with a TSDF approach too in order to reconstruct
the scene. Live 3D reconstruction is a very challenging problem which requires performing the VO
and the mapping in real time. Prisacariu et al. [156, 155] jointly estimate the pose and the visual hull
of the model with a probabilistic framework. The system is robust to motion blur, lack of texture and
can run at 20 FPS on an iPhone 5, but the resulting model is coarse and cannot contain concavities.
Tanskanen et al. [200] propose a monocular visual features tracking approach combined with a multi-
resolution stereo depth map estimation. The tracking runs at 15-30 FPS on a Samsung Galaxy S3
but the generated dense 3D point cloud is only refreshed at 0.3-0.5 FPS while being GPU optimized.
Kolev et al. [99] improve the accuracy of the reconstructed model with a surfel approach combined
with weighted depth maps, but at the cost of a lower frame rate. Ondrúška et al. [141] propose a faster
solution (25 FPS on an Apple iPhone 6) which can generate medium accuracy 3D reconstructed
models. They use a direct method for the tracking, compute the depth maps by dense stereo matching
and perform the mapping with a TSDF approach.

4.3.3 Previous benchmarks

Assessing and comparing the quality and the accuracy of VO algorithms is an important task. This
work relies on previous benchmarks that have been published in the last years, mostly in the robotics
community. Sturm et al. [196] introduced and publicly released the TUM dataset, a collection of
different RGB-D image sequences meant to benchmark SLAM and VO algorithms. Even if in the
paper no algorithms evaluation is carried out, it has become a seminal work as the dataset has become
a sort of standard for benchmarking new algorithms in the spirit of other computer vision datasets,
such as e.g. the KITTI dataset [60].

Morell-Gimenez et al. [122] performed a comparison of registration methods on scenes mapping
and object reconstruction scenarios. For the scenes mapping scenario, which is our topic of inter-
est, they evaluated five different algorithms: DVO [93], KinFu (an implementation of KinectFusion
[127]), an ICP approach, an imaged-based visual feature approach using a combination of FAST [167]
keypoints and BRIEF [28] descriptors, and an hybrid two-stage approach combining the two last ones
where the refinement step is provided by the ICP algorithm. The last three approaches were imple-
mented by Morell-Gimnenez et al. using the Point Cloud Library [171]. The results show that DVO
and Kinfu are the most accurate algorithms on the “fr1” scenes of the TUM dataset. The paper does
not report any information about the computational time and the memory consumption as the main
objective of the work was to assess the quality and the accuracy of each method.

Handa created the ICL-NUIM dataset [72] composed of synthetic images of indoor scenes gen-
erated with POVRay. Although the main focus of the dataset is to provide a method to benchmark
the surface reconstruction accuracy, it has been used to evaluate different VO algorithms, thanks to
the ground truth provided by the synthetic data. The following algorithms are compared on a desktop
environment: DVO [93], Fovis [81], RGB-D [193], ICP KinectFusion flavour [127] and Kintinuous
[211]. The evaluation on all scenes from ICL-NUIM with the ATE metric showed a clear advantage
to KinectFusion ICP registration while Fovis gives the less accurate results.

More recently, Fang and Zhang [53] compared different open-source VO implementations: Lib-
viso2 [61], Fovis [81], DVO [93], FastICP, Rangeflow [85], 3D-NDT [3], CCNY [49], and DEMO
[224]. The evaluation is performed on two scenes of the TUM dataset and on a challenging dataset
created by the authors with illumination changes, fast motion and long corridors. The metrics taken
into consideration are the accuracy of the estimated camera motion and the performances of the algo-
rithms (runtime and CPU usage). The authors [53] provide an analysis of the success and failure cases
of the different algorithms w.r.t. the environment. In particular, the study shows that there is no algo-
rithm performing well in all environments and some guidelines to choose a VO algorithm depending
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on the environment are proposed. For example, when the scene is well illuminated, image-based and
hybrid methods are recommended, whereas depth-based methods are only really interesting in low
light environments.

The evaluation we are proposing in this paper is similar in spirit to the mentioned works, but our
comparison is focused on the evaluation of algorithms for the mobile experiment, in which computa-
tional cost and memory consumption are strong constraints. To the best of our knowledge, this is the
first attempt at benchmarking state-of-the-art algorithms on mobile devices equipped with a depth sen-
sor. Our benchmark is similar in spirit to [53], but aimed at testing VO algorithm on mobile devices.
For this reason, we tested some algorithms that were not considered in [53] and, due to our needs, we
considered both the CPU and memory usage of the algorithms (whereas [53] only assesses the CPU
usage).

4.3.4 Tested visual odometry algorithms
For our evaluation, we selected the algorithms to test based on two main criteria. Firstly, we only
considered the methods that performed better in other benchmark studies (see Section 4.3.3). Sec-
ondly, the most important criterion was the availability of the code (or a SDK in the case of [138]),
so that it could be ported and tested on a mobile device. According to these criteria we selected
DVO [93], Fovis [81], MRSMAP [194], the 3 algorithms of the OpenCV RGB-D module [161] , and
the VO algorithms that come with the Occipital sensor [138]. For brevity purpose, we denote OCV
(ICP, RGB-D, RgbdICP) the three OpenCV algorithms we took into consideration. As pointed out
in Section 4.3.3, only DVO and Fovis were considered for the benchmark in [53]. Table 4.2 provides
a classification of the considered methods according to the taxonomy described in Section 4.3, and
Table 4.3 collects more technical details about the code available for each method.

In the remaining part of this section, we briefly review the algorithms considered for our analysis.
For each algorithm, we present a block diagram of the main pipeline. In the diagrams, blocks that are
vertically aligned in the pipeline are blocks that can potentially run in parallel.

Algorithm Method class Registration Matching Strategy Local
optimization

Fovis [81] Image-based Feature-based frame-to-keyframe No
OCV RGB-D [162] Image-based Direct frame-to-frame No

DVO [93] Image-based Direct frame-to-frame No
OCV ICP [160] Depth-based ICP frame-to-frame No
MRSMAP [194] Depth-based Feature-based frame-to-frame No

STTracker depth [135] Depth-based ICP frame-to-keyframe Unknown
STTracker color [136] Hybrid Unknown frame-to-keyframe Unknown

OCV RgbdICP [159] Hybrid Joint-optimization frame-to-frame Nostrategy

Table 4.2: Overview of the different approaches proposed in the evaluated VO algorithms.

4.3.4.1 Fovis

Fovis [81] is a fast visual odometry library developed for micro aerial vehicles (MAV). The visual
odometry (front-end) represented by the Figure 4.8 is performed on the MAV and the global con-
sistency of the trajectory (back-end) is enforced off-board. The registration is feature-based with a
frame-to-keyframe matching strategy, employing FAST keypoints computed on multiple scales and
on subdivisions of the images to ensure a uniform repartition of the keypoints over the image. Each
feature is assigned to a descriptor containing the pixel values of the 9×9 patch centred in the keypoint.
The descriptors are matched across frames using an L1 distance. The matches are then validated using
the associated 3D points: for each frame, the distances among the associated 3D points are calculated
and compared with those of the other frame. This allows retaining the inlier features used to estimate
the rigid body motion with Horn et al. method [79]. Several refinements are then applied to improve
the robustness of the computed camera pose.
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Algorithm Release License ROS SW HW
year binding dependencies dependencies

Fovis [81] 2011 GPLv3 Yes Eigen (x86 SSE2)
OCV RGB-D [162] 2012 MIT No (Eigen) No

DVO [93] 2013 GPLv3 Yes Eigen, OpenCV, (PCL) x86 SSE2
OCV ICP [160] 2012 MIT No (Eigen) No

MRSMAP [194] 2012 BSD Yes GSL, TBB, OpenCV, NoBoost, PCL
STTracker depth [135] 2014 Closed No No iPhone, iPad
STTracker color [136] 2014 Closed No No iPhone, iPad
OCV RgbdICP [159] 2012 MIT No (Eigen) No

Table 4.3: Technical overview of the evaluated VO algorithms. Dependencies in brackets are optional.

RGB
image

Depth
image

Image
smoothing

FAST
keypoints

computation

Robust
keypoints

association

Relative pose
estimation

Keyframe
selection

Camera
pose

3D key-

points

Keypoints

and pose

Figure 4.8: The pipeline of the Fovis algorithm. The preprocessing and registration steps are displayed in orange
and blue respectively.

4.3.4.2 OpenCV RGB-D module

Maria Dimashova developed the OpenCV RGB-D module which is available in the opencv_contrib
repository [161]. It offers a visual odometry algorithm which comes into three flavours : ICP, RGB-D
and RgbdICP.

OCV RGB-D Figure 4.9 illustrates the RGB-D flavour [162], which is based on a direct image-
based approach inspired by Steinbrucker et al. works [193] with a frame-to-frame matching strategy.
Two hypotheses are made. First, the light intensity of a 3D point is considered to be constant among
successive frames. Then, the angular and translational speeds are supposed to be constant between
two frames. The algorithm finds the transformation relating two frames by minimizing the difference
in intensity between the warped current RGB-D frame and the previous one. The first hypothesis
enables to define the objective function as the sum of the square pixel intensities between the back-
projected frame and the previous one. Thanks to the second hypothesis, it is then possible to reduce
the minimization problem to a linear least square problem. Finally, to ensure better robustness with
large motion change, the authors apply a coarse to fine approach by working on an image pyramid.

OCV ICP The ICP flavour [160], shown in Figure 4.10, is inspired by the point cloud registration
algorithm of KinectFusion [127]. KinectFusion ICP variant is based on a projection based heuristic
association function with a point-to-plane error metric. Assuming a small rotation between the two
frames, the minimization of the point-to-plane error is reduced to a linear least square problem. A
coarse-to-fine scheme is used to speed up the point cloud registration. It requires the computation of
image pyramids for the depth frames and the normal maps. A notable difference with KinectFusion
point cloud registration is that OpenCV is frame-to-frame whereas the other is frame-to-model.
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Figure 4.9: The pipeline of the OCV RGB-D algorithm.
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Figure 4.10: The pipeline of the OCV ICP algorithm.

OCV RgbdICP We have seen previously OCV RGB-D and OCV ICP were reduced to linear least
square problems. As illustrated in Figure 4.11, the joint-optimization hybrid approach of OCV Rgb-
dICP takes into consideration the concatenation of the equations of the two problems and solves it. It
is the same scheme Whelan proposed with his RGB-D and ICP Integration [211].
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Figure 4.11: The pipeline of the OCV RgbdICP algorithm.

4.3.4.3 Dense Visual Odometry

Dense Visual Odometry (DVO) [93] depicted in Figure 4.12 is a direct image-based method with a
frame-to-frame matching strategy. As in Steinbrucker et al. works [193] described earlier, a residual is
defined with the difference of pixel intensities between the registered RGB-D frames. The minimiza-
tion is performed with a coarse-to-fine approach in a probabilistic way, defining a likelihood of the
transformation given the residual, and with the use of a sensor model and a motion model. The sensor
model takes the form of a weighting function giving more or less importance to a given residual which
partially originates from sensor noise. The motion model expresses the probability of a transforma-
tion. It can depend on IMU data if available. The proposed motion model assumes a constant velocity
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in order to avoid jitter in the estimated trajectory.

Depth
image

Compute
point cloud

pyramid

RGB
image

Compute
image

pyramid

Compute
image

derivatives

Build
likelihood
function

Find
likelihood
maximum

Camera
pose

Sensor
model

Motion
model

Previous
camera

pose

Repeat on each

pyramid level

Figure 4.12: The pipeline of the DVO algorithm.

4.3.4.4 MRSMAP VO

Stückler et al. [194] proposed a 3D feature-based approach with a frame-to-frame matching strategy
in which each frame is viewed as an octree of surfels. The originality of the approach is that multiple
levels of resolution can be used simultaneously since each parent node of the octree encodes the
information of their children node. The uncertainty of 3D points w.r.t. the camera is modelled by
using smaller surfels for points closer to the camera. For optimization purpose, the coloured 3D points
are not stored in the nodes: the local geometry and the colour distribution of the 3D points are instead
encoded by a 6D multivariate normal distribution of 3D points coordinates and the three components
of the colour in the Lαβ space. Each surfel is associated to a shape-texture descriptor which encodes
the difference of colour and normal orientations between the adjacent surfels in the form of three
bins histograms. The registration of a RGB-D frame illustrated in Figure 4.13 is performed at the
level of their octree representation. The surfels of the two octrees are first associated with a coarse-
to-fine approach using the shape-texture descriptor of the surfels. Then a likelihood based on the
difference of the local geometry encoded by the associated surfels is maximized in order to compute
the transformation between the two frames.
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Figure 4.13: The pipeline of the MRSMap algorithm. The nodes association and transformation estimation
steps are parallelized for each node and association respectively.
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4.3.4.5 Occipital STTracker

Structure is a depth sensor manufactured by Occipital using Primesense’s technology and it uses struc-
tured light to estimate the depth. The sensor does not support any RGB camera and it has to take
advantage of the mobile device rear camera to retrieve the RGB frames. Occipital provides an iOS
SDK with a VO algorithm in two flavours: depth-based [135] and hybrid [136].

4.3.5 Algorithms selection
In order to limit the number of algorithms evaluated on the mobile devices, we performed a selec-
tion based on three criteria: the accuracy, the runtime and the memory footprint. As mentioned in
Section 4.3.3, most of the algorithms that we are considering were not used in previous benchmarks
[53, 122]. For these reasons, we needed an assessment of their performances in terms of accuracy
and resources consumption. Since all the algorithms mentioned earlier were designed for embedded
or desktop computers, we chose the latter platform which also enabled us to easily perform memory
monitoring. On the other hand, accuracy evaluations are not dependent on the computing platform.

4.3.5.1 Description of the dataset

As we mentioned earlier, the RGB-D TUM dataset for vSLAM evaluation was interesting for the
evaluation because it offers various indoor acquisitions scenarios with ground truth trajectories. It is
divided into three sets of sequences: “fr1”, “fr2” and “fr3”.

The “fr1” sequences provide various scenes recorded in an office environment. They include two
simple scenes for debugging purpose: “xyz” and “rpy” with respectively translation only and rotation
only sensor movements, and two very challenging scenes : “floor” which as the name suggests has
low structure, and “360” with a high rotational motion and, thus motion blur.

The “fr2” sequences were recorded in a large industrial hall. Compared to the “fr1” sequences
they are generally longer and have a slower camera motion. It also contains two debugging series and
a “desk” scene. Three scenes are very challenging: “360 hemisphere”, “large no loop” and “large with
loop”, due to the low texture and the distant 3D points.

Finally, the “fr3” sequences feature a scene with a desk and various evaluation series to evaluate
the performances of algorithms on scenes with structure and/or texture.

At the time of writing, the STTracker class which implements the VO algorithm is designed to
be used with the RGB-D frames of the Structure Sensor only. The evaluation of this algorithm on
the TUM RGB-D vSLAM dataset was very difficult and required us to write an intermediate software
layer which supplied the Structure SDK with the required data.

4.3.5.2 Description of the metrics

Parameters All VO algorithms have parameters which must be tuned in order to give the best results.
To simplify the experiments, we took the parameters recommended by the author’s algorithms in their
respective articles. For the Structure STTracker, we took the parameters STTrackerQualityAccurate
and STTrackerDepthAndColorBased.

Accuracy evaluation There are two well know metrics that can be used to estimate the accuracy
of the estimated camera poses over time, the Absolute Translational Error (ATE) and the translational
Relative Pose Error (RPE) [196]. They both assume that the ground truth and the estimated trajectory
are aligned, time-synchronized and equally sampled. At a given time step ATE computes the Euclidean
distance between the estimated camera position and its ground truth. The ATE is then defined as the
mean squared error (RMSE) of these distances all along the trajectory. This metric is more suitable
for vSLAM evaluation because it assesses the global consistency of the estimated trajectory relatively
to the ground truth.

The RPE is instead used to measure the local accuracy of the estimated trajectory over a fixed time
interval ∆. Considering a sequence of estimated camera poses (roto-translations) P i ∈ SE(3), i =
1, . . . , n and their corresponding ground truth Q i ∈ SE(3), i = 1, . . . , n, the relative pose error E i at
time i is defined as

E i =
(
Q -1
i Q i+∆

) (
P -1
i P i+∆

)-1
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The overall RPE of the sequence is then defined as the RMSE of the translation of each E i. The
RPE better represents the drift of the trajectory over time, which is useful for the evaluation of visual
odometry systems.

The accuracy comparison of the algorithms was performed during the desktop experiment. We
used the RPE metric with a time interval ∆ = 1 s. For each experiment, we computed and plotted the
RMSE, the mean and the standard deviation of the RPE values. We also plotted the graphs of the RPE
over the time for visual inspection purpose, in order to highlight the experiments with high and narrow
error peaks which would be masked by the RMSE measure.

As shown in Section 4.3, many parameters influence VO algorithms performances. For a proper
comparison, we should compare individually, for each VO algorithm, its registration performance,
using the same rigid body transformation estimation function, the same pre-processing and post-
processing steps. This would be unpractical, for this reason, we only compared the full pipeline
of the algorithms, as an end-user would use it.

Performance evaluation Memory consumption evaluation can be quite controversial. It can be
heavily impacted by the optimizations performed by the kernel and the presence of a garbage collector.
For this reason, we provided values intended to give a general idea of the memory consumption of the
evaluated algorithms.

We used a computer with an Intel ®Core™i7-2600 CPU and 6 GB of RAM for the desktop ex-
periment. We monitored the performances of the VO algorithms by recording every second the pro-
cess information status given on GNU Linux operating systems by the files /proc/pid/stat and
/proc/pid/statm. To evaluate the memory consumption, we took into consideration the maxi-
mum value of the Resident Set Size, also called virtual memory high water mark (VmHWM), and the
maximum value of the program data (Pgm Data).

The Resident Set Size is the actual part of the virtual memory used by the process which is mapped
into the RAM. Therefore it is a good indicator of the RAM requirements of the target platform. The
program data is the sum of the stack size, the heap size, and the size of the global plus static variables
(data+bss), in other words, it is the sum of VmData and VmStck. It is mainly affected by the heap size
and may be partially mapped into the RAM.

We did not take into account the Virtual Memory Size, which is the total amount of virtual memory
used by a program. It includes the size of the binary and its linked shared libraries, the stack and
heap usage. Unused shared libraries can dramatically increase the Virtual Memory Size, leading to
misinterpretations.

To monitor the runtime performances, we took into consideration the number of processed frames
per seconds and the CPU usage4. Due to the Quad-Core CPU of our desktop computer, our CPU load
value is between 0 and 400 %.

In order to ensure the runtime performances were not affected by intensive I/O operations, we also
monitored the total I/O delays provided by delayacct_blkio_ticks. Since the I/O delays of all
the monitored algorithms was negligible compared to execution time, we did not include their values
in our results.

4.3.5.3 Accuracy results

Figure 4.14, Figure 4.15and Figure 4.16 represent the bar graphs of the RPE of the evaluated algo-
rithms on the different scenes of the RGB-D TUM dataset for SLAM. In order to ease the comparison,
the different classes of VO algorithms are clustered with different hues: shades of red, green, and blue
for the image-based, depth-based, and hybrid algorithms.

A first simple observation of the different graphs is that the accuracy results significantly vary from
a scene to another. As stated by Fang [53], there is no algorithm which outperforms the others in all
environments. The results have to be analysed w.r.t. the scene characteristics. Therefore the choice
of VO algorithm depends on the target environment. Apart from the challenging scenes we described
earlier and correspond to higher RPE values, the slower “fr2” scenes obtain better results than the
“fr1” scenes. This illustrates well the importance of speed on the VO performances.

4We use the UNIX definition for CPU usage as
∑

c∈NumCores
time_spent_on_corec

elapsed_time
, where elapsed_time is the

delta of system clock between the start and the end of the execution, and time_spent_on_corec are the number of system
clocks spent on each of the NumCores of the machine [68].
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As the intuition suggests, the hybrid and image-based methods are the most accurate when the
environment has texture and no structure such as the scenes “fr1 floor”, “fr3 nostructure texture near
withloop” and “fr3 nostructure texture far”. Similarly, the environments with structure and low texture
favour the hybrid and depth-based algorithms as shown by the scene “fr3 structure notexture near”.
Nevertheless, with the scene “fr3 structure notexture far”, which has noisier depth data, the accuracy
of the ICP algorithm is comparable to the image-based algorithms. On this scene, the 3D feature-
based approach of MRSMAP enables to achieve the lowest RPE. When the environment is neither
flat nor textureless, e.g. the “fr3 structure notexture near” scene, we reproduced Fang [53] results, in
which image-based or hybrid-based methods are more robust than depth-based methods. However,
surprisingly the addition of texture on the “fr3 structure notexture near” scene deteriorated the results
of the depth-based methods. It must be noted that the results reported in [122] for the “fr3” scenes show
that the image-based methods have a higher RPE than the depth-based methods on the textured scenes
with low structure and vice-versa for the untextured scenes with low structure. After a comparison
with our DVO results, we found out that this discrepancy of results was due to the inversion of the plot
labels and to an incorrect scaling on the y-axis ticks in the paper of [122]. Also, the accuracy difference
between the depth-based and image-based methods is very important, which might be explained by
the lack of structure in the scene. In contrast, the scenes recorded in the office also show the hybrid
and image-based methods are more robust, but the accuracy difference with the depth-based methods
is slighter. A trend emerges if we compare the most accurate algorithm on each scene of the “fr1” and
“fr2” series: OCV RgbdICP and Fovis have the lowest RPE on the scenes “fr1” and “fr2” respectively.
DVO and OCV RGB-D generally come behind or between. There are some exceptions to this trend,
but not enough to draw conclusions on them.
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Figure 4.14: RPE comparison on the fr1 sequences of the TUM dataset.

4.3.5.4 Performance results

Runtime performances Table 4.4 illustrates the runtime performances performed with VGA frames
on the TUM fr1 desk scene. It shows that only Fovis can run at the rate of the depth sensor which
is 30 FPS. All the imaged-based algorithms, DVO, Fovis and OCV RGB-D, can run at a frame rate
superior to 20 FPS, which is fast enough for real-time applications such as augmented reality.

The CPU load column from the Table 4.4 illustrates that all the algorithms do not fully take ad-
vantage of the multiple cores of the CPU. Surprisingly, the fastest algorithm, Fovis only uses one
thread, while the slowest, MRSMAP use several ones. Also, the hybrid method OCV RgbdICP does
not take well advantage of threads, while its image-based and its depth-based approaches could be run
in parallel.

Memory consumption The memory performance evaluation illustrated by Table 4.4 reveals that
several algorithms require more than 500 MB of program data. In contrast, the peak value of the
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Figure 4.15: RPE comparison on the fr2 sequences of the TUM dataset.
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Figure 4.16: RPE comparison on the fr3 sequences of the TUM dataset.

Resident Set Size (VmHWM) is generally below 100 MB which is low enough for mobile devices.
Again, Fovis is the least demanding algorithm with only 25 MB of maximal memory mapped into the
RAM while MRSMap, the most demanding uses 300 MB. This comparison between the program data
and the VmHWM also demonstrates that generally only a small amount of the program data is mapped
into the RAM.

4.3.5.5 Experiments conclusion

From this evaluation, we selected the algorithms to evaluate on the iPad. Concerning the depth-based
methods, we selected OCV ICP over MRSMAP for being slightly more accurate, less CPU-demanding
and easier to compile on the iPad. We selected OCV RgbdICP which was our only hybrid algorithm,
while for the image-based methods, we kept Fovis for its best runtime performance and high accuracy
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Name FPS CPU load (%) VmHWM (MB) Pgm Data (MB)

MRSMap 9.3 200 332 811
OCV ICP 17.8 101 70 622
OCV RgbdICP 11.9 101 74 626
OCV Rgbd 22.7 94 50 602
DVO 23.8 288 89 536
Fovis 103.9 91 25 24

Table 4.4: Performance evaluation on the “TUM fr1 desk” scene with VGA frames performed on a desktop
computer.

while we dropped DVO as it has many x86 optimizations and a similar accuracy to OCV RGB-D.

4.3.6 Mobile experiments

4.3.6.1 Second accuracy experiment: Structure Sensor acquisitions

Description of the dataset and the metrics The evaluated algorithms had their parameters opti-
mized to give the best results on some series of the TUM dataset which used a KinectSL as depth
sensor. While the two sensors share the same core technology, we wanted to check with a second
experiment whether we could observe a different accuracy trend with the Structure Sensor. We con-
nected the Structure Sensor on the iPad Air used in the previous experiment and we used a dedicated
application to record locally the trajectory estimated from the STTracker VO algorithm, the RGB-D
frames and the IMU data.

We recorded three scenes in three different rooms (r1, r2, r3) with various luminosity levels, de-
noted hl, ml and ll for high, medium and low luminosity respectively. For each scene, We also
recorded different camera motions, which we denoted hs, ms and ls for high, medium and low cam-
era speed respectively.

In the absence of motion capture cameras that could provide a ground truth for the device motion,
we constrained the camera motion on an horizontal plane (e.g. like a ground floor or the surface of a
table), using a home-made mount to secure the device in a vertical position. Therefore, instead of eval-
uating the drift w.r.t. a known pose, we will rather evaluate the planarity of the device trajectory. We
also ensured the trajectories had their start and stop positions identical by putting the mount in contact
with the same reference object at the beginning and the end of the recording. This guarantees almost
perfect loop closure, any error made is negligible in comparison to the expected drift, as measured
from the desktop experiment.

As for the metric to evaluate the accuracy of the algorithms, we use both the loop closing error
and the RPE. The loop closing error is defined as the distance between the endpoints of the estimated
trajectory divided by the path length, and it is used by most of the authors [53, 223] to compare VO
algorithms. This metric evaluates the performances of the algorithms globally rather than locally, for
each time step. On one hand, algorithms with a low RPE may be penalized by this metric because of
one major drift; on the other hand, algorithms with high RPE may have a smaller distance because of
compensations between the various drifts, somewhat like in a perfect random walk. Therefore RPE
can give a better insight about the performance of the algorithm all over the device motion.

In our case, given that the trajectory is supposed to be planar and we cannot have a ground truth for
the device pose, we instead evaluate the RPE as the drift along the z-axis component (i.e. the normal
to the plane of the motion) to assess the quality of the estimated trajectory

Results and analysis The Figure 4.17 represents the RPE along the z-axis for the evaluated algo-
rithms. We compared our metric with the loop closing error. In contrast, with the experiments on the
TUM datasets, the OCV RGB-D and OCV ICP algorithms do not perform well. With the Structure
Sensor dataset, the STTracker hybrid algorithm has generally the highest accuracy, matched only
by OCV RgbdICP. These results show that the trends are very different on some algorithms for the
KinectSL RGB-D TUM dataset and our Structure Sensor dataset.
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Figure 4.17: Comparison of the RMSE of the translational RPE along the z-axis.
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Figure 4.18: Loop closing error defined as the distance between the endpoints of the estimated trajectory divided
by the path length.

Figure 4.18 represents the same evaluation with the start-end distance metric. The trends between
the two figures seem very similar. However, on “r1-hl-ms”, “r1-ll-ms”, “r2-hl-ms” and “r2-hl-ms” the
ranking of the Fovis, OCV RGB-D and OCV ICP algorithms is very different with the two metrics.

4.3.6.2 Performance evaluation

The performance experiment was carried out on four mobile devices: two iOS devices, iPhone 5 and
iPad Air and two Android devices, Memo Pad 7 and Tango TDK. As mentioned in the Section 4.3,
the Tango TDK has a dedicated VIO module requiring different input: thus, it cannot be fairly com-
pared with the RGB-D VO algorithms, which are the object of this article. Table 4.5 displays the
characteristics of these mobile devices. The PassMark CPU benchmark assesses trough various inten-
sive parallel computational algorithms how fast a CPU is. The scores give an indication of the CPU
speed, the faster is the processor, the higher is the score. We took the value of the Android5 and iOS6

ranking available on November 17th, 2016. The scores indicate the iPhone 5 and the Memo Pad 7
can be considered as middle performance devices, whereas the iPad Air and the Tango TDK can be

5http://www.androidbenchmark.net/cpumark_chart.html
6http://www.iphonebenchmark.net/cpumark_chart.html

http://www.androidbenchmark.net/cpumark_chart.html
http://www.iphonebenchmark.net/cpumark_chart.html
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considered as high performances devices.
We compiled the previously selected VO algorithms with the -O3 optimization option and used

the “TUM fr1 desk” scene to evaluate their performance, with two different image resolutions: VGA
(640× 480) and QVGA (320× 240).

Manufacturer Model CPU CPU PassMark score RAM (GB)

Apple iPad Air Apple A7 37517 1.0
Apple iPhone 5 Apple A6 23914 1.0
Asus Memo Pad 7 K013 Intel ® Atom ™Z3745 27807 0.86
Google Tango Yellowstone Nvidia Tegra K1 38503 3.7

Table 4.5: The mobile devices used for the performance evaluation with some of their hardware specifications
and their PassMark score (the faster the CPU the higher the score).

Algorithm Device QVGA (FPS) VGA (FPS)

Fovis

iPad Air 92.0 24.1
iPhone 5 38.7 10.2
Memo Pad 7 81.6 20.1
Tango Yellowstone 96.0 26.0

OCV RGB-D

iPad Air 28.6 6.7
iPhone 5 13.7 3.6
Memo Pad 7 8.9 2.4
Tango Yellowstone 17.2 4.3

OCV ICP

iPad Air 23.8 5.5
iPhone 5 9.7 2.5
Memo Pad 7 7.9 2.1
Tango Yellowstone 14.4 3.6

ST ICP iPad Air 43.7 42.6
iPhone 5 23.3 20.9

ST hybrid iPad Air 36.4 28.3
iPhone 5 19.2 16.7

OCV RgbdICP

iPad Air 14.3 3.2
iPhone 5 6.4 1.6
Memo Pad 7 4.3 1.2
Tango Yellowstone 8.1 2.0

Table 4.6: Performance evaluation on the “TUM fr1 desk” scene with QVGA (320×240) and VGA (640×480)
images performed on the four mobile devices.

Table 4.6 shows the results of the performance experiment. For each algorithm, the frame rate (fps)
is reported for each device for which it was possible to port the algorithm. It must be noted that we
chose to report the frame rate as a performance measure as it can be used as a reference for assessing
the suitability of the algorithm for a given application. In general, computer vision applications are
usually considered to be real-time when they are able to assure a minimal throughput in terms of
images processed per second. This clearly depends on the target application and the type of time
constraints that must be guaranteed [18]. Visual odometry can be used to enable applications like
augmented reality or more general robotic applications, and in general, for this range of applications,
a frame rate of 15 fps is commonly considered a minimal threshold to assure the responsiveness of the
application.

As it can be noted from the table, downsampling the images from a VGA resolution to QVGA
clearly improves the computational performances up to a factor of 4. However, this has sometimes an
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Figure 4.19: Comparison of the RPE ratio QVGA/VGA on the fr1 scenes of the TUM dataset.

impact on the estimated trajectory and the accuracy of the results. Figure 4.19 shows the ratio between
the VGA and the QVGA accuracy: using half resolution generally worsens the achievable throughput
(ratio greater than 1), with some exceptions in which we observed a slight improvement of accuracy
(ratio lesser than 1).

In the case of the STTracker, it can be noted that resolution does not affect the performances, as
there is only a slight difference between the two resolutions. Since the code is not available and the
documentation is not clear on this point, we can only speculate that the algorithm always downsamples
input VGA images to ensure a high frame rate.

More generally, Fovis is the only algorithm that can achieve high frame rates at VGA resolution
on high-end devices, and it anyway outperforms the other algorithms on iPhone 5. It is worth noting
that Fovis’ SSE2 optimizations were disabled when running the tests on the Memo Pad 7 as they led
to a slight loss of performance. All the other algorithms fail to reach real-time performances at VGA
resolution, even on high-end devices: OCV RGB-D and OCV ICP are the only ones passing 5 fps on
iPad Air. When using QVGA resolution, the performances of all algorithms improve and generally the
iPad Air is the device getting higher frame rates for every considered algorithm. As for the OpenCV
family of algorithms, OCV RGB-D only fails to achieve real-time performances on Memo Pad 7,
OCV ICP can provide high frame rates only on the most powerful devices, iPad Air and Tango TDK,
while OCV RgbdICP only comes close to the threshold of 15 fps on iPad Air.

Concerning the devices, the iPad Air is twice as fast as the iPhone 5, and the Memo Pad 7 is
twice as slow as the Tango TDK, with the exception of the Fovis algorithm.

4.3.6.3 Discussion

Even if modern mobile devices have CPUs with 2 or 4 cores up to 2.3 GHz, their computational power
cannot be exploited at their full potential for a long period of time without draining the battery and
risking some over-heating of the device. Since they are designed to be power efficient, their frequency
is often throttled down and their instructions set is reduced. Moreover, the current hardware architec-
tures of mobile devices have reduced L1 and L2 cache and a reduced instruction set. Therefore, when
optimizing the implementation, developers should pay particular attention to the memory accesses, for
example taking advantage of the pre-fetching and maximizing the processing on small blocks of data.

As a general rule, polymorphism should be limited or used carefully, as it may introduce perfor-
mance overheads and it may lead to indirect function calls which are less likely to be optimized at
compile time [217]. For example, in a study over a large set of programs Driesen et al. [48] showed
that, in average, 5.3 % of the time is used to deal with polymorphism, and 13.7 % for “all virtual”
versions of the program. For the examined algorithms, we can note that OpenCV highly uses poly-
morphism both for data structures and algorithms, while at the other end, Fovis uses polymorphism
only for the abstraction of the input data source.
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Standard computer vision libraries such as OpenCV and ROS [158] are extremely useful tools
for developing, prototyping and testing algorithms. On the other hand, these libraries were originally
designed mostly for desktop environments, and only recently the porting to mobile environment has
been started. Despite these efforts, at the moment of writing, they still lack of adequate and complete
code optimization, supporting e.g. specific instruction set like ARM-NEON that could fully exploit
the specific hardware of modern mobile devices. Moreover, the use of float over double data type
is recommended for runtime and memory performance: even if the most recent ARM processors are
64 bit CPUs, for the time being there are no instructions that support double precision operations [10],
which introduces type conversion overheads that significantly affects the performances [113].

Parallelization can also improve the performances of the algorithm when ported in the mobile
environment. Computationally intensive algorithms for image processing can be parallelized by means
of shaders that can speed-up the computation by running on the GPU of the device. For example, all the
pre-processing blocks of Figures Figure 4.8–Figure 4.11 used to pre-process the RGB-D image using
classic image processing algorithm (bilateral filtering, image smoothing, etc.) can be implemented as
a shader. Multithreading is also another natural way to optimize the pipeline execution. As showed in
Section 4.3.4 when describing the algorithm pipelines, all the blocks that are vertically aligned can be
actually run in parallel by different threads. This is especially adapted for the algorithms that require
to processing both the depth and the RGB image, such as OCV ICP, OCV RGB-D and DVO. Splitting
the processing of each input image into different threads will certainly benefit the performance of
the algorithm, and optimize the resource consumption. More sophisticated parallelization can also be
employed combining pipelining and look-ahead strategies [165], so that the device resources can be
fully exploited. For example, a pipelined version of OCV RGB-D (c.f . Figure 4.9) could reserve two
threads for processing the two input images as they are available instead of waiting for the whole pose
estimation process to end. This allows improving the throughput of the algorithm at the cost of more
complexity of the implementation.

An IMU offers a good combination with VO algorithms because of its complementary with visual
sensors. Inertial data is computationally cheap, it deals well with rapid movements, but it suffers from
drift and measurement noise. On the other hand, visual data can provide more precise and stable
measurements, which can be used as reference to prevent the inertial measurements from drifting.
Inertial data are particularly adequate for algorithms based on iterative solvers that need a first initial
solution, and algorithms where a rough estimate of the motion is used. For the Fovis algorithm, for
example, the “features matching” step takes advantage of the knowledge of the rotation between the
frames: the method uses pixel errors between images to infer the rotation, whereas as stated by the
authors, the IMU data could provide the same kind of information at a lower computational cost. The
DVO algorithm is designed to be used with a motion prior, again an inertial sensor can fulfil this task.
Brunetto et al. [25] demonstrated that higher robustness of the pose estimation of their features image-
based vSLAM algorithm SlamDunk could be achieved with the use of IMU data from a Samsung
tablet.

Considering the scenario of a mobile augmented reality application where 24 fps or higher is rec-
ommended, Fovis with QVGA images appears to be the best choice since it can run at high frame
rates on middle and high performance mobile devices. In the case iOS, only the devices with high-
end specifications such as the iPad Air can achieve real-time performances, with the exception of the
STTracker algorithms, which are specifically optimized for this environment.

4.3.7 Benchmark conclusions

In this section, we presented a classification and a theoretical review of RGB-D VO algorithms. We
tested and analysed the performances on a mobile device of six visual odometry algorithms designed
for RGB-D sensors on different mobile devices covering the two most common mobile operating
systems, iOS and Android. We selected the most promising algorithms to test based on previous
benchmarks found in the literature, and our tests on desktop environment to assess the computational
and memory performances before porting them to the mobile environment. The performances of
each algorithm were analysed in terms of accuracy and time and memory consumption, which is a
fundamental aspect when deploying a visual odometry algorithm on a device with limited resources.
We assessed and confirmed the algorithms accuracy on the state-of-the-art RGB-D TUM dataset and
we collected the time and memory consumption of the algorithms to get a first rough estimation of the



4.4. PLANAR APPROACHES 65

resources needed.
After selecting the most promising algorithms in terms of accuracy and resources consumption,

we run several tests on mobile devices to assess both the actual performances on the mobile devices
and the accuracy on our own dataset.

In general, results showed that only high-end devices such as iPad Air can guarantee some ade-
quate frame rate at normal resolution (VGA). Reducing the resolution of the input image proved to
increase the throughput, yet sometimes at the expense of the accuracy. On the other hand, algorithms
provided with the Structure SDK, the ST hybrid [136], can achieve a good accuracy and faster exe-
cution times even at full resolution. Since the code for the latter is closed-source, we can only expect
that the code is specifically designed and optimized for the mobile settings. As for the open-source
algorithms, only Fovis could achieve frame rates up to 24 fps and perform adequately on all the four
available mobile devices. This could be explained by the fact the algorithm was already designed
for running on micro aerial vehicles, thus privileging a simpler implementation adapted to limited re-
sources environment. Results also showed that implementations relying on standard computer vision
libraries such as OpenCV, are still lacking a proper support for mobile architectures. These tools
are quite useful for quickly prototyping the implementation of an algorithm, but, for the time being,
they are still oriented to the desktop environment and their complexity is not well suited for mobile
environments.

In the light of the evidence shown in this paper, it appears clearly that designing a VO algorithm
for mobile environments requires to thoughtfully adapt the implementation to the limited resources
available to achieve a good trade-off between accuracy and throughput. The VO algorithms provided
by the hardware makers such as Occipital are the best bases upon which building an application, as
they are finely tuned for the specific environment. On the other hand, developing an original VO
algorithm requires a thorough design of the algorithm from the ground-up.

4.4 Planar approaches

We have seen previously VO algorithms suffer from drift. These localization errors can be limited
with a global map and trajectory optimization algorithm. Due to the amount of data considered, these
algorithms are slower than VO algorithms, so they are usually run punctually on a separate thread.
The Google Tango SDK proposes a fast global map optimization algorithm [116], optimized for the
mobile platform. However, it seems the speed was trade at the expense of the accuracy. Figure 4.20
illustrates this problem: some walls remain thick or duplicated after the global optimization, and in
some cases, the solution is locally deteriorated. This effect can sometimes be explained by the absence
of texture in some areas of the scenes (e.g. painted walls), leading to the absence of local feature points.
In these areas, the drift could be reduced if the Google Tango VIO algorithm took advantage of the
3D data provided by its range imaging sensor, but would it be enough? Several studies [106, 35,
70] demonstrated that some depth-based and hybrid vSLAM approaches such as Kinect Fusion [127],
Sun3Dsfm [190], Kintinuous [211] and DVO-SLAM7 [92] failed to reconstruct globally consistent
large scenes. In the absence of planar constraints, the reconstruction of large scenes generates curvy
floors and walls.

In order to improve the geometric consistency of our reconstructed scenes, we decided to consider
planar primitives. Planes are interesting features: they can be considered for large-baseline registration
since they remain visible after important camera displacements, they do not suffer for the presence of
repetitive texture or their absence, and they provide the structure of the room to reconstruct. Walls
are static and there is no reason they become completely occluded, thus they are suitable high-level
landmarks.

The study of planar approaches occurred after we had selected the Tango TDK as target platform,
at the expense of the Structure Sensor. In this section we will give some background on planar
approaches for VO and global optimization, detailing the different components: extraction of the
planes, fusion of planes, registration and optimization with planes. We will then present our attempt
to build a similar system and the obtained results on acquisitions from the Tango TDK.

7Note that the DVO [93] algorithm we evaluated earlier is an older version which is image-based, whereas [92] is a hybrid
approach.
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Figure 4.20: Top down views of point clouds from room scans with the Tango TDK colored with a jet color
map applied on the points depending on their altitude (red for lower points, blue for the higher ones). The left
and right images represent the point clouds before and after the provided global map optimization was performed,
respectively. Green and red ellipses represent area which were improved and deteriorated by the map optimiza-
tion, respectively. Orange ellipses represent area where the walls remained duplicated or thick after the map
optimization.

4.4.1 Overview and related works
Planar approaches follow a common framework we summarize in Figure 4.21. The range images
are processed in order to extract sets of 3D points corresponding to candidate walls, generally called
planar patches or planar regions. They are associated with the eventual help of registration prior (e.g.
ICP, wheel odometry, etc.), and fused with the previously extracted planar patches. Then, the pose
registration can be estimated by estimating (or correcting) the camera pose which aligns the associated
planar patches. Finally, the global consistency of the fused planar patches can be improved with an
optimization procedure on the camera pose and the detected planes.

4.4.1.1 Planar patch extraction

A planar patch π is defined as a list of 3D points associated with the equation of the fitted infinite plane
and the boundaries of this patch. We define the planar patches extraction problem as a function which
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[145] Region
growing

Yes No No Graph-based SLAM (translation estimation only)

[107] Normal
map

Yes No Yes Graph-based SLAM

[46] Hough
Transform

No SIFT No Bundle adjustment

[199] RANSAC No SURF No Bundle adjustment

[175] Normal
Map

No No ICP No

[87] Normal
map

Yes No No Graph-based SLAM with plane observation and
potential odometry constraints

[117] Split &
merge

No RGB Image No Graph-based SLAM with odometry and plane
observation constraints

[80] RANSAC No RGB Image No Graph-based SLAM with odometry and plane
observation constraints

Table 4.7: Comparison of SLAM planar approaches sorted by ascending year of publication.

takes as input a range image and returns a list of planar patches.
The extraction of fast planar patches in range images has been extensively studied since the 90’s.

Hoover et al. [78] compares some of the proposed algorithms of that time. We can note that older
plane fitting approaches [91, 143, 209] (especially when the density of the point cloud is low) take
into consideration the sensor noise model, whereas approaches posterior to the KinectSL release do
not [46, 54]. In this section, we briefly recall some popular strategies presented in recent papers. For
a more detailed review of planar regions extraction, we refer the reader to [54, 84, 150].

RANSAC based approaches [204] apply iteratively the RANSAC algorithm to find the most domi-
nant plane of the scene. The inlier points are removed and the dominant planes of the remaining points
are repeatedly extracted.

Hough Transform approaches [23, 46] consider each 3D point and fill an accumulator which votes
for all the possible planes the point can lie on. The peak values of the accumulator indicate the possible
planes. However, the cluster associated with one peak may contain non-adjacent points.
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Region growing algorithms [144, 150] take a random seed point and some neighbors and extend this
set of points by taking into consideration neighboring points. A plane is estimated on this set of points
and a new point is considered valid when its distance to the plane is small enough. The planar patch
keeps growing iteratively until no valid point can be found in the neighboring of the patch. A new
seed point is picked until all points have been considered. Some points may be incorrectly segmented,
particularly at the intersection of two planar patches as illustrated in Figure 4.22

Normal map segmentation computes the normal map and segments it with a region growing ap-
proach [107] or a voting approach [76]. On each normal cluster, the plane parameters are estimated.
The clusters must be segmented again to separate possible parallel planes.

Split and merge approaches perform multiple planar extractions on partitions of the data and merge
the contiguous similar planar patches. Feng et al. [54] proposes a block splitting function working
in the depth map and a merging strategy which balances the size of the patches for performance
issue. Because of the size of the block, the planar segmentation is coarse, and a refinement process
with a pixel-wise region growing approach is required to increase the resolution of the segmentation.
Depending on the size of the block, this approach may not detect thin planar patches.

Figure 4.22: A part of the ceiling (undetected here) was segmented in the red planar region (which corresponds
to a vertical beam). A normal map approach would have correctly segmented the range image since the normals
of the incorrectly classified red points are collinear with the gravity vector.

A boundary of the 3D points associated to the planar patch is generally computed, in the form of
an oriented bounding box, a convex or concave hull of the 3D points projected on the fitted plane.

These recent papers do not address the issue of choosing among several plausible planar segmen-
tations. For example, aligned furniture, thin sliding doors, plinths on a wall, half height wall tile etc.
create adjacent parallel planar surfaces, and depending on the noise level, it can be difficult to deter-
mine whether one or two Planar Patches (PPs) should be detected. A previously seen PP can be later
perceived as two PPs after a displacement of the user to get closer to this ambiguous area and reduce
the range measurement noise. Another issue concerns the non-planarity of some parts of the surface
which can be observed for very large planar surfaces, especially on the ceiling and the floor, e.g. to
allow the drainage of water, or because of sagging in some areas of the structure. Current approaches
may over-segment these areas and also propose changing results depending on the noise level. It is a
difficult problem, which strongly depends on the level of details and the granularity of model that is
required by the application.For the sake of this work, we prefer an over-segmentation since it easier to
design a user interaction to fuse PPs than to split PPs.
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4.4.1.2 Planar patch association and fusion

A model of planar patches in the world coordinates is usually created with the patches of the first
frames, which are brought into a global world coordinate system thanks to the known camera pose.
For each successive frame, the extracted planar patches are associated with the model via an associ-
ation function. The associated planar patches of the model are updated with a fusion function, which
generally performs a weighted mean of the estimated plane parameters and computes the union of the
patches boundaries.

Given a list of planar patches from the model M = {πmi } and a list of planar patches from the
current frame C = {πci}, the association function computes a list of planar patches pairs where each
patch πci appears only once.

The planar patches association step is usually tackled by comparing metrics such as the normal an-
gle difference and an offset distance between the considered planes. For example, [107, 117] compare
the distances of the planes to the origin, which depends on the origin choice and the estimated normal.
As illustrated in [46, Figure 5], “the closeness of planes parameters is not equal to the closeness of
planar patches”. To cope with this issue, [208] and [87] compute a vector between the gravity centers
of the planar patches, which is projected on one of the plane normal to define a PP-to-PP distance. [21,
117] consider an additional metric based on the overlapping of the patches, while [164] adds the com-
parison of the planar patches dominant color. [199] also takes advantage of the RGB images with the
help of visual local features (SURF). The use of uncertainty metrics on the planar patches favors the
use of probabilistic approaches. For example, [210] performs a χ2 test with the SPmodel of the planar
patches while [107] defines two Mahalanobis distances with the covariance matrices of the points of
the planar patches and the covariance matrix of the plane parameters.

The pairs of patches {(πmi , πcj)} with the lowest metric are kept, but some outliers may remain.
They are filtered by [107, 144] with algorithms inspired by RANSAC.

4.4.1.3 Planar registration

Given two consecutive frames and the set of corresponding features, the planar registration is gener-
ally achieved by searching the transformation minimizing a distance between the matched features.
Plane-only approaches consider a plane-to-plane distance only: for example [107] uses a Mahalonobis
distance which takes into account his uncertainty model. This approach suffers from an important
issue: depending on the number of associated planes and their configuration, the camera pose may be
not enough constrained. For example, to estimate the translational component of the transformation
tc→m between planes of the current frame {Πc

i}, to planes of the model {Πm
i }, a minimum of three

associated planes with linearly independent normals are required. This requirement appears in Equa-

tion (4.1), where we use the Hessian plane model: Πi =
[

ni
−di

]
, where ni is the unit vector of the

normal of Πi and di the distance of the plane from the origin. It also reveals a problem of numerical
stability, since three similar (nonidentical) {nm

i } vectors may still give a (degenerate) solution. Such
a situation can be detected with a numerical rank analysis as proposed in [145].
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...
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 (4.1)

The probability of degeneracy can be reduced by considering additional features: [46, 199] also min-
imize the distance between 3D points corresponding to image local features and matched via their
descriptors, while [80, 117] include a photometric residual corresponding to a dense and semi-dense
registration approaches.

4.4.1.4 Global optimization

The main approaches usually solve a global optimization of the structure (the map), and the camera
poses (the localization) are the Bundle Adjustment (BA) and the Least Square (LS) Simultaneous
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Localization And Mapping (SLAM).
Bundle Adjustment (BA) [205] takes its essence with SfM for adjusting a bundle of rays corre-

sponding to the observation of local image features by adjusting the camera poses and the 3D posi-
tions of the features. Formally, it corresponds to a nonlinear LS problem which jointly optimizes all
the camera poses and all the observed features. Therefore, the resulting equations and the resolution
approaches are similar to those of LS SLAM. Contrary to the latter, there is no constraint between the
camera poses (the order of consideration of the camera poses w.r.t. the time does not matter), and the
approach is not necessarily probabilistic.

LS SLAM [27, 66] is also called Maximum-a-Posteriori SLAM or graph-based SLAM. It is a
probabilistic approach, which takes its essence from the robotics community, where a common prob-
lem consists in correcting the positions of observed features and the positions of a robot: the order
of positions matters and an estimation of the difference between two consecutive positions is often
known (e.g. with wheel encoder). With this formulation, the constraints of the problem come from
the measurements of the different sensors (and not only from a camera sensor as for BA), and the
trajectory and the map are updated over time, as the robot moves and new data is acquired. Its objec-
tive is to estimate a variable (a.k.a. state) Θ, usually including the camera poses and the landmarks,
which maximizes the coherence of predicted values hk(Θ), with measurements z assumed indepen-
dent. Formally it corresponds to Equation (4.2), considering the independence of the measurements
and applying Bayes’ theorem.

Θ∗ = arg max
Θ

P(Θ |z1, . . . zN ) = arg max
Θ

P(Θ)
N∏
k=1

P(zk|Θ) (4.2)

The terms P(zk|Θ) are usually assumed Gaussian, which implies the error between a measurement
and a prediction is affected by the covariance matrix ΣK

-1:
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(4.3)

The inverse of the covariance matrix is called the information matrix Ωk = ΣK
-1.

If there is no prior knowledge, the prior probability P(Θ) can be removed from the maximization,
otherwise, it can also be modeled with a Gaussian distribution:

P(Θ) ∝ exp
(
−1

2 ||h
o
0(Θ)− zo

0 ||2Ω0

)
(4.4)

It follows that Equation (4.2) becomes Equation (4.5).

Θ∗ = arg min
Θ

− log
(
P(Θ)

N∏
k=1

P(zk|Θ)
)

= arg min
Θ

N∑
k=0
||hk(Θ)− zk||2Ωk (4.5)

This problem can be represented by a factor graph where the nodes (called variable nodes) represent
the variables of the state to optimize, and the edges represent the constraints between the variables.
These constraints correspond to different measurements and are labeled with factor nodes.

Variables parametrization defines how the variables (usually the planes and the transformations)
are represented. The parametrization should be ideally minimal in order to enable the inversion of
the covariance matrix Σk. For the parametrization of the plane, [46, 107, 117] consider spherical
coordinates: the normal is parametrized with two angles, the third component being the distance of
the plane from the origin. The main downside of this approach is the gimbal lock problem, when two
axes become aligned during the optimization. To avoid this issue, Hsiao and Kaess [80, 87] normalize
the plane parameters on the unit sphere, which is viewed and handled as a rotation in a 3-dimensional
Lie group. For the transformations, there is a similar difficulty to find a minimal parametrization of the
rotation. Hsiao et al. consider a spherical representation, while [46, 117] consider twist coordinates of
the Lie algebra so(3).

Regarding the expression of the covariances matrices Σk associated with the variables representing
the planes, there is little mention about it in the literature. Ma et al. [117] assume the uncertainty of
the plane parameters is isotropic. In contrast, [80, 107] take into account the 3D points used for the
estimation of the plane to estimate the covariances associated to each variable.
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4.4.2 Our approach

Our system is divided into two parts: a front-end which handles the sensors data at the speed rate of
the acquisition, and a back-end which performs corrections on the data produced by the front-end at
a slower rate (see Figure 4.23). In the front-end, the images from the fisheye camera and the inertial
data are processed by the VIO component from the Tango middleware, which provides camera poses
at the camera frame rate. The PPs components take the depth data as input to extract, associate and
fuse the planar patches. Thanks to the known camera pose, the PPs are brought into a global world
coordinate system, so that they can be associated and then fused with the existing patches of the model
by association and fusion functions. On the back-end side, the Tango global optimization component
[116] optimizes and updates the camera poses after loop-closures detection. As we have seen earlier
(Figure 4.20), this component reduces on average the errors of the global model due to the drift of
the VIO algorithm, but some walls may remain duplicated despite the optimization. For this reason,
we designed a back-end component relying on planar primitive to improve the consistency of the PPs
model: it is run at the end of the scan to avoid competition with the back-end provided by the Tango
SDK.

Tango VIO

PPs extraction,
association
and fusion

PPs model and
camera poses

Planar optim

Tango optim

Fisheye
camera

IMU

Range
imaging
camera

Front-end Back-end

Camera poses

Camera
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Fused PPs

Corrected poses

Corrected PPs
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Final PP and poses

Figure 4.23: Pipeline of the interactions between our modules and Tango components. The components pro-
vided by Tango are displayed in orange, and the components we designed are in blue. The input of our system are
the data provided by the IMU, the fisheye camera and the range imaging camera. Front-end components ingest
sensors data and process them in real-time, while the back-end components perform corrections of the front-end
outputs, at a slower pace. At the end of the scan, the global optimization of the planar primitives map and the
camera poses is performed to remove ghost walls.

4.4.2.1 Noise model

In order to perform the extraction of planes, we needed a noise model of the Tango TDK depth
sensor to predict the accuracy of the depth data and adjust accordingly some thresholds sensitive
to the data noise. We designed an experiment where the tablet was observing multiple walls from
various distances and orientations. The PPs of the walls were extracted via the method described
in Section 4.4.2.3, and we considered the distance between the camera sensor and the PP centroid
X = 1/Np

∑Np
i=1 X where X is a point of the extracted PP. The noise of depth data was estimated

by computing the PP thickness σ = 2
√
λ3, where λ1 > λ2 > λ3 > 0 are the eigenvalues of the

covariance Covπ of the points:

Covπ = 1/Np
∑
X∈π

(X−X)(X−X)T
. (4.6)

The limit of this approach is that it assumes the plane thickness is constant, which is an approximation.
Figure 4.24 shows the measured thickness of the planes for different orientations and distances. We
can observe that some planes with a significant orientation of the plane w.r.t. the sensor have a lower
thickness than other planes parallel with the image plane of the sensor (low orientation value). For this
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reason, the orientation of the plane w.r.t. to the camera is not taken into account in our noise model, as
in the model proposed by [94].

Figure 4.24: Noise model of the Tango TDK depth sensor. Each point represents the thickness of an observed
plane at a certain orientation (represented by the colormap) and distance (the x-axis). We can observe that some
purple points (planes perpendicular to the camera axis) are noisier (larger thickness) than some planes more tilted
w.r.t. the sensor (green points).

4.4.2.2 Depth data pre-processing

The Tango SDK does not give access to the range image through the API, only the list of the 3D points
is available to the developer. Hence the range image has to be generated by projecting the provided 3D
points with an extra computation cost. Moreover, range image processing requires a relatively dense
depth map. Unfortunately, as explained in Figure 4.25, projecting the 3D points with the provided
intrinsic camera parameters results in very sparse depth maps. It is then necessary to reduce the range
image size by projecting them on a smaller image (at the cost of the loss of 3D points), to obtain denser
range images, suitable for various processings such as the computation of integral images [77].

Figure 4.25: Left: range image obtained by projecting (using the provided camera intrinsic parameters) the
10k 3D points corresponding to one frame acquired by the Tango TDK. The obtained depth map is very sparse,
around 27% of the pixels of the image have a value. Also 5% of the 3D points are lost (i.e. 5% of the 3D points
project on a common pixel). Right: the range image obtained after dividing by two its dimensions, 35% of the
3D points are lost, and despite this downsampling, the depth map still contain many holes to use [77]. To obtain
a dense range image, we reduce the image size with a 0.33 - 0.4 scale factor, leading to a loss 67% - 54% of the
3D points.
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4.4.2.3 Planar patch extraction

The planar patch extraction module takes as input the range image generated in Section 4.4.2.2, which
is segmented into regions corresponding to the same plane equation. This segmented image is then
processed to generate a list of PPs.

We first selected the normal map segmentation approach. This choice was motivated by the sim-
plicity of the approach, the high performances obtained by [76] (1.95 ms to process 10 k points), and
the possibility to consider more generic primitives in the future, such as cylinders. The normal esti-
mation was performed using integral images [77]. This algorithm requires dense range images, thus
we reduced the image size of a 0.33–0.4 scale factor, leading to a 67 %–54 % loss of the 3D points,
respectively. As illustrated in Figure 4.26 this step revealed to be quite sensitive to the noise.

Figure 4.26: Left: points cloud from the Tango TDK colored according to the estimated normals (the RGB
components are proportional to the three directions of the estimated normal). The normals are computed via [77].
3D points with no normal (e.g. points lost by the downsampling) are displayed in black. Right: tests on the Tango
TDK where we display the downsampled normal map on the RGB image. Missing 3D data create large holes
because we downsampled the depth map and a neighborhood of points with similar depth is required to compute
the normal around a point.

Switching to a region growing approach inspired by the algorithm described by Poppinga et al.
[150] allowed us to extract smaller planar patches (the downsampling is not required) and to achieve
higher performances. The algorithm (see Algorithm 2) proceeds by taking a point P1 and two neigh-
bors P2, P3 from the point cloud PC. They form an initial PP Π for which we estimate the plane
equation. We try to extend this PP by considering neighboring points. The seedList contains the
points that can be considered as a seed to explore nearby points. For each neighboring point Pneigh, we
compute its distance dneigh to the plane estimated from the points of Π. Our noise model gives us an
upper bound DistanceThreshold of the thickness of a plane located at a given distance from the cam-
era. We consider this upper bound to define the maximum distance allowed between Π. Now, suppose
the distance dneigh is smaller than DistanceThreshold, we add Pneigh to the seedList and Π, and
estimate again the plane equation associated to Π. When the PP cannot be extended (all the points of
seedList have been considered), it is added to the list of PPs lPP. The points of this list will never
be considered again by the algorithm. A segmented range image I is generated from the list of the
PPs: each pixel of I corresponding to a plane Πi is assigned with a label (i). For performance reasons,
in our implementation, the image I also plays the role of the variable lPP, allowing fast verifications
for the membership test of a point Pneigh to an existing PP. We then perform a filtering of the image
I to remove isolated points. In a post-processing step, we compute the rectangular boundary, of each
extracted PP, filter out outlier points with the RANSAC algorithm and refine the estimated plane with
an LS optimization on the inlier 3D points.

4.4.2.4 Planar patch association and fusion

In our case, we use the camera poses provided by the Tango TDK as pose prior. We remind that the
provided VIO algorithm running on the device does not use the depth data to estimate the camera pose
and is subject to small estimation errors, which may accumulate. For these reasons, the planar patches
do not perfectly overlap when using this pose prior.
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Algorithm 2: Region growing PP extraction.
input : Point cloud PC
output: Segmented image I

1 lPP← ∅;
2 foreach point P1 of PC do
3 select points P2, P3 in (PC \ lPP) ∩ neighbourhood(P );
4 Π← {P1, P2, P3};
5 DistanceThreshold← NoiseModel (Pi);
6 UpdatePlaneEstimation (Π);
7 SeedList← {P1, P2, P3};
8 foreach point Pseed of SeedList do
9 foreach point Pneigh of neighbourhood(P ) \ (Π ∪ lPP) do

10 if dist(Π, Pneigh) < DistanceThreshold then
11 Π← Π ∪ Pneigh;
12 UpdatePlaneEstimation (Π);
13 DistanceThreshold← NoiseModel (Pi);
14 SeedList← SeedList ∪ Pneigh;
15 end
16 end
17 end
18 lPP← lPP ∪Π;
19 end
20 We create the image I from lPP by assigning a label i to the pixels of I corresponding to points

of the plane Πi of lPP;
// Removal of isolated points of I

21 foreach point P of I do
22 Π← plane associated with P NbPointSamePlane← 0;
23 foreach point P ′ of neighbourhood(P ) do
24 if P ′ ∈ Π then
25 NbPointSamePlane← NbPointSamePlane +1;
26 end
27 end
28 if NbPointSamePlane < max(|neighbourhood(P )|/2, 1) then
29 remove P ′ from Π;
30 end
31 end

For the association function, we first compare the normal angle differences and the PPs offset
distances to define candidate pairs of associated patches. We defined our PPs offset distances as the
mean of the distances between the points of the rectangular boundary of one PP and the infinite plane
of the other PP. We validate the pairs with an overlapping test between the rectangle boundaries.

After two planar patches have been associated, we need to create a new planar patch combining
the two. For disambiguation purpose, from now on, we will call unit-PPs the PPs obtained after
extraction, and fused-PPs, the PPs obtained after the fusion process and corresponding to the union of
several unit-PPs.

Similarly to [21, 107], we wanted to avoid storing the 3D points associated with the planar patches.
We use the Principal component analysis (PCA) algorithm to estimate the infinite plane equation of
the fused-PPs. We use [107, Equations (7-8), (18)] to compute the fused patch covariance matrix and
the fused patch centroid from their respective covariance matrices and centroids. We then project the
boundary of the two associated PPs on the new estimated plane and compute the rectangular boundary
covering the two previous ones.

After this first fusion process, we consider the updated fused-PP of the model πmi and check
whether their fusion (which increased the rectangular boundary) can lead to new associations. This
may occur, e.g., during a loop closure where a patch πcj is merged with a patch πmi1 and the updated



4.4. PLANAR APPROACHES 75

model patch overlaps with another model patch πmi2 . We loop until no further association can be found.
The unit-PPs that compose a fused-PP may not be perfectly aligned. It is the role of the global

optimization component to improve their alignments, at the end of the scan. For this reason, we need
to keep track of the unit-PPs by storing their covariance matrices, their centroids and camera pose
matrix. During the scan, the global optimization performed by the Tango SDK may also correct
previous camera poses, which leads to an update of the associated covariances matrices and centroids.

4.4.2.5 Planar registration

In this paragraph, we explain why, contrary to the planar approaches of the literature mentioned earlier,
we did not opt for a planar registration component. To cope with the problem of pose ambiguity
mentioned earlier, the most robust optimization approach is to consider jointly PPs and photometry as
in [46, 199, 117]. We could not intervene on the Tango VIO algorithm, which is closed source. The
solution would have been to develop a new odometry algorithm, and optimize it for mobile platforms,
which is a long process and beyond the scope of this thesis. There was also the risk to perform
redundant work with Google, and could logically attempt to improve its odometry algorithm with the
use of the depth sensor. For all these reasons, we attempted to patch the existing algorithm with a new
component built upon the Tango VIO algorithm.

We started with a test of Pathak et al. [145] planar registration with a frame-to-frame approach we
applied to systematically correct at each frame the camera poses from the Tango VIO algorithm. The
choice of the frame-to-frame approach over a frame-to-model one was to enhance the potential limi-
tations of the solution. Figure 4.27 shows that significant drifts of the Tango algorithm are correctly
corrected, and in the overall, the wall looks thinner. However, the right wall lost its flatness, meaning
that poses accurately estimated at that moment were degraded by the planar registration algorithm. In
fact, it is not surprising the camera pose estimated with a noisy point cloud from a 160× 80 resolution
depth sensor be less accurate than the pose computed with a 1280× 720 resolution camera during op-
timal condition (presence of texture and low motion blur). There are many possible sources of errors:
limitations of the depth sensing technology, limitations of the range imaging hardware, calibration,
etc... which lead to inaccuracy of the range measurements. On the registration side, we found the
main source of errors was the plane extraction. Under-segmentation of the range image (e.g. when
there are adjacent similar planar surfaces which are seen as a single PP) or over-segmentation (e.g.
when a nonplanar surface is seen as a planar one) lead to inaccuracies and spurious PPs respectively.
Also, the use of a rectangle boundary cannot correctly model concaves planar surfaces or with holes
(e.g. because of the presence of a TV on the wall, an opened window, . . . ) and can affect the overlap
test of the association function. As the number of planar features is quite low in a given frame, the
association function cannot take advantage of consensus approached to filter incorrect matches.

Figure 4.27: Left: Top down view of the point cloud of a room partially scanned displayed with a jet colormap
(the first frame corresponds to the blue points, while the last frame corresponds the red points). The camera poses
come from Tango VIO algorithm. The effect of the VIO drift is visible on a pillar on the left of the image. Right:
point cloud after correction of the poses via a frame-to-frame planar registration algorithm. The duplication effect
of the pillar is corrected and the walls appear thinner, but the right wall appears more slanted, deforming the room.
We added gray dashed line to highlight the effects of the deformations.

Clearly, a frame-to-model approach (compared to frame-to-frame) would exhibit straight flat walls
and would reduce the drift, but still, registration errors can occur and assuming the following regis-
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trations are correct, it would generate a deformed PPs model. Probably, a better registration-patch
strategy would be not to correct the Tango VIO poses when the images are enough textured, and
perform planar registration otherwise or when a defect of PPs alignment is detected. But in both
cases, these corrections would not globally fix the model and would be difficult to merge with the pose
corrections performed by the Tango global map optimization.

4.4.2.6 Planar global optimization

To this point, our system can build incrementally a PPs model which is updated when a new PP is
detected or fused with the model, or when a loop closure is detected. We have seen earlier that Tango
global map optimization algorithm could fail to generate a map coherent in term of room structure (see
Figure 4.20). The objective is to correct globally the room structure (and consequently all the camera
poses), so that walls which appeared duplicated, become thin planar surfaces.

Problem simplification. As we seen in Section 3.2.2 on page 23, the estimation of the gravity vector
from the IMU is quite accurate. It implies the pitch and roll angles provided by the Tango VIO
should be as well accurate, which we verified experimentally: no drift nor offset was observed, and
the vertical structures remained vertical. However, the yaw (heading) estimation of the camera pose
and its position could be incorrect, as illustrated in Figure 4.20 and Figure 4.27. For the use case of
the generation of a 2D floor plan, a top-down representation of the scene is considered: the planes
corresponding to the walls can be represented by line segments. An error on the z component of the
camera position does not affect the final result. For all these reasons, we considered a 2D simplification
of the traditional planar-map optimization problem, a 2D approach where only the heading, the x and
y components of the camera position would be globally optimized. In comparison with the planar
approaches described in Section 4.4.1.4, the PPs measurements are here seen as a set of line segments
si, and the 3D camera poses are seen as 2D poses ξ, initialized with the poses provided by the Tango
vSLAM algorithm. We want to find 2D corrected poses ξ and supporting lines l of the segments, so
that the application of the corrected poses to the unit-PPs improves their alignment within the fused-
PPs they contribute to.

ξ1
o1

ξ2
o2

ξ3
o3

ξ4 . . .

l2l1 l3 . . .

c1,1 c1,2c2,1 c2,2 c3,2 c3,3 c4,3

Figure 4.28: Factor graph of our planar LS SLAM approach. The nodes ξ and l represent the corrected poses
and the support lines. The factor nodes relate to the odometry measurements ok and the plane measurements ck,i
(seen as line measurements).

LS SLAM formulation We chose a LS SLAM (see Section 4.4.1.4) to solve this problem. The
factor graph representation illustrated in Figure 4.28 shows the relations between our variable and
factor nodes. There are two types of variables nodes in our state vector Θ: the support lines l (the
lines supporting the line segments) and the corrected poses ξ, hence, the variables to be optimized
are Θ = (l1, . . . , lM , ξ1, . . . , ξN ). We have two types of constraints connecting the variables nodes:
the odometry factors and the support line factors. The poses computed by the Tango vSLAM define
the odometry factors ok associated with the measurements zo

k ∈ Zo and their measurement prediction
is ẑo

k = ho
k(Θ). The observation of a planar patch (seen as a line li) from the pose ξk defines a

support line factor ck,i, associated with the measurement zc
k,i ∈ Zc. Its predicted measurement is

ẑc
k,i = hc

k,i(Θ)
We want to minimize the difference between the predicted measurements (ẑo, ẑc) and the real

measurements (zo, zc), which translates into Equation (4.7) (see Section 4.4.1.4 for the details), where
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No and Nc correspond to the number of odometry measurements and PPs observations respectively.

Θ∗ = arg max
Θ

P(Θ |Zo, Zc) = . . .

= arg min
Θ

− log


No∏
k=1

P(zo
k|Θ)

∏
1≤k≤No
1≤i≤Nc
zc
k,i∈Z

c

P(zc
k,i|Θ)


(4.7)

Odometry measurement model. A difference of pose measurement ξ is given by the change of 2D
camera orientation ψ and the 2D translation [txty]. The function qξ (see Equation (4.8)) maps this
minimal parametrization with a matrix representation.

qξ : R3 −−−−−−−−→M2,3(R)

ξ =

ψtx
ty

 7−→ (
cosψ − sinψ tx
sinψ cosψ ty

) (4.8)

We model the odometry measurement error with a normal distributionN (0, Ωo -1). In the absence
of reliable information about the odometry uncertainty provided by the Tango SDK, Ωo is constant
and defined as follows:

Ωo =


1
σ2
ψ

0 0
0 1

σ2
t

0
0 0 1

σ2
t


with σ2

ψ = 0.0013 and σ2
t = 0.0016 defined experimentally.

We obtain:

P(zo
k|Θ) = exp

(
−1

2 ||h
o
k(Θ)− zo

k||2Ωo
k

)
(4.9)

where zo
k is the odometry measurement associated to the frame k defined as follows:

zo
k = (qξ)-1 (qξ(ξTangok )

-1
qξ(ξTangok+1 )

)
(4.10)

and ξTangok denotes the kith pose provided by the Tango vSLAM component. The prediction of an
odometry measurement is defined as:

ho
k(Θ) = ho(ξk, ξk+1) = (qξ)-1 ( qξ(ξK) -1 qξ(ξk+1)

)
(4.11)

Lines measurement model. A line measurement is given by its orientation θ and its distance c to
the origin, as illustrated in Figure 4.29. We model the measurement error with a normal distribution
N (0, Ωc -1). Similarly to [107], Ωc depends on the covariance matrix of the points of the associated
unit-PP: σc is the line width uncertainty, and σθ the normal orientation uncertainty, where σc =

√
λ2,

σθ = arctan(σc/√λ1) and λ1 > λ2 > 0 are the eigenvalues of the aforementioned covariance matrix.
The difference with [107] is that we do not use this uncertainty model to perform registration or
plane association but for our measurement model. Figure 4.29b shows a graphical representation of
the uncertainty values in the form of a rectangular box of width 2 ∗ σ2

c and length 2 ∗
√
λ1. This

parametrization has the advantage of being minimal, which enables to define a full rank information
matrix as follows:

l =
(
θ
c

)
Ωc =

( 1
σ2
θ

0
0 1

σ2
c

)
(4.12)

We can transform a line l into a Cartesian representation with the function ql defined by:

ql : (−π, π]× R+ → R3

l =
(
θ
c

)
7→

cos θ
sin θ
−c

 (4.13)
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It follows the line l can be described as: {(x, y) ∈ R2 |(x, y, 1) ql(l) = 0}

x

y

θ

c

l

(a) Polar representation of a line l with the coefficients
θ and c.

(b) Uncertainty model of a line computed from
the covariance of the associated point cloud.
λ1, λ2 are the eigenvalues of the covariance ma-
trix and define an uncertainty box of the line seg-
ment. σθ is the angular uncertainty of the normal.

Figure 4.29: Line parametrization and uncertainty model.

We obtain:

P(zc
k,i|Θ) = exp

(
−1

2 ||h
c
k,i(Θ)− zc

k,i||2Ωc
k,i

)
(4.14)

where the measurement zc
k,i is the line lk,i (in polar coordinates) corresponding to the ith PP extracted

at the frame k and the prediction of a line support measurement is defined as:

hc
k,i(Θ) = hc(ξk, li) = (ql)-1 ( qξ(ξK) -T ql(li)

)
(4.15)

Solution. Combining Equations (4.16) to (4.15), we obtain the final non linear optimization problem:

Θ∗ = arg min
Θ

No∑
k=1
||ẑo

k − zo
k||2Ωo

k
+

∑
1≤k≤No
1≤i≤Nc
zc
k,i∈Z

c

||ẑc
k,i − zc

k,i||2Ωc
k,i

(4.16)

Considering all the frames would be unpractical in term of performances. We select a subset of the
frames (keyframes) by comparing the rotational and translational distance of the current frame with
the previous keyframe.

We compute a solution of Equation (4.16) with the Scipy implementation of the Broyden-Fletcher-
Goldfarb-Shanno algorithm. This suboptimal approach takes 7 min to find the minimum of a problem
involving 43 keyframes. In comparison, specialized C++ libraries such as [88, 102] performing local
linearization and taking advantage of the sparsity of the linearized equations can solve problems of
similar size in a few seconds.

Figure 4.30 illustrates our results on a trivial problem made of two PPs. As expected, the minimum
corresponds to camera poses which enable to align the uncertainty boxes of the associated unit-PPs.
When the scene contains more constraints, such as Figure 4.31, all the uncertainty boxes cannot be
perfectly aligned, but a compromise can be found. For this scene, we can observe the dark blue
uncertainty boxes had the biggest width uncertainty, their alignment in the solution is not as good as
the other boxes. Section 4.A presents additional results on acquisitions with the Tango TDK.

4.4.3 Planar approaches conclusion
In this section, we saw traditional RGB-D VO and global map optimization algorithms could fail to
faithfully reconstruct indoor scenes. and it was relevant to consider PP features since they encode the
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Figure 4.30: Left: Initial PP model generated from two frames, before optimization. The light and dark blue line
segments correspond to the fused-PPs. Each fused-PP is made of two unit-PPs, represented with black uncertainty
boxes (defined in Figure 4.29b). Right: After global optimization, the uncertainty boxes of the unit-PPs have a
better alignment.

Figure 4.31: Left: initial planar uncertainty rectangles. Two uncertainty boxes are displayed with the same
color if there are associated with the same fused-PP. The red ellipsis illustrates the regions where the odometry
drift caused a notable duplication of the wall structure. Right: uncertainty boxes (defined in Figure 4.29b) drawn
after the correction from our planar LS SLAM. To illustrate the enhancement of our method, we had disabled the
Tango global map optimization.

layout of the room, they enable large-baseline registration, and offer a memory efficient data struc-
ture. We studied their classical components: PPs extraction, association, fusion, registration, global
optimization and proposed a solution to implement them on a Tango device. The originality of our
approach comes from the adaptation with existing Tango components, and the use of an uncertainty
model into our global optimization component. Related works and our results demonstrate such ap-
proach can be successfully considered to improve the coherency of the reconstruction.

Unlike previous works, we would like to highlight the cons and pitfalls of planar approaches.
Because of depth data noise, planar registration performs local corrections which can lack accuracy in
the short term. Figure 4.27 illustrates this problem. On the long term, it is more interesting as planes
are large features which encompass multiple measurements. The redundancy of the observations can
be considered to compensate the uncertainties of the measurements, with the help of an uncertainty
model. Besides the noise of the range measurements, which can affect the PPs extraction, the scene
itself may contain planarity defects and small reliefs, such as a thin painting on a wall, wall cladding,
etc. This issue is not addressed in the literature nor in our works. It is a difficult problem since a slight



80 CHAPTER 4. RGB-D LOCALIZATION

curvature can hardly be observed locally, and an observation of the entire planar surface may also fail to
sense the curvature, depending on the measurement noise which increases with the distance. It can lead
to incorrect extracted planes and an incorrect registration. The registration can be strongly affected
by incorrectly matched PP. As the number of planar surfaces present in a frame is generally low, the
association function cannot use consensus algorithms to improve the robustness of the matches and the
camera pose may not be fully constrained. As regards global optimization, the problem of incorrect
plane associations can be mitigated with the help of robust LS SLAM approaches such as [197] or a
line process as in [35]. The use of local image features such as [46, 199, 164] or global approaches
such as [117, 80] can solve the problem of lack of features and missing camera pose constraints. The
joint optimization on PPs and image information enables to be robust to the lack of structure or texture,
similarly to hybrid VO approaches seen previously. One reproach to our work is we did not perform
such a joint optimization. The reason is we wanted to take advantage of Tango vSLAM which runs
very quickly on the Tango TDK, instead of wasting CPU resources computing a second time images
descriptors (which are not accessible in the public Tango API). Our work can be seen as a patch over
the Tango platform. This was a safe decision considering we had little information about Project
Tango roadmap and we wanted to avoid investing a lot of time on works that could become redundant
with future Tango functionalities.

To conclude, planar approaches reveal to be successfully improving the reconstruction results of
indoor scenes. While it appears intuitive to use it for such scenes, the aforementioned issues should be
taken into consideration. Their use is more suited to global optimization than local optimization (e.g.
VO). Other challenging scenarios can be taken into account, such slightly deformed planar surfaces or
curvy walls which have not been addressed in the literature yet.

4.5 Conclusion
In this chapter, we have tackled the problems related to localization with RGB-D sensors mentioned
in Chapter 2:

Sensor limitations and mainly range measurements noise has an important impact on the accuracy
of the reconstructed model, the extraction of PPs and the registration algorithms giving high impor-
tance to depth data such as depth-based approaches. The use of sensor models enable to predict the
accuracy of the measurements and uncertainty models can help the fusion of data.

Real-time localization is very desirable for our purpose, to display an augmented view of the scene
and to keep computational resources for the processing of the range measurements. It is the role of the
front-end localization component, which relies on a VO algorithm to provide the pose of the camera
at the highest possible frame rate. Optimizing a VO algorithm without sacrificing the accuracy is a
difficult task and at the moment, few VO algorithms can handle VGA frames at camera frame rate.

Robust localization is critical since the position of the range measurements are relative to the cam-
era pose. An incorrect estimation of the device motion can lead to incorrect reconstruction, e.g. du-
plicated walls, holes, . . . Indoor scenes may contain little texture, have large flat structures, varying
illuminations, which is challenging for VO algorithms. We have seen in Section 4.3 that VO ap-
proaches using RGB data suffered less from drift, and that hybrid approaches obtained in overall the
best results. We saw that front-end localization components were not expected to provide a globally
coherent map and trajectory. It is the role of the back-end, which runs at a slower pace, to perform a
global optimization of the map and the trajectory.

Planar approaches suffer from various problems, such as the lack of simultaneous planar surface
in a frame and the ambiguities during the extraction of PPs. Such approach is more interesting for
back-end component rather than front-end since PPs are large features which encompass multiple
measurements and it is more relevant to ensure the global consistency of the planes during loop-
closing to avoid the double walls effects. Despite these limitations, we demonstrated it was possible
to obtain successful results where the walls, the ceilings, and floors remain flat.
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Adaptation with existing technologies One of the main issues that we had to face was working
with such a cutting-edge technology, not yet mature to be available to the general public. Since the
SDKs was closed source, it was difficult, if not impossible, to have full control of all the sensors and
their data and, more in general, what happened “under the hood” of the system. For this reason, we
chose to build upon what was provided by the API and the SDKs, rather than proposing our own full
solution that would have required access to data and hardware that was not available.

Related publications. The benchmark of the different VO algorithms has been published in Journal
of Real-Time Image Processing: [6] Vincent Angladon et al. “An evaluation of real-time RGB-D
visual odometry algorithms on mobile devices”. In: Journal of Real-Time Image Processing (2017),
pp. 1–18, Springer Verlag, in press.
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4.A Additional planar LS SLAM results
This section shows additional results of our planar LS SLAM approach presented in Section 4.4.2.6.

Figure 4.32: Left: initial planar uncertainty rectangles. Two uncertainty boxes are displayed with the same
color if there are associated with the same fused-PP. The red ellipses illustrate the regions where the odometry
drift caused a notable duplication of the wall structure. Right: uncertainty boxes drawn after the correction with
our approach.

Figure 4.33: Left: initial planar uncertainty rectangles. Right: uncertainty boxes drawn after the correction with
our approach.
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Figure 4.34: Left: initial planar uncertainty rectangles. Right: uncertainty boxes drawn after the correction with
our approach.
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5.1 Introduction

IN the context of room layout estimation with a depth sensor, we have seen previously how to localize
the device and detect the planes corresponding to the walls, the ceiling, and the floor. Now, we want
to generate a floor plan or a 3D model of the observed scene. In addition, we would like to design
an interactive approach that can run on a mobile device and is able to generate the model as the scan
progresses, so that errors or missing data can be covered without do-overs. The main challenge of our
problem is how to properly design a system that has the user in its processing loop: as discussed in
Section 2.2.1 an efficient and effective interface is required to take into account the user inputs and
improve the solution automatically generated by the system.

We remind our work hypotheses: we assume the considered rooms are made of a horizontal ceiling
and floor and vertical planar walls, not necessarily orthogonal w.r.t. each other, i.e. weak Manhattan
world assumption. They can contain clutter (furniture, movable objects, . . . ) occluding the walls. The
considered hardware is the Tango TDK integrating a depth sensor with a working range of 4.2 m,
therefore our approach is limited to medium size rooms with a 5 m ceiling height maximum. The
tablet natively supports motion tracking by means of a localization module, which requires the scene
to contain sufficient texture, i.e. the walls of the ceiling or the floor can be of uniform color, but not all
of them.

In this chapter, we first present a brief review on indoor scene layout estimation in Section 5.2, with
a focus on two related topics: semantic analysis and user interactions. In Section 5.3 we review some
existing approaches for user interactions in existing applications and some preliminary experiments we
carried on to improve their user-driven scheme. The results of this experiments influenced some of the
design choices for our approach described in Section 5.4. We validate the relevance of our approach
in Section 5.5, with a comparison between different existing mobile applications, while Section 5.6
concludes the chapter with some remarks.

5.2 Background

5.2.1 Room layout estimation
One of the first approaches for generating a floor plan recovered the topology of the room by consid-
ering the adjacencies of the extracted segments [125, 206, 215], which works well for rooms with low
clutter, and when the walls are well separated from the clutter. However, most of them are off-line
methods that cannot be easily adapted for real-time applications on mobile devices. Murali et al. is
the only approach considering data from a Project Tango device. They use the Tango Constructor
application to scan the different rooms, and then process the final point cloud. The layout of the rooms
is retrieved by searching for boxes among the extracted intersecting planes.

For scenes fulfilling the Manhattan World assumption, Xiao and Furukawa [214] propose a con-
structive solid geometry (CSG) approach for Manhattan World scenes where the extracted line seg-
ments are used to enumerate additive or negative rectangle candidates modeling the sliced point cloud.

In Stambler et al. [191], the room layout is the solution of an optimization problem that takes into
account a room shape probability, the number of walls and openings (to penalize complex layouts) and
a wall probability defined on each extracted surface patch.

The use of cell-complex is very popular for both single rooms [26, 152] and multiple rooms [124,
123, 139, 140] layout estimation. The line segments are replaced by infinite lines which partition the
2D space into polygonal cells. A graph connecting the adjacent cells is defined: instead of consid-
ering topological information on the segments, adjacency relationship between the cells is taken into
account. The inside/outside label of the cells are computed with a graph-cut algorithm. This approach
is robust to missing data because the extension of the segments is automatically considered. The edges
separating differently labeled regions represent the room layout.

5.2.2 Scene Semantic
The segmentation of 3D primitives can be performed individually, i.e. considering each primitive
independently, or globally, i.e. considering the adjacent primitives which are a contextual information.
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The problem of clutter classification is often ignored as authors estimate that the retrieved boundary
of a room consists only of walls [140, 152]. The planar patches included in this boundary are the
support of the walls, the others form the clutter. Experiments proved this assumption to be sometimes
wrong. For example, shutters behind a window or a wall behind an open door, create a protrusion in
the expected boundary. Missing scan data may also lead to an incorrect boundary when an obstacle
such as a wardrobe completely covers the vertical extent of a wall.

First works in the field of RGB-D semantic considered the RGB-D frames as input [11, 69, 172,
189], which raised the problem of fusing the labels between different frames with the global model of
the reconstructed scene. This problem was tackled by [74, 118], in which a Bayesian fusion is proven
to provide good results. In the following paragraphs, we consider only approaches working with 3D
data, we summarize in Table 5.1.

Primitive planar approaches generally perform a classification of the planar patches by assigning
them a label, whether they represent a wall, a clutter, a floor or a ceiling. In Mura et al. [124] and
Murali et al. [125], walls correspond to patches with a height close to the ceiling-floor distance. In
a later work, Mura [123] proposes a global approach with a graph of the adjacencies of the planar
patches. The nature of the path in the graph between a considered planar patch and specific nodes
(ceiling, floor, identified walls) defines its clutter/wall labeling. This method relies on the assumption
that the data is almost complete and the adjacencies between the planar patches are correctly identified.
Xiong et al. [215] propose also a global approach based on a classifier of the local features of the planar
patches, combined with another classifier, which takes into account the adjacency relationships of the
patches and the previous predictions. The features include the patch’s orientation, the area of the
bounding rectangle, its height, the point density and the aspect ratio.

Pre-segmented data approaches also consider large compact regions which are then classified.
Kim et al. [96] consider a 3D voxel space where planar patches are detected as well as objects. The
segmentation relies on a Conditional Random Field (CRF) approach on the voxels, in which label
consistency is enforced on the planes and the detected objects. Anand et al. [2] over-segment the
colored point cloud into segments with a smoothness constraint. Each segment is then classified taking
into consideration individual features and object-object relations (e.g. a keyboard is very likely to lie on
a table). Despite the absence of planar patches extraction, the walls are correctly segmented with the
knowledge of the local curvatures in the features. Stambler and Huber [191] classify smooth surface
patches (which are mainly planar) with a voting approach from an individual, per-point classification.
The features take into consideration the height of the point, the curvature and information about the
points located behind (relatively to its normal) the considered point.

Point cloud approaches directly consider the 3D points and they are now dominated by deep learn-
ing approaches such as [157]. While such approaches often give very promising results, because of
their black-box nature it is difficult to verify whether they actually learn actual contextual (global)
information or local features. Using point clouds, whether they are pre-segmented or not, offers the
advantage of a finer segmentation and the identification of a large range of objects such as windows,
doors, cupboards, beds, etc. A high semantic level approach can take more advantage of the contextual
information. For example, identifying a doorknob could influence the segmentation of the neighboring
points to the door class and thus easily consider the planar patch as clutter. This accuracy gain is not
necessary for our needs and would imply a higher computational cost. Also, it would not spare us
from incorrect labels to be corrected by the user.

5.2.3 User interaction
Automatic approaches for floor plan generation or scan-to-Building Information Modeling (BIM) can
be prone to errors. These errors can come from missing data, clutter, sensor noise or some special
architectural elements in the scene (e.g. small walls, large openings, cavities in the walls, obstacles
fully covering a wall, etc.). Depending on the progress of the scan, it may not be possible for an
algorithm to determine whether a planar patch corresponds to a wall or clutter.

The user interaction schemes proposed in the literature are usually corrective (the user intervenes
the end to correct a proposed solution) or user-driven (no solution can be computed without user
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Article Input Context Learning

[124] Planar patches None None
[123] Planar patches Adjacent planar patches None
[215] Planar patches Adjacent planar patches Stacked Generalization
[96] 3D Voxels, planar patches and objects None SVM
[2] Over segmented point cloud Inter-object relationship SVM
[191] 3D Points and planar patches None Randomized Decision Forest
[157] 3D colored Points Deep Deep learning

Table 5.1: Comparison of several 3D segmentation approaches relevant to our works. We refer the reader to [32]
for a more complete review on indoor scene understanding approaches.

interaction). Corrective schemes [9, 123, 148] are commonly considered for offline approaches, while
user-driven schemes are mostly found in online approaches.

In offline approaches, the user has the possibility to interact at the end of the automatic process
to perform final corrections. For example, [9] proposes a simplified 3D edition interface to let the
user perform corrections, taking advantage of the estimated planar polygons and the 3D point cloud
to during the creation of new planar polygons. Mura et al. [123] let the user transform a wall planar
patch to a clutter one or vice-versa, and to cope with missing data by letting the user extend some
planar patches. Pintore et al. [148] propose a user interface to edit the estimated room layout in the
panoramic image space.

In the opposite direction, other approaches are completely user-driven and they can only generate
the floor plan through the user inputs. Magic Plan [185], Tap Measure [137], Tango Measure [65],
and [146, 166] propose an interaction scenario where the user manually captures wall corners at the
floor level or the ceiling level. Similarly, [64] proposes an interaction where the user can select the
planar patches of the walls he wants to keep. The order of this selection is crucial as it determines
the connections between the walls (or the corners) and thus the topology of the layout. Missing one
corner or one wall during the scanning may lead to an incorrect result.

5.3 Analysis of user driven approaches
In the following, we briefly review the main available solutions and some preliminary tests on user
interactions we carried out. The objective is to highlight the choices made in term of user interface and
interaction for reconstructing the room layout. This analysis determined some of the design choices
for our application.

5.3.1 Point and Line selection
Point selection. With Magic Plan [185] (as well as Tango Measure [65] and TapMeasure [137]),
the selected entity is a 3D point. It is difficult to accurately select a point with a simple finger touch on
the screen device, as the device is held with the other hand and, possibly, moved around. A common
solution considered by the three applications is to use a crosshair overlaid on the camera image in a
fixed position so that the user need to aim at the corner rather than select it with the finger. The user
has to adjust two rotations of the device (see Figure 5.1) to aim the crosshair to the point to select,
which takes some time. Moreover, corners with the floor are often occluded by furniture, preventing
from selecting the corner accurately. The applications Magic Plan and TapMeasure allow the user to
create a corner when it is occulted, with an obvious trade-off on the accuracy.

Line selection. As an attempt to ease the interaction, we experimented the use of a vertical line
crosshair to select wall corners. This vertical line is parallel to the gravity vector and represents the
wall corner to select. Figure 5.2 illustrates this interaction: the user has to adjust only one rotation
(around the gravity center) to align the crosshair with the wall corner to select. The main advantage is
that the full vertical extent of a wall corner is less likely completely occluded by furniture.
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φ
θ

Figure 5.1: Selection of a 3D point with a crosshair with Magic Plan, the user has to adjust two rotations: θ
and φ.

θ

Figure 5.2: Selection of a 3D line with a crosshair with our own prototype, the user has to adjust only one
rotation: θ.

Accuracy improvements. The point and line crosshair selection methods can be affected by a po-
tential involuntary shaking of the user’s hands. To improve the accuracy of the pointing interaction,
several solutions have been proposed. The Freeze-Set-Go interaction [105], freezes the camera view
after the selection of the entity. The user can improve the entity position on the still image, moving the
device at its convenience, then the AR mode is restored. This technique was chosen by Easy Build to
correct the position of the room corners, as depicted in Figure 5.3a.

The Snap-To-Feature interaction [104] consists in snapping the user selection to salient elements
of the image: the user input is used as a rough guess for the region where the entity can be found. For
example, the Tango Measure application optionally proposes to detect the edges and planes around
the crosshair by processing the 3D point cloud. Upon detection, the crosshair is displaced on the
detected element, as shown in Figure 5.3b. Unfortunately, sometimes the detected edge is not the
desired one, which makes the experience very frustrating for the user.

5.3.2 Plane selection
The manual selection of the planes corresponding to walls can be performed in a more efficient fashion,
in terms of user interaction. Planes are indeed large entities and they do not require an accurate user
input to be selected. The application FloorPlanEx [64] lets the user add a wall with a touch input
anywhere on the camera image and it then estimates the corresponding plane equation by considering
the 3D points around the touched area. A crosshair can eventually be drawn, as in Figure 5.4a to
notify the user when there are sufficient 3D data to estimate a plane and how it would look like. This
approach is more sensitive to the sensor position w.r.t. to the wall, though. If the device is too close
to the wall, a small part of it is observed, and the estimated plane may lack accuracy (and it may later
appear misaligned w.r.t. to the wall). If the device is too far from the wall or with a too skew orientation
w.r.t. the wall, the depth sensor noise is higher, thus reducing the accuracy of the plane estimation.
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(a) Freeze-Set-Go interaction proposed by Easy
Build to accurately position the room corners. Im-
age courtesy of Wosomtech.

(b) Snap-To-Feature interaction proposed by Tango
Measure. Here the application seems to propose
the most salient edge in the green circle, which cor-
responds here to the edge between the wall and the
skirting. The edge between the floor and the skirt-
ing cannot be snapped here because it is less salient,
while we aim the device to this edge.

Figure 5.3: Freeze-Set-Go and Snap-To-Feature interactions.

Moreover, with this approach, the boundaries of the estimated plane are computed by intersecting
the previously selected plane and the plane that will be selected next. This means that the boundaries
of a plane will be shown only when the next plane is selected, which does not give the user a feedback
about the quality of the estimated plane. Indeed, an incorrect plane estimation affects the estimation
of the two adjacent wall corners, as illustrated in Figure 5.4b The longer is the wall, the higher will be
the error obtained on the corner positions, whereas with the two previous methods, this error does not
depend on the wall dimensions, as illustrated in Figure 5.5.

(a) Plane selection with Magic Plan for
Project Tango devices.

Wall 1 Wall 3

Wall 2

Wall 2’Corner1

Corner2
Corner′1

Corner′2

(b) An incorrect estimation of the plane of a wall (Wall2’) affects
the position of the two adjacent corners: Corner′

1 and Corner′
2,

computed as the intersection of Wall2’ with Wall1 and Wall3.

Figure 5.4: The plane selection interaction.

Incorrect user interactions. With the applications FloorPlanEx, EasyBuild and Magic Plan for
Google Tango, some particular cases of intuitive walls selections can lead to an incorrect room layout
(see Figure 5.6). These cases can be detected when the intersection point of the consecutive infinite
lines corresponding to the selected planes, is far outside the other points of the generated room layout.
The aforementioned applications either display the incorrect layout, either remove the incorrectly
selected plane.

Conclusion. We saw previously the easiest and most efficient interaction was the selection of planes,
but the proposed applications were lacking accuracy because they were only considering a small part
of the 3D data. Thereafter, we consider for our proposed approach, a plane selection method too. In the
next section, we will improve the accuracy obtained with this interaction by considering fused-PPs as
seen in Section 4.4.2.4. This solution enables to take advantage of additional 3D points, corresponding
to the 3D data from several viewpoints, for which the full range image has been segmented into PPs.
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(a) In this interaction, the user selects the positions of
the corners of a 2.5 m long wall. We assume the uncer-
tainty of the corner position is 3.5 cm in the 2D space.
The black points correspond to random positions of
the wall corners according to the considered accuracy.
The blue lines (joining those corners) correspond to
possible walls.

(b) In this interaction, the user selects the plane of a
wall. We assume the (observed) plane is 2.5 cm thick
and 1 m long. The black points correspond to the ob-
served point cloud. The blue lines correspond to pos-
sible planes.

Figure 5.5: Wall selection accuracy for two interaction scheme. For both schemes, the endpoint accuracy at the
extremities of the wall is around 3.5 cm. Neglecting the VO drift impact, the endpoint accuracy is constant in the
first case. Whereas, the accuracy decreases in the second case when the wall is longer or observed from a more
distant position.

Figure 5.6: Example of incorrect selection of the walls, though it is intuitive to do this: PPs 2 and 3 correspond
to the same plane. The generation of the layout performed by FloorPlanEx and Magic Plan for Google Tango
will consider the intersection of the planes 2 and 3, which corresponds to an infinite point. This problem can, in
fact, be detected. In the case the planes 2 and 3 are distinct, the correction of the layout (here presented with an
orange line segment) requires to know their boundary.

Still, localization drift between viewpoints can reduce the expected accuracy gain, an issue which can
be counterbalanced with a planar SLAM algorithm, as presented in Section 4.4.1.4.

The tested user-driven approaches require as many user inputs as there are walls in the scene. In
order to be more efficient, our approach should be able to retrieve some walls without user input.

5.4 The proposed layout generation pipeline
From the analysis of the existing applications, it appears that the major drawbacks are (i) the number
of interactions required by the user, and (ii) the order in which the user has to scan the room. We want
to design an application that requires fewer interactions and would be fully automatic in a best-case
scenario. We also aim at relaxing the constraint of scanning the room one wall after another in order
to give the user more freedom of movement in the room: the user should be able to move freely and
eventually to come back to some parts of the rooms that may need more refinement.

Our method is mainly based on two inputs, the Planar Patches (PPs) and the visibility polygon
[19], i.e. the polygonal region representing the space explored by the device. The PPs are computed
incrementally from the depth maps as discussed in Section 4.4.2.3 and they can be modified by the
user interaction to change their classification into “wall” or “clutter”. The visibility polygon is built
incrementally as well as the union of the camera frustums; it is used both as a visual feedback for the
user to show the part of the room that has been covered and as first rough computation of the room
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layout.
Figure 5.7 summarizes the proposed approach and the components of our pipeline. The Tango

TDK middleware provides at each iteration the depth map of the scene, as well as the camera pose.
The depth map is processed in order to extract sets PPs. Thanks to the known camera pose, the
PPs are brought into a global world coordinate system, so that they can be associated and then fused
with the existing patches of the model. Whenever the model is updated, the visibility polygon of the
discovered area(s) is also updated (Section 5.4.1), which can be used as a visual feedback for the user.
The visibility polygon is also used by the labeling module (Section 5.4.3) to automatically classify
the planar patches as wall or clutter, thus enabling the disambiguation between actual walls and other
objects that may be lying inside the room. This last task can take advantage of the interaction of
the user, who can correct and change the automatic labeling of the vertical planar patches into wall
or clutter. This interaction scheme allows obtaining a good repartition of the tasks between the user
and the system: it lets to the system tasks it can reliably perform (localization, plane detection, room
layout generation from a set of selected plane), and lets the user intervene on tasks the system cannot
do well (estimating whether a PP corresponds to a wall or not). Finally, the layout generation module
(Section 5.4.2) computes the room layout from the vertical planes with wall labels and the boundary
given by the visibility polygon. When the labeling is correct, the user has no interaction to do, and
all the PPs corresponding to planes are selected for him. In the absence of the labeling module, this
approach would only relax the constraint of scanning the room one wall after another (thanks to the
layout generation module) but would remain user-driven.

Planar patch
extraction

Planar
patch fusion

Planar patches
model

Visibility
Polygon creation

Wall/Clutter
labeling

Layout
generation

Depth
map

Camera
pose

User interaction Screen
Labeled

patches

Labeled planar patches

Figure 5.7: The pipeline of the our room layout generation algorithm.

5.4.1 Visibility Polygon
During a scan, the user needs to have first visual feedback showing a rough representation of the ex-
plored space. In existing applications, the discovered area is represented by an occupancy grid [50], or
by displaying the progress of the reconstruction such as in Canvas.io [134] and Tango Constructor.
Occupancy grids are not very appealing because the grid is not necessarily aligned with the walls and
despite the use of thresholding techniques, they have a low robustness to noisy data which may create
floating areas. Visibility polygons [19] have been considered by Zhang et al. [225] and the Tango
Floor Plan Example2 application [63] (which is quite recent and posterior to our work). They repre-
sent the area observed by the camera in the form of a polygon as the result of the union of all camera
frustums. They can also be used to represent approximately the room layout. In Tango Floor Plan
Example2, this polygon is computed from the reconstructed mesh, while in [225] they use a polygon
clipping approach.

Construction of the visibility polygon. We consider the 2D space corresponding to a top-down
view of the scene and we denote s the line segment obtained from the projection of a vertical PP on a
horizontal plane.

At a given frame, the viewing polygon is a polygon representing all the area observed by the
camera. Assuming there is no unobservable 3D data such as glass, the edges of this polygon would
be contributions from the segments s or from the camera view frustum. A simple and intuitive way to
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compute the visibility polygon would be to compute the union of all the viewing polygons, for all the
considered frame. As the PPs model is updated, the visibility polygon needs to integrate the data and
get updated as well. To this end, we compute the visibility polygon from the segments s corresponding
to the vertical PPs of the model and all the camera positions that observed s. We consider the visibility
polygon P s associated with each line segment s, which is the union of all the triangles ts formed by
the camera position and the two extremities of s. Each triangle is made of one wall segment and two
frustum segments. An example of polygon P s associated with a segment s observed from multiple
frames is depicted on the left of Figure 5.8. After each update of the vertical planar patch, s is updated.
We then update the vertices of P s which were located on s. The geometric union of all the polygons P s

forms the visibility polygon, as illustrated on the right of Figure 5.8. We implemented the computation
of the visibility polygon with the help of the geometry engine GEOS [142].

w

C1
C2

C3

Figure 5.8: Left: the three blue, cyan and green triangles ts represent the part of the camera frustum viewing s
and associated with the camera poses c1, c2 and c3 respectively. Their union form P s: the visibility view polygon
associated with the line segment s. Right: the visibility polygon is the union of the visibility view polygons P s,
here represented with different colors.

Use of the visibility polygon for rough layout estimation. The visibility polygon is also interesting
because it can give a preliminary, rough overview of the shape of the room being scanned, e.g. by
applying a polygon simplification algorithm such as the Ramer–Douglas–Peucker one [47] or the
Visvalingam-Whyatt one [207]. In Visvalingam-Whyatt algorithm, each vertex is associated a triangle
formed by its adjacent vertices. Vertices with the smallest area are removed (leading to a change of
the adjacent triangles areas), until a threshold on the number of remaining vertices or area removed
is reached. This method highly depends on the sampling, i.e. the repartition of the vertices on the
boundary of the polygon, since a high sampling will produce smaller triangles, which will be removed
first.

Ramer–Douglas–Peucker algorithm is a curve simplification algorithm: the results depend on the
point of the polygon boundary selected as both first and last point of the curve, which will not be
removed. It considers the Hausdorff distance to assess whether the simplification of a part of the curve
into a segment is possible. This operation is repeated on the curve, in a recursive fashion. This method
is less sensitive to the density of sampling.

These simplification algorithms can give suitable results for scenes with low clutter, but provide
unsatisfactory results for other scenes, as illustrated in Figure 5.9. In addition, they do not let space
for user interaction, except changing a simplification threshold, which in some case, can lead to both
under and oversimplified areas. For this reason, we do not use this method.

5.4.2 Layout Generation
The layout generation module takes as input the visibility polygon and the PPs model with their
wall/clutter labels assigned either by the user or by the labeling module. The output of the mod-
ule is a room layout obtained by taking into account these two inputs. In this module, the PPs of the
model are seen as 2D segments, i.e. their projections on the plane.

We modeled our problem as a 2D geometric graph problem: each node corresponds to an extremity
of a segment and nodes belonging to a 2D segment are linked by an edge [19]. We first build a
geometric graph for the PP segment and a geometric graph for the boundary of the visibility polygon.
Then we compute the overlay of these two graphs [19], i.e. we compute a new (undirected) graph that
combines the information in the two graphs. Figure 5.10 shows a simple example of the two graphs
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Figure 5.9: Two examples showing the simplification of the visibility polygon with the Visvalingam-Whyatt
[207] algorithm can produce either a satisfactory layout (on the left) or an incorrect layout (on the right). The
visibility polygon is displayed in gray, with frustum lines displayed in red. The layout is displayed in yellow.

and the computed overlay. Given this new representation, computing the layout corresponds to the
problem of finding a cycle in the overlay graph.

In general, because of the topology and the incorrect user interactions, there may not be uniqueness
of the solution, as illustrated for example in Figure 5.11. There are multiple criteria that can be
considered to select the cycle to retain: the geometric area or perimeter of the polygon drawn by the
path, the number of nodes, etc. In our case, we consider the number of segments selected or not by
the user. We want to maximize the number of user-selected segments first, and then, for two paths
having the same number of user-selected segments, we want to minimize the number of non-user-
selected segments. The segments outside the path are discarded, whereas the others correspond to the
(virtually) selected PPs. The adjacencies of the segments correspond to their order of appearance in the
path, and thus to the order of plane selection seen in the interaction scheme described in Section 5.3.2.
The room layout is estimated as in Section 5.3.2, considering the retrieved ordered selection of the
PPs: the boundaries of each wall is computed by intersecting the previously selected plane and the
plane that will be selected next. In case of incorrect configuration between two PPs, as in Figure 5.5,
we connect their adjacent extremities (corresponding to the orange line segment in the figure).

Figure 5.10: Toy example of the computation of the overlay of two graphs: the figure on the left shows the
geometric graph of the visibility polygon boundary in gray and the geometric graph of the 2D PP segments in
blue. The figure on the right shows the final overlay graph, which is an undirected graph.

Solving and discussion. Generating the room layout correspond, in the graph domain, to the prob-
lem of finding a path in the graph corresponding to a cycle. In general, our graph can have multiple
cycles. Enumerating all the cycles of a graph has an exponential complexity, as demonstrated by Bax
[15]. Instead, we try to create a direct acyclic graph, where the solution path can be found in linear
time (w.r.t. the number of nodes and edges). For that purpose, we modify the overlay graph and we as-
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Figure 5.11: Two examples of scenes and user selections where there is no unique solution. Let’s assume the
user selected both the planes π1 and π2 (incorrect interaction from the user) displayed in the first row. Their
respective segments in the top-down view (second row) are s1 and s2. The obtained layout with our approach
will discard s2 because the paths traversing this segment contain more non-user-selected segments. A correct
interaction would have been the selection of π1 or π2, instead of both.

sign a direction to the edges corresponding to the segments of the visibility polygon boundary1: these
directed edges are set to follow a clockwise orientation along the boundary of the visibility polygon.
All the other edges are left undirected edges.

In order to find our minimal cycle, we assign to each node a pair (un, cn) containing the number of
distinct user-selected un and non-user-selected cn traversed segments. The pair is initialized to zero.
As we perform a traversal of all the edges of the graph we update the value of the pair as it follows.
For each user selected PP corresponding to a traversed edge joining a node n to n′, we update (u′n, c′n)
as follows:

(u′n, c′n) =
{

(un + 1, cn) if un + 1 > u′n or (un + 1 = u′n and c′n > cn)
(u′n, c′n) otherwise (5.1)

And for each non-user selected PP corresponding to a traversed edge joining a node n to n′, we update
(u′n, c′n) as follows:

(u′n, c′n) =
{

(un, cn + 1) if un > u′n or (un = u′n and c′n > cn + 1)
(u′n, c′n) otherwise (5.2)

This way, a node n has its values un, cn updated when we found a better path to join it. In order
to retrieve the optimal path at the end of the graph traversal, we store for each updated node, the

1Note that such edges, in general, correspond to a partition of the segments of the boundary: the overlay computation can
indeed split the edges corresponding to segments of the boundary if the latter contain or are crossed by 2D PP segments. In
the example of Figure 5.10 we can see that the left vertical edge of the boundary is split into 4 edges in the overlay graph, as it
contains one PP segment and is crossed by another PP segment.



96 CHAPTER 5. ROOM LAYOUT ESTIMATION

Figure 5.12: Two toy examples, one for each column, illustrating the creation of the directed acyclic graph from
the overlay graph. We depict in green the edges corresponding to PP segments selected by the user, in blue the
others PP segments, the visibility polygon is displayed in gray, with frustum edges in red.
First row: in the two cases three PPs are detected, with one user-selected segment in the first case and two in the
second.
Second row: after a breadth-first traversal of the graph, the generated directed acyclic graph with the pairs (un, cn)
displayed for each node. The edges not corresponding to the optimal path are represented with faded colors.

previously traversed node. The final layout is estimated by considering the segments traversed by the
optimal path and intersecting their respective infinite lines as in Section 5.3.

5.4.3 Wall labeling
Clutter often consists of irregular shapes, such as plants, sofas, etc., which are easily discarded as we
consider only planar primitives. It can also consist of piecewise planar shapes such as cupboards, radi-
ators, etc., we would like to detect. To position our work with the literature presented in Section 5.2.2,
we clarify our classification requirements. The classification should follow an online approach with
a low computational cost. Consequently, we avoided considering the Point cloud approaches and
Pre-segmented data approaches. These methods provide a fine grain segmentation with numerous
classes we estimated to be unnecessary to our use case. This accuracy gain would imply a higher
computational cost and would not spare us from incorrect labels to be corrected by the user. Instead,
we naturally chose a primitive planar approach, trading accuracy for efficiency. Each PP is classified
independently with a machine-learning approach.

We hand-selected the following features to form the feature vector describing our PPs:

• the distance dc between the highest point of the vertical planar patch and the estimated ceiling;

• the distance df between the lowest point of the vertical planar patch and the estimated floor: i.e.
intuitively, a planar patch close to the ceiling and floor is likely to be a wall;

• the (horizontal) length l of the segment s, i.e. longer segments are likely to be walls;

• the distance dv between a segment s and the exterior boundary ∂ Pv of the visibility polygon
Pv, defined as dv = supp∈s d(p, ∂ Pv), i.e. the maximum distance of its extremities from the
boundary: the farther an extremity is from the boundary, more likely the PPs corresponds to
clutter.

We compute a wall probability P(s) for each segment s of the model with a Multi-layer Perceptron
classifier using one hidden layer and a logistic sigmoid activation. This choice was performed experi-
mentally after comparing the prediction of several classifiers with different parameters. This classifier
was trained beforehand against 900 manually labeled vertical planar regions from our training dataset.
When a new PP is detected, we compute its corresponding P(s). This probability is updated when the
PP is modified or when the ceiling/floor estimation changed. The user can, at any moment, change
the PP label by touching it in the augmented view. Any label set by the user will remain as it is. Our
implementation based on the Python Scikit-learn module can label 50 planar patches in 29 ms.
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Figure 5.13: Visualization of the scan progress of the scene House2. We represented with a green-to-blue color
scale the wall probability of the PPs. A high wall probability will be displayed in green, and in blue for a low
probability. Left: augmented view of the device camera with the detected and classified planar patches. The
estimated room layout is displayed with black lines. Right: visibility polygon in light gray, camera view polygon
in black.

5.4.4 Implementation details

Our Python implementation of this last version takes 200 ms to generate the graph, and 11 ms to
compute the optimal path and generate the layout. We consider improving the speed of the graph
creation step by recycling the graph created during the union operations performed to compute the
visibility polygon.

For a satisfying user experience, the layout of previously seen areas should not change when the
user visits a new part of the scene. When the ceiling and the floor are detected, our method is suitable
for incremental changes of the model: the wall probability P(s) of the previously observed segments
s does not change, which means the computed path restricted to the previously seen segments is the
same and has the same cost.

Visualization and interaction We propose a collaborative interaction scheme where the interaction
is optional and can be performed at any time. Figure 5.13 shows the two views of our interface. As
the user moves to capture new parts of the scene, the first view (Figure 5.13, left) displays the camera
image augmented with the fused-PPs colored relatively to their wall probability and the estimated
layout. The second view (Figure 5.13, right) provides a top view of the scene with the visibility
polygon and the estimated layout too. The two views are updated at the frame rate of the depth
sensor, giving an immediate feedback to the user who can decide to visit the area (s) with missing
data. Displaying the fused-PPs enables the user to have a first feedback on the layout being built and
it possibly can help her or him to move closer to the walls to improve the reconstruction. A longer
observation of a wall allows it to be represented with a larger PP having extremities close to the wall
corners, to gather more 3D points, which helps to improve the estimation of the plane and the wall
probability.

While the areas of the walls close to the ceiling are usually less likely to contain clutter, we do not
force the user to observe these areas. This approach is less comfortable for the user as he has to keep
the device aimed towards the ceiling. Moreover, the ceilings are usually poorly textured (e.g. uniform
painting), which may affect the reliability of the Google Tango VIO and lead to a poor localization
accuracy. Nevertheless, our approach can in general handle this kind capturing scheme.

5.5 Evaluation
In this section, we compare the geometric accuracy of the room floor plans generated with our ap-
proach, Magic Plan [185] (run on iPad Air 1, which does not support ARKit), TapMeasure [137]
(run on an iPhone 6 with ARKit support) and the FloorPlanEx from Google [64]. At the time of writ-
ing, we only designed a Python desktop prototype which can replay a recorded scan or process live
data transmitted by the application. The presented results were obtained by performing the interactions
on replays of the scans.
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Evaluation protocol. We considered five indoor scenes Lab1MW, Lab2, House1MW, House2MW, and
House3MW, where MW denotes the scenes respecting the Manhattan World assumption. The ground
truth room layouts of these scenes were created with a Bosh DLE 50 laser rangefinder. We prelim-
inarily assessed the quality of the measurements of the Tango TDK w.r.t. the rangefinder in another
experiment detailed in Section 5.A. We evaluated the geometry accuracy of the obtained layouts with
the ground truth and the reproducibility of the measurements by repeating the measurements five times.
Each estimated layout was aligned with the ground truth by computing the transformation which min-
imizes the distances between their corresponding vertices. The mean value of these distances defines
our residual error. We also evaluated the user effort during the use of the considered mobile applica-
tions. Magic Plan, TapMeasure, and FloorPlanEx are user-driven applications where the user selects
the walls and the corners, respectively. The number of interaction is equal to the number of corners
(plus one for Magic Plan). For Magic Plan, we did not count the interactions performed to estimate the
ceiling height and to calibrate the device-floor distance. For our approach, we evaluated the number
labels corrections on the planar patches and the number of patches merging.

Results and analysis. Table 5.2 reports the quantitative evaluation for each approach, while Fig-
ure 5.15 and Figure 5.16 show a qualitative comparison of the obtained floor plans. As explained in
Section 1.3.1.1, Magic Plan estimates distances from the device orientation instead of taking advan-
tage of a localization module or a depth sensor. Consequently, even the best results of the application
(min residual column) are generally less accurate than the results obtained with FloorPlanEx and our
approach. Due to the amount of clutter, most of the corners were captured on the ceiling, which re-
duces the accuracy of the measurements according to the application recommendations. Magic Plan
assumes the angle between two consecutive walls is either 90° or 45°: for this reason, the results are
unsatisfactory on the scene Lab2, which does not fulfill the MW assumption. We can also observe the
residual increases with the area of the room, which is coherent when there is an error with the device
height estimation.

TapMeasure takes advantage of ARKit for the localization, but it is not designed to use a depth
sensor. Similarly to Magic Plan, the position of the corners is computed from the device orientation
If the user does not move, the position of the corners can be more accurate than Magic Plan since
the height of the device (w.r.t. the ground plane) is known at any moment. Contrary to Magic Plan,
TapMeasure does not allow to add corners on the ceiling. If there are objects lying on the floor, the
user has to select the position of the corner through the clutter, which inevitably affects the accuracy of
the generated layout. The accuracy of the localization depends on the type of the scenes, and it affects
the final results as well. For the scenes Lab1MW and Lab2, we can speculate the tracking was working
well since the layout generated by TapMeasure were more accurate than FloorPlanEx (including the
min and max residual columns). In contrast, for the scene House2MW, the tracking was quite poor
since TapMeasure obtained the worst results (less accurate than Magic Plan). Figure 5.14 illustrates
several tracking issues obtained during the evaluation.

Figure 5.14: Three examples of ARKit localization drift during the use of TapMeasure.

For selling or renting a property in France, for example, the Alur law defines the maximum error of
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the measured surface of the apartment to be less than 5% of the whole surface. The errors in estimating
the area from the FloorPlanEx application and our approach are below or equal to this threshold, which
may not be enough for some official uses. The results show that our method is generally more accurate
and provides more repeatable results than the FloorPlanEx: we consider the 3D points from multiple
frames to estimate the planes of the walls when the FloorPlanEx only considers the points from one
frame.

The last column of Table 5.2 describes the degree of interaction in terms of the number of in-
teractions required to complete the scan. It confirms our approach generally requires fewer screen
interactions than user-driven approaches, except for the scene house3MW, which contained a fireplace,
high furniture, and many curtains. The Lab1MW was also quite challenging because of the presence
of a high cupboard and pillars which were incorrectly labeled as wall. In term of displacement effort,
they are mandatory for FloorPlanEx and our approach, in order to capture 3D data with a reasonable
noise in medium-sized rooms. Also, the movements of the user cannot be too fast with the Tango TDK
in order to avoid localization issues. Magic Plan, instead, required the user to move toward the room
center (in order to maximize the measurement accuracy) and to rotate on himself during the scan. This
enables to scan simple scenes (star-shaped and moderate clutter) quite easily and fast, while complex
scenes with a lot of clutter and occlusion are not handled well.

Scene Method Mean and Max
area err.

Mean and σ
residuals

Min and Max
residuals Nb

Inter.

Lab1MW

(25 m2)

Ours 2.3% 4.2% 29 mm 14 mm 14 mm 48 mm 3.25
FloorPlanEx 2.2% 4.5% 47 mm 26 mm 18 mm 84 mm 4
TapMeasure 2.3% 3.8% 46 mm 24 mm 18 mm 76 mm 5
Magic Plan 12% 17% 164 mm 52 mm 106 mm 231 mm 5

Lab2
(47 m2)

Ours 1.1% 2.4% 38 mm 3 mm 35 mm 43 mm 0.75
FloorPlanEx 3.3% 4.3% 73 mm 19 mm 45 mm 100 mm 6
TapMeasure 3.2% 6.6% 66 mm 15 mm 50 mm 86 mm 7
Magic Plan 15% 24% 264 mm 65 mm 199 mm 329 mm 7

House1MW

(11 m2)

Ours 1.8% 2.4% 30 mm 12 mm 14 mm 44 mm 0.5
FloorPlanEx 2.6% 4.5% 53 mm 9 mm 38 mm 60 mm 6
TapMeasure 13.4% 23.8% 107 mm 60 mm 39 mm 184 mm 7
Magic Plan 4.9% 8.8% 66 mm 18 mm 46 mm 87 mm 7

House2MW

(13 m2)

Ours 3.0% 5.0% 29 mm 12 mm 17 mm 49 mm 0
FloorPlanEx 3.3% 4.2% 41 mm 11 mm 28 mm 58 mm 4
TapMeasure 6.2% 7.9% 66 mm 11 mm 56 mm 82 mm 5
Magic Plan 5.4% 9.2% 50 mm 23 mm 22 mm 89 mm 5

House3MW

(48 m2)

Ours 1.9% 2.3% 32 mm 5 mm 27 mm 37 mm 7
FloorPlanEx 2.8% 4.0% 105 mm 23 mm 78 mm 144 mm 6
TapMeasure 7.5% 13.7% 122 mm 42 mm 60 mm 177 mm 7
Magic Plan 15.4% 24.9% 233 mm 79 mm 163 mm 344 mm 7

Table 5.2: Results of the geometry accuracy and reproducibility comparison experiment. Manhattan scenes have
“MW” in their name. We use bold font to indicate the best result for each scene.

5.6 Conclusion
In this chapter, we proposed a brief review of room layout estimation methods in the literature as well
as some recent mobile applications. This review revealed that the few current online approaches are
mostly user-driven and require many user interactions to generate the final floor plan. Our proposed
approach overcomes these limitations: the room model can be generated online, incrementally during
the scan progress and the proposed interaction scheme is not user-driven. The user, indeed, can option-
ally collaborate with the system, by selecting or removing (previously selected) planes corresponding
to walls. The system reduces the user effort by classifying the detected planes either as clutter or as
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walls, and by retrieving the topology of the scene, a task which is let to the user in the user-driven
approaches. We evaluated our method on a desktop computer, using scans recorded from a Project
Tango mobile device. The comparison with other mobile applications demonstrates that, in general,
we achieve higher accuracy. In term of efficiency, the number of user interactions depends on the
complexity of the scenes, which may contain clutter data incorrectly classified as walls.

Related publications. An alternative approach to generate a simplified layout of the scene has been
presented at the Multimedia Modeling (MMM 2018) conference: Vincent Angladon et al. “Room
Floor Plan Generation on a Project Tango Device”. In: Multimedia Modeling (MMM 2018), Part II,
Lecture Notes in Computer Science 10705 proceedings, Springer Verlag, in press. [4]
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Lab1MW

Lab2

House1MW

House2MW

House3MW

Figure 5.15: First column: the point clouds and the labeled planar patches (blue: clutter, green: walls) of the
scanned rooms. Second column: comparison of our approach in orange with the ground truth in blue.
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FloorPlanEx TapMeasure Magic Plan

Lab1MW

Lab2

House1MW

House2MW

House3MW

Figure 5.16: First row: comparison of the room layout obtained with FloorPlanEx in orange and the ground
truth in blue. Second and third row: same comparison with TapMeasure and Magic Plan results.
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5.A Distance Measurement Evaluation
In this section, we assess the accuracy of the distance measurements performed with a Tango TDK
and with a Bosh DLE 50 laser rangefinder, which has been used for creating ground-truths for the
room measurements evaluation.

5.A.1 First Experiment
Tango TDK has two main sources of inaccuracies: the depth sensor noise, and the drift performed by
the provided localization module, which relies on a Visual Inertial Odometry (VIO) algorithm. There
are two opposing strategies to perform a measurement with a Tango TDK: minimize the displacements
of the tablet but have inaccurate depth perception over longer distances, or accept possible localization
drifts in order to obtain more accurate depth measurements.

Protocol. We asked five candidates to perform the same distance measurement with the Measure
App application [65] for Google Tango between two corners separated by a distance of 7.2 m. With
this application, the user has to point the tablet to the extremities of the object to measure. The
position of the two 3D points of the measurement in the world space depends on the estimated camera
position and the depth measurements. We instructed the candidates to perform a first measurement by
minimizing their displacement, then we instructed them to move closer (1.5 m approximately) to the
anchor points of the measurement.

The depth measurement error is quadratic with the distance between the tablet to the measured
object. During the first scenario, this distance was around 4.2 m and the inaccuracy of the depth sensor
was estimated to 24± 9 mm with a plane fitting test, whereas in the second scenario the distance was
around 1.5 m with an estimated 5± 1 mm depth error.

The VIO drift depends on the number and the position of the tracked keypoints in the fisheye camera
frames: therefore textureless scenes and the motion blur may affect the motion estimation. The scene
of the experiment was quite challenging for the VIO algorithm because the walls and the ceiling were
textureless, the ground had a repetitive pattern and few furnitures were present. Also, when the user
gets closer to an untextured wall, the VIO algorithm is more likely to drift.

Results. The standard deviations of the two measurements strategies were 81± 25 mm and 39± 25 mm
respectively. The uncertainty comes from the truncation at 1 in of the measurements provided by the
application. The results demonstrate that higher accuracy can be obtained with the second strategy,
which means the average VIO algorithm localization error (on a few meters path) is lower than the
depth error.

5.A.2 Second Experiment
Protocol. We performed a second experiment in which we asked the candidates to perform the same
three measurements, M1, M2, and M3 respectively, both with a laser rangefinder and the Tango TDK
to assess the repeatability of the measurements.

The absolute error of the laser rangefinder is constant (1.5 mm in our case). However, like any
experimental activity the measurements are effected by random errors in the use of the device (e.g.
the device is not hold perfectly level) and small structural errors of the scene: the floor may not be
perfectly flat, the walls may not be perfectly orthogonal to the ground, etc. Consequently, the absolute
error is proportional to the measured distance with a coefficient equal to 1 − cosα where α is the
elevation angle (angular difference with a vector parallel to the ground plane). For this reason, we
considered relative errors instead of absolute errors in the results of this experiment.

Rangerfinder measurements are simple to perform when the walls can be used as support for the
device, which was the case for the first measurement M1. When the walls are not parallel, as for the
third measurement M3, the user has one degree of freedom to adjust the azimuth orientation of the
laser. Between two opposite wall corners of a diagonal, the crutch of the rangefinder has to be used
to be in contact with the corner. There are two degrees of freedom, the azimuth, and the elevation
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angle, to point the device to the opposite corner at the same height. This was the case for the second
measurement M2, which is also the longest distance measured among the three. Longer distances are
more challenging to measure because a small orientation change of the rangefinder introduces more
important displacements of the laser dot. Therefore, with the rangefinder we expect to obtain a higher
repeatability with M1 than M3, and to obtain the lowest repeatability with M2. With the Tango TDK
device, the three measurements M1, M2 and M3 are equally challenging and the distance length does
not introduce difficulties for the operator because he can move during the measurement.

Results. Table 5.3 summarizes the standard deviation of the relative errors of the measurements
performed by the candidates. The best repeatability was obtained for all devices, with the easiest
measurement M1. With the Tango TDK, the repeatability decreases with the length of the measure-
ment which can be explained by the VIO algorithm drift. Whereas with the laser rangefinder, the
repeatability varies less, which means it is more reliable for the measurements despite the difficulties
experimented by the users. Contrary to what we expected, σRangefinder is lower for M2 than for M3,
while M2 was a more difficult measurement. One possible explanation is that most of the candidates
understood M2 was a difficult measurement, and and they took their time to perform the measure-
ment, sometimes with several attempts because they wanted to check the consistency of their results.
In comparison, no candidate performed several measurements for M3.

Measurement σRangefinder σTango

M1 (7.2 m) 0.7 mm m−1 5.5± 3.5 mm m−1

M2 (11.9 m) 0.83 mm m−1 22.6± 2.1 mm m−1

M3 (9.7 m) 1.03 mm m−1 10.4± 2.6 mm m−1

Table 5.3: Results of the three measurements M1, M2, M3 performed by the candidates. σRangefinder and σTango

represent the standard deviation of the relative errors of the measurements.
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6.1 Summary

ALL along this manuscript, we studied different components related to the problem of room layout
estimation on mobile devices, under two points of view: RGB and RGB-D approaches. In the context
of the study of RGB approaches, we focused on the problem of VPs estimation to help image under-
standing, and in particular the estimation of room layout from a single image. We explored the use of
inertial sensors with the purpose of developing a mobile application and we devised a novel, fast and
accurate solution to estimate the VPs of an image using IMU data. The comparison of our approach
with a state of the art approach revealed we obtained similar accuracy while being several magnitudes
faster. In order to assess our method we create a new dataset with annotated ground truth line segments
and IMU data, which can be used for the evaluation of VPs algorithms. Instead of giving the ground
truth position of the VPs, we provide uncertainty regions where the VPs may lie, in order to take into
account the uncertainties of the manual labeling process.

In the context of analyzing RGB-D approaches, we considered two devices. We started with the
very recent Structure Sensor, which revealed to have some issues related to the provided SLAM
component. SLAM algorithms generally consist of two elements: a front-end made of a fast odometry
algorithm called VO, which is mainly reliable in the short term (e.g. a few minutes), and a back-end,
which handles loop closures and ensure the estimated trajectory is globally consistent. This compo-
nent is very critical, since even minor deviations or misalignments affect the quality of the measure-
ments and of the augmented reality application. We proposed a benchmark of the most promising VO
algorithms based on RGB-D sensors that could be suitable for a mobile device: we evaluated their ac-
curacy on several datasets and we assessed their computational efficiency and memory consumption.
This evaluation revealed that only one open-source algorithm (Fovis [81]) could be run with QVGA
(320× 240) images at the rate of the camera, on all the considered devices. On the high-end devices,
it was also the only algorithm that could be run with VGA (640 × 480) images. Otherwise, the VO
algorithm provided with the Structure Sensor obtained the best performances on the dataset using
this sensor.

We continued our experiments with the Tango TDK, which revealed to have a more accurate
SLAM algorithm. Contrary to Structure Sensor, it does not use the data of the depth sensor for
estimating the motion of the device but it rather uses a RGB approach. The first experiments showed
that such choice enables the real-time motion estimation, but it also introduces some drift that affect
the on-line 3D reconstruction using the RGB-D data. To mitigate this effect, we investigated planar
SLAM approaches and we developed our own plane extraction algorithm to satisfy the constraints
of the provided depth sensor. Our proof of concept planar SLAM runs on top of the existing Tango
components and it considers the uncertainty on the estimated planes to relax the constraints where the
uncertainty is the higher.

105
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Planes of an indoor scene generally correspond to its structural elements (walls, ceiling, and floor).
For this reason, it is a popular approach for the estimation of room layouts from 3D data. While
previous works or existing applications are mostly offline (the room layout is estimated without user
intervention, at the end of the acquisition procedure) or user-driven (the floor plan is fully generated
by the user), we proposed a novel approach where the user interactions are part of the processing loop.
A comparison with existing mobile applications revealed our method was generally more accurate and
could require fewer user inputs.

6.2 Limitations and perspectives

The floor plan estimation problem addressed in this thesis covers several topics: image understand-
ing, vSLAM, semantic analysis and user interactions. Such broad spectrum of topics clearly leave
space for improvements and further investigations. In what follows, we discuss some limitations and
perspectives of our works.

Concerning the works on vSLAM algorithms, the recent release of the localization frameworks
ARKit and ARCore propose an interesting track to explore, as they both provide support for plane
detection. In comparison with Project Tango, these technologies offer a broader impact to users,
as they do not require to buy additional hardware, and they are meant to enable augmented reality
applications. Existing approaches for room layout based on multiple images [12, 57, 56, 58] could be
revisited to take advantage of these technologies. However, according to our preliminary experiments,
these frameworks are, for the time being, lacking the accuracy necessary for generating good quality
plans. An interesting extension of our works on planar SLAM would be a tight integration (and not
separated as we proposed to accommodate the existing Tango components) with an existing feature-
based open-source VO algorithm, in order to take advantage of the uncertainty information on the
odometry and to fully constrain the camera pose from the matched features when few planes are
visible.

A finer segmentation (at the level of objects) can improve the recognition of walls and clutter, as
well as enabling the detection of doors and windows. Deep learning techniques are nowadays very
popular and they can be used to train specific networks on datasets such as [31] to provide a semantic
segmentation of the scene. Tateno et al. demonstrated [202] such approach could allow a Tango TDK
to segment in real-time the point cloud generated during the acquisition. The understanding of the
scene provided by a semantic analysis can also be considered to fill holes in the scenes and perform
scene completion, as proposed by [51] who also considers 3D data from the same device.

Regarding our works related to the estimation of the room layout, RGB images could be also
integrated in the pipeline. Color information, and especially textures are very valuable for the semantic
analysis of indoor scenes but also to create textured 3D models. It is a difficult problem since the
model may be incomplete, the superposition of overlapping RGB images may create a blurry texture
due to the imperfect accuracy of the camera tracking and quality of the images. Huang et al. [82]
combine hole filling in meshes, inpainting algorithms, and texture optimization approaches to enhance
the quality of the generated textured models. Inpainting can also be considered, in the context of a
diminished reality application where the clutter would be virtually removed of the scene as proposed
by Zhang et al. [222] Zhang et al. [222] propose such an application where an illumination model is
recreated to add further realism to the textures. Once the 3D model of the room is estimated, it can be
interesting to add some 3D objects (furnitures, equipments, . . . ) of the scanned room into the model.
Sankar et al. [176] propose an application for the Tango TDK where some of the objects of the scenes
are recognized and added to the generated model.

Regarding the user experience, it can be interesting to guide the user during the scan [114, 132] in
order to optimize the time spent in the apartment, as well as designing more intuitive user interfaces
[181].

While our proof-of-concept application demonstrates the feasibility of our approach, more engi-
neering work is required to release a mobile application. Some of the components of our pipelines,
such as the planar model optimization and the room layout estimation require better optimizations and
to be implemented in a cross-platform language such as C++. Additional features such as data export,
the aggregation of multiple rooms in the floor plan, and the detection (or the manual selection) of
doors and windows should be considered.
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6.3 Publications
The research work presented in this thesis has been published in international conferences and journals.
In the following list, we report the publications with a brief description of the contribution.

[4] Vincent Angladon, Simone Gasparini, and Vincent Charvillat. “Room Floor Plan Generation on
a Project Tango Device”. In: MultiMedia Modeling. Springer International Publishing, 2018,
pp. 226–238. DOI: 10.1007/978-3-319-73600-6_20. URL: https://doi.org/
10.1007/978-3-319-73600-6_20
In this paper, we proposed a collaborative and online method to generate accurate floor plans
from a Tango TDK. We take advantage of the specific capabilities of this tablet (presence of
a built-in depth sensor and a localization module) to propose a collaborative user interaction
scheme. Our approach relies on the extraction and the fusion of planes extracted from the 3D
data, and generally a specially crafted graph to model the problem.

[5] Vincent Angladon, Simone Gasparini, and Vincent Charvillat. “The Toulouse vanishing points
dataset”. In: Proceedings of the 6th ACM Multimedia Systems Conference on - MMSys ’15.
ACM Press, 2015. DOI: 10.1145/2713168.2713196. URL: https://doi.org/10.
1145/2713168.2713196
In this paper we presented a new dataset for the evaluation of VPs estimation algorithms. Its
originality is the addition of IMU data synchronized with the camera, allowing VPs estimation
algorithms taking advantage of this sensor to be compared. For our dataset, we also propose
VPs of reference in the form of uncertainty regions, which express the uncertainty on the extrem-
ities of the ground truth line segments.

[6] Vincent Angladon, Simone Gasparini, Vincent Charvillat, Tomislav Pribanić, Tomislav Petković,
Matea Ðonlić, Benjamin Ahsan, and Frédéric Bruel. “An evaluation of real-time RGB-D visual
odometry algorithms on mobile devices”. In: Journal of Real-Time Image Processing (2017).
in press, pp. 1–18. DOI: 10.1007/s11554-017-0670-y
In this paper, we exposed the results of an evaluation of several VO algorithms designed to take
advantage of a depth sensor. We compared their accuracy, their memory and CPU consumption
on a desktop computer and several mobile devices. We highlighted the solutions which obtained
satisfactory performances to be run on a mobile device.

6.4 Collaborations
[154] Tomislav Pribanić, Tomislav Petković, Matea Ðonlić, Vincent Angladon, and Simone Gasparini.
“3D Structured Light Scanner on the Smartphone”. In: Lecture Notes in Computer Science. Springer
International Publishing, 2016, pp. 443–450. DOI: 10.1007/978-3-319-41501-7_50. URL:
https://doi.org/10.1007/978-3-319-41501-7_50
This paper is the result of a collaboration with the University of Zagreb in the context of the Project
Cogito. It describes a method to capture a dense depth map with the Samsung Galaxy Beam, a
smartphone with a built-in projector, which is used to project a pseudorandom dots pattern. As the
projector and the rear camera do not have a common Field of view (fov), a deflection adapter for the
projector is designed, as well as a calibration procedure. The article shows the resulting 3D point
cloud obtained with this method and a comparison with point clouds of the same objects obtained with
a more powerful projector.
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