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Significant progress has been made in the field of autonomous driving and trajectory optimization. One of the key challenges in this field is dealing with the uncertainty in input data and reducing its impact on the decision-making process of trajectory generation. Researchers have dedicated their efforts to building various models that address different types of uncertainties arising from sensor precision and complex driving environments, aiming to enhance the safety of autonomous vehicle technology. This thesis explores different methods for handling uncertainties in trajectory optimization. We begin by analysing adaptive cruise control (ACC) scenarios, where the input data is treated as a random variable. Two optimization models are developed to find optimal trajectories that avoid potential collisions and satisfy all driving constraints. the dependency of the random variable is also investigated through copula theory. Furthermore, we study scenarios where only partial information about the uncertainty is available and apply distributionally robust optimization (DRO) techniques to tackle the problem.

In addition to ACC driving scenario, we apply optimal control methods to create a more comprehensive model that considers both safety and effectiveness factors required in different driving scenarios. Numerical simulations based on generated driving scenarios demonstrate that the stochastic model outperforms the deterministic model when the uncertainty is present. We also explore multi-player systems to leverage their properties in collective decision-making for autonomous vehicles. Specifically, we study the nplayer chanceconstrained game, exploring the existence of Nash equilibrium and its connection with variational inequality. The game is transformed into a nonlinear complementarity problem, which is efficiently solved. Furthermore, we examine the chanceconstrained game under DRO and conduct numerical experiments to evaluate their performance.

Titre : Optimisation sous incertitude de trajectoires pour le véhicule autonome

Mots clés : Optimisation stochastique, Théorie des jeux, Véhicules autonomes Résumé : Des progrès significatifs ont été réalisés dans le domaine de la conduite autonome et de l'optimisation des trajectoires. L'un des principaux défis dans ce domaine est de faire face à l'incertitude des données d'entrée et de réduire son impact sur le processus de génération de trajectoires. Les chercheurs ont consacré leurs efforts à la construction de différents modèles qui abordent les différents types d'incertitudes liées à la précision des capteurs et aux environnements de conduite complexes, dans le but d'améliorer la sécurité de la technologie des véhicules autonomes. Cette thèse explore différentes méthodes pour traiter les incertitudes dans l'optimisation des trajectoires. Nous commençons par analyser des scénarios de régulateur de vitesse adaptatif (ACC), où les données d'entrée sont traitées comme une variable aléatoire. Deux modèles d'optimisation sont développés pour trouver des trajectoires optimales qui évitent les collisions potentielles et satisfont toutes les contraintes de conduite. La dépendance de la variable aléatoire est également étudiée à travers la théorie des copules.

En outre, nous étudions des scénarios dans lesquels seules des informations partielles sur l'incertitude sont disponibles et nous appliquons des techniques d'optimisation distributionnellement robustes (DRO) pour résoudre le problème. En plus du scénario de conduite de l'ACC, nous appliquons des méthodes de contrôle optimal pour créer un modèle plus complet qui prend en compte à la fois les facteurs de sécurité et d'efficacité requis dans différents scénarios de conduite. Des simulations numériques basées sur des scénarios de conduite générés démontrent que le modèle stochastique est plus performant que le modèle déterministe en cas d'incertitude. Nous explorons également les systèmes multi-joueurs afin d'exploiter leurs propriétés dans la prise de décision collective pour les véhicules autonomes. Plus précisément, nous étudions le jeu à contraintes de hasard à n joueurs, en explorant l'existence d'un équilibre de Nash et son lien avec l'inégalité variationnelle. Le jeu est transformé en un problème de complémentarité non linéaire, qui est résolu efficacement. En outre, nous examinons le jeu à contraintes de hasard sous DRO et menons des expériences numériques pour évaluer leur performance.

Synthèse

Le développement des véhicules autonomes suscite un intérêt croissant en raison de son potentiel pour améliorer la sécurité et l'efficacité des transports. Des entreprises privées et publiques, telles que Tesla et Google, investissent massivement dans la recherche et le développement de cette technologie en pleine expansion. Les gouvernements du monde entier prennent des mesures pour faciliter le déploiement des véhicules autonomes, reconnaissant leur capacité à révolutionner les transports et à avoir un impact sur l'environnement, la santé publique et l'économie. Les techniques de conduite autonome se développent rapidement, allant de l'assistance à la conduite au contrôle entièrement autonome, transformant ainsi le secteur des transports. Cependant, ces avancées présentent également des défis, en particulier dans la planification de la trajectoire des véhicules autonomes, où la prise de décision doit garantir une trajectoire sans collision dans un environnement dynamique et imprévisible. L'évaluation de la sécurité de ces véhicules est cruciale pour leur adoption future, et des essais sur route sont essentiels, bien que limités dans la couverture des scénarios et des conditions.

Compte tenu de l'impossibilité de réaliser des essais routiers complets couvrant tous les scénarios, les simulations sont devenues une approche clé pour évaluer les performances des véhicules autonomes, complétant ainsi les essais sur route. Cela s'avère particulièrement efficace pour reproduire des situations difficiles à recréer dans la réalité. Un autre défi majeur est la gestion de l'incertitude, provenant de diverses sources telles que les capteurs, les variations de mesure et les conditions météorologiques. Cela affecte considérablement la sécurité des véhicules autonomes, exigeant des trajectoires robustes et fiables dans des conditions variées. La recherche actuelle se concentre sur le développement de méthodes innovantes pour traiter l'incertitude, en explorant des modèles probabilistes et des approches d'apprentissage automatique. 
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Context and Motivations

The development of autonomous vehicles has gained significant attention in recent years due to the potential of improving safety and efficiency in transportation.

Both private and public entities have displayed a strong interest in this rapidly expanding technology. Prominent industry leaders, including Tesla and Google, have committed substantial resources towards research and development of autonomous technology. Moreover, governments worldwide have taken proactive measures to facilitate the deployment of autonomous vehicles, acknowledging their potential to revolutionize transportation and impact key societal dimensions such as the environment, public health, and the economy. In recent times, there has been a significant expansion of autonomous driving techniques that have expected that autonomous driving techniques will continue to gain prominence and become an increasingly ubiquitous feature of modern transportation systems.

In parallel, the progress and deployment of autonomous vehicles present substantial challenges, especially in the trajectory planning module of the autonomous vehicle system. In a dynamic and unpredictable driving environment, the decisionmaking module is tasked with determining a collision-free and feasible trajectory from the vehicle's current position to its destination. Assessing the performance and safety of an autonomous vehicle, specifically its perception/decision module, is crucial for the technology's future commercialization. To ensure the safety of autonomous vehicles, manufacturers must conduct on-road tests that encompass a wide variety of situations. These tests require a substantial amount of driving over long distances without ensuring comprehensive scenario coverage, such as traffic variability, environmental variability, or weather conditions, and without the capacity to effectively analyze emergency situations.

Nonetheless, comprehensive on-road vehicle-level tests covering all driving scenarios are unfeasible, underscoring the significance of simulation-based approaches for evaluating autonomous vehicle system performances. Consequently, simulation-based testing, known for its cost-effectiveness and time efficiency, has become widely adopted to assess the functionality of autonomous vehicles and complement on-road tests, particularly in challenging situations that are difficult to replicate in real-world driving scenarios.

Another significant challenge in the advancement of trajectory planning algorithms is the need to accommodate uncertainties originating from multiple sources, including sensor noise, measurement variations, and weather-related factors. These factors have a considerable influence on the safety assessment of autonomous vehicles, making it imperative to guarantee that the generated trajectories remain robust and reliable across various conditions.

The effectiveness of trajectory generators largely depends on their capability to precisely model and tackle various types of uncertainties. The ultimate goal is to ensure that autonomous vehicles can operate reliably to face uncertain and ever-changing factors, consequently reducing the likelihood of getting an accidents.

As a result, current research in trajectory planning primarily concentrates on developing innovative methods and techniques to deal with cutting-edge uncertainty issues. This includes investigating probabilistic models and machine learning approaches to better understand and mitigate the effects of uncertainty on trajectory planning. By increasing the capacity of trajectory generators to efficiently address uncertainty, researchers aim to enhance the overall safety, dependability, and performance of autonomous vehicles in realworld driving situations.

Research Objectives and Scope

The primary aim of this thesis is to develop a reliable and efficient reference generator for trajectory planning under uncertainties, which will facilitate the validation of various advanced driving assistance systems (ADAS). The research initially focuses on simple scenarios involving a single vehicle and fundamental functionalities, such as Adaptive Cruise Control (ACC). As the study progresses, it is anticipated that the scope will expand to encompass a wider range of ADAS functionalities and more complex cooperative multi-vehicle driving scenarios. By addressing these objectives, this thesis endeavors to contribute to the growing body of knowledge surrounding autonomous vehicle technologies and their potential applications in the transportation sector.

From the perspective of autonomous vehicles, this research will primarily investigate basic functionalities such as ACC and then extend the analysis to more general and complex driving scenarios. In addition to considering the single vehicle case, this study will also explore multi-agent interactions for further applications on trajectory validation.

Contributions

From a methodological standpoint, the research will address the issue as a discrete optimization problem. Given that the optimality of a trajectory can be expressed by the objective function, the optimization framework is well-suited for this purpose. A key focus of this thesis is the analysis of uncertainties related to the environment of autonomous vehicles. Consequently, our research will concentrate on probabilistic models such as stochastic optimization, chanceconstrained optimization, and distributionally robust optimization under various assumptions about the probability distributions of random events. In the context of multi-agent interaction under uncertainty, we investigate the problem by considering an n-player chance-constrained game framework. This approach enables a comprehensive analysis of the complex interactions among multiple agents while accounting for the uncertainties inherent in their respective decisionmaking processes. By examining these methodologies, the thesis aims to provide valuable insights into the development and refinement of trajectory planning algorithms under uncertain conditions.

Contributions

In alignment with the research goals in Section 1.2, the main contributions of this study can be summarized in the subsequent points:

1. Development of deterministic and stochastic optimization models for ACC reference generation. We formulate a quadratic programming (QP) problem to identify the optimal command for maximizing the distance between two vehicles subject to a given set of constraints. We then present a comprehensive comparison of the results obtained with our generated driving data to simulate realistic scenarios, to show the benefits of stochastic models.

2. Application of copula theory for ACC reference generation. The copula theory in uncertainty-based model allows us to study the dependencies among random variables for real-world applications. We then provide a detailed comparison of the results using our generated driving data simulating real scenarios to showcase the benefits of stochastic models.

3. Investigation of distributionally robust optimization to manage sensor error uncertainty, which is characterized by random variables with known first and second moments. Our optimization models are quadratic programming problems to determine the optimal command for maximizing the distance between two vehicles subject to a set of given constraints. We make a thorough comparison of the results using our generated driving data and highlight the superior performance of the Distributionally Robust Optimization (DRO) model in comparison to the deterministic formulation.

4. Proposal of a numerical optimal control method for formulating reference generation problems under various driving scenarios. This model considers safety, comfort, and effectiveness, as well as features such as adaptive cruise control and lane-keeping assist. Additionally, we address uncertainty and rely on chance constraints for safety assessment.

5. In real-world driving scenarios, where multiple vehicles coexist, the decisionmaking process of each vehicle needs to be evaluated within a game theory framework. To expand our understanding of the interaction among autonomous vehicles within a game theory framework under uncertainty, we extend the the two-player result in [START_REF] Vikas | Existence of Nash equilibrium for chance-constrained games[END_REF] to the n-player random game case. We demonstrate that the Nash equilibrium problem can be reformulated as an NCP when the player's payoff follows either Cauchy or Normal distributions. We also prove the existence of Nash equilibrium under various conditions using Brouwer's fixed-point theorem. By conducting numerical experiments, we solve multiple game instances that are randomly generated to illustrate the effectiveness of our methodologies.

6. The analysis of the n-player random game within the framework of variational inequality contributes to the advancement of multi-vehicle driving scenarios. We demonstrate that the Nash equilibrium problem can be reformulated as a variational inequality problem when the player's payoff follows either Cauchy or Normal distributions. We also prove the existence of Nash equilibrium under different conditions using Brouwer's fixed-point theorem. Our numerical experiments involve solving multiple randomly generated game instances to demonstrate the efficiency of our approaches.

7. Investigation of the n-player random game within the context of distributionally robust chance constraints framework to effectively model and account for uncertainty in multi-vehicle driving scenarios. We prove that the Nash equilibrium problem can be reformulated as an NCP when the player's payoff distribution belongs to various types of uncertainty sets.

We conduct numerical experiments that involve the solution of multiple randomly generated game instances to assess the efficiency of our approaches.

In summary, the main contributions of this thesis encompass the innovative application of stochastic optimization techniques, such as chance-constrained optimization and distributionally robust optimization, to address the challenges associated with trajectory optimization for autonomous vehicles. By exploring these methods, this research aims to enhance the safety, reliability, and performance of these vehicles in a dynamic and uncertain driving environment. Moreover, this thesis offers contributions to the field of multi-agent random games, particularly in the context of establishing the existence of Nash equilibrium. By providing both the theoretical analysis and practical numerical simulations for large-scale instances, this research expands the current understanding of strategic interactions among multiple agents in environments with uncertainty. These results in the domain of autonomous vehicles have the potential to develop more efficient and robust cooperative multi-vehicle driving scenarios, ultimately paving the way for more advanced and secure autonomous transportation systems.

Thesis Outline

As stated in the previous sections, the main goal of this thesis is develop and validate trajectory optimization frameworks that can effectively handle uncertainties. These frameworks aim to optimize trajectories while minimizing the impact of uncertainties on the results. The key focus is to ensure that the trajectory should be robust with respect to the incorporated uncertainties. To demonstrate the diverse modeling of uncertainties under different driving assumptions, the thesis is organized as follows:

Chapter 2 presents a comprehensive review of trajectory optimization for autonomous vehicles and multi-agent random games, focusing on key challenges and approaches such as adaptive cruise control, model predictive control, and optimal control-based methods. This chapter also explores stochastic optimization techniques, including distributionally robust optimization, chance-constrained optimization, and stochastic programming, as well as the application of multiagent random games in complex scenarios. This foundation sets the stage for subsequent chapters by highlighting the current state-of-the-art in both trajectory optimization and multi-agent random games. Chapter 5 introduces a constrained optimal control approach that focuses on generating reference trajectories in uncertain driving scenarios. These reference trajectories are used to validate the decision-making processes of autonomous vehicles. This approach ensures a collision-free trajectory that prioritizes safety and comfort through the design of the objective function and vehicle constraints. The stochastic optimization problem incorporates the uncertainty of environmental information from sensors to minimize the risk of safety requirement violations.

Numerical experiments demonstrate the enhanced robustness of the solutions obtained through the proposed stochastic model. Chapter 6 considers n-player strategic chance-constrained games, considering cases where player payoffs follow either Cauchy or normal distributions. This chapter establishes the equivalence between a Nash equilibrium problem and a variational inequality problem, which is then reformulated as a nonlinear complementarity problem using Karush-Kuhn-Tucker conditions. The existence of Nash equilibrium is proven through Brouwer's fixed-point theorem. The chapter also includes numerical experiments on randomly generated instances to demonstrate the efficiency of the proposed approach.

Chapter 7 studies n-player strategic chance-constrained games where the payoff distribution is partially known. The chapter examines two types of uncertainty sets and addresses the Nash equilibrium problem by presenting its equivalent nonlinear complementarity problem using the Karush-Kuhn-Tucker conditions.

The efficiency of the proposed approach is discussed and demonstrated through numerical experiments conducted on a set of randomly generated instances. Chapter 2 provides a comprehensive review of related research on trajectory optimization for autonomous vehicles, and n-player chance-constrained games.

The chapter is divided into two main parts. The first part reviews the literature related to trajectory optimization of autonomous vehicles, with a focus on identifying the key challenges and approaches used to address them. Specifically, this section covers topics such as Adaptive Cruise Control (ACC), Model Predictive Control (MPC), and optimal control-based approaches to trajectory optimization.

The second part of the chapter is dedicated to n-player chance-constrained games, which have emerged as a powerful tool for optimizing trajectories in complex scenarios involving multiple agents with competing objectives. Overall, this
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chapter aims to provide a foundation for the subsequent chapters of the thesis, by highlighting the current state-of-the-art in trajectory optimization of autonomous vehicles and n-player chance-constrained games.

Trajectory Optimization of Autonomous Vehicle

In recent years, significant efforts have been dedicated to the field of autonomous vehicles. This technology has benefited from the rapid development of perception and computational advancements, with the ultimate goal of revolutionizing the entire transportation system in our society. The potential benefits of this technology are considerable, including reducing driver negligence to prevent vehicle collisions, and freeing a vast number of drivers from the demands of manual driving. Autonomous vehicles primarily consist of three integral modules: perception, decision, and control. The overall architecture of autonomous vehicles can be visualized in Fig. 2.1. This thesis focuses on the decision module, particularly trajectory optimization for autonomous vehicles. The emphasis here is to optimize the generated trajectories, thereby aiding in the design and validation of autonomous vehicle functionalities. To accomplish this, we initiate our discourse with elementary driving scenarios, like ACC scenario. This section offers a comprehensive overview of the trajectory planning techniques and methodologies as outlined in existing scholarly literature.

Trajectory Planning Techniques

The roots of automated vehicles can be traced back to the late 1980s and early 1990s [START_REF] Dieter | Dynamic monocular machine vision[END_REF][START_REF] Steven | Automated vehicle control developments in the PATH program[END_REF][START_REF] Behringer | Autonomous road vehicle guidance from autobahnen to narrow curves[END_REF]. The innovative research by Ernst Dickmanns [START_REF] Dieter | Dynamic monocular machine vision[END_REF] significantly influenced the advancement of autonomous vehicles. During this period, the PROMETHEUS project was financed to boost the development of an autonomous vehicle. Shladover et al. [START_REF] Steven | Automated vehicle control developments in the PATH program[END_REF] delved into the longitudinal control systems, encompassing vehicle following control, inter-vehicular communications, and a comparative analysis of varying methodologies. Additionally, they also explore lateral control systems that take into account vehicle lateral dynamics and 
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Sampling-based Methods

The sampling-based method is a commonly utilized strategy in trajectory planning.

It incorporates a range of techniques to generate sample points within collisionfree spaces, connecting these points with safe pathways to effectively address path-planning challenges. Widely-recognized sampling-based approaches include the Probabilistic Roadmap Method (PRM) [START_REF] Kavraki | Probabilistic roadmaps for path planning in high-dimensional configuration spaces[END_REF], the Randomized Potential Field (RPF) [START_REF] Barraquand | Robot motion planning: A distributed representation approach[END_REF] , and the Rapidly-exploring Random Tree (RRT) [START_REF] Steven | Randomized kinodynamic planning[END_REF].

the PRM identifies collision-free samples in the driving environment and incorporates them into a roadmap graph. Subsequently, using a cost function, optimal samples are selected from this graph. A straightforward local path planner is then employed to interconnect these samples. The RPF approach, on the other hand, constructs a graph by linking the local minima of the potential function defined within the environment. The planner then traverses this graph to identify feasible paths. The RRT algorithm provides a means to navigate the configuration space by employing a random search to establish feasible trajectories.

The prime advantage of this method lies in its efficiency. It typically consumes less time compared to deterministic methods, making it a preferred choice for online path planning problems. Despite its efficiency, the RRT algorithm does have its limitations. The solutions it generates are suboptimal, meaning they don't always represent the best possible path given certain constraints or objectives. Furthermore, these solutions are not curvature continuous, indicating that the algorithm doesn't guarantee smooth transitions in the trajectory's curvature.

Despite these limitations, the RRT algorithm has been broadly applied and evaluated on autonomous vehicles. Many variants [START_REF] Karaman | Sampling-based algorithms for optimal motion planning[END_REF][START_REF] Li | Sparse methods for efficient asymptotically optimal kinodynamic planning[END_REF][START_REF] Gammell | Informed RRT*: Optimal sampling-based path planning focused via direct sampling of an admissible ellipsoidal heuristic[END_REF][START_REF] Islam | Rrt*-smart: Rapid convergence implementation of rrt* towards optimal solution[END_REF] have been proposed to improve the drawbacks of the original RRT. For instance, RRT* [START_REF] Karaman | Sampling-based algorithms for optimal motion planning[END_REF] is an optimal variant of RRT. This approach improves upon the original algorithm by introducing the ChooseParent and Rewire procedures when a new node is added to the tree. These optimization modules ensure the provision of optimal solutions as the number of samples approaches infinity, further augmenting the utility of the RRT framework. In [START_REF] Li | Sparse methods for efficient asymptotically optimal kinodynamic planning[END_REF], improvement has been made by removing the steering function in RRT while providing asymptotic near-optimality for kinodynamic planning. Despite the fact that sampling in a semi-structured space allows for fast planning, there is no guarantee for the optimality and continuity of the results.

Aiming to reduce the convergence time, variants such as Informed-RRT* [START_REF] Gammell | Informed RRT*: Optimal sampling-based path planning focused via direct sampling of an admissible ellipsoidal heuristic[END_REF] and RRT*-smart [START_REF] Islam | Rrt*-smart: Rapid convergence implementation of rrt* towards optimal solution[END_REF] have been proposed. These algorithms enhance the convergence rate by adopting a sampling strategy predicated on the initial solution of the traditional RRT*. Informed-RRT* [START_REF] Gammell | Informed RRT*: Optimal sampling-based path planning focused via direct sampling of an admissible ellipsoidal heuristic[END_REF], for instance, employs the start and target points to establish an elliptical sampling region. This region is progressively reduced with optimization, enabling the swift acquisition of optimal solutions. Conversely, RRT*-smart [START_REF] Islam | Rrt*-smart: Rapid convergence implementation of rrt* towards optimal solution[END_REF] introduces an intelligent sampling strategy into RRT* and optimizes the path by pruning unnecessary nodes, thereby promoting efficiency.

Additionally, RRT has been effectively incorporated with advanced deep learning methods. The Neural RRT* [START_REF] Wang | Neural RRT*: Learning-based optimal path planning[END_REF] algorithm, for example, uses an abundance of successful path planning cases to train a Convolutional Neural Network (CNN) model. This model can predict the probability distribution of the optimal path on the map and guide the sampling process. By focusing on nodes required for the optimal path, the time needed for convergence can be substantially reduced. This fusion of traditional path planning and cutting-edge learning techniques offers promising avenues for further research and development of autonomous vehicles.

Graph-search Based Methods

The core concept in autonomous driving is navigation in a state space from the depart to the destination. This space is typically illustrated as an occupancy grid or lattice, which maps the locations of objects within the environment. trajectory planning, from this perspective, can be achieved by employing graph-search based techniques that navigate through the various states in the grid. The graphsearch based techniques effectively discretize the search space by superimposing a graph on the occupancy grid map, with cell centers serving as neighbors in the search graph. Such algorithms, including Dijkstra, A*, and variants of A*, are among the most common methods for path planning in autonomous vehicles. They search for the optimal path between the vehicle's current state and a goal state, with the goal state typically being a pose near a waypoint within the current route.These techniques have found wide application across various levels of trajectory planning of autonomous vehicles.

The Dijkstra algorithm [START_REF] Wybe | A note on two problems in connexion with graphs[END_REF] finds the shortest path between a starting node and a target node within a graph. The algorithm progressively explores the nearest unexamined node, incorporating its neighbors into the set of nodes to be inspected, and ceases its operation once the goal node has been reached. Numerous researchers have adopted the Dijkstra algorithm in autonomous driving applications. For instance, Arnay et al. [START_REF] Arnay | Safe and reliable path planning for the autonomous vehicle verdino[END_REF] employed the Dijkstra algorithm to design a global planner for their autonomous vehicle. Similarly, Bacha et al. [START_REF] Bacha | Odin: Team victortango's entry in the darpa urban challenge[END_REF] implemented a guided Dijkstra search to designate control points, which assist in navigating towards a parking spot and facilitating the reversing maneuver out of the spot.

The A* algorithm [START_REF] Peter E Hart | A formal basis for the heuristic determination of minimum cost paths[END_REF], an extension of Dijkstra's graph search algorithm, uses heuristics to perform the process of online trajectory planning efficiently with a fast node search. While it proves effective for navigating spaces with prior knowledge, its use becomes computationally expensive in terms of time and memory when dealing with larger areas. In response to its limitations, several advanced variants of the A* algorithm have been developed, including Dynamic A* (D*) [START_REF] Stentz | Optimal and efficient path planning for partially-known environments[END_REF], Field D* [START_REF] Ferguson | Using interpolation to improve path planning: The Field D* algorithm[END_REF], Theta* [START_REF] Daniel | Theta*: Any-angle path planning on grids[END_REF], AIT* [START_REF] Marlin | AIT* and EIT*: Asymmetric bidirectional sampling-based path planning[END_REF], Anytime Repairing A* (ARA*) and Anytime D* (AD*) [START_REF] Likhachev | Anytime search in dynamic graphs[END_REF]. Those extensions aim to find a suboptimal solution quickly by executing an A* with inflated heuristics and then refine the solution incrementally. Typically, a heuristic rule for this type of algorithm is not straightforward to find in complex driving environments, and the trajectory is not always smooth. For example, Anytime A* [START_REF] Hansen | Anytime heuristic search[END_REF] employs a weighted heuristic to determine the initial solution, and it supports continuous search with the cost of this initial path serving as the maximum limit and the acceptable heuristic as the minimum limit. On the other hand, Anytime Repairing A* (ARA*) [START_REF] Likhachev | ARA*: Anytime A* with provable bounds on sub-optimality[END_REF] executes multiple searches, each featuring a reduced inflated heuristic and reuses data from previous searches. Combining aspects from D* Lite and ARA*, Anytime Dynamic A* (ADA*) [START_REF] Likhachev | Anytime Dynamic A*: An Anytime, Replanning Algorithm[END_REF] forms an 'anytime' search algorithm that is designed for real-time re-planning in constantly changing environments. The A* algorithm and its hybrid variant achieve significant results during the DARPA Urban Challenge. Both the Junior autonomous vehicle from Stanford University [START_REF] Montemerlo | Junior: The stanford entry in the urban challenge[END_REF] and the AnnieWAY from KIT [START_REF] Kammel | Team AnnieWAY's autonomous system for the 2007 DARPA Urban Challenge[END_REF] leveraged the A* algorithm and its hybrid variant to their advantage. Notably, the application of the AD* variant played a key role in aiding the Boss [START_REF] Ferguson | Using interpolation to improve path planning: The Field D* algorithm[END_REF] to win victory in the DARPA Urban Challenge.

Optimization Methods

Optimization methods have shown their effectiveness in generating smooth trajectories that respects constraints in autonomous driving. The primary goal of these methods is to either minimize or maximize a certain function while keeping within the bounds of varied constraints. The most frequently used numerical optimization-based techniques in trajectory planning for self-driving cars is the function optimization method.

Function optimization involves the selection of a suitable cost function and the determination of constraints to govern the trajectory. These constraints typically pertain to the spatial and dynamic states of the vehicle.By formulating a well-defined cost function and specifying the desired constraints, the resulting trajectory can satisfy all the specified vehicle and environmental constraints while achieving optimal performance according to the defined objective. Nonetheless, it is important to note that this approach can become computationally expensive, particularly based on the number of waypoints set and the temporal distance between each waypoint. In [START_REF] Xu | A real-time motion planner with trajectory optimization for autonomous vehicles[END_REF], Xu et al. presented a novel approach based on an iterative optimization process. The proposed method involves dividing the optimization process into multiple phases, each targeting different objectives, within a discretized motion space. This strategic division allows for time-saving and improved performance of the planners. By iteratively optimizing the trajectory through different stages, Xu et al. improve the efficiency and overall effectiveness of the planning process.

Function optimization techniques are often integrated into planners either as a standalone component or in combination with other trajectory planning techniques due to their flexibility. Lim et al. [START_REF] Lim | Hierarchical trajectory planning of an autonomous car based on the integration of a sampling and an optimization method[END_REF] proposed a hierarchical trajectory planning approach that incorporates both an upper-level behavioral trajectory planner and a lower-level motion trajectory planner. This hierarchical structure allows for decision-making at both the macro-scale and micro-scale levels. By applying a combination of sampling-based methods and optimization-based methods, Lim et al. effectively utilize the advantages of each approach during the corresponding planning phases. This integration enables the system to exploit the strengths of both sampling-based methods and optimization-based methods, resulting in an better overall planning performance.

Function optimization also contributes to the development and application of optimal control and model predictive control techniques in trajectory planning. Bergman et al. [START_REF] Bergman | Combining homotopy methods and numerical optimal control to solve motion planning problems[END_REF] combined the numerical optimal control and homotopy methods for motion planning in nonconvex environments, the problem is formulated as Sequential Quadratic Programming (SQP), and the obstacles are categorized according to their topological properties. [START_REF] Liu | Path planning for autonomous vehicles using model predictive control[END_REF] presented a Model Predictive Control (MPC) approach aimed at achieving comfortable and natural maneuvers while ensuring collision avoidance. A potential field is also introduced as part of the objective function within the MPC framework to enhance the performance of the planner.

Adaptive Cruise Control System

The rapid development of autonomous vehicles has led to significant advancements in Advanced Driver Assistance Systems (ADAS), which aim to enhance driver experience, safety, and efficiency across various driving scenarios. One widely applied ADAS is Adaptive Cruise Control (ACC) system, which has been extensively studied and implemented by numerous researchers and automotive manufacturers from diverse perspectives. The initial introduction of ACC systems to the market can be traced back to 1995 ( [START_REF] Bishop | Intelligent vehicle technology and trends[END_REF]). Since then, ACC has undergone significant advancements and refinements, and it has evolved to become a standard feature in most vehicle models available today.

ACC Definition

Building upon the conventional cruise control (CCC) systems, ACC systems utilize throttle and brake control to adjust vehicle velocity and maintain a predefined distance from the preceding vehicle, thereby reducing the risk of potential collisions. In scenarios where no preceding vehicle is detected, an ACC-equipped vehicle functions similarly to a CCC system, maintaining a userset velocity automatically through throttle control. However, once detecting a preceding vehicle in headway, the ACC system evaluates whether it can safely continue traveling at the user-set velocity. If the distance to the preceding vehicle is too close or if it is traveling at a slower speed, the ACC system transitions from velocity control to time headway control to ensure safety.

The effective operation of an ACC-equipped vehicle relies on the integration of sensors such as cameras, lidar, or radar. These high-precision sensors are employed to detect the presence of preceding vehicles and accurately measure the dynamic inter-vehicle distances in various scenarios. The input signals captured by these sensors are subsequently transmitted to the ACC processing modules. The ACC system utilizes these input signals to analyze the surrounding environment, make informed decisions, and generate appropriate commands for throttle and brake control. This process enables the ACC system to react and adapt to changing traffic conditions, facilitating the safe and efficient operation of the vehicle.

ACC Design

Numerous approaches have been developed to address the design of ACC systems, each tackling the problem from distinct perspectives. These approaches share a common focus on distance regulation, which refers to determining the optimal distance that the following vehicle should maintain with respect to the preceding vehicle. Different approaches emphasize various aspects of distance regulation, such as maintaining a constant time headway, adapting to varying traffic conditions, or considering the dynamics of both vehicles. Additionally, control strategies play a crucial role in accurately adjusting the throttle and brake inputs to achieve smooth and precise velocity adjustments.

One approach commonly adopted by ACC systems is the utilization of optimal control methods to achieve the desired outcome [START_REF] Chehardoli | Robust optimal control and identification of adaptive cruise control systems in the presence of time delay and parameter uncertainties[END_REF][START_REF] Jiang | A personalized human drivers' risk sensitive characteristics depicting stochastic optimal control algorithm for adaptive cruise control[END_REF][START_REF] Zhu | Adaptive optimal control of heterogeneous CACC system with uncertain dynamics[END_REF]. In the study conducted by Chehardoli [START_REF] Chehardoli | Robust optimal control and identification of adaptive cruise control systems in the presence of time delay and parameter uncertainties[END_REF], a cost function is proposed that incorporates essential metrics, and the objective is to optimize the values of control parameters to optimize the performance. To achieve this optimization, the particle swarm optimization algorithm is employed. These methods derive from system modeling and control design, and are subsequently refined using optimization techniques. In [START_REF] Jiang | A personalized human drivers' risk sensitive characteristics depicting stochastic optimal control algorithm for adaptive cruise control[END_REF], Jiang et al. introduced a personalized stochastic optimal adaptive cruise control (ACC) algorithm. This algorithm focuses on the risk-sensitivity of human drivers under system and measurement uncertainties, aiming to generate smooth control. These studies exemplify how optimal control methods, combined with optimization techniques and considerations for individual driver preferences, contribute to the development of ACC systems.

Since 2010, Model Predictive Control (MPC) approaches have gained significant popularity in the field of ACC systems. [START_REF] Chen | Adaptive cruise control for cut-in scenarios based on model predictive control algorithm[END_REF][START_REF] Takahama | Model predictive control approach to design practical adaptive cruise control for traffic jam[END_REF][START_REF] Weißmann | Energy-optimal adaptive cruise control combining model predictive control and dynamic programming[END_REF][START_REF] Gjl Naus | Design and implementation of parameterized adaptive cruise control: An explicit model predictive control approach[END_REF]. These approaches utilize a receding horizon strategy for online optimization, enabling the prediction of future system behavior and the calculation of optimal control inputs to optimize the objective function. In the work by Chen et al. [START_REF] Chen | Adaptive cruise control for cut-in scenarios based on model predictive control algorithm[END_REF], an MPC algorithm is proposed specifically designed for cut-in scenarios in ACC. The authors also utilize a finite state machine to handle different cut-in scenarios and manage the control of vehicles effectively. Takahama et al. [START_REF] Takahama | Model predictive control approach to design practical adaptive cruise control for traffic jam[END_REF] introduced an MPC method tailored for ACC in traffic jams. The objective is to achieve high responsiveness and minimize discomfort during traffic congestion. MPC's ability to predict future system behavior and consider real-time optimization objectives makes it a valuable approach for ACC design.

In recent years, the advancement of machine learning has facilitated the application of neural networks in the development of end-to-end ACC controllers [START_REF] Jiřı | Application of artificial neural networks to streamline the process of adaptive cruise control[END_REF][START_REF] Mahadika | Neural Network Predictive Control Approach Design for Adaptive Cruise Control[END_REF]. David et al. [START_REF] Jiřı | Application of artificial neural networks to streamline the process of adaptive cruise control[END_REF] utilized neural networks to estimate model parameters for adaptive cruise control, aiming to enhance driving safety. By leveraging the capabilities of neural networks, the ACC system can adapt and optimize its performance based on the estimated model parameters. Mahadika et al. [START_REF] Mahadika | Neural Network Predictive Control Approach Design for Adaptive Cruise Control[END_REF] proposed a neural network predictive control approach that combines the vehicle characteristic imitation capabilities of artificial neural networks with Model Predictive Control (MPC) techniques. This integration enables the system to minimize the quadratic error between future reference trajectories and predicted outputs. The utilization of neural networks in ACC demonstrates their potential in enhancing the effectiveness and efficiency of ACC systems.

Given that the input of an ACC system relies on sensors, the precision and accuracy of these sensors under complicated environment can introduce uncertainties. Consequently, there is a growing demand for ACC systems to effectively handle input uncertainties. Researchers have extensively focused on analyzing and reducing the impact of input uncertainty to enhance the robustness of ACC systems. Within Table 2.1, we conduct a benchmark analysis of several state-of-the-art ACC systems, evaluating their key characteristics and whether they incorporate uncertainty modeling. 

Existing works

Modeling of uncertainty Key characteristics [START_REF] Chehardoli | Robust optimal control and identification of adaptive cruise control systems in the presence of time delay and parameter uncertainties[END_REF] Yes Robust OC for ACC designing [START_REF] Jiang | A personalized human drivers' risk sensitive characteristics depicting stochastic optimal control algorithm for adaptive cruise control[END_REF] Yes Stochastic OC incorporating human drivers' risk-sensitivity [START_REF] Takahama | Model predictive control approach to design practical adaptive cruise control for traffic jam[END_REF] No MPC for ACC in traffic jam [START_REF] Chen | Adaptive cruise control for cut-in scenarios based on model predictive control algorithm[END_REF] No MPC for ACC in cut-in scenarios [START_REF] Weißmann | Energy-optimal adaptive cruise control combining model predictive control and dynamic programming[END_REF] No MPC for energy-optimal ACC [START_REF] Silvia F Varotto | Adaptations in driver behaviour characteristics during control transitions from full-range Adaptive Cruise Control to manual driving: an on-road study[END_REF] No Modeling of driver-ACC interaction [START_REF] Lunze | Adaptive cruise control with guaranteed collision avoidance[END_REF] No ACC design focused on collision avoidance [START_REF] Lattarulo | A complete framework for developing and testing automated driving controllers[END_REF] No Framework of ACC testing [START_REF] Jamil Alnaser | Autonomous vehicles scenario testing framework and model of computation[END_REF] No Verification of ACC in complex functional scenarios [START_REF] Mehra | Adaptive cruise control: Experimental validation of advanced controllers on scale-model cars[END_REF] No Experimental platform for validation of ACC [START_REF] Djoudi | A simulation-based framework for functional testing of automated driving controllers[END_REF] No Functional testing of ACC with a simulation-based framework Furthermore, A wide variety of papers has studied ACC from other crucial perspectives, including:

• Driver behavior modeling (see for example [START_REF] Silvia F Varotto | Adaptations in driver behaviour characteristics during control transitions from full-range Adaptive Cruise Control to manual driving: an on-road study[END_REF][START_REF] Vishal C Kummetha | Analysis of the effects of adaptive cruise control on driver behavior and awareness using a driving simulator[END_REF][START_REF] Bobbie | Modeling driver response to imperfect vehicle control automation[END_REF]). Modeling the interaction between the driver and the ACC is done by analyzing the characteristics of driver behavior and how those characteristics are represented by state transition diagrams.

• String stability. In [START_REF] Gunter | Model-based string stability of adaptive cruise control systems using field data[END_REF][START_REF] Makridis | Empirical study on the properties of adaptive cruise control systems and their impact on traffic flow and string stability[END_REF][START_REF] Khound | Design methodology to derive over-damped string stable adaptive cruise control systems[END_REF], ACC model string stability was assessed in order to ensure that disturbances are not amplified.

• Collision avoidance. Authors of [START_REF] Lunze | Adaptive cruise control with guaranteed collision avoidance[END_REF][START_REF] Magdici | Adaptive cruise control with safety guarantees for autonomous vehicles[END_REF] develop a variety of objectives for ACC design that are necessary and sufficient for ensuring collision avoidance and time-headway spacing.

ACC Validation

The validation of autonomous driving functionality is indeed a critical task, not only for ACC but for all modules requiring assessment within autonomous vehicles. Before autonomous vehicles can be widely introduced into the commercial market, it is essential to validate and verify their functionalities and performance. This validation process involves rigorous testing and evaluation to ensure that the autonomous driving systems meet the required safety, reliability, and performance standards.

In the field of autonomous driving, a unified test architecture and validation process have been proposed in the study by [START_REF] Lattarulo | A complete framework for developing and testing automated driving controllers[END_REF]. This research introduces a comprehensive framework that enables the evaluation of path planning and control algorithms. The proposed architecture provides a structured approach for conducting tests and validating the performance of autonomous driving systems. Further work by Lattarulo et al. ( [START_REF] Lattarulo | Towards conformant models of automated electric vehicles[END_REF]) and Alnaser et al. ([45]) also addressed similar topics, emphasizing the development of testing methodologies and validation processes for autonomous driving systems. These studies aim to establish robust frameworks and methodologies to assess the capabilities and reliability of path planning and control algorithms in various scenarios and environments.

In addition to the overall testing framework, it is essential to carefully examine individual functionalities such as the ACC system. There are three types of validation which is simulation test, Hardware-in-the-Loop (Hil) test and road test.

Simulation indeed plays a crucial role in the verification and evaluation of ACC algorithms due to its cost-effectiveness and efficiency. By constructing and validating the physical layer and control logic within simulation models, developers can conduct iterative refinement and validation of the ACC algorithms before progressing to subsequent verification stages. Additionally, simulation provides a controlled virtual environment where developers can assess the ACC algorithm's performance in a wide range of scenarios, including challenging and rare events that are difficult to replicate in real-world testing. In the initial steps, simulation models allow for the modification of controller logics, structures, and parameters at a relatively low cost. By simulating various scenarios, developers can evaluate the controller's response and refine its performance to meet desired objectives. Mehra et al. [START_REF] Mehra | Adaptive cruise control: Experimental validation of advanced controllers on scale-model cars[END_REF] presented an experimental platform specifically designed for evaluating and demonstrating an optimization-based ACC controller. This platform leverages simulation techniques to verify and assess the performance of the ACC algorithm in different scenarios, providing valuable insights before realworld implementation. Additionally, Djoudi et al. [START_REF] Djoudi | A simulation-based framework for functional testing of automated driving controllers[END_REF] introduced a simulationbased toolchain that generates reference data and facilitates the analysis of test results. This toolchain allows for comprehensive assessment and comparison of different ACC algorithms, providing a systematic approach for evaluating their performance and making informed design decisions. Further insightful studies on ACC testing and validation can be found in [START_REF] Schmied | Extension and experimental validation of fuel efficient predictive adaptive cruise control[END_REF][START_REF] Shakouri | Simulation validation of three nonlinear model-based controllers in the adaptive cruise control system[END_REF].

Following simulation test, the next step in the testing process is often Hardwarein-the-Loop (HiL) test [START_REF] Chen | Autonomous vehicle testing and validation platform: Integrated simulation system with hardware in the loop[END_REF][START_REF] Deng | Hardware-in-the-loop simulation for autonomous driving[END_REF]. HiL test has been widely utilized in the evaluation of autonomous systems, including ACC systems. This testing method serves as a partial transition between simulation and real-world road tests, allowing for real testing while effectively managing both time and cost constraints.

In HiL tests for ACC systems, it is common to simulate the motion state of the preceding vehicle in a virtual environment. However, this approach can sometimes result in the behavior of the simulated preceding vehicle not accurately reflecting real-world situations. To address this issue, a study conducted by Joshi et al. [START_REF] Joshi | A novel approach for validating adaptive cruise control (ACC) using two hardware-in-the-loop (HIL) simulation benches[END_REF] proposed the development of two HiL benches, one for the ego vehicle and another specifically for the preceding vehicle. By creating separate HiL setups for both vehicles, the behavior of the preceding vehicle in the simulation was made more similar to that observed in actual vehicle tests.

As for road test, it varies from small-scale experiments to large-scale Field Operational Tests (FOTs). FOTs are extensive road tests that cover significant distances and duration to assess the robustness and performance of autonomous vehicles in real-world conditions. An example of a large-scale FOT is the euroFOT project [START_REF] Benmimoun | Large-scale FOT for analyzing the impacts of advanced driver assistance systems[END_REF]. The euroFOT project involved approximately 1000 vehicles from different manufacturers, each equipped with various ADAS. The project spanned over 40 months, conducting extensive road tests to evaluate the performance and effectiveness of the ADAS in real-world scenarios.

N-player Chance-constrained Game

When examining the decision-making process of autonomous vehicles, it is important to consider the interactions among multiple vehicles sharing the same driving scenario. Analysis of the best collective actions for all vehicles involved can be accomplished through a game-theoretic framework. In game theory, each vehicle can be modeled as a player, and their choices correspond to candidate actions. By applying game theory to the analysis of vehicle interactions and decision-making, researchers can optimize the overall performance and coordination of autonomous vehicles in complex traffic scenarios, ultimately improving the efficiency of transportation systems. This approach facilitates the development of intelligent and cooperative decision-making algorithms for autonomous vehicles, leading to improved traffic flow, reduced congestion, and enhanced safety on the road.

When incorporating uncertainty into games, a commonly adopted approach is to utilize chance-constrained games. In the following discussion, we will provide an overview of chance-constrained games and their development.

Overview

In game theory, Nash equilibrium is the most fundamental concept. It was first introduced by John von Neumann in 1928 [START_REF]Zur theorie der gesellschaftsspiele[END_REF] when he demonstrated the existence of a mixed strategy saddle point equilibrium for two-player finite zerosum games. John Nash [START_REF] John | Equilibrium points in n-person games[END_REF] further expanded on this concept in 1950 by proving the existence of Nash equilibrium in finite games involving multiple players and deterministic payoffs. The Nash equilibrium represents a state in which no player can unilaterally deviate from their chosen strategy to achieve a better outcome, given the strategies of the other players. Subsequently, there has been extensive research in the literature focusing on non-cooperative strategic games, delving into the existence of Nash equilibrium subject to specific conditions regarding strategy sets and payoff functions [START_REF] Başar | Dynamic noncooperative game theory[END_REF][START_REF] Debreu | A social equilibrium existence theorem[END_REF][START_REF] Fan | Applications of a Theorem Concerning Sets with Convex Sections[END_REF].

While some studies focus on games with deterministic strategy sets and payoff functions, real-life situations often involve uncertainties due to external factors.

Researchers have explored various approaches to address these uncertainties in game-theoretic models, one of which is the study of random games [START_REF] Bárány | Nash equilibria in random games[END_REF].

Random games have been employed to tackle the inherent uncertainty found in various real-life scenarios, such as oligopoly markets, where the payoffs for each player are treated as random variables. In these markets, risk-neutral players typically consider the expected values of the random payoffs when making strategic decisions. Several studies have been conducted in the field of stochastic game theory to analyze and model these situations [START_REF] De | A stochastic version of a Stackelberg-Nash-Cournot equilibrium model[END_REF][START_REF] Demiguel | A stochastic multiple-leader Stackelberg model: analysis, computation, and application[END_REF][START_REF] Jadamba | Variational inequality approach to stochastic Nash equilibrium problems with an application to Cournot oligopoly[END_REF][START_REF] Ravat | On the characterization of solution sets of smooth and nonsmooth convex stochastic Nash games[END_REF][START_REF] Valenzuela | Cournot prices considering generator availability and demand uncertainty[END_REF][START_REF] Xu | Stochastic Nash equilibrium problems: sample average approximation and applications[END_REF].

In the context of finite strategic games with random payoffs, chance-constrained games have emerged as an effective approach for addressing the preferences of risk-averse players [START_REF] Charnes | Deterministic equivalents for optimizing and satisficing under chance constraints[END_REF][START_REF] Cheng | A second-order cone programming approach for linear programs with joint probabilistic constraints[END_REF][START_REF] Prékopa | Stochastic programming[END_REF]. In [START_REF] Vikas | Existence of Nash equilibrium for chance-constrained games[END_REF]. Chance-constrained games provide a framework where players have a guaranteed level of confidence in obtaining certain payoffs. This captures situations where players aim to minimize their risk and ensure a certain level of outcome in the face of uncertainty. In [START_REF] Vikas | Existence of Nash equilibrium for chance-constrained games[END_REF], Singh et al. proved the existence of Nash equilibrium for an n-player finite strategic chance-constrained game under the assumption that the payoff vector of each player follows a multivariate elliptically symmetric distribution. Moreover, [START_REF] Vikas | Solving chance-constrained games using complementarity problems[END_REF] showed that a Nash equilibrium problem for a two-player random bi-matrix game is equivalent to a Linear Complementarity Problem (LCP) when each player's payoff follows independent Cauchy distributions.

Researchers have also explored various aspects of zero-sum chance-constrained games, including the existence and characterization of equilibrium [START_REF] Roger | Random-payoff two-person zero-sum games[END_REF][START_REF] Cassidy | Solution of a satisficing model for random payoff games[END_REF][START_REF] Charnes | Zero-zero chance-constrained games[END_REF][START_REF] Cheng | Random-payoff two-person zero-sum game with joint chance constraints[END_REF]. In [START_REF] Roger | Random-payoff two-person zero-sum games[END_REF],

Blau presented two stochastic models for a random-payoff two-person zero-sum game and investigates the relationship between them, to demonstrate that a one-to-one correspondence exists under certain assumptions between the two formulations of the models at their optimal values. Chen et al. [START_REF] Cheng | Random-payoff two-person zero-sum game with joint chance constraints[END_REF] also investigate Random-payoff two-person zero-sum gam with joint chance constraints. Their study focuses on exploring the existence of weak duality and strong duality under certain specific assumptions. Furthermore, random games with deterministic payoffs and chance-constrained strategies have also been investigated. In the case of two-player zero-sum games with an elliptical distribution, Singh et al. [START_REF] Vikas | A second-order cone programming formulation for two player zero-sum games with chance constraints[END_REF] demonstrated that the saddle point of the game is equivalent to a primal-dual pair of second-order cone programs.

This equivalence provides a mathematical framework for analyzing and solving these types of games efficiently. For n-player general sum games with joint chance constraints, the non-convexity of the joint chance constraint poses a significant challenge for establishing the existence of a Nash equilibrium. However, Peng et al. [START_REF] Peng | General sum games with joint chance constraints[END_REF] addressed this issue by introducing a new convex reformulation of the joint chance constraint. They showed the existence of a Nash equilibrium when the random linear constraints are independently normally distributed.

Chance-constrained Game and Variational Inequality

Variational inequality is a fundamental framework that finds applications in various disciplines, including engineering and economics. Significant advancements have been made in understanding its analytical properties, solution methods, and connections to other fields [START_REF] Facchinei | Finite-dimensional variational inequalities and complementarity problems[END_REF][START_REF] Kinderlehrer | An introduction to variational inequalities and their applications[END_REF]. One of the key focuses within variational inequality is the study of the Nash equilibrium problem [START_REF] Cavazzuti | Nash equilibria, variational inequalities, and dynamical systems[END_REF][START_REF] Pang | Quasi-variational inequalities, generalized Nash equilibria, and multi-leader-follower games[END_REF][START_REF] Vikas | Variational inequality formulation for the games with random payoffs[END_REF].

In [START_REF] Facchinei | On generalized Nash games and variational inequalities[END_REF], Facchinei et al. demonstrated that the solution to a broad class of generalized Nash equilibrium problems can be obtained by solving the equivalent variational inequality problem. This result provides a valuable insight into the relationship between generalized Nash equilibrium and variational inequalities.

Jadamba et al. [START_REF] Jadamba | Variational inequality approach to stochastic Nash equilibrium problems with an application to Cournot oligopoly[END_REF] investigated stochastic Nash equilibrium problems by employing monotone variational inequalities in probabilistic Lebesgue spaces.

Their approach is applied to oligopolistic market equilibrium problems, where the data is known through their probability distributions.

Faraci et al. [89] considered a class of variational inequalities on probabilistic

Lebesgue spaces, where the constraints are satisfied on average. They propose an approximation procedure for finding solutions to these inequalities. The application of this approach to the Nash-Cournot oligopoly problem with uncertain data allows for a comparison between solutions obtained when the constraints are satisfied on average and when they are satisfied almost surely. In [START_REF] Vikas | Variational inequality formulation for the games with random payoffs[END_REF], a noncooperative game with random payoffs and continuous strategy sets for each player is considered. The authors characterize the set of generalized Nash equilibria using the solution set of a variational inequality problem. As an application, they investigate random payoff games arising from electricity markets under a chance-constrained game framework.

as for applicaiton, chance-constrainted game be applied to real-life problems such as competition in electricity markets [START_REF] Lee | Solving three-player games by the matrix approach with application to an electric power market[END_REF] and decision-making for autonomous vehicles [START_REF] Blackmore | A probabilistic approach to optimal robust path planning with obstacles[END_REF]. In the electricity market, companies aim to maximize their profits by controlling prices or production quantities. The chance-constrained game model can be used to determine each company's Nash equilibrium strategy since the reward function is random. In decision-making for autonomous vehicles, the chanceconstrained game theoretical framework can model the vehicles' decisions under uncertainty while considering perceptional errors and environmental disturbances.

Chance-constrained Game and Distributionally Robust Optimization

In situations where the exact distribution of uncertain data is unknown, and we only have information about the uncertainty belonging to a specific uncertainty set, the concept of Distributionally Robust Optimization (DRO) has been introduced

to address this type of chance-constrained game. DRO builds upon the foundation of risk management and was initially introduced by Scarf in 1958 [START_REF] Scarf | A min-max solution of an inventory problem[END_REF].

The main requirement in DRO is to define an uncertainty set, which represents a collection of probability measures that encompasses the true stochastic model for the problem. Instead of optimizing based on a specific distribution, DRO employs a worst-case analysis approach where the objective is optimized over the choice of a distribution from this uncertainty set. This worst-case analysis ensures that the solution remains robust against different possible distributions within the uncertainty set, providing a more conservative and reliable approach to decision-making.

The DRO framework has gained significant attention and widespread application across various fields, thanks to advancements in optimization techniques [START_REF] Rahimian | Distributionally robust optimization: A review[END_REF].

One crucial aspect of the DRO framework is the construction of the uncertainty set, which captures the range of possible distributions for uncertain data. In practice, the uncertainty set is often built using historical data, giving rise to what is known as a data-driven uncertainty set [START_REF] Delage | Distributionally robust optimization under moment uncertainty with application to data-driven problems[END_REF][START_REF] Mohajerin | Data-driven distributionally robust optimization using the Wasserstein metric: Performance guarantees and tractable reformulations[END_REF][START_REF] Miao | Data-driven distributionally robust optimization for vehicle balancing of mobility-on-demand systems[END_REF].

In [START_REF] Peng | Games with distributionally robust joint chance constraints[END_REF], the authors considered an n-player non-cooperative game with expected value payoff functions and chance constrained strategy sets defined in a distributionally robust framework. They studied various types of distributional uncertainty sets based on partially available information of the underlying probability distribution. Their first uncertainty set is based on the density of the random parameters with the normal distribution as the reference distribution.

The distance between the true density function and the normal density function is defined with ϕ-divergence [START_REF] Jiang | Data-driven chance constrained stochastic program[END_REF]. They considered additional uncertainty sets based on the moments, namely the mean vectors, covariance matrices and support of a probability distribution [99][100][START_REF] Liu | Distributionally robust chance constrained geometric optimization[END_REF]. They also studied ϕ-divergence uncertainty set, where they showed that a distributionally robust chance constrained game problem is equivalent to a stochastic chance constrained game problem. They proposed, for each type of moments based uncertainty set, a new convex reformulation of a joint chance constraint using a logarithmic transformation. They showed that there exists a Nash equilibrium of a distributionally robust chance constrained games under mild conditions on payoff functions.

In another study [START_REF] Vikas | Distributionally robust chance-constrained games: existence and characterization of Nash equilibrium[END_REF] This chapter provides a summary of our work on the stochastic modeling of Adaptive Cruise Control (ACC) functionalities in autonomous vehicles. Firstly, we present a review of ACC about its objective and applied condition. Then, we outline our ACC validation model, which aims to assess the performance and effectiveness of ACC systems. Finally, we present the results of our numerical experiments, where we compare and evaluate the different approaches we have developed. 

Background about Adaptive Cruise Control

During the past two decades, there has been an increasing trend towards autonomous driving in both industry and research, which led to many technological advances and commercial successes. Autonomous vehicle applications, e.g., advanced driver assistance systems (ADAS, for short) are extensively incorporated into modern cars to enhance safety and improve driving comfort. The most basic feature of ADAS is Adaptive Cruise Control (ACC), which has been the focus of research for several years.

ACC Overview

Since 1966, ACC has aimed to keep a safe distance from a leading vehicle by adjusting the vehicle's speed and acceleration (Levine and Athans, 1966). This functionality relies both on sensor information about the location and the motion of the vehicle ahead and on a controller to regulate the spacing between the vehicles.

An ACC-equipped vehicle drives at a preset speed until a leading car is detected by the sensors, then switches to the distance regulation mode by activating the ACC controller, which calculates the safety distance and controls the operation.

Various approaches are applied to achieve the objective of designing an ACC that most closely matches the human expert driving behavior in terms of maneuvering vehicle speed according to different driving conditions with respect to traffic regulations and comfortable driving. These ACC systems target different objectives and are designed under different standards. Therefore, we need a thorough validation process to ensure the safety of those ACC systems and also assess their performance before making them commercially available.

The result of the validation and evaluation also allows to identify potential areas for improvement by identifying current weaknesses. Due to the fact that the costly and time-consuming real road tests cannot cover a large number of driving scenarios, we carry out the validation process within a simulator to generate the driving scenarios. The latter includes the motion state of the vehicles at each sampling time.

Problem Description

As part of the functional testing of ADAS, the goal of the ACC validation is to determine whether the right decision was made, a critical accident was avoided, and identify potential flaws. The validation process starts with our model, where each driving scenario serves as an input, and the reference commands are calculated by solving an optimization problem. Then, the analysis of the actual commands is performed through a comparison with our generated reference commands. This process is illustrated in Fig. 3.1.

Generating reference trajectories is a typical motion planning problem, and there are approaches to achieve this goal, e.g., sampling-based methods, graphbased methods, and optimization-based methods. Among them, the optimization approach seems the best suited to our problem as it provides more flexibility to tailor the objectives and the constraints meeting the requirements of various driving scenarios. As part of an ACC system, various types of sensors may be employed, such as cameras, lidar, radar etc. Sensor performances are highly influenced by a variety of factors, including the maintenance state and the environmental conditions [START_REF] Ralph H Rasshofer | Influences of weather phenomena on automotive laser radar systems[END_REF]. There is an inherent level of inaccuracy in sensor data which must be considered in the simulations. In order to deal with the sensor uncertainties, we study a chance-constrained stochastic programming model based on the copula theory to take into consideration the dependence of the random variables.

Our Contribution

The main contribution of this chapter is to make an extension of previous work [START_REF] Zhang | Optimization of Adaptive Cruise Control under Uncertainty[END_REF] and study the stochastic optimization model based on copula theory for ACC reference generation. Using the optimization framework, we are able to come up with the best command to optimize the distance between two vehicles while satisfying all the problem constraints. The copula theory in modeling uncertainty has enabled us to develop a robust and flexible model that is suitable for application in the real world. Moreover, we present a comprehensive comparison of the results obtained with our generated driving data that simulates real driving scenarios to demonstrate the benefit of the stochastic models.

Problem Formulation

Overview

In this section, we describe the modeling of the ACC driving scenario and the formulation of the related optimization problem. A typical ACC driving scenario includes two cars driving simultaneously in a single lane, namely, the ego car and the target car. The ego car is equipped with an ACC system, whilst the target car is the leading car positioned ahead. Figure 3.2 illustrates the driving scenario, as well as the states of two cars at time t i . The purpose of our ACC reference generation is to generate a sequence of acceleration commands, i.e., the decision variables in our optimization problem. The objective of the ego car is to keep a distance from the target car with respect to different constraints, e.g., vehicle dynamics, driving comfort, and road regulations. Suppose that the total duration of a driving scenario is T composed of n sampling time dt, i.e. T = ndt with a corresponding timestamp [t 0 , t 1 , ...t i , . . . t n ] where t i+1 = t i + dt, ∀i ∈ {0, 1, . . . n -1}. At each moment t i , the ACC of the ego car uses sensors to gather information from the target car and generates the acceleration commands. In the following, we list the parameters and the decision variable used in our model. The input parameters are given by the ego car sensors, and the decision variables represent the ACC optimal commands. The parameters of the ego car are the initial position x ego t 0 , the initial velocity v ego t 0 whilst the parameters of the target car are composed of the position vector

X tgt T = (x tgt t 1 , x tgt t 2 , . . . x tgt tn ) T , the velocity vector V tgt T = (v tgt t 0 , v tgt t 1 , . . . v tgt t n-1
) T and the acceleration vector A tgt T = (a tgt t 0 , a tgt t 1 , . . . a tgt t n-1 ) T in the whole driving scenario. The decision variable is the ACC ego car acceleration commands vector

A ego T = (a ego t 0 , a ego t 1 , . . . a ego t n-1 )
T . Given the decision variable and the initial state of the ego car, we can derive the velocity and the position of the ego car by the equations of motion. The ego car velocity v ego t i+1 at time t i+1 is given by the velocity at the previous sample time v ego t i and the acceleration a ego t i :

v ego t i+1 = v ego t i + a ego t i dt. (3.1)
The velocity for the whole driving scenario can be written in matrix form as

V ego T =          v ego t 0 . . . v ego t i . . . v ego t n-1          =           v ego t 0 . . . v ego t 0 + k=i-1 k=0 a ego t k dt . . . v ego t 0 + k=n-2 k=0 a ego t k dt           = dtK n A ego T + v ego t 0 1 n , (3.2) 
where

K n ∈ R n×n and 1 n ∈ R n×1 K n =            0 0 0 . . . 0 0 1 0 0 . . . 0 0 1 1 0 . . . 0 0 . . . . . . . . . 1 1 1 . . . 0 0 1 1 1 . . . 1 0            (3.
3)

1 n =       1 1 . . . 1       . (3.4)
Similarly, the ego car position at time t i+1 is given by

x ego t i+1 = x ego t i + v ego t i dt + 1 2 a ego t i dt 2 . (3.5)
The corresponding matrix format for all time steps is

X ego T =          x ego t 1 . . . x ego t i . . . x ego tn          =          
x ego t 0 + v ego t 0 dt + 1 2 a ego t 0 dt 2 . . .

x ego t 0 + k=i-1 k=0 v ego t k dt + 1 2 k=i-1 k=0
a ego t k dt 2 . . .

x ego t 0 + k=n-1 k=0 v ego t k dt + 1 2 k=n-1 k=0 a ego t k dt 2           = dtM n V ego T + 1 2 dt 2 M n A ego T + x ego t 0 1 n , ( 3.6) 
where

M n ∈ R n×n , M n =          1 0 0 . . . 0 1 1 0 . . . 0 1 1 1 . . . 0 . . . . . . . . . 1 1 1 . . . 1          . (3.7)
We use Equation (3.2) to rewrite Equation (3.6) in terms of the initial position, the initial velocity and the acceleration vector, i.e.,

X ego T = dtM n V ego T + 1 2 dt 2 M n A ego T + x ego t 0 1 n = dtM n (dtK n A ego T + v ego t 0 1 n ) + 1 2 dt 2 M n A ego T + x ego t 0 1 n = dt 2 (B n + 1 2 M n )A ego T + v ego t 0 dtC n + x ego t 0 1 n , ( 3.8) 
where

B n = M n • K n ∈ R n×n and C n = M n • 1 n ∈ R n×1 .
For the sake of clarity, we provide Table 3.1 to summarize the whole parameters and variables used in our formulations. In the following, we use the position and the velocity vector of the ego car to formulate our optimization problem.

Basic Results in Copula Theory

We give some basic definitions and results on copulas necessary for our modeling. We refer to [START_REF] Roger | An introduction to copulas[END_REF] for more details.

Definition 1. A copula is the distribution function

C : [0, 1] K → [0, 1]
of some K-dimensional random vector whose marginals are uniformly distributed on [0, 1].

Proposition 1. (Sklar's Theorem). For any K-dimensional distribution function

F : R K → [0, 1] with marginals F 1 , . . . , F K , there exists a copula C such that ∀z ∈ R K , F (z) = C(F 1 (z 1 ), . . . , F K (z K ).
If, moreover, F K is continuous, then C is uniquely given by

C(u) = F (F -1 1 (u 1 ), . . . , F -1 K (u K )). Otherwise, C is uniquely determined on range F 1 × . . . × range F K .
The theoretical foundations for the application of copulas are given by Sklar's Theorem. Moreover, it states that every multivariate cumulative distribution function of a given random vector can be expressed in terms of both its marginals and a given copula.

To model the uncertainty of our problem, we consider the two following classes of copulas:

1. Independent (product) copula, defined by

C (u) := K k=1 u k .
The independent copula represents the joint distribution of independent random variables. 2. Gumbel-Hougaard family of copulas, given for a θ ≥ 1 by

C θ (u) := exp    - K k=1 (-ln u k ) θ 1/θ    .
The independent copula can be seen as a special case of the Gumbel-Hougaard copula with θ = 1.

Stochastic Modeling of ACC

In section 3.2.1 the whole parameters are deterministic, i.e., the input parameters are known in advance. However, in real-life autonomous vehicle problems, the parameters are unknown and may include different sources of noise from external factors like weather. Results are highly dependent upon the quality of input data. Consequently, the parameters can be better modeled by random variables, which provide more robust solutions. In the following, we model the ACC problem by chance constrained problem. We suppose that the target car's position information x tgt t i obtained from the ego car's sensor includes some noise and follows a normal distribution x tgt t i ∼ N (µ i , σ 2 i ) with a joint distribution driven by the Gumbel-Hougaard copula C θ for θ ≥ 1 [START_REF] Cheng | Chance constrained 0-1 quadratic programs using copulas[END_REF][START_REF] Houda | Archimedean copulas in joint chance-constrained programming[END_REF].

In the following, we outline how the generation of the ACC reference considering uncertainty can be viewed as an optimization problem. min

A ego T ||QA ego T + P || (3.9) s.t. dt 2 (B n + 1 2 M n )A ego T ≤ Xtgt T -v ego t 0 dtC n -(x ego t 0 + d s )1 n , ( 3.10) 
-(v max + v ego t 0 )1 n ≤ dtK n A ego T ≤ (v max -v ego t 0 )1 n , (3.11) -a max 1 n ≤ A ego T ≤ a max 1 n , (3.12) -j max dt1 n ≤ D n A ego T ≤ j max dt1 n . (3.13)
The following part explains in detail how we derive the objective function (3.9) and how constraints (3.10, 3.11, 3.12, 3.13) are developed.

The objective of ACC is to maintain a safe distance between the ego car and the target car. In order to calculate the reference distance between the ego car and the target car, we define two terms: the inter-vehicle time tc (for instance, 3 seconds) for the ego car to brake safely and the standstill distance δS to ensure there is always enough room between the two adjacent cars.

At each moment t k , the reference distance of ACC in platoons is defined by

d ref t k = (v ego t k-1 -v tgt t k-1 )tc + 1 2 (a ego t k-1 -a tgt t k-1 )tc 2 + δS. (3.14)
Therefore, the reference distance vector in the whole driving scenario is :

D ref T = tc(dtK n A ego T + v ego t 0 1 n -V tgt T ) + 1 2 tc 2 (A ego T -A tgt T ) + δS1 n = (dt • tcK n + 1 2 tc 2 I)A ego T -tcV tgt T - 1 2 tc 2 A tgt T + (δS + v ego t 0 tc)1 n . (3.15)
Moreover, if we consider the position of the target car X tgt T to be its mean value µ T = (µ 1 , µ 2 , . . . , µ n ) T , the current distance between the ego car and the target car is

D vehicle T = µ T -X ego T = µ T -[dt 2 (B n + 1 2 M n )A ego T + v ego t 0 dtC n + x ego t 0 1 n ]. (3.16) 
By combining (3.16) and (3.15), we obtain the objective function (4.9): min

A ego T ||D vehicle T -D ref T || = min A ego T ||µ T -[dt 2 (B n + 1 2 M n )A ego T + v ego t 0 dtC n + x ego t 0 1 n ] -[(dt • tcK n + 1 2 tc 2 I)A ego T -tcV tgt T - 1 2 tc 2 A tgt T + (δS + v ego t 0 tc)1 n ]|| = min A ego T || -(dt 2 B n + 1 2 dt 2 M n + dt • tcK n + 1 2 tc 2 I)A ego T + µ T + tcV tgt T + 1 2 tc 2 A tgt T -δS1 n -v ego t 0 tc1 n -x ego t 0 1 n -v ego t 0 dtC n || = min A ego T ||QA ego T + P ||, (3.17) 
where

Q = -(dt 2 B n + 1 2 dt 2 M n +dt•tcK n + 1 2 tc 2 I), P = µ T +tcV tgt T + 1 2 tc 2 A tgt T - δS1 n -v ego t 0 tc1 n -x ego t 0 1 n -v ego t 0 dtC n and || • || is the Euclidean norm.
In addition to the objective function (3.9), we detail the above-mentioned constraints:

• Constraint (3.10) is the minimum distance constraint that aims to prevent the vehicles collisions, where

Xtgt T =         µ 1 + σ 1 F -1 N (1 -α z 1/θ t 1 ) µ 2 + σ 2 F -1 N (1 -α z 1/θ t 2 ) . . . µ n + σ n F -1 N (1 -α z 1/θ tn )         , ( 3.18) 
and

t i z t i = 1, z t i ≥ 0, ∀t i ,
where F -1 N is the inverse of the standard normal cumulative distribution function.

This constraint results from the following chance constraint with a given threshold α [START_REF] Prékopa | Stochastic programming[END_REF]:

P(D vehicle t i ≥ d s , ∀t i ) ≥ α. (3.19)
• Constraint (3.11) is the maximum velocity constraint. Routes typically have a maximum velocity limit which leads to the velocity constraint. For a given speed limit v max , the constraint is deduced from

||V ego T || ∞ ≤ v max . ( 3.20) 
• Constraint (3.12) is the maximum acceleration constraint. Car passengers' comfort is impacted by acceleration. Vehicle maneuverings like rapid acceleration or braking should be avoided. Our model proposes an acceleration limit of a max based on this motivation.

||A ego T || ∞ ≤ a max . (3.21)
• Constraint (3.13) is the maximum jerk constraint. In jerk, we measure the acceleration variances, which significantly affect the comfort level of passengers. A maximum limit j max is required for this constraint.

||J ego T || ∞ ≤ j max (3.22)
Since j t i = (a ego t i -a ego t i-1 )/dt, the jerk constraint can be simplified to (3.13) where D n ∈ R n×n is given by

D n =            1 0 0 . . . 0 0 -1 1 0 . . . 0 0 0 -1 1 . . . 0 0 . . . . . . . . . 0 0 0 . . . 1 0 0 0 0 . . . -1 1            . (3.23)
To prove the equivalence between (3.10) and (3.19), we define two variables:

ξ t i := - x tgt i -µ i σ i , b t i := - x ego t i + d s -µ i σ i .
It's evident that ξ t i follows a standard normal distribution.

Lemma 1. If the random vector (ξ t i , ..., ξ t i ) T has a joint distribution driven by the Gumbel-Hougaard copula C θ with some θ ≥ 1, then the constraint P(D vehicle

t i ≥ d s , ∀t i ) ≥ α is equivalent to x ego t i + d s -µ i -σ i F -1 N (1 -α z 1/θ t i ) ≤ 0, ∀t i , t i z t i = 1, z t i ≥ 0, ∀t i . (3.24)
Proof. In one direction, we need to prove if P(D vehicle t i ≥ d s , ∀t i ) ≥ α is true, then we can find a group of z t i such that (3.24) holds true.

The inequality (3.24) is equivalent to

x ego t i + d s -µ i σ i ≤ F -1 N (1 -α z 1/θ t i ), ∀t i , ( 3.25) 
namely, 

F N (b t i ) ≥ α z 1/θ t i . ( 3 
t i = 1, z t i ≥ 0. Since zt i := ln F N (bt i ) ln α θ , then we have F -1 N (α z1/θ t i ) = b t i , ∀t i . Moreover, as P(D vehicle t i ≥ d s , ∀t i ) = P(ξ t i ≤ b t i , ∀t i ) = C θ (F N (b t 1 ), . . . , F N (b tn ) = C θ (F N (α z1/θ t 1 ), . . . , F N (α z1/θ tn ) = exp      -   t i -ln α z1/θ t i θ   1/θ      = α [ n i=1 zt i ] 1/θ , ( 3.27) 
and

P(D vehicle t i ≥ d s ∀t i ) ≥ α with α < 1. We have [ n i=1 zt i ] 1/θ ≤ 1 and further n i=1 zt i ≤ 1, then we have z t i ≥ zt i , ∀t i . Therefore, F -1 N (α z 1/θ t i ) ≤ b t i , ∀t i , which means z k satisfies (3.24).
For another direction, if (3.24) holds true, from the definition of the Gumbel-Hougaard copula and Sklar's theorem, we have

P(D vehicle t i ≥ d s , ∀t i ) = P(ξ t i ≤ b t i , ∀t i ) = C θ (F N (b t 1 ), . . . , F N (b tn ) ≥ C θ α z 1/θ t 1 , . . . , α z 1/θ tn = exp      -   t i -ln α z 1/θ t i θ   1/θ      = exp      -   t i -z 1/θ t i ln α θ   1/θ      = exp      ln α   t i z t i   1/θ      = α. (3.28)
With Lemma 1, we prove that (3.10) and (3.19) are equivalent, thus formulating the optimization problem for ACC in the presence of uncertainty.

In addition to using our model for ACC with dependent random variables, we can also extend it to other models. By taking θ = 1, the Gumbel-Hougaard copula is equivalent to the independent copula where the sensor's uncertainties are uncorrelated. Moreover, if we do not account for the uncertainty of the sensor error, then we can also replace the chance constraint P(D vehicle

t i ≥ d s , ∀t i ) ≥ α with a normal constraint D vehicle t i ≥ d s ,
which leads to a deterministic model of our optimization problem.

Numerical Experiments

The purpose of our numerical simulations is to demonstrate the feasibility and effectiveness of our models. Firstly, we compare the deterministic and stochastic models on different randomly generated instances. The deterministic model does not consider the sensor uncertainties, whilst the stochastic model takes uncertainty into account with chance constraints. The random variables dependence is modeled by Gumbel-Hougaard copula with θ = 2. Next, we choose five random driving scenarios and run our model with different values of the parameter θ. The driving scenarios are generated with different configurations, including the target car's trajectory profile, the ego car's initial state and the sensor error for the ego car. Based on those generated scenarios, we formulate the optimization problem and use optimization solvers to obtain the results [START_REF] Goldfarb | A numerically stable dual method for solving strictly convex quadratic programs[END_REF][START_REF] Beal | GEKKO Optimization Suite[END_REF].

In order to create an ACC driving scenario, we need two types of parameters: the parameters related to the environment and to the vehicles. The parameters related to the environment include the simulation configuration and vehicle regulations, e.g., the total scenario duration, velocity limit, collision avoidance limit, etc. Those parameters reflect the real-life driving rules and simulation setting. Therefore, they are fixed during numerical experiments. The parameters related to the vehicles, e.g., initial position, velocity and distance, vary in each randomly generated instance due to the diversity of driving scenarios. In order to simulate real driving situations, the relationship among randomly generated vehicle parameters should be based on Newton's laws.

Parameters setup for numerical simulations are summarized in the sequel:

• Parameters related to the environment -Total duration of a scenario T : 2s.

-Sampling time step dt: 0.05s.

-Inter-vehicle time tc: 3s.

-Standstill distance σS: 3m.

-Minimum security distance d s : 10m.

-Maximum velocity v max : 30m/s.

-Maximum acceleration v max : 5m/s 2 .

-Maximum jerk j max : 5m/s 3 .

-Confidence level α: 0.95.

• Parameters related to the vehicles -Acceleration of the target car: independent random variables following a normal distribution with mean 0 and standard deviation 2, truncated from -5 to 5.

-Initial speed of target car and ego car: independent random variables following a normal distribution with mean 15 and standard deviation 10, truncated from 5 to 25.

-Standard deviation of target car position σ: 1.

-Initial position of target car: random variable following a normal distribution with mean 200 and standard deviation 1.

-Speed and position of target car: random variables following normal distributions with a mean calculated by an initial value and the acceleration vector, and standard deviation 1.

-Initial position of ego car: the initial position of the target car minus a random variable following a normal distribution with mean 100 and standard deviation 20, truncated from 50 to 150. With the above-mentioned configuration, we generate 100 random driving scenarios, which are solved by the solvers both for the deterministic and stochastic models. Since the input parameters of the model are based on biased sensor data, it is possible that the result will violate the constraints (3.19) during the driving scenario. Hence, we measure the performances of our model through the feasibility of the solutions for different scenarios.

Amongst 100 test-driving scenario cases, we notice that only 40% of the instances are feasible for the deterministic optimal solution, whilst 71% are feasible for the stochastic optimal solution with confidence level α = 0.95 and θ = 2.

For an in-depth analysis of constraint violations across 100 test driving scenarios, Figure 3 Following the visualization of the result, we also conduct a statistical analysis of the distribution of the violated constraints number in Figure 3.4. We observe that the stochastic model not only produces more feasible solutions with 0 violations but also yields fewer violations for cases where the solution is unfeasible,i.e., only a few constraints are slightly violated. Furthermore, keeping all other parameters unchanged, we vary the standard deviation of the target car position, which depends on the sensor's precision, from 1 to 40 to compare the performances of each model. The value of the standard deviation is gradually increased. We consider 100 tests for each value and count the maximal and mean constraint violations for each model. In order to take a step further in our analysis, we run our model with θ = 1. As shown in Figure 

Conclusion and Future Work

In this chapter, we studied an optimization-based approach for ACC reference generation, taking into account the uncertainty associated with sensor information.

Uncertainty is modeled by random variables, and their dependence is handled with copulas.

Our optimization approach serves as a benchmark for decision-making in ACC systems, generating reference trajectories that meets the needs of safety, comfort, and effectiveness. Through statistical analysis of simulation results, we have demonstrated that our chance-constrained stochastic model yields more robust solutions in scenarios with uncertain information.

For future research, we identify three promising directions for extensions and advancements: the development of an increasingly sophisticated vehicle model, the modeling of uncertainty by other frameworks, and the formulation of objectives that involve penalties for undesired behavior. Furthermore, this optimizationbased reference generation framework can be applied for other autonomous driving functions, e.g., lane keeping assistance (LKA) and collision avoidance.

This chapter corresponds to our published papers [START_REF] Zhang | Nonlinear complementarity problems for n-player strategic chance-constrained games[END_REF] and [START_REF] Zhang | Stochastic Optimization of Adaptive Cruise Control[END_REF].

This chapter proposes two optimization-based approaches to develop a new reference generator for adaptive cruise control (ACC) for autonomous vehicles. The first approach relies on a deterministic optimization model, as previously described in Chapter 3, while the second approach utilizes distributionally robust optimization (DRO) to address the effects of uncertainty arising from sensor errors, assuming known first and second moments. The optimization problems are formulated as quadratic programming (QP) problems, aimed at determining the optimal control commands that minimize the inter-vehicle distance while simultaneously satisfying all the problem constraints. The proposed approaches are evaluated using a set of generated driving scenarios based on the real 57 configuration, which reflects realistic driving data. A comprehensive comparison of the results obtained using the deterministic and DRO-based approaches is presented, highlighting the benefits of the DRO model in addressing the effects of uncertainty in the optimization process.

Problem Formulation

Overview

In the following, we rely on the usage of the provided mathematical formulation of Chapter 3 and will address driving scenarios.

The objective of this section is to describe how we model the ACC driving scenario and formulate the related optimization problem. Note that the typical ACC driving scenario involves two cars driving simultaneously in one lane, namely the ego car and the target car. It is the ego car that is equipped with an ACC system, whereas the target car is the leading vehicle positioned in front. Figure 4.1 illustrates the driving scenario, as well as the states of two cars at the moment t i . The purpose of the ACC reference generation is to generate a sequence of acceleration commands, that is, the decision variables in our optimization problem. The ego car's ACC system is designed to remain at a distance from the target car while taking into account a variety of factors, such as vehicle dynamics, driving comfort, and traffic regulations. where t i+1 = t i + dt, ∀i ∈ {0, 1, . . . n -1}. At each moment t i , the ACC of the ego car uses sensors to gather information from the target car and generates the acceleration commands. In the following, we list the parameters and the decision variables used in our model.

The input parameters are given by the ego car sensors, and the decision variables represent the ACC optimal commands. The parameters of the ego car are the initial position x ego t 0 , and the initial velocity v ego t 0 whilst the parameters of the target car are composed of the position vector X tgt T = (x tgt t 1 , x tgt t 2 , . . . x tgt tn ) T , the velocity vector

V tgt T = (v tgt t 0 , v tgt t 1 , . . . v tgt t n-1
) T and the acceleration vector A tgt T = (a tgt t 0 , a tgt t 1 , . . . a tgt t n-1 ) T in the whole driving scenario. The decision variable is the ACC ego car acceleration commands vector A ego T = (a ego t 0 , a ego t 1 , . . . a ego t n-1 ) T . Given the decision variable and the initial state of the ego car, we can derive the velocity and the position of the ego car by the equations of motion. The ego car velocity v ego t i+1 at time t i+1 is given by the velocity at the previous sample time v ego t i and the acceleration a ego t i :

v ego t i+1 = v ego t i + a ego t i dt. ( 4.1) 
The velocity for the whole driving scenario can be written in matrix form as

V ego T =          v ego t 0 . . . v ego t i . . . v ego t n-1          =           v ego t 0 . . . v ego t 0 + k=i-1 k=0 a ego t k dt . . . v ego t 0 + k=n-2 k=0 a ego t k dt           = dtK n A ego T + v ego t 0 1 n , ( 4.2) 
where K n ∈ R n×n and

1 n ∈ R n×1 K n =            0 0 0 . . . 0 0 1 0 0 . . . 0 0 1 1 0 . . . 0 0 . . . . . . . . . 1 1 1 . . . 0 0 1 1 1 . . . 1 0            (4.
3)

1 n =       1 1 . . . 1       . (4.4)
Similarly, the ego car position at time t i+1 is given by

x ego t i+1 = x ego t i + v ego t i dt + 1 2 a ego t i dt 2 . ( 4.5) 
The corresponding matrix format for all time steps is

X ego T =          x ego t 1 . . . x ego t i . . . x ego tn          =          
x ego t 0 + v ego t 0 dt + 1 2 a ego t 0 dt 2 . . .

x ego t 0 + k=i-1 k=0 v ego t k dt + 1 2 k=i-1 k=0
a ego t k dt 2 . . .

x ego t 0 + k=n-1 k=0 v ego t k dt + 1 2 k=n-1 k=0 a ego t k dt 2           = dtM n V ego T + 1 2 dt 2 M n A ego T + x ego t 0 1 n , (4.6) 
where

M n ∈ R n×n , M n =          1 0 0 . . . 0 1 1 0 . . . 0 1 1 1 . . . 0 . . . . . . . . . 1 1 1 . . . 1          . ( 4.7) 
We use Equation (4.2) to rewrite Equation (4.6) in terms of the initial position, the initial velocity and the acceleration vector, i.e.,

X ego T = dtM n V ego T + 1 2 dt 2 M n A ego T + x ego t 0 1 n = dtM n (dtK n A ego T + v ego t 0 1 n ) + 1 2 dt 2 M n A ego T + x ego t 0 1 n = dt 2 (B n + 1 2 M n )A ego T + v ego t 0 dtC n + x ego t 0 1 n , ( 4.8) 
where

B n = M n • K n ∈ R n×n and C n = M n • 1 n ∈ R n×1 .
These parameters are summarized in Table 4.1.

In the following, we use the position and the velocity vector of the ego car to formulate our optimization problem. 

) T V ego T Speed profile during simulation V ego T = dtK n A ego T + v ego t0 1 n X ego T Position profile during simulation dt 2 (B n + 1 2 M n )A ego T + v ego t0 dtC n + x ego t0 1 n J ego T Jerk profile during simulation D n A ego T

Mathematical Modeling

In the sequel, we outline how the generation of the ACC reference can be viewed as an optimization problem.

min

A ego T ||QA ego T + P || (4.9) s.t. dt 2 (B n + 1 2 M n )A ego T ≤ X tgt T -v ego t 0 dtC n -(x ego t 0 + d s )1 n , ( 4.10) 
-(v max + v ego t 0 )1 n ≤ dtK n A ego T ≤ (v max -v ego t 0 )1 n , ( 4.11) 
-a max 1 n ≤ A ego T ≤ a max 1 n , (4.12)

-j max dt1 n ≤ D n A ego T ≤ j max dt1 n . (4.13)
The following part explains in detail how we derive the objective function (4.9) and how constraints (4.10, 4.11, 4.12, 4.13) are developed.

The objective of ACC is to maintain a safe distance between the ego car and the target car. In order to calculate the reference distance between the ego car and the target car, we define two terms: the inter-vehicle time tc (e.g., 3 seconds), which gives the ego car enough time to brake and avoid a collision with the target car, and the standstill distance δS to ensure there is always enough room between the two adjacent cars.

At each moment t k , the reference distance of ACC in platoons is defined by

d ref t k = (v ego t k-1 -v tgt t k-1 )tc + 1 2 (a ego t k-1 -a tgt t k-1 )tc 2 + δS. (4.14)
So the reference distance vector in the whole driving scenario is :

D ref T = tc(dtK n A ego T + v ego t 0 1 n -V tgt T ) + 1 2 tc 2 (A ego T -A tgt T ) + δS1 n = (dt • tcK n + 1 2 tc 2 I)A ego T -tcV tgt T - 1 2 tc 2 A tgt T + (δS + v ego t 0 tc)1 n . (4.15)
Moreover, the current distance between the ego car and target car is

D vehicle T = X tgt T -X ego T = X tgt T -[dt 2 (B n + 1 2 M n )A ego T + v ego t 0 dtC n + x ego t 0 1 n ]. (4.16) 
By combining (4.16) and (4.15), we obtain the objective function (4.9): min

A ego T ||D vehicle T -D ref T || = min A ego T ||X tgt T -[dt 2 (B n + 1 2 M n )A ego T + v ego t 0 dtC n + x ego t 0 1 n ] -[(dt • tcK n + 1 2 tc 2 I)A ego T -tcV tgt T - 1 2 tc 2 A tgt T + (δS + v ego t 0 tc)1 n ]|| = min A ego T || -(dt 2 B n + 1 2 dt 2 M n + dt • tcK n + 1 2 tc 2 I)A ego T + X tgt T + tcV tgt T + 1 2 tc 2 A tgt T -δS1 n -v ego t 0 tc1 n -x ego t 0 1 n -v ego t 0 dtC n || = min A ego T ||QA ego T + P ||, (4.17) 
where • Constraint (4.11) is the maximum velocity constraint. Routes typically have a maximum velocity limit which leads to the velocity constraint. For a given speed limit v max , the constraint is deduced from

Q = -(dt 2 B n + 1 2 dt 2 M n + dt • tcK n + 1 2 tc 2 I), P = X tgt T + tcV tgt T + 1 2 tc 2 A tgt T -δS1 n -v ego t 0 tc1 n -x ego t 0 1 n -v ego t 0 dtC n
||V ego T || ∞ ≤ v max . ( 4.19) 
• Constraint (4.12) is the maximum acceleration constraint. Car passengers' comfort is impacted by acceleration. Vehicle maneuverings like rapid acceleration or braking should be avoided. Our model proposes an acceleration limit of a max based on this motivation.

||A ego T || ∞ ≤ a max . ( 4.20) 
• Constraint (4.13) is the maximum jerk constraint. In jerk, we measure the acceleration variances, which significantly affect the comfort level of passengers. A maximum limit j max is required for this constraint.

||J ego T || ∞ ≤ j max (4.21)
Since j t i = (a ego t i -a ego t i-1 )/dt, the jerk constraint can be simplified to (4.13) where

D n ∈ R n×n D n =            1 0 0 . . . 0 0 -1 1 0 . . . 0 0 0 -1 1 . . . 0 0 . . . . . . . . . 0 0 0 . . . 1 0 0 0 0 . . . -1 1            . (4.22)
Given the form of the objective function and the constraints, our model is a convex quadratic optimization problem.

In the next section, we will discuss the uncertainty involved in ACC and how to handle it by stochastic modeling with chance constraints.

Distributionally Robust Optimization Model

Uncertainty set with first and second moments

The model presented above is deterministic, i.e., all input parameters are known in advance. Real-life autonomous vehicle problems, however, may include different sources of noise caused by external factors, such as weather, which may affect these parameters. Model uncertainties can be addressed in a variety of ways. In our work, we apply the robust optimization framework to manage distributionfree uncertainties in models.

In the following, we model the ACC problem as a chance-constrained optimization problem. Our hypothesis is that the target car's position information x tgt t i contains some noise when obtained from the ego car's sensor, and we only know the first two moments of the distribution, the mean value µ i and the variance σ 2 i , respectively. Mathematically, the target car's position x tgt t i is a random variable with a distribution measure F i over its outcome space. Thus, the mean and variance of the target car's position is µ T and σ 2 T where

µ T =       µ 1 µ 2 . . . µ n       (4.23)
and

σ T =       σ 1 σ 2 . . . σ n       (4.24)
The objective function for this stochastic optimization problem is min

A ego T ||E(D vehicle T -D ref T )|| = min A ego T ||µ T + tcV tgt T + 1 2 tc 2 A tgt T -δS1 n -v ego t 0 tc1 n -x ego t 0 1 n -v ego t 0 dtC n -[dt 2 B n + 1 2 dt 2 M n + dt • tcK n + 1 2 tc 2 ]A ego T || = min A ego T ||QA ego T + P ′ ||, (4.25) 
where

P ′ = µ T + tcV tgt T + 1 2 tc 2 A tgt T -δS1 n -v ego t 0 tc1 n -x ego t 0 1 n -v ego t 0 dtC n . Let D i
be the set of probability distributions with mean µ i and variance

σ 2
i , and it's defined as

D i =    E F i [x tgt t i ] = µ i , F i E F i [(x tgt t i -µ i ) 2 ] = σ 2 i    , i = 1, • • • , n. (4.26)
The target car's position x tgt t i ∼ F i follows a distributionF i with F i ∈ D i . Using Theorem 1 in [START_REF] Ghaoui | Worst-case value-at-risk and robust portfolio optimization: A conic programming approach[END_REF], the minimum distance constraint (4.18) for each moment t i can be expressed as a chance constraint [START_REF] Prékopa | Stochastic programming[END_REF] with a given threshold α, i.e., inf

F i ∈D P F i (D vehicle t i ≥ d s ) ≥ α, ∀t i = inf F i ∈D P F i (x tgt t i ≥ x ego t i + d s ) ≥ α = x ego t i + d s ≤ µ i -σ i α 1 -α , (4.27)
where the inf is taken with respect to all probability distributions in D i .

For the whole driving scenario, the minimum distance constraint in a matrix form is

dt 2 (B n + 1 2 M n )A ego T + v ego t 0 dtC n + (x ego t 0 + d s )1 n ≤ Xtgt T , (4.28) 
where

Xtgt T =         µ 1 -σ 1 α 1-α µ 2 -σ 2 α 1-α . . . µ n -σ n α 1-α         . (4.29)
Since only the minimum distance constraint is related to the position of the target car X tgt T , all other constraints remain unchanged.

Uncertainty set with unknown moments

Here, we consider the case where the mean and variance of the target car's position x tgt t i are unknown but limited in a specific range. This DRO model could be applied to the scenario in which the sensor error is unstable.

Supposing that the target car's position x tgt t i is a random variable, with an outcome space (Ω i , F i ) and a distribution measure F i over the space. The mean of x tgt t i lies in an interval of size 2 γ i 1 and centered at µ i , and the upper bound of variance of x tgt i is γ i 2 σ 2 i . We define the uncertainty set D i as follows:

D i =    (E F i [x tgt t i ] -µ i ) 2 ≤ γ i 1 , F i E F i [(x tgt t i -µ i ) 2 ] ≤ γ i 2 σ 2 i    , i = 1, • • • , n. (4.30)
The target car's position x tgt t i ∼ F i follows a distributionF i with F i ∈ D i . As the mean position of the target car at time t i is centered at µ i , we maintain the same objective function as in Equation (4.25). By the result in [START_REF] Peng | Games with distributionally robust joint chance constraints[END_REF], the minimum distance constraint can be transformed as follow inf

F i ∈D i P F i (D vehicle t i ≥ d s ) ≥ α, ∀t i = inf F i ∈D i P F i (x tgt t i ≥ x ego t i + d s ) ≥ α = x ego t i + d s ≤ µ i -σ i ( α 1 -α γ i 2 + γ i 1 ), (4.31) 
For the whole driving scenario, the minimum distance constraint in a matrix form is

dt 2 (B n + 1 2 M n )A ego T + v ego t 0 dtC n + (x ego t 0 + d s )1 n ≤ X tgt T , (4.32) 
where

X tgt T =          µ 1 -σ 1 ( α 1-α γ 1 2 + γ 1 1 ) µ 2 -σ 2 ( α 1-α γ 2 2 + γ 2 1 ) . . . µ n -σ n ( α 1-α √ γ n 2 + √ γ n 1 )          . (4.33)
All other constraints remain unchanged since uncertainty is not involved.

Experimental Results

In numerical experiments, we generate a variety of driving scenarios through numerical simulations and compare the performance of the deterministic and the two DRO models on those scenarios. We evaluate the number of violated constraints in each model on given driving scenarios to make the comparison.

During the data generation phase, different configurations of a driving scenario are applied, including the ego car's state and the target car's trajectory. The sensor error is also included in the data. Once the driving scenarios are prepared, we use a QP solver [START_REF] Goldfarb | A numerically stable dual method for solving strictly convex quadratic programs[END_REF] to solve the formulated deterministic and DRO models.

To conclude, we compare the number of violated constraints of the two models to demonstrate the effectiveness of the DRO model.

For the generation of an ACC driving scenario, two types of parameters are necessary: the parameters related to the environment and to the vehicles. The parameters related to the environment include the simulation configuration and vehicle regulations, such as the total scenario duration, velocity limit, collision avoidance limit, etc. Those parameters reflect the real-life driving rules and simulation setting, and therefore they are fixed during numerical experiments. The parameters related to the vehicles, such as initial position, velocity and distance, vary in each randomly generated instance due to the diversity of driving scenarios. In order to simulate driving situations realistically, the relationships between randomly generated vehicle parameters should be representative of real-world situations.

The sequel summarizes the parameters set up for numerical simulations:

• Parameters related to the environment:

-Total duration of a scenario T : 2s.

-Sampling time step dt: 0.05s.

-Inter-vehicle time tc: 3s.

-Standstill distance σS: 3m.

-Minimum security distance d s : 10m.

-Maximum velocity v max : 30m/s.

-Maximum acceleration v max : 5m/s 2 .

-Maximum jerk j max : 5m/s 3 .

-DRO unknown moments parameter: γ i 1 = 5 and γ i 2 = 5. -Confidence level α: 0.9.

• Parameters related to the vehicles:

-Acceleration of the target car: independent random variables following a normal distribution with mean 0 and standard deviation 2, truncated from -5 to 5.

-Initial speed of target car and ego car: independent random variables following a normal distribution with mean 15 and standard deviation 10, truncated from 5 to 25.

-Standard deviation of target car position σ: 1.

-Initial position of target car: random variable following a normal distribution with mean 200 and standard deviation 1.

-Speed and position of target car: random variables following normal distributions with mean calculated by an initial value and the acceleration vector, and standard deviation 1.

-Initial position of ego car: the initial position of the target car minus a random variable following a normal distribution with mean 100 and standard deviation 20, truncated from 50 to 150.

In the previous section, the optimal solution in each generated ACC driving scenario can be obtained by solving a QP problem. Several techniques exist for solving this QP problem, which can be divided into two categories: active-set methods and interior point methods. We use QP solver with Goldfarb-Idnani algorithm [START_REF] Goldfarb | A numerically stable dual method for solving strictly convex quadratic programs[END_REF], which is a dual active set method, in order to obtain the optimal solution for our QP problems.

Firstly, we generate 100 random driving scenarios based on the configuration above. Then our QP solvers obtain the optimal reference of the scenarios under the deterministic model and the two DRO models, respectively. Considering the sensor error in the input data, the obtained trajectory of our ego car may violate the constraint (4.18) during the driving scenario. Therefore, the performance of a model can be measured by the number of times that constraint (4.18) is violated throughout the scenario. A more reliable model is one that produces fewer violations of constraints statistically.

According to a numerical analysis of 100 random instances solved with three models, only 50% of the results are totally feasible, which means that the constraint (4.18) is never violated during the scenario, when solving with the deterministic model, whereas 98% of the results are totally feasible when solving with the DRO model with known moments and 100% when solving with the DRO model with unknown moments. 

Conclusion and Future Work

In this chapter, we propose a distributionally robust optimization-based method for ACC reference generation in driving scenarios with uncertainties. In order to satisfy the safety constraints, the reference generator takes into account the sensor errors with partial information about its distribution to produce optimal commands. The results of the numerical simulations prove the robustness of the DRO models by comparing their performance with the deterministic model under generated driving scenarios. There are various further directions to explore for the next step. For instance, other assumptions for the sensor error can be considered and an adapted model can be built for real-life scenarios. Additionally, this distributionally robust optimization model can also be applied in other modules of autonomous vehicles with uncertainties in order to achieve better reliability for some crucial functionalities. This chapter corresponds to our published paper [START_REF] Zhang | Distributionally Robust Optimization of Adaptive Cruise Control Under Uncertainty[END_REF].

Optimal Control Based Trajectory

Planning under Uncertainty In this chapter, we propose a numerical optimal control method to formulate the reference generation problem under various driving scenarios. The model considers factors like safety, comfort, and effectiveness, as well as features such as adaptive cruise control and lane-keeping assist. In addition, we also address uncertainty together with a chance constraint to assess safety.

Problem Formulation

Driving scenario

In this section, we break down all the elements of the input to our reference generator model. The driving scenario could be understood as such: a driving scenario is the precise description of all the components in the environment and the trajectory information of all other traffic actors, including vehicles, pedestrians, etc., over a period of time (typically ≤ 30s). It could be a simulator or a real-life driving scenario, and the information could be retrieved and stored properly to reproduce it.

The necessary information on the road and other moving objects should be available in a typical driving scenario as follows:

• The trajectory of the ith vehicle at time t: this is represented and noted by

X i (t), Y i (t).
• The ith center lane of the road is noticed by C i (x).

• The boundary of the road noted by B i (x).

• Regulations and code of the road, including maximal speed, which is indicated by v max .

In order to produce the reference trajectory, we also need our ego vehicle's planning information as follows:

• The initial state of the ego vehicle: z 0 .

• Predefined way-point as an indicator of the expected maneuver (lane change, overtaking, steady driving, etc.).

• The measure of the optimality that based on an evaluation function.

• Constraints of the vehicle: cinematic and dynamic constraints and consideration of passenger's comfort.

Our reference generator needs to take that information as input and output the reference trajectory for the ego car given the driving scenario.

Optimal control problem

The objective of our work is to develop a reference trajectory generator with various functionalities in a driving scenario. With a scenario as input, this reference path generator should output a list of commands to execute to create a reference trajectory for further evaluation. The reference trajectory must maintain a safe distance from the leading vehicle and drive in the middle of the lane, taking into account all relevant vehicle constraints. This problem can be well-defined under the optimal control framework.

In an optimal control problem, the optimal control input u(t) is determined to minimize an objective function ℓ(•) while respecting the system dynamics f (•) and proposed constraints. The problem is formulated as follows: 

min z(•),u(•) tn t 0 ℓ(z(t), u(t))dt s.t. ż(t) = f (z(t), u(t)), c(z(t), u(t)) ≤ 0, z (t 0 ) = z init , z (t n ) = z term , z(t) ∈ Z, u(t) ∈ U.
ℓ(z k , u k ) s.t. z k+1 = z k + f (z k , u k )dt, c(z k , u k ) ≤ 0, z 0 = z init , z n = z term , z k ∈ Z, u k ∈ U, k = 0, 1, • • • n. (5.2)
Once this nonlinear optimization problem is solved, we can re-establish the reference trajectory using the initial state of the vehicle and the result commands.

An example of our model

In the sequel, we provide an explicit example of the modeling of a reference trajectory generator.

We chose the unicycle kinematic model as the vehicle model for trajectory planning. The state of the ego vehicle at time k is given by:

z k = [x k , y k , θ k , v k ] T ,
where x is the longitudinal position, y is the lateral position, θ is the heading angle, and v is the speed.

The control input at time k is given by

u k = [a k , ω k ],
where a k is the linear acceleration and ω k is the angular velocity.

And the ego vehicle's control-state relationship is :

z k+1 = z k + f (z k , u k )dt, (5.3) where f (z k , u k ) = [v k cos θ k , v k sin θ k , ω k , a k ] T .
We can formulate the reference trajectory generation as an optimal control problem in discrete form, which gives the following nonlinear optimization problem (NLP). 

{w g D 2 k (x k , y k ) + w v (v r -v k ) 2 + w a a 2 k + w ω ω 2 k + w j (a k -a k-1 ) 2 + w h H(θ k ) 2 + w p P (x tgt k , y tgt k , x k , y k )} (5.4) s.t. z k+1 = z k + f (z k , u k )dt, (5.4a) L ( x k , y k ) <= 0, (5.4b) |v k | ≤ v max , (5.4c) |ω k | ≤ ω max , (5.4d) |a k | ≤ a max , (5.4e) |a k -a k-1 | ≤ j max , (5.4f) K(x tgt k , y tgt k , x k , y k ) ≥ d min (5.4g) k = 0, 1, • • • n.
where u and z are vectors, including all the discrete control inputs and states during the scenario.

The objective function (5.4) consists of several different terms to regulate the behavior of the ego vehicle. D 2 k (x k , y k ) is the distance to the waypoint at time k. Minimizing their sums allows the vehicle to travel at the desired speed while staying at the center line. (v r -v k ) 2 regulates the vehicle's actual speed to the desired speed. a 2 k and ω 2 k penalize the large control input, and minimizing the jerk term (a k -a k-1 ) 2 improves the comfort of passengers in the vehicle.

H(θ k ) 2 drives the vehicle to align its heading with the curvature of the center lane. The potential field function P (d k ) is based on the headway distance d k to the leading vehicle. This term is used to regulate the headway distance in order to achieve ACC functionality. The weights w are chosen according to needs. They represent the importance of each factor and the trade-off among comfort, security, and effectiveness.

Constraint (5.4a) comes from the vehicle's kinematic model. Constraint (5.4b) guarantees the vehicle to drive within the road range. By interpolating polynomials, we can represent the boundaries of roads and restrict the reach of ego vehicles. Constraints (5.4c, 5.4d, 5.4e, 5.4f) present the speed limit, the actuator limits of the vehicle, and the range of jerk. The safety and comfort of passengers are ensured by those terms. Constraint (5.4f) is the collision avoidance constraint. The minimum distance between the ego vehicle and the heading vehicle should exceed a threshold d min .

Stochastic model

The model above assumed that the ego vehicle could obtain exact environmental information. In real-life scenarios, sophisticated sensors in ego vehicles do not always provide accurate information in complex driving scenarios. The inability to handle the involved uncertainty may lead to a security failure for autonomous vehicles. In our paper, a chance-constraint stochastic optimization model [START_REF] Prékopa | Stochastic programming[END_REF] is proposed to solve problems with uncertainty in order to achieve better performance.

In our stochastic model, the leading car's position at time k, (x tgt k , y tgt k ) , contains random noises following normal distributions due to sensor inaccuracy. Hence, we consider x tgt k ∼ N (µ xk , σ 2 xk ) and y tgt k ∼ N (µ yk , σ 2 yk ). Adding the random variable in the optimization problem, we need to treat the objective function and the constraints independently.

In objective function (5.4), the uncertainty part lies in the term P (x tgt k , y tgt k , x k , y k ), so we can replace x tgt k and y tgt k with µ xk and µ yk to get the approximate expectation. The constraint (5.4g) is the only constraint involving uncertainty.

|x tgt k -x k | + |y tgt k -y k | ≥ d min .
Applying triangle inequality to the left side, we have

|x tgt k -x k | + |y tgt k -y k | ≥ |x tgt k -x k + y tgt k -y k |.
Thus the constraint (5.4g) can be replaced by a more strict constraint

|x tgt k -x k + y tgt k -y k | ≥ d min .
Based on the property of normal distribution, we have r = x tgt k + y tgt k following normal distribution N (µ xk + µ yk , σ 2 xk + σ 2 yk ) with a given a threshold α. The chance constraint can be transformed as follows:

P(|x tgt k -x k + y tgt k -y k | ≥ d min ) ≥ α, ∀k = P(|x tgt k -x k + y tgt k -y k | ≤ d min ) ≤ 1 -α, = P( -d min -µ xk -µ yk + x k + y k σ 2 xk + σ 2 yk ≤ x tgt k + y tgt k -µ xk -µ yk σ 2 xk + σ 2 yk ≤ d min -µ xk -µ yk + x k + y k ) σ 2 xk + σ 2 yk ) ≤ 1 -α = F N ( x k + y k + d min -µ xk -µ yk σ 2 xk + σ 2 yk ) -F N ( x k + y k -d min -µ xk -µ yk σ 2 xk + σ 2 yk ) ≤ 1 -α.
(5.5)

This is equivalent to

P(x tgt k -x k + y tgt k -y k ≤ d min ) ≥ β 1 P(x tgt k -x k + y tgt k -y k ≥ -d min ) ≥ β 2 1 ≤ β 1 + β 2 ≤ 2 -α β 1 , β 2 ∈ [0, 1].
(5.6) A sufficient condition is to consider β 1 = β 2 = 1 -α/2. Then the above constraints can be transformed to

P(x tgt k -x k + y tgt k -y k ≤ d min ) ≥ 1 -α/2, ∀k = P( x tgt k + y tgt k -µ xk -µ yk σ 2 xk + σ 2 yk ≤ d min + x k + y k -µ xk -µ yk σ 2 xk + σ 2 yk ) ≥ 1 -α/2 = d min + x k + y k -µ xk -µ yk σ 2 xk + σ 2 yk ≥ F -1 N (1 -α/2) = x k + y k ≥ µ xk + µ yk -d min + σ 2 xk + σ 2 yk • F -1 N (1 -α/2).
(5.7)

In a similar way, we have:

P(x tgt k -x k + y tgt k -y k ≥ -d min ) ≥ 1 -α/2, ∀k = P( x tgt k + y tgt k -µ xk -µ yk σ 2 xk + σ 2 yk ≤ -d min + x k + y k -µ xk -µ yk σ 2 xk + σ 2 yk ) ≤ α/2 = -d min + x k + y k -µ xk -µ yk σ 2 xk + σ 2 yk ≤ F -1 N (α/2) = x k + y k ≤ µ xk + µ yk + d min + σ 2 xk + σ 2 yk • F -1 N (α/2), (5.8) 
where F N is the cumulative distribution function of standard normal distribution.

Using the last constraint instead of the previous one (5.4g), we can get a new optimization problem to generate a reference trajectory considering sensor uncertainties.

Numerical Experiments

In this section, numerical tests are conducted to prove the efficiency of the reference trajectory generation model under various driving scenarios. Our driving scenarios are generated with SCANeR Studio [START_REF] Nguen | An integrated framework combining a traffic simulator and a driving simulator[END_REF], which is a commercial driving simulation software that helps develop and validate ADAS. The modules in SCANeR Studio for vehicle dynamics, environment building, and sensor modeling offer us the flexibility to define road states and conditions based on our requirements. The driving data in SCANeR Studio could be exported for further analysis. We solve nonlinear programming models with the help of the Python package GEKKO [START_REF] Beal | GEKKO Optimization Suite[END_REF], which has an active set sequential quadratic programming solver for our constrained nonlinear optimization problem.

Following are descriptions of our experimental set-up, examples of results, and a comparison of the performance of our deterministic and stochastic models.

Experimentation set-up

Our model consists of driving-related parameters, such as the maximum speed and the minimum inter-vehicle distance, etc. Those parameters should be adjusted to reflect real-world regulations and traffic rules. In response to changing scenarios, they should be adjusted as well. For example, the reference speed, and the maximum speed in highway scenarios must be higher than those in urban driving scenarios.

Our experiment is based on an urban driving scenario. Parameters like the reference velocity, minimal distance and maximum velocity should be inferior to those in highway driving. The table below Another set of parameters is weights in the objective function, representing the importance of corresponding terms to optimize.In order to achieve the best performance of the model, the weights should be fine-tuned from an engineering perspective.

The stochastic model takes into account the uncertainty of the sensors, which results in errors in the position of the leading vehicle. Thus the detected leading vehicle's position is equal to the real leading vehicle's position plus a random noise with a normal distribution N (0, 1).

Examples of solutions

The following result has been obtained in a driving scenario generated in SCANeR, using the deterministic and stochastic models with the previously indicated parameters.

In Fig. 5.1, we show the generated acceleration and angular velocity profile during the scenarios to get the optimal reference trajectory. wg : wv : wa : wω : wj : w h : wp 

Effects of different configurations

In Table 5.2, we considered various values of the objective weights proportion and the number of sampling times N to analyze its impact on the results and calculation.

We can observe that the average CPU time is always constant, and when the weight w a , w v is high, the acceleration is low, and high weight w ω leads to low angular velocity. The average CPU time increases proportionally as the number of time frames increases.

In real-life applications, the proportion of weights should be adjusted to achieve optimal performance under specific criteria.

Comparison of robustness

This part presents two experiments that illustrate the robustness of the stochastic model under data uncertainty. Specifically, robustness is the ability to produce near-optimal solutions with fewer violations of constraints while facing the uncertainty of data. In the context of autonomous driving, it can be illustrated in two ways. Firstly, the model needs to be robust to an unchanged driving scenario with numerous realizations of the uncertainty of data. Secondly, the robustness needs to be proved in various driving scenarios. Two experiments are designed based on these two aspects.

Our first experiment fixes the driving scenario and generates 100 realizations of its random variables X tgt , Y tgt . Next, we run the deterministic model and stochastic model over 100 instances and compare the number of the violated constraints. Fig. 5.2 visualizes the constraint violation value d min -K(x tgt k , y tgt k , x k , y k ), adapted from constraint (5.4g), for the whole results of the two models. Fig. 5.2(a) and Fig. 5.2(b) show the constraint violation value for the whole constraints, whilst Fig. 5.2(c) and Fig. 5.2(d) show a zoom-in on a subset of constraints for better readability. In Fig. 5.2, each curve in its own color displays the constraint violation values of a driving scenario result, and the x-axis represents the index of constraints. If the value at constraint index i exceeds 0, it means that d min > K(x tgt k , y tgt k , x k , y k ), i.e., the constraint (5.4g) is violated at this sampling time. Fig. 5.3 shows the number of violated constraints for simulations with 100 realizations. The blue dots represent the number of violated constraints for our deterministic model, and the orange dots represent the number of violated constraints in the stochastic model. In Fig. 5.4, the distribution of the violated constraints is presented, and we observe that most of the stochastic models results are feasible, i.e., no constraints are violated; there are only three instances with a single constraint violation. Conversely, the constraint violations in the deterministic model are typically around two and three.

Similarly, we conduct our second experiment with 100 different scenarios and compare the performance of our models, in the same way, to further prove our model's robustness under different scenarios. constraints and their distribution, respectively. As a result of the diversity of scenarios, the number of violated constraints is more divergent compared with the precedent experiment. Meanwhile, the stochastic model still yields fewer constraint violations than the deterministic model.

We can conclude from the two experiments above that the stochastic model produces more robust solutions both in terms of stability and diversity. 

Conclusion and Future Work

In this chapter, an optimal control based reference trajectory generator has been proposed and implemented. With a scenario and prior waypoints, this generator can find an optimal collision-free trajectory for further validation. Stochastic programming has been used to address the uncertainty of autonomous vehicles. This chapter corresponds to the reference [START_REF] Zhang | Optimal Control Based Trajectory Planning under Uncertainty[END_REF]. In this chapter we summarize our work about the n-player strategic chanceconstrained games. We first introduce our chance-constrained modeling framework. Then, we prove the existence of Nash equilibrium via Brouwer's fixed-point theorem and reformulate our stochastic chance-constrained games as a variational inequality problem. Finally we present our numerical simulations and conclusions.

N-player Strategic Chance-constrained Games

Introduction

From its origins back in the sixties, variational inequality has evolved into an invaluable discipline and has become an applicable framework in a variety of fields, including engineering and economics. There have been many advances regarding its analytical properties, solutions, and connections to other fields (see for instance [START_REF] Facchinei | Finite-dimensional variational inequalities and complementarity problems[END_REF][START_REF] Kinderlehrer | An introduction to variational inequalities and their applications[END_REF]). The main focus of variational inequality is the Nash equilibrium problem, which has been studied in various forms during the last decades [START_REF] Cavazzuti | Nash equilibria, variational inequalities, and dynamical systems[END_REF][START_REF] Pang | Quasi-variational inequalities, generalized Nash equilibria, and multi-leader-follower games[END_REF][START_REF] Vikas | Variational inequality formulation for the games with random payoffs[END_REF].

Nash equilibrium is a crucial concept widely studied in game theory literature. John Von Neumann proved the existence of mixed strategy saddle point equilibrium for two-player finite zero-sum games [START_REF]Zur theorie der gesellschaftsspiele[END_REF]. John Nash extended this result to finite games with n players and deterministic payoffs [START_REF] John | Equilibrium points in n-person games[END_REF].

In real-life problems, games input data might be affected by different uncertainty sources leading to numerous studies on games under uncertainty, namely stochastic games. The oligopoly market is a typical example where the payoff of each player is a random variable. Generally, the players in an oligopoly market are risk neutral. Therefore, they consider the expectation of random payoffs and constraints [START_REF] De | A stochastic version of a Stackelberg-Nash-Cournot equilibrium model[END_REF][START_REF] Demiguel | A stochastic multiple-leader Stackelberg model: analysis, computation, and application[END_REF][START_REF] Jadamba | Variational inequality approach to stochastic Nash equilibrium problems with an application to Cournot oligopoly[END_REF][START_REF] Ravat | On the characterization of solution sets of smooth and nonsmooth convex stochastic Nash games[END_REF][START_REF] Valenzuela | Cournot prices considering generator availability and demand uncertainty[END_REF][START_REF] Xu | Stochastic Nash equilibrium problems: sample average approximation and applications[END_REF].

When the players are risk averse, chance-constrained games can be used efficiently [START_REF] Charnes | Deterministic equivalents for optimizing and satisficing under chance constraints[END_REF][START_REF] Cheng | A second-order cone programming approach for linear programs with joint probabilistic constraints[END_REF][START_REF] Prékopa | Stochastic programming[END_REF]. In [START_REF] Vikas | Existence of Nash equilibrium for chance-constrained games[END_REF], the authors prove the existence of Nash equilibrium for an n-player finite strategic chance-constrained game under elliptical distributions.

Furthermore, [START_REF] Vikas | Solving chance-constrained games using complementarity problems[END_REF] show that a Nash equilibrium problem for a two-player random bi-matrix game is equivalent to a linear complementarity problem (LCP, for short) where each player's payoff follows independent Cauchy distribution.

When the player's payoffs are normally distributed, Nash equilibrium is equivalent to a nonlinear complementarity problem (NCP, for short). In [START_REF] Vikas | Variational inequality formulation for the games with random payoffs[END_REF], the authors characterized the set of Nash equilibrium of a chance-constrained game using the solution set of a variational inequality problem. In the case where the probability distributions are not known in advance, [START_REF] Vikas | Distributionally robust chance-constrained games: existence and characterization of Nash equilibrium[END_REF] studied distributionally robust chance-constrained games. Various approaches were considered in the literature for chance-constrained two-player stochastic zero-sum games [START_REF] Roger | Random-payoff two-person zero-sum games[END_REF][START_REF] Cassidy | Solution of a satisficing model for random payoff games[END_REF][START_REF] Charnes | Zero-zero chance-constrained games[END_REF][START_REF] Cheng | Random-payoff two-person zero-sum game with joint chance constraints[END_REF][START_REF] Song | On random payoff matrix games[END_REF].

In addition, stochastic games with deterministic payoffs and chance-constrained strategies were also studied in the literature. For the case of two-player zero sum games, [START_REF] Vikas | A second-order cone programming formulation for two player zero-sum games with chance constraints[END_REF] show that the saddle point is equivalent to a primal-dual pair of second-order cone programs. As for the n-player general sum games with joint chance constraints, [START_REF] Peng | General sum games with joint chance constraints[END_REF] show the existence of Nash equilibrium when the random linear constraints are independently normally distributed.

Problem's Applications

The chance-constrained game model can be applied to solve real-life problems, e.g., competition in electricity markets [START_REF] Lee | Solving three-player games by the matrix approach with application to an electric power market[END_REF] and decision-making for autonomous vehicles [START_REF] Blackmore | A probabilistic approach to optimal robust path planning with obstacles[END_REF].

The application of a chance-constrained game concerns mainly electricity markets [START_REF] Couchman | Gaming strategy for electric power with random demand[END_REF][START_REF] Mazadi | Impact of Wind Integration on Electricity Markets: A Chance-Constrained Nash Cournot Model[END_REF]. The case where the players' action sets are not finite is studied in [START_REF] Couchman | Gaming strategy for electric power with random demand[END_REF][START_REF] Mazadi | Impact of Wind Integration on Electricity Markets: A Chance-Constrained Nash Cournot Model[END_REF]. However, games formulated as finite strategic games are scarce in the literature, see for instance [START_REF] Lee | Solving three-player games by the matrix approach with application to an electric power market[END_REF][START_REF] Son | Short-term electricity market auction game analysis: Uniform and pay-as-bid pricing[END_REF]. In [START_REF] Lee | Solving three-player games by the matrix approach with application to an electric power market[END_REF] the authors consider games based on Cournot and Bertrand models where the players' actions are electricity generation quantities in the Cournot model and bidding prices in the Bertrand model. By means of discretization, the players' action sets are finite. Notice that in [START_REF] Son | Short-term electricity market auction game analysis: Uniform and pay-as-bid pricing[END_REF], a finite strategic electricity market auction game is studied under different pricing mechanisms. In [START_REF] Lee | Solving three-player games by the matrix approach with application to an electric power market[END_REF][START_REF] Son | Short-term electricity market auction game analysis: Uniform and pay-as-bid pricing[END_REF], the player's payoffs are deterministic. However, the demands and costs in the payoff functions considered in [START_REF] Lee | Solving three-player games by the matrix approach with application to an electric power market[END_REF][START_REF] Son | Short-term electricity market auction game analysis: Uniform and pay-as-bid pricing[END_REF] can be random due to [START_REF] Lepore | Cournot outcomes under Bertrand-Edgeworth competition with demand uncertainty[END_REF][START_REF] Wambach | Bertrand competition under cost uncertainty[END_REF]. In this chapter, we consider random payoffs modeled with chance constraints.

In the decision-making process, autonomous vehicles seek to avoid potential collisions with obstacles while taking into account perceptional errors and environmental disturbances [START_REF] Blackmore | A probabilistic approach to optimal robust path planning with obstacles[END_REF]. In the case of multiple vehicles, the chanceconstrained game theoretical framework can be used to model the vehicles' decisions under uncertainty.

Our Contribution

Our contribution in this chapter consists in extending the results in [START_REF] Vikas | Solving chance-constrained games using complementarity problems[END_REF][START_REF] Zhang | Nonlinear complementarity problems for n-player strategic chance-constrained games[END_REF] to the case of n-player stochastic games in the form of variational inequality. We show that the Nash equilibrium problem can be reformulated as a variational inequality problem when the player's payoff follows either Cauchy or Normal distributions.

Moreover, as a novelty of our paper, compared to the previously cited works, we also prove the existence of Nash equilibrium under different conditions using Brouwer's fixed-point theorem. As for the numerical experiments, we solve several randomly generated game instances to show the performance of our approaches. Unlike [START_REF] Vikas | Solving chance-constrained games using complementarity problems[END_REF], we solve instances where the size ranges from (2 × 2) to (6 × 6 × 6 × 6 × 6 × 6).

Chance-constrained Games

We consider an n-player chance-constrained finite strategic game with random payoffs. Let I = {1, 2, 3, . . . n} be the set of players. A i , i ∈ I is the action set of player i with components a i . The set of mixed strategies of player i includes all probability distributions over its action set, defined by the following (|A i | -1)-simplex:

X i = {τ i ∈ R |A i | | |A i | j=1 τ ij = 1, τ ij ≥ 0}, (6.1) 
where τ ij is the jth component of vector τ i , and |A i | the cardinality of the set A i .

Specifically, τ ij is the probability for the player i to choose the jth action in A i .

Let X = n i=1 X i be the set of strategy profiles for all players with components τ ∈ X. The pure strategy set of player i is defined by

Y i = {y i ∈ X i | ∃j ∈ {1, 2, ..|A i |}, s.t. y ij = 1}, (6.2)
which is a subset of X i . The set of pure strategy profiles for all players is defined by Y = n i=1 Y i , with y ∈ Y its element. In order to describe the strategy of one specific player in response to other players, we denote X -i = n j=1,j̸ =i X j the strategy set of all players except player i, with components τ -i ∈ X -i . Similarly, we denote Y -i = n j=1,j̸ =i Y j where y -i ∈ Y -i is the related generic element. We assume that the pure strategy y based payoff of player i denoted by

r ω i (y) is a random variable.
Given the payoff corresponding to each pure strategy, the payoff of player i for a mixed strategy τ ∈ X is a linear combination of pure-strategy payoffs, i.e.,

r ω i (τ ) = y∈Y n k=1 τ T k y k r ω i (y), (6.3) 
In a chance-constrained game, the objective of each player is to maximize the expected payoff under a given level of confidence α i , i.e.,

u α i i (τ ) = sup{u|P (r w i (τ ) ≥ u) ≥ α i }. (6.4) 
In what follows, we recall the definition of chance-constrained Nash equilibrium (for instance, see [START_REF] Vikas | Existence of Nash equilibrium for chance-constrained games[END_REF] for more details). Definition 2. A Nash equilibrium is a strategy profile τ * ∈ X such that for all i ∈ I, given α i ∈ [0, 1] n , the following inequality holds :

u α i i (τ * i , τ * -i ) ≥ u α i i (τ i , τ * -i ) for ∀τ i ∈ X i .
In the next section, we show the existence of Nash equilibrium for the chanceconstrained games and derive the variational inequality reformulation.

Variational Inequality for N-player Chanceconstrained Game

To provide more details on Variational Inequality (VI for short), we refer to [START_REF] Facchinei | Finite-dimensional variational inequalities and complementarity problems[END_REF] defining a problem as follows: given a closed, convex set K and a continuous function

F , z ∈ K is a solution of a VI problem if (y -z) T F (z) ≥ 0, ∀y ∈ K. (6.5)
The above VI problem is denoted VI(K, F ). [START_REF] Facchinei | Finite-dimensional variational inequalities and complementarity problems[END_REF] show that the Nash equilibrium problem of a deterministic non-cooperative game can be formulated as a VI problem if each player has a closed, convex strategy set and his payoff function is continuous, concave, and differentiable for other players who have fixed strategies.

For n-player strategic chance-constrained games, if we assume that the payoff function of each player i is continuous and differentiable, then we can formulate the Nash equilibrium problem as a VI problem. Notice that this assumption holds in our case.

Let ∇ τ i u α i i (τ ) denote the gradient of the payoff function of player i and define a function F : T , where

R |A i | → R |A i | , F (τ ) = (F 1 (τ ), F 2 (τ ), • • • , F n (τ ))
F i (τ ) = -∇ τ i u α i i (τ )
for each i ∈ I. Theorem 1. Consider an n-player strategic chance-constrained game, where the chance-constrained payoff of each player u α i i (•, τ -i ) is concave and differentiable, τ * is a Nash equilibrium of this game if and only if it is a solution of the VI(X, F ).

Proof. Let τ * ∈ X be a Nash equilibrium. Then,

τ * i ∈ arg min τ i ∈X i -u α i i (τ i , τ * -i ), ∀i ∈ I. (6.6)
For each i ∈ I, X i is a convex set, and -u

α i i (•, τ -i ) is a convex function of τ i . Then, from minimum principle, τ * is a Nash equilibrium if for each i ∈ I (τ i -τ * i ) T (-∇u α i i (τ * i , τ * -i )) ≥ 0, ∀τ i ∈ X i . (6.7) That is, (τ i -τ * i ) T F i (τ * i ) ≥ 0, ∀τ i ∈ X, i ∈ I. (6.8)
By concatenating all the inequalities defined by (6.8), τ * is a solution of the VI(X, F ).

Conversely, let τ * ∈ X be a solution of the VI(X, F ), then (τ -τ * ) T F (τ * ) ≥ 0, ∀τ ∈ X. (6.9)

For Each i ∈ I, τ i = (τ * 1 , τ * 2 , • • • τ i • • • τ * n , ). Hence, for each i ∈ I, we have (τ i -τ * i ) T (-∇u α i i (τ * i , τ * -i )) ≥ 0, ∀τ i ∈ X i . (6.10)
Again from the minimum principle

τ * i ∈ arg min τ i ∈X i -u α i i (τ i , τ * -i ), ∀i ∈ I. (6.11)
Hence, τ * is a Nash equilibrium.

The following parts discuss the case where each player's random payoff follows two probability distributions, namely the Cauchy distribution and the Normal distribution. We derive equivalent Variational Inequality formulations for each distribution and convert them into NCP for our numerical experiments.

Independent Cauchy Distributed Payoffs

We assume that the pure strategy payoffs for all players follow independent Cauchy distribution, i.e. r ω i (y) ∼ C(µ i (y), σ i (y)) for all y ∈ Y . Then, for a mixed strategy τ ∈ X, the payoff

r ω i (τ ) = y∈Y n k=1 τ T k y k r ω i (y) of player i is Cauchy distributed with µ i (τ ) = y∈Y n k=1 τ T k y k µ i (y) and σ i (τ ) = y∈Y n k=1 τ T k y k σ i (y). Therefore, Z C i = r ω i -µ i (τ ) σ i (τ )
follows a standard Cauchy distribution C(0, 1).

Let F -1 C be the quantile function of the standard Cauchy distribution.

For each player i, the chance-constrained payoff with confidence level α i is given by:

u α i i (τ ) = sup{u|P (r w i (τ ) ≥ u) ≥ α i } = sup{u|P ( r w i (τ ) -µ i (τ ) σ i (τ ) ≥ u -y∈Y n k=1 τ T k y k µ i (y) y∈Y n k=1 τ T k y k σ i (y) ) ≥ α i } = sup{u|F C ( u -y∈Y n k=1 τ T k y k µ i (y) y∈Y n k=1 τ T k y k σ i (y) ) ≤ 1 -α i } = y∈Y n k=1 τ T k y k µ i (y) + F -1 C (1 -α i ) y∈Y n k=1 τ T k y k σ i (y) = y∈Y n k=1 τ T k y k (µ i (y) + F -1 C (1 -α i )σ i (y)) = y∈Y n k=1 τ T k y k A i (y) = V T i (τ -i )τ i , (6.12) 
where

V i (τ -i ) ∈ R |A i | . V i (τ -i ) =             y -i ∈Y -i n k=1, k̸ =i τ T k y k A i (y 1 i , y -i ) y -i ∈Y -i n k=1, k̸ =i τ T k y k A i (y 2 i , y -i ) . . . y -i ∈Y -i n k=1, k̸ =i τ T k y k A i (y |A i | i , y -i )             , ( 6.13) 
where y j i ∈ R |A i | is a unit vector with jth element equals to 1.

Existence of Nash Equilibrium

In the following, we prove the existence of Nash equilibrium for stochastic games with Cauchy distribution.

Theorem 2. There always exists a Nash equilibrium for every n-player strategic chance-constrained game, where the payoff of each player is independently Cauchy distributed.

The proof of this theorem is similar to the proof given in [124].

Variational Inequality Formulation

For random games with independent Cauchy distributed payoffs, its chanceconstrained payoff with confidence level α i , u α i i (•, τ -1 ), is a linear function and thus concave. From Theorem 1 and Theorem 2, the Nash equilibrium exists and is the solution of the variational inequality problem VI(X, -V ), with X = n i=1 X i the Cartesian product of n simplexes and Next, we will convert this VI problem into an NCP so that it can be solved numerically.

V (τ ) = (V 1 (τ -1 ), V 2 (τ -2 ), • • • , V n (τ -n )) T , the concatenation of negative gradients u α i i (•, τ -i ). Since X is a convex set, and u α i i (•, τ -1 ) is concave, VI(X, -V ) is equivalent to the optimization problem: max τ V T (τ )τ s.t. |A i | j=1 τ ij = 1, ∀i ∈ {1, 2, ..., n}, τ ij ≥ 0, ∀i ∈ {1,
According to Theorem 1 and Theorem 2 , the solution τ * of VI(X, -V ) exists and is the Nash equilibrium of the chance-constrained game. Based on the definition of Nash equilibrium, τ * i is the best response of player i to the strategy of the others τ * -i . As a result, τ * i is the solution to the following optimization problem :

max τ i V T i (τ * -i )τ i s.t. |A i | j=1 τ ij = 1, τ ij ≥ 0, ∀j ∈ {1, 2, ..., |A i |}. (6.15) 
The objective function in (6.15) is concave, subject to linear constraints.

Hence, Slater's condition is satisfied, and the KKT conditions are necessary and sufficient for optimality.

By KKT conditions, the Nash equilibrium problem can be reformulated as follows:

0 ≤ τ i ⊥ -V i (τ -i ) -λ i 1 1 |e i | + λ i 2 1 |e i | ≥ 0, 0 ≤ λ i 1 ⊥ |A i | j=1 τ ij -1 ≥ 0, 0 ≤ λ i 2 ⊥ 1 - |A i | j=1 τ ij ≥ 0, (6.16) 
where 1 n denotes all-ones vector with size n.

Putting together the KKT conditions for all players, we obtain the Nash equilibrium of the chance-constrained game by solving the following NCP:

0 ≤ ζ ⊥ G(ζ) ≥ 0, (6.17) 
where

ζ = (τ 1 , τ 2 , ..., τ n , λ 1 1 , λ 1 2 , ..., λ n 1 , λ n 2 ) ∈ R n i=1 |A i |+2n , ( 6.18) 
and

G(ζ) =                           -V 1 (τ -1 ) -λ 1 1 1 |A 1 | + λ 1 2 1 |A 1 | -V 2 (τ -2 ) -λ 2 1 1 |A 2 | + λ 2 2 1 |A 2 | . . . -V n (τ -n ) -λ n 1 1 |An| + λ n 2 1 |An| |A 1 | j=1 τ 1j -1 1 - |A 1 | j=1 τ 1j |A 2 | j=1 τ 2j -1 1 - |A 2 | j=1 τ 2j . . . |An| j=1 τ nj -1 1 - |An| j=1 τ nj                           .
(6.19)

Independent Normally Distributed Payoffs

In the following, we consider normally distributed pure strategy payoffs for all the players. Thus, for a mixed strategy τ ∈ X, the payoff

r ω i (τ ) = y∈Y n k=1 τ T k y k r ω i (y) of player i follows a normal distribution N (µ i (τ ), σ 2 i (τ )) with µ i (τ ) = y∈Y n k=1 τ T k y k µ i (y)
and

σ 2 i (τ ) = y∈Y n k=1 (τ T k • y k ) 2 σ 2 i (y).
Therefore,

Z N i = r ω i -µ i (τ ) σ i (τ )
follows a standard normal distribution N (0, 1). Let F -1 N be the quantile function of the standard normal distribution.

For each player i, the chance-constrained payoff with confidence level α i is:

u α i i (τ ) = sup{u|P (r w i (τ ) ≥ u) ≥ α i } = sup{u|P ( r w i (τ ) -µ i (τ ) σ i (τ ) ≥ u -y∈Y n k=1 τ T k y k µ i (y) y∈Y n k=1 (τ T k • y k ) 2 σ 2 i (y) ) ≥ α i } = sup{u|F N ( u -y∈Y n k=1 τ T k y k µ i (y) y∈Y n k=1 (τ T k • y k ) 2 σ 2 i (y) ) ≤ 1 -α i } = y∈Y n k=1 τ T k y k µ i (y)+ F -1 N (1 -α i ) y∈Y n k=1 (τ T k • y k ) 2 σ 2 i (y) = P T i (τ -i )τ i + C i ∥Q 1 2 i (τ -i )τ i ∥, (6.20) 
where

C i = F -1 N (1 -α i ) and P i (τ -i ) ∈ R |A i | , P i (τ -i ) =             y -i ∈Y -i n k=1, k̸ =i τ T k y k µ i (y 1 i , y -i )) y -i ∈Y -i n k=1, k̸ =i τ T k y k µ i (y 2 i , y -i ) . . . y -i ∈Y -i n k=1, k̸ =i τ T k y k µ i (y |A i | i , y -i )             , ( 6.21) 
and Q

1 2 i (τ -i ) ∈ M |A i | ×|A i | is a diagonal matrix Q 1 2 i (τ -i ) =      q 1 2 1 (τ -i ) . . . 0 . . . . . . . . . 0 . . . q 1 2 |A i | (τ -i )      , ( 6.22) 
where q

1 2 m(τ-i) = y -i ∈Y -i (σ 2 i (y m i , y -i ) n k=1, k̸ =i (τ T k y k ) 2 ).

Existence of Nash Equilibrium

Lemma 2. If a function f (x) is strictly concave and continuous on a compact convex set, then arg max x f (x) is a single-valued correspondence.

Proof. A continuous function can always reach its maximum on a compact set.

A strictly concave function on a convex set has no more than one maximum. Thus, the function f has one maximum, which implies that arg max x f (x) is a single-valued correspondence.

Theorem 3. Consider an n-player chance-constrained strategic game. If the pure strategy payoff of each player follows an independent normal distribution, then the Nash equilibrium exists for confidence level α ∈ [0.5, 1).

Proof. Firstly, we construct a function br i (τ ) = arg max

τ * i (u i (τ * i , τ -i ) -||τ * i -τ i ||). (6.23) 
For α ∈ [0.5, 1), br i is well-defined since Since br is a continuous function from a convex compact subset to itself, according to Brouwer's fixed-point theorem, there exists a point τ * where τ * = br(τ * ). Based on the definition of br, we can conclude that τ * is a Nash equilibrium for this game.

f i (τ -i ) = u i (τ * i , τ -i ) -||τ * i -τ i || is a strictly concave function. Therefore arg max τ -i f i (τ -i ) is a singleton by lemma 2. As f i (τ -i ) is continuous, we can prove that br i (τ )

Variational Inequality Formulation

For random games with independent normally distributed payoffs, when the confidence level α ∈ [0.5, 1), the corresponding chance-constrained payoff u α i i (•, τ * -i )) is a concave function. From Theorem 1 and Theorem 3, the Nash equilibrium exists and is the solution of the variational inequality problem V I(X, -W ), with X = n i=1 X i the Cartesian product of n simplexes and

W (τ ) = (-W 1 (τ -1 ), -W 2 (τ -2 ), • • • , -w n (τ -n )) T the concatenation of negative gradients u α i i (•, τ -i ),
where

W i (τ -i ) = P T i (τ -i ) + C i Q i (τ -i )τ i ∥Q 1 2 i (τ -i )τ i ∥ .
Since X is a convex set, and u α i i (•, τ -1 ) is concave, the VI(X, -W ) is equivalent to the following optimization problem:

max τ W T (τ )τ s.t. |A i | j=1 τ ij = 1, τ ij ≥ 0, ∀i ∈ {1, 2, ..., n} ∀j ∈ {1, 2, ..., |A i |}. (6.25)
We will also convert this VI problem into an NCP so that it can be solved numerically.

According to Theorem 1 and Theorem 2 , the solution τ * of VI(X, -W ) exists and is the Nash equilibrium of the chance-constrained game. Based on the definition of Nash equilibrium, τ * i is the best response for player i to the strategy of the others τ * -i . As a result, τ * i is the solution to the following optimization problem: max

τ i P T i (τ * -i )τ i + C i ∥Q 1 2 i (τ -i )τ i ∥ s.t. |A i | j=1 τ ij = 1, τ ij ≥ 0, ∀j ∈ {1, 2, ..., |A i |}. (6.26)
Here the objective function is concave, and the constraints are linear. Thus Slater's condition holds, and the KKT conditions are both necessary and sufficient for optimality.

By KKT conditions, the best response of player i can be reformulated as follows

0 ≤ τ i ⊥ -P i (τ -i ) -C i Q i (τ -i )τ i ∥Q 1 2 i (τ -i )τ i ∥ -λ i 1 1 |e i | + λ i 2 1 |e i | ≥ 0, 0 ≤ λ i 1 ⊥ |A i | j=1 τ ij -1 ≥ 0, 0 ≤ λ i 2 ⊥ 1 - |A i | j=1 τ ij ≥ 0. (6.27)
Putting together the KKT conditions for all players, we can obtain the Nash equilibrium of the stochastic game by solving the following NCP:

0 ≤ ζ ⊥ G(ζ) ≥ 0, (6.28) 
where

ζ = (τ 1 , τ 2 , ..., τ n , λ 1 1 , λ 1 2 , ..., λ n 1 , λ n 2 ) ∈ R n i=1 |A i |+2n , ( 6.29) 
and

G(ζ) =                               -P 1 (τ -1 ) -C 1 Q 1 (τ -1 )τ 1 ∥Q 1 2 1 (τ -1 )τ 1 ∥ -λ 1 1 1 |e 1 | + λ 1 2 1 |e 1 | -P 2 (τ -2 ) -C 2 Q 2 (τ -2 )τ 2 ∥Q 1 2 2 (τ -2 )τ 2 ∥ -λ 2 1 1 |e 2 | + λ 2 2 1 |e 2 | . . . -P n (τ -n ) -C n Qn(τ -n )τn ∥Q 1 2 n (τ -n )τn∥ -λ n 1 1 |en| + λ n 2 1 |en| |A 1 | j=1 τ 1j -1 1 - |A 1 | j=1 τ 1j |A 2 | j=1 τ 2j -1 1 - |A 2 | j=1 τ 2j . . . |An| j=1 τ nj -1 1 - |An| j=1 τ nj                               . ( 6.30) 
Before providing numerical simulation to assess the performance and efficiency of our proposed approaches, and for the sake of clarity, we provide in the sequel a table summarizing the whole parameters and variables used in our different formulations. This is given in Table 6.1.

Numerical Experiments

In this section, we generate random instances in Matlab, and we use PATH Solver to come up with Nash equilibrium.

PATH Solver is an implementation of a stabilized Newton method for the solution of the Mixed Complementarity Problem (MCP) [START_REF] Steven | The path solver: a nommonotone stabilization scheme for mixed complementarity problems[END_REF]. For our concern, once the analytic form of G(x) and its Jacobian is known and coded, we can directly use PATH to solve our NCP.

As a matter of illustration, we give two examples of (3 × 3 × 3) random games with different distributions and then analyze the corresponding results. In this part, we generate three (3×3×3) random games, each with an independent 

(0, 1, 0) (0, 1, 0) 0.5 0.5 0.5 (0, 0, 1) (0, 0, 1) (0, 0, 1) 0.7 0.7 0.7 (0, 0, 1) (0, 0, 1) (0, 0, 1) 

Comparative Analysis of Games of Different Sizes

In this part, we solve large-scale instances ranging from (2×2) to (5×5×5×5×5)

games. The success rate and running time of our method for solving this type of game are compared in detail. 

Conclusion and Future Work

In this chapter, we solve the Nash equilibrium problem with n-player chanceconstrained games. We proved the existence of Nash equilibrium for stochastic games using Cauchy and normal distributions. We derive equivalent Variational Inequality problems for the considered games.

In order to illustrate the performance of our approaches, we solve Variational Inequality problems with PATH solver on randomly generated instances with up to six players.

For future work, we will consider different distributions for the addressed stochastic games and apply our approach to real-life applications such as autonomous vehicles where the vehicles, represented as players, seek for rational decisions under uncertainty. This chapter corresponds to the reference [START_REF] Zhang | Nonlinear complementarity problems for n-player strategic chance-constrained games[END_REF] and [START_REF] Zhang | Variational Inequality for n-Player Strategic Chance-Constrained Games[END_REF] 7

Distributionally Robust Optimization of Chance-constrained Games This chapter consists in extending the results of Chapter 6 to the case of distributionally robust chance constraints. Hence, we prove that the Nash equilibrium problem can be reformulated as an NCP when the distribution of the player's payoff belongs to several types of uncertainty sets. We provide numerical experiments in which we solve various randomly generated game instances to show the performance of our approaches. Unlike [START_REF] Vikas | Solving chance-constrained games using complementarity problems[END_REF], we solve instances where 109 the size ranges from (2 × 2) to (6 × 6 × 6 × 6 × 6 × 6).

Chance-constrained Games

We consider an n-player chance-constrained finite strategic game with random payoffs. Let I = {1, 2, 3, . . . n} be the set of players. A i , i ∈ I is the action set of player i with components a i . The set of mixed strategies of player i includes all probability distributions over its action set, defined by the following (|A i | -1)-simplex:

X i = {τ i ∈ R |A i | | |A i | j=1 τ ij = 1, τ ij ≥ 0}, ( 7.1) 
where τ ij is the jth component of vector τ i , and |A i | the cardinality of the set A i . Specifically, τ ij is the probability for the player i to choose the jth action in A i . Let X = n i=1 X i be the set of strategy profiles for all players with components τ ∈ X. The pure strategy set of player i is defined by

Y i = {y i ∈ X i | ∃j ∈ {1, 2, ..|A i |}, s.t. y ij = 1}, (7.2) 
which is a subset of X i . The set of pure strategy profiles for all players is defined by Y = n i=1 Y i , with y ∈ Y its element. In order to describe the strategy of one specific player in response to other players, we denote X -i = n j=1,j̸ =i X j the strategy set of all players except player i, with components τ -i ∈ X -i . Similarly, we denote Y -i = n j=1,j̸ =i Y j where y -i ∈ Y -i is the related generic element. We assume that the pure strategy y based payoff of player i denoted by

r ω i (y) is a random variable.
Given the payoff corresponding to each pure strategy, the payoff of player i for a mixed strategy τ ∈ X is a linear combination of pure-strategy payoffs, i.e.,

r ω i (τ ) = y∈Y n k=1 τ T k y k r ω i (y), (7.3) 
In a chance-constrained game, the objective of each player is to maximize the expected payoff under a given level of confidence α i , i.e.,

u α i i (τ ) = sup{u|P (r w i (τ ) ≥ u) ≥ α i }. (7.4) 
In what follows, we recall the definition of chance-constrained Nash equilibrium (for instance, see [START_REF] Vikas | Existence of Nash equilibrium for chance-constrained games[END_REF] for more details).

Definition 3. A Nash equilibrium is a strategy profile τ * ∈ X such that for all i ∈ I, given α i ∈ [0, 1] n , the following inequality holds :

u α i i (τ * i , τ * -i ) ≥ u α i i (τ i , τ * -i ) for ∀τ i ∈ X i .
In the next section, we show the existence of Nash equilibrium and derive the NCP reformulations.

NCP for Distributionally Robust Chanceconstrained Game

In this section, we consider two different uncertainty sets and assumes that the distributions of random payoffs of each player belong to those uncertainty sets.

For each uncertainty set, we derive a deterministic equivalent NCP.

Uncertainty Set with Known First and Second Moments

We consider the case where the mean and variance of each pure strategy payoff for player i, r w i (y), are known as µ i (y) and σ 2 i (y) respectively. The pure strategy payoff r w i = (r w i (y)) y∈Y follows a distribution with the mean vector µ i = (µ i (y)) y∈Y and the covariance matrix Σ i . We define the uncertainty set D i (y) for player i as follows:

D i =    E F i [r w i ] = µ i , F i E F i [(r w i -µ i ) 2 ] = Σ i    , i = 1, • • • , n. (7.5)
The pure strategy payoff r w i follows a distribution F i with F i ∈ D i . Given a mixed strategy τ , the chance-constrained payoff with confidence level α i for each player i is:

u α i i (τ ) = sup{u|P (r w i (τ ) ≥ u) ≥ α i } (7.6)
From [START_REF] Ghaoui | Worst-case value-at-risk and robust portfolio optimization: A conic programming approach[END_REF], the explicit expression for the chance-constrained payoff of player i is:

u α i i (τ ) = P T i (τ -i )τ i - α i 1 -α i ∥Q 1 2 i (τ -i )τ i ∥ (7.7) 
where

P i (τ -i ) ∈ R |A i | P i (τ -i ) =           y -i ∈Y -i µ i (y 1 i , y -i ) n k=1, k̸ =i τ kjy k ) . . . y -i ∈Y -i µ i (y m i , y -i ) n k=1, k̸ =i τ kjy k ) . . . y -i ∈Y -i µ i (y |A i | i , y -i ) n k=1, k̸ =i τ kjy k )           , ( 7.8) 
and Q

1 2 i (τ -i ) ∈ M |A i | ×|A i | is a diagonal matrix Q 1 2 i (τ -i ) =      q 1 2 1 (τ -i ) . . . 0 . . . . . . . . . 0 . . . q 1 2 |A i | (τ -i )      , ( 7.9) 
with q 1 2 m(τ-i) = y -i ∈Y -i (σ 2 i (y m i , y -i ) n k=1, k̸ =i τ 2 kjy i ), and y j i ∈ R |A i | is a unit vector with jth element equal to 1.

Existence of Nash Equilibrium

In the following, we show the existence of Nash equilibrium for stochastic games with known first and second moments. Theorem 4. There always exists a Nash equilibrium for every n-player strategic chance-constrained game, where the first and second moment of payoff of each player is known.

Proof. The proof of this theorem is given in [START_REF] Peng | Games with distributionally robust joint chance constraints[END_REF].

NCP Formulation

Given a strategy profile τ of all players, the chance-constrained payoff of player i is u

α i i (τ ) = P T i (τ -i )τ i - α i 1-α i ∥Q 1 2 i (τ -i )τ i ∥.
The best response of player i, given the strategy profile τ -i for all other players, can be obtained by solving the following optimization problem: max

τ i P T i (τ -i )τ i - α i 1 -α i ∥Q 1 2 i (τ -i )τ i ∥ s.t. |A i | j=1 τ ij = 1, τ ij ≥ 0, ∀j ∈ {1, 2, ..., |A i |}. (7.10) 
The objective function in (7.10) is concave subject to linear constraints.

Hence, Slater's condition is satisfied and the KKT conditions are necessary and sufficient for optimality.

By KKT conditions, the best response of player i can be reformulated as follows: .11) where 1 n denotes all-ones vector with size n.

0 ≤ τ i ⊥ -P i (τ -i ) + α i 1 -α i Q i (τ -i )τ i ∥Q 1 2 i (τ -i )τ i ∥ -λ i 1 1 |e i | + λ i 2 1 |e i | ≥ 0, 0 ≤ λ i 1 ⊥ |A i | j=1 τ ij -1 ≥ 0, 0 ≤ λ i 2 ⊥ 1 - |A i | j=1 τ ij ≥ 0. ( 7 
Putting together the KKT conditions for all players, we obtain the Nash equilibrium of the chance-constrained game by solving the following NCP: -P 1 (τ -1 ) +

0 ≤ ζ ⊥ G(ζ) ≥ 0, ( 7 
α 1 1-α 1 Q 1 (τ -1 )τ 1 ∥Q 1 2 1 (τ -1 )τ 1 ∥ -λ 1 1 1 |e 1 | + λ 1 2 1 |e 1 | -P 2 (τ -2 ) + α 2 1-α 2 Q 2 (τ -2 )τ 2 ∥Q 1 2 2 (τ -2 )τ 2 ∥ -λ 2 1 1 |e 2 | + λ 2 2 1 |e 2 | . . . -P n (τ -n ) + αn 1-αn Qn(τ -n )τn ∥Q 1 2 n (τ -n )τn∥ -λ n 1 1 |en| + λ n 2 1 |en| |A 1 | j=1 τ 1j -1 1 - |A 1 | j=1 τ 1j |A 2 | j=1 τ 2j -1 1 - |A 2 | j=1 τ 2j . . . |An| j=1 τ nj -1 1 - |An| j=1 τ nj                               .
(7.14)

Uncertainty Set with Unknown Moments

We consider the case where the mean and variance of each pure strategy payoff for player i, r w i (y), are unknown but the mean of r w i (y) lies in an interval of size 2 γ i 1 and centered at µ i (y), and the upper bound of variance of r w i (y) is γ i 2 σ 2 i (y). We define r w i = (r w i (y)) y∈Y . The uncertainty set D i (y) is defined as follows:

D i (y) =    (E F i (y) [r w i (y)] -µ i (y)) 2 ≤ γ i 1 , F i E F i (y) [(r w i (y) -µ i (y)) 2 ] ≤ γ i 2 σ 2 i (y)    , i = 1, • • • , n.
(7.15)

The pure strategy payoff r w i follows a distribution F i = y∈Y F i (y) with F i (y) ∈ D i (y).

Given a mixed strategy τ , the chance-constrained payoff with confidence level α i for each player i is:

u α i i (τ ) = sup{u|P (r w i (τ ) ≥ u) ≥ α i } (7.16)
From [START_REF] Peng | Games with distributionally robust joint chance constraints[END_REF], the explicit expression for the chance-constrained payoff of player i is:

u α i i (τ ) = P T i (τ -i )τ i -C i ∥Q 1 2
i (τ -i )τ i ∥ (7.17)

where

C i = α 1-α γ i 2 + γ i 1 .

Existence of Nash Equilibrium

Theorem 5. There always exists a Nash equilibrium for every n-player strategic chance-constrained game, where the payoff of each player follows a distribution in uncertainty set defined in (7.15).

Proof. The proof of this theorem is given in [START_REF] Vikas | Distributionally robust chance-constrained games: existence and characterization of Nash equilibrium[END_REF].

NCP Formulation

For a given strategy profile τ -i for all other players, a best response strategy of player i can be obtained by solving the following optimization problem: max

τ i P T i (τ -i )τ i + C i ∥Q 1 2 i (τ -i )τ i ∥ s.t. |A i | j=1 τ ij = 1,
τ ij ≥ 0, ∀j ∈ {1, 2, ..., |A i |}.

(7.18)

Here the objective function is concave and the constraints are linear, thus Slater's condition holds and the KKT conditions are both necessary and sufficient for optimality.

By KKT conditions, the best response of player i can be reformulated as follows:

0 ≤ τ i ⊥ -P i (τ -i ) -C i Q i (τ -i )τ i ∥Q 1 2 i (τ -i )τ i ∥ -λ i 1 1 |e i | + λ i 2 1 |e i | ≥ 0, 0 ≤ λ i 1 ⊥ |A i | j=1 τ ij -1 ≥ 0, 0 ≤ λ i 2 ⊥ 1 - |A i | j=1 τ ij ≥ 0. (7.19)
Putting together the KKT conditions for all players, we can obtain the Nash equilibrium of the stochastic game by solving the following NCP:

0 ≤ ζ ⊥ G(ζ) ≥ 0, (7.20)      -P 1 (τ -1 ) -C 1 Q 1 (τ -1 )τ 1 ∥Q 1 2 1 (τ -1 )τ 1 ∥ -λ 1 1 1 |e 1 | + λ 1 2 1 |e 1 | -P 2 (τ -2 ) -C 2 Q 2 (τ -2 )τ 2 ∥Q 1 2 2 (τ -2 )τ 2 ∥ -λ 2 1 1 |e 2 | + λ 2 2 1 |e 2 | . . . -P n (τ -n ) -C n Qn(τ -n )τn ∥Q 1 2 n (τ -n )τn∥ -λ n 1 1 |en| + λ n 2 1 |en| |A 1 | j=1 τ 1j -1 1 - |A 1 | j=1 τ 1j |A 2 | j=1 τ 2j -1 1 - |A 2 | j=1 τ 2j . . . |An| j=1 τ nj -1 1 - |An| j=1 τ nj                               .
(7.22)

Numerical Experiments

In this section, we generate random instances in Matlab, and we use PATH Solver to come up with Nash equilibrium.

PATH Solver is an implementation of a stabilized Newton method for the solution of the Mixed Complementarity Problem (MCP) [START_REF] Steven | The path solver: a nommonotone stabilization scheme for mixed complementarity problems[END_REF]. For our concern, once the analytic form of G(x) and its Jacobian is known and coded, we can directly use PATH to solve our NCP.

In the following illustration, we give two examples of (3 × 3 × 3) random games with different uncertainty sets and analyze the results.

(3 × 3 × 3) Random Games with Known First and Second Moments

Three examples of randomly generated (3 × 3 × 3) games, in which the pure strategy payoff of each player belongs to uncertainty set (7.5), are given below.

The mean µ and deviation σ are uniformly generated between 1 and 3 as follows:

1. The first random game with uncertainty set (7.5). player chooses the first action as their strategy, the payoff for player 1 follows a distribution with mean parameter µ = 3 and variance parameter σ 2 = 9. Table 7.2 summarizes the Nash equilibrium in the same way as Table 7. 

Numerical Results for Large Size Game Instances

In this subsection, we solve large-scale instances ranging from (2 × 2) to (5 × As shown in Table 7.3, the average CPU time for the instances up to (4 × 4 × 4 × 4) is within 5 seconds, whilst (5 × 5 × 5 × 5 × 5) instances are solved within 180 seconds. Games with uncertainty set (7.15) have a higher success rate than games with uncertainty set (7.5), while its average CPU time is lower. for both two random games, the success rate ranges from 55% for the large instance to 100% for the smallest instances. In addition, we also solve game instances with size (6 × 6 × 6 × 6 × 6 × 6) within 30 minutes. PATH failed to solve game instances with more than (6 × 6 × 6 × 6 × 6 × 6).

Conclusion and Future Work

In this chapter, we present a solution to the Nash equilibrium problem with n-player distributionally robust chance-constrained games. We transform distributionally robust chance constraints into deterministic equivalent NCPs using KKT conditions. The existence of Nash equilibrium is proved and the solution can be found by the PATH solver.

To demonstrate the effectiveness of our approach, we generate random instances and solve the related NCPs with the PATH solver. A numerical analysis of the results is provided.

In future work, other uncertainty sets for the stochastic games can be examined and this framework can be applied to real-life scenarios. 

Conclusion

The optimization of the trajectory of autonomous vehicles under uncertainty has been a subject of extensive research, with numerous theoretical frameworks and practical applications developed to date. Despite these efforts, however, several critical issues remain unresolved, indicating that the subject will remain an active area of investigation in the near future. Against this backdrop, this dissertation seeks to address the challenges associated with trajectory optimization for autonomous vehicles, and to explore their practical applications. The research presented in this dissertation makes significant contributions towards advancing the state-of-the-art in this field, with novel approaches proposed and tested in a range of scenarios. Our research efforts yield the following research results: 129 1. In Chapter 3, we presented an optimization-based approach for ACC reference generation taking into account the uncertainty associated with sensors information. As a benchmark for ACC system decision making, our optimization approach can generate a reference that meets the needs of safety, comfort, and effectiveness. According to a statistical analysis of the simulation results, our chance-constrained based stochastic model can produce more robust solutions.

2. In Chapter 4, the main contribution is a distributionally robust optimizationbased method for ACC reference generation in driving scenarios with uncertainties. In order to satisfy the safety constraints, the reference generator takes into account the sensor errors with partial information about its distribution to produce optimal commands. The results of the numerical simulations prove the robustness of the DRO models by comparing their performances with the deterministic model under generated driving scenarios.

3. In Chapter 5, an optimal control based reference trajectory generator is proposed and implemented. With a scenario and prior waypoints, this generator finds an optimal collision-free trajectory for further validation.

Chance constraints are used to model the uncertainty in driving scenarios, transforming the task of generating an optimal trajectory into a stochastic optimization problem. We also thoroughly analyse the performances of the deterministic model and the stochastic model under different configurations.

Based on the comparison, it appears that the stochastic model can produce more robust solutions than the deterministic model when uncertainty is considered.

4. In Chapter 6, we solved the Nash equilibrium problem with n-player chance-constrained games. We proved the existence of Nash equilibrium for stochastic games using Cauchy and normal distributions. We derive equivalent Variational Inequality problems for the considered games. In order to illustrate the performance of our approaches, we solve Variational Inequality problems with PATH solver on randomly generated instances with up to six players.

5. In Chapter 7, our study presents a solution to the Nash equilibrium problem with n-player distributionally robust chance constrained games. We transform distributionally robust chance constraints into deterministic equivalent NCPs using KKT conditions. The existence of Nash equilibrium is proved and the solution can be found by the PATH solver. To demonstrate the effectiveness of our approach, we generate random instances and solve the related NCPs with the PATH solver. A numerical analysis of the results is provided.

Perspectives

This dissertation focuses on investigating the challenges associated with trajectory optimization for autonomous vehicles under conditions of uncertainty. The research presented herein covers several key areas, including trajectory optimization for adaptive cruise control, the use of distributionally robust optimization methods to address uncertainty, the development of an optimal-control based framework for trajectory optimization, and the exploration of the mathematical properties and numerical solutions of multi-agent random games. While these efforts represent advances in the field of trajectory optimization for autonomous vehicles, several open issues and avenues for future research remain:

1. In Chapter 3, we propose three open research challenges that have the merit to be addressed: the development of an increasingly sophisticated vehicle model, the modeling of uncertainty by other frameworks, and the formulation of objectives that involve penalties for undesired behavior. Furthermore, this optimization based reference generation framework can be used for other autonomous driving functions, e.g., lane keeping assistance (LKA) and collision avoidance.

2. In Chapter 4, there are various further directions to explore for the next step. This includes considering alternative assumptions for sensor errors and developing an adapted model for real-life scenarios. Additionally, the application of the distributionally robust optimization model in other modules of autonomous vehicles with uncertainties can be applied in order to achieve better reliability for some crucial functionalities.
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 111 Context and Motivations integrated into our daily lives. These techniques have taken various forms, ranging from driving assistance functionalities to fully autonomous control in specific driving scenarios. The integration of these advancements has led to significant transformations and challenges within the transportation sector, requiring enhanced safety, efficiency, and accessibility. Safety refers to the vehicle's ability to operate without endangering other road users. Efficiency involves optimizing energy usage and enhancing overall transportation effectiveness. Accessibility involves providing transportation solutions that are accessible under all kinds of environments. With continued technological advancements and deployment, it is

Chapter 3

 3 focuses on the development and validation of an optimization-based reference generation model for Adaptive Cruise Control, a critical component of advanced driver-assistance systems. Since on-road data is limited and driving scenarios vary widely, validation is primarily conducted through simulation. The proposed model minimizes the discrepancy between actual and reference inter-car distances while adhering to vehicle dynamics and road regulations constraints. Considering the influence of external factors on ACC sensors, a copula-based chance-constrained stochastic model is introduced to account for the dependence between random variables. Numerical experiments demonstrate the effectiveness of the proposed model in various driving scenarios. Chapter 4 explores the importance of Adaptive Cruise Control as a critical feature of advanced driver-assistant systems for enhancing comfort and safety in intelligent and connected vehicles. This chapter presents a distributional robust optimization-based ACC reference generation model that addresses sensor uncertainties and generates optimal commands. By considering the uncertainty set where the first and second moments are known, the chance-constrained optimization problem can be reformulated and solved more efficiently. Numerical experiments conducted in a driving simulator demonstrate improved robustness and reduced risk of violating safety constraints through the proposed approach.
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  .3 visualizes the constraint violation value d s -D vehicle T 1 n , adapted from constraint (3.19), for the whole results of the two models. Figures 3.3(a) and 3.3(b) show the constraint violation value for the whole constraints, whilst Figures 3.3(c) and 3.3(d) show a zoom-in on a subset of constraints for better readability. In Figure 3.3, each curve with a different color displays the constraint violation values of a driving scenario result, and the x-axis represents the index of constraints. If the value at constraint index i exceeds 0, it means that d s > D vehicle t i , i.e. the constraint (3.19) is violated at this sampling time.
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 3 3 clearly indicates that the stochastic model produces fewer violations than the deterministic one.
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 5 Figure 3.6, the stochastic model always outperforms the deterministic model by producing fewer constraint violations.
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 41 Figure 4.1: ACC driving scenario at the moment t i .

  and || • || is Euclidean norm. In addition to the objective function (4.9), we describe the following constraints • Constraint (4.10) is the minimum distance constraint that aims to prevent vehicles collisions. It results from D vehicle T ≥ d s 1 n . (4.18)

  Zoomed-in results of DRO model with unknown moments
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 42 Figure 4.2: Constraint function values of all instances for deterministic and DRO models.
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 4 Figure 4.2 shows a detailed analysis of constraint violations across 100 driving scenarios. Visualizations of the constraint violation value d s -D vehicle T 1 n , adapted from constraint (4.18), are presented for the results of the three models. This adapted constraint value must be less than or equal to zero for the solution to be feasible (values greater than zero cause a constraint violation). The constraint value is shown in Figures 3(a), 3(b) and 3(c) for the whole scenarios, whereas a partial zoom-in is shown in Figures 3(d), 3(e) and 3(f) for easier reading. In Figure 4.2, each curve in its own color displays the constraint values of a driving scenario result, and the x-axis represents the time index of constraints. If the value at constraint index i exceeds 0, it means that d s > D vehicle t i
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 43 Figure 4.3 and Figure 4.4 present the maximal and average number of constraint violations for each model under different standard deviations. In both cases, there are always fewer constraint violations in the two DRO models than in the deterministic model, which proves the robustness of DRO approach for uncertainty.
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 43 Figure 4.3: Maximal violated constraints under different standard deviations.
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 44 Figure 4.4: Average violated constraints under different standard deviations.
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 51 Where t 0 and t n are start time and end time, z init and z term are inital and terminal states, c(•) is the inequality constraint function, Z and U are feasible sets of states and control inputs.Various methods are available for solving this continuous optimal control problem, which can be classified into direct and indirect methods. Through indirect methods, the original problem is first transformed into a boundary value problem and then solved numerically, while direct methods solve the nonlinear optimization problem through the discretization of the integral form. For a given period of time, the whole duration is equally divided in N phase [t 0 , t 1 , ...t i , . . . t n ] where t i+1 = t i +dt, ∀i ∈ {0, 1, . . . n-1}, and dt is the duration of one frame during which the state and control inputs are constant. min
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 552 Figure 5.2: Constraint function values of all instances for deterministic and stochastic models.
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 53 Figure 5.3: Number of violated constraints of our two models.
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 56 Figure 5.6: Number of violated constraints of two models.
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 57 Figure 5.7: Histogram of the number of violated constraints of two models.

  We also thoroughly analyse the performance of the deterministic model and the stochastic model under different configurations. Based on the comparison, it appears the stochastic model can produce more robust solutions than the deterministic model when uncertainty is present.Future work includes the development of an increasingly sophisticated vehicle model and modeling of uncertainty involving dependent random variables. Another extension is to solve online autonomous driving planning problems with an adapted similar optimization-based framework.
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  2, ..., n}, ∀j ∈ {1, 2, ..., |A i |}.

  is a continuous function by the Maximum theorem. By concatenating br i , we have br(τ ) = n i=1 br i (τ -i ). (6.24)

  Cauchy distribution C i (a) ∼ (µ(a), σ(a)), with a mean µ and deviation σ uniformly distributed between 1 and 3. The generated instances can be found in Appendix A. For the randomly generated examples, the mean and the deviation of each player's payoff use (3 × 3 × 3) tensors since there are three players in the game, and each player has three actions to choose from. For instance, if each player chooses the first action as his strategy, then the payoff for player 1 follows a Cauchy distribution with mean parameter µ = 1 and scale parameter σ = 1. Table 6.2 summarizes the Nash equilibrium of the three examples for different confidence levels α. Column 1 presents the index of examples. Columns 2-4 contain the different confidence levels α for the chance-constrained game. The Nash equilibrium of the game is given in Columns 5-7.

6. 4 . 2 ( 3 × 3 × 3 )

 42333 Random Games with Normal Distribution.Similarly, we generate three (3 × 3 × 3) random games, each with an independent normal distribution N i (a) ∼ (µ(a), σ 2 (a)), with a mean µ and deviation σ uniformly distributed between 1 and 3. The generated instances can also be found in Appendix A.For the randomly generated examples, the mean and the deviation of each player's payoff use (3 × 3 × 3) tensors (which indicates 3 players and 3 actions each). Considering the first example, if each player chooses the first action as his strategy, the payoff for player 1 follows a normal distribution with mean parameter µ = 3 and variance parameter σ 2 = 9. Table6.3 (respectively, Table6.2) summarizes the obtained Nash equilibrium when using a normal distribution (respectively, Cauchy distribution). Column 1 in the two aforementioned tables presents the index of examples. Columns 2, 3 and 4 show the different confidence levels α for the chance-constrained game. The obtained Nash equilibrium of the addressed game is provided in Columns 5, 6 and 7 of these tables.

µ 1 (

 1 

1 . Column 1 presents

 11 the index of examples. Columns 2-4 show the different confidence levels α for the chance-constrained game. The Nash equilibrium of the game is given in Columns 5-7.

5 × 5

 5 × 5 × 5) games. The success rate and running time of our method for solving this type of game are compared in detail. The NCPs are implemented in Matlab and solved by PATH on Intel Core i72,6 GHz with 32GB RAM. We randomly generated 100 tests of several groups of different game sizes and confidence levels for both distributions, then we computed the average running time and the success rate in relation of solved instances by PATH solver. Table 7.3 summarizes the numerical results for different sizes of the chance-constrained games. Column 1 presents the size of the game instances. Columns 2-4 show the confidence level α, success rate and average CPU time for problems under the uncertainty set (7.5), respectively. Columns 5-7 provide the same information as Columns 2-4 for problems under the uncertainty set (7.15).
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2.1 Trajectory Optimization of Autonomous Vehicle . . . 20

  Chapter 8 concludes the thesis by offering insights into the methods established and discussing potential future development for the autonomous vehicles.
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Table 2 .1:

 2 Benchmarking of the state of the art of ACC

Table 3 . 1 :

 31 Summary of used parameters and variables in our formulations

		Symbols	Meaning
	Target Car Ego Car	A tgt T a tgt t i V tgt T v tgt t i X tgt T x tgt t i A ego T a ego t i V ego T v ego t i X ego T x ego t i J ego T j ego t i	Acceleration profile during simulation Acceleration at time t i Speed profile during simulation Speed at time t i Position profile during simulation Position at time t i Acceleration profile during simulation Acceleration at time t i Speed profile during simulation Speed at time t i Position profile during simulation Position at time t i Jerk profile during simulation Jerk at time t i
	Other Parameters	Q P	Matrix of size n × n Vector of size n

  It's easy to verify that z t i satisfies t i z

.26) We define zt i := ln F N (bt i ) ln α θ , for i = 1, . . . , n. And z t i := zt i n i=1 zt i , for k = 1, . . . , n.

Table 3 . 2 :

 32 Summary of the results under different values of θ.

	θ	No.	1	2	3	4	5
	1		158.09	365.86	244.21	289.94	483.45
	2		149.04	371.16	285.35	286.42	481.33
	4		143.65	370.45	235.49	284.41	480.13
	8		140.63	336.79	233.72	283.32	479.48
	16		139.02	321.77	232.78	282.74	479.13

In Table

3

.2, the objective values of five driving scenarios under different configurations are presented. Each column represents the results of a generated driving scenario instance. θ is set between 1, 2, 4, 8, 16 in order to test the robustness of our model when the dependence parameter increases.

Table 4 . 1 :

 41 Summary of used parameters and variables in our formulations

		Symbols	Physical Meaning	Relationship
	Target Car	A tgt T V tgt T X tgt T A ego T	Acceleration profile during simulation Speed profile during simulation Position profile during simulation Acceleration profile during simulation	A tgt T = (a tgt t0 , a tgt t1 , . . . a tgt tn-1 ) T V tgt T = (v tgt t0 , v tgt t1 , . . . v tgt tn-1 ) T X tgt T = (x tgt t1 , x tgt t2 , . . . x tgt tn ) T A ego T = (a ego t0 , a ego t1 , . . . a ego tn-1
	Ego Car			
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Table 5 .

 5 

1: Parameters' values during the simulation.

Table 5 .2: Comparison

 5 

under different configurations.

Table 6 . 1 :

 61 A summary of the parameters and variables used in our formulations.

	Param./Var.	Significance
	n	Number of players
	y i	Pure strategy of player i
	τ i	Mixed strategy of player i
	y	Pure strategy of all players
	τ	Mixed strategy of all players
	X i	(|A i | -1)-simplex
	|A i |	Number of action of player i
	r ω i (τ )	Payoff of player i for a mixed strategy τ
	α i	Confidence level of player i
	u α i i (τ )	Chance-constrained payoff of player i with confidence level α i
	Z C i F -1 C	Random variable following a standard Cauchy distribution Quantile function of the standard Cauchy distribution
	V i (τ -i )	A vector of size |A i |
	λ	KKT multipliers
	Z N i F -1 N	Random variable following standard normal distribution Quantile function of the standard normal distribution
	P i (τ -i )	A vector of size |A i |
	6.4.1 (	

3×3×3) Random Games with Cauchy Distribution.

  

Table 6 . 2 :

 62 Nash equilibrium for various values of α for Cauchy distribution.

	No.	α			Nash Equilibrium	
	α 1	α 2	α 3	x *	y *	z *
	0.4	0.4	0.4	(0, 1, 0)	(1, 0, 0)	(0.667, 0,
	1					0.333)
	0.5	0.5	0.5	(0, 1, 0)	(0, 1, 0)	(1, 0, 0)
	0.7	0.7	0.7	(0, 1, 0)	(0, 1, 0)	(0, 0, 1)
	0.4	0.4	0.4	(0.442, 0,	(0, 0, 1)	(0, 0, 1)
	2			0.558)		
	0.5	0.5	0.5	(0, 0, 1)	(1, 0, 0)	(0, 1, 0)
	0.7	0.7	0.7	(0, 0, 1)	(0, 0, 1)	(1, 0, 0)
	0.4	0.4	0.4	(0, 0.775,		
	3			0		

Table 6 . 3 :

 63 Nash equilibrium for various values of α for normal distribution.

	No.		α			Nash Equilibrium
		α 1	α 2	α 3	x *	y *	z *
		0.6 0.6 0.6	(0, 0, 1)	(0, 0.187, 0.813)	(0.092, 0.909, 0)
	1	0.7 0.7 0.7	(0, 0, 1)	(0, 0, 1)	(0.673, 0.327, 0)
		0.8 0.8 0.8	(0, 0, 1)	(0.194, 0.229,	(0.764, 0.236, 0)
						0.577)
		0.6 0.6 0.6	(0.623, 0, 0.377)	(1, 0, 0)	(0.424, 0.576, 0)
	2	0.7 0.7 0.7	(0.851, 0.149, 0)	(0.395, 0.386,	(0, 1, 0)
						0.219)
		0.8 0.8 0.8	(0.067, 0.861,	(0.322, 0.678, 0)	(0.771, 0.229, 0)
					0.069)	
		0.6 0.6 0.6	(0, 0.457, 0.543)	(0, 0.291, 0.71)	(0.058, 0 , 0.942)
	3	0.7 0.7 0.7	(0, 0.626, 0.374)	(0.072, 0.206,	(0.264, 0 , 0.736)
						0.722)
		0.8 0.8 0.8	(0, 0, 1)	(0, 1, 0)	(0, 0, 1)

  The NCPs are implemented in Matlab and solved by PATH on Intel Core i72,6 GHz with 32GB RAM. We randomly generated 100 tests of several groups of different game sizes and confidence levels for both distributions. Then we computed the average running time and the success rate in relation of solved instances by PATH solver. Table6.4 summarizes the numerical results for different sizes of the chance-constrained games. Column 1 presents the size of the game instances. Columns 2-4 show the confidence level α, success rate and average CPU time for problems under the Cauchy distribution, respectively.

	Columns 5-7 provide the same information as Columns 2-4 for problems under
	the normal distribution.

As shown in Table

6

.4, the average CPU time for the instances up to (4 × 4 × 4 × 4) is within 1 second, whilst (5 × 5 × 5 × 5) instances are solved within 49

Table 6 . 4 :

 64 Comparison of success rate and running time.

	Game type	Cauchy distribution	Normal distribution
		α	success	average	α	success	average
			rate	time(s)		rate	time(s)
		0.2	100%	0.0128	0.6	99%	0.0389
	2 × 2	0.4	100%	0.0122	0.7	95%	0.0449
		0.6	100%	0.0107	0.8	90%	0.0487
		0.8	100%	0.0098	0.9	86%	0.0509
		0.2	100%	0.0463	0.6	98%	0.2198
	3 × 3 × 3	0.4	100%	0.0378	0.7	92%	0.2419
		0.6	100%	0.0420	0.8	86%	0.3398
		0.8	100%	0.0337	0.9	83%	0.3264
		0.2	100%	1.1165	0.6	96%	4.5894
	4 × 4 × 4 × 4	0.4	100%	1.0237	0.7	90%	5.4259
		0.6	100%	0.8908	0.8	87%	7.4005
		0.8	100%	0.7670	0.9	86%	6.5441
		0.2	81%	39.8803 0.6	64%	144.8211
	5 × 5 × 5 × 5 × 5	0.4	80%	48.8849 0.7	52%	196.6912
		0.6	89%	44.9324 0.8	67%	201.4756
		0.8	94%	36.1606 0.9	86%	126.2685
	seconds. Games with Cauchy distributions have 100% success rates for all the
	instances except (5 × 5 × 5 × 5) instances where the success rates range from
	81% up to 94%. As for normal distribution games, the success rate ranges from

52% for the large instance to 99% for the smallest instances. In addition, we also solve game instances with size (6 × 6 × 6 × 6 × 6 × 6) within 30 minutes.
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Table 7 . 1 :

 71 Nash equilibrium for various values of α for known first two moments.

	No.	α			Nash Equilibrium	
	α 1	α 2	α 3	x *	y *	z *
	0.3 0.3 0.3	(0.335, 0.227,	(0.493, 0, 0.507)	(0, 0.766, 0.234)
				0.438)		
	0.5 0.5 0.5	(0, 0.269, 0.731)	(0.225, 0, 0.775)	(0, 0.849, 0.151)
	0.7 0.7 0.7	(0.199, 0.205,	(0.302, 0.598, 0.1)	(0.214, 0.396,
				0.596)		0.39)
	0.3 0.3 0.3	(0.308, 0.692, 0)	(0.362, 0.137,	(0.194, 0.732,
					0.501)	0.074)
	0.5 0.5 0.5	(0, 0, 1)	(0, 0.83, 0.17)	(0.505, 0, 0.495)
	0.7 0.7 0.7	(0.342, 0.498,	(0.353, 0.163,	(0.352, 0.439,
				0.16)	0.484)	0.209)
	0.3 0.3 0.3	(0.705, 0.107,	(0.342, 0.397,	(0.232, 0.768, 0)
				0.188)	0.261)	
	0.5 0.5 0.5	(0.348, 0.652, 0)	(0.369, 0.353,	(0, 0.151, 0.849)
					0.278)	
	0.7 0.7 0.7	(0.651, 0.349, 0)	(0.323, 0.291,	(0.631, 0.369, 0)
					0.386)	
	below. The upper bounds γ i		

Table 7 . 2 :

 72 Nash equilibrium for various values of α for unknown first two moments.

	No.	α			Nash Equilibrium	
	α 1	α 2	α 3	x *	y *	z *
	0.3 0.3 0.3	(0.567, 0.257,	(0.404, 0.281,	(0.31, 0.31, 0.38)
	1			0.176)	0.315)	
	0.5 0.5 0.5	(0.548, 0.262,	(0.397, 0.278,	(0.31, 0.381,
				0.19)	0.325)	0.309)
	0.7 0.7 0.7	(0.532, 0.265,	(0.388, 0.275,	(0.312, 0.378,
				0.203)	0.337)	0.311)
	0.3 0.3 0.3	(0.314, 0.364,	(0.184, 0.316, 0.5)	(0.376, 0.353,
	2			0.322)		0.271)
	0.5 0.5 0.5	(0.316, 0.349,	(0.211, 0.314,	(0.361, 0.358,
				0.335)	0.475)	0.281)
	0.7 0.7 0.7	(0.316, 0.336,	(0.238, 0.311,	(0.346, 0.363,
				0.348)	0.451)	0.291)
	0.3 0.3 0.3	(0.359, 0.268,	(0.314, 0.31,	(0.339, 0.34 ,
	3			0.372)	0.375)	0.321)
	0.5 0.5 0.5	(0.361, 0.267,	(0.314, 0.316,	(0.322, 0.338 ,
				0.372)	0.37)	0.34)
	0.7 0.7 0.7	(0.362, 0.265,	(0.315, 0.323,	(0.305, 0.336,
				0.373)	0.362)	0.359)

Table 7 . 3 :

 73 Comparison of success rate and running time.For the above randomly generated examples, the mean and the deviation of each player's payoff use (3 × 3 × 3) tensors. Considering the first example, if each

	Game type	Known first two moments Unknown first two moments
		α	success	average	α	success	average
			rate	time(s)		rate	time(s)
		0.2	100%	0.038	0.2	100%	0.048
	2 × 2	0.4	99%	0.038	0.4	100%	0.044
		0.6	99%	0.045	0.6	100%	0.046
		0.8	100%	0.042	0.8	100%	0.052
		0.2	97%	0.273	0.2	100%	0.228
	3 × 3 × 3	0.4	100%	0.22	0.4	99%	0.185
		0.6	100%	0.239	0.6	100%	0.213
		0.8	99%	0.227	0.8	100%	0.192
		0.2	91%	4.063	0.2	96%	1.526
	4 × 4 × 4 × 4	0.4	93%	4.493	0.4	98%	2.354
		0.6	95%	3.586	0.6	97%	2.364
		0.8	97%	2.772	0.8	96%	2.33
		0.2	58%	154.448	0.2	84%	54.64
	5 × 5 × 5 × 5 × 5	0.4	56%	143.276	0.4	72%	63.383
		0.6	66%	162.33	0.6	88%	45.879
		0.8	79%	150.894	0.8	80%	49.234

2.2. N-player Chance-constrained Game

Acknowledgements

 , σ 2 3 (:, :, For the above randomly generated examples, the mean and the deviation of each player's payoff use (3×3×3) tensors since there are 3 players in the game and each player has 3 actions to choose. For instance, if each player chooses the first action as their strategy, then the payoff for player 1 follows a distribution with mean parameter µ = 1 and variance parameter σ 2 = 9. Table 7.1 summarizes the Nash equilibrium of the three examples for different confidence levels α. Column 1 presents the index of examples. Columns 2-4 contain the different confidence levels α for the chance-constrained game. The Nash equilibrium of the game is given in Columns 5-7.

(3 × 3 × 3) Random Games with Unknown Moments

Similarly, three instances of randomly generated (3 × 3 × 3) games, in which the pure strategy payoff of each player belongs to uncertainty set (7.15), are given

A Appendix

This appendix contains the randomly generated (3 × 3 × 3) games presented in sections 6.4.1 and 6.4.2. µ i and σ i are the mean and variance of player i, respectively. As for each game, there are 3 players and each player has 3 actions to choose from, µ i and σ i should be tensors of size (3 × 3 × 3), displayed as three (3 × 3) matrices.

The following are three randomly generated games with Cauchy distribution in 6.4.1: