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Abstract

Elementary particles are distinguished by their spin and their mass. In particular, the
spin≤ 1 fields, corresponding to the Standard Model content, are theoretically well-known
and have been observed in nature. Going to higher spins, however, serious issues often arise
as one attempts to construct a Lagrangian. This is the case for charged massive higher spins,
which are plagued by acausality and loss of hyperbolicity. Even the simplest examples of
the spin-3/2 and spin-2 turn out to be highly challenging, despite the intense investigation
over the past decades. In this thesis, we present consistent Lagrangians, the subsequent
equations of motion, and constraints for the charged massive spin-3/2 and spin-2 states.
These Lagrangians are derived from the superspace action for the first massive level of
charged superstring in four dimensions.

The motivations for higher spin studies are not limited to a pure field-theoretic interest.
It is postulated by many authors that higher spins may be produced in early universe,
and could be a Dark Matter candidate. The gravitinos, which are spin-3/2 particles in
supergravity, have received a particular attention. Some authors have recently pointed out
that, when the gravitino sound speed vanishes, its production will diverge. We will show
that for linear N = 1, d = 4 supergravity, coupled to two fermions, the gravitino sound
speed never vanishes, hence avoiding pathological production.

After discussing higher spins, we move on to the second part of this thesis, which focuses
on physics beyond the Standard Model. While the Standard Model has achieved great success
in numerous experiments, several significant anomalies, along with theoretical issues, suggest
the need for new physics. In this thesis, we investigate supersymmetric candidates. First,
we consider scenarios where supersymmetry lies at high energy scales that are currently
inaccessible to colliders. Through an example, we show how the Higgs mass can unravel the
parameter space of such supersymmetric models. Second, we study Dirac gaugino models.
These models have interesting properties in Higgs alignment and can also accommodate
the recently reported 7σ deviation in the W boson mass. Through numerical analysis, we
highlight the importance of quantum corrections.

Keywords:
higher spin, supersymmetry, supergravity, gravitino, Higgs mass, Dirac gauginos
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Résumé

Les particules élémentaires se distinguent par leur spin et leur masse. En particulier,
les champs de spin≤ 1, correspondant au contenu du Modèle standard, sont bien connus
théoriquement et ont été observés dans la nature. Cependant, s’agissant des spins supérieurs,
des pathologies sérieuses apparaissent lors de la construction d’un lagrangien. C’est typique-
ment le cas pour les spins supérieurs massifs chargés, où persistent l’acausalité ainsi que la
perte de l’hyperbolicité. Même les exemples les plus simples, tels que le spin-3/2 et le spin-2,
se révèlent extrêmement difficiles à étudier, malgré de nombreuses tentatives durant les dé-
cennies passées. Dans cette thèse, nous présentons des lagrangiens cohérents, les équations du
mouvement et les contraintes pour spin-3/2 et spin-2 massifs chargés. Ces lagrangiens sont
déduits de l’action dans le superespace décrivant le premier niveau massif de la supercorde
chargée en quatre dimensions.

Outre son intérêt pour la théorie des champs, l’étude des spins supérieurs a des appli-
cations phénoménologiques. Il a été postulé par plusieurs auteurs que des spins supérieurs
pourraient avoir été produits dans l’univers primordial et pourraient constituer un candidat
pour la matière noire. Les gravitinos, qui sont des particules de spin-3/2 dans la supergravité,
ont reçu une attention particulière. Certains auteurs ont récemment remarqué que lorsque
la vitesse du son du gravitino s’annule, sa production diverge. Nous montrons que pour la
supergravité N = 1, d = 4, qui contient deux fermions, la vitesse du son du gravitino ne
s’annule jamais. Par conséquent, une telle production divergente est évitée.

Après avoir discuté des spins supérieurs, nous entrons dans la deuxième partie de cette
thèse, autour de la physique au-delà du Modèle standard. Si de nombreuses expériences ont
prouvé la robustesse du Modèle standard, certaines anomalies importantes, ainsi que des
problèmes théoriques, suggèrent le besoin d’une nouvelle physique. Dans cette thèse, nous
investiguons des candidats supersymétriques. Premièrement, nous considérons des scénarios
où la supersymétrie réside dans des échelles de hautes énergies qui sont inaccessibles aux
collisionneurs actuels. À travers un exemple, nous étudions comment la masse du boson de
Higgs peut dévoiler l’espace de paramètres de tels modèles supersymétriques. Deuxièmement,
nous étudions des modèles de jauginos de Dirac. Ces modèles présentent des propriétés
intéressantes rendant possible l’alignement de Higgs, et pourraient expliquer la déviation
de 7σ récemment rapportée dans la masse du boson W . Par une analyse numérique, nous
mettons en évidence l’importance des corrections quantiques.

Mots clés :
Spin supérieur, supersymétrie, supergravité, gravitino, la masse du Higgs, jauginos de Dirac

5



Abbreviations

2HDM Two-Higgs Doublet Model
AdS Anti-de Sitter
BSM beyond the Standard Model
DoF degree of freedom
dS de Sitter
EFT Effective Field Theory
EoM equation of motion
EW electroweak
EWSB electroweak symmetry breaking
FLRW Freedman-Lemaître-Robertson-Walker
FSSM Flavourful Supersymmetric Standard Model
GR General Relativity
GUT Grand Unification Theory
LHC Large Hadron Collider
MSSM Minimal Supersymmetric Standard Model
NLL next-to-leading-logarithmic
NMSSM Next-to-Minimal Supersymmetric Standard Model
QCD Quantum Chromodynamics
QED Quantum Electrodynamics
QFT Quantum Field Theory
RGE Renormalization Group Equation
SM Standard Model
SSB Spontaneous Symmetry Breaking
SUSY supersymmetry
UV ultraviolet
vev vacuum expectation value
WFR wave-function-renormalization
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Introduction

The mathematical formulation of elementary particles, on which is built modern Quan-
tum Field Theory (QFT), dates back to less than a century ago. Since the work by Wigner
[1] and his contemporaries, it is understood that all consistent and relativistic quantum fields
can be classified by their spin s and mass m. Several decades after the discovery of the elec-
tron by the end of the 19th century, Dirac [2] proposed the celebrated spin-1/2 equation of
motion, which is linear in momentum and mass. The corresponding theory for bosons of
spin-0 and spin-1 are also known to be described by the Klein-Gordon equation, which is
of second order in spacetime derivative. These theories are readily generalized in Quantum
Electrodynamics (QED) to charged particles, with the introduction of the minimal coupling:
∂µ → Dµ − ieAµ, and more general non-abelian gauge symmetries find their framework in
Yang-Mills theory. The massless limit is well-established as well, where one usually recovers
an additional gauge invariance.

Obviously this is not the end of the story. Though to date, no elementary particle of spin
s > 1 has been detected, constructing a “higher spin theory” is still of great significance.
Going beyond the pure mathematical curiosity, higher spin states play a crucial role in
gravity. In General Relativity (GR), the mediator of gravitational interactions, the graviton,
has spin-2. And in supergravity, the superpartner of the graviton – the gravitino, is of spin-
3/2. It is important that a field theory of these states be ready for applications. Beside
the hypothetical elementary particles, higher spin fields do exist in nature, and they are
observed in composite states. According to the SU(3) classification, the “baryon decuplet”
is formed by three-quark (u, d, s) states with a total spin s = 3/2. An example of them is
the Ω− baryon carrying a unit charge: discovered in bubble chamber in 1964 [3], its spin is
confirmed to be 3/2 by BaBar in 2006 [4]. In a typical experimental setup, these baryons
travel a distance which is much larger than their own size, and therefore the point particle
approximation is well justified, calling for the use of a local action.

It was not long after the development of the spin-1/2 equation that the higher spin studies
were initiated by Dirac [5] in 1936. Later, the spin-3/2 and spin-2 massive free Lagrangians
have been constructed by Rarita, Schwinger [6] and Fierz, Pauli [7] respectively. Several
decades after these two works, Singh and Hagen [8, 9] proposed a systematic Lagrangian
formulation for any spin, necessitating lower spin auxiliary fields to enhance the constraint
equations. The well-studied massive free theories open new avenues for generalizations and
applications.

However, the seemingly immediate generalization to the charged higher spins turns out to
be a highly challenging task. One may naïvely replace all the partial derivatives by covariant
derivatives as in the spin s ≤ 1 case, but this operation inevitably results in a pathological
action – manifesting acausality and loss of hyperbolicity – due to the non-commutativity of
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the covariant derivatives. Already in the simplest setup with U(1) charge and constant small
electromagnetic background, finding a consistent higher spin effective Lagrangian proves to
be very difficult. The attempts mainly consist in extending the Lagrangian with non-minimal
terms, such as the Ferderbush Lagrangian [10] for spin-2 or the non-minimal spin-3/2 La-
grangians that Deser, Pascalutsa and Waldron [11] proposed, but the former still suffers
from high energy unitarity problem and the latter does not escape from acausality. In recent
contributions, an interesting approach is to start from String Theory, which features higher
spin states in its spectrum. The past few decades have witnessed the development of charged
bosonic string [12], then charged superstring theory [13] in a constant electromagnetic back-
ground. Based on the charged string theory, the investigation of the first massive states of
open bosonic string in 26d has led Argyres and Nappi [14, 15] to write up to now the only
charged massive spin-2 Lagrangian, having the correct gyromagnetic ratio, without ghost or
coupling to lower spin fields, though this Lagrangian is not valid away from 26d. One may
naturally expect such construction to be performed on superstring as well, so as to derive a
charged massive spin-3/2 theory along with a spin-2 in the same multiplet. This topic will
be addressed in Chapter 2.

On the other hand, the phenomenological aspects of higher spins are not limited to the
composite states, and when formulated in a curved spacetime, they have interesting cosmo-
logical implications. For instance, it is possible, using curved spacetime QFT, to analyze
the gravitational particle production and investigate higher spin dark matter candidates.
Indispensable in supergravity theories, the gravitino and its production are studied by var-
ious authors around 2000 [16–19] in the context of N = 1 supergravity, in particular in
the Freedman-Lemaître-Robertson-Walker (FLRW) metric. Recently, a pathological phe-
nomenon in gravitino production is pointed out by Kolb, Long and Mcdonough [20]. It is
shown that in the FLRW background, the gravitino sound speed may vanish which results in
a divergent gravitino production, and several non-linear supersymmetric models indeed ex-
hibit such behaviour. In N = 1 supergravity with one chiral multiplet, the gravitino sound
speed is equal to the speed of light [16–18] and therefore safe from divergent production.
What happens if there is more than one chiral multiplet? Would divergent gravitino pro-
duction occur? In this case, the question becomes more subtle due the mixing of different
fermions, and the definition of a physical sound speed shall be clarified. Chapter 3 of this
thesis deals with this question.

After venturing into theories of higher spins, let us go back to the “more usual” territory
of s ≤ 1, which is far from being fully understood, either. The Standard Model (SM) of
particle physics postulates three families of leptons and quarks, of spin-1/2, along with the
spin-0 Higgs boson and spin-1 gauge bosons. The last particle discovered in this catalogue
is the Higgs boson in 2012 by ATLAS and CMS [21, 22], and so far the SM predictions have
successfully gone through a majority of the experiments.

Yet several theoretical issues and experimental anomalies constantly raise the necessesity
for going beyond the SM (BSM). In addition to the long-standing neutrino mass and oscil-
lation problems, the SM is also challenged by other measurements, such as the muon g − 2
anomaly and W boson mass, where significant deviations are reported. On the theoretical
side, the SM does not account for gravitational interactions, and is not a suitable theory
at the reduced Planck mass scale MP ∼ 1018GeV, characterizing the realm of Quantum
Gravity. The mere observation that the electroweak (EW) scale is much lower than the
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Planck scale poses the “hierarchy problem”, which becomes even more compelling in view
of, e.g., the sensitivity of the Higgs boson mass to the ultraviolet (UV) cutoff due to quan-
tum corrections. Shortly after the observation of the Higgs boson and the measurement of
its mass, an analysis is performed in [23], evolving SM parameters using Renormalization
Group Equations (RGEs), which surprisingly reveals an instability of the Higgs potential at
an energy scale lower than MP . Numerous evidences call for BSM physics.

A well-motivated BSM candidate is supersymmetry (SUSY), which features an extended
particle content, and consequently an enlarged parameter space. A number of theoretical
or phenomenological issues related to the SM find a satisfying explanation with SUSY. The
aforementioned UV-divergence of the quantum corrections to the scalar mass, can be exactly
cancelled by the superpartner diagrams, leaving an additional quadratic term in the SUSY
breaking mass scale. SUSY models are also interesting candidates to accommodate the
experimental discrepancies, in particular, it can provide a sufficient enhancement to muon
g−2 so as to attain the measured value. But in absence of strong evidence of superparticles in
direct collider searches, it is plausible that the SUSY scale is beyond the current experimental
capacity. In this case, how do we constrain the parameter space of a given model? A specific
property in SUSY is that, the Higgs quartic coupling which is extracted from the Higgs
mass, is not a free parameter contrary to the SM. In the example of the MSSM, at tree
level, the quartic coupling is determined by the “D-term” and radiative corrections receive
contribution from all superparticles. Therefore, the SM-like Higgs mass contains information
about masses and couplings of these new particles. The goal of Chapter 4 is to illustrate,
through an explicit example, how Higgs mass can constrain the parameter space of a high-
scale SUSY model.

As the SUSY particle content involves more than one scalar, the question that must be
addressed is how the SM-like Higgs boson is incorporated. The common requirement is that
the observed Higgs be aligned with the scalar mixing matrix eigenstate acquiring a non-zero
vacuum expectation value (vev) – this is the so-called Higgs alignment. The previous high-
scale SUSY scenario easily realizes the alignment, because the new scalars are much heavier
than the SM-like one, thus they decouple, and the remaining light scalar is naturally aligned
with the SM Higgs boson. If one allows lighter SUSY masses, Higgs alignment without
decoupling may also be achieved, thanks to some underlying symmetries of the model.

We will explore in Chapter 5 Dirac gaugino models, where gauginos have Dirac masses.
Such models were first introduced in [24] to provide mass to gluinos while preserving R-
symmetry. Interestingly, Dirac gaugino models can achieve alignment without decoupling,
in addition, the singlet scalar in its particle content generically enhances the W -boson mass,
which may accommodate the recently reported 7 standard deviations from the CDF experi-
ment [25].

This manuscript is structured as follows: In Chapter 1, we briefly introduce supersymme-
try as well as related topics, providing necessary tools for the following content. In Chapter
2, we review the main results in free massive higher spin theories, and introduce the patholo-
gies persisting in charged higher spins. We then present the calculation to obtain explicitly
the consistent Lagrangian, equations of motion and constraints of charged massive spin-3/2
and spin-2 states. In Chapter 3, we introduce the divergent gravitino production related
to the gravitino sound speed, and then investigate the gravitino propagation in the case of
N = 1, D = 4 supergravity with more than one chiral multiplet. In Chapter 4, we study
the Higgs mass constraints on a specific supersymmetric model, that solves the muon g − 2
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anomaly. In Chapter 5, we start by reviewing the Dirac gaugino models, and then discuss
their alignment properties and how they accommodate the W boson mass deviations. We
conclude in the last Chapter. Conventions and useful results are presented in appendices.
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Chapter 1

Super-preliminaries

This chapter provides basic elements and tools on supersymmetry as well as related sub-
jects, which is not intended to be an extensive review. There exists a plethora of introductions
to supersymmetry and/or supergravity, such as [26–31], and the lessons on superspace [32].
This chapter is based on these references.

1.1 Supersymmetry

1.1.1 Superalgebra
The supersymmetry algebra generalizes the Poincaré algebra of spacetime symmetry, by

introducing a spinorial generator1 Q that obeys schematically the following commutation
and anticommutation relations:

[Q,Pµ] =
[
Q̄, Pµ

]
= 0{

Q̄, Q̄
}

= {Q,Q} = 0{
Q, Q̄

}
= Pµ

(1.1)

where Pµ generates spacetime translations. Such algebra involving both commutation and
anticommutation relations is also called a graded Lie algebra, or superalgebra. The possible
symmetries of the S-matrix are subject to the Coleman-Mandula no-go theorem [33], which
forbids any non-trivial combination of internal symmetry and spacetime symmetry, but su-
persymmetry evades this restriction by generalizing Lie algebra to graded Lie algebra. It
has been proven by Haag, Łopuszański and Sohnius [34], as an extension to the Coleman-
Mandula theorem, that the maximal symmetry of the S-matrix is the direct product of an
internal symmetry with the supersymmetry algebra, in other words, supersymmetry algebra
is the only non-trivial graded Lie algebra that is consistent with S-matrix symmetries, with
a possible extension to include central charges.

The irreducible representations of supersymmetry are called supermultiplets or simply
multiplets, which contain both fermionic and bosonic states that are related by supersym-
metric transformations. The fermions and bosons in the same supermultiplet are said to

1We consider the case with only one generator, which is often referred to as N = 1 supersymmetry.
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be superpartners of each other. The above graded Lie algebra obeys the following crucial
properties:

1. Since the squared-mass operator −P 2 commutes with Q, Q̄ as well as spacetime ro-
tation and translation generators, all particles in the same supermultiplet then must
have the same eigenvalue under −P 2, namely the superpartners have the same mass.

2. The energy P0 in supersymmetric theories is always positive or zero. This is demon-
strated by using the anticommutator

{
Q, Q̄

}
in (1.1), with indices restored. In fact, a

supersymmetry-preserving state always has zero vacuum energy.

3. A supermultiplet contains an equal number of bosonic and fermionic degrees of freedom.

The first point implies that supersymmetry must be broken, because superparticles having
degenerate masses with their observed SM partners have never been detected. The second
point adds that supersymmetry is spontaneously broken if and only if the vacuum has non-
zero energy.

The simplest supersymmetric model is the free massless Wess-Zumino model, describing
a complex scalar ϕ with its superpartner, a two-component Weyl fermion ψ. The Lagrangian
has kinetic terms only:

L = −∂µϕ̄∂µϕ− iψ̄σ̄µ∂µψ (1.2)

We followed the conventions in Appendix A. Denoting the infinitesimal, constant, supersym-
metry transformation parameter by a two-component Weyl fermion ϵα, the above Lagrangian
is invariant under

δϵψα =
√

2i (σµϵ̄)α ∂µϕ, δϵϕ =
√

2ϵψ (1.3)

To see if the supersymmetry algebra closes, on should check if the commutator of two trans-
formations, (δϵ2δϵ1 − δϵ1δϵ2), is another symmetry of the theory. For the scalar, this com-
mutator results in a spacetime derivative ∂µϕ which is indeed a symmetry corresponding to
the generator Pµ. But for the fermion, this is true only if we use the equation of motion
σ̄µ∂µψ = 0, in other words, the supersymmetry algebra in closed on-shell in this case, which
may be problematic for the symmetry to hold at quantum level. The remedy is to introduce
an auxiliary field, a complex scalar F , with a Lagrangian

LF = F̄F (1.4)

It is trivial that the equation of motion of F , is just F = 0. By construction, auxiliary fields
do not possess dynamics, and therefore they can be integrated out using their equations of
motion. Adding a term (1.4) amounts to a physically equivalent theory. Let F transform as

δϵF =
√

2iϵ̄σ̄µ∂µψ (1.5)

and modify the transformation of ψ

δϵψα =
√

2i (σµϵ̄)α ∂µϕ+
√

2ϵαF (1.6)

It follows that the total Lagrangian L + LF is still invariant under supersymmetry transfor-
mations, but now the commutator (δϵ2δϵ1 − δϵ1δϵ2) acting on any field in this theory, yields
the spacetime derivative of the same field, without the need for equations of motion. As
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a result, thanks to the auxiliary field, the supersymmetry algebra is closed off-shell. As is
stated before, in a supermultiplet we must have the same bosonic and fermionic degrees of
freedom, which holds both on shell and off shell. In this example, we have two bosonic (ϕ)
and two fermionic (ψ) degrees of freedom on shell, whereas off-shell we have four bosonic
(ϕ, F ) and four fermionic (ψ) degrees of freedom.

1.1.2 Superspace, superfields, supersymmetric Lagrangians
Superfields, first introduced by Salam and Strathdee [35], are very powerful and elegant

tools to treat supersymmetric theories. And thanks the notion of superspace, one acquires
a geometrical picture of supersymmetry transformations, where the usual spacetime coordi-
nates are supplemented by anticommuting (Grassmann) coordinates θα, with α = 1, 2. The
hermitian conjugate of θα has a dotted index, θ̄α̇, with α̇ = 1, 2. Points in superspace are
labelled by (xµ, θα, θ̄α̇). We can then define the group elements

G(x, θ, θ̄) = ei(−xµPµ+θQ+θ̄Q̄) (1.7)

The group action induces a translation on the enlarged coordinate space. Superfields are
functions of superspace, which can be seen as a Taylor expansion in the Grassmann coordi-
nates (θ, θ̄). Remarkably, due to the anticommuting property of θ, this expansion is finite,
and we have

F
(
x, θ, θ̄

)
=f(x) + θϕ(x) + θ̄χ̄(x)

+ θθm(x) + θ̄θ̄n(x) + θσµθ̄vµ(x)
+ θθθ̄λ̄(x) + θ̄θ̄θψ(x) + θθθ̄θ̄d(x)

(1.8)

Among the components, there are 16 bosonic degrees of freedom in total, and 16 fermionic
degrees of freedom. The superfield transforms as

δϵF (x, θ, θ̄) ≡
(
ϵQ+ ϵ̄Q̄

)
F

with ϵQ+ ϵ̄Q̄ = ϵα
(

∂

∂θα
− iσµ

αα̇θ̄
α̇∂µ

)
+ ϵ̄α̇

(
∂

∂θ̄α̇

+ iσ̄µα̇αθα∂µ

) (1.9)

In addition, it is easy to see that linear combination of superfields, and product of superfields,
are still superfields. The superfields are highly reducible, under constraints that are preserved
by the transformation (1.9). The reduced superfields have less components, but no new
dynamical content. To find such constraints, it is convenient to introduce the covariant
derivatives

Dα = ∂

∂θα
+ iσµ

αα̇θ̄
α̇∂µ

D̄α̇ = − ∂

∂θ̄α̇
− iθασµ

αα̇∂µ

(1.10)

satisfying the following anticommutation relations

{Dα, D̄α̇} = −2iσµ
αα̇∂µ, {Dα, Dβ} = {D̄α̇, D̄β̇} = 0 (1.11)

They also anticommute with Q and Q̄, so indeed these derivatives transform covariantly
under supersymmetry:

Dα (δF ) = δ (DαF ) , D̄α̇ (δF ) = δ
(
D̄α̇F

)
(1.12)
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The first supersymmetry-preserving constraint one can apply is simply the covariant deriva-
tive

D̄α̇Φ = 0 (1.13)

Superfields obeying this condition are called scalar superfields, or chiral superfields. The
most general solution to this equation is determined by three components, with

Φ =A(x) +
√

2θψ(x) + θθF (x)

+ iθσµθ̄∂µA(x) − i√
2
θθ∂µψ(x)σµθ̄ + 1

4θθθ̄θ̄∂
2A(x)

(1.14)

The components (A,ψ, F ) form a scalar or chiral multiplet. The fields in the Wess-Zumino
model mentioned in Section 1.1.1, consist precisely of a chiral multiplet, and actually their
supersymmetry transformations are exactly the components of (1.9). Products and linear
combinations of chiral superfields are again chiral superfields.

The second allowed constraint is a reality constraint

V = V † (1.15)

The corresponding superfields are called vector superfields (because of the presence of a
vector component) or real superfields. We write their expansion as

V (x, θ, θ̄) =C(x) + iθχ(x) − iθ̄χ̄(x)

+ i

2θθ[M(x) + iN(x)] − i

2 θ̄θ̄[M(x) − iN(x)]

− θσµθ̄vµ(x) + iθθθ̄

[
λ̄(x) + i

2 σ̄
µ∂µχ(x)

]
− iθ̄θ̄θ

[
λ(x) + i

2σ
µ∂µχ̄(x)

]
+ 1

2θθθ̄θ̄
[
D(x) + 1

2∂
2C(x)

]
.

(1.16)

where the scalars are all real. Notice that the vector superfield is invariant under the su-
pergauge transformation V → V + Φ + Φ† where Φ is a chiral superfield. There is a gauge
choice of Φ called the Wess-Zumino gauge, which eliminates C, χ, M , N , resulting in

VWZ = −θσµθ̄vµ + iθθθ̄λ̄− iθ̄θ̄θλ+ 1
2θθθ̄θ̄D (1.17)

This gauge breaks linear supersymmetry, but preserves the gauge invariance of the vector
component vµ → vµ + ∂µΛ. One can view this as a partial supergauge fixing. One may also
attach an extra spacetime index to the real superfield V → Vm, so in components, instead of
a vector (spinor) we will have a rank-2 tensor (vector-spinor). This superfield will be crucial
to construct spin-2 and spin-3/2 theories in Chapter 2.

We have already seen in Φ and V necessary ingredients for any theory containing scalars,
spinors, or vectors. In fact, the superfields allow to construct supersymmetric Lagrangians in
a rather simple way. The approach is essentially looking for components of some superfield
combinations, that transform under supersymmetry as a total derivative. This component is
then a piece of the Lagrangian, because the supersymmetry transformation of the Lagrangian
gives zero up to a total derivative, that we drop. To begin with, the θθθ̄θ̄ component of a
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superfield always transforms as a total derivative, as can be inferred from the component
expansion of (1.9). For chiral superfields, the kinetic terms and the auxiliary mass term
arise from the θθθ̄θ̄ component of Φ†Φ

LK = Φ†
jΦj

∣∣∣
θθθ̄θ̄

= − iψ̄j σ̄
µ∂µψj + Āj∂

2Aj + F̄jFj

(1.18)

For j = 1, we recover the Wess-Zumino model in Section 1.1.1.
Moreover, note that the θθ component of Φ transforms as a total derivative, given by

(1.5). This property also holds for Φn, n > 1. Then one proposes the following renormalizable
Lagrangian describing masses and interactions along with linear terms:

LI =
(1

2mijΦiΦj + 1
3gijkΦiΦjΦk + λiΦi

)∣∣∣∣
θθ

+ h.c. (1.19)

The complex scalars Fj are always auxiliary fields. Integrating them out, we obtain finally
the general renormalizable supersymmetric Lagrangian of chiral multiplets:

L = − iψ̄j σ̄
µ∂µψj + Āj∂

2Aj − 1
2mjkψjψk − 1

2m
∗
jkψ̄jψ̄k

− gijkψiψjAk − g∗
ijkψ̄iψ̄jĀk − V (Ai, Āj)

(1.20)

The last line contains Yukawa couplings and the scalar potential. For the expression of
the scalar potential, it is convenient to introduce the superpotential, which is a holomorphic
function corresponding to the piece in parentheses in (1.19):

W (x) = 1
2mijxixj + 1

3gijkxixjxk + λixi (1.21)

and the scalar potential takes the form

V (Ai, Āj) =
∑

i

F̄iFi =
∑

i

∣∣∣∣∂W (A)
∂Ai

∣∣∣∣2 (1.22)

Now let us turn to the Lagrangian of vector superfields, which is expected to describe
gauge theories. Contrary to the previous case, the kinetic terms of the vector field vm and
the spinor λ cannot be extracted from the θθθ̄θ̄ component, and in fact they will not arise
from any V n, n > 1. A natural way to introduce spacetime derivative is to act the covariant
derivatives Dα and D̄α̇ on vector superfields. More concretely, one defines

Wα = −1
4D̄D̄DαV, W̄α̇ = −1

4DDD̄α̇V (1.23)

They are chiral superfields (dressed with a spinor index), due the properties D3 = D̄3 = 0,
and are also supergauge invariant under V → V + Φ + Φ†. As before, a supersymmetric
Lagrangian can be obtained from the θθ component of products of Wα, W̄α̇:

L = 1
4
(

WαWα|θθ + W̄α̇W̄ α̇
∣∣∣
θθ

)
(1.24)
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To see what terms this Lagrangian gives rise to, it is more clear to fix the Wess-Zumino
gauge, using the expression (1.17). We find

L = 1
2D

2 − 1
4v

mnvmn − iλσµ∂µλ̄ (1.25)

where vmn = ∂mvn − ∂nvm. Indeed, we recover the kinetic terms of vm and λ. Besides, an
additional V 2∣∣

θθθ̄θ̄ complements (1.24) with a mass term of vm and kinetic terms for χ,C.
In total, the supersymmetric Lagrangian of a vector superfield

L = 1
4
(

WαWα|θθ + W̄α̇W̄ α̇
∣∣∣
θθ

)
+ V 2

∣∣∣
θθθ̄θ̄

(1.26)

describes a vector multiplet: one vector field (vm), two spin-1/2 fields (χ, λ), and one scalar
field (C). Finally, note that the θθθ̄θ̄ component of V itself is both supersymmetry and
supergauge invariant, thus one may add to (1.26) the Fayet-Iliopoulos term:

LFI = −2κ V |θθθ̄θ̄ = −κD (1.27)

where we dropped the total derivative. This term plays an important role in spontaneous
supersymmetry breaking.

Before ending this subsection, we briefly discuss supersymmetric gauge theories, and elab-
orate the theory of interacting chiral superfields Φi that transform under the representation
R of a gauge group G. Starting from the global symmetry, the chiral superfields transform
according to

Φi →
[
eiΛa(T a)

]i
jΦj or δΦi = iΛa (T a)i

jΦj (1.28)

where T a are the generators of the representation. The parameters Λa are real constants,
hence chiral superfields obeying (1.13). The kinetic term of the Lagrangian Φ†

jΦj

∣∣∣
θθθ̄θ̄

is obviously invariant under the supergauge transformation, as for the interacting terms,
W (Φ)|θθ + h.c., the supergauge invariance imposes constraints on the superpotential.

Going to local supergauge symmetries, scalar superfields will not suffice, and it is nec-
essary to introduce a vector superfield. The reason is that the gauge parameters Λ(x) are
no longer constant chiral superfields, and the kinetic term loses supergauge invariance. The
invariance can be restored by vector superfields Va belonging to the adjoint representation
of G

V = V aT a (1.29)

transforming as
eV → eiΛ†

eV e−iΛ (1.30)

To the first order, δV = −i(Λ − Λ†) and we recognize the previously encountered transfor-
mation V → V + Φ + Φ† with Φ = −iΛ. Higher orders can be evaluated by Hausdorff’s
formula. The kinetic term is modified so that it stays invariant

LK = Φ†eV Φ
∣∣∣
θθθ̄θ̄

(1.31)

The form of the superpotential W (Φ) is always subject to the requirement of supergauge
invariance. Turning our attention to the vector superfield, we know that its Lagrangian is
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determined by the chiral superfields Wα, W̄α̇ defined in (1.23). Now, these superfields are
not supergauge invariant anymore, neither are the subsequent kinetic terms, and one shall
use a new definition

Wα = −1
4D̄D̄e

−V Dαe
V , W̄α̇ = −1

4DDe
−V D̄α̇e

V (1.32)

with transformations
Wα → eiΛWαe

−iΛ, W̄α̇ → eiΛW̄α̇e
−iΛ (1.33)

Analogous to the ordinary Yang-Mills theory, the kinetic term will be a trace of WαWα.
Finally, the full supersymmetric Lagrangian is

L = 1
4kTr

(
WαWα|θθ + W̄α̇W̄ α̇

∣∣∣
θ̄θ̄

)
+ Φ†eV Φ

∣∣∣
θθθ̄θ̄

+ [W (Φ)|θθ + h.c.] (1.34)

where k is a normalization factor to be determined later. The superpotential shall satisfy
supergauge invariance.

In the presence of abelian U(1) factors in the gauge group, the transformation law of
the corresponding vector superfields is δVA = −i(Λ − Λ†), thus the θθθ̄θ̄ component of V a

A is
supergauge invariant. We also know that it is supersymmetry invariant as it transforms as
a total derivative. In this case, we can add to (1.34) the Fayet-Iliopoulos terms:

LFI =
∑

a

−2κa V a
A |θθθ̄θ̄ =

∑
a

−κaDa
A (1.35)

One may use again the Wess-Zumino gauge to expand (1.34) for a simple and explicit form
of the component Lagrangian. One expects to recover a Lagrangian describing chiral mul-
tiplets (Ai, ψi, Fi) charged under the gauge group, along with vector multiplets (va

m, λ
a, Da)

where va
m are the gauge bosons and λa their superpartners, the gauginos. The integration of

the auxiliary Fi and Da yields for the scalar potential, F -terms and D-terms respectively.
To summarize, ignoring for the moment LFI, the scalar potential is:

V
(
Ai, Āj

)
=
∑

i

∣∣∣∣dWdAi

∣∣∣∣2 + 1
2
∑

a

g2
(
ĀiT

ai
j A

j
)2

=
∑

i

∣∣∣F i
∣∣∣2 + 1

2
∑

a

(Da)2
(1.36)

where g is the gauge coupling. Clearly, the scalar potential is positive or zero. According to
(1.20), the Yukawa Lagrangian can be expressed in terms of the superpotential as

LYuk = −1
2
d2W (Ak)
dAidAj

(ψiψj) + h.c. (1.37)

We also have gauge invariant interactions between the chiral fermion ψi, the scalars Ai and
the gauginos λa:

Lint =
√

2ig
(
ψ̄iλ̄

a
)
T ai

jA
j + h.c. (1.38)
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1.1.3 Supersymmetry breaking
For applications in real world, supersymmetry must be broken. As is evidenced by (1.36),

the scalar potential has a global minimum V = 0 when〈
F i
〉

= ⟨Da⟩ = 0 ⇔
〈
dW

dAi

〉
= ⟨Da⟩ = 0 (1.39)

has a solution. Any other vacuum with
〈
F i
〉

̸= 0 or ⟨Da⟩ ≠ 0 breaks supersymmetry. The
vacuum expectation values ⟨Ai⟩ satisfy the minimum conditions

dV

dAi
= F j d2W

dAidAj
− gDa

(
Āj (T a)j

i

)
= 0 (1.40)

In addition, the superpotential must be gauge invariant, namely,

Āj (T a)j
iF

i = i
dW̄ (Āi)
dĀi

δaĀi = 0 (1.41)

(1.40) together with (1.41) can be put in a matrix form:

(
F i Da

)( d2W
dAidAj −gĀj (T a)j

i

−gĀj (T a)i
j 0

)
=
(
0 0

)
(1.42)

Interestingly, the 2 × 2 matrix above coincides with the mass matrix of the fermions (ψ, λ),
from the Lagrangians (1.37)-(1.38):

LYuk + Lint = −1
2
(
ψi

√
2iλb

) d2W
dAidAj −gĀj (T a)j

i

−gĀj

(
T b
)i

j 0

( ψj
√

2iλa

)
(1.43)

Hence if a vacuum breaks supersymmetry, with
〈
F i
〉

̸= 0 or ⟨Da⟩ ≠ 0, then the 2 × 2 matrix
has a zero eigenvalue. In other words, there exists a massless fermion:

υ = ⟨Fi⟩ψi − i√
2
g ⟨Da⟩λa (1.44)

This is the supersymmetric version of the Goldstone theorem: spontaneous supersym-
metry breaking gives rise to a massless Goldstone fermion υ, also called a Goldstino. When
every vacuum state possesses a positive energy, it indicates that the supersymmetric gauge
theory has undergone spontaneous symmetry breaking. Such scenario can be achieved by an
appropriate choice of the superpotential W or the D-term Da, more concretely, there exist
two realizations, constructed respectively by O’Raifeartaigh [36] and Fayet, Iliopoulos [37,
38]. We review below the two mechanisms of spontaneous supersymmetry breaking.

The O’Raifeartaigh mechanism or the F -term breaking consists in specific choices of a
superpotential W and three chiral multiplets Φi , i = 0, 1, 2, such that there is no solution
to dW

dAi = 0. One of the possibilities is to pick the superpotential

W = λΦ0 +mΦ1Φ2 + gΦ0Φ2
1 (1.45)
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The linear term implies that Φ0 must be a gauge singlet. In fact, this linear term is necessary
for F -term breaking at tree-level in a cubic polynomial superpotential. The scalar potential
is

V (A0, A1, A2) =
∣∣∣λ+ gA2

1

∣∣∣2 + |mA2 + 2gA0A1|2 + |mA1|2 + 1
2
∑

a

(Da)2 (1.46)

Assume that Da = 0 has a solution. We also suppose m2 > 2λg and all parameters are
real, the minimum of (1.46) then corresponds to A1 = A2 = 0, independent of A0, and the
vacuum energy at this point is V = λ2 > 0. Thus supersymmetry is spontaneously broken.

The Fayet-Iliopoulos mechanism or the D-term breaking may occur when the gauge
group includes at least one abelian U(1) factor. As is mentioned in the previous subsection,
in this case the θθθ̄θ̄ component of a vector superfield is both supersymmetry and supergauge
invariant. The additional Fayet-Iliopoulos terms (1.35) would force the D-term to acquire a
non-zero vacuum expectation value. To see this, let us consider a simple model with U(1)-
charged scalar fields. The superpotential is W = 1

2miΦ2
i and the charge of Ai is given by qi.

This configuration results in the following scalar potential

V =
∑

i

|mi|2|Ai|2 + 1
2

(
κ− g

∑
i

qi|Ai|2
)2

(1.47)

This potential never vanishes for κ ̸= 0, therefore supersymmetry is spontaneously broken.

In realistic models that incorporate the SM, one oftentimes introduces soft terms that
explicitly break supersymmetry while preserving some of its desirable properties. These
terms do not add quadratic divergences to the Higgs mass, and allow to obtain superparticles
that are heavier than their SM partners. The values of the soft-breaking parameters are a
priori not predicted by any fundamental theories, and are subject to theoretical as well as
experimental constraints. They can be viewed as a low energy effect due to an unknown
spontaneous breaking at a higher scale.

1.1.4 R-symmetries
We briefly mention in this last subsection the R-symmetries, that are relevant for the

introduction of Dirac gaugino models in Chapter 5. In N = 1 supersymmetry that we are
focusing on, the R-symmetry is associated with a global U(1)R transformation rotating the
Grassmann coordinates:

θ → eiαθ, θ̄ → e−iαθ̄ (1.48)

where θ, θ̄ are said to carry R-charges +1, −1. For a theory invariant under R-symmetry,
the superfield carrying rS R-charge will transform as

S
(
x, θ, θ̄

)
→ eirSαS

(
x, e−iαθ, eiαθ̄

)
(1.49)

R-symmetry does not commute with the supersymmetry generator and therefore different
components in the superfield can have different R-charges. For a chiral superfield in the form
(1.14) with R-charge rΦ, the R-charges of the components A (complex scalar), ψ (chiral
fermion), F (auxiliary scalar) are then rΦ, rΦ −1, rΦ −2. The vector superfield, on the other
hand, carries no R-charge due to its reality. In the Wess-Zumino gauge (1.17), we infer the
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R-charges of vµ (vector boson), λ (gaugino), D (auxiliary scalar), that are 0, +1, 0. If a
theory is to be R-symmetric, then necessarily the R-charge of the superpotential is +2, as
can be observed from (1.19). This requirement is not automatically satisfied: for a general
renormalizable superpotential

W (Φ) = 1
2mijΦiΦj + 1

3gijkΦiΦjΦk + λiΦi, (1.50)

only one of three terms can stay, if the total R-charge of W is equal to +2. R-symmetry is not
necessary for a Lagrangian to be consistent, and can be violated in many situations. However,
it is particularly significant for supersymmetry breaking. In fact, the Nelson-Seiberg theorem
[39] states that in the case of spontaneous supersymmetry breaking by a non-zero F -term,
with a generic superpotential, then the theory must have an exact R-symmetry that remains
unbroken. In the simple example of the O’Raifeartaigh mechanism, Eq. (1.45), we find the
charge assignments:

rΦ0 = +2, rΦ1 = 0, rΦ2 = +2 (1.51)
for the superpotential to possess an R-charge +2. Besides, R-symmetry cannot be sponta-
neously broken at electroweak scale because otherwise it would lead to a massless “R-axion”
that is experimentally problematic. Consequently, R-symmetry is either conserved or explic-
itly broken.

1.2 Supergravity

1.2.1 Local supersymmetry
The previous section covers global supersymmetry where the transformation parameter

ϵ is constant. While global supersymmetry is a mathematically consistent theory, it is
incompatible with gravity because the latter requires diffeomorphism invariance, which will
be broken by a constant spinorial parameter ϵ. From another perspective, if supersymmetry
is to be promoted to a local symmetry, then it must couple to gravity. This fact can be
observed through the example of the massless free Wess-Zumino model:

L = −∂µϕ̄∂µϕ− iψ̄σ̄µ∂µψ (1.52)

We have seen in the previous section that this Lagrangian is invariant under global super-
symmetry transformations (1.3), but when the parameter ϵ becomes spacetime-dependent,
ϵ → ϵ(x), the transformations leave residual terms

δϵL = (∂µϵ̄) jµ
L + (∂µϵ) jµ

R, jµ
L =

√
2∂νϕσ̄

νσµψ̄, jµ
R =

√
2∂ν ϕ̄σ

ν σ̄µψ (1.53)

The super-Noether current jµ = jµ
L + jµ

R is a conserved current, namely ∂µjµ = 0 if one
uses the equations of motion. In order to cancel the residual terms in δϵL, we shall introduce
a gauge field that, same as jµ, behaves as a vector-spinor. Denoting this gauge field as χµ,
we have

δϵχµ = MP∂µϵ (1.54)
where the factor MP is added to ensure the correct mass dimension. The Neother’s method
then indicates the addition of a new piece to the Lagrangian

L′ = − 1
MP

(χ̄µj
µ
L + χµj

µ
R) (1.55)
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The variation of L′ cancels δϵL, but gives rise to the variation of the currents jµ
L, jµ

R that is
in general non-vanishing. By calculating the terms bilinear in ϕ and ψ one recovers precisely
their energy momentum tensors contracted with χµ, namely, these terms take the form

δϵ
(
L + L′) = − 1

MP
(χ̄µδϵj

µ
L + χµδϵj

µ
R)

∼ 1
MP

ϵ̄γµχνT
µν + · · ·

(1.56)

which suggests adding a new symmetric rank-2 field gµν that transforms as

δgµν ∼ 1
MP

ϵ̄σ̄(µχν) (1.57)

and modifying the Lagrangian with an extra piece so as to cancel (1.56)

L′′ ∼ −gµνT
µν (1.58)

The only candidate that can couple to the energy momentum tensor is the dynami-
cal spacetime metric. Therefore, we have an overview of the necessity of gravity, i.e. the
introduction of the spin-2 graviton and its spin-3/2 superpartner gravitino2, sitting in a su-
pergravity multiplet, when promoting supersymmetry to a local symmetry. This is actually
not limited to the Wess-Zumino model discussed here, and holds in general cases.

1.2.2 Minimal supergravity
We now come to the minimal N = 1 supersymmetric extenstion of General Relativity in

four dimensions, which involves one supergravity multiplet in absence of matter multiplet.
This form allows for various extensions, such as in different dimensions or with extended
supersymmetry or coupling to matter multiplets. The minimal content is the curvature
tensor, and a gravitino ψµ which is a necessary ingredient to render supersymmetry local,
so the basic approach is to start from the Einstein-Hilbert action along with a curved-space
Rarita-Schwinger action describing a massless gravitino:

S =
∫
d4x (LEH + LRS)

∫
d4x

√
−g

(
M2

P

2 R− 1
2 ψ̄µγ

µνρDνψρ

)
(1.59)

From now on, we adopt the four-component notation for the fermions. The Lorentz covariant
derivative of a fermion field is given by Dµψ = ∂µψ + 1

4ωµ
abγ̄abψ and the curved-space γ

matrices are related to the flat-space ones (γ̄’s) through γµ ≡ ea
µγ̄a where ea

µ denotes the
frame field (vierbein) describing the graviton. The spin connection is introduced through
the action of the full covariant derivative on the vierbein: ∇µea = ωµ

b
aeb, with ea ≡ eµ

a∂µ.
Imposing furthermore that the spin connection preserve the metric tensor and be torsion-
free, ωab

µ can be expressed in terms of ea
µ. We will encounter again these definitions in

Section 3.2. Strictly speaking, as we are coupling the fermion to gravity, the full covariant
derivative ∇ should also contain the Christoffel symbol Γ, but in the above action it appears
only in an antisymmetrized form Γσ

[νρ] = 0, and therefore does not contribute:

∇[νψρ] = ∂[νψρ] + 1
4ω

ab
[ν γabψρ] − Γσ

[νρ]ψσ = D[νψρ] (1.60)

2We will give more technical details about the gravitino in Chapters 2 and 3.

23



The next step is to supersymmetrize (1.59), keeping the assumption that the gravitino is
the gauge field of supersymmetry, as is suggested by the example of the Wess-Zumino model.
A reasonable guess for the gauge transformation is to covariantize (1.54):

δϵψµ = MPDµϵ = MP

(
∂µ + 1

4ω
ab
µ γ̄ab

)
ϵ (1.61)

In accordance with the four-component notation, ϵ and ψµ are now Majorana spinors. As
for the gauge transformation of the vierbein, one may either draw inspiration from (1.57),
or derive it from the transformation law of the gravitino, by cancelling the terms in δϵS
generated by δϵψµ. We give directly the result

δϵe
a
µ = 1

2MP
ϵ̄γ̄aψµ (1.62)

At this point, the action is not yet invariant, because the variation of the spin connection
δϵω

ab
µ also contributes. Demanding that the residual terms in δϵS vanish results in multiple

possibilities, and δϵω
ab
µ depends on the formalism one chooses. Two different solutions have

been derived by Deser, Zumino [40]:

δωbc
µ = Bbc

µ − 1
2e

c
µB

be
e + 1

2e
b
µB

ce
e , (1.63)

with
Bbc

µ = i

2MP
ϵ̄γµγ5Dρψσϵ

ρσbc, (1.64)

and by Ferrara, Freedman, van Nieuwenhuizen [41]:

δω̂ab
µ = 1

MP
ϵ̄γρ (Dσψτ )

(
2e[a

ρ e
b]
τ gµσ − e[a

τ e
b]
σ gµρ

)
, (1.65)

where ωab
µ = ω̂ab

µ (e, ψ) is the solution to Dea = ψ̄ ∧ γ̄aψ/(4M2
P ).

We have had a glimpse on the minimal N = 1, D = 4 supergravity with only one super-
gravity multiplet (ea

µ, ψµ), constructed around a Minkowski background ηab ∼ (−1, 1, 1, 1).
In GR, one can add to the Einstein-Hilbert action a cosmological constant term

S =
∫
d4x

√
−g

(
M2

P

2 R−M2
P Λ
)

(1.66)

and according to the sign of Λ, one defines the de Sitter (dS) vacua (Λ > 0), as well as
the anti-de Sitter (AdS) vacua (Λ < 0). An important question is then whether the above
action can be supersymmetrized as before, which is equivalent to finding a supergroup that
incorporates the symmetry group of dS or AdS spacetime. In the pure supergravity theory
that we are discussing, it is established that only the AdS group can be consistently extended
to a supergroup, and a positive cosmological constant always breaks supersymmetry. The
vierbein still transforms as Eq. (1.62), whereas the transformation rule of the gravitino is
shifted by a term proportional to γ:

δψµ = MPDµϵ− g

2M
2
Pγµϵ (1.67)
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The supersymmetry invariant action of a supergravity multiplet in AdS is written as

SAdS =
∫
d4x

√
−g

(
M2

P

2 R −M2
P Λ − 1

2 ψ̄µRγ
µνρDνψρL − 1

2 ψ̄µLγ
µνρDνψρR

−MP
g

2 ψ̄µRγ
µνψνR −MP

g∗

2 ψ̄µLγ
µνψνL

) (1.68)

where Λ = −3M2
P |g|2 < 0 and recall that g is the determinant of the metric gµν . The

factor √
−g in the action can also be replaced by the determinant of the vierbein e = √

−g.
Remarkably, in the supergravity multiplet, we now have a massless graviton and a “massive”
gravitino while preserving supersymmetry. In fact, the statement in the previous section that
all particles in the same multiplet should have degenerate mass, does not always hold in a
curved spacetime, where extra mass-like terms may appear. In reality, the concrete definition
of “mass” in AdS is subtle and needs much more careful treatments, which is not of our focus
here.

1.2.3 Matter couplings and scalar potential
In order to describe matter and Yang-Mills interactions, we must couple the supergravity

multiplet to chiral multiplets or vector multiplets. While a primitive sketch of chiral multiplet
coupling was drawn in Section 1.2.1, with the simplest Wess-Zumino model, the discussion
shall be extended.

To this end, let us momentarily return to global supersymmetry, and add some material
that has not been covered in Section 1.1. Consider a Wess-Zumino model with nC chiral
multiplets (ϕm, χm), where χm are Majorana fermions and m = 1, ..., nC . In fact, just as
in non-linear σ-models, the kinetic terms of the complex scalars can be non-minimal. In
general cases, they are derived from a real function, called the Kähler potential K(ϕ, ϕ̄):

L ⊃ −gmn̄

[
∂µϕ

m∂µϕn̄ + χ̄m
L /Dχn̄

R + χ̄n̄
R /Dχm

L

]
, with gmn̄ = ∂m∂n̄K(ϕ, ϕ̄) (1.69)

where the barred indices represent the complex conjugate of ϕ, or the right-handed part of
the fermion, namely:

ϕn̄ ≡ ϕ̄n, ∂m ≡ ∂

∂ϕm
, ∂n̄ ≡ ∂

∂ϕn̄

χm̄
R ≡ PRχ

m, χm
L ≡ PLχ

m
(1.70)

Note that the {mn}, {m̄n̄} components of the Kähler metric gmn̄ are vanishing. The co-
variant derivative D acting on the scalars trivially reduces to a partial derivative, while its
action on the fermion is given by

Dµχ
n̄
R ≡ ∂µχ

n̄
R +

(
∂µϕ

m̄
)

Γn̄
m̄l̄
χl̄

R, Dµχ
n
L ≡ ∂µχ

n
L + (∂µϕ

m) Γn
mlχ

l
L (1.71)

with Γ the Christoffel symbol related to gmn̄. It is useful to note that the Kähler potential
is invariant upon adding the real part of a holomorphic function:

K
(
ϕn, ϕn̄

)
→ K

(
ϕn, ϕn̄

)
+ h (ϕn) + h∗

(
ϕn̄
)

(1.72)

The scalar potential, the Yukawa Lagrangian, and the supersymmetry transformations
that we presented in Section 1.1.2 are deformed by gmn̄ correspondingly.
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Next, we couple nV vector multiplets
(
AI

µ, λ
I
)
, I = 1, ..., nV , to the chiral multiplets

above. The non-minimal kinetic terms of the vector multiplets are encoded in a set of
holomorphic functions fIJ(ϕm), called the gauge kinetic function:

L ⊃ Re (fIJ(ϕm))
[
−1

4F
I
µνF

µνJ − 1
2 λ̄

I /̂∂λJ
]

(1.73)

where F I
µν are the field strengths of the gauge bosons, and ∂̂ represents some suitable gauge

covariant derivative. To guarantee the correct sign of the kinetic terms, gmn̄ and Re (fIJ)
must be positive definite.

Both in global and local supersymmetry, the most general action of nC chiral multiplets
coupled to nV vector multiplets is determined by the following input data:

1. The Kähler potential K and the gauge kinetic function fIJ , related to the kinetic terms
of the chiral and vector multiplets.

2. The holomorphic superpotential W . It contributes the scalar potential, the Yukawa
Lagrangian and the fermion mass terms.

3. The gauge group and the representation under which the chiral multiplet transforms.

4. The Fayet-Iliopoulos terms in the presence of Abelian gauge groups.

The full supergravity Lagrangian for arbitrary number of chiral and vector multiplets is
rather tedious and can be found, e.g., in [30], Section 18. We will instead focus on the scalar
potential:

V = e
K

M2
P gmn̄DmWDn̄W̄ − 3e

K
M2

P
|W |2

M2
P

+ 1
2RefIJD

IDJ (1.74)

where the Kähler-covariant derivative acting on the superpotential is defined as

DmW ≡
[
∂m + (∂mK)

M2
P

]
W (1.75)

For ⟨W ⟩ ≠ 0, (1.74) can be put in a simpler form by introducing a function G that is left
invariant under the transformation (1.72):

G ≡ K +M2
P log

(
|W |2/M6

P

)
,

with Gm ≡ ∂mG = M2
P

DmW

W
, Gmn̄ ≡ ∂m∂n̄G = gmn̄

(1.76)

so that the scalar potential becomes

V = e
G

M2
P

(
M2

P Gmn̄GmGn̄ − 3M4
P

)
+ 1

2RefIJD
IDJ (1.77)

The first and third terms correspond to the F - and D- terms that are also present in global
supersymmetry. The D-term takes the same form in global and local supersymmetry, but
one of the differences is that, in global supersymmetry, the D-term is independent of the
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superpotential W . In the local case, these two are related, and the D-term can be expressed
in terms of the Kähler invariant function G (for ⟨W ⟩ ≠ 0):

DI = i (Ref)−1IJ ξ(ϕn)m
J Gm (1.78)

where ξ(ϕn)m
J is a holomorphic Killing vector relevant to the Kähler manifold.

The second term in (1.77)3 is new in local supersymmetry, which endows supergravity
with a crucial property – the scalar potential can also be negative. The earlier statement in
global supersymmetry that supersymmetry-preserving vacua always have zero energy, needs
to be rectified. The order parameter of the supersymmetry breaking is vev of fermionic
transformations, in other words, supersymmetry is preserved if and only if ⟨δψµ⟩ = ⟨δχm⟩ =〈
δλI

〉
= 0, with m = 1, ..., nC and I = 1, ..., nV . In supergravity, this condition translates

into:

1. ⟨DmW ⟩ = 0

2.
〈
DI
〉

= 0

They are equivalent to (1.39) in global supersymmetry. In supergravity, however, these two
conditions are not independent: when ⟨W ⟩ ≠ 0, according to (1.78), the first condition
implies the second one. The supersymmetry vacua satisfy

⟨V ⟩ = −3
〈
e

K
M2

P
|W |2

M2
P

〉
≤ 0 (1.79)

We see another remarkable difference with regard to global supersymmetry. In supergravity,
the supersymmetric vacua are always negative semi-definite, and conversely, vanishing or
negative vacua does not necessarily mean that supersymmetry is unbroken. A supersym-
metric vacuum has zero energy if and only if ⟨W ⟩ =

〈
DI
〉

= 0. Besides, note that a direct
consequence of (1.78) is that, pure D-term breaking occurs only when ⟨W ⟩ = 0.

Finally, the negative contribution to the scalar potential is also significant in cosmolog-
ical applications, because a positive vev of the scalar potential corresponds to a positive
cosmological constant, and most models encounter the problem of a cosmological constant
that is way too large. In supergravity, this negative term comes to compensate the positive
part, and eventually may result in a sufficiently small but positive cosmological constant,
compatible with realistic scenarios.

1.2.4 Super-Higgs mechanism
In Section 1.1.3 we reviewed the basic aspects of supersymmetry breaking, which features

the appearance of a massless Goldstone fermion – the Goldstino. If global supersymmetry
were to hold in nature at some UV scale, it is puzzling that the Goldstino signaling the
spontaneous breaking has not been observed yet. Supergravity provides an elegant answer
to this question, because supersymmetry is now a gauge symmetry. In gauge theories that we
are familiar with, the gauge bosons aqcuire masses (viz. the helicity 0 mode) by absorbing the

3Conventionally, the “F -term” in supergravity is the sum of the first and the second terms.
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Goldstone boson, through the Higgs mechanism. Analogously in supergravity, the gauge field
gravitino will also become massive (viz. obtain helicities ±1/2) by eating up the Goldstino.
This is the super-Higgs mechanism [42–44], that will be discussed next.

In global supersymmetry, we have derived the Goldstino expression (1.44) in terms of the
chiral fermions and gauginos in the theory. In supergravity, one can find a generalization of
this expression

υL = MP
DmW

W
χm

L + e−K/(2M2
P )MP

W

i

2λ
I
LPI (1.80)

where PI ≡ Re (fIJ)DJ . The Goldstino-gravitino mixing originates from the gravitino
couplings to all other fermions in the supergravity Lagrangian:

e−1Lmix = 1
MP

ψ̄µRγ
µ
(
i

2λ
I
LPI + χm

L e
K/(2M2

P )DmW

)
+ h.c. (1.81)

The Goldstino transformation demonstrates a shift symmetry δυL ∝ ϵL + · · · , much like
the Goldstone boson in conventional gauge theories. As a result, a field redefinition can be
worked out to achieve the unitary gauge υ = 0, which eliminates the Goldstino. This field
redefinition will result in new terms in the Lagrangian, including the gravitino mass term,
which takes on the standard Rarita-Schwinger form. In Minkowski spacetime, this term
corresponds to the physical mass of the gravitino, and this is how the gravitino acquires
mass in the super-Higgs mechanism. The detailed calculation for the general case can be
found in [45]. Here, we will show a simplified scenario with chiral multiplets only, and
constant scalars (namely, their derivative vanishes). A further simplification is to consider
Minkowski vacua, where the definition of the “mass” is unambiguous. Starting from the
scalar potential:

V = e
G

M2
P

(
M2

P g
mn̄GmGn̄ − 3M4

P

)
(1.82)

A Minkowski vacuum V = 0 clearly breaks supersymmetry. It implies:

gmn̄GmGn̄ − 3M2
P = 0 (1.83)

and the minimum condition is then:

∂mV |V =0 = e
G

M2
P M2

P [GnDmGn + Gm] = 0 ⇒ Gn (DmGn) = −Gm (1.84)

In this case, the fermionic Lagrangian takes the form

e−1LF = − 1
2 ψ̄µγ

µνρ∂νψρ − gmn̄

[
χ̄m

L /∂χ
n̄
R + χ̄n̄

R /∂χ
m
L

]
+
[
−Mmnχ̄

m
L χ

n
L + 2S

M2
P

ψ̄µRγ
µχm

L Gm + S

MP
ψ̄µRγ

µνψνR + h.c.
] (1.85)

with
Mmn = eK/(2M2

P ) (DmDnW ) , S ≡ 1
2MP

eK/(2M2
P )W (1.86)

Now we are going to look for a fermionic state corresponding to the Goldstino. In
global supersymmetry in absence of D-terms, the Goldstino is a linear combination of chiral
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fermions, lying in the direction of F -term breaking. The situation is similar here, as can be
seen in the supersymmetry transformations of the fermions:

δψµL = MP∂µϵL + SγµϵR, δχm
L = − S̄

MP
GmϵL (1.87)

One easily deduces the Goldstino expression:

υL = Gmχ
m
L√

GnGn
= Gmχ

m
L√

3MP

(1.88)

where we used (1.83) in the second equality. Its variation gives

δυL = Gmδχ
m
L√

3MP

= −
√

3S̄ϵL (1.89)

By a redefinition
χm

L → χ′m
L + Gm

√
3MP

υL (1.90)

analogously for υR, the new chiral fermions are then invariant under supersymmetry: δχ′m =
0. Consequently, the fermionic Lagrangian becomes

e−1LF = − 1
2 ψ̄µγ

µνρ∂νψρ −
[
ῡL/∂υR + ῡR /∂υL

]
− gmn̄

[
χ̄′m

L /∂χn̄′
R + χ̄n̄′

R /∂χ
′m
L

]
+
[
− 4S
MP

ῡLυL + 2
√

3S
MP

ψ̄µRγ
µυL + S

MP
ψ̄µRγ

µνψνR + h.c.
]

−
[
Mmnχ̄L

′mχ′n
L + h.c.

]
(1.91)

In absence of gravitino, as is the case of global supersymmetry, the redefinition (1.89)
simply decouples the Goldstino from the chiral fermions, leaving the Goldstino as a physical
massless fermion. Here, the introduction of the gravitino allows for an additional redefinition:

ψµ
L → ψ′µ

L − 1√
3S̄
∂µυL − 1√

3
γµυR (1.92)

analogously for ψµ
R. This redefinition sets the gravitino transformation to zero: δψ′µ = 0.

After this step, we have fixed the unitary gauge υ = 0, and the Goldstino is completely
eliminated from the Lagrangian:

e−1LF = − 1
2 ψ̄

′
µγ

µνρ∂νψ
′
ρ − gmn̄

[
χ̄′m

L /∂χn̄′
R + χ̄n̄′

R /∂χ
′m
L

]
+
[
S

MP
ψ̄′

µRγ
µνψ′

νR + h.c.
]

−
[
Mmnχ̄L

′mχ′n
L + h.c.

] (1.93)

We immediately recognize the Rarita-Schwinger Lagrangian for the gravitino, and read off
its mass

m3/2 = 2S
MP

(1.94)
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Chapter 2

Charged massive spin-3/2 and spin-2

An important example of non-trivial background in field theories is the electromagnetic
field, where acausality is known to persist for charged higher spins. For spins lower than
3/2, the minimal coupling ∂ → D ≡ ∂ − iA gives the correct theory, but this replacement
results in pathologies once the spin goes higher. This is the Velo-Zwanziger problem. Many
attempts have been made in the past, in the search for a consistent charged massive higher
spin Lagrangian, but even in the simplest cases of spin-3/2 and spin-2, finding a Lagrangian
turns out to be a highly challenging task. In this Chapter based on [46–48], we will address
this issue for spin-3/2 and spin-2, exploring a recent result of superstring theory [13] where
a consistent superspace action for charged massive spin-3/2 and spin-2, coupled to lower
spins, was obtained. We will expand and simplify this action, so as to derive a Lagrangian
involving these higher spin states along with lower spins. In addition, we will find the
decoupled equations of motion and constraints for charged massive spin-3/2 and spin-2 that
are free of pathologies.

In this Chapter, the terminology higher spin signifies spin higher than 1, i.e. higher than
the spins of all observed elementary particles. Besides, we will be focusing exclusively on
the massive case. We will be working in the Minkowski space, with the metric convention
η ∼ (−,+,+, · · · ). Different from the previous Chapter, Latin letters are used as spacetime
indices.

2.1 Free massive higher spins: a well-established theory

2.1.1 Dirac, Rarita-Schwinger, and Fierz-Pauli
It is a well-known fact in QFT that irreducible unitary representations of the Poincaré

group can be classified by their spin (integer or half-integer) and their mass [1, 49]. In par-
ticular, the observed elementary particles consist of those in the Standard Model, including
spin-1/2 quarks and leptons, spin-1 gauge bosons, as well as spin-0 Higgs boson1. The La-
grangians of free spin s ≤ 1 fields, massive or massless, can be found in a large amount of
literature. The massive spin-1/2 is described by the Dirac Lagrangian:

L1/2 = ψ̄ /∂ψ − iMψ̄ψ (2.1)
1We are not raising the question of whether they are truly elementary. Relevant investigations exist, which

are not the focus of this manuscript.
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And we have the Proca Lagrangian for the massive spin-1:

L1 = −1
4F

mnFmn − 1
2M

2V mVm, with Fmn ≡ ∂mVn − ∂nVm (2.2)

Taking the variation with regard to Vm, one obtains

δL1
δV m

= ∂2Vm − ∂m∂nV
n −M2Vm = 0 (2.3)

Applying furthermore a partial derivative ∂m on the above equation, a constraint equation
arises

∂mVm = 0 (2.4)

which in turn implies the Klein-Gordon equation
(
∂2 −M2)Vm = 0, and results in 3 on-shell

DoFs for the massive spin-1, as is expected from its 3 helicity states. Contrary to the massless
case, the Proca Lagrangian is not gauge invariant, but gauge invariance can be created
through the introduction of a Stückelberg field, with the redefinition Vm → Vm + ∂mϕ/M .
Subsequently, the Proca Lagrangian becomes

L′
1 = −1

4F
mnFmn − 1

2∂
mϕ∂mϕ− 1

2M
2V mVm −MV m∂mϕ (2.5)

which is now invariant under the gauge transformations δVm = ∂mΛ, δϕ = −MΛ. Con-
versely, the Stückelberg field ϕ can be eliminated in the unitary gauge, thereby bringing
back the Lagrangian (2.2).

Higher spin studies have first been undertaken by Dirac, in an attempt to generalize the
spin-1/2 equation. The immediate fermionic neighbor of spin-1/2 – the spin-3/2 field – is
given by Ψm transforming in the spinor-vector representation of the Lorentz group. Its free
Lagrangian, derived by Rarita and Schwinger [6], is conventionally written as2

L3/2 = −Ψ̄mγ
mnk∂nΨk − iMΨ̄mγ

mnΨn (2.6)

(2.6) yields a Dirac equation as well as two constraints(
i/∂ +M

)
Ψm = 0, γmΨm = 0, ∂mΨm = 0 (2.7)

which result in four propagating DoFs.
Around the same period, Fierz and Pauli [7] have obtained a Lagrangian describing a

massive spin-2 particle, represented by a real rank-2 symmetric tensor hmn:

L2 = − 1
2∂

khmn∂khmn + 1
2∂

mh∂mh− 1
2M

2hmnhmn + 1
2M

2h2

+ hmn∂m∂nh+ ∂nhmn∂kh
mk

(2.8)

where h stands for the trace of hmn: h ≡ hm
m. The Fierz-Pauli Lagrangian is precisely the

sum of the linear expansion of the Einstein-Hilbert action, and two mass terms. The signs in
front of these mass terms are crucial in order to avoid ghosts. Similar to spin-3/2, (2.8) gives
rise to two constraint equations (also called the transverse-traceless constraints), in addition

2The coefficients in this Lagrangian differs from the one presented in Chapter 3, due to the different choices
of the γ-matrices.
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to the Klein-Gordon equation. To reach this system, we begin with the Euler-Lagrange
equation of hmn in (2.8):(
∂2 −M2

)
hmn −

(
∂2 −M2

)
ηmnh+ ∂m∂nh+ ηmn∂k∂lh

kl − ∂n∂
khmk − ∂m∂

khnk = 0 (2.9)

which yields the following three equations:

1. Trace
−2∂2h+ 3M2h+ 2∂m∂nhmn = 0 (2.10)

2. Divergence
∂mh− ∂nhmn = 0 (2.11)

3. Double Divergence
∂2h− ∂m∂nhmn = 0 (2.12)

Using (2.12) to replace ∂m∂nhmn in (2.10), we obtain the trace constraint h = 0, which
according to (2.11) implies the divergence constraint ∂nhmn = 0. Inserting these two con-
ditions back to the Euler-Lagrange equation, we obtain the Klein Gordon equation for the
spin-2:

(
∂2 −M2)hmn = 0. In summary,(

∂2 −M2
)
hmn = 0, h = 0, ∂nhmn = 0 (2.13)

The above constraints remove five DoFs on-shell, so the massive spin-2 has five propagating
DoFs.

Note that the analogous Stückelberg fields can be introduced as well, so that the new
Lagrangians become gauge invariant. For spin-3/2, one may redefine (2.6) with Ψm →
Ψm + ∂mυ. The result is invariant under the transformations δΨm = ∂mΥ, δυ = −Υ, where
υ and Υ are Dirac spinors. For spin-2, one can shift hmn with hmn → hmn +∂(mAn) +∂m∂nϕ,
and the gauge invariance is manifest with e.g. δhmn = ∂(mΛn)+2∂m∂nΛ̃, δAm = −Λm−∂mΛ̃,
δϕ = −Λ̃. In the unitary gauge, we recover again (2.6) and (2.8).

2.1.2 A Lagrangian for any spin
A Lagrangian formulation for massive free fields of arbitrary spin has first been obtained

by Singh and Hagen [8, 9], starting from the very basic requirement of Lorentz invariance.
In this subsection, we review briefly the main arguments and results in their work.

For elementary bosons and fermions, one can choose Lorentz group representations where
the corresponding fields are given by symmetric traceless tensors, respectively, Φn1...ns and
Ψn1...nt , with t = s− 1

2 and s represents the spin. The (γ-)traceless condition is:

ηn1n2Φn1n2...ns = 0, γn1Ψn1...nt = 0 (2.14)

Lorentz invariance imposes the Fierz-Pauli system:(
∂2 −M2

)
Φn1...ns = 0,

(
i/∂ +M

)
Ψn1...nt = 0,

∂n1Φn1...ns = 0, ∂n1Ψn1...nt = 0.
(2.15)
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The key point in the construction à la Singh-Hagen is the use of auxiliary fields, that
enhance the constraint equations and vanish on-shell. Indeed, it is very complicated, if not
impossible, to guess a Lagrangian starting directly from the on-shell equation (2.15). The
authors of [7] have already pointed out the necessity of additional fields in the construction
of a higher spin Lagrangian, and later, in search of s = 2, 3, 4 Lagrangians, Fronsdal [50] and
Chang [51] have also suggested introducing auxiliary fields. In the following, we will see how
they are introduced in a systematic way.

The primary goal is to find the variation of the Lagrangian with regard to the higher spin
field, namely δL/δΦ(s), so that one can easily reconstruct the Lagrangian from this expres-
sion. In addition, δL/δΦ(s) has the same symmetries as Φ(s) itself, i.e. traceless and totally
symmetric, and this equation must yield the EoM and constraints (2.15). For instantce,
in the spin-1 case, we had (2.3) which gave rise to the divergence constraint as well as the
Klein-Gordon equation. Going to spin-2, one might be tempted to generalize (2.3) and try

δL
δΦmn

= ∂2Φmn − 2 {∂m (∂Φ)n}S.T. −M2Φmn = 0 (2.16)

where S.T. means the symmetric traceless part of the tensor: {Tmn}S.T. = T(mn) − 1
4ηmnT

k
k.

The coefficient of the second term is chosen such that, applying ∂n on (2.16), one would
obtain ∂nΦmn = 0. However, this result requires in addition ∂m∂nΦmn = 0, which cannot
be obtained from (2.16). In fact, an equation of the form (2.16) alone does not realize the
Fierz-Pauli system (2.15), and more equations are needed, hence the necessity of new fields.
For spin-2, it is precisely the auxiliary field that imposes ∂m∂nΦmn = 0.

The simplest candidate to impose the scalar equation ∂∂Φ = 0, is obviously a scalar
field φ. Its only possible coupling to Φmn in the Lagrangian is φ∂m∂nΦmn, which yields the
system

∂2Φmn − 2 {∂m (∂Φ)n}S.T. −M2Φmn + c {∂m∂nφ}S.T. = 0

∂m∂nΦmn =
(
∂2 − aM2

)
φ

(2.17)

where a and c encode the unknown φ mass term and the coupling constant of φ∂m∂nΦmn.
It turns out that there is a unique choice c = 2/3, a = 2, that results in

φ = 0 = ∂m∂nΦmn (2.18)

We then get the desired equations ∂nΦmn = 0,
(
∂2 −M2)Φmn = 0, and the Lagrangian

can be immediately inferred from (2.17). The higher spins s > 2 follow the same procedure,
necessitating a series of lower spin auxiliary fields s − 2, ..., 1, 0, that vanish on-shell. The
fermionic case is analogous, thus will not be detailed here. The most general form of the
Lagrangian, for any given spin, is provided in [8, 9].

2.2 Charged massive higher spins: why are they so difficult?

2.2.1 The Velo-Zwanziger problem
We have seen in the previous section that the Lagrangian formulation for massive free

states of arbitrary spin has been very well constructed. Taking one step forward, we may
consider an interacting massive higher spin theory, typically with an electromagnetic field,
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and search for a corresponding Lagrangian for it. Far from a pure academic exercise, such
a setup is of phenomenological interest, because charged higher spin composite particles do
exist in Nature, and one example is the Ω− baryon whose spin is determined to be s = 3/2.
In a typical experimental context, it is reasonable to take the point particle limit and describe
the behavior of these composite states by a local action. In the following, we will be focusing
on massive higher spin fields charged under U(1), interacting with an electromagnetic field.

A consistent Lagrangian formulation for charged higher spins is a problem with a long
history. Already back in 1939, Fierz and Pauli [7] have pointed out that the simplest re-
placement ∂m → Dm ≡ ∂m + ieAm in the on-shell equations – attempted by Dirac [5] – will
result in algebraically inconsistent equations for higher spins. In the spin-2 case, the minimal
coupling ∂m → Dm gives rise to: (

D2 −M2
)
hmn = 0

hm
m = 0, Dnhmn = 0

(2.19)

The above two lines are obviously incompatible, because taking the divergence of the EoM,
one obtains DnD2hmn = 0, implying [DnD2,D2Dn]hmn = 0, which contradicts with the
property of the U(1) covariant derivative. Fierz and Pauli have then proposed that in
order to avoid this algebraic inconsistency, the equation of motion and constraints must be
derivable from a Lagrangian by variational principle. They first evoked the use of auxiliary
fields in the higher spin Lagrangian, that later was generalized by Singh and Hagen (see
Section 2.1.2). This construction has been successful in the uncharged case. Switching on
the electromagnetic field, they suggested in [7] introducing minimal coupling in the uncharged
Lagrangian and the consequent equation of motion.

However, pathologies persist. Three decades later, Velo and Zwanziger [52–54] (see also
[55]) have investigated in great detail this inconsistency of charged higher spin propagation,
and analyzed the EoM as well as the constraints for spin s > 1 by using the method of
characteristics. Their results led to what is known today as the Velo-Zwanziger problem,
that we shall clarify shortly.

Indeed, for massive states of spin s ≤ 1, the minimal coupling is exempt from any
pathology. Replacing the partial derivatives by U(1)-covariant derivatives, one obtains:

spin-0:
(
∂2 −M2

)
ϕ = 0 =⇒

(
D2 −M2

)
ϕ = 0

spin-1/2:
(
i/∂ +M

)
ψ = 0 =⇒

(
i /D +M

)
ψ = 0

spin-1:
(
∂2 −M2

)
Vm = 0, ∂mVm = 0 =⇒

(
D2 −M2

)
Vm = 0, DmVm = 0

(2.20)

which are manifestly consistent from our knowledge on QED. The spin-1 corresponds to
the marginal case, from which constraint equations arise and the non-commutativity of the
covariant derivative starts to have an impact on the consistency of the on-shell system, as
we have seen in the example of (2.19).

For higher spins, it is convenient to study their propagation properties through the char-
acteristic determinant ∆(n) [56]. The latter is obtained via the substitution i∂m → nm

in the EoM, and then recover the determinant of the coefficient matrix, keeping only the
leading terms in nm. For instance, given an EoM

[
i
(
Γk
)

m

n∂k +Bm
n
]

Ψn = 0, we have

∆(n) =
∣∣∣(Γk

)
mn

nk

∣∣∣. The normals Nm to the characteristic surface are the solutions of
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∆(n) = 0, and the maximal propagation speed of the signal is then N0/|N⃗ |. This method
enables us to check the following two consistency conditions:

• Hyperbolicity: if N0 is real for any N⃗

• Causality: if all solutions Nm are space-like, namely, the characteristic surface is
always time-like

Additionally, the absence of propagating ghosts requires the on-shell DoF to be (2s+ 1). A
careful analysis with this method [52–55], along with the DoF counting, shows that massive
charged states with spin s > 1 minimally coupled to electromagnetism, suffer from various
pathologies: faster-than-light propagation for spin-3/2, and incorrect DoF for spin-2.

Such a phenomenon is usually called the Velo-Zwanziger problem. This problem persists
even in an effective theory with a small constant electromagnetic background, and actually
a large class of non-minimal couplings still fail to restore the consistency, as we will see next.

2.2.2 Attempts and main results
Given that the pathological propagation of charged massive higher spins arises as a con-

sequence of the minimal coupling, an obvious attempt to cure the problem, would be to
introduce non-minimal couplings. Following the work by Federbush [10], one first complex-
ifies the Fierz-Pauli Lagrangian (2.8) and replaces the partial derivatives by U(1)-covariant
derivatives. The subsequent Lagrangian clearly exhibits the Velo-Zwanziger problem. The
next step is to add a non-minimal coupling term, containing the gyromagnetic ratio g, and
the electromagnetic field strength ϵmn, so we obtain:

L = − |Dmhnk|2 + 2 |Dmh
mn|2 + |Dmh|2 +

(
h̄mnD

mDnh+ h.c.
)

−M2
(
h̄mnh

mn − h̄h
)

+ 2iegTr
(
h · ϵ · h̄

)
(2.21)

The field strength is taken to be constant here, and (2.21) is called the Federbush La-
grangian for a charged massive spin-2 field. The calculation of the EoM can be carried out
analogously. In particular, the trace equation in the free case, h = 0, now takes the form:

h ∝ M−4ie (2g − 1) ϵmnDmDkhkn + · · · (2.22)

The ellipsis represent additional terms, without derivatives, that disappear in the free case.
We immediately see the crucial requirement here: if the first term containing derivatives
does not vanish, then (2.22) will not be a constraint, and consequently some ghost DoFs will
be propagating. To avoid ghosts, the gyromagnetic ratio must be g = 1/2.

Then comes the first issue. In order to guarantee high energy unitarity of the scattering
amplitudes, it is necessary that the gyromagnetic ratio is g = 2 at tree level for charged
elementary particles of arbitrary spin [57]3. This means that the Federbush Lagrangian will
not have a good high energy behavior. The second and more problematic issue of (2.21) is
that it allows for superluminal propagation even for very small background magnetic field
[58]. Indeed, using the method of characteristics as in [52–55], there always exists a Lorentz
frame with a space-like characteristic surface, which implies acausality. Nevertheless, the

3We can see that the minimal coupling in (2.19) also leads to an EoM whose gyromagnetic ratio is not 2.
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Federbush Lagrangian remains up to date, the only 4d Lagrangian for charged massive spin-
2, without ghosts (if g = 1/2), and without coupling to lower spin fields.

On the other hand, significant effort has also been made for the charged massive spin-3/2
case, but no explicit consistent Lagrangian has been obtained yet. In 2000, Deser, Pasca-
lutsa and Waldron [11] have investigated a broad class of non-minimal couplings modifying
the minimal spin-3/2 Lagrangian, analysing in detail their low energy behavior, causality,
unitarity as well as existence of ghosts. But in the end, none of them escaped from incon-
sistency. Later, Porrati and Rahman [59] have extended the class of non-minimal couplings
considered in [11], and in particular, their studies were based on the requirement that the
γ-trace constraint γmΨm = 0 be enforced to all orders. This condition actually ensures
simultaneously hyperbolicity, causality, and correct DoFs, as long as the Lagrangian is her-
mitian, and has a canonical kinetic term. The coefficients of the final spin-3/2 Lagrangian
are given, implicitly, by a recursive relation.

As a side comment, one does know a consistent example of charged massive spin-3/2
Lagrangian, which is the gravitino charged under U(1)-graviphoton in N = 2 supergravity.
But in the zero cosmological constant limit, the causality bound implies planckian gravitino
mass [60], also the charge and the mass shall obey the Kaluza-Klein relation e = m/MP l.
Beyond these conditions, the same pathologies as before still persist.

2.3 Implementation of String Theory
Our excursion into various attempts has revealed the significant difficulty in the construc-

tion of charged massive higher spin Lagrangians. On one hand, the Federbush Lagrangian
for spin-2 has the undesired gyromagnetic ratio g = 1/2, as well as the more problematic
superluminal propagation. On the other hand, even though a causal spin-3/2 Lagrangian a
priori exists [59], its explicit form is still unknown. Indeed, starting from the basic require-
ments – causality, hyperbolicity, correct DoFs, and g = 2 – to guess a Lagrangian turns out
to be a very complex task.

An alternative way to tackle the problem is to use String Theory. Originally proposed as
a model of hadronic resonances, String Theory naturally contains an infinite tower of higher
spin states, providing an intriguing opportunity to study higher spins. Moreover, these states
can carry electric charge, and in this case it is shown that the gyromagnetic ratio is g = 2 for
all states in the spectrum [57]. The formalism of charged open bosonic string in a constant
electromagnetic background has been constructed in [12], which led Argyres and Nappi [14,
15] to derive the Lagrangian of the first mass level of charged open bosonic string. This level
features one massive spin-2 field along with a massive vector boson, but fortunately enough,
the gauge transformations of these two fields imply that the vector boson is a Stückelberg
field, therefore can be eliminated in the unitary gauge. The Argyres-Nappi Lagrangian
describes the only physical field at the first mass level – the massive charged spin-2. It takes
the form

LAN =H̄mn

(
D2 − 2 − 1

2 Tr ϵ2
)
hmn + 2iH̄mn(ϵ · h− h · ϵ)mn − H̄

(
D2 − 2 − 1

2 Tr ϵ2
)

H

− H̄mn

{
DmDk[(1 − iϵ)h]kn − 1

2D
mDnH + (m ↔ n)

}
+ H̄DmDnHmn

(2.23)
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where we defined the rescaled tensor Hmn ≡ (1 − iϵ)mk (1 − iϵ)nl h
kl and H ≡ Hm

m. The
inverse string tension is fixed to α′ = 1/2. The field strength is given by iϵmn = [Dm,Dn],
with the electric charge set to e = 1. In 26d, the Argyres-Nappi Lagrangian yields the
following EoM and constraints:(

D2 − 2 − 1
2 Tr ϵ2

)
Hmn + 2i (ϵ · H − H · ϵ)mn = 0

DnHmn = 0
H = 0

(2.24)

The first line is a deformation of the Klein-Gordon equation, with an electromagnetic field-
dependent contribution to the mass. The second and third lines correspond to the con-
straints: one can immediately notice that they are the charged version of the transverse-
traceless constraints ∂nhmn = 0, h = 0. (2.24) is in effect a deformed Fierz-Pauli system,
which is manifestly consistent, with correct gyromagnetic ratio g = 2, correct DoF, hyper-
bolic and causal EoM. Besides, this Fierz-Pauli system (2.24) is also generalized to arbitrary
integer spin using Virasoro algebra in [58]. In addition, one recovers exactly the Fierz-Pauli
Lagrangian from (2.23) in the free case D → ∂, ϵ = 0.

The Velo-Zwanziger problem seems solved for spin-2. However, this is true only in 26d:
away from this critical dimension, the trace becomes dynamical and (2.24) no longer holds
[61]. A lower-dimensional Lagrangian has been obtained by Porrati and Rahman [61] by
compactifying (2.23). This process introduces an extra scalar ϕ which is singlet of the inter-
nal coordinates, and assumes that the electromagnetic field is zero in the compactification
directions. As a result, the dimensionally reduced Argyres-Nappi Lagrangian, in d < 26
dimensions, reads

Ld =h̄mn

(
D2 − 2 − 1

2 Tr ϵ2
)
hmn + 2ih̄mn(ϵ · h− h · ϵ)mn − h̄

(
D2 − 2 − 1

2 Tr ϵ2
)
h

− h̄mn

{
DmDp[(1 − iϵ) · h]np − 1

2D
mDnh + (m ↔ n)

}
+ h̄DmDnhmn

+
[
h̄mnD

mDnϕ−
{
h̄ + 1

2

(
D − d− 1
D − d

)
ϕ̄

}(
D2 − 2 − 1

2 Tr ϵ2
)
ϕ+ h.c.

] (2.25)

The same rescaling as before is used hmn ≡ (1 − iϵ)mk (1 − iϵ)nl h
kl. Some algebraic manip-

ulations lead to the (deformed-)Klein-Gordon EoMs(
D2 − 2 − 1

2 Tr ϵ2
)
ϕ = 0(

D2 − 2 − 1
2 Tr ϵ2

)
hmn + 2i (ϵ · h − h · ϵ)mn = 0,

(2.26)

whereas both the divergence and trace constraints of hmn are coupled to the scalar, but they
can be decoupled on-shell by a redefinition hmn → h′

mn, so that h′
mn satisfies the Fierz-Pauli

system (2.24), making the consistency manifest. It is unclear though, whether ϕ and hmn

can be decoupled directly at the level of the Lagrangian.
The construction of charged massive spin-2 Lagrangian using bosonic open string theory

has been successful. In 26d, the Argyres-Nappi Lagrangian contains a spin-2 only, giving rise
to the Fierz-Pauli system. By dimensional reduction, the new Lagrangian can describe 4d as
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well, at the cost of coupling an additional scalar ϕ to the spin-2 field. The same approach as
in [14, 15] can also be realized at the second mass level of open bosonic string, as is done by
Klishevich [62], and this yields a Lagrangian for charged massive spin-3 coupled to spin-1.

Now it is natural to wonder whether String Theory helps to derive a Lagrangian for
charged massive spin-3/2. Indeed, such fermionic states do exist in superstring theory. In
[63], it is shown that the free open superstring compactified to 4d (in a way that preserves
spacetime supersymmetry) features one spin-2 multiplet – with spin-2, spin-3/2 and spin-1 –
as well as two scalar multiplets on its first mass level. And one year later, the same authors
have derived the superspace action of these multiplets [64], from which it is possible to get
a Lagrangian. Then, it is reasonable to expect that the superspace action can be obtained
for charged superstring first mass level as well. The generalization of [63, 64] to the charged
case is achieved in [13], resulting in a superspace action describing, among others, a charged
massive spin-2 and spin-3/2 that propagate consistently.

The above results are very encouraging. The next question will be: now we have a
superspace action, what does the Lagrangian look like? The answer to this question requires
many non-trivial algebraic manipulations. It is straightforward, though tedious, to expand
the superspace action in components, but after expansion the Lagrangian involves numerous
auxiliary DoFs. As is pointed out in [65], the presence of auxiliary fields is one of the main
drawbacks of the superspace action in [64], thus the authors of [65] found it simpler to begin
with a free Lagrangian then supersymmetrize it, than to identify the physical DoFs directly
from the superspace action. Here, our goal is to remedy this problem and show how these
auxiliary fields can be totally eliminated. The final Lagrangian should contain physical DoFs
only, with charged massive spin-2, spin-3/2, spin-1, spin-1/2 and complex scalars [13]. There
are more states at the first mass level than in the bosonic string case, due to the spacetime
supersymmetry, and therefore we expect to have a more complicated spin-2 Lagrangian than
(2.23).

The following sections are devoted to the development of the superspace action in [13]. To
illustrate the basic ideas, we will start from the neutral superspace action, already presented
in [64], and proceed to expand, simplify and eventually decouple the Lagrangian. It is
sensible to tackle first the free case, because the result is already known, viz., we shall find
in the end the Fierz-Pauli Lagrangian for spin-2, Rarita-Schwinger Lagrangian for spin-3/2,
and free Lagrangians for spin-1, spin-1/2 and spin-0. In a second time, we move to the
charged case, and carry out a similar computation for the charged superspace action in
[13]. The Lagrangians will be presented in different forms: one compact form which allows
for a simpler derivation of on-shell equations, and another one as deformed Fierz-Pauli or
Rarita-Schwinger Lagrangian. The latter reduces to the well-known free Lagrangian when
the external field vanishes, but is more complicated and contains higher derivatives. In
addition, we derive the EoM and constraints for charged massive spin-2 and spin-3/2, that
despite a mixing with lower spins, can be decoupled on shell. The former is precisely a four-
dimensional version of the Fierz-Pauli system (2.24), and the latter, perhaps our principal
result, has not been obtained before in the literature.
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2.4 Summary of the main results
We summarize in this section the main results obtained after the expansion of the super-

space action in [13], including the Lagrangian of physical states and the equations of motion
for spin-2 and spin-3/2. Detailed calculations, as well as alternative forms of the Lagrangian,
are presented in Section 2.5.

Note that we consider constant electromagnetic background, with covariant derivative
Dm satisfying:

[Dm,Dn] = iQϵmn (2.27)

All the fields have unit charge Q = ±1.

2.4.1 Bosons
The Lagrangian of the bosonic sector reads:

LB =M̄1
(
−2 + D2

)
M1 + N̄1

(
−2 + D2

)
N1

+ C̄mD2Cm + DmC̄mDnCn − 2C̄m (ηmn − iϵmn) Cn

+ 2āmam − iϵmnā
man + DmāmDnan + 1√

2

[ ¯̃Fmn(a)
(
Fmn(c) − H[mn]

)
+ h.c.

]
− 2c̄mcm − 2

5D
mc̄mDncn +

[
c̄m
(

−2
5DmH + DnHnm

)
+ h.c.

]
+ 1

2H̄mnD
2hmn + 1

2D
nH̄mnDkh

mk − H̄(mn)H(mn) + iϵnkH̄mnhk
m + 1

10H̄H

(2.28)

Different from the Argyres-Nappi Lagrangian (2.23), the rescaled field Hmn has only one
(η − iϵ) factor:

Hmn ≡ (ηmk − iϵmk)hk
n, H = h (2.29)

The field strength and its dual are defined as

Fmn(a) ≡ Dman − Dnam, F̃mn(a) ≡ 1
2εmnpqF

pq(a) (2.30)

same for cm. This Lagrangian yields on shell the following equations:

• Equations of motion(
D2 − 2

)
M1 = 0,

(
D2 − 2

)
N1 = 0(

D2 − 2
)
hmn = 2i

(
ϵkmh

k
n + ϵknh

k
m

)
,
(
D2 − 2

)
Cm + 2iϵmnCn = 0(

D2 − 2
)
am + 2iϵmna

n = 0,
(
D2 − 2

)
cm + 2iϵmnc

n = 0

(2.31)

• Constraints
DmCm = 0, H[mn] = 1√

2
F̃mn(a) + Fmn(c)

h+ 4Dmcm = 0, cm + 1
2D

nhmn = 0
(2.32)
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The constraints (2.32) remove 12 degrees of freedom, resulting in 12 degrees of freedom
on shell for the field content {am, cm, Cm,M1,N1, hmn}, which is in agreement with [13].
However, the fields {am, cm, hmn} are coupled on shell. They can be decoupled by the
following redefinitions

a′
m ≡ am − i

2ϵmna
n − i

2
√

2
ϵ̃nkDkhmn + i

2
√

2
ϵ̃mnD

nh+
√

2iϵ̃mnc
n

c′
m ≡ cm −

√
2i
4 ϵ̃mna

n + i
4ϵ

nkDnhmk

(2.33)

and

hmn ≡2
3hmn − 1

6ηmnh− i
2ϵm

khkn + 1
3Dmcn

− i
2

(
ϵmkD

kcn − ϵmkDnc
k + 1

2ηmnϵ
klDkcl

)
− 1

4

(
ϵmkϵ

lkhnl + ϵmkϵnlh
kl − 1

2ηmnϵ
klϵplhkp

)
+ 1

2 − ϵϵ

[ 1
12DmDnh− 1

16ϵmkϵ
k

nh+ i
8ϵmkD

kDnh− 5ϵϵ
96 ηmnh

]
− 1√

2
1

2 + ϵϵ

[
− i

2 ϵ̃mkD
kDnDla

l + 5
16 (ϵϵ̃) ηmnD

kak

−1
4 (ϵϵ̃)DmDnDka

k + ϵ̃mkϵlnD
kDlDpap

]
+ (m ↔ n)

(2.34)

In consequence, the new equations are completely decoupled:(
D2 − 2

)
hmn = 2i

(
ϵkmhk

n + ϵknh
k

m

)
Dnhmn = 0, h = 0

DmDna
′n =2a′

m, DmDnc
′n = 2c′

m,

(2.35)

The first two lines for the spin-2 are the same as (2.24) but the latter is derived from
the Argyres-Nappi Lagrangian in 26d. The third line does not resemble the conventional
equations of motion for massive vectors. In reality, vector fields obeying the equation
∂m∂nV

n = 2Vm are dual to scalars as is shown in [66], so they each count one degree of
freedom. The generalization of this result to the charged case is immediate, so am, cm are
dual to complex scalars (see Sec. 4.4 in the next section). In fact, only the longitudinal
component of these vectors is physical. It is possible to replace am, cm by their dual scalars
in (2.28), so the new Lagrangian contains physical degrees of freedom only, but the latter
has a more complicated form provided in the next section. In both cases, we are able to
decouple on shell all the fields yielding a Fierz-Pauli system for the spin-2.

The gyromagnetic ratio is rather transparent from the equation of motion. For the sake
of clarity, let us restore the mass and the charge:(

D2 −M2
)
hmn = 2iQ

(
ϵkmhk

n + ϵknh
k

m

)
(2.36)

For any particle of integer spin s, mass m, and charge Q, the gyromagnetic ratio g appears
in the equation of motion as [11, 60]:(

D2 −M2
)
φm1···ms = iQgsϵn(m1φn

m2···ms) (2.37)
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A direct comparison with (2.36) indicates g = 2.

2.4.2 Fermions
Following the two component notation, the Lagrangian of the physical fermionic states

in the superspace action is

LF = − i
2
[
2
(
λm

1 σ
nDnλ̄1m

)
+
(
χ̄1mσ̄

nσkσ̄mDkχ1n

)]
−

√
2 [(λm

1 χ1m) + h.c.]

+
[
− i

4
(
ψ1σ

mDmψ̄1
)

+ 2i (γ1σ
mDmγ̄1)

]
+
[ 3√

2
(χm

1 σmnD
nψ1) − 1

2
√

2
(χm

1 Dmψ1)

− i
2
(
λm

1 σmψ̄1
)

− 2i (χ̄m
1 σ̄mγ1) −

√
2 (λm

1 Dmγ1) + h.c.
]

+
[ 1√

2
(ψ1γ1) + h.c.

]
+ (1 ↔ 2) −

[1
2 χ̄m

1 (ϵ · σ̄) σ̄mγ1 + 1
2χm

2 (ϵ · σ)σmγ̄2 + h.c.
]

(2.38)
where we introduced the rescalings

λ̄1m ≡ (ηmn − iϵmn) λ̄n
1 , λ2m ≡ (ηmn − iϵmn)λn

2

χ1m ≡ (ηmn − iϵmn)χn
1 , χ̄2m ≡ (ηmn − iϵmn) χ̄n

2
(2.39)

and notice that the Weyl fermions χ1m, χ2m appear only under the rescaled form, whereas
the rescaled and non-rescaled λ1m, λ2m are mixed through the kinetic terms. In the above
Lagrangian, the spin-3/2 states {χjm,λjm} are coupled to spin-1/2 {γj , ψ̄j}, j = 1, 2. On
shell, it gives the constraints

Dmλ̄1m = 3
2 ψ̄1 −

√
2

4 σ̄m (ϵ · σ) χ1m, Dmχ1m = − i
2 (ϵ · σ) γ1

σmλ̄1m = 3√
2

iγ1 − 1√
2

(ϵ · σ) γ1, σ̄mχ1m = 0
(2.40)

Same as for the bosons, we can also find a redefinition that decouples spin-3/2 from spin-1/2
on shell:

λ̄′
1m ≡ λ̄1m + i

2
√

2
[1 − i (ϵ · σ̄)] σ̄mγ1 − 1

2 [ηmn − i (ϵmn + iϵ̃mn)]Dnψ̄1

χ′
1m ≡ χ1m + 1

2
√

2
(ϵ · σ)σmψ̄1

(2.41)

so that we obtain a Fierz-Pauli system, deformed by the electromagnetic background, that
describes the correct degrees of freedom for spin-3/2:

iσnDnλ̄′
1m = −

√
2 (ηmn − iϵmn) χ′n

1

iσ̄nDnχ′
1m = −

√
2λ̄1m,

Dmχ′
1m = 0, Dmλ̄′

1m = −
√

2
4 σ̄m (ϵ · σ) χ′

1m

σ̄mχ′
1m = 0, σmλ̄′

1m = 0

(2.42)
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as well as the Dirac equations for the spin-1/2 fields:

iσ̄mDmγ1 = −
√

2ψ̄1, iσmDmψ̄1 = −
√

2γ1 (2.43)

Equations for the fermions with index 2 are obtained by 1 ↔ 2, ϵ ↔ −ϵ. Remarkably,
the γ-traceless constraint is satisfied even in the presence of the background, whereas the
divergence constraint receives a contribution proportional to the γ-matrix. Taking into
account the constraints, we again have 12 complex degrees of freedom for the fermions,
equal to that of the bosons.

We may also convert the two-component notation into four-component notation (see
Appendix A), introducing:

Φ1 ≡
(
γ1α

ψ̄α̇
1

)
, Ψ1m ≡

(
χ′

1mα

λ̄′α̇
1m

)
(2.44)

The equations of motion and constraints become

• Equations of motion(
i /D +

√
2
)

Φ1 = 0,
(
i /D +

√
2
)

Ψ1m =
√

2iϵmnΨn
1L (2.45)

• Constraints [
Dm −

√
2

4 (ϵmn + iϵ̃mn) γn

]
Ψ1m = 0, γmΨ1m = 0 (2.46)

A quick analysis of the characteristic determinant shows that the spin-3/2 equation of motion
is causal. In the meantime, showing the gyromagnetic ratio g = 2 needs more manipulations.
To start with, we put (2.45) in a second order form, for clarity we also restore the charge Q
and the mass M : [(

D2 −M2
)
ηmn + 2Qiϵmn − 1

2iQγpqϵpqηmn

]
Ψn

1 = 0 (2.47)

Since we are considering constant electromagnetic field, the potential is parameterized as
An = −1

2 (ϵX)n and the covariant derivative is given by Dm = ∂m + iQAm.
Without loss of generality, we choose vanishing electric field ϵ0i = 0, while the magnetic

field is given by ϵij = −εijkB
k, where ε is a 3d Levi-Civita symbol (i, j, k = 1, 2, 3). Going

to momentum space, the above equation reads:

(H −QA0)2 Ψ1m =
[(
p⃗−QA⃗

)2
+M2

]
Ψ1m +Qϵrs (Mrs)mn Ψn

1

=
[(
p⃗−QA⃗

)2
+M2

]
Ψ1m −QεijkB

k
(
Mij

)
mn

Ψn
1

(2.48)

where H ≡ i∂0, and (Mrs)mn = (Jrs)mn + Srsηmn are the generators of the Lorentz group,
with (Jrs)mn = −2iηm

[rηs]
n, Srs = i

2γ
rs. The generator of rotations for the spin-3/2 repre-

sentation is (Sk)mn = 1
2ϵijk

(
Mij

)
mn, so

(H −QA0)2 Ψ1m =
[(
p⃗−QA⃗

)2
+M2

]
Ψ1m − 2QB⃗ · S⃗mnΨn

1 (2.49)
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By definition, the gyromagnetic ratio is extracted from the last term on the right hand side,
which is g = 2, as is expected.
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1 Introduction

The field theory of high spin particles is an old and difficult problem. For the case of massive
particles, a challenge arises as soon as one tries to propagate states of spin greater than
1 in an electromagnetic background. In a 1936 paper [2], Dirac called for the problem of
writing the equations of motion for such states to be addressed. He wrote: “It is desirable
to have the equation ready for a possible future discovery of an elementary particle with
a spin greater than a half, or for approximate application to composite particles. Further,
the underlying theory is of considerable mathematical interest.” This problem was quickly
taken up by Fierz and Pauli [3] who showed the difficulty of it, and in passing wrote in
this paper their famous Lagrangian for a massive uncharged spin-2. But the most striking
aspect of the difficulty of the problem will only be known a few decades later thanks, in
particular, to the works of Johnson and Sudarshan [4], Velo and Zwanziger [5–7]. The
problem has remained to this day, but the massive fundamental particles known to current
physics do not have such spins. Yet several works have allowed first to understand well the
difficulties, then to make some notable progress.

Johnson and Sudarshan tried to canonically quantize minimally coupled spin-3/2 fields
and found that the equal-time switches are not compatible with the relativistic covariance of
the theory [4]. Later, Velo and Zwanziger found that the minimally coupled Lagrangians for
spin-3/2 and spin-2 already exhibit pathological behaviour at the classical level: the former
allows faster-than-light propagation while the latter suffers from the loss of a constraint
leading to the propagation of six degrees of freedom instead of the five physical ones [5, 6].
Both problems appear for a certain particular value of the electromagnetic field strength.
The observation that this value is the same for both cases was an indication that they
have a common origin. In fact, it was later shown, for spin-2 in [8] and for spin-3/2 in
[9, 10], that the source of the problems is that the set of secondary constraints becomes
degenerate. This signals the appearance of a loss of invertibility, i.e. the constraints no
longer determine all the components of the fields. When the secondary constraints are
degenerate, a tertiary constraint can be obtained for spin-2 [11] as well as for spin-3/2 with,
in this case, a loss of degrees of freedom [10]. This new constraint then leads to acausality
and loss of hyperbolicity.

These original analyses use systems of Fierz-Pauli equations, which imply that, to
describe a field of spin s, one must introduce additional fields of lower spin s − 1, s −
2, · · · . In the free case, these clearly appear as non-propagating fields that are projected by
constraints. However, the introduction of interaction seems to mix the different components
of the fields, originally easily decoupled between physical and auxiliary, in a non-trivial way
to give combinations that propagate as new physical degrees of freedom. In the historical
attempts mentioned above, one ends up with the wrong number of degrees of freedom for
the considered field of spin-3/2 or 2. The culprit of non-causal propagation can be traced
back to the form of the interaction and it is concluded that it is necessary to go beyond the
minimal coupling. The authors of [12] considered adding a set of non-minimal terms to the
Lagrangian and proved that it is not easy to restore in this way causal propagation in these
theories. In fact, the present work involves another nonlinear modification of the theory,
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in particular of the kinetic terms, and relies heavily on the presence of lower spin fields.
Moreover, when we try to decouple these different fields, we will not be able to present a
fully satisfactory Lagrangian with only the fields of higher spins but only fully decoupled
equations of motion.

The Federbush Lagrangian [13] is the only four-dimensional Lagrangian with the correct
number of on-shell d.o.f. describing an isolated charged massive spin-2 state, thanks to the
presence of a non-minimal coupling term. Unfortunately, the equations of motion derived
from this Lagrangian also allow for superluminal propagation and thus suffer from the
causality loss problem. Note that, here, the non-minimal coupling induces a gyromagnetic
ratio g = 1/2, instead of the expected value of g = 2 , which raises the question of a necessary
modification, a completeness, in the ultra-violet (UV), due to the violation of unitarity at
high energies [14]. This means that the Lagrangian does not provide a satisfactory answer
to the problem at hand.

String theory, which was originally proposed to model hadronic resonances, contains
arbitrarily high spin states in its spectrum of massive oscillators. These form the Regge
turns. In particular, the first excited level of the open string contains massive spin-2, as
well as spin-3/2 in the supersymmetric case. It is therefore no surprise that soon after the
solution describing the propagation of the string in an electromagnetic field was given [15–
17], it was used to study the propagation problem of charged spin> 1 states. Using string
field theory, Argyres and Nappi studied the first massive level of the open bosonic string
[18, 19]. They derived a Lagrangian for the massive charged spin-2 field. The obtained
form is free of any pathologies mentioned above only in dimension d = 26. Its reduction to
four dimensions has been studied by Porrati and Rahman [20], who showed that it results
in a spin-2 field coupled to a scalar. The study of the second mass level of bosonic strings
has led to the action describing a charged massive spin-3 coupled to lower spin states.

A number of points need to be highlighted here. First, in the critical dimensional
bosonic open string (d = 26), the content of the first massive level is simply a massive spin-
2 state, with the other states playing the role of Stückelberg fields. This is fortunate since
it implies that the Lagrangian derived for this mass level will give the desired Lagrangian
for a spin-2 particle. Secondly, the Euler-Lagrange equations can be triturated to give a
Fierz-Pauli system which has a simple form. It was shown in [21] that this system could be
obtained directly by the Virasoro algebra and has been generalised for fields with integer
spin greater than 2. Finally, this Fierz-Pauli system is consistent in different dimensions,
including 4 dimensions. In particular, a redefinition of the fields allows to see it from the
equations obtained from the dimensional reduction of the Argyres-Nappi Lagrangian.

An ansatz has been proposed by Porrati and Rahman in [22] for a Lagrangian de-
scribing a charged massive state with spin-3/2 propagating in a constant electromagnetic
background. In front of the different terms of this Lagrangian, coefficients, functions of
the electromagnetic field strength, are introduced which satisfy recursive equations that
can then be solved order by order in the electromagnetic field strength (divided by pow-
ers of the particle mass to make dimensionless quantities). This proves the existence of a
Lagrangian and the equations of motion sought, but it remains to be seen whether a com-
pact and explicit expression exists for them. On the other hand, a consistent example of a
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charged massive spin-3/2 Lagrangian is known in supergravity N = 2 where the gravitino is
charged under U(1)-graviphoton. But in the zero cosmological constant limit, the causality
of the equations of motion in this model implies a Planckian particle mass [23].

An obvious question is then whether an effective Lagrangian calculation can be per-
formed for massive superstring modes, similar to the one for bosonic strings described above,
and what results can be derived. Such work has been done in [1] using open superstring field
theory in a constant electromagnetic background, for a four-dimensional compactification
preserving the N = 1 supersymmetry. A four-dimensional superspace action for the first
massive level states was obtained and the equations of motion were derived in the Lorenz
gauge.

Compared to the bosonic case, the supersymmetric case is more complex. The first
level of massive states does not only contain a state with spin-2 but also states with lower
spin. All the corresponding fields appeared coupled both in the equations of motion and
in the constraints. It is the same for fermionic states with the appearance of couplings
between the spin-3/2 and spin-1/2 fields. One of the aims of the present work is to study
whether these equations can be decoupled. It will be shown that this is indeed the case.

The main purpose of this work is to write the effective Lagrangian bilinear in the fields
representing the massive first level states of the superstring. The action is already written
in [1] for the superfields, but here we want to have the expression with only physical fields
without the auxiliary fields. It is straightforward, though tedious, to develop this action
into components. Then it is necessary to make appropriate, not always obvious, choices of
redefining the fields to lead to useful forms of the final Lagrangian. It is therefore useful to
present these steps in some detail.

Obviously, it is a priori convenient to be guided by the simplest case without elec-
tromagnetic field for which the final Lagrangian is known: Fierz-Pauli for the spin-2 field,
Rarita-Schwinger for the spin-3/2 fields and the free Lagrangians of the spin-1/2 and 0 fields.
The action in the superspace of the first massive state and the corresponding equations of
motion have already been obtained in [24]. However, the transition from this Lagrangian
to the Fierz-Pauli and Rarita-Schwinger Lagrangians has never been performed. In fact,
[25] found it simpler to start from the Fierz-Pauli bosonic Lagrangian and supersymmetrise
it than to start from the Lagrangian of [24] and show how it describes the spin-2. This
is because of the large number of Stückelberg and auxiliary fields involved. We will first
remedy this situation. We will show how the Fierz-Pauli and Rarita-Schwinger Lagrangians
can be obtained from superstring field theory, and incidentally, we will be able to identify
through the necessary redefinition of the physical fields the purpose of various other fields,
such as the Stückelberg or auxiliaries.

The original problem posed in the 1930s was to find the equations of motion and
constraints, i.e. a Fierz–Pauli system, governing the propagation of charged particles with
spin greater than 1 [3]. In this work, we will recover for spin-2 the Argyres-Nappi result,
but we will also be able to write explicit equations describing the case with spin-3/2,
perhaps our main result. The other problem is to write a Lagrangian describing these
systems, the variational principle being originally introduced only as a means to find a
consistent system of equations, has become the main subject of research. On this point, our
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results are not totally satisfactory. Indeed, one would have hoped that the electromagnetic
field strength would only introduce deformations of the Fierz-Pauli and Rarita-Schwinger
Lagrangians. However, our results show that it also introduces a coupling between fields
of different spins. To be more precise, our results consist of several forms of Lagrangians,
corresponding to various redefinitions of the physical fields and choices of integration order of
the Stückelberg and auxiliary fields. One of these forms is a deformation of Fierz–Pauli and
Rarita-Schwinger but long and containing higher order derivatives. Other forms we present
are more compact and manageable, but do not automatically identify with the known free
Lagrangians in the absence of electromagnetic fields. Despite our many attempts, we have
not found a form where the fields with different spins are decoupled, without being able to
definitively exclude this possibility.

This work is organised as follows. In section 2, we consider the superspace action in
the vanishing limit of the electromagnetic field, corresponding to that derived in [24] for the
neutral case, and develop it into components. We show how all non-propagating degrees
of freedom are eliminated. An appropriate field redefinition is performed to recover Fierz-
Pauli and Rarita-Schwinger Lagrangians. In section 3, the electromagnetic background
is turned on, giving rise to the superspace action for charged states in [1]. We exhibit
an on-shell redefinition of the superfields that decouples the original equations of motion
and constraints obtained in [1]. Next, in sections 4 and 5, we proceed to expand this
action separately for the bosonic and fermionic fields. After simplification, the bosonic and
fermionic Lagrangians are presented in two forms, firstly a compact form and secondly a
deformation of the Fierz-Pauli or Rarita-Schwinger Lagrangian. From these Lagrangians,
we derive explicitly the equations of motion as well as the constraints for the spin-3/2 and
spin-2 states. In section 6, we draw our conclusions. Finally, conventions and useful results
are detailed in the appendices.

Part of the tensor calculation is carried out with the help of the xAct package [26]
for Mathematica. In this work, we use natural units. Moreover, we take the usual string
theory convention α′ = 1/2. An arbitrary mass parameter has been explicitly restored in
the letters [27, 28] that contain some of our main results.

2 Superspace action in absence of electromagnetic background

We start by studying the much simpler case of the Lagrangian for neutral fields.

2.1 The superfields

We are interested in the fields corresponding to the states of the first massive level of the
open superstring, compactified on a Calabi-Yau space, thus with a four-dimensional N = 1

supersymmetry. The use of the hybrid formalism for open superstring field theory [29]
allows to obtain the corresponding superspace action. This was done in the neutral case in
[24, 30] and recently for charged fields in [1].1 The superspace action in the neutral case
reads

1We follow the same conventions as in [1], the only difference being a global minus sign in front of the
action.
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Sfree = − 1

16

∫
d4xp2

0p̄
2
0

{
V m

[
−
{
d2

0, d̄
2
0

}
Vm + 16Πn

0 Πn0Vm − 32Vm

+16σ̄α̇αm
(
dα0V̄α̇ − d̄α̇0Vα

)
+ 64Πm0B + 48σ̄α̇αm

[
d̄α̇0, dα0

]
C
]

+ V α
[
8d̄α̇0dα0V̄

α̇ − 4d̄2
0Vα + 2dα0d̄

2
0(−2iB + 18C)− 96iΠαα̇0d̄

α̇
0C
]

+ V̄α̇
[
−4d2

0V̄
α̇ + 2d̄α̇0d

2
0(2iB + 18C)− 96iΠα̇α

0 dα0C
]

+B
[{
d2

0, d̄
2
0

}
B − 64B + 6i

[
d2

0, d̄
2
0

]
C
]

+ 3C
[
11
{
d2

0, d̄
2
0

}
C − 128Πn

0 Πn0C + 64C
]}

(2.1)
where p0, p̄0 are the derivatives with regard to the Grassmann coordinates θ and θ̄, respec-
tively. The superderivatives dα0, d̄α̇0 act as

dα0 =
∂

∂θα
+ i(σmθ̄)α∂m

d̄α̇0 = − ∂

∂θ̄α̇
− i(θσm)α̇∂m

(2.2)

whereas Πm
0 reduces here to the usual partial derivative: Πm

0 ≡ −∂m. The real superfields
Vm, B, C and the spinor superfield Vα can be expanded in components as

Vm = Cm + i(θχm)− i(θ̄χ̄m) + i(θθ)Mm − i(θ̄θ̄)M̄m + (θσnθ̄)hmn

+ i(θθ)(θ̄λ̄m)− i(θ̄θ̄)(θλm) + (θθ)(θ̄θ̄)Dm

B = ϕ+ i(θγ)− i(θ̄γ̄) + i(θθ)N − i(θ̄θ̄)N̄ + (θσmθ̄)cm

+ i(θθ)(θ̄ρ̄)− i(θ̄θ̄)(θρ) + (θθ)(θ̄θ̄)G

C = φ+ i(θξ)− i(θ̄ξ̄) + i(θθ)M − i(θ̄θ̄)M̄ + (θσmθ̄)am

+ i(θθ)(θ̄ψ̄)− i(θ̄θ̄)(θψ) + (θθ)(θ̄θ̄)D

Vα = vα + θαs− (σmnθ)αsmn + (σmθ̄)αwm + (θθ)ηα + (θ̄θ̄)ζα + (θσmθ̄)rmα

+ (θθ)(σmθ̄)αqm + (θ̄θ̄)θαt− (θ̄θ̄)(σmnθ)αtmn + (θθ)(θ̄θ̄)µα

V̄ α̇ = v̄α̇ + θ̄α̇s̄− (σ̄mnθ̄)α̇s̄mn − (σ̄mθ)α̇w̄m + (θ̄θ̄)η̄α̇ + (θθ)ζ̄α̇ + (θσmθ̄)r̄α̇m

− (θ̄θ̄)(σ̄mθ)α̇q̄m + (θθ)θ̄α̇t̄− (θθ)(σ̄mnθ̄)α̇t̄mn + (θθ)(θ̄θ̄)µ̄α̇

(2.3)

Many of the component fields are auxiliary and must be eliminated via redefinition to
obtain a Lagrangian containing only the physical fields, i.e. those representing propagating
degrees of freedom. Note that here smn and tmn are self-dual anti-symmetric tensors,
namely, they satisfy:

εmnpqtpq = −2itmn, εmnpq t̄pq = 2it̄mn

εmnpqspq = −2ismn, εmnpq s̄pq = 2is̄mn
(2.4)

where εmnpq is the Levi-Civita tensor. For future convenience, we introduce the following
real combinations:

τ1 ≡ t+ t̄, τ2 ≡ i(t− t̄)
ω1m ≡ wm + w̄m, ω2m ≡ i(wm − w̄m)

τ1mn ≡ tmn + t̄mn, τ2mn ≡ i(tmn − t̄mn)

(2.5)
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where τ1mn and τ2mn are not independent, as Eq. (2.4) implies

εmnpqτ1pq = −2τmn2 , εmnpqτ2pq = 2τmn1 . (2.6)

Here hmn is a generic rank 2 real tensor which can be decomposed into

hmn = vmn + fmn +
1

4
ηmnh (2.7)

where vmn is symmetric and traceless. After redefinition, it contains the degrees of freedom
of a massive spin-2 field. fmn is anti-symmetric, and h is the trace of hmn.

In bosonic string field theory, the action of the string field is obtained from the world-
sheet correlator 〈V QBRSTV 〉, where V is the vertex operator associated to a string state
and QBRST the BRST charge. The nilpotency of QBRST implies that this action is invari-
ant under a gauge transformation of the form δV = QBRSTΛ, with Λ the gauge parameter.
Since we are using the hybrid formalism for the superstring [31], we have the BRST-like
charges {G+, G̃+} and the superstring field theory action, 〈V G+G̃+V 〉, is then invariant
under a gauge transformation of the form δV = G+Λ + G̃+Λ̃. For the string states we
consider here, V is a linear combination of the superfields appearing in the action (2.1).
The gauge transformations that leave this action invariant can then be written as [1] :

δV m = −4iσmαα̇d̄
α̇
0E

α − 4iσmαα̇d
α
0 Ē

α̇,

δVα = −2d2
0Παα̇0Ē

α̇ +
i

2
d2

0d̄
2
0Eα + 16iEα,

δB = −1

2

(
d̄α̇0d

2
0Ē

α̇ + dα0 d̄
2
0Eα

)
,

δC =
i

2

(
d̄α̇0d

2
0Ē

α̇ − dα0 d̄2
0Eα

)
.

(2.8)

where Eα and its conjugate Ēα̇ are the superfields of gauge parameters. They will be
expanded as:

Eα = Λ1α + θαΛ2 − (σmnθ)αΛ2mn + (σmθ̄)αΛ3m + (θθ)Λ4α + (θ̄θ̄)Λ5α + (θσmθ̄)Λ6mα

+ (θθ)(σmθ̄)αΛ7m + (θ̄θ̄)θαΛ8 − (θ̄θ̄)(σmnθ)αΛ8mn + (θθ)(θ̄θ̄)Λ9α

Ēα̇ = Λ̄α̇1 + θ̄α̇Λ̄2 − (σ̄mnθ̄)α̇Λ̄2mn − (σ̄mθ)α̇Λ̄3m + (θ̄θ̄)Λ̄α̇4 + (θθ)Λ̄α̇5 + (θσmθ̄)Λ̄α̇6m

− (θ̄θ̄)(σ̄mθ)α̇Λ̄7m + (θθ)θ̄α̇Λ̄8 − (θθ)(σ̄mnθ̄)α̇Λ̄8mn + (θθ)(θ̄θ̄)Λ̄α̇9
(2.9)

and, for convenience, we define the real gauge parameters

Λ̂3m ≡ Λ3m + Λ̄3m, Λ̃3m ≡ i(Λ3m − Λ̄3m)

Λ̂8 ≡ Λ8 + Λ̄8, Λ̃8 ≡ i(Λ8 − Λ̄8)

Λ̂8mn ≡ Λ8mn + Λ̄8mn, Λ̃8mn ≡ i(Λ8mn − Λ̄8mn)

(2.10)

where Λ̂8mn and Λ̃8mn follow relations analogous to those of Eq. (2.6), since Λ8mn is self-
dual.

In the next subsections, we will first develop the action and the components gauge
transformations, for bosons and fermions, respectively. Then, we will perform suitable field
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redefinitions in the Lagrangian to eliminate the gauge parameters. In [1, 30], the Lorenz
gauge is fixed on shell, requiring for example d2

0C = 0. Here, we will instead adopt the
unitary gauge, which is more appropriate for our purpose of keeping the physical fields only;
it is then systematic to work out the corresponding field redefinitions at the Lagrangian
level. In the end, both gauge choices, up to some additional field redefinitions, lead to the
same (decoupled) on-shell equations for the fields with spin-3/2 and with spin-2, as we will
show in section 3.

2.2 Bosons

We start with the bosonic part of the action, and we present in detail the manipulations
which allow to recover the Fierz-Pauli action for a massive field with spin-2.

2.2.1 Gauge transformations

The gauge transformations (2.8) lead for the case of the bosonic components of the super-
fields to:
Fields in B:

δcm = −2∂m∂
nΛ̂3n + 4εmnpq∂

nΛ̂pq8 + 2∂2Λ̂3m

δN = δN̄ = 0

δG =
1

2
∂2∂mΛ̃3m + ∂2Λ̂8

δϕ = −2∂mΛ̃3m − 4Λ̂8

(2.11)

Fields in C:
δam = −2∂m∂

nΛ̃3n + 8∂nΛ̂8mn + 2∂2Λ̃3m

δM = δM̄ = 0

δD = −1

2
∂2∂mΛ̂3m + ∂2Λ̃8

δφ = 2∂mΛ̂3m − 4Λ̃8

(2.12)

Fields in Vm:
δMm = −4i∂mΛ2 − 8i∂nΛ2mn − 8Λ7m

δDm = 4∂mΛ̂8 + 8∂nΛ̂8mn

δCm = −8Λ̃3m

δh = −8∂mΛ̂3m + 32Λ̃8

δvmn = 4(∂mΛ̂3n + ∂nΛ̂3m)− 2ηmn∂
kΛ̂3k

δfmn = 4εmnpq∂
pΛ̃3q + 16Λ̃8mn

(2.13)

Fields in Vα, V̄ α̇:

δω1m = 8∂2Λ̃3m − 8∂m∂
nΛ̃3n + 16Λ̃3m + 32∂nΛ̂8mn

δω2m = −8∂m∂
nΛ̂3n − 16Λ̂3m + 16∂mΛ̃8

δτ1 = −4∂2∂mΛ̂3m + 16Λ̃8 + 8∂2Λ̃8, δτ2 = −16Λ̂8

δτ2mn = 8(∂m∂
kΛ̂8nk − ∂n∂kΛ̂8mk) + 2∂2(∂mΛ̃3n − ∂nΛ̃3m)− 16Λ̂8mn

δqm = 16iΛ7m, δs = 16iΛ2, δsmn = 16iΛ2mn

(2.14)
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while the gauge transformation of τ1mn is determined by εmnpqδτ2pq = 2δτmn1 . Note that
all bosonic gauge parameters appear algebraically in the transformations at least once. It
follows that the unitary gauge eliminates all “gauge degrees of freedom” from the Lagrangian.

2.2.2 The Bosonic Lagrangian

The bosonic part of the neutral Lagrangian can be separated into two decoupled parts
which do not involve the same gauge parameters, namely each of them is separately gauge
invariant.

LB ≡ L1 + L2 (2.15)

In the first place, we have2

L1 =− 6M̄
(
4 + 3∂2

)
M + 6

[
(2iMm + qm) ∂mM̄ − i

(
N +

1

2
s

)
∂2M̄ + h.c.

]

+ 4MmM̄
m +

[
Mm

(
4∂mN̄ + ∂ms̄+ 2∂ns̄

mn + 2iq̄m
)

+ h.c.
]

− 1

4
s∂2s̄+ qmq̄

m − 2N̄
(
∂2 − 4

)
N −

(
2iqm∂

mN̄ + s∂2N̄ + h.c.
)

+ (∂ks
mk) (∂ns̄mn)− 1

2
i (qm∂

ms̄+ 2qm∂ns̄
mn + h.c.)

(2.16)

The first step is to integrate Mm, with

Mm =
1

4
[−4∂mN − ∂ms− 2∂nsmn + 2i (6∂mM + qm)] (2.17)

The integration of Mm also eliminates s, smn and qm. In particular, s could be seen as
a Stückelberg field for Mm, in the sense that a redefinition Mm → M ′m − 1

4∂ms makes s
disappear completely from the Lagrangian. Note however that in the gauge transformations
of our Lagrangian, (Mm + 1

4∂ms) itself is not gauge invariant because other fields interfere
with its gauge transformation. For the remaining fields we have δM = δN = 0, so the
Lagrangian is totally gauge-fixed. It reads,

L1 = −1

2
M1

(
12− 9∂2

)
M1 −

1

2
M2

(
12− 9∂2

)
M2 − 3M2∂

2N1 + 3M1∂
2N2

+
1

2
N1

(
4 + ∂2

)
N1 +

1

2
N2

(
4 + ∂2

)
N2

(2.18)

where we defined the real and imaginary parts of {M,N} as

N1 = N + N̄ , N2 = i(N − N̄)

M1 = M + M̄, M2 = i(M − M̄)
(2.19)

After the redefinition

N1 →
1

4
N1 + 3M2, M1 →

1

12
M1 −

N2

3
(2.20)

2The possibility of integration by parts in the Lagrangian, i.e. that the boundary contributions from the
total derivatives vanish, is assumed throughout this work.
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M2 and N2 lose their kinetic terms (i.e. become auxiliary). Then integrating them out, we
obtain a Lagrangian of two free massive real scalars N1, M1:

L1 =
1

2
M1

(
−2 + ∂2

)
M1 +

1

2
N1

(
−2 + ∂2

)
N1 (2.21)

On the other hand, L2 contains only real fields, with

L2 =− 1

2
vmn(2− ∂2)vmn+

1

2
∂nvmn∂kv

mk+∂nvmn∂kf
mk− 1

2
fmn(2− ∂2)fmn + ∂nvmnω

m
2

+
1

2
∂nfmn∂kf

mk − 2cm (∂nfmn − ∂nvmn) + εmnpqf
mnτpq2 − (∂n∂mv

mn)

(
1

4
h+ 6φ

)

− 2cmcm −
1

2
(∂mcm)2 +

1

8
ωm2 ∂

2ω2m −
1

8
(∂mω

m
2 )2 − ∂mcm

(
6D +

1

2
h+

3

2
∂2φ− τ1

)

+ ∂mω2m

(
3D − 1

2
∂nc

n +
1

4
h− 9

4
∂2φ− 1

2
τ1

)
− Ωm

(
6am −

1

2
ω1m

)
− 66D2

− 3D
(
4h− 6τ1 + 8φ− 5∂2φ

)
− 1

4
h

(
1− 3

8
∂2

)
h− τ2

1 − τ1

(
3

2
∂2φ− h

)
− 33

8
φ∂4φ

+
3

2
h∂2φ+ 2D2

m −
1

8
ϕ∂4ϕ−G

(
−8ϕ+ ∂2ϕ

)
− 2G2 − 1

8
ωm1 ∂

2ω1m −
1

8
(∂mω1m)2

−Dm
(
12am − 4Cm + ∂2Cm−4∂mϕ− 2ω1m

)
−ϕ

(
1

2
∂2τ2 −

3

2
∂2∂mam +

1

4
∂2∂mω1m

)

−G (−6∂mam + 4∂mCm + ∂mω1m + 2τ2) + 6(∂mam)(∂nCn)− τ2 (∂mCm − 3∂mam)

+ ωm1
(
2∂nτ2mn + 3∂2am

)
− 1

2
τ2∂

mω1m +
9

2
(∂mam)(∂nω1n) + τ2mnτ

mn
2

− 2∂nτ2mn (6am − Cm) +
1

8
Cm∂4Cm − 6am(2∂2 − 1)am − 33

2
ama

m + 3am∂
2Cm

(2.22)
Notice that the fields D, Dm, G, τ1, τ2, τ2mn are auxiliary, and can be integrated out before
the gauge fixing process. The scalar field ϕ disappears subsequently.3 We are now left with

L2 =6
(
am∂2am + ∂mam∂

nan − 2amam
)

+

(
3

2
Cm∂2Cm − 2CmCm + 2∂mCm∂

nCn

)

+ 6
(
2amCm − am∂2Cm − ∂mam∂nCn

)
− CmΩm − 2

(
1

5
∂mcm∂

ncn + cmcm

)

+
1

8

(
3ωm1 ∂

2ω1m + ωm2 ∂
2ω2m

)
− 1

2
ωm1 ω1m +

1

2
∂mω1m∂

nω1n −
1

10
∂mω2m∂

nω2n

+ ∂mω1m (2∂nCn − 3∂nan) + ωm1

(
6am − 3∂2am − 2Cm +

3

2
∂2Cm −

1

2
Ωm

)

− 6

5

(
3φ∂4φ− φ∂2φ+ 8φ2

)
+

(
3

32
h∂2h− 3

20
h2

)
+

(
9

10
φ∂2h− 12

5
hφ

)

(2.23)

3Without going into the details of the calculation, it can be seen from the fact that ϕ is not an independent
degree of freedom but a pure gauge field associated with the gauge transformation with the parameter Λ̂8.
The other fields transforming with Λ̂8 are {G,Dm, τ2, τ2mn}. When these fields are integrated, ϕ must
naturally disappear from the Lagrangian.
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+ 6φ

(
2

5
∂mcm −

2

5
∂2∂mcm −

1

5
∂mω2m −

3

10
∂2∂mω2m − ∂m∂nvmn

)

+ h

(
3

10
∂mcm −

3

20
∂mω2m −

1

4
∂m∂nvmn

)
+ 2cm (∂nvmn − ∂nfmn)− 3

5
∂mcm∂

nω2n

+ ωm2 ∂
nvmn +

1

2
∂nfmn∂kf

mk +
1

2
∂nvmn∂kv

mk + ∂nvmn∂kf
mk +

1

2
vmn

(
∂2 − 2

)
vmn

with the dual field strength of fmn given by

Ωm ≡ εmnpq∂nfpq (2.24)

The Lagrangian Eq. (2.23) is our starting point here. It is obviously not in a desirable
form as it contains terms with more than two derivatives as well as several non-propagating,
pure gauge or auxiliary fields. To find the gauge-fixed Lagrangian, it is useful to construct
gauge invariant field combinations:

δ

(
h+ 8φ+ 2∂2φ+

1

2
∂mω

m
2

)
= 0

δ

(
vmn +

1

4
∂mω2n +

1

4
∂nω2m −

1

8
ηmn∂kω

k
2 + 2∂m∂nφ−

1

2
ηmn∂

2φ

)
= 0

δ

(
cm +

1

2
∂nfmn +

1

8
∂2ω2m −

1

8
∂m∂nω

n
2

)
= 0

δ

(
Cm +

1

2
ω1m −

1

2
Ωm

)
= 0

δ

(
am −

1

2
Cm −

1

4
ω1m

)
= 0

(2.25)

Note that ω2m and φ can be considered as Stückelberg fields for the symmetric part
of hmn (describing a field with spin-2). This can be seen from the following definition of a
new massive field, which no longer has a transformation under gauge symmetry:

h̃mn ≡ vmn+
1

4
ηmn (h+ 8φ)+

1

4
∂m (ω2n + 4∂nφ)+

1

4
∂n (ω2m + 4∂mφ) , δh̃mn = 0 (2.26)

It is then straightforward to eliminate the Stückelberg fields by setting the unitary gauge,
so that eventually φ and ω2m will disappear from the Lagrangian. By a similar reasoning,
we can algebraically gauge away ω1m and fmn. More precisely, the unitary gauge is fixed
by the two-step redefinition:

1. ω1m → ω1m + 4am, ω2m → ω2m − 4∂mφ

As a consequence, the vector fields ω1m, ω2m become pure gauges, whose new gauge
transformations are δω1m = 16Λ̃3m, δω2m = −16Λ̂3m, without dependence of the
other gauge parameters. The next step consists in redefining the other fields so that
these two gauge parameters {Λ̂3m, Λ̃3m} do not appear in their transformations, and
so when ω1m and ω2m become the only fields depending on Λ̃3m and Λ̂3m, they can
be eliminated, i.e. algebraically gauged away.
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2. cm → cm − 1
2∂

nfmn − 1
8∂

2ω2m + 1
8∂m∂nω

′n
2

h→ h− 8φ− 1
2∂

mω2m, vmn → vmn + 1
8ηmn∂

kω2k − 1
4∂mω2n − 1

4∂nω2m

Cm → Cm − 1
2ω1m, am → am + 1

4εmnpq∂
nfpq

The resulting Lagrangian is totally gauge-fixed: δam = δCm = δcm = δvmn = δh = 0.
We can furthermore decouple Cm by the shift

am → am −
1

2
Cm (2.27)

which gives rise to

L2 =
3

2
Cm

(
∂2 − 2

)
Cm +

3

2
∂mCm∂

nCn + 4amam + 2∂mam∂
nan

− 2cmcm −
2

5
∂mcm∂

ncn −
3

20
h2 +

3

32
h∂2h− vmnvmn +

3

10
h∂mcm

+ 2cm∂nvmn −
1

4
h∂m∂nvmn +

1

2
∂nvmn∂kv

mk +
1

2
vmn∂2vmn

(2.28)

After normalisation Cm → Cm/
√

3, Cm has a Proca Lagrangian for massive spin-1
particles with equation of motion and constraint:

(
∂2 − 2

)
Cm = 0, ∂mCm = 0 (2.29)

The Lagrangian of am seems to have a wrong sign in front of the mass term, and a
kinetic term of the form am∂2am is absent. In fact, the equation of motion of am is

2am = ∂n∂man (2.30)

taking its divergence, we have
(∂2 − 2)∂mam = 0 (2.31)

The equation (2.30) also implies ∂man − ∂nam = 0, namely, am is curl-free and can
be written as the gradient of a scalar. Therefore, am has only one longitudinal degree of
freedom. In effect, am is precisely the Curtright-Freund field [32] describing the dual theory
of a free massive scalar.4 This duality has been shown in [32] by introducing a totally
anti-symmetric tensor vabc and a parent Lagrangian

Lparent =
1

6
εmnklvmnk∂lφ+

1

12
(vmnk)

2 + φ2 (2.32)

Both fields are auxiliary and can be integrated out. If one eliminates vmnk, a free massive
scalar is recovered, otherwise, one finds a Lagrangian of a new vector vm ≡ 1

6ε
mnklvnkl

which is proportional to (∂mvm)2 + 2v2
m. Alternatively, a straightforward way to convert

the vector into the dual scalar, is to add a decoupled auxiliary scalar field A to the am
Lagrangian, and the new Lagrangian is physically equivalent:

L = amam +
1

2
(∂mam)2 − 1

2
A2 (2.33)

4For a detailed study on the duality between tensors of different ranks, see for example [33].
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Then do the field redefinition

A→ A+ ∂mam (2.34)

The (∂mam)2 term is shifted away, and we are able to integrate out am, yielding the
Lagrangian of a free massive scalar. After rescaling A, we have

L =
1

2
A(∂2 − 2)A (2.35)

Conversely, the Lagrangian of am can be recovered from (2.35) by adding to the latter
an auxiliary vector, with a single mass term BmBm, then shifting Bm by ∂mA allows to
eliminate A’s kinetic term, and integrating out A, we obtain BmBm + 1

2(∂mBm)2.

2.2.3 Recovering the Fierz-Pauli Lagrangian

The second and third lines of (2.28) provide terms of the Lagrangian of a massive spin-2
field. However, we do not recognize the Fierz-Pauli Lagrangian because of the couplings of
vmn to the cm vector field.

To acquire a better understanding of these couplings, we shall investigate this La-
grangian on shell. The equations of motion are

(2− ∂2)vmn = −(∂mcn + ∂ncm)− 1

2
(∂m∂

kvnk + ∂n∂
kvmk)−

1

4
∂m∂nh

(
∂2 − 8

5

)
h =

4

3
∂m∂nv

mn − 8

5
∂mc

m

cm =
1

5
∂m∂

ncn −
3

40
∂mh+

1

2
∂nvmn

(2.36)

They imply
h = −4∂mc

m, ∂nvmn = 0

(∂2 − 2)cm = 0, (∂2 − 2)vmn = 0

(∂2 − 2)h = 0, cm = −1

8
∂mh

(2.37)

The constraints cm = −1
8∂mh and ∂nvmn = 0 remove 8 degrees of freedom, meaning that

{vmn, h, cm} count in total 6 degrees of freedom on shell. Taking into account the to-be
spin-2 particle which itself has 5 degrees of freedom, the remaining field then must be a
scalar. In fact, the above equations can be decoupled by introducing a new symmetric
rank-2 tensor, whose trace is shifted by the divergence of cm:

hmn ≡ vmn + ηmn(
1

4
h+ ∂kc

k) (2.38)

After rewriting (2.37), the field hmn is found to satisfy a Fierz-Pauli system of equation of
motion and constraints:

(∂2 − 2)cm = 0, 2cm − ∂m∂ncn = 0

(∂2 − 2)hmn = 0, ∂nhmn = 0, hmm = 0
(2.39)
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Clearly, cm has the same equation of motion as am, thus is dual to a massive scalar.
However, at the Lagrangian level, a naive redefinition of the field h→ h−4∂mcm to absorb
the divergence in the trace does not decouple cm, and in addition gives rise to higher
derivative couplings.

To deal with this issue, the same technique (2.33)-(2.34) can be employed. We add to
(2.28) an auxiliary scalar term +2

5B
2, then shift B with

B → B + ∂mcm −
3

8
h (2.40)

where the second term cancels the kinetic term of cm, and the third one is to decouple h
and cm on shell. As a result, cm becomes auxiliary, with equation of motion

cm =
1

2
∂nvmn −

1

5
∂mB (2.41)

Integrating out cm and also substituting am with its dual massive scalar A, the La-
grangian L2 becomes

L2 =
1

2
Cm

(
∂2 − 2

)
Cm +

1

2
∂mCm∂

nCn +
1

2
A
(
∂2 − 2

)
A+

2

5
B2 − 2

25
B∂2B

− 3

10
hB +

2

5
B∂m∂nvmn −

3

32
h2 +

3

32
h∂2h− 1

4
h∂m∂nvmn

− vmnvmn +
1

2
vmn∂2vmn + ∂nvmn∂kv

mk

(2.42)

Only physical degrees of freedom remain in the Lagrangian, but the new scalar B is
not yet decoupled. This will be remedied by an additional field redefinition

B → 5
√

2

4
B +

15

8
h, h→ h+ 2

√
2B (2.43)

Finally, we express the spin-2 field in terms of a symmetric tensor h′mn ≡ vmn + 1
4ηmnh,

and the bosonic Lagrangian is written in the following

LB =
1

2
h′mn

(
∂2 − 2

)
h′mn −

1

2
h
(
∂2 − 2

)
h+ h′mn∂

m∂nh+ ∂nh′mn∂kh
′mk

+
1

2
Cm

(
∂2 − 2

)
Cm +

1

2
(∂mCm)2 +

1

2
A
(
∂2 − 2

)
A+

1

2
B
(
∂2 − 2

)
B

+
1

2
M1

(
∂2 − 2

)
M1 +

1

2
N1

(
∂2 − 2

)
N1

(2.44)

One recognises the Fierz-Pauli Lagrangian in the first line, complemented with a set of
decoupled real scalars {A,B,M1, N1} and one massive vector Cm. This Lagrangian of the
bosonic sector contains 12 degrees of freedom on shell as it should.
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2.2.4 Summary

The bosonic action after expansion of the superfields into components has 80 degrees of
freedom off-shell. Several degrees of freedom are non-physical:

• Auxiliary fields, which are integrated out before starting to perform appropriate field
redefinitions.

• Gauge degrees of freedom, that are totally fixed by the unitary gauge.

• Non propagating fields as the transverse components of am, cm.

After getting rid of these, further field redefinitions are needed to decouple fields in the
Lagrangian.

For L1, the auxiliary fieldMm is integrated out yielding (2.18). The real scalars N2,M2

are first rendered auxiliary by the redefinition

N1 →
1

4
N1 + 3M2, M1 →

1

12
M1 −

N2

3
(2.45)

then integrated out to give:

L1 =
1

2
M1

(
−2 + ∂2

)
M1 +

1

2
N1

(
−2 + ∂2

)
N1 (2.46)

For L2, the auxiliary fields {D,Dm, G, τ1, τ2, τ2mn} are integrated first, which leads to
(2.23). The process of fixing the gauge amounts to the following one-step redefinitions

ω1m → ω1m + 2am + Ωm −
2√
3
Cm, ω2m → ω2m − 4∂mφ

cm → cm −
1

2
∂nfmn −

1

8
∂2ω2m +

1

8
∂m∂nω

n
2

h→ h− 8φ− 1

2
∂mω2m, vmn → vmn +

1

8
ηmn∂

kω2k −
1

4
∂mω2n −

1

4
∂nω2m

Cm →
1√
3
Cm −

1

2
ω1m, am →

1

2
am +

1

4
Ωm −

1

2
√

3
Cm

(2.47)

which take us to

L2 =
1

2
Cm

(
∂2 − 2

)
Cm +

1

2
∂mCm∂

nCn + amam +
1

2
∂mam∂

nan −
1

2
A2 +

2

5
B2

− 2cmcm −
2

5
∂mcm∂

ncn −
3

20
h2 +

3

32
h∂2h− vmnvmn +

3

10
h∂mcm

+ 2cm∂nvmn −
1

4
h∂m∂nvmn +

1

2
∂nvmn∂kv

mk +
1

2
vmn∂2vmn

(2.48)

when auxiliary scalars A, B are added. Then, making the field redefinitions

A→ A+ ∂mam, B → B + ∂mcm −
3

8
h (2.49)

and eliminating am, cm, we are left with their dual scalars. The last redefinition

B → 5
√

2

4
B +

15

8
h, h→ h+ 2

√
2B (2.50)

gets us in the end to the decoupled bosonic Lagrangian (2.44) with a Fierz-Pauli part for
the massive spin-2 field.
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2.3 Fermions

This subsection is structured in a similar way to the corresponding bosonic part 2.2. First,
we present below the gauge transformations under which the fermionic Lagrangian is in-
variant. Then, we will perform a series of redefinitions and fix the gauge to be the unitary
gauge, thus eliminating the non-physical fields to end up with the desired Lagrangian where
the field with spin-3/2 is described by a Rarita-Schwinger Lagrangian.

2.3.1 Gauge transformations

The gauge transformations (2.8) lead for the case of the fermionic components of the su-
perfields to:
Fields in B:

δγα = −i∂2Λ1α − 4(σm∂mΛ̄5)α + 2∂mΛ6mα − 4iΛ9α

δρα =
1

2
(σm∂m∂

2Λ̄1)α + 2i∂2Λ5α − i(σm∂m∂nΛ̄n6 )α + 2(σm∂mΛ̄9)α
(2.51)

Fields in C:

δξα = ∂2Λ1α + 4i(σm∂mΛ̄5)α + 2i∂mΛ6mα + 4Λ9α

δψα = −1

2
i(σm∂m∂

2Λ̄1)α − 2∂2Λ5α − (σm∂m∂nΛ̄n6 )α − 2i(σm∂mΛ̄9)α
(2.52)

Fields in Vm:

δχmα = −4
[
2σmΛ̄5 + σnσ̄m (Λ6n − i∂nΛ1)

]
α

δλmα = −4i(σnσ̄m∂
nΛ5)α + 8(σmΛ̄9)α + 2i

(
σnσ̄kσm∂kΛ̄6n

)
α

(2.53)

Fields in Vα, V̄ α̇:

δvα = 2i(8Λ1α + ∂2Λ1α)− 8(σm∂
mΛ̄5)α − 4∂mΛ6mα + 8iΛ9α

δηα = 16iΛ4α

δζα = −2(σm∂
m∂2Λ̄1)α + 8i(2Λ5α + ∂2Λ5α) + 4i(σm∂

m∂nΛ̄6n)α − 8(σm∂
mΛ̄9)α

δrmα = 2∂2∂mΛ1α + 8i(σn∂n∂mΛ̄5)α + 4i(4Λ6mα + ∂m∂
nΛ6nα) + 8∂mΛ9α

δµα =
1

2
i∂4Λ1α − 2(σm∂

m∂2Λ̄5)α − ∂2∂mΛ6mα + 2i(8Λ9α + ∂2Λ9α)

(2.54)

It will be useful to note that the following field combinations are gauge invariant:

δ

(
ρα +

1

2
i(σm∂mγ̄)α

)
= 0, δ

(
ψα +

1

2
i(σm∂mξ̄)α

)
= 0 (2.55)

Before developing the superfields into their components in the action, it is already possible
to glimpse some characteristics of the fermionic Lagrangian. To begin with, we note that
the gauge transformation δηα is algebraic in a gauge parameter that does not occur any-
where else, so ηα will not appear in the Lagrangian. The remaining fields share the gauge
parameters {Λ1α,Λ5α,Λ6mα,Λ9α} as well as their Hermitian conjugates, so it follows that
we will be able to eliminate three spin-1/2 and one spin-3/2 field per gauge. More precisely,
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we have (i) δvα, δγα, δξα, δλmα, δµα are algebraic in Λ9α (ii) δχmα, δζα are algebraic in Λ5α

(iii) δrmα and δχmα are algebraic in Λ6α (iv) δvα is algebraic in Λ1α. Our strategy is the
same as in the bosonic case: we gauge away algebraically vα, rmα, ζα, ξα, and in the gauge-
fixed Lagrangian, we integrate out auxiliary degrees of freedom. Finally, we perform further
redefinitions necessary to decouple the physical fermions. Our final Lagrangian contains
the spin-3/2 {χm, λ̄m} as well as the spin-1/2 {γ, ψ̄} fields. This differs from [1], where ξ
instead of γ is kept as a physical fermion. Of course, here and in the case of charged fields,
either choice leads to an equivalent Lagrangian related to the other by field redefinitions.
In the same way, one can also eliminate χm as a pure gauge instead of rm.

2.3.2 The fermionic Lagrangian

The expansion of the superfields into components and the integration over the Grassman-
nian coordinates lead to the following Lagrangian for fermionic fields:

−LF =i(λmσn∂nλ̄m)+
i

4

(
χ̄mσ̄n∂n∂

2χm
)
− 1

2

[(
λm∂2χm

)
+
(
χ̄m∂2λ̄m

)]
+2
[
λmχm+χ̄mλ̄m

]

− 33

4
i
[(
ξ̄σ̄m∂m∂

2ξ
)

+ 4
(
ψσm∂mψ̄

)]
+

15

2

[(
ψ∂2ξ

)
+
(
ξ̄∂2ψ̄

)]
− 12

[
(ψξ) +

(
ξ̄ψ̄
)]

+ 3

[
i (χm∂mψ)− i (λm∂mξ) + 2

(
λmσmψ̄

)
+

1

2

(
χmσm∂

2ξ̄
)

+ h.c.
]

− 6

[
i(∂mψσmnχ

n) +
1

2
(χmσn∂m∂nξ̄) + i(λmσmn∂

nξ) + h.c.
]

+
3

4
i
[
(v∂2ψ)− (ψ̄∂2v̄)

]
+

9

8

[(
vσm∂m∂

2ξ̄
)

+ h.c.
]

+ 9i
[
(µψ)− (ψ̄µ̄)

]

+
3

2

[(
µσm∂mξ̄

)
+ h.c.

]
− 3i

[
(ζ∂2ξ)− (ξ̄∂2ζ̄)

]
]− 6

[
(ζσm∂mψ̄) + h.c.

]

+
3

4

[
i(rmσ

m∂2ξ̄)− 3i(rmσ
n∂n∂

mξ̄)− 4(rmσ
mn∂nψ) + 4(rm∂

mψ) + h.c.
]

+
1

2
[(λm∂mv) + 2(λmσ

mn∂nv)− 2i(χmσmµ̄) + h.c.]

+
1

2

[
−(χm∂mζ)− 2(χmσ

mn∂nζ) + 2i(λmσmζ̄) + h.c.
]

+
1

4
[(χmσn∂nr̄m)

+(χ̄mσ̄m∂
nrn) + (χ̄mσ̄n∂mrn)− iεmlkn(χmσl∂kr̄n)− 2i(λmσ

nσ̄mrn) + h.c.
]

+
1

2

[
(v∂2ζ) + (v̄∂2ζ̄)

]
+ 2

[
(µζ) + (ζ̄µ̄)

]
+ i
[
(ζ∂mrm) + (r̄m∂mζ̄)

]

+
1

8

[
−4i(vσm∂mµ̄) + (rmσ

m∂2v̄)− 2(vσm∂m∂nr̄
n) + h.c.

]
− i(ζσm∂mζ̄)

− 1

2
[(rmσ

mµ̄) + h.c.]− 1

8
i
[
(rmσ

kσ̄nσm∂kr̄n) + (rmσ
kσ̄mσn∂nr̄k)

]

+
3

2

[(
ρ+

1

2
iγ̄σ̄m∂m

)(
i∂2ξ − 2σn∂nψ̄

)
+ h.c.

]
+ 2 [(χm∂mρ) + (λm∂mγ) + h.c.]

+

[(
µ− 1

4
∂2v

)(
ρ+

1

2
iσm∂mγ̄

)
+ h.c.

]
+

[
irmσ

mn∂n

(
ρ+

1

2
iσk∂kγ̄

)
+ h.c.

]

− i

(
ρ+

1

2
iγ̄σ̄m∂m

)
σn∂n

(
ρ̄+

1

2
iσ̄k∂kγ

)
+ 4 [(γρ) + (ρ̄γ̄)]

(2.56)
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As expected, the ηα component is absent. Moreover, µ appears as a Lagrange multiplier,
giving rise to a constraint that will be applied at the end of the gauge fixing. Another feature
of (2.56) is the presence of higher derivative terms, requiring an additional redefinition of
the fields. We proceed in several steps:

1. Eliminate higher derivative kinetic terms of χmα:

λ̄α̇m → λ̄α̇m + 1
2 i(σ̄n∂nχm)α̇

2. Algebraically gauge away vα, which is in effect the Stückelberg field of rm:

µα → µα + 1
4∂

2vα, rmα → rmα + i∂mvα

3. Eliminate higher derivative kinetic terms of ξα:

ζα → ζα − 2(σm∂mξ̄)α, rmα → rmα + 4∂mξα, ψα → ψα − 1
2 i(σm∂mξ̄)α

4. Algebraically gauge away rmα:

χmα → χmα + 1
4 i(σnσ̄mr

n)α, µα → µα − 1
2 i∂mrmα

5. Algebraically gauge away ζα:

χmα → χmα − 1
2 i(σmζ̄)α, µα → µα + i(σm∂mζ̄)α

λmα → λmα + ∂mζα, γα → γα − 1
2 i(σm∂mζ̄)α, ρα → ρα + 1

4∂
2ζα

6. Eliminate higher derivative kinetic terms of γα:

ρα → ρα − 1
2 i(σm∂mγ̄)α

7. Algebraically gauge away ξα:

γα → γα − iξα, µα → µα + 4iξα, λmα → λmα + 2(σmξ̄)α

Overall, all these steps amount to a redefinition:

λmα → λmα +
1

2
i(σn∂nχ̄m)α +

1

8
(σkσ̄nσm∂kr̄n)α +

1

4
(σnσ̄m∂nζ)α + ∂mζα + 2(σmξ̄)α

µα → µα +
1

4
∂2vα −

1

2
i∂mrmα + i(σm∂mζ̄)α + 4iξα

rmα → rmα + i∂mvα + 4∂mξα

ζα → ζα − 2(σm∂mξ̄)α

ψα → ψα −
1

2
i(σm∂mξ̄)α

χmα → χmα +
1

4
i(σnσ̄mr

n)α −
1

2
i(σmζ̄)α

γα → γα −
1

2
i(σm∂mζ̄)α − iξα

ρα → ρα +
1

4
∂2ζα −

1

2
i(σm∂mγ̄)α +

1

2
(σm∂mξ̄)α

(2.57)
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We obtain, subsequently, a gauge-fixed Lagrangian exempt from higher derivatives:

LF =− i(λmσn∂nλ̄m)− 2i (χ̄mσ̄n∂nχm)− 2
[
(λmχm) + (χ̄mλ̄m)

]

+ 33i
(
ψσm∂mψ̄

)
−
[
6i (χm∂mψ) + 6

(
λmσmψ̄

)
+ h.c.

]

− 9i
[
(µψ)− (ψ̄µ̄)

]
− [i(µσmχ̄

m) + h.c.]− [(µρ) + h.c.]

+ i (ρσm∂mρ̄)− 4 [(γρ) + (ρ̄γ̄)] + 4i(γσm∂mγ̄)

+ 3
[(
ρσm∂mψ̄

)
+ h.c.

]
− 2 [(χm∂mρ) + (λm∂mγ) + h.c.]

(2.58)

µα as a Lagrange multiplier implies the additional constraint:

ρα = −9iψα − i(σmχ̄
m)α (2.59)

which can be used to eliminate ρα. The Lagrangian takes then the form:

LF =− i(λmσn∂nλ̄m)− i
(
χ̄mσ̄

nσkσ̄m∂kχn

)
− 2

[
(λmχm) + (χ̄mλ̄m)

]

+ 60i
(
ψσm∂mψ̄

)
−
[
6i (χmσnσ̄m∂

nψ) + 6
(
λmσmψ̄

)
+ h.c.

]

+ 4i(γσm∂mγ̄) + 36 [i(ψγ) + h.c.] + 4 [i(γσmχ̄m) + h.c.]

− 2 [(λm∂mγ) + h.c.]

(2.60)

2.3.3 Recovering the Rarita-Schwinger Lagrangian

A quick investigation shows that (2.60) describes on-shell 12 fermionic degrees of freedom.
While it is possible, we will not be restricted to the above compact form of the Lagrangian.
Same as in the bosonic case, we will show that the different fields can be decoupled in the
Lagrangian, and we will put it into a more usual form. For this purpose, we will make the
following series of redefinitions, where for each step we present the resulting Lagrangian:

1. Put the kinetic term for λmα in the most usual Rarita-Schwinger form

γα → γα −
1

2
i(σmλ̄m)α, λmα → λmα − 2i(σmγ̄)α (2.61)

LF =− εmknl(λmσl∂kλ̄n)− i
(
χ̄mσ̄

nσkσ̄m∂kχn

)
− 4 [(χmσmnλ

n) + h.c.]

+ 60i
(
ψσm∂mψ̄

)
− 12i(γσm∂mγ̄)− 12 [i(ψγ) + h.c.]

−
[
6i (χmσnσ̄m∂

nψ)− 12
(
λmσmψ̄

)
+ 4 (γσmn∂mλn) + h.c.

]
(2.62)

2. Recover the correct sign for the kinetic term of ψα

χmα → χmα − 2(σmψ̄)α (2.63)

LF =− εmknl(λmσl∂kλ̄n)− i
(
χ̄mσ̄

nσkσ̄m∂kχn

)
− 4 [(χmσmnλ

n) + h.c.]

− 4i
(
ψσm∂mψ̄

)
− 12i(γσm∂mγ̄)− 12 [i(ψγ) + h.c.]

− [6i (χmσnσ̄m∂
nψ)− 8i(ψ∂mχm) + 4 (γσmn∂mλn) + h.c.]

(2.64)
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3. Put the kinetic term for χmα in the most usual Rarita-Schwinger form

λmα → λmα + i(σn∂mχ̄n)α ψα → ψα +
1

2
(σmχ̄m)α (2.65)

LF =− εmknl(λmσk∂nλ̄l)− 2εmknl(χmσk∂nχ̄l)− 4 [(χmσmnλ
n) + h.c.]

− 4i
(
ψσm∂mψ̄

)
− 12i(γσm∂mγ̄)− 12 [i(ψγ) + h.c.]

− [8i (ψσmn∂mχn) + 4 (γσmn∂mλn) + 6i(γσmχ̄m) + h.c.]

(2.66)

4. Decouple the spin-3/2 and spin-1/2 fields

λmα → λmα − i(σmγ̄)α + 2i∂mψα (2.67)

LF =− εmknl(λmσk∂nλ̄l)− 2εmknl(χmσk∂nχ̄l)− 4 [(χmσmnλ
n) + h.c.]

− 4i
(
ψσm∂mψ̄

)
− 18i(γσm∂mγ̄)− 12 [i(ψγ) + h.c.]

(2.68)

5. Rescale the fermions

ψ̄α̇ → i

2
ψ̄α̇, γα →

1

3
√

2
γα, χmα →

1√
2
χmα (2.69)

Overall (2.61)-(2.69) can be combined into a single step:

χmα →
√

2(σmnχ
n)α − i(σmψ̄)α

λ̄α̇m → λ̄α̇m −
1√
2

i(σ̄mγ)α̇ + ∂mψ̄
α̇ +

1√
2

i(σ̄n∂mχn)α̇

γα →
1√
2
γα −

i

2
(σm∂mψ̄)α −

1

2
i(σmλ̄m)α +

1

2
√

2
(σmσ̄n∂mχn)α

ψ̄α̇ → i

2
ψ̄α̇ − 1

2
√

2
(σ̄mχm)α̇

(2.70)

which results in

LF =− εmnkl(λmσn∂kλ̄l) + εmnkl(χ̄mσ̄n∂kχl)− 2
√

2 [(λmσmnχ
n) + h.c.]

− i
(
ψσm∂mψ̄

)
− i(γσm∂mγ̄)−

√
2 [(ψγ) + h.c.]

(2.71)

Eq. (2.71) is the sum of a Rarita-Schwinger Lagrangian for the massive spin-3/2
(χm, λ̄m) and a Dirac Lagrangian for the massive spin-1/2 (γ, ψ̄). The corresponding equa-
tions of motion and constraints are

iσ̄nα̇α∂nγα = −
√

2ψ̄α̇, iσmαα̇∂mψ̄
α̇ = −

√
2γα

iσ̄nα̇α∂nχmα = −
√

2λ̄α̇m, iσnαα̇∂nλ̄
α̇
m = −

√
2χmα

σ̄mα̇αχmα = 0, ∂mχmα = 0, σmαα̇λ̄
α̇
m = 0, ∂mλ̄α̇m = 0

(2.72)

It is useful to observe that the physical degrees of freedom all reside in {B, C, Vm}, with
B and C each providing a chiral multiplet, {γα, B,N1} and {ψ̄α̇, A,M1}, and Vm providing
a massive spin-2 multiplet, {h′mn, χmα, λ̄α̇m, Cm}. When the background is turned on, these
multiplets will be complex instead of real in the neutral case here. Moreover, we expect to
find the same (but complex) fields corresponding to the physical degrees of freedom. Their
Lagrangians then reduce to (2.44), (2.72) when the electromagnetic field is set to zero.
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3 Superspace action in the presence of an electromagnetic background

In a constant electromagnetic background, the action in superspace, describing at the bilin-
ear level the fields associated with the first massive level of the open superstring, has been
derived in [1] using the four-dimensional hybrid formalism for open superstring field theory
[29]. Compared to above, the physical bosons become complex and the number of fermions
is doubled, as a result we have 12 complex degrees of freedom on-shell for the bosons and
for the fermions.

In the bosonic sector, the physical degrees of freedom (d.o.f.’s) correspond to a massive
spin-2 (5 d.o.f.’s), a massive vector Cm (3 d.o.f.’s) and four scalars (4 d.o.f.’s), all of which
are complex (i.e. 12 complex d.o.f.’s). For its part, the fermionic sector includes two massive
Dirac fermions of spin-3/2 (8 d.o.f.’s), and two massive Dirac fermions of spin-1/2 (4 d.o.f.’s)
(i.e. 12 complex d.o.f.’s).

3.1 The superspace action

The action of [1]:

S = − 1

16

∫
d4xp2

0p̄
2
0

{
V †n (ηnm − iεnm)

[
−
{
d2

0, d̄
2
0

}
Vm + 16Πn

0 Πn0Vm − 32 (ηmp − iεmp)V
p

− 32
((
∂θ̄0d̄0

)
Vm + (∂θ0d0)Vm

)
+ 8σ̄α̇αm

(
dα0Ū2α̇ − d̄α̇0U1α

)
+ 32Πm0B

+24σ̄α̇αm
[
d̄α̇0, dα0

]
C
]

+ Uα2
[
−8σnαα̇ (ηnm − iεnm) d̄α̇0V

m + 4d̄α̇0dα0Ū
α̇
2 − 4d̄2

0U1α

+dα0d̄
2
0(−2iB + 18C) + ∂θα0(−32iB − 96C)− 48iΠαα̇0d̄

α̇
0C
]

− Ū1α̇

[
−8σ̄nα̇α (ηnm − iεnm) dα0V

m + 4d2
0Ū

α̇
2 − 4dα0 d̄

α̇
0U1α − d̄α̇0d2

0(2iB + 18C)
+∂θ̄α̇0 (−32iB + 96C) + 48iΠα̇α

0 dα0C
]

+ B† [−32Πn
0 (ηnm − iεnm)V m

+
({
d2

0, d̄
2
0

}
− 64

)
B + 3i

[
d2

0, d̄
2
0

]
C − i

(
2d2

0d̄α̇0 + 32∂θ̄α̇0

)
Ū α̇2 + i

(
2d̄2

0d
α
0 + 32∂θα0

)
U1α

]

+ 3C†
[
−8σ̄nα̇α

[
dα0, d̄α̇0

]
(ηnm − iεnm)V m −

(
6dα0 d̄

2
0 + 8iΠα̇α

0 d̄α̇0

)
U1α

−
(
6d̄α̇0d

2
0 + 8iΠαα̇0d

α
0

)
Ū α̇2 −

[
d2

0, d̄
2
0

]
iB

−
(
−11

{
d2

0, d̄
2
0

}
+ 128Πn

0 Πn0 − 256∂θ̄α̇0d̄
α̇
0 − 256∂θα0 dα0 − 64

)
C
]}

(3.1)
is invariant under the gauge transformations:

δV m = −4iσmαα̇d̄
α̇
0E

α
1 − 4iσmαα̇d

α
0 Ē

α̇
2

δB = −1

2

(
d̄α̇0d

2
0Ē

α̇
2 + dα0 d̄

2
0E1α

)

δC =
i

2

(
d̄α̇0d

2
0Ē

α̇
2 − dα0 d̄2

0E1α

)

δU1α = −16i∂θ̄α̇0
(
d̄α̇0E1α + dα0Ē2α̇

)
− 2d2

0Παα̇0Ē
α̇
2 +

i

2
d2

0d̄
2
0E1α + 16i∆α

βE1β,

δŪ α̇2 = 16i∂θα0

(
d̄α̇0E

α
1 + dα0 Ē

α̇
2

)
+ 2d̄2

0Πα̇α
0 E1α −

i

2
d̄2

0d
2
0Ē

α̇
2 − 16i∆̄α̇

β̇
Ēβ̇2

(3.2)
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where we introduced the following notations:

α0 ≡ −iD, Πm
0 = −iαm0 +

i

2
εmnrsεrs(θσnθ̄)

(ε · σ)α
β = εmnσ

mn
α
β, (ε · σ̄)α̇β̇ = εmnσ̄

mnα̇
β̇

∂θα0 = − i

2
(ε · σ)α

βθβ, ∂θ̄α̇0 =
i

2
(ε · σ̄)β̇ α̇θ̄β̇

∆α
β = δα

β +
i

2
(ε · σ)α

β, ∆̄α̇
β̇ = δα̇β̇ +

i

2
(ε · σ̄)α̇β̇

dα0 =
∂

∂θα
− (σmθ̄)αα0m −

i

2
(θ̄θ̄)(ε · σ)α

βθβ

d̄α̇0 = − ∂

∂θ̄α̇
+ (θσm)α̇α0m +

i

2
(θθ)(ε · σ̄)β̇ α̇θ̄β̇

(3.3)

It can be verified that when the electromagnetic field strength cancels, the expression
(3.1) leads to the same form for the action as the neutral case given by (2.1), except that
now Vm, B, C are complex superfields, and the spinor superfield Vα is doubled to {U1α, Ū

α̇
2 }.

This superspace action describes the propagation of an open superstring carrying at its ends
the charges q0 and qπ, hence a total charge Q = q0 + qπ. For the constant electromagnetic
background, the covariant derivative is given by

Dn = (∂ − iQF ·X)n (3.4)

where Xn is a space-time coordinate. Dealing with strings, instead of point-like particles,
we need to introduce the dressed form of the covariant derivative [15, 18]

Dm = −iMmnD
n, [Dm,Dn] = iεmn (3.5)

The matrix M has the property:
M ·MT =

ε

QF
(3.6)

The stringy origin of the massive states manifests itself in the dependence of ε on the
constant electromagnetic field strength Fmn through [15, 34]

ε =
Λ2

π

[
arctanh(

πq0F

Λ2
) + arctanh(

πqπF

Λ2
)

]
(3.7)

with Λ the fundamental (string) scale of the theory.
As noted in [18] for the case of the bosonic open string, and as it appears through

our manipulations in this work, the consitency of the Lagrangian and the derivation of the
equations of motion make use of the anti-symmetric property of εmn, but nowhere does
the explicit dependence of εmn on Fmn intervene. Therefore, our analysis continues to be
valid if we take everywhere the limit of quantum field theory εmn → QFmn and Dm → Dm.
Following this, to ease the presentation, our working configuration can be reformulated,
independently of a stringy framework or not, as follows: the superfields are charged under
the U(1) of the elctromagnetic background, to which we associate a covariant derivative
Dm, whose commutator gives a constant anti-symmetric tensor εmn, hereafter referred to
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as the electromagnetic field strength, an obvious abuse of language. For convenience, we
will assume that {Vm, B, C, U1α, Ū α̇2 } carry a positive unit charge, so their conjugates are
negatively charged. It is then easy to verify that the action (3.1) is U(1)-invariant. For
the covariant derivative we have [Dm,Dn] = iqεmn, with q = ±1. For example, given a
positively charged superfield component φ, we have

[Dm,Dn]φ = iεmnφ, [Dm,Dn] φ̄ = −iεmnφ̄ (3.8)

The expansion into components of the superfields reads:

Vm =Cm + i (θχ1m)− i
(
θ̄χ̄2m

)
+ i (θθ)M1m − i

(
θ̄θ̄
)
M̄2m +

(
θσnθ̄

)
hmn

+ i (θθ)
(
θ̄λ̄1m

)
− i
(
θ̄θ̄
)

(θλ2m) + (θθ)
(
θ̄θ̄
)
Dm

B =ϕ+ i(θγ1)− i(θ̄γ̄2) + i(θθ)N1 − i(θ̄θ̄)N̄2 + (θσmθ̄)cm

+ i(θθ)(θ̄ρ̄1)− i(θ̄θ̄)(θρ2) + (θθ)(θ̄θ̄)G

C =φ+ i (θξ1)− i
(
θ̄ξ̄2

)
+ i (θθ)M1 − i

(
θ̄θ̄
)
M̄2 +

(
θσmθ̄

)
am

+ i (θθ)
(
θ̄ψ̄1

)
− i
(
θ̄θ̄
)

(θψ2) + (θθ)
(
θ̄θ̄
)
D

U1α =v1α + θαs1 − (σmnθ)αs1mn + (σmθ̄)αw1m + (θθ)η1α + (θ̄θ̄)ζ1α + (θσmθ̄)r1mα

+ (θθ)(σmθ̄)αq1m + (θ̄θ̄)θαt1 − (θ̄θ̄)(σmnθ)αt1mn + (θθ)(θ̄θ̄)µ1α

Ū α̇1 =v̄α̇1 + θ̄α̇s̄1 − (σ̄mnθ̄)α̇s̄1mn − (σ̄mθ)α̇w̄1m + (θ̄θ̄)η̄α̇1 + (θθ)ζ̄α̇1 + (θσmθ̄)r̄α̇1m

− (θ̄θ̄)(σ̄mθ)α̇q̄1m + (θθ)θ̄α̇t̄1 − (θθ)(σ̄mnθ̄)α̇t̄1mn + (θθ)(θ̄θ̄)µ̄α̇1

U2α =v2α + θαs2 − (σmnθ)αs2mn + (σmθ̄)αw2m + (θθ)η2α + (θ̄θ̄)ζ2α + (θσmθ̄)r2mα

+ (θθ)(σmθ̄)αq2m + (θ̄θ̄)θαt2 − (θ̄θ̄)(σmnθ)αt2mn + (θθ)(θ̄θ̄)µ2α

Ū α̇2 =v̄α̇2 + θ̄α̇s̄2 − (σ̄mnθ̄)α̇s̄2mn − (σ̄mθ)α̇w̄2m + (θ̄θ̄)η̄α̇2 + (θθ)ζ̄α̇2 + (θσmθ̄)r̄α̇2m

− (θ̄θ̄)(σ̄mθ)α̇q̄2m + (θθ)θ̄α̇t̄2 − (θθ)(σ̄mnθ̄)α̇t̄2mn + (θθ)(θ̄θ̄)µ̄α̇2

(3.9)

where the gauge parameter superfields E1α, E2α are given by

E1α = Λ1α + θαΛ2 − (σmnθ)αΛ2mn + (σmθ̄)αΛ3m + (θθ)Λ4α + (θ̄θ̄)Λ5α + (θσmθ̄)Λ6mα

+ (θθ)(σmθ̄)αΛ7m + (θ̄θ̄)θαΛ8 − (θ̄θ̄)(σmnθ)αΛ8mn + (θθ)(θ̄θ̄)Λ9α

Ēα̇1 = Λ̄α̇1 + θ̄α̇Λ̄2 − (σ̄mnθ̄)α̇Λ̄2mn − (σ̄mθ)α̇Λ̄3m + (θ̄θ̄)Λ̄α̇4 + (θθ)Λ̄α̇5 + (θσmθ̄)Λ̄α̇6m

− (θ̄θ̄)(σ̄mθ)α̇Λ̄7m + (θθ)θ̄α̇Λ̄8 − (θθ)(σ̄mnθ̄)α̇Λ̄8mn + (θθ)(θ̄θ̄)Λ̄α̇9

E2α = Υ1α + θαΥ2 − (σmnθ)αΥ2mn + (σmθ̄)αΥ3m + (θθ)Υ4α + (θ̄θ̄)Υ5α + (θσmθ̄)Υ6mα

+ (θθ)(σmθ̄)αΥ7m + (θ̄θ̄)θαΥ8 − (θ̄θ̄)(σmnθ)αΥ8mn + (θθ)(θ̄θ̄)Υ9α

Ēα̇2 = Ῡα̇
1 + θ̄α̇Ῡ2 − (σ̄mnθ̄)α̇Ῡ2mn − (σ̄mθ)α̇Ῡ3m + (θ̄θ̄)Ῡα̇

4 + (θθ)Ῡα̇
5 + (θσmθ̄)Ῡα̇

6m

− (θ̄θ̄)(σ̄mθ)α̇Ῡ7m + (θθ)θ̄α̇Ῡ8 − (θθ)(σ̄mnθ̄)α̇Ῡ8mn + (θθ)(θ̄θ̄)Ῡα̇
9

(3.10)
We also denote the dual field by ε̃mn with

ε̃mn =
1

2
εmnpqεpq, εmn = −1

2
εmnpq ε̃pq (3.11)

Obviously, the sum (εmn + iε̃mn) is self-dual. Some useful identities related to the field
strengths are

εmnε̃
mk =

1

4
δn
kεabε̃

ab, εmnε
mk − ε̃mnε̃mk =

1

2
δn
kεabε

ab (3.12)
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3.2 Decoupled equations of motion in superspace

In [1], the equations of motion in superspace for the superfields present in (3.1) have been
derived in the Lorenz gauge. The resulting equations couple the lower spin fields present in
the C superfield to the fields describing the massive spin-2 multiplet contained in Vm. Here
we will go one step further and present a redefinition of the superfields that decouples the
massive spin-2 multiplet from the other superfields in these equations.

Using the same notation as in [1], we start by rewriting the equations in the Lorenz
gauge containing the massive spin-2 multiplet (equations (6.5) and (6.6) of [1])

0 = σ̄mα̇αdα0Vm − d2
0d̄
α̇
0C ,

0 = σmαα̇d̄
α̇
0Vm + d̄2

0dα0C ,
(3.13)

and after the redefinition

Vm → Vm +
1

3
σ̄α̇αm [dα0, d̄α̇0]C +

1

6
σmαα̇

(
∂θα0 d

2
0d̄
α̇
0 − ∂θ̄α̇0 d̄2

0d
α
0 + 16∂θα0 ∂θ̄

α̇
0

)
C , (3.14)

we obtain decoupled equations of motion for the superfield Vm

0 = σ̄mα̇αdα0Vm ,

0 = σmαα̇d̄
α̇
0Vm .

(3.15)

Here we have used the fact that the superfield C satisfies d2
0C = d̄2

0C = 0, which come from
the gauge-fixing conditions in [1], alongside with the relations

id̄α̇0 Παα̇0d
α
0C = 4C ,

idα0 Παα̇0d̄
α̇
0C = 4C ,

(3.16)

that can be seen to follow from d2
0C = d̄2

0C = 0, together with equation (A.10) of [1] and
the mass-shell condition in superspace

(Πm
0 Πm0 − 2)C − 2∂θα0 dα0C − 2∂θ̄α̇0d̄

α̇
0C = 0 . (3.17)

The superfields Vm and C are therefore decoupled. But the symmetric rank-2 tensor h(mn)

and the spin-1 component Cm inside the superfield Vm remain coupled through the diver-
gence constraint of h(mn):

Dmh(mn) = −2iε̃nmC
m . (3.18)

Decoupling the fields in this constraint requires a further shift

h(mn) → h(mn) +

(
iε̃mkD

kCn − iε̃mkDnC
k +

i

2
ηmnε̃pqD

pCq + (m↔ n)

)
. (3.19)

By expanding the superfield equations in components, and taking into account the addi-
tional redefinition above, one can show that the equations (3.15) agree with those that we
will derive from the Lagrangian in the unitary gauge, i.e. (4.99), (5.45) and (5.53) for the
massive spin-2 and spin-3/2, respectively.
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Note that, as it usually happens in manifestly space-time supersymmetric descriptions
of the superstring in curved backgrounds, the gauge-fixed eqs. (3.15) have the same form
as in the neutral case.5 In our description, the difference lies in the fact that the super-
symmetric derivatives dα0 and d̄α̇0 receive contributions, proportional to the strength of
the electromagnetic field ε, necessary for the preservation of the manifest N = 1 d = 4

supersymmetry.
Let us comment on the equations of motion obtained for the lower-spin fields in Section

6 of ref. [1]. There, they were given for two spin-1/2 massive Dirac fermions, a massive
complex scalar and a massive complex vector. The analysis done in Section 6 of [1] was
incomplete for the lower-spin fields. We have checked explicitly that going further and
using the gauge transformations of Section 5 in [1], one shows that the remaining lower-spin
physical degrees of freedom reside in two complex scalar multiplets which, in components,
describe two massive spin-1/2 Dirac fermions and 4 complex bosons. This conclusion agrees
with the results presented in this work as well as with the analysis of [24] for the neutral
case. Therefore, in the charged case, the action (3.1) describes a massive complex spin-2
multiplet coupled to two massive complex scalar multiplets.

In this section, we have shown how to decouple the equations of motion for the massive
spin-2 multiplet using superfields. As outlined, this was done following the gauge-fixing
conditions from Section 6 of [1], in which a Lorenz-type gauge is employed. However, in the
analysis of the present work, we are adopting the unitary gauge to eliminate the unphysical
degrees of freedom in the action (3.1) and, consequently, the field redefinitions which will
be presented in the following sections to decouple the equations for the massive spin-2
multiplet do not need to have a direct relation to (3.14). Of course, this comment also
applies for the redefinitions in the neutral case presented in Section 2.

4 Charged massive bosons

The notations we will use from here on are essentially a complex version of the real notations
in Section 2.2. Gauge parameters topped with a hat or tilde are now combinations of the
E1α and Ēα̇2 components:

Λ̂3m ≡ Λ3m + Ῡ3m, Λ̃3m ≡ i
(
Λ3m − Ῡ3m

)
(4.1)

likewise for Λ̂8, Λ̃8, Λ̂8mn, Λ̃8mn. The complex rank-2 tensor is decomposed in the same way
as before:

hmn = vmn + fmn +
1

4
ηmnh (4.2)

5It is worth mentioning that these equations could have been obtained by considering only the superfield
Vm, describing the massive spin-2 multiplet, in the vertex operator (effectively putting the lower-spin fields
to zero) and performing the analysis in the Lorenz gauge as in [1]. Following similar steps, but now
considering only the superfield in the vertex operator describing a massive spin-s multiplet, one can try
to generalise (3.15) directly for massive spin-s fields. This would constitute of an extension of [21] to the
supersymmetric case.
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It is also more practical to use the following new (positively charged) fields

τ1 = t1 + t̄2, τ2 = i(t1 − t̄2)

ω1m = w1m + w̄2m, ω2m = i(w1m − w̄2m)

τ1mn = t1mn + t̄2mn, τ2mn = i(t1mn − t̄2mn)

(4.3)

and, as {t1mn, t2mn} remain self-dual, the relation τ1mn = 1
2εmnrsτ

rs
2 still holds.

4.1 Gauge transformations

Like in the neutral case, we start by listing here the gauge transformations under which
the Lagrangian is invariant. We also indicate which fields, up to redefinitions, will be kept
as physical at the end of the gauge fixing procedure. The gauge transformations of the
different components of the superfields are as follows:
Fields in B:

δcm = −2DmDnΛ̂n3 + 2D2Λ̂3m − 8DnΛ̃8mn + 2iεmnΛ̂n3 − 2iε̃mnΛ̃n3

δN1 = 0, δN2 = 0

δG =
1

2
D2DmΛ̃3m + D2Λ̂8 − iεmnDmΛ̃3n + iε̃mnDmΛ̂3n + 2iεmnΛ̂8mn

δϕ = −4Λ̂8 − 2DmΛ̃3m

(4.4)

Among these fields, we will be able to eliminate G, ϕ. Also, only part of cm, N1, N2

will remain as physical degrees of freedom.
Fields in C:

δam = −2DmDnΛ̃n3 + 2D2Λ̃3m + 8DnΛ̂8mn + 2iεmnΛ̃n3 + 2iε̃mnΛ̂n3

δM1 = 0, δM2 = 0

δD = −1

2
D2DmΛ̂m3 + D2Λ̃8 + iεmnDmΛ̂3n + iε̃mnDmΛ̃3n + 2iεmnΛ̃8mn

δφ = −4Λ̃8 + 2DmΛ̂3m

(4.5)

Among these fields, we will be able to eliminate D, φ. Also, only part of am, M1, M2

will remain as physical degrees of freedom.
Fields in Vm:

δM1m = −4iDmΛ2 − 8Λ7m − 8iDnΛ2mn,

δM̄2m = 4iDmῩ2 − 8Ῡ7m + 8iDnῩ2mn

δDm = 4DmΛ̂8 + 8DnΛ̂8mn + 2iεmnΛ̃n3 + 2iε̃mnΛ̂n3

δCm = −8Λ̃3m

δh = −8DmΛ̂3m + 32Λ̃8

δvmn = 4
(
DmΛ̂3n + DnΛ̂3m

)
− 2ηmnD

kΛ̂3k

δfmn = 4εmnpqD
pΛ̃q3 + 16Λ̃8mn

(4.6)

Among these fields, we will be able to eliminate M1m, M2m, Dm, fmn. Also, only a
combination of h and vmn will remain as physical degrees of freedom.
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Fields in U1α, Ū α̇2 :

δτ1 = 16Λ̃8 + 8D2Λ̃8 − 4D2DmΛ̂3m + 24iεmnΛ̃8mn + 4iεmnDmΛ̂3n + 12iε̃mnDmΛ̃3n

δτ2 = −16Λ̂8 − 8iεmnDmΛ̃3n

δω1m = 16Λ̃3m + 8D2Λ̃3m − 8DmDnΛ̃n3 + 32DnΛ̂8mn − 8iεmnΛ̃n3 + 8iε̃mnΛ̂n3

δω2m = −16Λ̂3m − 8DmDnΛ̂n3 + 16DmΛ̃8 + 16iεmnΛ̂n3

δτ1mn =
1

2
εmnrsδτ

rs
2

δτ2mn = −16Λ̂8mn − 8
(
DnD

kΛ̂8mk −DmD
kΛ̂8nk

)
+ 2D2

(
DmΛ̃3n −DnΛ̃3m

)

+ 8i
(
εnkΛ̂8m

k − εmkΛ̂8n
k
)

+ 8iε̃mnΛ̃8 + 4iεmnΛ̂8

+
[
2iεmk

(
−2DnΛ̃k3 + DkΛ̃3n

)
− 2iε̃mk

(
2DnΛ̂k3 + DkΛ̂3n

)
− (m↔ n)

]

δq1m = 16iΛ7m + 4i (εmn − iε̃mn)DnΛ2 + 8i (εmn − iε̃mn)DkΛ
nk
2 + 16εmnΛn7

δq̄2m = −16iῩ7m + 4i (εmn + iε̃mn)DnῩ2 + 8i (εmn + iε̃mn)DkῩ
nk
2 − 16εmnῩn

7

δs1 = 16iΛ2 − 8εmnΛ2mn

δs̄2 = −16iῩ2 + 8εmnῩ2mn

δs1mn = 16iΛ2mn + 4 (εmn + iε̃mn) Λ2 − 8
(
εmkΛ2n

k − εnkΛ2m
k
)

δs̄2mn = −16iῩ2mn − 4 (εmn − iε̃mn) Ῡ2 + 8
(
εmkῩ2n

k − εnkῩ2m
k
)

(4.7)

None of these fields will remain as a physical degree of freedom, though some will be
part of the latter through the field redefinitions.

One can verify that the above gauge transformations reduce to (2.11)-(2.14) for ε = 0.
We point out here the gauge invariant combinations

δ

[
q̄2m − iDns̄2mn −

1

2
iDms̄2 − 2i(ηmn − iεmn)M̄n

2

]
= 0

δ

[
−q1m − iDns1mn −

1

2
iDms1 − 2i(ηmn − iεmn)Mn

1

]
= 0

(4.8)

4.2 A compact bosonic Lagrangian

As in the neutral case, the bosonic Lagrangian LB can be separated into two parts, each of
which is gauge invariant by itself:

LB = L1 + L2. (4.9)

with L1 and L2 giving in the absence of electromagnetic fields the same Lagrangians as in
the neutral case.
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Here, L1 reads:

L1 =
1

2
q̄m1 q1m +

1

2
q̄m2 q2m −

1

8
s̄1D

2s1 −
1

8
s̄2D

2s2

+

[
iq̄m1

(
M1m − iεmnM

n
1 +

1

2
Dns1mn +

1

4
Dms1 − 3iDmM1 + DmN1

)
+ h.c.

]

+

[
iq̄m2

(
M2m + iεmnM

n
2 +

1

2
Dns2mn +

1

4
Dms2 − 3iDmM2 + DmN2

)
+ h.c.

]

+

[
1

2
Dms̄1 (M1m − iεmnM

n
1 − 3iDmM1 + DmN1)− 1

8
iεmns̄1s1mn + h.c.

]

+

[
1

2
Dms̄2 (M2m + iεmnM

n
2 − 3iDmM2 + DmN2) +

1

8
iεmns̄2s2mn + h.c.

]

− 3M̄1

(
3D2 + 4

)
M1 − 3M̄2

(
3D2 + 4

)
M2

+

[
6iDmM̄1

(
M1m − iεmnM

n
1 +

1

2
DmN1

)
+

3

2
εmnM̄1s1mn + h.c.

]

+

[
6iDmM̄2

(
M2m + iεmnM

n
2 +

1

2
DmN2

)
− 3

2
εmnM̄2s2mn + h.c.

]

− N̄1

(
D2 − 4

)
N1 +

[
2DmN̄1 (M1m − iεmnM

n
1 )− 1

2
iεmnN̄1s1mn + h.c.

]

− N̄2

(
D2 − 4

)
N2 +

[
2DmN̄2 (M2m + iεmnM

n
2 ) +

1

2
iεmnN̄2s2mn + h.c.

]

+
1

2
Dns1mnDks̄

mk
1 +

[
s̄1mn

(
DmMn

1 − iεnkDmM1k

)
+ h.c.

]

+
1

2
Dns2mnDks̄

mk
2 +

[
s̄2mn

(
DmMn

2 + iεnkDmM2k

)
+ h.c.

]

+ 2
[(
ηmk − iεmk

)
M1k

]†
[(ηmn − iεmn)Mn

1 ]

+ 2
[(
ηmk + iεmk

)
M2k

]†
[(ηmn + iεmn)Mn

2 ]

(4.10)

Remarkably,M1m and M̄2m always appear with a factor (η− iε), including in the gauge
invariant expressions (4.8). Indeed, this feature can already be seen at the level of the action
(3.1), where the superfield Vm is accompanied everywhere by one or two factors (η − iε).
These can be absorbed by the rescaling

M1m → (ηmn − iεmn)−1Mn
1 ,

M̄2m → (ηmn − iεmn)−1M̄n
2

(4.11)

Note that the terms of index 2 differ from those of index 1 only in an inversion of sign
ε ↔ −ε. We can therefore limit ourselves in the following to writing explicitly only the
terms with index 1.
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We can then write the Lagrangian as:

L1 =
1

2
q̄m1 q1m +

[
iq̄m1

(
M1m +

1

2
Dns1mn +

1

4
Dms1 − 3iDmM1 + DmN1

)
+ h.c.

]

− 1

8
s̄1D

2s1 +

[
1

2
Dms̄1 (M1m − 3iDmM1 + DmN1)− 1

8
iεmns̄1s1mn + h.c.

]

− 3M̄1

(
3D2 + 4

)
M1 +

[
6iDmM̄1

(
M1m +

1

2
DmN1

)
+

3

2
εmnM̄1s1mn + h.c.

]

− N̄1

(
D2 − 4

)
N1 +

[
2DmN̄1M1m −

1

2
iεmnN̄1s1mn + h.c.

]

+
1

2
Dns1mnDks̄

mk
1 + (s̄1mnD

mMn
1 + h.c.) + 2M̄m

1 M1m + (1↔ 2, ε↔ −ε)

(4.12)

M{1,2}m are auxiliary fields, and they have no explicit dependence on the electromag-
netic background in their equations of motion,

M{1,2}m =
1

2
iq{1,2}m −

1

2
Dns{1,2}mn + 3iDmM{1,2} −DmN{1,2} −

1

4
Dms{1,2} (4.13)

except of course in the covariant derivative. Integrating them out, {q{1,2}m, s{1,2}mn, s{1,2}}
disappear, leaving only the gauge invariant fields {M{1,2}, N{1,2}}. This leads to the subse-
quent Lagrangian where the gauge is completely fixed:

L1 =3M̄1

(
3D2 − 4

)
M1 + 3

(
iM̄1D

2N1 + h.c.
)

+ N̄1

(
D2 + 4

)
N1

+ 3M̄2

(
3D2 − 4

)
M2 + 3

(
iM̄2D

2N2 + h.c.
)

+ N̄2

(
D2 + 4

)
N2

(4.14)

As for the neutral case, it is convenient to introduce the following new complex scalar fields

M1 = M1 + M̄2, M2 = i
(
M1 − M̄2

)

N1 = N1 + N̄2, N2 = i
(
N1 − N̄2

) (4.15)

With the field redefinition

N1 →
√

2N1 + 3M2, M1 →
√

2

3
M1 −

1

3
N2 (4.16)

the complex scalarsM2, N2 lose their kinetic terms. After integration, we get a Lagrangian
of two decoupled massive complex scalars M1, N1 propagating in the electromagnetic
background:

L1 = M̄1

(
−2 + D2

)
M1 + N̄1

(
−2 + D2

)
N1 (4.17)

Obviously, (4.17) reduces to (2.21) in the neutral case.
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We now turn our attention to the Lagrangian L2:

L2 =
1

8
[(ηmn − iεmn)Cn]†D4Cm −

1

2

{
[(ηmn − iεmn)Cn]†D2Dm + h.c.

}

+ 2 [(ηmn − iεmn)Dn]†Dm + 2
{

[(ηmn − iεmn)Cn]†
[
(ηmk − iεmk)D

k
]

+ h.c.
}

− [(ηmn − iεmn)hnk]
†
[
(ηml − iεml)h

lk + iεlkhml −
1

2
D2hm

k

]

+
1

2

[
(ηmn − iεmn)Dkhnk

]†
Dlhml + 3

{[
(ηmn − iεmn)Dkhnk

]†
Dmφ+ h.c.

}

+

{
[(ηmn − iεmn)Cn]†

(
3

2
D2am − 3DmDka

k + 3iεmka
k + 3iε̃mkD

kφ

+2DmG+ iε̃mkc
k +

1

2
Dmτ2 + Dkτ2mk −

1

4
iεmkω

k
1 +

1

4
iε̃mkω

k
2

)
+ h.c.

}

+

{[
(ηmn − iεmn)hn

k
]†
εmkpq

(
1

4
Dpωq1 − 3Dpaq +

1

2
τpq2

)
+ h.c.

}

+

{
[(ηmn − iεmn)hnk]

†
(
−Dmc

k + iε̃m
kϕ− 3iεm

kφ− 1

4
Dmω

k
2 −

1

4
Dkω2m

)
+ h.c.

}

+

{
[(ηmn + iεmn)hmn]†

(
−6D +

3

2
D2φ+

1

4
Dkω2k +

1

2
τ1

)
+ h.c.

}

+
{

[(ηmn − iεmn)Dn]† (2Dmϕ− 6am + ω1m) + h.c.
}
− 1

2
Dmc̄mD

ncn − 2c̄mc
m

+

[
Dmc̄m

(
−3D − 3

4
D2φ+

1

2
τ1 −

1

4
Dnω2n

)
+ h.c.

]
− 66D̄D − 1

8
ϕ̄D4ϕ

− 33

8
φ̄D4φ− 12āmD2am −

33

2
DmāmD

nan − 24iεmnāman + 6āmam

+

[
D2φ̄

(
15

2
D − 9

8
Dmω2m −

3

4
τ1

)
+ D̄

(
3

2
Dmω2m + 9τ1 − 12φ

)
+ h.c.

]

− 1

8
(Dmω̄1mD

nω1n + Dmω̄2mD
nω2n) + τ2mnτ̄

mn
2 − τ1τ̄1 − 2ḠG

− 1

8

(
ω̄m1 D2ω1m − ω̄m2 D2ω2m

)
+

(
ωm1 Dnτ̄2mn −

1

4
τ1D

mω̄2m −
1

4
τ2D

mω̄1m + h.c.
)

− 1

8
iεmn (3ω̄1mω1n + ω̄2mω2n) +

[
D2ϕ̄

(
−1

4
τ2 +

3

4
Dmam −

1

8
Dmω1m −

1

2
G

)
+ h.c.

]

+

[
Ḡ

(
4ϕ+ 3Dmam −

1

2
Dmω1m − τ2

)
+ Dmām

(
9

4
Dnω1n +

3

2
τ2

)
+ h.c.

]

+

[
ω̄1m

(
3

2
D2am + 3iεmnan +

3

2
iε̃mnDnφ

)
− 6āmDnτ

mn
2 − iϕ̄εmnτ2mn + h.c.

]

+

[
1

2
ic̄m (ε̃mnω1n − εmnω2n)− 3

2
iεmnω̄2mDnφ−

1

8
iε̃mnω2mω̄1n + h.c.

]

(4.18)
As above, the auxiliary fields in L2 are {D,Dm, G, τ1, τ2, τ2mn}, whose integration

eliminates ϕ, and we are left with {fmn, vmn, ω1m, ω2m, am, Cm, cm, h, φ}. The following
steps are essentially a straightforward generalisation of section 2.2.

We shall start with gauging away {fmn, ω1m, ω2m, φ}. Recall that in absence of the
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background, ∂mφ and ω2m appear as Stückelberg fields

δ

(
h+ 8φ+ 2∂2φ+

1

2
∂mω

m
2

)
= 0

δ

(
vmn +

1

4
∂mω2n +

1

4
∂nω2m −

1

8
ηmn∂kω

k
2 + 2∂m∂nφ−

1

2
ηmn∂

2φ

)
= 0

(4.19)

But now, these expressions are not gauge invariant if one only promotes partial derivatives
to covariant ones:

δ

(
h+ 8φ+ 2D2φ+

1

2
Dmω

m
2

)
= 8iεmnD

mΛ̂n3

δ

(
vmn +

1

4
Dmω2n +

1

4
Dnω2m −

1

8
ηmnDkω

k
2 + 2DmDnφ−

1

2
ηmnD

2φ

)

= 4iεmkDnΛ̂k3 + 4iεnkDmΛ̂k3 − 2iηmnεklD
kΛ̂l3

(4.20)

Notice that
δ (ω2m + 4Dmφ) = −16 (ηmn − iεmn) Λ̂n3 (4.21)

where the ε term gives rise to the r.h.s. of (4.20). The (1− iε) factor can be absorbed by
the rescaling

ω′2m ≡ (ηmn − iεmn)−1 (ω′n2 + 4Dnφ
)
, δω′2m = −16Λ̂3m (4.22)

and ω′2m appear in the new gauge invariant combinations,

δ

(
h+ 8φ+

1

2
Dmω

′m
2

)
= 0

δ

(
vmn +

1

4
Dmω

′
2n +

1

4
Dnω

′
2m −

1

8
ηmnDkω

k′
2

)
= 0

(4.23)

This then is used to find a new gauge invariant spin-2 field, thereby going into a unitary
gauge after a Stückelberg mechanism, as:

h̃mn ≡vmn +
1

4
ηmn (h+ 8φ)

+
1

4
(ηnk − iεnk)

−1 Dm

(
ωk2 + 4Dkφ

)
+

1

4
(ηmk − iεmk)

−1 Dn

(
ωk2 + 4Dkφ

) (4.24)

which satisfies δh̃mn = 0. Similarly, the last three lines of (2.25) are amended by a (η − iε)−1

factor in front of ω1m. The redefinition:

ω′1m ≡ (ηmn − iεmn)−1 (ωn1 − 4an) , δω′1m = 16Λ̃3m (4.25)

allows to write the gauge invariant combinations as

δ

(
cm +

1

2
Dnfmn +

1

8
D2ω′2m −

1

8
DmDnω

n′
2 +

1

8
iεmnω

n′
2

)
= 0

δ

(
am −

1

4
Ωm +

1

8
iε̃mnω

n′
2

)
= 0

δ

(
Cm +

1

2
ω′1m

)
= 0

(4.26)
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Thus, after integrating all the auxiliary fields in L2, we can eliminate ω1m, ω2m, φ, fmn
by the two-step redefinition:

1. ω1m → (ηmn − iεmn)ω1
n + 4am, ω2m → (ηmn − iεmn)ω2

n − 4Dmφ

2. cm → cm − 1
2D

nfmn − 1
8D

2ω2m + 1
8DmDnω

n
2 − 1

8 iεmnω
n
2

h→ h− 8φ− 1
2D

mω2m, vmn → vmn + 1
8ηmnD

kω2k − 1
4Dmω2n − 1

4Dnω2m

Cm → Cm − 1
2ω1m, am → am − 1

8 iε̃mnω2
n + 1

4εmnpqD
nfpq

Next, in order to decouple and normalise {am, Cm} in the Lagrangian, we perform the
redefinitions

Cm →
√

2

3
Cm, am →

√
2

2
am −

1√
6
Cm (4.27)

where

Cm ≡ (ηmn − iεmn)Cn (4.28)

As a result, L2 is now

L2 =C̄mD2Cm + DmC̄mDnCn − 2C̄m (ηmn − iεmn) Cn

+ 2āmam − iεmnā
man + DmāmD

nan −
[

i√
2
ām
(
εnkεmkpqD

qhn
p
)

+ h.c.
]

− 2c̄mcm +

[
c̄m
(√

2iε̃mna
n − 2

5
Dmh+

(
ηnk − iεnk

)
Dnhmk

)
+ h.c.

]

− 2

5
Dmc̄mD

ncn +
1

10
h̄h− h̄mnhmn +

1

2
h̄mk (ηmn − iεmn)D2hn

k

− 1

2
h̄km

(
ηkl − iεkl

)
DmDnhln − 3iεklh̄lmhk

m +
3

2
εklεmnh̄lnhkm −

1

2
εk
mεklh̄mnhl

n

(4.29)
The vector field Cm is decoupled from all other fields and appears only as a rescaled Cm. It
has the Lagrangian of a charged vector boson, with the corresponding equation of motion

D2Cm − 2 (ηmn − iεmn) Cn −DmDnCn = 0 (4.30)

The associated constraint is obtained by taking the divergence of (4.30):

[
Dm,D2

]
Cm + 2iεmnDmCn − 2DmCm = −2DmCm = 0 (4.31)

As for the remaining terms of the Lagrangian, am is now coupled to cm and hmn in the
presence of the background, so dualisation with the (2.33)-(2.34) technique will inevitably
couple the scalar A to other fields, making the Lagrangian more complicated. Such a form
with {am, cm} replaced by {A,B} will be presented later. First, we will study the equations
of motion and constraints of (4.29), as well as the way the new spin-2 is modified by its
couplings to the other fields.
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4.3 The equations of motion

The Euler-Lagrange equations derived directly from the Lagrangian are complicated, not
very illuminating and not in very useful forms. However, as we will see in this Section, a
series of manipulations allows us to put them in the form of a Fierz-Pauli system, thus with
a much more compact, and simple, expression for the equations of motion and associated
constraints.

We start with the trace of the equations of motion of vmn:

−1

8
D2h− 1

2
DmDnvmn +

3

16
εmnεmnh+ εmkεn

kvmn − 1

2
iεmnD

nDkv
mk

−Dmcm − iεmnD
mcn −

√
2iε̃mnD

man = 0
(4.32)

and the equations of motion of h:

− 3

20
h+

3

32
D2h+

3

64
εmnεmnh−

1

8
DmDnvmn −

1

8
iεmnD

nDkv
mk +

1

4
εnkεm

kvmn

+
3

20
Dmcm −

1

4
iεmnDmcn −

1

2
√

2
iε̃mnDman = 0

(4.33)

Taking the difference (4.32)−4×(4.33), we obtain

D2h =
6

5
h− 16

5
Dmcm (4.34)

We will need the explicit form of the equations of motion, and their divergence, of am

2am − iεmna
n −DmDna

n − i√
2
εnkεmkpqD

qhn
p +
√

2iε̃mnc
n = 0

2Dmam − iεmnD
man −D2Dma

m − 1

4
√

2
ε̃mnεmnh+

√
2iε̃mnD

mcn = 0

(4.35)

and of cm,

− 2cm +
2

5
DmDnc

n +
√

2iε̃mna
n − 2

5
Dmh+

(
ηnk − iεnk

)
Dnhmk = 0

− 2Dmcm +
2

5
D2Dmc

m +
√

2iε̃mnD
man − 2

5
D2h+

(
ηnk − iεnk

)
DmDnhmk = 0

(4.36)

At this stage, it is very complicated to decouple the equations of motion of the different
fields, because those of hmn contain many terms depending on ε. Indeed, being a component
of the superfield Vm, hmn always appears with one or two (η − iε) factors. This suggests
performing a rescaling that absorbs such factors:

Hmn ≡ (ηmk − iεmk)h
k
n, H = h (4.37)

Analogous rescalings were made for charged spin-2 states in the bosonic string case [18]. In
fact, the rescaled spin-2 field in the Argyres-Nappi Lagrangian involves two factors, i.e. in
the form (ηmk − iεmk) (ηnl − iεnl)h

kl. We will examine in a later subsection whether such
rescaling is also useful for defining the field with spin-2 in our case.
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The vectors {am, cm} also appear in the Lagrangian through their field strengths and
duals, which we note:

Fmn(a) ≡ Dman −Dnam, Fmn(c) ≡ Dmcn −Dncm

F̃mn(a) ≡ 1

2
εmnpqF

pq(a), F̃mn(c) ≡ 1

2
εmnpqF

pq(c)
(4.38)

The Lagrangian (4.29) can be written in a more compact form:

L2 =C̄mD2Cm + DmC̄mDnCn − 2C̄m (ηmn − iεmn) Cn

+ 2āmam − iεmnā
man + DmāmD

nan +
1√
2

[
¯̃Fmn(a)

(
Fmn(c)−H[mn]

)
+ h.c.

]

− 2c̄mcm −
2

5
Dmc̄mD

ncn +

[
c̄m
(
−2

5
DmH+ DnHnm

)
+ h.c.

]

+
1

2
H̄mnD2hmn +

1

2
DnH̄mnDkh

mk − H̄(mn)H(mn) + iεnkH̄mnhkm +
1

10
H̄H

(4.39)
Up to some trivial different choice of normalisation, (4.39) corresponds to (2.28) in the
neutral case, so the equations of motion and constraints of the Lagrangian will reproduce
(2.36) when ε is set to zero. The modification includes a mass term −iεmnā

man, as well as a
coupling of the dual field strength of am to the field strength of cm and the anti-symmetric
tensor H[mn]. This implies that am now appears in the constraint equations of hmn.

The equation of motion of Hmn, which we denote by Rmn, takes a simpler form than
that of hmn. Rmn reads:

Rmn ≡ −
1√
2
εmnklD

kal +
2

5
ηmnD

kck −Dmcn +
1

10
ηmnh+

1

2
D2hmn −

1

2
DnD

khmk

− hmn −
3

2
iεknh

k
m +

1

2
iεm

khkn = 0

(4.40)
having the trace

Rmm =
3

5
Dmcm −

3

5
h+

1

2
D2h− 1

2
DmDnhmn = 0 (4.41)

Plugging in (4.34), the above equation implies

Dmcm +
1

2
DmDnhmn = 0 (4.42)

We can also compute the divergence of the equation of motion Rmn

DnRmn =
1

10
Dmh−Dnhmn + iεnkDkhmn −

3

2
iεknDnhmk +

1

2
iεmkDnh

kn

− 1√
2

iε̃mna
n − 3

5
DmDnc

n + iεmnc
n

=− cm −
2

5
DmDnc

n + iεmnc
n − 1

10
Dmh−

1

2
Dnhmn +

1

2
iεmkDnh

kn = 0

(4.43)
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where we used the equation of motion of cm in the last line. Contracting Rmn with the
tensor ε̃ and using the equation of motion of am, we obtain

ε̃mnRmn =
√

2εmnDman − ε̃mnDmcn +
1

2
ε̃mnDmD

khnk −
1

4
iε̃mnεmnh

=
√

2i
(
D2 − 2

)
Dmam + ε̃mnDm

(
cn +

1

2
Dkhnk

)
= 0

(4.44)

In order to derive a constraint on the trace of hmn, we compute the double divergence
of Rmn and its contraction with ε:

1

2
iεmnRmn =− 34

25
Dmcm +

1

5
D2Dmcm −

1

2
iεmnDmcn −

6

25
h− 1

4
iεnkDnD

mhmk = 0

DmDnRmn =− 2

5
D2Dmcm +

8

25
Dmcm + iεmnD

mcn − 3

25
h+

1

2
iεnkDnD

mhmk = 0

(4.45)
The sum (iεmnRmn + DmDnRmn) gives then

h+ 4Dmcm = 0 (4.46)

We retrieve that the trace is shifted by the divergence of cm, as was the case for the neutral
Lagrangian (2.28). Inserting this into (4.34) gives decoupled equations:

(
D2 − 2

)
h = 0,

(
D2 − 2

)
Dmcm = 0 (4.47)

The trace constraint (4.46) also allows to rewrite DnRmn as

DnRmn = − (ηmk − iεmk)

(
ck +

1

2
Dnh

kn

)
= 0⇒ cm +

1

2
Dnhmn = 0 (4.48)

The only difference with the neutral case is the covariant derivative.
The second equation of (4.36) can be simplified to

√
2ε̃mnDman = −2εmnDmcn + iεnkεmnhmk (4.49)

whereas the first line of (4.44) gives

√
2εmnDman − 2ε̃mnDmcn −

1

4
iε̃mnεmnh = 0 (4.50)

Taking into account these results, the symmetric and anti-symmetric parts of Rmn are
respectively:

2R(mn) =
(
D2 − 2

)
hmn − 2i

(
εkmh

k
n + εknh

k
m

)
= 0

2R[mn] = −
√

2εmnklD
kal − 2 (Dmcn −Dncm) + i

(
εkmh

k
n − εknhkm

)
= 0

(4.51)

Here we recognise the first equation as an equation of motion, while the second establishes
a duality relation between the field strength of am and the sum of the field strength of cm
and H[mn] = 1

2 i
(
εkmh

k
n − εknhkm

)
.
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Replacing Dnhmn by −2cm, the divergence DnR(mn) gives an equation for cm
(
D2 − 2

)
cm + 2iεmnc

n = 0 (4.52)

The divergence DnR[mn] combined with the equations of motion of cm gives the same result.
Different from the equation of motion of a massive charged vector boson with 3 propagating
degrees of freedom, see for instance (4.30), the above equation lacks the divergence term
DmDnc

n, because cm has non-physical degrees of freedom.
The equations of motion of cm (4.36) yields

4cm +
1

2
Dmh =

√
2iε̃mna

n − iεnkDnhmk (4.53)

Finally, we can add εmnpqDnRpq to the equation of motion of am to obtain
(
D2 − 2

)
am + 2iεmna

n = 0 (4.54)

So far, we have derived decoupled equations of motion for {am, cm, hmn} and a set of
constraints that are not all independent of each other. Before determining the subset of
independent constraints, we summarise the present results here:

• Equations of motion

(
D2 − 2

)
h = 0,

(
D2 − 2

)
hmn = 2i

(
εkmh

k
n + εknh

k
m

)

(
D2 − 2

)
Dmcm = 0,

(
D2 − 2

)
Dmam = 0

(
D2 − 2

)
am + 2iεmna

n = 0,
(
D2 − 2

)
cm + 2iεmnc

n = 0

(4.55)

• Constraints

i
(
εkmh

k
n − εknhkm

)
− 2 (Dmcn −Dncm) =

√
2εmnklD

kal

h+ 4Dmcm = 0, cm +
1

2
Dnhmn = 0

√
2ε̃mnDman = −2εmnDmcn + iεnkεmnhmk
√

2εmnDman = 2ε̃mnDmcn +
1

4
iε̃mnεmnh

4cm +
1

2
Dmh =

√
2iε̃mna

n − iεnkDnhmk

(4.56)

Using the notations of (4.37)-(4.38), the first constraint can be rewritten as

H[mn] =
1√
2
F̃mn(a) + Fmn(c) (4.57)

from which we deduce the equation of motion and the divergence of the anti-symmetric
tensor (

D2 − 2
)
H[mn] + 2i

(
εm

kH[kn] −H[mk]ε
k
n

)
= 0

DnH[mn] = iεmnc
n +

i

2
εnkDnhmk

(4.58)
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As already stated, not all constraints in (4.56) are independent. The third and fourth
lines can be obtained by contracting (4.57) with εmn and ε̃mn, respectively. Whereas the
last line, formerly an independent constraint in the neutral case, can also be inferred from
applying Dm on (4.57) in conjunction with the second line of (4.56):
√

2iε̃mna
n =iεkmD

nhkn + iεnkDnhkm − 2DnDmcn + 2D2cm

=2iεmnc
n + iεnkDnhkm − 2Dm (Dnc

n) + 2iεmnc
n + 4 (cm − iεmnc

n)

=4cm + iεnkDnhkm +
1

2
Dmh

(4.59)

where we also used the equation of motion of cm. As a side comment, given that the fourth
line of (4.56) can be re-expressed as

ε̃mn
(
H[mn] −

1√
2
F̃mn(a)− Fmn(c)

)
= 0 (4.60)

which is valid for any non-vanishing ε, one may be tempted to conclude that the fourth line
of (4.56) implies (4.57). In fact, the above equation holds for any a′m = am +

√
2xε̃mnD

nφ,
c′m = cm +xεmnD

nφ, with φ an arbitrary scalar field, and therefore does not have a unique
solution.

In summary, only the first and second lines of (4.56) are independent, and hence are
the only ones that will be considered for the counting of on-shell degrees of freedom. Here,
the symmetric tensor hmn along with two vector bosons {am, cm} counts 10+4+4 complex
degrees of freedom off-shell. The constraint cm = −1

2D
nhmn removes 4 degrees of freedom,

and −
√

2εmnklD
kal − 2 (Dmcn −Dncm) + i

(
εkmh

k
n − εknhkm

)
= 0 removes 6 degrees of

freedom, while h = −4Dmcm removes 1 degree of freedom. Therefore, we are left with 7
degrees of freedom on-shell in the Lagrangian (4.39). Together with the massive spin-1 Cm
and the physical scalars in L1, the bosonic sector counts in total 12 complex degrees of
freedom on-shell.

4.4 Decoupling the equations of motion

As vector fields dual to massive scalars, am and cm satisfy the following equivalent sets of
equations in the neutral case [32]:

∂m∂nV
n = 2Vm ⇐⇒

{(
∂2 − 2

)
Vm = 0

∂mVn − ∂nVm = 0
(4.61)

Now consider a charged massive scalar Lagrangian L = Ā
(
D2 − 2

)
A, we can introduce an

auxiliary vector Vm endowed with a transformation that enables us to shift away the kinetic
term of A, to integrate out the scalar and, at the end, obtain the equations of motion of
the vector Vm dual to A. Effortlessly one generalises (4.61) to the charged case:

DmDnV
n = 2Vm ⇐⇒





(
D2 − 2

)
Vm + 2iεmnV

n = 0

DmVn −DnVm =
i

2
εmnDkV

k
(4.62)
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Unsurprisingly, the first equation to the r.h.s. implies a gyromagnetic ratio g = 2 for
Vm. Inspecting (4.35) and (4.36), we notice that am, cm have coupled equations of mo-
tion. Alternatively, if one adopts the description at the r.h.s. above, the first equation(
D2 − 2

)
Vm+2iεmnV

n = 0 does decouple for Vm = am, cm, as is written in (4.55). But the
second one, which relates the field strength to the divergence of Vm, here given by (4.57) is
coupled to the spin-2 field hmn. In fact, there exists a redefinition of am and cm that leads
to decoupled equations of motion on shell:

a′m ≡ am −
i

2
εmna

n − i

2
√

2
ε̃nkDkhmn +

i

2
√

2
ε̃mnD

nh+
√

2iε̃mnc
n

c′m ≡ cm −
√

2i

4
ε̃mna

n +
i

4
εnkDnhmk

(4.63)

in which case
DmDna

′n = 2a′m, DmDnc
′n = 2c′m (4.64)

From the above equation we infer that a′m, c′m are equivalent to the gradient of a scalar
and as such count one degree of freedom on shell. At first sight, it seems paradoxical
because Eq. (4.57) may remove 6 degrees of freedom so we would be left with less degrees
of freedom than before. In reality, if we rewrite the on-shell system (4.55)-(4.56) in terms
of a′m and c′m, then Eq. (4.57) after this redefinition is no more an independent constraint:
actually it can be obtained from the other constraints. We postpone the detailed discussion
and the exact relation between the different constraints, to section 4.5 for the alternative
form of the Lagrangian.

The next step is to identify a new rank-2 symmetric tensor that yields a Fierz-Pauli
system on-shell. A simple guess inspired by (2.38) is:

H′mn = hmn + ηmnD
kck (4.65)

which satisfies the deformed Fierz-Pauli equations of motion and the traceless constraint:
(
D2 − 2

)
H′mn + 2i

[(
ε · H′

)
mn
−
(
H′ · ε

)
mn

]
= 0, H′ = 0 (4.66)

It has a non-vanishing divergence, but vanishing double divergence due to (4.46)

DnH′mn = −2cm −
1

4
Dmh = − 1√

2
iε̃mna

n +
1

2
iεnkDnhmk, DmDnH′mn = 0 (4.67)

The divergence equation can be re-expressed as

Dn

(
H′mn +

1√
2
F̃mn(a)− i

2
εn
khmk

)
= 0 (4.68)

To obtain the divergence-free tensor, one might be tempted to redefine the expression
in parenthesis (which is, by the way, traceless) as the new spin-2 field, but the extra terms
are not symmetric. Instead, We can absorb in H′mn the symmetric term ε(m

khn)k, so that
the r.h.s. of the divergence equation depends only on am and cm. Thus, we introduce

H′′mn ≡ H′mn −
i

2
εn
khmk −

i

2
εm

khnk

= H(mn) + ηmnD
kck

(4.69)
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Note that H(mn) is the symmetric part of the rescaled hmn, defined in (4.37). This new
spin-2 field satisfies

(
D2 − 2

)
H′′mn + 2i

[(
ε · H′′

)
mn
−
(
H′′ · ε

)
mn

]
= 0, H′′ = 0

DnH′′mn = − i√
2
ε̃mna

n + iεmnc
n

(4.70)

The divergence is indeed vanishing when ε = 0.
Another possibility is to consider the following double scaling

H̃mn = (ηmk − iεmk) (ηnl − iεnl)h
kl (4.71)

which allows to obtain a Fierz-Pauli system in the bosonic case studied in [18]. To see if
(4.71) is suitable for our case, let us first study the trace

H̃ = h− i
√

2ε̃mnDman − 2iεmnDmcn (4.72)

Compared to (4.65), the trace has extra contributions of order ε, so (4.71) could be modified
to

H̃′mn = (ηmk − iεmk) (ηnl − iεnl)h
kl +

1

4
ηmn

(
4Dkck + i

√
2ε̃klDkal + 2iεklDkcl

)
, H̃′ = 0

(4.73)
One can also check that (4.73) satisfies the equations of motion of deformed Fierz-Pauli:

(
D2 − 2

)
H̃′mn + 2i

[(
ε · H̃′

)
mn

+
(
ε · H̃′

)
nm

]
= 0 (4.74)

However, the divergence of (4.73) is relatively complicated and contains second derivatives:

DnH̃′mn =− 1

2
iεnkDnhmk −

i√
2
ε̃mna

n + 2iεmnc
n

+

√
2

4
iε̃klDmDkal +

1

2
iεklDmDkcl − εmkεnlDnhkl

(4.75)

thus the rescaling in (4.71) results in a cumbersome divergence constraint.
In fact, in order to absorb the divergence, i.e. to have a zero divergence tensor, while

keeping the zero trace condition, higher derivatives and new O(ε2) terms have to be included
in the H̃′mn definition. Starting from a generic ansatz containing such terms, and imposing
the divergence and trace constraints, we found the following new spin-2 field definition

hmn ≡
4

3
hmn −

1

3
ηmnh−

i

2

(
εm

khkn + εnkh
k
m

)
+

1

3
(Dmcn + Dncm)

− i

2

(
εmkD

kcn + εnkD
kcm − εmkDnc

k − εnkDmc
k + ηmnε

klDkcl

)

− 1

4

(
εmkε

lkhnl + εnkε
lkhml + 2εmkεnlh

kl − ηmnεklεplhkp
)

+
1

2− εε

[
1

12
DmDnh−

1

16
εmkε

k
nh+

i

8
εmkD

kDnh−
5εε

96
ηmnh+ (m↔ n)

]

− 1√
2

1

2 + εε

[
− i

2

(
ε̃mkD

kDn + ε̃nkD
kDm

)
Dla

l +
5

8
(εε̃) ηmnD

kak

−1

4
(εε̃) (DmDn + DnDm)Dka

k +
(
ε̃mkεlnD

kDl + ε̃nkεlmD
kDl

)
Dpap

]

(4.76)
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With the help of (4.55)-(4.56), one can check that hmn yields a Fierz-Pauli system, i.e. it
satisfies the same equation of motion, with now both Dnhmn = 0 and h = 0. Note that if
we set the electromagnetic field to zero, using the constraint 8cm + ∂mh = 0, we find that
hmn reduces to hmn → 4

3(hmn + ηmn∂
kck).

We can now rewrite (4.55)-(4.56) as decoupled equations:

(
D2 − 2

)
hmn = 2i

(
εkmh

k
n + εknh

k
m

)

Dnhmn = 0,

h = 0

DmDna
′n =2a′m, DmDnc

′n = 2c′m,

(4.77)

4.5 A deformed Fierz-Pauli bosonic Lagrangian

The form of the Lagrangian (4.39) is compact, and the electromagnetic field dependent
terms are relatively simple. After some redefinitions and manipulations, we have shown
how the equations of motion and the constraints reduce to a simple system. However,
for the spin-2 field one cannot immediately recognize a deformed Fierz-Pauli Lagrangian,
i.e. visibly giving a Fierz-Pauli Lagrangian if the electromagnetic field is zero. We present
here an alternative expression of L2 in the form of a Fierz-Pauli deformation, along with
two complex scalars, hence containing only physical degrees of freedom.

The dualisation of {am, cm} to the physical scalars can be carried out in the same
way as in the section 2.2. Notice that in the Lagrangian Eq. (4.39), the derivative terms
of {am, cm} are DnānD

mam − 2
5D

mc̄mD
ncn, therefore, one can add auxiliary scalar terms

−ĀA+ 2
5B̄B and shift away the vector kinetic terms by

A→
√

2A+ Dmam, B → B + Dmcm (4.78)

Then, we use the equation of motion of cm

cm = −1

5
Dmh−

1

5
DmB +

1

2
DnHnm +

i√
2
ε̃mna

n (4.79)

to integrate it out, and perform redefinitions analogous to (2.40)-(2.43):

B → B +
3

2
h, h→ h+ 4B (4.80)

After this step, the equation of motion of am can be written as:

am = − 1√
2
Amn

[
DnA+

i

2
ε̃nlD

lB +
1

8
(εε̃)DnB −

1

2
εnlpqD

lHpq

+
i

2
ε̃nlDpHpl −

i

2
ε̃nlD

lH
]

≡ am

(4.81)

where

Amn ≡
(
ηmn −

i

2
εmn −

1

2
ε̃mk ε̃

k
n

)−1

(4.82)
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The above expression denoted by am will be recurrent in a later calculation. The following
notations are introduced for shorthand:

(εε) ≡ εmnεmn, (εε̃) ≡ εmnε̃mn (4.83)

Integrating out am, we obtain a deformed Fierz-Pauli Lagrangian:

L2 =C̄mD2Cm + DmC̄mDnCn − 2C̄m (ηmn − iεmn) Cn

+

[
ĀDm −

i

2
ε̃mbB̄Db +

1

8
(εε̃) B̄Dm −

1

2
εmabcH̄bcDa − i

2
ε̃maH̄baDb +

i

2
ε̃mbH̄Db

]

×Amn
[
DnA+

i

2
ε̃nlD

lB +
1

8
(εε̃)DnB −

1

2
εnlpqD

lHpq +
i

2
ε̃nlDpHpl −

i

2
ε̃nlD

lH
]

− 2ĀA+ B̄
(
D2 − 2

)
B − 1

2
εmnε

mkB̄DnDkB

+
1

2

[
i
(
DnH̄nmεmkDkB

)
− 1

2
(εε) H̄B + h.c.

]

+
1

2
H̄(mn)D

2hmn +
1

2
DnH̄mnDkh

mk +
1

2
DnH̄nmDkHkm +

1

2

(
H̄mnDmDnh+ h.c.

)

− 2H̄(mn)H(mn) + H̄(mn)hmn −
1

2
H̄
(
D2 − 2

)
h

+

(
H̄[mn] +

1

2
iεmnB̄

)(
H[mn] −

1

2
iεmnB

)

(4.84)
When ε = 0, the above Lagrangian is decoupled, with two scalars A, B, one massive vector
Cm and a spin-2 with the well-known Fierz-Pauli Lagrangian.

The inverse matrix in the third line of (4.84) is in general cumbersome to deal with,
since its contraction with covariant derivatives has no particularly remarkable identity, and
here this matrix is kept as it is. For small background, one can expand this inverse matrix
as a series of εn. As an alternative, we will explain in Appendix C how it can be expressed
concretely in terms of ε and its dual ε̃. We would nevertheless expect the inverse matrix not
to appear at the level of the equations of motion and constraints, for the reason that these
equations can be obtained directly from (4.55) and (4.56) by appropriate redefinitions with-
out dependence on Amn. The inverse matrix may only appear in the divergence constraint
of the spin-2 where am is replaced by its equation of motion (4.81), but in this case we can
eliminate Amn by contracting the constraint with its inverse

(
ηmn − i

2εmn − 1
2 ε̃mk ε̃

k
n

)
.

More precisely, the steps leading to the equations of motion and constraints are similar
to those in Section 4.3. First, one obtains directly the trace constraint from:

− 2
δL2

δB̄
+ 4

δL2

δh̄
+ ηmn

δL2

δv̄mn
= 2h = 0 ⇒ h = 0 (4.85)

For simplicity, we introduce the notation:

Pmn ≡
δL2

δH̄mn = 0 (4.86)
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The divergence constraint, that we note Vm, is derived from DnPmn:

DnPmn = 0 ⇒ − (ηmn − iεmn)Vn = 0 ⇒ Vm = 0

Vm ≡
1

2
Dnhmn +

1

2
DnHnm +

i

2
εmnD

nB +
i√
2
ε̃mna

n
(4.87)

When ε = 0, the above equation implies ∂nhmn = 0.
On the other hand, it can be shown that the double divergence of hmn vanishes due to

3DmVm − Pmm = 2DmDnhmn = 0 ⇒ DmDnhmn = 0 (4.88)

Taking into account the relations h = 0 = DmDnhmn, we can infer the equation of motion
of the scalar B from:

δL2

δB̄
− 4

δL2

δh̄
+

2

3
Pmm =

(
D2 − 2

)
B = 0 (4.89)

The equation of motion of the massive charged spin-2 field lies in the symmetric part of
Pmn, in conjunction with the divergence constraint:

Pmn + Pnm −
2

3
ηmnPkk + DmVn + DnVm =

(
D2 − 2

)
hmn + 2i

(
εm

khnk + εn
khmk

)
= 0

(4.90)
and the equation of motion of A arises from

δL2

δĀ
+

i

2
ε̃mnPmn −

i

2
ε̃mnDmVn =

(
D2 − 2

)
A = 0 (4.91)

So far, we have obtained the decoupled equations of motion of the physical fields {hmn, A,B},
counting 12 degrees of freedom off shell, along with the trace and divergence constraints
h = 0 and Vm = 0, which remove 5 degrees of freedom on shell. One may wonder what
happens to the anti-symmetric part of Pmn, as previously it gave the constraint (4.57)
which fixed the field strengths of {am, cm}. However, for the Lagrangian (4.84), there must
not be a new independent constraint coming from P[mn], otherwise we will lose degrees of
freedom. We will show below that P[mn] is deduced from the divergence constraint.

As is noticed before, one can put the divergence constraint in a form that is independent
of Amn:

V ′m ≡
(
ηmn −

i

2
εmn −

1

2
ε̃mk ε̃

k
n

)
Vn

=

[
1− 1

8
(εε)

]
Dnhmn −

i

2
εmkDnh

nk − i

2
εnkDnhmk +

1

2
εmkεnlD

lhnk − 1

4
εmkε

knDlhnl

+
1

4
εknεk

l (Dmhnl −Dlhmn) +
1

8
(εε)DmB +

i

2
εmnD

nB

+
1

2
εmkε

knDnB −
1

2
iε̃mnD

nA

= 0

(4.92)
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In the meantime, we find it simpler to study the anti-symmetric part P[mn] shifted by the
divergence constraint:

P ′[mn] ≡ P[mn] +
1

2
DmVn −

1

2
DnVm

=
1

2
DkDmhkn −

1

2
DkDnhkm −

i

2
εmnB −

1√
2
εmnklD

kal
(4.93)

The question is then whether or not P ′[mn] imposes an independent constraint.
Combining (4.87) and (4.93), one obtains a first relation where am is absent

2 (εε̃)P ′[mn] + 8iεmnklε
lpDkVp

= 4iεmnklε
qkDlDp (Hpq + hpq) + (εε̃)

(
DkDmhn

k −DkDnhm
k
)

− 4εnk ε̃mlD
lDkB + 4εmk ε̃nlD

lDkB + 4iε̃mk ε̃
klε̃lnB

(4.94)

Then, due to the following properties of the inverse matrix Amn

(εε̃) ε̃mkAkn = 8εnkAmk − 4iAklεmkεnl + 8εmn

ε̃mk ε̃nlAkl = ηmn − 2Amn − iAmkεnk
(4.95)

we find

[(εε̃) ηmn + 4iε̃mn]Vn

= [(εε̃) ηmk + 4iε̃mk]

[
Dnh

kn − i

2
εabD

ahkb +
i

2
εknDnB

]
−
√

2 [8− (εε)] am

− 4 (2ηm
n + iεm

n)

[
DnA+

i

2
ε̃nlD

lB +
1

8
(εε̃)DnB −

1

2
εnlpqD

lHpq +
i

2
ε̃nlDpHpl

]

(4.96)
where am is multiplied by a numerical factor, so the above relation is useful to cancel the
εmnklD

kal term in (4.93). Having (4.92), (4.94) and (4.96) at hand, and after some tedious
algebra, we get finally

1

4
(εε̃)P ′[mn] +

[
1

8
(εε)− 1

]
εmnklP ′[kl] + iεmnklε

lpDkVp + εmnklD
kV ′l

+
1

8
[(εε̃) ηmk + 4iε̃mk]DnVk −

1

8
[(εε̃) ηnk + 4iε̃nk]DmVk = 0

(4.97)

where the traceless constraint and the equations of motion have been used as well. Simple
manipulations of (4.97) lead to P[mn] in terms of Vm, for small background. To conclude,
the anti-symmetric part of the Hmn equation of motion can be derived from the divergence
constraint Vm and therefore does not remove additional d.o.f. from the system. Besides, the
vanishing double divergence condition DmDnhmn = 0 results from iεmnP ′[mn] + 2DmVm.

To decouple the spin-2 from the scalar fields on shell, we can write (4.92) as the di-
vergence of a traceless symmetric tensor, which will be the modification to the new spin-2.
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We find the following expression

hmn ≡
4

3
hmn −

i

2

(
εm

khkn + εnkh
k
m

)
− 1

6

(
DmDkh

k
n + DnDkh

k
m

)
− i

4
ηmn

(
εklDpDlhkp

)

+
i

4

(
εmkD

lDkhnl + εnkD
lDkhml − εmkDlDnh

kl − εnkDlDmh
kl
)

+
1

2− εε

[
1

6
(εε) (DmDnB + DnDmB) +

i

2

(
εmkD

kDnB + εnkD
kDmB

)

−
(

1

6
+

1

8
εε

)
(εε) ηmnB +

1

2
(1− εε) εmkεknB

]

+
1

2 + εε

[
− i

2

(
ε̃mkD

kDnA+ ε̃nkD
kDmA

)
+

5

8
(εε̃) ηmnA

−1

4
(εε̃) (DmDnA+ DnDmA) +

(
ε̃mkεlnD

kDlA+ ε̃nkεlmD
kDlA

)]

(4.98)
The trace of hmn is zero and its divergence coincides with V ′m, therefore vanishes as well.

In summary, we derived in this subsection a Lagrangian (4.84) for a charged massive
spin-2 field which is in the form of a Fierz-Pauli Lagrangian deformed by the electromagnetic
background. In addition, we managed to decouple completly the massive vector boson Cm
from all other fields. Setting ε = 0, (4.84) reduces trivially to the free Fierz-Pauli Lagrangian
with two decoupled charged scalars and one charged vector fields. A simple analysis of the
equations of motion and constraints confirms causal propagation of the spin-2. Moreover,
we found the expression for the spin-2 field (4.98) which leads to a completely decoupled
system of equations of motion and constraints, the four-dimensional analogue of those of
the Argyres-Nappi Lagrangian is:

(
D2 − 2

)
hmn + 2i

(
εm

khnk + εn
khmk

)
= 0

Dnhmn = 0,

h = 0

D2Cm − 2 (ηmn − iεmn) Cn −DmDnCn = 0,

DmCm = 0
(
D2 − 2

)
A = 0,

(
D2 − 2

)
B = 0

(4.99)
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5 Charged massive fermions

Moving from real to complex superfields doubles the number of fermions, hence the intro-
duction of the indices {1, 2}. The physical fermions will give a total of 12 complex degrees of
freedom on shell. In this section, we will first fix the gauge of the fermionic Lagrangian after
the expansion of the superfields into components, then integrate the non-physical degrees
of freedom. Once a compact Lagrangian is derived, we proceed to the derivation of the
equations of motion and identify the choice of physical fermions which produces decoupled
equations. We can then present a fully explicit set of equations of motion and constraints
for the spin-3/2 charged states in a constant electromagnetic background, in both the two
and four component notations. Finally, an alternative form of the fermionic Lagrangian
will be given and the equations of motion will be re-derived from this new form. Despite
its length and complexity, this last Lagrangian reproduces the Rarita-Schwinger one in the
neutral limit and leads directly to a system of decoupled on-shell equations.

In the derivation of the equations of motion, we prefer to drop the spinorial indices to
lighten the expressions, as long as no ambiguity is present.

5.1 Gauge transformations

As we have done for the bosonic case, we begin by listing the gauge transformations of the
different components:
Fields in B:

δγ1α = −iD2Λ1α − 4Dm

(
σmῩ5

)
α

+ 2DmΛ6mα − 4iΛ9α

δγ̄α̇2 = iD2Ῡα̇
1 + 4Dm (σ̄mΛ5)α̇ + 2DmῩα̇

6m + 4iῩα̇
9

δρ2α =
1

2
DmD

2
(
σmῩ1

)
α

+ 2iD2Λ5α − iDmDn

(
σmῩn

6

)
α

+ 2Dm

(
σmῩ9

)
α
− 2 (ε · σ)α

βΛ5β

δρ̄α̇1 = −1

2
DmD

2 (σ̄mΛ1)α̇ − 2iD2Ῡα̇
5 − iDmDn (σ̄mΛn6 )α̇ − 2Dm (σ̄mΛ9)α̇ + 2 (ε · σ̄)α̇ β̇Ῡβ̇

5

(5.1)
Fields in C:

δξ1α = D2Λ1α + 4iDm

(
σmῩ5

)
α

+ 2iDmΛ6mα + 4Λ9α

δξ̄α̇2 = D2Ῡα̇
1 + 4iDm(σ̄mΛ5)α̇ − 2iDmῩα̇

6m + 4Ῡα̇
9

δψ2α = −1

2
iDmD

2
(
σmῩ1

)
α
− 2

[
D2 + i (ε · σ)

]
α
βΛ5β −DmDn

(
σmῩn

6

)
α
− 2iDm

(
σmῩ9

)
α

δψ̄α̇1 = −1

2
iDmD

2 (σ̄mΛ1)α̇ − 2
[
D2 + i (ε · σ̄)

]α̇
β̇Ῡβ̇

5 + DmDn (σ̄mΛn6 )α̇ − 2iDm (σ̄mΛ9)α̇

(5.2)
Fields in Vm:

δχ1mα = −4
[
2σmῩ5 + σnσ̄m (Λ6n − iDnΛ1)

]
α

δχ̄α̇2m = 4
[
2σ̄mΛ5 − σ̄nσm

(
Ῡ6n + iDnῩ1

)]α̇

δλ2mα = −4i(σnσ̄mD
nΛ5)α + 8(σmῩ9)α + 2i

(
σnσ̄kσmDkῩ6n

)
α

+ 2i (ε · σ)σmῩ1α

δλ̄α̇1m = 4i
(
σ̄nσmDnῩ5

)α̇ − 8 (σ̄mΛ9)α̇ + 2i
(
σ̄nσkσ̄mDkΛ6n

)α̇
− 2i (ε · σ̄) σ̄mΛα̇1

(5.3)
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Fields in U1α, Ū α̇2 :

δv1α = 2i
(
8 + D2

)
Λ1α − 8Dm

(
σmῩ5

)
α
− 4DmΛ6mα + 8iΛ9α − 8 (ε · σ)α

βΛ1β

δv̄α̇2 = −2i
(
8 + D2

)
Ῡα̇

1 + 8Dm (σ̄mΛ5)α̇ − 4DmῩα̇
6m − 8iῩα̇

9 + 8 (ε · σ̄)α̇ β̇Ῡβ̇
1

δη1α = 16iΛ4α − 8 (ε · σ)α
βΛ4β

δη̄α̇2 = −16iῩα̇
4 + 8 (ε · σ̄)α̇ β̇Ῡβ̇

4

δζ1α = −2D2Dm

(
σmῩ1

)
α

+ 8i
(
2 + D2

)
Λ5α + 4iDmDn

(
σmῩ6n

)
α
− 8Dm

(
σmῩ9

)
α

− 8 (ε · σ)α
βΛ5β + 4iεmnD

m
(
σnῩ1

)
α

δζ̄α̇2 = 2D2Dm (σ̄mΛ1)α̇ − 8i
(
2 + D2

)
Ῡα̇

5 + 4iDmDn (σ̄mΛ6n)α̇ + 8Dm (σ̄mΛ9)α̇

+ 8 (ε · σ̄)α̇ β̇Ῡβ̇
5 − 4iεmnD

m (σ̄nΛ1)α̇

δr1mα = 8iDmDn

(
σnῩ5

)
α

+ 2Dm

(
4Λ9α + 2iDnΛ6nα + D2Λ1α

)
+ 16iΛ6mα

− 8 (ε · σ)α
βΛ6mβ + 8 (εmn − iε̃mn) (Λn6α − iDnΛ1α)− 4 (εkn − iε̃kn)

(
σmσ̄

knῩ5

)
α

δr̄α̇2m = 8iDmDn (σ̄nΛ5)α̇ + 2Dm

(
4Ῡα̇

9 − 2iDnῩα̇
6n + D2Ῡα̇

1

)
− 16iῩα̇

6m

+ 8 (ε · σ̄)α̇ β̇Ῡβ̇
6m − 8 (εmn + iε̃mn)

(
Ῡnα̇

6 + iDnῩα̇
1

)
− 4 (εkn + iε̃kn)

(
σ̄mσ

knΛ5

)α̇

δµ1α =
i

2
D2
(
D2Λ1α + 2iDmΛ6mα + 4Λ9α

)
− 2D2Dm

(
σmῩ5

)
α

+ 16iΛ9α − 8 (ε · σ)α
βΛ9β

− (εmn − iε̃mn)
[
2iεmnΛ1α + 4iDn

(
σmῩ5

)
α

+ 4iDmΛn6α
]

δµ̄α̇2 =
i

2
D2
(
−D2Ῡα̇

1 + 2iDnῩα̇
6n − 4Ῡα̇

9

)
+ 2D2Dm (σ̄mΛ5)α̇ − 16iῩα̇

9 + 8 (ε · σ̄)α̇ β̇Ῡβ̇
9

+ (εmn + iε̃mn)
[
2iεmnῩα̇

1 − 4iDm (σ̄nΛ5)α̇ − 4iDmῩnα̇
6

]

(5.4)

As in the neutral case, δη1α and δη̄α̇2 are algebraic in the parameters Λ4α and Ῡα̇
4 , which

do not appear elsewhere, thus these fields should be absent in the Lagrangian. The algebraic
dependence on different gauge parameters is unaffected by the presence of a background,
thus we can still choose to gauge away algebraically {ξjα, vjα, ζjα, rjmα} and integrate out
ρjα, with j = 1, 2. The following gauge invariant combinations are useful to keep in mind:

δ

(
ρ2α +

1

2
i(σmDmγ̄2)α

)
= −4 (ε · σ)α

βΛ5β

δ

(
ρ̄α̇1 +

1

2
i (σ̄mDmγ1)α̇

)
= 4 (ε · σ̄)α̇ β̇Ῡβ̇

5

δ

(
ψ2α +

1

2
i(σmDmξ̄2)α

)
= −4i (ε · σ)α

βΛ5β

δ

(
ψ̄α̇1 +

1

2
i (σ̄mDmξ1)α̇

)
= −4i (ε · σ̄)α̇ β̇Ῡβ̇

5

δ
(
ζ1α + 2

(
σmDmξ̄2

)
α

)
= 16i

(
δα
β + i(ε · σ)α

β
)

Λ5β

δ
(
ζ̄α̇2 − 2

(
σ̄mDmξ

α̇
1

)
α

)
= −16i

(
δα̇β̇ + i(ε · σ̄)α̇β̇

)
Ῡβ̇

5

(5.5)
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5.2 A compact fermionic Lagrangian

As with hmn and Cm in the bosonic sector, fermions in the Vm superfield will also appear, in
the Lagrangian, contracted with one or two (1− iε) factors. In order to make the formulas
more concise, we introduce the rescaled spinors denoted with bold symbols:

λ̄1m ≡ (ηmn − iεmn) λ̄n1 , λ2m ≡ (ηmn − iεmn)λn2

χ1m ≡ (ηmn − iεmn)χn1 , χ̄2m ≡ (ηmn − iεmn) χ̄n2
(5.6)

The Lagrangian of the fermionic fields extracted from (2.1) reads:

LF =− i

8

[
4
(
λm1 σ

nDnλ̄1m

)
−
(
χ̄m1 σ̄

nσkσ̄lDnDkDlχ1m

)]

− 1

4

[(
χ̄m1 σ̄

nσkDnDkλ̄1m

)
+
(
λm1 σ

nσ̄kDnDkχ1m

)]

−
[
(λm1 χ1m)− 6 (ψ1ξ1)− 15

4
(ψ1σ

mσ̄nDmDnξ1) + h.c.
]

− 33

8
i
[(
ξ̄1σ̄

mσnσ̄kDmDnDkξ1

)
− 4

(
ψ1σ

mDmψ̄1

)]

+
3

2

[
i (λm1 Dmξ1)− 2

(
λm1 σmψ̄1

)
+

1

2

(
χ̄m1 σ̄mD

2ξ1

)
− i
(
χ̄m1 σ̄mσnD

nψ̄1

)

− (χ̄m1 σ̄
nDmDnξ1) + 2i (λm1 σmnD

nξ1) +
1

2
iχ̄m1 (ε · σ̄) σ̄mξ1 + h.c.

]

− 1

4

[
(λm1 Dmv1) + 2 (λm1 σmnD

nv1)− 2i (χ̄m1 σ̄mµ1) +
(
χ̄m1 σ̄

nσmDnζ̄2

)

+2i
(
λm1 σmζ̄2

)
− i (λ1mσ

nσ̄mr1n)− 1

2
(χ̄m1 σ̄

nDnr1m) +
1

2
(χ̄m1 σ̄

nDmr1n)

+
1

2
(χ̄m1 σ̄mDnr

n
1 )− i

2
εmnpq (χ̄m1 σ̄

nDprq1) +
1

2
χ̄m1 (ε · σ̄) σ̄mv1 + h.c.

]

+
1

4

[
i (v1σ

mDmµ̄1)− 1

4

(
r1mσ

mD2v̄1

)
+

1

2
(r1mσ

nDmDnv̄1) + (r1mσ
mµ̄1) + h.c.

]

+

[
i

2

(
ζ1σ

mDmζ̄1

)
− i

8
(rm1 σ

nDnr̄1m)− 1

8
εmnkl (r1mσnDkr̄1l)

]

+
i

8
ε̃mn (v1σ

mDnv̄1) +

[
i

8
r1m (ε · σ)σmv̄1 + h.c.

]

+

[
i

2
(rm2 Dmζ1)− (µ2ζ1)− 1

4

(
v2D

2ζ1

)
+ h.c.

]

+
i

2

(
ρ1 +

1

2
iγ̄1σ̄

mDm

)
σnDn

(
ρ̄1 +

1

2
iσ̄kDkγ1

)
− 2 [(ρ1γ1) + h.c.]

+
3

4

[(
ρ1 +

1

2
iγ̄1σ̄

mDm

)(
iσmσ̄nDmDnξ1 + 2σnDnψ̄1

)
+ h.c.

]

(5.7)
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−
[
χ̄m1

(
Dmρ̄1 −

i

2
ε̃mnσ̄

nγ1

)
+ λm1 Dmγ1 + h.c.

]

+
1

8

[(
D2v̄1 − 2iv̄1(ε · σ̄)− 4µ̄1 + 4ir̄1mσ̄

mnDn

)(
ρ̄1 +

1

2
iσ̄kDkγ1

)
+ h.c.

]

+

[
i

2
v̄1(ε · σ̄)ρ̄1 −

i

2
ζ̄1(ε · σ̄)γ̄2 +

i

4
r̄m1 (ε · σ̄) σ̄mγ1 + h.c.

]

− 9

8

[(
D2v̄1 − 2iv̄1(ε · σ̄)− 4µ̄1 + 4ir̄1mσ̄

mnDn

)(
iψ̄1 −

1

2
σ̄kDkξ1

)
+ h.c.

]

+

[
3v̄1(ε · σ̄)ψ̄1 −

3

2
iε̃mn (r̄1mσ̄nξ1) +

3i

4
v̄1 (ε · σ̄) σ̄mDmξ1

+
3

2

(
r̄m1 σ̄

nσmDnψ̄1

)
− 3i

2

(
ζ̄1D

2ξ̄2

)
+

3i

4

(
r̄m1 σ̄mD

2ξ1

)

+3 (µ̄1σ̄
mDmξ1)− 3

(
ζ̄1σ̄

mDmψ2

)
+

3i

2

(
v̄1D

2ψ̄1

)
+ h.c.

]
+ (1↔ 2, ε↔ −ε)

Setting ε = 0 and D→ ∂, we retrieve (2.56). As we argued when analysing the gauge trans-
formations, the fermions η1α, η̄α̇2 are absent. Moreover, µ1α, µ̄α̇2 are Lagrange multipliers.

For the gauge fixing procedure, we can directly generalise the one followed in the neutral
case. We will illustrate it by listing its different steps:

1. We algebraically gauge away vjα, which is still the Stückelberg field of rjmα

µjα → µjα +
1

4
D2vjα, rjmα → rjmα + iDmvjα, j = 1, 2 (5.8)

2. We eliminate γjα, ψjα, χjmα higher derivatives by the shifts

ρjα → ρjα −
1

2
i(σmDmγ̄j)α

λjmα → λjmα +
i

2
(σnDnχ̄jm)α

ψjα → ψjα +
i

2

(
σnDnξ̄j

)
α

rjmα → rjmα + 4Dmξjα, j = 1, 2

ζ1α → ζ1α − 2
(
σmDmξ̄2

)
α
, ζ̄α̇2 → ζ̄α̇2 + 2 (σ̄mDmξ1)α̇

(5.9)

After this step, the spin-3/2 states χjmα appear only in their rescaled form χjmα.

3. We algebraically gauge away ξjα

γjα → γjα − iξjα, λ̄α̇mj → λ̄α̇mj − 2 (σ̄mξj)
α̇

µ1α → µ1α + 4iξ1α − 2 (ε · σ)α
βξ1β, µ̄α̇2 → µ̄α̇2 − 4iξ̄α̇2 + 2 (ε · σ̄)α̇ β̇ ξ̄

β̇
2

(5.10)
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4. We rescale ζjα

ζ1α →
(
δα
β + i (ε · σ)α

β
)
ζ1β, ζ̄α̇2 →

(
δα̇β̇ + i (ε · σ̄)α̇ β̇

)
ζ̄ β̇2 (5.11)

This extra step, compared to the neutral case, is due to the ε-dependent terms in
the gauge transformations of ζjα. After the rescaling, ζjα become pure gauge with:
δζ1α = 16iΛ5α, δζ̄α̇2 = −16iῩα̇

5 .

5. We algebraically gauge away ζjα

γ1α → γ1α −
1

2
i
(
σmDmζ̄2

)
α
, ρ̄α̇1 → ρ̄α̇1 +

1

4
i
[
(ε · σ̄) ζ̄2

]α̇
,

r1mα → r1mα −
1

2
i
[
σm (ε · σ̄) ζ̄2

]
α
, ψ̄α̇1 → ψ̄α̇1 +

1

4

[
(ε · σ̄) ζ̄2

]α̇
,

λ̄α̇1m → λ̄α̇1m + Dmζ̄
α̇
2 , χ1mα → χ1mα −

1

2
i
(
σmζ̄2

)
α

µ1α → µ1α +
1

4

[
σm (ε · σ̄)Dmζ̄2

]
α

+
1

2

[
2iδα

β − (ε · σ)α
β
] (
σmDmζ̄2

)
β

γ2α → γ2α −
1

2
i
(
σmDmζ̄1

)
α
, ρ2α → ρ2α +

1

4
i [(ε · σ) ζ1]α ,

r̄α̇2m → r̄α̇2m +
1

2
i [σ̄m (ε · σ) ζ1]α̇ , ψ2α → ψ2α −

1

4
[(ε · σ) ζ1]α ,

λ2mα → λ2mα + Dmζ1α, χ̄α̇2m → χ̄α̇2m −
1

2
i (σ̄mζ1)α̇

µ̄α̇2 → µ̄α̇2 +
1

4
[σ̄m (ε · σ)Dmζ1]α̇ +

1

2

[
2iδα̇β̇ − (ε · σ̄)α̇ β̇

]
(σ̄mDmζ1)β̇

(5.12)

6. We algebraically gauge away rjmα

µjα → µjα −
1

2
iDmrjmα, j = 1, 2

χ1mα → χ1mα +
i

4
(ηmn − iεmn)−1

(
σkσ̄nr1k

)
α
,

χ̄α̇2m → χ̄α̇2m −
i

4
(ηmn − iεmn)−1

(
σ̄kσnr̄2k

)α̇
(5.13)

The result is a Lagrangian in the unitary gauge

LF =− i

2

[(
λm1 σ

nDnλ̄1m

)
+ 2 (χ̄m1 σ̄

nDnχ1m)
]
− [(λm1 χ1m) + h.c.]

+
33

2
i
(
ψ1σ

mDmψ̄1

)
+

i

2
(ρ1σ

mDmρ̄1) + 2i (γ1σ
mDmγ̄1)

+

[
3i
(
χ̄m1 Dmψ̄1

)
− 3

(
λm1 σmψ̄1

)
+

1

2
i (χ̄m1 σ̄mµ1)− (χ̄m1 Dmρ̄1)− (λm1 Dmγ1) + h.c.

]

+

[
3

2

(
ρ1σ

mDmψ̄1

)
− 2 (ρ1γ1)− 1

2
(µ1ρ1)− 9

2
i (µ1ψ1) + h.c.

]
+ (1↔ 2)

−
[

1

2
χ̄m1 (ε · σ̄) σ̄mγ1 +

1

2
χm2 (ε · σ)σmγ̄2 + h.c.

]

(5.14)
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which gives (2.58) when the electromagnetic field strength is set to zero.

Here ρjα is a residual non-physical field. The fermion µ appears a Lagrange multiplier,
leading to the same constraint as in the neutral case:

ρjα = −9iψjα − i
(
σmχ̄

m
j

)
α
, j = 1, 2 (5.15)

Also, using this constraint, ρj can be integrated to obtain a Lagrangian with only physical
fermions (corresponding to (2.60) in the neutral case):

LF =− i

2

[(
λm1 σ

nDnλ̄1m

)
+
(
χ̄1mσ̄

nσkσ̄mDkχ1n

)]
− [(λm1 χ1m) + h.c.]

+ 30i
(
ψ1σ

mDmψ̄1

)
+ 2i (γ1σ

mDmγ̄1)

+
[
−3i (χm1 σnσ̄mD

nψ1)− 3
(
λm1 σmψ̄1

)
− 2i (χ̄m1 σ̄mγ1)− (λm1 Dmγ1) + h.c.

]

+ [18i (ψ1γ1) + h.c.] + (1↔ 2)−
[

1

2
χ̄m1 (ε · σ̄) σ̄mγ1 +

1

2
χm2 (ε · σ)σmγ̄2 + h.c.

]

(5.16)
However, difficulties arise when one tries to generalise (2.61)-(2.69) to decouple spin-1/2
from spin-3/2 and to put the kinetic terms of the latter in a Rarita-Schwinger form. First,
because the kinetic term of λm in (5.16) contains both the rescaled and the unscaled form,
the generalisation of (2.61) will either generate multiple ε-dependent terms, making the
new couplings and kinetic terms more complicated, or will introduce the inverse matrix
(ηmn − iεmn)−1 that is difficult to handle. Second, due to the additional ε-dependent cou-
plings between χm and γ, (2.61) also creates ε-dependent couplings between χm and λm.
Therefore, a direct generalisation of (2.61)-(2.69) does not allow to decouple the spin-1/2
from the spin-3/2 fields.

We are going to present in a later subsection the Lagrangian obtained by generalising
(2.70), that has the advantages of being a deformation of the Rarita-Schwinger one, and
of giving decoupled equations on shell. But we will start by presenting a more compact
form of the fermionic Lagrangian, for which the derivation of the equations of motion and
constraints is relatively simple.

To this end, the same field redefinition as (2.63) can be applied to simplify the La-
grangian

χjmα → χjmα − 2
(
σmψ̄j

)
α
, j = 1, 2 (5.17)

In addition, we perform the following normalisations for convenience:

ψ̄α̇j →
i

2
√

2
ψ̄α̇j , λ̄α̇jm →

√
2λ̄α̇jm, j = 1, 2 (5.18)

Since σ̄m (ε · σ)σm = 0, the terms between the last brackets of (5.16) are not shifted.
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The resulting Lagrangian is:

LF =− i

2

[
2
(
λm1 σ

nDnλ̄1m

)
+
(
χ̄1mσ̄

nσkσ̄mDkχ1n

)]
−
√

2 [(λm1 χ1m) + h.c.]

+

[
− i

4

(
ψ1σ

mDmψ̄1

)
+ 2i (γ1σ

mDmγ̄1)

]

+

[
3√
2

(χm1 σmnD
nψ1)− 1

2
√

2
(χm1 Dmψ1)

− i

2

(
λm1 σmψ̄1

)
− 2i (χ̄m1 σ̄mγ1)−

√
2 (λm1 Dmγ1) + h.c.

]

+

[
1√
2

(ψ1γ1) + h.c.
]

+ (1↔ 2)−
[

1

2
χ̄m1 (ε · σ̄) σ̄mγ1 +

1

2
χm2 (ε · σ)σmγ̄2 + h.c.

]

(5.19)

5.3 Equations of motion and new spin-3/2

We will only present the computational details for fermions of index 1, and we will provide
at the end the analogous results for those of index 2, which are almost identical.

The equations of motion directly obtained from the Lagrangian (5.19) take the form:

i√
2

(
σnDnλ̄1m

)
α

= − (ηmn − iεmn)

(
χn1 +

1

2
√

2
iσnψ̄1 + Dnγ1

)

α

(5.20a)

i
(
σ̄nσkσ̄mDkχ1n

)α̇
= −2

√
2λ̄α̇1m + 3

√
2
(
σ̄mnD

nψ̄1

)α̇ − 1√
2
Dmψ̄

α̇
1

− 4i (σ̄mγ1)α̇ − [(ε · σ̄) σ̄mγ1]α̇ (5.20b)

i

2
√

2

(
σmDmψ̄1

)
α

= −3 (σmnD
mχn1 )α +

1

2
Dmχ1mα +

√
2

2
i
(
σmλ̄1m

)
α

+ γ1α (5.20c)

i (σ̄mDmγ1)α̇ = −i (σ̄mχ1m)α̇ −
√

2

2
Dmλ̄α̇1m −

1

4
[σ̄m (ε · σ)χ1m]α̇ − 1

2
√

2
ψ̄α̇1

(5.20d)

where the first equation comes from the variation of LF with regard to λ̄1m instead of the
rescaled λ̄1m.

In absence of the electromagnetic background, the above equations give rise to

i
(
σm∂mψ̄

)
α

= −
√

2γα, i (σ̄m∂mγ)α̇ = −
√

2ψ̄α̇

(σ̄mχm)α̇ = 0,
(
σmλ̄m

)
α

=
3√
2

iγα, ∂mχmα = 0, ∂mλ̄α̇m =
3

2
ψ̄α̇

(5.21)

We also have coupled equations of motion for λ̄m, χm and the spin-1/2 fields. But, these
equations can be put in a more convenient form by introducing

λ̄′α̇m = λ̄α̇m +
i

2
√

2
(σ̄mγ)α̇ − 1

2
∂mψ̄

α̇ (5.22)

which satisfy
i (σ̄n∂nχm)α̇ = −

√
2λ̄′α̇m, i

(
σn∂nλ̄

′
m

)
α

= −
√

2χmα

∂mλ̄′α̇m = 0,
(
σmλ̄′m

)
α

= 0
(5.23)
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In the presence of an electromagnetic background, we will proceed in several steps.
First, we compute σ̄m(5.20a) (after substituting γ and ψ equations of motion):

√
2σ̄mnDmλ̄1n = − 3

2
√

2
ψ̄1−

i√
2

(ε · σ̄) ψ̄1−εmnσ̄mDnγ1−
3

4
εmnσ̄

mχn1 +
i

4
ε̃mnσ̄

mχn1 (5.24)

Taking the σ-trace of (5.20b) gives

5iσmσ̄nDmχ1n + 4iDmχ1m − 6iγ1 + 2
√

2σmλ̄1m = 0 (5.25)

which can be used to rewrite (5.20c) as

i
(
σmDmψ̄1

)
α

= −
√

2γ1α −
√

2

2
(σmσ̄nDmχ1n)α (5.26)

The divergence of (5.20a) gives

4σmnDmχ1n =−
√

2εmnσ
mλ̄n1 +

i

2
σmσ̄n (ε · σ)Dmχ1n + 2iεmnD

mχn1

− 1√
2
εmnσ

nDmψ̄1 − εmnεmnγ1 − 2i (ε · σ) γ1

=−
√

2εmnσ
mλ̄n1 −

i

2
(ε · σ)σmσ̄nDmχ1n + i (εmn − iε̃mn)Dmχn1

− i (ε · σ)Dmχ1m −
1√
2
εmnσ

nDmψ̄1 − εmnεmnγ1 − 2i (ε · σ) γ1

(5.27)

where we replaced D2γ1 with (obtained via applying σnDn on (5.20d)):

D2γ1 =− 3

2
Dmχ1m + 5σmnDmχ1n −

1

4
iσmσ̄n (ε · σ)Dmχ1n

−
√

2

2
iσmDmDnλ̄

n
1 −
√

2

2
iσmλ̄1m − γ1 + i (ε · σ) γ1

(5.28)

Taking the divergence of the χ1m equations of motion gives:

−iσ̄mD2χ1m =− 1√
2
D2ψ̄1 +

3√
2

i (ε · σ̄) ψ̄1 +
√

2ψ̄1 + 4iσ̄mχ1m − (ε · σ̄) σ̄mDmγ1

(5.29)
Now, D2ψ̄1 can be found by acting with σ̄nDn on (5.20c):

1√
2
D2ψ̄1 =

i√
2

(ε · σ̄) ψ̄1 −
1√
2
ψ̄1 + 3iσ̄mD2χ1m − 2iσ̄mDmDnχ

n
1 + 3 (ε · σ̄) σ̄mχ1m

− 1

2
σ̄m (ε · σ)χ1m − 2iσ̄mχ1m − 2

√
2σ̄mnDmλ̄1n

=
3i√

2
(ε · σ̄) ψ̄1 +

√
2ψ̄1 + 3iσ̄mD2χ1m − 2iσ̄mDmDnχ

n
1 + 2 (ε · σ̄) σ̄mχ1m

− 2iσ̄mχ1m + σ̄m (ε · σ)Dmγ1 − (ε · σ̄) σ̄mDmγ1

(5.30)
which inserted in equation (5.29) leads to:

3iσ̄mχ1m + 2iσ̄mDm

(
σnkDnχ1k

)
− 1

2
σ̄m (ε · σ)Dmγ1 = 0 (5.31)
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We have computed the σ-trace and divergence of the spin-3/2 equations of motion, but
they are not sufficient to determine the constraints due to the presence of higher (than first
order) derivatives. Note that in the presence of an electromagnetic background, we have
one more operation that is independent of σm × (equations of motion)m. This operation is
σm (ε · σ̄) × (e.o.m.)m.6 While σm × (e.o.m.)m projects out σ-traceless components of the
equation, σm (ε · σ̄)× (e.o.m.)m recovers them, with an extra ε factor.

Acting with σm (ε · σ̄) on (5.20b) gives:

0 =
√

2σm (ε · σ̄) λ̄1m + εmn (εmn − iε̃mn) γ1 +
√

2εmnσ
nDmψ̄1 −

1√
2

(ε · σ)σmDmψ̄1

− 2 (iεmn + ε̃mn)Dmχn1

=
√

2σm (ε · σ̄) λ̄1m + εmn (εmn − iε̃mn) γ1 +
√

2εmnσ
nDmψ̄1 − i (ε · σ) γ1

− i

2
(ε · σ)σmσ̄nDmχ1n − 2 (iεmn + ε̃mn)Dmχn1

(5.32)
where the second equality is due to (5.26). Then, adding the second line of the above
equation to −1

2 (ε · σ)×(5.25), we obtain

−
√

2εmnσ
mλ̄n1 =i (ε · σ) γ1 +

1

2
εmn (εmn − iε̃mn) γ1 +

√
2

2
εmnσ

nDmψ̄1 − i (ε · σ)Dmχ1m

− (iεmn + ε̃mn)Dmχn1 −
3i

2
(ε · σ)σmσ̄nDmχ1n

(5.33)
Inserting this into (5.27) leads to:

4 [1 + i (ε · σ)]σmnDmχ1n = −i [1 + i (ε · σ)] (ε · σ) γ1 (5.34)

which multiplied on both sides by [1 + i (ε · σ)]−1 gives:

σmnDmχ1n = − i

4
(ε · σ) γ1 (5.35)

This allows to simplify (5.31), which provides our first constraint:

σ̄mχ1m = 0 (5.36)

Moreover, since σmσ̄nDmχ1n = 2σmnDmχ1n − Dmχ1m = 0, we can write our second
constraint

Dmχ1m = − i

2
(ε · σ) γ1 (5.37)

as well as the Dirac equation of ψ̄1:

iσmDmψ̄1 = −
√

2γ1 (5.38)

Also, (5.25) implies a trace constraint of λ̄1m

σmλ̄1m =
3√
2

iγ1 −
1√
2

(ε · σ) γ1 (5.39)

6We assumed that the equation of motion has a global dotted index, (e.o.m.)α̇. In the opposite case, the
corresponding operations should obviously be the conjugate ones.
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which in conjunction with (5.24) yields:

− 1√
2
Dmλ̄1m = − 3

2
√

2
ψ̄1 −

√
2i (ε · σ̄) ψ̄1 + (ε · σ̄) σ̄mDmγ1 +

1

4
σ̄m (ε · σ)χ1m (5.40)

Now add the above equation to (5.20d) gives:

i [1 + i (ε · σ̄)] σ̄mDmγ1 = −
√

2 [1 + i (ε · σ̄)] ψ̄1 (5.41)

so we get the Dirac equation for γ1:

iσ̄mDmγ1 = −
√

2ψ̄1 (5.42)

Back to (5.40), the divergence constraint of λ̄1m becomes

Dmλ̄1m =
3

2
ψ̄1 −

√
2

4
σ̄m (ε · σ)χ1m (5.43)

Finally, we need to find a generalisation of (5.22) for the case of propagation in an
electromagnetic background, such that we arrive at new spin-3/2 fields that are decoupled
from the spin-1/2 ones in the equations of motion and constraints. This is given by:

λ̄′1m ≡ λ̄1m +
i

2
√

2
[1− i (ε · σ̄)] σ̄mγ1 −

1

2
[ηmn − i (εmn + iε̃mn)]Dnψ̄1

χ′1m ≡ χ1m +
1

2
√

2
(ε · σ)σmψ̄1

(5.44)

and it leads to the equations of motion and constraints for the spin-3/2 fields:

iσnDnλ̄
′
1m = −

√
2 (ηmn − iεmn)χ′n1

iσ̄nDnχ
′
1m = −

√
2λ̄1m,

Dmχ′1m = 0, Dmλ̄′1m = −
√

2

4
σ̄m (ε · σ)χ′1m

σ̄mχ′1m = 0, σmλ̄′1m = 0

(5.45)

as well as the Dirac equations for the spin-1/2 fields:

iσ̄mDmγ1 = −
√

2ψ̄1, iσmDmψ̄1 = −
√

2γ1 (5.46)

The system (5.45) describes a spin-3/2 field with the correct number of degrees of
freedom and a gyromagnetic ratio g = 2. Starting with 32 real degrees of freedom off-shell
for {χ′1mα, λ̄′α̇1m}, the equations of motion remove 16 degrees of freedom and each divergence
and σ-trace constraint removes 2, so we are left with 8 on-shell degrees of freedom for
{χ′1mα, λ̄′α̇1m}. Note that the modification in the presence of an electromagnetic background
is clearly manifest in the divergence constraint, and the equation of motion of λ̄′1m.

Next, let us express the equations for the spin-1/2 and spin-3/2 fields in four-component
notations. We introduce the new Dirac spinors:

Φ1 ≡
(
γ1α

ψ̄α̇1

)
, Ψ1m ≡

(
χ′1mα
λ̄′α̇1m

)
(5.47)
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We follow the notations in [35], where the γ-matrices are

γm =

(
0 σm

σ̄m 0

)
, γ5 = γ0γ1γ2γ3 =

(
−i 0

0 i

)
(5.48)

and for shorthand, we note /D ≡ γmDm.
The spin-1/2 satisfies the Dirac equation in QED:

(
i /D +

√
2
)

Φ1 = 0 (5.49)

As for spin-3/2, the constraints can be written as
[
Dm −

√
2

4
(εmn + iε̃mn) γn

]
Ψ1m = 0, γmΨ1m = 0 (5.50)

With projection operators defined as PL = (1 + iγ5)/2, PR = (1− iγ5)/2, we can write the
equations of motion as (

i /D +
√

2
)
Ψ1m =

√
2iεmnΨ

n
1L (5.51)

The fermions of index 2 correspond to the conjugates of those of index 1 if the elec-
tromagnetic field intensity is set to zero. Their equations of motion and constraints can be
worked out in an analogous way. The results are:

• New spin-3/2 definitions

λ′2m ≡ λ2m +
i

2
√

2
[1− i (ε · σ)]σmγ̄2 −

1

2
[ηmn − i (εmn − iε̃mn)]Dnψ2

χ̄′2m ≡ χ̄2m +
1

2
√

2
(ε · σ̄) σ̄mψ2

(5.52)

• Equations of motion and constraints:

iσmDmγ̄2 = −
√

2ψ2, iσ̄mDmψ2 = −
√

2γ̄2

iσnDnχ̄
′
2m = −

√
2λ′2m, iσ̄nDnλ

′
2m = −

√
2 (ηmn − iεmn) χ̄′n2

Dmχ̄′2m = 0, σmχ̄′2m = 0

Dmλ′2m = −
√

2

4
σm (ε · σ̄) χ̄′2m, σ̄mλ′2m = 0

(5.53)

Likewise, we introduce the four-component fermions of opposite charge with regard to
{Φ1,Ψ1m}:

Φ2 ≡
(
γ2α

ψ̄α̇2

)
, Ψ2m ≡

(
χ′2mα
λ̄′α̇2m

)
(5.54)

They satisfy: (
i /D +

√
2
)

Φ2 = 0
[
Dm +

√
2

4
(εmn + iε̃mn) γn

]
Ψ2m = 0, γmΨ2m = 0

(
i /D +

√
2
)
Ψ2m = −

√
2iεmnΨ

n
2L

(5.55)
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One can observe that the γ-trace constraint does not change in the presence of the back-
ground, whereas the divergence constraint is modified by the electromagnetic field strength.
The only difference compared to the equations of index 1 is the sign flipping ε→ −ε.

One may wonder what if the redefinitions (5.44) and (5.52) are performed at the level
of the Lagrangian. To clarify this point, we apply the following field redefinition on (5.19):

λ̄1m →λ̄1m −
i

2
√

2
[1− i (ε · σ̄)] σ̄mγ1 +

1

2
[ηmn − i (εmn + iε̃mn)]Dnψ̄1

χ1m →χ1m −
1

2
√

2
(ε · σ)σmψ̄1

λ2m →λ2m −
i

2
√

2
[1− i (ε · σ)]σmγ̄2 +

1

2
[ηmn − i (εmn − iε̃mn)]Dnψ2

χ̄2m →χ̄2m −
1

2
√

2
(ε · σ̄) σ̄mψ2

(5.56)

and obtain

LF =− i

2

[
2
(
λm1 σ

nDnλ̄1m

)
+
(
χ̄1mσ̄

nσkσ̄mDkχ1n

)]
−
√

2 [(λm1 χ1m) + h.c.]

+

[
3

2
√

2
(χm1 σmσnD

nψ1)− i

2

(
λm1 σmψ̄1

)
− 3

2
i (χ̄m1 σ̄mγ1)−

√
2 (λm1 Dmγ1) + h.c.

]

+

[
i

4

(
ψ1σ

mDmψ̄1

)
+ i (γ1σ

mDmγ̄1)

]
+

1√
2

[
γ̄1D

2ψ̄1 + h.c.
]

− i

8
Gmnγ̄1σ̄m [1− i (ε · σ)]σk [1− i (ε · σ̄)] σ̄nD

kγ1

+
i

4
Gmn [ηmp + i (εmp − iε̃mp)] [ηnq − i (εnq + iε̃nq)]ψ1σ

kDpDkD
qψ̄1

− i

4

(
εmnε

mk + ε̃mnε̃
mk
)
ψ1σkD

nψ̄1 −
i

2
ε̃mn

(
ψ1σ

nDmψ̄1

)
+ iε̃mn (γ̄1σ̄

nDmγ1)

+
1

4
√

2

{
Gmn [ηkp − i (εkp + iε̃kp)] [ηnl − i (εnl + iε̃nl)] γ̄1σ̄mσ

pDkDlψ̄1 + h.c.
}

−
{

i

2
[ηmk − i (εmk + iε̃mk)]λ

m
1 σnD

nDkψ̄1 +
1

2
√

2
λm1 σn [1− i (ε · σ̄)] σ̄mD

nγ1 + h.c.
}

+
1

2

[
λm1 (ε · σ)σmψ̄1 +

1√
2

(εε− iεε̃)ψ1γ1 + h.c.
]

+ (1↔ 2, ε↔ −ε)
(5.57)

Where we denoted the inverse matrix by Gmn ≡ (ηmn − iεmn)−1. It transforms as Gmn ↔
Gnm under the sign flipping εmn ↔ −εmn.

We remark that the Lagrangian (5.57) obtained after redefinition contains higher deriva-
tives even when ε = 0. Nevertheless, this is not a cause for concern here as we find that
it leads to the same system as in (5.45), and (5.53). To show this, we can start from the

– 56 –



corresponding equations of motion:7

0 = −iσnDnλ̄1m −
√

2χ1m +
√

2iεmnχ
n
1 −

i

2
σmψ̄1 −

1

2
εmnσ

nψ̄1 −
√

2Dmγ1 +
√

2iεmnD
nγ1

− i

2
[ηmk − i (εmk + iε̃mk)]σnD

nDkψ̄1 −
1

2
√

2
σn [1− i (ε · σ̄)] σ̄mD

nγ1

+
1

2
(ε · σ)σmψ̄1 −

i

2
εmn (ε · σ)σnψ̄1 (5.58a)

0 = − i

2
σ̄nσkσ̄mDkχ1n −

√
2λ̄1m +

3

2
√

2
σ̄mσnD

nψ̄1 −
3i

2
σ̄mγ1 (5.58b)

0 = iσ̄mDmγ1 +
1√
2
D2ψ̄1 +

√
2Dmλ̄1m +

3

2
iσ̄mχ1m

− i

8
Gmnσ̄m [1− i (ε · σ)]σk [1− i (ε · σ̄)] σ̄nD

kγ1

+ iε̃mnσ̄
nDmγ1 +

1

4
√

2
Gmn [ηkp − i (εkp + iε̃kp)] [ηnl − i (εnl + iε̃nl)] σ̄mσ

pDkDlψ̄1

+
1

2
√

2
σ̄m [1− i (ε · σ)]σnD

nλ̄m1 +
1

2
√

2
(εε+ iεε̃) ψ̄1 = 0 (5.58c)

0 =
i

4
σmDmψ̄1 +

1√
2
D2γ1 −

3

2
√

2
σmσ̄nDmχ1n +

i

2
σmλ̄1m −

1

2
σm (ε · σ̄) λ̄1m

− i

2
ε̃mnσ

nDmψ̄1 +
i

4
Gmn [ηmp + i (εmp − iε̃mp)] [ηnp − i (εnp + iε̃np)]σ

kDpDkD
qψ̄1

− i

4

(
εmnε

mk + ε̃mnε̃
mk
)
σlD

nψ̄1 +
i

2
[ηmk + i (εmk − iε̃mk)]σnD

kDnλ̄m1

+
1

2
√

2
(εε− iεε̃) γ1 +

1

4
√

2
Gmn [ηkp + i (εkp − iε̃kp)] [ηml + i (εml − iε̃ml)]σ

pσ̄nD
lDkγ1

(5.58d)

This system of equations can be transformed to an equivalent one, where the matrix Gmn
doesn’t appear, by a making suitable combination of the equations. Gmn appears in (5.58c)
and (5.58d), thus these are the two equations that we will replace.
We start by simplifying the spin-1/2 equations of motion. We compute the combination
(5.58c)− i

2
√

2
Gpmσ̄p [1− i (ε · σ)]×(5.58a):

0 =
3

2
iσ̄mDmγ1 −

1

2
(ε · σ̄) σ̄mDmγ1 +

1√
2
D2ψ̄1 +

1√
2
ψ̄1 +

√
2Dmλ̄1m

+ 2iσ̄mχ1m +
1

2
σ̄m (ε · σ)χ1m = 0

(5.59)

7Only the calculation for fermions of index 1 is presented, and those of index 2 are completely analogous.
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while, (5.58d)+1
2G

pm [ηpq + i (εpq − iε̃pq)]D
q×(5.58a)− 1

2
√

2
σm (ε · σ̄)×(5.58b) gives:

i

2
σmλ̄1m −

3

2
√

2
σmσ̄nDmχ1n −

1√
2
Dmχ1m = 0 (5.60)

Remarkably, (5.58a)-(5.58b) and (5.59)-(5.60) are equivalent to applying the field redefini-
tion (5.56) on the former equations of motion (5.20a)-(5.20d). Therefore, the same steps
and results, intermediate or final, obtained previously will be obtained here if we follow
the same steps, only they take another form since they are connected by redefinitions of
fields. In particular, the traceless condition (5.36) remains unchanged. More precisely, let
us compute the divergence, σ-trace, as well as the σm (ε · σ̄) projection of the χ1m equations
of motion:

i

2
σ̄mD2χ1m−

1

2
σ̄m (ε · σ)χ1m−

√
2Dmλ̄1m−

3

2
√

2
D2ψ̄1 +

3

2
√

2
i (ε · σ̄) ψ̄1−

3

2
iσ̄mDmγ1 = 0

(5.61)
− 2iDmχ1m −

√
2σmλ̄1m − 3

√
2σmDmψ̄1 + 6iγ1 = 0 (5.62)

2i (εmn − iε̃mn)Dmχn1 −
√

2σm (ε · σ̄) λ̄1m = 0 (5.63)

From (5.60)+ i
2
√

2
(5.62) we obtain:

i

2
σmDmψ̄1 +

1√
2
γ1 +

1

2
√

2
σmσ̄nDmχ1n = 0 (5.64)

which is exactly (5.26). The σ-trace of χ1m can be inferred from the combination
σ̄m× (5.58a)−2

√
2i(5.59)−

√
2i(5.61)−2σ̄mDm× (5.60):

3
√

2σ̄mχ1m + σ̄mDm

[
2
√

2σnkDnχ1k −
1

2
(ε · σ)σnDnψ̄1 +

i√
2

(ε · σ) γ1

]
= 0 (5.65)

One finds that the expression between brackets vanishes because the combination of equa-
tions i√

2
σnDn×(5.59)+Dm×(5.58a)+i (ε · σ)×(5.60)− 1

2
√

2
(5.63) gives:

[1 + i (ε · σ)]

[
−2
√

2σnkDnχ1k +
1

2
(ε · σ)σnDnψ̄1 −

i√
2

(ε · σ) γ1

]
= 0 (5.66)

which implies then, as expected, σ̄mχ1m = 0. The Dirac equation for ψ̄1 then follows
from (5.64). Back to (5.66) with ψ̄1 replaced by using its equations of motion, we de-
duce σmnDmχ1n = 0 hence Dmχ1m = 0. As the for λ̄1m, one obtains σmλ̄1m = 0

using χ1m constraints in (5.60). Furthermore, the condition (5.61) results in Dmλ̄1m =

−
√

2
4 σ̄

m (ε · σ)χ1m. The Dirac equation of γ1 comes from (5.59). Finally, plugging all
the constraints and Dirac equations above, into (5.58a) and (5.58b), one obtains the same
equations of motion for the spin-3/2 fields as before.

In summary, despite the presence of higher derivatives as well as couplings between
spin-1/2 and spin-3/2, the Lagrangian (5.57) yields a decoupled system of equations of
motion and constraints, given by (5.45).
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5.4 A deformed Rarita-Schwinger Lagrangian

It can be assumed that the Lagrangian in the presence of a non-zero electromagnetic field
would be a deformation of the one in the neutral case, (2.71). It should reduce to the
latter, in fact to two copies, when the electromagnetic field vanishes. It would thus be a
form of "Rarita-Schwinger plus Dirac" Lagrangians deformed by ε-dependent coefficients
and additional terms. Although it contains higher derivatives, the Lagrangian of this type
that we have found gives decoupled equations of motion and constraints. It also allows us
to see explicitly how the "deformation" by the electromagnetic background can be written.

In the absence of an electromagnetic field, the Rarita-Schwinger Lagrangian has been
obtained by redefining the fields according to (2.70). The generalisation of this redefinition
to the charged case is as follows:

χ1m →
√

2σmnχ
n
1 − iσmψ̄1 −

1

2
(ε · σ)σmψ̄1

λ̄1m → λ̄1m −
1√
2

i [1− i (ε · σ̄)] σ̄mγ1 + [ηmn − i (εmn + iε̃mn)]Dnψ̄1

γ1 →
1√
2

[1− i (ε · σ)] γ1 −
i

2
[1 + i (ε · σ)] (σmDmψ̄1)− 1

2
i(σmλ̄1m) +

1

2
√

2
(σmσ̄nDmχ1n)

ψ̄1 →
i

2
ψ̄1 −

1

2
√

2
(σ̄mχ1m)

(5.67)
The corresponding formulas for index 2 are obtained by flipping a sign ε↔ −ε.

The resulting expressions are very long. Therefore, to make them easier to read, we
will separate the Lagrangian into three parts:

LF = LRSd + Lkm + Lcoupl (5.68)

where:

• LRSd consists in a sum of Rarita-Schwinger and Dirac Lagrangians, thus of the same
form as LF in the neutral case, where the partial derivatives are replaced by covariant
ones.

• Lkm are the corrections of the kinetic and mass terms due to the electromagnetic
background. They vanish when ε = 0.

• Lcoupl contains only new couplings between the spin-3/2 and spin-1/2 fields that are
induced by the electromagnetic field. It vanishes when ε = 0.

The first part takes the expected simple form

LRSd =− 1

2
εmnkl

(
λ1mσnDkλ̄1l

)
+

1

2
εmnkl

(
χ̄m1 σ̄

nDkχl1

)
−
√

2 [(λm1 σmnχ
n
1 ) + h.c.]

− 1

2
i
(
ψ1σ

mDmψ̄1

)
− 1

2
i (γ̄1σ̄

mDmγ1)−
[

1√
2

(ψ1γ1) + h.c.
]

+ (1↔ 2)

(5.69)
and, it is the Lagrangian that was historically first considered and lead to the issues dis-
cussed in the introduction.
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The new contribution to the kinetic and mass terms reads:

Lkm =− 1

2
iε̃mn

(
ψ1σmDnψ̄1

)
− 1

2
εmkGkn

(
ψ1σlDmD

lDnψ̄1

)
− i

2
ψ1 (ε · σ)σm (ε · σ̄)Dmψ̄1

+
1

2
εmnkl (εmp − iε̃mp) (εlq + iε̃lq)ψ1σnD

pDkD
qψ̄1 − iεmkεkn

(
ψ1σmD

nψ̄1

)

− 1

2
εpmGmk

(
εkl + iε̃kl

)
(εpq−iε̃pq)ψ1σnD

qDnDlψ̄1 + iεmkG
klεlnψ1σ

pDmDpD
nψ̄1

− i

2
(εε) ε̃mnψ1σnDmψ̄1 +

i

2
(εε̃) εmnψ1σnDmψ̄1 +

1

4
εmkG

kn
(
γ̄1σ̄

mσlσ̄nDlγ1

)

− 1

4

[
iεmkG

knγ̄1σ̄
m (ε · σ)σlσ̄nDlγ1+h.c.

]
− 1

4
εmkG

knγ̄1σ̄
m (ε · σ)σl (ε · σ̄) σ̄nDlγ1

− iε̃mnγ̄1σ̄nDmγ1−
i

2
(εε) γ̄1σ̄

mDmγ1−
i

2
γ̄1 (ε · σ̄)σ̄m (ε · σ)Dmγ1+

[
− i

2
ψ1(ε · σ) γ1

+
1√
2
ψ1σ

m (ε · σ̄) σ̄n (ε · σ)DmDnγ1+
i

2
√

2
εmkG

knγ̄1σ̄
mσlDlDnψ̄1

− 1

2
√

2
(εε+iεε̃)(ψ1γ1)− 1

2
√

2
(εε−iεε̃)

(
ψ1D

2γ1

)
+

1√
2
εmkG

knγ̄1σ̄
m(ε · σ)σlDlDnψ̄1

+
i

4
√

2
εmkG

kn (εε−iεε̃)ψ1σ
lσ̄nD

mDlγ1+h.c.
]
− 1

4
εmn

[(
χ̄m1 σ̄

nσkσ̄lDkχ1l

)
+h.c.

]

− 1

4
εmkGkn

(
χ̄l1σ̄lσpσ̄qDmD

pDnχq1

)
+

1

2
εmk

(
λm1 σ

nDnλ̄
k
1

)

+
1

4
√

2

[
i (λm1 Σmnχ

n
1 )− 2iεmn

(
λn1σ

kσ̄lDkD
mχ1l

)
+ h.c.

]
+ (1↔ 2, ε↔ −ε)

(5.70)
while the new couplings between spin-1/2 and spin-3/2 fields are:

Lcoupl =
√

2iλm1 σmn (ε · σ)Dnγ1 −
i√
2

(εmn − iε̃mn) (λm1 Dnγ1)

+
1

2
√

2
iεmn

(
λn1σ

kσ̄mDkγ1

)
+

1

2
√

2
εmnλ

n
1σ

k (ε · σ̄) σ̄mDkγ1 +
1

2
εmn

(
λ1mσnψ̄1

)

− i

4
(εε+ iεε̃)

(
λm1 σmψ̄1

)
+

i

2
εmnkl (εlq + iε̃lq)λ1mσnDkD

qψ̄1

+
1

2
εmk

(
ηkl − iεkl + ε̃kl

) (
λm1 σ

nDnDlψ̄1

)
+

1

4
χ̄m1 (ε · σ̄) σ̄mγ1

− 3

2
χ̄m1 σ̄m (ε · σ) γ1 +

1

4
εmkGkn

(
χ̄l1σ̄lσpσ̄

nDmD
pγ1

)
− i

4
√

2
(ψ1ΣmnDmχ1n)

− i√
2
χ̄m1 σ̄m (ε · σ)σnD

nψ̄1 −
i

4
εmkGknχ̄

l
1σ̄lσp (ε · σ̄) σ̄nDmD

pγ1

+
i

4
χ̄m1 (ε · σ) σ̄m (ε · σ) γ1 +

i

2
(εε) (χ̄m1 σ̄mγ1)

+
1

8
√

2
(εε+ iεε̃)

(
χ̄m1 σ̄mσnD

nψ̄1

)
− 1

4
√

2
χ̄m1 (ε · σ̄) σ̄m (ε · σ)σnD

nψ̄1

+
1

4
√

2
χ̄m1 σ̄m (ε · σ)σn (ε · σ̄)Dnψ̄1 +

i

2
√

2
εmkGkn

(
χ̄l1σ̄lσpDmD

pDnψ̄1

)

− 1

2
√

2
(εmn − iε̃mn)Gnkεklψ1σ

pσ̄qDmDpD
lχ1q + h.c. + (1↔ 2, ε↔ −ε)

(5.71)
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In these expressions, we introduced the notation

Σmn ≡ σmσ̄n (ε · σ)− σm (ε · σ̄) σ̄n − (ε · σ)σmσ̄n (5.72)

The corresponding spin-3/2 fields equations of motion are

(ηmp − iεmp)

[
−1

2
εpnklσnDkλ̄1l −

√
2σpkχ1k +

i

4
√

2
Σpkχ1k +

√
2iσpn (ε · σ)Dnγ1

− i√
2

(εpn − iε̃pn)Dnγ1 +
1

2
εpnσnψ̄1 −

i

4
(εε+ iεε̃)σpψ̄1 +

i

2
εpnkl (εlq + iε̃lq)σnDkD

qψ̄1

]

+
1

2
εmkσ

nDnλ̄
k
1 +

i

2
√

2
εmnσ

kσ̄lDkD
nχ1l −

i

2
√

2
εmnσ

kσ̄nDkγ1

− 1

2
√

2
εmnσ

k (ε · σ̄) σ̄nDkγ1 +
1

2
εmk

(
ηkl − iεkl + ε̃kl

)
σnDnDlψ̄1 = 0

(5.73)
1

2
εmnklσ̄

nDkχl1 −
1

4
εmnσ̄

nσkσ̄lDkχ1l +
1

4
εklσ̄mσnσ̄

lDnχk1 −
1

4
εlkG

knσ̄mσpσ̄qD
lDpDnχ

q
1

−
√

2σ̄mnλ̄
n
1 −

i

4
√

2
Σ̄nmλ̄

n
1 +

i

2
√

2
εlnσ̄mσkD

lDkλ̄n1 +
1

4
(ε · σ̄) σ̄mγ1 −

3

2
σ̄m (ε · σ) γ1

+
1

4
εlkG

knσ̄mσpσ̄nD
lDpγ1 −

i

4
√

2
Σ̄nmD

nψ̄1 −
i√
2
σ̄m (ε · σ)σnD

nψ̄1

+
i

2
(εε) σ̄mγ1 −

i

4
εlkGknσ̄mσp (ε · σ̄) σ̄nDlD

pγ1 +
1

8
√

2
(εε+ iεε̃) σ̄mσnD

nψ̄1

− 1

4
√

2
(ε · σ̄) σ̄m (ε · σ)σnD

nψ̄1 +
i

2
√

2
εlkG

knσ̄mσpD
lDpDnψ̄1 +

i

4
(ε · σ̄) σ̄m (ε · σ) γ1

+
1

4
√

2
σ̄m (ε · σ)σn (ε · σ̄)Dnψ̄1 −

1

2
√

2
(εqn + iε̃qn)Glkεknσ̄mσpDlD

pDqψ̄1 = 0

(5.74)
Due to the length of the spin-1/2 equations of motion, only the first terms are written to
make the adopted global factors explicit. They are:

− i

2
σmDmψ̄1 −

i

2
ε̃mnσ

mDnψ̄1 −
1√
2
γ1 + · · · = 0 (5.75)

− i

2
σ̄mDmγ1 +

1

4
εmkG

knσ̄mσlσ̄nDlγ1 −
1√
2
ψ̄1 + · · · = 0 (5.76)

The calculation leading to the constraints is more tedious, but shares the same ideas
as for the Lagrangian (5.57). Namely, one starts by eliminating the G-dependent terms
appearing in the spin-1/2 equations of motion by the following manipulations.
We start by the combination: (5.76)− i√

2
Gamσ̄a×(5.73)− 1√

2
Gamσ̄a (ε · σ)×(5.73):

[1 + i (ε · σ̄)]

[
−
√

2σ̄mnDmλ̄1n −
i√
2
σ̄m (ε · σ)σnDmDnψ̄1 −

1√
2
ψ̄1 −

i√
2

(ε · σ̄) ψ̄1

− i

2
σ̄mDmγ1 +

1

2
(ε · σ̄) σ̄mDmγ1 − σ̄m (ε · σ)Dmγ1 −

3

2
iσ̄mχ1m

+
1

2
(ε · σ̄) σ̄mχ1m −

1

4
σ̄m (ε · σ)χ1m

]
= 0

(5.77)
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then, (5.75)−i (εab − iε̃ab)G
bmDa(5.73)+GamDa×(5.73)− 1√

2
σm (ε · σ̄)×(5.74):

− i

2
σmDmψ̄1 −

1√
2
γ1 +

1

2
(ε · σ)σmDmψ̄1 −

i√
2

(ε · σ) γ1 −
√

2σmnDmχ1n = 0 (5.78)

Next, we compute and simplify the σ-trace, the divergence, and the projection on σm (ε · σ̄)

of the equations of motion of χ1m. The combination σm×(5.74)+
√

2iGamDa×(5.73) gives:

−2iσmnDmχ1n +
1√
2
σmλ̄1m + 2 (ε · σ) γ1 +

√
2i (ε · σ)σmDmψ̄1 = 0 (5.79)

while Dm×(5.74)− i√
2
σ̄aDaG

bmDb×(5.73) leads to:

−
√

2σ̄mnDmλ̄1n +
1

4
√

2
i (ε · σ̄) σ̄mσnDmλ̄1n +

1

2
iε̃mnσ̄nχ1m + iσ̄mDmσ

knDkχ1n

− 1

8
(ε · σ̄) σ̄mσnσ̄kDmDnχ1k +

1

4
(ε · σ̄) σ̄mDmγ1 −

3

2
σ̄m (ε · σ)Dmγ1

+
i

4
(ε · σ̄) σ̄m (ε · σ)Dmγ1 +

1

4
√

2
i (ε · σ̄) σ̄mσnDmDnψ̄1 −

3i

2
√

2
σ̄m (ε · σ)σnDmDnψ̄1

− 1

4
√

2
(ε · σ̄) σ̄m (ε · σ)σnDmDnψ̄1 = 0

(5.80)
and − 1√

2
σm (ε · σ̄)×(5.74)−1

2 (εε− iεε̃)(5.78) to:

1

2
σm (ε · σ̄) λ̄1m −

i√
2

(εmn − iε̃mn)Dmχ1n

+ (εε− iεε̃)

(
− i

4
σmλ̄1m +

1

4
√

2
σmσ̄nDmχ1n +

1√
2
σmnDmχ1n

)
= 0

(5.81)
Using these relations, the σ-trace as well as the divergence for λ̄1m equations of motion can
be simplified by computing the combinations:

σ̄m×(5.73)+iεabσ̄
bDa×(5.78)+

√
2(ε·σ̄)

[1+i(ε·σ̄)](5.77)−
√

2i(5.80)−1
2 i (ε · σ̄) σ̄aDa×(5.78)

which gives:

3√
2
σ̄mχ1m+σ̄mDm

[
1

4
(ε · σ)σnλ̄1n +

√
2σknDkχ1n +

i√
2

(ε · σ)σnkDnχ1k

+
i

4
√

2
(ε · σ)σnσ̄kDnχ1k +

i√
2

(ε · σ) γ1 −
1

2
(ε · σ)σnDnψ̄1

]
= 0

(5.82)
and Dm×(5.73)+ 1√

2
εabσ

bDa×(5.77)+1
2(5.81)+

1
2 (εε)(5.78)+i (ε · σ)×(5.78) which gives:

[1 + i (ε · σ)]

[
1

4
(ε · σ)σnλ̄1n +

√
2σknDkχ1n +

i√
2

(ε · σ)σnkDnχ1k

+
i

4
√

2
(ε · σ)σnσ̄kDnχ1k +

i√
2

(ε · σ) γ1 −
1

2
(ε · σ)σnDnψ̄1

]
= 0

(5.83)
Thus, thanks to (5.83), the expression between brackets in (5.82) vanishes and we obtain
the first constraint σ̄mχ1m = 0. Other constraints are found by inserting this traceless
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condition into (5.77)-(5.83). Starting with the expression between brackets of (5.83), one
replaces the (ε · σ)σmλ̄1m term by (ε · σ)×(5.79), which implies

−
√

2σmnDmχ1n +
1

2
(ε · σ)σmDmψ̄1 −

i√
2

(ε · σ) γ1 = 0 (5.84)

Combining it with (5.78), one gets the Dirac equation iσmDmψ̄1 +
√

2γ1 = 0, which in
turn yields σmnDmχ1n = 0, hence Dmχ1m = 0. The constraints of λ̄1m arise first
from (5.79), which implies σmλ̄1m = 0. In addition, (5.80) gives rise to σ̄mnDmλ̄1n =

− 1
4
√

2
σ̄m (ε · σ)χ1m, therefore, Dmλ̄1m = −

√
2

4 σ̄
m (ε · σ)χ1m. The Dirac equation of γ1,

iσ̄mDmγ1 +
√

2ψ̄1 = 0, then follows from (5.77). Finally, the equations of motion for
spin-3/2 are obtained by applying all the previously mentioned equations of motion and
constraints on (5.73) and (5.74).

6 Conclusions

We conclude by summarising the main results obtained here:

• We have shown explicitly how the Lagrangians of Fierz-Pauli and Rarita-Schwinger
follow from the Open Superstring Field Theory action of [1, 24].

• We found the equations governing the four-dimensional propagation of a charged
massive state with spin-2 in an electromagnetic background. Not surprisingly, we
found the form obtained at the critical dimension of bosonic open strings in [18, 21].

• We found the explicit equations governing the four-dimensional propagation of a
charged massive state with spin-3/2 in an electromagnetic background. These equa-
tions were not known before.

• We have written the effective Lagrangian, at the bilinear level, of the first massive level
states of the four-dimensional open superstring in an electromagnetic background.
The result was known in superspace thanks to [1], but here we obtained the result for
the physical fields, without auxiliary ones. We have written the Lagrangian in several
forms connected by redefinitions of the fields.

While we have solved here the problem raised in [2, 3] of writing the equations of
motion for charged massive states with spin-3/2 or spin-2, we have not found the long
sought Lagrangian from which to derive them. In the Lagrangians obtained the fields of
interest are coupled to fields with lower spins.
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A Conventions

Throughout this work, we have followed the conventions in [35], with mostly positive metric
ηmn ∼ (−1, 1, 1, 1), and Levi-Civita tensor ε0123 = −1. The γ matrices are defined as

γm =

(
0 σm

σ̄m 0

)
, γ5 = γ0γ1γ2γ3 =

(
−i 0

0 i

)
(A.1)

The field redefinitions are written in the form

F → aF + bG (A.2)

which means that the field F is replaced everywhere by aF ′ + bG, and the primes are
dropped in the subsequent Lagrangian. The new gauge transformations are

δF ′ =
1

a
(δF − bδG), δG′ = δG (A.3)

A self-dual rank-2 tensor satisfies

εmnpqS
mn = −2iSpq (A.4)

Correspondingly, for an anti self-dual tensor, εmnpqSmn = 2iSpq. Out of a generic rank-2
tensor, one is able to construct a self-dual combination

S [Amn] ≡ 1

4
(Amn −Anm) +

i

4
εmnrsA

rs. (A.5)

This has been used to write gauge transformations of the self-dual fields tmn, smn.
A summary of some shorthand notations used in this work:

(ε · σ) = εmnσmn = iε̃mnσmn, (ε · σ̄) = εmnσ̄mn = −iε̃mnσ̄mn

εε ≡ εmnεmn, εε̃ ≡ εmnε̃mn

Gmn ≡ (ηmn − iεmn)−1 , Amn ≡
(
ηmn −

i

2
εmn −

1

2
ε̃mk ε̃

k
n

)−1

Σmn ≡ σmσ̄n (ε · σ)− σm (ε · σ̄) σ̄n − (ε · σ)σmσ̄n

(A.6)
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B Spinor algebra results

Without background

Some helpful σ-matrix identities are

σmαα̇σ̄
nα̇β = 2σmnα

β − ηmnδαβ, σ̄mα̇ασn
αβ̇

= 2σ̄mnα̇β̇ − ηmnδα̇β̇
(σmσ̄m)α

β = −4δα
β, σnαα̇σ̄

mα̇βσnβγ̇ = 2σmαγ̇ , σ̄nα̇ασm
αβ̇
σ̄β̇γn = 2σ̄mα̇γ

σmnα
βσnβα̇ = σnαβ̇σ̄

nmβ̇
α̇ = −3

2
σmαα̇, σ̄mnβ̇α̇σ̄

α̇α
n = σ̄β̇βn σnmβ

α = −3

2
σ̄mβ̇α

σmαα̇σ̄
nkα̇

β̇σ̄
mβ̇β = 0, σ̄α̇αm σnkα

βσm
ββ̇

= 0

σmβα̇σ̄
nα̇ασkαγ̇ σ̄

mγ̇γ = 4ηnkδβ
γ , σ̄α̇αm σn

αβ̇
σ̄kβ̇γσmγγ̇ = 4ηnkδα̇γ̇

εmnkl(σ
kσ̄l)α

β = −4iσmnα
β, εmnkl(σ̄

kσl)α̇β̇ = 4iσ̄mn
α̇
β̇

σmσ̄nσk = ηmkσn − ηnkσm − ηmnσk + iεmnklσl

σ̄mσnσ̄k = ηmkσ̄n − ηnkσ̄m − ηmnσ̄k − iεmnklσ̄l

(B.1)

The two-spinors satisfy the following properties

γψ ≡ γαψα, ψ̄γ̄ ≡ ψ̄α̇γ̄β̇

γψ = ψγ, γ̄ψ̄ = ψ̄γ̄

γσmψ̄ = −ψ̄σ̄mγ, γσmσ̄nψ = ψσnσ̄mγ

γσmnψ = −ψσmnγ, γ̄σ̄mnψ̄ = −ψ̄σ̄mnγ̄

(B.2)

See also the appendices of [35] for other relations and details.

With background

σ̄mα̇α(ε · σ)α
β = −εmnσ̄α̇βn − iε̃mnσ̄α̇βn , (ε · σ)α

βσm
ββ̇

= εmnσnαβ̇ + iε̃mnσnαβ̇

σmαα̇(ε · σ̄)α̇β̇ = −εmnσnαβ̇ + iε̃mnσnαβ̇, (ε · σ̄)α̇β̇σ̄
mβ̇α = εmnσ̄α̇αn − iε̃mnσ̄α̇αn

(ε · σ)α
β (ε · σ)β

γ = −1

2
εmn (εmn + iε̃mn) δα

γ

(ε · σ̄)α̇ β̇ (ε · σ̄)β̇ γ̇ = −1

2
εmn (εmn − iε̃mn) δα̇γ̇

ε̃m
kσkn

α̇
γ̇ − iεn

kσkm
α̇
γ̇ =

i

2
(ε · σ)α̇ γ̇ηmn, ε̃m

kσ̄kn
α̇
β̇ + iεn

kσ̄km
α̇
β̇ = − i

2
(ε · σ̄)α̇ β̇ηmn

σmαα̇ (ε · σ̄)α̇ β̇σ̄
nβ̇β − σnαα̇ (ε · σ̄)α̇ β̇σ̄

mβ̇β = 2 (εmn − iε̃mn) δα
β

σ̄mα̇α (ε · σ)α
βσn

ββ̇
− σ̄nα̇α (ε · σ)α

βσm
ββ̇

= 2 (εmn + iε̃mn) δα̇β̇

σmαα̇σ̄
nα̇γ (ε · σ)γ

β + (ε · σ)α
γσmγγ̇ σ̄

nγ̇β = −2 (εmn + iε̃mn) δα
β − 2ηmn (ε · σ)α

β

σ̄mα̇ασnαγ̇ (ε · σ̄)γ̇ β̇ + (ε · σ̄)α̇ γ̇ σ̄
mγ̇βσn

ββ̇
= −2 (εmn − iε̃mn) δα̇β̇ − 2ηmn (ε · σ̄)α̇ β̇

(B.3)
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C Inverse matrices with the field strength ε

Due to the presence of the (η − iε) factors in the superspace action, the inverse matrix
(η − iε)−1 is recurrent in the Lagrangian after redefinition and in the equations of motion.
In this work, for the sake of simplicity, we have not developed the inverse matrices in the
Lagrangian, such as (5.57). Nevertheless, they can be written explicitly in terms of ε and
its dual ε̃. For a constant a ∼ O(1):

(aηmn − iεmn)−1 =
1

F

[
a3ηmn + a2iεmn − aε̃mk ε̃kn +

i

4
(εε̃) ε̃mn

]
(C.1)

with F ≡ a4 − 1
16 (εε̃)2 − a2

2 (εε).
The denominator of the r.h.s. is a non-vanishing number for any small electromagnetic

field strength. When a = 1, we have for instance

Tr (η − iε)−1 = ηmn (ηmn − iεmn)−1 =
4− (εε)

1− 1
16 (εε̃)2 − 1

2 (εε)

εmn (ηmn − iεmn)−1 =
i (εε) + i

4 (εε̃)2

1− 1
16 (εε̃)2 − 1

2 (εε)

(ηmn − iεmn)−1 σ̄mσkσ̄n =
1

1− 1
16 (εε̃)2 − 1

2 (εε)

[
2ηmk + 2ε̃mk + 2εmnε

nk − 1

2
(εε̃) εmk

]
σ̄m

(C.2)
It is possible to work out other forms of inverse matrices thanks to (C.1). In particular,
we encountered in (4.84) the factor

(
ηmn − i

2εmn − 1
2 ε̃mk ε̃

k
n

)−1, which can be found by
decomposing

(
ηmn − i

2εmn − 1
2 ε̃mk ε̃

k
n

)
into a product:

(
ηmn −

i

2
εmn −

1

2
ε̃mk ε̃

k
n

)
=

1

2

[
1

2
(1 + x) ηmk − iεmk

] [
1

2
(1− x) δkn − iεkn

]
(C.3)

where x =
√

2 (εε)− 7. A helpful property of these inverses matrices containing η, ε, ε̃, that
we denote generically by Kmn, is

Kmnε
nk = εmnK

nk, Kmnε̃
nk = ε̃mnK

nk (C.4)

Besides, while deriving the constraints of the fermionic Lagrangians, we used the inverse of
[1 + i (ε · σ)]. Due to the third line of (B.3), we know that

[1 + i (ε · σ)]α
γ [1− i (ε · σ)]γ

β = [1− i (ε · σ)]α
γ [1 + i (ε · σ)]γ

β =

[
1− 1

2
(εε+ iεε̃)

]
δα
β

(C.5)
therefore,

[1 + i (ε · σ)]−1
α
β =

1

1− 1
2 (εε+ iεε̃)

[1− i (ε · σ)]α
β (C.6)

The inverse of [1± i (ε · σ̄)] is worked out analogously.
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D Physical and non-physical fields

It is insightful to have a qualitative understanding about the role of each component of the
superfields.

• The (θθ)(θ̄θ̄) components of {Vm,B, C} are auxiliary fields.

• All the gauge parameters appear at least once algebraically in the transformations,
hence correspondingly certain fields turn out to be pure gauges.

• In going to the unitary gauge adopted in our work, we identify the Stückelberg fields
by looking at the field redefinition.

The roles of different components are summarised in the following table:

Vm B C U1α, Ū
α̇
2

Physical vmn, h, Cm,
χjm, λ̄jm

N1, B, γjα M1, A, ψ̄jα

Auxiliary Mjm, Dm ρjα, G, N2 D,M2 τj , τjmn
Stückelberg φ vjα, ω2m, sj
Pure gauge
(except
Stückelberg)

fmn ϕ ξjα rjmα, ζjα,
ω1m, qjm,
sjmn

Others µjα , ηjα

where in the last line, µjα appear as Lagrange multipliers. As for the components ηjα,
being also pure gauges, they do not contribute to the Lagrangian.
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Chapter 3

(Too) slow gravitinos

The theory of elementary spin-3/2 particles was initiated in the 1930s. In a 1936 paper [5],
Dirac has pointed out the importance of writing out the equations of motion for such states,
which not only are of mathematical interest, but they also allow for a direct application
to elementary particles of spin-3/2 if they are observed in the future, or at least to the
composite states in the point particle approximation. The Lagrangian of an uncharged spin-
3/2 field in a flat space was established by Rarita and Schwinger in 1941 [6], employing
a vector-spinor subject to transverse and γ-traceless constraints. As we have seen in the
previous chapter, the massive charged spin-3/2, or more generally massive charged higher
spin (s > 1) states minimally coupled to electromagnetism, suffer from inconsistencies known
as the Velo-Zwanziger problem. Indeed, the problematic propagation of spin-3/2 often occurs
in a non-trivial background. In addition to the aforementioned electromagnetic background,
serious phenomenological issues can arise also in a curved spacetime.

Gravitational particle production in a curved background is an important source of the
observed dark matter density in modern cosmological models, ranging from scalar candidates
to highers spin fields. The spin-3/2 case has drawn a particular attention partly due to the
fact that, the gravitinos, i.e. the spin-3/2 partners of the graviton, are an indispensable
building block of supergravity theories. For a brief understanding of this point, recall that
gauging the ordinary Yang-Mill symmetry requires the introduction of a gauge field Aa

µ

transforming as
δAa

µ = ∂µΛa (3.1)

with Λa the gauge parameter. In supergravity where supersymmetry is gauged, the symmetry
parameter is not a scalar or vector, but a spinor ϵα, with α = 1, 2 a spinor index, and
therefore the corresponding gauge field should be a vector-spinor χα

µ (viz. of spin-3/2). One
can further show that this vector-spinor sits in the same multiplet as the graviton, hence
the name “gravitino”. In the super-Higgs mechanism, the gravitino acquires a mass term by
eating up the spin-1/2 goldstino, and obtains subsequently the helicity ±1/2 states. This
mechanism explains why no goldstino has been observed so far.

The equations of motion as well as the production of the gravitinos, in a curved back-
ground, are studied by various authors two decades ago [16–19, 67]. The gravitinos can
be produced in the early universe, through both thermal scatterings after inflation during
reheating, and non-thermal generation by inflaton oscillations. Depending on the specific
inflationary model, the latter may turn out to be much more efficient than the former [16,
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17], resulting in a dangerously abundant generation of helicity-1/2 gravitinos, and eventually
jeopardizing the big bang nucleosynthesis.

Another problematic issue of gravitino production has been put forward in a more recent
work by Kolb, Long and McDonough [20] concerning the “too slow gravitinos”. In fact, it
was noticed earlier [68, 69] that in a fluid background breaking at the same time supersym-
metry and Lorentz invariance, the sound speed extracted from the dispersion relation, of the
helicity-1/2 gravitino, is lower than the speed of light. Gravitinos with such behavior are
named therein “slow gravitinos”. The situation is similar for the curved background, which
may also give rise to slow gravitinos. Intriguingly, while investigating the sound speed of the
gravitinos in a Freedman-Lemaître-Robertson-Walker (FLRW) spacetime, the authors of [20]
have discovered that for masses lighter than the Hubble expansion rate m3/2 ≲ H, the sound
speed may vanish, in which case the gravitino production is divergent, and this phenomenon
is called “catastrophic gravitino production”. Note that such scenario differs from the previ-
ous problem of over-abundant gravitino production. The divergence here signifies that the
cancellation of the sound speed removes the cutoff on the particle momentum, therefore,
modes of arbitrarily large momentum can be produced, which signals the breakdown of the
effective field theory. Subsequently, a Swampland Conjecture is formulated in [70], stating
that gravitinos in consistent effective theories of quantum gravity must not have vanishing
sound speed.

Does supergravity survive this requirement? In the presence of one chiral multiplet, it has
been shown already in [18, 19], that the sound speed is always the speed of light. Meanwhile,
in models with multiple chiral multiplets, subject to constraints, the sound speed may vanish
[20], and may even become superluminal [71]. The latter situation implies acausality and
appears in non-linear supersymmetric models, which will not be our focus thereafter. The
question that we will address here is rather: what is the gravitino sound speed in supergravity
with linear supersymmetry? To this end, we study the simplest case of N = 1, d = 4
supergravity with two multiplets, and point out the subtlety in the definition of a physical
speed, due to the mixing of two fermions. We will show, through explicit examples, that the
physical sound speed never vanishes, and in certain cases, it is equal to the speed of light.

The following sections are structured as follow: in Sections 3.1 and 3.2, we summarize the
massive spin-3/2 action and equations in a flat and curved spacetime respectively, introducing
the notion of sound speed. We also review the catastrophic gravitino production in [20],
related to the vanishing of the gravitino sound speed. The following section presents detailed
calculation and diagonalisation of the coupled equations of motion, both in the case with
two chiral multiplets and with one chiral plus one vector multiplet. In the end, we draw our
conclusions. Conventions and notations are listed in Appendix B.
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3.1 Spin-3/2 in a flat spacetime
Let us recall some basic properties of the spin-3/2 field and its decomposition in the

momentum space. The treatment here follows closely that in [20] but with conventions of
[19]. In the Rarita-Schwinger construction [6], the spin-3/2 is described by a vector spinor ψµ,
originating from the direct product of the

(
1
2 ,

1
2

)
vector representation, and the

(
1
2 , 0
)
⊕
(
0, 1

2

)
spinor representation of the Lorentz group. The result is a reducible representation:(1

2 ,
1
2

)
⊗
[(1

2 , 0
)

⊕
(

0, 1
2

)]
=
(1

2 , 1
)

⊕
(1

2 , 0
)

⊕
(

1, 1
2

)
⊕
(

0, 1
2

)
(3.2)

which corresponds to one spin-3/2 component, including helicities ±3/2 and ±1/2, and two
spin-1/2 components, where the latter can be projected out by a constraint. The Rarita-
Schwinger action is conventionally written as

SRS =
∫
d4x

[
−
(
ψ̄µγ

µρν∂ρψν

)
+mψ̄µγ

µνψν

]
(3.3)

where γµν = (γµγν − γνγµ)/2, γµνρ = (γµγργν − γνγργµ)/2. The Euler-Lagrange equation
gives

−γµρν∂ρψν +mγµνψν = 0 (3.4)

Acting with ∂µ and γµ on the above equation, we obtain

γµν∂µψν = 0, −2γµν∂µψν + 3mγµψµ = 0 (3.5)

which then implies the divergence and γ-trace constraints

∂µψµ = 0, γµψµ = 0 (3.6)

in addition to the Dirac equation (iγν∂ν −m)ψµ = 0. We are then left with four physical de-
grees of freedom corresponding to the four helicity states of spin-3/2. As a side comment, the
massless case can be obtained by directly fixing m = 0 in the Rarita-Schwinger Lagrangian,
which introduces a gauge invariance δψµ = ∂µΛ and the on-shell degrees of freedom is re-
duced to two. We will focus thereafter on the massive spin-3/2 only. To see how each helicity
state behaves, let us move to the momentum space by the Fourier decomposition

ψµ (t,x) =
∫

d3k

(2π)3ψµ,k(t)eik·x (3.7)

and for simplicity we choose the direction of the momentum to be k = (0, 0, kz). The four
components of the vector-spinor, ψ0, · · · , ψ3, are mixed through the constraint equations,
though the Dirac equation is satisfied by each of them. The helicity eigenstates, that are
orthogonal to each other, are found by spinor-vector projectors constructed from

• The spin-1 helicity projectors (s = ±1, 0):

(Ms)µ
µ ≡ − (ϵ∗s)µ (ϵs)ν (3.8)

where ϵs are the polarization vectors.
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• The spinor projectors (s = ±1/2):

S± = 1
2
(
1 ± iγ1γ2

)
(3.9)

Orthogonal combinations of them yield the vector-spinor projectors for the four helicity
states ±3/2,±1/2: (

P±3/2
)µ

ν = S± (M±)µ
ν(

P±1/2
)µ

ν = S± (M0)µ
ν + S∓ (M±)µ

ν

(3.10)

The helicity eigenstates are obtained from the above projectors. In terms of the four space-
time components ψ0, · · · , ψ3, their expressions are

ψ1/2,k =
√

6
2
(
ψ1,k − γ1γ2ψ2,k

)
ψ3/2,k = 1√

2

(
ψ1,k + γ1γ2ψ2,k

) (3.11)

They obey separately the Dirac equation:(
γ0∂0 + ikzγ

3 +m
)
ψ1/2,k = 0(

γ0∂0 + ikzγ
3 +m

)
ψ3/2,k = 0

(3.12)

The sound speed cs is defined as the coefficient in front of the momentum squared k2 in the
dispersion relation, namely

ω± = ±
√
c2

sk
2 + · · · (3.13)

Here, we have the usual relativistic dispersion relation for the two eigenstates: ω± =
±

√
k2 +m2, and the sound speed is therefore trivially the speed of light. We will see in

the next section that in a curved background, due to the different treatments of space and
time, the dispersion relations of the helicity ±1/2, ±3/2 modes are modified by the scale
factor.

3.2 Spin-3/2 in a curved spacetime: catastrophic production?

3.2.1 Rarita-Schwinger action and equations
We follow the references [19, 20] to review the curved-space Rarita-Schwinger action

and the particular case of FLRW metric. For more detailed introductions of curved-space
quantum field theory, see for example [28, 30].

Moving from the Minkowski metric ηαβ to the metric of a curved spacetime gµν , it is
convenient to introduce the frame field (or vierbein) eα

µ that allows to properly describe
spinors. At every spacetime point, the two metrics are related by

gµν = ea
µ(x)eb

ν(x)ηab (3.14)

118



Note that the metric is defined by ds2 = gµνdx
µdxν . The first index of ea

µ is raised and
lowered by the Minkowski metric ηab while the second one is raised and lowered by gµν . The
torsion-free spin connection is

ωcd
µ (e) = 2eν[c∂[µe

d]
ν] − eaµe

ν[ceσd]∂νe
a
σ (3.15)

which, when contracted with the generator of local Lorentz transformations in the spinor
representation γ̄cd, is used to define the covariant derivative acting on spinors. The γ-matrices
in curved spacetime are obtained via contraction of the constant γ-matrices with the frame
field:

γµ ≡ ea
µγ̄a (3.16)

In our notation, the constant γ-matrices have an overbar. The covariant derivatives on
different fields are given in Appendix B.

The Rarita-Schwinger action generalized to the curved spacetime is:

SRS =
∫
d4x

√
−g

[
−Ψ̄µγ

µρν (DρΨν) +mΨ̄µγ
µνΨν

]
(3.17)

Let us consider the particular case of FLRW metric ds2 = a(η)2(−dη2 + dx2) where a is the
scale factor and η is the conformal time. The factor √

−g is equal to a4, and the covariant
derivative acts as DµΨν =

(
∂µ + 1

2aHηµργ̄
ρ0
)

Ψν . The Hubble rate is given by H ≡ ∂ηa/a
2.

The γ-matrices are related by γµ = a−1γ̄µ. We furthermore introduce the rescaling

ψµ (η,x) = a1/2 (η) Ψµ (η,x) (3.18)

The equation of motion for ψµ, derived from (3.17), reads

γ̄µρν∂ρψν + aH
(
γ̄µην0 − γ̄νηµ0

)
ψν − amγ̄µνψν = 0 (3.19)

The Dirac equation is now modified by the time-dependent scale factor a(η), with a rescaled
mass a(η)m and an extra Hubble-dependent term. We recover the equation in Minkowski
spacetime by setting a = 1. The constraint equations can be obtained in a similar way,
applying on the equation of motion respectively γ̄µ and the covariant derivative Dµ, then
combining the two results. The detailed calculation, which is not fundamental for our dis-
cussion, will not be carried out here.

3.2.2 The sound speed
Now, we go straightforwardly to the gravitino sound speed in curved space. We first

Fourier-decompose the rescaled field ψµ as

ψµ(η,x) =
∫

d3k

(2π)3ψµ,k(η)eik·x (3.20)

and same as before, the two orthogonal helicity eigenstates are obtained by helicity projectors
(always choosing k = (0, 0, kz)), with

ψ1/2,k =
√

3
2
(
ψ1,k − γ̄1γ̄2ψ2,k

)
ψ3/2,k =

√
1
2
(
ψ1,k + γ̄1γ̄2ψ2,k

) (3.21)
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The equation of motion (3.19) implies in the momentum space for the two eigenstates:[
γ̄0∂η + ikzγ̄

3 + am
]
ψ3/2,k = 0[

γ̄0∂η + ikz

(
CA + iCB γ̄

0
)
γ̄3 + am

]
ψ1/2,k = 0

(3.22)

with
CA = 1

3 (H2 +m2)2

[(
m2 −H2

)(
−1

3R−H2 + 3m2
)

− 4Hm∂ηm

a

]
CB = 2m

3 (H2 +m2)2

[
H

(
−1

3R−H2 + 3m2
)

+
(
m2 −H2

) ∂ηm

ma

]
.

(3.23)

Comparing the curved space mode equations with (3.12), one can notice that the helicity
±3/2 state still obeys the same Dirac equation as before but with a time-dependent mass
a(η)m, whereas the other helicity ±1/2 mode is modified by the Hubble rate and an addi-
tional γ̄0 term in front of the momentum. In order to extract the dispersion relations, we
write out explicitly the γ-matrices and put the equations (3.22) in the form

i∂ηψ3/2,k = A3/2ψ3/2,k

i∂ηψ1/2,k = A1/2ψ1/2,k

(3.24)

where

A3/2(η) =
(
am k
k −am

)
, A1/2(η) =

(
am (CA + iCB) k

(CA − iCB) k −am

)
(3.25)

The dispersion relations correspond to the eigenvalues of the above matrices:

ω3/2,± = ±
√
k2 + a2m2, ω1/2,± = ±

√
(C2

A + C2
B)k2 + a2m2 (3.26)

We can immediately remark that the sound speed of the helicity ±3/2 state is the speed of
light, same as in the flat spacetime, meanwhile, the sound speed of helicity ±1/2 turns out
to be

c2
s ≡ C2

A + C2
B = 1

9 (H2 +m2)2

[(
−1

3R−H2 + 3m2
)2

+ 4(∂ηm)2

a2

]
(3.27)

Consider the gravitino production from inflaton oscillations at the end of inflation, with
inflaton potential V (ϕ). The Freedman equations imply

c2
s =

(
p− 3m2

3/2M
2
P

)2

(
ρ+ 3m2

3/2M
2
P

)2 +
4M4

P

(
∂m3/2/∂t

)2

(
ρ+ 3m2

3/2M
2
P

)2 (3.28)

where ρ and p are the energy density and the pressure. MP and m3/2 are the Planck mass
and gravitino mass. t is the cosmic time. It is claimed in [20] that, whenever this speed
vanishes (possible when H/m > 1), the gravitino production will be divergent. One of the
arguments was based on the dimensionless measure of nonadiabaticity Ak(η), given by

Ak(η) ≡ ∂ηωk

ω2
k

(3.29)
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which for helicity ±1/2 takes the form

Ak = a3Hm2 + cs(∂ηcs)k2

(a2m2 + c2
sk

2)3/2 (3.30)

The particle production rate is relatd to the variation speed of the dispersion relation, and
becomes efficient when Ak ≫ 1. When cs vanishes, occurring when H/m > 1, we have then
Ak = H/m, which not only exceeds one, but also is independent of momentum. The latter
point is crucial for the catastrophic production, because it means that particles of arbitrarily
high momentum can be produced and there is no momentum cutoff.

The main question in this chapter is whether this sound speed can vanish for the gravitino
in supergravity, in the simplest setup of N = 1, d = 4. In the supergravity context, the
gravitino propagation in the case of one chiral multiplet has been studied by various authors
[16–19], and the gravitino equation of motion in the presence of arbitrary number of chiral
multiplets is discussed in [19]. To enter into the subject, we provide here a quick glimpse
of some general features of gravitino propagation in supergravity, with FLRW background
and only one chiral multiplet, while a more elaborated presentation will be given in the next
sections.

The gravitino equation of motion derived from the supergravity Lagrangian takes the
form (

/D +m
)
ψµ =

(
Dµ − m

2 γµ

)
γνψ

ν (3.31)

The gravitino mass is m = eK/2 W
M2

P
where K and W are the Kähler potential and superpo-

tential, respectively. The divergence constraint is

Dµψµ − /Dγµψµ + 3
2mγ

µψµ = 0 (3.32)

and after some tedious algebra, the trace constraint can be put in the form

γ0ψ0 = Âγiψi (3.33)

Â is a matrix whose general expression for any number of chiral multiplets is provided in [19].
The idea is again to find the equation of motion for each helicity state in the momentum
space. It is convenient in this case to decompose the Fourier mode1 into its transverse part
ψT

i , the γ-trace γiψi and the trace k · ψ:

ψi = ψT
i +

(1
2γi − 1

2 k̂i(k̂ · γ)
)
γjψj +

(3
2 k̂i − 1

2γi(k̂ · γ)
)

k̂ · ψ (3.34)

By the constraint equation (3.32), k·ψ can be expressed in terms of γiψi, so the decomposition
(3.34) involves only the γ-trace corresponding to helicity ±1/2, and the transverse part,
representing helicity ±3/2. Their equations of motion are(

γ̄0∂0 + iγ̄iki + am
)

Ψ⃗T = 0, Ψ⃗T ≡ a1/2ψ⃗T (3.35)

and (
∂0 − iγjkjγ0Â+ B̂

) (
γ̄iψi

)
= 0 (3.36)

1By an abuse of language and for the sake of simplicity, the Fourier mode is also written as ψ.
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The mass matrix B̂ depends on Â and the scale factor a. The following steps are clear and
we can extract from the above equations the dispersion relations, then the sound speeds.
For the transverse component (helicity ±3/2) we have cs = 1, whereas the longitudinal one
(helicity ±1/2) has cs =

∣∣∣Â∣∣∣2. The latter in the FLRW background is shown to be equal to
1 and therefore both helicity ±3/2 and ±1/2 propagate at the speed of light.

N = 1, d = 4 supergravity with one chiral multiplet is exempt from catastrophic gravitino
production. Is this still the case if we have more than one multiplet? When there are two spin-
1/2 fermions, sitting either in two chiral or one chiral plus one vector multiplet, the equations
of motion generalized from Eq (3.35)-(3.36) are a coupled system, and a diagonalization
procedure is necessary to find the equation of the physical fermion. The sound speed is then
recovered from the dispersion relation of the physical fermion. In the following, we present
the work [72] where we compute the sound speed in the case of two multiplets, and show
that it never vanishes, hence no catastrophic production would occur.

3.3 Publication
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Abstract: Gravitinos can inherit a non-relativistic dispersion relation while propagating
in a background breaking both supersymmetry and Lorentz symmetry spontaneously. This
is because the longitudinal mode velocity is controlled by the sound speed in the back-
ground. It was pointed out recently by Kolb, Long and McDonough that the production
of gravitinos might diverge when this sound speed vanishes. We argue that in the frame-
work of cosmological models with linearly spontaneously broken realised supersymmetry,
where the physical fermions are combinations of the vacuum goldstino and the inflatino,
the gravitino longitudinal mode has a relativistic dispersion relation and therefore avoids
the catastrophic production. We illustrate this in some explicit examples.
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1 Introduction

In the super-Higgs mechanism, a spin 1/2 fermion, the goldstino, combines with the grav-
itino and provides it with the appropriate number of degrees of freedom for a massive spin
3/2 [1–5]. When the spin 1/2 propagates in a generic background with a non-relativistic
dispersion relation, for instance at the sound speed cs < 1 in fluids, the result of the super-
Higgs mechanism has been denoted "slow gravitinos" [6–10]. Such situations might occur in
cosmological backgrounds as cosmological solutions treat time and space differently [11–15].

At the end of inflation, during the period of reheating, the inflaton dissipates its energy
while oscillating around the minimum of its potential. This energy is in part converted
into a non-thermal production of gravitinos. This process was studied in [12–15] where the
equations of propagation of the different gravitino modes were established. In particular,
there is a copious production of the helicities ±1/2 components of the gravitinos, the gold-
stino fermion at the moment, which was also numerically evaluated in those papers and in
[16, 17].

Recently, [18, 19] have reconsidered this process. The equation of motion of the fermion
θ describing the longitudinal mode in the vaccuum after reheating can be written as

[
γ̄0∂0 + iγ̄ikics

]
θ + · · · = 0, (1.1)

where the · · · stand for mass and mixing terms with other fermions. The sound speed is
identified then as given by:

c2s =

(
p− 3m2

3/2M
2
P

)2

(
ρ+ 3m2

3/2M
2
P

)2 +
4M4

P

(
∂m3/2/∂t

)2
(
ρ+ 3m2

3/2M
2
P

)2 , (1.2)
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where MP is the reduced Planck mass, m3/2 the gravitino mass, while ρ, p denote the
energy density and pressure of the matter system. It was then noticed in [18, 19] that a
catastrophic gravitino production occurs whenever the above sound speed vanishes.

In the supergravity cosmological models we discuss here where supersymmetry is lin-
early realised (but spontaneously broken), the slow goldstino is not an eigenstate of the
Hamiltonian. It mixes with the fermion whose scalar partner has a non-vanishing kinetic
energy, for instance the inflatino in the works mentioned above. These give rise at each
moment, after diagonalisation, to combinations of the two fermions that are eigenstates
of the Hamiltonian and cs is not a physical quantity. This has motivated [10] to resort
to non-linear realisation of supersymmetry in order to project out the second fermion and
construct models of slow gravitinos. If one keeps both states, it was pointed out in [20] that
c2s = 0 does not lead to catastrophic gravitino production. More precisely, as the coefficients
of the momentum vector ~k in the kinetic term are now described by a mixing matrix that
is known not to be singular as c2s = 0, no catastrophic production is expected.

The aim of this work is to derive explicitly the general dispersion relations of the
physical fermions in standard linear supergravity and show that not only as expected the
mixing matrix in the fermion kinetic terms is not singular, but, it can be diagonalised to the
identity matrix. Using the non-adiabaticity coefficient, we conclude that in this background
catastrophic production does not occur. Furthermore, we show in particular cases that
the physical sound speed is equal to one independently of the value of c2s; namely, for
degenerate fermion masses, the dispersion relation is relativistic despite the time dependent
gravitational background.

In section 2, we consider the general case with a goldstino combination of two fermions.
We exhibit through diagonalisation of the kinetic terms the generic form of the dispersion
relations of the physical fermions. We argue that these do not lead to catastrophic gravitino
production. One of the novelties of our work is to consider also the case where one of the
fermions arises from a vector multiplet. Section 3 presents some examples where the whole
diagonalisation can be carried out explicitly and where the dispersion relation takes a
relativistic form.

2 The General case with two fermions

We consider an N = 1 supergravity model where in addition to the graviton and gravitino
ψν , one has two possible sources of supersymmetry breaking in the vacuum. The first is
a potentially non-vanishing D-term P for a U(1) vector multiplet. The second possibility
uses the non-vanishing F -term of a chiral multiplet. In addition, during the cosmological
evolution, there is an extra source of supersymmetry breaking given by the non-vanishing
kinetic energy of a rolling scalar, the inflaton. To describe this system we consider a vector
supermultiplet with field strength and gaugino denoted as Fµν and λ, respectively, as well
as one or two chiral multiplets consisting in scalars φi and fermions χi, i = 1, 2. The

– 2 –



corresponding Lagrangian is given by: 1

e−1L = −1

2
M2

PR− gji

(
∂̂µφ

i
)(

∂̂µφj

)
− V

− 1

2
M2

P ψ̄µR
µ +

1

2
mψ̄µRγ

µνψνR +
1

2
m∗ψ̄µLγ

µνψνL

+ (Re f)

[
−1

4
FµνF

µν − 1

2
λ̄Dλ

]
+

1

4
i (Im f)

[
Fµν F̃

µν − ∂̂µ
(
λ̄γ5γ

µλ
)]

+
1

4

{
(Re f) ψ̄µγ

νρFνργ
µλ−

[
f iχ̄iγ

µνF−
µνλL + h.c.

]}

− gi
j
[
χ̄jDχi + χ̄iDχj

]
−mijχ̄iχj −mijχ̄

iχj

− 2miαχ̄
iλ− 2miαχ̄iλ−mR,αβλ̄RλR −mL,αβλ̄LλL

+
(
2gj

iψ̄µRγ
νµχj ∂̂νφi + ψ̄R · γυL + h.c.

)

(2.1)

where L,R subscripts refer to the left and right chiralities, respectively. Moreover, χi is a
left-handed field while χi is right-handed, and φi denotes the complex conjugate of φi. The
kinetic term of the gravitino is defined as Rµ = γµρσDρψσ. The covariant derivatives as
well as the mass terms in this Lagrangian can be found in Appendix A. The Greek index
α in the gaugino mass terms miα is set to 1, since there is at most one vector multiplet, in
which case there is also only one chiral multiplet and thus the latin index i is also set to 1.
The field strengths Fµν , F̃

µν , F−
µν are irrelevant for our discussion, and are defined in [15].

The Kähler metric gij is given by the Kähler potential K with

gi
j =

∂

∂φi
∂

∂φj
K (2.2)

and the gravitino mass m3/2 is determined by the superpotential W as well as the Kähler
potential

m3/2 = |m|M−2
P , m ≡ e

K

2M2
PW (2.3)

The scalar potential is a sum of the F -term and D-term contributions, with mi the Kähler
covariant derivative of m and f ≡ 1/g2 denoting the gauge kinetic function, assumed to be
constant:

V = VF + VD, VF = −3M−2
P |m|2 +mi

(
gj

i
)−1

mj, VD =
1

2
g2P2 (2.4)

where P is the Killing potential.
In the following, we will consider a flat universe described by the Friedmann-Lemaître-

Robertson-Walker (FLRW) metric ds2 = a2(η)
(
−dη2 + dx2

)
where a is the scale factor

and η ≡ x0 is the conformal time. The determinant of the vierbein is then e = a4. We
further introduce the dot derivative with respect to the physical time t, with ḟ ≡ a−1∂0f.
The Hubble rate is defined as H ≡ ȧ/a.

1The Lagrangian with a generic number of chiral and vector multiplets can be found in [15].
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Throughout this work, we will assume real backgrounds, and use the plane wave ex-
pansion for the fermions Ψ(η,~k) = exp(i~k · ~x)Ψ(η). Useful notations are:

α ≡ ρ+ 3M−2
P m2, α1 ≡ p− 3M−2

P m2, α2 ≡ 2ṁ,

Â = Â1 + γ̄0Â2 ≡
1

α

(
α1 + γ̄0α2

)
,

B̂ = B̂1 + γ̄0B̂2 ≡ −3

2
ȧÂ− 1

2
M−2

P maγ̄0(1 + 3Â)

ni ≡ gi
jφ̇j , ni ≡ gj

iφ̇j, |φ̇|2 ≡ gi
j φ̇jφ̇

i

ξi ≡ mi + γ̄0ni, ξi ≡ mi + γ̄0ni

∆2 ≡ 1− α2
1

α2
− α2

2

α2
=

4

α2

[
φ̇iφ̇jmkm

ℓ
(
gℓ

k−1
gi

j − δki δ
j
ℓ

)
+

1

2
|φ̇|2g2P2

]

(2.5)

In the FLRW background, the energy density and pressure are given in terms of the Hubble
parameter as

ρ = 3M2
PH

2, p = −M2
P

(
3H2 + 2Ḣ

)
(2.6)

Before choosing a gauge, the goldstino υ in the last line of (2.1) takes the form

υ = ξ†iχi + ξ†iχ
i +

i

2
γ5Pλ (2.7)

To describe the theory in the supersymmetry broken phase, we follow [15] and introduce
the combination of spin-1/2 fermions

θ ≡ γ̄iψi , Υ ≡ a
(
niχ

i + niχi

)

ΞR = −mkg−1j
k mjiχ

i + γ̄0φ̇j
(
mjiχi +mjλL

)
+ iM−2

P mPλR − ig2Pmiχ
i

(2.8)

In the unitary gauge υ = 0, (2.7) then relates the gaugino to the chiral fermions. The
spinors in (2.8) are a priori independent. However, as we consider the case of two fermions,
θ will be associated with the longitudinal component in the vaccum of the gravitino in the
unitary gauge. The fermion Υ describes the correction to this mode from supersymmetry
breaking by the rolling scalar kinetic energy. In this case, Υ and Ξ are proportional to each
other, with

Ξ = −a−1F̂Υ (2.9)

For two chiral multiplets, the matrix F̂ is provided in [15]. In the presence of a D-term, the
remaining chiral multiplet is written as (χ1, φ1), and the kinetic energy becomes |φ̇|2 = g1

1φ̇21
. We find (for non-vanishing |φ̇|2 and P):

F̂ =
V̇

2|φ̇|2
− Ṗ

P + γ̄0

(
(g1

1)−1m11 −
Ṗ
P
m1

n1
+

2m

M2
P

)
(2.10)

As emphasised by [15–17], the equations of motions for θ and Υ are coupled together,
thus spin-1/2 particles produced are not necessarily the longitudinal component of the
gravitino, but the fermions that diagonalise the Hamiltonian. We call them the physical
fermions thereafter. Moreover, the spin-1/2 fermions (θ, Υ) have non-canonical kinetic
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terms and thus will be rescaled before diagonalising their equations of motion. It was
noticed in [16, 17], in the two chiral multiplets case, that the kinetic terms can be written
as

L ⊃ − 4a

α∆2
Ῡγ̄0∂0Υ− α

4k2
a3θ̄γ̄0∂0θ (2.11)

Here we are going to generalise the above expression in the presence of a vector multiplet
with a non-vanishing D-term. Υ can be projected onto the left-handed gaugino by

PLξ
†1Υ = −1

2
aPLξ

†1γ̄0
(
ξ1χ

1 + ξ1χ1 +
i

2
γ5Pλ

)
(2.12)

where in the first line we used the unitary gauge condition υ = 0 from (2.7). The right-
handed gaugino is obtained by charge conjugation:

PRξ
†
1Υ =

i

2
an1PPRλ (2.13)

On the other hand, it is easier to project Υ onto the chiral fermions given its definition:

χ1 =
PLΥ

an1
, χ1 =

PRΥ

an1
(2.14)

Expressing the gaugino and chiral fermion kinetic terms in terms of Υ, we find

L ⊃ −4aVD
α2∆2

(
Ῡγ̄0∂0Υ

)
− 4a(α − VD)

α2∆2
Ῡγ̄0∂0Υ = − 4a

α∆2
Ῡγ̄0∂0Υ (2.15)

As for θ, one uses the fact that the spatial component of the gravitino can be decom-
posed into

~ψ = ~ψT +
1

k2

[
~k(γ̄iki) +

1

2
i(3~k − ~γ(γ̄iki))

(
ȧγ̄0 +M−2

P am
)]
θ (2.16)

where ψT corresponds to the transverse mode. Inserting the above equation into the grav-
itino kinetic term in the Lagrangian, we recover the same form as in (2.11). Consequently,
in presence of one chiral multiplet and one vector multiplet, the kinetic terms of θ and Υ

are the same as for two chiral multiplets, up to a redefinition of α and ∆. We thus can use
the same rescaling in the two cases, allowing to have canonical fields {Ψ1,Ψ2}:

θ =
2iγ̄iki

(αa3)1/2
Ψ1, Υ =

∆

2

(α
a

)1/2
Ψ2 (2.17)

2.1 The mixing matrices

In the basis {Ψ1,Ψ2}, the spin-12 part of the Lagrangian takes the form:

LΨ1Ψ2 =− Ψ̄1

[
γ̄0∂0Ψ1 −

1

2

∂0(αa
3)

αa3
γ̄0Ψ1 + γ̄0B̂Ψ1 + iγ̄ikiÂ

†Ψ1 − iγ̄iki∆γ̄
0Ψ2

]

− Ψ̄2

[
γ̄0∂0Ψ2 +

∂0
(
∆
√

α
a

)

∆
√

α
a

γ̄0Ψ2 + γ̄0B̂†Ψ2 + iγ̄ikiÂΨ2 + 2ȧγ̄0Ψ2

+
am

M2
P

Ψ2 + aγ̄0F̂Ψ2 + iγ̄0γ̄iki∆Ψ1

]
(2.18)
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where the different parameters are given in (2.5) and F̂ = F̂1 + γ̄0F̂2 is defined in (2.9).
The explicit form of (2.18) depends on the specific model. We will illustrate some examples
in Section 3.

With Ψ designating the vector (Ψ1,Ψ2)
T , the above Lagrangian can be put in a simple

form

LΨ1Ψ2 = −Ψ̄
[
γ̄0∂0 + iγ̄ikiN +M

]
Ψ (2.19)

with equations of motion

[
γ̄0∂0 + iγ̄ikiN +M

]
mn

Ψn = 0, m, n ∈ {1, 2}. (2.20)

The N and M mixing matrices are given by2

M = 14

(
−B̂2 0

0 B̂2 +
am
M2

P
− aF̂2

)
+ γ̄0




−1
2
∂0(αa3)
αa3

+ B̂1 0

0
∂0(∆

√
α
a )

∆
√

α
a

+ B̂1 + 2ȧ+ aF̂1




= 14

(
−B̂2 0

0 B̂2 +
am
M2

P
− aF̂2

)

(2.21)
and

N = N1 + γ̄0N2 = 14

(
Â1 0

0 Â1

)
+ γ̄0

(
−Â2 −∆

−∆ Â2

)
(2.22)

where 14 is a 4 × 4 unit matrix. We should stress that in the decompositions of M and
N , the 2 × 2 matrices act on the basis {Ψ1,Ψ2}, while γ̄0 is a 4 × 4 matrix acting on the
spinor indices. In the first line of (2.21), the γ̄0-dependent part vanishes both for two chiral
multiplets and for one chiral multiplet with a D-term due to the property

B̂1 =
1

2

(
B̂ + B̂†

)
=
aα̇

2α
+

3ȧ

2
(2.23)

Note also that for ∆ appearing in the denominator of Υ kinetic term (2.15), there seems
to be a singularity at ∆ → 0, but this singularity cancels out in the mixing matrices M,N ,
because there is another ∆ in the denominator of F̂1 compensating the one in front of the
Υ kinetic term.

In the {Ψ1,Ψ2} basis, only N contributes to the mixing. One might be tempted to
diagonalize N so as to decouple the two fermions, but in general the mixing matrices depend
on time, thus a unitary transformation to the basis diagonalising N would also be time-
dependent, which by time derivative gives a contribution to the mass matrix, rendering
M non-diagonal. Though on general grounds, we will not provide an analytical expression
of the physical fermions in terms of {Ψ1,Ψ2}, as long as we consider the catastrophic
production in [18, 19] it is not necessary to carry out the entire diagonalization of (2.18).

2The difference of some signs compared to [16, 17, 20] is due to the γ̄0 convention.
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2.2 Dispersion relations for the physical fermions

Expressing (1.2) in terms of the parameters of (2.5), we observe that the sound speed (1.2)
amounts to the norm of N11, namely

c2s = Â2
1 + Â2

2 = 1−∆2 (2.24)

In the case of a single chiral multiplet, the fields Υ and Ξ vanish in the unitary gauge, and
we are left with θ. The norm of N ≡ N11 enters into the dispersion relation as the gravitino
velocity. It is a well-known result [12–14] that Â2

1 + Â2
2 = 1 for one chiral multiplet, thus

the gravitino sound speed is the speed of light. However, when two fermions are present,
Υ cannot be omitted and the physical fermions are combinations of θ and Υ. The question
is then raised whether (2.24) is the sound speed of a physical propagating state.

One can check that the mixing matrix N in (2.22) is unitary, thus it can be written as
an exponential of a phase

N = exp
(
2Φγ̄0

)
= cos(2Φ) + γ̄0 sin(2Φ), Φ† = Φ (2.25)

Furthermore, notice that N1 and N2 are real, then Φ is a real, thus symmetric matrix. By
a unitary transformation Ψ̂ = exp(γ̄0Φ)Ψ, the exponent in (2.25) is taken away, making N
equal to the identity, and the Lagrangian (2.18) in the new basis Ψ̂ = (Ψ̂1, Ψ̂2)

T becomes

LΨ̂1Ψ̂2
= − ¯̂

Ψ
[
γ̄0∂0 + iγ̄iki + M̂

]
Ψ̂ . (2.26)

The new mass matrix

M̂ = M̂1 + γ̄0M̂2 = exp(γ̄0Φ)M exp(−γ̄0Φ) + ∂0Φ

M̂1 = cos(Φ)M cos(Φ) + sin(Φ)M sin(Φ) + ∂0Φ,

M̂2 = sin(Φ)M cos(Φ)− cos(Φ)M sin(Φ)

(2.27)

is in general non-diagonal, due to the off-diagonal elements of Φ. We obtain therefore
a system of two propagating fermions subject to oscillations due to the time-dependent
mixing in their mass matrix.

As a side remark, the matrix Φ of (2.25) is a phase and defined up to a constant, as long
as N1 = cos(2Φ), N2 = sin(2Φ) are satisfied. On the other hand, the transformation matrix
exp(γ̄0Φ) = cos(Φ)+ γ̄0 sin(Φ) may take a minus sign according to the choice of Φ, but the
Lagrangian (2.26) is independent of this choice. Moreover, the constant ambiguity does not
change ∂0Φ and the minus signs in cos(Φ), sin(Φ) are compensated in the expressions of
(2.27). As a result, this ambiguity has no effect on the Lagrangian or on the mass matrix.

Since M̂2 is antisymmetric, we can further perform an orthogonal transformation [16,
17] in order to eliminate this matrix

Ψ̂ = LΨ̃, with
(
∂0 + M̂2

)
L = 0 . (2.28)

Thus, we arrive at a Lagrangian where the mixing comes only from the mass matrix, that
is γ̄0−independent

LΨ̃1Ψ̃2
= − ¯̃Ψ

[
γ̄0∂0 + iγ̄iki + LT M̂1L

]
Ψ̃ . (2.29)
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M̃ ≡ LT M̂1L is real and symmetric, hence it can be diagonalised by an orthogonal matrix
C, with

µ = diag(µ1, µ2) = CT M̃C . (2.30)

The energy squared eigenvalues for the fermions are then of the form

E2
i = k2 + µ2i . (2.31)

Although the momentum squared is multiplied by 1, yet one cannot conclude from (2.31)
that the sound speed of the physical fermions is the speed of light.

To have a closer look at the propagation of physical degrees of freedom, we follow the
approach in [16, 17, 21] and expand Ψ̃i into creation and annihilation operators:

Ψ̃i(x) = Cij

∫
d3x

(2π)3/2
eik·x

[
U jℓ
r (k, η)aℓr(k) + V jℓ

r (k, η)b†ℓr (−k)
]
, (2.32)

where r = ± denotes the helicity components and a summation over repeated indices is
understood. The spinorial Fourier coefficients are written in terms of the helicity eigenfunc-
tions ψ± and mode functions (matrices) U±, V±:

U ij
r ≡

[
U ij
+√
2
ψr, r

U ij
−√
2
ψr

]T
, V ij

r ≡
[
V ij
+√
2
ψr, r

V ij
−√
2
ψr

]T
. (2.33)

Since U± and V± are related by charge conjugation invariance of Ψ̃i, we can restrict ourselves
to the mode equations of U±. Taking the momentum along the x3−axis and defining the
antisymmetric matrix

Γ ≡ CT∂0C , (2.34)

the equations of motion of Ψ̃i result in

i∂0

(
U+

U−

)
= D

(
U+

U−

)
, D =

(
−iΓ− µ −k12

−k12 −iΓ + µ

)
(2.35)

where D is a 4 × 4 hermitian matrix, whose diagonal blocks encode the time dependence.
Its real eigenvalues are

ω1,± = ±
[
Γ2
12 + k2 +

1

2

(
µ21 + µ22

)
+

(
1

4

(
µ21 − µ22

)2
+ Γ2

12

(
4k2 + (µ1 + µ2)

2
)) 1

2

] 1
2

ω2,± = ±
[
Γ2
12 + k2 +

1

2

(
µ21 + µ22

)
−
(
1

4

(
µ21 − µ22

)2
+ Γ2

12

(
4k2 + (µ1 + µ2)

2
)) 1

2

] 1
2

(2.36)
where we denoted the (1, 2) element of Γ by Γ12.

Note that when the fermions have degenerate mass µ1 = µ2 = µ̄, then from (2.30),
M̂1 = µ̄12 and Γ12 = 0. Thus, in this case we recover the relativistic dispersion relation
with time-dependent mass:

ω1,± = ω2,± = ±
√
k2 + µ̄2 (2.37)
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In general, the dispersion relations of the physical fermions in (2.36) are very different from
that in [19], describing the vacuum helicity-1/2 mode of the gravitino. We recall the latter
for clarity:

ωk ≡
√
c2sk

2 + a2m2
3/2 (2.38)

One of the arguments for catastrophic gravitino production at cs = 0 is based on the
adiabaticity violation. The dimensionless coefficient of non-adiabaticity is defined as [22]

Ak ≡ ∂0ωk

ω2
k

(2.39)

Indeed, in (2.38), the momentum is multiplied by cs, so when cs = 0, the coefficient of
non-adiabaticity is independent of k, and can even exceed one under some circumstances
implying particle production with an arbitrarily large momentum. This is, however, not
the case here: the sound speed of (2.24) does not enter explicitly3 the physical dispersion
relations, and cannot suppress the momentum dependence when it vanishes. Therefore, cs
is not, at least not directly, responsible for the divergent particle production.

To see if particles of arbitrarily large momenta can actually be produced, we assume
that the only source of non-adiabaticity is due to the variations of frequencies of the two
physical fermions, with the coefficient Ak being a sum of them. We then consider the limit
of high momenta k ≫ µi and k ≫ Γ12, where Γ12 is roughly the time derivative of the
logarithm of masses (see its definition (2.34)), defining a scale related to the variation of
masses. In this limit, the non-adiabaticity coefficient at leading order becomes

Ak ≡ ∂0ω1,+

ω2
1,+

+
∂0ω2,+

ω2
2,+

≈ −6Γ12∂0Γ12
1

k3
(2.40)

implying that Ak falls as k−3, and thus particles with arbitrarily large k cannot be produced.

3 Examples

3.1 Two chiral multiplets

Given two chiral multiplets (χ1, φ1), (χ2, φ2), we investigate the case with ∆ = 1 at all
times, so that the sound speed defined in (2.24) vanishes, and according to [18, 19], the
gravitino production is expected to diverge. In this toy example, the physical fermions as
well as their equations of motion can be explicitly obtained. For simplicity, the Kähler
potential is taken to be canonical, so that the expression of ∆ becomes:

∆ =
2

α

(
m1φ̇2 −m2φ̇1

)
= 1 (3.1)

On the other hand, from (2.5) on sees that ∆ = 1 is equivalent to the conditions α1 =

α2 = 0. The latter implies that the gravitino mass is constant which is equivalent to the
condition m1φ̇1 + m2φ̇2 = 0. The former implies φ̇21 + φ̇22 = m2

1 + m2
2, where we used

3Γ12 can potentially depend on cs, because Γ is related to the diagonalization of the mixing matrices,
which contain ∆.
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the expression (2.4) for the potential in the absence of D-term contribution. One possible
setup for a solution is therefore m2 = φ̇1 = 0 and m1 = φ̇2 6= 0, in other words, φ1 breaks
supersymmetry via its F -term and φ2 via its kinetic term, by the same amount.

The mixing matrix N then takes the form

N = γ̄0

(
0 −1

−1 0

)
, (3.2)

while, for convenience, we write M as

M = 14

(
M11 0

0 M22

)
, M11,M22 6= 0 . (3.3)

The angle Φ in (2.25) is constant because N does not depend on time; we then choose

Φ =
3π

4

(
0 1

1 0

)
, exp(γ̄0Φ) = − 1√

2
12 +

1√
2
γ̄0

(
0 1

1 0

)
. (3.4)

Upon the unitary transformation Ψ̂ = exp(γ̄0Φ)Ψ, we obtain the new mass matrix M̂ with

M̂1 =
M11 +M22

2
12 , M̂2 =

M11 −M22

2

(
0 1

−1 0

)
. (3.5)

We now look for the orthogonal matrix L cancelling the γ̄0 component of M̂ . Parametris-
ing L by an angle τ , from (2.28) we get

L =

(
cos τ(η) − sin τ(η)

sin τ(η) cos τ(η)

)
, τ ′(η) =

M11 −M22

2
(3.6)

Once such an orthogonal transformation is found, the Lagrangian in the Ψ̃ = LT exp(γ̄0Φ)Ψ

basis becomes
LΨ̃1Ψ̃2

= − ¯̃Ψ

[
γ̄0∂0 + iγ̄iki +

M11 +M22

2

]
Ψ̃ . (3.7)

Thus, the mass matrix in this particular case is diagonal and one concludes that Ψ̃ =

{Ψ̃1, Ψ̃2} are the physical fermions. They have degenerate mass and their equations of
motion are decoupled:

[
γ̄0∂0 + iγ̄iki +

M11 +M22

2

]
Ψ̃j = 0, j ∈ {1, 2} (3.8)

These are just standard Dirac equations with time-dependent mass, similar to the transverse
mode of the gravitino. As a result, the physical fermions, which are linear combinations of
θ and Υ, have the dispersion relation

ω2 = k2 +

(
M11 +M22

2

)2

. (3.9)

The coefficient of non-adiabaticity is suppressed by large momenta, and particle production
is not expected to be divergent in this case, despite the fact that the speed of sound (1.2)
associated to θ vanishes.
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3.2 One chiral multiplet and one vector multiplet

Another example with two fermions is one chiral multiplet (χ1, φ1) accompanied by a vector
multiplet with non-vanishing D-term. The simplest model one may consider is that of a
constant (Fayet-Iliopoulos) D-term when the vector multiplet gauges the R-symmetry [23].
One can then consider two possibilities. The first consists of a neutral chiral multiplet, in
which case the superpotential vanishes. Again, we take the Kähler potential to be canonical.
The scalar potential is then

V = VD =
1

2
g2P2 (3.10)

with P constant. Since the gravitino is massless in this model, all mass terms appearing in
(2.10) vanish, and we have F̂ = 0. Let

w ≡ p

ρ
, with p = |φ̇|2 − VD, ρ = |φ̇|2 + VD . (3.11)

In this model, the scalar equation of motion can be easily solved. We have

φ̈+ 3Hφ̇ = 0 (3.12)

leading to φ̇ = e−3Ht, where the constant of integration is absorbed by a redefinition of the
origin of time. The expression of w is then

w(t) =
2e−6Ht − g2P2

2e−6Ht + g2P2
. (3.13)

Moreover, the parameters in (2.5) and ∆ can be written as

Â = Â1 = w, B̂ = B̂1 = −3ȧ

2

(
1− w2

)
, ∆2 = 1− w2 . (3.14)

The sound speed defined in (2.24) is therefore simply given by w, and the mixing matrices
in this case are

M = 0, N =

(
w 0

0 w

)
+ γ̄0

(
0 −

√
1−w2

−
√
1− w2 0

)
(3.15)

It follows that the physical fermions production and their equations of motion are deter-
mined only by w. Here, we study some particular limits:

• When w → 1, the pressure and the energy density are equal, implying that the D-
term is vanishing. This limit amounts to a theory with a single chiral multiplet. N is
the identity matrix whereas M = 0, so Ψi are the physical fermions described by the
massless Dirac equation and propagating at the speed of light.4

• On the other hand, the same situation occurs for w → −1, which means that |φ̇|2 → 0,
or equivalently t → +∞ in (3.13), so that maximal symmetry is unbroken. The
equations of motion of the physical fermions differ from the massless Dirac equation
by a minus sign in front of γ̄iki, but the dispersion relation ω2 = k2 is unchanged
compared to the previous case.

4This agrees also with the literature for the one chiral multiplet case; see the discussion in Section 2.2.
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• Another special value is w = 0, corresponding to zero pressure and e−6Ht = VD,
which is always satisfied for a certain time t. The mixing matrix N is identical to
(3.2) for two chiral multiplets. The diagonalisation can be carried out in exactly the
same way and we obtain two physical fermions with degenerate mass (massless here).
Their equations of motion are the massless Dirac equation and we do not expect a
divergent particle production, even though cs = 0.

More generally, the matrix Φ in (2.25) can be chosen as

Φ = −1

2
arccos(w)

(
0 1

1 0

)
(3.16)

while for w 6= ±1

M̂ = ∂0Φ =
∂0w

2
√
1− w2

(
0 1

1 0

)
. (3.17)

The matrix M̂ has no γ̄0 component and can be diagonalised by a constant orthogonal
matrix C. Thus Γ = 0, leading again to relativistic dispersion relations. The details of par-
ticle production can be worked out by doing the expansion (2.32), and solving numerically
differential equations for the Bogolyubov coefficients, which will not be discussed here.

Finally, we comment briefly on the second possibility where the chiral field has a non-
vanishing R-charge and the Kähler potential is non-canonical. Consider for instance a real-
istic model of inflation driven by supersymmetry breaking [24], where the Kähler potential
and the superpotential are

K = φ1φ1 +A(φ1φ1)
2, W = fφ1 (3.18)

with f a constant and |φ1| playing the role of the inflaton, while its phase is absorbed in the
gauge field to make it massive. A is a small positive constant, so that the potential has a
maximum at the origin allowing hilltop inflation with the slow-roll parameter η controlled
by A. In this case, the D-term part of the potential is given by

VD =
q2

2

(
1 + φ1φ1 + 2A(φ1φ1)

2
)2
, (3.19)

with q a constant parameter corresponding to the R-charge of φ1, that must be small
compared to the F -term so that VD is subdominant during inflation. It follows that ∆ has
the form:

α2∆2 = 4VD(1 + 4Aφ1φ1)φ̇
1φ̇1 , α2 =

(
ρ+ 3M−2

P |m|2
)2
. (3.20)

Note that it appears possible to have ∆2 < 0 for some negative values of A, leading
to cs > 1 according to equation (2.24). However, this region is unphysical since the Kähler
metric becomes negative. This is actually similar to the situation that can be obtained in
pathological models where Υ is dropped out by constraints, leading to cs > 1 [20].

We will now investigate again the case of ∆ = 1 at all times. From (2.5), one sees
that the condition α2 = 0 implies that the gravitino mass is constant with m1 = 0, which
is equivalent that φ1 has vanishing F -term and breaks supersymmetry only by its kinetic
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energy. This may indeed be satisfied around the vacuum at the minimum of the potential
after the end of inflation. There, φ1 is in general far from the maximum at the origin where
corrections to the Kähler potential (3.18) become important and change its form. On the
other hand, the condition α1 = 0 implies |φ̇1|2 = VD where the latter is now given by
VD = (q2/2)(1 + K1φ1)

2 with K1 ≡ ∂K/∂φ1. The analysis of the two fermions θ and Υ

can now proceed as in the previous subsection of two chiral multiplets, giving rise to two
decoupled equations of motion with a relativistic dispersion relation.

4 Conclusions

We have studied the equations of motion for the longitudinal modes of gravitinos in su-
pergravity models where supersymmetry is linearly realised but spontaneously broken. We
have considered the general case of two supermultiplets. One contains a scalar field φ that
has non-vanishing kinetic energy, ∂µφ 6= 0. In a cosmological background, this scalar can be
identified with the inflaton which is time dependent. The other multiplet is at the origin of
the gravitino mass in the vacuum at late times. We have found that, after diagonalisation
of the Hamiltonian, in all cases the dispersion relations of the propagating fermions take
relativistic forms with in general a time-dependent mixing mass matrix. While this might
be expected, it is shown here explicitly. Such cases are not expected to show a catastrophic
production of gravitinos.

We did not discuss here the non-linear models as those considered in [10, 20, 25] as it is
not clear to us which microscopic supergravity Lagrangian is at the origin of the constraint
imposed there on the inflaton superfield. We note that in these cases one ends up with
one fermion propagating in peculiar backgrounds. The result of [18, 19] constrains the
background on which Rarita-Schwinger fields are allowed to propagate.
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A Notations

Our notations follow mostly that in [15], where the flat space γ-matrices are

γ̄0 =

(
i12 0

0 −i12

)
, γ̄i =

(
0 −iσi
iσi 0

)
, γ5 =

(
0 −12

−12 0

)
(A.1)

The Minkowski metric has signature (−,+,+,+), and for cosmological applications, we
used the FLRW metric. The curved space γ-matrices, noted γµ, are then related to the flat
space γ-matrices by γµ = a−1γ̄µ. The left and right projections are defined as

PL =
1

2
(1 + γ5) , PR =

1

2
(1− γ5) (A.2)
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Note that for chiral fermions, PLχi = χi and PRχ
i = χi. The charge conjugation matrix in

this convention is given by C = γ̄0γ̄2. Some useful charge conjugates are

χC
i = χi, φCi = φi, PC = P, λC = λ

γ̄Cµ = γ̄µ, γC5 = −γ5, PC
L = PR

(A.3)

In the Lagrangian (2.1), the covariant derivative of the scalar is ∂̂0 = ∂0 − i
2A

B
0 γ5. In

the cosmological context considered, the spatial derivatives of the scalar vanish, and for
real backgrounds we have AB

0 = 0 and thus ∂̂0 = ∂0. Keeping the above simplifications,
the covariant derivatives acting on the chiral fermions, the gaugino and the gravitino are
respectively

Dµχi ≡
(
∂µ +

1

4
ωab
µ γ̄ab

)
χi + Γjk

i χj∂µφk, Dµλ =

(
∂µ +

1

4
ωab
µ γ̄ab

)
λ

Dµψν =

((
∂µ +

1

4
ωab
µ γ̄ab +

1

2
iγ5Aµ

)
δλν − Γλ

µν

)
ψλ

(A.4)

where ωab
µ stands for the spin connection and Aµ is the U(1) gauge field. The Christoffel

connection Γλ
µν differs from the Kähler connection, where the latter corresponds to Γjk

i ≡
g−1l

i∂
jgkl . We use the notation γ̄ab ≡ [γ̄a, γ̄b] /2.

Having introduced the Kähler covariant derivative Di, the mass terms are

mi ≡ Dim = ∂im+
∂iK

2M2
P

m, mij ≡ DiDjm =

(
∂i +

∂jK

2M2
P

)
mj − Γij

k m
k (A.5)

miα = −i

[
∂iP − 1

4
(Re f)−1Pfi

]
, mR,αβ = −1

4
fig

−1i
j mj (A.6)

where the subscript i in f denotes derivative with respect to φi.

References

[1] P. Fayet and J. Iliopoulos, Spontaneously Broken Supergauge Symmetries and Goldstone
Spinors, Phys. Lett. B 51 (1974), 461-464

[2] D. V. Volkov and V. A. Soroka, Higgs Effect for Goldstone Particles with Spin 1/2, JETP
Lett. 18 (1973), 312-314

[3] P. Fayet, Mixing Between Gravitational and Weak Interactions Through the Massive
Gravitino, Phys. Lett. B 70 (1977), 461

[4] S. Deser and B. Zumino, Broken Supersymmetry and Supergravity, Phys. Rev. Lett. 38
(1977), 1433-1436

[5] E. Cremmer, B. Julia, J. Scherk, S. Ferrara, L. Girardello and P. van Nieuwenhuizen,
Spontaneous Symmetry Breaking and Higgs Effect in Supergravity Without Cosmological
Constant, Nucl. Phys. B 147 (1979), 105

[6] K. Benakli, Y. Oz and G. Policastro, The Super-Higgs Mechanism in Fluids, JHEP 02
(2014), 015 [arXiv:1310.5002 [hep-th]].

– 14 –



[7] K. Benakli, L. Darmé and Y. Oz, The Slow Gravitino, JHEP 10 (2014), 121 [arXiv:1407.8321
[hep-ph]].

[8] K. Benakli and L. Darmé, Off-trail SUSY, PoS PLANCK2015 (2015), 019
[arXiv:1511.02044 [hep-ph]].

[9] Y. Kahn, D. A. Roberts and J. Thaler, The goldstone and goldstino of supersymmetric
inflation, JHEP 10 (2015), 001 [arXiv:1504.05958 [hep-th]].

[10] S. Ferrara, R. Kallosh and J. Thaler, Cosmology with orthogonal nilpotent superfields, Phys.
Rev. D 93 (2016) no.4, 043516 [arXiv:1512.00545 [hep-th]].

[11] A. Schenkel and C. F. Uhlemann, Quantization of the massive gravitino on FLRW
spacetimes, Phys. Rev. D 85 (2012), 024011 [arXiv:1109.2951 [hep-th]].

[12] R. Kallosh, L. Kofman, A. D. Linde and A. Van Proeyen, Gravitino production after
inflation, Phys. Rev. D 61 (2000), 103503 [arXiv:hep-th/9907124 [hep-th]].

[13] G. F. Giudice, I. Tkachev and A. Riotto, Nonthermal production of dangerous relics in the
early universe, JHEP 08 (1999), 009 [arXiv:hep-ph/9907510 [hep-ph]].

[14] G. F. Giudice, A. Riotto and I. Tkachev, Thermal and nonthermal production of gravitinos
in the early universe, JHEP 11 (1999), 036 [arXiv:hep-ph/9911302 [hep-ph]].

[15] R. Kallosh, L. Kofman, A. D. Linde and A. Van Proeyen, Superconformal symmetry,
supergravity and cosmology, Class. Quant. Grav. 17 (2000), 4269-4338 [erratum: Class.
Quant. Grav. 21 (2004), 5017] [arXiv:hep-th/0006179 [hep-th]].

[16] H. P. Nilles, M. Peloso and L. Sorbo, Coupled fields in external background with application
to nonthermal production of gravitinos, JHEP 04 (2001), 004 [arXiv:hep-th/0103202].

[17] H. P. Nilles, M. Peloso and L. Sorbo, Nonthermal production of gravitinos and inflatinos,
Phys. Rev. Lett. 87 (2001), 051302 [arXiv:hep-ph/0102264 [hep-ph]].

[18] E. W. Kolb, A. J. Long and E. Mcdonough, Catastrophic Production of Slow Gravitinos,
[arXiv:2102.10113 [hep-th]].

[19] E. W. Kolb, A. J. Long and E. Mcdonough, The Gravitino Swampland Conjecture,
[arXiv:2103.10437 [hep-th]].

[20] E. Dudas, M. A. G. Garcia, Y. Mambrini, K. A. Olive, M. Peloso and S. Verner, Slow and
Safe Gravitinos, [arXiv:2104.03749 [hep-th]].

[21] Y. Ema, K. Mukaida, K. Nakayama and T. Terada, Nonthermal Gravitino Production after
Large Field Inflation, JHEP 11 (2016), 184 [arXiv:1609.04716 [hep-ph]].

[22] L. Kofman, A. D. Linde and A. A. Starobinsky, Towards the theory of reheating after
inflation, Phys. Rev. D 56 (1997), 3258-3295 [arXiv:hep-ph/9704452 [hep-ph]].

[23] D. Z. Freedman, Supergravity with axial gauge invariance, Phys. Rev. D 15 (1977) 1173

[24] I. Antoniadis, A. Chatrabhuti, H. Isono and R. Knoops, Inflation from Supersymmetry
Breaking, Eur. Phys. J. C 77 (2017) no.11, 724 [arXiv:1706.04133 [hep-th]].

[25] T. Terada, Minimal Supergravity Inflation without Slow Gravitino, [arXiv:2104.05731
[hep-th]].

– 15 –



Chapter 4

Higgs mass constraints on a supersym-
metric solution of the muon g-2 anomaly

We now move to the second part of this manuscript, concerning beyond-the-SM solutions
to the experimental anomalies, with a focus on supersymmetric candidates. In this Chapter,
we will assume high-scale supersymmetry, namely, the new particles are too heavy to be
detected by the current collider. In this scenario, constraining the parameter space becomes
a difficult problem.

Contrary to the Standard Model, in supersymmetry, the Higgs quartic coupling is not a
free parameter, but is in general determined by the D-term and F -term at tree level, and
through radiative corrections, it contains information about all new particles in the theory,
including their mass and couplings. Therefore, it can be used to constrain the parameters.
On the other hand, experimental discrepancies also serve as an important input, and in
this Chapter we choose the (g − 2)µ anomaly. Joining these two inputs, we obtain various
constraints on the parameters and their dependence on each other.

In Section 4.1, we recall some basic notions of (g− 2)µ and supersymmetric models that
accommodate this anomaly. In Section 4.2, we turn to the main object of this study – the
Higgs mass, explaining the dependence of Higgs mass on other parameters of the theory, and
outlining our strategies to constrain supersymmetric models. After a summary of results in
4.3, we apply these strategies and present the case study on a specific supersymmetric model
in Section 4.4.

4.1 Muon g-2 and supersymmetry
The discovery of a Higgs boson – the last missing piece of the Standard Model – by ATLAS

and CMS, as well as the measurement of its properties points to a very good agreement with
the SM predictions [21, 22, 73, 74]. Despite the success of the SM in a majority of the
experiments, it fails to deal with, e.g., the hierarchy problem or the unification with the
gravitational interaction. In addition, several significant experimental anomalies have been
reported in recent years, that can hardly be explained by the SM only. One example is the
muon anomalous magnetic moment aµ ≡ (g − 2)/2. Reported by Muon g-2 Collaboration
at Fermilab in 2021 [75], its value turns out to be consistent with the previous measurement
by the E281 experiment at BNL [76], and the combination of the two measurements gives
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for the muon anomalous magnetic dipole moment aexp
µ = 116592061(41) × 10−11. In view

of the corresponding SM prediction [77] aSM
µ = 116591810(43) × 10−11, the measured muon

anomalous magnetic dipole moment is to date one of the largest deviations, approximately
4.2σ, with regard to the SM.

The unsatisfactory theoretical properties of the SM, along with the experimental discrep-
ancies, call for beyond-the-SM (BSM) physics in order to accommodate the aforementioned
issues. One well-motivated BSM candidate is supersymmetry, featuring an extended Higgs
sector and superpartners for all SM particles. SUSY models can provide an explanation for
the observed aµ, and also for other anomalies such as the W boson mass, as we will discuss in
the next chapter. Though a variety of non-SUSY candidates exists, here we will be focusing
on SUSY theories.

Starting with the basic notion, in practice, the contribution to aµ is computed from the
following operator

LMDM = ie

4mµ
aµµ̄γαβµF

αβ (4.1)

where mµ corresponds to the muon mass, and Fαβ the photon field strength. We define γαβ =
[γα, γβ]/2. The one-loop contribution to aµ in SUSY consists of two types: i) neutralino-
smuon loop diagrams, ii) chargino-sneutrino loop diagrams.

In the simplest setup, the Minimal Supersymmetric Standard Model (MSSM), these
diagrams lead to a shift of the magnetic dipole moment with regard to the SM prediction,
which takes the form [78]:

∆aMSSM
µ ∝ g2(g′2)

192π2
m2

µ

M2
µ̃

M2
1,2µ

M2
µ̃

tan β
1 + ϵl tan β × F

(
M2

1,2
M2

µ̃

,
µ2

M2
µ̃

)
(4.2)

where g, g′ are the EW gauge couplings. Mµ̃ is the smuon mass, whereas M1,2 are the
masses of the EW gauginos, for the gauge group U(1), SU(2) respectively. µ is a parameter
appearing in the MSSM superpotential and is related to the higgsino mass. ϵl is a function
of different model parameters, whose complete form is irrelevant for our discussion here.
tan β ≡ vu/vd is the ratio between the vacuum expectation values (vevs) of the Higgs doublets
Hu, Hd which give mass to the up- and down- type fermions, respectively. A representative
diagram involved in the MSSM is the following, with a smuon and neutralinos circulating in
the loop:

Figure 4.1: Example of one-loop contribution to aµ in the MSSM

Here, the muon Yukawa coupling that determines the smuon-muon-higgsino vertex is
given in the MSSM by yMSSM

µ = gSM
µ / cosβ, with gSM

µ its SM counterpart. For large tan β
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values, this relation can be approximated by yMSSM
µ ≈ gSM

µ tan β, which gives rise to an
enhancement of aµ for large tan β. In the meantime, we can see from Eq. (4.2) that aµ

is also suppressed by mµ/MS , where MS represents the mass scale of the SUSY particles.
These features are more transparent if one adopts the simplification that all SUSY particles
have the same mass (MS), so one can infer from (4.2) that ∆aMSSM

µ ∝ m2
µ tan β/M2

S . With
an appropriate choice of parameters, the MSSM is able to yield the observed aµ.

On the experiment side, however, no strong evidence of BSM particles has shown up so
far in direct collider searches, and stringent constraints are imposed on the mass of SUSY
particles. Note that, in the MSSM, tan β cannot be arbitrarily large, because the bottom and
tau Yukawa couplings follow the same relation as for the muon one: yMSSM

b,τ = gSM
b,τ / cosβ =

mb,τ/(v cosβ) ≈ mb,τ tan β/v. As the bottom, tau masses are much larger than the muon
mass, a too large tan β value will result in non-perturbative bottom and tau Yukawa couplings
when evolved to the GUT scale. The requirement of perturbativity puts an upper bound
on tan β [79]. Meanwhile, in order to achieve the experimental muon anomalous magnetic
dipole moment, the mass ratio mµ/MS should not be too small, either. The interplay of
the two bounds yields a prediction of the SUSY mass in the MSSM, restricted to the few-
hundred-GeV range, which is in some tension with the direct searches for SUSY particles at
the LHC. Though specific regions of the MSSM parameter space are still viable, typically
those with a “compressed” SUSY mass spectrum, such scenarios will not be considered here.

In view of the absence of new particles in collider searches, a plausible possibility would
be that the scale of New Physics is much higher than the EW scale, thus is out of reach
with the current experimental facilities. In this case, which we consider thereafter, the new
particles involved in the SUSY model must be much heavier than the SM ones. While the aµ

constraint on the MSSM leads to an upper bounded SUSY mass scale MS , some extensions
of the MSSM, with a larger parameter space and particle content, are able to accommodate
the measured aµ with a sufficiently high SUSY scale.

A possible candidate is proposed by Almannshofer et al. in [80], consisting in a super-
symmetric four-Higgs-doublet model, which allows to achieve the measured aµ value with
multi-TeV smuon, higgsino and gaugino masses. In this “Flavorful Supersymmetric Standard
Model” (FSSM), two of the four Higgs doublets, Hu and Hd couple only to fermions of the
third generation, whereas the other two, H ′

u and H ′
d, provide masses to fermions of the first

and second generations, and they have much smaller vevs than those of Hu and Hd. One of
the advantages of the FSSM, compared to the MSSM, is that now the muon and bottom/tau
Yukawa couplings are determined by different relations, because their masses are given by
different Higgs doublets. Consequently, the muon Yukawa coupling in this model can be of
O(1), yielding a sufficient enhancement to aµ, without implying non-perturbative bottom
and tau Yukawa couplings.

An important question in these BSM candidates is how the parameter space of the model
is constrained. Given that multi-TeV range SUSY particles cannot be probed by the current
colliders, alternative signatures may be used to infer the parameter ranges. In the specific
case of the FSSM, apart from the muon anomalous magnetic dipole moment, some constraints
on the flavor structure of the Yukawa couplings are also imposed due to the extended Higgs
and higgsino sector, as is discussed in [80]. In this chapter, we investigate one particularly
interesting quantity: the Higgs mass. We will show how, through a case study of the FSSM,
Higgs mass in conjunction with the muon (g − 2) anomaly restricts the behavior of various
parameters, such as the SUSY mass scale, the vev ratios (i.e. tan β’s), and the muon Yukawa
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coupling. We will start by reviewing some general properties of the Higgs mass in SUSY, as
well as the methodology used to constrain a given high scale SUSY model.

4.2 Higgs mass in supersymmetry
The (squared-)physical mass of a scalar field is extracted from its inverse propagator. At

tree level, this mass is generally determined by the bilinear, trilinear and quartic couplings in
the scalar potential, in addition to the scalar vev. The equation satisfied by the vev, i.e. the
minimum condition, relates the various couplings. In the SM, the gauge symmetry along
with renormalizability results in a scalar potential of the Higgs boson up to quartic order,
and by the minimum condition of the scalar potential, one can express the tree-level Higgs
mass in terms of the quartic coupling and the vev only. For a quick reminder, the scalar
potential of the Higgs doublet in the SM is

V (Φ) = −µ2Φ†Φ + λ

2
(
Φ†Φ

)2
(4.3)

The negative mass term allows for spontaneous symmetry breaking (SSB). In the unitary
gauge, the Higgs doublet and its vev take the form

Φ = 1√
2

(
0

h+ v

)
SSB−−→ ⟨Φ⟩ = 1√

2

(
0
v

)
(4.4)

where h is the Higgs boson whose vev is zero. v conventionally sets the electroweak scale with
v ≈ 246GeV. The minimum condition is simply −µ2 + 1

2λv
2 = 0, leading to the tree-level

Higgs mass m2
h = λv2.

In contrast to the SM, the quartic coupling of the Higgs boson is not a free parameter in
SUSY, but is determined at tree level by the D-term, involving electroweak gauge couplings
and the F -term from the superpotential, and therefore it fixes the leading order prediction
for the SM-like Higgs mass. To illustrate this point, recall that the supersymmetric scalar
potential is the sum of F - and D- terms. Ignoring for the moment the soft SUSY-breaking
potential, the scalar potential is obtained by

V
(
zi, z†

j

)
=
∑

i

∣∣∣∣dWdzi

∣∣∣∣2 + 1
2
∑

a

g2
a

(
z†

iT
ai
j z

j
)2

=
∑

i

∣∣∣F i
∣∣∣2 + 1

2
∑

a

(Da)2
(4.5)

where W is the superpotential and ga the gauge couplings. For the MSSM, the superpotential
is

W = −Ydq̂ · Ĥdd̂− Ye l̂ · Ĥdê+ Yuq̂ · Ĥuû+ µĤu · Ĥd (4.6)
We denote the left-handed lepton and quark SU(2) doublets by l̂, q̂, whereas the corre-
sponding right-handed singlets are û, d̂, ê. The fermion superfields are coupled to Higgs
via Yukawa couplings Yu, Yd, Ye. The two Higgs doublets are given by Hu =

(
H+

u , H
0
u

)
,

Hu =
(
H0

d , H
−
d

)
, which consist of the scalar components of the superfields Ĥu, Ĥd. The dot

product is defined as Hu ·Hd = H+
u H

−
d −H0

uH
0
d . The only non-vanishing vevs are〈

H0
u

〉
= vu/

√
2 = v sin β/

√
2,

〈
H0

d

〉
= vd/

√
2 = v cosβ/

√
2 (4.7)
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satisfying v2
u + v2

d = v2. The F -term gives for H0
u, H0

d :

VF ⊃ |µ|2
(∣∣∣H0

u

∣∣∣2 +
∣∣∣H0

d

∣∣∣2) (4.8)

whereas the quartic terms of H0
u, H0

d arise from the D-term:

VD ⊃ 1
8
(
g2 + g′2

)(∣∣∣H0
u

∣∣∣2 −
∣∣∣H0

d

∣∣∣2)2
(4.9)

It is then obvious that the quartic coupling is determined by the gauge couplings only. The µ
parameter can be furthermore replaced using the minimum condition, so that the tree-level
SM-like Higgs mass is expressed in terms of the gauge couplings and the vevs. We omit here
the detailed calculation and give directly the final result(

M2
h

)tree
= g2 + g′2

4 v2 cos2 2β = M2
Z cos2 2β, (4.10)

which is bounded from above by the Z boson mass, MZ ≈ 91GeV, manifestly lower than what
is measured. As we will see later, the same tree-level upper bound also applies to the SM-like
Higgs mass in the FSSM. In fact, the Higgs quartic coupling receives significant contributions
from radiative corrections that allow the Higgs mass to reach the measured value. The
higher order corrections in a generic SUSY model comprise loops with superparticles and
BSM Higgs bosons, thus all SUSY mass parameters as well as the couplings affect the Higgs
mass prediction, where the most relevant corrections generally arise from loops mediated by
the superpartner of the top quark, stop. At one loop, the stop correction has the following
form

∆λt̃ ≈ 3y4
t

8π2

(
ln
M2

t̃

Q2 + X2
t

M2
t̃

− X4
t

12M4
t̃

)
(4.11)

where Mt̃ is a common mass for the left and right stops, yt is the top Yukawa coupling,
Xt is the left-right mixing parameter in the stop mass matrix, and Q is the renormalization
scale. The smuon contribution to the quartic coupling, though small compared to the stop
contribution, is also of interest here. The latter is dominated by a one-loop diagram with
four external Higgs legs and Higgs-smuon-smuon vertices, which is approximately

∆λµ̃ ≈ −
y4

µ

96π2

(
µ

Mµ̃

)4

(4.12)

Coming back to the muon anomalous magnetic dipole moment, we recall that certain SUSY
parameters, such as the smuon mass, enter the expression of ∆aµ, as can be seen in Eq. (4.2)
for the MSSM. It is therefore well-justified to associate the Higgs mass with the aµ mea-
surement to jointly constrain the SUSY parameter space. To provide a qualitative example
of this interplay, notice that a larger enhancement of aµ can be obtained for a larger muon
Yukawa coupling, which according to (4.12) results in a more important negative contribu-
tion to the Higgs quartic coupling from smuons, and in turn, this requires a larger positive
stop correction in (4.11) to compensate the smuon one. We will explicitly illustrate this
behavior in the next section.

Experiments have measured the value of the SM-like Higgs boson mass to a very high
precision, with Mh = 125.10 ± 0.14 GeV from a combined ATLAS and CMS result [81]. It
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is then of particular importance to calculate as precisely as possible the theoretical Higgs
mass prediction in BSM models. Considerable progress has been achieved for the MSSM
and beyond, and various methods, including fixed-order as well as Effective Field Theory
(EFT) calculations, have been improved in the past years. The state of the art of Higgs mass
prediction in SUSY models is reported in [82]. In the hierarchical scenario we are considering,
the fixed order calculation is inadequate, since it gives rise to powers of ln

(
M2

S/M
2
t

)
where

Mt is the top quark mass, and in the case of large mass hierarchies, these logarithmic terms
will obstruct the convergence of the perturbative expansion. We will instead adopt the EFT
approach, namely, we assume that all SUSY masses are above MS , much higher than the EW
scale, so that the heavy SUSY particle can be integrated out at MS , leaving as an imprint
threshold corrections to the Higgs quartic coupling. The MSSM threshold corrections are well
studied in the literature [83, 84], where the full one-loop and dominant two-loop expressions
are computed. For a given generic model, supersymmetric or not, the formulae for one-loop
threshold corrections are available in [85], and are readily applicable to the FSSM. On the
other hand, the quartic coupling is extracted at the EW scale (chosen to be the top mass)
from the measured Higgs mass then evolved up to MS using the two-loop renormalization
group equations (RGEs) of the SM. Finally, the matching of the quartic coupling at the scale
MS yields a constraint on the model parameters. While a brief summary of the FSSM and
the main results are given in Sec. 4.3, details of this approach will be illustrated in Sec. 4.4.

4.3 FSSM model content and constraints from the Higgs mass
The FSSM comprises four Higgs doublets, with the superpotential

W =µudĤuĤd + µu′d′Ĥ ′
uĤ

′
d + µu′dĤ

′
uĤd + µud′ĤuĤ

′
d

−
(
YuĤu + Y ′

uĤ
′
u

)
Q̂Û c +

(
YdĤd + Y ′

dĤ
′
d

)
Q̂D̂c +

(
YℓĤd + Y ′

ℓ Ĥ
′
d

)
L̂Êc

(4.13)

The first line generalizes the µ-term in the MSSM, and the second line gives new contributions
to the Yukawa Lagrangian. We also add the following two simplifications:

• We will not consider flavor-violating processes and therefore the Yukawa couplings Y (′)
u ,

Y
(′)

d , Y (′)
l are diagonal.

• As we mentioned earlier, the Higgs doublets Hu, Hd provide masses to the third gen-
eration fermions, whereas both the first and second generation fermion masses are
provided by H ′

u, H ′
d. The Yukawa couplings of the first generation are suppressed with

respect to the second generation ones, hence we can reasonably ignore the former.

We denote the vev’s of the neutral components of Hu, Hd, H ′
u, H ′

d by vu, vd, v′
u, v′

d. It is
convenient to define

tan β̃ ≡
(
v2

u + v′2
u

v2
d + v′2

d

)1/2

, tan βu ≡ vu

v′
u

, tan βd ≡ vd

v′
d

(4.14)

so the tree-level Higgs mass, generated by the D-term, is
(
M2

h

)tree = M2
Z cos2 2β̃. The first

constraint on the parameters arises from the matching of the Higgs quartic coupling. At the
EW scale, it is extracted from the Higgs mass using the public code mr [86], then we evolve
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this quartic coupling up to the SUSY scale (MS) using SM RGEs. The result is matched to
the FSSM prediction, which at tree-level is analogous to the MSSM prediction up to replacing
β → β̃: λtree(Q) = 1

4
[
g2(Q) + g′2(Q)

]
cos2 2β̃, where Q denotes the renormalization scale.

The one-loop threshold corrections are composed of:

∆λreg + ∆λf̃ + ∆λH + ∆λχ (4.15)

where ∆λreg accounts for the difference of the renormalization schemes, and ∆λf̃ , ∆λH ,
∆λχ are respectively the contributions from sfermions, heavy Higgses, higgsinos as well as
EW gauginos. In practice, the threshold corrections are obtained using the general formulae
in [85]. Next, we employ the FSSM prediction of aµ in [80], but with the simplification of
identical masses Mµ̃L = Mµ̃R = Mµ̃, µ = M1 = M2, so the expression reduces to

∆aFSSM
µ = 1

192π2
M2

µ

M2
µ̃

tan β tan βd

1 + ϵℓ tan β tan βd

[
g′2f1

(
M2

χ/M
2
µ̃

)
+ 5g2f2

(
M2

χ/M
2
µ̃

)]
(4.16)

The precise form of f1, f2, ϵl will be given in the next section. We can see that compared
to the MSSM prediction (4.2), the FSSM has an additional enhancement tan βd, assuming
that tan βd ≫ 1. The second constraint corresponds to ∆aFSSM

µ = 251 × 10−11 – that the
FSSM reproduces the experimental value of aµ.

Combining the two constraints, we are able to determine qualitatively the parameter
space of the FSSM, for example, the stop mass Mt̃, smuon mass Mµ̃, muon Yukawa coupling
and the tan β factors. In the particular case of the FSSM, and a chosen smuon mass range
[1 TeV, 5 TeV], we notice that the smuon Yukawa coupling increases with Mµ̃ but stays
O(1). On the other hand, the stop mass ranges from several TeV to approximately 100 TeV
depending on the benchmark, exhibiting in certain cases a strongly hierarchical scenario.
The plots are shown in Figure 1 and Figure 2 of the next section. The goal of this study
is not simply constraining the FSSM but rather the application of a more general concept,
that one can extract useful information from the Higgs mass in the case of high-scale SUSY
models, and experimental anomalies, such as aµ, help to constrain the parameter space in
conjunction with the Higgs mass.

4.4 Publication
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1 Introduction

The discovery of a Higgs boson with mass around 125 GeV and properties compatible with the

predictions of the Standard Model (SM) [1–4], combined with the negative (so far) results of the

searches for additional new particles at the LHC, point to scenarios with at least a mild hierarchy

between the electroweak (EW) scale and the scale of beyond-the-SM (BSM) physics. In this case, the

SM plays the role of an effective field theory (EFT) valid between the two scales. The requirement

that a given BSM model include a a state that can be identified with the observed Higgs boson can

translate into important constraints on the model’s parameter space.

One of the prime candidates for BSM physics is supersymmetry (SUSY), which predicts scalar

partners for all SM fermions, as well as fermionic partners for all bosons. A remarkable feature of

SUSY extensions of the SM is the requirement of an extended Higgs sector, with additional neutral

and charged bosons. In contrast to the case of the SM, the masses of the Higgs bosons are not free

parameters, as SUSY requires all quartic scalar couplings to be related to the gauge and Yukawa

couplings. Moreover, radiative corrections to the tree-level predictions for the quartic scalar couplings

introduce a dependence on all of the SUSY-particle masses and couplings.1 In a hierarchical scenario

such as the one described above, the prediction of the SUSY model for the quartic self-coupling of its

lightest Higgs scalar, which plays the role of the SM Higgs boson, must coincide with the SM coupling

λSM extracted at the EW scale from the measured value of the Higgs mass and evolved up to the

SUSY scale with appropriate renormalization group equations (RGEs). This condition can be used to

constrain some yet-unmeasured parameters of the SUSY model, such as, e.g., the masses of the scalar

partners of the top quarks, the stops.

While the new particles predicted by SUSY models – or, for that matter, those predicted by any

other BSM model – have yet to show up at the LHC, precision experiments have seen tantalizing

deviations from the predictions of the SM, particularly in measurements involving muons. Over the

past few years the LHCb collaboration reported hints of lepton flavor violation in rare B decays [6–9],

and earlier in 2021 the Muon g-2 Collaboration at Fermilab reported a new measurement [10] of the

muon anomalous magnetic moment aµ ≡ (g−2)µ/2, consistent with the previous measurement by the

E821 experiment at BNL [11]. In what might be considered currently the most striking deviation from

the predictions of the SM, the combination of the two experimental results for the muon anomalous

magnetic moment, aexp
µ = 116 592 061(41) × 10−11, differs by 4.2σ from the state-of-the-art SM

prediction given in ref. [12], aSM
µ = 116 591 810(43) × 10−11, which is based on refs. [13–32].

Supersymmetric extensions of the SM can accommodate an explanation for the observed discrep-

ancy ∆aµ ≡ aexp
µ −aSM

µ = (251±59) × 10−11. In the minimal of such extensions, the MSSM, a suitable

contribution to aµ can arise from one-loop diagrams involving smuons, higgsinos and EW gauginos

(namely, the SUSY partners of muons, Higgs bosons and EW gauge bosons). This contribution is

suppressed by the ratio M2
µ/M

2
S – where Mµ is the muon mass and MS represents the mass scale of

1We point the reader to ref. [5] for a recent review of Higgs-mass predictions in SUSY models.
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the relevant SUSY particles – but it can be enhanced by a large value of the parameter tanβ ≡ vu/vd,
i.e. the ratio of the vacuum expectation values (vevs) of the Higgs doublets Hu and Hd, which give

mass to the up-type and down-type fermions, respectively. However, since the Yukawa couplings of

the down-type fermions fd in the MSSM are related to their SM counterparts by yMSSM
fd

= gSM
fd
/ cosβ,

the requirement that the bottom and tau couplings remain perturbative up to the GUT scale sets an

upper limit on the acceptable values of tanβ, see e.g. ref. [33]. When such limit is taken into account,

the masses of the SUSY particles entering the diagrams that provide the required contribution to aµ

are typically restricted to the few-hundred-GeV range. This results in some tension with the direct

searches for SUSY particles at the LHC, although specific regions of the MSSM parameter space –

typically, those with a “compressed” SUSY mass spectrum – remain still viable.2

Recently, a new SUSY model in which a suitable contribution to aµ can be obtained even with

smuon, higgsino and gaugino masses in the multi-TeV range was proposed in ref. [37]. The Higgs sector

of the “Flavorful Supersymmetric Standard Model” (FSSM)3 consists of four doublets, two of which,

Hu and Hd, couple only to quarks and leptons of the third generation, whereas the other two, H ′u and

H ′d, have much smaller vevs and provide masses to the fermions of the first and second generation.

In this model the muon Yukawa coupling yFSSM
µ , which determines the higgsino–muon–smuon and

Higgs–smuon–smuon couplings entering the diagrams that contribute to aµ, can be of O(1) without

implying non-perturbative values for yFSSM
τ and yFSSM

b . Indeed, the SUSY contribution to aµ in the

FSSM is enhanced by vu/v
′
d, which can greatly exceed the enhancement achievable in the MSSM when

v′d � vd, in turn allowing for a stronger suppression by M2
µ/M

2
S .

Scenarios where all of the SUSY particles have masses in the multi-TeV range will be probed

directly only at future colliders. However, as discussed in ref. [37], the extended Higgs/higgsino sector

of the FSSM can accommodate interesting flavor-changing effects both in the lepton sector and in the

quark sector, leading to constraints on the flavor structure of the Yukawa couplings. As mentioned

earlier, a further constraint stems from the requirement that the lightest scalar in the Higgs sector be

identified with the SM-like Higgs boson discovered at the LHC. Compared with the case of the MSSM,

the presence of additional particles in the Higgs/higgsino sector and of additional O(1) couplings in

the superpotential can affect the FSSM prediction for the SM-like Higgs mass, leading to different

constraints on the parameter space of the model.

In this paper we study the Higgs-mass prediction of the FSSM and its interplay with the solution

of the (g − 2)µ anomaly. In the calculation of the Higgs mass we rely on the EFT approach, as

appropriate to a hierarchical scenario where the BSM physics is somewhat removed from the EW

scale. In section 2 we introduce the Higgs sector of the FSSM. In section 3 we obtain the one-loop

threshold correction to the quartic Higgs coupling, adapting to the model under consideration the

general formulas given in ref. [39]. Combined with two-loop RGEs for the SM couplings, this allows

2For recent surveys of explanations of the (g − 2)µ anomaly in the MSSM see e.g. refs. [34, 35]. For an earlier study

of (g − 2)µ in MSSM scenarios with TeV-scale SUSY masses and very large tanβ see ref. [36].
3We remark that this acronym had already been used in ref. [38] to denote a model with “Fake” Split SUSY.
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for the next-to-leading-logarithmic (NLL) resummation of the corrections to the Higgs mass enhanced

by powers of ln(MS/Mt) (where, as usual, we take Mt as a proxy for the EW scale). We also point out

a potential issue stemming from large threshold corrections to the strange Yukawa coupling in case

the four-doublet construction of the FSSM is extended to the quark sector. In section 4 we discuss

the constraints on the parameter space of the FSSM that arise from the combined requirements of an

appropriate prediction for the Higgs mass and a solution to the (g − 2)µ anomaly. Section 5 contains

our conclusions. Finally, in the appendix we provide explicit formulas for the tree-level Higgs mass

matrices in the FSSM.

2 The Higgs sector of the FSSM

In this section we describe the Higgs and higgsino sectors of the FSSM, focusing on the hierarchical

scenario in which the lightest scalar plays the role of the SM Higgs boson, while the remaining physical

Higgs states are heavier.

The FSSM includes two SU(2) doublets of chiral superfields with positive hypercharge, Ĥu and

Ĥ ′u, and two doublets with negative hypercharge, Ĥd and Ĥ ′d. The superpotential can be decomposed

as W = Wµ +WY , where Wµ generalizes the “µ term” of the MSSM:

Wµ = µud ĤuĤd + µu′d′ Ĥ
′
uĤ
′
d + µu′d Ĥ

′
uĤd + µud′ ĤuĤ

′
d , (1)

whereas WY contains the interactions of the Higgs doublets with the quark and lepton superfields:

WY = − (YuĤu + Y ′uĤ
′
u) Q̂Û c + (YdĤd + Y ′dĤ

′
d) Q̂D̂

c + (Y`Ĥd + Y ′` Ĥ
′
d) L̂Ê

c , (2)

where all gauge and generation indices are understood. In ref. [37], where the focus is on the leptonic

sector, the coupling Y` is defined as a rank-1 matrix whose only non-zero element is (3, 3), providing

a tree-level mass to the tau lepton proportional to vd. The coupling Y ′` is instead defined as a rank-3

matrix which provides mass and mixing terms proportional to v′d to all of the charged leptons. In this

setup the muon Yukawa coupling can in principle be larger than the bottom and tau ones, as long as

v′d � vd. As discussed in ref. [37], the current bounds on lepton-flavor violating processes give rise

to constraints on the off-diagonal elements of Y ′` , which anyway are not relevant to the prediction for

aµ at the considered level of accuracy. Finally, ref. [37] mentions that a similar construction can be

implemented in the quark sector.

In this work we do not consider flavor-violating processes in either the lepton or the quark sector,

but we rather focus on the interplay of the effects of O(1) flavor-diagonal couplings on the predictions

for the SM-like Higgs mass and for aµ. We therefore adopt for simplicity a pared-down version of WY ,

in which we include only flavor-diagonal couplings for the second and third generations:

WY = −y′cĤ ′uQ̂2Û
c
2 + y′sĤ

′
dQ̂2D̂

c
2 + y′µĤ

′
dL̂2Ê

c
2

−y′tĤ ′uQ̂3Û
c
3 + y′bĤ

′
dQ̂3D̂

c
3 + y′τ Ĥ

′
dL̂3Ê

c
3

−ytĤuQ̂3Û
c
3 + ybĤdQ̂3D̂

c
3 + yτ ĤdL̂3Ê

c
3 . (3)
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As to the first-generation couplings, they are necessarily suppressed with respect to those of the second

generation, because in the FSSM both generations receive their masses from v′u and v′d.

In addition to mass terms for gauginos and sfermions, which are the same as in the MSSM, the

soft SUSY-breaking Lagrangian of the FSSM contains mass terms and B-terms for all of the Higgs

doublets

−Lsoft ⊃ m2
uuH

†
uHu + m2

ddH
†
dHd + m2

u′u′H
′†
uH

′
u + m2

d′d′H
′†
d H

′
d

+
(
m2
uu′ H

†
uH
′
u + m2

dd′ H
†
dH
′
d + h.c.

)

+
(
BudHuHd + Bu′d′ H

′
uH
′
d + Bu′dH

′
uHd + Bud′ HuH

′
d + h.c.

)
, (4)

as well as trilinear interaction terms analogous to those in the superpotential

−Lsoft ⊃ −y′cA′cH ′uQ2U
c
2 + y′sA

′
sH
′
dQ2D

c
2 + y′µA

′
µH

′
dL2E

c
2

−y′tA′tH ′uQ3U
c
3 + y′bA

′
bH
′
dQ3D

c
3 + y′τA

′
τ H

′
dL3E

c
3

−ytAtHuQ3U
c
3 + ybAbHdQ3D

c
3 + yτAτ HdL3E

c
3 . (5)

The tree-level Higgs mass spectrum of a model with three pairs of doublets has been discussed

in ref. [40], whose approach can be easily adapted to the case of two pairs of doublets. In order

to identify the state that plays the role of the SM-like Higgs boson, we rotate the four doublets to

the so-called “Higgs basis”, in which only one of the doublets acquires a non-zero vev defined by

v2 ≡ v2
u + v′ 2u + v2

d + v′ 2d . To this purpose, we first rotate the doublets with the same hypercharge:

(
Φu

Φ′u

)
=

(
sinβu cosβu

cosβu − sinβu

)(
Hu

H ′u

)
,

(
Φd

Φ′d

)
=

(
sinβd cosβd

cosβd − sinβd

)(
−εH∗d
−εH ′ ∗d

)
, (6)

where the rotation angles are defined by tanβu ≡ vu/v′u and tanβd ≡ vd/v′d. The antisymmetric tensor

ε, with ε12 = 1, acts on the complex conjugates of Hd and H ′d so that all doublets in the new basis

have the same hypercharge. In this basis, the vevs of the neutral components of the four doublets

become 〈Φ0
u〉 = (v2

u + v′ 2u )1/2, 〈Φ0
d〉 = (v2

d + v′ 2d )1/2, and 〈Φ′ 0u 〉 = 〈Φ′ 0d 〉 = 0. The two doublets that

acquire vevs are further rotated as

(
Φh

ΦH

)
=

(
cos β̃ sin β̃

− sin β̃ cos β̃

)(
Φd

Φu

)
, tan β̃ ≡

(
v2
u + v′ 2u
v2
d + v′ 2d

)1/2

, (7)

so that 〈Φ0
h〉 = v and 〈Φ0

H〉 = 0, i.e., in the Higgs basis the doublet Φh is entirely responsible for the

breaking of the EW symmetry (EWSB).

The mass matrices for the scalar, pseudoscalar and charged components of the four doublets in

the Higgs basis are given in the appendix. They depend on the µ parameters defined in eq. (1) and

on the soft SUSY-breaking mass and B parameters defined in eq. (4), plus the EW gauge couplings,

the vev v and the angles βu, βd and β̃. The minimum conditions of the scalar potential are used to
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remove the dependence of the mass matrices on four combinations of the original parameters. Most

importantly, the terms that mix the components of Φh with the components of the remaining doublets

are either zero or proportional to v2 (more specifically, to M2
Z). In a hierarchical scenario in which

the masses of the BSM Higgs bosons are significantly higher than the EW scale, we can thus neglect

their mixing with Φh, and identify the latter directly with the Higgs boson of the SM. In contrast,

the scalar, pseudoscalar and charged components of the three remaining doublets ΦH , Φ′u and Φ′d do

mix with each other.4 However, under the approximation of neglecting terms proportional to v2, the

respective 3×3 mass matrices are all the same. We can then combine the eigenstates of the scalar,

pseudoscalar and charged mass matrices into three heavy doublets Hi (with i = 1, 2, 3), whose masses

we denote as MHi . The condition for their decoupling from the lightest doublet is then MHi �MZ .

We now focus on the properties of the SM-like doublet Φh. The tree-level mass of its scalar

component is

(M2
h)tree = M2

Z cos2 2β̃ , (8)

which differs from the analogous result in the decoupling limit of the MSSM only via the replacement

of β with β̃. In the scenarios of interest for the solution to the (g − 2)µ anomaly, one has v′d � vd. If

the condition v′u � vu also holds, tanβ and tan β̃ are numerically very close to each other, hence the

tree-level prediction for the SM-like Higgs mass in the FSSM is essentially the same as in the MSSM.

The SM-like couplings of Φh to second-generation quarks and leptons are related at the tree level

to the superpotential couplings in eq. (3) by

gc = y′c sin β̃ cosβu , gs,µ = y′s,µ cos β̃ cosβd , (9)

while the couplings to third-generation fermions read

gt = yt sin β̃ sinβu + y′t sin β̃ cosβu , gb,τ = yb,τ cos β̃ sinβd + y′b,τ cos β̃ cosβd . (10)

The relevant difference with the MSSM, in the context of the solution of the (g − 2)µ anomaly, is the

additional suppression by cosβd in the couplings of the SM-like Higgs to down-type fermions of the

second generation. Consequently, in the FSSM superpotential of eq. (3), the muon Yukawa coupling

can in principle be even larger the bottom and tau ones, as long as tanβd � 1.

For what concerns the couplings of Φh to sfermions, the quartic couplings are proportional to the

squared Yukawa couplings g2
f defined as in eqs. (9) and (10). The main difference with respect to the

MSSM stems from the left-right mixing parameters entering the trilinear Higgs-sfermion couplings in

the combination gf Xf . Those for the second-generation sfermions read

Xc = A′c − cotβ tanβu

(
µu′d + µu′d′ cotβd

)
, Xs,µ = A′s,µ − tanβ tanβd

(
µud′ + µu′d′ cotβu

)
,

(11)

4Note that in this study we do not consider the possibility of CP violation in the Higgs sector, hence the scalar and

pseudoscalar components of the three heavy doublets mix separately.
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while those for the third-generation sfermions read

Xt =
At − cotβ

(
µud + µud′ cotβd

)

1 +
y′t
yt

cotβu
+

A′t − cotβ tanβu

(
µu′d + µu′d′ cotβd

)

1 +
yt
y′t

tanβu
,

Xb,τ =
Ab,τ − tanβ

(
µud + µu′d cotβu

)

1 +
y′b,τ
yb,τ

cotβd

+
A′b,τ − tanβ tanβd

(
µud′ + µu′d′ cotβu

)

1 +
yb,τ
y′b,τ

tanβd

. (12)

Again, the relevant aspect of eqs. (11) and (12) in the context of the solution of the (g− 2)µ anomaly

is the enhancement of the Higgs-smuon trilinear coupling by a factor tanβd with respect to the

MSSM case (note that, to facilitate the comparison, we expressed the trilinear couplings in terms of

tanβ = tan β̃ sinβu/ sinβd). If we also assume tanβu � 1, the enhanced part of Xµ involves only

the superpotential parameter µud′ . We note, on the other hand, that for tanβu,d � 1 there are no

further enhancements with respect to the MSSM in the trilinear Higgs couplings to third-generation

sfermions, as long as the “primed” top, bottom and tau Yukawa couplings remain at most of O(1).

We finally comment on the higgsino masses. In the hierarchical scenario considered in our study,

we assume that both gaugino and higgsino masses are somewhat removed from the EW scale. In this

case, the mixing between EW gauginos and higgsinos induced by EWSB can be neglected, and the

four two-component fermions h̃u, h̃d, h̃
′
u, and h̃′d combine into two Dirac fermions. Following ref. [37],

we define the angles θu and θd that diagonalize the higgsino mass matrix as

(
cos θd sin θd

− sin θd cos θd

)(
µud µu′d

µud′ µu′d′

)(
cos θu sin θu

− sin θu cos θu

)
=

(
µ 0

0 µ̃

)
, (13)

and we use the Dirac masses µ and µ̃ and the two rotation angles as input parameters in our analysis.

We note that the numerical results in ref. [37] are obtained for the parameter choices θu = θd = π/4

and µ̃ = µ, which in terms of the original superpotential parameters correspond to µud′ = −µu′d = µ

and µud = µu′d′ = 0. While these choices might look ad hoc, they are in fact quite appropriate, because

they make the dependence of the numerical results on µud′ – the parameter that determines the leading

contributions from smuon loops to both aµ and the Higgs-mass correction – more transparent.

3 Higgs-mass calculation in the EFT approach

For our calculation of the radiative corrections to the Higgs mass in the FSSM we adopt an EFT

approach in which the effective theory valid below the scale MS that characterizes the SUSY-particle

masses is just the SM. Rather than computing the prediction for the Higgs mass from a full set of

high-energy FSSM parameters, and then comparing it with the value measured at the LHC, we follow

a more convenient procedure that uses the measured Higgs mass directly as an input parameter. From
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the Higgs mass we extract the quartic Higgs coupling λSM at the EW scale, evolve it up to the SUSY

scale with the RGEs of the SM, and then require that λSM(MS) coincide with the FSSM prediction

for the quartic coupling of the lightest Higgs scalar. This procedure allows us to determine one of the

FSSM parameters, such as, e.g., a common mass term for the stops.

We obtain a full one-loop prediction for the quartic coupling of the SM-like Higgs doublet Φh

in the FSSM. Combined with the one-loop determination of the MS-renormalized parameters of the

SM Lagrangian at the EW scale, and with the two-loop RGEs of the SM for the evolution up to

the SUSY scale, this allows for the NLL resummation of the corrections to the SM-like Higgs mass.

However, when they are available we use two-loop results for the determination of the SM parameters

and three-loop RGEs for their evolution. While in the absence of a full two-loop calculation of the

quartic coupling this cannot be claimed to improve the overall accuracy of the calculation, it does not

degrade it either. Indeed, in the EFT approach the EW-scale and SUSY-scale sides of the calculation

are separately free of large logarithmic corrections, and the inclusion of additional pieces in only one

side does not entail the risk of spoiling crucial cancellations between large corrections.

We use the public code mr [41], based on the two-loop calculation of ref. [42], to determine the

parameters of the SM Lagrangian – neglecting all Yukawa couplings except the top and bottom ones

– in the MS renormalization scheme at the scale QEW = Mt. We take as input for the code a set of

seven physical observables that we fix to their current PDG values [43], namely GF = 1.1663787 ×
10−5 GeV−2, Mh = 125.25 GeV, MZ = 91.1876 GeV, MW = 80.379 GeV, Mt = 172.76 GeV, Mb =

4.78 GeV and αs(MZ) = 0.1179. The remaining SM parameters that we need to determine are the

tau Yukawa coupling and the Yukawa couplings of the second generation. For the leptons we take

as input the physical masses Mτ = 1.776 GeV and Mµ = 105.66 MeV, and obtain the MS Yukawa

couplings directly at the scale QEW = Mt via the one-loop relation [44]

g`(QEW) =

√
2
√

2GF M`

[
1 +

α

4π

(
3 ln

M2
`

Q2
EW

− 4

)
+ δEW(QEW)

]
, (` = τ, µ) , (14)

where the EW correction stemming from the renormalization of GF reads 5

δEW(QEW) =
GF

8π2
√

2

[
3M2

t

(
1

2
− ln

M2
t

Q2
EW

)
+
M2
h

4

]
. (15)

For the second-generation quarks we take as input the MS-renormalized masses mc(mc) = 1.27 GeV

and ms(2 GeV) = 93 MeV [43], which we evolve up to the scale QEW at the NLL level in QCD by

means of eqs. (D4) and (D5) of ref. [45]. We then include the one-loop QED and EW corrections

according to:

gq(QEW) =

√
2
√

2GF mq(QEW)

[
1 +

3α

4π
Q2
q ln

m2
q

Q2
EW

+ δEW(QEW)

]
, (q = c, s) , (16)

5We use here an approximate formula from ref. [44] which includes only the contributions from the top Yukawa

coupling and the quartic Higgs coupling. Anyway, the overall effect of this correction is only about 0.5%.
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where Qq is the electric charge of the quark q, and δEW(QEW) is given in eq. (15).

For the evolution of the SM couplings from the EW scale to the SUSY scale we use the set of

three-loop RGEs provided in refs. [46–48], which however include only the third-generation Yukawa

couplings. For the couplings of the second generation we use 2-loop RGEs from ref. [49], which are

sufficient to our aim of a NLL resummation of the large logarithmic effects. Following refs. [46–48],

we neglect the tiny contributions of the Yukawa couplings of the first two generations within the beta

functions, apart from the overall multiplicative factors.

Once the SM couplings are evolved up to the SUSY scale, they are matched to the corresponding

FSSM couplings, which enter the prediction for the quartic Higgs coupling. Since the Yukawa couplings

enter only from one loop onwards, the tree-level relations in eqs. (9) and (10) are in principle sufficient

for the NLL calculation of the Higgs-mass prediction. It is nevertheless convenient to take into account

the one-loop “SUSY-QCD” corrections controlled by the strong gauge coupling g3 to the relation

between the quark Yukawa couplings of the SM and those of the FSSM. This amounts to redefining

the quark Yukawa couplings as

ĝq(Q) =
gq(Q)

1−∆gq
, (q = t, b, c, s) , (17)

where gq(Q) are given in eqs. (9) and (10), and the correction ∆gq reads

∆gq = − g2
3

12π2

[
1 + ln

M2
3

Q2
+ F̃6

(
Mq̃L

M3

)
+ F̃6

(
Mq̃R

M3

)
− Xq

M3
F̃9

(
Mq̃L

M3
,
Mq̃R

M3

)]
, (18)

where: M3 is the gluino mass; Mq̃L and Mq̃R are the soft SUSY-breaking mass parameters for the scalar

partners of the left- and right-handed quarks, respectively; Xq are the left-right mixing parameters

given in eqs. (11) and (12); the functions F̃6(x) and F̃9(x, y) are defined in the appendix A of ref. [50].

As was recently discussed in a systematic way in refs. [51,52] for the case of the MSSM, the use of the

corrected Yukawa couplings ĝq absorbs (“resums”) in the one-loop contribution to the quartic Higgs

coupling a tower of higher-order corrections involving powers of g2
3 Xq/MS , where MS denotes the

scale of the squark and gluino masses. In case Xq/MS contains terms that are numerically enhanced

(e.g., by a large ratio of vevs), such “resummation” ensures a better convergence of the perturbative

expansion. We note that contributions to ∆gq controlled by the Yukawa couplings and by the EW

gauge couplings also exist, but we do not consider them in our study as they are generally subdominant

to those controlled by the strong gauge coupling.6

For what concerns the Yukawa couplings of the leptons, the only one-loop corrections that can

be enhanced by a large ratio of vevs are those controlled by the EW gauge couplings. In particular,

in the FSSM the muon Yukawa coupling is subject to corrections enhanced by vu/v
′
d = tanβ tanβd,

6This is not necessarily the case for the tanβ-enhanced O(g2t ) contribution to ∆gb, but in the FSSM that contribution

depends on µud, and vanishes in the scenarios considered in this paper.
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which, following ref. [37], we absorb in the coupling via the redefinition

ĝµ(Q) =
gµ(Q)

1 + ε` tanβ tanβd
, (19)

where the explicit formula for ε` is given in ref. [37]. Being controlled by the EW gauge couplings,

the term ε` is itself of O(10−3) only, but the overall correction in eq. (19) is not negligible for the

values of tanβ tanβd in the few-hundred range that – as will be seen in section 4 – are relevant to the

solution of the (g− 2)µ anomaly. For the tau Yukawa coupling, on the other hand, the analogous EW

correction is enhanced at most by tanβ, still with an O(10−3) prefactor. We can thus neglect this

correction in our analysis and define ĝτ (Q) = gτ (Q).

At this stage, an issue with the SUSY-QCD correction to the strange Yukawa coupling might be

worth mentioning. Inspection of eq. (11) shows that the trilinear Higgs-squark coupling Xs entering

the correction ∆gs in eq. (18) includes the term µud′ tanβ tanβd , which is the same combination of

parameters entering the dominant higgsino-gaugino-smuon contribution to aµ. Being controlled by the

strong gauge coupling, ∆gs is of the order of 10−2× tanβ tanβd , and can easily reach and even exceed

unity for the values of tanβ tanβd relevant to the solution of the (g − 2)µ anomaly. A particularly

obnoxious situation occurs when ∆gs ' 1, in which case the corrected coupling ĝs in eq. (17) blows up,

leading to unphysically large corrections and numerical instabilities. Since the higgsino-gaugino-smuon

contribution to aµ takes the sign required to account for the observed anomaly when (µud′M2) > 0,

the condition ∆gs ' 1 requires (M2M3) < 0, as is the case in scenarios with anomaly mediated SUSY

breaking (AMSB).7 Even in scenarios where the SUSY-QCD correction suppresses ĝs rather than

enhancing it, the condition |∆gs| > 1 means that the radiative correction to the strange quark mass

arising from squark-gluino diagrams exceeds, and possibly by far, the tree-level contribution. This

would complicate any attempt (which we do not make in this paper anyway) to obtain a realistic flavor

structure for the quark sector of the FSSM. We remark that a trivial way out from this complication

would consist in applying the four-doublet construction only to the lepton sector, and have all of the

quarks receive their masses from the doublets Hu and Hd.

We now describe the one-loop matching condition for the quartic Higgs coupling in the FSSM. At

a renormalization scale Q of the order of the SUSY particle masses, it takes the form

λSM(Q) =
1

4

[
g2(Q) + g′ 2(Q)

]
cos2 2β̃ + ∆λreg + ∆λf̃ + ∆λH + ∆λχ , (20)

where g and g′ are the EW gauge couplings. Again, we see that the tree-level matching condition

differs from the analogous result in the MSSM only via the replacement of β with β̃. We assume that

the EW gauge couplings are SM parameters renormalized in the MS scheme, i.e. we use directly the

values obtained via RG evolution from the EW scale. Following ref. [50], we also assume that the

7In the case of the MSSM with AMSB, the interplay between contributions to (g − 2)µ and SUSY-QCD corrections

to the quark couplings was discussed earlier in ref. [53].
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angle β̃ is renormalized in such a way as to remove entirely the wave-function-renormalization (WFR)

contributions that mix the SM-like Higgs doublet with the heavy doublets.

The one-loop correction ∆λreg accounts for the fact that SUSY determines the quartic Higgs

coupling in the DR scheme, whereas λSM and the EW gauge couplings in eq. (20) are defined in the

MS scheme. It reads [50]

(4π)2∆λreg = − g′ 4

4
− g2g′ 2

2
−
(

3

4
− cos2 2β̃

6

)
g4 . (21)

Concerning the remaining one-loop threshold corrections in eq. (20), ∆λf̃ arises from diagrams

that involve the sfermions, ∆λH from diagrams that involve the heavy Higgs doublets, and ∆λχ from

diagrams that involve higgsinos and EW gauginos. Each of these three corrections can in turn be

decomposed as a sum of three terms:

∆λp = ∆λp, 1PI + ∆λp,WFR + ∆λp, gauge , (p = f̃ , H , χ) . (22)

The first term on the r.h.s. of the equation above denotes the contribution of one-particle-irreducible

(1PI) diagrams with particles of type p in the loop and four external Higgs fields; the second term

involves the contributions of particles of type p to the WFR of the Higgs field, which multiply the

tree-level quartic coupling; the third term contains additional corrections stemming from the fact that

the SUSY prediction for the quartic Higgs coupling involves the gauge couplings of the MSSM, whereas

we interpret the gauge couplings in the tree-level part of eq. (20) as SM parameters.

To obtain the four-Higgs diagrams entering ∆λp, 1PI and the self-energy diagrams entering ∆λp,WFR

we use the general results from ref. [39] (see sections B.3 and B.1.1, respectively, of that paper). This

saves us the trouble of actually calculating one-loop Feynman diagrams, but requires that we adapt

to the case of the FSSM the notation of ref. [39] for masses and interactions of scalars and fermions

in a general renormalizable theory. The additional corrections in ∆λp, gauge can instead be obtained by

adapting the MSSM shifts of the gauge couplings, see eqs. (19) and (20) of ref. [50], to the FSSM case

of two Dirac higgsinos with masses µ and µ̃, and three heavy Higgs doublets with masses MHi .

We find that the sfermion contribution to the quartic Higgs coupling, ∆λf̃ , has the same form as

the corresponding contribution in the MSSM, see eq. (A1) of ref. [54], trivially extended to the case

of non-zero Yukawa couplings for the second generation. However, in the FSSM case the angle β is

replaced by β̃, and the trilinear Higgs-sfermion couplings Xf are those given in our eqs. (11) and (12).

In contrast, the heavy-Higgs and higgsino-gaugino contributions differ from the corresponding MSSM

contributions, due to the extended Higgs/higgsino sector of the FSSM. The full formulas for ∆λH

and, especially, ∆λχ for generic values of all relevant parameters are lengthy and not particularly

illuminating, therefore we make them available on request in electronic form. In the following we

provide instead explicit results for all three contributions in the simplified FSSM scenario that we will

use in section 4 to explore the interplay between the prediction for the Higgs mass and the solution

of the (g − 2)µ anomaly.
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In the sfermion sector, we assume degenerate soft SUSY-breaking mass parametersMf̃12
for all first-

and second-generation sfermions and Mf̃3
for all third-generation sfermions. The sfermion contribution

to the quartic Higgs coupling then becomes:

(4π)2 ∆λf̃ =

[
2
(
3 ĝ4

c + 3 ĝ4
s + ĝ4

µ

)
+
ḡ2

2

(
3 ĝ2

c − 3 ĝ2
s − ĝ2

µ

)
cos 2β̃ +

2

3

(
g4 +

5

3
g′ 4
)

cos2 2β̃

]
ln
M2
f̃12

Q2

+

[
2
(
3 ĝ4

t + 3 ĝ4
b + ĝ4

τ

)
+
ḡ2

2

(
3 ĝ2

t − 3 ĝ2
b − ĝ2

τ

)
cos 2β̃ +

1

3

(
g4 +

5

3
g′ 4
)

cos2 2β̃

]
ln
M2
f̃3

Q2

+
∑

f=c,s,µ

ĝ2
f Nc

X2
f

M2
f̃12

[
2 ĝ2

f

(
1−

X2
f

12M2
f̃12

)
+

ḡ2

12
cos 2β̃

(
3 cf − cos 2β̃

)]

+
∑

f=t,b,τ

ĝ2
f Nc

X2
f

M2
f̃3

[
2 ĝ2

f

(
1−

X2
f

12M2
f̃3

)
+

ḡ2

12
cos 2β̃

(
3 cf − cos 2β̃

)]
, (23)

where ĝf are the loop-corrected Yukawa couplings defined in eqs. (17)–(19), the trilinear Higgs-sfermion

couplings Xf are given in eqs. (11) and (12), and we defined: ḡ2 ≡ g2 + g′ 2 ; Nc = 3 for quarks and

Nc = 1 for leptons; cf = 1 for f = c, t and cf = −1 for f = s, b, µ, τ .

In the Higgs sector, we assume that there is no mixing between the three doublets ΦH , Φ′u and Φ′d,

i.e. we take the 3×3 matrix RH that rotates the heavy doublets from the Higgs basis to the basis of

mass eigenstates to be the identity. We also assume a common mass MH for all three of the doublets.

The heavy-Higgs contribution to the quartic Higgs coupling then becomes:

(4π)2 ∆λH =
1

64

[
16 g4 + 8 g′ 4 + 7 ḡ4 − 4

(
ḡ4 − 2 g′ 4

)
cos 4β̃ − 3 ḡ4 cos 8β̃

]
ln
M2
H

Q2
− 3 ḡ4

16
sin2 4β̃ .

(24)

Finally, for the higgsino sector we consider the same scenario as in ref. [37], namely θu = θd = π/4

and µ̃ = µ , so that our choices for µ determine directly the relevant parameter µud′ . We also assume

a common mass Mχ for the higgsinos and the EW gauginos, i.e. Mχ ≡ M1 = M2 = µ = µ̃. The

higgsino-gaugino contribution to the quartic Higgs coupling then becomes:

(4π)2 ∆λχ = − 1

24

[
47 g4 + 12 g2g′ 2 + 13 g′ 4 +

(
11 g4 − 12 g2g′ 2 + g′ 4

)
cos 4β̃

]
ln
M2
χ

Q2

− 1

48

[
93 g4 + 50 g2g′ 2 + 27 g′ 4 +

(
3 g4 − 10 g2g′ 2 − 3 g′ 4

)
cos 4β̃

+ 2
(
3 g4 + 4 g2g′ 2 + g′ 4

)
cos 4β̃ sin 2β̃ sin(βd − βu)

− 2
(
45 g4 + 28 g2g′ 2 + 15 g′ 4

)
sin 2β̃ sin(βd − βu)

− 2
(
3 g4 + 2 g2g′ 2 + g′ 4

)
sin2 2β̃ cos 2(βd − βu)

]
. (25)
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The inspection of eqs. (24) and (25) shows that the heavy-Higgs and higgsino-gaugino contributions

to the quartic Higgs coupling all involve four powers of the EW gauge couplings. Their numerical

impact is thus going to be modest, unless there is a significant hierarchy between the matching scale

Q and the mass scales MH and Mχ. In contrast, the sfermion contributions include terms depending

on the top Yukawa coupling ĝt, which is of O(1), as well as terms involving other Yukawa couplings in

which the smallness of ĝf can be compensated by a large ratio Xf̃/Mf̃ . In particular, the contribution

that will be relevant to our discussion in section 4 is the one involving the muon Yukawa coupling,

which for tan β̃ � 1 reads

(4π)2 ∆λµ̃ ≈ ĝ2
µ

X2
µ

M2
µ̃

[
2 ĝ2

µ

(
1−

X2
µ

12M2
µ̃

)
+
ḡ2

6

]
, (26)

where ĝµ and Xµ are defined in eqs. (19) and (11), respectively, and by Mµ̃ we denote a common mass

parameter for the scalar partners of the left- and right-handed muons (note that Mµ̃ = Mf̃12
in our

simplified scenario). We recall that Xµ contains a term enhanced by tanβ tanβd, and indeed when

the combination (µud′/Mµ̃) tanβ tanβd is large enough to overcome the smallness of ĝµ the smuon

contribution to the quartic Higgs coupling becomes large and negative. As will be discussed in the

next section, an increased positive contribution from a different SUSY sector is then necessary to

maintain the correct prediction for the SM-like Higgs mass. In particular, the stop contribution to

the quartic Higgs coupling is dominated by the terms involving four powers of ĝt, which read

(4π)2 ∆λt̃ ≈ 6 ĝ4
t

(
ln
M2
t̃

Q2
+
X2
t

M2
t̃

− X4
t

12M4
t̃

)
, (27)

where by Mt̃ we denote a common mass parameter for the scalar partners of the left- and right-handed

top (with Mt̃ = Mf̃3
in our simplified scenario) and Xt is defined in eq. (12). The non-logarithmic

terms in eq. (27) are maximized for Xt =
√

6Mt̃ , and a further increase in ∆λt̃ can arise from the

logarithmic term when the stop mass is pushed to higher values.

Finally, we note that in the FSSM the strange-squark contribution to the quartic Higgs coupling

is subject to the same enhancement by tanβ tanβd as the smuon contribution. However, the strange-

squark contribution is generally subdominant, because the strange Yukawa coupling is smaller than

the muon one at the matching scale. A possible exception is the pathological case discussed earlier,

in which a SUSY correction ∆gs ' 1 in eq. (17) causes the strange coupling ĝs to blow up.

4 Higgs-mass constraints and (g − 2)µ

We now investigate the interplay between the constraints on the FSSM parameter space arising from

the solution to the (g−2)µ anomaly and those arising from the prediction for the quartic Higgs coupling.

To keep the number of independent parameters manageable, we employ the simplifying assumptions

for the SUSY mass spectrum described in the previous section. Namely, we adopt common mass scales

Mf̃12
, Mf̃3

, MH and Mχ for first/second-generation sfermions, third-generation sfermions, heavy Higgs

12



bosons and higgsinos/EW-gauginos, respectively. Note that we will henceforth refer to the common

mass parameters for the sfermions as Mµ̃ and Mt̃, because those are the masses of the first/second

and third generation, respectively, that are most relevant to our discussion of (g − 2)µ and of the

Higgs mass constraint. We will also keep referring to the collective scale of the SUSY particle masses

as MS . A further simplifying assumption consists in neglecting all contributions from the “primed”

Yukawa couplings for the third generation, namely y′t, y
′
b, and y′τ in eq. (3), as they do not give

rise to contributions enhanced by large ratios of vevs. Finally, we take directly as input the stop

mixing parameter Xt, which enters the stop contribution to ∆λf̃ , thereby fixing via eq. (12) the

soft SUSY-breaking trilinear coupling At as a function of the other parameters.8 For the remaining

trilinear couplings in eq. (5), which are not involved in any enhanced contributions to ∆λf̃ , we assume

A′c = A′s = A′µ = 0 and Ab = Aτ = At.

In the FSSM, (g − 2)µ receives contributions from one-loop diagrams involving smuons, higgsinos

and EW gauginos that are enhanced by vu/v
′
d = tanβ tanβd. Explicit formulas for these contributions

with full dependence on the relevant FSSM parameters – but under the assumption MS � v, i.e. ne-

glecting the effects of EWSB on the SUSY-particle masses and mixing – are given ref. [37]. In the

simplified scenario considered here, where in particular Mµ̃L = Mµ̃R = Mµ̃, µ = µ̃ = M1 = M2 = Mχ,

and θu = θd = π/4, they reduce to

∆aFSSM
µ =

1

192π2

M2
µ

M2
µ̃

tanβ tanβd
1 + ε` tanβ tanβd

[
g′ 2 f1

(
M2
χ/M

2
µ̃

)
+ 5 g2 f2

(
M2
χ/M

2
µ̃

)]
, (28)

where

f1(x) =
6x

(1− x)4

[
7 + 4x− 11x2 + 2 (1 + 6x+ 2x2) lnx

]
, f1(1) = 1 , (29)

f2(x) =
6

5 (1− x)4

[
4 + 11x− 16x2 + x3 + 2x (7 + 2x) lnx

]
, f2(1) = 1 , (30)

and ε` represents the correction to the muon Yukawa coupling introduced in eq. (19). In our simplified

scenario, the formula given in ref. [37] for this correction reduces to

ε` =
g′ 2

64π2
g1

(
M2
χ/M

2
µ̃

)
− 3 g2

64π2
g2

(
M2
χ/M

2
µ̃

)
, (31)

where

g1(x) =
2x

(1− x)2

[
3−3x+(1+2x) lnx

]
, g2(x) =

2x

(1− x)2

[
−1+x−lnx

]
, g1(1) = g2(1) = 1 .

(32)

The requirement that the smuon-higgsino-gaugino contribution in eq. (28) provide the solution of

the (g−2)µ anomaly corresponds to ∆aFSSM
µ = 251×10−11. For a given choice of values of Mµ̃ and Mχ,

this can be solved for the product tanβ tanβd, which in turn determines the enhancement of the mixing

8Our assumption y′t = y′b = y′τ = 0 implies that the second term on the r.h.s. of each line of eq. (12) vanishes.
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Figure 1: Left: Values of the product tanβ tanβd that result in ∆aFSSM
µ = 251 × 10−11, as a function

of the smuon mass and for different values of a common mass for higgsinos and EW gauginos. Right:

Values of the loop-corrected muon Yukawa coupling of the FSSM that correspond to the solution for

tanβ tanβd shown in the left plot. The meaning of the lines is the same as in the left plot.

parameter Xµ entering the smuon contribution to ∆λf̃ . The requirement that the FSSM prediction

for the quartic Higgs coupling agree with the value obtained by evolving λSM from the EW scale up to

the SUSY scale can then be used to determine one of the remaining FSSM parameters. In particular,

it seems reasonable to determine one of the parameters that enter the dominant contribution to ∆λf̃ ,

i.e. the one involving the stops.

To set the stage for our discussion, in the left plot of figure 1 we show the values of tanβ tanβd =

vu/vd′ that result in the desired smuon-higgsino-gaugino contribution to aµ, as a function of the

common smuon mass Mµ̃ and for different values of Mχ. In particular, the blue, yellow, green and

red solid lines correspond to gaugino and higgsino masses of 1, 2, 3 and 4 TeV, respectively, while the

black dashed line corresponds to the choice Mχ = Mµ̃. The EW gauge couplings entering eqs. (28)

and (31) are evaluated at the scale Q = Mµ̃, but we found qualitatively similar results for any choice

of scale in the few-TeV range. The plot shows that the values of tanβ tanβd necessary to obtain

∆aFSSM
µ = 251× 10−11 are typically in the few-hundreds range, and can reach as much as 940 for the

largest considered value of Mµ̃.

In the right plot of figure 1 we show instead the values of the loop-corrected muon Yukawa coupling

of the FSSM at the scale Q = Mµ̃,

ŷ′µ(Mµ̃) =
gµ(Mµ̃)/(cos β̃ cosβd)

1 + ε` tanβ tanβd
, (33)

that correspond to the solutions for tanβ tanβd shown in the left plot. The FSSM coupling ŷ′µ con-

trols the higgsino-muon-smuon and Higgs-smuon-smuon interactions involved in the smuon-higgsino-
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gaugino contributions to aµ, as well as the Higgs-smuon-smuon interaction involved in the smuon

contribution to the quartic Higgs coupling. The solid and dashed lines have the same meaning as in

the left plot. We set tanβu = 100 in order to determine the angle β̃ entering eq. (33), but the results

are essentially independent of this choice as long as tanβu � 1. The plot shows that larger values of ŷ′µ
are required to obtain the desired contribution to aµ when the smuon mass increases, due to the M−2

µ̃

suppression in eq. (28). Also, for a fixed value of the smuon mass, larger values of ŷ′µ are required when

Mχ increases. We remark that, while the considered values of ŷ′µ(Mµ̃) are all perturbative, further

constraints on this scenario could arise if we required that ŷ′µ remain perturbative all the way up to

the GUT scale.

In the presence of a large muon Yukawa coupling, the smuon contribution to the quartic Higgs

coupling in eq. (26) is dominated by a negative term

(4π)2 ∆λµ̃ ≈ −
ŷ′ 4µ
6

(
Mχ

Mµ̃

)4

, (34)

and can become substantial. An increased positive contribution from loops involving the remaining

SUSY particles is then needed to satisfy the constraint arising from the measured value of the Higgs

mass. As mentioned in the previous section, such positive contribution can most easily come from the

stops, which themselves have generally large couplings to the SM-like Higgs boson.

In figure 2 we plot the values of the common stop mass Mt̃ that are required to obtain the correct

prediction for the quartic Higgs coupling in FSSM scenarios where the smuon-higgsino-gaugino loops

provide the desired contribution to (g − 2)µ. We set the matching scale Q in eqs. (20) and (23)–(25)

equal to the stop mass, as this ensures a full NNL resummation of the large logarithmic corrections

controlled by the top Yukawa coupling. All of the running couplings entering our calculation are then

computed at the scale Q = Mt̃. The common mass parameters for the smuons, Mµ̃, and for higgsinos

and EW gauginos, Mχ, are varied as in figure 1 (note that we add a purple solid line for Mχ = 3.5 TeV).

We fix tan β̃ = 20, thus ensuring that the tree-level prediction for λSM in eq. (20) is essentially

saturated, and tanβu = 100 (the latter choice has little impact on our results as long as tanβu � 1).

In contrast, tanβd is computed in each point from the requirement that ∆aFSSM
µ = 251× 10−11. The

stop mixing parameter is fixed to the value Xt =
√

6Mt̃ that maximizes the one-loop stop contribution

to the quartic Higgs coupling, see eq. (27). Our choices for tan β̃ and Xt ensure that the values of the

stop mass shown in figure 2 are about the minimal ones that provide the correct prediction for the Higgs

mass (in other words, different choices for these parameters would result in an overall upward shift of

all lines in the figure). For the remaining free parameters of our simplified FSSM scenario we choose

MH = M3 = Mχ. The choice of the common mass parameter for the heavy Higgs doublets has only

a small impact on our results, because the corresponding contributions to the quartic Higgs coupling,

see eq. (24), all involve four powers of the EW gauge couplings. The choice of the gluino mass affects

our calculation only through the corrections to the quark Yukawa couplings in eqs. (17) and (18),

and its qualitative impact on our results is generally not substantial. Our choice of a positive value
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Figure 2: Values of the stop mass Mt̃ that result in the correct prediction for the Higgs mass when tanβd

is fixed by the requirement that the smuon-higgsino-gaugino contribution solve the (g−2)µ anomaly, as

a function of the smuon mass Mµ̃ and for different values of the common higgsino/gaugino mass Mχ.

The remaining free parameters of our simplified FSSM scenario are fixed as tan β̃ = 20, tanβu = 100,

Xt =
√

6Mt̃ and MH = M3 = Mχ.

for the ratio Xt/M3 enhances the loop-corrected top Yukawa coupling ŷt, whereas a negative value

would suppress it and require somewhat heavier stops in order to satisfy the Higgs-mass constraint.

However, we recall that, for positive values of Xs/M3 (i.e., negative values of µud′/M3), a fine-tuned

choice of parameters such that ∆gs ' 1 might lead the strange Yukawa coupling to blow up, resulting

in a large negative strange-squark contribution to the quartic Higgs coupling.

Figure 2 shows that there are regions of the FSSM parameter space in which the interplay between

the requirements of a suitable contribution to aµ and of a correct prediction for the quartic Higgs

coupling implies a strongly hierarchical SUSY spectrum, with the stops being significantly heavier

than smuons, higgsinos and EW gauginos. Unsurprisingly, in the scenario with Mχ = Mµ̃ (the black

dashed line) this happens for the largest values of Mµ̃, when a large muon Yukawa coupling ŷ′µ is needed

to counteract the M−2
µ̃ suppression of the smuon-higgsino-gaugino contribution to aµ, see eq. (28),

and results in a large negative contribution to the quartic Higgs coupling, see eq. (34). Moreover, the

left ends of the red, purple and (to a lesser extent) green lines show that very heavy stops may be

needed also at lower values of Mµ̃ – where figure 1 shows that ŷ′µ . 1 is sufficient for the solution of

the (g−2)µ anomaly – if the smuon contribution to the quartic Higgs coupling in eq. (34) is enhanced

by a large ratio Mχ/Mµ̃. Even in regions of the parameter space where the SUSY spectrum is not

strongly hierarchical, such as the right end of the red line in figure 2, the minimal value of Mt̃ required

to obtain the correct Higgs-mass prediction can be significantly higher than the 2−3 TeV typically

found in the MSSM. Finally, we find that for Mχ . 2 TeV (the yellow and blue lines) the smuon

contribution to the quartic Higgs coupling never becomes substantial in our simplified scenario: at
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low Mµ̃ – where the desired contribution to (g − 2)µ is obtained with ŷ′µ . 0.5 – there is little or no

enhancement from the (Mχ/Mµ̃)4 term in eq. (34), whereas at high Mµ̃ the corresponding suppression

wins over the enhancement of ŷ′µ. The mild residual dependence of the yellow and blue lines on Mµ̃

and Mχ stems from the terms controlled by the EW gauge couplings in eqs. (23)–(25).

We remark that in our simplified FSSM scenario, where Mχ ≡ M1 = M2 = µ = µ̃ , the condition

Mχ/Mµ̃ > 1 implies that the LSP is a heavy sneutrino, which is generally disfavored by Dark Matter

considerations [55, 56]. While a detailed study of Dark Matter constraints on the FSSM parameter

space is beyond the scope of our paper, using the general formula for ∆λχ we verified that very heavy

stops may be required even in scenarios where the LSP is always an EW gaugino. In particular, if we

fix M1 = 1 TeV and Mχ ≡M2 = µ = µ̃ we still find a rise in the stop mass similar to the black dashed

line in figure 2 for Mµ̃ = Mχ & 4 TeV. However, we no longer see the rise at low Mµ̃ in the lines

corresponding to larger Mχ, because in this region the desired contribution to (g − 2)µ is obtained

with lower values of ŷ′µ than in the case of degenerate gaugino masses.

It is interesting to note that, in contrast to what we find for the FSSM, in the MSSM the combi-

nation of the constraints from the Higgs-mass prediction and from (g − 2)µ can yield upper bounds

on the stop masses, see e.g. ref. [57]. Indeed, in the absence of large and negative contributions from

other sectors, a large and positive contribution from heavy-stop loops to the prediction for λSM must

be compensated for by a suppression of the tree-level prediction via a lower value of tanβ. However,

in the MSSM this would also suppress the smuon-higgsino-gaugino contribution to aµ, jeopardizing

the solution of the (g − 2)µ anomaly. The interplay of the two constraints is different in the FSSM,

because in this model the ratio of vevs that determines the tree-level prediction for λSM can be varied

independently of the ratio of vevs that enhances the smuon-higgsino-gaugino contribution to aµ.

Finally, we remark that, when the stops are an order of magnitude (or more) heavier than the

other SUSY particles, our calculation of the Higgs mass loses accuracy, and we would need to build a

two-step EFT setup in which the stops are separately integrated out of the FSSM at a scale comparable

with their mass. However, the aim of our study is not a precise determination of masses that, for the

time being, are beyond experimental reach, but rather a qualitative insight on the structure of this

heavy-SUSY model.9 The possibility of a hierarchical mass spectrum has obvious implications for the

prospects of probing the FSSM at future colliders, and from the model-building point of view it might

also complicate any attempt to devise a suitable mechanism of SUSY breaking.

9For the same reason we do not take into account the theoretical uncertainties of our predictions for λSM and aµ.
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5 Conclusions

A scenario for particle physics that is now looking increasingly plausible is the one where new physics

manifests itself in one or more deviations from the SM predictions for rare processes or precision

observables, but the BSM particles responsible for those deviations are too heavy to be discovered at

the LHC. In this case, all possible clues should be exploited to unravel the structure of the heavy BSM

sector, also to guide the searches for the new particles at future colliders. If a model that aims to

explain the observed anomalies is supersymmetric, it will generally involve a prediction for the quartic

coupling λSM of the SM-like Higgs boson. Since all of the new particles in the SUSY model affect λSM

through radiative corrections, its prediction can reveal correlations between the sectors of the model

that are involved in the observed anomalies and those that are not.

In this paper we studied the Higgs-mass constraints on the parameter space of a supersymmetric

four-Higgs-doublet model, the FSSM [37], which was recently proposed as a solution of the (g − 2)µ

anomaly [10, 11] with SUSY particle masses beyond the current reach of the LHC. We followed the

modern approach of taking Mh as an input rather than an output of our calculation, and we relied on

an EFT setup to account at the NLL order for the large logarithmic corrections to the relation between

the measured value of Mh and the value of λSM at the SUSY scale. In our one-loop calculation of the

prediction for λSM we adapted to the case of the FSSM the results derived in ref. [39] for a general

renormalizable theory. We provided explicit formulas for the one-loop correction to the quartic Higgs

coupling in a simplified FSSM scenario, but we make the result for the general FSSM available on

request in electronic form.

We found that the prediction for λSM establishes interesting relations between the parameters that

contribute to (g− 2)µ, namely the masses of smuons, higgsinos and EW gauginos, and the parameters

in the stop sector. In particular, there are scenarios with a suitable SUSY contribution to (g − 2)µ in

which the stops need to be considerably heavier than smuons, higgsinos and EW gauginos, in order

to compensate for a large and negative smuon contribution to the prediction for λSM. The possibility

of a hierarchical SUSY mass spectrum should be taken into account when assessing the prospects of

probing the FSSM at future colliders.

As mentioned in ref. [37], further investigations of the FSSM could address the flavor structure

of the quark sector, in which case the large corrections to the strange Yukawa coupling discussed in

section 3 of our paper would need to be taken into account. Other directions of investigation could

address the extended Higgs sector of the FSSM, exploring e.g. the collider phenomenology of the heavy

Higgs bosons, or the stability of the scalar potential. With the present study, we aimed to provide

a proof of concept – applicable also to other models and other anomalies – of how the Higgs-mass

prediction can be used, in combination with other observables, to shed some light on the hidden

structure of a SUSY model with heavy superparticles.
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Appendix

We provide here explicit formulas for the tree-level mass matrices of the Higgs bosons in the FSSM.

In the Higgs basis, we decompose the four SU(2) doublets (all with positive hypercharge) as

Φh =

(
G+

v + 1√
2
(h+ iG0)

)
, ΦH =

(
H+

1√
2
(H + i A)

)
, Φ′d,u =

(
φ′+d,u

1√
2
(φ′d,u + i a′d,u)

)
. (A1)

In this basis the mass matrices for the scalar (h, H, φ′d, φ
′
u), pseudoscalar (G0, A, a′d, a

′
u) and charged

(G+, H+, φ′+d , φ′+u ) components of the four doublets read

M2
S =




M2
Z cos2 2β̃ −1

2 M
2
Z sin 4β̃ 0 0

−1
2 M

2
Z sin 4β̃ M2

Z sin2 2β̃ + 2 b12/ sin 2β̃ −b32/ cos β̃ b14/ sin β̃

0 −b32/ cos β̃ M2
Φ′d

+ 1
2 M

2
Z cos 2β̃ −b34

0 b14/ sin β̃ −b34 M2
Φ′u
− 1

2 M
2
Z cos 2β̃



,

(A2)

M2
P =




0 0 0 0

0 2 b12/ sin 2β̃ −b32/ cos β̃ b14/ sin β̃

0 −b32/ cos β̃ M2
Φ′d

+ 1
2 M

2
Z cos 2β̃ −b34

0 b14/ sin β̃ −b34 M2
Φ′u
− 1

2 M
2
Z cos 2β̃



, (A3)

M2
± =




0 0 0 0

0 M2
W + 2 b12/ sin 2β̃ −b32/ cos β̃ b14/ sin β̃

0 −b32/ cos β̃ M2
Φ′d
−
(
M2

W − 1
2 M

2
Z

)
cos 2β̃ −b34

0 b14/ sin β̃ −b34 M2
Φ′u

+
(
M2

W − 1
2 M

2
Z

)
cos 2β̃



,

(A4)

where the mass parameters M2
Φ′d,u

and the mixing parameters 10 bij are combinations of the original

mass parameters and B-terms as defined in eqs. (1) and (4):

10Our notation for the mixing parameters bij follows ref. [40]. Note however that the upper-left 4×4 blocks of the mass

matrices shown in eqs. (31), (34) and (35) of that paper correspond to a different basis, namely (εΦ∗d, Φu, εΦ
′ ∗
d , Φ′u).
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M2
Φ′d

=
(
m2
dd + µ2

ud + µ2
u′d
)

cos2 βd +
(
m2
d′d′ + µ2

u′d′ + µ2
ud′
)

sin2 βd

−
(
m2
dd′ + µudµud′ + µu′d′µu′d

)
sin 2βd , (A5)

M2
Φ′u

=
(
m2
uu + µ2

ud + µ2
ud′
)

cos2 βu +
(
m2
u′u′ + µ2

u′d′ + µ2
u′d
)

sin2 βu

−
(
m2
uu′ + µudµu′d + µu′d′µud′

)
sin 2βu , (A6)

b12 = sinβd (Bud sinβu +Bu′d cosβu) + cosβd (Bud′ sinβu +Bu′d′ cosβu) , (A7)

b32 = cosβd (Bud sinβu +Bu′d cosβu) − sinβd (Bud′ sinβu +Bu′d′ cosβu) , (A8)

b14 = sinβd (Bud cosβu −Bu′d sinβu) + cosβd (Bud′ cosβu −Bu′d′ sinβu) , (A9)

b34 = cosβd (Bud cosβu −Bu′d sinβu) − sinβd (Bud′ cosβu −Bu′d′ sinβu) . (A10)

The minimum conditions of the Higgs potential have been used to remove four combinations of

the original parameters from eqs. (A2)–(A4). In the limit of unbroken EW symmetry (i.e., v → 0),

which we adopt in the calculation of the matching condition for the quartic coupling of the SM-like

Higgs, the mixing between the SM-like scalar h and the three heavy scalars vanishes, and the 3×3

sub-matrices for the masses of the scalar, pseudoscalar and charged components of the heavy doublets

ΦH , Φ′d and Φ′u all reduce to:

M2
H =




2 b12/ sin 2β̃ −b32/ cos β̃ b14/ sin β̃

−b32/ cos β̃ M2
Φ′d

−b34

b14/ sin β̃ −b34 M2
Φ′u


 . (A11)

We can then introduce a 3×3 orthogonal matrix RH that rotates the three heavy doublets of the Higgs

basis into a basis of mass eigenstates:



H1

H2

H3


 = RH




ΦH

Φ′d
Φ′u


 , diag

(
M2
H1
,M2

H2
,M2

H3

)
= RHM2

H R
T
H . (A12)
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Chapter 5

Higgs alignment and W boson mass in
Dirac gaugino models

Extensions of the SM often involve an enlarged scalar sector, and examples are the MSSM
which contains two Higgs doublets and the FSSM including four Higgs doublets. While only
one fundamental scalar has been discovered, one must address an important question: how
do these models incorporate the SM-like Higgs boson? This question finds one trivial answer
in the previous Chapter, where we considered high-scale SUSY models, in other words, the
non SM-like Higgs bosons are much heavier than the SM-like one, so they decouple from the
latter in the low-energy limit. A different, and phenomenologically interesting scenario is
that the BSM particles are within reach of the current (or at least the near future) collider,
but their mixing with the SM Higgs are suppressed by some underlying symmetries of the
model. This is conventionally called alignment without decoupling, see for example [87–91].

Such possibility is realized, for example, in Dirac gaugino models [24, 92–99] – supersym-
metric models where gauginos have Dirac masses. At tree level, alignment without decou-
pling is automatic [100], in addition, it is relatively stable under quantum corrections [101].
Beyond their favorable properties regarding alignment without decoupling, Dirac gaugino
models also account for the recently measured W boson mass thanks to the presence of a
triplet scalar. In this Chapter, we examine several Dirac gaugino models, beginning with
their alignment properties and subsequently assessing their ability to enhance the W boson
mass. In Section 5.1, we recall relevant notions and properties of Higgs alignment. In Section
5.2, we present the basic construction of Dirac gaugino models, as well as its implications in
Higgs alignment and the W boson mass.

5.1 Higgs alignment

The main idea of Higgs alignment is that, in the presence of multiple scalars, the eigen-
state of the scalar mixing matrix that acquires a non-zero vev is aligned with the observed
Higgs boson and its properties turn out to be SM-like. To give a basic illustration, let us
consider one of the simplest extensions of the scalar sector: the two-Higgs doublet model
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(2HDM). We put the two doublets in the form

Hd =
(
H0

d

H−
d

)
, Hu =

(
H+

u

H0
u

)
(5.1)

where
H0

d ≡
(
vd + h0

d + ia0
d

)
/
√

2, H0
u ≡

(
vu + h0

u + ia0
u

)
/
√

2 (5.2)

We assume that U(1)em and CP symmetries are not spontaneously broken by the vacuum,
therefore only neutral components acquire non-zero vev and all the vevs (here denoted by
vu, vd) are real. In addition, they obey the relation v2

u + v2
d = v2, with v ≈ 246 GeV. The

most general renormalizable and SU(2)-invariant scalar potential of this model is given by

V =m2
Hu

|Hu|2 +m2
Hd

|Hd|2 +
(
m2

12Hu ·Hd + h.c.
)

+ λ1
2 |Hd|4 + λ2

2 |Hu|4 + λ3 |Hu|2 |Hd|2

+ λ4 |Hu ·Hd|2 +
[
λ5
2 (Hu ·Hd)2 −

(
λ6 |Hd|2 + λ7 |Hu|2

)
Hu ·Hd + h.c.

]
(5.3)

where the dot product is defined as:

Hu ·Hd ≡ ϵijH
i
uH

j
d = H+

u H
−
d −H0

uH
0
d (5.4)

Hu and Hd have opposite hypercharges. One can also redefine the basis in order to have
two hypercharge +1 doublets:

Φdj ≡ ϵijH
∗i
d , Φj

u ≡ Hj
u (5.5)

A rotation of Φj
u and Φj

d yields the so-called Higgs basis, where only one of the doublets
acquires a non-zero vev:

H1 ≡ vdΦd + vuΦu

v
, H2 ≡ −vuΦd + vdΦu

v
(5.6)

with

H1 =
(

φ+

(v +HSM + iχ)/
√

2

)
, H2 =

(
H+

(HNSM + iA)/
√

2

)
(5.7)

The neutral CP-even component of H1 is identified with the SM-like Higgs boson HSM, and
the Goldstone bosons φ±, χ all lie in H1. The non-SM particles sit in the other doublet
H2. This procedure can be readily applied to an arbitrary number of doublets, as we have
already seen in the case of the FSSM, Eq. (6)-(7) of Section 4.4. In the Higgs basis, the
scalar potential (5.3) is rewritten as

V =Y1H
†
1H1 + Y2H

†
2H2 +

[
Y3H

†
1H2 + h.c.

]
+ 1

2Z1
(
H†

1H1
)2

+ 1
2Z2

(
H†

2H2
)2

+ Z3
(
H†

1H1
) (
H†

2H2
)

+ Z4
(
H†

1H2
) (
H†

2H1
)

+
{1

2Z5
(
H†

1H2
)2

+
[
Z6
(
H†

1H1
)

+ Z7
(
H†

2H2
)]
H†

1H2 + h.c.
} (5.8)
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The new coefficients are related to the old ones by the rotation angle β, with tan β ≡ vu/vd.
Finally, we infer from (5.8) the CP-even squared mass matrix in the basis

{
HSM , HNSM

}
:

M2 =
(
Z1v

2 Z6v
2

Z6v
2 m2

A + Z5v
2

)
(5.9)

where m2
A = − m2

12
sβcβ

− λ5v
2 is the squared mass of the CP-odd neutral Higgs field. We can

now rephrase the requirement for Higgs alignment as: one of the mass eigenstates of M2 –
conventionally considered to be the lightest one – is the SM-like Higgs boson HSM. In terms
of the matrix elements, it amounts to the conditions

Z6 = 0 and Z1v
2 = m2

h ≈ (125 GeV)2 (5.10)

which correspond to the scenario of exact alignment. Nevertheless, a moderate amount of
deviations from (5.10), typically due to quantum corrections, is tolerated as long as they are
not in conflict with precision measurements.

When the non-SM scalars contain an electroweak singlet, with decomposition S = vs +
(HS+ia0

s)/
√

2, the alignment conditions are very similar. Let us extend the 2HDM to include
S, then same as before, one must rotate the two doublets {Hu, Hd} to the Higgs basis, while
the singlet vev is unaffected by this change of basis. In the scalar potential, there are new
singlet self-interactions and singlet-doublet couplings. We write the subsequent CP-even
squared-mass matrix in the Higgs basis {HSM , HNSM , HS} as:

M2 =

 M2
11 M2

12 M2
13

M2
22 M2

23
M2

33

 (5.11)

Again, Higgs alignment requires that the SM-like scalar be decoupled from the others:

M2
11 = m2

h, M2
12 = 0, M2

13 = 0 (5.12)

While the above discussions involve the general 2HDM and 2HDM plus a singlet, what
is the situation in some simple supersymmetric models? As we have presented in the last
Chapter, the MSSM is a supersymmetric 2HDM, whose scalar potential is determined by the
F - and D- terms at tree level. Higgs alignment in the MSSM is extensively studied in the
literature [91, 102–106], which points to a possible alignment without decoupling, but this
requires a specific choice of parameter regions where the tree-level and loop contributions
to Z6 approximately cancel. A priori, no symmetry of the model implies this cancellation,
so alignment without decoupling in this case necessitates some amount of tuning. Similar
analyses have also been performed on the NMSSM [107, 108] which is the singlet extension
of the MSSM, yielding various constraints on the scalar potential, but exact alignment is
again not automatically satisfied.

5.2 Dirac gaugino models
Gauginos are the superpartners of the gauge bosons that can acquire mass through

SUSY breaking. They are the fermionic component of the vector multiplet, which in the
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four-component notation is represented by a Majorana fermion. Whether gauginos have a
Majorana (M̃λλ + h.c.) or Dirac (Mλψ + h.c.) mass is an important question because a
Majorana mass term explicitly breaks R-symmetry, while a Dirac mass term preserves it.

In the MSSM, the gauginos have Majorana masses that reside in the soft SUSY-breaking
Lagrangian, hence R-symmetry is broken. There are also viable models where gauginos have
Dirac masses, and this class of models is called Dirac gaugino models. First introduced in
[24] in order to provide mass to gluinos while preserving R-symmetry, Dirac gauginos have
been, since then, substantially studied in non-minimal extensions of the SM. The simplest
content comprises three chiral superfields that supplement the MSSM. Each chiral multiplet
is associated with a gauge group, and transforms under the adjoint representation. We
denote the singlet, SU(2) triplet and SU(3) color octet by S, T, Og respectively. The chiral
multiplets enlarge the field content, with new complex scalars:

S = SR + iSI√
2

, T = 1
2

(
T0

√
2T+√

2T− −T0

)
, O(a)

g =
O

(a)
gR + iO

(a)
gI√

2
(5.13)

where T0 = 1√
2 (TR + iTI), T± = 1√

2 (T±R + iT±I). The fermionic components pair with
gauginos to form a Dirac mass term. Details about the superpotential and the Lagrangian
will be presented in Section 5.4. For the following discussions, we restrict to the couplings
between the adjoint superfields and the MSSM Higgs superfields in the superpotential:

W ⊃ λSSHu · Hd + 2λT Hd · THu (5.14)

In the first studies of Higgs alignment in Dirac gaugino models, one often assumed that
the adjoint scalars S and T are very heavy, and consequently can be integrated out (see for
example [97]). Since the color octet is not coupled to the scalars S and T , the resulting
effective theory is a 2HDM. In the superpotential, λS , λT are not completely arbitrary. If
one considers an underlying N = 2 SUSY in the gauge sector at a high energy scale, which
contains an SU(2)R symmetry [96, 100, 109], these coupling constants are actually fixed by
the gauge couplings:

λS = g′
√

2
, λT = g√

2
(5.15)

Interestingly, (5.15) will imply that alignment without decoupling at tree level is automatic,
i.e. the off-diagonal element of the mass matrix is vanishing (Z6 = 0). In addition, including
quantum corrections, the alignment condition is shown to be radiatively stable [101].

The above discussion is based on the effective theory where S and T are integrated out.
Revisiting this assumption, one may be wondering how light can the singlet and triplet be.
Note that the triplet vev in this model is constrained by electroweak precision measurements
of the “ρ parameter”, to which the triplet vev gives a tree-level contribution. Recall that ρ
is related to the W boson mass through:

M2
W ≡ ρ cos θ2

WM2
Z (5.16)

with θW the Weinberg angle. According to [97], this vev is bounded by vT ≲ 3 GeV. Small
triplet vevs are conventionally ensured by a large triplet mass1, so in this case the triplet
mass is bounded from below, mT ≳ 1 TeV.

1As we will see in Section 5.4, the squared mass of the triplet is, approximately, proportional to the inverse
of its vev.
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On the other hand, it has not been sufficiently investigated to what extent the singlet
can be light. The constraint mainly comes from the mixing between the singlet and the light
Higgs, because the larger the mixing is, the stronger the direct search bound will be. One
may choose to keep, or integrate out the triplet scalar, then investigate how the resulting
model is restricted by approximate alignment. These scenarios will be examined in Section
5.4.

Recently, hints of new physics appeared in the direct measurement of the W boson mass
by the CDF Collaboration [25], with a better precision than the previous LEP, Tevatron and
LHC results. The reported value is:

MCDF
W = 80.4335 ± 0.0094 GeV (5.17)

and from the SM prediction [110, 111]:

MSM
W = 80.357 ± 0.006 GeV (5.18)

the deviation is as large as 7σ. While waiting for confirmation from other experiments, it
is interesting scrutinize how Dirac gaugino models accommodate this discrepancy. As we
mentioned before, the triplet vev has a tree-level contribution to the ρ parameter, in the
form:

ρ ≡ 1 + ∆ρtree + ∆ρ = 1 + 4v
2
T

v2 + ∆ρ (5.19)

where ∆ρ stands for higher order corrections. The tree-level enhancement of mW from a
triplet is well-known. It arises from the kinetic term of the triplet that includes a quartic
coupling between two W bosons and two triplet scalars that acquire a vev vT . Therefore,
Dirac gaugino models provide an intriguing explanation to the new CDF result, thanks to
the adjoint triplet naturally present in these models. As a first approximation, we take
the observed values of MZ and cos θW , so the tree-level deviation of the ρ parameter is
∆CDFρtree = 0.0012, implying vT ≈ 4 GeV, which is around the upper bound given previ-
ously.

For a more detailed analysis, the tree-level estimation is far from being sufficient. In
fact, Dirac gaugino models also give rise to important quantum corrections to mW , and the
latter may even compete with tree-level contributions for some specific parameter regions.
To take into account these corrections, we will not restrict to Dirac gaugino models with an
underlying SU(2)R symmetry, so the couplings λS and λT are arbitrary, and we will start
from a general set of parameters that also allows for some R-symmetry breaking. In the
meantime, we will compare different variants of Dirac gaugino models (with specific choices
of parameters), involving both alignment properties and the predictions of the W boson
mass. This work will be presented in Section 5.4.

5.3 The setup and main results

The superpotential of the Dirac gaugino model under consideration is, for the Higgs
sector:

W = µHu · Hd + λSSHu · Hd + 2λT Hd · THu (5.20)
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where λS and λT will be taken as independent parameters. The Yukawa superpotential is
same as in the MSSM, given by

WYukawa = Y ij
u Uc

iQj · Hu − Y ij
d Dc

iQj · Hd − Y ij
e Ec

iLj · Hd (5.21)

The effective superpotential for the Dirac gaugino masses is:

WDG =
√

2θα [mDYSW1α + 2mD2tr (T W2α) + 2mD3tr (OW3α)] (5.22)

with O ≡ 1
2λ

aOa and Wiα denote the chiral gauge-strength superfields. We also take into
account U(1)R R-symmetry breaking effects, encoded in the superpotential:

WNR =ξSS + MS

2 S2 + κ

3 S3 + λST S tr(TT) + λSOS tr(OO)

+MT tr(TT) +MO tr(OO) + λO

3 tr(OOO)
(5.23)

The soft SUSY-breaking Lagrangian contains R-symmetry preserving and breaking terms,
that can be found in the next section. The above information enables us to derive the
tree-level mass matrix

(
M2)

tree in the basis
{
h,H, SR, T

0
R

}
. In particular, if we insert the

conditions (5.15), then
(
M2

11
)

tree = M2
Z . For a more complete analysis, we must also include

radiative corrections to the entries of the mass matrix, as well as to Eq. (5.15), which will
partially spoil the alignment. Some specific choices of parameters – depending for example
on whether R-symmetry is broken – will result in different alignment properties, and these
cases will be listed in Sec. 2.4 in the next section. One of them which is of particular interest
is referred to as the aligned DGNMSSM 2, where the triplet is decoupled, and the light Higgs
does not mix with the heavy Higgs or with the singlet, while allowing for a possible R-
symmetry violation. Tree-level alignment can be achieved in this model through a specific
set of parameters.

The second aspect we consider is the W boson mass prediction in Dirac gaugino models.
In view of the recent CDF result, an enhancement of MW can be achieved in two ways: the
vev of the triplet scalar and the quantum corrections. The latter receive a significant contri-
bution from the triplet scalar interactions. As is mentioned before, the tree-level triplet vev
is estimated to be vT ≈ 4 GeV in order to match ∆M2

W = 11 (GeV)2. On the other hand, an
evaluation of quantum corrections is carried out numerically. The different models are then
compared in terms of their compatibility with collider constraints, and the aforementioned
aligned DGNMSSM, for example, agrees with the experimental bounds. In particular, we
observe the importance of quantum corrections to the W boson mass, which are at least as
large as the tree-level contribution from the triplet expectation value vT and therefore, a
sensible analysis of W boson mass must go beyond tree level.

5.4 Publication

2This acronym originates from the fact that in this model, we have two Higgs doublets and one singlet,
same as in the NMSSM.
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1 Introduction

While constraints on heavy Higgs bosons in supersymmetric models are rather stringent
at large tanβ, excluding masses above a TeV, at small to moderate tanβ direct searches
do not place significant limits; only indirect constraints from B → sγ limit a heavy
charged Higgs boson to be above 568 GeV, roughly independent of tanβ [1]. On the
other hand, in the Minimal Supersymmetric Standard Model (MSSM), this region is
likely excluded for an additional neutral Higgs boson below a few hundred GeV due to
modifications to the SM-like Higgs boson couplings. This has led to a lot of interest in
extensions of the MSSM (or variants of the Two Higgs Doublet Model) where alignment
without decoupling is possible [2–9], that is where the mixing between the SM-like Higgs
boson and other scalars is minimised so that it aligns with the expectation values and
has SM-like couplings.

Dirac Gaugino models [10–18], (see also, for example, [19–65]) accommodate sce-
narios where alignment without decoupling is automatic at tree-level [15,66–70]. Under
the assumption of an N = 2 supersymmetry in the gauge sector at some scale, these
models contain an approximate SU(2)R R-symmetry which guarantees the tree-level
alignment [67]. An investigation of the effects of quantum corrections showed that it
is even radiatively stable [66], with competing effects partially cancelling.

These models have many interesting phenomenological properties, and have been
extensively studied in the literature. They involve, at a minimum, an extension of the
MSSM by three adjoint chiral superfields, one for each gauge group; the fermions from
these pair with the gauginos to give them a Dirac mass. This means the presence of
new scalar fields, in singlet, triplet and octet representations.

Actually, it has not adequately been investigated to what extent the singlet could
be light in such models. One condition for this to be the case is that it should not
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disturb the couplings of the light Higgs – in other words, we should have some amount
of alignments without decoupling. ATLAS and CMS both give constraints on the
overall signal strength of the Higgs boson µ to be [71,72]:

µ =1.06± 0.07 (ATLAS), µ = 1.02+0.07
−0.06 (CMS). (1.1)

If the Higgs boson h mixes with an inert singlet s, then we can write the mass eigen-
states h̃, S as

(
h
s

)
=

(
S11 S12

−S12 S11

)(
h̃
S

)
(1.2)

then we will find that

µ =|S11|2 ≤ 1. (1.3)

Hence if we allow a 3σ deviation from the ATLAS result, we require

1− |S11|2 = |S12|2 ≤ 0.15 −→ |S12| < 0.39. (1.4)

While this still allows a moderate amount of mixing, the larger the mixing between
the flavour eigenstates, the stronger the direct search bounds on the singlet will be.
Therefore in this work we will consider the conditions for an approximate alignment
in which the light Higgs mixes neither with the Heavy Higgs nor with the singlet (the
triplet being decoupled). This will lead to a scenario that we refer to as the aligned
DGNMSSM.

Recently, the CDF experiment reported a new measurement of the mass of the W
boson [73]. Compared to the SM prediction [73–75], this gives as averages (combined
Tevatron+LEP [73,76–83]):

MTevatron+LEP
W =80424± 9 MeV, MSM

W = 80356± 6 MeV. (1.5)

If we take the central value of the top quark mass to be 172.89 GeV then the central SM
prediction becomes 80352 MeV [84]. These differ by 7 standard deviations, although
measurements at the LHC [85, 86] also differ from the combination of Tevatron+LEP
by 4 standard deviations, so at this stage confirmation is required by other experiments.
Nevertheless, a modification to the W boson mass is one of the most generic effects of
new light particles coupling to the electroweak sector, so such a hint is tantalising.

It has generally been assumed in Dirac Gaugino models that the adjoint scalars
should be heavy; indeed, the requirement that the triplet scalar vacuum expectation
value (vev) must be very small compared to the Standard Model Higgs one – otherwise
it would generate a large ρ parameter - is usually ensured by giving the triplet a heavy
mass. Amusingly, following the new measurement, the simplest explanation for the
enhanced W boson mass is exactly an expectation value for the neutral component
of such a triplet. In this work we shall investigate that possibility in minimal Dirac
Gaugino models.

Such a triplet scalar also comes along with electroweak fermions, which can modify
the quantum corrections too. Therefore a precise computation is required. While a
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preliminary such computation was performed for the MRSSM [87] using an update to
FlexibleSUSY [88, 89], and a related computation was performed for the same model
in [90], that model lacks a natural enhancement to the W boson quantum corrections.
In this work we introduce a similarly precise computation in the package SARAH-4.15.0
and use it to examine the compatibility of our aligned DGNMSSM, along with four
other scenarios – the “MSSM without µ term,” the MDGSSM, the aligned MDGSSM
and the general DGNMSSM – with the new measurement of the W boson mass, or a
naive world average value of Mworld average

W = 80411± 15 MeV.
This work is organised as follows. In section 2 we summarise the essential details of

the class of Dirac Gaugino models, including the vacuum minimisation conditions and
mass matrices. The conditions for alignment are reviewed and a comparison is made
with the cases of the MSSM and NMSSM. We also introduce the different variants
we shall consider: the MSSM without µ-term; the MDGSSM, the DGNMSSM and
the aligned DGNMSSM. In Section 3 we will study the predictions for all of these
classes of models for the W boson mass, examining in particular the effects of a precise
computation of the quantum effects. We present our conclusions in section 4.

2 Dirac Gaugino Models with Automatic Tree-

level Alignment

2.1 Field content and interactions

We shall consider in this work the extension of the MSSM by a minimal matter con-
tent to allow Dirac Gaugino masses, as in [18, 35]. The additional superfields consist
of three chiral multiplets, in adjoint representations of the SM gauge group factors
(DG-adjoints): a singlet S, an SU(2)W triplet Ta, and an SU(3)C octet Oa. If we
require gauge-coupling unification, even more states should be added to the model.
For instance, for an (SU(3))3 Grand Unification, the minimal set of chiral multiplets
includes also extra Higgs-like doublets Ru,d as well as two pairs of vector-like right-

handed electron E′1,2 in (1,1)1 and Ẽ′1,2 in (1,1)−1. We will not consider these states
here.

In order to develop an intuition for the different interactions involved, it is helpful
to consider a simple picture where the model descends from a supersymmetric theory
in D dimensions. The different states can appear in different sectors: some live in
the whole D-dimensional bulk, others are localised on four-dimensional hyper-surfaces
(branes) at points of the extra dimensions of coordinates xi = {xai }, a = 5, · · · , D. The
corresponding Lagrangian can be written as

∫
dDx L =

∫
dDx {Lbulk +

∑

i

δ(D−4)(x− xi) L(i)
boundaries} , (2.1)

where we have not explicitly written the metric factors. The four-dimensional theory
arises after a truncation keeping only the compactification zero modes:
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L4d = L4d
bulk + Lboundaries , (2.2)

L4d
bulk =

∫
dD−4x Lbulk , (2.3)

Lboundaries =

∫
dD−4x

∑

i

δ(D−4)(x− xi) L(i)
boundaries . (2.4)

A tree-level alignment in the Higgs sector appears in a class of models where the
bulk theory leads to a four-dimensional Lagrangian with interactions governed by an
N = 2 extended SUSY. In particular, the SM gauge fields and the DG-adjoint fields
arise as N = 2 vector supermultiplets, and the two Higgs chiral superfields Hd and Hd

form an N = 2 hypermultiplet, interacting through the superpotential

L4d
bulk ⊃

∫
d2θ {µ Hu ·Hd + λS S Hu ·Hd + 2λT Hd ·THu} , (2.5)

where T ≡ 1
2σ

a Ta, and the dot product is defined as

Hu ·Hd ≡ εijHi
uH

j
d = H+

uH−d −H0
uH

0
d . (2.6)

The N = 2 SUSY has a global SU(2)R R-symmetry that rotates between the
generators of the two N = 1 supercharges. The scalar components S, T a of S and
Ta, respectively, are singlets of SU(2)R. This R-symmetry rotates then between the
auxiliary fields F aΣ of the adjoint superfields Σa ∈ {S,Ta} and the auxiliary component
Da of the corresponding chiral gauge superfields Wa

i α for U(1)Y and SU(2)W . This
implies that

( Re(F aΣ) , Da , Im(F aΣ) ) (2.7)

form a triplet of SU(2)R. As a consequence, in order that the interactions (2.5) of S
and Ta with the two Higgs doublets preserve SU(2)R, the couplings λS and λT must
be related through1

λS =
gY√

2
, and λT =

g2√
2

(2.8)

to the couplings gY and g2 of the U(1)Y and SU(2)W gauge groups, respectively. Below
the scale where the N = 2 SUSY is broken to N = 1, these relationships are spoiled
by a small amount through renormalisation group running, so in numerical evaluations
we must treat the couplings λS and λT as independent parameters.

In addition to the SU(2)R R-symmetry which is broken in N = 1 (chiral) sectors,
there is a global U(1)R R-symmetry under which the superspace coordinates θα carry
a −1 charge. The U(1)R charges of the Hu and Hd superfields are RHu and RHd ,

1In the discussion of the W boson mass, we shall relax this condition and study also generic Minimal
Dirac Gaugino models with arbitrary values for λS and λT . All of the description of the models presented
in this section holds for these models except for the N = 2 SUSY and SU(2)R global R-symmetry that are
broken.
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respectively. They are arbitrary but subject to the constraint RHu+RHd = 2. The DG-
adjoint superfields S,Ta, and Oa are R-neutral. Below, we shall classify the different
N = 1 interactions following whether they preserve or break the U(1)R symmetry.

The boundary Lagrangian can be split into different contributions:

L4d
boundaries = Lbulklocalised +

∫
d2θ {WY ukawa +WDG +WNR} + ∆Lsoft . (2.9)

Here, we denote by Lbulklocalised kinetic and interaction terms already present in the bulk
theory L4d

bulk but appearing with relative coefficients that violate N = 2 supersymmetry.
Such terms can a priori be present because the boundary theory preserves only N = 1
SUSY, thus the coefficients of these terms are less constrained. Here, for simplicity,
we assume such terms to vanish at tree level, to be only generated by quantum loops
after supersymmetry breaking, and will therefore be accounted for in our analysis, at
least in part, through the radiative corrections.

Also in (2.9), we have the usual MSSM Yukawa superpotential WY ukawa with the
couplings responsible for the quark and lepton masses:

WY ukawa = Y ij
u Uc

iQj ·Hu − Y ij
d Dc

iQj ·Hd − Y ij
e Ec

iLj ·Hd , (2.10)

which arises on the brane where the matter field supermultiplets are localised.
In this work, we consider a typical scale for the soft terms, for example squarks or

gaugino masses, to be in the phenomenologically interesting range msoft ∼ TeV. If we
denote by Λ a higher scale, for instance related to supersymmetry breaking messenger
mass scale or to the Planck scale, then we can consider the relative strength of the
diverse SUSY-breaking terms as an expansion in powers of

msoft
Λ . We will assume that

SUSY-breaking terms in the gauge sector preserve the U(1)R R-symmetry, giving rise
to Dirac gaugino masses, while Majorana masses might be generated only by higher-
order interaction terms, therefore suppressed by additional powers of hidden-sector
couplings and/or

msoft
Λ where Λ could be the Planck scale (for gravity-induced effects).

The effective superpotential for the Dirac gaugino masses reads

WDG =
√

2θα
[
mDY SW1α + 2mD2tr(TW2α) + 2mD3tr(OW3α)

]
, (2.11)

where O ≡ 1
2λ

aOa, and Wi α are the chiral gauge-strength superfields. Finally, the
superpotential WNR contains terms that break explicitly the U(1)R R-symmetry:

WNR = ξS S +
MS

2
S2 +

κ

3
S3 + λST S tr(TT) + λSO S tr (OO)

+MT tr(TT) +MO tr (OO) +
λO
3

tr (OOO) . (2.12)

The soft SUSY-breaking Lagrangian ∆Lsoft can in turn be split in two parts.
The first contains the scalar mass and interaction terms that preserve the U(1)R R-
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symmetry:

−∆LsoftR = m2
Hu |Hu|2 +m2

Hd
|Hd|2 +m2

S |S|2 + 2m2
T tr

(
T †T

)
+ 2m2

O tr
(
O†O

)

+ (m2
Q)ijQ†iQj + (m2

U )ijU c†i U
c
j + (m2

D)ijDc†
i D

c
j + (m2

L)ijL†iLj + (m2
E)ijEc†i E

c
j

+

(
tSS +

1

2
BSS

2 +
1

3
TκS

3 + TSTS tr(TT ) + TSOS tr(OO)

+BT tr(TT ) +BO tr (OO) +
1

3
TOtr(OOO) + h.c.

)
. (2.13)

The second part of ∆Lsoft contains the scalar mass and interaction terms that break
the U(1)R R-symmetry:

−∆LsoftNR ⊃ BµHu ·Hd + TS SHu ·Hd + 2TT Hd · THu

+ T iju U ciQj ·Hu − T ijd Dc
iQj ·Hd − T ije EciLj ·Hd + h.c. , (2.14)

as well as the Majorana mass terms Mi (with i = 1, 2, 3) for the gauginos. In general,
the mechanisms that break R-symmetry and SUSY could be independent of each other,
hence in eqs. (2.13) and (2.14) we refrained from defining the soft SUSY-breaking
trilinear couplings as proportional to the corresponding superpotential couplings. In
this work we assume that the soft SUSY-breaking Higgs-sfermion-sfermion interactions
in the second line of eq. (2.14) are suppressed with respect to the R-conserving sfermion
mass terms in eq. (2.13). This can be realised in our D-dimensional picture if the
quark and lepton superfields are localised on a brane that differs from the one where
the breaking of the R-symmetry takes place.

Since our study focuses on the electroweak sector of Dirac Gaugino models, we
assume for simplicity that the scalar octet Oa is heavy and can be integrated out
of the theory. To insulate the singlet sector from threshold corrections involving the
heavy octet, we also neglect the singlet-octet interaction term proportional to λSO in
the R-violating part of the superpotential, eq. (2.12), as well as the analogous term
proportional to TSO in the R-conserving part of the soft SUSY-breaking Lagrangian,
eq. (2.13). Similarly, since they cannot appear in some of our scenarios, for simplicity
in the following we shall also neglect λST , TST and the tadpole terms tS , ξS .

2.2 The electroweak scalar sector and alignment

We can now discuss the neutral scalar sector of this class of models. The vacuum
expectation values 2 (vevs) of the neutral components of the doublets Hd and Hu

are related by v2
u + v2

d = v2, where v ' 246 GeV is the electroweak scale, and we
define tanβ = vu/vd. The neutral singlet and triplet scalars S and T 0 obtain vevs
〈S〉 = vS/

√
2 and 〈T 0〉 = vT /

√
2, respectively. These lead to effective µ and Bµ

2It should be emphasised that, throughout this work, we assume that CP symmetry is not spontaneously
broken by the vacuum. Therefore, all vevs are real.
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parameters:

µeff ≡ µ+
1√
2

(λSvS + λT vT ), (2.15)

Bµ, eff ≡ Bµ +
1√
2

(λSMS + TS)vS +
1√
2

(λTMT + TT )vT +
1

2
λSκv

2
S . (2.16)

The vevs vS and vT are then determined as a solution for the coupled cubic equations:

κ2v3
S +

1√
2

(Tκ + 3κMS)v2
S + m̃2

SRvS

+
v2

2

[√
2λSµeff − gYmDY c2β − (

1√
2
TS +

1√
2
λSMS + λSvSκ)s2β

]
= 0,(2.17)

m̃2
TRvT +

v2

2

[√
2λTµeff + g2mD2c2β −

1√
2

(TT + λTMT )s2β

]
= 0, (2.18)

where

m̃2
SR ≡ M2

S +m2
S +BS + 4m2

DY ,

m̃2
TR ≡ M2

T +m2
T +BT + 4m2

D2, (2.19)

are effective mass-squared parameters (at zero expectation value) for the real compo-
nents SR and T 0

R of the neutral singlet and triplet scalars (the analogous masses for the
imaginary components SI and T 0

I are m̃2
SI = M2

S+m2
S−BS and m̃2

TI = M2
T +m2

T −BT ,
respectively). We know that vT must be small – namely, less than a few GeV – to avoid
an overlarge tree-level ∆ρ, so to a good approximation we can set vT = 0 in the vac-
uum minimisation equation for vS , eq. (2.17), and decouple it from the one for vT ,
eq. (2.18); this would allow the cubic equation for vS to be solved using standard
techniques. However, the current state of technology for the computation of loop cor-
rections assumes that we take expectation values as being valid for the true minimum of
the full quantum-corrected potential, so in our numerical studies we must take them as
inputs. Especially for vT this can lead to complications; see [91] for a recent discussion
of this issue.

To discuss the alignment in the Higgs sector, it is now convenient to introduce the
so-called Higgs basis for the two doublets,

Φ1 ≡
vdΦd + vuΦu

v
, Φ2 ≡

−vuΦd + vdΦu

v
, (2.20)

where we defined for convenience two doublets with positive hypercharge, Φj
u ≡ Hj

u

and Φj
d ≡ −εijH

∗j
d . In the Higgs basis the two doublets can be decomposed as

Φ1 =

(
G+

(v + h+ iG0)/
√

2

)
, Φ2 =

(
H+

(H + iA)/
√

2

)
, (2.21)

i.e., only the neutral component of Φ1 has a non-zero vev, and the would-be-Goldstone
bosons, G± and G0, all lie in Φ1. In general, the neutral CP-even fields h and H
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mix with the neutral CP-even components of the singlet and the triplet. In the basis
{h,H, SR, T 0

R}, the tree-level mass matrix reads

(
M2

)
tree

=




M2
Z + ∆hs

2
2β ∆hs2βc2β ∆hs ∆ht

∆hs2βc2β M2
A −∆hs

2
2β ∆Hs ∆Ht

∆hs ∆Hs m̃2
S λSλT

v2

2

∆ht ∆Ht λSλT
v2

2 m̃2
T


 , (2.22)

where

∆h =
v2

2
(λ2
S + λ2

T )−M2
Z , (2.23)

∆hs = v

[√
2λSµeff − gYmDY c2β − (

1√
2

(TS + λSMS) + vSκλS)s2β

]
(2.24)

∆Hs = v

[
− (

1√
2

(TS + λSMS) + vSκλS)c2β + gYmDY s2β

]
, (2.25)

∆ht = v

[√
2λTµeff + g2mD2c2β −

1√
2

(TT + λTMT )s2β

]
, (2.26)

∆Ht = −v
[

1√
2

(TT + λTMT )c2β + g2mD2s2β

]
, (2.27)

M2
A =

2Bµ, eff

s2β
, (2.28)

m̃2
S = m̃2

SR + λ2
S

v2

2
− κλS

v2

2
s2β + 3κ2v2

S +
√

2vS(Tκ + 3κMS), (2.29)

m̃2
T = m̃2

TR + λ2
T

v2

2
. (2.30)

Exact alignment in the Higgs sector is obtained when one of the eigenstates of the
CP-even mass matrix – in this work, we take it to be the lightest one – is aligned in
field space with the direction of the SM Higgs vev, and thus has SM-like couplings
to gauge bosons and matter fermions. This is equivalent to requiring that h itself be
an eigenstate of M2, or in other words that M2

1j = 0 with j = 2, 3, 4. If we make
the reasonable assumption that the triplet is heavy, then this can be relaxed to just
j = 2, 3. In addition, we will also refer in this work to cases where the singlet can be
light without being potentially ruled out by direct searches. In this case we will require
the supplementary condition that M2

23 = 0.

We start our discussion by focusing on the alignment between the two doublets.
The use in eq. (2.23) of the N = 2 condition for the singlet and triplet superpotential
couplings, see eq. (2.8), implies ∆h = 0 and Mh = MZ , i.e. alignment is automatically
realised at the tree level in this class of models, and the tree-level mass of the SM-like
Higgs boson is independent of tanβ but well below the value observed at the LHC. It
is however well known that, in SUSY models, the radiative corrections to the Higgs
mass matrix play a crucial role in lifting the prediction for the mass of the SM-like
Higgs boson up to the observed value. Moreover, the radiative corrections to the
condition in eq. (2.8) for the superpotential couplings of the adjoint superfields can
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become relevant if the scale MN=2 where the N = 2 SUSY is broken to N = 1 is
much larger than the scale where the Higgs mass matrix is computed. All of these
corrections inevitably affect also the condition for alignment in the Higgs sector. As
was discussed in ref. [66], in DG models the element that mixes the two doublets in
the loop-corrected mass matrix can be recast as

M2
12 =

1

tanβ

[
M2

11 −M2
Z

]
− v2 tanβ

1 + tan2 β

[(
λ2
S −

g′ 2

2

)
+

(
λ2
T −

g2

2

)]
+ (...) ,

(2.31)
whereM2

11 contains the dominant one-loop contribution from top and stops. The latter
consists in a term enhanced by y4

t ln(M2
SUSY/m

2
t ), where yt is the top Yukawa coupling

and MSUSY denotes for simplicity a common soft SUSY-breaking mass parameter for
the stops. The second term in eq. (2.31) accounts for the deviation of the superpoten-
tial couplings from the SU(2)R condition in eq. (2.8), and the ellipses denote one-loop
top/stop contributions that are suppressed by small ratios of parameters, one-loop con-
tributions that involve couplings other than yt, and higher-loop contributions. Close to
alignment, the loop-corrected mass-matrix element M2

11 can be empirically identified
with the observed mass of the SM-like Higgs boson, M2

h ≈ 2M2
Z . Therefore, eq. (2.31)

shows that the radiative corrections included in M2
11 tend to destroy the tree-level

alignment in the Higgs sector of DG models. However, when MN=2 is large the evolu-
tion of λS and λT down to the scale where the Higgs mass matrix is computed makes
the second term in eq. (2.31) negative, and partially compensates for the misalignment
induced by the top/stop contributions.

It is instructive to compare the condition for doublet alignment in DG models with
the analogous conditions in the MSSM and in the NMSSM. In the case of the MSSM,
discussed e.g. in refs. [6, 92], one finds

M2
12 =

1

tanβ

[
M2

11 −M2
Z c2β

]
+

6 y2
t m

2
t µAt

16π2M2
SUSY

(
1− A2

t

6M2
SUSY

)
+ (...) , (2.32)

where At ≡ T 33
u /yt is the soft SUSY-breaking Higgs-stop-stop interaction parameter,

and again the ellipses denote sub-dominant terms. It appears that, in the MSSM, the
alignment condition M2

12 = 0 can be realised radiatively when a large value of tanβ
suppresses the first term in eq. (2.32), while the parameters MSUSY, At and µ combine
in such a way that the second term is large and negative. In contrast, in DG models
the contributions to M2

12 analogous to the second term in eq. (2.32) are suppressed
by the assumption that At � MSUSY, see the comments after eq. (2.14), thus doublet
alignment cannot be realised in this way. We remark however that, even with the
N = 2 condition for the superpotential couplings, in DG models M2

12 is smaller by a
factor between 2 and 3 – depending on tanβ, which we assume to be greater than 1 –
with respect to the case of the MSSM with small At.

In the case of the NMSSM, discussed e.g. in refs. [7, 9], the mixing between h and
H is given by

M2
12 =

1

tanβ

[
M2

11 −M2
Z c2β − λ2

S v
2s2
β

]
+

6 y2
t m

2
t µ̃ At

16π2M2
SUSY

(
1− A2

t

6M2
SUSY

)
+ (...) ,

(2.33)
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where µ̃ ≡ µ+λS vS/
√

2. Comparing with the case of the MSSM, eq. (2.32), we see that
the conditionM2

12 = 0 can be realised even in the absence of a large contribution from
the terms proportional to µeffAt/M

2
SUSY, as long as the singlet-doublet superpotential

coupling takes values in the range λ2
S ≈ (3−4)M2

Z/v
2, where the exact numerical

coefficient depends on the value of tanβ. As first pointed out in ref. [7], this condition
singles out the region of the NMSSM parameter space where λS ≈ 0.7± 0.05, a much
larger value than would be implied by the SU(2)R condition in DG models.

To summarise, the SU(2)R R-symmetry implies exact alignment at the tree level
in the Higgs-doublet sector of the DG models, but the alignment is partially spoiled
by the radiative corrections that are necessary to obtain a realistic value for the SM-
like mass. Alignment in the MSSM can be realised only through radiative corrections,
for large tanβ and for specific choices of the parameters in the stop sector. Finally,
doublet alignment in the NMSSM can be realised even without the help of radiative
corrections for an appropriate choice of λS , which – differently from the DG case with
SU(2)R R-symmetry – is treated as a free parameter.

The second condition for Higgs alignment in DG models isM2
13 = 0, i.e. vanishing

mixing between h and SR. Including the dominant contributions from stop loops, we
find:

M2
13 = ∆hs −

6ytλScβ
16π2

mt(At − µeff cotβ) ln
M2

SUSY

Q2
+ (...) , (2.34)

where the tree-level mixing term ∆hs is given in eq. (2.24), µeff is given in eq. (2.15),
and Q is the renormalisation scale at which the parameters entering ∆hs are expressed.
We assumed again a common soft SUSY-breaking mass term MSUSY for the stops,
and we neglected terms suppressed by powers of m2

t /M
2
SUSY. The various terms that

contribute to ∆hs arise from different sectors of the D-dimensional picture discussed
earlier in this section: namely, µ and λS enter the bulk superpotential in eq. (2.5);
m1D enters the R-conserving boundary superpotential in eq. (2.11); MS and κ enter
the R-violating boundary superpotential in eq. (2.12); TS enters the R-violating SUSY-
breaking Lagrangian in eq. (2.14). Therefore, even if we assume the N = 2 SUSY
relation of eq. (2.8) between λS and gY , a vanishing M2

13 can only result from an
accidental cancellation between unrelated terms. We also note that, in contrast to the
case of M2

12, the radiative correction to M2
13 is not enhanced by tanβ with respect

to the tree-level part. Thus, its qualitative impact on our discussion of the alignment
conditions is limited, as long as the scale Q is not too far from MSUSY.

The minimum conditions of the scalar potential can be exploited to express the
mass parameters for the doublets and the singlet in terms of the other Lagrangian
parameters and of the vevs vd, vu and vS . In particular, we obtain a relation between
the mass parameter m̃2

SR for the real component of the singlet, see eq. (2.19), and the
matrix element M2

13 given in eq. (2.34):

m̃2
SR = − v

2 vS
M2

13 −
vS√

2

(
Tκ +

√
2κ2vS + 3κMS

)
. (2.35)

Eq. (2.35) above shows that the condition of vanishing mixing between h and SR,
however realised, carries implications for the mass of the singlet. The diagonal element
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for the singlet in the scalar mass matrix is

M2
33 = m̃2

SR +
1

2
λ2
Sv

2 +
√

2TκvS + κ
(

3κv2
S + 3

√
2MSvS − λSsβcβv2

)

+
3y2
t λ

2
Sc

2
β

32π2
v2 ln

M2
SUSY

Q2
+ (...) , (2.36)

where we applied the same approximations as in eq. (2.34) for the one-loop correction
in the second line.

We now discuss the simplest case in which the global U(1)R R-symmetry is pre-
served in the superpotential but broken by soft SUSY-breaking terms, in which case
we can set κ to zero. Since this implies a vanishing quartic self-coupling for the singlet,
the stability of the scalar potential requires that we also assume Tκ = 0, even if the
trilinear self-coupling of the singlet resides in the R-conserving part of the soft SUSY-
breaking Lagrangian. In this scenario, which we shall refer to as the aligned MDGSSM,
eq. (2.35) shows that the alignment condition M2

13 ≈ 0 requires m̃2
SR ≈ 0 or vS � v.

The first of these two options implies that the CP-even mass eigenstate that is mostly
singlet is relatively light: setting m̃2

SR = 0 and κ = Tκ = 0 in eq. (2.36), and neglecting
the small effect of the one-loop correction, we find that the value λS ≈ 0.7 favored by
the alignment condition for the Higgs doublets in the NMSSM, see eq. (2.34), leads to
M2

33 ≈ (122 GeV)2, whereas the value λS ≈ 0.25 implied in our Dirac-gaugino model
by the N = 2 SUSY relation of eq. (2.8) leads to M2

33 ≈ (44 GeV)2. We remark that
the mixing between SR and the heavier, non-SM-like scalar H, which is controlled by
M2

23, is suppressed when M2
A � M2

33, and would in any case lower the mass of the
singlet-like eigenstate.

The definition in eq. (2.19) shows that even the vanishing of m̃2
SR requires a cancel-

lation between terms that arise from different sectors of our D-dimensional construc-
tion: m1D from the R-conserving boundary superpotential in eq. (2.11), MS from the
R-violating boundary superpotential in eq. (2.12), m2

S and BS from the R-conserving
soft SUSY-breaking Lagrangian in eq. (2.13). If such cancellation is not realised, the
alternative requirement for alignment implied by eq. (2.35) when κ = 0 is that vS � v.
This is not problematic as long as a suitable higgsino mass is provided by the µ term
in the bulk superpotential, see eq. (2.5).

Finally, the third condition for Higgs alignment in DG models isM2
14 = 0, i.e. van-

ishing mixing between h and T 0
R. The formulas for the relevant mass-matrix elements

and for the minimum condition, including the dominant one-loop corrections from top
and stop loops, are similar to eqs. (2.34)–(2.36), with the obvious singlet-to-triplet
replacements but without terms analogous to those controlled by κ in the singlet case:

M2
14 = ∆ht −

6ytλT cβ
16π2

mt(At − µeff cotβ) ln
M2

SUSY

Q2
+ (...) , (2.37)

M2
44 = m̃2

TR +
1

2
λ2
T v

2 +
3y2
t λ

2
T c

2
β

32π2
v2 ln

M2
SUSY

Q2
+ (...) , (2.38)

m̃2
TR = − v

2 vT
M2

14 . (2.39)
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The discussion of the constraints on the triplet mass induced by the condition of
doublet-triplet alignment follows the lines of the discussion of singlet-triplet alignment
for κ = 0, with the important difference that the condition vT � v must in any
case be satisfied to avoid an excessive contribution to ∆ρ. As a consequence, it is
not necessary to require m̃2

TR ≈ 0 to obtain approximate alignment. Nevertheless,
we remark that the condition of exact alignment M2

14 = 0 would imply M2
44 ≈ M2

W

through eqs. (2.37)–(2.39).

2.3 The electroweak fermion sector

We now outline the mass spectrum of the electroweak fermions, which will be relevant
for our discussion examining the W boson mass. The neutralino mass matrix, in the
basis S̃, B̃, T̃ 0, W̃ 0, H̃0

d , H̃
0
u reads:




MS +
√

2κvS mDY 0 0 −
√

2λS
gY

MZsW sβ −
√

2λS
gY

MZsW cβ
mDY M1 0 0 −MZsW cβ MZsW sβ

0 0 MT mD2 −
√

2λT
g2

MZcW sβ −
√

2λT
g2

MZcW cβ
0 0 mD2 M2 MZcW cβ −MZcW sβ

−
√

2λS
gY

MZsW sβ −MZsW cβ −
√

2λT
g2

MZcW sβ MZcW cβ 0 −µeff

−
√

2λS
gY

MZsW cβ MZsW sβ −
√

2λT
g2

MZcW cβ −MZcW sβ −µeff 0




(2.40)
The chargino masses, −1

2((v−)TMχ±v
+ + h.c.) in the basis v+ = (T̃+, W̃+, H̃+

u ),

v− = (T̃−, W̃−, H̃−d ), are given by

Mχ± =




MT mD2 + g2vT λT vcβ
mD2 − g2vT M2

g2v√
2
sβ

−λT vsβ g2v√
2
cβ µeff −

√
2λT vT


 (2.41)

and do not depend on κ, but we have written for completeness the Majorana gaugino
masses M1,2 for the bino and wino respectively.

2.4 Scenarios

We have described the general features of minimal Dirac Gaugino models, and ex-
plained how some values of the couplings allow Higgs alignment to automatically occur
at tree-level. Below, we shall consider the following different scenarios corresponding
to specific choices of the model parameters:

• General MDGSSM

In the general MDGSSM, the only source of R-symmetry violation comes from
a small Bµ term, which is a radiatively stable condition (the renormalisation
group running will not generate other R-symmetry violating terms from a Bµ
term). This excludes all of WNR; the only supersymmetric parameters beyond
those of the MSSM retained are λS , λT , but those are allowed to have any value.
Supersoft masses [13] are allowed, and soft supersymmetry-breaking masses are
allowed, but squark/sfermion trilinears and TS , TT are not. On the other hand,
trilinears involving the adjoint scalars may be allowed (so Tκ, TST , TSO) but may
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be argued to be small in typical models. The couplings λS , λT enhance the Higgs
mass and W mass at the same time; while large values of λT were previously
deemed problematic for the ρ parameter, they are now a virtue.

• MSSM without µ term (RIP)

This model, described in [14], is identical to the general MDGSSM execpt that
the µ-term is set to zero (although a small vS generates a tiny effective µ). In
the MSSM this would yield massless higgsinos, but here the higgsinos obtain a
mass through λT which causes them to mix with the triplet fermion. Thus the µ
problem of the MSSM is solved, at the expense of an upper bound on the chargino
masses, which, as we shall see, leads to the model being ruled out.

• Aligned MDGSSM

By taking λS , λT to their their N = 2 values given in Eq. (2.8) in the general
MDGSSM we guarantee alignment with the heavy Higgs at tree level. If we fur-
ther impose that ∆hs = 0, as described above, then the singlet also has negligible
mixing with the SM-like Higgs. We shall refer to this scenario as the aligned
MDGSSM.

• DGNMSSM

If we instead allow R-symmetry violation in the superpotential and the associated
soft-breaking trilinears – in particular for κ, Tκ and TS – we can generate µ and
Bµ terms through a substantial expectation value for the singlet. The model
thus resembles the NMSSM, especially if we set the µ,Bµ terms (and MS ,MT )
to zero; this was proposed in [18]. We shall therefore refer to this scenario as the
DGNMSSM.

• Aligned DGNMSSM

We can achieve aligment in the DGNMSSM by setting λS , λT to their N =
2 values and taking ∆hs = 0. We shall refer to this scenario as the aligned
DGNMSSM; in this work, when we consider the W boson mass, we shall also
enforce ∆Hs = 0 which guarantees that the singlet couplings to SM fields are
small, rendering light singlets safe from collider searches.

3 W mass in Dirac Gaugino models

Dirac gaugino models offer two methods of explaining an enhancement of the W boson
mass with respect to the SM: either quantum corrections or a tree-level expectation
value for the triplet scalar. In the case of quantum corrections, there are new contribu-
tions to the W mass compared to the MSSM, again coming from interactions related
to the adjoint triplet; in particular the coupling λT .

Recall the definition of the ρ parameter is M2
W ≡ ρc2

WM
2
Z ; through the presence

of the adjoint triplet, DG models contain a tree-level modification to this relation
compared to the SM:

ρ ≡ 1 + ∆ρtree + ∆ρ = 1 + 4
v2
T

v2
+ ∆ρ. (3.1)
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One could consider a modification to cW instead of ρ as an explanation of an enhanced
W mass, but this is discounted based on electroweak precision tests (see e.g. [93]); on
the other hand, a triplet expectation value is one of the most generic and acceptable
ways of enhancing the W mass at tree level. Naively we could then take the observed
value of MZ and the standard value of cW and infer the value of ∆ρ to obtain a given
value of MW . However, in the SM and in any BSM theory it is necessary to take certain
electroweak observables as input, and in our setup we will take the conventional choice
of the Z mass, GF and α. When we modifiy ρ this gives both a modification to MW

and a small modification to sin2 θW . At tree-level this is

∆treeM
2
W =

c2
W

c2
W − s2

W

(M2
W )SM∆ρtree,

∆trees
2
W =− s2

W c
2
W

c2
W − s2

W

∆ρtree, (3.2)

so if we want to obtain MW = 80.424 MeV we need ∆M2
W = 11 (GeV)2. Taking

s2
W = 0.23121 this gives

∆CDFρtree =0.0012

∆CDF
tree s

2
W =− 4× 10−4. (3.3)

Interpreted as a tree-level expectation value for the triplet, this yields

vT '4 GeV, (3.4)

which was previously at the upper bound of what was acceptable.
In the minimal Dirac gaugino model, we have from equation (2.39)

m̃2
TR = − v

2vT
∆ht = − ∆ht√

∆ρtree
. (3.5)

For a small vT , if we do not tune ∆ht ≈ 0, then triplets must be heavy. However,
we also need heavy winos to evade collider bounds and this implies large mD2: the
connection between electroweakino masses and the expectation value of the triplet is
a novel feature of this class of models. In [64] the conclusion was that for winos above
700 GeV there were essentially no constraints on the higgsinos beyond LEP. If the
contribution from mD2 dominates ∆ht this implies

m2
T ∼−

g2vmD2c2β√
∆ρtree

∼ (1.8 TeV)2 ×
(

700 GeV

mD2

)
×
(
c2β

−1

)
×
√

0.0012

∆ρ
, (3.6)

which is a natural scale for supersymmetric scalars. Of course, we can have lighter
winos provided that the neutralino is not too light, above around 200 to 300 GeV [64].

However, the model also contains ample room for quantum corrections to also en-
hance the W mass. In the following, we shall investigate this for the different scenarios
described in section 2.4.
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3.1 Numerical setup

In order to accurately compute the quantum corrections to the W mass, we use a new
EFT approach, closely related to that of [87], implemented in the spectrum-generator-
generator SARAH. We use the expression:

M2
W =(M2

W )SM

(
1 +

s2
W

c2
W − s2

W

[
c2
W

s2
W

(∆ρtree + ∆ρ)−∆rW −∆α

])
(3.7)

where (M2
W )SM is the full two-loop W mass in the SM, as computed in [75], depending

on the pole masses of the Higgs boson, top quark, αs and ∆α
(5)
had. We use the interpo-

lating function from that paper. When we use the average values of the Higgs mass of
125.09 GeV and the top quark mass of 172.89 GeV this function gives us MW = 80.354
GeV, just 2 MeV higher than the current world average for the W boson mass in the
SM. The expressions computed in the square brackets are the differences between the
high-energy theory (HET) and the SM:

∆ρ ≡Re

[
ΠHET
ZZ (M2

Z)

M2
Z

− ΠHET
WW (M2

W )

M2
W

]
− Re

[
ΠSM
ZZ (M2

Z)

M2
Z

− ΠSM
WW (M2

W )

M2
W

]

∆rW ≡
[

ΠHET
WW (0)

M2
W

− ΠHET
WW (M2

W )

M2
W

+ δHETV B

]
−
[

ΠSM
WW (0)

M2
W

− ΠSM
WW (M2

W )

M2
W

+ δSMV B

]
.

(3.8)

∆α are now the gauge threshold corrections between the HET and the SM for the

electromagnetic gauge coupling divided by α (so they do not now depend on ∆α
(5)
had).

In SARAH, we compute the expression in square brackets at the matching scale, which
is the mass of the heavy particles. We are therefore ignoring the running from that scale
down to the electroweak scale, which is of controllable size, but will nevertheless be
included in a future development of the code. One could argue that we should instead
perform the matching at the electroweak scale, but then all of the loop functions will
contain large logarithms and there can be larger, spurious, running of the couplings of
the high-energy theory which can spoil the results.

In order to be a strict one-loop matching between the HET and the SM, the weak
mixing angle in the above must be the MS or DR value at the matching scale Q:

s2
W =

g2
Y (Q)

g2
2(Q) + g2

Y (Q)
. (3.9)

To extract this, we match the calculations of the Z-boson mass, α(Q) – and we also
compute the decay of the muon at the matching scale. In practice, this means that we
extract the couplings in the SM at the top mass scale without including the effects of
new physics, then run them up to the matching scale. The threshold corrections to α
between the two theories are simple to compute since it is unbroken and yield ∆α; the
coupings gY (Q), g2(Q) in the high-energy theory are chosen to solve the equation

c2
W s

2
W =(c2

W s
2
W )SM ×

(1 + ∆α+ ∆r̂)

1 + ∆ρtree
(3.10)
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where

∆r̂ ≡
[
(1 + ∆ρtree)

ΠHET
WW (0)

M2
W

− ΠHET
ZZ (M2

Z)

M2
Z

+ δHETV B

]
−
[

ΠSM
WW (0)

M2
W

− ΠSM
ZZ (M2

Z)

M2
Z

+ δSMV B

]
,

(3.11)

which is done iteratively by progressively running up and down and updating at each
step, along with all the other quantities in the high-energy theory. The value for
(c2
W s

2
W )SM includes a compensatory term for corrections from MS to DR if needed.

In the SARAH model file, the couplings λS , λT , TS , TT are defined differently to the
above: we have lam = −λS , LT =

√
2λT , T[lam] = −TS , T[LT] =

√
2TT . Hence in our

plots and benchmark points we list the values in terms of −λS ,
√

2λT ,−TS , which
makes the correspondence with the numerical codes exact.

3.2 MSSM without µ term

The “MSSM without µ term” proposed in [14] was an intriguing solution to the µ
problem. It was however challenged by the requirement of having a high enough Higgs
mass, chargino mass and not too large ρ; indeed the lack of intersection of points
satisfying the latter two was demonstrated in [35]. It might therefore be tempting
to revisit this model in light of the new data about the W mass. However, we shall
demonstrate here that it is conclusively ruled out.

Putting aside the Higgs mass constraint, the see-saw effect on the charginos is a
problem. LEP put a lower limit on the mass of the lightest chargino of 94 GeV [94–96].
In that model the chargino mass is

Mχ± −→
vT'0




0 mD2
2λT
g2
MZcW cβ

mD2 0
√

2MZcW sβ
−2λT

g MZcW sβ
√

2MZcW cβ 0


 (3.12)

It is known that it is possible to fulfil the LEP bound by a careful choice of λT and
mD2: a large value of λT as well as mD2 around 107 GeV is needed to maximize
the mass of the lightest chargino. It would then be made of a higgsino-wino mixture
with two charginos that are light and one (wino-like) somewhat heavier. Unfortunately,
subsequent LHC searches are especially sensitive to winos up to about 800 GeV, see [64].
It might be possible to evade this constraint if the light wino and neutralino are close
enough in mass so that decays such as χ̃± → χ̃0 + W± are not possible. Most likely
this is difficult or impossible to achieve, but without a detailed investigation we cannot
exclude the possibility that some region of parameter space might evade direct LHC
searches; we can only apply the LEP constraint as a hard lower bound on the chargino
mass.

In [35] it was demonstrated that that the corrections to ∆ρ were correlated with
the lightest chargino mass; in order to evade the LEP bound, λT has to be large and
this drives large ∆ρ. Here we can give a striking confirmation of this observation
by plotting the W mass against the lightest chargino mass for a sample of O(70000)
spectra generated using SARAH. We fix the octet scalar, and all squark and slepton
soft masses via m2

O = m2
q̃ = m2

l̃
= 10 TeV2, and fix the gluino mass to 3 TeV; this
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Figure 1: W boson mass vs lightest chargino mass for points generated in the ‘MSSM
without µ-term.’ The horizontal bands show the SM, Tevatron and world average
masses for the W boson mass; the vertical green band shows the LEP constraint on
the lightest chargino.

ensures that they are beyond all current and near-future bounds. Then we scan over
the ranges:

mDY ∈ [100, 500] GeV, mD2 ∈ [100, 250] GeV, vS ∈ [−50, 50] GeV, vT ∈ [−5, 5] GeV

Bµ ∈ [104, 106] ( GeV)2, λT ∈ [−1, 1], λS ∈ [−1.5, 1.5], tanβ ∈ [2, 50]. (3.13)

We use a Markov Chain Monte-Carlo (MCMC) algorithm to generate points (this helps
to obtain points with non-tachyonic spectra with Higgs mass close to the observed
value compared to a random scan). There is not intended to be a genuine statistical
interpretation of the distribution of the points, but the overall envelope should show
where valid sets of parameters exist. The results are shown in figure 1, where the
LEP constraint is shown as a vertical green band. It can be clearly seen that it is not
possible to both satisfy the LEP constraint and have an acceptable value for the W
boson mass; from the W boson mass alone we would predict a chargino of mass below
65 GeV.

3.3 W mass in the MDGSSM

In the minimal Dirac Gaugino extension of the Standard Model (MDGSSM) the most
typical scenario is to assume that R-symmetry is broken only via a Bµ term, i.e. the
Higgs sector is special. It is identical to the previous model except that we allow a
µ-term. This, however, makes all the difference: now the higgsino mass is not bounded
from below, not requiring a large mixing with the winos; and further the enhancement
to the Higgs mass is under control.
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We perform a new MCMC scan with parameters allowed to vary within the ranges:

mDY ∈ [100, 700] GeV, mD2 ∈ [100, 1200] GeV, vS ∈ [−50, 50] GeV, vT ∈ [−5, 5] GeV

µ ∈ [0, 1000] GeV, Bµ ∈ [104, 106] ( GeV)2,
√

2λT ∈ [−1.5, 1.5], λS ∈ [−1.5, 1.5], tanβ ∈ [2, 50]. (3.14)

We fix the octet scalar, and all squark and slepton soft masses via m2
O = m2

q̃ = m2
l̃

= 10

TeV2, and fix the gluino mass to 3 TeV. We choose a likelihood function to be a product
of a gaussian in the Higgs mass with mean 125 GeV and standard deviation 3 GeV,
a gaussian in the W mass with mean 80.413 GeV and standard deviation 20 MeV,
and a sigmoid on the constraints (given as the maximum ratio of predicted cross-
section to observed, across all channels) from HiggsBounds5 [97–100], which strongly
suppresses the likelihood when the observed cross-section ratio is greater than one,
but is otherwise close to unity. This choice of likelihood function is merely a device
to select desirable points, and the distribution of the points is not meant to have a
statistical interpretation in terms of their Bayesian likelihood; in particular, the theory
uncertainty on the Higgs mass does not have a statistical interpretation, and a window
of 3 GeV is a conservative estimate of the average error, since we use the latest two-
loop corrections in the generalised effective potential and gaugeless limit [60, 101–103]
with pole-mass matching onto the SM [104] (see [105] for a recent review). Such a
conservative window of 3 GeV is employed because only a relatively small proportion
of points actually generate a spectrum, and in principle a two-stage procedure pre-
filtering points along those suggested in [64, 106] would probably be more efficient –
or in addition the ability to invert the vacuum minimisation relations and compute
vS , vT instead of treating them as inputs, but this is not yet automatically possible in
the code in a way that would correctly incorporate the loop corrections to the Higgs
masses [91].

We show plots in figure 2 for MW against vT (left plot), and then for MW against
λT (right plot), to show the points that benefit from large quantum corrections as the
means of enhancing the W mass: the tree-level expectation just from modifying vT is
shown as a solid red curve on the left plot. We also show as a dashed red curve the
value of MW that would be obtained by insisting that the shift in ∆ρ only modifies MW

without changing sin θW (if a different method of matching onto the SM parameters
were used, for example).

All points shown satisfy all Higgs bounds; have a charged Higgs heavier than 600
GeV (so are safe from B → sγ constraints [1]); have charginos heavier than the LEP
limit and winos heavier than 600 GeV. These baseline selections are marked as blue
points in the plots; there are about 36000, of which about 10000 have |vT | < 1 GeV.
Points shown in yellow further have charginos heavier than 200 GeV, mD2 > 700 GeV;
while those marked in green have charginos heavier than 250 GeV and mD2 > 800 GeV
(about 1600 points in our sample survive these cuts). The green points are thus almost
certainly guaranteed to be safe from current collider bounds (although they may yet be
probed in future). The requirement of heavy charged Higgs scalars sets the MSSM-like
neutral and pseudoscalar masses to be heavy, and essentially guarantees the safety of
all selected points from constraints on the couplings of the SM-like Higgs. Nevertheless,
we also filtered the green points with constraints from HiggsSignals [107, 108]. The
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Figure 2: Left: W boson mass vs vT in the MDGSSM, with the red curve showing the
tree-level prediction. Right: W boson mass vs

√
2λT in the MDGSSM. Colours of the

points are described in the text, with those obeying the strictest cuts shown in green.
The colourful horizontal bands show the SM range in light orange; the Tevatron+LEP
average in purple, and a conservative world average in green.

MDG1 MDG2 MDG3

mDY (GeV) 280 285 245
mD2 (GeV) 983 941 940
µ (GeV) 276 255 353
tan β 48 46 47
−λS 1.179 1.074 1.112√
2λT -0.487 0.502 0.099

Bµ (GeV)2 828838 794477 938787
vS (GeV) 5.0 4.3 1.4
vT (GeV) 2.3 2.7 2.8

mh1 (GeV) 125.4 124.7 124.7
mh2 (GeV) 3120.9 2274.3 2405.8
mA1 (GeV) 2394.2 1221.4 1456.5
mH±1

(GeV) 2400.2 1213.0 1455.3

mχ̃0
1
(GeV) 217.9 231.5 233.0

mχ̃±1
(GeV) 255.0 275.9 362.0

mW (GeV) 80.425 80.420 80.421

Table 1: Benchmark points for the MDGSSM. Input parameters are given above the
double line, and masses of the most important particles below.
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different categories of points show the expected wider range of enhancements to the
W mass as the charginos become lighter. We provide a selection of benchmark points,
with the input parameters and crucial data, in table 1.

The first clear observation is that the quantum corrections to the W mass are at
least as important as the tree-level contribution from the expectation value vT , and
the generic contribution to the W mass is positive with no points below the red curve.
The asymmetry of the plot with vT is due to the fact that we only take positive Dirac
gaugino masses. It is important to note that in the red curves we take the SM value of
the W boson mass to be 80.352 GeV, whereas the fitting function of [75] as employed
in SARAH gives a value of 80.354 GeV for the central values; and gives 80.356 for a
Higgs mass at the lower bound of our permitted range of 122 GeV. However, it is clear
that the quantum corrections in our sample are generally more important than ∆ρtree.
Indeed, with the parameter ranges we have chosen, we are not within the range of
masses required for decoupling of the quantum corrections (we have checked that the
quantum corrections to MW smoothly drop to near zero as the masses of all particles
are raised to about 2 TeV or higher).

The second observation is that there is no clear correlation between the W mass and
the parameter λT . Due to our requirement of a large wino mass, the selected points have
light neutralinos/charginos of mixed bino/higgsino type. The mass splitings among the
higgsinos – and thus the contribution to the W mass – can be driven large by λS and
λT . These couplings also enhance the Higgs mass at tree-level, so large values are
favoured in the scans because we fixed the stop masses at

√
10 TeV. In this class of

model there is therefore no particular preference for one or the other coupling.
Since the selected points generally have a mixed bino/higgsino LSP, they have good

dark matter candidates, but it is expected that the relic density should be underdense.
A detailed investigation of the dark matter-collider complementarity for scenarios sat-
isfying the latest W mass data along the lines of [64] would be an interesting subject
for future work, provided that the latest LHC analyses can be recast. As mentioned
above, the possibility of a large λT (and the presence of the singlet scalar/fermion)
distinguishes higgsinos in this scenario from those in the MSSM. It is clear that this
class of models provides a very natural explanation for an enhancement to the W mass
compared to the Standard Model.

3.4 W mass in the aligned MDGSSM

In the aligned MDGSSM (where the only source of R-symmetry breaking is the Bµ
term, and we take TT = 0), we choose the parameters to induce alignment at tree-
level in the MDGSSM (so λS = gY /

√
2, λT = g2/

√
2 and mDY = c2βµeff ) but taking

TS = 0 (which means the mixing of the singlet with the heavy Higgs cannot vanish
unless it is heavy). To study this scenario we perform a scan with the same strategy as
before except that now, since λS , λT are fixed, it is necessary to vary the masses of the
stops/sbottoms to allow us to find the observed value of the Higgs mass; there is also
therefore a preference for models with larger tanβ since the tree-level contributions to
the Higgs mass at low tanβ are not sufficient. We therefore use a common mass for
the third generation squarks MSUSY; we set m2

Q,33 = m2
U,33 = m2

D,33 = M2
SUSY (the

other squarks and sleptons we retain fixed at
√

10 TeV). The remaining parameters
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AMDG1 AMDG2 AMDG3 AMDG4 AMDG5 AMDG6

MSUSY (GeV) 8636.2 4550.9 5181.9 8436.1 7357.2 5454.9
mD2 (GeV) 1037 1249 1149 1107 1219 994

tan β 2 2 3 10 3 2
µ (GeV) 158.2 160.4 165.8 174.1 159.5 201.6
vS (GeV) -19.0 -12.7 -8.4 -0.3 -5.0 -13.7
vT (GeV) 1.5 1.5 1.1 0.3 1.9 1.1
mh1 (GeV) 126.6 122.8 123.2 123.6 127.4 122.2
mh2 (GeV) 457.7 312.3 308.5 421.8 465.8 487.5
mh3 (GeV) 1282.2 799.7 935.2 1251.6 1176.5 762.3
mh4 (GeV) 2667.0 2965.0 3350.8 7104.7 2847.1 2933.0
mH±1

(GeV) 1284.0 793.5 933.4 1257.7 1174.3 765.4

mχ̃0
1
(GeV) 106.3 110.4 120.5 172.6 128.0 134.5

mχ̃±1
(GeV) 168.4 169.6 177.3 193.1 173.1 211.5

mW (GeV) 80.363 80.365 80.362 80.361 80.369 80.362

Table 2: Benchmark points with a light singlet in the Aligned MDGSSM

.

are scanned via the same MCMC algorithm in the ranges:

mD2 ∈ [400, 1500] GeV, vS ∈ [−250, 250] GeV, vT ∈ [−5, 5] GeV

µ ∈ [−1000, 1000] GeV, Bµ ∈ [104, 106] ( GeV)2,

MSUSY ∈ [2, 10] TeV, tanβ ∈ [2, 50]. (3.15)

We mostly find points with small µ/mDY and very little enhancement to the W mass
because the electroweakinos tend to be light. We give benchmark points in table 2
and plots in figure 3 which demonstrate the lack of enhancement and scarcity of points
(790 survived from a scan for one million).

3.5 W mass in the aligned DGNMSSM

We turn now to the case of the aligned DGNMSSM described in section 2.4. We set
the couplings λS , λT to their N = 2 values and then choose mDY and TS to make ∆hs

and ∆Hs vanish. This leads to

mDY =c2βµeff

TS =− gY (κvS −
√

2s2βµeff). (3.16)

This has an interesting consequence because in this model

Bµ, eff =
1√
2
TSvS +

1

2
λSκv

2
S = − 1

2
√

2
gY κv

2
S + gY s2βvSµeff . (3.17)
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Figure 3: Points in the aligned MDGSSM. Left: MW against triplet expectation
value. Right: MW against singlet-like scalar mass. Colour coding as for previous
plots.

Then

M2
A =gY vS(2µeff −

κvS√
2s2β

) = gY v
2
S(gY −

κ√
2s2β

). (3.18)

We perform a scan using the same strategy as the previous sections; we use a com-
mon mass for the third generation squarks MSUSY; we set m2

Q,33 = m2
U,33 = m2

D,33 =

M2
SUSY (the other squarks and sleptons we retain fixed at

√
10 TeV). Then we scan

with the parameter ranges, using the same likelihood function as before:

MSUSY ∈ [2000, 10000] GeV,

mD2 ∈ [400, 1500] GeV, vS ∈ [−1500, 1500] GeV, vT ∈ [−5, 5] GeV

κ ∈ [−1.5, 1.5], Tκ ∈ [−2000, 2000] GeV, tanβ ∈ [2, 50]. (3.19)

In our scans we impose that all Higgs searches are satisfied using HiggsBounds and
HiggsSignals. We show the results for the W boson mass in figure 4 where the points
have the same colour coding as in the previous sections. It is apparent that in this
model it is complicated to enhance the W boson mass. This is because we have only a
small quantum effect from λS , λT , but also because the lightest neutralinos are typically
rather light: since µeff = gY vS/2 we need a large vS & 500 GeV (or 1 TeV for our
more stringent points) to have heavy enough higgsinos. Then we need κ negative and
not too small to avoid a too-small pseudoscalar/charged Higgs mass (if we neglect κ
then MA is bounded by gY vS , so MA > 600 GeV requires vS & 1700 GeV, at the limit
of our search range). So this implies that the singlino is generally heavy compared to
mDY :

mDY√
2κvS

=
gY c2β

2
√

2κ
. (3.20)
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Figure 4: W boson mass in the aligned DGNMSSM. Left: W boson mass against
triplet expectation value. Right: W boson mass against singlet-like Higgs mass. Colour
coding of points is described in the text.

In figure 4 we show the scan results with the same colour coding as in previous
sections. It is clear that in this scenario, models which can explain a large W mass are
driven by a larger vT with some modest quantum corrections enhancing the mass by
O(10) MeV; there is very little spread due to the lack of variation in λT . However, it
is difficult to find points with large enough vT that satisfy other bounds.

Another feature of the selected points is that in almost all cases vT > 0; considering
TT = MT = 0 in equation (2.18) means that in order for m̃2

TR > 0 (so that, at least,
the pseudoscalar triplet should be non-tachyonic, since we take BT = 0) and vT < 0
we would need µeff > |mD2c2β|. But we need large tanβ to obtain the correct Higgs
mass, and therefore gY vS/2 & mD2; for our selected points we require a minimum of
mD2 > 600 GeV, and so vS would again be beyond our search range.

Since we are interested here in alignment, we may have a light singlet scalar without
falling foul of either light Higgs or heavy Higgs searches. In this limit we have

m̃2
S →

1

4

[
2vS(
√

2Tκ + 3
√

2κMS + 4vSκ
2) + v2gY (gY −

√
2κs2β)

]
. (3.21)

Tκ of opposite sign to vS allows the singlet to be made light while makingMA arbitrarily
heavy. In the scan, we do not impose any likelihood bias to search for points with a
light singlet, but we show benchmark points passing all constraints which have light
singlet masses in table 3. They show a W mass consistent with the SM prediction.

3.6 W mass in the general DGNMSSM

Finally we consider the general DGNMSSM, where we allow the values of λS , λT to
vary and do not fix the values of mDY or TS to require alignment but scan over them.
This means that we will not focus on light singlet (or doublet) scalars. Similar to the
aligned case, there is still a see-saw effect on the lightest neutralino mass due to the

24



A-DGN1 A-DGN2 A-DGN3 A-DGN4

MSUSY (GeV) 6368.4 5186.5 8219.5 8702.9
mD2 (GeV) 802 991 932 923

tan β 26 11 29 22
κ -0.418 -0.332 -0.446 -0.418

vS (GeV) 1417.4 1402.4 1337.0 1488.8
vT (GeV) 0.2 0.1 0.1 0.8
Tκ (GeV) -595.6 -267.5 -648.0 -639.4

mh1 (GeV) 124.1 122.9 125.2 123.4
mh2 (GeV) 353.5 417.6 347.2 353.9
mh3 (GeV) 1838.5 1284.5 1843.0 1803.0
mh4 (GeV) 6710.7 12226.0 10817.9 4056.2
mH±1

(GeV) 1841.4 1288.5 1846.1 1806.2

mχ̃0
1
(GeV) 72.2 84.2 64.5 75.2

mχ̃±1
(GeV) 280.1 274.6 265.1 291.9

mW (GeV) 80.362 80.361 80.361 80.363

Table 3: Benchmark points for the “aligned DGNMSSM”. Input parameters are
given above the double line, and masses of the most important particles below.

non-zero singlino mass, which can drive down the quantum corrections to the W boson,
but a large |λT | can compensate for this and also help enhance the SM-like Higgs mass.

We perform a scan using the strategy as in sections 3.2 and 3.3, with the parameter
ranges:

mDY ∈ [100, 700] GeV, mD2 ∈ [150, 1200] GeV, vS ∈ [−700, 700] GeV, vT ∈ [−5, 5] GeV

κ ∈ [−1.5, 1.5], Tκ ∈ [−2000, 2000] GeV, TS ∈ [−4000, 4000] GeV,

λS ∈ [−1.5, 1.5],
√

2λT ∈ [−1.5, 1.5], tanβ ∈ [2, 50]. (3.22)

We give plots in figure 5 with the same colour coding as in the previous sections; the
difference in the distribution to the previous examples is rather striking. It is clear that
in this scenario a large negative λT and a positive vT is favoured; this gives a tree-level
enhancement to the Higgs mass and a loop-level enhancement to the W -boson mass.
The singlino component will mix less with the higgsinos than in the MDGSSM because
of the

√
2κvS singlino mass, and thus the effect of λS on the W mass is diminished.

The asymmetry in the signs of λT and vT can be explained by the fact that we only
take positive Dirac gaugino masses in the scans.

4 Conclusions

We have shown that an aligned Dirac Gaugino NMSSM is possible and compatible
with current collider constraints; it can even lead to relatively light singlet scalars that
may be of interest to future searches (although would be rather difficult to find directly
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Figure 5: W boson mass in the general DGNMSSM. Left: W boson mass against
triplet expectation value. Right: W boson mass against λT . Colour coding of points
as in previous figures.

DGN1 DGN2 DGN3 DGN4 DGN5

mDY (GeV) 392 298 410 380 292
mD2 (GeV) 927 971 841 1003 805

κ 1.391 -1.369 -1.266 -1.309 -1.361
tan β 9 23 21 30 30
−λS 0.727 -0.893 -0.544 0.554 -0.677√
2λT -1.426 1.496 1.463 -1.303 -1.296

−TS ( GeV) 3077 3747 -2496 -3002 1183
Tκ ( GeV) 1139 350 -1292 -571 728
vS (GeV) -658.1 -539.1 574.5 524.7 -482.8
vT (GeV) 2.7 2.3 1.7 2.5 2.2
mh1 (GeV) 125.1 125.3 125.8 124.6 124.7
mh2 (GeV) 1017.6 937.1 665.0 831.8 740.1
mA1 (GeV) 757.6 93.7 778.1 115.1 502.2
mH±1

(GeV) 2793.1 3195.1 1281.7 778.5 806.5

mχ̃0
1
(GeV) 115.0 87.2 123.6 110.9 90.7

mχ̃±1
(GeV) 278.8 273.6 265.5 254.8 268.8

mW (GeV) 80.421 80.421 80.424 80.420 80.422

Table 4: Benchmark points for the general DGNSSM. Input parameters are given
above the double line, and masses of the most important particles below.
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as they are difficult to produce). Such a model favours a W boson mass compatible
with or just above the SM prediction. We also showed how two different Dirac Gaugino
scenarios can easily be compatible with an enhanced W boson mass, including a precise
computation of the quantum corrections for the first time, which are now incorporated
automatically in the package SARAH. We also used this computation to add more nails
to the coffin of the “MSSM without µ term.”

We have been conservative in our application of collider constraints and concluded
that the MDGSSM models would typically contain underdense dark matter densities.
However, it would be interesting to examine the issue of dark matter and collider
constraints again in all of these classes of models when all the latest searches for
electroweakinos have been recast; we have provided ample benchmark points for this
purpose. In the DGNMSSM or its aligned version, if we impose strict R-parity or
have a heavy gravitino (by no means entirely obvious assumptions), it may be that
we require a Higgs funnel to obtain the correct relic density, which would require a
sophisticated search strategy to find allowed parameter ranges, along e.g. the lines
of [106]. However, it is also likely that a light singlino in the aligned DGNMSSM could
fulfil the role of the Higgs funnel. We leave these questions to future work.
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Conclusions

The theory of spins s ≤ 1 has been established for a long time. Meanwhile, the construc-
tion of a consistent action for higher spin particles, both in the massive and massless, charged
and uncharged cases, continues to be studied to this day. In particular, the propagation of
charged massive higher spins suffers from severe pathologies, historically known as the Velo-
Zwanziger problem. In Chapter 2, we addressed this issue and provided an answer in the
case of charged massive spin-3/2 and spin-2, in a constant electromagnetic background. In
the Lagrangians, the spin-3/2 and spin-2 are coupled to lower spins. Though we have not
found a way to decouple different states off shell, we were able to decouple them at the level
of equations of motion and constraints, through field redefinitions.

For spin-2, we recovered on shell the Fierz-Pauli system, same as that derived from the
Argyres-Nappi Lagrangian, but our Lagrangian is more complicated due to the presence of
more states on the mass level. For spin-3/2, we obtained equations of motion and constraints
that, as far as we know, do not exist in the literature. This on-shell system guarantees
causality, correct degrees of freedom and gyromagnetic ratio g = 2. It is interesting to
note that in [11], the γ-trace constraint γµψµ = 0 was only enforced up to a certain order,
and it turned out that none of the proposed modifications to the Lagrangian escaped from
acausality. In [59], it was shown that causality is ensured if this trace constraint is exact to
all orders. In our case, we precisely find the constraint γµψµ = 0, whereas the divergence
constraint itself is shifted by electromagnetic coupling.

The higher spin studies are not only of field-theoretic interest, but also important phe-
nomenologically. Many authors have investigated the production of higher spin particles in
early universe, and particular attention has been paid to gravitinos in supergravity theo-
ries. In Chapter 3, we studied a pathological gravitino propagation pointed out in [20]: the
gravitino production becomes divergent when its sound speed vanishes. Our question was
whether such behavior exists is linear N = 1, d = 4 supergravity. When the matter content
is one chiral multiplet, the sound speed is always equal to the speed of light [16–18]. In the
presence of more than one fermion, the definition of a physical sound speed needs more care,
which involves diagonalizing a coupled system of equations of motion. We have shown that,
both for two chiral multiplets and one chiral plus one vector multiplet, the sound speed never
vanishes and therefore no divergent production will happen.

In Chapter 4 and 5, we moved to SUSY candidates for experimental anomalies. First,
we have investigated in Chapter 4 the role of Higgs mass in constraining high-scale SUSY
models. Our starting points are that, on one hand, the Higgs quartic coupling receives
radiative corrections from all SUSY particles, and on the other, the Higgs mass is measured
with a high precision, and therefore can be used as an input. When the SUSY scale is much
higher than the EW scale, it is reasonable to adopt an EFT approach. For a proof of concept,
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we have taken the example of the FSSM, a supersymmetric four-Higgs-doublet model, which
was proposed in [80] as a solution to the muon (g − 2) anomaly with multi-TeV sleptons.
We have shown that, the Higgs mass in conjunction with the muon (g − 2) yields various
constraints on the parameters of the FSSM. The principle of our method is general, and can
be applied to other (high-scale SUSY) models, or other anomalies.

It is also phenomenologically interesting to consider SUSY models that are within the
reach of current colliders. As SUSY extensions of the SM feature an extended scalar sector,
the crucial point is that one of the scalars must be the SM-like Higgs, while its coupling to
other scalars should be sufficiently suppressed to have escaped detection. In Chapter 5, we
discussed the Dirac gaugino models that have good alignment properties compared to the
MSSM and the NMSSM. And intriguingly, thanks to the triplet scalar in the model, one
naturally obtains a tree-level enhancement to the W boson mass, so as to accommodate the
recent CDF measurement. A numerical analysis is performed, pointing out the importance
of quantum corrections to mW , that may become as large as the tree-level contribution.

213



Appendix A

Conventions in Chapter 2

Spinor conventions

We have followed the conventions in [26], with mostly positive metric ηmn ∼ (−1, 1, 1, 1),
and Levi-Civita tensor ε0123 = −1. The hermitian σ-matrices are

σ0 =
(

−1 0
0 −1

)
σ1 =

(
0 1
1 0

)

σ2 =
(

0 −i
i 0

)
σ3 =

(
1 0
0 −1

)
.

(A.1)

The γ matrices are defined as

γm =
(

0 σm

σ̄m 0

)
, γ5 = γ0γ1γ2γ3 =

(
−i 0
0 i

)
(A.2)

The higher rank γ-matrices are defined as

γmn = 1
2 [γm, γn] , γmnk = 1

2
{
γm, γnk

}
, · · · (A.3)

The spinor indices are raised and lowered by the antisymmetric ε-symbol, whose non-
vanishing components are

ε21 = ε12 = 1, ε12 = ε21 = −1 (A.4)

Denoting σµ =
(
σ0, σ⃗

)
, σµ and σ̄µ are related by

σ̄µα̇α = εα̇β̇εαβσµ
ββ

σ̄0 = σ0

σ̄1,2,3 = −σ1,2,3.

(A.5)

The conjugate of the spinor has dotted index and an overbar (χα)† = χ̄α̇. The spinor indices
are contracted in the “northwest-southeast” (NW-SE) manner, namely, (λχ) = λαχα =
−χαλ

α = (χλ),
(
λ̄χ̄
)

= λ̄α̇χ̄
α̇ = −χ̄α̇λ̄α̇ =

(
χ̄λ̄
)
.
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From two components to four components

The four-component notation can be restored by introducing the γ-matrices (A.2) and
the four-component Dirac spinors are written as

ΨD =
(
χα

λ̄α̇

)
(A.6)

with the Dirac adjoint defined as

Ψ̄D ≡ Ψ†
Diγ0 = −i

(
λα χ̄α̇

)
(A.7)

Conversely, the Weyl spinors in ΨD are selected by the chiral projectors PL = (1 + iγ5)/2,
PR = (1 − iγ5)/2.

Field redefinitions

The field redefinitions are written in the form

F → aF + bG (A.8)

which means that the field F is replaced everywhere by aF ′+bG, and the primes are dropped
in the subsequent Lagrangian. The new gauge transformations are

δF ′ = 1
a

(δF − bδG), δG′ = δG (A.9)

Dual fields

A self-dual rank-2 tensor satisfies

εmnpqS
mn = −2iSpq (A.10)

Correspondingly, for an anti self-dual tensor, εmnpqS
mn = 2iSpq. Out of a generic rank-2

tensor, one is able to construct a self-dual combination

S [Amn] ≡ 1
4 (Amn −Anm) + i

4εmnrsA
rs. (A.11)

This has been used to write gauge transformations of the self-dual fields tmn, smn.

Shorthand notations

A summary of some shorthand notations used in this work:

(ϵ · σ) = ϵmnσmn = iϵ̃mnσmn, (ϵ · σ̄) = ϵmnσ̄mn = −iϵ̃mnσ̄mn

ϵϵ ≡ ϵmnϵmn, ϵϵ̃ ≡ ϵmnϵ̃mn

Gmn ≡ (ηmn − iϵmn)−1 , Amn ≡
(
ηmn − i

2ϵmn − 1
2 ϵ̃mk ϵ̃

k
n

)−1

Σmn ≡ σmσ̄n (ϵ · σ) − σm (ϵ · σ̄) σ̄n − (ϵ · σ)σmσ̄n

(A.12)
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Appendix B

Conventions in Chapter 3

Our notations follow mostly that in [19], where the flat space γ-matrices are

γ̄0 =
(

i12 0
0 −i12

)
, γ̄i =

(
0 −iσi

iσi 0

)
, γ5 =

(
0 −12

−12 0

)
(B.1)

The Minkowski metric has the signature (−,+,+,+), and for cosmological applications,
we used the FLRW metric. The curved space γ-matrices, noted γµ, are then related to the
flat space γ-matrices by γµ = a−1γ̄µ.

The left and right projections are defined as

PL = 1
2 (1 + γ5) , PR = 1

2 (1 − γ5) (B.2)

Note that for chiral fermions, PLχi = χi and PRχ
i = χi. The charge conjugation matrix

in this convention is given by C = γ̄0γ̄2. Some useful charge conjugates are

χC
i = χi, ϕC

i = ϕi, PC = P, λC = λ

γ̄C
µ = γ̄µ, γC

5 = −γ5, PC
L = PR

(B.3)

The covariant derivative of the scalar is ∂̂0 = ∂0 − i
2A

B
0 γ5. In the cosmological context

considered, the spatial derivatives of the scalar vanish, and for real backgrounds we have
AB

0 = 0, so ∂̂0 = ∂0.
Keeping the above simplifications, the covariant derivatives acting on the chiral fermions,

the gaugino and the gravitino are respectively

Dµχi ≡
(
∂µ + 1

4ω
ab
µ γ̄ab

)
χi + Γjk

i χj∂µϕk, Dµλ =
(
∂µ + 1

4ω
ab
µ γ̄ab

)
λ

Dµψν =
((

∂µ + 1
4ω

ab
µ γ̄ab + 1

2iγ5Aµ

)
δλ

ν − Γλ
µν

)
ψλ

(B.4)

ωab
µ stands for the spin connection and Aµ is the U(1) gauge field. The Christoffel con-

nection Γλ
µν differs from the Kähler connection, where latter corresponds to Γjk

i ≡ g−1l
i∂

jgk
l .

We used the notation γ̄ab ≡ [γ̄a, γ̄b] /2.
Introducing also the Kähler covariant derivative Di, the mass terms are
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mi ≡ Dim = ∂im+ ∂iK

2M2
P
m, mij ≡ DiDjm =

(
∂i + ∂jK

2M2
P

)
mj − Γij

k m
k

miα = −i
[
∂iP − 1

4(Re f)−1Pfi

]
, mR,αβ = −1

4fig
−1i
j mj

(B.5)

The subscript i in f denotes the derivative with respect to ϕi.
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