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General introduction

In his seminal work "Leçons sur les phénomènes de la vie communs aux animaux et aux végétaux", Claude Bernard (1813Bernard ( -1878) ) introduces the concept of internal milieu, fundamental in physiology: "I believe I was the first to insist on the concept that animals have actually two milieus; an external milieu in which the organism is located and an internal milieu in which the elements of its tissues live. The real exsistence of a living thing does not take place in the external milieu, which is the atmosphere for air-breathing creatures and fresh or saltwater for aquatic animals, but in the liquid internal milieu formed by the circulating organic fluid surrounding and bathing all the anatomical elements of the tissue. [...] The fixity of the internal environment is the condition of the free, independent life: the mechanism which allows it is the one which ensures in the internal environment the maintenance of all the conditions necessary to the life of the elements."1 [Bernard, 1885;[START_REF] Larsen | Osmoregulation and excretion[END_REF]. The internal milieu is composed of the fluids circulating between or within the organs (blood, lymph, etc.), which requires space or a biological cavity. Its existence and stability are two essential components of the life of a multicellular organism, animal or plant. On this internal milieu thus lies the development of an organism, independently of its external environment.

Biological cavities, or lumens, are ubiquitous in multicellular organisms. The study of lumen formation is a rapidly growing topic in biology, with multiple implications. Beyond the fundamental aspect, cavity formation concerns almost all body organs and appears, in particular, during tissue disorders such as in epithelial cancers. Nevertheless, the theoretical description of the physical mechanisms leading to cavity formation is still in its infancy.

The starting point of this thesis was a collaboration with the group of Jean Léon Maître, a team of developmental biologists, at Institut Curie, in particular, Julien Dumortier, a post-doctoral researcher. Julien observed the first instants of the formation of the mouse blastocoel, a fluid-filled cavity, the first to appear in mammalian embryogenesis. With a simple model, I was able to propose a physical analogy to explain the emergence of the blastocoel from a network of connected microcavities, some of which disappear and others grow. Of course, many questions immediately arose, but one of them shaped the central question of my thesis: what are the physical mechanisms that govern the formation and size of biological cavities?

My thesis is a work of theoretical physics, based on experimental observations of biological systems. I develop models by introducing physical effects progressively to identify their respective contributions and interactions. To complete theoretical aspects, I developed several numerical simulation codes to obtain quantitative predictions. In particular, we have chosen to study the interaction between osmosis and hydraulic flows in the control of lumens, two physical phenomena recently revived in developmental biology, but well known in physiology to describe the control of the internal milieu. In the course of our theoretical studies, I realized the links between the evolution of a network of connected biological microcavities with the coarsening of drops in ultrathin films and the parallel between blastocoel volume control and lumen physiology.

These two aspects have thus constituted the two main axes of my thesis, which is divided into three parts.

In the first part, I introduce the biological and physical concepts. In Chapter 1, I first discuss the different types of biological cavities, focusing on the so-called inverted cysts with an abnormal polarity compared to the classical lumens. I then detail the development of the mouse blastocyst which is an inverted cyst. In Chapter 2, I recall the general principles of physics that I will use throughout the manuscript.

The second part is devoted to the study of the coarsening of a network of connected micro-cavities. In Chapter 3, I present recent observations made in the mouse embryo preceding cavitation: the appearance of a network of micro-cavities at cell contacts. I propose a hydraulic model to describe the coarsening of this network and the positioning of the final cavity, the blastocoel. In Chapter 4, I extend the hydraulic Contents model to a more detailed one-dimensional model that includes the presence of osmotic effects through the addition of a solute, the permeation of water and solute, and active pumping. I first consider a toy model with two cavities analytically and then extend it numerically to a chain to study collective dynamics.

The third part is focused on the study of the volume control and physiology of a cavity such as a blastocoel. In Chapter 5, I propose several models to study the control of the volume of an embryo within a shell through water exchange with the external environment. I propose models of an embryo with or without a lumen and/or an elastic shell, and I study the control of its size under osmotic shocks, i.e. rapid changes of the external medium concentration. In Chapter 6, I focus on the model of an embryo with a cavity to applying the equations of the Pump-Leak model, usually employed to study a single cell. I include the electro-osmotic effects of charged species, active pumping, and electric transmembrane potential to the volume control of a lumen.

Finally, I conclude in part IV discussing the perspectives offered by this manuscript.

Part I

Biological and physical background

Chapter 1

Biological background

In this chapter, we present the biological systems that will be discussed in this thesis. First, we define what are epithelia, the cell layers present on the surface of biological cavities, and present the so-called apical lumens. We then focus on inverted cysts or basolateral lumens; we justify the relevance of their study by their diversity in biological systems and their proximity to embryonic development. This leads us to present briefly the pre-implantation development of the mammalian embryo, which develops a basolateral cavity, the blastocoel.

Cavities in biology

The ability of an organism to form a cavity is central throughout its development [START_REF] Jewett | Insane in the apical membrane: Trafficking events mediating apicobasal epithelial polarity during tube morphogenesis[END_REF]. Biological cavities allow many vital body functions: the storage of nutrients for digestion (stomach, intestine), the exchange of air with the outside (lungs: gills and pulmonary alveoli), the transport of fluid (vascular system, lymphatic system, heart cavity), the secretion of gametes or host of the embryo(s) in the female reproductive organs (uterus), the secretion of substances (glands), etc. The study of their formation is of fundamental interest for understanding the morphogenesis of organs and tissues. Some of these biological cavities are called "lumens" (opening 1 ), and they are used for the exchange of fluid between several cellular tissues. A cell layer specialized for these exchanges is present at this border: the epithelium.

The epithelium

The epithelium is probably the first cellular tissue to emerge during metazoan phylogenesis [START_REF] Cereijido | Cell adhesion, polarity, and epithelia in the dawn of metazoans[END_REF][START_REF] Rodriguez-Boulan | Organization and execution of the epithelial polarity programme[END_REF] and one of the first to appear during embryogenesis [START_REF] Dickinson | A polarized epithelium organized by β-and αcatenin predates cadherin and metazoan origins[END_REF]. Epithelia are present at the surface of organs, such as the epidermis, respiratory epithelium, or intestinal epithelium, or within glandular tissues, such as the kidneys, breasts, pancreas, etc. Epithelial cells can have different morphologies: cuboidal, squamous (like a pavement), or columnar. They are also polarized, i.e. capable of distinguishing the internal environment of an individual from the external environment.

Epithelia ensure both homeostasis, function, and integrity of cellular tissues. Deregulations of epithelial cells, such as the loss of apicobasal polarity, epithelial-mesenchymal transition, etc., may eventually lead to epithelial cancers as adenocarcinomas [START_REF] Mccaffrey | Epithelial organization, cell polarity and tumorigenesis[END_REF][START_REF] Muthuswamy | Cell polarity as a regulator of cancer cell behavior plasticity[END_REF]].

An epithelial cell is qualified as polar, with two distinct regions of the membrane: the apical domain and the basolateral domain, separated by tight junctions, see Fig. 1.1. The apical membrane faces the outside of the tissue. It is rich in microvilli which increase the exchange surface of the cell with the external environment [START_REF] Rodriguez-Boulan | Organization and execution of the epithelial polarity programme[END_REF]. Cellular junctions firmly seal the tissue with tight junctions to prevent the diffusion of pathogens or molecules into the tissue and thus to allow the control of the inner environment of the multicellular organism [Alberts et al., 2004]. The membranes adjacent to other cell membranes are called lateral membranes. They present adherens junctions, consisting of adhesion molecules (cadherins) linked to the cytoskeleton that give the epithelial tissue its mechanical integrity. The lateral membranes also host the gap junctions, which ensure electrical and metabolic coupling between cells [Alberts et al., 2004]. Finally, the basal membrane is opposed to the apical membrane and is rich in integrins that ensure the cell's adhesion to the extracellular matrix [Alberts et al., 2004]. Specialized proteins identify the domains of polarized epithelial cells. Apical membrane markers are typically PAR3, PAR6, aPKC, CRB proteins, whereas basolateral membrane markers are for example PAR1, Scribble, or adhesion proteins (E-Cadh) [START_REF] Mccaffrey | Epithelial organization, cell polarity and tumorigenesis[END_REF][START_REF] Nance | Getting to know your neighbor: Cell polarization in early embryos[END_REF] 2014]. Tight junctions serve as a marker of the apical to basolateral transition and are labeled with ZO-1 and occludin proteins [START_REF] Eckert | Tight junction biogenesis during early development[END_REF][START_REF] Nance | Getting to know your neighbor: Cell polarization in early embryos[END_REF][START_REF] Rodriguez-Boulan | Organization and execution of the epithelial polarity programme[END_REF]. Molecular complexes ensure the structural integrity of the epithelial tissue and create barriers important for the homeostasis of biological systems [START_REF] Cummins | Occludin: One Protein, Many Forms[END_REF].

Accompanying the polarization of the epithelium, some protein transporters and ion channels also have localized distributions: Na + /K + -ATPases [START_REF] Watson | Regulation of blastocyst formation[END_REF][START_REF] Violette | Na+/K+-ATPase regulates tight junction formation and function during mouse preimplantation development[END_REF][START_REF] Madan | Na/K-ATPase β1 subunit expression is required for blastocyst formation and normal assembly of trophectoderm tight junction-associated proteins[END_REF] or Ca 2+ -ATPases in pancreatic ductal cells [START_REF] Fanjul | Morphogenesis of "duct-like" structures in three-dimensional cultures of human cancerous pancreatic duct cells (Capan-1)[END_REF] are localized on the basolateral membranes. Conversely, Na + /H + coexchangers are located on the apical membrane of trophectodermal cells in mammals [START_REF] Kawagishi | Na+/H+ exchanger-3 is involved in mouse blastocyst formation[END_REF]. This directed transport of molecules, called vectorial transport, is key in the regulation of tissue homeostasis and allows in particular for the movement of fluid through the epithelial tissue. This is the process used in the intestinal epithelium to integrate nutrients at the apical side and to transmit them to the bloodstream to the basal side, or used by the stomach to regulate acidity [START_REF] Lodish | Transport of ions and small molecules across cell membranes[END_REF].

Epithelial cavities: apical lumens

Epithelia are generally present at the interface between a tissue and a lumen. Such a cavity is often filled with fluids, such as the digestive system, the vascular system, the respiratory system, etc. The majority of described lumens face the apical side of epithelial cells, while the basal side of cells rests on an extracellular matrix of the underlying tissue [START_REF] Overeem | Mechanisms of apical-basal axis orientation and epithelial lumen positioning[END_REF].

In vivo apical lumens are numerous: the pro-amniotic cavity [START_REF] Kim | Deciphering epiblast lumenogenesis reveals proamniotic cavity control of embryo growth and patterning[END_REF], the vascular system tubes [START_REF] Axnick | Vascular lumen formation[END_REF]], the intestinal system [START_REF] Bagnat | Genetic control of single lumen formation in the zebrafish gut[END_REF][START_REF] Alvers | Single continuous lumen formation in the zebrafish gut is mediated by smoothened-dependent tissue remodeling[END_REF], the glands (in the pancreas [START_REF] Azizoglu | Afadin and Rhoa control pancreatic endocrine mass via lumen morphogenesis[END_REF], the poison glands of snakes [START_REF] Post | Snake Venom Gland Organoids[END_REF], the tyroid [START_REF] Pierreux | Shaping the thyroid: From peninsula to de novo lumen formation[END_REF], the mammalian epithelial acini [START_REF] Debnath | Morphogenesis and oncogenesis of MCF-10A mammary epithelial acini grown in three-dimensional basement membrane cultures[END_REF]), or in-vitro, in cultures of pluripotent cells of stomach, lung, liver, kidney, etc., also called organoids [START_REF] Clevers | Modeling Development and Disease with Organoids[END_REF], see Fig. 1.2 for a few examples.

Many mechanisms are at play to form a lumen and vary from one species or tissue to another. In cell sheets, they include wrapping, budding, or entrapment, while in tissues with no pre-existing space, lumens are generated de novo, by cavitation, cord hollowing, cell hollowing, or plasma membrane invagination [START_REF] Jewett | Insane in the apical membrane: Trafficking events mediating apicobasal epithelial polarity during tube morphogenesis[END_REF][START_REF] Sigurbjörnsdóttir | Molecular mechanisms of de novo lumen formation[END_REF].

The formation of an apical lumen can thus be driven by molecular signals and cellular interactions [START_REF] O'brien | Building epithelial architecture: Insights from threedimensional culture models[END_REF][START_REF] Overeem | Mechanisms of apical-basal axis orientation and epithelial lumen positioning[END_REF]. All these contributions can be approximated by agent-based models, where simple rules govern cell behavior: death, division, movement, secretion. With elementary axioms, a large variety of tissues morphologies are obtained, even reproducing the behavior of cancerous tissues [START_REF] Grant | Simulating properties of in vitro epithelial cell morphogenesis[END_REF][START_REF] Engelberg | MDCK cystogenesis driven by cell stabilization within computational analogues[END_REF][START_REF] Karolak | Towards personalized computational oncology: From spatial models of tumour spheroids, to organoids, to tissues[END_REF]. However, these models generally do not include cell or tissue mechanics, nor osmotic and hydraulic fluxes.

Furthermore, lumen formation can be induced by physical effects: the opening of a lumen can be initiated through electrostatic repulsions [START_REF] Strilić | Electrostatic cell-surface repulsion initiates lumen formation in developing blood vessels[END_REF], and hydraulic and osmotic flows are increasingly recognized as major components of morphogenesis [START_REF] Alim | Fluid flows shaping organism morphology[END_REF][START_REF] Collinet | Programmed and self-organized flow of information during morphogenesis[END_REF]. Maintainance of a lumen opening requires its filling [START_REF] Bagnat | Genetic control of single lumen formation in the zebrafish gut[END_REF][START_REF] Navis | Developing pressures: fluid forces driving morphogenesis[END_REF], by the accumulation of fluid or secretion of extracellular matrix [START_REF] Yonemura | Differential sensitivity of epithelial cells to extracellular matrix in polarity establishment[END_REF] or chloride ions as for kidney cells (MDCK) generating an osmotic flow [START_REF] Narayanan | Osmotic Gradients in Epithelial Acini Increase Mechanical Tension across E-cadherin, Drive Morphogenesis, and Maintain Homeostasis[END_REF]. In the zebrafish gut, several lumens form as they grow under osmotic gradients and fluid accumulation, and then fuse to form a single central lumen [START_REF] Alvers | Single continuous lumen formation in the zebrafish gut is mediated by smoothened-dependent tissue remodeling[END_REF]. MDCK cells cultivated in collagen form apical lumens, the growth of which is controlled by hydraulic and osmotic fluxes exchanged with the cells [START_REF] Dasgupta | Physics of lumen growth[END_REF], or even produce oscillations similar to hydra regeneration [START_REF] Soriano | Hydra molecular network reaches criticality at the symmetrybreaking axis-defining moment[END_REF] in the case of multicellular spheroids [START_REF] Ruiz-Herrero | Organ size control via hydraulically gated oscillations[END_REF]. et al., 2002]; (B) Organoid of a snake venomous gland (blue: apical/actin, green: tubulin, red: nuclei/DAPI) [START_REF] Post | Snake Venom Gland Organoids[END_REF]; Amniotic cavity in embryonic stem cells (red: apical/PAR6, blue: nuclei/DAPI) [START_REF] Kim | Deciphering epiblast lumenogenesis reveals proamniotic cavity control of embryo growth and patterning[END_REF]. (D) Zebrafish gut (red: apical/actin, blue: nuclei/DAPI) [START_REF] Alvers | Single continuous lumen formation in the zebrafish gut is mediated by smoothened-dependent tissue remodeling[END_REF].

Basolateral cavities 1.2.1 Inverted cysts

In contrast to apical-in cysts, so-called "normal" cysts, inverted cysts face the basolateral membrane of epithelial cells, which is a priori adhesive, whereas the apical side of cells faces the outside (apical-out), which may be either a suspension medium or the extracellular matrix [START_REF] Monteleon | Modeling disease using three dimensional cell culture multilumen and inverted cyst phenotypes[END_REF], see Fig. 1.3. Apical-out cysts offer the ideal architecture to study the pathogen-host interaction as the apical side is in direct contact with the culture medium of bacteria [START_REF] Poletti | Organoid-based Models to Study the Role of Host-microbiota Interactions in IBD[END_REF], or to study the formation and factors that explain epithelial polarity. Inverted cysts are observed in some epithelial cell cultures in suspension and many pathologies, including adenocarcinoma-like cancers, or polycystic kidney disease [START_REF] Monteleon | Modeling disease using three dimensional cell culture multilumen and inverted cyst phenotypes[END_REF]. Below, we present some examples of inverted cysts found in biological systems, which is intended as a presentation of their diversity and biological relevance.

We start with kidney cells, one of the most studied epithelium. We will then talk about the organoids called enteroids, continue with inverted cysts in glandular epithelia, and finally mention mucosal epithelia. This classification is personal and is not found in the literature. The inverted cyst is sealed by TJ. In both cases, the nuclei are opposite to the apical membrane.

Apical-out

Adapted from [START_REF] Yonemura | Differential sensitivity of epithelial cells to extracellular matrix in polarity establishment[END_REF] 

MDCK cells

Inverted cysts were first described as such in kidney cells, in LLC-PK1 cells [START_REF] Wohlwend | LLC-PK1 cysts: A model for the study of epithelial polarity[END_REF] and Madine Daryb Kidney Cells (MDCK) cultures [Wang et al., 1990a,b], used to study epithelium and apical lumen formation, see Fig. 1.4A and C. Evidence of the fluid accumulation on the basolateral side of MDCK was first investigated with the formation of domes in cell monolayers [START_REF] Cereijido | Polarized monolayers formed by epithelial cells on a permeable and translucent support[END_REF][START_REF] Lever | Inducers of mammalian cell differentiation stimulate dome formation in a differentiated kidney epithelial cell line (MDCK)[END_REF]. Cultivated in a suspension medium, these epithelial cells form spheroids: a monolayer of cells with a spherical shape and an apical side facing the culture (apical-out), while the basolateral side of the cells, equipped with a Na + /K + -ATPase domain, faces the lumen, see Fig. 1.4C. Tight junctions (ZO-1) are observed at the apical side and seal the aggregate [Wang et al., 1990b], see Fig. 1.4D, and accumulation of fluid and chloride ions is observed, controlling the cyst volume [START_REF] Tanner | Fluid transport in a cultured cell model of kidney epithelial cyst enlargement[END_REF]. Several models of fluid and ion transport have been proposed taking MDCK cells as a basis [START_REF] Gin | A model for cyst lumen expansion and size regulation via fluid secretion[END_REF][START_REF] Dasgupta | Physics of lumen growth[END_REF][START_REF] Latorre | Active superelasticity in three-dimensional epithelia of controlled shape[END_REF][START_REF] Vasquez | A geometry-based model describes lumen stability in epithelial cells[END_REF]. By replacing the external suspension medium by a collagen gel (Matrigel), the polarity of spheroids is reversed back to apical-in without cell dissociation. The apical side then faces the lumen, while the basolateral side faces the collagen, showing the influence of the external environment on the polarization of the epithelium [Wang et al., 1990a[START_REF] Wang | Determinants of apical membrane formation and distribution in multicellular epithelial MDCK cysts[END_REF][START_REF] Yonemura | Differential sensitivity of epithelial cells to extracellular matrix in polarity establishment[END_REF][START_REF] Shen | Mechanical Characterization of Microengineered Epithelial Cysts by Using Atomic Force Microscopy[END_REF].

Enteroids

Enteroids are a type of organoids/spheroids obtained from primary gastrointestinal tissues [START_REF] Co | Controlling Epithelial Polarity: A Human Enteroid Model for Host-Pathogen Interactions[END_REF], see Fig. 1.5. They can be used as a model system to study the inflammatory bowel disease (IBD) [START_REF] Yoo | Intestinal enteroids/organoids: A novel platform for drug discovery in inflammatory bowel diseases[END_REF], or host-pathogen interactions in the intestine [START_REF] Co | Controlling Epithelial Polarity: A Human Enteroid Model for Host-Pathogen Interactions[END_REF]. Typically, they present a apical-in polarity, with an inner apical domain facing the central lumen. In some pathological conditions (TTC7A-deficient intestinal cells), abnormal polarity can be observed but is restored provided the inhibition of Rho-kinase [START_REF] Bigorgne | TTC7A mutations disrupt intestinal epithelial apicobasal polarity[END_REF]. Recent advances propose a method to reverse the polarity, to get apical-out spheroids, by cultivating first the spheroids in a Matrigel, and then transferring them into a A C D B FIGURE 1.4: Inverted cysts in kidney cells. (A) LLC-PK1 cells form a inverted cysts placed in suspension medium, (B) with microvilli-rich surface facing the medium (apical-in) and basolateral membrane facing the cavity (basal-in). Adapted from [START_REF] Wohlwend | LLC-PK1 cysts: A model for the study of epithelial polarity[END_REF]. MDCK cells also form inverted cysts in suspension, (C) with the basal side facing the lumen (l) and Na+/K + -ATPase (tagged in white) on the lumen side and (D) ZO-1 tight-junctions (white and arrows) on the medium side. [Wang et al., 1990a]. Scales bars are (A) 50µm, (B) 5µm and (C) 16µm.

suspension culture [START_REF] Co | Controlling Epithelial Polarity: A Human Enteroid Model for Host-Pathogen Interactions[END_REF]. The apical-out enteroids then show a small cavity within the spheroid, to get an apical-in inverted cyst, see Fig. A-C) From [START_REF] Co | Controlling Epithelial Polarity: A Human Enteroid Model for Host-Pathogen Interactions[END_REF]. (D) Normal (control) versus abnormal (patient) polarity in intestinal cells. From [START_REF] Bigorgne | TTC7A mutations disrupt intestinal epithelial apicobasal polarity[END_REF].

Chapter 1. Biological background

Glandular inverted cysts

A gland is a group of cells specialized in the secretion of substances regulating the body (hormones, pheromones, seminal fluid, sweat, milk, etc.). Some glands are composed of an epithelial layer surrounding lumens where the substance is secreted and exchanged with the vascular system. Abnormalities in the orientation of the epithelium, especially its polarity, can lead to cancer. Such cancerous cell lines form inverted cysts. Under given conditions, the epithelial cells self-organize into apical-out inverted cysts: thyroid follicular cells cultivated in suspension medium [START_REF] Herzog | Transcytosis in thyroid follicle cells[END_REF][START_REF] Nitsch | Cell polarity and water transport in thyroid epithelial cells in separated follicles in suspension culture[END_REF][START_REF] Fujita | Functional Morphology of the Thyroid[END_REF], see Fig. 1.6A, B, or Capan-1 pancreatic cells in suspension medium [START_REF] Fanjul | Morphogenesis of "duct-like" structures in three-dimensional cultures of human cancerous pancreatic duct cells (Capan-1)[END_REF], see Fig. 1.6 C, D, or Calu-3 bronchial submucosal gland cultivated on nano-grass [START_REF] Shen | Calu-3: A human airway epithelial cell line that shows cAMP-dependent Cl-secretion[END_REF][START_REF] Shen | In Vitro Epithelial Organoid Generation Induced by Substrate Nanotopography[END_REF].

The inverted cysts show markers of polarized cell membranes and junctions with microvilli on the outer surface and ZO-1/Occludin at apical junctions [START_REF] Baker | Modeling Pancreatic Cancer with Organoids[END_REF][START_REF] Garbi | Ultrastructure and some other properties of inverted thyroid follicles in suspension culture[END_REF]. Most of these epithelia can transport fluid, such as Calu-3 [START_REF] Turner | Hypercapnia modulates cAMP signalling and cystic fibrosis transmembrane conductance regulator-dependent anion and fluid secretion in airway epithelia[END_REF]), illustrated by the presence of inflated spheroids [START_REF] Garbi | Ultrastructure and some other properties of inverted thyroid follicles in suspension culture[END_REF][START_REF] Nitsch | Cell polarity and water transport in thyroid epithelial cells in separated follicles in suspension culture[END_REF][START_REF] Mauchamp | Polarity of threedimensional structures derived from isolated hog thyroid cells in primary culture[END_REF] or domes in epithelial monolayers [START_REF] Levrat | Differentiation of the human pancreatic adenocarcinoma cell line (Capan-1) in culture and co-culture with fibroblasts dome formation[END_REF][START_REF] Becq | Anion channels in a human pancreatic cancer cell line (Capan-1) of ductal origin[END_REF]. They also transport ions [START_REF] Shen | Calu-3: A human airway epithelial cell line that shows cAMP-dependent Cl-secretion[END_REF][START_REF] Yap | Regulation of thyroid follicular volume by bidirectional transepithelial ion transport[END_REF][START_REF] Szucs | Vectorial bicarbonate transport by capan-1 cells: A model for human pancreatic ductal secretion[END_REF][START_REF] Fanjul | Morphogenesis of "duct-like" structures in three-dimensional cultures of human cancerous pancreatic duct cells (Capan-1)[END_REF] with active transporters [START_REF] Bourke | Cyclic AMP-stimulated fluid transport in the thyroid: Influence of thyroid stimulators, amiloride and acetazolamide on the dynamics of domes in monolayer cultures of porcine thyroid cells[END_REF] or exchangers [START_REF] Bourke | Cyclic AMP-stimulated fluid transport in the thyroid: Influence of thyroid stimulators, amiloride and acetazolamide on the dynamics of domes in monolayer cultures of porcine thyroid cells[END_REF][START_REF] Fanjul | Morphogenesis of "duct-like" structures in three-dimensional cultures of human cancerous pancreatic duct cells (Capan-1)[END_REF], which can be accompanied by a transepithelial electric potential [START_REF] Takasu | Electrophysiological and morphological cell polarity and iodine metabolism in cultured porcine and human (normal and Graves') thyroid cells[END_REF]. The formation of these inverted cysts is not fully elucidated yet but may be produced by apoptosis of central cell [START_REF] Shen | In Vitro Epithelial Organoid Generation Induced by Substrate Nanotopography[END_REF], or coalescence of intercellular spaces such as in breast cancers [START_REF] Wrenn | Regulation of Collective Metastasis by Nanolumenal Signaling[END_REF] or Capan-1 pancreas [START_REF] Fanjul | Morphogenesis of "duct-like" structures in three-dimensional cultures of human cancerous pancreatic duct cells (Capan-1)[END_REF]. Just as MDCK cells, inverted cysts reverse their polarity to normal apical-in once placed in matrigel or collagen [START_REF] Nitsch | Cell polarity and water transport in thyroid epithelial cells in separated follicles in suspension culture[END_REF][START_REF] Kitajima | Fine structural aspects of follicle-like cavity formation from dispersed porcine thyroid cells cultured in a collagen substrate[END_REF][START_REF] Shen | In Vitro Epithelial Organoid Generation Induced by Substrate Nanotopography[END_REF][START_REF] Fanjul | Morphogenesis of "duct-like" structures in three-dimensional cultures of human cancerous pancreatic duct cells (Capan-1)[END_REF][START_REF] Gutierrez-Barrera | Establishment of threedimensional cultures of human pancreatic duct epithelial cells[END_REF][START_REF] Yonashiro | Mutant SOD1 and Attenuates Mutant SOD1-induced Reactive Oxygen Species Generation[END_REF][START_REF] Hohwieler | Human pluripotent stem cell-derived acinar/ductal organoids generate human pancreas upon orthotopic transplantation and allow disease modelling[END_REF][START_REF] Azizoglu | Afadin and Rhoa control pancreatic endocrine mass via lumen morphogenesis[END_REF] or with the use of specific drugs/hormones [START_REF] Takasu | Electrophysiological and morphological cell polarity and iodine metabolism in cultured porcine and human (normal and Graves') thyroid cells[END_REF].

E G F A B L M C D FIGURE 1
.6: Glandular cells form apical-out spheroids in vitro. (A) Hollow sphere of thyroid cells in suspension, with apical out. From [START_REF] Mauchamp | Polarity of threedimensional structures derived from isolated hog thyroid cells in primary culture[END_REF]. (B) Ultrastructure crosssection of an inverted follicle. Microvilli face the medium (M). L for Lumen. From [START_REF] Garbi | Ultrastructure and some other properties of inverted thyroid follicles in suspension culture[END_REF]. (C) Pancreatic organoid cultivated in suspension forms a pressurized inner cavity (IC), facing the basolateral membrane of cells. The arrow designates a bud of cells. The apical side of cells faces the culture medium. (D) Cross-section of the 3-cell stage showing the nascent cavity. The arrows indicate the apposed cell-cell contacts. Ly: lysosome. Both adapted from [START_REF] Fanjul | Morphogenesis of "duct-like" structures in three-dimensional cultures of human cancerous pancreatic duct cells (Capan-1)[END_REF]. (E) Breast tumor cells containing nano-lumina at their cell-cell contacts (TEM microscopy). (F) Closer view of the intercellular cavities that include microvilli-like protrusions. (G) Rendering of the nanoluminal space (red). From [START_REF] Nathanson | Mechanisms of breast cancer metastasis[END_REF])

Mucosal epithelial cells

Epithelial cells are the source of a large majority of human cancers [START_REF] Mccaffrey | Epithelial organization, cell polarity and tumorigenesis[END_REF]. One method of cancer spread is through metastasis, which spreads throughout the body, thanks to the proximity of epithelial mucosa to the vascular system. Cancer cells can move in clusters, ensuring them a greater probability of survival [START_REF] Nathanson | Mechanisms of breast cancer metastasis[END_REF], with an organization in inverted cysts (apical-out). It is the case in colorectal cancers [START_REF] Zajac | Tumour spheres with inverted polarity drive the formation of peritoneal metastases in patients with hypermethylated colorectal carcinomas[END_REF][START_REF] Canet-Jordan | TGF β Controls the Apico-Basolateral Orientation of Tumor Spheres and Is Correlated With Patient Outcome in Colorectal Cancer TGF b controls the apico-basolateral polarity orientation of tumor spheres and is associated with patient outcome in colorectal c[END_REF] or ovarian cancers [START_REF] Moss | Ovarian cancer cell detachment and multicellular aggregate formation are regulated by membrane type 1 matrix metalloproteinase: A potential role in I.p. metastatic dissemination[END_REF]. A group of cells is extruded apically from the tumor, due to a lack of cell adhesion [START_REF] Lengyel | Ovarian cancer development and metastasis[END_REF]. In ovarian cancers, extruded OVCAR3 cells first form a compact cluster of cells, termed a "moruloid" and then form a basolateral cavity that oscillates in size over time, with a structure termed a "blastuloid" [START_REF] Langthasa | Extracellular matrix mediates moruloid-blastuloid morphodynamics in malignant ovarian spheroids[END_REF], in reference to the mammalian embryo, that exhibits the same inverted polarity. As we will see next, early embryos do also form apical-out inverted cysts.

Blastocoel and blastula

During their development, embryos adopt multiple shapes [START_REF] Brusca | A molecular network for de novo generation of the apical surface and lumen[END_REF] compact spheres (stereoblastula) in mollusks [START_REF] Henry | The slipper snail, Crepidula: An emerging lophotrochozoan model system[END_REF] or nematodes [START_REF] Nance | Cell polarity and gastrulation in C. elegans[END_REF], a discoidal shape (discoblastula) as in avians [START_REF] Jacobson | The early development of the avian embryo. I. Endoderm formation[END_REF], or monotremes [START_REF] Thomson | The Development of the Monotremata.-Part VI. The Later Stages of Cleavage and the Formation of the Primary Germ-layers[END_REF], our distant cousins within the mammals. Others, such as eutherian mammalians (humans, primates, mice, cows, marsupial, etc.), echinoderms (sea urchins [START_REF] Gustafson | Studies on the cellular basis of morphogenesis in the sea urchin embryo[END_REF]), cnidarians (jellyfish [START_REF] Kraus | Cell shape changes during larval body plan development in Clytia hemisphaerica[END_REF]), some sponges [START_REF] Ereskovsky | The Comparative Embryology of Sponges[END_REF] or amphibians (Xenopus [START_REF] Winklbauer | Mesoderm and endoderm internalization in the Xenopus gastrula[END_REF]) adopt a coeloblastula shape, corresponding to a layer of cells surrounding a fluid filled cavity, the blastocoel [Le Verge-Serandour and Turlier, 2021b], see Fig. 1.7. Most of these embryos display, before or after the cavity has formed, an apical-out polarity. As there is no basement for the basolateral domain to attach, the apical domain faces the external medium. This stage of development typically precedes gastrulation and is generically designed as blastula stage [START_REF] Martindale | The evolution of metazoan axial properties[END_REF]. As such, the coeloblastula is the first remarkable form of the embryo, distinct from a cluster of unorganized cells. The mechanisms underlying blastocoel formation are numerous and vary from one species to another [Le Verge-Serandour and Turlier, 2021b]. Of special interest is the formation of the mammalian coeloblastula, baptized blastocyst. The blastocyst will be focus of the next section, and will be used as the main model system for this thesis.

Development of the pre-implantation mouse embryo

Mammals -especially the therians containing placentals and marsupials -can implant in the maternal uterus by fusing with the endometrium through the placenta [START_REF] Frankenberg | The mammalian blastocyst[END_REF]. The sequence of steps preceding implantation is referred to as preimplantation development and is characteristic of mammals. The mouse embryo is used as a model system in mammals. Its preimplantation development is similar to that of humans and has been an extensive subject of study. In the mouse, preimplantation development covers the development of the embryo from the zygote stage (1 cell) to the blastocyst stage (≳ 120 cells), a spherical ball of cells enclosing a fluid-filled cavity with an inner population of cells, the inner cell mass. In the following, we summarize the major events in the morphogenesis of the preimplantation embryo.

From the fertilized zygote to the morula: 1-to 16-cell stage

The Oocyte-to-Embryo Transition (OET)

The oocyte is the germ cell of the female metazoan. Before ovulation, the oocyte is designated as a primordial germ cell and is surrounded by follicular cells exposing it to growth factors. In mice, the primordial germ cell grows in size, from 20µm diameter to 80µm diameter [START_REF] Schultz | The oocyte-to-embryo transition in mouse: Past, present, and future[END_REF]. At this stage, the germ cell is arrested in the prophase of the first meiotic division. Before ovulation it undergoes maturation, corresponding to the re-entry into meiosis and extrusion of the first polar body [START_REF] Jamnongjit | Oocyte maturation: The coming of age of a germ cell[END_REF]. At fertilization, the second meiosis is triggered and the oocyte becomes haploid, with extrusion of the second polar body [START_REF] White | Instructions for Assembling the Early Mammalian Embryo[END_REF]. The egg loses its identity to evolve from a differentiated state to a single totipotent cell, the zygote. This is the so-called Oocyte-to-Embryo Transition (OET) [START_REF] Schultz | The oocyte-to-embryo transition in mouse: Past, present, and future[END_REF].

Coeloblastula Stereoblastula

Discoblastula Periblastula [START_REF] Kraus | Cell shape changes during larval body plan development in Clytia hemisphaerica[END_REF], (C) Mammals mouse [START_REF] Dumortier | Hydraulic fracturing and active coarsening position the lumen of the mouse blastocyst[END_REF], (D) Amphibian Xenopus laevis [START_REF] Longo | Multicellular computer simulation of morphogenesis: Blastocoel roof thinning and matrix assembly in Xenopus laevis[END_REF]; (E) Stereoblastula: (F) Spiralia Maritigrella crozieri [START_REF] Rawlinson | Embryonic and post-embryonic development of the polyclad flatworm Maritigrella crozieri; implications for the evolution of spiralian life history traits[END_REF], (G) Hydrozoa Gonothyraea loveni [START_REF] Burmistrova | Embryonic development of thecate hydrozoan Gonothyraea loveni (Allman, 1859)[END_REF], (H) Porifera (sponge) Petrosia ficiformis [START_REF] Maldonado | Gametogenesis, embryogenesis, and larval features of the oviparous sponge Petrosia ficiformis (Haplosclerida, Demospongiae)[END_REF]; (I) Discoblastula: (J) Fish Misgurnus anguilicaudatus [START_REF] Fujimoto | Developmental stages and germ cell lineage of the loach (Misgurnus anguillicaudatus)[END_REF], (K) Avians [START_REF] Pilato | The problem of the origin of primordial germ cells (PGCs) in vertebrates: Historical review and a possible solution[END_REF], (L) Monotremes Palyptus [START_REF] Thomson | The Development of the Monotremata.-Part VI. The Later Stages of Cleavage and the Formation of the Primary Germ-layers[END_REF]; (M) Periblastula: (N) Insect Drosophila melanogaster [START_REF] Großhans | Control of Cleavage Cycles in Drosophila Embryos by frühstart[END_REF], (O) Acaria longisetosus [START_REF] Laumann | First cleavages, preblastula and blastula in the parthenogenetic mite Archegozetes longisetosus (Acari, Oribatida) indicate holoblastic rather than superficial cleavage[END_REF] .

The Zygote

The zygote corresponds to the fertilized cell that comprises the two half-genomes of the parental germ cells. With the extrusion of the second polar body, the zygote has two separate pronuclei, that decondense and undergo DNA modifications to fuse into the cell nucleus. The zygote, through successive divisions, gradually increases its number of cells. These cell divisions, called cleavages, are made without prior growth of the cells, whose individual volumes are divided by two at each step [START_REF] Swartz | Early mammalian embryonic development[END_REF]. In the case of mice and mammals, these cleavages are said to be holoblastic, i.e. complete [START_REF] Gilbert | Developmental Biology, 11Th Edition 2016[END_REF]. The first division takes place 36 hours after fertilization (E1.5) in mice and humans [START_REF] Swartz | Early mammalian embryonic development[END_REF][START_REF] Cockburn | Making the blastocyst: Lessons from the mouse[END_REF], and the second division after 48 hours (E2.0), see Fig. 1.8. From the 1-cell stage onward to the 8-cell stage, the cells, designated as blastomeres, are thought to be pluripotent [START_REF] Alarcón | Unbiased contribution of the first two elastomeres to mouse blastocyst development[END_REF][START_REF] Motosugi | Polarity of the mouse embryo is established at blastocyst and is not prepatterned[END_REF][START_REF] Hiiragi | First cleavage plane of the mouse egg is not predetermined but defined by the topology of the two apposing pronuclei[END_REF], even though some studies show that some factors could bias the cells to favor a given fate [START_REF] Piotrowska-Nitsche | Four-cell stage mouse blastomeres have different developmental properties[END_REF][START_REF] Tabansky | Developmental bias in cleavage-stage mouse blastomeres[END_REF].

The Morula

Before the 8-cell stage, all blastomeres are morphologically similar and may give any cell lineage. The embryo reaches the 8-cell stage around E2.5 [START_REF] Cockburn | Making the blastocyst: Lessons from the mouse[END_REF][START_REF] Piliszek | Cell fate in animal and human blastocysts and the determination of viability[END_REF], where it undergoes its first morphogenetic event, see Fig. 1.8. At this stage, the embryo is referred to as a morula2 . FIGURE 1.8: Development of the mouse embryo from zygote (1-cell) to mature blastocyst (32cell stage) in the human and mouse. From [START_REF] Molè | Comparative analysis of human and mouse development: From zygo[END_REF].

Compaction and ICM formation

The cells in the embryo, previously in the shape of aggregated balls, become compacted by increasing their cell-cell contacts and give a more spherical overall shape to the embryo [START_REF] Maître | Mechanics of blastocyst morphogenesis[END_REF]. The presence of adhesion molecules, E-cadherins, is essential and maintains strong adhesion between cells [Ducibella and Anderson, 1975;[START_REF] Larue | E-cadherin null mutant embryos fail to form a Trophectoderm Epithelium[END_REF], but is not entirely responsible for compaction. Indeed, the adhesive forces are weak compared to the tensile forces of the cytoskeleton [START_REF] Maître | Adhesion Functions in Cell Sorting by Mechanically Coupling the Cortices of Adhering Cells[END_REF][START_REF] Chan | Coordination of Morphogenesis and Cell-Fate Specification in Development[END_REF]. It is the cytoskeleton that modifies the cell surface tension of blastomeres, which pull on each others [START_REF] Maître | Pulsatile cell-autonomous contractility drives compaction in the mouse embryo[END_REF]. This tension increases by contraction of the actomyosin cortex [START_REF] Maître | Pulsatile cell-autonomous contractility drives compaction in the mouse embryo[END_REF]. For geometrical reasons and because of stronger contractility, some cells are internalized between the 8-and 16-cell stages, which makes two cell populations emerge: a completely internal population, the inner cell mass (ICM), and a population with at least one contact with the outside, the trophectoderm (TE) [START_REF] Maître | Asymmetric division of contractile domains couples cell positioning and fate specification[END_REF], see Fig. 1.8. With the compaction and internalization of the blastomeres, some cells polarize.

Polarization Concomitant with the compaction, blastomeres become apicobasaly polarized: they become epithelial cells, later called trophectoderm (TE) cells. From the 16-cell stage onward, an apical cap forms on the outer faces of non-internalized cells, rich in microvilli and expressing apical markers such as aPKC. This apical cap is also depleted in actomyosin, reducing the cells' contractility [START_REF] Maître | Asymmetric division of contractile domains couples cell positioning and fate specification[END_REF]. The actin rings progressively cover the outer surface of the blastomeres, up to the cell junctions. These develop tight junctions and adherens junctions that are also a marker of epithelial tissues [Ducibella et al., 1975;[START_REF] Fleming | Assembly of tight junctions during early vertebrate development[END_REF][START_REF] Eckert | Tight junction biogenesis during early development[END_REF], reinforced by the contractile actin ring [START_REF] Zenker | Expanding Actin Rings Zipper the Mouse Embryo for Blastocyst Formation[END_REF].

The adhesion molecules, E-Cadherins, relocate to cell-cell contacts [START_REF] Vestweber | Expression and distribution of cell adhesion molecule uvomorulin in mouse preimplantation embryos[END_REF], as do proteins associated with basolateral contacts in epithelial cells, such as Na + /K + -ATPases [START_REF] Vorbrodt | Ultrastructural cytochemistry of membranebound phosphatases in preimplantation mouse embryos[END_REF][START_REF] Watson | Immunofluorescence assessment of the timing of appearance and cellular distribution of Na/K-ATPase during mouse embryogenesis[END_REF][START_REF] Barcroft | Deletion of the Na/K-ATPase α1-subunit gene (Atp1a1) does not prevent cavitation of the preimplantation mouse embryo[END_REF].

The embryo later divides to reach the 32-cell stage around E3.0 (E4.0 for the human embryo), where the permeability seal is mature and is ready to form the blastocyst.

The blastocyst: formation, hatching and implantation

Blastocyst formation

At the 32-cell stage and around E3.5 (E4.5 for humans), the morula self-organizes and becomes the blastocyst, a structure common to many mammals [START_REF] Płusa | Common principles of early mammalian embryo self-organisation[END_REF]. The cells were closely apposed with tight contacts, but within the span of a few hours, a fluid-filled cavity appears within the embryo: the blastocoel [START_REF] Wiley | Cell surface and cytoskeletal elements: Cavitation in the mouse preimplantation embryo[END_REF]. The embryo is shaped approximately like a sphere, with an outer cell layer, the trophectoderm, surrounding the blastocoel and the ICM at its opposite side. FIGURE 1.9: Blastocyst formation for a mouse embryo. After polarization and compaction, the embryo is called a morula. It is enclosed in the Zona Pellucida and has apicobasal polarity. Two populations of cells are present: the Inner Cell Mass (ICM) and the Trophectoderm (TE). Around 32-cell stage, a network of micro-lumens appears at the cell-cell contacts, as fluid accumulates and cannot escape the embryo due to tight-junctions (TJ) establishing a permeability seal. The micro-lumens increase in size but reduce their number, such that one cavity stands after a few hours: the nascent blastocoel (b). The embryo later expands in size and stretches the Zona Pellucida to hatch. Red is for apical cell membrane, blue for basolateral. E stands for embryonic day post-coitum, Ab/Em stands for abembryonic/embryonic axis.

Blastocel

Microscopy images from J.-L. Maître group.

Cavitation

The epithelialization of trophectoderm cells and the relocation of transporters allow for vectorial transport of ions, notably sodium Na + , from the external environment to the cells via Na + /H + exchangers [START_REF] Kawagishi | Na+/H+ exchanger-3 is involved in mouse blastocyst formation[END_REF], and from the cells to the intercellular environment via Na + /K + -ATPases pumps [START_REF] Watson | Regulation of blastocyst formation[END_REF]. This displacement of solutes generates osmotic gradients, sufficient to induce a flow of water and to generate intercellular cavities, where fluid accumulates [START_REF] Calarco | An ultrastructural and cytological study of preimplantation development of the mouse[END_REF][START_REF] Wiley | Effects of colcemid on cavitation during mouse blastocoele formation[END_REF][START_REF] Aziz | The origin of the nascent blastocoele in preimplantation mouse embryos ultrastructural cytochemistry and effect of chloroquine[END_REF][START_REF] Motosugi | Polarity of the mouse embryo is established at blastocyst and is not prepatterned[END_REF], see Fig. 1.9. The presence of tight junctions, in particular the proteins claudin-4, claudin-6, and ZO-1, seals the embryo and prevents leakage of the accumulated water to compensate the osmotic gradients [START_REF] Moriwaki | Tight junctions containing claudin 4 and 6 are essential for blastocyst formation in preimplantation mouse embryos[END_REF][START_REF] Wang | Zonula occludens-1 (ZO-1) is involved in morula to blastocyst transformation in the mouse[END_REF]. With fluid accumulation, it was proposed that blastocoel emerges from the fusion of the intercellular cavities [START_REF] Calarco | An ultrastructural and cytological study of preimplantation development of the mouse[END_REF][START_REF] Aziz | The origin of the nascent blastocoele in preimplantation mouse embryos ultrastructural cytochemistry and effect of chloroquine[END_REF][START_REF] Ryan | Lumen Expansion Facilitates Epiblast-Primitive Endoderm Fate Specification during Mouse Blastocyst Formation[END_REF], similarly to the process of coalescence of multiple lumens in zebrafish gut [START_REF] Alvers | Single continuous lumen formation in the zebrafish gut is mediated by smoothened-dependent tissue remodeling[END_REF]. However, the cavities hardly move nor fuse, as we shall discuss in Chapter 3, in which we propose an alternative mechanism based on hydraulic exchange for the collective dynamics of cavities.

Determination of the first embryo axis

The blastocoel forms systematically at the TE-ICM interface, breaking the radial symmetry of the embryo: the blastocoel is positioned at one side, facing the ICM, along the embryonic/abembryonic axis [START_REF] Kurotaki | Blastocyst axis is specified independently of early cell lineage but aligns with the ZP shape[END_REF][START_REF] Dard | Morphogenesis of the mammalian blastocyst[END_REF][START_REF] Takaoka | Cell fate decisions and axis determination in the early mouse embryo[END_REF], see Fig. 1.9. This symmetry breaking is one of the first morphogenetic events and the first visible axis in the embryo that guides later the establishment of the dorsoventral axis. It seems not to be pre-patterned, although it may be influenced by the shape of the surrounding Zona Pellucida (ZP) [START_REF] Motosugi | Polarity of the mouse embryo is established at blastocyst and is not prepatterned[END_REF].

Formation of the Epiblast and Primitive Endoderm

Once the blastocoel is formed, the cells of the ICM differentiate a second time around E4.5 (E6.5 for humans), into the Primitive Endoderm (PrE), facing the blastocoel, and the Epiblast (Epi), which is surrounded by the PrE and TE cells, see Fig. 1.8. The PrE will give extra-embryonic tissues with the TE, while the Epi will lead strictly to the embryo proper [START_REF] Cockburn | Making the blastocyst: Lessons from the mouse[END_REF].

Hatching and expansion

With the establishment of cell lineages, the embryo is ready to implant into the uterus, by fusing with the endometrium. But there is still one last step to take: hatching. Since its fertilization, the Zona Pellucida (ZP), an elastic layer of glycoproteins, a vestige of eggshells, surrounds the embryo. In marsupials and monotremes, another mammalian taxon, the ZP is accompanied by other acellular layers [START_REF] Frankenberg | Conceptus Coats of Marsupials and Monotremes[END_REF]. The role of the ZP is to allow a single sperm to penetrate the oocyte and to avoid second fertilization of the oocyte [START_REF] Selwood | Marsupial egg and embryo coats[END_REF][START_REF] Frankenberg | Conceptus Coats of Marsupials and Monotremes[END_REF]. However, when the embryo reaches the late blastocyst stage, this layer prevents it from implantation and must therefore be removed. The embryo secretes enzymes (trypsins) charged to digest the ZP [START_REF] Perona | Mouse blastocysts hatch in vitro by using a trypsin-like proteinase associated with cells of mural trophectoderm[END_REF].

In parallel, it grows in size while pumping fluid, stretching the ZP until it can hatch [START_REF] Leonavicius | Mechanics of mouse blastocyst hatching revealed by a hydrogel-based microdeformation assay[END_REF], and finally, adhere to the nearby maternal endometrium.

Implantation of the blastocyst

The adhesion to the maternal endometrium is mediated by the TE cells [START_REF] Molè | Comparative analysis of human and mouse development: From zygo[END_REF]. At this stage, TE cells are divided into two populations: either polar (close from the ICM) or mural (close from the blastocoel). In the mouse embryo, adhesion occurs at the mural TE, around E4.5-7.5, while for humans, it is mediated by the polar TE, around E7-8 [START_REF] Molè | Comparative analysis of human and mouse development: From zygo[END_REF]. Once implanted, the epiblast of the embryo reshapes itself into a rosette-like structure, from which an apical lumen appears from the repulsion of apical membranes [START_REF] Bedzhov | Self-organizing properties of mouse pluripotent cells initiate morphogenesis upon implantation[END_REF][START_REF] Dokmegang | Computational modelling unveils how epiblast remodelling and positioning rely on trophectoderm morphogenesis during mouse implantation[END_REF]. Regarding the previous section, human pluripotent stem cells grown in matrigel form an apical-in lumen [START_REF] Shahbazi | Self-organization of the human embryo in the absence of maternal tissues[END_REF][START_REF] Zheng | Controlled modelling of human epiblast and amnion development using stem cells[END_REF]. Once this cavity is formed, gastrulation follows, and the anteroposterior axis is set [START_REF] Takaoka | Cell fate decisions and axis determination in the early mouse embryo[END_REF].

Chapter 2

Physics in morphogenesis

While genetics and molecular signaling are key determinants in embryogenesis, recent developments increasingly show the relationship between physics and cell or tissue development [START_REF] Chan | Integration of luminal pressure and signalling in tissue self-organization[END_REF][START_REF] Li | The importance of water and hydraulic pressure in cell dynamics[END_REF][START_REF] Collinet | Programmed and self-organized flow of information during morphogenesis[END_REF]. In this section, we introduce some physical principles that play an important role in morphogenesis and tissue mechanics and will be used all along with the manuscript.

On the shape of cells: cortical tension and adhesion

The shape of a cell is primarily controlled by mechanical forces on its surface, specifically, the forces of cortical tension, generated by the actomyosin cortex, and intercellular adhesion, induced by the interaction between adhesion molecules such as E-cadherins, and the cortex. The cytoskeleton is present in most cells and consists of a complex network of entangled filaments and proteins that extend throughout the cytoplasm. The cytoskeleton confers mechanical integrity and shape to cells [Alberts et al., 2004]. The actomyosin cortex is the part of the cytoskeleton closest to the plasma membrane. It is enriched in F-actin and the molecular motors, myosins, which gives it its name. Other proteins are present in the cortex, such as cross-linkers, actin nucleators, etc. [START_REF] Biro | Cell cortex composition and homeostasis resolved by integrating proteomics and quantitative imaging[END_REF]. The actin network is a gel of semi-flexible polymers with viscoelastic properties: at short times, it behaves like an elastic solid and resists the mechanical stresses exerted on the cell; at long times, thanks to actin turnover, it behaves like a fluid and allows the dissipation of the mechanical work [START_REF] Turlier | Furrow constriction in animal cell cytokinesis[END_REF]. Molecular motors attach to actin filaments oriented along the plasma membrane [START_REF] Medalia | Macromolecular Architecture in Eukaryotic Cells Visualized by Cryoelectron Tomography[END_REF]. Through the consumption of ATP, myosins drive a relative displacement of actin filaments, and thus a contraction of the network [START_REF] Turlier | Shaping the cell: theories of active membranes[END_REF][START_REF] Turlier | Furrow constriction in animal cell cytokinesis[END_REF][START_REF] Borja Da Rocha | A viscous active shell theory of the cell cortex[END_REF]. Effectively, internal stresses in the actomyosin cortex generate a tension at the surface of the cells [START_REF] Turlier | Shaping the cell: theories of active membranes[END_REF][START_REF] Turlier | Furrow constriction in animal cell cytokinesis[END_REF]. It is this surface tension that controls the curvature of cells and their overall shape. The stresses of the cortex are modified by many factors: its architecture, filament turnover, the density of molecular motors, etc. However, at the time scales of embryonic or organoid development, on the order of hours, these constraints dissipate rapidly. Thus, we will consider the surface tension of a cell membrane as constant, and describe cells in a manner analogous to the physics of foams and drops proposed by D'Arcy Thompson [START_REF] Thompson | On Growth and Form[END_REF][START_REF] Turlier | Mechanics of tissue compaction[END_REF].

Just as a drop, an isolated cell will adopt a shape that minimizes its surface energy, i.e. a sphere. By defining R as the mean radius of the spherical cell, and γ as the effective surface tension of the cell, this translates into the Laplace's relation

P in -P out = 2γ R (2.1)
with ∆P = P in -P out the hydrostatic pressure difference between the inside of the cell and the hydrostatic pressure of the outside environment, see Fig. 2.1A. The pressure inside the cell is greater than the pressure outside and greater as its size decreases. For a cell of size R ≃ 10 -100µm, the typical surface tension is of order of 5 × 10 -4 N/m [START_REF] Dumortier | Hydraulic fracturing and active coarsening position the lumen of the mouse blastocyst[END_REF], which gives a typical pressure difference of ∆P ≃ 10 2 -10 3 Pa.

A cell lying on a substrate or juxtaposed to another cell will adopt another shape, dictated both by the surface tensions of the cell, but also by the adhesion energy. For a cell on a substrate, the problem of cell shape is analogous to wetting a drop on a substrate [START_REF] Frisch | Predicting the kinetics of cell spreading[END_REF][START_REF] Turlier | Mechanics of tissue compaction[END_REF]. At the point of contact between the cell, the external medium, and the substrate, the forces of tension balance and give the Young-Dupré law [START_REF] Gennes | Wetting: Statics and dynamics[END_REF]: with θ cs the cell-substrate contact angle and γ cs (resp. γ cm ) the surface tension at the cell-medium (resp. cell-medium) interface, see Fig. 2.1B. We define the parameter

γ cs = γ cm cos(θ cs ) (2.2)
α cs ≡ 1 -cos θ cs = 1 - γ cs γ cm (2.3)
to be the degree of spreading, and is equal to 0 with no adhesion (no wetting) and 2 with total wetting (θ cs = π). Increasing the surface tension γ cm is equivalent to increasing the contact angle θ cs , giving a flatter shape to the cell. The adhesion γ cs of the cell to the substrate (energy per unit area) corresponds to a negative contribution to the surface tension. At the molecular scale, adhesion onto a substrate is mediated by adhesion molecules, such as integrins, that are bound to the actomyosin cortex and attach to the substrate as Extra-Cellular Matrix (ECM) [START_REF] Li | Extracellular matrix scaffolding guides lumen elongation by inducing anisotropic intercellular mechanical tension[END_REF]. Other factors can increase cell-substrate adhesion, as the club processes (membrane protrusions) in marsupials that ensure the adherence of blastomeres on the ZP [START_REF] Selwood | Mechanisms Underlying the Development of Pattern in Marsupial Embryos[END_REF][START_REF] Frankenberg | Conceptus Coats of Marsupials and Monotremes[END_REF]. In practice, the adhesion energy is negligible compared to the cortical tension but ensures close cell-cell contacts [START_REF] Maître | Three functions of cadherins in cell adhesion[END_REF].

For two cells in contact, their shapes will depend in the same way on both adhesion and cortical tension. The "wetting" of one cell on another is called compaction [START_REF] Turlier | Mechanics of tissue compaction[END_REF]. Considering two identical cells, we note γ cm (resp. γ cc ) the cell-medium (resp. cell-cell) surface tension and the degree of compaction is given by

α cm ≡ 1 -cos(θ cm ) = 1 - γ cc 2γ cm (2.4)
The degree of compaction is between 0, for two cells having only one contact point, and 1 for two compacted cells (θ cm = π/2), see [START_REF] Turlier | Mechanics of tissue compaction[END_REF]. It is possible to consider both the adhesion between two cells and between the cells and the substrate, thus requiring two degrees of compaction, see Fig. 2.1C [Le Verge-Serandour and Turlier, 2021b]. A large degree of compaction favors a packed cell arrangement that compromises the existence of a cavity, such as the stereoblastulae of nematodes [START_REF] Schulze | Evolution of embryonic development in nematodes[END_REF]. Conversely, a high degree of adhesion to a substrate favors proliferation on the substrate and prevents internalization of cells when they poorly adhere to each other, as is the case in marsupials [START_REF] Selwood | Mechanisms Underlying the Development of Pattern in Marsupial Embryos[END_REF][START_REF] Frankenberg | Conceptus Coats of Marsupials and Monotremes[END_REF]. Finally, just as cells adopt shapes dictated by fluid mechanics, intercellular spaces also follow shapes imposed by the surface tensions of the surrounding cells. An intercellular space is similar to a drop trapped between two or more fluid layers, see Fig. 2.2A, [START_REF] Thompson | On Growth and Form[END_REF].
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.2: Geometry of an intercellular space (A) Intercellular space between two cells: (a) as a symmetric hemispherical cap in 3D with radius of curvature R and opening angle Θ; (b) as a 2D hemispherical cap with symmetric surface tensions γ 1,2 and contact angles θ 1,2 ; (c) as a 2D asymmetric spherical cap with θ 1 < θ 2 . γ cc is the adhesive surface tension. (B) Intercellar space between three cells (top) with high inner pressure P i > P c and (bottom) with lower inner pressure P i < P c

Consider a lumen at a the interface with two cells 1, 2, with surface tension γ 1 , γ 2 , and contact tension γ cc , see Fig. 2.2A. The force balance at the junction is written

γ 1 cos θ 1 + γ 2 cos θ 2 = γ cc (2.5a) γ 1 sin θ 1 + γ 2 sin θ 2 = 0 (2.5b)
Assuming the cells are identical, the cell pressures are both equal to P c , and give a symmetrical lumen shape with equal radii of curvature (R 1 = R 2 ), see Fig. 2.2Ab. Thus, with Laplace's law

P i -P c = 2γ 1 R 1 = 2γ 2 R 2 (2.6)
the tensions are equal, γ 1 = γ 2 . The force balance (2.5b) simplifies to

2γ 1 cos θ 1 = γ cc (2.7)
However, lumens are not always between identical cells, as we will see in Chapter 3. In this case, if the cell pressures are different, the lumen will have an asymmetrical shape, and one has to take special care of the reference pressures P 1 , P 2 and surface tensions γ 1 , γ 2 of the cells see 2.2Ac. The cross-sectional area is given by A = π 2 R 2 [2Θ -sin(2Θ)], with R the radius of curvature and Θ the opening angle of the hemispheric cap, see Fig. 2.2A, and is used as a measure of the size of the intercellular space.

For an intercellular space at the junction between several identical cells, one has two cases: either the intercellular space is more pressurized and is inflated towards the cells, or the cells are more pressurized and thus the space is deflated, see Fig. 2.2B. This second case is only possible at multicellular junctions. Such intercellular spaces can be observed in Xenopus blastula [START_REF] Barua | Mechanics of Fluid-Filled Interstitial Gaps. II. Gap Characteristics in Xenopus Embryonic Ectoderm[END_REF][START_REF] Barua | Cell-cell contact landscapes in Xenopus gastrula tissues[END_REF].

Thus, cortical tension not only plays a crucial role in the shape of cells but also in the shape of intercellular spaces.

On the size of cells and tissues: osmosis

Osmotic pressure and semi-permeable membrane

The size of a cell is not only determined by its surface tension and the difference in hydrostatic pressure but also from osmotic pressure [START_REF] Kay | How Cells Can Control Their Size by Pumping Ions[END_REF]. Cells evolve in an environment concentrated in numerous chemical species: ions, molecules, proteins. The exact composition of the external medium, as well as the composition of the cell medium, changes according to in vitro or in vivo conditions. The movement of these chemical species across the plasma membrane, or membrane transport, is a subject of fundamental research, with many fields of application: pharmacology, cell migration, molecular biology, physiology, etc. The plasma membrane of cells is almost impermeable to many chemical species, but specialized proteins allow the selective passage of ions and molecules [START_REF] Lodish | Transport of ions and small molecules across cell membranes[END_REF]. This selective passage makes the membrane semi-permeable and induces fluxes that in turn generate the osmotic pressure. In the following, we introduce the necessary concepts used to find an expression of the osmotic pressure. We start by recalling the chemical potential expression, then give its expression in the case of dilute solutions, and we derive the van't Hoff relation, which gives the expression of the osmotic pressure as a function of a concentration difference.

Gibbs free energy and chemical potential

The Gibbs free energy G is defined for a closed system at constant temperature and pressure. Its definition is

dG = -SdT + VdP + ∑ k µ k dN k (2.8)
where S is the entropy, T the temperature, P the pressure, V the volume, µ k the chemical potential and N k the number of particles of a species k. The expression of the chemical potential for a species k may therefore be written as

µ k = ∂G ∂N k T,P (2.9)
and corresponds to the energy variation of the free energy with a change in the number of molecules k.

Another useful relationship is the Gibbs-Duhem relationship, that relates the change in chemical potential to the change in temperature and pressure:

∑ k N k dµ k = -SdT + VdP (2.10)

Dilute solution

A dilute solution is a solution in which the number of dissolved molecules (solutes), N s , is much less than the number of solvent molecules, N w , usually water. Considering only one species, the dilute solution corresponds to have the volume fraction x s = N s N s +N w ≪ 1. The Gibbs free energy of the pure solvent (no solute) at constant pressure and temperature reads [Landau and Lifshitz] G 0 (P, T, N w ) = N w µ 0 (T, P)

(2.11)
where µ 0 is the chemical potential of the pure solvent. We denote δG(P, T, N w ) the small change in the thermodynamic potential G if one molecule of solute is added. Since we are in a dilute solution approximation, we can neglect interaction between solute molecules. Therefore, adding N s molecules would add a contribution N s δG to the thermodynamic potential. Because solute molecules are indistinguishable, one needs to add an entropic contribution k b T log N s ! to the potential, that becomes

G = G 0 + N s δG + k b T log N s ! (2.12)
Since 1 ≪ N s ≪ N w , using the Stirling's approximation, we find

G = N w µ 0 + N s k b T log N s e e δG/k b T (2.13)
The thermodynamical potential G must be a homogeneous function of the first order of N s and N w , so e δG/k b T must be of the form f (T, P)/N w , and we have

G = N w µ 0 + N s k b T log N s eN w + N s ψ(T, P) (2.14)
where we set ψ(T, p) = k b T log( f (T, P)) [Landau and Lifshitz].

Thus we have the chemical potential of the water µ w

µ w = ∂G ∂N w = µ 0 (T, P) + N s k b T ∂ ∂N w log 1 N w = µ 0 -k b Tx s (2.15)
and the chemical potential of the solute µ s

µ s = ∂G ∂N s = ψ(T, P) + k b T log x s (2.16)
where x s = N s /N w is the number fraction.

Derivation of the van't Hoff equation

For two compartments in contact with each other by a semi-permeable membrane, a concentration gradient generates a solvent flow from the small to high concentration, which is the driving force generating the osmotic pressure, see Fig. 2.3. The latter is described by the van't Hoff relation at equilibrium, and can be obtained either using the water chemical potential Eq. (2.15) or the solute chemical potential Eq. (2.16).

For simplicity, we use the water chemical potential [START_REF] Kim | Membrane Thermodynamics for Osmotic Phenomena[END_REF]. At chemical equilibrium, the two compartments, denoted L and R, obey the relationship

µ 0 (T, P L ) -k b Tx L s = µ 0 (T, P R ) -k b Tx R s (2.17)
where the temperature T is constant, P L,R and x L,R s are the pressures and solute volume fraction in compartment L, R respectively. Assuming the pressure difference P L -P R to be small to stay in the dilute approximation, one can expand µ 0 around P R such that at first order in

P L µ 0 (T, P L ) ≃ µ 0 (T, P R ) + (P R -P L ) ∂µ 0 ∂P T (2.18)
Injecting this result in Eq. (2.17), one gets

(x R s -x L s )k b T = (P R -P L ) ∂µ 0 ∂P T (2.19)
Using the Gibbs-Duhem relation Eq. (2.10) at constant temperature gives

∂µ 0 ∂P T = V N w , thus (P R -P L ) = k b T N w V (x R s -x L s ) = k b T N R s -N L s V (2.20)
The Boltzmann constant is related to the perfect gaz constant as R = k b N A , and the concentration in solute is C s = N s /VN A , so we find The reflection coefficient is an indicator of the impermeability of the membrane to a solute. The permeability can be modeled as an energy barrier U that solute particles have to overcome to cross the membrane. Inspired from [START_REF] Marbach | Osmosis, from molecular insights to large-scale applications[END_REF] which is the van't Hoff relation, with ∆Π the osmotic pressure difference. The osmotic pressure corresponds to the force per unit area generated by the displacement of the permeable fluid to balance the concentration on either side of the semi-permeable membrane, see Fig 2 .3A. For several solutes, the partial osmotic pressure is given by Π L i = RTC L i with C L i the concentration of solute i in compartment L, and the total osmotic pressure in compartment L is

∆Π = RT∆C s = RT(C L s -C R s ) (2.
Π L = ∑ i Π L i = RT ∑ i C L i (2.22)
The van't Hoff law does not inform of the membrane properties, as long as it is semi-permeable. In reality, the plasma membrane of cells is slightly permeable to water [START_REF] Lodish | Transport of ions and small molecules across cell membranes[END_REF] and includes transmembrane proteins that allow the selective passage of water molecules. Thus it behaves like a nonideal semi-permeable membrane. The mechanistic view provides an insightful picture of the microscopical scale [START_REF] Manning | Binary diffusion and bulk flow through a potential-energy profile: A kinetic basis for the thermodynamic equations of flow through membranes[END_REF][START_REF] Marbach | Osmosis, from molecular insights to large-scale applications[END_REF]. Semi-permeability acts as if the solute particles had to cross an energy barrier with potential U. In the limit of perfect semi-permeable membrane (permeable only to water and not to solutes) with thickness h, the maximum value of the potential is larger than the thermal energy U max ≫ k B T. Considering two compartments, L, R, in a 1D space, their concentrations are at equilibrium in the bulk reservoir (c L,R s ), but not at the interface :

c L,R s (x) = c L,R s exp - U(x) k B T (2.23)
The probability of a particle to hop from one compartment to the other follows the Boltzmann relation. A single particle crossing the membrane will be subjected to a repelling force F 1 = -∂ x U(x). For a membrane with area A, a volume element dv = Adx contains dn = N A c L,R s (x)dv moles of particles, and the total force exerted on this volume element is

d f = F 1 .dn = N A c L,R s (x)dv (-∂ x U(x)) (2.24)
in force unit. N A is the Avogadro's number. Integration of this force over space (x-direction) leads to

F T N A A = k B T c R s -c L s (2.25)
which reduces to the van't Hoff relation using R = k B N A . This calculation is detailed in appendix B.1 and shows that the compartment with more solutes will exert a higher repelling force on the solvent than the solute, and the flow of solvent will go from low to high concentrations [START_REF] Marbach | Osmosis, from molecular insights to large-scale applications[END_REF]. The van't Hoff relation assumes the system is at equilibrium, but one can extend the above calculations to an energetic barrier that can be crossed at a finite rate (U max ∼ k B T). In this, case, the flux of solvent Q can be written

Q = L p [σ∆Π -∆p] (2.26)
where

σ = 1 - h h/2 -h/2 dy exp [βU(y)] (2.27)
is the reflection coefficient of the membrane, see Appendix B.1.1 for the derivation of σ. In the limits of large energy barrier U ≫ k B T, equivalent to perfect semi-permeable membrane, one obtains σ = 1, while if there is no energetic cost for the solute to cross the membrane, σ = 0. In the perfect semi-permeable membrane with several solutes, the reflection coefficient for species i is σ i = 1, the system equilibriates with motion of water. In the opposite case, σ i = 0, the solute diffuses according to Fick's law, see Fig. 2.3B. Experimentally, for a solute i, the reflection coefficient is measured at zero flow Q = 0,

σ i = ∆p ∆Π i (2.28)
with ∆Π i the partial osmotic pressure of solute i [START_REF] Lang | Functional Significance of Cell Volume Regulatory Mechanisms[END_REF][START_REF] Strange | Cellular volume homeostasis[END_REF]. In red blood cells, reflection coefficient are estimated for urea (σ urea = 0.64) or glucose (σ glucose = 1) [START_REF] Toon | Permeability and Reflection Coefficients of Urea and Small Amides in the Human Red Cell[END_REF].

Volume control

The membrane of animal cells is flexible and can deform, allowing them to shrink and change their volume [START_REF] Li | The importance of water and hydraulic pressure in cell dynamics[END_REF]. Water passage is one of the sources of regulation of cell volume and concentration [START_REF] Day | Human aquaporins: Regulators of transcellular water flow[END_REF]. Aquaporins (AQPs) are highly water-selective membrane proteins and confer high water permeability to the plasma membrane, much higher than other channels [START_REF] Agre | Aquaporin CHIP: The archetypal molecular water channel[END_REF][START_REF] Barboiu | Artificial water channels -Incipient innovative developments[END_REF]. This is referred to as facilitated diffusion across the membrane. The presence of AQP thus allows cell membranes to behave as ideal semi-permeable membranes (σ w = 1). As we mentioned, a hydrostatic pressure difference ∆P or a osmotic pressure difference ∆Π is sufficient to generate a solvent flow that will change the size of the cell, and is expressed as [Baylis, 1988;[START_REF] Lang | Functional Significance of Cell Volume Regulatory Mechanisms[END_REF][START_REF] Strange | Cellular volume homeostasis[END_REF]]

Q = L p (∆Π -∆P) = L p [RT(C in -C out ) -∆P] (2.29)
see Fig. 2.4A. The magnitude of the flow depends on L p , the hydraulic permeability coefficient, expressed in m 3 .Pa -1 .s -1 . It is related to the osmotic permeability coefficient (in cm.s -1 )

P f = L p RT AV w (2.30)
with A the area of exchange of the membrane and V w the molar volume of water [Baylis, 1988]. These coefficients depend on the presence of AQP, and vary according to the cells (MDCK : P f ≃ 10cm.s -1 [START_REF] Lúcio | Measurements and modeling of water transport and osmoregulation in a single kidney cell using optical tweezers and videomicroscopy[END_REF], mouse oocyte P f ≃ 0.1cm.s -1 [START_REF] Leibo | Water permeability and its activation energy of fertilized and unfertilized mouse ova[END_REF], simulations of AQP channel P f = 0.01cm.s -1 [START_REF] Marrink | Simulation of water transport through a lipid membrane[END_REF][START_REF] Zhu | Collective diffusion model for water permeation through microscopic channels[END_REF][START_REF] Hashido | Water transport in aquaporins: Osmotic permeability matrix analysis of molecular dynamics simulations[END_REF]).

A cell with radius R c will have its volume V c = 4 3 πR 3 c , changed by an incoming (influx) or outgoing (efflux) water flow, according to the relation [START_REF] Jiang | Cellular Pressure and Volume Regulation and Implications for Cell Mechanics[END_REF][START_REF] Li | The importance of water and hydraulic pressure in cell dynamics[END_REF] 

dV c dt = Q = A c .λ P [RT(C in -C out ) -∆P] = P f A c V w (C in -C out ) - ∆P RT (2.31)
with A c the area of the cell membrane and λ P = L P /A c is the hydraulic permeability coefficient per unit area. In the presence of a hypotonic solution (C in > C out ), an influx of water will balance the concentrations by increasing the cell volume (swelling), whereas a hypertonic solution (C in < C out ) will lead to a reduction in cell volume (shrinkage), see Fig. 2.4B. The typical relaxation time of the volume is given by τ v = R 0 λ p RTC 0 with R 0 the typical radius of the cell and C 0 the typical concentration of the medium. For a mouse blastomere at 32-cell stage (R 0 ≃ 10µm), in a typical C 0 = 300mOsm medium, with hydraulic permeation λ p = 6.02 × 10 -13 m/s/Pa [START_REF] Edashige | Channel-Dependent Permeation of Water and Glycerol in Mouse Morulae1[END_REF], one gets a typical relaxation time τ v ≃ 170s. An estimate of the hydrostatic pressure difference at the cellular scale leads to ∆P = 2γ R c ≃ 10 2-3 Pa, which is considerably less than the typical osmotic pressure of the cell medium Π 0 = RTC 0 ≃ 10 5 Pa, which is on the order of atmospheric pressure. Thus, a concentration difference C in -C out = 0.01C 0 gives a relative pressure difference ∆Π/Π 0 = 10 -2 , while the relative hydrostatic pressure difference is ∆P/Π 0 = 10 -3 . Thus, the hydrostatic pressure difference is at least ten times smaller compared to the osmotic pressure difference, and plays a minor role in controlling cell volume, in contrast to osmotic pressure.

Assuming that only solvent is exchanged and that the hydrostatic pressure is negligible in front of the osmotic pressure ∆P ≪ ∆Π = RT N s V c -C out , with N s the number of solutes (in moles) one obtains the steady volume V c ∝ 1/C out , called the Boyle-van't Hoff relation. Mammalian embryos in particular are cited as perfect osmometers, where the relative volume of the embryo is proportional to the inverse of the concentration difference, see Fig. 2.4C [START_REF] Mazur | Osmotic responses of preimplantation mouse and bovine embryos and their cryobiological implications[END_REF]. Under conditions of non-ideal osmotic equilibrium, e.g., undiluted solution when a red blood cell shrinks, the Boyle-van't Hoff relation is no longer valid [START_REF] Nobel | The Boyle-Van't Hoff relation[END_REF][START_REF] Prickett | A non-ideal replacement for the Boyle van't Hoff equation[END_REF], and another approximation of the osmotic pressure is required, e.g., in the form of the Ponder/Boyle/van't Hoff relation [START_REF] Roffay | Quantitative coupling of cell volume and membrane tension during osmotic shocks[END_REF]. The effect of the tension of the actomyosin cortex or an elastic shell on the response to an osmotic shock is discussed in Chapter 5.

Broadly speaking, any cavity or cell compartment with a semipermeable membrane, such as a cell or a nucleus [START_REF] Finan | The effects of osmotic stress on the structure and function of the cell nucleus[END_REF], is subject to a volume control law dependent on osmotic and hydrostatic pressures. Other effects such as cell cycle, membrane addition, or unfolding can be considered, but are beyond the scope of this manuscript [START_REF] Cadart | The physics of cell-size regulation across timescales[END_REF]. We discuss in the next section the effects due to charged chemical species that can be exchanged by specialized transporters.

On transport in cells: electro-osmosis and charged species

A large majority of animal cells live in aqueous medium, susceptible to encounter large concentration variations. Contrary to plants, animal cells do not have the membrane mechanically strong enough to resist the high osmotic pressure [START_REF] Long | Cellular Heterogeneity in Pressure and Growth Emerges from Tissue Topology and Geometry[END_REF]. Instead, they rely on the transport of water and solutes through their membrane. This raises a major question in physiology and cell biology: how do cells control their volume and/or concentration? In the previous section, we presented a reduced model, based on water exchange across the cell membrane. The presence of aquaporins [START_REF] Agre | Aquaporin CHIP: The archetypal molecular water channel[END_REF], a protein specialized for facilitated water diffusion [START_REF] Stillwell | Membrane Transport[END_REF], makes the cell membrane semi-permeable to water, and a flow of water allows the cell concentration to be balanced while the cell increases or decreases its volume.

However, we left out the important contribution of solute exchange. The mammalian embryo, like animal cells, controls its volume by exchanging not only water but also solutes, a mechanism of cell volume regulation, see [START_REF] Lang | Functional Significance of Cell Volume Regulatory Mechanisms[END_REF]] for a biological review and [START_REF] Li | The importance of water and hydraulic pressure in cell dynamics[END_REF] for physical principles. The typical response of a cell to a hyperosmotic (resp. hypo) shock is divided into two phases: an osmotic phase where the cell decreases (resp. increases) its size through a rapid exchange of water and equilibrates its internal concentration, and then the second phase of volume regulation, where it exchanges ions to return to a volume close to the initial one while keeping its concentration constant. In the case of a volume increase, we speak of Regulatory Volume Increase (RVI), in the other case, Regulatory Volume Decrease (RVD) Dynamic Cell volume response to hypo-and hyper-osmotic shocks according to Eq. 2.31 with ∆P/∆Π = 10 -2 . The outside concentration increases (resp. decreases) by 25%. and the cell shrinks (resp. swells) by 8% (resp 10%). (C) Boyle-van't Hoff plot illustrating the perfect osmometer behavior of mouse blastocysts with or without zona pellucida. From [START_REF] Mazur | Osmotic responses of preimplantation mouse and bovine embryos and their cryobiological implications[END_REF]. [START_REF] Strange | Cellular volume homeostasis[END_REF][START_REF] Delpire | Water Homeostasis and Cell Volume Maintenance and Regulation[END_REF]. Characterization of volume control, by identifying the proteins or genes involved, or by measuring physical quantities such as permeation of ionic conductance, are of critical importance for the study of cell homeostasis [Lang, 2013], epithelial transport [START_REF] Delpire | Water Homeostasis and Cell Volume Maintenance and Regulation[END_REF], cell cycle [START_REF] Cadart | The physics of cell-size regulation across timescales[END_REF], disease prevention [START_REF] Wilson | Cell Volume Control in Healthy Brain and Neuropathologies[END_REF] or embryogenesis [START_REF] Chan | Hydraulic control of mammalian embryo size and cell fate[END_REF][START_REF] Dumortier | Hydraulic fracturing and active coarsening position the lumen of the mouse blastocyst[END_REF]. A fundamental question about cell volume control concerns the regulation mechanisms and their response to perturbations. Indeed, osmotic shocks caused by the injection of certain products such as cryopreservatives [START_REF] Meryman | Cryopreservation of living cells: Principles and practice[END_REF][START_REF] Zhao | Microfluidics for cryopreservation[END_REF]), the inhibition of certain proteins blocking regulatory processes, can lead to a collapse or shrinkage of the cell (plasmolysis), or its bursting or swelling (cytolysis), and cause severe damage to cellular tissues, see Fig. 2.4B.

Cell transporters

A plethora of membrane transporters allow the selective passage of solutes, whether charged (ion channels: Na + , K + , Cl -) or not (e.g. macromolecules such as glucose [START_REF] Stillwell | Membrane Transport[END_REF]). Some transmembrane proteins, called passive channels, allow the passage of solutes through the membrane following the law of diffusion, from the most concentrated medium to the least concentrated, the so-called facilitated diffusion. They are called passive, as they do not require any energy to function, see Fig. 2.5. Other transmembrane proteins can exchange solutes against an electrochemical gradient and are called active transporters. These proteins transport molecules from one compartment to another consuming chemical energy, in the form of ATP, a process called primary active transport. ATP is hydrolyzed, and the free energy from phosphorylation provides the power to move the solute against the concentration gradient [START_REF] Stillwell | Membrane Transport[END_REF]. This is the case for ATPases enzymes, such as sodium-potassium pumps, calcium pumps, proton pumps, magnesium pumps, etc. The other type of "active" transport corresponds to the co-transport of species and is called secondary-active transport [START_REF] Stillwell | Membrane Transport[END_REF]. The displacement of an ion generates an electrochemical gradient that is used by the protein to displace another ion, either in the same direction (symport) or in an opposite direction (antiport). Some of these carriers require an external output to be activated such as chemical, electrical [START_REF] Lodish | Transport of ions and small molecules across cell membranes[END_REF] or mechanical signal [START_REF] Perozo | Open channel structure of MscL and the gating mechanism of mechanosensitive channels[END_REF][START_REF] Haswell | Mechanosensitive channels: What can they do and how do they do it?[END_REF] but are out of the scope of our manuscript. (ii) aquaporins: water channel that facilitates diffusion of water; (iii) the sodium channel: an ion channel, follows the sodium concentration gradient ; (iv) the Na + /K + -ATPase: a primary active-transporter, exchanging solutes (Na + , K + ) against the concentration gradient using ATP hydrolysis.

Aquaporin

Electro-osmotic flux and Nernst equation

As we mentionned, the primary solutes for cell volume regulation are electrolytes, i.e. charged species.

In addition to a diffusion flux induced by a concentration gradient, a flux is also induced by an electric potential difference ∆ϕ, i.e. a charge imbalance between two compartments. For an ion with valence z, concentration c and mobility u, the flow of ions J(x) under the electrical field E = -∇ϕ is given by the Planck's equation [Keener and Sneyd, 2009]

J(x) = -u z |z| c∇ϕ(x) (2.32)
Assuming the ion specie is also influenced by a concentration gradient ∇c = dc dx , one gets the total electroosmotic flux as

J(x) = -D ∇c + zF RT c∇ϕ (2.33)
which is the Nernst-Planck equation, where D = uRT |z|F is the diffusion constant [Keener and Sneyd, 2009]. F = 96485C.mol -1 is the Faraday constant (C for Coulombs). In our system with compartments, we do not consider spatial gradients, thus integrating the Nernst-Planck equation at zero flux across a membrane with given boundary conditions leads to the Nernst equation

∆ϕ = RT zF log c out c in (2.34)
with ∆ϕ = ϕ inϕ out is the Nernst potential for the ion. This corresponds to the potential needed to compensate a concentration imbalance between the two compartments. In the case of non-zero flux J, an electric current I is generated and charges are displaced accross the transmembrane through the passive channels. Considering our two compartments again, the membrane potential difference ∆Φ is given by the sum of the potential difference from the Nernst equation and the potential difference φ = I.R Ω due to the electrical current I through the membrane with resistance R Ω :

∆Φ = ∆ϕ + φ = RT zF log c out c in + I.R Ω (2.35)
Inverting this equation gives the current-voltage relation

I = G.(∆Φ -∆ϕ) (2.36)
where G = 1/R Ω is the conductance of the associated channel of the ionic species, counted in Siemens (1 S = 1 Ω -1 ).

Volume regulation and pump-leak model

One of the most widely studied models to describe cell volume control is the pump-leak model (PLM). This model was initially proposed by [START_REF] Tosteson | Regulation of cell volume by active cation transport in high and low potassium sheep red cells[END_REF], and then studied theoretically several times [START_REF] Armstrong | The Na/K pump, Cl ion, and osmotic stabilization of cells[END_REF]Keener and Sneyd, 2009;[START_REF] Mori | Mathematical properties of pump-leak models of cell volume control and electrolyte balance[END_REF][START_REF] Hoppensteadt | Control of Cell Volume and the Electrical Properties of Cell Membranes[END_REF][START_REF] Jiang | Cellular Pressure and Volume Regulation and Implications for Cell Mechanics[END_REF][START_REF] Tao | Active Biochemical Regulation of Cell Volume and a Simple Model of Cell Tension Response[END_REF][START_REF] Kay | How Cells Can Control Their Size by Pumping Ions[END_REF][START_REF] Yellin | Electromechanics and Volume Dynamics in Nonexcitable Tissue Cells[END_REF][START_REF] Kay | Evolution of our understanding of cell volume regulation by the pump-leak mechanism[END_REF][START_REF] Li | Hydrogen, Bicarbonate, and Their Associated Exchangers in Cell Volume Regulation[END_REF], see Fig. 2.6A. The PLM assumes the existence of a deformable cell with a membrane semi-permeable to water and including ion channels that allow the passage of specific chemical species and an active pump. The model includes three ionic species that can be exchanged: Na + , K + , Cl -, and adds a fourth one trapped in the cell, noted X -. This last species represents the total contribution of charged proteins in the cell (macromolecules) and has an average valence z, often negative and large compared to 1. The model also includes the presence of a primary active pump, the Na + /K + -ATPase, which consumes ATP to import two potassium ions into the cell and export three sodium ions out.

It is interesting to give the expression of the steady-state volume. From Eq. (2.31), one can write the change in cell volume V c as a function of the concentrations of the species within the cell as

dV c dt = A c λ p [∆Π -∆P] ≃ A c λ p [Π in -Π out ] (2.37)
where we assumed the hydrostatic pressure difference is small compared to the osmostic pressure difference. The osmotic pressure in the cell is

Π in = RT [Na + ] in + [K + ] in + [Cl -] in + [X -] in
and corresponds to the sum of partial pressures for each species. [X -] in = x V c is the concentration of the impermeant charged species, with V c the cell volume and x the number of moles of impermeant species. The external osmotic pressure is Π out = RTM 0 with the total external osmolarity is

M 0 = [Na + ] out + [K + ] out + [Cl -] out ≃ 300mM.
The osmotic equilibrium thus corresponds to [START_REF] Fraser | A quantitative analysis of cell volume and resting potential determination and regulation in excitable cells[END_REF][START_REF] Kay | How Cells Can Control Their Size by Pumping Ions[END_REF] [

Na + ] in + [K + ] in + [Cl -] in + [X -] in = M 0 (2.38)
To determine the steady-state volume, one needs to consider the electric charges of the ions. The movement of charged species through the cell membrane generates electric currents and the charge imbalance creates a transmembrane potential difference. These add to the chemical potentials in the regulation of concentrations and fluxes, thus greatly complexifying the mutual influence of ions. Besides, charged trapped species generate a Donnan effect: an asymmetric distribution of charged chemical species around a semi-permeable membrane gives rise to a passive electric potential [Keener and Sneyd, 2009;[START_REF] Sperelakis | Gibbs-donnan equilibrium potentials[END_REF][START_REF] Kay | Evolution of our understanding of cell volume regulation by the pump-leak mechanism[END_REF]. The Donnan effect makes cells unstable in the absence of a large transmembrane pressure difference, of the order of the atm. At the boundary between the cell and the exterior, the electrical potential difference is given by [Keener and Sneyd, 2009]

Γ∆Φ = Q in -Q out (2.39)
where Γ ≃ 10 -14 F (farads) is the total membrane capacitance for a cell of radius R ≃ 10µm. Q out is the total external charge and Q in is the total cell charge, expressed in C (coulombs). The total charge corresponds to the sum of all charges in a compartment, so that for the cell it gives

Q in = F V c [Na + ] in + [K + ] in -[Cl -] in -z[X -] in (2.40a)
and for the exterior

Q out = F n 0 + k 0 -c 0 (2.40b)
where we denote n 0 , k 0 , c 0 the number of charges in the external medium. Keener and Sneyd make an excellent point as to stress that this expression is correct if and only if the charges are uniformly distributed, which is not the case: the charges are located in a small region near the boundary, which is the Debye layer [Keener and Sneyd, 2009;[START_REF] Mori | A model of electrodiffusion and osmotic water flow and its energetic structure[END_REF]. But the total charge Q in is small compared to the total charge of each individual ion. For an electric potential |∆Φ| ∼ 50mV, the total charge is around Q in ∼ 10 -16 C, while for potassium with concentration [K + ] in ∼ 100mM in a cell of radius R c ∼ 10µm, the potassium charge is

V c [K + ] in F ≃ 10 -8 C.
Since the excess charge is negligible compared to the individual charge, it is a good approximation to assume the cell and the exterior as electroneutral, and the total charges to be zero [Keener and Sneyd, 2009]. The electroneutrality conditions therefore are given by the concentrations

[Na + ] in + [K + ] in -[Cl -] in -z[X -] in ≃ 0 (2.41a) [Na + ] out + [K + ] out -[Cl -] out ≃ 0 (2.41b)
Using Eq. (2.41a) in the osmotic equilibrium Eq. (2.38), and using the fact that [X -] in = x V c , this leads to the constraint equation [START_REF] Fraser | A quantitative analysis of cell volume and resting potential determination and regulation in excitable cells[END_REF][START_REF] Kay | How Cells Can Control Their Size by Pumping Ions[END_REF]]

V c = x(z + 1) M 0 -2[Cl -] in = x(z + 1) M 0 -2[Cl -] out exp[ F ∆Φ RT ]
(2.42)

It is clear that if the cell has no impermeant species, i.e. x = 0, the stationary volume of the cell is zero, and the cell collapses. On the other hand, the chloride concentration cannot be too large and is limited by the external concentration M 0 : should it be larger, the cell would burst. The chloride steadystate concentration is determined by the equilibrium membrane potential, which is in turn given by the differences in concentration of the charged species, their ionic conductances, and the pumping rate, which is calculated for a single cell in appendix H. Thus, the steady-state volume is determined by the external concentration, impermeant species valence and quantity, and the transmembrane potential. Animal cells are unable to generate such pressure due to their membrane but rely on the Na + /K + pumps, which export the sodium ion Na + out of the cell, pushing chloride out of the cell to balance the charges and accommodate the impermeant species X -. Thus, the prime effect of Na + /K + pumps is to make osmotic and electrical room for charged trapped species [START_REF] Kay | Evolution of our understanding of cell volume regulation by the pump-leak mechanism[END_REF].

More details on the PLM model for a single cell are given to the reader in appendix H. These results will prove useful in understanding Chapter 6, where we extend the PLM model to two compartments: a cell bathing in an external medium, enclosing a lumen, and calculate the steady-states, in a geometry akin to cysts, inverted cysts, and blastocyst alike. Such models for two membranes were developed to study the frog skin epithelial transport of sodium ion [START_REF] Palmer | The two-membrane model of epithelial transport: Koefoed-Johnsen and ussing (1958)[END_REF], see Fig. 2.6B, but not in the context of volume control, and not to study biological cavities with normal or inverted polarity. Nevertheless, such systems exist, such as the mouse blastocoel or the zebrafish brain ventricle, see Fig. 2.6C. In these two examples, paracellular ion transport may play a critical role that yet has to be described [START_REF] Günzel | Claudins: vital partners in transcellular and paracellular transport coupling[END_REF].

Extensions of PLM have been proposed, to account for the spatial diffusion of species [START_REF] Mori | A numerical method for cellular electrophysiology based on the electrodiffusion equations with internal boundary conditions at membranes[END_REF][START_REF] Mori | A model of electrodiffusion and osmotic water flow and its energetic structure[END_REF], to include the presence of mechanosensitive proteins [START_REF] Yellin | Electromechanics and Volume Dynamics in Nonexcitable Tissue Cells[END_REF] or acidity regulators (bicarbonate and hydrogen ion) [START_REF] Li | Hydrogen, Bicarbonate, and Their Associated Exchangers in Cell Volume Regulation[END_REF]. Though, these models focus primarily on one compartment, the cell. Curiously, only a few studies focus on applying the PLM model to biological cavities, and mostly to study fluid secretion [START_REF] Gin | A mathematical model of fluid secretion from a parotid acinar cell[END_REF][START_REF] Gin | A model for cyst lumen expansion and size regulation via fluid secretion[END_REF], see Fig. 2.6B.

On the collective size of cells or their compartments: Ostwald ripening and LSW theory

As we have seen, cells can be described as foams, subject to Laplace pressure and controlling their size through osmotic pressure. However, a population of suspension drops, an emulsion, can be described equivalently. Without going to the direct comparison between a cell and a drop in an emulsion, the temporal evolution of some biological systems may be reminiscent of the laws governing emulsions, notably the phenomenon of Ostwald ripening.

Ostwald ripening

Ostwald ripening was first described in 1897 [START_REF] Ostwald | Studien über die Bildung und Umwandlung fester Körper[END_REF] and describes the evolution of a mixture composed of a solvent and a solute, the latter of which has a condensed phase (drops or crystals) and a diffuse phase, consisting of the solute particles. Examples of Ostwald ripening can be found in metallic [START_REF] Armstrong | The Na/K pump, Cl ion, and osmotic stabilization of cells[END_REF]. (B) Frog epithelium transport membrane model. (C) PLM for two biological cavities: (left) mouse blastocyst, with apical-out polarity and paracellular leaks of chloride, (right) zebrafish brain ventricle with apical-out polarity, adapted from [START_REF] Günzel | Claudins: vital partners in transcellular and paracellular transport coupling[END_REF].

alloys [START_REF] Rogers | Coarsening of three-dimensional droplets by two-dimensional diffusion: Part I. Experiment[END_REF][START_REF] Fradkov | Coarsening of three-dimensional droplets by two-dimensional diffusion: Part II[END_REF][START_REF] Baldan | Progress in Ostwald ripening theories and their applications in nickel-base super alloys[END_REF], soap froth [START_REF] Stavans | The evolution of cellular structures[END_REF], the formation of nanoparticles [START_REF] Woehl | Direct in Situ Determination of the Mechanisms Controlling Nanoparticle Nucleation and Growth[END_REF][START_REF] Khelfa | Quantitative In Situ Visualization of Thermal Effects on the Formation of Gold Nanocrystals in Solution[END_REF], the mixing of polymers [START_REF] Hill | Ostwald ripening in polyethylene blends[END_REF], etc. Its principle is the following: after the nucleation of the solute in small drops (for a fluid phase), the larger ones will grow at the expense of the smaller ones, i.e. coarsening. The driving force of coarsening is the surface tension, which tends to minimize the surface energy of the solute droplets. The growth of the drops in size is accompanied by their decrease in number which decreases the surface energy with time [START_REF] Baldan | Progress in Ostwald ripening theories and their applications in nickel-base super alloys[END_REF], see Fig. 2.7A. Note that mechanisms other than diffusion can lead to coarsening: convection (Cahn-Hilliard equation coupled with Stokes equation) [START_REF] Brenier | Upper Bounds on Coarsening Rates in Demixing Binary Viscous Liquids[END_REF][START_REF] Otto | Crossover of the coarsening rates in demixing of binary viscous liquids[END_REF] and mass exchange between droplets through a thin film. To describe this phenomenon theoretically, two papers [START_REF] Lifshitz | The kinetics of precipitation from supersaturated solid solutions[END_REF][START_REF] Wagner | Theory of the aging of precipitation by dissolution (Ostwald maturation)[END_REF], presented a framework to analyze the size distribution of particles and to deduce time scaling laws concerning the characteristic quantities of the system, the size of the drops, or their number.

Lifshitz-Slyozov-Wagner theory

The Lifshitz-Slyozov-Wagner (LSW) is a mean-field theory that describes the evolution at long times of grains or drops present in a supersaturated solution, [START_REF] Lifshitz | The kinetics of precipitation from supersaturated solid solutions[END_REF][START_REF] Wagner | Theory of the aging of precipitation by dissolution (Ostwald maturation)[END_REF]. The system is considered as diluted, such that the volume fraction of the solute tends to zero, and the particleparticle interactions are negligible [START_REF] Baldan | Progress in Ostwald ripening theories and their applications in nickel-base super alloys[END_REF]. The exchange between drops is diffusive and can be modeled by Cahn-Hilliard type equations [START_REF] Cahn | Free energy of a nonuniform system. I. Interfacial free energy[END_REF]. The theory is based on a mean-field approximation: one considers that there exists a critical radius R * (t) such that for a drop of radius R > R * , the drop grows, while for R < R * , the drop shrinks, and that all the drops "see" only this drop of critical radius. Besides, LSW theory describes the population of grains or drops with its size distribution f (R, t), the number of drops with size R at time t. Three equations are required for the time evolution of distribution f : (i) a kinetic equation, giving the growth of drop with size R ; (ii) a continuity equation and (iii) a mass conservation equation for conservative systems [Chakraverty, 1967a] (discussion of the non-conservative systems in [Chakraverty, 1967b]). The LSW theory predicts two major results for coarsening of spherical drops by diffusion: (1) at long times, the drop size obeys a power law R(t) ∼ t β , with β = 1/3; (2) the particle size distribution, f (R, t), is self-similar in time when properly rescaled by the mean drop size [START_REF] Lifshitz | The kinetics of precipitation from supersaturated solid solutions[END_REF]. Other results are derived from the above predictions, such as a scaling law for the number of grains, N (t) ∼ t -1 , and the existence of maximal drop size. This theory is applicable in [START_REF] Alsous | Dynamics of altruistic fluid transport in egg development[END_REF] or coalescence of cellular aggregates in reconstituted embryonic tissues of Xenopus, adapted from [START_REF] Gilbert | Developmental Biology, 11Th Edition 2016[END_REF].

many systems, such as the growth of metallic grains. One of these applications concerns the evolution of dewetting ultrathin films, which we will discuss in Chapter 4 and Appendix E. For dewetting films, the droplets exchange mass through a thin precursor film [START_REF] Gennes | Wetting: Statics and dynamics[END_REF]Glasner andWitelski, 2003, 2005;[START_REF] Gratton | Transient and self-similar dynamics in thin film coarsening[END_REF]. The kinetic equation for a droplet of size R in the absence of osmotic pressure is given by [START_REF] Glasner | Coarsening dynamics of dewetting films[END_REF]]

dR dt ∝ (∆P * -∆P) R = 2γ R 1 R * - 1 R (2.43)
where ∆P = 2γ R is the Laplace pressure, and in 2D, R = κ v /ℓ is a hydraulic resistance that depends on the effective distance ℓ to the "mean-field droplet" R * and an effective hydrodynamic friction κ v . This equation is immediately found for two droplets with P 1 , P 2 , the corresponding hydrostatic pressures, see Fig. 2.7B.

Evidences of multi-scale coarsening in biology

Liquid-liquid phase separation within cells One of the most active fields of research in cellular biology concerns liquid-liquid phase separations within cells [START_REF] Hyman | Liquid-liquid phase separation in biology[END_REF]. Cells contain proteins that spontaneously form condensed drops, or organelles without membranes, such as the P-granules in C. Elegans [START_REF] Brangwynne | Germline P granules are liquid droplets that localize by controlled dissolution/condensation[END_REF], nucleolus of germ cells in Xenopus [START_REF] Brangwynne | Active liquid-like behavior of nucleoli determines their size and shape in Xenopus laevis oocytes[END_REF], PML bodies within the nucleus [Lallemand-Breitenbach and de Thé, 2018], etc. (reviewed in [START_REF] Gomes | The molecular language of membraneless organelles[END_REF]). The nucleation and formation of condensates may be due to thermal fluctuations, aggregation on pre-existing sites, etc. [START_REF] Hyman | Liquid-liquid phase separation in biology[END_REF]. The size of the condensates can vary either during the fusion of droplets (coalescence) or through Ostwald ripening.

Coarsening of cells At the cellular level, coarsening phenomenon controlled by fluid exchange is observed, such as the oocytes of the nematodes C. elegans [START_REF] Chartier | A hydraulic instability drives the cell death decision in the nematode germline[END_REF] or the formation of the Drosophila egg [START_REF] Lamiré | Gradient in cytoplasmic pressure in germline cells controls overlying epithelial cell morphogenesis[END_REF][START_REF] Alsous | Dynamics of altruistic fluid transport in egg development[END_REF], see Fig. 2.7C. The hydraulic flow is generated by a pressure difference, as in cell volume control.

Coalescence of cell populations A cell aggregate in suspension adopts a spherical (spheroid) shape to minimize its surface energy, following Laplace's law. Effective surface tension can be measured, and compared to other cell tissues, and as well as cells with different tensions, internalization, or displacement within a tissue can be observed. This is known as the differentiated adhesion hypothesis [START_REF] Foty | Surface tensions of embryonic tissues predict their mutual envelopment behavior[END_REF][START_REF] Manning | Coaction of intercellular adhesion and cortical tension specifies tissue surface tension[END_REF]. One of the first observations of this effect was made in 1955 by Townes and Holtfreter in the Xenopus embryo following gastrulation and differentiation of the three cell lineages [START_REF] Townes | Directed movements and selective adhesion of embryonic amphibian cells[END_REF]. After dissecting the embryonic sheets, then recombining the cells in a suspension according to different combinations, "drops" of several cells of the same type are formed by segregation, then migrate to fuse by coalescence [START_REF] Townes | Directed movements and selective adhesion of embryonic amphibian cells[END_REF], see Fig. 2.7C. These experiments were repeated in Zebrafish more recently with similar results [START_REF] Schötz | Quantitative differences in tissue surface tension influence zebrafish germ layer positioning[END_REF]. Thus, a cohort of cells of the same type form aggregates that coalesce like the Ostwald ripening drops.

Part II

Coarsening

Chapter 3

Hydraulic fracking and biased coarsening

In this chapter, we study the formation of the first cavity in the mouse embryo: the blastocoel. It appears at the 32-cell stage and breaks the radial symmetry of the embryo. This lumen is filled with fluid and emerges at the basolateral contacts, which is a puzzling question: how can a cavity be formed at adhesive contacts?

We first introduce the different hypotheses that were proposed to explain the emergence of the blastocoel. Then, we discuss the microscopic observations realized by the group of J.-L. Maître in Institut Curie and establish a model of hydraulic coarsening for the emergence of the blastocoel, which led to a publication [START_REF] Dumortier | Hydraulic fracturing and active coarsening position the lumen of the mouse blastocyst[END_REF]. We confront the predictions of the model to experiments to address the question of blastocoel positioning. Finally, we discuss our results and propose several directions we will address in the rest of the manuscript.

Introduction

Cavitation in the mouse embryo

In Chapter 1, we reviewed the pre-implantation development of the mouse embryo, to illustrate the major morphogenesis steps. We briefly recapitulate the important pieces of information for the formation of the blastocyst, see Fig. 1.9. At the 8-cell stage, the embryo becomes compacted with a spherical shape, obliterating the intercellular spaces, leaving no room for a cavity [START_REF] Wiley | Development of the Blastocyst: Role of Cell Polarity in Cavitation and Cell Differentiation[END_REF]. At the same time, the cells differentiate into inner cells and outer cells. The outer trophectoderm cells (TE) and inner cell mass (ICM) have different contractilities, and the latter being less contractile, they are internalized [START_REF] Maître | Asymmetric division of contractile domains couples cell positioning and fate specification[END_REF]. TE cells epithelialize up to the 16-cell stage, with an apical outer surface and basolateral inner membranes rich in adhesion molecules, the E-Cadherins [START_REF] Larue | E-cadherin null mutant embryos fail to form a Trophectoderm Epithelium[END_REF], and active transporters with Na + /K + -ATPases [START_REF] Vorbrodt | Ultrastructural cytochemistry of membranebound phosphatases in preimplantation mouse embryos[END_REF][START_REF] Watson | Immunofluorescence assessment of the timing of appearance and cellular distribution of Na/K-ATPase during mouse embryogenesis[END_REF][START_REF] Robinson | Chapter 4 Ion and Solute Transport in Preimplantation Mammalian Embryos[END_REF][START_REF] Barcroft | Deletion of the Na/K-ATPase α1-subunit gene (Atp1a1) does not prevent cavitation of the preimplantation mouse embryo[END_REF]. Finally, epithelialization of TE cells goes along the formation of tight junctions (TJs) at the apical/basolateral interface of cell membranes; maturation of the TJs seals the embryo and isolates the "inner environment" of the embryo from the outside. At the 32-cell stage, the mammalian embryo evolves from a compact spherical shape to a coeloblastula shape: an epithelial layer, the TE, surrounding a fluid-filled cavity, the blastocoel, and the ICM, [START_REF] Marikawa | Creation of trophectoderm, the first epithelium, in mouse preimplantation development[END_REF][START_REF] Rossant | Making the Mouse Blastocyst: Past, Present, and Future[END_REF][START_REF] Frankenberg | The mammalian blastocyst[END_REF][START_REF] Maître | Mechanics of blastocyst morphogenesis[END_REF], see Fig. 3.1. The blastocoel forms on the side of the embryo, at the interface between the TE and ICM, and breaks the radial symmetry of the embryo [START_REF] Takaoka | Cell fate decisions and axis determination in the early mouse embryo[END_REF].

Hypotheses for blastocoel formation

Several hypotheses based on these observations have attempted to explain blastocoel formation, and we briefly review them [START_REF] Wiley | Development of the Blastocyst: Role of Cell Polarity in Cavitation and Cell Differentiation[END_REF].

The transport hypothesis A first hypothesis relies on the vectorial transport of fluid and ions from outside the embryo to its interior [Ducibella et al., 1975;[START_REF] Wiley | Development of the Blastocyst: Role of Cell Polarity in Cavitation and Cell Differentiation[END_REF]. The establishment of TJ forms a permeability seal that prevents the displaced species to escape from the embryo. Disruption of this barrier leads to the collapse of the blastocyst due to leakage of fluid [START_REF] Dizio | Sodium-dependent amino acid transport in preimplantation mouse embryos[END_REF].

The metabolic hypothesis

The metabolic hypothesis is supported by the localization of mitochondria and Na + /K + -ATPase on the basolateral side of cells [START_REF] Vorbrodt | Ultrastructural cytochemistry of membranebound phosphatases in preimplantation mouse embryos[END_REF]. The production of ATP by the The blastocyst consists of trophectoderm cells (TE) surrounding both the inner cell mass (ICM) and the blastocoel on opposite sides, giving the embryo a first "body" axis: the embryonic-abembryonic axis. (B) Closer view of epithelial TE cells, with apical-out polarity. Tight junctions (TJ) seal the embryo as cadherins ensure tight cell-cell contacts. Sodium pumps, or Na + /K + pumps, actively export Na + in the intercellular space and in the blastocoel creating an osmotic gradient, followed by water flux through aquaporins (AQP) to balance concentrations.

mitochondria supplies energy to Na + /K + pumps, which actively export sodium ions into the intercellular space, generating an osmotic gradient, followed by a flow of water to balance the concentrations [START_REF] Wiley | Cavitation in the mouse preimplantation embryo: Na K-ATPase and the origin of nascent blastocoele fluid[END_REF].

The secretion hypothesis

The secretion hypothesis starts from observation of cytoplasmic vesicles at the basolateral membranes of TE cells [START_REF] Melissinos | Die Entwicklung des Eies der Mäuse (Mus musculus var. alba u. Mus rattus albus) von den ersten Furchungs-Phänomenen bis zur Festsetzung der Allantois an der Ectoplacentarplatte[END_REF]. The hypothesis states that the secretion of these lipid vesicles and their discharge into the intercellular space allows the accumulation of blastocoel fluid [START_REF] Calarco | An ultrastructural and cytological study of preimplantation development of the mouse[END_REF][START_REF] Wiley | Effects of colcemid on cavitation during mouse blastocoele formation[END_REF]. Vesicles are transported along microtubules, and cavitation is inhibited when microtubules are depolymerized [START_REF] Wiley | Effects of colcemid on cavitation during mouse blastocoele formation[END_REF]. Recent observations have shown vesicle transport during blastocoel initiation [START_REF] Ryan | Lumen Expansion Facilitates Epiblast-Primitive Endoderm Fate Specification during Mouse Blastocyst Formation[END_REF].

Subsequently, several hypotheses were combined to give an overall idea of the onset of the blastocoel.

Transport and metabolic hypothesis were first associated: sodium secretion drives a flux of water in the intercellular space via aquaporins water channel [START_REF] Barcroft | Deletion of the Na/K-ATPase α1-subunit gene (Atp1a1) does not prevent cavitation of the preimplantation mouse embryo[END_REF][START_REF] Edashige | Channel-Dependent Permeation of Water and Glycerol in Mouse Morulae1[END_REF]. It is prevented from escaping by mature TJ [START_REF] Gardiner | Development of Na/K ATPase Activity and Blastocoel Formation[END_REF]. It was later reinforced with evidence of intercellular micro-cavities from several locations [Ducibella et al., 1975;[START_REF] Aziz | The origin of the nascent blastocoele in preimplantation mouse embryos ultrastructural cytochemistry and effect of chloroquine[END_REF], described as coalescing to form the blastocoel [START_REF] Motosugi | Polarity of the mouse embryo is established at blastocyst and is not prepatterned[END_REF]. These micro-lumens were also reported in other mammals, such as primates [START_REF] Fléchon | Surface ultrastructure of preimplantation baboon embryos[END_REF][START_REF] Hurst | An ultrastructural study of preimplantation uterine embryos of the rhesus monkey[END_REF] or the pig [START_REF] Stroband | The pig blastocyst: Its ultrastructure and the uptake of protein macromolecules[END_REF]. More recently, evidence of the secretion hypothesis was put forward with vesicular transport to the intercellular space, which could form the micro-cavities [START_REF] Ryan | Lumen Expansion Facilitates Epiblast-Primitive Endoderm Fate Specification during Mouse Blastocyst Formation[END_REF]. This could form a complementary mechanism in case of Na + /K + -pump failure. It was from this collection of previous works and from the timelapse imaging at high spatiotemporal resolution that we proposed a physical model based on hydraulic exchange between intercellular micro-cavities and their biased coarsening. We addressed two questions: 1) How does the blastocoel form from the sodium secretion in the intercellular space? 2) Can we explain the off-centered final position of the blastocoel (i.e. at TE-ICM interface)?

Hydraulic fracking

To determine how the blastocoel emerges, the team of Jean-Léon Maître first imaged a 32-cell stage mouse embryo at high resolution in the moments before blastocyst formation, using a cell membrane-specific marker. We observed the emergence of hundreds of micro-cavities -or micro-lumens -at cell contacts, similar to the intercellular cavities previously described in the literature, see Fig. 3.2A. Micro-lumens form at all contacts, including between ICM cells and not only at TE cell contacts. The formation of the network is synchronous throughout the embryo, by approximately 24 minutes. By imaging more precisely a cell contact, they could observe the reorganization of the distribution of adhesion molecules, the E-Cadherins (Cdh1). Initially, cadherins are homogeneously distributed along with a cell contact, but upon formation of a micro-cavity, they accumulate at the ends of the micro-cavity, forming a heterogeneous distribution, see Fig. We interpreted this as hydraulic fracturing, where the adhesive cell contacts abruptly separate to leave a fluid-filled space. We propose that hydraulic fracturing is initiated by the osmotic gradient generated by Na + /K + -pumps, which export sodium ions into the intercellular space, and is followed by a water flow. This accumulation of fluid is paramount to increase the pressure at cell-cell contacts (about 300 Pa), 10 times higher than in cells [START_REF] Maître | Pulsatile cell-autonomous contractility drives compaction in the mouse embryo[END_REF][START_REF] Maître | Asymmetric division of contractile domains couples cell positioning and fate specification[END_REF].

Ouabain is a drug that inhibits the activity of the Na + /K + -pumps and prevents the formation of the network, by suppressing the osmotic gradient, see Fig. 3.3A. Furthermore, the addition of an external solute (175mM sucrose) increases the osmotic pressure in the embryo and decreases the pressure difference generated by the osmotic gradient, hence preventing the formation of a micro-lumens network, see Fig.

3.3B.

Finally, to identify the role of adhesion molecules, our collaborators used mutants depleted of cadherins (maternally knocked out, mCdh1), which still form a blastocoel [START_REF] Maître | Pulsatile cell-autonomous contractility drives compaction in the mouse embryo[END_REF]. Mammals can form perfectly healthy chimeras, i.e. individuals composed of the fusion of two different embryos. The principle of the experiment is the following: an embryo at the 4-cell stage is separated into two sets of two cells, Overall, this suggests that the formation of the micro-cavity network originates from the osmotic gradient of the Na + /K + pumps, which generates a hydraulic flow separating the cell contacts.

Model of hydraulic coarsening

We then investigated how the hundreds of micro-lumens dynamically evolve to let only one become the blastocoel. To characterize the dynamics, we developed a hydraulic model, in which the network of microlumens is represented as a 2D network. Below we give the main hypotheses of the model. Then, we derive the equations of the area dynamics for two lumens and present a numerical scheme for a network of lumens. We finally show the dynamics of the network from time integration of the dynamical equations for lumen sizes.

Main hypotheses of the model

The lumens are represented as pressurized micro-cavities located at the intercellular space. Two neighboring micro-lumens can exchange fluid through the intercellular space. The physical model approximates the problem in 2 dimensions and aims at calculating the hydraulic fluxes between lumens within the embryo. We justify this 2D approach by the search of a minimal model, which may be comparable to the microscopy images we have, as cross-sections of the embryo. 

Lumen formation and fluid pumping

The model does not intend to describe the formation of lumens, which may involve more intricate molecular details (membrane and adhesion dynamics, osmotic balance, and possibly exocytosis). Instead, we start from a preformed network of micro-lumens and focus on the subsequent coarsening mechanism. To obtain statistically relevant means, we average the simulation results over a large number of initial lumen areas, taken randomly from a given distribution (see section 3.3.3). The model also ignores the details of the osmotic balance between the lumens and the cells, which would require further experimental characterization. Instead, we assume a constant and uniform pumping rate λ p within the network, defined per unit length (in 2D). This hypothesis is equivalent to saying that the density of pumps at basolateral interfaces within the embryo remains uniform in space and time. The area growth rate of a lumen will therefore increase with the size of its interfaces. For vanishing λ p , the total area in the network will be conserved. We show in section 3.5 that the positioning of the final lumen by coarsening is relatively independent of pumping, in particular the biphasic dynamics, which characterizes the coarsening process.

Hydrostatic pressure gradients between lumens

A gradient of hydrostatic pressure must exist to generate a flux between two lumens. The width of the intercellular space lies in the range e 0 ∼ 20 -100 nm [START_REF] Miyaguchi | Ultrastructure of the Zonula Adherens Revealed by Rapid-Freeze Deep-Etching[END_REF]. It is supposed small compared to distance L between micro-lumens, of the order of a few 100 nm to µms, and we describe the flow in the intercellular space in the lubrication's limit (e 0 ≪ L). The flow rate Q between two lumens at a distance ℓ is therefore given by the Hagen-Poiseuille's formula (see Appendix C)

Q = κ v ℓ ∆P (3.1)
with ∆P the pressure difference between lumens and κ v = e 3 0 12η an effective hydraulic conductance, which depends on the intercellular width e 0 and on water viscosity η ∼ 10 -3 Pa.s. We note that this formula is valid both for a thin film (as in the embryo) and for a 2D channel (as in our 2D model).

Area dynamics for two lumens

We consider first the case of two connected lumens in 2D. Each lumen i is characterized by its curvature radius R i , tension γ i and pressure P i . Force balance takes the form of Laplace's law

P i = γ i R i (3.2)
and tension balance at edge of the lumen

2γ i cos(θ) = γ c i (3.3)
where γ c i is the tension at the cell-cell contact for the lumen i.

Laplace's pressure in one lumen

The pressure inside each lumen i is calculated as function of its area from geometrical considerations, using the contact angle θ i (see Fig. 3.5). The area A i of the lumen i can be decomposed as

A i = A channel + 2A 1/2 = 2R i e 0 sin(θ i ) + R 2 i [2θ i -sin(2θ i )] R 1 e 0 R 2 γ 2 γ 1 γ c1 γ c2 θ 2 θ 1 θ 1 θ 2 1 2 FIGURE 3.5:
Geometrical parametrization of two lumens exchanging fluid via a channel of diameter e 0 . Each lumen is symmetric, with radius of curvature R i and contact angle θ i (i = 1, 2). The lumen tensions γ i and contact tensions γ c,i depicted are satisfying tension balance from Eq. (3.3).

Assuming e 0 ≪ R i we find

A i ≃ R 2 i [2θ i -sin(2θ i )] (3.4)
and it yields

R i ≃ A i 2θ i -sin(2θ i ) (3.5)
hence, using Eq. (3.2), we find the pressure of the lumen to be

P i = γ i Γ i √ A i (3.6)
where

Γ i ≡ 2θ i -sin(2θ i ).

Hydraulic flux

Two lumens with different curvatures and/or tensions will have different Laplace's pressures, which gives rise to a pressure gradient and hence to a flow of fluid from the lumen of higher pressure to the one with a lower pressure, according to Eq. (3.1). If we denote the two lumens 1 and 2, and assuming mass conservation A tot = A 1 + A 2 = cte, the time evolution for the size of the lumens is given by the dynamical equation

dA 1 dt = - dA 2 dt = I 1,2 ≡ P 2 -P 1 R 12 (3.7)
where we denoted I 1,2 the flux from lumen 2 to 1 (I 2,1 = -I 2,1 from 1 to 2), and used Eq. (3.1). R 12 is the hydraulic resistance of the channel, which is proportional to its length ℓ 12

R 12 = ℓ 12 κ v (3.8)
For a 2-dimensional channel, its expression is given by κ v = e 3 0 12η . We adress the role of the cortical tensions in section 3.4 and include the active pumping in section 3.5.

Area dynamics in a lumen network

Dynamical equations

We can easily generalize Eq. (3.7) for a network of n lumens i = 1, . . . , n. The network is described as an undirected graph G = {V, E}, where V is a set of vertices representing the lumens i = 1, . . . , n. and E is a set of edges (i, j) ∈ V × V representing the channels. The dynamics are described by a set of coupled ordinary equations for i = 1, . . . , n.

dA i dt

= ∑ j∈∂ i I i,j (3.9)
with ∂ j is the set of neighbors of the lumen i. Therefore, each lumen is described by one variable, its area A i and characterized by two parameters: its tension γ i , the contact tension γ ci .

Numerical simulations

The numerical simulations have been implemented in Python and the code is available on GitHub1 . The design of the numerical code was initiated by Annette Mielke, and I extended it to networks of microlumens.

Graph generation

We generate the lumen network as a set of connected vertices. Each vertex is a lumen with coordinates (x, y), connected to its neighbors. Self-loops are not allowed. The coordinates of the points are saved in a file (lumen_coord.dat) for graphic representation. The topology of the network can be chosen arbitrarily, but it is restricted here to hexagonal or triangular lattices. To each point is associated an initial area A, drawn from a truncated normal distribution N(µ, σ) A>p , such that p = 0.1. The parameters of the normal distribution are chosen as µ = 1 and σ = 0.1 here. We verified that our results do not change qualitatively with this particular choice, see section 3.5. To each lumen i is associated a lumen tension γ i and a contact tension γ c,i , that set the lumen contact angle θ i (Eq. (3.3)). The structure of the graph (set of edges) is saved in a file (lumen_lumen.dat), with the length of each edge ℓ ij , determining its hydraulic resistance R 12 (Eq. (3.8)). The initial parameters of the lumen (set of vertices) are saved in another file (lumen.dat) to allow averaging over the same structures. Other files are needed for the algorithm to process, such as a configuration file (test.ini) that sums up the input parameters, such as the channel width (we chose here e 0 = 0.01). We call regular a lattice where vertices are equidistant from each other (usually, the length is set to 1), imposing hence the same resistance for every edge (i, j).

Bridges When the network is evolving, some lumens will shrink and their area will tend to zero. To avoid divergence, we consider that a lumen i is empty when A i < e 2 0 . An empty lumen cannot grow anymore but can still let the fluid pass through. If the empty lumen connects two lumens only, it is deleted from the network, and the distance between the neighbors is calculated by summing the two initial channel lengths (e.g. if lumen 2 connects 1 and 3 but disappears, ℓ ′ 13 = ℓ 12 + ℓ 23 ). If the empty lumen has only one neighbor, it simply disappears from the graph. If the disappearing lumen is connected to more than two lumens, it will be replaced by a bridge. A bridge has an area A b equal to zero and simply lets fluid pass through. Its pressure P b is calculated from mass conservation, stating that the incoming fluxes on a bridge should sum up to zero (Kirchhoff's law):

0 = ∑ j∈L b P j -P b R bj + ∑ j∈B b P j -P b R bj = ∑ j∈L b P j R bj + ∑ j∈B b P j R bj -P b ∑ j∈L b ∪B b 1 R bj = C b + R j,b P j + R b,b P b
where L b and B b designate the set of neighboring lumens and bridges connected to a bridge b. Considering all bridge pressures, collected within a vector ⃗ P, the coupled equations above yield a linear system

R. ⃗ P = ⃗ C (3.10)
The vector ⃗ C collects the pressures of the lumens weighted by the hydraulic resistances of channels linking bridges with their neighboring lumens, and the matrix R is a matrix with coefficients r i,j ≡ 1/R ij for i ̸ = j and r i,i = -∑ j∈L i r i,j .

The two types of connections to a bridge, i.e. bridge-lumen and bridge-bridge, are stored in specific data files (bridge_lumen.dat and bridge_bridge.dat respectively). As the network evolves, the number of lumens will decrease, reducing the computational cost of the simulation for large networks.

Numerical scheme

The numerical integration of the set of equations Eq. (3.9) is done using the library scipy.integrate from Python2.7, more precisely the method odeint2 . Since the method does not provide an event handle to detect if a lumen is empty, the numerical solving is done by restarting the integration for small time frames, checking the conditions and starting it again, see Fig. 3.7. However, because of the dynamics, the disappearance of lumens will change the network quickly at small times, and more slowly at larger times. Moreover, the dynamics at large times is much slower than at small times, because of the competition between larger lumens is slower. We therefore implemented an adaptive time stepping, that depends on the number of lumens N as

t step = a N 2 (3.11)
where a = 0.1 is an arbitrary constant, chosen to obtain a smooth dynamics. The time frame for which the integration proceeds before conditions are checked again is set as t frame = k.t step , with k = 20 an arbitrary constant.

The calculation of the area change dA i dt is split into four steps :

1. the flux between lumens i and j ∈ ∂ i ,

I ij = P j -P i R i,j
is calculated, adding I ij to dA i dt , subtracting I ji = -I ij to dA i dt . 2. the bridge pressures are calculated by solving the linear system (3.10) using the library numpy.linalg, with the method solve.

3. similar to 1., the fluxes through bridge-lumen connections are calculated,

I ib = P b -P i R i,b . 
4. if pumping is included and the lumen is not empty, then the area change for lumen i is calculated using Eq. (3.14).

In the end, the area change for lumen i is given by

dA i dt = ∑ j∈L i I ij + ∑ b∈B i I ib + I p (θ i , A i ) (3.12)

Initial state

Remove lumens with A < d

Reconnect the graph

Area change

While more than one lumen with A > d 2 FIGURE 3.7: Basic steps of the numerical scheme.

The simulation is terminated when only one non-empty lumen remains. Areas are stored in an output file (area.dat), and each time step is recorded. The area conservation is checked at every step, and errors are stored in a log file (error.log). The initial and final configurations are stored in a third file (area.log) to give easy access to the important observables. A fourth file tracks the disappearance and relabeling of lumens into bridges if needed, as well as the reconnections in the graph.

Coarsening dynamics

With the area dynamics and numerical scheme defined for a whole network, we apply the equations to a hexagonal network, where the lumens are located at the vertices of the network and connected by edges, which represent the cell contacts. Such a configuration is represented in Fig. 3.8A. Time integration leads to piecewise dynamics, with continuous curves that can abruptly change their slope, see Fig. 3.8B. This effect is due to the disappearance of a lumen when it is smaller than a predefined length and recalculation of the network topology, as we discuss in section 3.3.3. In particular, we point to the "kinks" in the curves, that correspond to a massive increase of the local hydrostatic pressure as a lumen shrinks, as P i ∼ 1 R i by Laplace's law. This behavior is similar to the growth of droplets in metal alloys [START_REF] Fradkov | Coarsening of three-dimensional droplets by two-dimensional diffusion: Part II[END_REF] or nonwetting droplets [START_REF] Pismen | Mobility and interactions of weakly nonwetting droplets[END_REF]. Averaging the dynamics for several simulations with different initial lumen sizes on the same network leads to the coarsening dynamics shown in Fig. 3.8C. The losing lumens are averaged in orange, and the final -winning -lumen in purple. The dynamics are split into three phases: an initial plateau, where hydraulic exchanges initiate. Then, the collective swelling leads to the disappearance of the smaller lumens from the network, while the larger ones grow in size. Eventually, only a few cavities remain and discharge their fluid into the future blastocoel.

In the mouse embryo, the micro-lumens do not merge but evolve according to a phase of initial growth (swelling) and global decay (discharge) except for the cavity that gives the blastocoel which continuously grows, see Fig. 3.9. We propose that these biphasic dynamics correspond to the coarsening dynamics obtained with simulations.

Therefore, the agreement with the simulations supports our idea that the emergence of the blastocoel is due to the hydraulic exchange between the hundreds of micro-lumens, through the intercellular space. 

Active positioning

Now we have characterized the dynamics of the network and identified it as coarsening, we address the question of the positioning of the blastocoel by investigating the role of the tensions γ in the orientation of hydraulic fluxes.

Tension-driven hydraulic flux

In addition to the difference in radius of curvature or size, a difference in tension γ i may also generate a fluid flow. Eq. (3.7) is a deterministic equation, and for given initial conditions, we can predict which lumen between 1 and 2 will win, i.e. will grow, knowing the sign of the flux I 12 . The pressures P i are given by Eq. (3.6). Thus, if P 2 > P 1 , the lumen 1 grows. This pressure imbalance may be driven either by size or tension imbalance. This is represented in Fig. 3.10A, where we represented the direction of the instantaneous hydraulic flux I 1,2 between lumen 1 and lumen 2 as a function of size asymmetry

β = A 2 -A 1 A 2 +A 1 and tension asymmetry δ = γ 2 -γ 1 γ 2 +γ 1
. On the bottom-right corner, we represent two lumens with the same tension γ but such that lumen 1 is smaller than lumen 2, so that the flux is oriented from 1 to 2 as P 1 > P 2 . On the top-left corner, we show two lumens with the same size A but with larger tension in lumen 2, i.e. γ 2 > γ 1 , which reverses the flux from 2 to 1, since P 2 > P 1 . The flow vanishes when the two pressures are equal, P 1 = P 2 , and is given by the red line. Therefore, an excess in tension may bias the direction of the fluid from the lumen with higher tension to the lumen with a lower tension. Moreover, from the force balance Eq. ( 3.3), one can see that the adhesive contact tension γ c i may also play a role in directing the flux (see Fig. 3.10B), when we change the tension asymmetry into the adhesive contact tension asymmetry

Γ = γ c 2 -γ c 1 γ c 2 +γ c 1 at constant γ = 1.
In this graph, one can see that the flux is directed from the lumen with low contact tension to the lumen with high contact tension, i.e. γ c 2 < γ c 1 . This is because when γ c increases, the contact angle decreases to preserve force balance. This makes the pressure higher in the lumen with lower contact tension. Of course, as the interplay between contact tension and adhesion is unclear, this is hardly transferable for the embryo as such. However, we suggest that patterning the adhesion seems to be sufficient to orient the hydraulic flux between lumens, as observed for chimera embryos with half depleted cadherin cells 3.4B.

Expressing the flux I 1,2 as function of the parameters γ i , γ c i and A i for i = 1, 2, we can build a phase diagram where the direction of the flux is encapsulated into a function of the three asymmetric parameters: β for the size, δ for the tension, Γ for contact tension, see Fig. 3.10C. The zero-flow condition, I 12 = 0 is given by the purple surface. Above the surface, the flow is directed from lumen 2 to lumen 1, and is reversed below. A 2 +A 1 , lumen tension asymmetry δ = γ 2 -γ 1 γ 2 +γ 1 and adhesive contact tension asymmetry Γ = γ c2 -γ c1 γ c2 +γ c1 . The volume below the purple surface correspond to parameters such that the fluid flux goes from lumen 1 to lumen 2.

Undefined region γ 1,2 < γ c1,2 / 2 β = (A 2 -A 1 ) / (A 2 + A 1 ) Γ = ( γ c2 -γ c1 ) / ( γ c2 + γ c1 ) δ = (γ 2 - γ 1 ) / (γ 2 + γ 1 ) 0 0 0 -1 0.5 -0.5 1 -1 1 2 1 2 1 C N o f l o w Area asymmetry β = (A 2 -A 1 ) / (A 2 + A 1 ) Tension asymmetry δ = (γ 2 -γ 1 ) / (γ 2 + γ 1 ) -0.5 0.5 1 2 γ γ Α 1 Α 2 1 2 γ 2 γ 1 Α Α 1 0.5 -1 -0.5 γ c γ c A N o f l o w A 1 A 2 A A γ γ c γ c2 γ c1
Overall, this shows that for a 2-lumen system, size and tensions both influence the direction of the fluid flow.

Cellular pressure on a lumen

For two connected lumens, any pressure difference generates a hydraulic flux. The lumens are confined between cells, which are exerting cellular pressure on them. The hydrostatic pressure in a lumen i is related via Laplace's law to a tension γ i and to a curvature radius R i as P i -P ref = γ i /R i . To predict the luminal flux direction between two lumens, their pressures have therefore to be compared relative to a common reference value P ref , which may be advantageously chosen as a cell pressure. We inferred, through interface curvature measurement, the pressure difference between ICM-ICM, TE-ICM, and TE-TE cell pairs. This reveals a higher pressure in ICM cells, which bulge into their TE counterparts. On the contrary, the relatively flat interfaces between cells of the same type hint towards similar cell pressures.

In our model, we neglect the direct mechanical interplay between cells and lumens, by collecting both cells pressure and higher surface contractility effects into a single lumen tension. Accordingly, we do not consider asymmetric lumens to reduce the number of parameters (see Fig. easily generalized to asymmetric shapes, without loss of generality. These simplifying approximations are justified in details below

• At homotypic interfaces (ICM-ICM or TE-TE) we expect symmetric lumen shapes and the same reference pressure, making our approximations fully valid see Fig. 3.11B, C.3 

• At heterotypic interfaces, the lumen shape is found asymmetric, bulging more into TE than into ICM cells, see Fig. 3.11B, C. This is expected from a higher lumen tension at the ICM interface and a higher ICM cell pressure, both resulting from higher contractility in ICM cells. The higher pressure in ICM cells is also partly due to their lower volume. We chose to combine both effects, which add up, into a single lumen tension only.

The tensions we consider in the model should therefore be viewed as an average of the tensions at the two lumen interfaces: γ ICM-ICM = (γ ICM + γ ICM )/2, for ICM-ICM contacts, and γ TE-ICM = (γ ICM + γ TE )/2, for TE-ICM contacts, corresponding to a mean tension. In the following, we will denote them simply respectively as γ ICM and γ TE to simplify the notation, see Fig. 3.11A.

Biased coarsening on a network

In our model, we consider two tensions: γ ICM , corresponding to the tension of a lumen at a ICM-ICM interface and γ TE , which corresponds to a lumen at the TE-ICM interface. We take advantage of our previous simulations on a network to directly tune the tensions of the TE-ICM lumens, γ TE , with fixed ICM-ICM tension γ ICM , to statistically determine where the most probable location of the winning lumen would be as a function of the tension asymmetry

δ TE-ICM = γ TE -γ ICM γ TE +γ ICM
. This is shown in Fig. 3.12A, where the probability is obtained after averaging the end position of the winning lumen over 1000 simulations. A negative (resp. positive) ratio indicates that the tension in γ TE is smaller (resp. larger) than γ ICM . As we mentioned, the tension γ TE is expected to be smaller than γ ICM in the mouse embryo, indicating that the most probable location for the final cavity is the TE-ICM interface, as is described in the literature. This can be rationalized as the ICM-ICM lumens are more pressurized than their TE-ICM counterparts, and the intercellular fluid is flushed away from the ICM-ICM contacts to reach the TE-ICM intercellular space. We reproduce the same experiment by tuning the adhesive contact tension at the TE-ICM interface instead, and plot the probability to win at the TE-ICM interface as a function of the contact tension asymmetry

Γ TE-ICM = γ cTE -γ cICM γ cTE +γ cICM
, see Fig. 3.12B. As we observed with two lumens, the probability to win at the TE-ICM interface is higher when the contact tension is higher as the flow is directed toward these lumens, see To test this prediction, we used again chimeras with myosin-depleted mutant, mMyh9, with lower contractility than wild-type embryos. In terms of surface tension this corresponds to a third tension lower than the TE-ICM tension, i.e. γ mutant < γ TE , see Fig. 3.13A. This experiment is shown in Fig. 3.13B, D. By counting the number of TE cells facing the blastocoel, called mural cells (red dashed box), see Fig. 3.13C, we obtain a significantly higher number of mutant cells in the mural TE of the mutant-WT chimera, compared to the WT-WT chimera. This confirms the prediction as the blastocoel preferentially forms where the contractility is the lowest, i.e. on the mutant side.

Therefore, we suggest that the position of the blastocoel is biased by the difference in contractility of cells, which direct the offloading of the flux towards the lumens with lesser tension. 

Robustness of the model

In this section, we present additional results to show the robustness of our simulations. We will denote δ TE-ICM = (γ TEγ ICM )/(γ TE + γ ICM ) the tension asymmetry where γ TE and γ ICM are the tensions of a lumen respectively at the TE-ICM interface or ICM-ICM interface.

Variation of the initial area distribution

The initial area distribution of the lumens is a truncated Gaussian distribution

A → N (µ, σ) A>p (3.13) such that µ = 1. p = 0.
1 is an arbitrary constant and minimal initial area allowed. The width of the distribution is usually taken to be σ = 0.1. Fig. 3.14 shows the effect of broader distributions on the probability for the final lumen to be at the TE-ICM interface: as the width of the area distribution increases, the sharpness of the transition decreases. This can be simply interpreted as the consequence of an increased probability of starting with a large initial lumen in a region of larger tension, the size asymmetry compensating the imposed tension asymmetry.

Irregular lattices

Networks are generated from regular lattices, with identical distances between lumens. Noisy lattices are generated from a regular lattice, by displacing randomly the positions of the vertices by a vector d⃗ u = (dx, dy) of components d⃗ u drawn from a normal distribution N (0, 0.05). For a given lumen network, multiple configurations are averaged with the same number of simulations each. Noisy lattices show no deviations from the winning probability distribution of regular lattice, for both the tension asymmetry coefficient δ and contact tension asymmetry coefficient Γ (see Fig. 3.15).

σ = 0.1 σ = 0.5 σ = 1 A = N(μ,σ)
Prob. to win at TE-ICM interface

Lumen tension asymmetry

δ TE-ICM = (γ TE -γ ICM ) / (γ TE + γ ICM ) 0.5 1 0.1 -0.1 FIGURE 3
.14: Effect of initial size distribution. Winning probability for lumens at the TE-ICM interface (external layer) for a regular hexagonal lattice with 2 layers, for different widths of the initial areas distribution. The initial areas are drawn from a truncated normal law (A > 0.1) with the same average (µ = 1) but different standard deviations (σ = 0.1, 0.5, 1). The lumen network is the regular network similar to the one used in Fig. 3C. Each point results from at least 5000 simulations. 

Prob. to win at TE-ICM interface

Contact tension asymmetry

Γ TE-ICM = (γ cTE -γ cICM ) / (γ cTE + γ cICM ) 1 -0.1 0 0.1 0.5

Variation of the network topology

We also tested two different topologies: hexagonal and triangular lattices. Hexagonal lattices are preferred as they more faithfully represent the connection between cells in 2 dimensions, corresponding essentially to tricellular junctions. Triangular lattices are on the contrary more akin to an isotropic network. The TE-ICM interface is defined as the outer layer, with γ ICM = 1 and γ TE changed to tune the tension asymmetry δ. The topology or size of the network does not affect the qualitative behavior of the curve. However, an isotropic topology favors generally lumens inside the network, and increasing the size of the network also marginally displaces the curve towards lower δ (see Fig. 3.16). Hence as the network grows in size, we expect a higher asymmetry to be necessary to statistically direct the final lumen towards the network boundary. 

Pumping

We finally consider the case where a lumen is able to pump additional fluid through its interface. The flux I p (θ i , A i ) of pumped fluid is assumed to be proportional to the lumen contour

L i = 2 × 2θ i A i 2θ i -sin(2θ i )
and is characterized by a constant pumping rate per unit length λ p . Here, we do not consider pumping in the channel itself. For an isolated lumen i with pumping, the time evolution of its size is given by

dA i dt = I p (θ i , A i ) = λ p L i = 4λ p θ i A i 2θ i -sin(2θ i ) (3.14)
For the case of two connected lumens with the same pumping rate λ p , their time evolution is now given by the equations

dA 1 dt = I 1,2 + I p (θ 1 , A 1 ) dA 2 dt = I 2,1 + I p (θ 2 , A 2 ) (3.15)
We studied whether including pumping affects the coarsening process, see Eq. (3.9). For small pumping rates (λ p ≲ 1.10 -3 with all tensions at 1), the coarsening dynamics is slightly modified, but the precise order of lumen disappearance does not change significantly, see Fig. 3.17.

However, above a certain value of pumping (here λ p ≳ 4.10 -3 ), the system is unable to coarsen into one final lumen: two lumens will keep growing faster than their rate of fluid exchange (see Fig. 3.17).

Adding pumping also makes the probability curve to win at the TE-ICM interface as a function of the tension asymmetry more abrupt, but does not change qualitatively its shape (see Fig. 3.18). However, no obvious effect is observed for variations of the contact tension asymmetry Γ.

Overall, these results illustrate that the hydraulic model gives similar results no matter the introduced perturbations: the topology, noise, or initial size of the network all predict that the position of the final lumen is located where hydrostatic pressure is lower. Winning probability for lumens at the TE-ICM interface (external layer) with (blue dots) and without (red crosses) pumping. The pumping rate λ p is chosen so that the dynamics of the coarsening does not blow up. Each point corresponds to the average of at least 1000 simulations.

Conclusion

This study highlights the importance of cell mechanics and hydraulics and suggests a new mechanism of lumen formation at adhesive basolateral contacts.

The study focuses on the formation of the network and its evolution until the blastocoel is formed. The question of blastocyst expansion remains open. More comprehensive models, accurately modeling active pumping seem to be required to address this issue.

The question of micro-cavity formation has only been investigated experimentally, without a physical model to support it. We show that fluid accumulation is critical for micro-lumen initiation: inhibition of Na + /K + pumps by ouabain, imposition of an osmotic load by sucrose injection breaking the osmotic gradient, or disruption of apicobasal polarity all prevent micro-lumen formation and heterogeneous distribution of adhesion molecules, see Fig. 3.2. What initially triggers the fluid injection and contacts fracking remains unclear: it could be a combined effect between ion pump activation [START_REF] Betts | Na/K-ATPase-mediated 86Rb+ uptake and asymmetrical trophectoderm localization of α1 and α3 CN/K-ATPase isoforms during bovine preattachment development[END_REF]], sealing of TJ that is achieved just before fracking [START_REF] Zenker | Expanding Actin Rings Zipper the Mouse Embryo for Blastocyst Formation[END_REF] or the exocytosis of vesicles [START_REF] Watson | Differentiation of an epithelium: Factors affecting the polarized distribution of Na+,K+-ATPase in mouse trophectoderm[END_REF][START_REF] Ryan | Lumen Expansion Facilitates Epiblast-Primitive Endoderm Fate Specification during Mouse Blastocyst Formation[END_REF]. Hydraulic fracking is therefore a favored direction, but not the only one: vesicle transport to cell contacts could reorganize the basolateral membrane and explain the appearance of micro-lumens [START_REF] Ryan | Lumen Expansion Facilitates Epiblast-Primitive Endoderm Fate Specification during Mouse Blastocyst Formation[END_REF].

Na + /K + pumps are observed at basolateral contacts of mural TE cells, and suggest a possible bias in active pumping and solute secretion into the intercellular medium, possibly providing another mechanism to explain the bias in the final blastocoel position. Thus, a model including the patterning of active pumping could be relevant but would require the consideration of solutes, chemical gradient, and osmotic pressure effects.

Finally, we proposed a 2-dimensional model, but the geometry of the embryo is more complex: the micro-lumens are located either on a cell surface, in an equivalent geometry to the proposed hydraulic model, but exchange through "sheets" of fluid and not pipes as we model them. In a first approximation, the fluid follows the shortest path, but Ostwald ripening for droplets shows the emergence of screening effects in many-droplet problems, similarly to Thomas-Fermi screening [START_REF] Yao | Theory and simulation of Ostwald ripening[END_REF][START_REF] Sagui | Theory of nucleation and growth during phase separation[END_REF][START_REF] Baldan | Progress in Ostwald ripening theories and their applications in nickel-base super alloys[END_REF]. We show that neither the initial area distribution, the lattice topology, nor the perturbation of the lattice geometry changes the predictions of the final blastocoel position. These predictions should also be robust whatever the dimensionality of the problem. The reduction to a lower dimension could therefore be a solution to add previously neglected contributions while keeping the problem simple enough to make numerical and analytical predictions. The contractile asymmetries and cellular mechanics direct fluid exchanges, but the model does only take into account flat cell-cell interfaces and symmetrical lumen. A better description of the cellular mechanics would require the use of bubbly vertex models to account for the cell membrane curvature [START_REF] Ishimoto | Bubbly vertex dynamics: A dynamical and geometrical model for epithelial tissues with curved cell shapes[END_REF].

Thus, we have identified two main research directions to pursue in this thesis.

First, what are the effects of active pumping, ion, and water permeation in the network dynamics? This question is addressed in the next chapter where we deal exclusively with a network of micro-cavities.

Then, how to physically describe the expansion of the blastocoel once formed, through the hydraulic and osmotic exchanges with the external environment? This question is addressed in the final part of the manuscript, with a chapter dedicated to the interaction of the blastocyst with the surrounding elastic shell that is the zona pellucida, and the other on the volume control model that includes charged species and active pumping.

Chapter 4

Hydro-osmotic coarsening

This chapter is devoted to the study of a more exhaustive model of micro-lumen coarsening than the one in Chapter 3, that was published in [Le Verge-Serandour and Turlier, 2021a].

We study a network of pre-formed micro-lumens, the formation of which is not discussed here. We briefly discuss the additional assumptions we add to the hydraulic coarsening model. Then, we introduce the parameterization of the system by detailing the conservation equations and the fluxes exchanged between the micro-lumens. We investigate the osmotic effects of solutes, water and solute permeation, and active pumping on the behavior of two lumens. We study the collective behavior of a chain of micro-lumens and consider the Lifshitz-Slyozov-Wagner (LSW) mean-field theory to interpret the results. Finally, we include the effects of active pumping on the chain and we examine the positioning mechanisms of the final lumen.

Introduction

Micro-lumens are present in several contexts, see Fig. Our model is therefore intended to be generic: we will not focus exclusively on the mouse embryo, but rather consider a system of coupled biological cavities including the generically new contributions.

First, we assume the presence of an uncharged solute in the intercellular space and cells. The cellular medium acts as a chemostat of constant concentration. Solutes can be imported in the intercellular space by active pumps at a constant rate j a with uniform distribution over the membrane -except stated. This approach was formalized in the context of volume control for a single cell [START_REF] Jiang | Cellular Pressure and Volume Regulation and Implications for Cell Mechanics[END_REF] and applied to a two-cell system in the context of tumorous spheroids [START_REF] Mcevoy | Gap junctions amplify spatial variations in cell volume in proliferating tumor spheroids[END_REF]. In both cases, active pumping was considered to be a constant homogeneous rate. Second, we include the permeation of water and solutes through the membrane in the form of phenomenological permeation coefficients, λ v for solvent and λ s for solutes. These permeations account for the presence of water and solute channels, the nature of which has been discussed in Chapter 2, section 2.3.1. We assume that the channels facilitate diffusion through the membrane, such that water or solutes follow osmotic gradients. We assume that the permeation per unit membrane does not change with the expansion or shrinkage of the cell membrane, thus the density of transporters remains constant.

In the same way, we consider the presence of active pumps, that transport ions against the chemical gradient, see Chapter 2, section 2.3.1. Active pumps usually act on specific species, but we consider them to act indifferently on solutes. In the case of Na + /K + pumps, found at the basolateral surface of cells and partly implicated in hydraulic fracturing (see Chapter 3 and [START_REF] Dumortier | Hydraulic fracturing and active coarsening position the lumen of the mouse blastocyst[END_REF]), the pumps transport 3 sodium ions to the intercellular space and import 2 potassium ions into the cells, creating an effective one-ion transport to the intercellular space. In the following, we will consider active pumping as positively oriented from cells to the intercellular space, as we aim to study the effect of active pumping on lumen growth.

Finally, we reduce the 3D network of micro-lumens in the embryo to a one-dimensional system with closed ends. While the first assumption relies on the sake of simplicity, the second is justified by the presence of tight junctions that seal the embryo and prevent fluid leakages. Thus, the only way for fluid or osmolytes to escape is by permeation through lateral membranes. 

Model of hydro-osmotic lumens

The intercellular space is assumed to be divided into (i) cavities, where cell-cell contacts are separated and form the micro-lumens, and (ii) bridges, where cells have closely apposed contacts that connect the cavities.

The simplest system to study hydraulic and osmotic effects is the toy model composed of two micro-lumens connected by a bridge (see Fig. 4.2). This is a 2-dimensional model, where the size of the lumens is given by their area, but the network of lumens is 1-dimensional (i.e. a chain).

The lumens are supposed to exchange solvent (water) and solutes (an uncharged chemical species), either with the bridge that connects them or with the cellular medium through the semi-permeable membranes, using specialized channels. The center of mass of lumens is assumed to be fixed so that lumens can shrink or grow, or even collide, but do not move longitudinally. Besides, lumens and the bridge can pump solutes in the intercellular space with a pumping rate j a .

To determine the dynamical equations describing our system, we write for each lumen and the bridge equations describing force balance, mass/area conservation, and solute conservation. Then we calculate analytical expressions for boundary fluxes at each lumen ends. Finally, we determine the steady-state for an isolated lumen. 

Force, mass and ion balance equations in the intercellular bridge

We assume that the cellular medium is characterized by a uniform pressure p 0 and a concentration c 0 and we define δp(x, t) ≡ p(x, t)p 0 and δc(x, t) ≡ c(x, t)c 0 the pressure and concentration jumps at coordinate x and time t in the intercellular bridge with respect to the cell.

Force balance

In the intercellular bridge, force balance can be written

ρ(x, t)k e(x, t) -e 0 -γ c ∇ 2 e = δp(x, t) (4.1)
where ρ(x, t) is the density per unit length of adhesive cadherin molecules, modeled as linear springs of resting length e 0 and stiffness k, and e(x, t) is the width of the bridge at position x and time t.

Mass balance in the intercellular bridge

x q(x,t)

x x+dx q(x+dx,t)

λ v λ v e(x,t) e(x+dx,t) FIGURE 4.3:
Water fluxes in the bridge. Sketch of a slab of intercellular bridge between x and x + dx depicting the longitudinal water fluxes q(x, t) and q(x + dx, t) and the transversal water permeation flux, characterized by the coefficient λ v .

Local mass balance in the intercellular bridge is calculated as the change in size of the bridge over a small length dx:

e(x, t+dt)dx -e(x, t)dx = q(x, t) -q(x+dx, t) dt + 2j v dtdx 1 + 1 2 ∂e ∂x 2 (4.2)
The left-hand side corresponds to the size of the bridge of width e(x, t). The right-hand side is the sum of the longitudinal hydraulic flow plus the transversal flux exchanged with the cell. q(x, t) is the longitudinal hydrodynamic flux given by Poiseuille's formula in 2-dimension, see [Landau and Lifshitz, 1987] and Eq. (C.15) of Appendix C.2, and is given by x,t) 12η the effective hydrodynamic conductance, defined in Eq. (C.15) and is the same we used in Chapter 3, Eq. (3.1). j v is a transversal incoming flux per unit length, and originates from the osmotic gradient and hydrostatic pressure gradient between the intercellular bridge and the cellular medium

q(x, t) = -κ v (x, t) ∂δp ∂x (4.3) with κ v (x, t) = e 3 (
j v = λ v δπ(x, t) -δp(x, t) (4.4)
with λ v the coefficient of membrane permeability to water in m 2 .s -1 .N ¯1, and δπ = RTδc is the osmotic pressure difference given by the van't Hoff formula [START_REF] Kim | Membrane Thermodynamics for Osmotic Phenomena[END_REF]. The bridge width is supposed fixed, with a value e(x, t) ∼ e 0 ≃ 50nm [START_REF] Fenz | Diffusion and Intermembrane Distance: Case Study of Avidin and E-Cadherin Mediated Adhesion[END_REF]. The mass balance equation becomes

ξ 2 v ∂ 2 δp ∂x 2 = δp(x, t) -RTδc(x, t) (4.5)
where we have defined a pressure screening length, similar to [START_REF] Dasgupta | Physics of lumen growth[END_REF]]

ξ v ≡ κ v (e 0 ) 2λ v = e 3/2 0 24ηλ v (4.6)
This screening length gives the typical length over which the pressure gradient is lost by permeation of water along the bridge. The water channels act as holes along a tube, and the permeation coefficient represents their density. The larger the permeation, the larger the pressure losses, see Fig. 

Solute balance in the intercellular bridge

Similarly, the solute balance in the intercellular bridge can be calculated as follows 

+ 2j s dtdx 1 + 1 2 ∂e ∂x 2
The left-hand side is the number of moles of solutes in the bridge over a length dx. The right-hand side is the sum of the longitudinal fluxes of solute particles along the bridge, plus the transversal flux of solute particles exchanged with the cellular medium. j d (x, t) is the longitudinal diffusive flux of solutes in the intercellular bridge, counted positively in the x-direction, given by Fick's law j d = -D ∂δc ∂x [START_REF] Fick | On liquid diffusion (Reprint of the original 1855 article)[END_REF], and j s is the transversal flux, the sum of a passive (j p ) and an active (j a ) components:

j s = j p + j a = λ s RT log c 0 c(x, t)
+ j a (4.7) j p is the transversal passive flux generated by the chemical potential difference, in dilute approximation [START_REF] Kim | Membrane Thermodynamics for Osmotic Phenomena[END_REF], and j a is the active pumping rate per unit length of solute, supposed to be constant in time, and is given in mol.s -1 .m -1 (Table A.2). Assuming a constant bridge diameter, we obtain the following equation for the concentration jump δc across the intercellular bridge interface

∂δc(x, t) ∂t = D ∂ 2 δc ∂x 2 - 2λ s RT e 0 log 1 + δc c 0 + 2j a e 0 (4.8)
Assuming the relative jump is small compared to the external concentration, δc ≪ c 0 , the logarithm in Eq. (4.8) may be simplified as log(1

+ x) ∼ x→0
x. This approximation is justified in the section 4.2.2. The concentration profile along the bridge can be calculated using a boundary-value problem (BVP) solver, and the numerical solution and its approximation are plotted on Fig. 4.5. The approximated and exact profiles match for small δc ≪ c 0 as expected but diverge as δc increases, showing the breakdown of the assumption. Including active pumping j a also makes the approximate and exact profiles diverge.

Note that the Eq. (4.8) corresponds to the continuity equation D Dt c(x, t) = -∂ x J, with flux J = -D∂ x c and the material derivative

D Dt = ∂ t + v x ∂ x .
Evaluating the Péclet number for the flow generated by pressure difference between two lumens with a size difference of L = 10µm, separated by a distance ℓ = 1µm gives P e ≡ e 0 .v x D ≃ 10 -2 (4.9) see Eq. (A.3), which shows that the advective part of the material derivative can be neglected with respect to diffusion/mass transport. Hence, the solute profile is purely diffusive. 

Dimensionless equations

To non-dimensionalize the equations, we define the following dimensionless variables

p ≡ δp/Π 0 ; c ≡ δc/c 0 ; x ′ ≡ x/ℓ(t) ; ja ≡ j a λ s RT (4.10)
where Π 0 = RTc 0 . We also introduce a typical timescale and a screening length for the variation of solute concentration in the bridge [START_REF] Dasgupta | Physics of lumen growth[END_REF] τ D ≡ e 0 c 0 2λ s RT (4.11)

ξ s ≡ De 0 c 0 2λ s RT (4.12)
After non-dimensionalization, and assuming that the relative jump of concentration across the membrane remains small ( c ≪ 1), the two coupled equations for pressure and concentration in the intercellular bridge read

χ 2 v (t) ∂ 2 p(x ′ , t) ∂x ′2 = p(x ′ , t) -c(x ′ , t) (4.13a) τ D ∂ c(x ′ , t) ∂t -χ 2 s (t) ∂ 2 c(x ′ , t) ∂x ′2 + c(x ′ , t) = ja (4.13b)
where

χ 2 v (t) ≡ ξ 2 v ℓ 2 (t) (4.14a) χ 2 s (t) ≡ ξ 2 s ℓ 2 (t) (4.14b)
Parameters χ s (t) and χ v (t) are dimensionless coefficients that we call pressure and concentration screening numbers. They compare the (time-dependent) length of the intercellular bridge ℓ(t) to the associated screening length (ξ s,v ). For χ s,v ≪ 1, the fluid/solute exchanges are screened because of water/solute leakage from the sides. Conversely, for χ s,v ≫ 1, there is no leakage and the water/solute fluxes between the two lumens are not screened.

Interestingly, the screening numbers also give the number of lumens that are hydraulically/osmotically seen by one lumen. We briefly extend our model to a small chain of 5 lumens to visualize the effect of the screening ratio. This is represented in Fig. 4.6. On panel A, we represent the profile of the chain. Below (panels B-D) are the pressure profiles along the direction x, with increasing pressure screening number χ v . In a lumen, the pressure is constant and given by Laplace's law Eq. (4.16).

For χ v < 1, the hydrostatic pressure of the lumen decreases in the bridges and is lost rapidly, illustrating pressure loss due to permeation. For χ v = 1, the hydraulic pressure follows an almost linear gradient with some losses due to permeation. For χ v = 100, the hydraulic pressure follows a linear gradient, indicating the low losses and direct hydraulic communication between the micro-lumens.

The screening lengths depend primarily on the water and solute permeation coefficients: the larger the permeation, the smaller the screening length, and the larger the losses in the bridge. In the mouse embryo of diameter 80µm, typical values can be estimated to be ξ v ≃ 84µm and ξ s ≃ 14µm (Table A.2), indicating that lumens may be screened chemically but not hydraulically.

Force, mass and solute balance equations in the lumens

Force balance

Force balance for a lumen j reads:

cos θ = γ c 2γ (4.15)
as we assume the surface tensions γ, γ c to be uniform, see Fig. 4.2. This assumption is discussed in Appendix D.5, as it is the consequence of assuming left-right symmetrical lumens. Thus, the contact angles are the same for the two lumens. The surface tension γ generates a hydrostatic pressure δP j onto lumen j, which are related through Laplace's pressure

δP j = P j -p 0 = γ R j (4.16) in 2D
, where p 0 is the pressure of the cellular medium.

Mass balance

The size of the lumen is changed by the transversal flux exchanged with the cell due to osmotic and hydrostatic pressures, and the longitudinal flux Jj v exchanged with the bridge. Mass balance for the lumen j thus reads dA j dt = 4θR j (t)λ v δΠ j -δP j -J v j (t) where δΠ j = RT(C jc 0 ) is the osmotic pressure difference with c 0 the cellular medium concentration, J v j (t) is the water flux from the lumen j to the bridge, determined by continuity with the water flux expression in the bridge q(x, t) = -κ v ∂δp ∂x at x = -ℓ(t) 2 and -q(x, t) at x = ℓ(t) 2 .

Writing the equation as a function of

L j (t) = R j (t) sin θ = A 1/2 j (t) sin θ √ 2θ-sin (2θ)
instead leads to

dL j dt = 2θ sin θ 2θ -sin 2θ λ v RTδC j (t) - γ sin θ L j (t) - sin 2 θ 2θ -sin 2θ 1 2L j (t) J v j (t) (4.17)
For a pair of lumens 1, 2, the length of the bridge ℓ(t) varies with the lumen size, such that the distance between the centers of mass of each lumen is conserved:

L 0 = L 1 (t) + L 2 (t) + ℓ(t) = cte (4.18)
This results from the assumption that the center of mass of lumens is fixed in time. Assuming no flux J v i , the mass balance equation at steady-state gives the stationary lumen volume as

δΠ i = δP i , leading to δC i c 0 = γ Π 0 R i ≲ 10 -3
, where we took R i ≳ 1µm, γ ∼ 10 -4 N.m -1 and Π 0 ∼ 10 5 Pa (Table A.2). Therefore in the following, we will assume that the concentration jump is small compared to the cellular concentration δC i ≪ c 0 .

Solute balance

For the number N j (t) of solute in the lumen j, we can similarly write

dN j dt = 4R j (t)θ λ s RT log c 0 C j (t) + j a -J s j (t) (4.19)
where the first term of the right-hand side accounts for the transversal flux of solutes generated by a chemical potentiel difference in dilute approximation or actively pumped with a rate j a , and the second term J s j is the solute flux from the lumen to the bridge, determined by continuity with the solute flux expression in the bridge J s j = ±j d (x, t)e 0 = ∓De 0 ∂δc ∂x taken at x = -ℓ(t) 2 and x = ℓ(t) 2 respectively. With the approximation δC j /c 0 ≪ 1, and by definition N j (t) ≡ C j (t)A j (t), we obtain

dN j dt = 4θL j (t) sin θ λ s RT 1 - sin 2 θ 2θ -sin 2θ N j (t) c 0 L 2 j (t) + j a -J s j (4.20)

Nondimensionalization of the equations

We use L 0 =< L i (0) >, the average half-length of a lumen at time t = 0 as rescaling length for the lumens, ℓ 0 = ℓ(0) for the bridge. The other relevant scales and constants are

N 0 ≡ c 0 L 2 0 , Π 0 ≡ RTc 0 τ s ≡ L 0 c 0 2λ s RT , τ v ≡ L 0 2λ v Π 0 µ ≡ sin 2 θ 2θ -sin (2θ) , ν ≡ θ sin θ ϵ ≡ γ sin θ L 0 Π 0
The parameter ϵ compares the hydrostatic pressure jump γ sin θ L 0 ≃ 10 2 Pa to the osmotic pressure Π 0 ≃ 10 5 Pa, and is typically small (ϵ ∼ 10 -3 ). µ and ν are geometrical constants. τ s,v are typical times characterizing the relaxation of the lumen number of solutes and size toward steady-state.

We nondimensionalize the variables in the two lumens as

t = t/τ v , Lj ≡ L j /L 0 , Nj ≡ N j /N 0 , δ Cj ≡ δC j /c 0 = µ Nj L2 j -1
, and the fluxes as Jv j ≡ τ v L 2 0 J v j , Js j ≡ τ s N 0 J s j This leads to the two following coupled equations for the lumen length and solute number

d Lj d t = µν µ Nj L2 j -1 - ϵ Lj - µ 2 Lj Jv j (4.21a) τ s τ v d Nj d t = 2ν Lj 1 -µ Nj L2 j + ja -Js j (4.21b)
With these two equations, we integrate the coupled ODEs and solve the dynamics of the system once the boundary fluxes Jv j and Js j are calculated as functions of time t, lengths Lj , number of solutes Nj and the active pumping ja , which is the objective of the following section.

Boundary fluxes

The equations (4.21a) and (4.21b) can only be integrated by calculating the boundary fluxes Js,v j exchanged between the lumens and the bridge. The dimensionless solvent flux for the lumen j = 1 (left) is given by (

x = ℓ(t)x ′ , δc = c 0 . c, δp = Π 0 . p) Jv 1 (t) = τ v L 2 0 q(- 1 2 , t) = - ξ2 v l(t) ∂ p ∂x ′ (- 1 2 , t) (4.22a)
where we used ξv = ξ v /L 0 and l = ℓ/ℓ 0 . For the dimensionless solute flux, we have

Js 1 (t) = τ s N 0 e 0 j d (- 1 2 , t) = - ξ2 s l(t) ∂ c ∂x ′ (- 1 2 , t) (4.22b)
Similarly, the dimensionless solvent (v) and solute (s) fluxes for the lumen j = 2 (right) are

Jv 2 (t) = ξ2 v l(t) ∂ p ∂x ′ ( 1 2 , t) (4.23a) Js 2 (t) = ξ2 s l(t) ∂ c ∂x ′ ( 1 2 , t) (4.23b)
The concentration profile equation Eq. (4.13b) is a diffusion equation with radiative ( c) and source ( ja ) term. A further assumption is made, as the typical timescale τ D = ℓ 2 0 D , that characterizes the relaxation due to diffusion, is of order τ D ≃ 10 -11 s, with ℓ 0 = 10µm and D ≃ 10m 2 .s -1 the diffusion constant of KCl [START_REF] Friedman | The Self-diffusion Coefficients of Potassium, Cesium, Iodide and Chloride Ions in Aqueous Solutions[END_REF] or NaCl [START_REF] Vitagliano | Diffusion Coefficients for Aqueous Solutions of Sodium Chloride and Barium Chloride[END_REF]. The typical relaxation times for the lumens are of order τ s,v ≃ 1s, thus it is safe to assume the concentration in the bridge is always at steadystate. Thanks to the simple form of the pressure and concentration profile equations, we find an analytical solution for p and c, and then evaluate the fluxes J s,v j at the junction between the lumens and the bridge. With the solution for c, we calculate the pressure profile, as it is a inhomogenous second order differential equation.

The Eqs (4.13b) and (4.13a) are, at steady-state

χ 2 v ∂ 2 p(x ′ ) ∂x ′2 = p(x ′ ) -c(x ′ ) (4.24a) -χ 2 s ∂ 2 c(x ′ ) ∂x ′2 + c(x ′ ) = ja (4.24b) with boundary conditions p(-1 2 ) = δ P1 ; p( 1 2 ) = δ P2 ; c(-1 2 ) = δ C1 and c( 1 2 ) = δ C2 where δ Pi = ϵ i Li and δ Ci = µ i Ni L2 i -1. We obtain the following analytical expressions c(x ′ ) = ja -(δ C1 -ja ) sinh x ′ -1 2 χ s sinh(1/χ s ) + (δ C2 -ja ) sinh x ′ + 1 2 χ s sinh(1/χ s ) (4.25a) p(x ′ ) = - δ P1 sinh x ′ -1 2 χ v sinh(1/χ v ) + δ P2 sinh x ′ + 1 2 χ v sinh(1/χ v ) + λ(x ′ )e x ′ /χ v + µ(x ′ )e -x ′ /χ v + + e -1/2χ v sinh 1/χ v λ(- 1 2 ) sinh x ′ -1 2 χ v -µ( 1 2 ) sinh x ′ + 1 2 χ v (4.25b) where λ(x) ≡ x 1/2 dyE -(y), µ(x) ≡ x -1/2 dyE + (y) and E ± (x) = ± e ±x/χv 2χ v c x; δ C1 , δ C2 , χ s , ja . Then the solute fluxes Js 1,2 are Js 1 = ξs   (δ C1 -ja ) coth 1 χ s -(δ C2 -ja ) 1 sinh 1 χ s   (4.26a) Js 2 = ξs   (δ C2 -ja ) coth 1 χ s -(δ C1 -ja ) 1 sinh 1 χ s   (4.26b)
and hydraulic fluxes Jv 1,2 are

Jv 1 = ξv coth 1 χ v δ P1 -λ (-1/2) e -1/2χ v - 1 sinh(1/χ v ) δ P2 -µ (1/2) e -1/2χ v -λ (-1/2) e -1/2χ v (4.27a) Jv 2 = ξv coth 1 χ v δ P2 -µ (1/2) e -1/2χ v - 1 sinh(1/χ v ) δ P1 -λ (-1/2) e -1/2χ v -µ (1/2) e -1/2χ v (4.
27b) The derivation of these solutions is done in the appendix D.

Three profiles with the same boundary conditions are plotted in Fig. 4.7. In the first case (χ s = 0.1, χ v = 0.1), concentration and pressure gradients are screened (∂ x ′ c, ∂ x ′ p < 0 at the borders) due to the permeation over the screening lengths ξ s,v = 0.1ℓ. In the middle of the bridge, the concentration and pressure homogenize with the outside ( c, p ∼ 0, recalling c = (cc 0 )/c 0 , p = (pp 0 )/p 0 ). The fluxes Js,v 1,2 are outgoing from the lumens, that loose both solutes and water. On the contrary, the second case (χ s = 1, χ v = 1) shows unscreened exchanges in which the concentration and pressure generate a solute flow from lumen 2 to lumen 1, and water flows from lumen 1 to lumen 2. The profiles are not perfectly linear (black dashed line), indicating that there are some losses along the bridge due to permeation. Finally, the third case (χ s = 5, χ v = 0.1) illustrates the interplay between osmotic and hydraulic pressures on the solvent flux. The concentration profile is linear, and there are no concentration losses due to solute permeation. The pressure profile, however, shows that lumen 1 loses water while lumen 2 absorbs water. This is due to the osmotic pressure that is compensating for the loss of hydrostatic pressure in Eq. (4.24a).

Asymptotic boundary fluxes

It is useful to calculate asymptotic expressions for the boundary fluxes, in the limits of large or small screening lengths.

Large screening lengths For large screening lengths ξ s , ξ v ≫ ℓ(t), one has:

Js 1 (t) ∼ ξ2 s l(t) [δ C1 (t) -δ C2 (t)] = -Js 2 (t) (4.28a) Jv 1 (t) ∼ ξ2 v l(t) [δ P1 (t) -δ P2 (t)] = -Jv 2 (t) (4.28b)
When the screening lengths are large compared to the distance between the lumens, the fluxes between lumens are proportional to the lumen's concentration and pressure differences and are opposed to one another.

Small screening lengths For small screening lengths ξ s , ξ v ≪ ℓ(t) one has for lumen j = 1, 2 :

Js j (t) ∼ ξs δ Cj -ja (4.29a) Jv j (t) ∼ ξv δ Pj (4.29b)
When the screening lengths are small compared to the distance between the lumens, the lumens do not see each other and are fully decoupled. Besides, a positive pressure difference δ Pj (resp. concentration difference δ Cj ) indicates that the outgoing flow Jv j (resp. Js j ) is positive, hence the lumen looses solvent (resp. solute). Interestingly, the outgoing solute flux is zero if δ Cj = ja , such that the osmotic pressure is exactly compensated by the active pumping. 

Stationary points

We end this section by determining the stationary point for one isolated lumen. The steady-state for one lumen j reads

µν δ Cj - ϵ Lj - µ 2 Lj Jv j = 0 2ν Lj ja -δ Cj -Js j = 0
We identify two cases.

(i) Without active pumping ja = 0 The steady-state condition for a lumen j is given by

Jv j + Js j = -2νϵ (4.30)
The solvent and solute fluxes must be oriented toward the lumen and exactly compensate the Laplace pressure over osmotic pressure ratio, ϵ.

(ii) With the active pumping ja > 0 The steady-state for one lumen j is

1 2ν Lj Jv j + Js j = ja - ϵ Lj (4.31)
In the limit of small screening numbers χ s , χ v ≪ 1, one assume the lumen is isolated, i.e. the fluxes vanishe Js j , Jv j ∼ 0. The steady-state equation reduces to

Lj = ϵ ja ≡ Ls (4.32)
An isolated lumen is at (unstable) steady-state if and only if its initial length is equal to the steady-state length Ls . If it is larger, it will grow until occupying the whole space, otherwise, it will shrink. Moreover, for an isolated lumen, active pumping is required for a steady state.

Conclusions

In this section, we derived the model equations to describe lumen dynamics in terms of size (length L i ) and number of solutes (N i ). Note that the choice of variables (L i , N i ) is equivalent to the set of pressures and concentrations

(P i ∝ 1/L i , C i ∝ N i /L 2 i ).
Given the boundary fluxes and total length conservation, the system of Eqs. (4.21a) and (4.21b) can be numerically integrated, and the effects of osmotic pressure, hydrostatic pressure, screening lengths, and active pumping on the instantaneous fluxes can be directly determined, which is the objective of the next section.

2-Lumen dynamics

In this section, we study a 2-lumen system, first considering the contributions of osmotic and hydraulic pressures on the instantaneous net hydraulic flux between two lumens. Second, we study the role of screening lengths on the exchanges between lumens. Then, we examine how the solute relaxation time influences the dynamics. Finally, we include active pumping and determine the fate of the 2-lumen system from its integrated dynamics.

Osmotic pressure versus hydraulic pressure

To characterize the competition between osmotic and hydraulic effects, we focus first on the factors controlling the instantaneous net solvent flow, Jv 2→1 , between the two lumens 1 and 2. The latter can be calculated with the pressure and concentration profiles, and is expressed as

Jv 2→1 = Jv 2 -Jv 1 = ξv ∆P c 2 s 2 + ∆C 1 s 2 Λ(χ s , χ v ) (4.33)
where ∆P ≡ δ P2δ P1 , ∆C ≡ δ C2δ C1 are pressure and concentration jumps between the two lumens, and

Λ(χ s , χ v ) = 1 s 1 χ s χ 2 v -χ 2 s [χ s s 1 c 2 -χ v (1 + c 1 )c 2 ] , for χ s ̸ = χ v 1-χs 1 2χs 1 c 2 , for χ s = χ v = χ with c n = cosh 1 nχ s , s n = sinh 1 nχ s , n = 1, 2.
The derivation of the total net solvent flow is shown in Appendix D.4. Note that there is no influence of the pumping rate ja in the total flux. We do not study the instantaneous solute flux Js 2→1 as it only depends on concentrations δ C1 , δ C2 , see Appendix D.4. To compare the influence of osmotic or hydraulic pressures on the net solvent flow Jv 2→1 , we calculate its instantaneous value for a given set of variables δ P1 , δ P2 , δ C1 , δ C2 and parameters χ s , χ v , and is shown on Fig. 4.8. The magnitude of the net solvent flux is plotted as a function of the ratios ∆ C ≡ ( C2 -C1 )/( C2 + C1 ) and ∆ P ≡ ( P2 -P1 )/( P2 + P1 ), that quantify the relative concentration and pressure asymmetries between two lumens.

Any asymmetry in size or tension between two lumens is expected to generate a hydrostatic pressure jump

∆P = δ P2 -δ P1 = P2 -P1 , triggering a net solvent flow Jv 2→1 = Jv 2 -Jv 1 .
But the bridge may also act as an (imperfect) semi-permeable membrane, that can carry osmotically-driven solvent flows if a concentration asymmetry ∆C = δ C2δ C1 = C2 -C1 exists between the lumens. These two types of solvent fluxes, hydraulic and osmotic, may enter in competition if ∆C∆P > 0, as shown in Fig. 4.8. For a given set of screening numbers χ v , χ s ∼ 1, the net solvent flow direction expected from Laplace's pressure (from small to large lumens) may be outcompeted by an osmotic flow in the reverse direction if a sufficiently large concentration asymmetry exists between the two lumens. This is illustrated by the lumens displayed in Fig. 4.8. In the blue region, the net solvent flux is oriented from the small lumen 1 to the large lumen 2 (black dot). This is intensified by the concentration gradient, as ∆ C > 0 indicates that the concentration is higher in lumen 2 than lumen 1. With constant pressure asymmetry ∆ P = cte, we increase the concentration in lumen 1. Only for a large concentration difference, the net flux reverses orientation and is directed from lumen 2 to lumen 1 (black star). The change in solvent flux direction is given by the white region, in which the net solvent flux vanishes. This region is steep, indicating that only large concentrations can reverse the orientation of net flux given by pressure asymmetry. In practice, we observe that the relative asymmetry has to be much larger for concentrations than for pressures to reverse the coarsening direction. This lets us anticipate in general a limited influence of osmotic gradients on lumen coarsening dynamics.

The role of screening lengths

Second, we consider a constant osmotic screening ratio χ s and a constant pressure asymmetry, such that ∆ P = 0.25, and we plot the net solvent flux as a function of the concentration asymmetry ∆ C and hydraulic screening ratio χ v , to show how hydraulic screening hinders water exchanges or may reverse the flux, see Fig 4 .9A.

Since we assume ∆ P = 0.25, at osmotic equilibrium (∆ C = 0), the solvent flux Jv 2→1 is positive, and for ∆ C < 0, the concentration gradient increases the magnitude of the flux without reversing it (see above), hence we plot only the case ∆ C ≥ 0.

For ∆ C > 0, the concentration gradient may reverse the sign of Jv 2→1 . At low χ v , the net solvent flux is screened if the osmotic gradient is not strong enough, Jv 2→1 ∼ 0. As χ v increases, the net solvent flux is no more hindered. At large χ v ≫ 1, no amount of osmotic gradient is strong enough to overcome the hydraulic pressure gradient. This is because a perfect bridge allows for an immediate water transfer from the high-to the low-pressurized lumen. In the intermediate range, the osmotic gradient may invert the coarsening: as solvent flux is screened, the concentration asymmetry required to overcome pressure asymmetry decreases.

The relative influence of the screening numbers χ s,v on the net solvent flux is plotted on Fig. 4.9B. At large pressure screening number (χ v = 100), the net flux does not depend on the concentration screening number χ s . For smaller pressure screening numbers (χ v = 0.01, 1), we observe a mild influence of the concentration screening number when it approaches low values (χ s = 0.01). This shows that the concentration screening number has limited influence on the net solvent fluxes compared to the pressure screening number.

Altogether, these results indicate the major role of the pressure screening number χ v as it controls the possibility for the inversion of flux direction with osmotic pressure and the minor role of the concentration screening number χ s as it barely influences the net solvent flux. 

Trapped solutes and retention effects

So far, we did not examine the role of relaxation times. The solvent relaxation time τ v is the typical time at which water is exchanged with the cellular medium. Since we choose to non-dimensionalize the times by τ v , its variations correspond to a shift in time. Therefore, in this part, we are only interested in the solute relaxation time τ s and solute permeation through χ s and their influence on the dynamics. In Fig. 4.10A, we plot the numerically integrated dynamics for 2 lumens, with τ v = 1s, χ v = 10, and change the values of solute parameters τ s and χ s . Starting from a reference simulation with τ s = τ v , χ s = 1 (black curve), we first increase τ s from τ v to 100τ v , and keep constant χ s = 1 (blue dotted curve). The disappearance of lumen 1 and the exchange time are both delayed as the lumen cannot relax with the surrounding cell, showing a retention effect of the hydraulic flow due to the large relaxation time of the solutes. Decreasing χ s to 0.01 (green dashed curved), and thus screening solute relaxation between lumens through the exchange with the bridge, further increases retention. Conversely, increasing χ s up to 100 (purple curve) amounts to reducing the permeation of solutes and promoting lumen's relaxation through exchange with the bridge, and ultimately, the exchange between lumens. The exchange time returns to a value comparable to that of the reference curve.

The solute relaxation time τ s , informs about how fast solutes are exchanged with the cellular medium, such that τ s → ∞ is analogous to a lumen with a trapped species. Solute exchanges with the bridge are controlled by the screening number χ s .

This retention effect has already been studied by Webster and Cates [Webster andCates, 1998, 2001]. They studied the stabilization of an emulsion subject to Lifshitz-Slyozov-Wagner dynamics (Ostwald ripening) thanks to the presence of species trapped in the drops of the condensed phase. Briefly, suppose that the lumen is a sphere of radius R, with chemicals trapped inside N in and a surface tension γ, see Fig. 4.10B. When the sphere is small, its internal concentration is large compared to the external concentration: 3N in 4πR 3 ≫ c 0 . In this case, the steady-state is given by where R B is the equilibrium radius. The stability criterion is such that the average drop size must be smaller than the size R B determined by the equilibrium of Laplace pressure and osmotic pressure. In our case, this would correspond to L B ≡ µN j ϵ , a retention length. A more advanced model is proposed in the generic case where N in /R 3 ∼ c 0 , with a critical radius R ϵ = 2γ

dR dt = λ v RT 3N in 4πR 3 -c 0 - 2γ R = 0 ⇔ R B = 3RTN in 8πγ ( 4 
RTc 0 , such that for R < R ϵ the sphere grows in size. For an isolated lumen, a steady-state is only possible with active pumping. Here, the retention of solutes shows that another steady-state can be approached without active pumping, with LB > Ls = ϵ ja . As the solute relaxation time is finite, no stable steady-state is found, but close to the retention length, the dynamics are largely delayed.

2-lumen fate with active pumping

Finally, we explore the influence of active pumping ja on the dynamics of two lumens. Here, we consider an initial size ratio L2 (0)/ L1 (0) = 1.1 and a nonzero pumping rate ja 1 in the lumen 1 only ( ja 2 = 0), so that at zero active pumping, the solvent flux is directed from lumen 1 to lumen 2, or screened if χ v ≲ 1. We plot in Fig. 4.11A the outcome (or fate) of the two lumens as function of ja 1 and χ v . We identify four different possible fates: collapse of the two lumens (triangles), coarsening 1 → 2 (disks), reversed coarsening 2 → 1 (stars) and coalescence (squares). At vanishing pumping ja 1 ∼ 0, both lumens are under tension and may either coarsen if their pressure difference is not screened (χ v ≳ 1) or collapse at large pressure screening (χ v ≲ 1). The typical dynamics are illustrated for each case in Fig. 4.11B.

Using Eq. (4.32), one evaluates a critical active pumping threshold ( ja ) * = ϵ L0 ≃ 10 -3 , which corresponds to the dashed black line on Fig. 4.11A. Above this critical threshold, the lumen 1 is expected to grow, so that a third regime, that we called reversed coarsening, may appear, where the coarsening direction is opposite to the one expected from the initial size asymmetry: this happens when the pumping-driven growth of the lumen 1 overcomes its discharge into the lumen 2, reversing the flow direction. Above some pumping rate a fourth dynamical regime appears, where growth is faster than hydraulic coarsening leading to lumens collision and coalescence. For completeness, we investigate the influence of χ s on the fate diagram with the same parameters as Fig. 4.11 and results are plotted on Fig. 4.12. With a screening number χ s = 10, the lumens can exchange solutes without losses. Any solute pumped into lumen 1 results in a concentration change that is immediately balanced with lumen 2 (by solvent and/or solute flux), as for χ v > 1. Hence, no reversed coarsening is possible. Conversely, a small screening number χ s = 0.1 traps solutes, which increases the osmotic pressure according to the solute retention principle (see section 4.3.3), thereby further compensating for the hydrostatic and osmotic pressures of lumen 2. The region in which lumen 1 will absorb lumen 2 -reversed coarsening -is increased. We find therefore that active pumping can greatly modify the dynamics of two lumens, which let us anticipate its major role in the coarsening of a network of lumens.

2-Lumen toy model conclusion

In conclusion, the 2-lumen model allows us to identify the major points of the theory:

• Most of the dynamics are controlled by the pressure screening length ξ v and the hydraulic flow J v .

The concentration screening length ξ s plays a minimal role compared to ξ v . The screening lengths are compared to the bridge length ℓ via screening numbers χ s,v .

• Osmotic pressures have only a minor influence on the dynamics of the system. Only large osmotic pressure asymmetries may reverse the net hydraulic flow.

• The parameters associated with the solutes, large τ s ≳ τ v and small χ s ≲ 1 can slow down the dynamics of the system and its coarsening, by trapping the solutes in the lumen. This effect is reminiscent of the stabilization of an emulsion by trapped species studied by [Webster andCates, 1998, 2001].

• Active pumping can largely affect the dynamics, by lowering the threshold of collective collapse in large pressure screening regimes (χ v ≪ 1), and by driving a novel mode of coarsening by coalescence, when lumen growth outcompetes hydraulic exchanges between lumens. It may also reverse the "natural" direction of coarsening, generally expected from small to large lumens.

We aim now to extend the 2-lumen system to a chain of N ∼ 1000 lumens and to study their collective behavior.

Collective behavior

In this section, we aim to study the collective properties of a chain of lumens. By chain, we refer to a succession of lumens connected by bridges, as portrayed in Fig. 4.6. We first describe how the chain is modeled, the result of time integration, and we show the connection with dewetting films. We then study the effects of active pumping on the dynamics of the chain.

Hydro-osmotic chain

Hydro-osmotic chain modeling

A micro-lumen j is described by its position x i in the chain, its size L i and its number of solutes N i , and can be connected up to two other micro-lumens i, k, by bridges (i, j) and (j, k). The chain has a fixed total length L 0 = 2 ∑ i L i (t) + ∑ (i,j) ℓ ij (t). The chain has closed boundaries, preventing losses at the boundaries, similar to tight-junctions sealing.

A chain is generated by a Gaussian distribution in area, A i = L 2 i /µ (mean A 0 = 1, standard deviation σ A = 0.2), then the bridges are generated according to another Gaussian distribution in length, ℓ ij , (mean ℓ 0 = 10, standard deviation σ ℓ = 2). Initially, overlaps of lumens are allowed, but are unlikely since ℓ 0 = 10 > √ A 0 . The initial number of solutes corresponds to osmotic equilibrium

(δC i = µ N i L 2 i -1 = 0). Typical relaxation times are, unless specified, τ v = τ s = 1s.
For each lumen, the ODEs in length and solute number are integrated with a Runge-Kutta-Felhberg (RKF45) scheme including an adaptive time step [START_REF] Fehlberg | Low-Order Classical Runge-Kutta Formulas with Stepsize Control and their Application to Some Heat Transfer Problems[END_REF][START_REF] Press | Adaptive Stepsize Runge-Kutta Integration[END_REF], to prevent large variations in length or concentration, and detailed in Appendix F. Briefly, consider an ODE following dy dt = f (t, y(t)), y(0) = y 0 . Evaluations of y(t) are discretized in time as y i = y(t i ). The time step h i+1 is defined as t i+1 = t i + h i+1 . The RKF45 scheme provides two estimations, y i+1 and z i+1 for the point at step i + 1 from step i, such that

y i+1 = y i + 25 216 k 1 + 1408 2565 k 3 + 2197 4104 k 4 - 1 5 k 5 z i+1 = y i + 16 135 k 1 + 6656 12825 k 3 + 28561 56430 k 4 - 9 50 k 5 + 2 55 k 6
The coefficients k 1 , ..., k 6 are functions of f and are given in Appendix F. From the estimations y i+1 and z i+1 , one can define the error ε = |y i+1z i+1 |, which is compared to a tolerance factor τ ∼ 10 -20 . S = 0.90 is a security factor. The time step h i+1 from step i to i + 1 is calculated as [START_REF] Press | Adaptive Stepsize Runge-Kutta Integration[END_REF] 

h i+1 ∼ h i S τ ε 0.2 , ε > τ h i S τ ε 0.25 , ε ≤ τ (4.35)
If the error ε is larger than the tolerance τ, then the time step is reduced. Otherwise, it is reduced. We apply this algorithm for each lumen, for its length and number of solutes. This allow us to calculate the algebraic constraint Li + Lj + lij = cte, and to calculate the bridge length from variations of the lumens' lengths. This method is more precise than the adaptative time step we used in Chapter 3, as it reduces the time step for large variations of lengths such as in a lumen shrinkage. After a few steps, a lumen may collapse and disappear from the chain (if Li < 0.1) or merge with another lumen j (if lij < 10 -3 ). The chain integration is then stopped to recalculate the network topology with the fusion or disappearance of lumens, see Fig. 4.13, similarly to the Chapter 3. The algorithm for chain integration is detailed in Appendix F, and the documented code is available on Github1 .

The typical dynamics for a short chain is illustrated in Fig. 4.14 for various times τ s . At small τ s , the concentrations vary little even when a lumen disappears ( C ∼ 1) as the solutes relaxe fastly. Increasing τ s ∼ τ v increases the concentration variations but does not fundamentaly change the dynamics. With τ s ≫ τ v , the concentration variations are very large, and the dynamics are deeply modified: some lumens disappear much earlier and in a new order. Thus, we shall limit our study of coarsening mostly to cases where τ s ≲ τ v .

To characterize the average dynamics of a chain with N = 1000, we plot in Fig. 4.15 the number of lumens as a function of time for various values of the initial screening numbers χ v and χ s . After a plateau, we generically observe a coarsening behavior characterized by the dynamic scaling law N (t) ∝ t -2 5 . In the limit of small χ v , we observe yet a rapid collapse of the chain, indicative of the overall uncoupling of lumens. As far as the lumens remain hydraulically coupled to their nearest neighbor, the scaling exponent remains unaffected by the amplitude of solvent and solute screenings (Fig. 4.15). The onset of coarsening is characterized by a typical timescale T h that increases with a decreasing pressure screening length ξ v , and the uncoupling of lumens by a collective collapse at time T c .

The typical timescale T h is calculated as follows. Consider a set of lumens of total length L 0 , assumed to be constant. We assume that (i) χ v ≫ 1: there is no pressure screening ;

(ii) χ s ≪ 1: the solute concentrations are screened ;

(iii) τ s ≪ τ v : the relaxation time for the number of solutes within lumens is negligible compared to the water relaxation time, i.e. the solutes relaxe immediately. 

A 0 = 1, ℓ 0 = 10, χ v = 50, χ s = 5, τ v = 1 s, τ s = 0.01 s. (B) With parameters χ v = 50, χ s = 5, τ v = 1 s, τ s = 1 s. (C) With parameters χ v = 50, χ s = 5, τ v = 1 s, τ s = 100 s.
Under these assumptions, that we call the hydraulic limit, a given micro-lumen of the chain i with neighbor j follows the equations where we used the expressions of fluxes Eqs (4.28a) and (4.28b). Because τ s ≪ τ v , the left-hand side of the second equation is close to zero, thus δ Ci ≃ 0, the lumens relax immediately to osmotic equilibrium. Since we assume ϵ ≪ 1, the first term of the right-hand side of the first equation is negligible. Finally, we are left with

d Li dt = µν τ v δ Ci - ϵ Li - µ 2τ v Li ξ2 v lij ϵ Li - ϵ Lj (4.36a) τ s τ v d Ni dt = - 2ν Li
d Li d t = 1 T h Li lij 1 Lj - 1 Li ⇔ d Āi d t ∝ 1 T h lij 1 √ Āj - 1 √ Āi (4.37)
where we defined the typical hydraulic time

T h ≡ 2τ v ℓ 0 L 0 µϵξ 2 v = 2ℓ 0 L 3 0 µ sin θ γκ v (4.38)
It characterizes the typical time at which two lumens separated by length ℓ 0 will exchange fluid, given the permeation ξ v , and is valid for the whole chain of lumens. The influence of the hydraulic time T h on the dynamics is illustrated in Fig. 4.16, where we directly integrate the hydraulic chain, defined in Eq. (4.37). Changing the initial distance between lumens ℓ 0 increases the typical time T h as the exchanged fluid takes more time to travel. Still, the number of microlumens follows the scaling-law N (t) ∼ t -2/5 , which all collapse when rescaled by T h . In the case ℓ 0 = 1, the number of lumens deviates slightly from the scaling law.

Number of lumens

Rescaled time t/T h FIGURE 4.16: Coarsening dynamics for a hydraulic chain. Number of micro-lumens versus rescaled time t/T h for a hydraulic chain, at various initial lengths ℓ 0 . All curves collapse when properly rescaled by the time T h ∝ ℓ 0 .

LSW mean-field model

The form of Eq. (4.37) is similar to Eqs. (E.6) and (E.7), obtained for one-dimensional dewetting films, see Appendix E. Dewetting films consist of ultra-thin films forming droplets on a substrate because of the instability of the film [START_REF] Pismen | Mobility and interactions of weakly nonwetting droplets[END_REF][START_REF] Glasner | Collision versus collapse of droplets in coarsening of dewetting thin films[END_REF][START_REF] Van Lengerich | Coarsening of capillary drops coupled by conduit networks[END_REF]. The droplets exchange fluid through a thin layer called the precursor and coarsen according to Ostwald ripening principle. The number of droplets follows a dynamical power law, N (t) ∼ t -β , with β = 2 5 in 1D. One can apply the Lifshitz-Slyozov-Wagner theory (LSW) on such a system, see section 2.4.2, even if the exchanges are driven by mass exchange and not diffusion, to obtain the scaling law for the number of lumens and the size-distribution of the lumens.

Consider a chain of N lumens, embedded in a space of dimension d, with the lumen size denoted X (X = A in d = 2; X = V in d = 3). Let ϕ(X, t) be the distribution of lumens with size X at time t, such that X+∆X X dX ′ ϕ(X ′ , t) is the number of lumens with sizes between X and X + ∆X. The total number of lumens at time t is

N (t) = ∞ 0 dXϕ(X, t), (4.39)
The fundamental equations of LSW theory are (i) a kinetic equation, (ii) a continuity equation, and (iii) the mass-conservation equation, which we detail below.

i -Kinetic equation From Eq. (4.37), the kinetic equation for a lumen of size X is given, in d-dimension

dX dt = 1 l X -1/d * -X -1/d (4.40)
where X * is the mean-field size of the system, defined as

X -1/d * = 1 N ∞ 0 dXX -1/d ϕ(X, t)
, the harmonic average of the lumen size. The typical distance between two lumens, l, or mean separation, can also be expressed as l = L 0 /N (t), and, by definition, the average size of the lumens is defined as X =

1 N ∞ 0 dXXϕ(X, t).
ii -Continuity equation In the case of a purely hydraulic chain, the continuity equation is written as

∂ t ϕ + ∂ X ϕ Ẋ = 0 (4.41)
with Ẋ = dX dt the rate of change in size of a lumen.

iii -Mass conservation The total mass is defined as M tot = ∑ i X i in the discrete case, corresponding to the first moment of the distribution. In continuous form, we have

M tot = ∞ 0 dXXϕ(X, t) (4.42)
The total mass is analoguous to total area in d = 2, and to the total volume in d = 3. Thus, l = XL 0 /M tot , with the average size X, which scales like X * , such that γ = X * / X. γ, L 0 , M tot are supposed to be constant.

Self-similar regime With Eqs (4.40), (4.41) and (4.42), we place ourselves in the self-similar regime: we assume the distribution ϕ is a scale-invariant self-similar distribution, ϕ(X, t) = t -α f d (z), z = X X * and d is the dimension. The mean-field length also has a scaling form X * = σt β , with undetermined constants σ, α, β and γ. The total mass is written as

M tot = σ 2 t 2β-α ∞ 0 dzz f d (z) (4.43)
and the total mass conservation yields 2β = α. Expanding the conservation law terms with the self-similar expression of ϕ leads to

βt -2β-1 2 f d (z) + z f ′ d (z) = M tot γ L 0 σ 2+1/d t -4β-β d d dz f d (z) 1 -z -1 d (4.44) so that g 1 (z) g 2 (z) = C β t -2β-β d +1 (4.45)
where

g 1 (z) = 2 f d (z) + z f ′ d (z), g 2 (z) = d dz f d (z)(1 -z -1/d ) , C = M tot γ L 0 σ 2+1/d .
Since z and t are assumed to be independent variables, the left and right-hand sides of Eq. (4.45) are constants and we have

β = 2 + 1 d -1 .
Normalizing the function f d , as ∞ 0 dz f d (z) = 1, we find the dynamical power-law for the number of lumens as

N (t) = σt -β , β = 1 2 + 1 d (4.46)
For d = 2, we find β = 2 5 [Glasner andWitelski, 2003, 2005;[START_REF] Gratton | Transient and self-similar dynamics in thin film coarsening[END_REF], which is the scaling-law we find numerically for lumens in Fig. 4.15. For d = 3, one has β = 3 7 , in agreement with [START_REF] Van Lengerich | Coarsening of capillary drops coupled by conduit networks[END_REF] for a linear network of 3D-droplets. Similar arguments can be used to derive the scaling law N (t) ∝ t -3/4 for 3D-droplets on a 2D network (instead of a linear chain) [START_REF] Otto | Coarsening Rates for a Droplet Model: Rigorous Upper Bounds[END_REF][START_REF] Rump | Coarsening processes in thin liquid films: Analysis and numerics[END_REF][START_REF] Van Lengerich | Coarsening of capillary drops coupled by conduit networks[END_REF].

For Ostwald ripening with exchanges driven by diffusion, the drops and grain size follows a dynamical power-law. In our case (i.e. linear chain with d = 2), the average size is defined as X = M tot N . Using (4.46) and (4.43), one finds for the lumen average area Ā(t) and average length L(t) = µ Ā(t)

Ā(t) = σ γ t 2/5 , L(t) = µσ γ t 1/5 (4.47)
with d = 2 and where we identify γ -1 = ∞ 0 dzz f d (z).

Self-similar distribution

From Eq. ( 4.44), one may express the function f d as relation between f d (z) and its derivative f ′ d (z) as :

d f d dz =   4C dβ -8z d+1 d 4z 2d+1 d + 4C β z 1 -z 1/d   f d (z) (4.48)
In the case d = 2, this reduces to the similarity ODE found by [START_REF] Gratton | Transient and self-similar dynamics in thin film coarsening[END_REF], and an explicit solution is found in [START_REF] Pahlavan | Thin films in partial wetting: Stability, dewetting and coarsening[END_REF]. This expression is valid in for z ∈ [0, z max [, and one may find expressions of C and z max assuming z max is an irregular singular point, such that the denominator and its derivative vanish for z = z max . We find the general expressions to be

z max = d + 1 d d ; C = βd d + 1 d d+1 (4.49)
which gives for d = 2, β = 2/5, z max = 9 4 and C = 27 10 . The function f 2 is plotted on Fig. 4.17 in the case of a hydro-osmotic chain.

We plot the size distribution of micro-lumens as function of rescaled area in the limit of the purely hydraulic chain, which corresponds to the self-similar distribution (4.48) with d = 2, see Fig. 4.17. The good agreement of the numerical distribution to the LSW distribution confirms the hydraulic chain limit connection with the theory of dewetting films coarsening. As a side note here, the numerical distribution is slightly more symmetric than the predicted distribution, a problem already raised for Ostwald ripening in real systems, as the LSW kinetic equation is in mean-field, while we exactly solve the local kinetic equation [START_REF] Baldan | Progress in Ostwald ripening theories and their applications in nickel-base super alloys[END_REF].

Solute retention in a hydro-osmotic chain

As in section 4.3.3, we study the influence of the solute relaxation time on the coarsening dynamics. The time τ s controls the relaxation of solutes within lumens. At large τ s , solutes do not relax fast and are trapped within the lumens. In Fig. 4.18 we plot the time evolution of the chain for increasingly slower solute equilibration (increasing τ s ) and we find indeed a deviation from the scaling law t -2/5 when τ s ≫ τ v , indicative of a slowing-down of coarsening. Like for the two-lumen system, solutes are transiently trapped within lumens, which triggers larger osmotic asymmetries between them (Fig. 4.14) that may compete with pressure-difference driven flows and slow down the hydraulic coarsening of the chain, see Fig. FIGURE 4.18: Effect of the solute retention on the coarsening of a chain. The number of lumens is plotted as function of the rescaled time t/τ v for τ v = 1 s, χ v = 50, χ s = 5 and increasing values of the solute relaxation time τ s from 10 -2 s to 10 2 s. A deviation from the scaling law t -2/5 (plotted in plain line as a reference) is observed for large τ s , indicative of an osmotic stabilization effect, which slows down the coarsening.

Effects of cellular mechanics

Our model includes the effect of cell mechanics in the parameter ϵ = ∆P Π 0 = γ sin θ L 0 Π 0 , which compares the hydrostatic pressure difference ∆P and the typical osmotic pressure, Π 0 . As we mentioned in Chapter 2, section 2.2.2, this parameter is typically small, ϵ ≃ 10 -3 . By varying the ϵ parameter over several orders of magnitude for hydro-osmotic chains, we show that the coarsening dynamics are preserved, see Fig. 4.19A. The onset of coarsening is, however, shifted in time: as ϵ increases, coarsening starts earlier. Indeed, the surface tension increases with ϵ for a constant lumen size and fixed osmolarity. As the lumens are more pressurized, they exchange fluid more rapidly. The typical coarsening time is inversely proportional to ϵ, see Eq. (4.38). Resizing the time of the simulations by T h , the lumen number curves match, see Fig. 4.19B. A small deviation from the power law is noted for ϵ ≳ 10 -1 but does not qualitatively change the behavior of the chain. Thus, unless spatial inhomogeneities in the surface tensions are introduced, cell mechanics do not play a major role in coarsening, simply in the value of the typical hydraulic time T h . (A) The plot of the number of lumens versus rescaled time t/τ v shows that the behavior of plateau-coarsening-collapse is conserved for increasing ϵ, but shifted in time. (B) Rescaling the time by T h instead makes the curves collapse and start to coarsen at typical time T h . A small deviation from the scaling law N (t) ∼ t -2/5 is observed for ϵ ≳ 10 -1 . Parameters are

χ v = 50, χ s = 5, τ v,s = 1s.

Chain with active pumping

We finally study the influence of active pumping of solutes on the chain dynamics, first considering a uniform pumping profile over the chain, and then we introduce a spatial pumping heterogeneity in the profile to observe the effect of this bias in the position of the final micro-lumen.

Hydro-osmotic chain with active pumping

We first assume a homogeneous pumping rate ja along the chain. In Fig. 4.20A we plot the time evolution of the number of lumens N (t) as function of t/T h for increasing values of the pumping rate ja from 10 -2 to 10 (χ v,s = 50). The dynamics are now characterized by two coarsening phases that are separated by a novel timescale T p . This timescale measures the competition between active solute pumping, controlled by ja , and passive solute relaxation, controlled by λ s , in triggering solvent permeation, limited by λ v . For t ≪ T p we recover the hydraulic chain limit characterized by a power-law t -2/5 as previously. For t ≫ T p , the number of lumens first stabilizes into a plateau before decreasing again with a novel scaling law N (t) ∼ t -1 .

This novel coarsening regime is dominated by lumen coalescence and may be understood with the following arguments. Considering the previous hydraulic chain limit (χ v ≫ 1, χ s ≪ 1 and τ s ≪ τ v ) with nonzero ja , we can derive a modified expression for lumen dynamics

d Li d t = µν τ v δ Ci - µ 2τ v Li ξ2 v lij ϵ Li - ϵ Lj (4.50a) 0 = 2ν Li τ v ja -δ Ci (4.50b)
Injecting (4.50b) into (4.50a) the system of equations reduces to

d Li d t = µν τ v ja - µϵ ξ2 v 2τ v Li lij 1 Li - 1 Lj = 1 T h Li lij 1 Lj - 1 Li + 1 T p (4.51)
where we have defined the typical pumping time Eq. (4.51) is nothing but the kinetic equation for a hydraulic chain including an active pumping term, see Chapter 3, Eq. (3.15). Its numerical integration for a chain of lumens is plotted in Fig. 4.21, for several pumping rates ja . In this limit, the curves rescaled in time by T p collapse nicely, and the plateau starts around t = T p , which confirms the asymptotic behavior of the hydro-osmotic chain in the hydraulic chain limit.

T p ≡ τ v µν ja = λ s L 0 RT 2λ v Π 0 j a (4.52) χ v = 5 χ v = 50 χ v =
In d-dimension, the coalescence scaling law for N is derived as follow. We consider two droplets i, j of radius R i and total mass X i ∝ R d i , at a distance ℓ ij , in the limit of large pumping, so t ≪ T p . In this limit, the right-hand side of Eq. (4.51) reduces to the last term only, in any dimension d: d

L d t = 1
T p . The total mass is analoguous to the area for d = 2 ( Xi = Āi ∝ R2 i ) and to the volume for d = 3 ( Xi = Vi ∝ R3 i ). Assuming that the distribution of active pumps is uniform over the surface of exchange Si ∝ Rd-1 i (the lumen perimeter for d = 2 and the lumen surface for d = 3), then the kinetic equation is written as

d Xi d t = ja Si ⇔ d Rd-1 i d Ri d t = ja Rd-1 i ⇔ d Ri d t = ja (4.53)
The radius increases linearly with ja , Ri ∼ ja . t and the distance between droplets i, j decreases linearly in time, lij ∼ -ja . t since the lumens do not move: Ri + Rj + lij = cte. They coalesce when li,j = 0, hence the number of lumens decreases at a rate

N (t) ∼ (t/T p ) -1 (4.54)
where T p is the typical pumping time given in (4.52). Therefore, the scaling exponent for coalesence dominated regime is independent from the dimension of the system. For a large enough pumping rate ja , we reach a limit where T p ∼ T h , such that the hydraulic coarsening phase disappears, leaving only a coalescence-dominated coarsening dynamics, as shown on Figs. 4.20B and 4.21. The coalescence-dominated regime is valid in any dimension as long as the pumping flux is proportional to the hypersurface that forms the lumen external boundary.

On Fig. 4.22B we plot the size distribution of lumens at various time-points of a dynamics where hydraulic and coalescence dominated regimes are well separated in time ( ja = 1). Starting from the Gaussian used to generate the chain (case a), the distribution first evolves toward the asymmetric distribution characteristic of hydraulic coarsening (case b, and see Fig. hydraulically uncoupled while coalescence has not yet started, leading to a narrowing of the distribution: consider a chain with uniform active pumping in the hydraulic limit, and assume that we are in the regime t > T p . In this regime, we study the part where the number of lumens remains roughly constant, N (t) ∼ N p , before the coalescence dominated regime. The kinetic equation for a single lumen i can be written as dL i dt = 1 T p . The solution is immediately found to be L i (t) = L i (0) + t T p , where time t = 0 is the time at which we consider the start of the regime. The population of lumens corresponds to a distribution with time-dependent mean µ(t) and standard deviation σ(t). By definition, at a given time, one has

µ(t) = 1 N p N p ∑ i=1 L i (t) = µ(0) + t T p (4.55a) σ 2 (t) = 1 N p N p ∑ i=1 (L i (t) -µ(t)) 2 = σ 2 (0) (4.55b)
The size distribution of lumens can be approximated by a Gaussian distribution, the most likely distribution [START_REF] Jaynes | Information Theory and Statistical Mechanics[END_REF], with mean µ(t) and standard deviation σ(t) :

ϕ(L, t) ∼ exp - (L(t) -µ(t)) 2 σ 2 (t) = exp - (x(t) -1) 2 a 2 (t) (4.56)
where a 2 (t) = µ 2 (t)σ 2 (t) and x(t) = L(t) µ(t) . Now, in the limit t ≫ 1, assuming neither coalescence nor coarsening event happens, lim

t→∞ x(t) = 1; lim t→∞ a(t) = ∞
and the distribution tends to a Dirac distribution :

ϕ(L, t) -→ t→∞ δ L(t) µ(t) - 1 
thus, the distribution evolves to a Dirac distribution centered on the rescaled length L/ L. The coalescence-dominated regime exhibits then a multimodal distribution (case d), that reveals subpopulations of lumens forming by successive waves of coalescence, analogous to the far from similarity distributions observed in [START_REF] Gratton | Transient and self-similar dynamics in thin film coarsening[END_REF]. 

χ v = 500

Spatial heterogeneity and positional bias in active pumping

Finally, we study how spatial heterogeneities in active pumping within an embryo may bias the position of the final blastocoel. In mammalian embryos, the formation of the blastocoel relies on transepithelial active transport of ions and water from the external medium to the intercellular space by an apico-basally polarized cell layer, the trophectoderm (TE) [START_REF] Biggers | Mammalian blastocyst: Transport functions in a developing epithelium[END_REF][START_REF] Barcroft | Aquaporin proteins in murine trophectoderm mediate transepithelial water movements during cavitation[END_REF]. We expect therefore that active pumping may be essentially concentrated at the cell interfaces of outer cells (TE), rather than at the ones between inner cells (called ICM for inner cell mass) as illustrated in Fig. 4.23A. To study the effect of a spatial bias in active pumping, we consider a chain of N (0) = 100 lumens and χ v = 500, χ s = 1 and we perturb an uniform pumping profile with a Gaussian function ja (x) = ja 0 +δ ja exp (x-µ) 2 σ 2 that is shifted from the chain center (µ = 0.4, σ = 0.05). We simulate the chain dynamics keeping the amplitude δ ja = 1 of the Gaussian constant and changing the basal uniform value of pumping ja 0 only. A uniform pumping profile leads to a typical distribution centered at the middle of the chain. To evaluate the effect of the perturbation with respect to the uniform pumping, we calculate the area below a region of width 4σ centered on the Gaussian and compare it with the area below the remaining quasi-uniform part of the profile of value ∼ ja 0 (see Fig. 4.23B). Let be ja (x) the pumping profile, defined as

∀x ∈ [0, 1], ja (x) = ja 0 + δ ja e - (x-µ) 2 σ 2 (4.57)
where the chain has been rescaled by its total length L 0 . The total pumping along the chain, I tot , is given integrating the function along the chain, as

I tot = x max x min ja (x)dx (4.58)
since in practice, lumens can sometimes not be distributed along the full chain but only within x min and x max . The effect of localized active pumping is measured by comparing the total pumping of two regions: the perturbed (P) versus the constant (C) profile. This is done by the separation of the total pumping into two contributions, provided that we define the perturbed region to lies within [µnσ, µ + nσ], where n is an arbitrary integer.

I tot = I C + I P = µ-nσ x min ja 0 dx + x min µ+nσ ja 0 dx + µ+nσ µ-nσ ja 0 + δ ja e - (x-µ) 2 σ 2 dx (4.59)
with

I C = µ-nσ x min ja 0 dx + x max µ+nσ ja 0 dx = ja 0 [∆x -2nσ] (4.60)
and

I P = µ+nσ µ-nσ ja 0 + δ ja e - (x-µ) 2 σ 2 dx = 2nσ ja 0 + δ ja σ √ πerf(n) (4.61)
where ∆x = x maxx min , and erf(x) is the error function. Thus, the perturbed region has larger pumping than the constant region if

I P > I C ⇔ 2nσ ja 0 + δ ja σ √ πerf(n) > ja 0 [∆x -2nσ] ⇔ δ ja σ √ πerf(n) > ja 0 [∆x -4nσ] ⇔ δ ja σ √ πerf(n) ∆x -4nσ
> ja 0 which gives us the threshold j * as

j * = δ ja σ √ π (x max -x min ) -4nσ erf(n) (4.62)
In Fig. 4.23, we choose n = 2, x min = 0.2, x max = 0.8, σ = 0.05, δ ja = 1, which gives j * ≃ 0.44. For a basal pumping rate ja 0 below the threshold j * ≃ 0.44, the perturbation dominates, and the mean position of the final lumen is shifted to the maximum x = µ of the Gaussian. On the contrary, when the basal pumping rate ja 0 > j * , the two effects compete with each other, and the distribution for the final lumen localization may become bimodal (Fig. 4.23C). Despite rapid diffusion within the intercellular space, the spatial localization of active pumping can therefore break the radial embryo symmetry by positioning the blastocoel away from the center of the network. In addition to mechanical differences between TE and ICM cells [START_REF] Maître | Asymmetric division of contractile domains couples cell positioning and fate specification[END_REF][START_REF] Dumortier | Hydraulic fracturing and active coarsening position the lumen of the mouse blastocyst[END_REF], different rates of pumping between these two types of cells may constitute an alternative and fail-safe mechanism to ensure the robust localization of the blastocoel at the TE interface of mammalian embryos.

Conclusions

We have shown that the coarsening of micro-lumens has direct connections to the framework of the dewetting films. The chain follows a self-similar regime, with robust dynamical exponents, even with water permeation and osmotic effects. Water permeation is key to control both the typical time of hydraulic exchange and the collective collapse of the chain. The self-similar regime is characterized by a scale-invariant distribution for the size of micro-lumens, that can be predicted by LSW theory, and allows one to calculate the dynamical exponent for the number of lumens and the lumen size distribution.

The addition of the active pumping also affects the dynamics by introducing coalescence between lumens, which is reflected by a new scaling law, such that N (t) ∼ t -1 , independent of the dimension of the system. The introduction of a spatial pumping heterogeneity leads, under particular conditions, to a bias in the position of the final lumen.

We can summarize the behavior of the chain depending on the times T h , T p and the collapsing time T c , see Fig. 4.24.

(i) Collapse : T c < T p , T h : if the time T c is smaller than the two others, the lumens have no time to coarsen via solvent exchange or active pumping. Therefore, the lumens collectively collapse at t > T c , provoking a sharp decrease in N(t), and no scaling law is observed. We did not simulate such a configuration but it is approached in Fig. 4.15 with screening numbers χ v,s = 5.

(ii) Coalescence : T p < T h < T c : in this regime, lumens start to grow due to large active pumping. Hydraulic exchanges are screened, until the point where lumens are closeby but coalesce nonetheless due to pumping. In this regime, the initial plateau is immediately followed by the coalescence scaling law, N(t) ∼ t -1 , see Fig. 4.20B, at low χ v = 5.

(iii) Coarsening : T h < T max < T c < T p : At large screening lengths, coarsening dominates the dynamics, all during the dynamics, as T p , T c > T max , the time at which the chain has only one lumen only with coarsening. The initial plateau is followed by the scaling law N(t) ∼ t -2/5 . This regime corresponds to the hydraulic chains, see Figs. The uniform profile corresponds to the threshold j * ≃ 0.44 (dashed lines) and perturbed profiles are biased by a Gaussian in the form ja (x) =

ja 0 + δ ja √ 2πσ exp - (x-µ) 2 σ 2
with basal pumping rates ja 0 = 0.2, 0.6, 1.5 and µ = 0.4, σ = 0.05, δ ja = 1. (C) Distributions for the localization of the final lumen on a chain of N 0 = 100 lumens, corresponding to the pumping profiles depicted above ; the red dashed curve corresponds to uniform profile ( j * ), the full lines to perturbed profiles ( ja 0 = 0.2, 0.6, 1.5). Each curve is obtained by averaging 10000 simulations with χ v = 500, χ s = 1.

(iv) Coarsening-Coalescence: T h < T p ≪ T c : After the initial plateau, the coarsening dominates the dynamics but is stopped as the lumens grow in size and active pumping overcomes hydraulic exchanges, entering the coalescence dominated regime. This case corresponds to many of the simulations given in Fig. 4.20, with the initial plateau followed by the coarsening scaling law in t -2/5 , followed by another plateau and the transition to the coalescence scaling law in t -1 .

(v) Coarsening-Collapse : T h < T c , T p : The scaling law in t -2/5 is stopped as lumens are too far apart to exchange, and collectively collapse. This case corresponds to the curves where χ v ≲ 50 in Fig. 4.15.

No rescue of the chain is possible since time T p is larger than the collapsing time.

(vi) Coarsening-Coalescence-Collapse : T h < T p < T c : This is a slightly different case from (iv): here the coalescence is stopped by the collective collapse. This case still has not been found numerically.

So far, we have not been able to determine an analytical expression of the collapsing time T c , which remains an open question.

Discussion

We proposed a new theory to describe the behavior of biological micro-cavities subjected to hydro-osmotic exchanges driving their coarsening.

We show from a two-cavity toy model that osmotic effects play only a minor role compared to hydraulic flows. The dynamics are mainly controlled by hydraulic exchanges and solvent permeation in the form of a screening length but may be affected by considering retained species, as for osmotically stabilized foams. The active pumping of solutes may introduce coalescence events. By extending the toy model to a chain of micro-cavities, we show a strong link with theories of dewetting films. We numerically show the existence of a scale-invariant hydraulic coarsening regime, characterized by a power-law on the number of lumens N (t) ∼ t -2/5 and a self-similar distribution for the number of micro-lumens, rationalized by LSW theory. Homogeneous active pumping on the chain brings out a new coarsening regime, characterized by a power-law N (t) ∼ t -1 . By introducing a pumping inhomogeneity, we finally show that the position of the final cavity can be biased. Still, some questions remain unanswered.
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First, we greatly simplified the complexity of the system by reducing the geometry to a one-dimensional chain of 2d micro-cavities. We discussed the structure of the micro-lumen network in an embryo in Chapter 3, section 3.6: micro-lumens behave like domes present on a cell surface whose membranes are in 3D. Our model does not capture this geometry, but mean-field calculations allow us to extrapolate the power law for hydraulic coarsening to N(t) ∼ t -3/4 for domes on a surface from analogous equations.

According to our estimates, typical solvent and solute screening lengths in the mouse embryo are ξ v ∼ 84µm and ξ s ∼ 14µm for an embryo of about 50 ÷ 100µm in diameter, see Table A.2. The effects of hydraulic permeation could therefore be negligible at the embryo scale, which is more questionable for solvent permeation. This prediction therefore partly confirms our modeling in Chapter 3 [START_REF] Dumortier | Hydraulic fracturing and active coarsening position the lumen of the mouse blastocyst[END_REF], where we neglected the osmotic contribution and losses due to permeation for the micro-lumen network. On the other hand, by merging several embryos, it would be possible to measure these effects, as the average radius of the merged embryos would be larger than the screening length so that two cavities would then be observed. We stress that contrary to systems driven by exchange by diffusion, the screening lengths we calculate are not due to many-body effects, as mentioned in Section 3.6 [START_REF] Yao | Theory and simulation of Ostwald ripening[END_REF][START_REF] Sagui | Theory of nucleation and growth during phase separation[END_REF][START_REF] Baldan | Progress in Ostwald ripening theories and their applications in nickel-base super alloys[END_REF], but to permeation and loss of the hydrostatic and osmotic pressure gradients. Because of our 1-dimensional system, the model cannot account for long-range interactions, as a given lumen only sees its nearest neighbors.

Then, we greatly simplified the mechanical properties of the system by reducing it to the parameter ϵ. The influence of mechanics, as we have modeled it, is therefore very limited, as we have shown in section 4.4.1. We do not consider the cells' pressures as they are deformed by the growth of micro-lumens. Furthermore, the actomyosin cortex has viscoelastic properties and thus may have more complex behavior at the micro-lumen scale, as proposed in [START_REF] Dasgupta | Physics of lumen growth[END_REF]. By introducing a time dependence into the cortical tension, a spontaneous oscillatory regime appears. Such oscillations are observed in the mouse embryo micro-lumens, with a period of about tens of seconds [START_REF] Dumortier | Hydraulic fracturing and active coarsening position the lumen of the mouse blastocyst[END_REF], justifying an extension of our model to include viscous contributions and cellular pressures. We neglected the displacement of the micro-lumens by considering the center of mass of the lumens as fixed, in contrast to the dewetting film models [Glasner andWitelski, 2003, 2005;[START_REF] Pismen | Mobility and interactions of weakly nonwetting droplets[END_REF]. Consideration of droplet displacement shows the possibility of collisions between drops driven by fluid displacement through the precursor film. In general, the displacement of a droplet is given by dX dt = C x (J R -J L ), with J R , J L the left/right outflow of the droplet and C x a mobility coefficient [Glasner andWitelski, 2003, 2005]. Our model assumes the symmetrical shape of the lumens and does not allow us to derive the coefficient C x . However, this only slightly affects the scaling law behavior of the drop number, and we expect a similar result in our system [START_REF] Glasner | Collision versus collapse of droplets in coarsening of dewetting thin films[END_REF].

Our modeling of active pumping is limited to a term that increases lumens or concentration in the bridges. This description resembles breath-figure theories, in which an ensemble of drops is exposed to a constant deposition of material, such as vapor deposition or droplet condensation [START_REF] Viovy | Scaling description for the growth of condensation patterns on surfaces[END_REF][START_REF] Rogers | Droplet growth and coarsening during heterogeneous vapor condensation[END_REF][START_REF] Derrida | Scale-invariant regimes in one-dimensional models of growing and coalescing droplets[END_REF][START_REF] Stricker | Impact of microphysics on the growth of one-dimensional breath figures[END_REF]. However, our equations differ fundamentally in that they do not consider the nucleation of new micro-lumens, which profoundly changes the dynamics of the system: the number of drops no longer decreases according to a power law. The mouse embryo, because of active pumping, is a similar system and could therefore produce micro-lumens spontaneously. The accurate description of the nucleation of micro-lumens and the establishment of the network is a crucial question and an open research area.

Another assumption of our model is to consider a single, uncharged solute. This approach replicates models already proposed to study cell volume control [START_REF] Jiang | Cellular Pressure and Volume Regulation and Implications for Cell Mechanics[END_REF][START_REF] Mcevoy | Gap junctions amplify spatial variations in cell volume in proliferating tumor spheroids[END_REF] or lumen [START_REF] Dasgupta | Physics of lumen growth[END_REF]. However, a more realistic model of cell volume control considers the presence of charged species (Na + , K + , Cl + ) [START_REF] Tosteson | Regulation of cell volume by active cation transport in high and low potassium sheep red cells[END_REF][START_REF] Hoppensteadt | Control of Cell Volume and the Electrical Properties of Cell Membranes[END_REF][START_REF] Armstrong | The Na/K pump, Cl ion, and osmotic stabilization of cells[END_REF][START_REF] Mori | Mathematical properties of pump-leak models of cell volume control and electrolyte balance[END_REF][START_REF] Kay | How Cells Can Control Their Size by Pumping Ions[END_REF]. This assumption allowed us to analytically solve the bridge concentration profile but neglects the osmotic gradients actively maintained by Na + /K + -pumps in pump-leak models. The presence of these charged species further generates a membrane potential that causes electroosmotic effects [START_REF] Yellin | Electromechanics and Volume Dynamics in Nonexcitable Tissue Cells[END_REF].

Furthermore, we only considered passive channels in solute permeation, but some of these channels are mechanosensitive, and thus depend on the size of a lumen that exerts tension on the cell membrane as it extends. This mechanism has also been proposed in the regulation of cell volume [START_REF] Jiang | Cellular Pressure and Volume Regulation and Implications for Cell Mechanics[END_REF][START_REF] Tao | Active Biochemical Regulation of Cell Volume and a Simple Model of Cell Tension Response[END_REF]. Such proteins are observed in mouse embryonic stem cells [START_REF] Del Mármol | Piezo1 forms a slowly-inactivating mechanosensory channel in mouse embryonic stem cells[END_REF]], but we have not yet encountered mentions of such channels in the mouse embryo. This mechanism would require coupling the membrane tension to the lumen size, which would considerably complexify the model equation.

Finally, although our model is based on a basolateral micro-lumen network, some of its aspects may be more general. Coarsening dynamics driven by hydraulic exchanges have already been reported in the case of Drosophila oogenesis, where nurse cells empty themselves in the future larger oocyte, see Fig. 2.7C and [START_REF] Alsous | Dynamics of altruistic fluid transport in egg development[END_REF]]. On the one hand, as we discussed in sections 1.1.1 and 1.1.2, apical lumens are sealed by tight junctions, preventing hydraulic exchange between cavities. However, disruption of tight junctions would allow exchange via the intercellular space. On the other hand, the micro-lumen coalescence regime is comparable to apical lumen fusion in the Zebrafish gut [START_REF] Alvers | Single continuous lumen formation in the zebrafish gut is mediated by smoothened-dependent tissue remodeling[END_REF].

We believe that despite being simplistic, the reduced model we propose is enough to understand some aspects of the underlying physics at play in the mouse embryo and other biological systems. Further research is required to quantitatively relate this theoretical work to the experimental observations or to expand its features to other systems, but this lays the ground for promising and exciting research avenues in the role of hydraulic and osmotic flows in biological systems.

Part III

Volume control of biological cavities

Chapter 5

Volume control for an embryo in a shell

In this chapter and the next one, we focus on the volume control of a biological cavity surrounded by a cell layer and a shell. This chapter concerns the establishment of simple models of embryo volume control based on water exchange. These models aim at describing the osmotic response of an embryo and a cavity when surrounded by an elastic shell constraining the expansion of the embryo. We start by justifying the relevance of such models in the context of mammalian embryo development, and then we develop models that progressively include the different characteristic aspects of the blastocyst: the blastocyst and the zona pellucida (i.e. the mouse embryo shell).

Introduction

Many embryos develop within a shell: the avians [START_REF] Jacobson | The early development of the avian embryo. I. Endoderm formation[END_REF] and monotremes [START_REF] Thomson | The Development of the Monotremata.-Part VI. The Later Stages of Cleavage and the Formation of the Primary Germ-layers[END_REF] lay eggs with a hard shell, the sea urchin grows in the hyaline layer [START_REF] Citkowitz | The hyaline layer: Its isolation and role in echinoderm development[END_REF], the C. Elegans relies on the shell confinement to preserve cell arrangement [START_REF] Giammona | Physical constraints on early blastomere packings[END_REF], the marsupial embryos have several shell coats and their blastomeres adhere to the shells to form the blastocyst [START_REF] Selwood | Embryonic development in culture of two dasyurid marsupials, Sminthopsis crassicaudata (gould) and Sminthopsis macroura (spencer), during cleavage and blastocyst formation[END_REF][START_REF] Frankenberg | Conceptus Coats of Marsupials and Monotremes[END_REF].

During its pre-implantation development, the mammalian embryo is surrounded by a protective shell, the Zona Pellucida (ZP). It is an elastic shell composed of glycoproteins that contributes to prevent polyspermy [START_REF] Dean | Biology of mammalian fertilization: role of the zona pellucida[END_REF][START_REF] Papi | Mechanical properties of zona pellucida hardening[END_REF][START_REF] Sun | Mechanical property characterization of mouse zona pellucida[END_REF], to preserve blastomeres contacts throughout cleavages [START_REF] Bronson | TRANSFER TO THE MOUSE OVIDUCT OF EGGS WITH AND WITHOUT THE ZONA PELLUCIDA[END_REF][START_REF] Suzuki | Developmental ability of zona-free mouse embryos is influenced by cell association at the 4-cell stage[END_REF], and prevents chimera formation or adhesion of the oocyte to the oviduct [START_REF] Velásquez | Effect of zona pellucida removal on early development of in vitro produced bovine embryos[END_REF].

From a mechanical viewpoint, the ZP plays a critical role in two time-points of the mammalian embryo life: after fertilization of the oocyte and blastocyst hatching. Following fertilization, the ZP hardens, to block sperm from penetrating the egg. Mechanical models are established to study the hardening of the ZP or to study in vitro fertilization by cytoplasmic injection (ICSI) [START_REF] Sun | Mechanical property characterization of mouse zona pellucida[END_REF]. Embryo hatching is a crucial process before implantation of the embryo at the late blastocyst stage [START_REF] Leonavicius | Mechanics of mouse blastocyst hatching revealed by a hydrogel-based microdeformation assay[END_REF]. To exit the shell, the blastocyst combines two processes: (i) embrittlement of the ZP by swelling of the blastocoel, increasing its inner pressure, stretching the outer trophectoderm cell layer, and thinning down the ZP [START_REF] Sathananthan | Mechanics of human blastocyst hatching in vitro[END_REF][START_REF] Leonavicius | Mechanics of mouse blastocyst hatching revealed by a hydrogel-based microdeformation assay[END_REF], and (ii) production of strypsins, enzymes that digest the ZP [START_REF] Perona | Mouse blastocysts hatch in vitro by using a trypsin-like proteinase associated with cells of mural trophectoderm[END_REF]. Notably, the quality of embryos is uncorrelated to the process of hatching [START_REF] Fong | Ultrastructural observations of enzymatically treated human blastocysts: Zona-free blastocyst transfer and rescue of blastocysts with hatching difficulties[END_REF]. In the human blastocyst, the presence of plump/bulged cells (zona-breaker) on the TE suggests that they may exert some additional efforts and interactions with the ZP at the hatching point [START_REF] Sathananthan | Mechanics of human blastocyst hatching in vitro[END_REF]. The hatching can fail due to several processes: late expansion, inactivity of zona-breaker cells, disorganized blastocyst, etc., [START_REF] Sathananthan | Mechanics of human blastocyst hatching in vitro[END_REF]. With the ZP opened, the blastocyst emerges rather quickly and expands instantaneously [START_REF] Sathananthan | Mechanics of human blastocyst hatching in vitro[END_REF]. Between these two embryonic events, the structure of the ZP is not fixed in time and considerably evolves [START_REF] Wolf | Embryo-maternal communication in bovine -Strategies for deciphering a complex crosstalk[END_REF], raising the question of time-dependent mechanical parameters. Still, the normal development of the embryo can proceed without ZP once the blastocyst stage is reached (in cattle [START_REF] Velásquez | Effect of zona pellucida removal on early development of in vitro produced bovine embryos[END_REF], mouse [START_REF] Mintz | Experimental Study of the Developing Mammalian Egg: Removal of the Zona Pellucida[END_REF][START_REF] Bronson | TRANSFER TO THE MOUSE OVIDUCT OF EGGS WITH AND WITHOUT THE ZONA PELLUCIDA[END_REF], human [START_REF] Fong | Ongoing normal pregnancy after transfer of zona-free blastocysts: Implications for embryo transfer in the human[END_REF]). Removal of the ZP does not alter the behavior of vitrified human blastocysts [START_REF] Kirienko | Mechanical zona pellucida removal of vitrified-warmed human blastocysts does not affect the clinical outcome[END_REF].

It was shown that blastocysts, with or without ZP, follow a perfect osmometer behavior [START_REF] Mazur | Osmotic responses of preimplantation mouse and bovine embryos and their cryobiological implications[END_REF]. However, the shell exerts a mechanical force on the blastocyst and increases its hydrostatic pressure [START_REF] Chan | Hydraulic control of mammalian embryo size and cell fate[END_REF], which should be considered for accurate modeling of blastocyst volume control. The volume control of the blastocyst with a ZP, or rather, the influence of the ZP in the expanding phase of blastocyst development, remains poorly studied. Several techniques can be used to measure the mechanical parameters of the zona pellucida: atomic force microscopy [START_REF] Papi | Mechanical properties of zona pellucida hardening[END_REF], micropipette aspiration [START_REF] Khalilian | Estimating Young's modulus of zona pellucida by micropipette aspiration in combination with theoretical models of ovum[END_REF], syringe deformation [START_REF] Sun | Mechanical property characterization of mouse zona pellucida[END_REF], micro-tactile sensor [START_REF] Murayama | Micro-mechanical sensing platform for the characterization of the elastic properties of the ovum via uniaxial measurement[END_REF], deformation of hydrogel [START_REF] Leonavicius | Mechanics of mouse blastocyst hatching revealed by a hydrogel-based microdeformation assay[END_REF].

We propose to investigate theoretically and numerically the mechanics of the ZP by applying osmotic shocks to a simplified system composed of a cell and enclosed lumen/blastocoel, to mimic the behavior of an expanding or deflating blastocyst. In the first part, we introduce a simple model for the volume control of a single cell enclosed in an elastic shell as a simplified version of the zygote or 16-cell stage embryo. We then consider a lumen enclosed in the cell, to mimic the blastocoel or a hatched blastocyst. We conclude with a model including both previous models with the lumen and the cell surrounded by the elastic shell and compare its behavior to experimental measurements. 

Embryo with an elastic shell

In this section, we first present the model of an embryo enclosed within an elastic shell, corresponding to the Zona Pellucida (ZP). We first derive the equations of the model and present some results in considering changes in the external osmolarity of the medium.

Model

Let the embryo be considered as a spherical cell of radius R c , but confined within an elastic shell of radius

R S ≥ R c R S = R c , R c > R 0 S R 0 S , R c ≤ R 0 S (5.1)
R 0 S is the stress-free radius of the shell, see Fig. 5.2. For R S > R 0 S , the shell is under extensional stress. The external medium has a total concentration C out , typically around 290 -300mM [START_REF] Tscherner | Initiation of cell volume regulation and unique cell volume regulatory mechanisms in mammalian oocytes and embryos[END_REF] and the embryo has inner concentration C in = N in V c where V c = 4 3 πR 3 c is the volume of the embryo and N in is the total number of solutes. We assume the solutes cannot be exchanged with the external medium.

Inflated Deflated

FIGURE 5.2: Geometry of an embryo with an elastic shell (green). The shell can be inflated (left), that is under extensional stress with radius R S and thickness h(R S ), or deflated (right), with the embryo detached from the shell, that is stress-free with radius R 0 S , and its thickness h 0 . The total tension T is the sum of the embryo's membrane surface tension γ c and the elastic contribution of the ZP.

We suppose that the shell is permeable to water and external solutes with permeation constants of the shell very large compared to the one of the embryo so that the fluid or osmolytes instantaneously cross it. This is justified as the ZP is typically permeable to most molecules. We suppose the shell to be incompressible: its total volume V 0 S ≃ 4πR 2 S h(R S ) is, therefore, conserved, which leads to

h(R S ) = V 0 S 4πR 2 S (5.2)
with h the thickness of the shell. The typical shell thickness is of order [START_REF] Leonavicius | Mechanics of mouse blastocyst hatching revealed by a hydrogel-based microdeformation assay[END_REF].

h 0 = V 0 S 4π(R 0 S ) 2 ≃ 4.3µm
The embryo volume is affected by both a change in osmotic pressure difference, ∆Π c = RT(C in (t) -C out (t)) or in hydrostatic pressure ∆P c = P cp 0 = 2T R c , generating a solvent flux J ext→c = A c λ p (∆Π -∆P). The embryo volume dynamics is therefore given by the volume control equation for a cell, similar to Eq. (2.31) 5.3) where A c = 4πR 2 c is the embryo area, λ p ≃ 6.02 × 10 -13 m.s -1 .Pa -1 is a typical water permeability per unit area of the embryo membrane [START_REF] Edashige | Channel-Dependent Permeation of Water and Glycerol in Mouse Morulae1[END_REF], and T(R c ) is the total tension. It is a function of the embryo tension γ c , the shell thickness h(R S ) and the tangential elastic stress σ in the layer, and is given by [START_REF] Tvergaard | A mechanical model of blastocyst hatching[END_REF]]

dV c dt = J ext→c = A c λ p RT(C in (t) -C out (t)) - 2T(R c ) R c ( 
T(R c ) = γ c , R c ≤ R 0 S γ c + h(R S )σ(R S ) , R c > R 0 S (5.4) with σ(R S ) = Eϵ S (R S ) = E R S -R 0 S R 0 S (5.5)
where ϵ S is the extensional strain and E the Young modulus of the shell. It has been estimated to be of the order of a few kPa (E = 31kPa [START_REF] Leonavicius | Mechanics of mouse blastocyst hatching revealed by a hydrogel-based microdeformation assay[END_REF] at blastocyst stage, around 37kPa [START_REF] Khalilian | Estimating Young's modulus of zona pellucida by micropipette aspiration in combination with theoretical models of ovum[END_REF] after hardening). Using Eqs. ( 5.2) and (5.5), one obtains the tension T

T = γ c + V 0 S 4πR 2 c × E R c -R 0 S R 0 S (5.6)
when the shell is stretched.

The shell has two states, either deflated or inflated, see Fig. 5.2, and we write the volume control equations for both states. In Fig. 5.3 we display the dependence on the variables of the shell (R S , h, σ) as functions of the embryo radius. For R c < R 0 S , the embryo is not in contact with the shell, the thickness is constant and the stress is zero. Above R c ≥ R 0 S , the shell radius R S is equal to the embryo radius. The shell stress increases linearly with the shell expansion, and the shell thickness decreases to keep the shell volume constant.

Stress-free

Shell thining

Stress-free S t r a i n -s t r e s s r e l a t i o n Embryo-shell contact S t r e t c h e d s h e l l FIGURE 5.3: Dependence of the ZP variables on embryo radius. Normalized shell radius R S /R 0 , stress σ/E and thickness h/h 0 versus embryo radius R c /R 0 . We choose R 0 S = 1.5R 0 .

The tension of the shell, γ ZP , is plotted as a function of the shell strain ∆R S /R 0 S in Fig. 5.4. When the shell is deformed, the tension first increases with the stress but decreases later as the shell thins down. The maximum is reached for dγ ZP dR S = 0, corresponding to R S = 2R 0 S , or a strain ∆R S /R 0 S = 1. 

Deflated Inflated

∆R S /R 0 S = (R S -R 0 S )/R 0 S .
The tension of the embryo γ c = 5 × 10 -4 N.m -1 is indicated in red, from [START_REF] Dumortier | Hydraulic fracturing and active coarsening position the lumen of the mouse blastocyst[END_REF].

Deflated shell: R c < R 0

S

A deflated shell refers to a shell with no contact with the enclosed embryo. This situation arises when the embryo cleaves or at compaction. In this case, the embryo floats freely within the shell, that has a constant thickness and is stress-free, σ(R 0 S ) = 0. The dynamics of the embryo volume reduces to the one of the single embryo, Eq. (2.31)

dR c dt = λ p RT(C in (t) -C out (t)) - 2γ c R c (5.7)
where we used the expressions of the volume V c = 4 3 πR 3 c and area A c = 4πR 2 c , and the total tension T reduces to γ c . It is convenient to work with non-dimensionalized variables, and we introduce the characteristic quantities

C 0 = C out (0) ; R 0 = R c (0) ; τ c = R 0 RTC 0 λ p ; ϵ c = 2γ c RTC 0 R 0 (5.8)
where R c (0) ≃ 50µm is the initial radius of the embryo, C 0 is the typical concentration, usually the initial concentration of the culture medium C out (0) = 300mM. τ c is the embryo relaxation time through water permeation, and depends on the typical osmotic pressure RTC 0 ∼ 7.6 × 10 5 Pa, the initial radius and is inversely proportional to the water permeation λ p . It is estimated, from literature around τ c ≃ 110s at 35 degree Celsius. Osmotic shock typically relaxe within 100 to 200s, which confirms our estimation. As before, the parameter ϵ c is the ratio of Laplace over osmotic pressures, and at the scale of the embryo with γ c ≃ 5 × 10 -4 N.m -1 the epithelial tension [START_REF] Dumortier | Hydraulic fracturing and active coarsening position the lumen of the mouse blastocyst[END_REF], as a value around ϵ c ∼ 10 -4 . Note that the tension γ c is the tension of the epithelium, corresponding to the tension of several cells. At time t=0, we assume the system to be at steady-state, so that

RT 3N in 4πR 3 0 -C 0 - 2γ c R 0 = 0
This quasi-static approximation is justified by the fact that the time of expansion of the embryo is of order of hours, not minutes [START_REF] Ruiz-Herrero | Organ size control via hydraulically gated oscillations[END_REF][START_REF] Chan | Hydraulic control of mammalian embryo size and cell fate[END_REF]. From there, one can estimate the number of osmolytes N in as

N in = 4π 3 R 3 0 C 0 (1 + ϵ c ) (5.9)
With the estimations R 0 ≃ 50µm and C 0 ≃ 300mM, one obtains an estimated N in ≃ 1.5 × 10 -10 mol.

Nondimensionalizing the variables such that Rc = R c /R 0 , t = t/τ c , C = C/C 0 , we find

d Rc d t = Cin (t) -Cout (t) - ϵ c Rc (5.10)
and using the expression of N in , so that Cin = 1+ϵ c R3 c , we finally have

d Rc d t = 1 + ϵ c R3 c -Cout (t) - ϵ c Rc (5.11)
The perfect osmometer relation is immediately seen here as the hydrostatic pressure contribution is negligible compared to the typical osmotic pressure, ϵ c = ∆P Π 0 ≃ 10 -4 . At steady-state, the radius of the embryo follows R3

c ∼ ( Cout ) -1 .

Inflated shell: R c ≥ R 0

S

The embryo can expand and come in contact with the shell. When in contact with the shell, the embryo deforms it, which exerts a compressive force on the embryo in return, while the shell thickness decreases, see Fig. 5.3. Integrating the stress over the shell thickness leads to the effective shell tension γ ZP = h(R S )σ(R S ), which adds to the surface tension of the actomyosin cortex, γ c . With the expression of the total tension T, see Eq. ( 5.6), the embryo radius is given by

dR c dt = λ p RT(C in (t) -C out (t)) - 2γ c R c - 2EV 0 S (R c -R 0 S ) 4πR 0 S R 3 c (5.12)
Considering again that the cell starts at steady-state to determine N in , nondimensionalization yields

d Rc d t = 1 + ϵ c + E S 0 R3 c -Cout (t) - ϵ c Rc -E Rc (1 + S 0 ) -1 R3 c (5.13)
where we defined the parameters

S 0 ≡ (R 0 -R 0 S )/R 0 S , E ≡ EV 0 S 2πR 3 0 RTC 0 (5.14)
where R 0 is the initial radius of the embryo. The dimensionless parameter E accounts for the elasticity of the shell, and can be evaluated from literature as E ≃ 6.6 × 10 -2 . It compares the Young modulus of the shell to the typical osmotic pressure, and plays a similar role for the shell as the parameter ϵ c for the epithelium.

The parameter S 0 corresponds to the extensional pre-strain. It accounts for the initial deformation of the shell: S 0 > 0 indicates that the shell is initially stretched by the cell. Any decrease in cell size will make the shell reduce its radius until the cell detaches. S 0 = 1 indicates that the shell is not initially stretched. Therefore, the system is characterized by four parameters: τ c , ϵ c , S 0 , and E , which we determine from osmotic shocks in the next sections.

Steady-state

From the volume control equations, one can calculate the steady-state in both the inflated and deflated cases, see Appendix G. The deflated embryo steady-state is immediately found as

R3 c = 1 Cout (5.15)
where we used ϵ c ≪ 1.

For the embryo in contact with the shell (inflated shell), then the steady-state equation is a third-order polynomial in Rc

R3 c Cout + R2 c ϵ c + Rc E (1 + S 0 ) -(1 + ϵ c + E (1 + S 0 )) = 0 (5.16)
Assuming again ϵ c ≪ 1, the polynomial has one real solution

Rc = - q 2 + q 2 4 + p 3 27 1/3 + - q 2 - q 2 4 + p 3 27 1/3
(5.17)

where p = E (1+S 0 )

Cout and q = -1

Cout (E (1 + S 0 ) + 1), see Appendix G for details. For E = 0, one has p = 0, q = -1

Cout and find the deflated embryo steady-state. The effect of the shell on the steady-state volume Vc is shown in Fig. 5.5. The steady-state volume is plotted as a function of the inverse of the external concentration, 1/ Cout , the shell pre-strain S 0 and the shell elastic parameter E on two plots. On both panels, the ideal free-embryo volume Vc ∼ 1/ Cout is indicated as a dashed line. On the left panel, the elastic parameter is kept constant while the pre-strain is increased. When Rc ≤ 1 1+S 0 , the embryo detaches from the shell and follows the ideal osmometer law. These detachments correspond to discontinuities in the curves. Otherwise, the elasticity of the shell increases the hydrostatic pressure which compensates for the osmotic pressure. For an initially stretched shell (S 0 = 0.43), the detachment point requires a hypertonic medium: up until that point in hypertonic conditions, the cell volume is larger than the ideal embryo volume as the shell increases hydrostatic pressure. On the contrary, for a non-stretched shell (S 0 = 0), the embryo volume follows the ideal osmometer law until it touches the shell. For S 0 = 0, this happens exactly at isotonic point ( Cout = 1). On the right panel, the pre-strain is kept constant (S 0 = 0), such that the detachment corresponds to an isotonic medium, but the elastic parameter is changed. Under hypertonic conditions, the embryo is detached from the shell and is not compressed. Under hypotonic conditions, the embryo expands and stretches the shell. As the elastic parameter E increases, the embryo deviates from an ideal osmometer law with decreasing concentration Cout . At low E = 0.1, it follows almost an ideal osmometer law, while at large E = 10, the steady-state volume is almost constant. In the limit of vanishing concentration Cout ≪ 1, the steady-state equation (5.16) gives the steady-state radius

Rc → Cout ≪1 1 + 1 E (1 + S 0 ) (5.18)
which is shown in Fig. 5.6. The case with E = 0.1 is similar to [START_REF] Mazur | Osmotic responses of preimplantation mouse and bovine embryos and their cryobiological implications[END_REF] in which blastocyst steady-state volume was measured as a function of the external concentration. The authors show that the mouse or cow blastocysts behave as perfect osmometers with or with shell, as the zona pellucida is not extremely stiff (we estimate E = 0.066) and thinner at this stage, just before hatching [START_REF] Mazur | Osmotic responses of preimplantation mouse and bovine embryos and their cryobiological implications[END_REF], see Fig.

5.7.

Overall, this illustrates the mechanical effect of the shell on the embryo volume when at a steady state. 

Simulations

We numerically solve the system of Eqs. (5.11), (5.13) to simulate the embryo's response to osmotic shocks when enclosed in a shell. The integrationo is performed using Python library scipy.odeint. In these simulations, the system starts from an initial phase where the embryo is at equilibrium. It is submitted to a first hyperosmotic shock with amplitude Cout = 1 + δ 1 , from which the embryo is still in contact with the shell. After relaxation to the equilibrium state, it is submitted to a second hyperosmotic shock with amplitude Cout = 1 + δ 2 , at which the embryo detaches from the shell (δ 2 > δ 1 ).

An example of such a experiment is shown in Fig. 5.8. The embryo starts at steady-state, and the external concentration is C out (0) = 300mM. At time t = 2, the external concentration is increased by 60mM (δ 1 = 0.2). The embryo relaxes to a steady-state Rc given by Eq. ( 5.17 [START_REF] Mazur | Osmotic responses of preimplantation mouse and bovine embryos and their cryobiological implications[END_REF].

τ c can be fitted from the relaxation. Then at time t = 6, the external concentration is increased by 240mM (δ 2 = 1) to reache 600mM, twice the initial concentration. The embryo detaches from the shell and reaches a new steady-state, given by the ideal Boyle-van't Hoff relation (5.15), Rc ≃ 3 1 1+δ 2 . 

Detached

ϵ c = 10 -2 , E = 1., S 0 = 0.1, δ 1 = 0.2, δ 2 = 1.
From the first osmotic shock, one can determine the elastic parameter E at steady-state. Indeed, if we consider that the embryo still is in contact with the shell, the steady-state is given by Eq. ( 5.13). Assuming ϵ c ≪ 1 gives, by rearranging the terms of the left hand side:

E = 1 1 + S 0 R3 c (1 + δ 1 ) -1 1 -Rc (5.19)
The pre-strain S 0 is immediately obtained from the second osmotic shock when the embryo detaches from the shell. The amplitude δ 1 is known from experimental protocol, and the measure of Rc is made through observations, which fully determines E and S 0 .

Discussion

This model of an embryo enclosed in a shell is a first approximation for the blastocyst, as it consists of a cell layer enclosing a fluid-filled cavity with its dynamics. The oocyte or the zygote are ideal systems to

Lumen in an embryo

123 study this model, as they correspond to single cells. The oocyte though is not fertilized, and the ZP has different properties before and after fertilization [START_REF] Papi | Mechanical properties of zona pellucida hardening[END_REF]. The zygote is enclosed into a hardened ZP, which will show closer agreement to the blastocyst model. Still, the mechanical properties of the zygote differ from the blastocyst. Therefore, this model is a good starting point for the measure of the mechanical properties of the ZP at the blastocyst stage from osmotic shocks and provides the framework to work with single encapsulated cells.

Lumen in an embryo

In this section, we study now an embryo enclosing a lumen, with no external shell, as depicted in Fig. 5.9.

Model

We assume now the embryo surrounding a fluid-filled cavity that we call lumen, see Fig. 5.9A. This is a minimal model for the blastocyst, where trophectoderm and inner mass cells are modeled as a single continuous cellular medium. This model is more realistic for a fully fused embryo with a single lumen, see Fig. 5.9B. We will refer to the cellular medium as the cell. The cell has radius R c , surface tension γ c and permeation coefficient λ c p . The lumen has radius R ℓ ≤ R c , surface tension γ ℓ and permeation coefficient λ ℓ p . For the lumen, volume is changed by one flux, from the cell to the lumen and denoted J c→ℓ (positive from the cell to the lumen). The cell volume is changed by two fluxes: from external medium J out→c and from the lumen J ℓ→c = -J c→ℓ . The equations of volume change for the cell and lumen read

dV c dt = J out→c + J ℓ→c = 4πR 2 c λ c p [∆Π c,out -∆P c,out ] + 4πR 2 ℓ λ ℓ p [∆Π c,ℓ -∆P c,ℓ ] (5.20a) dV ℓ dt = J c→ℓ = 4πR 2 ℓ λ ℓ p [∆Π ℓ,c -∆P ℓ,c ] (5.20b)
where ∆P i,j and ∆Π i,j are the hydrostatic and osmotic pressure difference between compartments i, j.

It is convenient to express these equations as functions of the radii instead of the volumes. The volume of the cell is V c = 4 3 πR 3 c -V ℓ , and the above equations simplify nicely into

dR c dt = λ c p RT(C c -C out (t)) - 2γ c R c (5.21a) dR ℓ dt = λ ℓ p RT(C ℓ -C c ) - 2γ ℓ R ℓ (5.21b)
where

C c = N c V c = 3N c 4π(R 3 c -R 3 ℓ ) and C ℓ = N ℓ V ℓ = 3N ℓ 4πR 3 ℓ
. One immediately notices that the cell radius evolves as if no lumen was present, and the lumen evolves with the same dynamics, where the cell is the external medium.

Defining R 0 ≡ R c (0) and C 0 ≡ C out (t = 0), we non-dimensionalize the variables as

Rc = R c /R c (0); Rℓ = R ℓ /R ℓ (0); C = C/C 0
Introducing the parameter ρ = R ℓ (0)/R c (0), one has Rℓ = R ℓ /ρR 0 . Thus, we find

d Rc d t = (1 + ϵ c )(1 -ρ 3 ) R3 c -ρ 3 R3 ℓ -Cout (t) - ϵ c Rc (5.22a) d Rℓ d t = τ c ρτ ℓ 1 + ϵ c + ϵ ℓ ρ R3 ℓ - (1 + ϵ c )(1 -ρ 3 ) R3 c -ρ 3 R3 ℓ - ϵ ℓ ρ Rℓ (5.22b)
where we defined

τ c ≡ R 0 λ c p RTC 0 , τ ℓ ≡ R 0 λ ℓ p RTC 0 , ϵ c ≡ 2γ c R 0 RTC 0 , ϵ ℓ ≡ 2γ ℓ R 0 RTC 0 , ρ ≡ R ℓ (0) R 0 (5.23)
Details of the calculation are given in Appendix G. The steady-state radius are also derived, assuming Cout

≫ ϵ c Rc , ϵ ℓ Rℓ : R3 ℓ ≃ 1 Cout 1 + ϵ c + ϵ ℓ ρ (5.24a) R3 c ≃ 1 Cout 1 + ϵ c + ρ 2 ϵ ℓ (5.24b)
Interestingly, the steady-state radii are independent from each-other: at steady-state, the cell and the lumen are fully decoupled. They both tend to the same non-dimensionalized steady-state volume 1

Cout

. With dimensionalized variables, this leads to

R 3 c ∼ R 3 0 C 0 C out and R 3 ℓ ∼ ρ 3 R 3 c .
In appendix G, we give the expression of the number of impermeant species in both cell (N c ) and lumen (N ℓ ). Their ratio is obtained as

N ℓ N c = ρ 3 1 -ρ 3 1 + ϵ c + ϵ ℓ ρ (5.25)
Assuming ϵ c,ℓ ≪ 1, the ratio gives an estimate N ℓ N ℓ ≃ ρ 3 1-ρ 3 . As an estimation, the embryo with fused membrane displayed on Fig. 5.9 has a radius ratio ρ = 0.74, which leads to N ℓ /N c ≃ 0.68. This provides estimates of the number of impermeant solutes in the lumen, provided one can estimate the concentration of the cell and conversely. With the estimation N in = N c = 1.5 × 10 -10 mol, one gets N ℓ ≃ 1.02 × 10 -10 mol.

Simulations

We submit the system, as in the previous section, to a hyper-osmotic shocks Cout = 1 + δ. We illustrate two situations in which we change the permeation times τ c , τ ℓ , and are shown on Figs. 5.10 and 5.11. In the first case, Fig. 5.10, the parameters are identical for the cell and the lumen, with ρ = 0.74 and δ = 1. The cell and the lumen start at steady-state, and the concentration of the external medium is changed to Cout = 2 at time t = 1. The cell and the lumen shrink to steady-state volume R3 c,ℓ = 1

Cout

. The external concentration is then restored and the cell and lumen relax to their initial state. Their dynamics is almost identical as τ c = τ ℓ . Thus, assuming identical permeation properties of the cell and lumen membranes leads to similar dynamics both with an osmotic shock and recovery. However, the relaxation of the lumen is slightly delayed, which is more visible in the second case.

In the second case, Fig. 5.11, we show what happens for the shrinkage phase induced by a moderate osmotic shock (δ = 0.2) with different permeations for the lumen and the cell, τ ℓ = 10τ c . In the plotted case, the lumen has delayed dynamics, which affects also the cell dynamics. The cell radius has two-phase dynamics. In the first phase, the cell radius shrinks rapidly as its concentration Cc equilibrates to Cout (see panel C). This rapid shrinkage phase is reminiscent of the single cell (purple dashed line) but deviates from it as the lumen also starts to shrink (Panel A). The cell radius then evolves towards a steady-state with a slower pace, corresponding to the second phase. While the cell rapidly reaches osmotic equilibrium, the total system (cell+lumen) does not. The decrease of radius Rc is precisely due to the lumen shrinkage. This is clearly seen in panel (B) where we plotted the rescaled volumes versus rescaled time: the cell volume Vc reaches first the steady-state and remains constant, with a similar dynamics as the single-cell volume Vsingle c . The lumen volume slowly converges to steady-state, but the total volume Vc + Vℓ (green curve) has the same two-phase dynamics as the cell radius. Thus, once the cell is at osmotic equilibrium, it acts as a layer with fixed volume as it keeps its concentration fairly constant. However, as the lumen shrinks, the total cell radius Rc also decreases to keep Vc constant.

Overall, this shows that in the case of equivalent permeations of the cell and lumen membranes, the relaxation dynamics upon osmotic shock are equivalent. 

Discussion

This model of a cell enclosing a lumen illustrates the dynamics of two compartments. Importantly, the steady-state radii are uncoupled, but the dynamics, when the radius is plotted as a function of time, are subtle when different permeations at the cell and lumen membranes are involved. This model can be applied to a blastocyst without ZP or cysts in liquid suspension, which display a lumen.

Lumen in an embryo with shell

We conclude this chapter by integrating the two previous models: a lumen enclosed in a cell, surrounded by a shell, see Fig. 5.12.

Model

We do the same assumptions as in previous sections on the parametrization of the system. One therefore find two cases: either the cell is not in contact with the shell, and the system corresponds to Eqs. 5.22a and 5.22b, or the cell is in contact with the shell, and the system is slightly modified to account for the shell tension. The dimensionless cell hydrostatic pressure difference, ∆ Pc , is

∆ Pc = ϵ c Rc + E Rc (1 + S 0 ) -1 R3 c (5.26)
and the dimensionless cell concentration, Cc is, at steady-state

Cc = (1 -ρ 3 ) [1 + ϵ c + E S 0 ] R3 c -ρ 3 R3 ℓ (5.27)
and the dimensionless lumen concentration Cℓ is, at steady-state

Cℓ = 1 + ϵ c + ϵ ℓ ρ + E S 0 R3 ℓ (5.28) FIGURE 5
.12: Geometry of the blastocyst, with a cell (light yellow) and a lumen (blue) with shell (green), with inflated shell (left) and deflated the shell (right). The minimal radius of the shell is R 0 S , and its thickness is h(R c ). The total tension T is the sum of the cell's membrane surface tension γ c and the contribution of the elastic shell. The permeations and tensions of the lumen and cell are indicated.

Thus, the non-dimensionalized equations reads, for the detached cell and lumen

d Rc d t = (1 + ϵ c )(1 -ρ 3 ) R3 c -ρ 3 R3 ℓ -Cout (t) - ϵ c Rc (5.29a) d Rℓ d t = τ c ρτ ℓ 1 + ϵ c + ϵ ℓ ρ R3 ℓ - (1 + ϵ c )(1 -ρ 3 ) R3 c -ρ 3 R3 ℓ - ϵ ℓ ρ Rℓ (5.29b)
If the cell is in contact with the shell, then the equations read

d Rc d t = (1 -ρ 3 ) [1 + ϵ c + E S 0 ] R3 c -ρ 3 R3 ℓ -Cout - ϵ c Rc -E Rc (1 + S 0 ) -1 R3 c (5.30a) d Rℓ d t = τ c ρτ ℓ 1 + ϵ c + ϵ ℓ ρ + E S 0 R3 ℓ - (1 -ρ 3 ) [1 + ϵ c + E S 0 ] R3 c -ρ 3 R3 ℓ - ϵ ℓ ρ Rℓ (5.30b) h(R S ) = V 0 S 4π(R S ) 2 (5.30c)
and we have 7 parameters : ϵ c , ϵ ℓ , τ c , τ ℓ , ρ, E and S 0 , defined in the previous sections.

Simulations

We simulate the response of the system to a hyperosmotic shock with 175mM sucrose (δ = 0.7 for C 0 = 250mM KSOM), to correspond to experimental values of a blastocyst enclosed in ZP. From the measurements, the initial average radius of the ZP is R S (0) = 50.8µm with an initial thickness of h = 5.96µm. The initial radius of the embryo, corresponding to the cell in our model, is measured to be around R c (0) = 49.7µm. Unfortunately, we do not have the lumen radius for this specific set of experiments. For simplicity, we assume ρ = 0.70, in close agreement with experimental observations, such that R ℓ (0) ≃ 34.8µm. The ZP resting radius, R 0 S , is obtained from embryo detachement after the osmotic shock, and is estimated around R 0 S = 46.99µm, with thickness h 0 = 7.57µm. This leads to a pre-strain parameter S 0 ≃ 0.08. The cell radius after the osmotic shock is estimated around R c = 43.48µm ( Rc = 0.87). With these measures, we infer the elastic parameter E ≃ 7.4 × 10 -2 , where we used the estimation of E = 31kPa from [START_REF] Leonavicius | Mechanics of mouse blastocyst hatching revealed by a hydrogel-based microdeformation assay[END_REF].

We plot the response of a cell and lumen with these parameters to hyperosmotic shock in Fig. 5.13, with arbitrary times τ c , τ ℓ . At time t = 1, the external concentration is increased from Cout = 1 to Cout = 1.7. The cell first shrinks, followed by the lumen. In panel A, the dynamics of the lumen and the cell are hardly distinguishable. They converge to the steady-state radii R * c,ℓ ≃ 0.84. In panel B, we observe the same effect as in the previous section, where the radius of the cell follows two dynamics: it first reflects the cell volume dynamics, then the lumen volume shrinkage. To fit the data for a blastocyst, one truly has two free parameters, corresponding to the times τ c and τ ℓ . Indeed, the parameters ϵ c , ϵ ℓ are too small to be measured using osmotic shocks, since their contributions to the embryo size are negligible. The ratio ρ is obtained measure the radii R c , R ℓ . The resting radius S 0 can be measured directly after hyperosmotic shocks and detachment of the cell from the ZP. We suggest that the value of E can be inferred from moderate hyperosmotic or hypoosmotic shocks when the embryo is at steady state and touching the ZP, from the measure of the steady-state radius and using Eq. (5.19).

A B

We illustrate an experiment with osmotic shocks in Figs. 5.14A and B. These shocks were realized by O. Pelzer and L. Dagher in the team of J.-L. Maître from Institut Curie. The embryos were placed in a microfluidic device and imaged through bright-field microscopy, then subjected to hyperosmotic shock (175mM sucrose) and a recovery phase. From their measures, we calculated the previous parameters. Fig. 5.14A is the averaged radius of the blastocyst (equivalent to R c ) and an attempt of matching curves, with the parameters we evoked before, while the times τ c , τ ℓ are adjusted by hand. The shrinkage phase and steadystate cell radius ( Robs c ≃ 0.835) match remarkably to the model, while the recovery deviates strongly from the predictions. The embryo recovers fully during the recovery and reaches its initial radius. Surprisingly, the theoretical radius of the lumen matches better to the data than the cell radius. Further investigations must be pursued to properly characterize both the mechanics of the ZP and the dynamics of the shrinkage and recovery phases, and on the theoretical side, a proper fitting method must be designed to infer the parameters.

A B 

Discussion

We argue that to properly characterize the ZP, a hypoosmotic shock of moderate amplitude would be the best direction. Mouse embryos are however sensitive to external conditions, thus a hypoosmotic shock may kill them. Instead, the culture of the embryos in an initial hypertonic solution, and then exposition to isotonic KSOM medium would play the role of a hypotonic solution. Hyperosmotic shocks would be necessary to evaluate the resting radius of the ZP, but to obtain the elastic parameter E would be trickier, as the amplitude of the shock must be moderate to keep the cells apposed the ZP. As the blastocyst increases in size before hatching, it naturally stretches the ZP, thus a late blastocyst allows for higher amplitudes of hyperosmotic shocks.

Conclusion and discussion

In this chapter, we discussed two models on the effects of osmotic shocks on a cell within a shell, then a cell enclosing a lumen. We then combined these models for a cell in a shell, with an inner lumen, to be close to the experimental system that is the mouse blastocyst. First, one can infer the mechanics of the ZP only from steady-state and does not need the dynamics, which is characteristic of the cell or lumen membranes (permeation and surface tension). This is especially helpful as one can study the ZP properties directly from the steady-state and not from the dynamics, which provides a lot of data to fit the model. We note that the ratio of lumen radius over cell radius ρ depends on the blastocyst stage of development, which is not discussed here. Importantly, the final size of the blastocyst does not depend on the presence of ZP [START_REF] Chan | Hydraulic control of mammalian embryo size and cell fate[END_REF], in agreement with our argument that volume is primarily controlled by osmotic pressure rather than hydrostatic pressure, see Section 2.2.2. Our model considers that the shell is elastic and its volume is conserved. It is not sure whether the ZP is fully elastic or not: to address this hypothesis, several osmotic shocks could be applied. A fully elastic shell should display the same steady-states when stretched, while a plastic behavior should lead to different steady-states. We do not consider the rupture of the shell, despite its importance for the characterization of the ZP. The rupture of the shell has been measured for a shell thickness of 2.5 µm, with an embryo whose radius is around 72 µm [START_REF] Leonavicius | Mechanics of mouse blastocyst hatching revealed by a hydrogel-based microdeformation assay[END_REF]. The blastocyst hatching was recently described through a mechanical model of thin shell with finite elements simulations, and starts from a pre-cutted ZP [START_REF] Tvergaard | A mechanical model of blastocyst hatching[END_REF]. However, a model including the blastocoel expansion and the process of hatching is still missing.

Recent observations on the mouse embryo subjected to hyperosmotic shocks indicate double slope dynamics during the shrinkage phase of the cell, see Fig 5 .14B. The reasons are still unclear, but in the light of our models, we propose the following hypotheses. (i) The ZP compresses the embryo. In the simulations, we assumed the elastic parameter E to be small (but still larger than ϵ), using values of Young's modulus found in the literature. The role of the ZP as an external constraint is clear during expansion as the response to a hypoosmotic shock. However, the contribution of the compressive stress is less clear during shrinkage. In our simulations, the shrinkage phase of the cell is extremely fast, and the addition of the ZP does not seem to change these dynamics. (ii) The measured radius is the cell radius. This radius accounts for the cell and the lumen volumes, which may have different dynamics, see Fig. 5.11. Rather than a double slope, this dynamics may be induced by the two phases of the shrinkage: a fast decrease in cell volume, followed by a slower relaxation of the lumen. (iii) There is shell adhesion. We did not consider adherence of the cell to the shell: no adhesion of the blastomeres to the ZP was reported in mouse embryos, which freely float within the ZP during preimplantation development. The marsupials, the closest cousins of the placental, exhibit a strong attachment to the ZP and rely on adherence through club processes (i.e. membrane extrusions that fix the outer part of blastomeres to the ZP) [START_REF] Frankenberg | An ultrastructural study of the role of an extracellular matrix during normal cleavage in a marsupial, the brushtail possum[END_REF]]. The blastomeres strongly adhere to the shell to develop to the blastocyst stage [START_REF] Selwood | Development in vitro of investment-free marsupial embryos during cleavage and early blastocyst formation[END_REF][START_REF] Selwood | Marsupial egg and embryo coats[END_REF], corresponding to the total covering of the ZP and establishment of mature TJ, followed by a dramatic water uptake [START_REF] Frankenberg | An ultrastructural study of the role of an extracellular matrix during normal cleavage in a marsupial, the brushtail possum[END_REF]. This process could be at play in the mouse embryo: as depicted in Fig. 5.15, during the shrinkage phase, some TE cells are closely apposed to the ZP and later detach. (iv) The nuclei oppose the cell shrinkage. We did not consider the inner content of cells, especially the nuclei. They provide a non-negligible incompressible volume to the cells. Besides, we consider the cell and the lumen as spherical, which is not true as the lumen is ellipsoidal, and the blastocoel is located at one pole of the embryo, while the ICM is at the other. Thus, while the cell is shrinking, the nuclei could oppose the volume reduction, which would delay the dynamics. (v) The external concentration is not constant. We observe in Fig. 5.14B a slow increase of the fluorescence, which may correspond to an increase of the concentration of the solute, and thus to a slow decrease of the cell size. In this case, an osmotic shock without ZP on a 16-cell stage embryo (compacted, polarized but without blastocoel) should also give two slopes. However, this does not explain the double slope potentially observed during the recovery phase. To test whether this is an experimental artifact or a real effect, one could realize osmotic shocks on hatched blastocyst or with ZP removed. Besides, this shows the need of measuring both the cell and the lumen radii, but this needs high-performance segmentation methods in bright-field microscopy.

Finally, we did not include any active pumping, which is the driving force of the blastocyst expansion. To do so would, one would need to consider more than one impermeant species. The cytoplasm or the nucleus are indeed trapped and act as the impermeant species, but other smaller species, typically ions, are exchanged or pumped, helping regulate the cell volume, and have been extensively described in the literature. A precise model that describes ionic exchanges between the cell, the lumen, and the exterior is the object of the next chapter.

Our models should not be seen as only applicable to the mouse blastocyst, or blastocysts in general, but to a wider range of biological systems that comprise a cell or a layer of cells, enclosing a fluid-filled cavity, surrounded by a wall or a shell. Such models apply to both apical-in and apical-out cysts, as we do not include the apicobasal polarity per se. These systems may be found in plants (the cell wall being the shell, the inner vacuole the lumen [START_REF] Reisen | New insights into the tonoplast architecture of plant vacuoles and vacuolar dynamics during osmotic stress[END_REF]), chondrocytes (cells with a stiff cellular wall) [START_REF] Erickson | Hyper-osmotic stress induces volume change and calcium transients in chondrocytes by transmembrane, phospholipid, and G-protein pathways[END_REF][START_REF] Mobasheri | The chondrocyte channelome: A narrative review[END_REF], or more recently, in spheroids cultivated within alginate matrices [START_REF] Ruiz-Herrero | Organ size control via hydraulically gated oscillations[END_REF], and with mammary tumor organoids in alginate capsules [START_REF] Fang | Mammary Tumor Organoid Culture in Non-Adhesive Alginate for Luminal Mechanics and High-Throughput Drug Screening[END_REF].

This study stresses the fundamental role of osmosis and fluid exchange for cell regulation and provides theoretical predictions for the estimation of mechanical parameters of elastic shells.

Chapter 6

A Pump-Leak Model for biological cavities

Introduction

Throughout the manuscript, we emphasized the cellular structures close to the blastocyst, the cellular cysts. They often consist of a monolayer of cells, surrounding a fluid-filled cavity, a lumen. Many cysts are present in tissues or organs, see Chapter 1. Several models have been proposed to describe the control of their volume solely by the transport of water, or even of an uncharged solute including active pumping. Such models were mentioned in the previous chapter [START_REF] Ruiz-Herrero | Organ size control via hydraulically gated oscillations[END_REF][START_REF] Leonavicius | Mechanics of mouse blastocyst hatching revealed by a hydrogel-based microdeformation assay[END_REF][START_REF] Dasgupta | Physics of lumen growth[END_REF][START_REF] Chan | Hydraulic control of mammalian embryo size and cell fate[END_REF]. However, control of epithelial cyst volume relies on both water transport and transport of charged species [START_REF] Torres-Sánchez | Tissue hydraulics: physics of lumen formation and interaction[END_REF]. Thyroid lumens transport sodium from the apical to the basal side, and conversely for chloride [START_REF] Yap | Regulation of thyroid follicular volume by bidirectional transepithelial ion transport[END_REF], using Na + /H + exchangers and Na + /K + pumps [START_REF] Bourke | Cyclic AMP-stimulated fluid transport in the thyroid: Influence of thyroid stimulators, amiloride and acetazolamide on the dynamics of domes in monolayer cultures of porcine thyroid cells[END_REF][START_REF] Takasu | Electrophysiological and morphological cell polarity and iodine metabolism in cultured porcine and human (normal and Graves') thyroid cells[END_REF]; MDCK cells transport chloride in the apical lumen thanks to CFTR inhibitors [START_REF] Li | The relationship between cell proliferation, Cl-secretion, and renal cyst growth: A study using CFTR inhibitors[END_REF]; pancreatic Capan-1 cells secrete a bicarbonate-rich solution and rely on Ca 2+ -ATPases [START_REF] Fanjul | Morphogenesis of "duct-like" structures in three-dimensional cultures of human cancerous pancreatic duct cells (Capan-1)[END_REF], etc. Gin and others proposed two models to describe the regulation of cysts: the first one applies to apical-in MDCK cysts and includes chloride ion transport, cell layer elasticity, and division induced by cell stretching [START_REF] Gin | A model for cyst lumen expansion and size regulation via fluid secretion[END_REF], the second one describes fluid secretion in apical-in salivary glands, including many transporters, including Na + /K + pumps but also calcium ions [START_REF] Gin | A mathematical model of fluid secretion from a parotid acinar cell[END_REF]. In both models, only the volume of the cavity is described, not the volume of the cell monolayer. The mammalian embryo is no stranger to ion transport: the model adopted to describe blastocyst expansion relies on a constant influx of sodium ions, generated by Na + /K + pumps located at the basolateral contacts of the blastocyst once it has formed [START_REF] Wiley | Cavitation in the mouse preimplantation embryo: Na K-ATPase and the origin of nascent blastocoele fluid[END_REF][START_REF] Wiley | Cell Polarity and Development of the First Epithelium[END_REF][START_REF] Barcroft | Deletion of the Na/K-ATPase α1-subunit gene (Atp1a1) does not prevent cavitation of the preimplantation mouse embryo[END_REF][START_REF] Leonavicius | Mechanics of mouse blastocyst hatching revealed by a hydrogel-based microdeformation assay[END_REF]. In addition, transmembrane electric potential differences have been measured in the embryo at the 8-cell stage [START_REF] Wiley | Development of the Blastocyst: Role of Cell Polarity in Cavitation and Cell Differentiation[END_REF][START_REF] Wiley | Cell Polarity and Development of the First Epithelium[END_REF], and at the blastocyst stage [START_REF] Benos | Sodium and chloride co-transport by preimplantation rabbit blastocysts[END_REF][START_REF] Biggers | Mammalian blastocyst: Transport functions in a developing epithelium[END_REF]. Furthermore, the concentration of the blastocyst is equivalent to that of the external environment, illustrated by the development of a blastocyst within another blastocyst [START_REF] Pedersen | Role of the blastocoele microenvironment in early mouse embryo differentiation[END_REF], showing ion transport through the trophectoderm [START_REF] Biggers | Mammalian blastocyst: Transport functions in a developing epithelium[END_REF][START_REF] Biggers | Mammalian blastocyst: Transport functions in a developing epithelium[END_REF]. Finally, eutherian blastocysts can be classified according to their degree of expansion: maximal (rabbit, pig, cow, horse, producing blastocysts up to one millimeter) or minimal (mouse, human) [START_REF] Benos | Developmental aspects of sodiumdependent transport processes of preimplantation rabbit embryos[END_REF][START_REF] Gardiner | Development of Na/K ATPase Activity and Blastocoel Formation[END_REF], illustrating the diversity of biological mechanisms at work.

There is a clear lack of a comprehensive model of volume control of epithelial cavities that would include charged species and active pumps, regardless of their apicobasal polarity. In this chapter, we propose to extend the Pump-Leak Model (PLM) that we presented in Chapter 2 section 2.3.3, to a cell surrounding a lumen, considering two compartments: a single cellular medium to represent the monolayer of cells of cysts or the trophectoderm of the blastocyst, and a cavity (or lumen), corresponding to the blastocoel for the mammalian embryo. The external environment acts as a reservoir. This theoretical description aims to be as generic as possible and to study the stability of the cavity and the cell. In the first part, we start by deriving the main equations of the PLM model. We then calculate the steady-states of the system. Eventually, we show some results obtained with the proposed model, including the stability of the cell and the lumen, the response to osmotic shocks, or the presence of paracellular pathways.

Generalized Pump-Leak Model equations

We consider a cavity (or lumen) within a cellular compartment. This corresponds to a monolayer of cells in which the cells homogenize their concentrations and electrical potential through gap junctions. For the sake of simplicity, we will refer to it as a single cell. We do not specify whether the lumen faces the apical or the basal side of the cell, as in a first approximation, we consider the two membranes (cell-exterior and cell-lumen) to have identical properties. The external medium acts as a barostat and a chemostat, with fixed concentrations, unless specified as for osmotic shocks. As in the PLM model for a single cell, we consider the three main ionic species, denoted N 0 (sodium), K 0 (potassium) and C 0 (chloride), see section 2.3.3. Another impermeant species, such as dextran, sucrose, glucose, etc., may be added to the external medium, whose concentration is denoted D 0 , and is zero unless specified.

The cell and the lumen have surface tensions γ c,ℓ respectively, generated by the actomyosin cortex. The lumen has concentrations N ℓ , K ℓ , C ℓ , and the cell N c , K c , C c . The membrane water permeations per unit area of the lumen and the cell are denoted λ ℓ,c respectively. The lumen (resp. cell) contains a trapped species, with x ℓ (resp. x c ) moles of valence z ℓ (resp. z c ). There are two membrane potential differences, denoted ∆Φ c = ϕ 0ϕ c between the cell and the exterior, and ∆Φ ℓ = ϕ cϕ ℓ between the lumen and the cell. Finally, we denote the ionic conductances per unit area at the cell-medium interface g c N,K,C , and g ℓ N,K,C at the cell-lumen interface. We consider only the Na + /K + -pump, present at both cell and lumen membranes, with the following orientation of the pumps: they import 2K + within the cell and export 3Na + in the external or luminal medium. The pumping rates of pumps are denoted p c,ℓ at those interfaces and are given in mol.s -1 .

To derive the equations of the model, we first start with volume conservation, then we derive ion conservation equations and we end by charge conservation. We derive a closure equation for the electrical potential from the conservation of charges. Then, we non-dimensionalize variables and calculate the steady-states.

A B FIGURE 6.1: Model of a lumen encapsulated within a cell. (A) Variables associated with the cell and the lumen. (B) Schematic of the water channels with their permeation coefficient, the ion channels with their conductances, and active Na + /K + -pumps with their orientation and pumping rates.

Volume control

The volumes of the lumen and cell are denoted V ℓ , V c , their areas A ℓ , A c , and their radii R ℓ , R c . We choose volumes to be the main variables to describe the size of the cell and lumen. The relationships between the areas and radii of the cell and lumen as functions of the volumes are given by

R ℓ = µV ℓ 1 3 ; A ℓ = (νV ℓ ) 2 3 R c = µ(V c + V ℓ ) 1/3 ; A c = (ν[V c + V ℓ ]) 2 3
where µ = 3 4π , ν = 3 √ 4π are geometrical factors. We recall that V c = 4 3 π(R c ) 3 -V ℓ in spherical geometry. The volume of the cell or the lumen may be changed by an influx of water (in m 3 .s -1 )

J w = A.λ [∆Π -∆P]
generated by the imbalance between osmotic (∆Π) and hydrostatic (∆P) presssure differences. The coefficient λ is the water permeation and is proportional to the density of aquaporins (Aqp). In the preimplantation mouse embryo, multiple aquaporins isoforms were identified [START_REF] Edashige | Expression of mRNAs of the aquaporin family in mouse oocytes and embryos[END_REF][START_REF] Barcroft | Aquaporin proteins in murine trophectoderm mediate transepithelial water movements during cavitation[END_REF][START_REF] Barcroft | Deletion of the Na/K-ATPase α1-subunit gene (Atp1a1) does not prevent cavitation of the preimplantation mouse embryo[END_REF][START_REF] Bell | Mitogen-activated protein kinase (MAPK) pathways mediate embryonic responses to culture medium osmolarity by regulating Aquaporin 3 and 9 expression and localization, as well as embryonic apoptosis[END_REF], which could act as a fail-safe mechanism for embryo volume control [START_REF] Marikawa | Creation of trophectoderm, the first epithelium, in mouse preimplantation development[END_REF]. The typical water permeation is evaluated around λ = 6.02 × 10 -13 m.s -1 .Pa -1 at the blastocyst stage [START_REF] Edashige | Channel-Dependent Permeation of Water and Glycerol in Mouse Morulae1[END_REF]. For MDCK cells, Gin and others used the value λ = 6 × 10 -20 m.s -1 .Pa -1 , identical at apical and basal membranes [START_REF] Gin | A model for cyst lumen expansion and size regulation via fluid secretion[END_REF], while for salivary glands, they used λ = 2.5 × 10 -11 m.s -1 .Pa -1 for apical and λ = 10 × 10 -11 m.s -1 .Pa -1 for basal water permeabilities [START_REF] Gin | A mathematical model of fluid secretion from a parotid acinar cell[END_REF].

The rates of change of volumes for the cell and the lumen are given by

dV c dt = λ c A c Π c -(Π 0 + RTD 0 ) - 2γ c R c -λ ℓ A ℓ Π ℓ -Π c - 2γ ℓ R ℓ (6.1a) dV ℓ dt = A ℓ λ ℓ Π ℓ -Π c - 2γ ℓ R ℓ (6.1b)
where 2γ c,ℓ R c,ℓ are the hydrostatic pressure differences defined by the Laplace's law (2.1). As in section 5.3, the change in volume of the cell is the sum of the fluxes from exterior to cell (J ext→c ) and from the lumen to the cell (J ℓ→c ).

The total osmotic pressure within the cell and the lumen are given by

Π c,ℓ = RT N c,ℓ + K c,ℓ + C c,ℓ + X c,ℓ (6.2)
where R is the perfect gaz constant, T is the temperature and N c,ℓ , K c,ℓ , C c,ℓ are the concentrations of the sodium, potassium and chloride in the cell and lumen. X c,ℓ = x c,ℓ V c,ℓ are the concentrations of the impermeant species, with x c,ℓ their number of moles. The total external osmotic pressure, Π 0 , is expressed as

Π 0 = RT N 0 + K 0 + C 0 .
As we discussed in the previous chapter, the typical hydrostatic pressure difference, ∆P ≃ 10 1 Pa (with

γ c = 2 × 10 -4 N.m -1 , R = 50µm)
, is small compared to the osmotic pressure, Π 0 ≃ 10 5 Pa, and the volumes are primarily controlled by the osmotic pressures.

Ion conservation

The conservation of the number of ions for, say sodium in the lumen, is given by the relationship

d(V ℓ N ℓ ) dt = J Na c→ℓ = J p Na + J a

Na

where we decompose the total sodium flux J Na ℓ→c from the cell to the lumen with passive (p) and active (a) components. J p Na = -I Na z Na F is the passive flux of sodium from the cell to the lumen, F = 96485C.mol -1 is the Faraday's constant, z Na = +1 is the valence of sodium, and I Na it the outward ionic current, given by the current-voltage relationship Eq. (2.36). J a Na = 3A ℓ p ℓ is the active flux generated by the presence of Na + /K + -pumps which exports 3 sodium ions in the lumen at pumping rate p ℓ , in moles per second per unit area.

Thus, for the three species in the lumen, the conservation of ions read

d(V ℓ N ℓ ) dt = -g ℓ N A ℓ F ∆Φ ℓ - RT F log N c N ℓ + 3p ℓ A ℓ (6.3a) d(V ℓ K ℓ ) dt = -g ℓ K A ℓ F ∆Φ ℓ - RT F log K c K ℓ -2p ℓ A ℓ (6.3b) d(V ℓ C ℓ ) dt = g ℓ C A ℓ F ∆Φ ℓ + RT F log C c C ℓ (6.3c)
where we used the current-voltage equation, and

G ℓ i = g ℓ i .
A ℓ with g i the conductance of ionic channel per unit area (Ω -1 .m -2 = C.V -1 .s -1 .m -2 ). For the lumen, the external compartment is the cell, so ∆Φ ℓ = ϕ ℓϕ c is the membrane potential difference between the cell and the lumen. Note that the Na + /K + pump is oriented such that Na + is imported in the lumen (+3p ℓ ) and K + is exported out of the lumen (-2p ℓ ), in an inverted direction as the cell. There is no active flux of chloride in the PLM model.

As for the cell volume conservation, the ion conservation in the cell is the sum of the flux from outside to cell plus from lumen to cell, and reads

d(V c N c ) dt = -g c N A c F ∆Φ c - RT F log N 0 N c -3p c A c + g ℓ N A ℓ F ∆Φ ℓ - RT F log N c N ℓ -3p ℓ A ℓ (6.3d) d(V c K c ) dt = -g c K A c F ∆Φ c - RT F log K 0 K c + 2p c A c + g ℓ K A ℓ F ∆Φ ℓ - RT F log K c K ℓ + 2p ℓ A ℓ (6.3e) d(V c C c ) dt = g c C A c F ∆Φ c + RT F log C 0 C c -g ℓ C A ℓ F ∆Φ ℓ + RT F log C c C ℓ (6.3f)
For the cell membrane, the potential difference is ∆Φ c = ϕ 0ϕ c . There are two types of Na + /K + pumps, one located at the cell-lumen interface with pumping rate p ℓ , the other at the cell-exterior interface with pumping rate p c . Both are oriented such that they import potassium (+2K + ) in the cell and export sodium (-3Na + ) in the lumen or in the external medium.

The ion conductances vary from one type of channel to another. For the mouse, the ion conductance have been estimated for the egg cell (no lumen), around g c C ≃ 8.44Ω -1 .m -2 for chloride, g c N ≃ 0.1Ω -1 .m -2 for sodium and g c K ≃ 0.25Ω -1 .m -2 for potassium [START_REF] Powers | Ion transport and permeability in the mouse egg[END_REF]. For salivary glands, they are estimated around g ℓ C = 65Ω -1 .m -2 for chloride and g ℓ K = 24Ω -1 .m -2 for potassium on the lumenal membrane [START_REF] Gin | A mathematical model of fluid secretion from a parotid acinar cell[END_REF].

Conservation of charges and electric membrane potential

To close the system of equations, we need to determine the charge balance for the cell and the lumen. The cell and lumen membranes act as capacitors, thus the charges are related to the potential differences ∆Φ c = ϕ 0ϕ c at the cell membrane and ∆Φ ℓ = ϕ cϕ ℓ , that read [Keener and Sneyd, 2009]

Γ c ∆Φ c = Q c -Q 0 (6.4)
with Q 0 the total charge of the external medium, Q c the total charge of the cell, and

Γ ℓ ∆Φ ℓ = Q ℓ -Q c (6.5)
with Q ℓ the total charge of the lumen. Note that ∆Φ c + ∆Φ ℓ = ϕ 0ϕ ℓ is the transepithelial membrane potential difference. Γ c,ℓ ≃ 10 -14 F (farads) are the cell and lumen membrane capacitance, assuming a radius of the order of 10µm. The total charges Q 0,c,ℓ can be expressed as the sum of all the ion charges, and therefore read as

Q 0 = F V c N 0 + K 0 -C 0 (6.6a) Q c = F V c (N c + K c -C c -z c X c ) (6.6b) Q ℓ = F V ℓ N ℓ + K ℓ -C ℓ -z ℓ X ℓ (6.6c)
We discussed the validity of these expressions in the introduction, see section 2. 3.3, [Keener and Sneyd, 2009]. As for the single cell, the excess charges for the cell, the lumen and the exterior are negligible compared to individual charges, therefore it is a good approximation to assume electroneutrality, which leads to

N 0 + K 0 -C 0 ≃ 0 (6.7a) N c + K c -C c -z c X c ≃ 0 (6.7b) N ℓ + K ℓ -C ℓ -z ℓ X ℓ ≃ 0 (6.7c)
Multiplying Eq. (6.7b) by V c and (6.7c) by V ℓ leads to

0 = d(V c N c ) dt + d(V c K c ) dt - d(V c C c ) dt 0 = d(V ℓ N ℓ ) dt + d(V ℓ K ℓ ) dt - d(V ℓ C ℓ ) dt
where we used the fact that X c,ℓ = x c,ℓ V c,ℓ and x c,ℓ are constants. This corresponds to a sum of ion fluxes, which cancels to preserve charge balance. We calculated in the previous section the rates of change for each number of ions. Injecting them into the above expressions, one can find an expression of the electrical potential as a function of the concentrations on both sides of the membrane. After some algebraic manipulations, this leads to

∆Φ ℓ = u 0 g ℓ N + g ℓ K + g ℓ C g ℓ N log N c N ℓ + g ℓ K log K c K ℓ -g ℓ C log C c C ℓ + F p ℓ u 0 (6.8a) ∆Φ c = u 0 g c N + g c K + g c C g c N log N 0 N c + g c K log K 0 K c -g c C log C 0 C c - F p c u 0 (6.8b)
where we introduced u 0 = RT F = 25mV, the typical electrical potential. The prefactor

g c N + g c K + g c C -1
is the sum of the conductances of each passive channel, since they act as a parallel electrical circuit. One may recognize the Nernst electric potentials E m = RT F log c ext c in that we derived in Eq. (2.34). The electric potential differences thus corresponds to the sum of Nernst potential for each species, plus a potential associated with the active pump, ± F p ℓ,c u 0 , which measures the active transport of charges (+ for the lumen, -for the cell).

Typical electric potential varies from one cell to another, with higher (negative) values for excitable cells. In MDCK cells, a typical transcellular electric potential was measured to be ∆Φ = ∆Φ c + ∆Φ ℓ = -50mV [START_REF] Gin | A model for cyst lumen expansion and size regulation via fluid secretion[END_REF]. Similarly for salivary glands, the transepithelial potential is measured as ∆Φ = -60mV [START_REF] Gin | A mathematical model of fluid secretion from a parotid acinar cell[END_REF]. In the rabbit blastocyst, the transepithelial potential difference is measured around ∆Φ = -13.4mV [START_REF] Cross | Active Sodium and Chloride Transport Across The Rabbit Blastocoele Wall[END_REF]. These transcellular potentials have the same order of magnitude as the transmembrane electric potentials, comprised between -55mV for smooth muscle cell and -70mV for a neuron [Keener and Sneyd, 2009].

Non-dimensionalization

We have established the volume, solute number, and charge conservations for the cell and the lumen. With expressions of the electric potentials, the system is closed and consists in 10 equations (6.1), (6.3), (6.7), and (6.8). It is convenient to work with non-dimensionalized variables, thus we introduce the quantities

V 0 = 4 3 π(R 0 ) 3 ; x 0 = 2C 0 V 0
with R 0 the typical radius of the cell, C 0 the external concentration in chloride. We non-dimensionalize the variables such that

N0,c,ℓ = N 0,c,ℓ 2C 0 ; K0,c,ℓ = K 0,c,ℓ 2C 0 ; C0,c,ℓ = C 0,c,ℓ 2C 0 ; d 0 = D 0 2C 0 xc,ℓ = x c,ℓ x 0 ; Vc,ℓ = V c,ℓ V 0 ; ∆ Φc,ℓ = ∆Φ c,ℓ u 0 ; t = t τ c V
where τ c V is the typical permeation time of water through the cell membrane, which is defined as

τ c V = (V 0 ) 1/3 2ν 2/3 λ c RTC 0 (6.9)
The factor 2 comes from the electroneutrality condition in the exterior: in the absence of external impermeant specie D 0 = 0, the total osmolarity is given by N 0 + K 0 + C 0 , thus using electroneutrality Eq. (6.7a), the total osmolarity is 2C 0 . For compactness, we introduce the total osmotic pressures in the cell and the lumen as Πc,ℓ ≡ Nc,ℓ + Kc,ℓ + Cc,ℓ + xc,ℓ Vc,ℓ (6.10) This is a small abuse of notation, as the sum of rescaled concentrations is not an osmotic pressure, but it does play this role in the volume conservation equations. Besides, as in the previous parts, we assume that the hydrostatic pressure difference is negligible compared to osmotic pressure, thus it is neglected in the volume equations.

With the rescaled variables, one finds the following system of ODEs

d Vℓ d t = ( Vℓ ) 2 3 τ c V τ ℓ V Πℓ -Πc (6.11a) d Vc d t = ( Vc + Vℓ ) 2 3 Πc -1 + d 0 - d Vℓ d t (6.11b) d Vℓ Nℓ d t = Vℓ 2 3 - τ c V τ ℓ N ∆ Φℓ -log Nc Nℓ + 3 τ c V τ ℓ P (6.11c) d Vℓ Kℓ d t = Vℓ 2 3 - τ c V τ ℓ K ∆ Φℓ -log Kc Kℓ -2 τ c V τ ℓ P (6.11d) d Vℓ Cℓ d t = Vℓ 2 3 τ c V τ ℓ C ∆ Φℓ + log Cc Cℓ (6.11e) d Vc Nc d t = Vc + Vℓ 2 3 - τ c V τ c N ∆ Φc -log N0 Nc -3 τ c V τ c P - d Vℓ Nℓ d t (6.11f) d Vc Kc d t = Vc + Vℓ 2 3 - τ c V τ c K ∆ Φc -log K0 Kc + 2 τ c V τ c P - d Vℓ Kℓ d t (6.11g) d Vc Cc d t = Vc + Vℓ 2 3 τ c V τ c C ∆ Φc + log C0 Cc - d Vℓ Cℓ d t (6.11h) Nℓ + Kℓ -Cℓ -z ℓ xℓ Vℓ = 0 (6.11i) Nc + Kc -Cc -z c xc Vc = 0 (6.11j) ∆ Φℓ = T ℓ 1 τ ℓ N log Nc Nℓ + 1 τ ℓ K log Kc Kℓ - 1 τ ℓ C log Cc Cℓ + 1 τ ℓ P (6.11k) ∆ Φc = T c 1 τ c N log N0 Nc + 1 τ c K log K0 Kc - 1 τ c C log C0 Cc - 1 τ c P (6.11l)
where we introduced the typical relaxation timescales

τ c,ℓ V = (V 0 ) 1/3 2ν 2/3 λ c,ℓ RTC 0 ; τ c,ℓ N,K,C = 2C 0 (V 0 ) 1/3 F ν 2/3 u 0 1 g c,ℓ N,K,C ; τ c,ℓ P = 2C 0 (V 0 ) 1/3 ν 2/3 p c,ℓ (6.12) 
The times τ c,ℓ V characterize the volume relaxation via permeation of water through the cell and lumen membranes respectively. They were present in the Chapters 4 and 5. The times τ c,ℓ N,K,C correspond to the typical time of relaxation of associated ions, using facilitated diffusion across the membrane. They essentially depend on the conductances per unit area g c,ℓ N,K,C , and the larger the conductance, the smaller the time (the faster the relaxation). Note that writing the conductances as solute permeation (λ i = g i /F 2 ), one finds a similar expression for ion relaxation time as for solute permeation time of Chapter 4:

τ i = 2C 0 R 0 λ i RT (6.13)
The times τ c,ℓ P are the typical pumping times, given by the inverse of the pumping rates p c,ℓ : the larger the rate, the smaller the pumping time.

We also defined total times 1

T ℓ,c = 1 τ ℓ,c N + 1 τ ℓ,c K + 1 τ ℓ,c C (6.14)
These times characterize the propension of all the passive channels to allow the ions to pass through to equilibrate electric potentials. They also correspond to the total membrane electrical resistance to let charges diffuse through ionic channels.

The system of ODEs (6.11) can almost be integrated as such, but requires a last step to decouple the concentrations and volumes time derivatives in ion conservation equations. We take the example of sodium in the lumen, but this works as well for the potassium or chloride in the cell or the lumen. Expanding the right-hand side of Eq. (6.11c) gives

d Vℓ Nℓ d t = Nℓ d Vℓ d t + Vℓ d Nℓ d t ⇔ d Nℓ d t = 1 Vℓ d Vℓ Nℓ d t -Nℓ d Vℓ d t (6.15)
thus, one obtains the ODE for sodium concentration Nℓ only as a function of Eqs (6.11a) and (6.11c). The last term, Nℓ d Vℓ d t , reflects the dilution of Na + with expanding lumen volume. A similar treatment is found in [START_REF] Kay | How Cells Can Control Their Size by Pumping Ions[END_REF].

We numerically solve the set of ODES (6.11) with a Python script. The system is initialized from a configuration file where the initial values are defined, as well as the values of the parameters. The equations are then solved with the scipy.odeint function 1 .

In Fig. 6.2, we plot the numerical integration of Eqs. (6.11) from an out-of-equilibrium initial state. The volumes, concentrations and electric potentials relax towards steady-state, which we calculate in the next section. The total charges Qc,ℓ are almost conserved through the electroneutrality condition. Note that the system of ODEs contains an algebraic constraint with charge conservation, which considerably complexify numerical integration. To bypass this issue, we explicitely enforce charge conservation in the osmotic pressure, injecting the electroneutrality condition such that Πc,ℓ = Nc,ℓ + Kc,ℓ + Cc,ℓ + z c,ℓ Xc,ℓ = (6.11j),(6.11i)

2 Cc,ℓ + (z c,ℓ + 1) Xc,ℓ (6.16) FIGURE 6.2: Evolution of a cell and a lumen starting out of steady-state. Full lines are for cell, dashed lines correspond to lumen. The semi-opaque lines correspond to steady-state.

Steady-state

We conclude this part by calculating the steady-states of the system of ODEs (6.11). We first consider an approximation in which the osmotic contribution of the impermeant species is neglected, which we designate as the Peskin limit which greatly simplifies the calculations. We then consider the general case in which we take into account the impermeant species' osmotic contribution.

Steady-state in the Peskin limit

Let be x c,ℓ z c,ℓ ≡ n c,ℓ the number of charges of the impermeant species in the cell and lumen respectively. At fixed n c,ℓ , the limit of z c,ℓ ≫ 1 implies that x c,ℓ ≪ 1, such that the electroneutrality equations and the osmotic pressure Πc,ℓ can be written as Nc,ℓ + Kc,ℓ -Cc,ℓz c,ℓ xc,ℓ Vc,ℓ = 0 Nc,ℓ + Kc,ℓ + Cc,ℓ + xc,ℓ Vc,ℓ ≃ Nc,ℓ + Kc,ℓ + Cc,ℓ = 0

In this limit, the osmotic contribution of the trapped species is negligible, but they are conserved in the electroneutrality equations. This is illustrated in Fig. H.2 of the appendix. It corresponds to a system in which there are few impermeant species but with high valence. We call this limit the Peskin-limit, which turns out to ease largely the calculation of steady-states [START_REF] Hoppensteadt | Control of Cell Volume and the Electrical Properties of Cell Membranes[END_REF]. We first calculate the steady-state equations for the cell and then for the lumen. In the following, we will denote the steadystates with an asterisk.

Cell At steady-state, the fluxes from the exterior to the cell and from the lumen to the cell cancel out. The ODEs simplify to the following set of equations Lumen At steady state, the fluxes from the cell to the lumen are zero and the ODEs for the lumen simplify to

( Nc ) * = N0 β c N γ c ; ( Kc ) * = K0 β c K γ c ; ( Cc ) * = C0 γ c (6.17a) 0 = (γ c ) 2 2 + γ c b c -β c (6.17b) 0 = (γ c ) 2 2 -γ c (1 + d 0 ) + β c (6.
( Nℓ ) * = ( Nc ) * β ℓ N γ ℓ ; ( Kℓ ) * = ( Kc ) * β ℓ K γ ℓ ; ( Cℓ ) * = ( Cc ) * γ ℓ (6.19a) 0 = (γ ℓ ) 2 2 + γ ℓ b ℓ -β ℓ (6.19b) 0 = (γ ℓ ) 2 2 -γ ℓ (1 + d 0 ) + β ℓ (6.19c)
where the parameters b ℓ , γ ℓ and β ℓ are b ℓ ≡ z ℓ xℓ ( Vℓ ) * (6.20a)

γ ℓ ≡ e ∆ Φℓ + ∆Φ c (6.20b) β ℓ ≡ β c N β ℓ N N0 + β c K β ℓ K K0 (6.20c)
and

β ℓ N = e +3τ ℓ N /τ ℓ p , β ℓ K = e -2τ ℓ K /τ ℓ p .
Remarkably, the logarithm of γ ℓ corresponds to the transepithelial electrical potential:

γ ℓ = exp ∆ Φc + ∆ Φℓ = exp φ0 -φc + φc -φℓ = exp φ0 -φℓ (6.21)
which is typically measured in studies of cysts.

Solutions For the lumen and the cell, we find two second order polynomials in γ ℓ and γ c respectively. The expressions of γ c,ℓ gives the steady-states of the concentrations. The solutions are found from the electroneutrality conditions Eqs (6.17b) and (6.19b) as

γ c,ℓ = -b c,ℓ + (b c,ℓ ) 2 + 2β c,ℓ (6.22)
These are not yet the expression of steady-state potentials, as one need the volumes. Using these solutions in the osmotic balance Eqs. (6.17c) and (6.19c) give the steady-state volumes

( Vc,ℓ ) * = z c,ℓ xc,ℓ (1 + d 0 ) 2 -2β c,ℓ (6.23)
From there, γ c,ℓ can be reexpressed only as function of the parameters of the system

γ c,ℓ = (1 + d 0 ) -(1 + d 0 ) 2 -2β c (6.24)
For d 0 = 0, these steady-states correspond to the one calculated in [START_REF] Hoppensteadt | Control of Cell Volume and the Electrical Properties of Cell Membranes[END_REF]. Interestingly, the steady-states of the lumen and the cell are fully decoupled, as if there were no lumen for the cell. On the one hand, the steady-states of the cell only depend on the cell parameters: the resting potential γ c for the concentrations and the parameter β c for the volume, in addition to impermeant species z c xc . The parameter β c compares the cell active pumping rate τ c P to the ion relaxation times τ c N,K . On the other hand, the lumen steady states depend on both the parameters of the cell and the lumen through γ ℓ and β ℓ , where the cell plays the role of an additional layer of membrane, but only on the lumen impermeant species z ℓ xℓ for the lumen volume.

We remark that in the limit τ c P → ±∞, i.e. vanishing cell pumping, the parameter β c diverges, and so does the steady-state volume ( Vc ) * , see Fig. 6.3A. This is a problem: it means that the cell (or the lumen) will burst if the pumping is too large. The stability of the cell or lumen are thus given by the condition

β c,ℓ < (1+d 0 ) 2 2
. This condition will prove useful in the later section 6.3.1 where we will discuss the stability of the system depending on the pumping rates.

Finally, on may rewrite the steady-state volumes in dimensionalized form. Writing the electroneutrality [Eqs (6.17b), (6.19b)] and osmotic equilibrium [Eqs. (6.17c) and (6.19c)] as

β c,ℓ γ c,ℓ = C0 γ c,ℓ + z c,ℓ xc,ℓ ( Vc,ℓ ) * β c,ℓ γ c,ℓ = (1 + d 0 ) -C0 γ c,ℓ one finally finds ( xc,ℓ = x c,ℓ /2C 0 V 0 ) (V c ) * = z c x c M 0 -2C 0 exp[ F ∆Φ c RT ] (6.25a) (V ℓ ) * = z ℓ x ℓ M 0 -2C 0 exp[ F (∆Φ c +∆Φ ℓ ) RT ] (6.25b)
where M 0 = 2C 0 + D 0 and we used

γ c = exp[ F ∆Φ c RT ], γ ℓ = exp[ F ∆(Φ c +Φ ℓ )

RT

]. This expression corresponds to the steady-state volumes we gave in the introduction, Eq. (2.42). Here, we clearly see that the steady-state volumes is inversely proportional to the external osmolarity 2C 0 , and depends on the electric potential differences ∆Φ c,ℓ . This is illustrated in Fig. 6.3B and C, where we plot the value of the steady-state volumes for the cell and lumen as function of the external osmolarity (B) and the membrane potential difference (C). The first panel (B) shows that the cell and the lumen behave like perfect osmometers in hypertonic conditions. The second panel illustrates how membrane potential influences the steady-state volumes: as the membrane hyperpolarizes (i.e. the electric potential difference increase in magnitude, ∆ Φc,ℓ → -∞), the steady-state volume saturates to z c,ℓ , while for a depolarization (i.e. loss of the electric potential difference, ∆ Φc,ℓ → 0) the steady-state volumes diverge as Vc,ℓ ∼ -z c,ℓ xc,ℓ ∆ Φc,ℓ at first order in ∆ Φc,ℓ . One important result we stress here is that the lumen and the cell need impermeant charges. Indeed, in their absence ( xc,ℓ = 0), the steady-state volumes are zero, as shown in Fig. 6.4. This could be similar to the opening of apical lumens, in which charged species are secreted in the intercellular space to repel the non-adhesive apical membranes [START_REF] Strilić | Electrostatic cell-surface repulsion initiates lumen formation in developing blood vessels[END_REF].

General case

We now aim to calculate the steady-states considering explicitly the osmotic contribution of impermeant species. We assume that the Peskin limit is not valid anymore. In this case, one can derive the steady-state for two cases z c,ℓ = 1 and z c,ℓ ̸ = 1. The steady-state equations for the concentrations do not change with this assumption.

Case z c,ℓ ̸ = 1 The electroneutrality equations are written as

Nℓ + Kℓ -Cℓ z ℓ = xℓ Vℓ Nc + Kc -Cc z c = xc Vc
such that steady-state volume conservation equations can be written

1 + d 0 = Nℓ + Kℓ + Cℓ + xℓ Vℓ = Nℓ + Kℓ 1 + 1 z ℓ + Cℓ 1 - 1 z ℓ (6.26a) 1 + d 0 = Nc + Kc + Cc + xc Vc = ( Nc + Kc ) 1 + 1 z c + Cc 1 - 1 z c (6.26b)
One therefore get four second-order equations as

1 2 (γ c ) 2 (z c -1) -z c (1 + d 0 )γ c + β c (z c + 1) = 0 (6.27a) 1 2 (γ c ) 2 + b c γ c -β c = 0 (6.27b) 1 2 (γ ℓ ) 2 (z ℓ -1) -z ℓ (1 + d 0 )γ ℓ + β ℓ (z ℓ + 1) = 0 (6.27c) 1 2 (γ ℓ ) 2 + b ℓ γ ℓ -β ℓ = 0 (6.27d)
where γ c,ℓ , β c,ℓ , b c,ℓ have been defined in the previous section. The solution of the steady-state volumes and electric potentials are given by

γ c,ℓ = -b c,ℓ + (b c,ℓ ) 2 + 2β c,ℓ (6.28a) ( Vc,ℓ ) * = [(z c,ℓ ) 2 -1] xc,ℓ -(1 + d 0 ) + (1 + d 0 ) 2 + ((z c,ℓ ) 2 -1) (1 + d 0 ) 2 -2β c,ℓ (6.28b)
The calculations are detailed in Appendix H for a single cell and are the same for the lumen. In the limit z c,ℓ ≫ 1 one recovers the steady-state volume in the Peskin limit FIGURE 6.4: Lumen collapse in the absence of impermeant species. Relaxation of a cell and a lumen from an initial steady-state without impermeant species in the lumen ( xℓ = 0). The lumen volume shrinks to zero and the concentrations of sodium and potassium go to infinity. The chloride is expelled from the lumen and its concentration goes to zero. Parameters are z c,ℓ = 1, and all times are equal to

τ c V = 1s, except τ c N = τ ℓ K = 2τ c V .
Case z c,ℓ = 1 In this case, by electroneutrality ( Nc,ℓ ) * + ( Kc,ℓ ) * = ( Cc,ℓ ) * + Xc,ℓ and the volume conservation equation is reduced to ( Nc,ℓ ) * + ( Kc,ℓ ) * = 1 + d 0 (6.29)

Using the expression of steady-state concentrations, one finds

γ c,ℓ = 2β c,ℓ 1 + d 0 (6.30a) ( Vc,ℓ ) * = 2(1 + d 0 ) xc,ℓ
(1 + d 0 ) 2 -2β c,ℓ (6.30b)

Results

In this section, we explore the system, first studying the stability of the system, then applying osmotic shocks, and finally, we consider the paracellular pathways.

Stability

The cell and the lumen crucially depend on the Na + /K + pumps to provide stability and robustness to control their volume in the presence of trapped species [START_REF] Kay | How Cells Can Control Their Size by Pumping Ions[END_REF]. For cells, Na + /K + pumps control the resting electric potential: the inside potential of cells is negative relative to the outside [START_REF] Lee | The Na/K pump, resting potential and selective permeability in canine Purkinje fibres at physiologic and room temperatures[END_REF]. In this part, we investigate how the pumping activity of Na + /K + pumps influence the stability of cell and lumen steady-state volumes. By stability, we mean the relaxation toward a finite steady-state volume.

The existence of steady-states for the volumes is given by the Eqs. (6.28b), specifically the terms in the denominator. This is more clear in Eqs. (6.23) corresponding to the volumes in the Peskin limit. This states that (i) the volume is non zero if and only if there are charged (z c,ℓ > 0) impermeant species xc,ℓ ̸ = 0 and (ii) this volume exists and is finite if and only if

β c,ℓ < (1 + d 0 ) 2 2 (6.31)
The parameters β c,ℓ depend on several contributions and are expanded below (6.32a)

β c = exp -3 τ c N 2C 0 V 0 p c N0 + exp +2 τ c K 2C 0 V 0 p c K0
β ℓ = exp -3 τ c N 2C 0 V 0 p c + 3 τ ℓ N 2C 0 V 0 p ℓ N0 + exp +2 τ c K 2C 0 V 0 p c -2 τ ℓ K 2C 0 V 0 p ℓ K0 (6.32b)
Eq. (6.31) states that the pumping rates p c,ℓ cannot be too large, as the parameters β c,ℓ would exceed 1 2 (1 + d 0 ) 2 , which represents the osmotic load of the external medium. In particular, d 0 is the rescaled concentration of external impermeant solute, such as Dextran, sucrose, etc. With increasing d 0 , the region in which β c,ℓ < (1+d 0 ) 2 2 becomes larger, and the pumping rate can also be larger. We illustrate this for a single cell in Fig. 6.5, where we plot the parameter β c as function of the pumping rate p c , with a non-zero d 0 = 0.2. Since the cell steady-state does not depend on the presence of a lumen, this result is equivalent with or without a cavity.

Two regions of the curve β c (p c ) are identified: the blue part corresponds to a finite (stable) volume, while the red part corresponds to a bursting cell, i.e. an infinite steady-state volume. The transition from one regime to the other corresponds to a maximal pumping threshold, p c max , which is given by the condition β c max = 1 2 (1 + d 0 ) 2 and is plotted as a horizontal black line. The external species concentration d 0 increases the value of β c max (see dashed horizontal line for d 0 = 0), and so does the pumping threshold p c max . The red dot for p c = 0 indicates that for d 0 = 0, the cell bursts. Indeed, the parameter β c reads

β c (p c = 0) = N0 + K0 = 1 2 (6.33)
where the value 1/2 is due to electroneutrality of the medium. Since β c = 1 2 and d 0 = 0, the steadystate volume of cell is infinite and the cell bursts. This is similar to the prediction of the PLM model for a single cell, which states that in the absence of Na + /K + pump, the cell is unstable due to the presence of impermeant species, which creates an osmotic load that cannot be compensated [START_REF] Hoppensteadt | Control of Cell Volume and the Electrical Properties of Cell Membranes[END_REF][START_REF] Kay | How Cells Can Control Their Size by Pumping Ions[END_REF]. For the cell at d 0 = 0, the existence of a stable steady-state is given by the derivative of β c evaluated at p c = 0, such that [START_REF] Hoppensteadt | Control of Cell Volume and the Electrical Properties of Cell Membranes[END_REF] A stable steady-state volume exists for p c > 0 ⇔ dβ c dp c p c =0 < 0 (6.34) Indeed, for

dβ c
dp c ≥ 0, the curve immediately crosses the horizontal line β c = 1 2 . This gives an additional condition for the conductance timescales, as

dβ c dp c p c =0 < 0 ⇔ 2τ c K K0 < 3τ c N N0 (6.35)
In a typical medium, N0 = 0.48 and K0 = 0.02, which gives τ c K < 36τ c N , and the possible range of conductances. This shows why the typical relaxation time of the potassium for the cell must be smaller than the relaxation of the sodium. Generally, we choose (arbitrarily) τ c K = 1τ c V and τ c N = 2τ c V to respect the condition for the existence of stable volume.

Moreover, there exists an optimal pumping rate, denoted p c opt , that minimizes the parameter β c and corresponds to the minimum steady-state volume that the cell can achieve, see in Appendix H. This pumping rate corresponds to d dp c β c = 0, or

p c opt = 2C 0 V 0 log 3τ c N N0 2τ c K K0 2τ c K + 3τ c N (6.36)
and is indicated on Fig. 6.5. ) vs pumping rate pc . Dashed line correspond to the upper stability limit of the cell when d 0 = 0, full line when d 0 = 0.2. corresponds to the old. Dotted lines corresponds to the optimal pumping rate from Eq. (6.36) and maximal pumping rate p c max . Parameters are N0 = 0.48, K0 = 0.02,

τ c N = 1τ c V , τ c K = 1τ c V .
While the study of stability can be carried out for the cell through the parameter β c , the lumen stability is more complex as β ℓ depends on both cell and lumen pumping and conductances. For the sake of simplicity, we consider first two cases in which one of the pumps (cell or lumen) is inhibited, and we assume the Peskin limit to have tractable expressions of the steady-state volumes.

Inactive lumen pumps

In the case where the lumen pumps are inactive, one has p ℓ = 0 and p c ̸ = 0. Thus, the parameter β ℓ reduces to β ℓ (p c , p ℓ = 0) = β c . The volumes are written as (Peskin limit)

( Vc ) * = z c xc (1 + d 0 ) 2 -2β c (6.37a) ( Vℓ ) * = z ℓ xℓ (1 + d 0 ) 2 -2β c (6.37b)
Thus without lumen pumping, the steady-state volumes are related through the relationship ( Vℓ ) * = ( Vc ) * xℓ z ℓ xc z c . In the special case z c = z ℓ , they are equal. This shows that even with the inhibition of the lumen pumps, the system has a finite steady-state. If the cell is stable, then the lumen is stable. We display an example lumen inactive pump in Fig. 6.6. This geometry could correspond to an apical-in cyst, where the basolateral contact is the cell membrane and the lumen is facing the apical side of the cell, depleted in Na + /K + pumps.

Inactive cell pumps Conversely, in the case in which the cell pumps are inactive, one has

β c (0) = N0 + K0 = 1 2 β ℓ (0, p ℓ ) = N0 exp 3τ ℓ N 2C 0 V ℓ 0 p ℓ + K0 exp - 2τ ℓ K 2C 0 V ℓ 0 p ℓ
so that the cell is unstable for d 0 = 0. In a similar way as the cell, the condition for the existence of stable volume for the lumen is given by Eq. (6.34), with d dp ℓ β ℓ | p ℓ,c =0 instead. With p c = 0, this leads to the condition

dβ ℓ dp ℓ p ℓ =0 < 0 ⇔ 3τ ℓ N N0 < 2τ ℓ K K0 (6.38)
No Lumen pumping The stability of the cyst is summarized in a stability diagram, as shown in Fig. 6.7. This diagram gives the stability for the cell or the lumen as a function of the rescaled pumping rates pc , pℓ . Four cases are displayed, each corresponding to a different combination of stability: green circles if both the cell and lumen are stable, blue triangles if only the cell is stable and not the lumen, purple squares if the lumen is stable but not the cell, and red stars if both are unstable. Each point is calculated using the formula of β c,ℓ for a set of pc,ℓ , and classified whether β c,ℓ < 1 2 (1 + d 0 ) 2 . The cell stability is divided into two regions (blue+green for stable cell, purple+red for unstable cell), as illustrated in Fig. 6.5 with the blue and red parts of the curve. The stable lumen region however is more complex. Note that the case pc = pℓ = 0 is not displayed in this graph, but corresponds to a unstable cell and unstable lumen, see Fig. 6.3C.

In the mouse embryo at the blastocyst stage, the pumping rate through the trophectoderm has been estimated around p = 2.47 × 10 -10 mol.m -2 .s -1 [START_REF] Leonavicius | Mechanics of mouse blastocyst hatching revealed by a hydrogel-based microdeformation assay[END_REF]. For MDCK monolayers, the basal pumping rate is estimated around p = 9.8 × 10 -7 mol.m -2 .s -1 [START_REF] Cereijido | Structural and functional membrane polarity in cultured monolayers of MDCK cells[END_REF]. Overall, this shows that the stability of a cyst is linked to the activity of ion pumps at its membranes and the presence of impermeant molecules. As we discussed in Chapter 1, the Na + /K + pumps are located at the basolateral membranes of epithelial cells, such as in the mouse embryo [START_REF] Vorbrodt | Ultrastructural cytochemistry of membranebound phosphatases in preimplantation mouse embryos[END_REF][START_REF] Watson | Immunofluorescence assessment of the timing of appearance and cellular distribution of Na/K-ATPase during mouse embryogenesis[END_REF][START_REF] Robinson | Chapter 4 Ion and Solute Transport in Preimplantation Mammalian Embryos[END_REF][START_REF] Barcroft | Deletion of the Na/K-ATPase α1-subunit gene (Atp1a1) does not prevent cavitation of the preimplantation mouse embryo[END_REF], MDCK cells [START_REF] Cereijido | Structural and functional membrane polarity in cultured monolayers of MDCK cells[END_REF]Wang et al., 1990b], salivary glands [START_REF] Gin | A mathematical model of fluid secretion from a parotid acinar cell[END_REF]. In our case, we assumed they were located at both interfaces: exterior-cell and cell-lumen, but oriented such that potassium is always imported and sodium always exported. As such, our cell and lumen do not assume a fixed polarity but represent a generic theoretical epithelium. Tuning the pumping rates -or equivalently the pumping times -corresponds therefore either to orient the polarity of the cyst or to reduce the activity of the pumps. Na + /K + pumps are inhibited using ouabain, a drug competing with the potassium binding site of Na + /K + pump [START_REF] Lingrel | The physiological significance of the cardiotonic steroid/ouabain-binding site of the Na,K-ATPase[END_REF][START_REF] Giannatselis | Ouabain Stimulates a Na+/K+-ATPase-Mediated SFK-Activated Signalling Pathway That Regulates Tight Junction Function in the Mouse Blastocyst[END_REF]. Exposition to ouabain was performed at large concentrations (≳ 10 -3 mM in the mouse embryo, 10 -5 mM in bovine [START_REF] Watson | Regulation of blastocyst formation[END_REF]), and prevented cavitation [START_REF] Wiley | Cavitation in the mouse preimplantation embryo: Na K-ATPase and the origin of nascent blastocoele fluid[END_REF] or re-expansion after treatment to Cytochalasin-D [DiZio and Tasca, 1977]. Ouabain may also be used as a proxy to measure the pumping rate [START_REF] Cereijido | Structural and functional membrane polarity in cultured monolayers of MDCK cells[END_REF]. However, exposition to ouabain may affect the integrity of the permeability seal, as TJ maturation is closely related to the presence of functional Na + /K +pump [START_REF] Violette | Na+/K+-ATPase regulates tight junction formation and function during mouse preimplantation development[END_REF]. Interestingly, ouabain blocks blastocoel growth but does not destabilize cells volume, hence there must be other pumps at the cell membrane.

Osmotic shocks

To test the numerical integration, we proceed to submit the system to osmotic shocks. We illustrate these shocks either using an external impermeant species D 0 , NaCl, or KCl.

In Fig. 6.8, we plot the effect of a hyper-osmotic shock on a cyst, with 175mM impermeant sucrose, to mimic the osmotic shock on a blastocyst we showed in the previous Chapter 5. This corresponds to an increase of d 0 to 0.90, with the external concentration chosen as C 0 = 97.5mM, similar to typical embryonic culture medium [START_REF] Erbach | Erratum: Differential growth of the mouse preimplantation embryo in chemically defined media[END_REF]. The cyst starts at osmotic equilibrium. At time t/τ c v = 1, the sucrose is introduced in the medium. In a few τ c v , the cyst reaches a new steady-state, which is plotted for each variable: volumes, concentrations, and electrical potentials. All relative variations of the variables are given in Table 6.1. With the introduction of sucrose, the cell radius decreases its volume by 54%, and the lumen radius decreases by 50%. The sodium and potassium concentrations rise by nearly 100% in both the lumen and the cell, and the chloride concentration decreases by 50% in the lumen and the cell. The lumen electric potential is slightly depolarized (nearly +5%), but the cell is largely hyperpolarized, by 40%. This can be understood as follow: with the exposition to external impermeant species and increase of external osmotic pressure, the cell and lumen volumes shrink, which increases the concentrations in each species. As the concentration of trapped species Xc,ℓ increase with volume decrease, the density of negative charges in the compartments increase, and chloride is passively transported outside the cell and the lumen. In the cell, the increase in sodium and potassium concentrations decrease the Nernst potentials (E N ∼ log( N0 Nc ) for sodium, E K ∼ log( K0 Kc ) for potassium), while the decrease of chloride increases the associated Nernst potential E C . Discarding the conductance times, the cell potential difference corresponds to E N + E K -E C -E P , which thereby decreases. E P is the potential associated with the pumps. For the lumen, since all concentrations change by a similar factor between the cell and the lumen, then the potential does not increase much. The volume increase (resp. decrease) has already been correlated with depolarization (resp. hyperpolarization) of the cell membrane in HN-31 cells [START_REF] Yellin | Electromechanics and Volume Dynamics in Nonexcitable Tissue Cells[END_REF], which is also found here, see Fig. 6.3C. Besides, we notice that the decrease in volume follows the same order of magnitude as the chloride concentration, nearly 50%. Additionally, we plot the Boyle-van't Hoff diagram for hypertonic solutions, with increasing impermeant external species concentration d 0 , see Fig. 6.3B. As d 0 increases, the steady-state volumes reduce in size. This shows that in hypertonic solutions, the generalized PLM model behaves like a perfect osmometer, with complex relationships between concentrations, volumes, and electric potentials. In Fig. 6.9, we plot the effect of an hyperosmotic shock on a cyst, with 100mM NaCl. The cyst starts at steady-state and NaCl is introduced at time t = 1. As for the sucrose, the cell and lumen quickly converge to steady-state. We give the relative variations for each variable in the Table 6.2. The cell and volume shrink, with comparable magnitudes than for the sucrose. The sodium concentration in the lumen increases by a similar order of magnitude as for the sucrose shock, but increases by four-fold in the cell. The potassium cell concentration doubles because of volume shrinkage, as for the sucrose shock, while in the lumen it remains almost constant. Chloride concentration in the cell remains constant while in the lumen it almost doubles. The cell electric potential increases in a similar amplitude as the sucrose shock, but the effect of the NaCl is to largely depolarize the lumen membrane and hyperpolarize the cell membrane, as proposed in [START_REF] Yellin | Electromechanics and Volume Dynamics in Nonexcitable Tissue Cells[END_REF] Finally, in Fig. 6.10, we plot the effect of a hyper-osmotic shock on a cyst, with 10mM KCl. The relative variations are given in Table 6.3. Injecting KCl in the external medium has a dramatic effect on the cell volume, as it expands by almost five-fold, as for single cells swelling when bathed in rich KCl medium [START_REF] Zierler | Insulin action on membrane potential and glucose uptake: Effects of high potassium[END_REF]. However, the lumen shrinks a little.

Variable

The growth of the cell is mostly caused by the depolarization of the cell membrane potential. Indeed, consider the steady-state volume Eq. (2.42). We replace the known steady-state concentration for chloride (C c ) * = C 0 e ∆ Φc in the expression of steady-state volume, and one has

(V c ) * = x c (z c -1) Π shock -C 0 e ∆ Φc (6.39)
where we write Π shock the total external concentration after the shock. One can see that should the cell depolarize, i.e. ∆Φ c → 0, then the denominator decreases, thus the steady-state volume increases, see Fig. 6.3B. This depolarization is caused by potassium. Of the three main ions present in cells, potassium K + is predominant within cells, while Na + is mostly external. Blocking the K 2P -channels, or increasing the external concentration in K + depolarizes the membrane and increases the pH. The high expression of K 2P is likely to be a key factor in blastocyst development [START_REF] Hur | K+ efflux through two-pore domain K+ channels is required for mouse embryonic development[END_REF][START_REF] Fujishima | Live visualisation of electrolytes during mouse embryonic development using electrolyte indicators[END_REF]. Abnormal K + channels are responsible for various diseases and cellular dysfunctionments [START_REF] Shen | Research Toward Potassium Channels on Tumor Progression[END_REF]. Thus, potassium plays a key role in the regulation of the cell volume, while sodium is important for the lumen's inner concentration.

This section illustrates how our generalized PLM model is affected by osmotic shock and the responses of the different variables. Inner concentrations are hard to measure dynamically, as they require probing the cell or the lumen with invasive methods. However, the volumes can easily be measured, as the cell-exterior electric potential difference (∆Φ c ) through patch-clamp methods [START_REF] Day | Cell-cycle control of a large-conductance K+ channel in mouse early embryos[END_REF][START_REF] Zhao | Routes of Cl-transport across the trophectoderm of the mouse blastocyst[END_REF][START_REF] Arnaiz | Changing expression of chloride channels during preimplantation mouse development[END_REF]. The transcellular electric potential, ∆Φ = ∆Φ c + ∆Φ ℓ is also hard to measure as it requires access to the inner lumen.

Paracellular chloride pathway

The composition of the lumen has been studied in some cases: for the blastocoel of the mouse embryo, its composition is close from to the external medium [START_REF] Biggers | Mammalian blastocyst: Transport functions in a developing epithelium[END_REF], which was elegantly illustrated with an experiment in which an embryo developed to the blastocyst stage within the blastocoel of another embryo [START_REF] Pedersen | Role of the blastocoele microenvironment in early mouse embryo differentiation[END_REF]. In MDCK cysts, the composition of the lumen medium is relatively close to the external medium [START_REF] Gin | A model for cyst lumen expansion and size regulation via fluid secretion[END_REF]. From Fig. 6.2, one can see that the lumen chloride concentration is far from the external medium concentration. Thus, one needs another route for chloride to reach the lumen.

Two alternative transport routes for chloride are recensed. The first is the basolateral HCO - 3 /Cl - exchanger, which combined with the apical Na + /H + exchanger, controls the pH of the cyst. A model including these two exchangers was recently proposed in the case of a single cell [START_REF] Li | Hydrogen, Bicarbonate, and Their Associated Exchangers in Cell Volume Regulation[END_REF]. A second route is a paracellular flux through tight junctions which was postulated in the mouse embryo [START_REF] Manejwala | Blastocoel expansion in the preimplantation mouse embryo: Role of extracellular sodium and chloride and possible apical routes of their entry[END_REF]. In particular, the authors reported a diffusive chloride flux from the external medium toward the blastocoel, that could be linked with a paracellular leakage of chloride through tightjunctions [START_REF] Manejwala | Blastocoel expansion in the preimplantation mouse embryo: Role of extracellular sodium and chloride and possible apical routes of their entry[END_REF]. Tight junctions (TJ) are composed of many proteins: zona-occludens proteins, occludins, and claudin family. They are characterized as "leaky" or "tight", depending on the qualitative ability to let species go preferentially through the paracellular or transcellular way respectively [START_REF] Diamond | Twenty-first Bowditch lecture. The epithelial junction: bridge, gate, and fence[END_REF]. A quantitative argument is to compare the paracellular to the transcellular electrical conductances [START_REF] Schultz | Electrical Potential Differences and Electromotive Forces in Epithelial Tissues[END_REF]. For instance, MDCK-I and -II differ substantially in their transepithelial resistance R Ω (MDCK-I, R Ω > 1 kΩ/cm -2 , MDCK-II, R Ω < 100 Ω.cm -2 ) [START_REF] Stevenson | Tight junction structure and ZO-1 content are identical in two strains of Madin-Darby canine kidney cells which differ in transepithelial resistance[END_REF]. In the rabbit blastocyst, the transepithelial resistance increases from 34 Ω.cm -2 at day E4.0 to 2 kΩ.cm -2 at day E6.0 [START_REF] Cross | Active Sodium and Chloride Transport Across The Rabbit Blastocoele Wall[END_REF][START_REF] Benos | Developmental changes in epithelial transport characteristics of preimplantation rabbit blastocysts[END_REF].

Claudins is a family of proteins that compose the tight junctions sealing the embryo. They are located at the apical side of cell-cell contact, forming a barrier for external species to the tissue. In mammalians, 24 up to 27 members of the claudin family have been identified [START_REF] Günzel | Claudins: vital partners in transcellular and paracellular transport coupling[END_REF]. A few of them however are present and essential for pre-implantation embryos: claudin-4, claudin-6, and claudin-7 [START_REF] Moriwaki | Tight junctions containing claudin 4 and 6 are essential for blastocyst formation in preimplantation mouse embryos[END_REF], from the 8-cell stage. Once blastocoel is formed, unlike classical TJ however, the claudins are not facing the blastocoel (lumen), but the external medium.

Leakages through tight junctions have been observed in MDCK cells (sodium leak) [START_REF] Tanner | Fluid transport in a cultured cell model of kidney epithelial cyst enlargement[END_REF]] and modeled as paracellular chloride transport in [START_REF] Gin | A model for cyst lumen expansion and size regulation via fluid secretion[END_REF]. In the mouse embryo, one plausible role of tight junctions could be to allow for a chloride paracellular pathway, specifically claudin-4 as in the kidney [START_REF] Hou | Claudin-4 forms paracellular chloride channel in the kidney and requires claudin-8 for tight junction localization[END_REF].

In this section, we aim to add a paracellular contribution to the flux of chloride in the lumen. We suppose the change in the number of chloride ions in the lumen, c ℓ ≡ V ℓ C ℓ , is due to the chloride flux exchanged with the cell and the flux due to a leak of chloride through tight-junctions :

dc ℓ dt = J c→ℓ + J leaks (6.40)
where J c→ℓ is given by Eq. (6.3c). The leak flux J leaks , given in mol.s -1 , is proportional to the concentration difference between the medium and lumen concentrations [START_REF] Gin | A model for cyst lumen expansion and size regulation via fluid secretion[END_REF]]

J leaks = λ T J (2πR c N T J )[C 0 -C ℓ ] (6.41)
where λ T J is the permeability of TJ to chloride (in m 2 .s -1 ) and we assume the paracellular chloride leaks to only pass through cell-cell contacts with number N T J , related to the number of cells N cells by N cells = 2 N T J . The number of cells is comprised between 64 and 128 cells, giving N T J = 6 ÷ 7. Recalling that (R c ) 3 = µ(V c + V ℓ ) with µ = 3 4π , one gets for the non-dimensionalized number of chloride ions in the lumen cℓ

d cℓ d t = Jc→ℓ + Jleaks (6.42) where Jleaks = τ c V τ leaks Vc + Vℓ 1/3 C0 -Cℓ (6.43) with τ leaks = (V 0 ) 2/3 2πµ 1/3 λ T J N T J
is the typical time associated with leakages, evaluated around τ leak ≃ 2.22 × 10 4 s [START_REF] Manejwala | Blastocoel expansion in the preimplantation mouse embryo: Role of extracellular sodium and chloride and possible apical routes of their entry[END_REF]. The flux Jc→ℓ is given by Eq. (6.11e).

With leaks, the electric potentials include a contribution as a leak current (shortcut), hence a reduction of the electric potentials. In the presence of leaks, we will denote the total electric potential difference as ∆ Φc,ℓ . For the lumen, electroneutrality reads nℓ + kℓcℓz ℓ xℓ = 0 where the lower-case letters for number of molecules. Taking the time derivative leads to ṅℓ + kℓċℓ = 0 as the number of charges xℓ is constant. The terms ṅℓ and kℓ are given by Eqs. (6.11c), (6.11d), and is given by Eq. (6.42). Injecting their expressions in the above equation and collecting the terms with ∆ Φℓ leads to

∆ Φℓ leaks = T ℓ   log Nc Nc τ ℓ N + log Kc Kℓ τ c K - log Cc Cℓ τ c C + 1 τ c P   - T ℓ τ c V Jleaks ( Vℓ ) 2/3
The first term of the right-hand side corresponds to the electric potential difference ∆ Φℓ defined in Eq. (6.11k). The second term is the electric shortcut, which reduces the total potential difference if the leakage flux Jleaks is non-zero. Using the expression of Jleaks from Eq. (6.43), we rewrite the total potential difference ∆ Φℓ leaks as

∆ Φℓ leaks = ∆ Φℓ - T ℓ τ c V ϕ leaks (6.44)
where

ϕ leaks = τ c V τ leaks [ C0 -Cℓ ] Vc + Vℓ ( Vℓ ) 2
1/3 is the electric potential shortcut due to paracellular leaks.

To calculate the electric potential difference for the cell membrane, we notice that the time derivative of the number of ions in the cell can be written with fluxes: ṅc = JN ext→c -JN c→ℓ where the subscript ext → c (resp. c → ℓ) indicate the flux from the exterior to the cell (resp. cell to the lumen), and superscript N refers to sodium flux. This reads the same for the potassium and chloride. Now, the fluxes from cell to lumen are opposite to the flux from lumen to cell, JN c→ℓ = -JN ℓ→c . Using charge conservation, we find

JN ext→c + JK ext→c -JC ext→c = JN c→ℓ + JK c→ℓ -JC c→ℓ = Jleaks This finally gives ∆ Φc leaks = ∆ Φc - T c τ c V Vℓ Vc + Vℓ 2/3 ϕ leaks (6.45)
Thus, with chloride homogenization in the lumen, the shortcut should be progressively reduced.

In Fig. 6.11 we plot an example of a blastocyst initially at steady state, subjected to an opening of its tight junctions to let pass chloride only. At time t = 10τ c V , we include a contribution Jleaks with τ leaks = 0.1s. The cell and lumen reach a new steady-state with increased chloride concentrations. The volumes increase to account for the increase of lumen and cell chloride concentrations. The sodium and potassium concentrations change transiently but stabilize close to the initial value. The electric potentials are restored as the chloride concentrations are approaching the external concentration, hence reducing the paracellular flux and electric shortcut. V the paracellular way is opened. Parameters are N0 = 0.48 and N0 = 0.02 z c,ℓ = 1, all times are equal to 1 but τ c N = τ ℓ K = 2. The leakage time is infinite at first (no leaks), and set to τ leaks = 0.1 at time t = 10.

Discussion

In this chapter, we presented an extension of the pump-leak model to a cyst containing two compartments: a cell and a lumen. We first derived conservation equations to describe the main variables: volumes, concentrations, and electric potentials. We determined that at steady-state, the cell and lumen are decoupled: the cell acts as if there is no cavity, the lumen behaves as if the cell were an additional layer. We predicted that to have a steady-state, the lumen and the cell require impermeable charged species; in their absence, their steady volume is zero. We then studied the stability of the cell volume or lumen as a function of the pumping rates of Na + /K + pumps located at their respective membranes. We showed that, in the same way as for a single compartment PLM, the cell and lumen admit regions of instability, which we summarized in a phase diagram. Next, we applied hyperosmotic shocks to the system, using either an impermeable solute (sucrose) or NaCl or KCl. The cyst behaves like an ideal osmometer in the presence of sucrose. With NaCl or KCl, the size of the cell or lumen is also related to the hyperpolarization or depolarization of membranes. In particular, injection of KCl results in a considerable increase in cell volume due to cell depolarization, whereas the lumen is little affected. Finally, we investigated the effects of a paracellular chloride pathway, justified by the presence of chloride-permeable claudins in some cysts. The paracellular pathway temporarily short-circuits the membrane potential, which re-equilibrates, and allows a higher concentration of chloride in the lumen.

We did not deal with the apicobasal polarity of membranes per se, but we considered Na + /K + pumps on both membranes (cell and lumen), allowing us to study cysts in general. An apical-in (resp. apical-out) cyst would have only Na + /K + pumps on the cell (resp. lumenal) membrane. To treat apical-in or apicalout cysts more accurately, a choice must therefore be made for the location of the pumps. Moreover, other pumps or transporters are generally associated with apicobasal polarity and lumen stability and could be considered as the Na + /H + exchanger or the proton pump.

We have assumed chloride transport in the lumen to be induced by a paracellular pathway, but as mentioned, a second transcellular pathway exists, via bicarbonate exchangers, HCO - 3 /Cl -, located on the basement membrane. Describing how dynamics is modified would require considering the chemical reaction of bicarbonate and the presence of CO 2 , as given by CO 2 + H 2 O ⇋ H + + HCO - 3 These exchangers have been described in the mouse (basement membrane) [START_REF] Baltz | Two-cell stage mouse embryos appear to lack mechanisms for alleviating intracellular acid loads[END_REF][START_REF] Zhao | Expression and function of bicarbonate/chloride exchangers in the preimplantation mouse embryo[END_REF][START_REF] Zhao | Routes of Cl-transport across the trophectoderm of the mouse blastocyst[END_REF], rat (apical and basolateral membrane) [START_REF] Brison | Role of chloride transport in the development of the rat blastocyst[END_REF], hamster [START_REF] Lane | Bicarbonate/chloride exchange regulates intracellular pH of embryos but not oocytes of the hamster[END_REF], or human [START_REF] Phillips | Intracellular pH regulation in human preimplantation embryos[END_REF] embryos, on the basal surface of MDCKs [START_REF] Tanner | Fluid transport in a cultured cell model of kidney epithelial cyst enlargement[END_REF], and the apical membrane of pancreatic cysts with apical-out polarity [START_REF] Fanjul | Morphogenesis of "duct-like" structures in three-dimensional cultures of human cancerous pancreatic duct cells (Capan-1)[END_REF]. In particular, bicarbonate is essential in the preimplantation development of the embryo [START_REF] Lu | Involvement of Cl-/HCO3-exchanger SLC26A3 and SLC26A6 in preimplantation embryo cleavage[END_REF], and its concentration in the blastocoel is similar to the exterior [START_REF] Cross | Active Sodium and Chloride Transport Across The Rabbit Blastocoele Wall[END_REF]. Other exchangers can be envisaged, such as the Na + /H + exchanger found on the apical surface of the blastocyst [START_REF] Kawagishi | Na+/H+ exchanger-3 is involved in mouse blastocyst formation[END_REF] and MDCKs [START_REF] Noel | Differential localization of Na+/H+ exchanger isoforms (NHE1 and NHE3) in polarized epithelial cell lines[END_REF], but their localization depends on tissues, cell types, and is subject to debate [START_REF] Wehner | Cell volume regulation: osmolytes, osmolyte transport, and signal transduction[END_REF]. The HCO - 3 /Cl -and Na + /H + exchangers control the pH of cells and the blastocoel [START_REF] Cross | Active Sodium and Chloride Transport Across The Rabbit Blastocoele Wall[END_REF][START_REF] Cross | Rabbit blastocoele bicarbonate: accumulation rate[END_REF][START_REF] Phillips | Intracellular pH regulation in human preimplantation embryos[END_REF], adding many variables to the PLM model (pH, CO 2 , HCO - 3 ). A PLM model including these two specific exchangers has been proposed recently and includes other exchangers [START_REF] Li | Hydrogen, Bicarbonate, and Their Associated Exchangers in Cell Volume Regulation[END_REF]. In the case of the mouse embryo, a model for the exchangers is proposed in Fig. 6.12. TJ FIGURE 6.12: Schematic description of the transport process for a PLM model. The HCO - 3 /Cl -and Na + /H + exchangers and paracellular leaks are added to the previous channels and pump. The potential pathways of the ions are represented with dotted lines.

The nature of the charged species in the lumen is unknown. For the cell, the impermeant species are considered as macromolecules [START_REF] Hoppensteadt | Control of Cell Volume and the Electrical Properties of Cell Membranes[END_REF][START_REF] Kay | How Cells Can Control Their Size by Pumping Ions[END_REF]. This is less clear for the lumen. These impermeant species could correspond to the extracellular matrix for basolateral lumens, present in inverted cysts [Wang et al., 1990b;[START_REF] Monteleon | Modeling disease using three dimensional cell culture multilumen and inverted cyst phenotypes[END_REF], or blood vessel formation in Amphioxus [START_REF] Kučera | Ancestral vascular lumen formation via basal cell surfaces[END_REF]. For apical lumens, it was proposed that charged species (as podocalyxin) were secreted and repelled membranes [START_REF] Brusca | A molecular network for de novo generation of the apical surface and lumen[END_REF][START_REF] Strilić | Electrostatic cell-surface repulsion initiates lumen formation in developing blood vessels[END_REF]. In the mammalian embryo, however, this remains unclear and requires further investigation.

The most common active pumps are the Na + /K + -pumps, but other active transporters exist, such as the Ca 2+ -ATPases [START_REF] Nuccitelli | Ionic currents in morphogenesis[END_REF], present in the pancreatic cysts [START_REF] Fanjul | Morphogenesis of "duct-like" structures in three-dimensional cultures of human cancerous pancreatic duct cells (Capan-1)[END_REF]. More generally, a generic PLM-like model has not yet been established to encompass all possible ions and exchangers (Ca 2+ , Mg 2+ , etc.)

To extend our model, several directions are available. First, a direct connection to Chapter 5 would be to consider surface tension and the zona pellucida as an external constraint. We showed that the electric membrane potential is linked with the cyst stationary volume, but this requires further study and experiments to support the theoretical predictions. In particular, the coupling between cell mechanics and electric current by a flexo-electric effect was proposed to be at the origin of lumen nucleation [START_REF] Duclut | Fluid pumping and active flexoelectricity can promote lumen nucleation in cell assemblies[END_REF].

Another connection to the work in Chapter 4 would be to consider two lumens connected by a bridge, including the PLM model equations for the two micro-cavities and the bridge. Another direction toward embryology would be to consider the architecture of the blastocyst, taking into account the internal cell mass, the apicobasal polarity of the blastocyst, and the presence of Na + /H + and HCO - 3 /Cl -exchanger, and the distribution of Na + /K + pumps around the blastocoel [START_REF] Watson | Immunofluorescence assessment of the timing of appearance and cellular distribution of Na/K-ATPase during mouse embryogenesis[END_REF].

This work, starting from a long-established model [START_REF] Tosteson | Regulation of cell volume by active cation transport in high and low potassium sheep red cells[END_REF], extends it to open new research perspectives for the characterization of polarized cysts and the mammalian blastocyst.

Part IV

Conclusions

In the light of experimental observations, we proposed a simple model to describe the maturation of micro-lumens at cell contacts, based on hydraulic exchanges directed by pressure differences. This model could predict the evolution of the lumen network and the position of the final cavity at TE-ICM contacts concerning the difference in cell contractility corresponding to the differences in surface tensions in our model.

Driven by the fundamental question of the role of solutes in network formation, we extended our first model to a hydro-osmotic chain. Using predictions from a toy model, we were able to show that osmotic pressure played only a minor role in coarsening, but that permeation played a crucial role, as did active pumping, which allowed micro-lumens to fuse. By extending the model to a chain of micro-lumens, we showed the existence of dynamic power laws in the ripening and coalescence of micro-lumens, thanks to numerical simulations, and the parallel with de-wetting films in some limits.

We then moved to a more macroscopic scale, where our interest was focused on the size control of the embryo constrained by the zona pellucida, and then to the more general question of the control of the volume of a biological cavity. We proposed several volume control models, for an embryo with or without a cavity, constrained or not by an elastic layer. By simulating osmotic shocks, we determined the mechanical characteristics of the elastic layer and the dynamic parameters of the embryo, like its hydraulic permeation. Finally, we studied the case of volume control of a cyst through the prism of an extended two-compartment pump-leak model, considering the three major ions and the associated pumps and channels. This allowed us to investigate the stability of apical-in or apical-out cysts in a generic way, and to determine that in the absence of impermeant species, the cavity is not stable. We also studied the effect of osmotic shocks and the effect of a paracellular pathway on the volume control of the cavity.

Thus, starting from the formation of the blastocyst, we realized that our models were not specific to the mammalian embryo but potentially to other embryos and even to other well-studied in vitro systems: organoids, in particular inverted cysts.

Throughout the thesis, we have shown the importance of hydraulic and osmotic flows in controlling the size of a cavity. At the micro-lumen scale and considering a single solute, hydrostatic pressure dominates fluid exchanges, similar to dewetting films. However, the role of ions in coarsening is not entirely clear: single ion concentration differences between the intra-and intercellular media are likely to result in large concentration variations, which breaks down our hypothesis of small concentration difference. Thus, one potential direction for extending the hydro-osmotic model would be to apply the PLM equations to a twolumen system. The prospects of such a model would allow us to understand how electrical effects can bias coarsening, and in particular the role of the electric potential. Considering electrical charges at the micro-lumen scale is also a necessary step to understand the opening of some apical lumens such as blood vessels [START_REF] Strilić | Electrostatic cell-surface repulsion initiates lumen formation in developing blood vessels[END_REF] or the amniotic cavity [START_REF] Kim | Deciphering epiblast lumenogenesis reveals proamniotic cavity control of embryo growth and patterning[END_REF], the second to appear during embryonic development. In the latter case, electrostatic charges and the action of Na/K pumps seem to be paramount to open the amniotic cavity, but lack a theoretical model to describe precisely its formation.

One question has remained unanswered throughout the manuscript, and is worth revisiting: how do micro-lumens originate in the mouse embryo? In Chapter 3, we presented a path to investigate this question. Following the injection of sodium ions into the intercellular space, fluid follows the osmotic gradient to balance concentrations and pressurizes the cell contacts. The adhesion molecules present at the basolateral contacts reorganize after the deformation of the cell membrane to form a heterogeneous distribution, which we interpret as hydraulic fracturing, i.e. an abrupt separation of the cell contacts. Hydraulic fracturing is a phenomenon shared by several systems [START_REF] Arroyo | Hydraulic fracturing in cells and tissues: fracking meets cell biology[END_REF], such as MDCK cells subjected to deformation [START_REF] Casares | Hydraulic fracture during epithelial stretching[END_REF], the blebs of a cell [START_REF] Charras | Non-equilibration of hydrostatic pressure in blebbing cells[END_REF], the formation of inverted blebs during angiogenesis [START_REF] Gebala | Blood flow drives lumen formation by inverse membrane blebbing during angiogenesis in vivo[END_REF], and the micro-lumens of the mouse embryo [START_REF] Dumortier | Hydraulic fracturing and active coarsening position the lumen of the mouse blastocyst[END_REF][START_REF] Arroyo | Embryonic self-fracking[END_REF]. This observation opens fascinating perspectives on lumen formation in general, and from a physical point of view, raises the question of the interaction of hydrodynamic and osmotic flows with the forces governing membrane mechanics: curvature, tension, and adhesion. A recent model of hydraulic fracture controlled by cortical tension has been proposed [START_REF] Kaurin | Surface Tension Controls the Hydraulic Fracture of Adhesive Interfaces Bridged by Molecular Bonds[END_REF], but relies on detachment probabilities and not on hydrodynamic flows, and thus cannot include osmotic effects. Thus, a significant advance would be to establish a membrane model that includes the membrane deformation generated by hydraulic flow coupled with osmotic gradients and the attachment/detachment of adhesion molecules.

Finally, an even broader perspective addresses the physical principles of cavity formation. As mentioned, some embryos adopt a coeloblastula shape (a cell layer surrounding a blastocoel), an organization similar to inverted cysts. The mechanisms leading to the formation of a coeloblastula are numerous and vary between species, as we reviewed in [Le Verge-Serandour and Turlier, 2021b]. The sea urchin relies on the orientation of cell divisions and in part on the geometry imposed by the confinement of the surrounding shell [START_REF] Wolpert | Studies on the cellular basis of morphogenesis of the sea urchin embryo. The formation of the blastula[END_REF], the mouse embryo uses fracturing and hydraulic exchange between micro-cavities [START_REF] Dumortier | Hydraulic fracturing and active coarsening position the lumen of the mouse blastocyst[END_REF], while marsupials preferentially adhere to the Zona Pellucida to cover it and thus form a cell monolayer [START_REF] Selwood | Embryonic development in culture of two dasyurid marsupials, Sminthopsis crassicaudata (gould) and Sminthopsis macroura (spencer), during cleavage and blastocyst formation[END_REF]. Some nematodes form a stereoblastula, a compact set of cells, like C. Elegans -which however forms micro-cavities transiently [START_REF] Nance | Cell polarity and gastrulation in C. elegans[END_REF] while a cousin, Tobrilus stefanskii, exhibits a blastocoel [START_REF] Schierenberg | Unusual cleavage and gastrulation in a freshwater nematode: Developmental and phylogenetic implications[END_REF][START_REF] Schulze | Evolution of embryonic development in nematodes[END_REF], illustrating the disparities in the embryo organization even within the same phylum, and the need to understand evolutionary divergences leading to one phenotype rather than another, and its consequences on the physical phenomena involved. The establishment of models makes it possible to identify in part the key parameters that condition morphogenesis, but is not sufficient on their own. Thus, the association of biophysics with machine learning tools and phylogenetics is emerging as a promising future of research. [START_REF] Powers | Developmental changes in membrane transport and permeability in the early mouse embryo[END_REF]; (2) [START_REF] Maître | Pulsatile cell-autonomous contractility drives compaction in the mouse embryo[END_REF]; (3) [START_REF] Maître | Asymmetric division of contractile domains couples cell positioning and fate specification[END_REF];

Part

V Appendix Name Symbol Units [2D] Range [3D] Units [3D] Cell concentration 1 (K + ) c 0 mol.m -2 100 mol.m -3 Hydrostatic pressure 2 P N.m -1 10 -100 N.m -2 Osmotic pressure π 0 N.m -1 10 5 N.m -2 Tension 3 γ N 5 × 10 -4 N.m -1 Contact angle θ - π 3 - Contact tension γ c N ∼ γ N.m -
λ v m 2 .s -1 .N -1 7.32 × 10 -13 m 3 .s -1 .N -1 Solute permeability coefficient 6 λ s mol 2 .N -1 .s -1 .m -2 10 -8 mol 2 .N -1 .s -1 .m -3 Solute diffusion constant (KCl) 7 D m 2 .s -1 2.10 -9 m 2 .s -1 Laplace/Osmotic pressures ratio ϵ = γ sin θ L 0 Π 0 - 10 -2 -10 -3 - Effective hydrodynamic friction κ v = e 3 0 12η m 4 .N -1 .s -1 1.04 × 10 -20 m 5 .N -1 .
(4) [START_REF] Fenz | Diffusion and Intermembrane Distance: Case Study of Avidin and E-Cadherin Mediated Adhesion[END_REF]; ( 5) [START_REF] Edashige | Channel-Dependent Permeation of Water and Glycerol in Mouse Morulae1[END_REF]; (6) [START_REF] Dasgupta | Physics of lumen growth[END_REF]; (7) [START_REF] Friedman | The Self-diffusion Coefficients of Potassium, Cesium, Iodide and Chloride Ions in Aqueous Solutions[END_REF] Volume Control 

Energetic derivation of the van't Hoff relation

Let be two compartments, L and R, filled with a solution of solvent and solute molecules, connected by a semi-permeable membrane of area A, with bulk concentrations in solute c L,R s . For simplicity, we consider a uni-dimensional axis x. The semi-permeable membrane acts as a repelling force on the solute molecules, and is associated with a potential U(x) that reaches its maximum U max at the center of the membrane in x = 0. The thickness of the semi-permeable membrane is h, and the potential is assumed to vanish out of the membrane: |x| > h 2 , U(x) ∼ 0. The bulk concentrations of compartments L, R are at equilibrium, but within a pore, the solute concentration decreases due to the repelling effect of the membrane, according to Eq. (2.23)

c L,R s (x) = c L,R s exp - U(x) k b T (B.1)
Thus, in bulk, the concentrations are at equilibrium: c L,R s (x) → |x|→∞ c L,R s . The repelling force d f exerted on one element of fluid dv is the sum of forces exerted on all the solute particles contained in dv = Adx, namely dN(x) = N A .dv.c L,R s (x). For a single particle, this force is F 1 = -∂ x U(x), thus the repelling force is

d f (x) = dN.F 1 = N A .dv.c L,R s (x).(-∂ x U(x))
Integrating thus force over the whole x-direction gives the total force

F T F T = +∞ -∞ d f = N A A 0 -∞ dxc L s (x)(-∂ x U(x)) + N A A ∞ 0 dxc R s (x)(-∂ x U(x)) F T AN A = B.1 c R s -c L s h/2 0 dx(-∂ x U(x))e -U(x)/k b T F T AN A = k b T c R s -c L s e -U(x)/k b T h/2 0 F T AN A = k b T c R s -c L s 1 -e -U max /k b T
where we used U(|x| ≥ h 2 ) = 0 and performed the change of variable k B T d dx exp -U(x) k B T = ∂ x U(x) exp -U(x) k B T . In the perfect semi-permeable membrane limit, U max ≫ k b T leads to the van't Hoff relation, with the osmotic pressure being the force per unit area.

B.1.1 Reflection coefficient

To derive the out-of equilibrium dynamics, one needs to consider the solute dynamics through the Schmoluchowski equation, and the solvent dynamics, through the Navier-Stokes Equation.

Smoluchowski equation

To adress the solute concentration profile at steady-state, we write the Smoluchowski equation in the form of a continuity equation

∂ t c s = -∂ x j s (B.2)
where the solute flux per unit area, j s is

j s = -D s ∂ x c s (x) + v x c s (x) + µ s c s (x)(-∂ x U(x)) (B.
3)

It corresponds to the sum of (i) a Fick diffusive flux, with D s the diffusion constant of the solute, (ii) an advective flux, with v x the local velocity of the solute and (iii) a force driven flux, with µ s = D s /k b T = D s β the mobility of the solute. At our scales, the typical Péclet is low, P e ≡ hv x D s ≪ 1 (using v x = 1µm.s -1 , D s = 10 -9 m 2 .s -1 , h = 10nm), which allows to neglect the convective term v x c s (x). Expression of the stationnary flux is found using a trick [START_REF] Manning | Binary diffusion and bulk flow through a potential-energy profile: A kinetic basis for the thermodynamic equations of flow through membranes[END_REF]: one writes the concentration c s as

c s (x) = e -βU(x) g(x) (B.4)
where

g(x) = c L s , x ≤ -h 2 c R s , x ≤ -h 2 (B.5)
enforces the boundary conditions to have a non-zero steady-flux. Injecting the concentration into the Smoluchowski equation with no convection leads to

j s = -D s ∂ x c s (x) + βD s c s (x)(-∂ x U(x)) = B.4 -D s ∂ x [g(x)e -βU(x) ] + βD s c s (x)(-∂ x U(x)) = -D s e -βU(x) ∂ x g(x)
Integration along the membrane thickness leads to

j s h/2 -h/2 dxe βu(x) = D s h/2 -h/2 dx ∂g(x) ∂x = D s (c R s -c L s )
so the equilibrium flux of the Smoluchoswki equation is

j s = D s (c R s -c L s ) h/2 -h/2 dxe βu(x) (B.6)

Navier-Stokes

For an incompressible fluid with no inertial effects, the unidimensional Navier Stokes equation reduces to

0 = -∂ x p + f ext (B.7)
where f ext = N A c s (x)(-∂ x U) is the external volume force, in N.m -3 , as defined in the previous section.

Integrating the above equation over the membrane thickness, and using the Smoluchowski equation, one gets Typically, at the scale of cells, L ≃ 10 -6 µm, U = 1µm.s -1 , η water = 10 -3 Pa.s and ρ water = 10 3 kg.m -3 , such that the Reynolds number is small, Re ≃ 10 -6 , meaning that inertial effects are negligible compared to viscous forces. In these conditions, the Navier-Stokes reduces to

h/2 -h/2 dx ∂p(x) ∂x = N A h/2 -h/2 dxc s (x)(- ∂U(x) ∂x ) ∆p = N A h/2 -h/2 dx j s D s β + 1 β ∂c s (x) ∂x ∆p = RT j s D s h + ∆c s where N A /β = RT and c s ( h 2 ) -c s (-h 2 ) = c R s -c L s = ∆c s .
∂u ∂t = - 1 ρ ∇p + η ρ ∇ 2 u (C.9)

C.2 2D-Lubrication theory

Approximations

Let be a 2d-layer of fluid on top of a substrate, with height h(x, t), with average h 0 . The typical length of the system L corresponds to the length over which the fluid moves, see We assume the film of fluid is thin compared to the typical distance L and define ratio ϵ ≡ h 0 L ≪ 1. The projected velocities u x and u y can be compared in magnitude as

|u y | |u x | = h 0 /T L/T = ϵ
The velocity field u ≃ (u x , 0) can be considered as unidirectional, in the direction x.

Comparing the inertial and viscous terms gives

ρ|u.∇u| η|∇ 2 u| ≃ ρU 2 /L ηU/h 2 0 = ϵRe ≪ 1 (C.10)
This is the so called lubrication hypothesis.

Velocity field

Using the lubrication hypothesis, one can write the unidirectional Stokes equation in the stationary state from Eq. (C.9)

(∂ t u = 0) 0 = - ∂p(x, y, t) ∂x + η ∂ 2 ∂x 2 u x + ∂ 2 ∂y 2 u x (C.11a) 0 = - ∂p(x, y, t) ∂y + η ∂ 2 ∂x 2 u y + ∂ 2 ∂y 2 u y (C.11b)
From the first equation Eq. (C.11a), one has 

|∂ 2 x u x | |∂ 2 y u x | ≃ U/L 2 U/h 2 0 = ϵ 2 thus (∂ 2 x u x ) ≪ 1
= 0) = 0; u(y = h) = U that gives u x (x, y, t) = - ∂ x p(x, t) 2η y [y -h(x, t)] + U y h(x, t) (C.13)
which is a Poiseuille-Couette flow.

Poiseuille Flow

On may calculate the flow Q x per unit length, given by the integral of all velocities over height h

Q x = h(x,t) 0 u x (x, y, t)dy = h ūx (C.14)
with ūx it the average velocity at position x. Using Eq. (C.13), one gets

Q x = -κ v ∂ x p(x, t) + U h 2 (C.15)
The term κ v = h 3 12η corresponds to a hydrodynamic friction. The mass balance of flows over a small length dx during time dt reads

[Q x (x) -Q x (x + dx)]dt = [h(x + dx) -h(x)]dx ⇔ -dQ x .dt = dh.dx thus ∂h ∂t = - ∂Q x ∂x (C.16)

Reynolds equation

Finally, using Eqs (C.15) in (C.16), one finally gets

∂h ∂t = ∂ ∂x h 3 12η ∂ x p -U h 2 (C.17)
In thin film theories, Eq. (E.1) assumes that the boundary velocity U is zero, and that the height and pressure have been rescaled : h = h/L, p = p/p 0 , x = x/L, t = t/τ, with time τ = 12η p 0 and gives

∂ h ∂ t = ∂ ∂ x h3 ∂ p ∂ x (C.18)
wichi is the Reynolds equation [Reynolds, 1886a,b]. where j a is constant, and χ 2 s (t) = ξ 2 s /ℓ 2 (t). This equation is similar to the heat equation, with source term (j a ) and radiative term (c(x, t)). However, it can be shown that the concentration is time-independent, so we reduce to the stationary case. The stationary differential equation reads -χ 2 s (t)

∂ 2 c(x) ∂x 2 + c(x) = j a (D.4)
where χ 2 s (t) = ξ 2 s /ℓ(t) 2 . A particular solution is c(x) = j a . The boundary conditions are given by :

c(x = - 1 2 ) = δC 1 = µ 1 N 1 L 2 1 -1 (D.5a) c(x = 1 2 ) = δC 2 = µ 2 N 2 L 2 2 -1 (D.5b)
Finally, the solution is

c(x, t) = j a -(δC 1 -j a ) sinh x-1 2 χ s (t) sinh(1/χ s (t)) + (δC 2 -j a ) sinh x+ 1 2 χ s (t) sinh(1/χ s (t)) (D.6)

D.2.2 Solution of pressure equation in the intercellular space

The normalized equation is

χ 2 v (t) ∂ 2 p(x) ∂x 2 = p(x) -c(x) (D.7) where χ 2 v (t) = ξ 2 v /ℓ(t) 2 .
For simplicity, we will assume χ v to be constant in time. Boundary conditions are imposed by

p(x = - 1 2 ) = δP 1 (D.8a) p(x = 1 2 ) = δP 2 (D.8b)

Homogenous solution

Solution of the homogenous equation is p H (x) = λ 0 e x/χ v + µ 0 e -x/χ v (D.9) with λ 0 , µ 0 integration constants.

Particular solution

Determination of the functions λ(x), µ(x) The solution of the particular solution is given by the parameter variation method : we want to find the two functions λ(x) and µ(x) such that

p(x) = λ(x)e x/χ v + µ(x)e -x/χ v
is a solution of Eq. (D.7). Differentiating the particular solution, we have

p ′ (x) = λ(x) χ v e x/χ v - µ(x) χ v e -x/χ v (D.10)
where we have arbitrarily set

λ ′ (x)e x/χ v + µ ′ (x)e -x/χ v = 0 (D.11)
Differentiating again, injecting the solution into (D.7), we find another equation

λ ′ (x)e x/χ v -µ ′ (x)e -x/χ v = - c(x) χ v (D.12)
So that we have a system of equations with (D.11) and (D.12). Solving it for λ ′ (x), µ ′ (x), we find

λ ′ (x) = -c(x) 2χ v e -x/χ v µ ′ (x) = + c(x)
2χ v e x/χ v (D.13) thus, we have, in integral form, the functions λ(x) and µ(x), where we the lower bounds of the integrals are free constants that will be determined by the boundary conditions (D.8a), (D.8b)

λ(x) = λ a + x a dyE -(y) µ(x) = µ b + x b dyE + (y) (D.14)
and we introduced the notation

E ± (x) = ± c(x) 2χ v e ±x/χ v (D.15)

Boundary conditions

The equation for p becomes

p(x) = [λ a + λ(x)] e x/χ v + [µ b + µ(x)] e -x/χ v (D.16)
where we have redefined λ 0 + λ a → λ a , µ 0 + µ b → µ b . Imposing boundary conditions (D.8a), (D.8b), we have

δP 1 = λ a + λ(- 1 2 ) e -1/2χ v + µ b + µ(- 1 2 ) e 1/2χ v (D.17a) δP 2 = λ a + λ( 1 2 ) e 1/2χ v + µ b + µ( 1 2 ) e -1/2χ v (D.17b)
then, we calculate (D.17a).e 1/2χ v -(D.17b)e -1/2χ v and (D.17a).e -1/2χ v -(D.17b).e 1/2χ v , we have 2 sinh( 1

χ v )µ b = δP 1 e 1/2χ v -δP 2 e -1/2χ v + λ( 1 2 ) -λ(- 1 2 ) + µ( 1 2 )e -1/χ v -µ(- 1 2 )e 1/χ v (D.18a) -2 sinh( 1 χ v )λ a = δP 1 e -1/2χ v -δP 2 e 1/2χ v + µ( 1 2 ) -µ(- 1 2 ) -λ(- 1 2 )e -1/χ v + λ( 1 2 )e 1/χ v (D.18b) Injecting into the equation of p p(x) = - δP 1 sinh x-1 2 χ v sinh(1/χ v ) + δP 2 sinh x+ 1 2 χ v sinh(1/χ v ) + λ(x)e x/χ v + µ(x)e -x/χ v + + 1 2 sinh(1/χ v ) λ(- 1 2 ) e (x-1) χv -e -x χv + λ( 1 2 ) e -x χv -e x+1 χv +µ(- 1 2 ) e x χv -e -(x-1) χv + µ( 1 2 ) e -x+1 χv -e x χv
Choosing now the constants a = 1 2 and b = -1 2 , so that λ(1/2) = µ(-1/2) = 0 and we obtain

p(x) = - δP 1 sinh x-1 2 χv sinh(1/χ v ) + δP 2 sinh x+ 1 2 χv sinh(1/χ v ) + λ(x)e x/χv + µ(x)e -x/χv + e -1/2χv sinh 1/χ v λ( -1 2 ) sinh x -1 2 χ v -µ( 1 2 ) sinh x + 1 2 χ v (D.19)
Explicit calculation of λ(x) and µ(x) We introduce the notations

s 1 ≡ sinh 1 χ s ; c 1 ≡ cosh 1 χ s (D.20) and s ± (x) ≡ sinh x ± 1 2 χ s ; c ± (x) ≡ cosh x ± 1 2 χ s (D.21)
The function λ(x) and µ(x) may be calculated analytically, and we have

λ(x) = x 1 2 E -(y)dy = x 1 2
-c(y) 2χ v e -y/χ v dy = j a 2 e -x/χ ve -1/2χ The denominator is not defined for χ v = χ s , so we calculate the functions I ± 1,2 for χ s = χ v = X I -1 (x) = 

D.3 Fluxes

We calculate the instantaneous fluxes J s i and J v i from the solutions of the steady-state profiles c(x) and p(x). We recall that χ s,v = ξ s,v ℓ with ℓ the length of the bridge.

D.3.1 Solute fluxes

The (non-dimensionalized) solute boundary fluxes J s 1,2 are given by the concentration c So that is J s (x) > 0, the flow goes in the positive-x direction (a negative gradient, so higher concentration on the left than on the right, gives a positive flux).

   J s 1 (t) = -

D.3.2 Solvent fluxes

The (non-dimensionalized) solvent boundary fluxes J v 1,2 are given by the pressure p

   J v 1 = -ξ 2 v ℓ(t) ∂ x p(x)| x=-1 2 J v 2 = ξ 2 v ℓ(t) ∂ x p(x)| x= 1 2 (D.27)
The differentiate of p wrt x is

∂ x p = - δP 1 cosh
x- 

χ v sinh 1/χ v λ(-1/2) cosh x -1 2 χ v -µ(1/2) cosh x + 1 2 χ v (D.28) so J v 1 = ξ v coth 1 χ v δP 1 -λ (-1/2) e -1/2χ v - 1 sinh(1/χ v )
δP 2µ (1/2) e -1/2χ vλ (-1/2) e -1/2χ v (D.29a)

J v 2 = ξ v coth 1 χ v δP 2 -µ (1/2) e -1/2χ v - 1 sinh(1/χ v )
δP 1λ (-1/2) e -1/2χ vµ (1/2) e -1/2χ v (D.29b) If J v i > 0, this means that the lumen is loosing fluid (outgoing flux), while if J v i < 0, it is pumping fluid (ingoing flux). Additionnaly, we have the hydraulic flux along the intercellular space

J v (x) = - ξ 2 v ℓ ∂ x p(x) =ξ v     δP 1 -λ(-1/2)e -1/2χ v cosh x-1 2 χ v sinh(1/χ v ) -δP 2 -µ(1/2)e -1/2χ v cosh x+ 1 2 χ v
sinh(1/χ v ) + -λ(x)e x/χ v + µ(x)e -x/χ v So that is J v (x) > 0, the flow goes in the positive-x direction.

In the following, we will use λ(- , and we will assume that the lenghts are adimensionalized (with no bars).

D.4 Total Fluxes

D.4.1 Analytical formulas

We define the total fluxes as

J s = J s 2 -J s 1 ; J v = J v 2 -J v 1 (D.30)
so that if there is an incoming hydraulic flux towards 2 (J v 2 < 0) and outgoing hydraulic flux from lumen 1 (J v 1 > 0), the total hydraulic flux is negative (J v < 0) and goes from 1 to 2.

Osmotic flux

Derivation of the total osmotic flux is quite straightforward : 

J s = ξ s (δC 2 -j a ) coth 1 χ s -(δC 1 -j a ) 1 sinh(

Hydraulic flux

Using the expressions (4.27b) and (4.27b), we get

J v = ξ v ∆P coth( 1 χ v ) + 1 sinh(1/χ v ) + (λ -1 2 -µ 1 2 ) coth( 1 χ v ) + 1 sinh(1/χ v )
+ 1 e -1/2χ v and we denote that coth 1 χ v + 1 sinh 1/χ v = coth 1 2χ v , and coth( 1 2χ v ) + 1 e -1/2χ v = sinh 1 2χ v -1 . Besides, we have

λ -1 2 -µ 1 2 = δC 1 -j a 2χ v sinh 1 χ s I - 1 (- 1 2 ) + I + 1 ( 1 2 ) - δC 2 -j a 2χ v sinh 1 χ s I - 2 (- 1 2 ) + I + 2 ( 1 2 ) 
with )χ v e -1/2χv

I - 1 (- 1 2 ) + I + 1 ( 1 2 ) = χ v χ s χ 2 v -χ 2 s e 1/2χv χ v c -(- 1 2 ) + χ s s -(- 1 2 ) -χ v e -1/2χv + e 1/2χv χ v c -( 1 2 ) -χ s s -( 1 2 ) -e -1/2χv [χ v c 1 + χ s s 1 ] = χ v χ s χ 2 v -χ 2 s e 1/2χv [χ v c 1 -χ s s 1 ] -χ v e -1/2χv + χ v e
= 2χ v χ s χ 2 v -χ 2 s χ v [1 + c 1 ] sinh 1 2χ v -χ s s 1 cosh 1 2χ v = I - 1 (- 1 2 ) + I + 1 ( 1 2 ) thus λ -1 2 -µ 1 2 = δC 1 -j a 2χ v sinh 1 χ s I - 1 (- 1 2 ) + I + 1 ( 1 2 ) - δC 2 -j a 2χ v sinh 1 χ s I - 1 (- 1 2 ) + I + 1 ( 1 2 ) = δC 2 -δC 1 sinh 1 χ s χ s χ 2 v -χ 2 s χ v (1 + c 1 ) sinh 1 2χ v -χ s s 1 cosh 1 2χ v = ∆C.Λ(χ s , χ v )
leading to

J v = ξ v ∆P. coth 1 2χ v + ∆C. 1 sinh( 1 2χ v )
.Λ(χ s , χ v ) (D.31)

with ∆P = P 2 -P 1 , ∆C = δC 2 -δC 1 and the function Λ(χ s , χ v ) as

Λ(χ s , χ v ) = 1 sinh 1 χ s χ s χ 2 v -χ 2 s χ s s 1 cosh 1 2χ v -χ v (1 + c 1 ) sinh 1 2χ v
In the special case where χ s = χ v = χ, the function Λ reduces to

Λ(χ) = 1 -χ sinh( 1 χ ) 2χ sinh( 1 χ ) cosh 1 2χ

D.4.2 Zero flux conditions

The osmotic flux is zero if and only if J s = 0 ⇔ ∆C = 0 (D.32) since χ s > 0 ⇒ ξ s coth 1 2χ s > 0. We note that coth( 1 2χ s ) ∼ χ s →0

1.

The hydraulic flux is zero if and only if

J v = 0 ⇔ ∆P = ∆C.Γ(χ s , χ v ) (D.33)
where

Γ(χ s , χ v ) = - Λ(χ s , χ v ) cosh 1 2χ v (D.34)

D.4.3 Full System

The general solution of the system is where

τ v dL 1 dt = µ 1 ν 1 µ 1 N 1 L 2 1 -1 - ϵ 1 L 1 - µ 1 2L 1 (t) J v
δP j = Γ j π 0 A 1/2 j = ϵ j L j (D.36a) δC j = C j -1 = N j A j c 0 -1 = µ j N j L 2 j -1 (D.36b)
Parameters χ s (t) and χ v (t) are adimensionalized coefficients that compare the length of the cleft ℓ(t) to the associated screening length (ξ s,v ). For χ s,v ≪ 1, the fluid/solute exchanges are screened because of leaks from the sides. Conversely, χ s,v ≫ 1 means that fluid/solute exchanges are possible and there are few leaks, so that most of the fluid/solute is exchanged between the two lumens.

D.5 Lumens with cadherin proteins

For the sake of interest, we discuss a case in which the contact tension γ c may vary with cadherin density. Indeed, as a the bridge between two lumens shortens, the density of adhesion molecule increases, as observed in Chapter 3. However, the energy associated with the adhesion process, E cadh is conserved. Thus, we write the equations for a 2-lumen system assuming the tension γ c is time dependent. We express the system as function of the contact angles θ ij , area A i and number of ions N i .

Force balance

We suppose now that the contact tension γ c of a bridge depends on the cadherin density, as :

γ c (t) = E cadh ℓ(t) (D.37)
where E cadh is the energy density per unit length and ℓ(t) is the length of the bridge. The force balance for lumen i can be expressed as

θ ij (t) = arccos E cadh 2γ i ℓ(t) (D.38)
As ℓ decreases, the contact angle increases, since cadherin density increases the contact tension.

Mass balance

The mass balance is given by

dA i dt = 4θ ij (t)R i λ v [RTδC i -δP i ] -J v i (D.39) where R i = A i 2θ ij -sin 2θ ij , δP i = γ i R i , δC i = C i -c 0 = N i
A ic 0 , which gives where τ s = c 0 √ A 0 λ s RT , Js i = τ s A 0 c 0 J s i and ja = j a λ s RT . For multiple lumens, i.e. more than 3 lumens, the contact angles can be different between the left and roght side of a lumen. This breaks the implicit assumption of left-right assymetry, based on the single radius of curvature R i and the expression of Laplace's pressure

dA i dt = 4θ ij (t) A i 2θ ij -sin 2θ ij λ v   RT N i A i -c 0 - γ i 2θ ij -sin 2θ ij √ A i   -J v i (D.
δP i = γ R i . ∂h ∂t = ∂ ∂x h 3 ∂p ∂x (E.1)
with p the pressure generated by the surface tension due to the local curvature of the film, see Appendix C for the derivation. The equation (E.1) is called the Reynolds equation and describes the evolution of a film's height with pressure gradients [Reynolds, 1886a,b;[START_REF] Glasner | Collision versus collapse of droplets in coarsening of dewetting thin films[END_REF]. The derivation of the Reynolds equation can also be obtained from the Cahn-Hilliard model [START_REF] Pahlavan | Thin films in partial wetting: Stability, dewetting and coarsening[END_REF]. The hydrodynamic pressure p is given by p(x, t) = P dis (h) -∇ 2 h, where the Laplacian term accounts for the local curvature of the film and P dis is the so-called disjoining pressure that arises from molecular forces, and accounts for the attracting and repulsive forces between two surfaces [START_REF] Gennes | Wetting: Statics and dynamics[END_REF][START_REF] Joanny | Upward creep of a wetting fluid : a scaling analysis[END_REF]. Different forms of the disjoining pressures have been proposed in the framework of dewetting thin films [START_REF] Mitlin | Nonlinear dynamics of dewetting: kinetically stable structures[END_REF][START_REF] Schwartz | Hysteretic effects in droplet motions on heterogeneous substrates: Direct numerical simulation[END_REF][START_REF] Bertozzi | Dewetting films: Bifurcations and concentrations[END_REF], and give the steady-state height of the Reynolds equation at constant pressure p(x) = p [START_REF] Bertozzi | Dewetting films: Bifurcations and concentrations[END_REF][START_REF] Glasner | Collision versus collapse of droplets in coarsening of dewetting thin films[END_REF], such that d 2 h dx 2 = P dis (h) -p (E.2)

A single drop profile can be approximated by a parabolic solution [Glasner andWitelski, 2003, 2005]

h(x, p) ≃ p 2 (L 2 -x 2 ) , |x| < L h min , |x| > L (E.3)
where L is the half-length of the droplet and h min → 0 is the height of the precursor film, see Fig. Using the Laplace's law Eq. (2.1), the pressure is of order p ∼ 1/L, thus the mass of a droplet is of the same order as the droplet area m drop (L) ∼ L 2 ∼ p -2 . In the following, the mass exchange process will be considered as analoguous to area exchange. Dynamically, the drop exchanges mass -or area -with the precursor. Recalling the Reynolds equation Eq. (E.1), we identify the hydraulic flux J using the continuity equation

∂h ∂t = - ∂ ∂x J ⇔ J = -h 3 ∂p ∂x (E.5)
The value of L dis is defined in the config file. We choose L dis = 0.1 in order to avoid divergence of the concentration when a lumen shrinks. When a lumen collapses, it is removed from the graph, as well as the bridges that connected it. Its two neibghbors are connected via a new bridge, but they do not move.

2. We then check whether lumens touche borders. If a lumen i overlaps the border, it will be pushed towards the center. This is done by checking the length of the bridge between the lumen i and the border, considered as a lumen. Assuming the lumen i touches the left border (0), the new position x ′ i of the center of mass of the lumen is moved towards the center if

ℓ 0i < 0 ⇒ x ′ i = x i + ℓ 0i (F.6)
3. Finally, we detect collisions between lumens. Two colliding lumens merge together, forming a new lumen. A collision between lumens i, j is detected when

ℓ ij ≤ ℓ merge (F.7)
where ℓ merge is a length that is defined in the config file. We usually choose ℓ merge = 10 -3 . When a collision occurs, a new lumen is created, while lumens i, j are deleted from the graph. The center of mass of the new lumen k is given by the barycenter of the two lumens :

x k = x i A i + x j A j A i + A j (F.8)
where x is the position and A the area (equivalent to mass) of a lumen. The area of lumen k conserves the total area :

A k = A i + A j (F.9)
and its length is calculated accordingly. If the lumen is HO, its total number of ions is conserved :

N k = N i + N j (F.10)
Finally, if a profile of active pumping is imposed, the new active pumping j a k is given by the position x k . Otherwise, it is the sum of the active pumping constants of merging lumens, j a k = j a i + j a j . New bridges between neighbors of lumens i and j are created and their lengths are given by L k and x k . Since multiple lumens could merge at the same time, a loop detects whether there are still collisions occuring after the merge of the lumens and redefinition of the graph.

At the end of the topological check, the algorithm checks wheter stop conditions are fulfilled. Usually, the integration is stopped when N(t) ≤ 1, or if one lumen occupies the whole chain. which gives

N c N 0 = (1 + ϵ c )(1 -ρ 3 ) N ℓ N 0 = ρ 3 1 + ϵ c + ϵ ℓ ρ
Thus, injecting this back in concentrations gives the non-dimensionalized system

d Rc d t = (1 + ϵ c )(1 -ρ 3 ) R3 c -ρ 3 R3 ℓ -Cout - ϵ c Rc (G.11a) d Rℓ d t = τ c ρτ ℓ 1 + ϵ c + ϵ ℓ ρ R3 ℓ - (1 + ϵ c )(1 -ρ 3 ) R3 c -ρ 3 R3 ℓ - ϵ ℓ ρ Rℓ (G.11b)

Steady-state

The steady-state radii are obtained recognizing Cc = (1+ϵ c )(1-ρ 3 ) R3 c -ρ 3 R3 ℓ in both equations, which leads

(1 + ϵ c )(1 -ρ 3 ) R3 c -ρ 3 R3 ℓ = Cout + ϵ c Rc 1 + ϵ c + ϵ ℓ ρ R3 ℓ = Cout + ϵ c Rc + ϵ ℓ Rℓ
Assuming the hydrostatic pressure term is small compared to the concentration ( Cout ≫ • At low valence z c → 0 the impermeant specie tends to the maximum concentration 2C 0 .

• At large valence z c → ∞, the impermeant concentration tends to zero, which is the assumption of [START_REF] Hoppensteadt | Control of Cell Volume and the Electrical Properties of Cell Membranes[END_REF]. 

H.2 Non dimensionalization

We introduce the quantities where we introduced the times and the steady-state (non-dimensionalized) volume is given as

V 0 ≡ 4 3 π(R 0 ) 3 ; u 0 ≡ RT F ; x 0 = 2C 0 V
τ c v = V 0 2Λ c RTC 0 ; τ c P = 2C 0 V 0 p c τ c N = F 2C 0 V 0 g c N u 0 = 2C 0 V 0 F 2 g c N RT ; τ c K = F 2C 0 V 0 g c K u 0 ; τ c C = F 2C 0 V 0 g c C u
( Vc ) * = z c xc (1 + d 0 ) 2 -2β c (H.18)
Thus, γ c is given by

γ c = 1 + d 0 -(1 + d 0 ) 2 -2β c (H.19)
Finally, the steady-state membrane potential difference is given by (∆ Φc ) * = log γ c (H.20) , where we plotted the relaxation of a cell from identical initial conditions, with three different valences of the impermeant species in both the Peskin limit and the general case. As predicted, the large valence Peskin limit z c = 100 coincides with the general case, but as the valence decreases to z c = 1, 10, the curves strongly deviates, most strikingly for the potassium concentration at z c = 1. When there is no pumping, β c (0) = N0 + K0 = 1 2 . The external concentration d 0 > 0 allows for a new region of stability for the cell, in which the condition dβ c dp c < 0 (Hoppenstadt) can be relaxed, see Fig. 6.5. This figure shows that the cell is bursting for β c > β c * , and is stable otherwise. The optimal pumping rate is found such that one immediately finds that at the optimal pumping rate, dβ c dp c = 0, so this is an extremum for the steady-state volume.

We express the variation of steady-state volume as functions of parameters p c and d 0 . Introducing Vc * = (V c ) * 2C 0 (1+z c )X c , the variation of the non-dimensionalized volume are The second equation is always strictly negative, since the denominator is strictly positive for an nonbursting cell, and d 0 ≥ 0, meaning that for increasing external concentration d 0 , the steady state volume tends to 0. Moreover, the steady-state volume tends to zero as : Note that this asymptotic is also found in a simpler model, that we recall here : a single cell with nondimensionalized radius Rc and internal concentration cin (t) in a medium with concentration cout (t) = 1 + d 0 . Neglecting the surface tension, one gets that the cell acts as a perfect osmometer such that

Vc * = 1 (1 + d 0 ) 1 -2β c
d Rc d t = 1 Rc 3 (t) -cout (t) (H.34)
The steady state is found to be ( Rc 3 ) * ∼ 1 cout , thus at large d 0 , one finally gets the asymptotics 

H.4.2 Cell with surface tension

We now assume that the osmotic pressure is not large enough compared to the Laplace pressure. The volume control equation, Eq. (H.4), can be non-dimensionalized as

d Vc d t = Nc + Kc + Cc + 1 Vc -(1 + d 0 ) - ϵ ( Vc ) 1/3 (H.36)
• When d 0 > 0, the zero-growth velocity is given by a similar equation U( Rc ; d 0 ) = 0 ⇔ R3 c (1 + d 0 ) + Rc 2 -R2 B = 0 Again, it has a positive and negative part, and the solution of this third-order equation corresponds to a stable steady-state.

A B FIGURE H.8: (A) Growth velocity versus non-dimensionalized radius. Three cases are illustrated, depending on RB and d 0 . (B) Radius evolution for two cases of RB = 0, 1 (and d 0 = 0). The same initial radii are considered, Rc (0) = 0.5, 1, 2. On the top, the radii shrink to zero as no osmotic pressure within the cell compensate the Laplace pressure due to the surface tension ( RB = 0). On the bottom, osmotic pressure and Laplace pressure compensate at the stable steady-state radius ( Rc ) * ≃ 0.75, indicated by the black line.

H.4.3 Osmotic shocks

Dextran osmotic shock

One may apply osmotic shocks using an uncharged specie as the introduced solute. Assuming this is Dextran, sucrose, glycose, its variation in concentration is given by the parameter d 0 ( t) which is now a time-dependent variable. Thus, only the volume conservation equation is modify to account variations of this external concentration. We show in Fig. H.9 an example of hyper-osmotic shock, where dextran is added in the external medium at time t = 20 with d 0 = 0.1.

Osmotic shock using NaCl or KCl

One may produce an osmotic shock using KCl or NaCl. This would change the external conditions N0 , K0 , C0 to new ( N0 ) ′ , ( K0 ) ′ , ( C0 ) ′ , such that the ODE for volume becomes 

RÉSUMÉ

Les cavités biologiques, ou lumens, sont omniprésentes dans les organismes multicellulaires : elles assurent le transport de fluides, apparaissent pendant certains cancers ou durant le développement embryonnaire, mais les mécanismes physiques expliquant leur formation sont encore peu élucidés. La première cavité biologique chez les mammifères est le blastocèle, qui émerge durant le développement préimplantatoire au stade 32 cellules. Le blastocèle brise la symétrie radiale de l'embryon, lui permet d'éclore de la zone pellucide et de s'implanter dans l'endomètre. Cette thèse vise à proposer des mécanismes physiques expliquant l'apparition du blastocèle chez la souris et le contrôle de sa taille. Tout d'abord, je montre qu'au stade 32 cellules, l'accumulation de fluide pressurisé fracture les contacts cellulaires et forme un réseau de microcavités. En postulant un modèle hydraulique, je montre que l'émergence du blastocèle pourrait être attribuée à l'échange de fluide entre microcavités, dans un processus de mûrissement similaire au mûrissement d'Ostwald. Ce modèle est suffisant pour expliquer la position biaisée du blastocèle au sein de l'embryon grâce aux différences de contractilité des cellules. J'étends ensuite le modèle pour inclure les effets de perméation et de gradients osmotiques. Je montre sur une chaîne de microcavités 1D que la dynamique est principalement contrôlée par les effets hydrauliques qui dominent les contributions osmotiques. Ce modèle est réminiscent des films de démouillage et prédit l'existence d'une loi de puissance dynamique pour le régime de mûrissement. De plus, l'ajout d'un pompage actif de soluté enrichit la dynamique du modèle et prédit un nouveau régime dominé par la coalescence, ainsi qu'un biais dans la position du blastocèle sous pompage spatialement hétérogène, un mécanisme de positionnement complémentaire aux gradients de contractilité. Enfin, j'étudie les mécanismes biophysiques qui contrôlent la taille d'une cavité biologique, en particulier le blastocèle de souris. D'une part, je détermine les effets de chocs osmotiques sur ce système enfermé dans une coquille élastique, comme la zone pellucide, afin de déterminer les caractéristiques mécaniques de la coquille. D'autre part, je généralise le modèle de pompe-fuite pour le contrôle de volume cellulaire à trois compartiments (extérieur, cellule, lumen), en incluant les espèces chargées majoritaires (sodium, potassium, chlorure), le potentiel électrochimique et le potentiel de membrane. Je montre que la stabilité de la cavité dépend de la présence de protéines chargées imperméables et des taux de pompage cellulaire et luminal. Ces modèles physiques mettent en lumière le rôle essentiel des écoulements hydrauliques et du contrôle électroosmotique dans le développement, avec de nombreuses applications au-delà de l'embryogenèse.

ABSTRACT

Biological cavities, or lumens, are ubiquitous in multicellular organisms. They provide fluid transport, appear during certain cancers or embryonic development, but the physical mechanisms explaining their formation are still poorly understood. The first biological cavity in mammals is the blastocoel, which emerges during preimplantation development at the 32-cell stage. The blastocoel breaks the radial symmetry of the embryo, allows it to hatch from the zona pellucida for implantation into the endometrium. This thesis proposes physical mechanisms explaining the appearance of the blastocoel in mice and the control of its size. First, I show that at the 32-cell stage, the accumulation of pressurized fluid fractures the cell contacts and forms a network of microcavities. By postulating a hydraulic model, I show that the emergence of the blastocoel could be attributed to the exchange of fluid between microcavities, in a coarsening process similar to Ostwald ripening. This model is sufficient to explain the biased position of the blastocoel within the embryo through differences in cell contractility. I then extend the model to include the effects of permeation and osmotic gradients. I show on a chain of 1D microcavities that the dynamics are mainly controlled by hydraulic effects which dominate over osmotic contributions. This model is reminiscent of de-wetting films and predicts the existence of a dynamic power law for the coarsening regime. Moreover, the addition of active solute pumping enriches the dynamics of the model and predicts a new regime dominated by coalescence, and predicts that the position of the blastocoel may be biased by spatially heterogeneous pumping, a positioning mechanism complementary to the contractility gradients. Finally, I study the biophysical mechanisms that control the size of a biological cavity, and in particular the mouse blastocoel. On the one hand, I study the effects of osmotic shocks on this system enclosed in an elastic shell, such as the zona pellucida, to determine the mechanical characteristics of the shell. On the other hand, I generalize the pump-leak model of cell volume control to three-compartment (exterior, cell, lumen), including the main charged species (sodium, potassium, chloride), the electrochemical potential, and the membrane potential. I show that cavity stability depends on the presence of impermeable charged proteins and cellular and luminal pumping rates. These physical models highlight the essential role of hydraulic flows and electroosmotic control in development, with many applications beyond embryogenesis.
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FIGURE 1 . 1 :

 11 FIGURE 1.1: An epithelial cell with characteristic domains: apical-lateral-basal and associated proteins. PAR-3,6/aPKC and Scrible/PAR-1 are useds as marker of apical and basal domains, and ZO-1 for tight-junctions proteins (TJ).

FIGURE 1 . 2 :

 12 FIGURE 1.2: Examples of apical-in lumens. (A) MDCK cells (red: apical/actin, green: basolateral/p58, blue: nuclei/DAPI) [O'Brien et al., 2002]; (B) Organoid of a snake venomous gland (blue: apical/actin, green: tubulin, red: nuclei/DAPI) [Post et al., 2020]; Amniotic cavity in embryonic stem cells (red: apical/PAR6, blue: nuclei/DAPI) [Kim et al., 2021]. (D) Zebrafish gut (red: apical/actin, blue: nuclei/DAPI) [Alvers et al., 2014].

FIGURE 1 . 3 :

 13 FIGURE 1.3: Cysts in culture medium. (Left) Apical-in cyst, with the apical membrane (a) facing the fluid-filled lumen, sealed by tight junctions (TJ); the basolateral (bl) domain is facing the extracellular matrix (ECM). (Right) Apical-out (inverted) cyst, with basolateral domain facing the lumen, here filled with ECM, while the apical domain faces the suspension medium. The inverted cyst is sealed by TJ. In both cases, the nuclei are opposite to the apical membrane.Adapted from[START_REF] Yonemura | Differential sensitivity of epithelial cells to extracellular matrix in polarity establishment[END_REF] 

FIGURE 1 . 5 :

 15 FIGURE 1.5: Enteroids form apical-out organoids. (A) Schematic of basal-out and apical-out spheroids. (B) Contrast microscopy (scale-bar 500 µm). (C) Confocal microscopy (red : betacatenin, green: ZO-1, blue: nuclei, white: actin). (A-C) From [Co et al., 2019]. (D) Normal (control) versus abnormal (patient) polarity in intestinal cells. From [Bigorgne et al., 2014].

FIGURE 1 . 7 :

 17 FIGURE 1.7: The four types of blastula. Blastomeres are represented in orange, yolk in yellow. In clockwise order: (A) Coeloblastula: (B) Cnidarian Clytia hemisphaerica[START_REF] Kraus | Cell shape changes during larval body plan development in Clytia hemisphaerica[END_REF], (C) Mammals mouse[START_REF] Dumortier | Hydraulic fracturing and active coarsening position the lumen of the mouse blastocyst[END_REF], (D) Amphibian Xenopus laevis[START_REF] Longo | Multicellular computer simulation of morphogenesis: Blastocoel roof thinning and matrix assembly in Xenopus laevis[END_REF]; (E) Stereoblastula: (F) Spiralia Maritigrella crozieri[START_REF] Rawlinson | Embryonic and post-embryonic development of the polyclad flatworm Maritigrella crozieri; implications for the evolution of spiralian life history traits[END_REF], (G) Hydrozoa Gonothyraea loveni[START_REF] Burmistrova | Embryonic development of thecate hydrozoan Gonothyraea loveni (Allman, 1859)[END_REF], (H) Porifera (sponge) Petrosia ficiformis[START_REF] Maldonado | Gametogenesis, embryogenesis, and larval features of the oviparous sponge Petrosia ficiformis (Haplosclerida, Demospongiae)[END_REF]; (I) Discoblastula: (J) Fish Misgurnus anguilicaudatus[START_REF] Fujimoto | Developmental stages and germ cell lineage of the loach (Misgurnus anguillicaudatus)[END_REF], (K) Avians[START_REF] Pilato | The problem of the origin of primordial germ cells (PGCs) in vertebrates: Historical review and a possible solution[END_REF], (L) Monotremes Palyptus[START_REF] Thomson | The Development of the Monotremata.-Part VI. The Later Stages of Cleavage and the Formation of the Primary Germ-layers[END_REF]; (M) Periblastula: (N) Insect Drosophila melanogaster[START_REF] Großhans | Control of Cleavage Cycles in Drosophila Embryos by frühstart[END_REF], (O) Acaria longisetosus[START_REF] Laumann | First cleavages, preblastula and blastula in the parthenogenetic mite Archegozetes longisetosus (Acari, Oribatida) indicate holoblastic rather than superficial cleavage[END_REF] .

  FIGURE 2.4: Cell volume control. (A) Schematic of a single cell with semi-permeable membrane (AQP proteins), surface tension γ, radius R c and inner concentration c in . (B) Dynamic Cell volume response to hypo-and hyper-osmotic shocks according to Eq. 2.31with ∆P/∆Π = 10 -2 . The outside concentration increases (resp. decreases) by 25%. and the cell shrinks (resp. swells) by 8% (resp 10%). (C) Boyle-van't Hoff plot illustrating the perfect osmometer behavior of mouse blastocysts with or without zona pellucida. From[START_REF] Mazur | Osmotic responses of preimplantation mouse and bovine embryos and their cryobiological implications[END_REF]].

FIGURE 2 . 6 :

 26 FIGURE 2.6: Pump-Leak Model and ion transport. (A) Pump-Leak Model (PLM) for a single cell. Concentrations given by[START_REF] Armstrong | The Na/K pump, Cl ion, and osmotic stabilization of cells[END_REF]. (B) Frog epithelium transport membrane model. (C) PLM for two biological cavities: (left) mouse blastocyst, with apical-out polarity and paracellular leaks of chloride, (right) zebrafish brain ventricle with apical-out polarity, adapted from[START_REF] Günzel | Claudins: vital partners in transcellular and paracellular transport coupling[END_REF].

  FIGURE 2.7: Ostwald ripening and coarsening in biology. (A) Scheme of Ostwald ripening: the number of droplets of oil (o) droplets in suspension in water (w) decreases with time as the surface energy. (B) Several processes are involved in Ostwald ripening: diffusion/fluid exchange driven by Laplace pressure, or fusion (coalescence) of droplets. (C) At the cell level, both processes are implied: (top) fluid exchange in Drosophila egg maturation, from[START_REF] Alsous | Dynamics of altruistic fluid transport in egg development[END_REF] or coalescence of cellular aggregates in reconstituted embryonic tissues of Xenopus, adapted from[START_REF] Gilbert | Developmental Biology, 11Th Edition 2016[END_REF].
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 31 FIGURE 3.1: Schematic of a formed blastocyst. (A) The blastocyst consists of trophectoderm cells (TE) surrounding both the inner cell mass (ICM) and the blastocoel on opposite sides, giving the embryo a first "body" axis: the embryonic-abembryonic axis. (B) Closer view of epithelial TE cells, with apical-out polarity. Tight junctions (TJ) seal the embryo as cadherins ensure tight cell-cell contacts. Sodium pumps, or Na + /K + pumps, actively export Na + in the intercellular space and in the blastocoel creating an osmotic gradient, followed by water flux through aquaporins (AQP) to balance concentrations.

  FIGURE 3.2: Hydraulic fracking in the mouse embryo. (A) Cross-section of the mouse embryo with membrane marker (white), and a magnification below. Hundreds of micronsized cavities appear at cell-cell contacts. Red (resp. blue) arrows show bicellular (resp. multicellular) micro-lumens. The blastocoel is indicated with the purple star. Time is indicated with respect to the formation of the network. Scale bar 10µm. (B) The formation of the micro-cavities reorganizes the cadherin distribution (Cdh1, green). Scales bars are 10µm (top) and 1µm (bottom). (C) Corresponding heterogeneity level of the Cdh1 before (-90 min) and after (+90 min) the micro-lumens are formed.

  FIGURE 3.3: Ouabain and external osmotic load inhibit of the formation of micro-lumens. (A) Injection of 175mM sucrose imposes an osmotic load that compensates the osmotic gradient before the micro-lumen form. (B) Ouabain blocks the activity of Na + /K + -pumps and the formation of the micro-lumen network. Scale bars 10µm.

  FIGURE 3.4: Cell adhesion can direct blastocoel position. (A) Principle of chimera experiment: three embryos are split in half at the 4-cell stage, and then recombined, to form wild type/wild type (WT) or wild type/mutant (mCdh1) chimeras. (B) (Left) WT-WT chimera exhibiting no bias in blastocoel position. (Right) WT-mCdh1 chimera showing a clear bias of the blastocoel position in the mutant population. Scale bar 10µm. From [Dumortier et al., 2019].

  FIGURE 3.6: A simple network evolution. Lumen 2 becomes bridge 0, then lumen 4 disappears but the link between bridge 0 and lumen 5 still exists.

  FIGURE 3.8: Example of coarsening dynamics of a network of micro-lumens. (A) Example of a hexagonal network. TE cells are in green, ICM cells are in blue. Red circles are the TE-ICM lumens, blue circles are the ICM-ICM lumens. (B) Typical area dynamics of the network. Each curve corresponds to a lumen in the network shown in panel A. (C) Averaged dynamics of a hexagonal network as encapsulated. The losing lumens (orange) collectively grow (swelling phase) and then collapse (discharge phase). Only the final cavity (purple) grows.

  FIGURE 3.10: Effect of tension on the direction of hydraulic flux. (A) Phase diagram for the fluid flow between two lumens as a function of their tension asymmetry δ and area asymmetry β. Adhesive contact tension is γ c = 1. (B) Phase diagram for the fluid flow between two lumens as a function of their adhesive contact tension asymmetry Γ and area asymmetry β. Tension is γ = 1. (C) Phase diagram for the direction of the fluid flux between two lumens as function on the area asymmetry β = A 2 -A 1A 2 +A 1 , lumen tension asymmetry δ = γ 2 -γ 1 γ 2 +γ 1 and adhesive contact tension asymmetry Γ = γ c2 -γ c1 γ c2 +γ c1 . The volume below the purple surface correspond to parameters such that the fluid flux goes from lumen 1 to lumen 2.

  FIGURE 3.11: Curvature of lumens at different contacts. (A) Schematic of an embryo with ICM and TE cells with lumens at three different types of cell contacts. Curvatures are represented by dotted circles. (B) Radius of curvature at micro-lumens facing the TE-TE and TE-ICM interfaces during the discharge phase. (C) The curvature of micro-lumens is symmetric at TE-TE interface (left) but bulges towards the TE at TE-ICM contacts (right).Scales bar 10µm.

Fig

  FIGURE 3.12: Winning probability for the cavity to form at the TE-ICM interface (A) as function of the lumen tension asymmetry, (B) as a function of the contact tension asymmetry. 1000 simulations are averaged for each point.

  FIGURE 3.13: Chimera experiments show the contractility-biased blastocoel positioning. (A) Numerical simulation illustrating the predicted positioning of the blastocoel on the mutant side for a WT-mutant chimera. (B) Principle of the experiment with mMyh9, a myosindepleted mutant with lower contractility. (C) Quantification of the number of cells in each region of the blastocyst: ICM, polar, and mural TE, for the WT-WT chimeras (left) and WT-mMyh9 chimeras. Red boxes emphasize the mural TE. (D) Example of chimeric blastocyst, WT-WT on the left, WT-mMyh9 on the right. The blastocoel is located at the side of the mutant in the second case. Scale bars 10µm.

  FIGURE 3.15: Perturbation of the lattice. (Left) A hexagonal noisy lattice (bottom), calculated from the regular hexagonal (top) lattice. (Center and right) Winning probability for lumens at the TE-ICM interface (external layer) for regular (red crosses, dashed lines) and noisy (red dots, red vertical bar for standard deviation) hexagonal lattices, as functions of the tension asymmetry δ (center) and the contact tension asymmetry (right). Each point of the regular lattice results from at least 2000 simulations, the noisy lattice is the average of 25 configurations of the noisy lattice, 2000 simulations each.

  FIGURE 3.16: Effect of the topology. Winning probability for lumens at the TE-ICM interface (external layer) for regular hexagonal and regular triangular lattices of different sizes. An inset shows the lattices with lumens (green for ICM-ICM, colored for TE-ICM). Each point results from at least 2000 simulations.

FIGURE 3 .

 3 FIGURE 3.17: Dynamics under active pumping. Network coarsening dynamics of a hexagonal network (2 layers), for different pumping rates: no pumping (λ p = 0), and λ p = 1.10 -3 , 5.10 -3 .

  4.1. During mammalian embryogenesis, they appear in the mouse, the pig, or the monkey during embryogenesis, see Fig. 4.1A, B, and we showed that they are at the origin of the blastocoel in mouse, see Chapter 3. Interestingly, micro-cavities are also observed in C. Elegans despite the fact it does not have a blastocoel per se, see Fig. 4.1C. In other contexts, micro-lumens are observed in the breast cancer cells, Fig. 4.1D, or at the basolateral contacts of Xenopus Wdpcp-knockdown mutants, Fig. 4.1E.

FIGURE 4 . 1 :

 41 FIGURE 4.1: Micro-lumens observed in vitro. During embryogenesis, micro-lumens are observed in (A) rhesus monkey[START_REF] Hurst | An ultrastructural study of preimplantation uterine embryos of the rhesus monkey[END_REF] (B) pig[START_REF] Stroband | The pig blastocyst: Its ultrastructure and the uptake of protein macromolecules[END_REF] (C) C. Elegans[START_REF] Nance | Cell polarity and gastrulation in C. elegans[END_REF], or in abnormal tissues, (D) in breast-cancer cell[START_REF] Nathanson | Mechanisms of breast cancer metastasis[END_REF] and (E) in Wdpcp-knock down Xenopus[START_REF] Park | The planar cell polarity effector protein Wdpcp (Fritz) controls epithelial cell cortex dynamics via septins and actomyosin[END_REF]. Arrowheads indicate microlumens.

  FIGURE 4.4: Effect of the permeation on pressure gradient. A pressure difference (P 2 -P1) is imposed at the ends of a tube of length ℓ. (A) With no permeation (λ v = 0) the pressure gradient is linear. (B) With permeation (λ v > 0), the pressure difference is lost in the bridge, i.e. it is screened.

FIGURE 4 . 5 :

 45 FIGURE 4.5: Concentration profile along the bridge. The profiles corresponds to the pressure jump δc/c 0 , with (green) and without (blue) rescaled active pumping ja . Full lines are the exact profile, dashed lines are the approximation of the logarithm. Concentration screening number χ s = 0.1.

  FIGURE 4.6: Pressure profile of a chain of lumens with different χ v . (a) Chain height and (b-d) pressure profiles for increasing screening number χ v = 0.1 -100. In all figures, χ s = 1.

5 FIGURE 4 . 7 :

 547 FIGURE 4.7: Concentration (left) and pressure (right) profiles along the bridge for three screening numbers χ s,v . On top is displayed a scheme of the bridge with lumens 1, 2, concentration (green) and pressure (blue) gradients. The analytical solutions (4.25a) and (4.25b) (in red) are compared to numerical integration using Boundary Value Problem (BVP) solver (blue dots) from python as a check. For the second case: the black dashed line is an ideal linear profile, with no losses. Boundary conditions are C1 = 2, C2 = 2, P1 = 2, P1 = 1, ja = 0. The bridge has a rescaled length l = 1.

  FIGURE 4.8: Instantaneous solvent flux as function of hydraulic and osmotic pressure. The instantaeous net solvent flux, J2→1 , is plotted as a function of pressure asymmetry ratio ∆ P = ( P2 -P1 )/( P2 + P1 ) and concentration asymmetry ratio ∆ C = ( C2 -C1 )/( C2 + C1 ), for χ s,v = 1. Two cases are illustrated for lumens of the same size: the top case shows a solvent flux driven by hydrostatic pressure difference from 1 to 2 ; the bottom case shows a solvent flux driven by osmotic pressure difference from 2 to 1.

  FIGURE 4.9: Effect of screening numbers on the net solvent flux Jv 2→1 . (A) Diagram of the instantaneous net solvent flux J2→1 , plotted as a function of the pressure screening number χ v and concentration asymmetry ∆ C = (C 2 -C 1 )/(C 2 + C 1 ), with ∆ P = 0.25 and χ s = 1. (B) Net solvent flux diagrams as function of the relative concentration asymmetry and pressure asymmetry ∆ P for a 2-lumen system, at different values of the rescaled screening numbers χ s,v . Dashed lines represent the zero net flux Jv 2→1 = 0.

  FIGURE 4.10: Effect of solute retention on the 2-lumen dynamics. (A) Area evolution of 2 lumens versus time, starting at the same initial conditions, for several relaxation times τ s and screening number χ s . In all simulations, τ v = 1s, χ v = 10. (B) Osmotic stabilization with trapped species: a single droplet with trapped species N in can only exchange water (with permeation λ v ) to equilibrates osmotic (∆Π) and hydraulic pressures (∆P), until it reaches the balance radius R B , at which point steady-state is reached.

  FIGURE 4.12: Fate diagram at various χ s . The fate diagram for 2 lumens are plotted as function of the active pumping ja 1 of lumen 1 and pressure screening number χ v , for three values of χ s = 0.1, 1, 10.

  FIGURE 4.13: Typical dynamics of a chain N (0) = 5 lumens. Latin figures indicate the lumen index. (A) Profile of the chain with topological events indicated: a, b and d are lumen collapses, c is a lumen collision. (B) Rescaled length plotted as a function of rescaled time. Topological events are indicated. Paramaters are χ s,v = 5, τ s,v = 1s, ja = 0.01.C

  FIGURE 4.15: Coarsening of a hydro-osmotic chain. Number of lumens versus rescaled time in log-log scale for different screening numbers χ v,s . The power-law (black line) is plotted as a guide to the eye. Each curve is the average of 20 simulations.

  4.10.

  FIGURE 4.17: Lumen size distribution. Area distribution of micro-lumens as a function of the rescaled area A/A * , where A * = Aϕ(A, t)dA is the mean-field area. Plain curve is the average of simulation from left panel at time indicated on Fig. 4.15 with χ v = 500, χ s = 5. The dashed line is the theoretical function f 2 from Eq. (4.48). The distribution is the average of 100 simulations.

FIGURE 4 .

 4 FIGURE 4.19: Hydro-osmotic coarsening of a chain for increasing mechanical parameter ϵ.(A) The plot of the number of lumens versus rescaled time t/τ v shows that the behavior of plateau-coarsening-collapse is conserved for increasing ϵ, but shifted in time. (B) Rescaling the time by T h instead makes the curves collapse and start to coarsen at typical time T h . A small deviation from the scaling law N (t) ∼ t -2/5 is observed for ϵ ≳ 10 -1 . Parameters are

  FIGURE 4.20: Collective dynamics of a 1-dimensional chain of lumens with active pumping. (A) Coarsening of 1-dimensional chains with uniform active pumping ja : plot of the number of lumens as function of the rescaled time t/T h for increasing values of the pumping rate ja = 10 -2 , 10 -1 , 1 and 10. Each curve is the average over 20 simulations with screening lengths χ v = 50, χ s = 5. (B) Number of lumens as function of the rescaled time t/T p for three values of the pressure screening length χ v , for ja = 1 and χ s = 5.

  FIGURE 4.21: Coarsening of a purely hydraulic chain for several active pumping rates. Number of lumens versus rescaled time t/T p . The yellow curve has no pumping rate and is rescaled by T h in time. The power laws are plotted as a guide to the eye.

  FIGURE 4.22: Size distribution dynamics with active pumping. (A) Number of lumens versus time in log-log scale, taken from Fig. 4.20B with χ v = 500, ja = 1. (B) Area distribution ϕ(A, t) at four different times indicated on the plot in panels A, with 100 simulations averaged.

  FIGURE 4.23: Symmetry breaking from a spatial bias of active pumping. (A) Schematic view of the coarsening outcome with and without spatially heterogeneous active pumping. This heterogeneity in pumping between TE and ICM cell-cell contacts can bias the positioning of the blastocoel toward the TE -ICM interface. (B) Plot of the pumping profiles along the chain and typical chain dynamics (N 0 = 30). The uniform profile corresponds to the threshold j * ≃ 0.44 (dashed lines) and perturbed profiles are biased by a Gaussian in the form ja (x) =

FIGURE 4 .

 4 FIGURE 4.24: Summary of the several combinations of typical times and subsequent effects on the collective lumen dynamics.

FIGURE 5 . 1 :

 51 FIGURE 5.1: Cavitated blastocyst within the Zona Pellucida. The nuclei, the ICM, and the TE are clearly visible. The blastocoel is already visible. Realized in the team of J.-L. Maître, courtesy of F. Torterelli.

FIGURE 5 . 4 :

 54 FIGURE 5.4: Shell tension versus strain of the shell. The tension of the shell γ ZP is plotted as function of the strain ∆R S /R 0 S = (R S -R 0 S )/R 0 S . The tension of the embryo γ c = 5 × 10 -4 N.m -1 is indicated in red, from[START_REF] Dumortier | Hydraulic fracturing and active coarsening position the lumen of the mouse blastocyst[END_REF].
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 55561 FIGURE 5.5: Boyle-van't Hoff plot illustrating the compression of the embryo. The embryo volume Vc is plotted as function of the inverse of the concentration, 1/ Cout . (Left) Varying pre-strain S 0 at constant elastic parameter E = 1. Detachements of the embryo are indicated. (Right). Varying the elastic parameter E at constant pre-strain S 0 . Hyper and hypotonic regimes are indicated.

  FIGURE 5.7: Boyle-van't Hoff plot for the mouse and the cow lastocysts. (A) Steady-state volume versus the inverse external osmolarity for mouse blastocysts with and with zona pellucida. (B) Steady-state volume versus the inverse external osmolarity for cow morulae (black dots) and blastocysts (white triangles) with zona pellucida. Adapted from[START_REF] Mazur | Osmotic responses of preimplantation mouse and bovine embryos and their cryobiological implications[END_REF]].

FIGURE 5 . 8 :

 58 FIGURE 5.8: Double osmotic shock. The normalized embryo radius is plotted on the left, the embryo concentration on the right. Parameters are ϵ c = 10 -2 , E = 1., S 0 = 0.1, δ 1 = 0.2,

FIGURE 5 . 9 :

 59 FIGURE 5.9: Lumen in an embryo. (A) Parametrization of the model of lumen within a cell. The lumen has radius R ℓ and concentration C ℓ . (B) Embryo with fused basolateral membranes and a large lumen. Fragments of the cell membrane are dispersed within the embryo and sometimes assemble to form vacuoles, resembling the blastocoel. Note that there are probably small and not visible vacuoles elsewhere in the embryo. The radius of the embryo is R c = 68µm, the average radius of the lumen is R ℓ = 50µm. Experiment realized by M. Schliffka in the group of J.-L. Maître.

FIGURE 5 .FIGURE 5 . 11 :

 5511 FIGURE 5.10: Osmotic shocks on the cell and lumen. Rescaled radii and concentrations versus rescaled time t for a hyperosmotic shock of amplitude δ = 1 and recovery to the initial medium. Parameters are τ c = τ ℓ , ϵ c = ϵ ℓ = 10 -2 ; ρ = 0.74 to correspond to Fig.5.9.

FIGURE 5 . 13 :

 513 FIGURE 5.13: Hyperosmotic shocks for blastocyst-like cell and lumen in a shell. The rescaled radii of the cell, lumen and ZP are plotted as function of rescaled time t. (A) Hyperosmotic shock with permeation times τ c = τ ℓ (B). Hyperosmotic shock with permeation times τ c = 30τ ℓ . In both simulations, parameters are δ = 0.7, ρ = 0.7, E = 7.4 × 10 -2 , S 0 ≃ 0.08, ϵ c,ℓ = 2 × 10 -4 , which gives the steady-state radii R * c,ℓ ≃ 0.84.

FIGURE 5 .

 5 FIGURE 5.14: Data from osmotic shock and recovery on a blastocyst. (A) An experiment of hyperosmotic shock followed by a recovery on a blastocyst. Theoretical curves fo the cell (red), lumen (blue) and shell (green, ZP) are displayed with τ c = 200s, τ ℓ = 300s. (B) Hyperosmotic shock of a blastocyst, with radius measured in 4 orientations. Fluorescence refers to the external concentration. Adapted from Polzer and Maître, 2020 (unpublished).

FIGURE 5 . 15 :

 515 FIGURE 5.15: Osmotic shock on a mouse blastocyst in a microfluidic device, imaged with bright-field microscopy. The concentration of sucrose is obtained by fluorescence (magenta is low concentration, green is large concentration). (A) Initial steady-state: the ZP is initially stretched (R 0 S = 72.8µm), and the blastocoel (lumen) is positioned at one pole of the embryo, the inner cell mass at the other. The cell and ZP are fairly spherical, but the blastocoel is ellipsoidal (R c (0) = 64µm, R ℓ (0) = 37.5µm). (B) 175 mM sucrose is introduced in the medium, and the blastocyst quickly responds in a few minutes, it shrinks and detaches from the ZP, except for some spots, indicated with triangles. This may be due to adhesion to the ZP or nuclei of TE cells. (C) After 13 minutes, the embryo reaches a steady state, and the ZP is unstretched (R S = 64µm). The lumen and cell volumes do not change. As an indication, the cell and lumen steady-state are R obs c = 54µm and R obs ℓ = 37.5µm (average radius for the long and short axis of the ellipse), while theoretical prediction gives R th c = 53.6µm and R th ℓ = 42.1µm. Time is given in minutes:seconds. This experiment was realized by L. Dagher in the team of J.-L. Maitre.

  17c) where the parameters b c , γ c and β c are

  FIGURE 6.3: Steady-state volumes. (A) Steady-state volume as function of the pumping rates pc,ℓ , with pc = 1 for the lumen. Other parameters are N0= 0.48, K0 = 0.02, τ c N = τ ℓ K = 2s, τ ℓ N = τ c K = 1s. (B)Boyle-van't Hoff plot: lumen and cell steady-states volumes are plotted as functions of the reciprocal external concentration Π0 + d 0 . We choose two different valences of the impermeant species: z ℓ = 1 and z c = 10. (C) Steady-state volume as function of the (negative) electric potential difference (∆ Φc for the cell, ∆ Φc + ∆ Φℓ for the lumen), according to Eq. (6.39). The asymptotics are indicated.
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 65 FIGURE 6.5: Parameters β c (p c ) vs pumping rate pc . Dashed line correspond to the upper stability limit of the cell when d 0 = 0, full line when d 0 = 0.2. corresponds to the old. Dotted lines corresponds to the optimal pumping rate from Eq. (6.36) and maximal pumping rate p c max . Parameters are N0 = 0.48, K0 = 0.02, τ c N = 1τ c V , τ c K = 1τ c V .
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 66 FIGURE 6.6: Cyst without lumen pumping. The parameters are given in the figure.

  FIGURE 6.7: Stability of a cell and lumen versus pumping rates. (A) Four regions are delimited: stable/unstable (expanding) lumen and cell as functions of the cell and lumen rescaled pumping rates, pc,ℓ = p c,ℓ ν 2/3 2C 0 (V 0 ) 1/3 . Parameters are N0 = 0.48, K0 = 0.02, d 0 = 0. (B) Four cases are illustrated and indicated in panel A, one for each region.

FIGURE 6 . 8 :

 68 FIGURE 6.8: Osmotic shock with 175 mM sucrose. The cell (full lines) and lumen (dashed lines) are plotted as functions of rescaled time t/ τc V . Parameters are N0 = 0.48, K0 = 0.02, C0 = 0.5, z ℓ = 1, z c = 10, τ c V = 1s and all times are τ = 1s except τ c N = τ ℓ K = 2s.
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 69 FIGURE 6.9: Osmotic shock with 100 mM NaCl. The cell (full lines) and lumen (dashed lines) are plotted as functions of rescaled time t/ τc V . Parameters are N0 = 0.48, K0 = 0.02, C0 = 0.5, z ℓ = 1, z c = 10, τ c V = 1s and all times are τ = 1s except τ c N = τ ℓ K = 2s.
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 610 FIGURE 6.10: Osmotic shock with 10 mM KCl. The cell (full lines) and lumen (dashed lines) are plotted as functions of rescaled time t/ τc V . Parameters are N0 = 0.48, K0 = 0.02, C0 = 0.5, z ℓ = 1, z c = 10, τ c V = 1s and all times are τ = 1s except τ c N = τ ℓ K = 2s.

  FIGURE 6.11: Opening of paracellular pathway. The cyst starts at steady-state, and at time t = 10τ c V the paracellular way is opened. Parameters are N0 = 0.48 and N0 = 0.02 z c,ℓ = 1, all times are equal to 1 but τ c N = τ ℓ K = 2. The leakage time is infinite at first (no leaks), and set to τ leaks = 0.1 at time t = 10.

  Fig. C.1, with the velocity field u = (u x , u y ).

FIGURE C. 1

 1 FIGURE C.1

FIGURE D. 1 :

 1 FIGURE D.1:Half a lumen with moving boundary X ℓ . The area of half the lumen is A 1/2 (light blue region) plus the bridge-lumen portion (dark blue region). The green region corresponds to the bridge area.

  E.1B. The mass of the droplet is estimated as the mass of the core region M drop ( p)

  FIGURE H.2: Concentration X c plotted as a function of the valence z c of the impermeant specie. The black dashed line is the total external concentration 2C 0 = 300mM.

  0where we introducedβ c ≡ N0 β c N + K0 β c K , b c = z c xc Vc * = 1Vc * and we used C0 = 1/2. From Eq. (H.14b), one findsγ c = -b c + (b c ) 2 + 2β c (+ (b c ) 2 + 2β c ) (H.16)Therefore, from the Eq. (H.14a), one finds b c = (1 + d 0 ) 2 -2β c (H.17

  )

  FIGURE H.3: Example of the relaxation of the system for a single cell from out of equilibrium initial conditions. Dashed line indicate the steady-states. Initial conditions are Nc = Kc = Cc = 0.5, Vc = 2. Parameters are τ c N = 2 s, τ c v = τ c K = τ c C = τ c P = 1, external concentrations are N0 = 0.48, K0 = 0.02, C0 = 0.5, d 0 = 0, trapped specie valence z c = 1, external concentration d 0 = 0.

  FIGURE H.4: Relaxation of a single cell towards steady-state (semi-opaque lines), starting from a randomly perturbed steady-state configuration. Volume, ionic concentrations, total cell charge and cell membrane electric potential are plotted as function of rescaled time t/τ c v . Parameters are N0 = 0.48, K0 = 0.02, C0 = 0.5, τ c K,C,P,V = 1s, τ c N = 2s, ϵ = 0. The valence of trapped specie is z c = 100.

5 : 1

 51 FIGURE H.5: Evolution of the cell variables for z c = 1, 10, 100 in the Peskin limit (full lines) and with the general equations (dashed lines). A significant deviation of the Peslin limit is observed for z c ∼ 1, and is reduced as z c increases. Parameters are τ c v,N,K,C = 1 s, N0 = 0.48, K0 = 0.02, d 0 = 0.

  the rate a which the minimal steady-state volume is found, see Fig. H.6. Indeed, if we consider (H.18), the steady-state volume Vc * * depends on the pumping rate p c via β c (p c ).

= ( 1 +

 1 d 0 ) 2 -2β c (p c ) -3/2 dβ c dp c (H.32a) d Vc * d(d 0 ) p c = -1 + d 0 [(1 + d 0 ) 2 -2β c (p c )] 3/2 (H.32b)

  FIGURE H.6: Parameter β c (p c ) and normalized steady-state volume versus pumping rate (τ c p ) -1 for given K0 = 0.02, N0 = 0.48, τ c N = τ c K = τ c V . (Top) Dashed lines correspond to maximum value for β c at multiple values of d 0 , above which the cell bursts. The optimal pumping rate is indicated by the vertical line. (Bottom) Steady state volume for corresponding d 0 , versus pumping rate. Dots are the minimum steady-state normalized volume for the corresponding curve. All are aligned with the optimal pumping rate plotted on top panel.

  

The shape of cells is dictated by tensions

  

	A -Surface tension	
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	Myosin	Actin
	B -Cell-substrate adhesion	
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	Substrate	
		Intercellular space
		Cadherin
	FIGURE 2.1:	

C -Cell-cell adhesion . (A) A single cell obeys Laplace's law, and its surface tension is generated by the actomyosin cortex (right). (B) A single cell adheres to a substrate similar to a spreading droplet, via specialized proteins such as integrins for adhesion on the Extra-Cellular Matrix (ECM). (C) The minimal model for tissue compaction with two cells on a substrate. Cell-cell adhesion is mediated by cadherin molecules that bound to the actomyosin cortex and attach.

Transmembrane transporters through the cell membrane. (

  i) Concentration gradients for sodium and potassium: the species hardly diffuse through the cell membrane ;

		i	ii	iii	iv
				Sodium
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	Exterior Cell	Potassium	Sodium	
					A T P	A D P
	FIGURE 2.5:			

  2}, characterized by their hydrostatic pressure P 1,2 (t), contact angle θ = arccos γ c 2γ , size L 1,2 (t) and solute number N 1,2 (t). The lumens can exchange water and solute through an intercellular bridge of length ℓ(t). The pressure p(x, t) and solute concentration c(x, t) are parametrized by the longitudinal coordinate x ∈[-ℓ(t) 

	A	Cellular medium	
	1		2
	Lumen	Bridge	Lumen
	B		

FIGURE 4.2: 2-lumen system. (A) Schematic of all fluxes. (B) Geometrical parametrization of 2 lumens, denoted {1, 2 , ℓ(t) 2 ].
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	.1: Relative variations of the cell and lumen variables with a 175mM sucrose shock, illustrated in Fig. 6.8.

TABLE 6 .

 6 2: Relative variations of the cell and lumen variables with a 100 NaCl mM sucrose shock, illustrated in Fig.6.9.

TABLE 6 .

 6 3: Relative variations of the cell and lumen variables with a 100 KCl mM sucrose shock, illustrated in Fig.6.10.

  χs )(χv + χs ) e -x/χv χv c -(x) + χs s -(x)χv e -1/2χv (D.22a) χs )(χv + χs ) e -x/χv χv c + (x) + χs s + (x)e -1/2χv χv c 1 + χs s 1 (D.22b) χs )(χv + χs ) e x/χv χv c -(x)χs s -(x)e -1/2χv χv c 1 + χs s 1 (D.22c) χs )(χv + χs ) e x/χv χv c + (x)χs s + (x)χv e -1/2χv (D.22d)

			v +	δC 1 -j a 2χ v s 1	I -1 (x) -	δC 2 -j a 2χ v s 1	I -2 (x)
	µ(x) = =	x -1 2 j a 2	E + (y)dy = e x/χ v -e -1/2χ v -x -1/2	c(y) 2χ v δC 1 -j a e y/χ v dy 2χ v s 1 I + 1 (x) +	δC 2 -j a 2χ v s 1	I + 2 (x)
	where					
	I -1 (x) = (χv -I -x 1/2 dye -y/χv sinh y -1 2 χs = 2 (x) = x 1/2 dye -y/χv sinh y + 1 2 χs χv χs = (χv -I + 1 (x) = x -1/2 dye y/χv sinh y -1 2 χs χv χs = (χv -I + 2 (x) = x -1/2 dye y/χv sinh y + 1 2 χs = (χv -	χv χs χv χs		

  = j a -(δC 1j a )

	Solution												
	Finally, the solution is											
	p(x) = -	δP 1 sinh sinh(1/χ v ) x-1 2 χv	+	δP 2 sinh sinh(1/χ v ) x+ 1 2 χv	+ λ(x)e x/χv + µ(x)e -x/χv +	e -1/2χv sinh 1/χ v	λ(	-1 2	) sinh	x -1 2 χ v	-µ(	1 2	) sinh	x + 1 2 χ v
															(D.24a)
								λ(x) =		2 1	x	dx ′ E -(x ′ )	(D.24b)
							µ(x) =		x 2 -1	dx ′ E + (x ′ )	(D.24c)
							E ± (x) = ±	c(x) 2χ v	e ±x/χ v	(D.24d)
				c(x) sinh sinh(1/χ s ) x-1 2 χ s	+ (δC 2 -j a )	x+ 1 2 χ s sinh(1/χ s ) sinh	(D.24e)
						1 2	x -	1 2	e -1/2X +	X 2	e -2x/X -e -1/X e 1/2X	(D.23a)
				I -2 (x) =	1 2	x -	1 2	e 1/2X +	X 2	e -2x/X -e -1/X e -1/2X	(D.23b)
				I + 1 (x) =	1 2	X 2	e 2x/X -1 2	e 1/2X	(D.23c)
				I + 2 (x) =	1 2	X 2	e 2x/X -1 2	e -1/2X	(D.23d)

e -1/X e -1/2Xx + e -1/X e 1/2Xx +

  1/χ s ) ξ s (δC 1j a ) coth 1 χ s -(δC 2j a ) 1 sinh(1/χ s ) = ξ s (δC 2 -δC 1 ) coth 1

		χ s	+ (δC 2 -δC 1 )	1 sinh(1/χ s )
	= ξ s ∆C coth	1 2χ s	
	where we used coth 1 χ s +	

1 sinh 1/χ s = coth 1 2χ s .

  1/2χve -1/2χv [χ v c 1 + χ s s 1 ] -1/2χv [χ v c 1 + χ s s 1 ] + e 1/2χv χ v c + ( 1 2 )χ s s + ( 1 2

	and				=	2χ v χ s χ 2 v -χ 2 s	χ v (c 1 + 1) sinh	1 2χ v	-χ s s 1 cosh	1 2χ v
	I -2 (-	1 2	) + I + 2 (	1 2	) =	χ v χ s χ 2 v -χ 2 s	e 1/2χv χ v c + (-	1 2	) + χ s s + (-	1 2	) + e

  1 (t; δP 1 , δP 2 , δC 1 , δC 2 , ξ v , ξ s , ℓ, j a ) δP 1 , δP 2 , δC 1 , δC 2 , ξ v , ξ s , ℓ, j a ) -J s 1 (t; δC 1 , δC 2 , ξ s , ℓ, j a ) -J s 2 (t; δC 1 , δC 2 , ξ s , ℓ, j a ) (D.35d) L 0 = L 1 (t) + L 2 (t) + ℓ(t) = 1 (D.35e)

										(D.35a)
	τ v	dL 2 dt	= µ 2 ν 2	µ 2 N 2 L 2 2	-1 -	ϵ 2 L 2	-	µ 2 2L 2 (t)	J v 2 (t; (D.35b)
			τ s	dN 1 dt	= 2ν 1 L 1 (t) 1 -µ 1	N 1 (t) L 2 1 (t)	+ j a (D.35c)
			τ s	dN 2 dt	= 2ν 2 L 2 (t) 1 -µ 2	N 2 (t) L 2 2 (t)	+ j a

  L 0 = L i + L j + ℓ ij (D.42)

	Non-dimensionalization gives							
		τ v	d Āi dt		=	2θ ij (t) 2θ ij -sin 2θ ij	Āi	Ni Āi	-1 -	ϵ i (t) Āi	-Jv i	(D.41)
	where τ v =	√ 2π 0 λ v , Jv A 0 i = τ v A 0 J v i and ϵ =	γ i	√ 2θ ij -sin 2θ ij π 0 A 0	. The closure equation is the same:
	Solute balance The solute balance is given by		
				dN i dt	= 4θ ij R i λ s RT log	c 0 C i	+ j a -J s i	(D.43)
	so assuming δC i ≪ c 0 , we find dN i dt	=		4θ ij 2θ ij -sin 2θ ij √ A i	-λ s RT	δC i c 0	+ j a -J s i
	Non-dimensionalization gives							
			τ s	d Nj dt	=	4θ ij Āi 2θ ij -sin 2θ ij	ja + 1 -Ni Āi	-Js
											40)

i (D.44)

  Nc ( t) + Kc ( t) + Cc ( t) + Nc ( t) + Kc ( t) -Cc ( t)z c

							1
							2
	Thus, one finds the system						
	d Vc d t =				xc Vc ( t)	-(1 + d 0 )	(H.10a)
	d nc d t = -	τ c v τ c N	∆ Φc ( t) -log	N0 Nc ( t)	-	3τ c v p τ c	(H.10b)
	d kc d t = -	τ c v τ c K	∆ Φc ( t) -log	K0 Kc ( t)	+	2τ c v p τ c	(H.10c)
	d cc d t =	τ c v τ c C	∆ Φc ( t) + log	C0 Cc ( t)			(H.10d)
	0 = xc Vc ( t)		(H.10e)

Original quote: "Je crois avoir le premier insisté sur cette idée qu'il y a pour l'animal réellement deux milieux : un milieu extérieur, dans lequel est placé l'organisme, et un milieu intérieur dans lequel vivent les éléments des tissus. L'existence de l'être se passe, non pas dans le milieu extérieur, air atmosphérique pour l'être aérien, eau douce ou salée pour les animaux aquatiques, mais dans le milieu liquide intérieur formé par le liquide organique circulant qui entoure et baigne tous les éléments anatomiques des tissus. [...] La fixité du milieu intérieur est la condition de la vie libre, indépendante : le mécanisme qui la permet est celui qui assure dans le milieu intérieur le maintien de toutes les conditions nécessaires à la vie des éléments." Merci à M. François Vatin pour m'avoir permis de consulter un manuscrit original de son incroyable bibliothèque pour vérifier la citation et discuter de la sociologie des cellules !

From the Latin light, referring to the light passing through the small opening in sliced organs.

From Latin morus, the berry.

1.3. Development of the pre-implantation mouse embryo

https://github.com/VirtualEmbryo/lumen_network

See documentation: https://docs.scipy.org/doc/scipy/reference/generated/scipy.integrate.odeint.html

Note that we do not consider the lumens at TE-TE interfaces in the model, because the blastocoel expands and fills the entire TE-TE intercellular space, which ends up indistinguishable from the TE-ICM intercellular space. A large lumen growing from a TE-TE interface would lead to the same situation, so effectively we only need to resolve the competition between lumens at ICM-ICM and TE-ICM interfaces.

See https://github.com/VirtualEmbryo/hydroosmotic_chain

See scipy.odeint documentation
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Appendix A

Symbols, values and units

Generic physical parameters

Coarsening

Estimation of the active pumping flux We give here an estimate for the active pumping flux. From [START_REF] Leonavicius | Mechanics of mouse blastocyst hatching revealed by a hydrogel-based microdeformation assay[END_REF], one has the estimated ion flux generated by the Na/K-ATPase active pumps to be J a ≃ 7.8 × 10 6 ions/min/cell, at the blastocyst stage, when the cavity is already formed. Assuming their activity is the same at the formation of the micro-lumens, we want to convert J a into the active pumping constant j a , expressed as a flux of ions per unit time per unit area (mol.s -1 .m -2 ). At blastocyst stage, the blastocyst volume is estimated to be 0.66 × 10 6 µm 3 [START_REF] Leonavicius | Mechanics of mouse blastocyst hatching revealed by a hydrogel-based microdeformation assay[END_REF] and has almost spherical shape, giving an estimated surface 3.67 × 10 4 µm 2 , for an average of 42 trophectoderm cells at this stage. This gives a surface of roughly 872µm 2 per trophectoderm cell. Therefore, one obtains the estimation for the active pumping constant j a = 7.8 × 10 6 ions/(6.022 × 10 23 mol -1 ) (60s)(872 × 10 -12 m 2 ) = 2.47 × 10 -10 mol.s -1 .m -2

Estimation of the Péclet number For two connected lumens, the ratio between advective and diffusive transport is described by the Péclet number, defined as

where e 0 is the width of the bridge and D the diffusion constant of the exchanged solutes, both given in Table A.2. v x is the fluid velocity in the x direction as we place ourselves in the lubrication approximation.

A fluid displacement is generated by a pressure difference ∆P between two lumens at a distance ℓ, and is given by the relationship

where η is the fluid viscosity. The larger the size difference between lumens, the larger the fluid velocity. For a size difference of 10µm between the two lumens (i.e. L 1 = 1µm, L 2 = 11µm), the corresponding pressure difference is ∆P = γ(L -1 2 -L -1 1 ) = 4.5 × 10 2 N.m-1, thus the fluid velocity v x = 10 -3 m.s -1 . Finally, the Péclet number is evaluated as P ∼ 10 -2 (A.3)

Appendix B

Osmotic pressure and volume control

B.1 Mechanistic view of osmotic pressure

This section follows the microscopic approach developped in [START_REF] Marbach | Osmosis, from molecular insights to large-scale applications[END_REF]. We derive some interesting results useful in cell volume control and discussed in the introduction.

Appendix C

Derivation of the Reynolds equation

In this appendix, we derive the Reynolds equation from hydrodynamics, starting from the Navier-Stokes equations. The Reynolds equation is used in chapters 3 and 4 to calculate the hydrauliic flux generated by a pressure gradient.

C.1 Navier-Stokes equations C.1.1 Mass conservation

Continuity equation

Let ρ(x, t) be the fluid density, u(x, t) its velocity field, hence the continuity equation reads

or equivalently,

Incompressible fluid

If the fluid is incompressible, then ρ = Cte, such that the continuity equation reads

Momentum conservation

The fundamental law of the dynamics reads

where σ ′ is the Cauchy stress tensor, f are the external forces per unit volume. In the case of conservative forces, deriving from a potential V, one has f = -∇V, and can rewrite the stress tensor as σ = σ ′ -ρV I In the case of zero external forces, the momentum conservation becomes

Newtonian fluid

The shear stress is defined as

A Newtonian fluid is defined with a linear relationship between the Cauchy stress tensor and the shear stress tensor e σ = -pI + 2ηe (C.6)

where p(x, t) is the hydrodynamic pressure andη is the fluid viscosity.

For an incompressible fluid, the continuity equation gives e kk = 0 ⇔ Tr(e) = 0.

Appendix D

Hydroosmotic 2-lumen system

D.1 Moving boundary fluxes

One shall take special care into dealing with the moving boundary problem, i.e. Stefan problem. In our case, the border of the lumen moves due to incoming flux, hence the need to state carefully the system. As represented on Fig. D.1 we restrict ourselves here to half a lumen, since it is symmetric, and focus on the hydraulic limit. The lumen is centered at X 0 , with length L corresponding to the position X ℓ of its right border. The bridge starts at X ℓ (t) and stops at position X B . Both X 0 , X B are supposed fixed positions in the reference frame. First we shall express the half lumen area (A Lumen /2), assuming the lumen is symmetric. This can be expressed as

but here we do not assume that e 0 ∼ 0. The bridge has an area

The lumen generates an outgoing flux J(t), while the bridge generates an outgoing flux J B (t). Assuming no variation in diameter (e 0 = cte) of the bridge, the fluxes are equal (J(t) = J B (t)). The total mass/area conservation reads

Thus, derivation of the above equation wrt time leads to

and finally

The flux J B can be expressed as a function of boundary pressures, given it is a Poiseuille flow. Therefore, in spite of the motion of the border, we recover exactly the expression expected for mass conservation in the simplest case of pure hydraulic exchanges without permeability nor osmotic effects. The same reasoning could be applied for this more complex situation as well as for boundary solute fluxes.

D.2 Analytical solutions for the bridge

We aim to solve analytically the concentration and pressure equations of the intercellular space, in order to find analytical expressions of the hydraulic and osmotic fluxes between lumens. In the following, we will work in nondimensionalized coordinates (if not specified), so we drop the bars and the primes from nondimensionalized variables.

D.2.1 Solution of concentration equation in the intercellular space

The bridge concentration is given by the equation

Dewetting films

A coating of several nanometers to a few micrometers in thickness is called a thin film. These layers are unstable and can dewet, i.e. reduce their contact surface with the substrate and form separate drops (Fig.

E.1A) [START_REF] Reiter | Dewetting of thin polymer films[END_REF][START_REF] Herminghaus | Spinodal dewetting in liquid crystal and liquid metal films[END_REF][START_REF] Jacobs | Stability and Dewetting of Thin Liquid Films[END_REF]. Dewetting may be induced by nucleation from substrate heterogeneities (defects, dust) or fluctuations decreasing the free energy (spinodal dewetting) [START_REF] Vandenbrouck | Thin nematic films: Metastability and spinodal dewetting[END_REF]. In the case of thin films, the drops are connected by a precursor film, which precedes the spreading of a drop and its contact line [START_REF] Gennes | Wetting: Statics and dynamics[END_REF]. It is through the precursor film that an exchange of fluid takes place between the drops from the smaller to larger: we speak then of coarsening by mass exchange.

To derive the fundamental equations describing the thin film and the droplets dynamics, we place ourselves in the lubrication approximation [Reynolds, 1886a,b;[START_REF] Pismen | Mobility and interactions of weakly nonwetting droplets[END_REF][START_REF] Gratton | Coarsening of Thin Fluid Films by by[END_REF][START_REF] Rump | Coarsening processes in thin liquid films: Analysis and numerics[END_REF][START_REF] Gratton | Transient and self-similar dynamics in thin film coarsening[END_REF][START_REF] Dai | On a mean field model for 1D thin film droplet coarsening[END_REF]. Starting from the Navier-Stokes equations, we assume the fluid to be Newtonian and incompressible, with viscosity η. For a film of length ℓ and thickness h in the lubrication approximation, the viscous forces dominate the inertial forces: hRe/ℓ ≪ 1 with Re the Reynolds number. Then we have, for the film thickness h(x, t) : corresponding to the Poiseuille flow with zero velocity at the film boundary, see Eq. (C.15) Appendix C. A set of drops connected by the precursor film cannot be at equilibrium, as each of them is generating pressure gradients which in turn generate hydraulic flows, directed from high pressures to lower pressures, according to the principle of Ostwald ripening. The drops, close to the equilibrium, evolve slowly according to a dynamical system, given for the mass M i of droplet i :

with J i,j the hydraulic flux from droplet i to droplet j [Glasner andWitelski, 2003, 2005]. The expression of flux J ij is obtained once the disjoining pressure is specified [START_REF] Glasner | Coarsening dynamics of dewetting films[END_REF]]. In the case of dewetting films, hydraulic fluxes are given by

where ℓ i,j is the distance between the borders of droplets i and j [START_REF] Gratton | Transient and self-similar dynamics in thin film coarsening[END_REF]. Equations (E.7) and (E.6) correspond to the hydraulic dynamical model we developped in Chapter 3, in which the droplets correspond to the micro-lumens and the precursor film to the bridges (intercellular space) and the masses M i are analoguous areas A i .

Appendix F Numerical Integration and Solving Algorithm F.1 Runge-Kutta-Felhberg (RKF45)

The Runge-Kutta-Felhberg is a method of integration based on the classical Runge-Kutta scheme. It is called an "embedded" integration method, meaning that it allows for multiple evaluations of the next point, thus gives a way to calculate errors. In our case, these multiple evaluations are used to create an adaptative time-step method.

F.1.1 The RK45 method

Before exposing the RKF45 method, we recall here the Runge-Kutta of order 4 (RK45) integration method, as a way to compare the two. Let be the ODE

For the discretized time t = (t 1 , ..., t N ) and variable y = (y 1 , ..., y N ), the next step i + 1 is calculated from y i as

where h is the time-step and the weights are given by

RK45 is a very well known explicit integration method, which is what we need for our simulations. However, the nature of our dynamical equations is such that when a lumen disappears, the divergence of the length is hardly tractable, resulting in large errors. Moreover, as the system evolves, lumens grow in size, and the time to reach the end follows a power-law. Thus, an adaptative time-step is required. As a note, we actually used RK45 in order to check whether the RKF45 method was working, with an ad hoc adaptative time-step, defined as

where α and β are arbitrary constants. Usually, we choose β = 3 as the best compromise to integrate.

F.1.2 The RKF45 method

In 1969, Fehlberg [START_REF] Fehlberg | Low-Order Classical Runge-Kutta Formulas with Stepsize Control and their Application to Some Heat Transfer Problems[END_REF] proposed a new way to obtain a fourth-order method, with error of order 5. This was done proposing the weights

and the evaluation of y i by

F.1.3 Error evaluation and Adaptative Time-Stepping

There exists another estimate of the next step y i+1 , that we will denote z i+1 :

Therefore, we can define an error ϵ as ϵ = |y iz i | which allows us to calculate a new time step h i+1 such that [START_REF] Press | Adaptive Stepsize Runge-Kutta Integration[END_REF] 

where h i is the previous time-step, S is a security factor (arbitrary factor, usually S = 0.9), τ is the tolerance (arbitrary factor, usually τ ∼ 10 -6 in the litterature, we use τ ∼ 10 -20 to prevent divergences.). Thus, if the error is higher than the tolerance, the time-step is reduced, otherwise it increases. 

F.2 Structure and design of the chains

We developped the chain using Python classes, creating a class for each of the objects we have. Thus, we have three types of objects : the chain, that contains the lumens and the bridges. Since the structure of the algorithm does not change with the type of chain whether hydraulic-chain (H) or hydroosmotic-chain (HO), but gains attributes, we made first the H-chain, and then the HO-chain inheriting from the H-chain.

The same was applied to the HO-lumen from the H-lumen and the HO-bridge from the H-bridge. Initial configuration is generated according to a config file (.conf extension). These allow the user to enter a configuration with generic parameters, such as the number of lumens, their typical size, type of chain (H or HO), values of screening, pumping, etc. The config file is then read by the code, and creates a chain. Usually, chains are generated randomly, with a given seed. For the user to use a given configuration of the chain, see documentation.

As the numerical integration proceeds, the chain is updated : lumens increase/decrease in size, concentration, as well as bridges. The chain does not explicitely store information, in ordre to keep the data small. Data are stored in output files. 

Name

F.3 Algorithm

The algorithm is composed of two important parts : the integration of ODE and the topology.

First, the chain is initialized with the imported parameters from the config file. This is done using a homemade parser, in the function _chain.loadconfig. Once the parameters are imported, the chain is generated either randomly (with a seed if specified) or according to the given files (see examples in _configfiles folder). The status of the chain, either hydraulic (H) or hydroosmotic (HO), must be specified. Pumping profile (if specified) is also computed at that time.

After generation, the ODE are solved iteratively, with a given solver, either RK45 or RKF45. For both cases, we have one set of weights ({K i }) for H-chain, or two sets ({K i , Q i }) for HO-chain. Note that because the lumens are not moving during integration, the constraint L ij = L i + L j + ℓ ij must be enforced in the calculation of the weights, such that for new values of L i , L j corresponds a new ℓ ij . Since topological events modify the ODE equations, one cannot let them happen during integration. Thus, at the end of the weights calculation, a check is performed on the lengths of bridges and lumens. If a topological event happens (merge or collapse), the integration is restarted with a halved time-step. This is a costly procedure, buth required in order to avoid wrong results. The new time step is calculated at the end of the integration. For RK45, it is given by (F.2). For RKF45, we arbitrarily choose the error ϵ is calculated over the estimations of the lengths L i . For estimations y t+1 (L i ) and z t+1 (L i ) of the length L i at step t + 1, the error ϵ is the maximum of the ϵ i 's :

When an integration step is complete and valid, topology is checked. We assume all topological events to be instantaneous.

1. We first check whether lumens disappear. A lumen i collapses if its length is below a given threshold 

Appendix G

Volume control

In this section, we detail the calculations of steady-states solutions for the cell enclosed in a shell and

G.1 Cell within a shell

Stress-free cell

The stress-free cell is floating in the shell with no additional tension (so that R c ≤ R 0 Z ). The nondimensionalized volume equation reads

At steady state, it leads to a third-order polynomial in Rc :

Assuming that the Laplace pressure difference is negligible with respect to the typical osmotic pressure, i.e.

which is the ideal osmometer relationship.

Cell in contact with a shell

In this situation, the cell is in contact with the shell (R c > R 0 Z ), which leads to an additional stress. The nondimensionalized volume equation reads

Similarly to the stress-free cell, one obtains at steady-state a third order polynomial in Rc :

where we introduced the notation p = E (1+S 0 )

Cout and q = -1

Cout (E (1 + S 0 ) + 1). This third-order polynomial is solved through Cardano's formula, provided that 4p 3 + 27q 2 > 0, which is always true, thus, the steadystate radius is

For E = 0, we recover the single cell model. Solving this system gives us the steady-state reached by the system given the value of S 0 , δ 2 and E .

The full solution of Rc is

G.2 Lumen in a cell

Non-dimensionalization

We start from the dimensionalized volume equations written as functions of the radius Rc , Rℓ of the cell and the lumen, respectively.

We non-dimensionalize the variables as

where we defined

One can express the concentrations as functions of the radii Rc , Rℓ only, assuming that the cell and the lumen are at steady-state at time t = 0. Given that, by definition, Rc = Rℓ = 1 and Cout = 1, this implies

and, from the definition of concentrations

where N 0 = 4 3 πR 3 0 C 0 . Now, at time t = 0, assuming the cell and lumen are at steady-state ( Rc = Rℓ = 1), the above leads to

Appendix H

Single cell with eletro-osmotic effects

We consider a cell of volume V c and area A c , whose content is characterized by three main ionic species : Na + , K + , Cl -, with concentrations N c , K c , C c (in mol.m -3 ). These species can be exchanged with the external medium via active transporters (Na + /K + -pump) with pumping rate p c . The cell membrane is permeable to water with permeation coefficient Λ c = λ c A c . The cells contain usually trapped proteins with negative charges : we will consider one specie, with x c molecules (in moles) and concentration X c and valence z c . Due to the electrical charges of the ions, a membrane potential arises, denoted ∆Φ c , with a total capacitance Γ c . The membrane has three ionic conductances, denoted g c N , g c K , g c C respectively. The cell is surrounded by a medium with fixed concentrations of the three ions, denoted N 0 , K 0 , C 0 , and a fourth uncharged chemical specie, whose concentration is D 0 , which cannot be exchanged with the cell. The medium is assumed electroneutral, such that N 0 + K 0 = C 0 . The total external charge, Q 0 , is therefore zero. 

Medium Cell

H.1 Dynamical equations H.1.1 Ion conservation

where 

H.1.2 Volume conservation

The cell volume is changed by osmotic and hydraulic pressure differences, via incoming water flux. The hydraulic pressure is given by the Laplace's law. The volume conservation reads

We assume that the typical hydraulic pressure is negligible compared to the typical osmotic pressure :

RTC 0 ≫ P 0 = 2γ c R 0 . NB : [START_REF] Hoppensteadt | Control of Cell Volume and the Electrical Properties of Cell Membranes[END_REF] assumed that the valence of charged proteins is large, while their quantity is small, such that z c x c = cte. Thus, comparing ion concentrations with the concentration of the impermeant specie gives N c , K c , C c ≫ x c V c . The contribution of impermeant specie does not disappear from the charge conservation.

H.1.3 Total charge

The charge difference ∆Q = Q c -Q 0 where Q i is the total inner charge. By electroneutrality, Q 0 = 0. The total charge is given by the membrane potential ∆Φ c (in Volts) and the membrane total capacitance Γ c (in C.V -1 ), and reads

H.1.4 Impermeant specie

The concentration X c = x c V c in impermeant species is not easy to calculate, but can enforce the charge conservation. Assuming the system is a steady-state, the electroneutrality and volume conservation give (with

thus, we find

We know that the concentration in Cl -within cells is typically lower than the external one when pumps are active [START_REF] Kay | How Cells Can Control Their Size by Pumping Ions[END_REF]. In a good approximation, C c ≪ C 0 , and the concentration in trapped species is given by

The membrane potential ∆ Φc is given by the charge conservation, such that

where we defined ζ ≡ Γ c u 0 2C 0 V 0 F , and has no units. It compares the charge stored in the membrane versus the charge of the trapped species (2C 0 V 0 = x c ). Deriving the above equation with respect to time on both sides, we get

Now, using the fact that Γ c is almost zero, hence ζ ∼ 0, the left hand-side cancels, and the charge conservation yields

thus, the electric potential is expressed as

where

.

H.3 Steady-state H.3.1 Large valence z c (Hoppensteadt-Peskin limit)

We suppose that z c ≫ 1 and z c xc ∼ 1: the trapped species have a large valence number, while being not numerous compared to the other chemical species. In this limit, one has xc Vc ≪ Cc , Kc , Nc , d 0 [START_REF] Hoppensteadt | Control of Cell Volume and the Electrical Properties of Cell Membranes[END_REF] but do not disappear from charge conservation. Assuming steady state, our set of equations becomes 0

where we define

Injecting the steady-state solutions for the ions in the osmotic balance and the charge conservation, one finds a system of two second order equations in γ c :

H.3.2 General case

We study the generic case in which the osmotic contribution of the trapped species is not negligible. In this case, the volume conservation is

where we used the electroneutrality equation and inject Xc =

. One needs to split the study in two cases : z c > 1 and z c = 1.

Case

At steady-state, the system of solutions is

The electroneutrality leads to

which is the same as in the large valence hypothesis.

Using the same notations as before, with b c = z c xc Vc , this system of equations reduces to two equations of second order in γ c .

γ c is given by (H.15). Using (H.16) in (H.23a), one gets after some algebraic manipulations

This is a second order equation in b c . Note that taking the limit z c ≫ 1 leads to the solution (H.17 

Finally, given that b c = z c xc Vc * , one gets the steady-state volume ( Vc ) *

Note that in the limit z c ≫ 1, the equation reduces to the steady-state volume without osmotic effects (Peskin-limit), which is Eq. (H.18) where ϵ = γ c RTC 0 (3V 0 /4π) 1/3 is the dimensionless parameter that compares the osmotic and Laplace pressures. Considering the surface tension allows us to reconsider the formulation of the problem as a nucleation problem. First, we assume that the total number of species within the cell, η = n c + k c + c c + x c is a time constant. This is true in the case τ c N,K,C ≫ τ c V : the relaxation time of concentrations is really large compared to the one of volume. The species are therefore trapped and induce a non-vanishing osmotic contribution.

The volume conservation may be expressed as an ODE of the cell radius R c instead :

This formulation was initially proposed by Webster and Cates to study trapped species Webster andCates [1998, 2001]; [START_REF] Cates | Complex Fluids : The Physics of Emulsions Lecture Notes for les Houches 2012 Summer School on[END_REF]. They considered an assembly of droplets evolving though diffusion. The typical radius is found to be R 0 = γ c /RTC 0 , such that non-dimensionalization of the above ODE leads to

• Typical radius R 0 compares the two competing pressures : the external osmotic pressure RTC 0 to the Laplace pressure due to surface tension γ c . It is the radius at which these two pressures compensate each other.

• The term 3RTη 8πγ c R 2 B compares the bulk energy (RTη) to the surface energy (γ c R 2 B ). The radius R B is the radius at which they compensate each other. Since we assumed η = cte (trapped species), R B is not time-dependent, but should we relax this assumption, it would evolve with cell internal concentration.

Defining the growth velocity U(R; d 0 ) as

, we identify three cases, summarized in Fig. H.8. • First, we assume that there is no external specie concentration (d 0 ) and no trapped species (η = 0 → RB = 0). In this case, the growth velocity U reduces to U(R) = -1+R R , which is strictly negative for all R > 0. The cell cannot reach a steady state due to the lack of osmotic pressure to compensate the Laplace pressure, and it shrinks to zero.

• Then, we suppose η > 0, such that RB > 0. The growth velocity has a both positive and negative parts, separated by a stable point. The equation for steady state is given by zero-velocity U( Rc ; 0) = 0 ⇔ ( Rc ) 3 + ( Rc ) 2 -R2 B = 0 that admits one real solution, given by the Cardano's formula, and corresponds to the stable radius. where Π 0 (t) = N0 (t) + K0 (t) + C0 (t), with Π 0 (0) = 1. Moreover, the steady states through the external concentrations are changed. The steady-state volume is given by

and the steady state potential is given by

For z c = 1, the steady-state volume and potential are given by

In the limit of large trapped specie valence (Peskin limit), one get

H.5 Numerical integration

Our (non-dimensionalized) variables are the three ionic concentrations Nc , Kc , Cc and the cell volume Vc .

Injecting the charge conservation into the volume ODE reduces the system to a set of four equations. However these are ODE for the number of ions. Thus, using the relations Nc = nc / Vc , one may decompose the derivative with the chain rule as We use these equations and (H.48) with numpy integrated solvers. This method of solving equations has been proposed by [START_REF] Gin | A model for cyst lumen expansion and size regulation via fluid secretion[END_REF]; [START_REF] Kay | How Cells Can Control Their Size by Pumping Ions[END_REF]. In order to enforce the charge conservation into the dynamics, one may write the last equation as Nc + Kc = Cc + z c Vc and inject this formula into the volume ODE (H.10a), leading to

Our algorithm for numerical integration is as follows :

1. The system is initialized with concentrations Nc (0), Kc (0), Cc (0) and volume Vc (0). The number of impermeant molecules xc is calculated to satisfy electroneutrality using initial conditions and imposed ionic valence z c .

2. At the first step, events, such as osmotic shocks, are checked and external concentrations or times are recalculated accordingly.

3. The electric potential is calculated by the charge difference (H.12).

4. For the volume and each specie, fluxes are evaluated.

5. Once this time step is completed, integration gets to step 2 for the next time step.

6. The algorithm stops when the time reaches maximum allowed time or if a concentration drops below zero.

At each step, the electric potential ∆ Φc is evaluated