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"Le modèle doit suivre les données et non l'inverse." Jean-Paul Benzécri, 1973 v 

Résumé

La classification non supervisée ou clustering suscite un grand intérêt dans la communauté d'apprentissage machine. Etant donné un ensemble d'objets décrits par un ensemble d'attributs, le clustering vise à partitionner l'ensemble des objets en classes homogènes. Le regroupement ou catégorisation de cet ensemble, est souvent nécessaire pour le traitement de données massives, devenu actuellement un axe de recherche prioritaire. A noter que lorsqu'on s'intéresse au clustering, nous faisons généralement référence au clustering de l'ensemble des objets. Depuis deux décennies, un intérêt est porté à la classification croisée (ou co-clustering) qui permet de regrouper simultanément les lignes et les colonnes d'une matrice de données. Le co-clustering conduit de ce fait à une réorganisation des données en blocs homogènes (après permutations appropriées). Cette approche joue un rôle important dans une grande variété d'applications où les données sont généralement organisées dans des tableaux à double entrées [START_REF] Govaert | Co-clustering: models, algorithms and applications[END_REF]. Cependant si on considère l'exemple du clustering d'articles, nous pouvons collecter plusieurs informations telles que les termes en commun, les co-auteurs et les citations, qui conduisent naturellement à une représentation tensorielle. L'exploitation d'un tel tenseur d'ordre 3 permettrait d'améliorer les résultats de clustering d'un des ensembles. Ainsi, deux articles qui partagent un ensemble important de mots en commun, qui ont des auteurs en commun et qui partagent une bibliographie commune, sont très susceptibles de traiter d'une même thématique. Dans cette thèse nous nous intéressons à de telles structures de données. Malgré le grand intérêt pour le co-clustering et la représentation tensorielle, peu de travaux portent sur le co-clustering de tenseurs. Nous pouvons néanmoins citer le travail basé sur l'information Minimum Bregman (MBI) [START_REF] Banerjee | Model-based overlapping clustering[END_REF], ou encore la méthode de co-clustering de tenseurs non négatifs GTSC (General Tensor Spectral Co-Clustering) [Wu et al., 2016]. Mais la majorité des travaux considèrent le co-clustering à partir de méthodes de factorisation tensorielles. Dans cette thèse nous proposons de nouvelles approches probabilistes pour le co-clustering de tenseur d'ordre 3.

Dès lors plusieurs défis sont à relever dont les suivants. Comment gérer efficacement les données de grande dimension? Comment gérer la sparsité des données et exploiter les dépendances inter-tranches des données tensorielles? S'inspirant de la célèbre citation de Jean Paul Benzcri "Le modèle doit suivre les données et non l'inverse", nous avons choisi dans cette thèse de nous appuyer sur des modèles de mélange appropriés. Ainsi, nos contributions sont basées sur le modèle des blocs latents ou (LBM, Latent Block Model) pour le co-clustering, proposé pour la première fois par [START_REF] Govaert | Clustering with block mixture models[END_REF].

Voici une brève description des différentes contributions: a) Extension du formalisme des LBM au co-clustering des données tensorielles et présentation d'un nouveau modèle Tensor LBM(TLBM) comme solution, b) Proposition d'un Sparse TLBM prenant en compte la sparsité et son extension pour la gestion des graphes multiples ou graphes multi-vues, et c) Développement d'une méthode de co-clusterwise qui intègre le co-clustering dans un cadre d'apprentissage supervisé. Ces contributions ont été évaluées avec succès sur des données tensorielles issues de divers domaines allant des systèmes de recommandation, le clustering d'images hyperspectrales, la catégorisation de documents, à l'optimisation de la gestion des déchets. Elles permettent également d'envisager des pistes de recherches futures intéressantes et immédiates. Par exemple, l'extension du modèle proposé au tri-clustering et aux séries temporelles multivariées. vii

Abstract

Clustering, which seeks to group together similar data points according to a given criterion, is an important unsupervised learning technique to deal with large scale data. In particular, given a data matrix where rows represent objects and columns represent features, clustering aims to partition only one dimension of the matrix at a time, by clustering either objects or features. Although successfully applied in several application domains, clustering techniques are often challenged by certain characteristics exhibited by some datasets such as high dimensionality and sparsity. When it comes to such data, co-clustering techniques, which allow the simultaneous clustering of rows and columns of a data matrix, has proven to be more beneficial. In particular, co-clustering techniques allow the exploitation of the inherent duality between the objects set and features set, which make them more effective even if we are interested in the clustering of only one dimension of our data matrix. In addition, co-clustering turns out to be more efficient since compressed matrices are used at each time step of the process instead of the whole matrix for traditional clustering.

Although co-clustering approaches have been successfully applied in a variety of applications, existing approaches are specially tailored for datasets represented by double-entry tables. However, in several real-world applications, two dimensions are not sufficient to represent the dataset. For example, if we consider the articles clustering problem, several information linked to the articles can be collected, such as common words, co-authors and citations, which naturally lead to a tensorial representation. Intuitively, leveraging all these information would lead to a better clustering quality. In particular, two articles that share a large set of words, authors and citations are very likely to be similar. Despite the great interest of tensor co-clustering models, research works are extremely limited in this context and rely, for most of them, on tensor factorization methods.

Inspired by the famous statement made by Jean Paul Benzécri "The model must follow the data and not vice versa", we have chosen in this thesis to rely on appropriate mixture models. More explicitly, we propose several new co-clustering models which are specially tailored for tensorial representations as well as robust towards data sparsity. Our contribution can be summarized as follows. First, we propose to extend the LBM (Latent Block Model) formalism to take into account tensorial structures. More specifically, we present Tensor LBM (TLBM), a powerful tensor co-clustering model that we successfully applied on diverse kind of data. Moreover, we highlight that the derived algorithm VEM-T, reveals the most meaningful co-clusters from tensor data. Second, we develop a novel Sparse TLBM taking into account sparsity. We extend its use for the management of multiple graphs (or multi-view graphs), leading to implicit consensus clustering of multiple graphs. As a last contribution of this thesis, we propose a new co-clusterwise method which integrates coclustering in a supervised learning framework. These contributions have been successfully evaluated on tensorial data from various fields ranging from recommendation systems, clustering of hyperspectral images and categorization of documents, to waste management optimization. They also allow us to envisage interesting and immediate future research avenues. For instance, the extension of the proposed models to tri-clustering and multivariate time series. 

Introduction

Introduction

Today, the amount of collected data in different fields such as social networks, online shopping, and also the medical field grows exponentially. Several machine learning methods are developed to solve various problems related to this considerable data quantity. Supervised and unsupervised learning methods are essential for data analysis, prediction, and decision making in many areas, including electric consumption, medical image, and handwriting recognition. Even if supervised machine learning methods are the most popular, they depend, nevertheless, on the target labels, which must be known for the training dataset. However, in many problems in data science, the target labels are unknown. Therefore, the unsupervised machine learning (or clustering) paradigm is an indispensable tool for data mining.

Clustering allows regrouping together similar objects into meaningful clusters, providing a summarization of data. Clustering is used for different data mining applications such as community detection, event detection, identifying fake news, text mining, pattern recognition, and recommendation systems.

To go further, Co-clustering, which can be viewed as an extension of clustering [START_REF] Hartigan | Direct clustering of a data matrix[END_REF][START_REF] Bock | Simultaneous clustering of objects and variables[END_REF][START_REF] Govaert | La classification croisée[END_REF]] leads to reorganize a data matrix into homogeneous blocks (after appropriate permutations). Co-clustering plays an important role in a wide variety of applications where the data are generally organized in double-entry tables [START_REF] Govaert | Co-clustering: models, algorithms and applications[END_REF]. However in various situations, data can be reorganized into (3D) tensor and requires, therefore, appropriate clustering or co-clustering methods. This has driven many researchers to investigate new co-clustering models to consider tensor structures. To this end, two main strategies can be adopted;

• Adapt and restructure the tensor data to meet the requirements of existing methods.

The restructuring of tensors, most frequently in a 2D matrices, causes a loss of information related to the ignoring of tensorial structures.

• Or design new methods fitting with the data structure. This strategy makes it possible to benefit from the tensor structure by exploiting the interdependence between the different slices and modes of tensor data.

However, most existing works are based on a tensor matrix decomposition [START_REF] Banerjee | Model-based overlapping clustering[END_REF], Wu et al., 2016, Feizi et al., 2017] and do not use tensor (co)-clustering under a probabilistic approach. Inspired by the famous statement made by Jean Paul Benzécri "The model must follow the data and not vice versa", we have chosen in this thesis to rely on appropriate mixture models. Thus, the contributions consist in adapting co-clustering based on the latent block model or (LBM, Latent Block Model), proposed for the first time in [START_REF] Govaert | Clustering with block mixture models[END_REF], to tensor data.

Motivation

In many areas, we are faced with dyadic data related to distinct entities like user-movie, document-word, individual-gene, and so on. For this kind of data, co-clustering proved its effectiveness in improving clustering results and also helping on the interpretation of the obtained results. Moreover, we can consider the co-clustering from tensor data linking more than two entities. Indeed, there are several data structured naturally as tensor data. Below, we present three applications (figure 1) using 3-way tensor structure, which will be detailed in the next chapters:

Recommender systems. When we consider movie recommendation, we can construct the following 3-way tensor Users × Movies × Covariates. These covariates can be, for instance, the age of users, the user's occupation, and movie genres. Using this tensor, the goal can be finding clusters of users interested in some movie genres (cf. chapter 2 ,4).

Documents categorization.

Dealing with the document categorization problem, the majority of researches relies on the documents-terms matrix. However, we can use other available information concerning, for example, the authors or the citations. Thus, considering multiple relationships (co-terms, co-authors, co-references) between documents, leads to Documents × Documents × Relationships tensor. Then, the objective consists in finding groups of documents described by close relationships (cf. chapter 2,3).

Consumption profiles prediction. Approaching the problem of multivariate time series clustering, we can construct the tensor Consumers × Features × Time. The objective is to find some consumer groups having the same consumption patterns according to the time.

Covariates Movies

Users

Relations Documents In this work, the tensor data structure is the main driver. Two issues can be modeled by tensor structure, namely, Multi-view clustering and ensemble clustering (or consensus) of multiple graphs. Indeed, these two issues can be represented by a three-way tensor, where each slice of tensor represents a view for the Multi-view methods and a graph for the consensus of multiple graphs methods, respectively. In this context, tensor-based methods are severely challenged by:

Documents Time Features

Costumers

• High dimensionality: Today, we are able to collect a large number of features related to different objects yielding naturally to a tensor structure. The number of objects and features can be huge, and memory complexity can be increased very considerably.

For instance a three-way tensor with size 10 × 10 × 20 leads to fill 2000 cells, and a three-way tensor with size 1000 × 1000 × 2000 to 2 billion cells.

• Sparsity: The high dimensionality problem is directly associated with the sparsity problem; the constructed tensors are often sparse. For instance, considering the review analysis in a recommender systems context, the reviews given by users about products can be represented by sparse tensor (around 99% of zeros).

• Heterogeneity: For high-dimensional data, some features can be irrelevant for a given classification due to outliers or corrupted data. Consequently, identifying these sets of irrelevant features and weighing their contribution to the clustering results appropriately, is an important issue. Heterogeneity is a concept used to describe this situation.

Contributions

The following is a brief description of all contributions in terms of three-way tensor data modeling in both contexts, unsupervised and supervised learning.

Tensor Latent Block Model for Co-clustering [Boutalbi et al., 2019a]. In our first contribution, we rely on the latent block model (LBM) [START_REF] Govaert | Clustering with block mixture models[END_REF], which is flexible in allowing us to model different types of data matrices. We extend its use to the case of tensor data in proposing a Tensor LBM (TLBM) taking into account different relations between entities. To show the interest of TLBM, we consider continuous, binary, and contingency tables datasets. To estimate the parameters, we develop a variational EM algorithm VEM-T.

Its performances are evaluated on synthetic and real datasets to highlight different possible applications.

Sparse Tensor Co-clustering [Boutalbi et al., 2019b]. This contribution consists in extending the use of the Sparse Poisson Latent Block Model (SPLBM) [Ailem et al., 2017].

To tackle the document clustering problem from sparse tensor data obtained from a set of documents, we propose a Tensor SPLBM (TSPLBM) which is parsimonious and tailored for this kind of data. Then, we propose a suitable tensor co-clustering algorithm TSPLBM.

Empirical results on several real-world text datasets highlight the advantages of our proposal which improves the clustering results of documents.

Implicit Consensus Clustering from Multiple Graphs [START_REF] Boutalbi | Implicit consensus clustering from multiple graphs[END_REF]. Dealing with relational learning generally relies on tools modeling relational data. An undirected graph can represent these data with vertices depicting entities and edges describing the relationships between the entities. These relationships can be well represented by multiple undirected graphs over the same set of vertices, with edges arising from different graphs catching heterogeneous relations. The vertices of those networks are often structured in unknown clusters with varying properties of connectivity. These multiple graphs can be structured as a three-way tensor, where each slice of tensor depicts a graph which is represented by a count data matrix. To extract relevant clusters, we propose an appropriate model-based co-clustering capable of dealing with multiple graphs. The proposed model can be seen as a suitable tensor extension of mixture models of graphs, while the obtained co-clustering can be treated as a consensus clustering of nodes from multiple graphs. Applications on real datasets show the interest of our contribution.

Model-based co-clustering via latent block regression model [START_REF] Boutalbi | Classification croisée et regression locale[END_REF].

Clusterwise methods aim to obtain a partition simultaneously into g clusters and g local models optimizing a given criterion. This objective is useful in many field domains, such as recommender systems. However, when dealing with high dimensional sparse data, such as in recommender systems, co-clustering turns out to be more beneficial than one-sided clustering even if one is interested in clustering along one dimension only. Thereby, co-clusterwise is a natural extension of clusterwise. Unfortunately, all of the existing approaches do not take into account covariates on both dimensions of a data matrix. This contribution consists in proposing a Latent Block Regression Model (LBRM) overcoming this limit. 

Overview

The rest of this thesis is organized into five chapters. The main contents of each chapter are summarized below :

Chapter 1. In this chapter, we first describe the most popular clustering and co-clustering approaches. Then, we introduce the tensor data structure and some proprieties related to three-way tensors. Finally, we describe the state-of-the-art relevant to tensor analysis and clustering.

Chapter 2. This chapter is devoted to the co-clustering of tensor data. We first review LBM in detail for the data matrix. Then, we describe the proposed extension Tensor LBM (TLBM) and its corresponding algorithm VEM-T.

Chapter 3. In this chapter, we tackle the clustering problem of multiple graphs. We first introduce the Stochastic Bock Model (SBM) [START_REF] Karrer | Stochastic blockmodels and community structure in networks[END_REF] and show the connection between SBM and LBM models. After that, we present an appropriate novel extension of LBM for clustering of multiple graphs. Moreover, we demonstrate the advantages of implicit consensus obtained by the proposed TSPLBM algorithm comparing to traditional consensus methods.

Chapter 4. In this chapter, we address the problem of simultaneous supervised learning and co-clustering. We detail the proposed Latent Block Regression Model (LBRM) and establish some connections with classical existing mixture models. Furthermore, we derive the VEM-LBRM algorithm and show their effectiveness on recommender systems application.

Chapter 5. In this chapter, we propose to apply our algorithms for original applications. First, we address the issue of waste management. The objective is to improve and optimize different tasks of waste management. The second application concerns the EGC conference challenge. We will detail all analyses and present obtained results.
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Chapter 1

(Co)-clustering of two-way and three-way tensor data

In this chapter, we present an overview of the most popular clustering and co-clustering of two-way and three-way tensor data methods. First, we will briefly present the concept of clustering and the most known clustering approaches. Second, we will provide a definition of the concept of co-clustering, highlight the main advantages of co-clustering compared to one-way clustering, and present some popular co-clustering approaches. Finally, we will give a brief survey about three-way tensor data; the objective here is not to detail all existing approaches but to give an outline of the significant definitions, proprieties, and methods in this area.

Clustering

Clustering, sicks to group together a set of data points (objects) into homogeneous clusters or natural classes, in a way which ensures that objects within a cluster are similar to each other. Thereby, the basic problem of clustering, or unsupervised learning methods, can be summarized as follows "Given a set of objects, partition them into a set of clusters which are as similar as possible". Several clustering approaches have been developed and applied in many fields, such as text mining, bio-medical, event detection, etc. Clustering is an important tool for data analysis and data mining. In the clustering problem, the data is represented by a set of n objects described by d variables x 1 , x 2 , ..., x n where x i = {x i1 , x i2 , ..., x id }.

Hence, the data can be represented by a matrix X with size n × d. The objective is to group objects into homogeneous clusters based on distance measure or similarity by optimizing an objective function leading to a variety of clustering approaches. Hereafter we present a brief description of the most popular clustering methods.

Hierarchical clustering

Hierarchical methods aim to provide multiple clustering levels. The discovered hierarchy is constructed based on a given distance (Euclidean, Ward, etc.) and can be represented by a dendrogram (see figure 1.1). There are two principal hierarchical clustering approaches:

Agglomerative and Divisive methods [Everitt et al., 2011, Murtagh and[START_REF] Murtagh | Algorithms for hierarchical clustering: an overview, ii[END_REF]. 

Agglomerative methods

These approaches, also known as Bottom-up, put each object in a distinct cluster; after that, the closest clusters are merged. This merging step requires to choose a distance to measure the dissimilarity between clusters, and linkage criteria. There are several linkage criteria, such as single-linkage [START_REF] Sibson | SLINK: An optimally efficient algorithm for the single-link cluster method[END_REF], complete-linkage [START_REF] Legendre | Developments in Environmental Modelling[END_REF]], average-linkage [START_REF] Sokal | A Statistical Method for Evaluating Systematic Relationships[END_REF], and Ward-linkage [START_REF] Ward | Hierarchical grouping to optimize an objective function[END_REF]. The agglomerative approaches are not limited to the methods mentioned above. Many other methods have been proposed in the literature. For more details, the reader can refer to survey papers [Everitt et al., 2011, Murtagh and[START_REF] Murtagh | Algorithms for hierarchical clustering: an overview, ii[END_REF].

Divisive methods

On the other hand, divisive approaches, also denoted as Top-Down, assume that all objects are in the same cluster. The splitting step (opposite to merging step in agglomerative methods) are used to obtain smaller clusters until a stopping condition is reached. MONA and DIANA [START_REF] Kaufman | Finding Groups in Data: An Introduction to Cluster Analysis[END_REF] are two divisive approaches. These methods are less commonly used due to their computational complexity. Some other techniques can be found in [START_REF] Everitt | Cluster Analysis, 5th Edition[END_REF].

The main advantage of hierarchical clustering is that it does not require the number of clusters as an input. The cluster's number is obtained by the cutting method. However, the hierarchical approaches suffer from high time complexity and are not suitable for large datasets.

Density-based approaches

This variety of algorithms assumes that clusters have different density. In contrast with many popular clustering methods, this type of algorithm allows us to discover clusters with various volumes. One of the most known density-based approaches is DBSCAN (Density-Based Spatial Clustering of Applications with Noise) [START_REF] Ester | A density-based algorithm for discovering clusters a density-based algorithm for discovering clusters in large spatial databases with noise[END_REF]. The DBSCAN algorithm requires two parameters, (i) ε: which represents a threshold to decide if two points are neighbors or not, and (ii) minPoints: the minimum number of points to form a dense region. DBSCAN iterates over the points of the dataset. For each point, it detects all the points that can be reached by density from this point based on the epsilon threshold ε. If this neighborhood has more than minPoints points, the same operation is applied, and so on, until they can not expand the cluster. If the point considered is not a core point, i.e., it does not have enough neighbors, it will be labeled as noise. This allows DBSCAN to be robust to outliers since this mechanism isolates them. However, the algorithm is sensitive to the settings of parameters ε and minPoints. To overcome this drawback, OPTICS [START_REF] Ankerst | Optics: Ordering points to identify the clustering structure[END_REF] is proposed; it is a generalization of DBSCAN and does not require parameters. For more details and developments in density-based approaches, the reader can refer to [Kriegel et al., 2011a,b].

Graph-based approaches

Community detection is becoming increasingly significant since graph representation is used in several applications such as, social media, web mining, bio-medical.Graph clustering aims to discover g communities (or clusters) into graphs (see figure 1.2). A graph is formed by a set of vertices (or nodes) connected by a set of edges. The objective is to regroup the highly connected nodes in the same cluster, thus maximizing the number of edges inside each cluster and minimizing the number of edges between communities. Several formulations of graph clustering problem have been proposed. The most direct way to identify a partition in a graph is to solve the minimum cut (mincut) problem [von [START_REF] Luxburg | A tutorial on spectral clustering[END_REF]. Multiple varieties of the minimum cut problem have been proposed. For instance, the minimum ratio cut problem [START_REF] Hagen | New spectral methods for ratio cut partitioning and clustering[END_REF]] introduces a division by the size of each cluster into a mincut objective function. This overcomes the problem of separating one node from the rest of the graph. In the same way, the minimum normalized cut problem [START_REF] Shi | Normalized cuts and image segmentation[END_REF] introduces the division by the sum of node degrees within each cluster. In the same topic, [START_REF] Ding | A min-max cut algorithm for graph partitioning and data clustering[END_REF] proposed the min-max cut problem, which consists of both minimizing the density of inter-cluster edges and maximizing the density of intra-cluster edges.

Spectral clustering (SC) is another way to deal with graph data. Due to their simplicity, mathematical elegance, and efficiency, SC has attracted the interest of researchers and has been applied in many fields. The principal of SC is to find clustering from eigenvectors of the Laplacian matrix of the graph. For more details about Spectral clustering, please refers to [START_REF] Shi | Normalized cuts and image segmentation[END_REF]Malik, 2000, von Luxburg, 2007].

Recently, [START_REF] Newman | Finding and evaluating community structure in networks[END_REF] proposed a graph clustering approach based on Modularity measure. The modularity aims to maximize the difference between intra-cluster edges and the expectation of this value in a random graph. In [START_REF] Blondel | Fast unfolding of communities in large networks[END_REF], the authors proposed the Louvain algorithm, also based on Modularity measure but using a hierarchical strategy to construct the communities.

Partitional clustering approaches

Partitional clustering aims to find g groups of similar objects based on some features. Unlike hierarchical clustering, which discovers structures with the hierarchical relationships, partitional clustering discovers disjoint clusters. The advantages of partitional clustering are its simplicity and scalability.

Centroid-based approaches

The centroid-based approaches are very intuitive and essential tools for data clustering. In fact, these approaches assume that each cluster is represented by a centroid, which is not necessarily an object from a set of observations. The objective is partitioning objects into g groups by optimizing an objective function. The obtained results are the cluster of each object and prototypical object (centroid) designated as a representative for each cluster. The multiple ways of choosing the centroid and the objective function give rise to many centroidbased methods.

One of the most popular centroid-based approaches is the well-known k-means algorithm [START_REF] Macqueen | Some methods for classification and analysis of multivariate observations[END_REF][START_REF] Bock | Clustering Methods: A History of k-Means Algorithms[END_REF]. The k-means aims to find g clusters by minimizing the Euclidean distance between each object and its cluster centroid. The objective function minimized by the k-means algorithm can be written as follows :

n ∑ i=1 g ∑ k=1 z ik x i -µ k 2 ,
where x i ∈ R d denotes the ith observation, µ k is the centroid of the cluster k, z ik equals to 1 if the ith observation belongs to cluster k, and 0, otherwise. To optimize the objective function, the k-means alternate two following steps until convergence :

• Initialization: Select g centroids randomly from the set of objects.

• Optimization: Alternate the two following steps -Assignment of objects to the clusters based on euclidean distance between the object and the centroids.

-Updating the centroid based on the new assignment (mean aggregation).

In this case, the convergence is achieved when the objective function becomes stationary or quasi-stationary.

Mixture-based approaches

The mixture model is one of the most important and powerful clustering approaches. It was introduced by [START_REF] Pearson | On the probability that two independent distributions of frequency are really samples from the same population[END_REF] and can be dealt with different types of data (continuous, binary, and contingency table) and models various cluster's shape. Mixture models assume that a set of objects is composed of g sub-sets characterized by probability distributions. Thus the data matrix X = [x i ] ∈ R n×d is assumed to be an independent and identically distributed (i.i.d.) sample x i where x i ∈ R d is generated according to a probability density function:

f (x i , Ω) = g ∑ k=1 π k Φ(x i , λ k ),
and considering all observed data :

f (X, Ω) = n ∏ i=1 g ∑ k=1 π k Φ(x i , λ k ), Subject to constraints : ∀k = 1, ..., g, π k ∈]0, 1[, and g ∑ k=1 π k = 1,
where π k represents the proportion of each cluster, Φ(x i , λ k ) is the density of the observation x i from the kth component. And λ k is a vector of parameters depending on the selected density function. For instance, considering a Gaussian distribution, the set of parameters for each component is of a probability distribution, two popular approaches were proposed in the literature, namely the Maximum Likelihood (ML), and Classification ML (CML) [START_REF] Scott | Clustering methods based on likelihood ratio criteria[END_REF]Symons, 1971, Symons, 1981]. The Expectation-Maximization (EM) algorithm can be used to estimate the model parameters maximizing the ML. The Classification EM (CEM) algorithm is a variant of EM maximizing CML objective function yielding to a soft clustering [START_REF] Celeux | A classification EM algorithm for clustering and two stochastic versions[END_REF]. The objective of these two approaches is finding the parameters maximizing the likelihood of the observed data X. Both techniques rely on the complete data log-likelihood because it is hard to work directly with the likelihood function, given as follows:

λ k = {µ k , Σ k }.
L C (Ω, X, Z) = ∑ i ∑ k z ik log(π k ) + ∑ i ∑ k z ik log Φ(x i , λ k ).
The advantages of the mixture models approach are its flexibility and adaptation with various situations, including the presence of heterogeneous data and outliers. Moreover, its associated estimators of posterior probabilities can result in both fuzzy and/or hard clustering using the maximum a posteriori (MAP) principal.

Clustering evaluation metrics

Evaluating clustering results is not a trivial task. To this end, we can use benchmark datasets with a true partition. The objective is comparing the true partition with the clustering partition obtained by clustering algorithms. Many measures are available, and the most popular is the accuracy, which corresponds to the percent of correct predictions. However, the clustering accuracy is not always a reliable measure when the clusters are not balanced, and the number of clusters is high. To better appreciate the quality of our clustering approach, in this thesis, we retain two widely used measures to assess the quality of clustering, namely the Normalized Mutual Information and the Adjusted Rand Index.

Accuracy. The clustering accuracy noted (Acc) discovers the one-to-one relationship between two partitions and measures the extent to which each cluster contains data points from the corresponding class. It is defined as follows:

Acc = 1 n n ∑ i=1 δ(C i , map(P i ))
where n is the total number of samples, P i is the i th obtained cluster and C i is the true i th class provided by the data set. δ(x, y) is the delta function that equals one if x = y and equals zero otherwise, and map(P i ) is the permutation mapping function that maps the obtained label P i to the equivalent label from the data set. The best mapping can be found by using the Kuhn-Munkres algorithm [Munkres, 1957, Bourgeois and[START_REF] Bourgeois | An extension of the munkres algorithm for the assignment problem to rectangular matrices[END_REF].

Normalized Mutual Information (NMI)

The NMI [START_REF] Strehl | Cluster ensembles -a knowledge reuse framework for combining multiple partitions[END_REF] measure is estimated by

NMI = ∑ k, n k n log nn k n k n (∑ k n k log n k n )(∑ n log n n )
,

where n k denotes the number of data contained in cluster C k (1 ≤ k ≤ K), n is the number of data belonging to the class L (1 ≤ ≤ K), and n k denotes the number of data that are in the intersection between cluster C k and class L . Intuitively, NMI quantifies how much the estimated clustering is informative about the true clustering.

Co-clustering

Ajusted Rand Index (ARI) The ARI [Liu et al., 2013b] measure quantifies the similarity between two data clustering partitions. From a mathematical standpoint, the Rand index is related to the accuracy. The adjusted form of the Rand Index is:

ARI = ∑ k, ( n k 2 ) -∑ k ( n k 2 ) ∑ ( n 2 ) /( n 2 ) 1 2 ∑ k ( n k 2 ) + ∑ ( n 2 ) -∑ k ( n k 2 ) ∑ ( n 2 ) /( n 2 )
.

The ARI is related to the clustering accuracy and measures the degree of agreement between an estimated clustering and a reference clustering. All of Acc, NMI and ARI are equal to 1 if the resulting clustering is identical to the true one.

Co-clustering

Unlike clustering approaches which reorganize only rows (objects) of data matrix, co-clustering (or bi-clustering) is a set of methods for simultaneous clustering of rows (objects, individuals, instances) and columns (features, objects) into meaningful co-clusters linked row clusters and columns clusters [START_REF] Bock | Simultaneous clustering of objects and variables[END_REF]. It aims to discover homogeneous blocks, provide an improved results and an easier interpretation of obtained results, especially for sparse data (see figure 1.4). The co-clustering proved their effectiveness on many applications such as text mining, micro-array analysis, image clustering. 

Metric-based approaches

Metric-based approaches are inspired by centroid-based clustering. The intuition is that a scalar µ k can summarize each co-cluster of the data matrix. For this end, metric based co-clustering methods consist of the optimization of the following objective function :

∑ i,j,k, z ik w jl (x ij -µ k ) 2 ,
where x ij is an entry of the data matrix, Z and W represent the partition matrices of rows and columns, respectively, and µ = (µ k ) summarizing the original matrix. Metric-based methods consist of minimization of the difference between the original matrix and the summarized one using co-clustering.

The above optimization problem is intractable -nevertheless, an optimal solution by using the double k-means algorithm has been developed in [START_REF] Govaert | Simultaneous clustering of rows and columns[END_REF]. Multiple metricbased co-clustering algorithms using this principle has been proposed. We can site, CROEUC, CROBIN, and CROKI2, for continuous, binary, and contingency tables, respectively [START_REF] Govaert | La classification croisée[END_REF]].

Graph-based approaches

Considering a bipartite graph, graph-based approaches aim to clusters the set of nodes on g groups, such as the sum of weights of edges between clusters is maximized, and the sum of the weight of the edges within clusters is minimized. [START_REF] Dhillon | Co-clustering documents and words using bipartite spectral graph partitioning[END_REF] proposed a Spectral Co-clustering method (SpecCo), which consists of partitioning a bipartite graph minimizing the cut objective function. Different algorithms based on graph modularity optimization have been developed in [START_REF] Labiod | Co-clustering under nonnegative matrix tri-factorization[END_REF] and more recently in [START_REF] Ailem | Co-clustering document-term matrices by direct maximization of graph modularity[END_REF][START_REF] Role | Coclust: A python package for co-clustering[END_REF].

Matrix factorization-based approaches

Matrix factorization approaches have demonstrated an interest in a variety of fields. Moreover, several works have explored the connexion between Non-Negative Matrix factorization (NMF) and co-clustering. Even if co-clustering is not the main purpose of NMF, it can be used to perform this task [Ding et al., 2006, Hosseini-Asl and[START_REF] Hosseini-Asl | Nonnegative matrix factorization for document clustering: A survey[END_REF]. The Non-Negative Matrix Tri-Factorization (NMTF) method has been further developed to address various aspects of co-clustering, including high dimensionality; see for instance [START_REF] Wang | Nonnegative matrix tri-factorization based highorder co-clustering and its fast implementation[END_REF][START_REF] Allab | Seminmf-pca framework for sparse data co-clustering[END_REF], 2017, Salah et al., 2018]. Given a positive data matrix X, NMTF decomposes X on three factors Z, S, and W by optimizing the following objective function:

min Z 0,S 0,W 0 X -ZSW T ,
where . is the Frobenius norm, Z and W are two positive matrices, which can be converted to membership matrix of rows and columns, and S is also a positive matrix summarizing X considering the co-clustering.

To go further, there are other NMF-based approaches including supplementary constraints on the matrices; we can cite, for instance, non-negative block value decomposition (NBVD) [START_REF] Long | Co-clustering by block value decomposition[END_REF], and orthogonal three factors NMF (ONM3F and ONMTF) [Ding et al., 2006, Yoo and[START_REF] Yoo | Orthogonal nonnegative matrix tri-factorization for co-clustering: Multiplicative updates on stiefel manifolds[END_REF]. For more details about NMF variants; see for instance [START_REF] Li | Nonnegative matrix factorizations for clustering: A survey[END_REF]].

Model-based approaches

Model-based co-clustering approaches are powerful techniques providing more flexibility, robustness, and allowing us to model different types of data. Moreover, the generative modelbased approach offers theoretical foundations considering the metric-based methods. The Latent Block Model (LBM) is a popular model-based co-clustering approach [START_REF] Govaert | Clustering with block mixture models[END_REF], Nadif and Govaert, 2005, 2010, Govaert and Nadif, 2010, 2013[START_REF] Turchet | Tgap dÉchets : Le gouvernement propose une rÉforme ambitieuse dans le projet de loi de finances pour 2019[END_REF]. It assumes that the data matrix can be split into co-clusters (or bi-clusters), and a univariate probability distribution function describes each of the co-cluster. We will see in our propositions that this definition changes, and we might use a multivariate probability distribution function considering a co-clustering of tensor data.

The latent block model [START_REF] Govaert | Co-clustering: models, algorithms and applications[END_REF] in g × m blocks is defined as follows. Given a matrix X of size n × d, we assume that there is a couple of partitions (z, w) where z is partitioned in g clusters on the set of rows I and w is partitioned in m clusters on the set of columns J, such that each element x ij belonging to the block k is generated according to a probability distribution, where k represents the class of row i, while represents the class of column j. The z partition can be represented by a vector of labels or by matrix Z = (z ik ) of size n × g where z ik = 1 if i belongs to the class k, and z ik = 0 otherwise. In the same way, the w partition can be represented by a label vector or by a column classification matrix W = (w j ) of size d × m where w j = 1 if j belongs to the class , and w j = 0 otherwise. Under the independence assumption p(Z, W) = p(Z)p(W) and noting Z and W the sets of all possible partitions Z and W, the likelihood of the observed data f (X; Ω) is given by:

∑ (z,w)∈Z ×W ∏ i,k π z ik k ∏ j, ρ w j ∏ i,j,k, Φ(x ij ; λ k ) z ik w j , (1.1) 
where Ω = (π, ρ, λ) are the unknown parameters of LBM with π = (π 1 , . . . , π g ) and ρ = (ρ 1 , . . . , ρ m ) where (π k = p(z ik = 1), k = 1, . . . , g), (ρ = p(w j = 1), = 1, . . . , m) are the proportions of clusters, and λ k represents the parameters of k block distribution. The classification log-Likelihood takes the following form:

L C (Z, W, Ω) = ∑ i,k z ik log π k + ∑ j, w j log ρ + ∑ i,j,k, z ik w j log(Φ(x ij ; λ k )). (1.
2)

The Latent Block Model will be detailed in section 2.2.1.

Clustering and analysis of Tensor data

In this section, we define a tensor data and the main properties of three-way tensors. We present a classification of the tensor-based model and briefly describe the principal tensor approaches. Finally, we review the most popular applications in this context.

Notation and Preliminaries

A tensor is a multidimensional array, which is also known as the N-way and Nth-order tensor.

A tensor can be viewed as an element product of N vector spaces [START_REF] Kolda | Tensor decompositions and applications[END_REF]. This notion of tensors should not be confused with tensors in physics and mathematics fields such as stress and strain tensors [START_REF] Frankel | The Geometry of Physics: An Introduction[END_REF]. A third-order tensor has three dimensions and then three indices, as shown in Figure 1.5. A first-order tensor is a vector, a second-order tensor is a matrix, and tensors of order three or higher are called higher-order tensors.

Tensor representation

The notation used here is very close to that introduced by [START_REF] Kiers | Towards a standardized notation and terminology in multiway analysis[END_REF] by bold capital Euler letters, e.g. X. The ith element of x is denoted as x i , the element (i, j) of X is expressed by x i,j , and x b i,j ( or x i,j,b ) represents the element (i, j, b) of a tensor. The order of tensor is referred to as the number of dimensions, also called ways or modes. Then one-mode tensor is a vector, second-order tensor is a matrix, and third-order tensor is a cuboid. In the following, for X tensor, we will denote the tensor entry x ij: by We can decompose tensors into slices. These slices differ according to the considered mode. Figure 1.7 shows Horizontal, Lateral, and Frontal slices of tensor denoted by X i:: , X :j: , and X ::b , respectively. The frontal slices can be expressed by X b . Tensor proprieties Symmetric Tensor. Before introducing the definition of symmetric and semi-symmetric tensors, we define Cuboid and Cube tensor. A cuboid is a three-way tensor with size n × d × v, and a cube is also a three-way tensor with size n × n × n. A cube is supersymmetric if

x ij = (x 1 ij , . . . , x b ij , . . . , x v ij ); then x b i. = ∑ j x b ij and x b .j = ∑ i x b ij . (see figure 1.6).
x ijb = x jib = x ibj = x jbi = x bij = x bji for ∀i, j, k = 1...n.
Cuboid with size ∈ R n×n×v and cube can be semi-symmetric in one mode. For instance, if we consider the third mode (frontal slices), the tensor is semi-symmetric if

X b = (X b ) T for ∀b = 1...v.
Diagonal Tensor. A diagonal of cube can be denoted by x iii (or x i ii ) for ∀i, j, k = 1...n. Figure 1.8 shows a cube with diagonal equals to one.

1 -1 -1 -1 -1 -1 -1 -1 -1 FIGURE 1.8: Cube tensor with ones on diagonal.
Tenor norm . The Frobenius norm of a three-way tensor X ∈ R n×d×v equals to the square root of the sum of its squared elements as:

X = n ∑ i=1 d ∑ j=1 v ∑ b=1 x 2 ijb .
Tensor products

Outer product. An outer product of three vectors r ∈ R n , c ∈ R d , and s ∈ R v can be represented as a third-way tensor X ∈ R n×d×v :

X = r • c • s,
where each element x ijb equals to r i c j s b Dot product. In this part, we consider only the dot product, also known as the inner product between a three-way tensor and matrix (For more information about tensor products see e.g. [START_REF] Bader | Algorithm 862: Matlab tensor classes for fast algorithm prototyping[END_REF]). The multiplication between a tensor X ∈ R n×d×v and a matrix M must consider one of the three modes. Regarding the first mode with M ∈ R m×n , the obtained tensor with size m × d × v , can be computed as :

(XM) ijb = n ∑ a=1
x ajb m ia .

Chapter 1. (Co)-clustering of two-way and three-way tensor data Hadamard product. A Hadamard product H between two third-mode tensors X and Y ∈ R n×d×v can be computed as element-wise product [START_REF] Kressner | Recompression of hadamard products of tensors in tucker format[END_REF]. The matrix form of Hadamard product can be written as:

h ijb = x ijb * y ijb ∀i = 1...n, j = 1...d, b = 1...v [
H = X * Y.
Kronecker product. A Kronecker product (also known tensor product) between two matrices M ∈ R n×d and Y ∈ R v×m is denoted by M ⊗ Y. The obtained matrix with size (nd) × (vm) can be computed by: .3) Transforming tensor to matrix

M ⊗ Y =      m 11 Y m 12 Y • • • m 1d Y m 21 Y m 12 Y • • • m 2d Y . . . . . . . . . . . . m n1 Y m n2 Y • • • m nd Y      . ( 1 
Tensor matricization. We can transform an N-way tensor into a matrix. This task is known as matricization, unfolding, or flattening. For instance, if we consider a three-way tensor X with size 3 × 4 × 2 (see eq 1.4), we can rearrange it as 3 × 8, 4 × 6, or 2 × 12 depending on the selected mode. (1.4)

The following matrices represent the result of tensor matricization for each mode respectively : 3 2 8 5 10 12 11 15 5 4 0 9 14 17 10 19 7 1 9 6 18 13 14 16 3 5 7 10 14 18 2 4 1 12 17 13 8 0 9 11 10 14 5 9 6 15 19 Tensor compression. We can compress a three-way tensor X into matrices considering modes. For instance, a tensor with size 5 × 4 × 2 can be transformed into matrices with size 4 × 2, 5 × 2, or 5 × 4 using some aggregation functions(sum, mean, median, etc.). Figure 1.9 shows the results of tensor compression according to the three modes 1, 2, and 3, respectively. Considering a three-way tensor 4 × 4 × 2, the frontal compression using sum aggregation function is equal to:

X mode1 =  
  X mode2 =    
(A) (B) (C) (D)
X 1 =     3 2 1 0 5 4 0 0 0 0 0 0 0 1 0 0     , X 2 =     0 1 0 0 1 0 0 0 0 0 13 16 0 0 14 15     , X comp =     3 3 1 0 6 4 0 0 0 0 13 16 0 1 14 15     .
(1.7)

Tensor analysis and clustering approaches

Tensor data representation becomes a handy tool to represent data with complex structure. The three-way tensor data allow to preserve a natural composition of data and are used in different fields like recommender systems, medical fields, and social study [START_REF] Henriques | Triclustering algorithms for three-dimensional data analysis: A comprehensive survey[END_REF]. There are various ways to analyze tensor data, in this work, we investigate the tensor-based approaches, and we will present different variants of tensor approaches task explored in the existing literature.

A large number of tensor-based methods have been proposed in the literature. Based on the survey classification proposed in [START_REF] Henriques | Triclustering algorithms for three-dimensional data analysis: A comprehensive survey[END_REF][START_REF] Kolda | Tensor decompositions and applications[END_REF][START_REF] Lathauwer | A survey of tensor methods[END_REF] and our investigations, we propose to classify the existing tensorbased methods to three groups considering the proprieties of approaches:(1) tensor factorization based approaches (2) stochastic approaches (3) low-rank approximation based approaches.There are some other tensor-based methods, which will be cited at the end of this section.

Tensor factorization based approaches

A large variety of tensor factorization methods was developed in the literature. In this section, we describe the most popular methods and offer a brief review of recent approaches.

CANDECOMP/PARAFAC Decomposition. CANDECOMP/PARAFAC (or CP) is one of the most popular tensor decomposition methods. It assumes that the N-way tensor can be expressed by the sum of a finite number of rank-one tensors [START_REF] Hitchcock | The expression of a tensor or a polyadic as a sum of products[END_REF][START_REF] Hitchcock | Multiple invariants and generalized rank of a p-way matrix or tensor[END_REF][START_REF] Carroll | Analysis of individual differences in multidimensional scaling via an n-way generalizarion of "eckart-young" decomposition[END_REF][START_REF] Harshman | Foundations of the parafac procedure: Models and conditions for an explanatory factor analysis[END_REF]. Like PCA, there is no algorithm to determine with guarantee the number of principal components (rank for tensor).

Let X ∈ R n×d×v be a three-way tensor. CP aims to decompose the tensor X to K components which represent the best approximation of X such as,

min X X -X , where X = K ∑ k=1 λ k a k • b k • c k .
The ALS (Alternating Least Squares) approach can be used to solve this optimization problem and find all components.

Tucker Decomposition. The Tucker decomposition, proposed by [START_REF] Tucker | Implications of factor analysis of three-way matrices for measurement of change[END_REF], has become well-known by other names, namely Three-mode factor analysis (3MFA/Tucker3) [START_REF] Tucker | Some mathematical notes on three-mode factor analysis[END_REF], Three-mode PCA (3MPCA) [START_REF] Kroonenberg | Three-mode principal component analysis: Theory and applications[END_REF], N-mode PCA [START_REF] Kapteyn | An approach ton-mode components analysis[END_REF], Higher-order SVD (HOSVD) [START_REF] Lathauwer | A multilinear singular value decomposition[END_REF], and N-mode SVD [START_REF] Vasilescu | Multilinear analysis of image ensembles: Tensorfaces[END_REF]. It can be viewed as a form of higher-order PCA. It decomposes the tensor into a core tensor multiplied by a matrix along with each mode. For instance, considering a three-way tensor X ∈ R n×d×v , the optimization problem can be written as follows :

min X X -X , where X = K ∑ k=1 P ∑ p=1 Q ∑ q=1 H kpq a k • b p • c q ,
where H ∈ R K×P×W is a core tensor, A ∈ R n×K related to the first mode, B ∈ R d×P related to the second mode, and C ∈ R v×Q associated with the third mode. Some algorithms based on the ALS approach has been developed to solve this optimization problem, such as TUCKALS2 and TUCKALS3 [START_REF] Kapteyn | An approach ton-mode components analysis[END_REF][START_REF] Kroonenberg | Three-mode principal component analysis: Theory and applications[END_REF].

Inspired by CP and Tucker decomposition, a lot of decomposition model was proposed. For instance, INDSCAL [START_REF] Carroll | Analysis of individual differences in multidimensional scaling via an n-way generalizarion of "eckart-young" decomposition[END_REF] is a particular case of CP for three-way tensors that are symmetric in two modes. PARFAC2 [START_REF] Harshman | Parafac2: Mathematical and technical notes[END_REF] is also a variant of CP which can be used with a set of matrices that have the same number of columns and different a number of rows. CANDELINC [START_REF] Carroll | A general approach to multidimensional analysis of many-way arrays with linear constraints on parameters[END_REF]] is a CP with linear constraints on one or more modes. DEDICOM [START_REF] Harshman | Models for analysis of asymmetrical relationships among n objects or stimuli[END_REF] considers multiple asymmetric relationships and decomposes the tensor with the objective of regrouping objects in clusters based on the discovered latent components. [START_REF] Harshman | Uniqueness proof for a family of models sharing features of tucker's three-mode factor analysis and parafac/candecomp[END_REF] proposed PARATUCK2, as its name suggests, it can be considered as a combination of CP and Tucker decomposition, and a generalization of DEDICOM where the row and column objects can be different sets. Finally, RSCAL [START_REF] Nickel | A three-way model for collective learning on mlutirelational data[END_REF], can be considered as a relaxed version of DEDICOM.

Stochastic approaches.

Few works developed stochastic approaches for tensor clustering and co-clustering. In [START_REF] Penga | Tensor clustering via adaptive subspace iteration[END_REF], the authors proposed an algorithm called ASI-T (Adaptive Subspace Iteration on Tensor) for multi-way (tensor) data clustering, and demonstrated that ASI-T is a special version of HOSVD. [START_REF] Sra | Approximation algorithms for bregman clustering coclustering and tensor clustering[END_REF] proposed a Bergman tensor clustering and showed some proprieties and links with euclidian k-means.

In 2005 [START_REF] Zhao | tricluster: An effective algorithm for mining coherent clusters in 3d microarray data[END_REF] proposed the first formulation of the tri-clustering for gene expression application. The data structure gene-sample-time is viewed as a multi-graphs. The proposed approach finds a set of bi-clusters, and then tri-clusters are defined by merging similar bi-clusters. In [START_REF] Schepers | Three-mode partitioning[END_REF], the authors minimize the least-squares loss function between tensor data and a prediction of the bi-clustering model; for more details about stochastic approaches and tri-clustering algorithms please see [START_REF] Lathauwer | A survey of tensor methods[END_REF][START_REF] Ahmed | Intersected coexpressed subcube miner: An effective triclustering algorithm[END_REF][START_REF] Guigoures | A triclustering approach for time evolving graphs[END_REF][START_REF] Tchagang | Mining biological information from 3d short time-series gene expression data: the optricluster algorithm[END_REF][START_REF] Mankad | Biclustering three-dimensional data arrays with plaid models[END_REF], Liu et al., 2015[START_REF] Wu | Triclustering georeferenced time series for analyzing patterns of intra-annual variability in temperature[END_REF].

Low-rank approximation based approaches

Low-rank (LR) tensor approximation methods have become an important tool in multi-linear algebra problems, which are intractable comparing with classical approaches. LR based approaches are used on several applications; however, LR methods showed more effectiveness dealing with high-dimensional images (see [START_REF] Grasedyck | A literature survey of low-rank tensor approximation techniques[END_REF]). In [START_REF] Yan | Image-based process monitoring using low-rank tensor decomposition[END_REF], the authors propose an image-based process monitoring approach that is capable of handling both grayscale and color images. The proposed approach models the high-dimensional structure of the image data with tensors and employs low-rank tensor decomposition techniques to extract important monitoring features. In 2015, [START_REF] Li | Low-rank tensor decomposition based anomaly detection for hyperspectral imagery[END_REF] propose a Low-rank Tensor Decomposition based anomaly Detection (LTDD) algorithm for Hyperspectral images (HSI). LTDD is adapted to deal with sparse three-way tensors. [START_REF] Zhang | Low-rank tensor constrained multiview subspace clustering[END_REF] developed Lowrank Tensor constrained Multiview Subspace Clustering (LT-MSC) approach. LT-MSC deals with multiple similarity matrices (views) structured as a three-way tensor. The proposed approach allows us to capture the global structure of all the views and explore the correlations within and across multiple views. More recently, in [START_REF] Du | Pltd: Patch-based low-rank tensor decomposition for hyperspectral images[END_REF], the authors proposed a novel HSI compression and reconstruction algorithm via PLTD, a low-rank tensor approximation algorithm. PLTD preserves the correlation among the spectral dimension, which allows a better reconstruction of images.

Tensor clustering applications

Recently, tensor-based analyses have been successfully performed in many areas. In this section, we present the most popular applications' fields and give a brief review of other less well-known applications [Kolda andBader, 2009, Zhang et al., 2013].

Signal Processing

Signal data (times series) are used in different fields such as bio-medical, speech recognition, sensors data, etc. These data are not necessarily structured into a 2D matrix. In many cases, signals can depend on multiple entities; the Electroencephalography(EEG) signal is, for instance, generated with different channels and different time frequencies, leading to tensorial representation. [START_REF] Cong | Tensor decomposition of eeg signals: A brief review[END_REF] presented a brief review of tensor decomposition methods applied to EEG data. In [START_REF] Mahyari | A tensor decompositionbased approach for detecting dynamic network states from eeg[END_REF], the authors proposed an approach based on tensor representation for detecting dynamic network states from EEG.

Other works on medical fields proposed a tensor-based approach to model Polyaffine motion characterizing Pathological Left Ventricular Dynamics [START_REF] Mcleod | Spatio-temporal tensor decomposition of a polyaffine motion model for a better analysis of pathological left ventricular dynamics[END_REF]. In [START_REF] Zhang | Heart sound classification based on scaled spectrogram and tensor decomposition[END_REF] a tensor decomposition allowed to deal with heart sound classification. To go further, in signal processing context, the reader can refer to [START_REF] Lim | Multiarray signal processing: Tensor decomposition meets compressed sensing[END_REF], Zhang et al., 2013[START_REF] Sidiropoulos | Tensor decomposition for signal processing and machine learning[END_REF], Wang et al., 2017].

Images and Hyperspectral images

Recently, the hyperspectral images (HSI) has received a growing attention, due to their high quality and information. HSI can be represented by three-way data, unlike classical images which represented by 2d matrix where each entry is a pixel. In HSI, each image is composed by a multiple bands which are images generated according to electromagnetic spectrum. The compression and reconstruction of HSI have generated a lot of interest. [START_REF] Guo | Hyperspectral image noise reduction based on rank-1 tensor decomposition[END_REF] proposed a rank-1 tensor decomposition for image noise reduction, using a top eigenvalue and reconstruction technique. Compared with the existing noise reduction methods such as the conventional channel-by-channel approaches, the proposed R1TD method improves the image reconstruction results in terms of both visual inspection and image quality indices. [START_REF] Du | Pltd: Patch-based low-rank tensor decomposition for hyperspectral images[END_REF] developed a novel HSI compression and reconstruction algorithm via patchbased low-rank tensor approximation technique (PLTD), while [START_REF] Veganzones | Nonnegative tensor cp decomposition of hyperspectral data[END_REF] designed a Nonnegative tensor CP decomposition for tensor data. There are also works about HSI restoration and anomaly detection based on tensor decomposition approaches [START_REF] Wang | Hyperspectral image restoration via total variation regularized low-rank tensor decomposition[END_REF], Zhang et al., 2016]. In the face recognition domain, several tensor-based approaches relying on tensor decomposition have been developed; see for instance [Cao et al., 2015[START_REF] Hašan | Tensor clustering for rendering many-light animations[END_REF][START_REF] Moberts | Evaluation of fiber clustering methods for diffusion tensor imaging[END_REF][START_REF] He | Image clustering with tensor representation[END_REF], Zhang et al., 2016]. To go further, as a video is composed of a sequence of frames (or images), a tensor decomposition is also used for video recognition [Abdallah et al., 2007].

Recommender systems

Data derived from recommender systems can be easily structured as a tensor. In fact, these data generally link two objects users and items. Furthermore, other information are available about users, items, and also the interaction between users and items (rating, reviews) conducting to a tonsorial structure. Some works review the developed approaches using tensor data decomposition for recommender systems; e.g see for instance [START_REF] Zhang | Tag-aware recommender systems: A state-of-theart survey[END_REF][START_REF] Ricci | Matrix and tensor factorization techniques applied to recommender systems: a survey[END_REF][START_REF] Symeonidis | Matrix and tensor decomposition in recommender systems[END_REF].

The additional data available on recommender systems, well known as Context-Aware Recommendation, can be used to improve recommendation results. Thus, information about user age, sex, and occupation can allow us to improve results. On the other hand, information about an item can help recommendations. In fact, if we consider a movie recommendation system, information about movie genre and actors are useful [START_REF] Wermser | Modeling and learning context-aware recommendation scenarios using tensor decomposition[END_REF][START_REF] Karatzoglou | Multiverse recommendation: n-dimensional tensor factorization for context-aware collaborative filtering[END_REF].

In some social networks, tags are an essential element. Posts, images, and videos tagging allow us to easily find information and images on social media such as Twitter and Instagram, respectively. In this context, a lot of works proposed tensor-based approaches for tag clustering [START_REF] Rafailidis | The tfc model: Tensor factorization and tag clustering for item recommendation in social tagging systems[END_REF]Daras, 2013, Symeonidis, 2016]. Recently, tensor decomposition methods are used for tag completion, refinement, and correction in social media [START_REF] Zhang | Tag-aware recommender systems: A state-of-theart survey[END_REF][START_REF] Tang | Tri-clustered tensor completion for social-aware image tag refinement[END_REF][START_REF] Tang | Social anchor-unit graph regularized tensor completion for large-scale image retagging[END_REF].

Other applications

As pointed out in previous sections, the bio-medical area is conducive to use tensor-based approaches. Several works about epigenomics and microarray using tensor data representation are proposed. For instance, in [START_REF] Durham | Predictd parallel epigenomics data imputation with cloud-based tensor decomposition[END_REF], the authors proposed a tensor decomposition method to treat epigenomics data imputation. The proposed PREDICTD algorithm provides reference imputed data and demonstrates the utility of tensor decomposition on the imputation of missing values. In [Feizi et al., 2017], they proposed a tensor bi-clustering approach based on spectral decomposition of the tensor. The objective of this work is finding one bi-cluster, the most important one based on eigenvalues. We can also cite the work of [START_REF] Hore | Tensor decomposition for multiple-tissue gene expression experiments[END_REF], whose construct individuals × tissus × genes tensor and used tensor decomposition for multi-tissue gene expression clustering.

Some works used tensor-based approaches to deal with semantic web data. In fact, in the context of RDF knowledge bases, data can be seen as a graph where nodes represent RDF resources, and edges correspond to RDF predicates that link resources. Thus, multiple graphs can be constructed, and tensor representation can be adopted for the semantic Web [START_REF] Franz | Triplerank: Ranking semantic web data by tensor decomposition[END_REF][START_REF] Saha | Classification of web services using tensor space model and rough ensemble classifier[END_REF][START_REF] Drumond | Predicting rdf triples in incomplete knowledge bases with tensor factorization[END_REF].

Conclusion

We briefly reviewed some popular approaches leading to clustering and co-clustering methods. Concerning tensor data, which is the main focus of this thesis, we showed that there are many research dealing with tensor data. Most approaches, rely on tensor decomposition, stochastic methods, and low-rank approximation methods.

In terms of softwares, recently, many packages and libraries for tensor data and tensor decomposition-based methods were developed. TensorLy1 [START_REF] Kossaifi | Tensorly: Tensor learning in python[END_REF] a python package implementing popular tensor decomposition methods such as PARAFAC and Tucker Decomposition. TensorD2 [START_REF] Hao | Tensord: A tensor decomposition library in tensorflow[END_REF] is a tensor library in TensorFlow. It provides basic decomposition methods such as Tucker and CANDECOMP/PARAFAC (CP) decompositions, as well as new decomposition methods, for example, Pairwise Interaction Tensor Decomposition. In the sequel, we do not consider these approaches, however in our contributions (next chapters), and especially in our comparisons, we refer to these kinds of methods.

Chapter 2

Latent Block Model for Tensor Data

Introduction

Co-clustering addresses the problem of simultaneous clustering of both dimensions of a data matrix. Many of the datasets encountered in data science are two-dimensional in nature and can be represented by a matrix. Classical clustering procedures seek to construct separately an optimal partition of rows (individuals) or, sometimes (features), of columns. In contrast, co-clustering methods cluster the rows and the columns simultaneously and organize the data into homogeneous blocks (after suitable permutations); see for instance [START_REF] Dhillon | Information-theoretic co-clustering[END_REF][START_REF] Govaert | Clustering with block mixture models[END_REF], Govaert and Nadif, 2005[START_REF] Govaert | Block clustering with bernoulli mixture models: Comparison of different approaches[END_REF], 2013[START_REF] Salah | Social regularized von mises-fisher mixture model for item recommendation[END_REF][START_REF] Turchet | Tgap dÉchets : Le gouvernement propose une rÉforme ambitieuse dans le projet de loi de finances pour 2019[END_REF], Ailem et al., 2017[START_REF] Labiod | Co-clustering under nonnegative matrix tri-factorization[END_REF]. Methods of this kind have practical importance in a wide variety of applications where data are typically organized in two-way tables. However, in modern datasets, instead of collecting data on every individualfeature pair, we may collect supplementary individual or item information leading to tensor representation. This kind of data has emerged in many fields such as recommender systems where the data are collected on multiple items rated by multiple users, information about users and items is also available yielding as a tensor rather than a data matrix.

Despite the great interest for co-clustering techniques on the one hand and the tensor representation on the other, few works tackles co-clustering from tensor data. We mention the work based on Minimum Bregman information (MBI) to carry out co-clustering [START_REF] Banerjee | Model-based overlapping clustering[END_REF] and the General Tensor Spectral Co-clustering (GTSC) method suitable to nonnegative tensor data [Wu et al., 2016]. Other approaches can be cited although the goal is not exactly co-clustering but only extracting a bicluster. For instance, in [Feizi et al., 2017] the authors aim to extract a bicluster composed of a subset of tensor rows and columns whose corresponding trajectories form a low-dimensional subspace. However, the majority of authors consider the same entities for the row and columns or do not consider the tensor co-clustering under a probabilistic approach. To the best of our knowledge, this is the first attempt to formulate our objective when both sets -row and column-are different and with model-based co-clustering. To this end, we rely on the latent block model [START_REF] Govaert | Co-clustering: models, algorithms and applications[END_REF] for its flexibility to consider any type of data matrices.

In this chapter, we propose a co-clustering model for tensor data, where clustering of row (indexed from i = 1 to n) and column (indexed from j = 1 to d) entities is done not only on principal relation matrix but on tensor including multiple covariates and/or relations between entities. The proposed model can also be viewed as multi-way clustering approach where each slice (indexed from b = 1 to v) of the third dimension of the tensor represents a relation or covariate (see Figure 2.1).Thereby the purpose to simultaneously discover the row (indexed from k = 1 to g) and column (indexed from = 1 to m) clusters and the relationship between these clusters for all slices. To achieve this, we propose to extend Latent block model (LBM) to tensor data referred to as TLBM. This model is suitable for several applications. Our first investigation has appeared recently as a paper published in [Boutalbi et al., 2019a]. In the present manuscript, we delve in-depth into this idea and present several new theoretical and empirical results. The main contributions of this chapter are summarized as follows : (i) we propose an extension of latent block model for tensor data (TLBM) (ii) we show its flexibility to be applied with different types of data (iii) we derive a variational EM and a hard version for co-clustering. The remainder of this chapter is organized as follows. Section 2.2 describes classical latent block model and presents its extension TLBM. Section 2.3 details the proposed algorithm variational EM for co-clustering of tensor data. In section 2.4, we present a hard version of the proposed algorithm and evaluate its performances. Section 2.5 presents experimental results on the synthetic and real word datasets. Section 2.6 concludes this chapter and provides some directions for future work.

Extension of Latent block model for tensors

In this section, we introduce the Latent Block Model (LBM), and we detail the variational EM and the Classification EM algorithms used for parameters estimation for LBM. Then we present our contribution to Tensor LBM, an extension of the LBM model to tensor data.

Latent block model

As introduced in section 1.2.4, the latent block model [START_REF] Govaert | Co-clustering: models, algorithms and applications[END_REF], given a data matrix X ∈ R n×d , assumes that there is a couple of partitions (z, w) where z is partitioned in g clusters on the set of rows I and w is partitioned in m clusters on the set of columns J, such that each element x ij belonging to the block k is generated according to a probability distribution, where k represents the class of row i, while represents the class of column j. This model is based on the following assumptions:

• The univariate random variables x ij are considered independent given the row partition Z and column partition W.

• The latent variables z 1 , ..., z n , w 1 , ..., w d are assumed to be independent p(Z,

W) = p(Z)p(W) where p(Z) = ∏ n i p(z i ) = ∏ i,k π z ik k and p(W) = ∏ d j p(w j ) = ∏ j, ρ w j . x ij z i π w j ρ λ z i ,w j FIGURE 2.2: LBM graphical model.
• For all i, the distribution p(z i ) is the multinomial distribution M(π 1 , ..., π g ) and does not depend on i. Similarly, for all j, the distribution of p(w j ) is the multinomial distribution M(ρ 1 , ..., ρ m ) and does not depend on j.

The probability density function (pdf ) of the latent block model can be written as follows:

f (X, Z, W, Ω) = ∑ (z,w)∈Z ×W ∏ i,k π z ik k ∏ j, ρ w j ∏ i,j,k, Φ(x ij ; λ k ) z ik w j , (2.1) 
where Ω = (π, ρ, λ) are the unknown parameters of LBM with π = (π 1 , . . . , π g ) and ρ = (ρ 1 , . . . , ρ m ) where (π k = p(z ik = 1), k = 1, . . . , g), (ρ = p(w j = 1), = 1, . . . , m) are the proportions of clusters and λ = (λ k ; k = 1, ..., g; = 1, ..., m) where λ k represents the parameters of the distribution Φ. The classification log-Likelihood takes the following form:

L C (Z, W, Ω) = ∑ i,k z ik log π k + ∑ j, w j log ρ + ∑ i,j,k,
z ik w j log(Φ(x ij ; λ k )).

(2.

2)

The graphical model is depicted in figure 2.2 and the generative process of data according LBM is described in algorithm 1.

Algorithm 1: Generative process of LBM model

Input: n, d, g, m, π, ρ, λ for i ← 1 to n do Generate the row label z i according to M(π 1 , . . . , π g )

for j ← 1 to d do Generate the column label w j according to M(ρ 1 , . . . , ρ m )

for i ← 1 to n and j ← 1 to d do Generate a entry x ij according to the density Φ(x ij ; λ z i ,w j ). return Data matrix X, z and w Assuming that the complete data are composed by (X, Z, W) , the complete data loglikelihood function can be written as follows :

L C (Z, W, Ω) = log f (X, Z, W, Ω) = log ∏ i,k π z ik k + log ∏ j, ρ w j + log ∏ i,j,k, Φ(x ij ; λ k ) = ∑ i,k z ik log π k + ∑ j, w j log ρ + ∑ i,j,k, z ik w j log(Φ(x ij ; λ k )).
(2.3)

The log-likelihood can be decomposed into three terms. The two first terms depend on row and column clusters proportion respectively. The third one depends on the pdf of each co-cluster.

To estimate the parameters Ω using MLE, we can use the expectation-maximization (EM) algorithm. The E-step consists of computing the posteriori probabilities of the missing labels z and w. The M-step is to updating the parameters by maximizing the expectation of the complete data log-likelihood L C (Z, W, Ω), defined as follows:

E(L C (Z, W, Ω)|Ω (t) , X) = ∑ ik z(t) ik log π k + ∑ j w(t) j log ρ + ∑ i,j,k, ẽ(t) i,j,k, log Φ(x ij ; λ k ), (2.4) where z(t) ik = E(z ik |x i , Ω (t) ) = p(z ik |x i , Ω (t) ), w(t) j = E(w j |x j , Ω (t) ) = p(z j |x j , Ω (t)
), and ẽ(t) ikj = E(z ik w j |x ij , Ω (t) ) = p(z ik w j |x ij , Ω (t) ). Unfortunately, the double unknown data variable Z and W in e makes the maximization of E(L C (Z, W, Ω)|Ω (t) , X) more difficult than of the classical mixture model.

To solve this problem, a mean-field variational EM (VEM) algorithm can be used for inferences. The objective is to appoximate the true posterior probability p(Z, W|X, Ω (t) ) with a more tractable distribution q(Z, W) = p(Z)p(W). Then, using the [START_REF] Neal | A view of the em algorithm that justifies incremental, sparse, and other variants[END_REF]] interpretation of the EM algorithm, the mean-field VEM algorithm is equivalent to mximize with respect to q and Ω the following soft co-clustering criteria:

F C (Z, W, Ω) = L C ( Z, W, Ω) + H( Z) + H( W),
where, H( Z) = -∑ ik zik log zik and H( W) = -∑ j wj log wj are respectively the entropy of the unknown variables Z and W where zik = q(z ik = 1) and wj = q(w j = 1), L C ( Z, W, Ω) is the fuzzy complete-data log-likelihood. The maximization of the function F C (Z, W, Ω) can be obtained by alternating two steps: (i) for given partition of variables, we optimize the partition of objects and the model's parameters until convergence; (ii) for a given partition of objects, we update the variable partition and the model's parameters until convergence. These two steps are repeated until convergence. This algorithm is described below (see Algorithm 2). 

Latent Block Model for Tensor data (TLBM)

Hereafter, we propose a novel Latent Block model for tensor data (TLBM). Few studies have addressed the issue of co-clustering for tensor data [Feizi et al., 2017, Wu et al., 2016]. Unlike classical LBM which considers data matrix

X = [x ij ] ∈ R n×d , TLBM considers 3D data matrix X = [x ij ] ∈ R n×d×v
where n is the number of rows, d the number of columns, and v the number of covariates. Figure 2.3a presents the data structure. Note that in our cases, a co-cluster is a parallelepiped.

x ij v d n v (A) x ij z i π w j ρ µ σ 2 (B) x ij z i π w j ρ µ Σ (C) FIGURE 2.3: (a) Data structure, (b) Gaussian LBM with µ = {µ 11 , . . . , µ gm }, σ 2 = {σ 2 11 , . . . , σ 2 gm } where ∀k, , µ k , σ 2 k, ∈ R, (c) Gaussian TLBM with µ = {µ 11 , . . . , µ gm }, Σ = {Σ 11 , . . . , Σ gm } where ∀k, , µ k ∈ R v×1 and Σ k ∈ R v×v .
Continuous data. In this case, we can assume Φ(x ij ; λ k ) as a multivariate normal distribution with mean vector µ k = (µ 1 k , . . . , µ v k ) and covariance matrix Σ k of size v × v. The parameter Ω is formed by π, ρ and λ = (λ 11 , . . . , λ gm ). Hence, Φ(x ij ; λ k ) takes the following form.

1 (2π) n/2 |Σ k | 0.5 exp - 1 2 (x ij -µ k ) Σ -1 k (x ij -µ k )
and,

L C (Z, W, Ω) = ∑ i,k z ik log π k + ∑ j, w j log ρ - 1 2 ∑ k, z .k w . log |Σ k | - 1 2 ∑ i,j,k, z ik w j (x ij -µ k ) Σ -1 k (x ij -µ k ).
(2.5)

The graphical models of Gaussian LBM and Gaussian TLBM are depicted respectively in figures 2.3b and 2.3c. With Gaussian LBM, for each block (k, ),

x ij ∈ R ∼ G(µ k , σ 2 k ) while with Gaussian TLBM, x ij ∈ R v×1 ∼ G(µ k , Σ k ) allowing to take into account the covariances between all v variables.
Binary data. In this case, we can consider an extension of the Bernoulli LBM (Bernoulli TLBM), thereby µ k is a probability vector. Specifically, assuming the concept of conditional independence (independence per block) which is the basis for many statistical models Φ is given by

Φ(x ij ; λ k ) = v ∏ b=1 (µ b k ) x b ij (1 -µ b k ) 1-x b ij ,
and the classification log-likelihood can be written as

L C (Z, W, Ω) = ∑ i,k z ik log π k + ∑ j, w j log ρ + ∑ k z .k w . v ∑ b=1 log(1 -µ b k ) + ∑ i,j,k, z ik w j v ∑ b=1 x b ij log µ b k 1 -µ b k (2.6)
with z .k = ∑ i z ik and w . = ∑ j w j .

Count data (also known as a cross tabulation). In this case, we can consider an extension of the Poisson LBM (Poison TLBM), thereby λ b ij is a vector of parameters. Like with Bernoulli TLBM we assume the conditional independence, thereby Φ is given by

Φ(x ij ; λ k ) = v ∏ b=1 e -λ b ij λ b ij x b ij x b ij ! , where λ b ij = x b i. x b .j ∑ k, z ik w j γ b k with the margins x b i. = ∑ j x b ij and x b .j = ∑ i x b
ij and the block effects γ k . Therefore the parameter Ω to be estimated is formed by π, ρ and γ = (γ 11 , . . . , γ gm ) where

γ k = (γ 1 k , . . . , γ v k )
. The generative process is described in algorithm 3; TLBM is flexible and can be used with different types of data.

The classification log-likelihood (up to a constant) can be written as

L C (Z, W, Ω) = ∑ i,k z ik log(π k ) + ∑ j, w j log ρ + ∑ i,j,k, z ik w j ∑ b -x b i. x b .j γ b k + x b ij log(γ b k ) .
(2.7) 

Variational EM algorithm for TLBM

To estimate Ω, the EM algorithm [START_REF] Dempster | Maximum likelihood from incomplete data via the EM algorithm[END_REF] is a candidate for this task. It maximizes the log-likelihood f (X, Ω) w.r. to Ω iteratively by maximizing the conditional expectation of the complete data log-likelihood L C (Z, W; Ω) w.r. to Ω, given a previous current estimate Ω (c) and the observed data X. Unfortunately, difficulties arise owing to the dependence structure among the variables x ij of the model. To solve this problem an approximation using the interpretation of the EM algorithm can be proposed; see, e.g., [START_REF] Govaert | An em algorithm for the block mixture model[END_REF][START_REF] Govaert | Block clustering with bernoulli mixture models: Comparison of different approaches[END_REF], 2013]. More precisely, the authors rely on the variational approach which consists of approximating the true likelihood by another expression using the following independence assumption:

P(z ik = 1, w j = 1|X) = P(z ik = 1|X) zik P(w j = 1|X) wj .
Hence, the aim is to maximize the following lower bound of the log-likelihood criterion:

F C ( Z, W; Ω) = L C ( Z, W, Ω) + H( Z) + H( W) (2.8)
where Z, W are fuzzy matrices and L C ( Z, W; Ω) is the fuzzy complete data log-likelihood and

H( Z) = -∑ i,k zik log zik H( W) = -∑ j, wj log wj . TABLE 2.1: Expression of F C ( Z, W, Ω) according various TLBM. TLBM F C ( Z, W, Ω) Gaussian ∑ i,k zik log(π k ) + ∑ j, Wj log ρ + H( Z) + H( W) -1 2 ∑ k, z.k w. log |Σ k | -1 2 ∑ i,j,k, zik wj (x ij -µ k ) Σ -1 k (x ij -µ k ) Bernoulli ∑ i,k zik log(π k ) + ∑ j, wj log ρ + H( Z) + H( W) + ∑ k, z.k w. ∑ b log(1 -µ b k ) + ∑ i,j,k, zik wj ∑ b x b ij log µ b k 1-µ b k Poisson ∑ i,k zik log(π k ) + ∑ j, wj log ρ + H( Z) + H( W) + ∑ i,j,k, zik wj ∑ b -x b i. x b .j γ b k + x b ij log(γ b k )
The maximization of F C ( z, w, Ω) can be reached by realizing the three successive optimizations:

             arg max Z F C ( Z, W, Ω), arg max W F C ( Z, W, Ω), arg max Ω F C ( Z, W, Ω).
In what follows, we detail the Expectation (E) and Maximization (M) step of the Variational EM algorithm for tensor data. We can propose a generic version of Tensor co-clustering considering an independence between slices. Thus, the fuzzy log-likelihood takes the following form :

L C ( Z, W, Ω) = ∑ i,k zik log π k + ∑ j, wj log ρ + ∑ i,j,k, zik wj ∑ b log(Φ(x b ij ; λ b k )).
(2.9)

E-step

The E-step consists of computing, for all i, k, j, the posterior probabilities zik and wj maximizing F C ( Z, W, Ω) given the estimated parameters Ω k . It is easy to show that, the posterior probability zik maximizing F C ( Z, W, Ω) (See Appendix A) is given by:

zik ∝ π k exp ∑ j, wj log Φ(x ij ; λ k ) .
In the same manner, the posterior probability wj is given by:

wj ∝ ρ exp ∑ i,k zik log Φ(x ij ; λ k ) .

M-step

Given the previously computed posterior probabilities Z and W, the M-step consists of updating , ∀k, , the parameters π k , ρ , µ k and λ k maximizing F C ( Z, W, Ω). The estimated parameters are defined as follows. First, taking into account the constraints

∑ k z ik = 1 and ∑ w j = 1, it is easy to show that πk = ∑ i zik n = z.k n and ρ = ∑ j wj d = w. d .
Secondly, the update of λ k depends on the choice of Φ (See Appendix B).

Gaussian TLBM. With this model, λ k is formed by (µ k , Σ k ) where µ k is the mean vector and it is easy to show that the estimation of mean vector μk is given by ∑ i,j zik wj x ij ∑ i,j zik wj , and thereby deduce,

Σk = ∑ i,j zik wj (x ij -μk )(x ij -μk ) ∑ i,j zik wj .
Bernoulli TLBM. It easy to show that the update of λ k can be performed by the update of λ b k 's separately. Thereby, from (2.6). For each triplet (k, , b), the partial derivative of

z .k w . log(1 -µ b k ) + ∑ i,j z ik w j x b ij log µ b k 1 -µ b k , set to 0 leads to μb k = ∑ i,j zik wj x b ij ∑ i,j zik wj
. Hence λ k which is a probability vector is given by

∑ i,j zik wj x ij ∑ i,j zik wj .
Poisson TLBM. Similarly, we can update γ b k for γ k . we have ∀k, , b,

γb k = arg max γ k ∑ i,j z ik w j (x b ij log γ k -x b i. x b .j γ k ) = ∑ i,j zik wj x b ij ∑ i z ik x b i. ∑ j w j x b .j = x b k x b k. x b . ,
where,

x b k = ∑ i,j zik wj x b ij , x b k. = ∑ i zik x b i. , x b . = ∑ j wj x b .j .
The proposed algorithm for tensor data, referred to as VEM-T in Algorithm 4, alternates the two previously described steps Expectation-Maximization. At the convergence, a hard co-clustering is deduced from the posterior probabilities.

Algorithm 4: VEM-T Input: X, g, m.

Initialization (Z, W) randomly, compute Ω repeat E-Step • Compute zik using zik ∝ π k exp ∑ j, wj log Φ(x ij ; λ k ) • Compute wj using wj ∝ ρ exp ∑ i,k zik log Φ(x ij ; λ k ) M-Step Update Ω until convergence; return Z, W, Ω

Classification Maximum Likelihood approach

Another Likelihood-based approach to clustering besides the mixture likelihood is what is sometimes called the Classification Maximum Likelihood (CML) approach [Celeux and[START_REF] Celeux | A classification EM algorithm for clustering and two stochastic versions[END_REF][START_REF] Govaert | Comparison of the mixture and the classification maximum likelihood in cluster analysis with binary data[END_REF]. Unlike the Maximum Likelihood (ML) approach which aims to maximize log-likelihood, with the CML approach, (Z, W, Ω) are chosen to maximize the complete data log-likelihood L C (Z, W, Ω) (1.2). Doing so, the maximization can be obtained by alternating the three following computations:

           arg max Z F C (Z, W, Ω), arg max W F C (Z, W, Ω), arg max Ω F C (Z, W, Ω).
These optimizations can be performed by using the Classification EM algorithm proposed in [START_REF] Govaert | Block clustering with bernoulli mixture models: Comparison of different approaches[END_REF]. It is a direct clustering algorithm which consists of inserting a classification step (C-step) between E-step and M-step. The principal steps of the algorithm, which we refer as CEM-T, are reported in Algorithm 5. Note that in M-step all the update formulas can be used by replacing zik by z ik ∈ {0, 1} and wj by w j ∈ {0, 1}. In other words, the update is done by co-cluster.

Note with the CML approach, we can establish some connections with popular algorithms. Next, we show the connection in the case of contingency tables. for all b, k, .

CEM-T for count data

Algorithm 5: CEM-T Input: X, g, m.

Initialization (Z, W) randomly, compute Ω repeat E-Step: N b . Plugging these expressions in (2.10), the complete data loglikelihood can be expressed as follows:

• Compute zik using zik ∝ π k exp ∑ j, wj log Φ(x ij ; λ k ) • Compute wj using wj ∝ ρ exp ∑ i,k zik log Φ(x ij ; λ k ) C-Step: • Compute z ik =
v ∑ b=1 N b g ∑ k=1 m ∑ =1 p b k log p b k p b k. p b . - v ∑ b=1 N b (1 + log N b ),
and its maximization is equivalent to the maximization of the total mutual information

∑ v b=1 ∑ k, p b k log p b k p b k. p b .
or the minimization of the loss in mutual information due to co-

clustering, i.e, v ∑ b=1 n ∑ i=1 d ∑ j=1 p b ij log p b ij p a i. p b .j - v ∑ b=1 g ∑ k=1 m ∑ =1 p b k log p b k p b k. p b . . (2.11)
Note that for v = 1, (2.11) is the objective function optimized by ITCC [START_REF] Dhillon | Information-theoretic co-clustering[END_REF] or the Croinfo algorithm [START_REF] Role | Coclust: A python package for co-clustering[END_REF]. Hence, the CEM-T algorithm can be viewed as a model-based clustering version of ITCC/Croinfo where the proportions of row clusters (resp.

column clusters) are assumed to be equal; see for instance [Govaert andNadif, 2018, Ailem et al., 2017].

Experimental results

The evaluation of co-clustering is generally carried out the basis on benchmarks datastets where only one of the two partitions is known. In the same way we compare VEM-T with competitive (co)-clustering methods. We retain three widely used measures to assess the quality of clustering, namely the accuracy, the Normalized Mutual Information (NMI) [START_REF] Strehl | Cluster ensembles -a knowledge reuse framework for combining multiple partitions[END_REF] and the Adjusted Rand Index (ARI) [Liu et al., 2013b].

We present results on real datasets for three different areas namely recommender systems, multi-spectral images clustering and documents categorization. Through this evaluation, we aim to demonstrate the impact of covariate information on interpretation and improvement of clustering results.

Synthetic datasets and Competitive methods

Before proceeding to evaluate VEM-T on real datasets, we give here two simple illustrative examples. We generated tensor data X according to the Bernoulli and Gaussian TLBM (Algorithm 3) with v = 3. Following each model, we considered two scenarios by varying the centers µ k 's; an example where the co-clusters are well separated and another where the co-clusters are not. The size of each tensor, number of co-clusters and their proportions are reported in Tables 2.2, In our experiments, we compare VEM-T with K-means, Gaussian Mixture Model (EMG M M: EM with the full model, see for instance [START_REF] Fraley | How many clusters? which clustering method? answers via model-based cluster analysis[END_REF]) and VEM for co-clustering applied on each slice [START_REF] Govaert | Fuzzy clustering to estimate the parameters of block mixture models[END_REF]. The NMI metric for rows and columns are computed by averaging on ten random initializations. Thereby, in Tables 2.2 and 2.3 are reported the performances for the three slices obtained by K-means, EMG M M, VEM for data matrix and by VEM-T for tensor data. From these comparisons, we observe that whether the block structure is easy to identify (Examples 1,3) or not (Examples 2,4), the ability of VEM-T to outperform other algorithms that, it should be recalled, act on each slice separately.

Real datasets

We tested the performance and felxibility of the proposed models using tensor real-world datasets. In particular, we focused on binary, continuous and count data, with different applications including Recommender system, Multi-spectral images clustering and Document clustering. The characteristics of these tensor datasets are summarized in table 2.4. 

Recommender system application

To show the benefits of our approach, we use the binary model on Movielens100K which is one of the more popular datasets on the recommender system field. The objective of this study is identifying patterns according to users and movies characteristics. The Movielens100K1 database consists of 100,000 ratings of 943 users and 1682 movies, where each user has rated at least 20 movies. We convert the users-movies rating matrix (943 × 1682) to binary matrix by assigning 0 to the movie without rating and 1 to rated movies. This binary matrix can be considered as viewing matrix, in fact most users rates movies after watching them. Furthermore, Movielens includes 22 user covariates including age, gender, and 21 employment status. The age covariate is used to analyze clustering results and does not take into account in co-clustering. There are also 19 movie covariates related to movie genres, considering that movie may belong to one or more genres. The data structure can be represented as tensor with size 943 × 1682 × 42. The objective of this work is not being to select the number of clusters, then we fixed the number of row clusters g = 2 and the number of column clusters m = 3, based on the works of [START_REF] Vu | Variational algorithms for biclustering models[END_REF]. Figures 2.6 and 2.7a represent the mean vectors µ k and co-clustering of rating matrix respectively. We observe two row clusters, a smaller cluster of 202 users which is more active in reviewing than a second large cluster. On the other hand, we obtain three movies clusters of different sizes 232, 355 and 1,095 respectively. The first cluster represents the most attractive movies. The first row cluster includes three blocks [START_REF] Penga | Tensor clustering via adaptive subspace iteration[END_REF][START_REF] Penga | Tensor clustering via adaptive subspace iteration[END_REF], [START_REF] Penga | Tensor clustering via adaptive subspace iteration[END_REF]2) and [START_REF] Penga | Tensor clustering via adaptive subspace iteration[END_REF]3). The two first ones represent the more active users with a higher proportion of rating. The MovieLens100K dataset includes 29% of female reviews, an important part of them (64%) belong to a first row cluster. In addition, we notice that the top 3 of occupations for users of the first row cluster are a student, educator, and administrator. Thereby, Figure 2.7b shows that 65% of them are quite young and under 31 years of age. However, the two blocks [START_REF] Penga | Tensor clustering via adaptive subspace iteration[END_REF][START_REF] Penga | Tensor clustering via adaptive subspace iteration[END_REF] and [START_REF] Penga | Tensor clustering via adaptive subspace iteration[END_REF]2) are distinguished by movie genres, since the top 3 ones for first and second column clusters are Action-Thriller-Sci-Fi and Comedy-Drama-Romance respectively. Consequently, we can 

Multi-spectral images analysis

The used dataset is composed by 37 multispectral images of prostate cells with 16 bands which have size 512 × 512 pixels. Several studies showed that clustering accuracy increases according bands number [START_REF] Kumar | A survey on image feature descriptors[END_REF]. The four types of multispectral images cells are: Normal cells (Stroma), Benign Hyperplasia (BHp), Interpithelial Neoplasy (PIN) which is a cancer precursory state, and the Carcinoma (CA) which corresponds to a cancer of the abnormal tissue proliferation. The VEM-T algorithm is compared with K-means, EMG M M and VEM. For this, a reduced matrix of tensor data by averaging all bands for each feature provides a Images × Features data matrix used to perform classical clustering. Table 2.5 summarizes the obtained results. For each algorithm, the best result rather than 100 random initial runs are used. Clearly the proposed algorithm achieves best results as regards NMI, ARI and ACC (Accuracy). 

Document categorization

In our experiments, we aim to evaluate VEM-T for contingency tables in terms of clustering leading to measure the impact of mixing different information. Thereby, we compare VEM-T with Spherical K-means, Itcc [START_REF] Dhillon | Information-theoretic co-clustering[END_REF], and VEM-T b applied on each slice (b) of tensor and three other algorithms applied on tensor data namely PARAFAC [START_REF] Kossaifi | Tensorly: Tensor learning in python[END_REF] and GTSC [Wu et al., 2016]. Note that PARAFAC is used with ranks number equals to 10 and followed by K-means. We perform 50 random initializations, and compute the ACC, ARI and NMI metrics by averaging the ten top runs. We use three text datasets DBLP1, DBLP2 and PubMed Diabetes 2 to highlight the objective of the proposed algorithm. DBLP1 and DBLP2 are constructed from DBLP 3 , by selecting three journals for each one. The selected journals for DBLP1 are SIGMOD, STOC, and SIGIR. The journals selected for DBLP2 are Discrete Applied Mathematics, IEEE software, and SIGIR. For PubMed Diabetes dataset the papers are categorized into three types, the first one deals with Diabetes mellitus of type 1, the second with Diabetes mellitus of type 2, and the third with Diabetes mellitus Experimental. 

k = 1 v ∑ v b=1 γ b k .
Interestingly, for DBLP1 and DBLP2, we can see that while the average of diagonal parameters γ [.] kk increases, the value of the parameter γ [.] k where k = , decreases at each iteration. For these two datasets, we have three well-separated clusters on diagonal which explain that γ [.] kk increases perfectly and γ [.] k where k = also decreases perfectly. For PubMed Diabets, the data structure seems more complicated, and then the interpretation of gamma evolution is more complicated. We can see that γ [.] k increases for four blocks and decreases otherwise.

As we have seen CEM-T is a hard version of VEM-T, what is then its behavior in terms of computational time and clustering performance? Thereby, in figure 2.13 we report the comparison between CEM-T and VEM-T with the three datastets. The CEM-T algorithm is faster than VEM-T but in terms of clustering performances (Accuracy, NMI and ARI), we can see that VEM-T is at least equivalent. 

Conclusion

Inspired by the flexibility of the latent block model (LBM), in this chapter we proposed a tensor version of LBM (TLBM). This given rise to new variational EM algorithm for coclustering of different types of data. Empirical results on synthetic and real-world datasetsbinary, continuous, and contingency tables-showed that VEM-T and its hard version CEM-T do a better job than other algorithms devoted to the same task or other algorithms applied on each slice of tensor data. Furthermore, we have shown that VEM-T is efficent for several applications, namely the recommender system, hyperspectral image clustering, and document categorization. More interestingly, our findings open up good opportunities for future research such as the analysis of temporal data or assessing the number of co-clusters.

Chapter 3

Sparse Poisson Tensor Co-clustering

Introduction

Generally, in document clustering, we rely on such matrices where each cell represents the occurrence of a word on a document. However, there is some additional available information like Keywords, co-authors, citations which not taken into account, and it can improve the clustering results. In fact, two documents that have one or more authors in common and/or that quote each other, are likely to deal with the same topic. Incorporating this additional information leads us to consider a tensor representation of the data. Despite the great interest in co-clustering and the tensor representation, few works tackle the co-clustering from tensor data. In fact, a large part of works are devoted mainly to popular factorization approaches such as Tucker-decomposition [START_REF] Tucker | Some mathematical notes on three-mode factor analysis[END_REF] and PARAFAC [START_REF] Harshman | Parafac : parallel factor analysis[END_REF]. We can nevertheless mention the works related to our proposal, such as the work of [START_REF] Banerjee | Model-based overlapping clustering[END_REF] based on Minimum Bregman information (MBI) to find co-clustering of a tensor. Most recently, in [Wu et al., 2016] the General Tensor Spectral Co-clustering (GTSC) method for co-clustering the modes of non-negative tensor has been developed. In [Feizi et al., 2017], the authors proposed a tensor biclustering algorithm able to extract the most important bi-cluster based on spectral decomposition and the obtained eigenvalues and offer an application for microarray analysis. However, the majority of authors consider the same entities, for both sets of rows and columns, or do not consider the tensor co-clustering under a probabilistic approach.

In this work, we offer a generalized model for co-clustering Tensor Sparse PLBM (TSPLBM) dealing with sparse tensor with different mode size. The goal is to simultaneously discover row and column clusters and the relationship between these clusters for all slices. Then a particular case for semi-symmetric tensor (with the same size for the two first mode) is proposed. We illustrate the interest of this model with application to the clustering of multiple graphs. Also, the TSPLBM model for sparse tensor data can be viewed as a multi-way clustering model where each slice of the third dimension of the tensor represents a relation between two sets.

To the best of our knowledge, this is the first attempt to formulate our objective when both sets of first and second modes can be different and with model-based co-clustering. To this end, we rely on the latent block model [START_REF] Govaert | Co-clustering: models, algorithms and applications[END_REF] for its flexibility to consider any data matrices. The key contributions of this work are:

• We first develop a novel TSPLBM model for the co-clustering of sparse tensor data, composed by multiple contingency tables.

• We show the links between Poisson Latent Block Model (PLBM) and the Poisson Stochastic Block Model (PSBM). Then we discuss the strong points of PLBM, PSBM and SPLBM (Sparse Poisson Latent Block Model) in terms of graph clustering.

• We propose a suitable probabilistic model for clustering of multiple graphs, then we derive an EM-type learning algorithm.

• Finally, using the ensemble method, we prove that the proposed algorithm, which can be viewed as an implicit consensus clustering for multiple graphs, is more effective than explicit clustering obtained by consensus clustering methods.

The remainder of this chapter is organized as follows. In Section 3.2, we present a sparse tensor co-clustering model TSPLBM. Section 3.3 reviews Poisson LBM, shows the limits of traditional PSBM, and adapt TSPLBM for multiple graphs. Section 3.4, is devoted to evaluating our approach and demonstrate the strong points of implicit consensus trough TSPLBM and explicit consensus methods. Finally, section 3.5 concludes the chapter and gives some directions for future works.

Sparse Tensor Co-Clustering

In this section, we will detail the Sparse Poisson Latent Block Model (SPLBM) and gives the intuition behind the model and their parameters. After that, we present our extension of SPLBM for tensor data, which is Sparse Tensor PLBM (or STPLBM). The suitable Variational EM algorithm is derived (VEM-ST) and presented at the end of this section.

Sparse Poisson LBM (SPLBM)

Despite the effective parameterization of the Poisson LBM (see sections 2.2.1 and 2.2.2, it remains insufficient because it suffers from sparsity.

Recently, in [Ailem et al., 2017], the authors proposed a generative mixture model for co-clustering document-term matrices referred to as SPLBM. With this model, they assume that for each diagonal block kk the values x ij ∼ Poisson(λ ij ) where

λ ij = x i. x .j ∑ k [z ik w jk ]γ kk or x ij |z ik w jk = 1 ∼ P (x i. x .j γ kk ),
and for each block k with k = , x ij ∼ Poisson(λ ij ) where the parameter λ ij takes the following form:

λ ij = x i. x .j ∑ k, =k [z ik w j ]γ or x ij |z ik w j = 1 ∼ P (x i. x .j γ).
Assuming ∀ = k, γ k = γ leads to suppose that all blocks outside the diagonal share the same parameter. SPLBM has been designed from the ground up to deal with data sparsity problems. As a consequence, in addition to seeking homogeneous blocks, it also filters out homogeneous but noisy ones due to the sparsity of the data. The pdf of SPLBM can be written as follows:

f (X, Ω) = ∑ (Z,W)∈Z ×W ∏ i,k π z ik k ∏ j, ρ w j ∏ i,j,k Φ(x ij ; λ kk ) z ik w jk ∏ i,j,k, =k Φ(x ij ; λ) z ik w jk .
Assuming that the complete data are (X, Z, W), the complete data log-likelihood L C (Z, W, Ω) takes the following form :

log ∏ i,k π z ik k ∏ j, ρ w j ∏ i,j,k e -x i. x .j γ kk (x i. x .j γ kk ) x ij x ij ! z ik w jk ∏ i,j,k, =k e -x i. x .j γ (x i. x .j γ) x ij x ij ! z ik w jk .
To estimate the parameters Ω, Z and W. To this end, a variationnel EM has been proposed [Ailem et al., 2017] to maximize (2.8) where L C ( Z, W, Ω) is the new fuzzy complete-data log-likelihood. Note that plugging the estimation of γ kk 's and γ (explicitly in some terms of L C ) deduced from the maximization step, we obtain

L C (Z, W, Ω) = ∑ i,k zik log π k + ∑ j,k wjk log ρ k + ∑ k x kk log( γ kk γ ) -x k. x .k (γ kk -γ) + N log(γ) -N 2 γ .
Then the computation of z ik , w j and the parameters Ω = (π, ρ, γ kk , γ) can be easily deduced from the derivation L C (Z, W, Ω).

Note that although SPLBM is a co-clustering model, we can derive a graph clustering algorithm from an adjacency matrix (symmetric or not). Thereby, when we are dealing with undirected graphs; strating with the same initialization of z and w (z (0) = w (0) ), we obtain the same row and column clusters, that is essential for the undirected graph clustering problem.

Although PLBM can deal with sparse matrices, SPLBM can be more suitable for sparse matrices (see figure 3.1). It is designed to seek a diagonal block structure and capture the most reliable associations between the rows and columns object clusters. SPLBM assumes that each diagonal block (or co-cluster) is generated according to the Poisson distribution with some specific parameters, and each non-diagonal co-cluster representing noise data is generated according to Poisson distribution with identical parameters.

Tensor Sparse Poisson LBM (TSPLBM)

Tensor LBM (TLBM) is a novel Latent Block Model based on multivariate distribution (see section 3). While the traditional Latent Block Model (LBM for co-clustering) seeks to discover homogeneous blocks modeled by univariate distribution, TLBM can deal with multiview data structured as a three-way tensor.

In this work, we extend the SPLBM to Tensor data leading to Tensor SPLBM (or TSPLBM). The proposed model seeks not only to discover homogeneous tube co-clusters but also discover important blocks and ignore noisy ones. TSPLBM aims to discover a diagonal coclusters structure, which is tubes (trough all slices) from the three-way tensor. It makes it more useful for sparse tensor with high sparsity close to 90%, as shown in the experiments. TSPLM provides a better partitioning than applying the classical co-clustering algorithm on each slice of tensor separately and using a consensus clustering on these independent results. The PDF function of the proposed TSPLBM can be written as follows:

∑ (z,w)∈Z ×W ∏ ik π z ik k ∏ j ρ w j ∏ i,j,k v ∏ b=1 Φ(x b ij ; λ b kk ) z ik w jk ∏ i,j,k, =k v ∏ b=1 Φ(x b ij ; λ b ) z ik w jk .
In the following we propose to extend SPLBM to deal with tensor data. The log-likelihhod of TSPLBM L C ( Z, W, Ω) takes the following form:

∑ i,k zik log π k + ∑ j,k wjk log ρ k + ∑ i,j,k zik wjk v ∑ b=1 log Φ(x b ij ; λ b kk ) + ∑ i,j,k, =k zik wj v ∑ b=1 log Φ(x b ij ; λ b ) . (3.1)
For each block k = 1, . . . , g and each slice b, the x b ij 's are distributed according P (x b i. x b .j γ b kk ) and outside according P (x b i. x b .j γ b ). After some algebraic calculations and simplifications, the log-likelihood expression in equation (3.1) becomes (up a constant)

∑ i,k zik log π k + ∑ j,k wjk log ρ k + ∑ b ∑ k (x b kk log(γ b kk ) -x b k. x b .k γ b kk ) + ∑ b (N b -∑ k x b kk ) log(γ b ) -(N 2 b -∑ k x b k. x b .k )γ b = ∑ i,k zik log π k + ∑ j,k wjk log ρ k + ∑ b ∑ k x b kk log( γ b kk γ b ) -x b k. x b .k (γ b kk -γ b ) + N b (log(γ) -N b γ) ,
where

x b k. = ∑ i zik x b i. , x b .k = ∑ j wjk x b .j , x b kk = ∑ i,j zik wjk x b ij and N b = ∑ i,j x b ij .

Variational EM algorithm

In what follows, we detail the Expectation (E) and Maximization (M) step of the Variational EM algorithm for tensor data. The E-step consists in computing, for all i, j, k the posterior probabilities zik and wjk maximizing F C given the estimated parameters Ω. As ∑ k zik = 1 and ∑ k wjk = 1, using the corresponding Lagrangians, up to terms which are not function of zik and wjk leads to (See Appendix A)

zik ∝ π k exp ∑ j wjk v ∑ b=1 x b ij log( γ b kk γ b ) , wjk ∝ ρ k exp ∑ i zik v ∑ b=1 x b ij log( γ b kk γ b ) .
Given the previously computed posterior probabilities Z and W, the M-step consists in updating , ∀k, the parameters π k , ρ k , γ b kk and γ b maximizing F C ( Z, W, Ω). The estimated parameters are defined as follows. First, taking into account the constraints

∑ k π k = 1 and ∑ k ρ k = 1, it is easy to show that π k = ∑ i zik n and ρ k = ∑ j wjk d .
Secondly, it is easy to derive (See Appendix C)

γ b kk = ∑ i,j zik wjk x b ij ∑ i zik x b i. ∑ j wjk x b .j = x b kk x b k. x b .k
and,

γ b = N b -∑ i,j,k zik wjk x b ij N 2 b -∑ k ∑ i zik x b i. ∑ j wjk x b .j = N b -∑ k x b kk N 2 b -∑ k x b k. x b .k
.

The proposed algorithm for sparse tensor (ST) data, referred to as VEM-ST in Algorithm 6, alternates the two previously described steps Expectation-Maximization. At the convergence, a hard co-clustering is deduced from zik 's and wjk 's using the maximum a posteriori principle.

Algorithm 6: VEM-ST Input: X, g. Initialization (Z, W) randomly, compute Ω repeat E-Step : Compute zik and wjk

• zik ∝ π k exp ∑ j wjk ∑ v b=1 x b ij log( γ b kk γ b ) • wjk ∝ ρ k exp ∑ i zik ∑ v b=1 x b ij log( γ b kk γ b ) M-Step : Update Ω until convergence; return Ω, Z, W

Clustering from Multiple Graphs

Relational data are ubiquitous in various fields (web, biology, neurology, sociology, communication, economics, etc.), and their accessibility has kept increasing in recent years. These data, as a whole, form a network formalized by a graph, where each node is an entity, and each edge is a connection between a pair of nodes; this graph can be directed or not. We find this situation in various scientific publications; the relationships between documents can often be described as multiple graphs with different types of links. In fact, several relationships, such as co-terms, co-authors, co-keywords, and co-references between documents can be used. The objective of this work is to address the clustering of multiple graphs. We could hypothesize that the combination of different information that arises from multiple graphs may improve the clustering results. In fact, two documents which share a number of words and/or have one or more authors in common and/or quote each other, are likely to deal with the same topic. Incorporating this additional information leads us to consider a tensor representation of the data.

To deal with multiple graphs, various models and methods under different approaches are proposed to analyze these networks. In [START_REF] Banerjee | Multi-way clustering on relation graphs[END_REF][START_REF] Tang | Clustering with multiple graphs[END_REF], the authors proposed a multi-way clustering framework for relational data, where different types of entities are simultaneously clustered, based not only on their intrinsic attribute values, but also on the multiple relations between the entities. Other works use a spectral decompositionbased approach relying on the combination of adjacency matrices [START_REF] Tang | Clustering with multiple graphs[END_REF][START_REF] Chen | Block spectral clustering methods for multiple graphs[END_REF][START_REF] Nie | Self-weighted multiview clustering with multiple graphs[END_REF]. In these works, the clustering is not the main objective of the proposed approaches, nevertheless it can be deduced from decomposition results.

On the other hand, one of the most used methods in this context is the Stochastic Block Model (SBM) [START_REF] Nowicki | Estimation and prediction for stochastic blockstructures[END_REF] which is a probabilistic approach. SBM is commonly used for network modeling and discovering the latent community structures from a graph. It provides a statistical approach able to model data matrix, symmetric or not, into homogeneous blocks. This leads to consider SBM [Daudin et al., 2008] as a particular case of the Latent Block Model (LBM) [Govaert and[START_REF] Govaert | Clustering with block mixture models[END_REF]Nadif, 2005] and extended in [START_REF] Shan | Bayesian co-clustering[END_REF]Banerjee, 2008, Govaert and[START_REF] Govaert | Co-clustering: models, algorithms and applications[END_REF], which models any kind of data matrices not necessarily square or symmetric. In other words, the clustering of the graph directed or not, is in fact, a particular case of co-clustering. In this work, we consider graphs represented by adjacency matrices assimilated to contingency tables. Thus, considering the previous example of document clustering, the relations between documents (co-terms, co-authors, etc.) are count data and can be represented by particularly sparse contingency tables. Many works in the literature show the interest of Poisson distribution for graph theory and clustering of random graphs [START_REF] Janson | Poisson convergence and poisson processes with applications to random graphs[END_REF], Daudin et al., 2008].

In this section, we adapt the previously proposed TSPLBM to the clustering of multiple graphs. For this aim, we present a special case of TSPLBM dealing with semi-symmetric tensor (see section 1.3.1).

Our current contribution significantly expands the applicability of the model-based coclustering framework. Specifically, based on LBM, the contribution proposes (a) a novel version of the Poisson SBM (PSBM) for multiple graphs (b) a simultaneous co-clustering of multiple graphs leading to a kind of consensus clustering. Figure 3.2 presents a binary three-way dataset constructed from multiple graphs and the expected results in terms of coclustering. 

Related Work

Although SBM is popular in social networks analysis, dealing with the count data and due to the degree of heterogeneity, the traditional SBM fail to detect relevant clusters of edges to adress community detection problem [START_REF] Qiao | Improving stochastic block models by incorporating power-law degree characteristic[END_REF]. Thereby, several authors have developed a degree-corrected SBM. In [START_REF] Karrer | Stochastic blockmodels and community structure in networks[END_REF], using a Poisson SBM, they introduced a parameter θ i controlling the degree of expected degrees of vertices i. They consider that each x ij with i = j is distributed according to Poisson(θ i θ j δ k ), where δ k is the expected value of the adjacency matrix for the vertices i and j lying in block (k, ) while x ii is distributed according to Poisson( 12 θ 2 i δ kk ). Doing so and under some constraints on the θ i 's, they proposed the DC-SBM (Degree-Corrected SBM) clustering algorithm (DC-SBM 1 ) from an undirected graph on n vertices, possibly including self-edges. Furthermore, they established the equivalence between the maximization of the log-likelihood and the maximization of mutual information used as an objective function for clustering bipartite graphs [START_REF] Dhillon | Information-theoretic co-clustering[END_REF]. It is important to emphasize that the model proposed in [START_REF] Karrer | Stochastic blockmodels and community structure in networks[END_REF] is similar to that proposed by [START_REF] Nadif | Block clustering of contingency table and mixture model[END_REF], where the authors also showed this connection with the maximization of mutual information; they proposed the Croinfo algorithm as illustrated in Figure 3.3. In fact, the objective function maximized by DC-SBM, which can also be used for the co-clustering of an undirected graph, is associated with a constrained Poisson LBM commonly used in the co-clustering context; see e.g.; [Ailem et al., 2017, Ailem et al., 2017]. To sum up, considering DC-SBM which implies that the data are generated according to a Poisson LBM with P (x ij , x i. x .j γ k ) where P (x ij ; λ) = e -λ λ x ij

x ij ! , the proportions of the classes of the nodes are assumed to be equal. In addition, although both algorithms DC-SBM or Croinfo are different, the objective is the same, and the clustering considered is based on an approach similar to that of the traditional hard clustering algorithms; for more detail, the reader can refer to recent works [Govaert andNadif, 2013, 2018].

In our contribution, we structured graphs as three-way data where the clustering is the principal objective. We propose an extension of LBM to tackle the co-clustering of multiple undirected/directed graphs where each cell of the diagonal is not necessarily equal to an even number as conventionally considered in community detection. To do this, we adopt an EMtype approach to refer to the Expectation-Maximization algorithm [Dempster et al., 1977, McLachlan and[START_REF] Mclachlan | Finite Mixture Models[END_REF]) and not Classification EM [START_REF] Celeux | A classification EM algorithm for clustering and two stochastic versions[END_REF]. Furthermore, we will show that this purpose can be viewed as an implicit consensus clustering from Multiple Graphs. 

Poisson Latent and Stochastic Block Models

As we mentioned earlier, Poisson SBM, even DC-SBM, are particular cases of Poisson LBM insofar as the latter can model matrices, symmetric or not, oriented or non-oriented graphs, numbers of row clusters and columns clusters not necessarily equal (g = m) and finally with proportions of clusters equal or not. Therefore the transition from LBM to SBM is easy to show. Thereby, for undirected graph, the maximization of (2.8) leads to maximizing

L C ( Z, Ω) + 2H( Z), which is proportional to ∑ i,k zik log π k + 1 2 ∑ i =j,k = zik wj log P (x ij ; x i. x .j γ k ) + 1 2 ∑ i,k zik log P (x ii ; x i. x i. γ kk ) -∑ i,k
zik log zik .

The main differences between them are a) considering the Poisson SBM, the last term, which concerns the diagonal of X, is skipped and it does not take into account the degree of nodes, unlike LBM which considers the diagonal elements. b) with Poisson LBM, x ij |z ik w j = 1 ∼ P (x i. x .j γ k ), while with SBM x ij |z ik w j = 1 ∼ P (γ k ). Notice that γ k depends only on the block k and not on the margins. Thereby, starting from PLBM, next we will see how to take into account the sparsity often present in the graphs. In Figure 3.4 we report the graphical models of Poisson models discussed in the chapter. To clarify expectations and the impact of this parameterization, On political blogs dataset2 , we applied the clustering algorithms derived from SBM, PLBM, and SPLBM from 30 random initializations and measure the accuracy. Figure 3.5 shows the interest of SPLBM, which takes into account the sparsity often present in a graph network.

The properties of this parameterization prompt us to adopt it for co-clustering. In fact, when i = j we have z ik = w jk and for k = 1, . . . , g we have π k = ρ k . Next, to avoid confusion between all the rows and columns that are identical in our case, we still keep the notations using the z ik 's and w j 's.

x ij z i π λ k PSBM x ij z i θ i θ j δ k DC-PSBM/CroInfo x ij z i π w j ρ x i. x .j γ k PLBM x ij z i π w j ρ x i.
x .j γ kk x i. x .j γ SPLBM FIGURE 3.4: Graphical models: z i is the label of row i, w j is the label of column j. 

TSPLBM with multiple graphs

Our proposal Tensor SPLBM for multiple graphs, considers 3D data matrix X = [x ij ] ∈ R n×n×v where n is the number of nodes, and v the number of graphs (slices). Figure 3.2 presents a tensor data with v graphs. Assuming the independence per graph, the conditional Poisson pdf is given by

n ∏ i,j=1 g ∏ k=1 v ∏ b=1 {P (x ij ; x b i. x b .j γ b k )} z ik w j .
As X is symmetric per slice b, when i = j we have z ik = w jk and for k = 1, . . . , g we have

π k = ρ k , and we have to optimize 1 2 L C ( Z, W, Ω) + H( Z) which takes the following form ∑ i,k zik log π k + 1 2 ∑ i,j,k zik wjk v ∑ b=1 log P (x b ij ; x b i. x b .j γ b kk ) + ∑ i =j,k = zik wj v ∑ b=1 log P (x b ij ; x b i. x b .j γ b ) + H( Z). (3.2)
After some algebraic calculations and simplifications, and considering that

x b k. = ∑ i zik x b i. = ∑ j wjk x b .j = x b .k , x b kk = ∑ i,j zik wjk x b ij , and N b = ∑ i,j x b ij , this leads (up a constant) to : ∑ i,k zik log π k + 1 2 ∑ b ∑ k (x b kk log(γ b kk ) -x b k. x b .k γ b kk ) + 1 2 ∑ b (N b -∑ k x b kk ) log(γ b ) -(N 2 b -∑ k x b k. x b .k )γ b + H( Z) = ∑ i,k zik log π k + H( Z) + 1 2 ∑ b ∑ k x b kk log( γ b kk γ b ) -x b k. x b .k (γ b kk -γ b ) + N b (log(γ b ) -N 2 b γ b ) .

Variational Inference

To estimate the parameters of the model, we rely on the Variational EM algorithm [START_REF] Govaert | An em algorithm for the block mixture model[END_REF], and we extend it to multiple graphs. In the sequel, the proposed algorithm is referred to as TSPLBM.

E-step. It consists in computing, for all i, j, k the posterior probabilities z ik and w jk given the estimated parameters Ω. As ∑ k zik = ∑ k wjk = 1, using the corresponding Lagrangians, up to terms which are not function of zik , leads to (See Appendix ??) M-step. Given the previously computed posterior probabilities Z, the M-step consists in updating, ∀k, the parameters π k , γ b kk and γ b . The estimated parameters are defined as follows. First, taking into account the constraints ∑ k π k = 1, it is easy to show that π k = ∑ i zik n . Secondly, it is easy to obtain for all b, k (See Appendix C)

z(t+1) ik ∝ log π k + 1 2 ∑ j,k z(t) jk v ∑ b=1 P ijb kk + ∑ j =i,k = z(t) j v ∑ b=1 P ijb k , ( 3 
γ b kk = ∑ i,j zik zjk x b ij ∑ i zik x b i. ∑ j zjk x b .j = x b kk [x b k. ] 2 and, γ b = N b -∑ i,j,k zik zjk x b ij N 2 b -∑ k ∑ i zik x b i. ∑ j zjk x b .j = N b -∑ k x b kk N 2 b -∑ k [x b k. ] 2 .
The TSPLBM algorithm (Algorithm 7) for multiple graphs (MG), alternates the two previously described steps Expectation-Maximization. At the convergence, a hard co-clustering is deduced from zik 's using the maximum a posteriori principle.

Algorithm 7: TSPLBM Input: X, g. Initialization: Z (0) randomly and compute

Ω (0) , t = 0 repeat E-Step: Compute z(t+1) ik z(t+1) ik ∝ π k exp ∑ j z(t) jk ∑ v b=1 x b ij log( γ b kk γ b ) M-Step: Update Ω (t+1) = (π (t+1) k , (γ b kk ) (t+1) , (γ b ) (t+1) ) given by π k = ∑ i zik n , γ b kk = x b kk [x b k. ] 2 , and γ b = N b -∑ k x b kk N 2 b -∑ k [x b k. ] 2
until convergence; return Z, Ω

Experiments

In our experiments, we aim to discuss three important questions about (i) The importance of considering multiple graphs simultaneously on clustering results through TSPLBM and comparison with baselines considering one graph each time. (ii) The second point shows how the proposed model can help with the interpretation of the obtained results. (iii) And finally, we made a parallel between the proposed approach and clustering ensemble, and we compare implicit consensus obtained by TSPLBM and the explicit consensus achieved by the clustering ensemble method.

Datasets and evaluation

We use four datasets with a different number of graphs (slices) and clusters. Table 3.1 shows the characteristics of datasets. The computed similarity matrices are converted to adjacency matrices by putting one if the similarity is higher than ninety-seven percent quantile and zero otherwise.

Amazon-products-10 dataset: It is a part of the Amazon-products dataset 5 , composed of product images. We consider ten product categories, namely Beauty, Digital music, Home and kitchen, Office products, Cell phones, Sports and outdoors, Health and personal care, Clothing-Shoes-Jewelry, Patio-garden, and Baby. We constructed seven graphs. The three first one Similarity LBP, Similarity Haralick and Similarity Gabor are constructed based on Low Rank Representation (LRR) method [Liu et al., 2013a] for three different features namely 256-D Local Binary Patterns (LBP), 216-D Haralick features [START_REF] Haralick | Textural features for image classification[END_REF] (considering distances d = 1 . . . 9, orientations θ = [0°, 45°, 90°, 135°]) and 192-D Gabor features [START_REF] Liu | A gabor feature classifier for face recognition[END_REF] (considering scales σ = 1 . . . 4, orientations θ = [0°, 45°, 90°, 135°]). The computed similarity matrices are converted to adjacency matrices by putting one if the similarity is higher than ninety-seven percent quantile and zero otherwise. Co-terms Title and Co-terms Description are adjacency matrices representing the co-terms between the title and description of products, respectively. Finally, Co-viewed and Co-purchased are adjacency matrices Y, where Y ij = 1 means that these two products are viewed (respectively purchased) simultaneously when users make a query. Figure 3.6 shows all graphs (slices) for the Amazon-products-10 dataset. The dataset is composed of seven graphs. We notice that each slice has different structures and different degrees of complexity. Our TSPLBM input is a tensor (Node × Node × Graph) for each dataset DBLP1, DBLP3, Nus-Wide-8, and Amazon-products-10 with different sparsity 0.96, 0.99, 0.83, and 0.98 respectively. 

Algorithm evaluation

What is the impact of considering multiple graphs on clustering results?

We first compare TSPLBM applied on all graphs simultaneously with PSBM, PLBM, SPLBM used on each graph. The goal is to evaluate TSPLBM in terms of clustering with a comparison with the baselines. On the other hand, we aim to measure how the combination of different information through graphs, impacts, and improves results. Note that TSPLBM can be viewed as an ensemble method.

We perform 30 random initializations and compute Accuracy and Normalized Mutual Information (NMI) [START_REF] Strehl | Cluster ensembles -a knowledge reuse framework for combining multiple partitions[END_REF] metrics by averaging all runs. The clustering accuracy noted (ACC) discovers the one-to-one relationship between two partitions and measures the extent to which each cluster contains data points from the corresponding class. However, NMI is based on Mutual Information (MI) and measures the amount of retrieved information considering our knowledge about the clusters and the obtained results by a clustering method while respecting the proportions of clusters.

In Figure 3.7, the performances of the four algorithms PSBM, PLBM, SPLBM, and TSPLBM on the four datasets, are reported. PSBM, PLBM, and SPLBM are applied on each slice (graph) separately. TSPLBM is applied to the tensor considering all graphs simultaneously.

We notice that, in most cases, TSPLBM is better than other algorithms applied to each graph and allows us to achieve the best trade-off. TSPLBM includes all graphs and also the graphs with a very complex structure. DBLP3 obtains the lowest results due to the complex structure of dataset composed of 12K papers with very close or complementary topics on computer science. We observe that PLBM and SPLBM do a better job than PSBM for all datasets on the more informative slices. It is also worth noting that PLBM does good performances in terms of Accuracy on DBLP1 and in terms of NMI on DBLP3. TSPLBM performs a natural consensus when considering all slices and allows us to obtain a unique partition at the end with good clustering results.

How can the proposed model help us in the interpretation of the obtained results?

The objective of this part is to analyze the obtained topics and demonstrate how the proposed model can help and then improve the interpretation of the obtained clusters.

The second analysis that we made is dimensionality reduction of topics-tags matrix using the correspondence analysis method (CA) [Benzecri, 1973, Nenadic and[START_REF] Nenadic | Correspondence analysis in r, with two-and three-dimensional graphics: The ca package[END_REF]. The choice of CA is due to the connection between mutual information and chi-square, which is based in CA, see, e.g., [START_REF] Govaert | Mutual information, phi-squared and model-based co-clustering for contingency tables[END_REF]. The matrix topic-tags Z T M is constructed from image-tags M based on obtained topics (or partition) Z obtained by TSPLBM. In Figure 3.8, are projected the tags and topics on the two first dimensions of CA including the top tags in terms of contribution 6 on the CA results. We can notice that there are some close topics and other very different one. For instance, FIGURE 3.9: Topic-tags frequencies matrix using top CA contributed tags.

topic 3 about weddings is opposed to topics 8 and 6 about snow and temple considering the first and the second dimension respectively. On the other hand, we can see that topics 1 and 2 about plants and animals are close. igure 3.9 presents the tags whose contribution is important. We show the frequencies of each term for each topic. For topics 2 and 5 (pink and purple color respectively), we can see that the four top tags are Nature, Green, Macro, and Flower related to Plants topic and Street, City, Night and Architect related to Town topic.

Based on the Co-tags graph and the obtained topics, we construct a graph of image clusters linked by edges representing the intensity of joint tags between all topics, this can be computed by Z HZ where Z is obtained by TSPLBM, and H is the co-tags matrix (see figure 3.10). We can notice that there are some topics with a strong relationship like plants-snow and town-persons. On the other hand, some topics with a weak link like animals-town and animals-temple. This representation highlights that there are some tags used with confused meaning. In this context, it is possible to use tensor models for tags completion and tags correction [START_REF] Tang | Tri-clustered tensor completion for social-aware image tag refinement[END_REF][START_REF] Veit | Separating self-expression and visual content in hashtag supervision[END_REF].

Implicit consensus VS explicit consensus

In the first part of our experiments, we have observed that TSPLBM applied on all slices simultaneously is, in most cases, better than other algorithms. As we are in an unsupervised context, we have found it helpful to run the calculation with several different random initial conditions and take the best result in terms of maximum log-likelihood, overall runs.

Figure 3.11 shows the 30 performed runs sorted according to Normalized log-likelihood (NL), which is the objective function of TSPLBM. We also draw the ACC and NMI curve according to the 30 runs. We observe that for DBLP1, the best runs leading to maximal NL are the best runs in terms of clustering (ACC and NMI). However, this observation is not noticed in all datasets; for instance, some best runs can achieve less good results in terms of ACC and NMI. This problem is recurrent with all unsupervised methods where the best runs in terms of the objective function are not necessarily the best ones in terms of clustering. On the other hand, we may see the proposed model as an implicit consensus model for graphs The first works about consensus or ensemble classification have emerged in the context of supervised learning; see for instance [START_REF] Maclin | An empirical evaluation of bagging and boosting[END_REF][START_REF] Schapire | The boosting approach to machine learning: An overview[END_REF][START_REF] Dietterich | Ensemble methods in machine learning[END_REF]. However, only the majority voting type algorithms work on the model output level, and the most well-known classification ensembles approaches are based on different variants of voting [START_REF] Bauer | An empirical comparison of voting classification algorithms: Bagging, boosting, and variants[END_REF][START_REF] Crammer | A mixture model for random graphs[END_REF][START_REF] Gao | A graph-based consensus maximization approach for combining multiple supervised and unsupervised models[END_REF]. This approach has been extended to unsupervised learning [START_REF] Strehl | Cluster ensembles -a knowledge reuse framework for combining multiple partitions[END_REF]Ghosh, 2002, Vega-Pons and[START_REF] Vega-Pons | A survey of clustering ensemble algorithms[END_REF]. A clustering ensemble, also known as a consensus clustering or clustering aggregation, is defined in the same manner as for classification [START_REF] Hanczar | Ensemble methods for biclustering tasks[END_REF][START_REF] Alqurashi | Clustering ensemble method[END_REF][START_REF] Yu | Co-clustering ensembles based on multiple relevance measures[END_REF]. It consists in combining multiple clustering models (partitions) into a single consolidated partition. In other words, from r partitions {Z 1 , Z 2 , Z 3 ,. . . , Z r }, a consensus clustering leads to a unique partition Z * . Based on consensus functions, many approaches exist; see for instance [START_REF] Strehl | Cluster ensembles -a knowledge reuse framework for combining multiple partitions[END_REF]Ghosh, 2002, Hanczar and[START_REF] Hanczar | Ensemble methods for biclustering tasks[END_REF] (see figure 3.12).

In [START_REF] Strehl | Cluster ensembles -a knowledge reuse framework for combining multiple partitions[END_REF], the authors introduced three ensemble clustering methods that can produce a consensus partition. All of them consider the consensus problem on a hypergraph representation of the set of partitions. More specifically, each partition is a binary classification matrix (with objects in rows and clusters in columns) where the concatenation of all the set defines the hypergraph. Figure 3.13 presents this matrix and different steps to construct a combination of these different graphs of clusters, emerged from different partitions, to obtain a unique graph. To this end, we rely on the three hypergraph clustering-based approaches proposed by [START_REF] Strehl | Cluster ensembles -a knowledge reuse framework for combining multiple partitions[END_REF], namely CSPA (Clusterbased Similarity Partitioning Algorithm), HGPA (HyperGraph Partitioning Algorithm), and MCLA (Meta-CLustering Algorithm). To improve clustering results of TSPLBM we will adopt the ensemble approach. We explore in the next part, how implicit consensus clustering through TSPLBM behaves compared to explicit consensus through cluster ensembles of multiple graphs. In Figure 3.14, we report the proposed approach to compare TSPLBM with the clustering ensemble methods proposed by [START_REF] Strehl | Cluster ensembles -a knowledge reuse framework for combining multiple partitions[END_REF]. To do this, we used the implementation of python package Cluster_Ensembles7 . It relies on CSPA, HGPA, and MCLA and returns the best results in terms of the mean of NMI between the obtained consensus clustering Z * and the different clustering solutions {Z 1 , Z 2 , Z 3 ,. . . , Z r }. Therebey, with TSPLBM, we select the top ten runs maximizing log-likelihood then we carry out the consensus by using the cluster-ensembles methods. With SPLBM, PLBM, and PSBM, we consider two steps. The first step is the same as that used with TSPLBM to select the top ten runs and apply the cluster-ensembles methods. The second one consists in applying another clustering consensus between graphs to obtain a unique partition. In Figure 3.15 are reported the obtained results in terms of NMI using the comparison approach described above. We can notice that TSPLBM achieves the highest NMI for all datasets. SPLBM does a better or similar job than PLBM on three datasets. Unlike PSBM, which obtains the lowest NMI measures on all datasets. Our approach provides good results and can be used to obtain the most appropriate partition when dealing with multiple graphs. 

Conclusion

It is well known that the traditional Poisson SBM fails to detect relevant clusters of edges, this requires a degree-corrected SBM (DC-SBM). Drawing on this, we first established some connections between Poisson SBM and the corrected version DC-SBM with Poisson LBM commonly used for the co-clustering of contingency tables. We justified the extension of the latter to deal with multiple graphs clustering. To take into account the sparsity of the tensor, we modified the parametrization of the model and proposed a Tensor SPLBM (TSPLBM). We derived, thereby, an EM-like learning algorithm called TSPLBM capable of performing clustering from a tensor data. On real datasets of text and image graphs, we have shown that TSPLBM, is better than the cited baselines algorithms in terms of clustering.

On the other hand, we can note that the proposed TSPLBM algorithm can be seen as an implicit consensus clustering between multiple graphs. To reinforce our idea that TSPLBM can be used in this sense, a comparative study with explicit consensus through ensemble clustering methods was realized. Experiments on several real graphs datasets highlight the effectiveness of TSPLBM. Thereby, this work gives an extra dimension to LBM as an ensemble method.

Finally, we have seen that our approach has made it possible to propose a like-EM learning algorithm. Thus, we can easily develop a like-Classification EM version. To do this, all that is needed is to insert a classification step between E and M steps. This could lead to propose an extension of DC-SBM for multiple graphs.

Chapter 4

Latent Block Regression Model

Introduction

In previous chapters, we have seen the role of unsupervised learning through model-based co-clustering. In the present chapter, we extend the interest of model-based approaches to supervised learning by combining a co-clustering and regression model in a unified framework. This is the objective of the cluster-wise model, which aims to discover clusters and fit a linear model per cluster.

The cluster-wise linear regression algorithm CLR (or Latent Regression Model) is a finite mixture of regressions and one of the most commonly used methods for simultaneous learning and clustering [Späth, 1979, De Sarbo and[START_REF] De Sarbo | A maximum likelihood methodology for clusterwise linear regression[END_REF]. It aims to find clusters of entities such as the overall sum of squared errors from regressions performed over these clusters is minimized. Specifically, X = [x ij ] ∈ R n×d is the covariate matrix and Y ∈ R n×1 the response vector, the cluster-wise method aims to find g clusters C 1 , . . . , C g and regression coefficients β (k) ∈ R d×1 by minimizing the following objective function:

g ∑ k=1 ∑ i∈C k (y i - d ∑ j=1 β (k) j x ij + b k ) 2 where,
• y i is the value of the dependent variable for subject/observation i defined by x i = (x i1 , . . . , x id ),

• x ij is the value of the j-th independent variable for subject/observation i,

• β (k)
j is the j-th coefficient of multiple regression and b k is the intercept.

Various adjustments have been made to this model to improve its performance in terms of clustering and prediction. In our contribution, we propose to embed the co-clustering and regression in the model. Co-clustering, which is a simultaneous clustering of both dimensions of a data matrix, has proven to be more useful than traditional one-sided clustering, especially when dealing with high dimensional data sparse or not, co-clustering turns out to be more beneficial than one-sided clustering [Ailem et al., 2017, Ailem et al., 2017[START_REF] Salah | Social regularized von mises-fisher mixture model for item recommendation[END_REF], even if one is interested in clustering along one dimension only (see section 3.2.1). Thereby, coclustering is the guiding principle of this chapter.

Although co-clustering has become popular in unsupervised learning, few works are devoted to its embedding in supervised learning. We can mention [START_REF] Deodhar | Scoal: A framework for simultaneous co-clustering and learning from complex data[END_REF],

where the authors proposed the SCOAL approach (Simultaneous Co-clustering and Learning model) leading to co-clustering and prediction for binary data; they generalized the model to continuous data. However, this model does not take into account the sparsity of data, in the sense that it does not lead to homogeneous blocks. The obtained results in terms of Mean Square Error (MSE) are good, but in terms of co-clustering (homogeneity of co-clusters), no analysis has been presented. This model is also related to the soft PDLF (Predictive Discrete Latent Factor) model [START_REF] Agarwal | Predictive discrete latent factor models for large scale dyadic data[END_REF], where the value of response y ij 's in each co-cluster is modeled as a sum of β T x ij + δ k where β is a global regression model while δ k is a co-cluster specific offset. More recently, in [START_REF] Vu | Variational algorithms for biclustering models[END_REF] the authors proposed an algorithm taking into account only row covariates information to realize co-clustering and regression simultaneously. To this end, the authors are based on the latent block models [START_REF] Govaert | Block clustering with bernoulli mixture models: Comparison of different approaches[END_REF]. In our contribution, we propose to rely also on this model but by considering both row and column covariates.

The proposed Latent Block Regression Model (LBRM) is an extension of finite mixtures of regression models where the co-clustering is embedded. It allows us to deal with co-clustering and regression simultaneously while taking into account covariates. To estimate the parameters we rely on a Variational Expectation-Maximization algorithm [START_REF] Govaert | An em algorithm for the block mixture model[END_REF] referred to as VEM-LBRM. Figure 4.1 presents an illustration of the VEM-LBRM goal. Taking the recommendation problem as an example, we start from historical data of users' evaluation of items represented by rating matrix, combined with users and items features, for example, u i and m j , respectively. The VEM-LBRM algorithm deals with the co-clustering of users and items simultaneously while leading regression models per block. Figure 4.1 provides an overview of the expected results. Furthermore, the proposed model can be used for other application like microarray analysis or predicting unknown or missing data values.

The remainder of this chapter is organized as follows. Section 4.2 presents a brief description of recommender systems types. Section 4.3 presents the LBRM model from a statistical point of view through a graphical model. Section 4.4 details the proposed VEM-LBRM algorithm. Section 4.5 is devoted to experimental results on synthetic and real-world data sets; also evaluation of VEM-LBRM and comparison with competitive methods are reported. Section 4.6 concludes this chapter and provides some directions for future work. 

Recommendation systems

Recommender systems (RSs) have evolved considerably in recent years. They are used in different fields of application, such as the recommendation of films, books, music, information, and various products. RSs are tools that predict the preferred product (or item) to a user (or customer). The term "Item" is generally used to refer to what we want to recommend to customers. Several recommendation techniques have been developed, to predict the most appropriate items for users (or clients) by addressing the problem of recommendation in different ways [2,13]. The most popular recommendation systems are (see figure 4.2):

• Content-based: It allows us to recommend items that are similar to the ones that the user liked in the past. The similarity between items is computed based on their characteristics and using different similarity measures such as cosine similarity leading to various type of content based recommender systems approaches.

• Collaborative filtering: This is the best-known type of recommendation system. This intuitive and straightforward approach allows us to recommend items that other users, with similar profiles and tastes, liked. The similarity between two users is calculated based on their historical ratings of products. This is why, Collaborative filtering is called "people-to-people correlation."

However, there are few works tackled the problem of hybrid recommendation systems. Hybrid recommendation systems combine content-based and collaborative filtering approaches. They help in addressing the sparsity and cold start issues as well as improve the results of recommendations. The advantage of hybrid approaches consists of using simultaneously, the available information about items, and the history of user-related interactions. In this chapter, we develop a hybrid recommender system through a suitable co-clustering algorithm. This leads to highlight groups of users (through Clustering) having similar profiles, but also to decide if a new item is of interest to the user (through a regression model). Given an n × d data matrix X = (x ij , i ∈ I = {1, . . . , n}; j ∈ J = {1, . . . , d}), and Ω = (π, ρ, λ), the parameter of LBM with π = (π 1 , . . . , π g ) and ρ = (ρ 1 , . . . , ρ m ) where (π k = P(z ik = 1), k = 1, . . . , g), (ρ = P(w j = 1), = 1, . . . , m) are the mixing proportions and λ = (λ k ; k = 1, . . . g, = 1, . . . , m) where λ k is the parameter of the distribution of block k . The complete data log-likelihood of LBM leads to L C (X, Z, W, Ω) which can be written as follows (see section 2.2.1)

g ∑ k=1 z k log π k + m ∑ =1 w log ρ + n ∑ i=1 d ∑ j=1 g ∑ k=1 m ∑ =1 z ik w j log Φ k (x ij ; λ k ).
Note that the complete-data log-likelihood breaks into three terms: the first one depends on proportions of row clusters, the second on proportions of column clusters and the third on the pdf of each block or co-cluster. The objective is then to maximize the function L C (Z, W, Ω).

For co-clustering of continuous data, the Gaussian latent block model can be used. For instance, note that it is easy to show that the minimization of the well-known criterion of

||X -ZµW

T || 2 = g ∑ k=1 m ∑ =1 ∑ i|z ik =1 ∑ j|w j =1 (x ij -µ k ) 2 ,
where Z ∈ {0, 1} n×g , W ∈ {0, 1} d×m and µ ∈ R g×m is associated to Latent block Gaussian model whith λ k = (µ k , σ 2 k ), the proportions of row clusters and column clusters are equal and in addition the variances of blocks are identical [START_REF] Govaert | Co-clustering: models, algorithms and applications[END_REF]. Note that 1) the characteristic of the latent block model is that the rows and the columns are treated symmetrically 2) the estimation of the parameters requires a variational approximation [START_REF] Govaert | An em algorithm for the block mixture model[END_REF][START_REF] Ghosh | Simultaneous (co)-clustering and modeling for large scale data mining[END_REF][START_REF] Vu | Variational algorithms for biclustering models[END_REF]. In the sequel, we will see how can we integrate a regression on co-clustering model.

Latent Block Regression Model (LBRM)

Hereafter, we propose a novel Latent Block Regression Model(LBRM) for co-clustering and learning simultaneously. The model considers the response matrix Y = [y ij ] ∈ R n×d and the tensor covariate data X = [1, x ij ] ∈ R n×d×v where n is the number of rows, d the number of columns, and v the number of covariates. Figure 4.3 presents data structure for the proposed LBRM.

In the following we propose the integration of mixture of regression [START_REF] De Sarbo | A maximum likelihood methodology for clusterwise linear regression[END_REF] per block in the Latent Block model (LBM) considering the distribution Φ(y ij |x ij ; λ k ). We assume in the following the normality of Φ. With LBRM, the parameter Ω is composed of row and column proportions π, ρ respectively, the coefficents of regresssion β = {β 11 , . . . ,

Φ(y ij |x ij ; λ k ) = p(y i,j |x ij , β k , σ k ) = 1 2πσ 2 k exp - 1 2σ 2 k (y ij -β k x ij ) 2 .
β gm } with β k = (β 0 k , β 1 k , . . . , β v k ) where β 0
k represents the intercept of regression and σ = {σ 11 , . . . , σ gm }. The classification loglikelihood can be written :

L C (Z, W, Ω) = ∑ i,k z ik log π k + ∑ j, w j log ρ + ∑ i,j,k, log(Φ(y ij |x ij ; λ k )). (4.1) 
After some simplification, we obtain:

L C (Z, W, Ω) = ∑ i,k z ik log π k + ∑ j, w j log ρ - 1 2 ∑ k, z .k w . log(σ 2 k ) - 1 2σ 2 k ∑ i,j,k, z ik w j (y ij -β k x ij ) 2 , with z .k = ∑ i z ik et w . = ∑ j w j .
The graphical LBM and LBRM are presented in Figure 4.4. In LBRM, we deal with tensor data X and response matrix Y to achieve co-clustering and regression simultaneously. 

x ij z i w j π ρ α n × d x ij y ij z i π w j ρ β σ n × d n × d × v ; g × m

Variational EM algorithm

To estimate Ω, the EM algorithm [START_REF] Dempster | Maximum likelihood from incomplete data via the EM algorithm[END_REF] is a candidate for this task. It maximizes the log-likelihood f (X, Ω) w.r. to Ω iteratively by maximizing the conditional expectation of the complete data log-likelihood L C (Z, W; Ω) w.r. to Ω, given a previous current estimate Ω (c) and the observed data X. Unfortunately, difficulties arise owing to the dependence structure among the variables x ij of the model. To solve this problem an approximation using the [START_REF] Neal | A view of the em algorithm that justifies incremental, sparse, and other variants[END_REF]] interpretation of the EM algorithm can be proposed; see, e.g., [Govaert andNadif, 2005, Govaert and[START_REF] Govaert | Block clustering with bernoulli mixture models: Comparison of different approaches[END_REF]. Hence, the aim is to maximize the following lower bound of the log-likelihood criterion:

F C ( Z, W; Ω) = L C ( Z, W, Ω) + H( Z) + H( W), (4.2) 
where H( Z) = -∑ i,k zik log zik with zik = P(z ik = 1|X), H( W) = -∑ j, wj log wj with wj = P(w j = 1|X), and L C ( Z, W; Ω) is the fuzzy complete data log-likelihood (up to a constant). L C ( Z, W; Ω) is given by

L C ( Z, W, Ω) = ∑ i,k zik log π k + ∑ j, wj log ρ - 1 2 ∑ k, z.k w. log(σ 2 k ) - 1 2σ 2 k ∑ i,j,k, zik wj (y ij -β k x ij ) 2 .
The maximization of F C ( Z, W, Ω) can be reached by realizing the three following optimization: update Z by arg max E-step. The E-step consists in computing, for all i, k, j, the posterior probabilities zik and wj maximizing F C ( Z, W, Ω) given the estimated parameters Ω k . It is easy to show that, the posterior probability zik maximizing F C ( Z, W, Ω) (See Appendix A) is given by:

zik ∝ π k exp ∑ j, wj log p(y ij |x ij , β k , σ k )
In the same manner, the posterior probability wj is given by:

wj ∝ ρ exp ∑ i,k zik log p(y ij |x ij , β k , σ k ) .
M-step Given the previously computed posterior probabilities Z and W, the M-step consists in updating , ∀k, , the parameters of the model π k , ρ , and λ k maximizing F C ( Z, W, Ω). Using the computed quantities from step E, the maximization step (M-step) involves the following closed-form updates.

• Taking into account the constraints ∑ k π k = 1 and ∑ ρ = 1, it is easy to show that

π k = ∑ i zik n = z.k n and ρ = ∑ j wj d = w. d .
• The update of λ k which is formed by (β k , σ k ), can be given by simple derivates of F C ( Z, W, Ω) with respect to β k and σ k respectively (See Appendix D). This leads to

β k = ∑ i,j zik wj y ij x ij ∑ i,j zik wj x ij x ij -1
, and, 

σ 2 k = ∑ i,j zik wj (y ij -β k x ij ) 2 ∑ i,

Experimental results

First, we evaluate the proposed VEM-LBRM on three synthetic datasets in terms of co-clustering and regression. We compare VEM-LBRM with some clustering and regression methods namely Global model which is a single multiple linear regression model performed on all observations and the following algorithms K-means, Clusterwise, Co-clustering and SCOAL. We retain two widely used measures to assess the quality of clustering, namely the Normalized Mutual Information (NMI) [START_REF] Strehl | Cluster ensembles -a knowledge reuse framework for combining multiple partitions[END_REF] and the Adjusted Rand Index (ARI) [Liu et al., 2013b] (see section 1.1.5). On the other hand, we use RMSE (Root MSE) and MAE (Mean Absolute Error) metrics to evaluate the precision of prediction. While RMSE is a loss function which is suitable for Gaussian noises, MAE uses the absolute value which is less sensitive to extreme values or outliers. The expression of RMSE and MAE can be written as follows:

RMSE = 1 |R| ∑ (i,j)∈(I,J) (r ij -rij ) 2 ,
and,

MAE = 1 |R| ∑ (i,j)∈(I,J) r ij -rij .
Secondly, we present the results of VEM-LBRM on a small dataset, as an illustrative example. Finally, we propose to apply VEM-LBRM for recommender systems application, using five real-word datasets. Through this evaluation, we aim to demonstrate the impact of covariates information on interpretation and improvement of clustering and regression results, and the benefit of the joint co-clustering and regression learning .

Simulation study

We generated tensor data X with size 200 × 200 × 2 according to Gaussian model per block.

In the simulation study, we considered three scenarios by varying the regression parameters -the examples are generated with different regression collinearity and different co-clusters structure complexity. The parameters for each example are reported in Tables 4.1. In Figures 4.5 In our illustrations, we consider co-clustering and regression challenges. All metrics concerning rows and columns are computed by averaging on ten random training, and testing data split using an 80% vs. 20% of training and validation data. Thereby, we compare VEM-LBRM with Global model (which is a multiple linear regression), K-means, Clusterwise by reshaping the tensor to matrix with size N × v where N = n × d. On the other hand, the VEM algorithm for co-clustering is applied on response matrix Y. Furthermore, for clustering algorithms, the RMSE, MAE, and R-squared (R 2 Avg.) are computed by applying linear regression on each obtained co-cluster. In Table,4.2 are reported the performances for all algorithms. The missing values '-' represent measures that cannot be computed by the corresponding algorithms. From these comparisons, we observe that whether Mean Absolute Error (MAE) for the test set is 1.31. Noting that the rating scale is from 1 to 9, the MAE value informs us about the generalization capacity of our model. In fact, the obtained error equal to 1.3 in the test phase seems promising and allows us to conclude that our model fails in predicting rates with error, on avarage, of one point.

σ σ = 5 σ = 7 σ = 7 Σ Σ = 1 0 0 1 Σ = 2 0.3 0.3 2 Σ = 1 2 2 1 Co-clusters β k µ k β k µ k β k µ k Cluster (1,1)
On the other hand, we plot in figure 4.8 the mean of attributes vector for each co-clusters (consumer/strawberry type). We find 3 clusters of strawberry cultivars and 3 clusters of consumers. The strawberry clusters highlight that Yvahé, Yurí has a similar characteristic with irregular shape and sour strawberries. Festival, L20.1, and K31.5 belong to the same cluster and characterized by firm texture and tasteless. Finally, Guenoa is a particular strawberry type with some specific characteristics such as a high value of Jucy and red color attributes (with more than 70%), and high sweet (more than 45% of a consumer).

Recommender system application

To show the benefits of our approach, we select five popular real-world datasets for recommender systems, namely Movielens100K, FilmTrust, Yahoo! Movies, Yahoo! Music and Jester.

• Movielens100K2 . The Movielens100k database consists of 100,000 ratings of 943 users and 1682 movies (from 1 to 5). Each user has rated at least 20 movies, then we construct users-movies rating matrix (943 × 1682) and assign 0 to movie without rating. Furthermore Movielens100K dataset includes 23 user covariates including age, gender and 21 employment status. Furthermore, we have in our disposal 19 covariates related to movie genres, considering that movie may belong to one or more genres.

• FilmTrust3 . This rating dataset is obtained from the FilmTrust website. Unlike the Movielens100K datasets, the covariates about users and items are not available.

• Yahoo! Movies4 . This dataset is developed by Yahoo! Research for research on classification and recommender systems. It contains 7,642 users and 11,915 movies.

Only the users and movies with more than 20 interactions are selected. Similar to FilmTrust the covariates about users and items are not available.

• Yahoo! Music 4 . Yahoo! Music dataset contains rating data of 15,400 users and 1,000 songs. Likewise Yahoo! Movies dataset, we include only users and movies with more than 20 interactions.

• Jester5 . The Jester dataset was built from online jokes recommender system. The ratings data contains 24,983 users and 100 jokes. Each user rated no less than 36 jokes.

Movielens100K is the only dataset with available user and item covariates. For other datasets, six features derived from the data matrix Y were used. The features represented user covariates are:

• Number of items rated by each user.

• Average of the ratings given by each user.

• Variance of the ratings given by each user.

On the other hand, the features represented item covariates are:

• Number of users that rated each item.

• Average of the ratings obtained from each item.

• Variance of the ratings obtained from each item.

Table 4.3 provides some information about the five datasets, namely the number of users and items, the number and scale of ratings, rating matrix density, and the number of covariates. Ratings-scale [1,5] [0.5,4] [1,5] [1,5] [-10,10] From these datasets, we aim to measure the impact of covariates on improving prediction results. The average of RMSE, MAE and R 2 for various algorithms are computed using a 5-fold cross-validation method. We use the same number of row and column clusters for the all datasets; g = m = 4. Further, we use the Recall@k, Precision@k, and F-measure@k measures to evaluate the proposed algorithm in terms of recommendation; k is the number of top items in the recommendation list.

• Precision@k:For each user the Precision@k denotes the proportion of good items in his/her top-k recommendation list. To evaluate an entire CF system we compute the average Precision@k over all users.

• Recall@k:The Recall@k for a user is the proportion of good items, in the user's top-k recommendation list, from the number of relevant held-out items for that user. As for the above measures, we can compute the average Recall@k over all users to evaluate an entire model.

• F-measure@k:The F-measure@k combines both Precision@k and Recall@k into a single measure to find a trade off. The F-measure@k can be computed as a harmonic mean of recall and precision measures:

F -measure@k = Recall@k × Precision@k Recall@k + Precision@k
To evaluate recommendation results, We use the most popular k values to compute Precision@k, Recall@k, namely k equals to 3, 5, and 10.

In figure 4.9, we show the reorganization of rating matrix for all datasets using the clustering results obtained by VEM-LBRM. We can see that the proposed algorithm tend to find homogeneous block. What is the impact of covariates on regression results? The objective of this part, is to show the impact of covariates on improving the prediction results. In fact, we use the five datasets, an we apply the proposed algorithm VEM-LBRM, with user and items covariates separately and also considering both covariates. In table 4.4, we report the obtained results in terms of RMSE and MAE of training and test sets. We also compute the R 2 Avg. for regression models.

In most cases, VEM-LBRM using only user's covariates, obtained better results than using item's covariates. This allows us to support the assumption6 presented in [START_REF] Ricci | Introduction to Recommender Systems Handbook[END_REF], where the authors explain that user-based model, are more effective than item-based model for datasets with a small number of users (almost equal to number of items).

Also, we can see that using both covariates of users and items simultaneously, allow us to achieve the lower RMSE and MAE errors and higher R 2 Avg. This support our assumption, in fact, co-cluster of users having same profiles and interested by same item's types have the same rating behaviors. How does VEM-LBRM improve the precision of the recommendation? In this second part of experimentation, we evaluate VEM-LBRM in terms of recommendation performances. We compare VEM-LBRM with co-clustering and NMF algorithms. In figures 4.10 and 4.11, we report recommendation results through Recall@k, Precision@k, and F-measure@k for NMF, co-clustering, and VEM-LBRM. We use the implementation of NMF and co-clustering available on Surprise7 package. In terms of precision and recall measures, VEM-LBRM does, in almost all cases, a better job than NMF and co-clustering for all datasets. 

Conclusion

In this chapter, we proposed an extension of LBM to tensor data, aiming both tasks: coclustering and prediction. The proposed model refereed to as LBRM gives rise to a variational EM algorithm for co-clustering and prediction referred to as VEM-LBRM. This algorithm, which can be viewed as a co-clusterwise algorithm, can easily deal with sparse data. Empirical results on synthetic and real-world datasets show that VEM-LBRM gives encouraging results than some algorithms devoted to one or both tasks simultaneously. Furthermore, we evaluated VEM-LBRM in terms of recommendation performances using various measures such as Recall@k, Precision@k, and F-measure@k. We notice that VEM-LBRM improves the results of recommendation in most cases.

It is a known fact that multiple linear regression suffers from the over-fitting and multicollinearity. In the literature, several variants of regression were proposed to overcome these drawbacks. Ridge and Lasso's regressions, for example, are simple techniques to handle with collinearity, prevent over-fitting, and deal with outliers. Their integration in LBRM can be a good way to deal with very sparse datasets containing collinear covariates.

Chapter 5

Using Tensor Analysis for Original Applications

This chapter is dedicated to evaluate our algorithms and demonstrate the strong points of proposed approaches on real-world applications. In section 5.1, as part of CIFRE thesis, we focus on waste management applications; the aim is to show the advantages of the proposed algorithms and their capacity in improving recommendations and optimizations of waste management. Furthermore, in section 5.2, we are going to apply some of these algorithms for the EGC challenge to analyze the evolution of the EGC conference. The obtained results for all applications will be presented and interpreted.

Waste management applications

In the past two decades, France has been engaged in the challenge of transition to a circular economy model, a necessary action for ecological development. Given the limited resources of our planet's ecosystem, it is essential to quit the linear model of "take-makeconsume-throw" and progress towards a circular economy. This implies curbing land-filling and promoting recycling, reuse, and re-manufacturing [START_REF] Bourguignon | Turning waste into a resource moving towards a 'circular economy[END_REF].

Five tonnes of waste per capita are generated every year in the European Union (EU), mostly from the construction and mining sectors. Thus, waste management can have adverse effects on the environment, climate, and human health. In 2016, total waste production in France amounted to 323.4 million tonnes. Few data are available on the cost of waste management. Data from the French Ministry for Ecology estimate that, in 2010, the total cost of waste management in France was C377/tonne. The French agency for environment and energy (ADEME) shows varying average net costs of treatment depending on treatment method: C180/tonne to landfill residual municipal waste, C203/tonne to incinerate residual municipal waste and C343/tonne to treat recyclable waste [START_REF] Bourguignon | Understanding waste management policy challenges and opportunities[END_REF].

In France, the transition project was implemented by the Energy Transition Law (loi de transition énergétique pour la croissance verte) and was reaffirmed by the plan of reducing and enhancing waste energy costs by 2025, published in December 2016. Therefore, the recent roadmap for the circular economy (FREC 1 ) announced the modernization of the legislation providing an adaptation to the challenge of circular economy transition. In fact, in 2016, the French government passed a law known as 5 flux obliging companies and businesses to sort their waste into at least five different waste types (paper/cardboard, metal, plastic, glass, and wood). Also, the TGAP (Taxe Générale sur les Activités Polluantes) tax is paid by companies and industries producing large quantities of waste (construction, retail, etc.). The law provides that the TGAP would increase to C54/tonne for landfilling waste until reaching a cost of C65/tonne in 2025. The incineration TGAP would increase to C20/tonne in 2021, and up to C25 in 2025 [START_REF] Turchet | Tgap dÉchets : Le gouvernement propose une rÉforme ambitieuse dans le projet de loi de finances pour 2019[END_REF].

Artificial intelligence (AI) and digital innovation are paving the way for a new generation of sorting centers. Currently, in France, robots allow more than 60% of waste sorting per hour comparing to a human being. The implementation of such type of intelligent sorting robot, equipped with learning mechanisms for recognizing the different waste types, represents a significant challenge on which recycling centers rely-noting that digital and technological innovations are profitable for other domains of energy and environment sector.

Data science and data analysis are becoming essential tools for optimizing waste management. The deployment of sensors is gradually generalizing the concept of "connected bin". It allows us to collect a significant amount of data or "big data" in real-time, such as the rate of filling of bins, composition of waste, and waste quantity, which can help to optimize the management of the waste collection and improve sorting performance.

Trinov is a young innovative company that fits in this context and combines two areas of expertise: the first on waste management, and the second in information technology, data mining, and machine learning algorithms. As both a consultant and a technology provider, Trinov has the ambition to become a key player in waste management by creating solutions, tools, and intelligent algorithms for optimizing waste management. Aiming to develop highperformance decision support tools for waste management, Trinov developed a set of tools for collecting and analyzing data. These tools provide quantitative and qualitative data (volume of waste production, the type of waste containers, geolocation data, etc.) using connected objects and data provided by the waste operators. The objective of this thesis is to propose models of optimization and recommendation adapted to customers, and that ensures the improvement of waste management, including different tasks such as the optimization of waste collection, the recommendation of waste containers' type, the estimation of the number of waste collections, etc.

To this end, three projects related to waste management were developed. The first one is about the optimization of waste collection number and the recommendation of containers' type. This issue was developed for retails but also for other sectors such as hospitals, public transportation companies, etc. The aim is to create a high-performance recommendation system that allows us to predict the number of collections per month and provide recommendations about the container's type. The purpose of these recommendations is to minimize waste management costs. The second project concerns waste collection. We propose efficient waste collection algorithms combining TSPLBM and genetic algorithm to optimize waste collection and significantly reduce costs. The last work is about the markdown analysis. Actually, a markdown in retails is a group of products that are broken, outdated, stolen, not suitable for consumption, etc. The objective of this part is to analyze the markdown behaviors considering stores, product categories and causes.

Analysis of EGC conference evolution

The EGC conference is one of the most popular French conferences attracting a large number of researchers each year. For the 20th edition, the conference proposed a challenge 4 for analyzing and predicting the evolution of the conference since 2001.

In the sequel, we propose a multi-dimensional analysis from different data sources (see figure 5.10) to extract relevant information. To do this, we first performed a data preprocessing and constructed three-way tensors, allowing us to combine different information. The three main contributions of this work are (i) the extraction of the topics from the papers published in the EGC conference and the analysis of the temporal aspect of topic evolution (ii), the analysis of authors' communities, (iii) the recommendation of reviewers for the lecture committee. 

Data preprocessing and description

To analyze the history of the EGC conference, we have at our disposal the list of all papers, its contents, and the PDF version of all papers. We performed a data preprocessing and selected the most relevant variables for our study. An exogenous data was also introduced to help us with the interpretation of results.

Papers and their content

After the preprocessing phase, we extracted a set of relevant information:

• Titles of papers.

• Abstract of papers.

• Authors list for each paper.

• The affiliation of authors.

• The list of references cited by each paper, extracted from the PDF version of papers.

In this study, we focus only on the papers without missing data (ie, 1096 papers). Several data matrices have been constructed:

• Let T be a documents-terms matrix based on the titles of papers (documents); each cell T [i, j] represents the occurrence of the word j in the paper i.

• Let R be a documents-terms matrix based on the abstracts of papers, it is constructed in the same way as the matrix T .

• Let A be a documents-authors matrix; each cell A[i, j] is equal to 1 if j is author of paper i, and 0 otherwise.

• Let F be a documents-references matrix; each cell F [i, j] is equal to 1 if the reference j has been quoted in the paper i, and 0 otherwise.

• Let H be a authors-affiliations matrix; each cell H[i, j] is equal to 1 if the author i belongs to the institution j, and 0 otherwise.

• Let B = A T T be a authors-terms matrix constructed from the binarized matrix T and A; each cell B[i, j] represents the number of times that the term j was used by the author i.

Exogenous data extracted from the Web

We extracted information using the DBLP API. We consider all the information regarding previous publications for all authors, including titles of their publications. To enrich our analysis of authors' communities, the sex variable of authors was scraped from the web.

Topic modeling of papers

In order to analyze the topics, we have built four graphs representing different relationships between documents:

1. The co-terms title matrix is constructed from the binarized documents-terms matrix of titles and is computed by T T T .

2. The co-terms abstract matrix is constructed in the same way as the matrix of the coterms title but from the matrix documents-terms of the abstracts such as RR T .

3. The co-authors matrix is constructed from the documents-authors matrix representing the number of similar authors who contributed to the paper by computing AA T .

4. The co-references matrix is constructed from documents-references matrix F , where each cell represents the number of references in common between two papers. This matrix is obtained by F F T .

Using these four relationships between papers, we construct the Papers × Papers × Relationships tensor, with size 1096 × 1096 × 4. Then, we applied the TSPLBM algorithm on this tenor using a number of clusters equals to 8 based on the modularity measure. Figure 5.11 represents the reorganization of nodes of the four graphs using the partitioning obtained by TSPLBM. What are the characteristics describing the discovered topics? From the obtained document clusters (topics), and using the T documents-terms matrices and the A documentsauthors matrix, we constructed the D topics-terms and G topics-authors matrices respectively. The topics-terms matrix represents the number of times that the term has been mentioned in the topic. The topics-authors matrix reports the number of papers that an author has published in this topic.

We applied a correspondence analysis (CA) [START_REF] Benzecri | L'analyse des données, tome 2 : l'analyse des correspondances[END_REF] on the topic-term and topics-authors matrices. The choice of visualization by CA is justified by the Poissonian model of latent blocks; for more details, see [START_REF] Govaert | Mutual information, phi-squared and model-based co-clustering for contingency tables[END_REF]. The obtained results are illustrated in the figure 5.12 (respectively 5.13). The strong point of TSPLBM is its ability to represent objects (papers) using multiple views (terms, authors, references). Figure 5.14 presents the frequencies of terms for each cluster of documents (topic). We can describe the eight topics as follows:

• Topic 1: Unsupervised learning approaches.

• Topic 2: Supervised/Unsupervised learning methods and all issues related to machine learning.

• Topic 3: Knowledge extraction.

• Topic 4: Graph knowledge bases and ontologies.

• Topic 5: Association rules.

• Topic 6: Semantic Web.

• Topic 7: Patterns extraction.

• Topic 8: Data mining, with a majority of English papers. Noting that this topic is most distinguished from others in figure 5.12.

In figure 5.13, we can observe that each topic is characterized by group of researchers who contribute significantly on this topic in EGC conference. For topic 2 dealing with machine learning, we observe authors like Vincent Lemaire, Marc Boulle. For topic 7 dealing with patterns detection, we observe authors such as Marc Plantvit and Céline Robardet. Finally, topic 4 dealing with association rules is illustrated by authors such as Florence Sedges, Marc Le Goc, and Philippe Bouché. How the topics evolve over time? We propose to study the evolution of the 8 previously extracted topics. For this, we calculate the number of papers according to topics and years. Figure 5.15 shows the evolution of the number of publications per topic and year. We have selected three topics namely topic 2, topic 4, and topic 8, which have different evolution behavior according to the time. We can notice that topic 2 does not follow a trend, but it is characterized by two peaks in 2008 and 2014, while topic 4 has a tendency decreasing. Finally, topic 8 represents English-language papers with a growing trend until 2016, which can be explained by an increase of non-Francophone researchers from 2001 to 2016. 

Analysis of authors' communities

In order to analyze the author's communities, we have constructed several graphs representing different relationships between authors. We considered 816 authors for whom we were able to recover the affiliation. The constructed graphs are:

1. The co-terms matrix is constructed from the binarized authors-terms matrix and is computed by BB T . It represents the number of terms commonly used by two authors.

2. The co-authors matrix is constructed from the documents-authors matrix by calculating A T A. It represents the number of papers that two authors jointly drafted.

3. The co-affiliations matrix is constructed from the authors-affiliations matrix by calculating HH T , where each cell equal to 1 indicates that two authors belong to the same institution, and 0 otherwise.

4. The co-topics matrix is constructed from the topics-authors matrix and computed by GG T , where each cell equal to 1 indicates that two authors work on the same topics, and 0 otherwise. Using these four relationships between authors, we construct the Authors × Authors × Relationships tensor, with size 826 × 826 × 4. Then, we applied the TSPLBM algorithm on this tenor using a number of clusters equals to 5 based on the modularity measure. The figure 5.16 represents the reorganization of the nodes of the four graphs using the partitioning obtained by TSPLBM.

How can interpret the communities of authors ? The proposed TSPLBM makes it possible to combine multiple information and thus simplify the interpretation of results. We built the topics-affiliations matrix and applied CA on this matrix. The figure 5.17 displays the results of CA, representing the different communities of authors as well as the affiliations that contribute the most. We can notice that community 1 mainly represents foreign researchers with domain names such as @nac.ac.uk, @unicampania.it, and @uni-konstonz.de. Are there communities of authors which stand out in terms of gender parity? We computed the male-female proportion for each community of authors. The aim is to appreciate the sex-ratio and the gender parity level in the different communities. Figure 5.18 shows the male-female proportion for the five authors' communities. It appears that all communities have almost the same proportion of men, 78-80%, and women 20-22%. 

Conclusion

In this chapter, we presented tow challenging applications using tensor models. The first part was dedicated to the optimization of waste management. In fact, we applied the VEM-LBRM algorithm for the recommendation of collection's number and the waste containers' type. In the second part, we used TSPLBM for store clustering as the first step for the optimization of route collection. Finally, we used VEM-T for markdown analysis. The obtained results showed that our algorithms are efficient for these tasks.

In the second part, we applied TSPLBM to analyze the data of the EGC conference. Thus, tensor analysis of documents and authors allowed us to extract 8 topics and 5 authors' communities, respectively. We analyzed and described the topics using the extracted terms from titles, abstracts, and the authors whom contributed significantly. Similarly, authors' communities were analyzed using affiliations and exogenous variables such as the authors' sex. Finally, we presented a recommendation system of reviewers in order to compose the lecture committee. The obtained results highlight the relevance of the obtained recommendations.

Conclusion and Perspectives

Through this thesis, we have tackled the problem of three-way tensor co-clustering. We developed a class of models and algorithms tailored to the co-clustering of tensor data. The proposed algorithms are derived from the latent block models (LBM), which is suitable for different kinds of data, namely continuous and binary data, as well as contingency tables. Our focus on the above modeling assumption is motivated mainly by the adaptation of models to three-way tensor data that emerged from high dimensional datasets. We also focus on sparsity problem raising from the tensor structure using in several applications such as text-mining and recommender systems. Although various proposed tensor co-clustering techniques have been proven to be useful in this context, these latter are still severely challenged by the inherent characteristics of tensor data, namely the extreme sparsity, and high dimensionality. Thereby, the major contributions and results of this thesis can be summarized as follows:

• In chapter 2, inspired by the Latent Block Model (LBM), we proposed a novel Tensor LBM (or TLBM) designed from the ground up to deal with three-way data, instead of relying on factorization approaches, which main focus is not clustering. Our study showed that the proposed TLBM allows handling a three-way tensor effectively, considering different kinds of data (continuous, binary, and contingency tables) referred to as. The TLBM model is beneficial from several perspectives: it is parsimonious, allows us to make precise assumptions, and gives rise to various co-clustering algorithms, including hard and soft variants. Our proposal is both straightforward and more effective than a variety of other clustering and co-clustering techniques devoted to the same tasks. It proved its effectiveness in several applications, namely the recommender system, hyperspectral image clustering, and document categorization.

• In chapter 3, we described a novel probabilistic model, denoted as Tensor Sparse Poisson Latent Block Model (TSPLBM). TSPLBM is based on SPLBM and designed to deal with the sparsity and high dimensionality of tensor data. Further, it is parsimonious, leads to effective co-clustering of multiple graphs, and can be viewed as an implicit consensus graph clustering. In addition, to evaluate the performance of the proposed TSPLBM algorithm in terms of consensus, we provided a detailed comparison with traditional consensus clustering approaches, This experimentation reveals the advantages of the implicit consensus obtained by TSPLBM comparing to traditional consensus.

• In chapter 4, In this chapter, we proposed a novel model for co-clustering and prediction, which can be viewed as a co-clusterwise model combining simultaneously unsupervised and supervised learning. As we consider the challenge of recommender systems, the proposed model refereed to as Latent Block Regression Model (LBRM) is based on the realistic assumption that users who have the same profiles (age category, sex, occupation, etc.) tend to share similar tastes. Thereby, in this spirit, we proposed the VEM-LBRM algorithm, which simultaneously seeks for groups of users having similar profiles, and items with similar characteristics to predict ratings. On synthetic and real-world datasets, that include both covariates (of users and items), the proposed algorithm demonstrates its advantages and the interest of including information about users and items.

In previous chapters, we have evaluated all of the proposed algorithms with some datasets commonly used in the unsupervised learning community to study the performances of a clustering method. Chapter 5 has been devoted to real applications. First, we have shown the usefulness of the proposed models in the waste management field, where a lot of information about customers and waste production are available. Thereby, we offered a recommendation system using the proposed VEM-LBRM co-clustering algorithm. Moreover, we used TSPLBM for store clustering as the first step for the optimization of waste collection routes. Also, we used the VEM-T algorithm for markdown analysis. The obtained results showed the effectiveness of our proposal for the optimization of waste management. Secondly, we have applied TSPLBM in the context of the EGC Conference Challenge. The derived algorithms were successfully used to discover topics from published papers and also authors' communities. These results lead to developing a recommender system for composing the lecture committee. The obtained results enable a better understanding of the dynamic of the EGC conference.

The studies presented in this thesis motivate further issues that we intend to investigate:

• In the model selection context, the criteria such as AIC [START_REF] Akaike | Information theory and an extension of the maximum likelihood principle[END_REF], BIC [START_REF] Schwarz | Estimating the dimension of a model[END_REF], or ICL [START_REF] Biernacki | Assessing a mixture model for clustering with the integrated completed likelihood[END_REF]] can be adapted. An extension of some researches performed in co-clustering [START_REF] Vu | Variational algorithms for biclustering models[END_REF]) should be interesting to this end. Noting that assessing the number of co-clusters is no considered in this thesis and could be dealt with these criteria.

• With the three-way tensor datasets considered in the thesis, the dimension of the third mode is not high (between 3 and 42 slices). In certain situations, this dimension can be higher, and a tri-clustering could be more beneficial than co-clustering to extract relevant tri-clusters.

• In the mixture model, it is easy to show that some classical dissimilarity measures are associated to probability distributions. Hence, it would be interesting to study possible connections between the tensor factorization methods and TLBM.

Appendix B

Estimation of TLBM's Parameters

For more clarity, we can decompose the TLBM log-likelihood function as follows:

L C = L C ( Z, W, Ω) = ∑ j wj log(ρ ) + ∑ ik zik log(π k ) + ∑ k L k C
where L k C depends on probability distribution function per block. Howsever, it can be, also, depends on slice b of the tensor. The log-likelihood can be expressed as follows: Applying the derivative and using logarithm propriety derivation log(x) = 1

L C = L C ( Z,
x , we obtain:

∑ i,j z ik w j - 1 1 -µ b k + x b ij µ b k + x b ij 1 -µ b k = ∑ i,j z ik w j x b ij µ b k - 1 -x b ij 1 -µ b k = 0.
After some simplifications: ) -

(y ij -β k x ij ) 2 σ 2 k } ∂β k = ∂ ∑ i,j -zik wj 2 (y ij -β k x ij ) σ 2 k -1 (y ij -β k x ij ) ∂β k = ∂{∑ i,j -zik wj 2 -y ij σ 2 k -1 β k x ij -x ij β k σ 2 k -1 y ij + x ij β k σ 2 k -1 β k x ij } ∂β k
Using trace properties: 

∂L k C ∂β k = ∂{∑ i,j
∑ i,j zik wj 2 σ 2 k -1 y ij x ij + σ 2 k -1 y ij x ij -σ 2 k -1 β k x ij x ij + σ 2 k -1 β k x ij x ij = 0
Finally:

β k = ∑ i,j zik w j y ij x ij ∑ i,j zik w j x ij x ij -1
D.2 Estimation of the σ 2 k parameter

Considering a Poisson TLBM, the σ 2 k parameter can be obtained from the following derivatives:

∂L k C ∂σ 2 k -1 = ∂{∑ i,j zik wj 2 log(σ 2 k -1 ) - (y ij -β k x ij ) 2 σ 2 k } ∂σ 2 k -1
Using logarithm properties:log(x) = log(x -1 ), we obtain:

∂L k C ∂σ 2 k -1 = ∂{∑ i,j 1 2 zik w j log(σ 2 k -1 ) -σ 2 k -1 (y ij -β k x ij ) 2 } ∂σ 2 k -1
Taking the derivative:

1 2 ∑ i,j zik w j (σ 2 k -1 ) -1 -(y ij -β k x ij ) 2 = 0 ∑ i,j zik w j (σ 2 k ) -∑ i,j zik w j (y ij -β k x ij ) 2 = 0 σ 2 k =
∑ i,j zik w j (y ijβ k x ij ) 2 ∑ i,j z ik w j
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  Algorithm 2: LBVEM Input: X, g, m. Initialization (Z, W) randomly, compute Ω repeat repeat • E-step : Compute zik • M-step : Compute the parameters of the model Ω until convergence; repeat • E-step : Compute wj • M-step : Compute the parameters of the model Ω until convergence; until convergence; return Z, W, Ω

  When we consider Poisson TLBM, we have seen that the computation of γb = { γk |k = 1, . . . , g; = 1, . . . , m; b = 1, . . . , v} maximizing L C leads to γb k =

  arg max k zik ∀k = 1, . . . , g • Compute w j = arg max wj ∀ = 1, . . . , m M-Step: Update Ω until convergence; return Z, W, Ω Then plugging γb k in (2.7), the complete data log-likelihood L C (Z, W, γ) becomes L C (Z, W, γ) where N a = ∑ i,j x b ij . The distribution that can be associated to z and w is the distribution defined by p b k = x b k N b for all b, k, . The row and column margins are respectively defined by p
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  b kk ) and with k = , P ijb k = log P (x b ij ; x b i. x b .j γ b ).The update of z(t+1) ik is described in Appendix, and z(t) ik represents the value of zik in the previous iteration (t).

FIGURE 3 .

 3 FIGURE 3.6: Amazon-products-10 dataset.

FIGURE 3 . 7 :

 37 FIGURE 3.7: Comparison in terms of Accuracy and NMI for all datasets with PSBM, PLBM, SPLBM and TSPLBM.

FIGURE 3 .

 3 FIGURE 3.8: CA applied on topic-tags matrix.

FIGURE 3 .FIGURE 3 .

 33 FIGURE 3.10: Co-tags graph of Nus-Wide-8.

FIGURE 3 .

 3 FIGURE 3.12: Consensus clustering.

FIGURE 3 .

 3 FIGURE 3.13: Graphs clustering similarity.

FIGURE 3 . 14 :

 314 FIGURE 3.14: Comparison approach.

FIGURE 3 .

 3 FIGURE 3.15: Consensus based NMI comparison. 

FIGURE 4 . 1 :

 41 FIGURE 4.1: General VEM-LBRM algorithm operation.

FIGURE 4 . 2 :

 42 FIGURE 4.2: Recommendation techniques.

4. 3

 3 From Clusterwise regression to co-clusterwise regression 

FIGURE 4 . 3 :

 43 FIGURE 4.3: Data representation for proposed model.

FIGURE 4 . 4 :
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  ( Z, W, Ω), update W by arg max W F C ( Z, W, Ω) and update Ω by arg max Ω F C ( Z, W, Ω). In what follows, we detail the Expectation (E) and Maximization (M) step of the Variational EM algorithm for tensor data.
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 1 Estimation of the µ k and Σ k ∀k, parameters of Gaussian TLBM Considering a Gaussian TLBM, the µ k and Σ k parameters can be obtained from the follow-zik wj (x ijµ k ) Σ -1 k (x ijµ k ),with z.k = ∑ i zik and w. = ∑ j wj . The following formulas involving the vector-by-vector (x) and matrix-by-matrix (M) derivates.zik wj Σ -1 k (x ijµ k ) x ijµ k )(x ijµ k ) (Σ -1 k ) .The two partial derivatives set to 0 lead to μk = ∑ i,j zik wj x ij ∑ i,j zik wj ,andΣk = ∑ i,j zik wj (x ijµ k )(x ijµ k ) ∑ i,j zik wj . B.2 Estimation of the µ b k 's of Bernoulli TLBM Considering a Bernoulli TLBM, the µ b k parameter can be obtained from the following derivatives: ,j z ik w j log(1µ b k ) + x b ij log(µ b k )log(1µ b k ) ∂µ b k

3 . 1

 31 Estimation of the γ b k 's of Poisson TLBM 109 B.3 Estimation of the γ b k 's of Poisson TLBM Considering a Poisson TLBM, the γ b k parameter can be obtained from the following derivatives:γ b )x b k. x b .k (γ b kkγ b ) + N b (log(γ) -N b γ)} ∂γ b kkConsidering only the terms which depend on γ b kk :kk (log(γ b kk )log(γ b ))x b k. x b .k (γ b kkγ b ) } ∂γ b kkApplying the derivative and using logarithm propriety derivation, we obtain:x b k. x b .k (γ b kkγ b ) + N b (log(γ) -N b γ)} ∂γ bConsidering only the terms which depend onγ b : kk (log(γ b kk )log(γ b ))x b k. x b .k (γ b kkγ b ) + N b (log(γ) -N b γ)} ∂γ bApplying the derivative and using logarithm propriety derivation, we obtain: Estimation of the β k parameter Considering a Poisson TLBM, the β k parameter can be obtained from the following derivatives:

  ij x ij β k )β k x ij x ij β k σ 2 k

  

  To fit LBRM, we propose a new algorithm performing simultaneously co-clustering and regression where a linear regression model characterizes each block. Placing the estimate of the model parameters under the maximum likelihood approach, we derive a Variational EM (VEM) algorithm and propose to evalute results for recomender systems.

  Generate the row label z i according to M(π 1 , . . . , π g ) for j ← 1 to d do Generate the column label w j according to M(ρ 1 , . . . , ρ m ) for i ← 1 to n and j ← 1 to d do Generate a vector x ij according to the density Φ(x ij ; λ k ). return Tensor X, z and w In table 2.1, we repport the expressions of L C ( Z, W, Ω) according to various distributions. Next, we propose a generic co-clustering algorithm able to propose solutions for different types of tensors data encountered in practice.

Algorithm 3: Generative process of Tensor LBM model Input: n, d, g, m, π, ρ, λ for i ← 1 to n do

TABLE 2 .

 2 2: Evaluation of co-clustering in terms of N MI for binary datasets.

	Algorithm	Metrics		Example 1			Example 2	
					400 × 400 × 3			400 × 400 × 3	
		NMI			(g, m) = (4, 4)			(g, m) = (4, 4)	
				π = [0.23, 0.3, 0.23, 0.24]	π = [0.23, 0.3, 0.23, 0.24]
				ρ = [0.27, 0.23, 0.3, 0.2]	ρ = [0.27, 0.23, 0.3, 0.2]
				Slice 1	Slice 2	Slice 3	Slice 1	Slice 2	Slice 3
	K-means	NMI	Row	0.80 ± 0.00	0.81 ± 0.00	0.98 ± 0.00	0.83 ± 0.00	0.82 ± 0.00	0.94 ± 0.00
		Column	0.83 ± 0.01	0.76 ± 0.00	0.76 ± 0.00	0.83 ± 0.012	0.80 ± 0.00	0.80 ± 0.00
	EMG M M	NMI	Row	0.81 ± 0.00	0.81 ± 0.00	1.00 ± 0.00	0.82 ± 0.00	0.82 ± 0.00	0.90 ± 0.02
		Column	0.79 ± 0.02	0.77 ± 0.01	0.76 ± 0.01	0.83 ± 0.01	0.88 ± 0.00	0.83 ± 0.01
	VEM	NMI	Row	0.66 ± 0.00	0.72 ± 0.00	0.78 ± 0.01	0.71 ± 0.00	0.73 ± 0.00	0.86 ± 0.01
		Column	0.70 ± 0.00	0.71± 0.00	0.71± 0.00	0.72 ± 0.00	0.73 ± 0.00	0.80 ± 0.00
	VEM-T	NMI	Row		0.94 ± 0.00			0.90 ± 0.00	
		Column		0.93 ± 0.00			0.97 ± 0.00	

TABLE 2 .

 2 

	Algorithm	Metrics	Example 3	Example 4
			200 × 200 × 3	500 × 500 × 3
		NMI	(g, m) = (3, 2)	(g, m) = (3, 3)
			π = [0.3, 0.35, 0.35]	π = [0.34, 0.34, 0.32]
			ρ = [0.55, 0.45]	ρ = [0.28, 0.34, 0.38]

3: Evaluation of co-clustering in terms of N MI for continuous datasets.

TABLE 2 .

 2 4: Characteristics of datasets.

	Application	Datasets	#Tensor mode-1 #Tensor mode-2 #Tensor mode-3 Sparsity
	Recommender system	Movielens-100K	943	1682	42	0.93
	Multi-spectral images clustering	Prostate-Cells	37	16	14	0.
		DBLP1	2223	2223	4	0 .93
	Document clustering	DBLP2	1949	1949	4	0.94
		PubMed-Diabets	4354	4354	4	0.69

TABLE 2 . 5 :

 25 Evaluation of K-means, EMG M M, VEM and VEM-T in terms of NMI, ARI and ACC.

	Algorithms	NMI	ARI	ACC
	K-means	0.67	0.56	0.78
	EMG M M	0.7	0.59	0.78
	VEM	0.61	0.49	0.7
	VEM-T	0.90	0.87	0.95

TABLE 3 .

 3 1: Characteristics of datasets. The two datasets DBLP1 and DBLP3 are document datasets constructed from the global DBLP3 dataset. The clusters are represented by journals/conferences where the papers are published. We selected three journals ((and conferences) for DBLP1, namely Discrete Applied Mathematics, IEEE software, and SIGIR. For DBLP3, we selected ten journals (and conferences), which are ICC, IJCAI', SIGMOD, Discrete Applied Mathematics, Electr. Notes Theor. Comput. Sci., DAC, GECCO, ICIP, ICCV, and Journal of Systems and Software. We constructed three graphs. Co-terms Title, and Co-terms Abstract, are adjacency matrices representing the co-terms between documents on the title and abstract, respectively. The Co-terms T matrix is computed using BB , where B is a binarized documents-terms matrix, then ∀i, T ii > 0. We also have Co-authors graph denoting the number of joint authors for two documents. It is a part of the Nus-Wide images dataset 4 extracted using Flickr API. This dataset is composed of eight topics, namely Animals, Persons, Plants, Snow, Street, Temple, Town, and Wedding. We constructed six graphs -the Co-tags graph, which is an adjacency matrix of common tags between images. As described in the previous paragraph for Co-terms matrix, we used a binary matrix images-tags M to compute Co-tags matrix H by MM . Other graphs are also created based on extracted features from images. The followed process to build graph similarity based on six extracted features form images including 64-D Color Histogram (CH), 144-D Color Correlogram (CORR), 73-D Edge direction histogram (EDH), 128-D Wavelet texture (WT), 225-D block-wise color moments (CW55).

	Datasets	Type	#Graphs #Node #Cluster
	DBLP1	Text	3	2223	3
	DBLP3	Text	3	12550	10
	Nus-Wide-8	Text+Images	6	2738	8
	Amazon-products-10 Text+Images	7	9897	10
	DBLP1 and DBLP3:				

  j zik wj .The proposed algorithm for tensor data referred to as VEM-LBRM in Algorithm 8, alternates the two previously described steps Expectation-Maximization. At the convergence, a hard co-clustering is deduced from the posterior probabilities, and a regression model is deduced for ecah block k . Compute zik using zik ∝ π k exp ∑ j, wj log p(y i,j |x ij , β k , σ k )• Compute wj using wj ∝ ρ exp ∑ i,k zik log p(y i,j |x ij , β k , σ k )

	Algorithm 8: VEM-LBRM
	Input: X, Y, g, m.
	Initialization (z, w) randomly, compute Ω
	repeat	E-Step
		• M-Step
		Update Ω
	until convergence;
	return z, w, Ω

TABLE 4 . 1 :

 41 Parameters generation for synthetic data.

	Dataset	Example 1	Example 2	Example 3
		π = [0.35, 0.35, 0.3] , ρ = [0.55, 0.45]	

TABLE 4 .

 4 3: Description of Datasets.

	Characteristic			Datasets		
		Movielens 100K FilmTrust Yahoo! Movies Yahoo! Music Jester
	Users	943	1,508	4,385	4,748	24,983
	Items	1,682	2,071	4,339	1,000	100
	Ratings	100,000	35,497	169,767	196,150	705,378

TABLE 4 . 4 :

 44 Covariate impact on Datesets using the proposed VEM-LBRM algorithm.

	Datasets	Covariates	RMSE Training RMSE Test MAE Training MAE Test R 2 Avg.
		Users covariate	1.059	1.087	0.856	0.871	0.115
	MovieLens100K	Items covariate Users and Items	(6e-06) 1.061 (3e-06) 1.041	(8.9e-05) 1.088 (2.6e-05) 1.072	(1.1e-05) 0.856 (5e-06) 0.838	(5.1e-05) (1.6e-05) 0.871 0.111 (1.6e-05) (7e-06) 0.856 0.145
		covariate	(2e-06)	(1.7e-05)	(3e-06)	(1.6e-05)	(4e-06)
		Users covariate	0.782	0.856	0.602	0.631	0.277
	FilmTrust	Items covariate	(7e-06) 0.86 (5e-06)	(0.0006) 0.921 (0.0007)	(5e-06) 0.674 (5e-06)	(0.0001) (1.5e-05) 0.7 0.126 (0.0002) (8e-06)
		Users and Items	0.731	0.807	0.56	0.588	0.367
		covariate	(4e-06)	(0.0010)	(3e-06)	(0.0002)	(3e-06)
		Users covariate	1.04	1.111	0.775	0.806	0.216
	Yahoo! Movies	Items covariate Users and Items	(1e-06) 1.032 (2e-06) 0.936	(0.0003) 1.098 (6.7e-05) 1.013	(1e-06) 0.764 (1e-06) 0.68	(6e-05) 0.793 (1.9e-05) 0.71	(3e-06) 0.228 (3e-06) 0.365
		covariate	(1e-06)	(0.0005)	(1e-06)	(8.7e-05)	(2e-06)
		Users covariate	1.172	1.185	0.907	0.916	0.429
	Yahoo! Music	Items covariate Users and Items	(1e-06) 1.347 (1e-06) 1.145	(1.4e-05) 1.368 (1e-05) 1.159	(1e-06) 1.123 (2e-06) 0.884	(1.4e-05) 1.136 (8e-06) 0.892	(1e-06) 0.246 (2e-06) 0.455
		covariate	(1e-06)	(8e-06)	(1e-06)	(6e-06)	(1e-06)
		Users covariate	4.364	4.366	3.461	3.463	0.305
			(1e-06)	(1.4e-05)	(2e-06)	(7e-06)	(0.0)
	Jester	Items covariate	4.826 (0.002)	4.828 (0.0019)	3.966 (0.002)	3.969 (0.0018)	0.15 (0.0002)
		Users and Items	4.247	4.249	3.352	3.354	0.342
		covariate	(3e-06)	(4e-06)	(3e-06)	(1e-06)	(0.0)

TABLE 4 .

 4 5:F-measure of k-top recommendations using NMF, co-clustering and VEM-LBRM for all datasets.

	Datasets	Measures	NMF co-clustering VEM-LBRM Improve(%)
		F-measure@3	0.33	0.40	0.41	2.4%
	MovieLens100K	F-measure@5	0.40	0.49	0.51	3.9%
		F-measure@10 0.44	0.55	0.58	5.2%
		F-measure@3	0.32	0.41	0.48	14.6%
	FilmTrust	F-measure@5	0.30	0.39	0.46	15.2%
		F-measure@10 0.24	0.31	0.38	18.4%
		F-measure@3	0.56	0.63	0.64	1.6%
	YahooMovie	F-measure@5	0.58	0.66	0.68	2.9%
		F-measure@10 0.47	0.55	0.57	3.5%
		F-measure@3	0.07	0.27	0.28	3.6%
	Jester	F-measure@5	0.07	0.29	0.30	0.7%
		F-measure@10 0.07	0.29	0.31	6.5%
		F-measure@3	0.35	0.40	0.40	0.0%
	YahooMusic	F-measure@5	0.36	0.42	0.42	0.0%
		F-measure@10 0.31	0.37	0.37	0.0%

TABLE 5 . 4 :

 54 Examples of obtained recommendations.

	Titles		Recommended reviewers	
	Analyse Ontologique de scénario dans un contexte	Fatiha Saïs	Stavrakas Yannis	Thomas Tamisier
	Big Data	0.293	0.287	0.284
	Big Data for understanding human dynamics	Stavrakas Yannis	Thomas Tamisier	Raja Chiky
	the power of networks	0.331	0.328	0.317
	Community structure in complex networks	Faraz Zaidi	Christine Largeron	Guy Melançon
		0.284	0.19	0.141
	Détection de Singularités en temps-réel par combinaison	Alain Simac-Lejeune	Jérémy Ferrero	Thierry Despeyroux
	d'apprentissage automatique et web sémantique basés sur Spark	0.269	0.194	0.174
	eDOI : exploration itérative de grands graphes	David Genest	Djamel Abdelkader Zighed Jean-Benoît Griesner
	multi-couches basée sur une mesure de l'intérêt de l'utilisateur	0.125	0.119	0.093
	Fouille de Motifs Graduels Fermés Fréquents	Lionel Vinceslas	Jean-Emile Symphor	François Rioult
	Sous Contrainte de la Temporalité	0.156	0.124	0.105
	Long-range influences in (social) networks	Nacéra Bennacer	Christine Largeron	Rim Faiz
		0.189	0.148	0.136
	Méthode d'Apprentissage pour Extraire les Localisations	Emmanuel Viennet	Isabelle Tellier	Marc Boullé
	dans les MicroBlogs	0.174	0.157	0.093

http://tensorly.org/stable/index.html

https://github.com/Large-Scale-Tensor-Decomposition/tensorD

http://grouplens.org/datasets/movielens/

https://linqs.soe.ucsc.edu/data

https://aminer.org/citation

In the paper, to distinguish between a model and its derived algorithm we use typewriter font for an algorithm, thereby DC-SBM is the model and DC-SBM its derived algorithm.

https://dl.acm.org/citation.cfm?id=1134277

https://aminer.org/citation

https://dl.acm.org/citation.cfm?id=1646452

http://jmcauley.ucsd.edu/data/amazon/links.html

With CA each tag contributes to the inertia of each axis. The contribution of a tag to axis α is expressed as a percent of the inertia for axis α.

https://pypi.org/project/Cluster_Ensembles/

http://crcpress.com/product/isbn/9781466566293

http://grouplens.org/datasets/movielens/

http://www.librec.net/datasets.html

https://webscope.sandbox.yahoo.com/catalog.php?datatype=r

http://www.ieor.berkeley.edu/ goldberg/jester-data/

In cases where the number of users is much greater than the number of items, such as large commercial systems like Amazon.com, item-based methods can therefore produce more accurate recommendations[START_REF] Fouss | Random-walk computation of similarities between nodes of a graph with application to collaborative recommendation[END_REF], Last.fm, 2009]. Likewise, systems that have fewer users than items, e.g., a research paper recommender with thousands of users but hundreds of thousands of articles to recommend, may benefit more from user-based neighborhood methods[START_REF] Good | Combining collaborative filtering with personal agents for better recommendations[END_REF].

http://surpriselib.com/

https://www.ademe.fr/feuille-route-collecte-tri-recyclage-valorisation-dechets

https://www.egc.asso.fr/manifestations/defi-egc/defi-egc-2020-20-ans-dhistoire-pour-quel-avenir.html
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Inv diff moment

From these different datasets, we construct the following adjacency matrices:

• Co-terms matrix on the title: each cell represents the number of times that a term is present simultaneously in the title of a pair of papers. This matrice is computed using T T T where T is a binarized documents-terms matrix.

• Co-terms matrix on the abstract: each cell represents the number of times that a pair of papers share a term extracting from abstract. We use the same process that used in Co-terms Title matrix.

• Co-authors matrix: each cell represents the number of common authors for a pair of papers. This matrice is computed using AA T where A is a binarized documentsauthors matrix.

• Citations matrix: is a binary data matrix where 1 indicates the presence of a citation between two papers. Plots figure 2.10 represent the low-dimensional projection of papers from tensor data of DBLP1, DBLP2 and PubMed Diabetes respectively using the Multiple Factor Analysis (MFA). MFA deals with a multiple table where the slices are contingency tables [START_REF] Pagès | Multiple factor analysis by example using R[END_REF]. We notice that the three datasets have different degree of complexity.

In figure 2.11 are reported the performances of the six algorithms (cited above) on the three datasets. In terms of ACC, NMI and ARI, we observe in most cases, that VEM-T is better than other algorithms applied on each slice and those applied on tensor data. With PubMed Diabets which is the least sparse dataset, we obtain the lowest results for the three measures ACC, NMI and ARI due to the complex structure of dataset appearing on figure 2.10. Further note that GTSC, less effective than VEM-T, reaches better results than PARAFAC followed by K-means. We can notice that VEM-T b applied on each slice does a good job on the well-separated slices like co-terms Title and co-terms Abstract. Finally, we can say that the VEM-T with considering all slices (the well-separated one and the ill-separated one) can find the best trade-off in terms of clustering results.

Furthermore, Figure 2.12 shows the behaviour of the γ [.] k parameter for each block at each iteration, for the three datasets. γ [.] k is computed at each iteration by averaging all γ b k as column partitions. We update the parameters of models based on the consensus clustering results. Figure 4.7 represents the true and predicted rating matrix for the test set using the described process. We can see that the predicted values are very close to the true ones. The However, in the light of Recall@5 and Recall@10 for Jester and YahooMusic, Co-clustering is more effective; this can be explained by the cold-start problem, which occurs in sparse datasets. In Table 4.5 are reported the performances of VEM-LBRM, NMF, and Co-clustering proposed by [START_REF] Thomas | A scalable collaborative filtering framework based on coclustering[END_REF] for all datasets, in terms of F-measure@3, Fmeasure@5, and F-measure@10. F-measure represents a trade-off between precision and recall measures. VEM-LBRM achieves better results with higher values of F-measure@k for the five datasets. Furthermore, we notice that the percentage of improvement of VEM-LBRM comparing to the best results among NMF and co-clustering, can reach 18%. For FilmTrust, which is one of the most sparse datasets, we reach a greater improvement. On the other hand, for YahooMusic, there is any improvement using VEM-LBRM comparing to co-clustering. 

Recommendation of the lecture committee

We propose, in this part, a recommendation system to simplify the evaluation of submitted papers to the EGC conference. This system makes it possible to suggest researchers for reviewing the submitted papers. It is, therefore, simpler to set up a Lecture committee based on obtained recommendations. The papers used for recommendation are the papers that were not considered in the first part of topic modeling (section 5.2.2). Figure 5.19 represents the operating diagram of the proposed recommendation system. For a submitted paper to the EGC conference, the following steps are conducted:

1. Generate the vector representation of the title of the paper.

2. Construct a vector representation for each topic, from the documents-terms matrix (title) and the extracted topics.

3. Compute the cosine similarity between the vector representation of the title of the submitted paper and the vector representation of the topics.

4. Based on computed similarities, assign the new paper to one of the 8 topics.

5. Once the paper has been assigned to a topic, select the 30 authors who publish mostly in this topic, based on the EGC papers.

6. In order to improve the diversity and relevance of the recommendations, extract using the DBLP API, all published works available from the 30 selected authors.

7. Build a vector representation for each author based on the titles of all his publications available on DBLP.

8. Compute cosine similarity score between the title of the submitted paper and the authors' vector representation. 9. Recommend the three authors with the highest similarity scores to review the paper; under the condition that they do not belong to the same institution of one of the applicant authors.

We present in table 5.4 some examples of recommendation results. For instance, for the paper entitled "Scenario Ontology Analysis in a Big Data Context" the recommendation system proposes three reviewers which are Fatiha Saïs, Stavrakas Yannis, and Thomas Tamisier with scores of 0.293, 0.287, and 0.284, respectively. We notice that the ontologies and the semantic web are within the scope of authors and represent the topics of the paper.

Appendix A

Updating of Common Parameters of Tensor Models

A.1 Update zik and wj ∀i, k, j, for TLBM

To obtain the expression of zik , we maximize the above soft criterion F C ( z, w; Ω) with respect to zik , subject to the constraint ∑ k zik = 1. The corresponding Lagrangian, up to terms which are not function of zik , is given by :

Where Φ(x ij , λ k ) depends on the probability distribution. Taking derivatives with respect to zik , we obtain:

Setting this derivative to zero yields:

Summing both sides over all k yields

Plugging exp(β) in zik leads to: Taking into account the constaint

Setting the partial derivative to zero, we obtain for each k: λ = ∑ i zik πk For this to be true, π k must be proportional to ∑ i zik , then : .4) Finally:

Derivation of column proportion ρ

Taking into account the constaint ∑ ρ = 1

Setting the partial derivative to zero, we obtain for each : λ = ∑ j wj ρ For this to be true, ρ must be proportional to ∑ j wj , then :