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“The only thing greater than the power of the mind is the courage of the heart.”

A Beautiful Mind
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An incremental variational approach and computational homogenization for composites
with evolving damage

This work is part of the large framework of nonlinear mechanics and focuses on modeling
the mechanical response of elasto-damageable composite materials when loaded. The oc-
currence and/or growth of microcracks induces stress softening response which can lead
to macroscopic failure. Although significant progress has been achieved in recent years in
the field of damage modeling and of the resulting fracture phenomena, taking into account
this damage in homogenization approaches still remains a largely open issue in solid me-
chanics. In this study, we establish an upscaling procedure for elasto-damageable compos-
ites derived from the Effective Internal Variable principle (EIV model) dedicated so far to
elasto(visco)plastic composites. To this end, we consider an isotropic damage law within
the framework of Generalized Standard Materials, i.e. using an internal damage variable
and two potentials. Following the EIV approach, we propose a simple linearization of the
local behavior coupling elasticity and damage, from which a Linear Comparison Composite
(LCC) with per-phase homogeneous properties is deduced. The effective behavior is then
estimated using a classical linear homogenization scheme (Hashin-Shtrikman). We develop
and implement the incremental variational procedure first for a hollow sphere and then
for composites consisting of elastic spherical particles in an elasto-damageable matrix. The
model predictions for monotonous and cyclic loadings are compared to the results of full-
field simulations carried out on a 3D cell by implementing a phase field approach. An eval-
uation of the method is thus performed at the scale of the composite and that of the con-
stituents.
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General introduction

Composite materials with a brittle matrix such as « Ceramics Matrix Composites » (CMC),
rocks, and concrete materials are generally considered for various thermostructural appli-
cations relevant to different industrial fields such as aeronautics, civil engineering, mechan-
ical engineering, shipbuilding industry, etc. The major reason for such various industrial
applications is the capability of these materials to have satisfactory rigidity and to sustain
high levels of loadings. However, a possible major limitation of brittle matrix composites is
their susceptibility to failure following progressive and complex damage phenomena due
to microcracking in the matrix or to a decohesion of the interface between the matrix and
the reinforcement. For this class of quasi-brittle heterogeneous materials, characterized by a
significant degradation of mechanical properties, microcracks, and microvoids growth are
indeed recognized to be the main deformation mechanisms. The approaches used for their
modeling range from pure phenomenological procedures to micro-mechanical-based ones,
the latter being restricted to the determination of the effective elastic properties of the ma-
terials. Naturally, the solution to overcome or limit the quasi-brittle failure process requires
a better understanding of the effects provided by the incorporation of particles or fiber re-
inforcements. For instance, analysis of damage in CMCs has been, since the nineties, the
subject of several studies both from experimental characterization (see for instance [5], [70],
[49], to cite very few of these early studies) and theoretical modeling. Concerning the dam-
age modeling in brittle composites, the approaches have been mainly of pure macroscopic
character, using Continuum Damage Mechanics (CDM) tools. Mention can be made of the
studies by [24], [85] and some attempts of micromechanical modeling through Transforma-
tion Field Analysis (TFA) [63], etc. which, despite their great interest can hardly capture in
detail the coupled elasto-damage interaction between reinforcement deformation and dam-
age phenomena in the matrix.

Powerful methods to obtain the effective response of heterogeneous materials, as well as
their local response for each constituent, are provided by advanced numerical homogeniza-
tion techniques which deliver full-field computations. These techniques rely on the well-
known finite element method (FEM) or on Fast Fourier Transform approaches [136, 103].
However, although parallelization methods are available, numerical simulations of compos-
ite structure responses based on those numerical homogenization methods [38] are still very
time-consuming. In order to circumvent this high numerical cost and to facilitate structural
computations, mean-field homogenization methods are generally considered, since they al-
low to obtain reasonable semi-analytical estimates. In particular, these methods, also known
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as upscaling methods, help to better understand the nonlinear mechanical response of com-
posites in relation to their microstructure.
However, since the seminal work of Ponte-Castañeda [118], significant progress has been
also achieved in the nonlinear homogenization of composites whose nonlinear constituents
behaviors are described by means of a single potential.
In the context of viscoelastic and/or elasto(visco)plastic composites where the coupling be-
tween elasticity and dissipative phenomena is of paramount importance, Lahellec and Su-
quet [75], based on [94] (see also [109]), have introduced an incremental variational approach
dedicated to composites whose constituents’ behaviors are described by means of two po-
tentials (a free energy and a dissipation potential), as required for generalized standard ma-
terials. The latter, namely known as the EIV, consists of replacing the inelastic strain with
an effective internal variable. This approach has been developed and applied to viscoelas-
tic composites by [76, 128], and elasto(visco)plastic composites by several authors among
which [2, 83], etc. Mention must also be made of the studies by [20] and [21].
An EIV alternative formulation was proposed by Idiart et al. [60, 61] for linear viscoelastic
composites where the Cauchy-Shwarz inequality was used instead of the Legendre trans-
form. Lahellec and Suquet [74] introduced a modified incremental variational principle in a
rate form (RVP) to extend the previously mentioned approach to elasto(visco)plastic com-
posites with both isotropic and linear kinematic hardening. An extension to anisotropic be-
haviors was proposed by the same authors [71].
Although significant advances have been achieved in the above-mentioned domains, taking
into account damage phenomena in a fully coupled homogenization approach still remains
a largely open and barely explored issue in solid mechanics. The very few works dealing
with this topic are recent and at an early stage of development (see for instance [36]). Partic-
ular mention has to be made of the thesis by [43] in which the author provides an approach
that suitably combines analytical methods with theoretical and numerical homogenization
of composites experiencing brittle damage. Full-field numerical models based on Finite El-
ements Methods as well as Fast Fourier transforms approaches have been used to quantify
the composite response at both micro and macro scales and to provide a way to assess mean-
field analytical nonlinear models that he proposed by relying on linear-comparison meth-
ods. This first attempt of modeling, dedicated to a material involved in the nuclear industry,
is in the same vein as our study which aims at developing a homogenization framework
for appropriate constitutive laws of heterogeneous materials with elastic damageable con-
stituents. Our concern in this thesis will be primarily to investigate, via a recent nonlinear
homogenization approach and a suitable approach to damage, the responses of compos-
ites with elasto-damageable constituents. This damage may generally induce an effective
response with softening and leads at its ultimate stage (damage localization) to macroscopic
brittle fracture phenomena.

The study presented hereafter relies then for its theoretical part on the incremental varia-
tional procedure initially introduced by Lahellec and Suquet [75] and developed so far for
elasto(visco)plastic composites by themselves or by several other authors. To this end, and
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for simplicity we will consider an isotropic damage law within the framework of General-
ized Standard Materials, i.e. using two potentials.

Although the incremental variational approach has been already applied to viscoelastic and
elasto(visco)plastic composites several difficulties must be faced for this class of composites
due to the coupling between elasticity and damage on one hand, and of the resulting soft-
ening phenomena on the other hand.

The manuscript is organized into 4 chapters as follows:

• Chapter 1 : Damage models and a closed-form solution on a hollow sphere
We start with a recall of the main physical mechanisms of damage in quasi-brittle
materials. Then, we briefly present the basic ingredients of the continuum thermody-
namics of irreversible processes, helpful for the formulation of local damage models
which will serve for the analysis of the mechanical response of damageable structures.
This mainly relies on the framework of Generalized Standard Materials (GSM). The
second part of this chapter concerns the presentation of exact solutions for mechanical
fields (damage distribution, displacement, and stress fields) in a hollow sphere made
up of an elastic damageable material subjected to radial loading. As already pointed
out by [17], this structural problem does not fit into the framework of nonlinear ho-
mogenization theories of heterogeneous media, but has the advantage of admitting an
exact analytical solution that can be compared to various approximate solutions such
as the one that will be presented in chapter 2.

• Chapter 2 : An Effective Internal Variable (EIV) approach for quasi-brittle composites
This chapter begins with an overview of nonlinear homogenization methods for com-
posites including the incremental variational approach. The latter, introduced first by
[75] allows to handle local constitutive behavior described by means of two poten-
tials, the ones considered for Generalized Standard Materials. Next, we will adapt this
framework to the context where elasto-damageable constituents are involved in the
composite material. The procedure for such extension will be presented in detail for
the case of a scalar damage model, leading to the derivation of the effective damage-
able behavior of the composite and to the prediction of the local field statistics. For
completeness, the chapter ends with a presentation of the numerical implementation
of the model based on the solution to the resulting nonlinear system of equations.

• Chapter 3 : Full-field computations and assessment of the EIV approach with damage
This chapter aims at providing an assessment of the proposed model by comparison
to full-field simulations. For the robustness of these full-field computations, we rely
on variational regularized damage-based models (see [19], [4]), reinterpreted later in



4 List of Figures

terms of variational gradient damage models (see [88], [112] ). The use of such varia-
tional numerical framework is briefly discussed in order to argue its interest in eval-
uating the nonlinear homogenization model formulated in the previous chapter. For
these comparisons, the composites considered are constituted of an elasto-damageable
matrix reinforced by spherical elastic particles.

• Chapter 4 : An extension of the EIV model accounting for hardening effects
This chapter is devoted to an extension of the EIV model which accounts for a positive
hardening accompanying the damage processes. This will require a slight modifica-
tion of the incremental variational procedure. Evaluation of the hardening effects on
the composite response will be done with respect to the comparison to full-field simu-
lations

Finally, the thesis ends with a general conclusion and an indication of some future research
directions. Two appendices are added on some complementary details on unilateral effects
in isotropic damage modeling and on some further preliminary extensions of the EIV dam-
age model that we carried out.
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Chapter 1

Isotropic elastic damage models :
thermodynamics-based formulation
and a closed-form solution
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This chapter aims first to recall the thermodynamics-based formulation of local damage
models. To this end, we begin with a brief summary of the principles of thermodynamics
of irreversible processes and of the Generalized Standard Materials (GSM) framework. The
standard local isotropic elastic damage laws are recalled, with an emphasis on the partial
deactivation of the damage effects under compression-like loadings, the so-called unilateral
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contact effects. This is completed by a description of the corresponding variational formu-
lations. In a second part of the chapter, and based on [30], we briefly present the derivation
of closed-form solutions for mechanical fields (displacements, stress, damage) in a hollow
sphere made up of an elastic damage material and subjected to radial loadings. Although
these solutions do not strictly constitute homogenization results, they will be considered for
comparison with the theoretical models that will be established in the next chapter.

1.1 Mechanical behavior and damage of quasi-brittle matrix com-
posites

1.2 Thermodynamics-based formulation of local damage laws and
corresponding variational expression

We aim here to briefly recall the main ingredients of Continuum thermodynamics and the
Generalized Standard Materials (GSM) framework. The reader interested by this subject
may refer to [53], [44], [92], [104], [86], etc.
A powerful method for the formulation of constitutive models for various mechanical be-
haviors is provided by the Generalized Standard Materials (GSM) framework which re-
lies on the continuum Thermodynamics of Irreversible Processes (TIP). We recall here the
two principles of TIP, the first one corresponds to a balance of energy exchanged in var-
ious forms, and the second one to the positivity of entropy production. For a continuum
medium, and under the assumption of small perturbations, the local forms of these two
principles read:

• for the first principle
ρė = σσσ : ε̇εε + r − div(q) (1.1)

in which e represents the specific internal energy density.

• for the second principle

ρṡ +
1
T

div(q)− r
T
−

q.∇T
T2 ≥ 0 (1.2)

where s denotes the specific entropy.

The latter allows distinguishing between reversible and irreversible processes.
Combining the above local forms of the two principles leads to the so-called Clausius-
Duhem inequality which expresses the positivity of the total dissipation :

D = ρTṡ − ρė + σσσ : ε̇εε −
q.∇T

T
≥ 0 (1.3)

An adequate framework of modeling allows to satisfy automatically Clausius-Duhem’s in-
equality lies in the Generalized Standard Materials framework presented in the following
subsection.
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1.2.1 Constitutive equations for Generalized Standard Materials

We begin with the local state approach which assumes that the mechanical state of a system
is described by means of a finite number of state variables (εεε, T, α), α representing the inter-
nal variables. Under isothermal conditions and infinitesimal strain hypothesis, the formula-
tion of the constitutive models in the GSM framework requires a thermodynamics potential,
generally the Helmholtz free energy w(εεε, α)1, and a dissipation potential φ(α̇).

The thermodynamics potential provides the reversible forces through the state laws
σσσrev =

∂w
∂εεε

(εεε, α)

Arev
α =

∂w
∂α

(εεε, α)

(1.4)

The intrinsic dissipation, given by σσσ : ε̇εε − ẇ, reads then :

D1 =

(
σσσ − ∂w

∂εεε

)
: ε̇εε − ∂w

∂α
: α̇ (1.5)

and must be positive according to the Clausius-Duhem inequality, which becomes:

D1 = (σσσ − σσσrev) : ε̇εε − Arev : α̇ (1.6)

The strain ε̇εε being non-dissipative here (the dissipation will be produced by the evolution of
the internal variables), it follows that σσσirr = σσσ − σσσrev = 0. And the irreversible thermody-
namic force associated with the set of internal variables α is obtained by Airr = −Arev and
will be noted Aα:


σσσ =

∂w
∂εεε

(εεε, α)

Aα = −∂w
∂α

(εεε, α)

(1.7)

The intrinsic dissipation takes then the form :

D1 = Aα : α̇ (1.8)

Such result does not provide any information about the evolution of the internal variables
which requires the introduction of a dissipation potential that depends on the rates of the
internal variables and must be positive scalar-valued and equal to zero for α̇ = 0.

The complementary laws are given by :

Aα =
∂φ

∂α̇
(α̇) (1.9)

1The dual of w is the partial Legendre-Fenchel transform of the internal energy: w=e-TS
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In the case where the potential φ is not differentiable, one should refer to the notion of
subdifferential ∂φ. The constitutive law then takes the form (Aα is said to belong to the
subdifferential of φ at the considered point) :

Aα ∈ ∂φ(α̇) (1.10)

In general, the irreversible forces σσσirr and Aα belong to the subdifferential of φ at (ε̇εε, α̇) if for
any rate εεε∗:

φ(ε̇εε, α̇)− φ(εεε∗, α∗) + σσσirr : (εεε∗ − ε̇̇ε̇ε) +Aα(α
∗ − α̇),∈ ∂φ(α̇) ≤ 0 (1.11)

which represents the normality rule.
Equivalently, and coming back to the case where the deformation is not a dissipative vari-
able, the evolution law (1.10) can be obtained by means of the dual potential φ∗(A):

α̇ ∈ ∂φ∗(Aα) (1.12)

φ∗(Aα) = sup
α̇>0

{Aαα̇ − φ(α̇)} is the Legendre–Fenchel transform of φ.

For rate-independent models, it is classically shown that:

φ∗(Aα) =

{
0 if f (Aα) ≤ 0

∞ otherwise
(1.13)

which is the indicator function of a convex domain C defined by :

C = {Aα/ f (Aα) ≤ 0} (1.14)

f (A) ≤ 0 defines the domain of elasticity.

From (1.7) and (1.9), the constitutive equations of the GSM can be summarized as

σσσ =
∂w
∂εεε

(εεε, α),
∂w
∂α

(εεε, α) +
∂φ

∂α̇
(α̇) = 0 (1.15)

The second equation in (1.15) is known as the Biot equation (see [104], chapter15, or [125])2

in reference to a series of works conducted by Biot mainly in viscoelasticity and/or ther-
moelasticity (see for instance [13, 14]).

2An interesting study of Biot equation in link with quasi-static stability analysis can be found in [1]
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1.2.2 Presentation of variational formulations related to the GSM framework

A class of variational constitutive updates has been proposed by Ortiz and Stainier [109]
in the form of rate variational principles (see also Mielke [97] and Reddy [122]). We follow
here a recent paper of [15] in order to summarize this principle. To this end, we consider a
time increment [tn; tn+1], for which the mechanical quantities are known at time tn. It can be
shown that the solution at time tn+1 of the mechanical problem is that of the following min-
imization principle (here the dissipation potential is taken in a general form φ(ε̇εε, α̇) :

(un+1, εεεn+1, αn+1) = argmin
(u,εεε,α)

∫ tn+1

tn

∫
Ω
(ẇ(εεε, α) + φ(ε̇εε, α̇)) dΩdt −

∫ tn+1

tn
(u,εεε)∈K(E)

Pext(u̇)dt (1.16)

where :

• Pext(u̇) corresponds to the power of external loads which is assumed here to consist
only of fixed body forces fn+1 on the time step, so that:

∫ tn+1

tn

Pextdt =
∫ tn+1

tn

∫
Ω

fn+1.u̇dΩ =
∫

Ω
fn+1. (u − un) dΩ (1.17)

• K(E) is the state of kinematically admissible fields :

K(E) =

{
(u, εεε) :

εεε = ∇su in Ω
u = ûn+1

}
(1.18)

where ûn+1 denotes the imposed displacements at time tn+1 on the Dirichlet boundary
∂ΩD.

This type of formulation can be also found in [102] or [101].

Remark : It is interesting to note that the above minimization principle can be established by
combining at the global (structural) level generalized Biot equations and the transposition
at global level of the normality rule (1.11). The reader interested in this aspect can refer to
[125] or [105]. For an application of Biot equation to damage see for instance [65].

Coming back to the variational principle (1.16), by applying an implicit Euler discretization
for the state variables, their rate can be approximated by :

ε̇εε(t) ≈ εεε − εεεn

∆t
; α̇(t) ≈ α − αn

∆t
(1.19)

where ∆t = tn+1 − tn, we can then write :

∫
Ω

∫ tn+1

tn

= φ(ε̇εε, α̇)dΩ dt ≈
∫

Ω
∆tφ

(
εεε − εεεn

∆t
,

α − αn

∆t

)
dΩ (1.20)
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The minimum principle in (1.16) can thus be rewritten as :

(un+1, εεεn+1, αn+1) = argmin
(u,εεε,α)

∫
Ω
(w(εεε, α)− w(εεεn, αn)) dΩ

+
∫

Ω
∆t φ

(
εεε − εεεn

∆t
,

α − αn

∆t

)
dΩ −

∫
Ω

(u,εεε)∈K(E)

fn+1 . (u − un) dΩ
(1.21)

Putting aside the constant terms w(εεεn, αn) and un, (1.21) becomes :

(un+1, εεεn+1, αn+1) = argmin
(u,εεε,α)

∫
Ω

(u,εεε)∈K(E)

J(εεε, α) −
∫

Ω
fn+1 . u dΩ (1.22)

where the incremental pseudo-potential J(εεε, α) takes the following form for the rate-dependant
materials :

J(εεε, α) = w(εεε, α) + ∆tφ

(
εεε − εεεn

∆t
,

α − αn

∆t

)
(1.23)

and for rate-independent materials:

J(εεε, α) = w(εεε, α) + φ (εεε − εεεn, α − αn) (1.24)

Note that this incremental variational principle will be considered in chapter 2 in a context
of rate-independent behaviors in which the deformation εεε will not be a dissipative variable,
and will therefore not be present in the dissipation potential φ.
Finally, it must be emphasized that the incremental pseudo-potential is a convex function of
(εεε, α), making the minimization problem (1.22) a convex optimization problem.
For completeness, note that this type of incremental variational formulation has been al-
ready considered by [80].
Finally, from a more fundamental point of view, it is important to emphasize the great in-
terest in energetics formulation of evolution problems in rate-independent systems as de-
scribed by [98].

1.3 Local damage constitutive laws with unilateral effects

Some generalities

Under various loading conditions, the main mechanisms of deformation of many engineer-
ing materials involve degradation phenomena due to nucleation and growth of defects such
as microvoids and microcracks. In the case of quasi-brittle materials, such deterioration phe-
nomena take their origin in microcracking whose propagation induces irreversible processes
and coalescence can lead to fracture occurrence. The year 1958 marked the beginning of the
development of damage mechanics. In that year, Kachanov introduced the idea of the deteri-
oration of the material through a scalar variable in continuum mechanics framework, called
continuum damage mechanics (CDM). This early development has been consolidated in the
eighties by thermodynamics-based studies following the newly introduced framework of
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Generalized Standard Materials [53] and which guarantees to the models, thus built, to con-
form with Clausius-Duhem inequality. Among several contributions, mention can be made
of [87, 79]. It is remarkable that some variational principles have been proposed at this early
stage of the development of CDM (see again [87] but also [51]).

Continuum damage mechanics models were then progressively enriched: one of the re-
search axes was to improve the description of the state of degradation of the material by
considering second-order tensors or higher-order tensors as an internal variable (Chaboche
[22], Chaboche et al. [24]) in order to account for induced anisotropy related to microcracks
orientation (see for instance [32] or the paper by [52] or [27] in connection with the need to
properly account for unilateral effects in presence of damage-induced anisotropy.
In what follows, and for simplicity, the damage which represents the state of degradation
within the microstructure (micro-defects, microcracks, etc.) in the material will be repre-
sented by a positive scalar variable d, the main reason being the novelty of the topic of
consideration of damage in the context of nonlinear homogenization (see chapter 2). More-
over, although the damage takes its origin from a complex irreversible evolution occurring
at the microstructural scale (micro-cracking, micro-voids...), its main characteristics at the
macroscopic level result in a variety of physical properties (elasticity for instance, induced
softening, etc.) which need to be taken into account, even in a simplified manner in a first
attempt of homogenization. In this context, the elastic behavior of the damaged material
will be described by means of the stiffness tensor C(d) which depends on d.
Finally, before ending this section mention has to be made of different attempts to construct
brittle damage models from an upscaling procedure, that is to derive the damage model
from a micromechanical analysis of an elastic medium weakened by a system of multiple
microcracks. For this purpose, one can refer to monographs [62], [66] or [30] to mention
a few, or the paper by [121]. The main observation is that advances made in this domain
are quite limited to the determination of the effective properties by using different linear
homogenization schemes (dilute scheme, Hashin-shtrikman bounds, Ponte-Castañeda and
Willis bounds), the evolution laws being considered in a phenomenological manner (see for
instance or the paper by [111].

A standard isotropic elastic damage model formulation [87]

As already indicated, the GSM-based approach provides a suitable modeling framework
allowing to automatically comply with the Clausius-Duhem inequality. In this framework,
the first step consists of a suitable choice of state variables. Owing to arguments already
recalled, these are chosen here as the infinitesimal strain tensor (εεε, d) and a scalar d as the
internal damage variable. The latter may represent a first-order approximation of the micro-
cracks density parameter (see for instance [66] or [132] for analysis and discussion of this
point) quantifying the damage evolution. The nonlinear behavior of this class of materials
requires two potentials depending on the state variables.
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The first potential corresponds to the free energy w(εεε, d) taking the form

w(εεε, d) =
1
2

εεε : C(d) : εεε (1.25)

From the analysis performed in subsection 1.2.1, it readily follows that the Cauchy stress
tensor σσσ and the irreversible force Y associated to the damage d reads :


σσσ =

∂w
∂εεε

(εεε, d)

Y = −∂w
∂d

(εεε, d)
(1.26)

while the intrinsic dissipation takes the form

D1 = Y ḋ (1.27)

For the complementary law, a simple choice of the dissipation potential, positive scalar-
valued, convex with ḋ and null at ḋ = 0 is :

φ(ḋ) = Yc(d) ḋ (1.28)

where Yc(d) is a characteristic of the elasto-damageable material which a priori may be
obtained from experimental data.
With this dissipation potential in hand, and since it is not differentiable, one should refer to
the notion of subdifferential ∂φ. The complementary law reads then :

Y ∈ ∂φ(ḋ) (1.29)

The irreversible force Y is said to belong to the subdifferential of φ at the considered point.

Alternatively, the dual potential of φ, defined by

φ∗(Y) = sup
ḋ>0

{
Y ḋ − φ(ḋ)

}
= sup

ḋ>0

{
(Y − Yc(d)) ḋ

}

=

{
0 if f (Y) = Y − Yc(d) ≤ 0

∞ otherwise

(1.30)

takes the form of an indicator function of a convex domain C which is defined by

C = {Y/ f (Y) ≤ 0} (1.31)
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This damage criterion reads

f (Y) = − 1
2

εεε : C′(d) : εεε − Yc(d) ≤ 0 (1.32)

Remark: we will refer during the thesis to some particular forms of Yc(d) - the case of con-
stant value, and that of linear or affine functions of d. In the later cases, the damaged material
will be considered to experience some induced "hardening"-like effects will be investigated.
With the help of φ∗ and corresponding damage criterion, the normality rule, α̇ ∈ ∂φ∗(Y),
which provides the irreversible damage evolution law, reads :

ḋ = λ
∂ f
∂Y (1.33)

The Lagrange multiplier λ is determined by the complementarity Karush-Kuhn-Tucker con-
ditions {

λ ≥ 0 , f (Y) ≤ 0 , λ . f (σ(x)) = 0

for f (Y) = 0 , λ ḟ (Y) = 0 ⇐ Consistency conditions
(1.34)

This allows classically to build the rate formulation of the damage model by means of a
symmetric multi-branch tangent operator and paves the way for specific numerical imple-
mentations.

Note that the general form of the isotropic elasticity stiffness tensor of the damaged material,
based on a scalar variable d takes the form

C(d) = 3k(d)J + 2µ(d)K (1.35)

where J =
1
3

1 ⊗ 1 and K = I − J are the two isotropic projectors of fourth-order tensors
with the symmetries of a stiffness tensor. I is the symmetric fourth-order identity tensor.
k(d) is the bulk modulus of the damaged material, while µ(d) represents its shear modulus.
In the recent literature, a common choice of simplification consists in

C(d) = g(d)Cs = g(d)(3ksJ + 2µsK ) (1.36)

Cs being the stiffness of the isotropic sound material, and g(d) a degradation function.

On unilateral effect

Modeling elasticity coupled with unilateral damage introduce difficulties that are widely
recognized in several recent publications including those devoted to the modeling of gradi-
ent damage models [4, 77, 96, 113]. This concern is still debated in terms of different energy
decompositions (see for instance [107] for a comparative analysis and a proposal of a new
decomposition concerning anisotropic case).
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We focus here on the context of bimodular elastic behaviors (then with the distinction of
two domains in strain space). Clearly enough, we exclude the case of more than two do-
mains of separation of strain space. In such context, and for isotropic behaviors, the formu-
lation generally attributed to [4, 77] (see also [113]) can be rigorously established as a special
case by following a constructive method initially introduced by [133] and developed by [56]
based on the argument that the elastic energy must be continuously differentiable while a
jump in the elastic stiffness (or compliance) tensor is allowed. This approach, which is sum-
marized in Appendix[A], has been followed in the context of damage-induced anisotropy
by several authors among which [32] [131], [129], [130] and [28] to cite few. Mention can
also be made of some micromechanically motivated formulations for damage of initially
anisotropic materials [47, 48]. Focusing specifically on isotropic materials, the correspond-
ing three-dimensional formulation using a scalar damage variable can be found in [64], and
in [28] in which microcracks closure-induced anisotropy has been also discussed.

Since in the present study, we will only use the formulation commonly attributed to Amor
et al. [4], the development allowing us to retrieve it by following Curnier et al. [56] is sum-
marized in Appendix[A]

The main result is the following expression of the free energy w(εεε, d) in presence of damage
and unilateral effects :

w(εεε, d) =


1
2

k(d) (tr (εεε))2 + µ(d)εεεd : εεεd si tr (εεε) ≥ 0

1
2

ks (tr (εεε))
2 + µ(d)εεεd : εεεd si tr (εεε) ≤ 0

(1.37)

In summary, the isotropic elastic damage behavior in the presence of unilateral damage,
as retained for the present study, will require in addition to the bulk and shear moduli of
the sound material, two degradation functions, namely the one linked to k(d) and to µ(d),
which are the same that would be needed for the model without account for the unilateral
effect.

1.4 Closed-form solutions on a hollow sphere made up with an
elastic-damage material

1.4.1 Context and motivation

As previously mentioned, this thesis aims at determining the effective behavior of elasto-
damageable composite (including porous) materials, as well as the local fields in their con-
stituents. The main theoretical nonlinear homogenization approach that will be established
for that is the purpose of the second chapter which will be based on the incremental varia-
tional procedure introduced by Lahellec and Suquet [75].
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Considering the relative novelty of this research topic, it is desirable to have reference bench-
mark results that can be used for validation purpose of theoretical mean-field models and
their predictions in terms of the local fields statistics, and even of some numerical approxi-
mations. This idea is not new and can be found in several studies which followed the Com-
posite Sphere Assemblage (CSA) approach as initially proposed by Hashin [55]. It is well
known that the effective response of this class of microstructures can be suitably approx-
imated by solving the composite sphere (a spherical inclusion embedded in a concentric
spherical matrix). For instance, for nonlinear viscoelastic or elasto(visco)plastic composites,
this has been done in the recent study by [124]. Remarkably, these authors succeeded to
establish exact solutions for the macroscopic behaviors of such composite spheres under
isotropic loading (macroscopic stress or dilatation, swelling of the inclusion phase). For this
specific problem, the authors have shown that the radial distribution of the shear stress con-
stitutes the driving force of relaxation phenomena identified for the composite phenomena.
For completeness, it is also worth noticing that the authors also reported full-field simula-
tion results on matrix-inclusion representative volume elements
The objectives that we follow in this section are in the same vein, even less ambitious. In-
deed, taking advantage of the study by [30], (see also [31]), we aim at presenting exact so-
lutions for mechanical fields in a hollow sphere made up of an elastic damageable matrix
and subjected to a radial loading on its external boundary. The solutions will be described
for three different degradation functions of the matrix, the first being inspired from results
based on available homogenization results of a microcracked matrix (the so-called Ponte-
Castañeda and Willis bound, and the Mori-Tanaka scheme), and the last one being a com-
monly used degradation function in literature. Again, it must be recalled that our goal is to
establish simple exact results which will serve as a reference for the assessment of the non-
linear homogenization model of quasi-brittle composites which will be developed in the
next chapter.

1.4.2 Field equations of the elasto-damage hollow sphere problem

Let us begin with a description of the mechanical problem related to the hollow sphere
under external radial loading. The cavity of inner radius a0 represents the pore space, the
outer part r ∈ [a0, b] represents the solid phase, with b the outer radius. The volume fraction

f =
( a0

b

)3
corresponds to the initial porosity. The specific isotropic damage model con-

sidered for the following structural analysis is defined by a constant bulk modulus k and a
shear modulus µ(d) which depends on a scalar damage variable d:

C(d) = 3kJ + 2µ(d)K, (1.38)

µ(d) being the unique degradation function considered in this section. Clearly, it is consid-
ered that damage affects only the shear elastic modulus. From a physical point of view, this
may correspond to the case of closed microcracks for which it has been established that the
bulk modulus remains at the value k of the sound material.
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The boundary conditions read :

r = a0 : σσσrr = 0

r = b : σσσrr = T
(1.39)

Considering the geometrical symmetry of the structure and the isotropic loading considered,
the displacement field is radial and reads: U = U(r)er. The assumption of small perturba-
tions being adopted throughout all of the study, the deformation tensor is:

εεε =
∂U
∂r

er ⊗ er +
U
r

eθ ⊗ eθ +
U
r

eϕ ⊗ eϕ (1.40)

By assuming monotonous loadings (a continuous increase of radial displacement applied at
the outer boundary), the constitutive relations in the damage regime is σσσ = C(d) : εεε. Taking
into account (1.40), the components of the stress tensor as a function of the displacement
U(r) in the damaged regime read :

σσσrr =

(
k − 2

3
µ(d)

)(
∂U
∂r

+ 2
U
r

)
+ 2µ(d)

∂U
∂r

(1.41)

σσσθθ =

(
k − 2

3
µ(d)

)(
∂U
∂r

+ 2
U
r

)
+ 2µ(d)

U
r

(1.42)

Putting this one in the equilibrium equation div(σσσ) = 0, leads to the extended and coupled
Lamé-Navier partial differential equation, obtained for the two unknown fields U(r) and
d(r) : (

k +
4
3

µ(d)
)

∂

∂r

(
∂U
∂r

+ 2
U
r

)
+

4
3

∂µ(d)
∂d

∂d
∂r

(
∂U
∂r

− U
r

)
= 0 (1.43)

The remaining equation that has to be considered is the damage criterion (1.32) expressed
in terms of the deformation tensor. At the saturation of the criterion, by reporting (1.40) in
(1.32), one has the following differential equation :

−2
3

∂µ

∂d

(
∂U
∂r

− U
r

)2

= Yc (1.44)

In the elastic damage regime, (1.44) together with (1.43) constitute the system of partial dif-
ferential equations to be solved in order to determine both the displacement field U(r) and
the damage field d(r).

• The linear elastic regime
As long as this criterion is not reached, all the hollow sphere remains in the linear
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elastic regime. In this case, the classical displacement field solution is valid

U(r) = Ar +
B
r2 (1.45)

with the constants A and B expressed as

A =
T
3k

b3

b3 − a03 =
T
3k

1
1 − f

; B =
T

4µs

a3
0 b3

b3 − a03 =
T

4µs

a3
0

1 − f
(1.46)

in which T represents the radial stress at the external boundary r = b and f the initial
porosity as defined before.

By reporting the latter into (1.44), it is readily seen that the damage will first start at
the location r = a0 and that the resulting stress at the first yield limit T = Tel (instant
where the linear elastic regime ends and the damage begins) reads :

Tel =
4µ0

3

(
a0

3

b3 − 1
)

ζ where ζ = ϵ

√
−3Yc

2µ′
s

and µ
′
s =

{
∂µ

∂d

}
d=0

(1.47)

It can be easily checked that the displacement at the external boundary r = b is given
by :

U(b) =
T(4 b3µs + 3 k a0

3)

12 k µs (b3 − a03)
b (1.48)

As in [124], it is classical to verify that T, as defined before by the value of the ra-
dial stress σσσrr(b), and U(b)

(b) are the generalized quantities which allow representing the
overall stress-strain response of the structure.

• The damage regime
Beyond the threshold T = Tel , the hollow sphere passes from the linear elastic regime
to the elastic-damage regime where the radius r = c is the boundary between the
damaging zone and the elastic zone. In the damage regime we can therefore see the
hollow sphere separated into two zones:

– a0 < r < c : damage zone

– c < r < b : elastic zone
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(a) (b)

FIGURE 1.1: Repesentation of the hollow sphere in the two distinct regimes :
(A) Linear elastic regime, (B) Elasto-damageable regime

1.4.3 Closed-form solutions for the damage model with µ(d) = µs
1+Qd
1+Q′d [30]

We consider now a first model which relies on the expression of the shear modulus estab-
lished by Ponte-Castañeda and Willis [121] as an upper bound of effective shear modulus.
This type of bounds, which accounts for both interaction between microcracks and their
spatial distribution (considered here as spherical), provides :

µ(d) = µs
1 + Q d
1 + Q′ d

where Q ≤ Q′ (1.49)

in which Q and Q′ are two scalar constants that depend only on the Poisson ratio of the
sound material (constituting here the solid matrix).
Note that for comparison purposes, we will also examine the case Q = 0 which corresponds
to the prediction of the so-called Mori-Tanaka scheme which does not account for microc-
racks spatial distribution.

By reporting the expression (1.49) of the shear modulus in (1.44), one gets

∂U
∂r

− U
r
= ζ

(
1 + Q′ d

)
where ζ = ϵ

√
3Yc

2µs (Q′ − Q)
(1.50)

with ϵ = ±1.
ζ is a material characteristic that is readily seen to depend on the elastic properties of the
sound material and of its damage characteristics Yc .

The solution to the above differential equation in U(r) reads :

U(r) = u0 r + r
∫ r

a0

ζ(1 + Q′d(ρ))
dρ

ρ
(1.51)
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Introducing then (1.51) into (1.43), and using (1.49), the differential equation in d(r) takes
the form :

∂d
∂r

= −3
r

(
d +

3k + 4µs

3kQ′ + 4µs Q

)
(1.52)

It follows that the damage distribution has a closed-form expression :

d(r) =
3k + 4µs

3kQ′ + 4µs Q

(( c
r

)3
− 1
)

(1.53)

The shear modulus remains positive if the condition d(r) ≤ −1/Q is verified. If Q < 0, the
condition becomes d(r) = −1/Q, for which the solution is given by r = ã(c)

ã(c) = Gc where G =

1 +
4µs

3k

1 − Q′

Q


1
3

(1.54)

if ã < a0 then the condition on the shear modulus of rigidity µ(d) > 0 is satisfied over the
whole sphere.
If ã > a0 then the region a0 < r < ã is totally damaged and the boundary condition σσσrr = 0 is
then satisfied on r = ã. We thus note a the value of r for the boundary condition σσσrr(a) = 0.
The expression of a will then depend on c:

a =

{
a0 if ã(c) < a0

ã(c) if ã(c) > a0

}
(1.55)

The displacement field U(r) is readily obtained by inserting (1.53) into (1.51). The resolution
of the problem is completed by considering the boundary condition σσσrr(a) = 0. Once U(r)
is fully determined, σσσrr can be computed from (1.41) :

σσσrr =
12k(Q′ − Q)ζµs

3kQ′ + 4µs Q
log

a
r
+

4µsζQ(3k + 4µs)

3(3kQ′ + 4µs Q)

c3

a3

(
a3

r3 − 1
)

(1.56)

and from (1.42), we obtain the following expression of σσσθθ :
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σσσθθ =

4c3ζµsQ
(

a3

r3 − 1
)
(3k + 4µs)

3a3 (3kQ′ + 4µsQ)
+

12ζkµs (Q′ − Q) log
( a

r

)
3kQ′ + 4µsQ


− 2ζµ(r)

Q′
(

c3

r3 − 1
)
(3k + 4µs)

3kQ′ + 4µsQ
+ 1


(1.57)

The shear modulus would eventually take the following form by replacing d(r) by its ex-
pression (1.53):

µ(r) = µs

1 + Q (3k+4µs)
3kQ′+4µsQ

(
c3

r3 − 1
)

1 + Q′ (3k+4µs)
3kQ′+4µsQ

(
c3

r3 − 1
) (1.58)

The expressions (1.56) and (1.57) are used in the damaged domain only. In the elastic zone,
by putting to use the boundary condition on r = b, we obtain the displacement on r = b:

U(b) =
Tb
3k

− c3ζ
3k + 4µs

9kb2 (1.59)

the stress components take the following form :

r > c : σrr = T +
4
3

µoζc3
(

1
r3 − 1

b3

)
(1.60)

σθθ = T −
2c3ζ

(
b3 + 2r3) µo

3b3r3 (1.61)

Finally the load T can be linked to c through the following expression (one can refer to [30]
for further details):

T =
4
3

ζµs

(
3k(Q′ − Q)

3kQ′ + 4µsQ

(
3 log

a
c
− 1
)
+

c3

b3 − c3

a3
Q(3k + 4µs)

3kQ′ + 4µs Q

)
(1.62)

At this stage, further discussion can be helpful according to the possible cancellation of the
shear modulus at a high level of damage and the necessity to update the geometry of the
hollow sphere whose internal radius will be noted a. For a such detailed discussion, one
may refer to [30]. Now, if ã > a0, then c > ccr, (with c < b), the ratio a/c in (1.62) is such that
(see [30]) T can be written as :



1.4. Closed-form solutions on a hollow sphere made up with an elastic-damage material 21

ã > a0 :
T
µs

=
4ζ(Q′ − Q)(3k + 4µs)

3kQ′ + 4µsQ
logG − 4

U(b)
b

(1.63)

Ponte-Castañeda-Willis bound

Let us start with the Ponte-Castañeda-Willis (PCW) upper bound of the effective stiffness
of a randomly microcracked medium. The typical stress-strain curve for the corresponding
damage model for simple shear is depicted in Fig. 1.2.

(a)

FIGURE 1.2: Typical stress-strain curve for simple shear in a material point for
an isotropic damage model based on the PCW scheme

Results corresponding to the Ponte-Castañeda and Willis bound are displayed in figures 1.3
for two values of the ratio k

µs
: k

µs
= 3 (on left) and k

µs
= 30 (on right). These figures represent

the macroscopic stress T as function of the overall volumetric strain U(b)/b.
Three regimes are distinguishable on these figures :

• Phase (1) : T < Tel - in this regime the entire hollow sphere has a linear elastic behavior,
the volumetric strain being given then by the classical expression (1.48).

• Phase (2) : ccr < c < b - this corresponds to the damage regime in which the r ∈ [a0, c]
zone is subjected to partial damage while the r ∈ [c, b] still behaves linear elastically.
The equations (1.62) with a = a0 and (1.59) govern this regime.

• Phase (3) : a0 < c < ccr - softening occurs in this regime, the domain r ∈ [a0, ã(c)] is
completely damaged (in the sense that the shear modulus cancels), and this regime is
described by (1.63) with a = ã.
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(a)
k

µs
= 3 (b)

k
µs

= 30

FIGURE 1.3: Macroscopic response of the hollow sphere : T with respect to
U(b)

b
for different

k
µs

. ζ = −0.1, b/a = 2, Q′ = −Q = 1 for the model based

on the PCW upper bound

For completeness, we present in Fig.1.4 the distribution of the stress field components in
the hollow sphere, that is as a function of the ratio r/a0. The example shown here concerns
the evolution of σσσrr and σσσθ in regime (2) for the peak stress loading level T = Tmax (already
shown on Fig.1.3). The continuity of the radial stress at the limit between the damaged zone
and the linear elastic zone is easily verified in agreement with the continuity of the stress
vector. Moreover, the distribution of the orthoradial stress component σσσθθ is also observed.
This is explained by the fact that the local damage criterion can be expressed as σσσθθ − σσσrr =

constant and is then continuous at r = c. The continuity of σσσθθ follows then as a consequence
of the radial stress continuity.

FIGURE 1.4: Evolution of
σσσrr/θθ

T
in the damaged hollow sphere as a function

of
r
a0

for the model based on the PCW upper bound
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Mori-Tanaka scheme

As previously announced, let us come now to the Mori-Tanaka (MT) scheme-based expres-
sion of the degradation function µ(d). As also mentioned before, this is a particular case of
the PCW-type bound with Q = 0 :

µ(d) =
µs

1 + Q′ d
with Q′ > 0 (1.64)

The typical stress-strain curve for the corresponding damage model for simple shear is de-
picted on Fig. 1.5.

(a)

FIGURE 1.5: Typical stress-strain curve for simple shear in a material point for
an isotropic damage model based on the MT scheme

The procedure of derivation of the solutions follows the same set of equations. But, as we
will illustrate that, the specific observation is that this scheme does not predict any softening
phase during the damage regime. The main analytical in this damage regime are summa-
rized by :



d(r) =
3k + 4µs

3kQ′

(( c
r

)3
− 1
)

(1.65a)

U(r) = u0 r − ζ

9k

(
12µsr log r + (3k + 4µs)

c3

r2

)
where u0 =

4ζµs

3k
log(a0) (1.65b)

σσσrr = 4ζµs log
a0

r
(1.65c)

σσσθθ = 2ζµs

(
log
( a0

r

)2
− 1
)

(1.65d)

T =
4
3

ζ

(
−1 +

c3

b3 + 3 log
( a0

c

))
µs (1.65e)
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Based on the above equations, and unlike Fig.1.3, it is seen that the Mori-Tanaka model
consists of only two regimes, without softening:

• Phase (1) : T < Tel - the first phase corresponds to the elastic regime and the volumetric
strain is still given by (1.48).

• Phase (2) : a0 < c < b - this phase represents the damage regime in which the r ∈ [a0, c]
domain is subjected to partial damage while the r ∈ [c, b] domain is still linear elastic.
The stress-strain response in this regime is provided by equations (1.65e) and (1.59).

FIGURE 1.6: Macroscopic response of the hollow sphere : T with respect to
U(b)

b
for

k
µs

= 3. ζ = −0.1, b/a = 2, Q′ = 1 for the MT scheme

FIGURE 1.7: Evolution of
σσσrr/θθ

T
in the damaged hollow sphere as a function

of
r
a0

for the model based on the MT scheme

1.4.4 Closed-form solutions for the damage model with µ(d) = (1 − d)2µs

We consider now the degradation function µ(d) = µs(1 − d)2 which corresponds to the one
usually used in the recent literature devoted to the gradient damage model (we will come
back to this point in the next chapters). By reporting this expression of the shear modulus in
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(1.45), one gets :

∂U
∂r

− U
r
= ζ

√
1

1 − d(r)
where ζ = ϵ

√
3Yc

4µs
(1.66)

which seems to be a little more complicated than the two previous ones (see 1.50), since the
damage field d(r) appears in the second member in a non-affine form.

(a)

FIGURE 1.8: Typical stress-strain curve for simple shear in a material point for
an isotropic damage model based on the (1 − d)2 degradation function

Nevertheless, this new coupled partial a differential equation can be also solved by first
considering that U(r), is the unknown. One gets :

U(r) = r u0 + r
∫ r

a0

ζ

√
1

1 − d(ρ)
dρ

ρ
(1.67)

The introduction of (1.67) into (1.43) remarkably provides the following differential equation
in d(r)

∂d
∂r

− 6
d(r)

r
+

6
r
= 0 (1.68)

The solution to this equation is obtained, knowing that d(c) = 0, and takes the following
form for the damage distribution in the zone r ∈ [ao, c] (the relation between T and c will be
given below):

d(r) = 1 −
( r

c

)6
(1.69)

which can be compared to the distribution obtained for the previous degradation functions,
namely the one given by (1.53).
By inserting (1.69) into (1.67), and taking into account the boundary condition at the inner
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boundary, one gets u0 = −r
ζ(3kc12 + 4µsa0

12)

9kc9a03 and U(r) in the form

U(r) =
1
3

rζc3
(

1
a03 − 1

r3

)
− r

ζ(3kc12 + 4µsa0
12)

9kc9a03 (1.70)

which can be simplified as

U(r) = − ζ

3
c3

r2 − ζ

3
4 µs a9

0
3 k c9 r (1.71)

Therefore, one gets the stress components σσσrr and σσσθθ by introducing the above expression
of U(r) in (1.41) and (1.42) :

σσσrr =
4
3

ζ µs

(
r9

c9 − a9
0

c9

)
(1.72)

and

σσσθθ = −2 ζ µs

3

(
r9

c9 − 2 a9
0

c9

)
(1.73)

Recall that the equations (1.71), (1.72), and (1.73) are for the damaged domain a0 < r < c.
The radial stress in the elastic domain c < r < b is the same as equation (1.60). The continuity
of the radial stress at the boundary of the damaged zone and the elastic zone in r = c gives
us the relation between T and c by associating (1.72) and (1.60).

T =
4 ζ µs

3

(
c3

b3 − a9
0

c9

)
(1.74)

Two regimes can be distinguished:

• Phase 1: it represents the elastic regime for which the result (1.48) for the elastic volu-
metric strain is still valid

• Phase 2: a0 < c < b: we are here in the damage regime in which the zone r ∈ [a0, c]
is again subjected to partial damage while the r ∈ [c, b] domain remains linear elastic.
Equations (1.74) and (1.59) provide the overall response in this regime. It can be noted
that in regime 2 of the present model, damage and softening occur simultaneously.
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(a) (b)

FIGURE 1.9: (a) Macroscopic response of the hollow sphere with the model

based on µ(d) = µs(1 − d)2 : T with respect to
U(b)

b
for

k
µs

= 30. ζ = −0.1,

b/a = 2, (b) Damage evolution with respect to the radius

FIGURE 1.10: Evolution of
σσσrr/θθ

T
as a function of

r
a0

, for the model based on

µ(d) = µs(1 − d)2

1.5 Conclusion

This chapter has been devoted to two issues :

• First, to recall and present a standard thermodynamics-based formulation of the isotropic
local elastic damage model. This has been done by relying on the General Standard
Materials (GSM) framework in which the elastic damage model, based on the use of a
scalar internal variable, is formulated from a thermodynamics potential and a dissipa-
tion potential. The standard formulation recalled here, includes (based on literature)
the so-called unilateral effects (related to microcracks closure phenomena) and which
generally induce a partial deactivation of damage effects.
Taking advantage of the GSM framework, simple variational principles can be ob-
tained (see [109], [97], [123], etc.) and may be useful in the damage context for the
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proposal of two-fields variational principles early suggested by [34] for simple dissi-
pative structures (see [33]) or by [39]. Note that these variational formulations appear
now as particular cases of the one introduced by [19] in the context of regularized
damage model.

• Derivation of closed-form solutions for a hollow sphere made up of an elastic damage
matrix. The used procedure follows the study by [30] (see also [31]), with the aim of
producing simple and basic exact solutions that will be used for a first assessement of
the nonlinear homogenization that will be constructed in the next chapter. From this
study, it appears that, depending on the considered degradation function, the overall
behavior can exhibit, or not, a hardenable first stage (structural effect) before the oc-
currence of a softening regime.
It must be emphasized that the closed-form results presented in section 1.4 can be
extended to a composite sphere by taking advantage of a recent study on a matrix-
inclusion configuration by [26] which also follows [30].

Again, it must be repeated, that even the established solutions do not strictly constitute ho-
mogenization results, they are licit to be considered for comparison purposes with theoret-
ical nonlinear homogenization models which lack in literature, except the very recent work
of [43] which provides original results relying on recent tools both from homogenization
theory and from some gradient damage models. The construction and assessment of such
new homogenization models for quasi-brittle composites with an elastic damage matrix is
the subject of the next chapters.
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We begin in section 2.1 with a general presentation of some nonlinear homogenization meth-
ods including incremental variational approaches whose general framework is detailed in
section 2.2. Based on the thermodynamics framework of Generalized Standard Materials
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(GSM) theory, already recalled in chapter 1, we then introduce the main elements of the Ef-
fective Internal Variable (EIV) homogenization approach proposed by Lahellec and Suquet
[75]. This method relies on the incremental variational formulation of [109] (see also [94]).
Since the novelty of this chapter lies in the adaptation of the EIV method to composites
with elasto-damageable constituents, we detail the corresponding theoretical development
in section 2.3. To this end, we proceed to a simple linearization of the incremental potential
and then solve the resulting homogenization problem. Finally, the developed model is im-
plemented for a two-phase composite, made of spherical linear elastic particles randomly
and isotropically distributed in an elasto-damageable matrix. The required numerical solu-
tion procedures are presented. The chapter ends with some preliminary predictions of the
model.

2.1 Nonlinear homogenization methods for composites

2.1.1 Available nonlinear homogenization procedures

Several methodologies and results have been proposed for composites with elastic linear
constituents for which estimates and bounds are available since the work of Eshelby [35].
Among the different homogenization schemes in this framework, one can mention the Mori-
Tanaka [100], the Hashin-Shtrikman bounds [54], the Ponte Castañeda and Willis [120] or the
self-consistent scheme [69]. The linear homogenization theory has been extended to the lin-
ear thermo-elastic case in which thermal strain can be treated as free strain. This extension
is based on the fact that the equations are linear, which allows the use of the superposition
principle. Note that due to the linearity of the behavior, the constitutive thermoelastic law
of the phases can be applied to the field averages per phase called first-order moment. For
homogenization of linear thermoelastic heterogeneous media, the reader can for instance
refer to [78], [134]. An interesting survey on continuum micromechanics can be also found
in [137].

The case of nonlinear composites induces new difficulties since the principle of superposi-
tion is no longer valid. In this context, new approaches have been proposed since the 1980s
with the introduction of new variational formulations (one can refer to [119]). With the ex-
ception of the last 12 years, most of this work has focused on composites made up of phases
whose behavior is governed by a unique nonlinear potential: the free energy in the case of
nonlinear elasticity, and the dissipation potential in the case of purely viscoplastic materi-
als without threshold. For such composite materials, nonlinear homogenization theories are
generally based on two steps: a linearization step followed by a homogenization step . The
first step is to approach the nonlinear composite by an elastic fictitious linear comparison
composite (LCC) by linearizing the local constitutive laws around a value of reference. This
LCC is in a second step homogenized by using a linear homogenization scheme.
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The first approaches developed within this approach, implicitly or explicitly, choose the av-
erage by phase (or first-order moment) of the strain or stress tensor as the reference value
around which the linearization is performed. The pioneering incremental method intro-
duced by Hill [57] for nonlinear homogenization of elasto(visco)plastic composites can be
seen as an incremental linearization around the phase-averaged fields. Afterwards, the se-
cant method (Berveiller and Zaoui [10]), constructed as an alternative to the incremental
formulation of Hill for elasto-plasticity in the context of proportional loadings as well as
the affine approach for elasto(visco)plasticity (Masson and Zaoui [91]), visco-plasticity or
elasto-plasticity (Masson et al. [89]), are based on a similar principle. Nevertheless, in a gen-
eral way, it has been noticed that the use of first-order moments as a representation of the
deformation state of the phases often leads to predictions that are too stiff (see for instance
Gilormini [46]) and does not properly account for the nonlinear mechanical responses.

On the basis of variational formulations and arguments of a physical nature, different au-
thors have shown the importance of considering quantities that do not neglect the hetero-
geneity of the fields within the phases. Among these quantities, the most generally used
are the second-order moments (see for example Ponte Castañeda [118], Suquet [119], Ponte
Castañeda and Suquet [119]). An alternative and complementary way of taking these fluc-
tuations into account is to discretize the composite into subdomains (see Bilger et al. [11,
12], Michel and Suquet [95]). These approaches have significantly increased the accuracy of
the models. Moreover, it has been shown [126] that the choice of second-order moments is
optimal with respect to the variational formulation introduced by Ponte-Castañeda [116].
Currently, the most sophisticated models take into account both first and second-order mo-
ments to define the LCC (Ponte Castañeda [117]). The effectiveness of such models has been
shown through numerous theoretical and numerical studies (Idiart et al. [58], Idiart and
Ponte Castañeda [59]) based in particular on the comparison of the predictions of these
mean fields approaches with numerical simulations which serve as reference solutions. The
comparisons concern both the effective behavior as well as the inter and intra-phase hetero-
geneities of the local fields (i.e. the first and second-order moments).

2.1.2 Methods based on incremental variational approaches

In 1986, Mialon [94] was the first to introduce a variational principle close to the one used in
this thesis. He applies this principle to the cases of structures made up of elasto-plastic mate-
rials whose behavior is governed by two potentials. Later, Ortiz and Stainier [109] proposed
another variational principle, similar to that of Mialon, but in the context of elasto(visco)plastic
materials. Lahellec and Suquet, [75] and [74], developed two homogenization schemes based
on these variational principles which will be presented below.

Studies [73, 75], which introduce an incremental variational approach for nonlinear compos-
ites, opened new research directions in the homogenization of nonlinear behaviors governed
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by two potentials. The local variational principle used in this approach is based on the intro-
duction of a single potential, the condensed incremental potential, which accounts for both
conservative and dissipative effects in the composite. This potential is constructed as the
sum of the two potentials which define the local behavior in the GSM framework, namely
the free energy and the dissipation potential. From this local variational principle, these au-
thors obtained a macroscopic incremental variational principle allowing them to estimate
the responses of the nonlinear composites. This variational principle makes it possible to
extend most of the methods developed within the framework of composites governed by
a single potential to composites whose phase’s behavior can be described by means of two
potentials. Based on this observation, Lahellec and Suquet [73, 75] applied the main idea of
the variational procedure introduced by Ponte Castañeda [118] to their macroscopic incre-
mental variational principle in order to estimate the effective behavior of composites con-
sisting of elasto(visco)plastic phases. To this end, they used two approximations. The behav-
ior of each constituent phase is first linearized by introducing a uniform secant viscosity per
phase through the variational procedure. Additionally, the inelastic heterogeneous strains at
time tn are approximated by a homogeneous effective internal variable in each phase. These
two approximations lead to the definition of a thermo-elastic LCC (as introduced by Ponte
Castañeda [118]) whose effective behavior can then be obtained using any appropriate linear
homogenization scheme for the considered microstructure. This procedure, called Effective
Internal Variables (EIV), was first applied to nonlinear elasto(visco)plastic composites with-
out threshold or hardening and led to accurate estimates of the macroscopic behavior in the
case of nonlinear behaviors.
The same year, Lahellec and Suquet [76] used another linearization scheme. They proposed
a modified version of the second order method (Ponte Castañeda [115]) by applying it to
the dissipation potential, which leads to replace, at each time step, the nonlinear viscoelastic
composite with a linear visco-elastic composite.

In 2013, Lahellec and Suquet [74] introduced modified incremental variational principles in
a rate form in order to get estimates of the local and global behavior for composites made
of elasto(visco)plastic phases with both isotropic and linear kinematic hardening. Their new
approach, called the Rate Variational Procedure (RVP), still relies on two approximations.
The first one consists in using the variational procedure to linearize the constitutive laws
and provides again a secant approximation of the behavior. For the second one, at the differ-
ence with Lahellec and Suquet [75], it is now the heterogeneous stress field – and not the het-
erogeneous plastic strain field – at time tn which is approximated by effective homogeneous
internal variables in each individual phase. For that, they make use of a similar method to
the one proposed by Lahellec et al. [72], which is also based on the variational procedure but
relies on a new definition of an LCC with uniform coefficients per phase which depend on
the first and second-order moments of the stress field. In order to assess their new model,
Lahellec and Suquet [74] carry out Fast Fourier Transform (FFT) simulations on a hetero-
geneous material made of an elasto(visco)plastic matrix reinforced by 50 elastic isotropic
spherical particles randomly distributed. A good agreement is observed between the model
predictions and the FFT simulations for elastic ideally-plastic matrix or elasto-plastic matrix
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with isotropic or linear kinematic hardening under radial and non-radial loadings.

As previously mentioned, these homogenization models are limited to elasto(visco)plastic
composites exhibiting kinematic hardening, linear or nonlinear, and possibly coupled with
isotropic hardening. In the present study, we focus on the homogenization of composites
whose constituents’ behavior results from a coupling between elasticity and damage and
presents a stress softening. The latter is able to lead to the ultimate step of fracture occur-
rence due to the strong localization of the damage.
Although significant progress has been made in recent years in the modeling of damage
and the resulting fracture processes, the consideration of this damage in homogenization
approaches of composites is still a work in progress and at its very first stages (see for in-
stance the recent study by [43]). The study presented hereafter aims at establishing a frame-
work for modeling elasto-damageable composites based on the Effective Internal Variable
approach as initially introduced by Lahellec and Suquet and developed/extended in the
literature for elasto(visco)plastic composites with or without hardening (see [18], [2], [84],
[128] or [83]).

2.2 General framework of the incremental variational approach

2.2.1 The incremental potential

We focus now on the development of the incremental variational approach for the study
of nonlinear composites. To this end, we make use of the incremental variational princi-
ple, already briefly presented and described within the GSM framework, and as used by
Lahellec and Suquet [75]. Hereafter, we’ll be presenting the general framework of the incre-
mental variational approach for composite materials, the internal variable being denoted in
a generic manner by α (scalars, second order tensors, etc.) for the sections 2.2 and 2.2.2.

Following what has been already introduced in section(1.3), the constitutive behavior of any
GSM can be described by the following set of equations (see (1.15)):

σσσ =
∂w
∂εεε

(εεε, α),
∂w
∂α

(εεε, α) +
∂φ

∂α̇
(α̇) = 0 (2.1)

The second equation in (2.1) is mostly known as the Biot equation [13] (see also in [104],
[125]).

For the introduction of the incremental potential, the starting point is the incremental varia-
tional principle presented in section 1.2.2

The incremental formulation we rely on goes through a discretization of the time interval of
the study [0, T] in N time steps that are not necessarily of the same duration. The initial state
of the material at time t = 0 is known and we aim to obtain its response to a loading history
imposed on the interval [0, T]. To simplify the notations, the value f (tn) of the function f at
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time tn will be denoted fn and the subscript n + 1 will be omitted for variables calculated
at time tn+1 (i.e. εεε ≡ εεεn+1). Furthermore, we define the time increment ∆t as ∆t = tn+1 − tn.
The time discretization according to an implicit Euler scheme of equation (2.1) leads to the
following equation

σσσn+1 =
∂w

∂εεεn+1
(εεεn+1, αn+1) ;

∂w
∂αn+1

(εεεn+1, αn+1) +
∂φ

∂α̇n+1

(
αn+1 − αn

∆t

)
= 0 (2.2)

Similar to Lahellec and Suquet we introduce the condensed incremental potential J such
that the equation (2.2)2 corresponds to the Euler-Lagrange equations providing the solution
of the variational problem:

w∆(x, εεε) = inf
α

J(x, εεε, α) where :

J(x, εεε, α) = w(εεε, α) + ∆tφ

(
α − αn

∆t

) (2.3)

The stress defined by (2.2)1 is then obtained by the derivation of the unique condensed
potential w∆

σσσ =
∂w∆

∂εεε
(x, εεε) (2.4)

2.2.2 Effective behavior of nonlinear composite materials

Local problem

We consider now a Representative Volume Element (RVE) Ω of a composite made of N
phases occupying domains Ω(r)(r = 1, . . . , N) such that Ω = ∪N

r=1Ω(r). The volume fraction
of phase r is denoted c(r) with c(r) = |Ω(r)|/|Ω|. The phase distribution is described by
means of the characteristic functions χ(r) such as

χ(r)(x) =

{
1 if x ∈ Ω(r)

0 otherwise
(2.5)

Each phase r, assumed to be of generalized standard type, is governed by equations (2.1)
applied to the potentials w(r) and φ(r). The free energy w and the dissipation potential φ at
each position x ∈ Ω are given by

w (εεε, α) =
N

∑
r=1

w(r) (εεε, α) χ(r)(x) ; φ(α̇, α) =
N

∑
r=1

φ(r)(α̇, α) χ(r)(x) (2.6)



2.2. General framework of the incremental variational approach 35

The RVE is subjected to a history of loading in macroscopic deformation E(t) and the lo-
cal problem which determines the local fields σσσ(x, t), εεε(x, t) and α within the RVE is writ-
ten: 

σσσ =
∂w
∂εεε

(εεε, α);
∂w
∂α

(εεε, α) +
∂φ

∂α̇
(α̇) = 0 ∀(x, t) ∈ Ω × [0, T]

div(σσσ) = 0 ∀(x, t) ∈ Ω × [0, T]

⟨εεε(t)⟩ = EEE(t) + Boundary conditions on ∂Ω

(2.7)

The fields σσσ, εεε and α depend on x and t. The brackets ⟨.⟩ represent the spatial average on
Ω. Assuming macro homogeneous boundary conditions, there is no need to specify the
details of these. The effective or macroscopic response of the composite along the defor-
mation loading macroscopic history E(t) is given by the macroscopic stress ΣΣΣ(t), where
ΣΣΣ(t) = ⟨σσσ(x, t)⟩.

Effective incremental potential

Thanks to the variational principle (2.3), the discretized local problem allowing to determine
the local stress and strain fields in the RVE is written

div (σσσn+1) = 0 ∀(x) ∈ Ω

σσσn+1 =
∂w∆

∂εεε
(εεεn+1) ∀(x) ∈ Ω

⟨εεεn+1⟩ = EEEn+1 + Boundary conditions on ∂Ω

(2.8)

where 

w∆(x, εεε) = inf
α

J(x, εεε, α) with:

J(x, εεε, α) =
N

∑
r=1

J(r)(x, εεε, α)χ(r)(x) and:

J(r)(x, εεε, α) = w(r)(εεε, α) + ∆tφ(r)
(

α − αn

∆t

) (2.9)

A variational characterization of the local problem can be obtained by noting that the strain
field εεε is the solution of the following potential energy minimization problem for the com-
posite

inf
εεε/⟨εεε⟩=E

⟨w∆(εεε)⟩ = inf
εεε/⟨εεε⟩=E

⟨inf
α

J(εεε, α)⟩ (2.10)

Finally, the effective condensed incremental potential w̃∆(E) takes the form:

w̃∆(EEE) = inf
εεε/⟨εεε⟩=E

⟨w∆(εεε)⟩ (2.11)
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Lahellec and Suquet have shown, using the relation σσσ =
∂w∆

∂εεε
and Hill’s lemma, that the

macroscopic stress ΣΣΣ = ⟨σσσ⟩ is given by:

ΣΣΣ =
∂w̃∆

∂EEE
(EEE) (2.12)

Field statistics

In addition to the determination of the macroscopic stress tensor ΣΣΣ(t), it is of great interest
to characterize as well the local field statistics at any time t of the loading history. These field
statistics, which will be very useful for the assessment of the proposed models by compari-
son to full-field simulations (EF) results, are the first and second-order moments as well as
the averages of the field fluctuations over each (r) phase.

Let us consider then a second order tensor a with a non-zero trace. As classically, notation

am =
1
3

tr(a) corresponds to the spherical part of a and ad = a − am1 its deviatoric part, with
1, the second order identity tensor.
The first order moment of this tensor on phase r represents the spatial average on that phase
and is denoted ⟨a⟩(r) = a(r).
In homogenization methods, in order to characterize field statistics, the second-order mo-
ments are often used (see for example Ortiz and Molinari [108], Kreher [67], Kreher and
Molinari [68]), which for the ad tensor on the r phase is defined as

ad
(r)

=
√

ϱ⟨ad : ad⟩(r) (2.13)

where ϱ =
2
3

if a is a deformation variable and ϱ =
3
2

if a is a force variable. Similarly, the
second moment of am on phase r is written

am
(r)

=

√
⟨(am)

2⟩(r) (2.14)

The last fields statistics quantity that we will analyze is the phase average of the field fluc-
tuations which will be denoted C(r)(a) and defined as

C(r)(a) =
〈(

a − a(r)
)
⊗
(

a − a(r)
)〉(r)

= ⟨a ⊗ a⟩(r) − a(r) ⊗ a(r) (2.15)

These fluctuations will be quantified through the following expression :
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√
C(2)(σσσ) :: K =

√
2
3

[(
σσσd

(2)
)2

−
(

σσσd
(2)
)2

eq

]

where :
(

σσσd
(2)
)

eq
=

√
3
2

σσσd
(2) : σσσd

(2)

(2.16)

2.3 Formulation of an incremental variational model for elasto-
damageable composites

2.3.1 The local damage model in the context of composites

Let us consider now a Representative Volume Element (RVE) Ω of a composite material con-
sisting of N-phases with Ω(r) the volume of each phase : r(r = 1, . . . , N), the phases being
assumed to have elasto-damageable behavior as modeled in the Generalized Standard Ma-
terials (GSM) framework (see section 1.2.1). Thus, the mechanical behavior model of these
phases can be formulated by considering the state variables deformation εεε and an internal
variable d (chosen as a positive scalar, so as to consider only isotropic damage processes)
and by choosing two convex potentials that we will specify later.
The following characteristic function is used to specify the phase distribution :

χ(r)(x) =

{
1 if x ∈ Ω(r)

0 otherwise
(2.17)

Reversible effects are associated with a free-energy density that depends only on the state
variables of the material, the strain εεε and the damage d :


w (εεε, d) =

N

∑
r=1

w(r) (εεε, d) χ(r)(x) with :

w(r) (εεε, d) =
1
2

εεε : C(r)(d) : εεε

(2.18)

where C(r)(d) represents the elasticity tensor of the damaged material. In the case of isotropic
elastic behavior of the phases, the elasticity tensor takes the form

C(r)(d) = 3 k(r)(d) J + 2 µ(r)(d)K (2.19)

where, as already seen in chapter 1, we recall that K = I− J represents the deviatoric projec-
tor of isotropic fourth-order tensors having the symmetries of an elasticity tensor, while I is
the symmetric fourth-order identity tensor and J the spherical projector whose expressions

are respectively Iijkl =
1
2
(
δikδjl + δilδjk

)
and J =

1
3

δijδkl .
For simplicity, we consider for the damage model the following degradation function widely
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used in recent literature1 concerning damage mechanics :

C(r)(d) = g(d)C
(r)
s = (1 − d)2

C
(r)
s (2.20)

where C
(r)
s represents the stiffness tensor of the undamaged material.

For the developments that will be presented below, the dissipation potential φ(r)(ḋ, d) of a
phase r is taken in the form :

φ(ḋ, d) =
N

∑
r=1

φ(r)(ḋ, d) χ(r)(x) with :

φ(r)(ḋ, d) = Yc ḋ + Ψc(ḋ)

(2.21)

with Ψc(ḋ) : {ḋ ≥ 0} the irreversibility condition and the constant Yc is a characteristic of
the elastic damageable material.

2.3.2 Incremental variational principle

Methodology

In order to determine the effective condensed incremental potential w̃∆, we apply the incre-
mental variational procedure proposed by Lahellec and Suquet and based on the approach
introduced by Ponte Castañeda for nonlinear composites.
We recall the variational problem :

w∆(x, εεε) = inf
d

J(x, εεε, d) with:

J(x, εεε, d) =
N

∑
r=1

J(r)(x, εεε, d)χ(r)(x) and:

J(r)(x, εεε, d) = w(r)(εεε, d) + ∆tφ(r)
(

d − dn

∆t

) (2.22)

Following [75, 74], the linearization of the local behavior and the accounting for the hetero-
geneity of the incremental potential within the phases are addressed simultaneously2.
In our case, due to the coupling of elasticity and damage, the incremental potential J is ap-
proximated by a linearized incremental potential J0 chosen in the form :

J0(x, εεε, d) =
N

∑
r=1

J(r)0 (εεε, d)χ(r)(x)

J(r)0 =
1
2
(1 − d)2 A(r)

0 +
1
2

εεε : C
(r)
0 : εεε + Yc (d − dn) + ∆t Ψc

(
d − dn

∆t

) (2.23)

1We will see later that this choice of degradation function corresponds to the model classically considered in
the literature for simulation of damage and fracture phenomena by means of the so-called Phase field approach.

2addressing these two steps separately, as in [2, 83, 84], could be a perspective, an overall discussion over it
is available in Appendix[B.2]
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where A(r)
0 is a uniform per phase scalar and C

(r)
0 is a fourth-order tensor having the sym-

metries of an elasticity tensor, also uniform per phase.
The approximation of the condensed incremental potential is done by adding and subtract-
ing to the potential J the linearized incremental potential J0 i.e. J = J0 + J − J0, so that, on
the one hand, the first term J0 can be homogenized using classical homogenization schemes,
and on the other hand, the difference J − J0 can be estimated semi-analytically. The differ-
ence ∆J = J − J0 of the potentials is then written

∆J(x, εεε, d) =
N

∑
r=1

∆J(r)(εεε, d)χ(r)(x)

∆J(r) =
1
2
(1 − d)2

[
εεε : C

(r)
s : εεε − A(r)

0

]
− 1

2
εεε : C

(r)
0 : εεε

(2.24)

By replacing J with its expression in the variational problem, the effective condensed incre-
mental potential is expressed as (see (2.11))

w̃∆(EEE) = inf
εεε/⟨εεε⟩=E

[
inf

d/Ψc(ḋ)
⟨J0(εεε, d) + ∆J(εεε, d)⟩

]
(2.25)

the expressions of J0(εεε, d) and ∆J(εεε, d) to be considered being given in (2.23) and (2.24) re-
spectively.
As in Lahellec and Suquet, a rigorous upper bound on w̃∆ can be obtained by taking a supre-
mum condition of ∆J with respect to (εεε, d) :

w̃∆(EEE) ≤ inf
εεε/⟨εεε⟩=E

[
inf

d/Ψc(ḋ)
⟨J0(εεε, d)⟩ + sup

εεε∗,d∗
⟨∆J(εεε, d)⟩

]
(2.26)

Moreover, they have shown that this upper bound may be too stiff in some cases. As in Ponte
Castañeda and Willis in 1999 [120] and Ponte Castañeda in 2002 [117], this upper bound can
be relaxed by replacing the supremum condition with a stationarity condition. Finally, the
optimization with respect to the parameters introduced in J0 provides the final estimate of
w̃∆ :

w̃∆(EEE) ≈ stat
A(r)

0 ,C(r)
0

[
inf

εεε/⟨εεε⟩=E

(
inf

d/Ψc(ḋ)
⟨J0(εεε, d)⟩ + stat

εεε∗,d∗
⟨∆J(εεε, d)⟩

)]
(2.27)

Note : In this procedure, the internal variable d will be approximated by resolving the infi-
mum problem inf

d/Ψc(ḋ)
⟨J0(εεε, d)⟩. And the reference variables that were introduced in the lin-

earization procedure will be approximated by solving the stationarity problem stat
εεε∗,d∗

⟨∆J(εεε, d)⟩.

The added (.)∗ aims at distinguishing the solution minimizing the first infimum problem
from the one that is the solution to the stationarity problem.

Stationarity conditions

We now propose to develop all the stationarity conditions appearing in (2.27). We will first
write the stationarity of ∆J with respect to d∗ and εεε∗ which will provide an expression for
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A(r)
0 and C

(r)
0 . The stationarity with respect to these two quantities will then allow com-

pleting their expressions. Finally, the stationarity of J0 with respect to d will provide an
expression of the damage as a function of εεε.

1. Stationarity of ∆J

The stationarity of ∆J (2.24) with respect to εεε∗ can be written as :

∂

∂εεε∗

{
1
2
(1 − d∗)2

[
εεε∗ : C

(r)
s : εεε∗ − A(r)

0

]
− 1

2
εεε∗ : C

(r)
0 : εεε∗

}
= 0 (2.28)

which implies
=⇒ C

(r)
0 = (1 − d∗)2

C
(r)
s (2.29)

Similarly, the stationarity condition of ∆J over d∗ reads :

∂

∂d∗

{
1
2
(1 − d∗)2

[
εεε∗ : C

(r)
s : εεε∗ − A(r)

0

]
− 1

2
εεε∗ : C

(r)
0 : εεε∗

}
= 0 (2.30)

This leads to an expression for the first parameter introduced in J0 :

=⇒ A(r)
0 = εεε∗ : C

(r)
s : εεε∗ (2.31)

The two relations (2.29) and (2.31) show that the two unknowns A(r)
0 and C

(r)
0 depend on the

variables εεε∗ and d∗ which remain to be determined.

2. Minimization of J(r)0

We obtain a Linear Comparison Composite (LCC) by minimizing J(r)0 with respect to d. And
due to the stationarity of ∆J with respect to the strain tensor, we can then write:

w̃∆(EEE) ≈ stat
A(r)

0 ,C(r)
0

[
inf

εεε/⟨εεε⟩=E
⟨w0(εεε)⟩ + stat

εεε∗,d∗
⟨∆J(εεε, d)⟩

]
(2.32)

where w0(εεε) is the energy associated with the resulting LCC such that :

w0(εεε) = inf
d/Ψc(ḋ)

J0(εεε, d) (2.33)

The infimum of J0(εεε, d) with respect to d is given with account of the irreversibility con-
straint on damage, which is written using the Karush-Kuhn-Tucker (KKT) optimality con-
ditions: 

∂

∂d
(

J0(εεε, d) + λ Ψ(ḋ)
)
= 0

λ ḋ = 0

λ ≤ 0 , ḋ ≥ 0

(2.34)
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which can be rewritten over each phase as :

∂

∂d

{
1
2
(1 − d)2 A(r)

0 +
1
2

εεε : C
(r)
0 : εεε + Yc (d − dn)

}
+ λ = 0

λ

(
d − dn

∆t

)
= 0

λ ≤ 0 ;
d − dn

∆t
≥ 0

(2.35)

Case 1. λ < 0. According to (2.35)2, this assumption leads to d = dn which is the same as
the elastic case without the presence or evolution of damage. This case will therefore not be
retained.
Case 2. λ = 0. The latter corresponds to d − dn > 0, which correlates to the case of evolving
damage. It is therefore this case that we retain. From (2.35)1, this assumption leads to:

∂

∂d

{
1
2
(1 − d)2 A(r)

0 +
1
2

εεε : C
(r)
0 : εεε + Yc (d − dn)

}
= 0 (2.36)

The resulting expression of the damage variable is as follows :

d(r)opt = 1 − Yc

A(r)
0

(2.37)

which turns out to be uniform per phase. Though this uniformity of the optimal damage
field d(r)opt in the phase r, it will be shown below that d(r)opt may depend on the strain hetero-

geneity in phase r via its link with A(r)
0 .

The energy associated with the LCC (see its definition by (2.33), with J0 given by (2.23)) is
then written as :

w(r)
0 (εεε) =

1
2

(
1 − d(r)opt

)2
A(r)

0 +
1
2

εεε : C
(r)
0 : εεε + Yc

(
d(r)opt − dn

)
(2.38)

The resulting w(r)
0 is the LCC’s linear thermoelastic potential with piecewise uniform param-

eters and, unlike the EIV formulation in [75], this potential does not involve a polarization
τ
(r)
0 .

The effective potential, given by (2.32), can be written by applying the minimization condi-
tion with respect to εεε as :

w̃∆(EEE) ≈ stat
A(r)

0 ,C(r)
0

[
w̃0(E) + stat

εεε∗,d∗
⟨∆J(εεε, d)⟩

]
(2.39)

where
w̃0(E) = inf

εεε/⟨εεε⟩=E
⟨w0(εεε)⟩ (2.40)
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and represents the effective energy of the LCC.

We are ready now to write the last optimality conditions, which will allow to determine the
expressions of the remaining quantities A(r)

0 and C
(r)
0 .

3. Stationarity of
〈

J(r)0 + ∆J(r)
〉(r)

Optimality with respect to A(r)
0 and C

(r)
0 allows to obtain the missing link between (εεε∗, d∗)

and the variables (εεε, d) :

stat
A(r)

0

〈
J(r)0 + ∆J(r)

〉(r)
=⇒

〈
(1 − d)2

〉(r)
=
〈
(1 − d∗)2

〉(r)
(2.41)

stat
C
(r)
0

〈
J(r)0 + ∆J(r)

〉(r)
=⇒


⟨εεε : K : εεε⟩(r) = ⟨εεε∗ : K : εεε∗⟩(r)

⟨εεε : J : εεε⟩(r) = ⟨εεε∗ : J : εεε∗⟩(r)
(2.42)

for which it is recalled that K represents the isotropic deviatoric projector and J the isotropic
spherical projector.
By denoting ⟨a⟩(r) the average of the quantity a considered on the phase (r), from (2.31) and
(2.42), it is readily seen that A(r)

0 can then be determined using the second-order moment
estimate of the strain field :

A(r)
0 =

〈
εεε : C

(r)
s : εεε

〉(r)
(2.43)

which is the average over the r phase of the elastic energy of the undamaged material.
Using the result (2.43), one can rewrite (2.37) in the following form

(
1 − d(r)opt

) 〈
εεε : C

(r)
s : εεε

〉(r)
− Yc = 0 (2.44)

The relation (2.37) can thus be interpreted as follows: the damage d(r)opt, homogeneous and
associated with the phase r, results from the saturation on average over phase r of the dam-
age criterion.

The optimal damage value reads then :

d(r)opt = 1 − Yc〈
εεε : C

(r)
s : εεε

〉(r) (2.45)

Finally, using the results (2.41) and (2.43), and carrying (2.37) into (2.29), one gets the expres-
sion of C

(r)
0

C
(r)
0 =

(
1 − d(r)opt

)2
C
(r)
s =

 Yc〈
εεε : C

(r)
s : εεε

〉(r)


2

C
(r)
s (2.46)
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which represents the elasticity tensor of the Linear Comparison Composite (LCC) described
by w0(εεε) (2.38).

Effective response of the elasto-damageable composite

Once all the parameters are known, the effective behavior of the composite can be specified.
In order to do so, we proceed to the minimization of w̃∆ defined by (2.27), with respect
to εεε. This functional is stationary with respect to A(r)

0 , C
(r)
0 and d and the term ∆J of this

functional is stationary with respect to εεε∗ and d∗. Given this, we can define the local problem
that corresponds to the Euler-Lagrange equations providing the solution to the variational
problem: 

div σσσ(x) = 0 ∀x ∈ Ω

σσσ(x) = C
(r)
0 : εεε(x) ∀x ∈ Ω

⟨εεε(x)⟩ = EEE + Boundary conditions on ∂Ω

(2.47)

The effective behavior of the nonlinear composite can then be estimated as :

ΣΣΣ = ⟨σσσ(x)⟩ =
∂w̃∆

∂EEE
(EEE) ≈ ∂w̃0

∂EEE
(EEE)

=
N

∑
r=1

c(r) C
(r)
0 : ⟨εεε(x)⟩ =

N

∑
r=1

c(r) C
(r)
0 :

[
A(r) : EEE

] (2.48)

where A(r) is a fourth-order tensor that corresponds to the strain localization tensor in the

phase (r). And c(r) is the volume fraction of the phase (r) such that: c(r) =
|Ω(r)|
|Ω| .

Elasto-damageable matrix reinforced by elastic particles

The above-developed procedure is now particularized to the case of a two-phase particulate
composite (N=2 being the number of phases), composed of an elasto-damageable matrix re-
inforced by randomly and isotropically distributed elastic spherical particles. The subscripts
(1) and (2) represent the inclusion and the matrix, respectively. For this purpose, in order to
estimate the effective behavior of the composite as well as the first and second-order mo-
ments of the different fields in each phase, we made use of the Hashin-Shtrikman bounds.
Regarding the first-order moment of the strain εεε upon the phases, it can be expressed as:

εεε(1) = A(1) : E , εεε(2) =
1

c(2)

(
EEE − c(1)εεε(1)

)
(2.49)

For a two-phase composite (N=2), the strain localization tensors associated with the Hashin-
Shtrikman estimates are classically given by :

A(1) =
(

I + c(2)P(2)
0 : ∆C0

)−1
, A(2) =

1
c(2)

(
I − c(1)A(1)

)
(2.50)

where ∆C0 = C
(1)
0 − C

(2)
0 , and P

(2)
0 is Hill tensor associated with the matrix phase of the

LCC in the case of isotropically distributed spherical particles. Under these conditions, the
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tensor P
(2)
0 is written as

P
(2)
0 =

α
(2)
0

3 k(2)0

J +
β
(2)
0

2 µ
(2)
0

K, with α
(2)
0 =

3 k(2)0

3k(2)0 + 4µ
(2)
0

, β
(2)
0 =

6
(

k(2)0 + +2µ
(2)
0

)
5
(

3k(2)0 + 4µ
(2)
0

) (2.51)

Given these expressions, in order to obtain the first-order moment of the strain tensor within
each constitutive phase, we need to determine C

(r)
0 . The latter, as we saw in (2.46), can be

obtained with the use of the second-order moment of the strain tensor, which is estimated
with the following expression :

⟨εεε ⊗ εεε⟩(r) =
1

c(r)
∂w̃0

∂C
(r)
0

(2.52)

In this two-phase case, the elasticity of the inclusion is given by: C
(1)
0 = C

(1)
s as it remains

undamaged. In the matrix phase, the expression of C
(2)
0 which characterizes the MLC w0 is

obtained from (2.46).
The nonlinear problem is reduced to the solution of a system of equations defined by two
coupled functions whose unknowns are A(r)

0 and C
(2)
0 :

F1

(
A(2)

0 , C
(2)
0

)
= A(2)

0 −
〈

εεε : C
(2)
s : εεε

〉(2)
= 0

F2

(
A(2)

0 , C
(2)
0

)
= C

(2)
0 −

 Yc〈
εεε : C

(2)
s : εεε

〉(2)


2

C
(2)
s = 0

(2.53)

The resolution of this system allows to determine the damage level and then the behavior
locally and globally.

2.4 Numerical implementation

2.4.1 Algorithm’s structure

We now consider the numerical implementation of the developed theoretical model. The
aim here is to describe the algorithm allowing to determine, for a given loading history
defined in terms of prescribed macroscopic strain E at all times tn, the effective stress ΣΣΣ
and the first and second-order moments of the local fields in the phases. This problem will
be solved iteratively by determining the solution at tn+1 from the known solution at the
previous time step tn. The algorithm’s structure goes as follows :

• At the current time step t = tn+1, the macroscopic strain EEEn, the field statistics at step
tn are known. An increment ∆EEE is applied. At each step we aim at determining the
macroscopic stress ΣΣΣn+1, the local field statistics (namely the first and second order
moments) at time step tn+1. The coupled nonlinear system (2.53) is therefore solved at
tn+1. The equation associated with F2 of this system can be decomposed into spherical
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and deviatoric parts

F1

(
A(2)

0 , C
(2)
0

)
= A(2)

0 −
(

3 k(2)s

(
εεεm

(2)
)2

+ 3 µ
(2)
s

(
εεεd

(2)
)2
)

= 0

Fsph
2

(
A(2)

0 , C
(2)
0

)
= k(2)0 −

(
Yc

A(2)
0

)2

k(2)s = 0

Fdev
2

(
A(2)

0 , C
(2)
0

)
= µ

(2)
0 −

(
Yc

A(2)
0

)2

µ
(2)
s = 0

(2.54)

with εεεm
(2)

the second moment of the spherical part of the deformation tensor, and εεεd
(2)

that of its deviatoric part 3. These quantities are obtained through (2.49) and (2.52), the
resulting expressions depend on k(2)0 and µ

(2)
0 .

Solving the system (2.54) provides the elastic characteristics of the LCC A(2)
0 , k(2)0

and µ
(2)
0 . For this purpose, we use the function LEAST_SQUARES on Python which

allows the nonlinear resolution of the system using the Levenberg-Marquardt algo-
rithm, making it possible to determine the energy w(r)

0 (2.38) of the LCC with phase-
homogeneous properties as well as the values of the matrix damage (2.37).

• The second step consists in calculating the homogenized parameters
(
µ̃0, k̃0

)
defining

the energy w̃0 , by implementing a Hashin-Shtrikman type bound. Once all these pa-
rameters are determined, we can proceed to the calculation of the macroscopic stress
ΣΣΣ which is obtained using the equation (2.48).

• All the quantities are then updated at the end of the current time step, and used for
the following time step (.)n+1 −→ (.)n

2.4.2 Numerical accuracy

As previously mentioned, the proposed analytical model undergoes a time discretization
over the time interval [0, T], where the time increment ∆t as ∆t = tn+1 − tn.
We now propose a first analysis of the influence of the time step discretization on the model
predictions. To this end, we have performed simulations on a two-phase composite for dif-
ferent values of the time step ∆t. This composite consists of an elasto-damageable matrix
reinforced with linear elastic spherical particles.
The chosen material parameters are the same as those of Fantoni et al. ([36]), which is com-
posed of an Aluminum matrix exhibiting damage and linear elastic inclusions correspond-
ing to Silicon carbide :

Inclusion : c(1) = 25% , E(1) = 340 GPa , ν(1) = 0.18

Matrix : E(2) = 60 GPa , ν(2) = 0.3 , Yc = 2.9MPa
(2.55)

3εεεm = 1/3, tr(εεε) εεεd = εεε − εεεmI I: identity tensor of order 2
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The composite is subjected to an isochoric macroscopic deformation of the form

E(t) = E33(t)
(
−1

2
(e1 ⊗ e1 + e2 ⊗ e2) + e3 ⊗ e3

)

FIGURE 2.1: Influence of the time step discretization on the effective response
of the model in terms of macroscopic behavior for an isochoric load (damage-

able matrix, elastic particle).

Fig.2.1 shows the evolution of the macroscopic axial stress versus the macroscopic axial
strain for different time steps (∆t = 0.2s, 0.1s, 0.05s, 0.01s). On the same figure is provided a
zoom on the transition zone between the linear elastic regime and the softening regime. It
can be seen in these figures that the four curves in the elastic regime, each corresponding to
a different ∆t, are practically stacked, unlike the softening regime where a relatively more
important difference is observed starting from the transition zone.
As the accuracy of the response does not improve significantly as the time step decreases for
∆t < 0.05s the latter is set to ∆t = 0.01s for all simulations throughout the remainder of this
dissertation.

2.5 Model predictions

As discussed in the previous section, obtaining the macroscopic behavior as well as averages
of local fields requires solving the nonlinear system (2.54). We consider here a composite
material made of an elasto-damageable matrix reinforced by elastic spherical particles. The
material parameters used are those introduced in (2.55).
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Within this study, different loadings have been considered, but as a starting point, we’ll first
focus on an isochoric macroscopic strain

E(t) = E33(t)
(
−1

2
(e1 ⊗ e1 + e2 ⊗ e2) + e3 ⊗ e3

)
(2.56)

This model is characterized by a pure elastic regime until a threshold, after which the soften-
ing regime takes place. Fig.2.2a illustrates the macroscopic response of the composite under
isochoric loading as well as the evolution of the average stress in the matrix and in the inclu-
sion. Fig.2.2b shows the evolution of the constitutive behaviors of the composite, the matrix,
and the inclusion.

(a) (b)

FIGURE 2.2: (a) Macroscopic stress and average stress in each phase under an
isochoric loading with respect to the effective load E33 for each phase and the
composite., (b) Constitutive behaviors of the composite, matrix, and inclusion

The first figure clearly shows how the presence of the inclusion reinforces the matrix in its
capacity to uphold higher levels of stress before softening takes place, which is due to the
evolution of damage in the matrix. A remarkable point is the decrease of the average stress
in the inclusion from the moment corresponding to the softening in the matrix, whereas the
inclusion has a linear elastic behavior, as can be seen in Fig.2.2b illustrates the mechanical
stress-strain relations in the matrix and inclusions together the composite behavior.

An examination of the evolution of the average strains in the inclusion indicates that it is
indeed an unloading of the inclusion simultaneously with the softening behavior of the ma-
trix. This is clearly illustrated in Fig.2.3 showing the evolution of the average strain in the
inclusion together with the evolution of damage in the matrix with respect to the macro-
scopic strain.
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FIGURE 2.3: Evolution of the average local strain in the inclusion < εεε33 >(1)

and damage in the matrix with respect to the macroscopic strain E33

2.6 The case of a porous material

In this section, we propose a simple comparison of the homogenization model predictions
to the closed-form solutions already presented in chapter 1 as a reference result. Let us recall
that these solutions have been detailed in section 1.4. For comparison purposes, we con-
sider here a two-phase composite as before, but with the spherical linear elastic inclusions
replaced by spherical voids. The matrix is still elasto-damageable.

The considered isotropic loading consists of a uniform radial displacement ur = E× b/3 on

the external boundary r = b, which corresponds to a macroscopic strain tensor E =
E
3

Id.
As a reminder, the bulk modulus is not affected by damage, and the shear damage function
is taken in the form µ(d) = (1 − d)2µs. As in chapter 1, the constant ζ in (1.66) is equal to

−0.1. For the same reason, a ratio of the bulk modulus and the shear modulus
ks

µs
= 30 (this

corresponds to a Poisson ratio equal to 0.48 -in other words, for a sound matrix nearly elastic
incompressible.
Owing to the fact the hollow sphere was set with a ratio b/a0 = 2, we consider a porosity
c1 = 1/8 = 0.125.
The comparison is shown on Fig.2.4a in terms of macroscopic stress as function of the volu-
metric strain.
Discrepancies between both curves are observed past E33 = 0.0075. The overall agreement
between the two approaches is found to be quite satisfactory in both regimes.
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(a) (b)

FIGURE 2.4: (a) Radial behavior of a damaging hollow sphere submitted to a
uniform radial displacement on its external envelope, (b) damage evolution

obtained via the theoretical model

2.7 The Effective Internal Variable approach for a damage model
based on the Mori-Tanaka scheme

2.7.1 Incremental variational procedure

In the previous section, we considered a particular degradation function (2.20), this choice
of degradation function corresponds to a model classically considered in the literature for
the numerical simulation of damage processes. However, it is completely within our reach
to study the effective behavior of elasto-damageable composite using different degradation
functions.
In this section, we’ll be considering a non-softening damage law for which the expression of
the degradation function g(d) takes the following form :

C(r)(d) = g(d)C
(r)
s =

1
1 + Q′d

C
(r)
s (2.57)

The free energy and the dissipation potential will be considered as (2.18) and (2.21) respec-
tively.

Linearization of the local behavior

We follow the same steps introduced in section (2.3.2). The incremental potential J (2.9)3 is
approximated by a linearized incremental potential J0 :
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J0(x, εεε, d) =

N

∑
r=1

J(r)0 (εεε, d)χ(r)(x)

J(r)0 =
1

2(1 + Q′ d)
A(r)

0 +
1
2

εεε : C
(r)
0 : εεε + Yc (d − dn) + ∆t Ψc

(
d − dn

∆t

) (2.58)

where A(r)
0 is a uniform per phase scalar and C

(r)
0 is a uniform per phase fourth-order tensor.

This approximation consists of rewriting J as J = J0 + ∆J where ∆J corresponds to the
difference between the two potentials such as :

∆J(x, εεε, d) =
N

∑
r=1

∆J(r)(εεε, d)χ(r)(x)

∆J(r) =
1

2(1 + Q′ d)

[
εεε : C

(r)
s : εεε − A(r)

0

]
− 1

2
εεε : C

(r)
0 : εεε

(2.59)

By replacing J by its expression in the variational problem (2.9)1, then considering a rigor-
ous upper bound on w̃∆, and finally replacing the supremum condition by a stationarity
condition, we obtain an estimate of w̃∆ of the form :

w̃∆(EEE) ≈ stat
A(r)

0 ,C(r)
0

[
inf

εεε/⟨εεε⟩=E

(
inf

d/Ψc(ḋ)
⟨J0(εεε, d)⟩ + stat

εεε∗,d∗
⟨∆J(εεε, d)⟩

)]
(2.60)

Stationarity conditions

Following the steps introduced previously in section (2.3.2), we will write the stationarity of
∆J with respect to d∗ and εεε∗ providing an expression for the parameters A(r)

0 and C
(r)
0 . The

stationarity with respect to these parameters will complete their expressions. And finally, the
stationarity of J0 with respect to d will provide an expression of the damage as a function of
εεε.

1. Stationarity of ∆J

The stationarity of ∆J (2.59) with respect to εεε∗ can be written as :

∂

∂εεε∗

{
1

2(1 + Q′ d∗)

[
εεε∗ : C

(r)
s : εεε∗ − A(r)

0

]
− 1

2
εεε∗ : C

(r)
0 : εεε∗

}
= 0 (2.61)

which implies

=⇒ C
(r)
0 =

1
(1 + Q′ d∗)

C
(r)
s (2.62)

Similarly, the stationarity condition of ∆J over d∗ reads :

∂

∂d∗

{
1

2(1 + Q′ d∗)

[
εεε∗ : C

(r)
s : εεε∗ − A(r)

0

]
− 1

2
εεε∗ : C

(r)
0 : εεε∗

}
= 0 (2.63)
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This leads to an expression for the first parameter introduced in J0 :

=⇒ A(r)
0 = εεε∗ : C

(r)
s : εεε∗ (2.64)

The two relations (2.62) and (2.64) show that the two unknowns A(r)
0 and C

(r)
0 depend on the

variables εεε∗ and d∗ which remain to be determined.

2. Minimization of J(r)0

We obtain a Linear Comparison Composite (LCC) by minimizing J(r)0 with respect to d. And
due to the stationarity of ∆J with respect to the strain tensor, we can then write:

w̃∆(EEE) ≈ stat
A(r)

0 ,C(r)
0

[
inf

εεε/⟨εεε⟩=E
⟨w0(εεε)⟩ + stat

εεε∗,d∗
⟨∆J(εεε, d)⟩

]
(2.65)

where w0(εεε) is the energy associated with the resulting LCC such that :

w0(εεε) = inf
d/Ψc(ḋ)

J0(εεε, d) (2.66)

The infimum of J0(εεε, d) with respect to d is given with account of the irreversibility con-
straint on damage, which is written using the Karush-Kuhn-Tucker (KKT) optimality con-
ditions: 

∂

∂d

{
1

2(1 + Q′ d)
A(r)

0 +
1
2

εεε : C
(r)
0 : εεε + Yc (d − dn)

}
+ λ = 0

λ

(
d − dn

∆t

)
= 0

λ ≤ 0 ;
d − dn

∆t
≥ 0

(2.67)

Case 1. λ < 0. According to (2.67)2, this assumption leads to d = dn which is the same as
the elastic case without the presence or evolution of damage. This case will therefore not be
retained.
Case 2. λ = 0. From (2.67)1, this assumption leads to:

∂

∂d

{
1

2(1 + Q′ d)
A(r)

0 +
1
2

εεε : C
(r)
0 : εεε + Yc (d − dn)

}
= 0 (2.68)

It is this case that we retain.

The resulting expression of the damage variable is as follows :

d(r)opt =

√
A(r)

0
2 Q′ Yc

− 1
Q′ (2.69)
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The energy associated with the LCC, with J0 given by (2.58), is then written as :

w(r)
0 (εεε) =

1

2
(

1 + Q′ d(r)opt

) A(r)
0 +

1
2

εεε : C
(r)
0 : εεε + Yc

(
d(r)opt − dn

)
(2.70)

3. Stationarity of
〈

J(r)0 + ∆J(r)
〉(r)

Optimality with respect to A(r)
0 and C

(r)
0 allows to obtain the missing link between (εεε∗, d∗)

and the variables (εεε, d) :

stat
A(r)

0

〈
J(r)0 + ∆J(r)

〉(r)
=⇒

〈
1

(1 + Q′ d)

〉(r)

=

〈
1

(1 + Q′ d∗)

〉(r)

(2.71)

stat
C
(r)
0

〈
J(r)0 + ∆J(r)

〉(r)
=⇒


⟨εεε : K : εεε⟩(r) = ⟨εεε∗ : K : εεε∗⟩(r)

⟨εεε : J : εεε⟩(r) = ⟨εεε∗ : J : εεε∗⟩(r)
(2.72)

A(r)
0 can then be determined using the second-order moment estimate of the strain field:

A(r)
0 =

〈
εεε : C

(r)
s : εεε

〉(r)
(2.73)

Using the result (2.73), one can rewrite (2.69) in the following form

1

2
(

1 + Q′ d(r)opt

) 〈εεε : C
(r)
s : εεε

〉(r)
− Yc = 0 (2.74)

Finally, using the results (2.71) and (2.73), and carrying (2.69) into (2.62), one gets the expres-
sion of C

(r)
0

C
(r)
0 =

1(
1 + Q′ d(r)opt

) C
(r)
s =

√√√√ 2Yc

Q′
〈

εεε : C
(r)
s : εεε

〉(r) C
(r)
s (2.75)

which represents the elasticity tensor of the Linear Comparison Composite (LCC) described
by w0(εεε) (2.70).

Effective response of the elasto-damageable composite

Once all the parameters are known, the effective behavior of the composite can be specified.
In order to do so, we proceed to the minimization of (2.60) with respect to εεε. This functional
is stationary with respect to A(r)

0 , C
(r)
0 and d and the term ∆J of this functional is stationary

with respect to εεε∗ and d∗. Given this, we can define the local problem that corresponds to
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the Euler-Lagrange equations providing the solution to the variational problem:
div σσσ(x) = 0 ∀x ∈ Ω

σσσ(x) = C
(r)
0 : εεε(x) ∀x ∈ Ω

⟨εεε(x)⟩ = E + Boundary conditions on ∂Ω

(2.76)

The effective behavior of the nonlinear composite can then be approximated from the esti-
mate :

σσσ = ⟨σσσ(x)⟩ =
∂w̃∆

∂EEE
(EEE) ≈ ∂w̃0

∂EEE
(EEE)

=
N

∑
r=1

c(r) C
(r)
0 : ⟨εεε(x)⟩ =

N

∑
r=1

c(r) C
(r)
0 :

[
A(r) : E

] (2.77)

where A(r) is the fourth-order tensor which corresponds to the strain localization tensor in
the phase (r).

We consider yet again the case of a two-phased composite (N=2 being the number of phases)
composed of an elasto-damageable matrix reinforced by randomly and isotropically dis-
tributed elastic spherical particles. The subscripts (1) and (2) represent the inclusion and the
matrix, respectively.

The nonlinear problem is reduced to the solution of a two-function system of unknowns
A(r)

0 and C
(2)
0 :


F1

(
A(2)

0 , C
(2)
0

)
= A(2)

0 −
〈

εεε : C
(2)
s : εεε

〉(2)
= 0

F2

(
A(2)

0 , C
(2)
0

)
= C

(2)
0 −

√√√√ 2Yc

Q′
〈

εεε : C
(r)
s : εεε

〉(r) C
(2)
s = 0

(2.78)

2.7.2 Numerical illustration

We now propose an analysis of the response of such composite with this particular degra-
dation function. To this end, we have performed simulations on a two-phased composite
consisting of an elasto-damageable matrix reinforced with linear elastic spherical particles.
The material parameters are those given in (2.55). The composite is subjected to an isochoric
macroscopic strain (see (2.56)).
As can be seen in Fig.2.5d, the damage evolution shows a steady increase which is due to
the non-softening property of the current model.
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(a) (b)

(c) (d)

FIGURE 2.5: Q′ = 1 - Elastically reinforced composite with an elasto-
damageable matrix submitted to an isochoric macroscopic strain [MT scheme]
(a) Macroscopic axial stress, (b) Average axial stress in the matrix, (c) Average

axial stress in the inclusion,(d) Stress fluctuations in the matrix

2.8 Conclusion

In this chapter, after briefly presenting some nonlinear homogenization methods includ-
ing incremental variational approaches, we introduced the main elements of the Effective
Internal Variable homogenization procedure introduced by Lahellec and Suquet [75] by re-
lying on the Generalized Standard Materials framework. Then, we propose an extension
of this method to composites with elasto-damageable constituents. To this end, we apply a
linearization procedure of the local behavior followed by the resolution of the resulting ho-
mogenization problem. The developed homogenization model has been implemented nu-
merically for a two-phased composite. This was followed by a qualitative illustration of the
predictions of the homogenization model in the case of an elasto-damageable aluminum
matrix reinforced by a linear elastic inclusion made of silicon carbide. It was observed that
although the inclusion is linear elastic, it still showed a decrease in the average stress when
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represented with respect to the macroscopic strain which is actually a sort of unloading oc-
curring with the evolution of damage in the matrix
Considering a porous material, a first comparison has been made between the nonlinear
homogenization model and the closed-form solutions presented in chapter 1 on a hollow
sphere. The qualitative agreement between the overall response predicted by the homoge-
nization model and the one issued from the closed-form solution (on the hollow sphere) is
remarkable except when the softening regime is well developed.
The chapter ends with the consideration of a different degradation function. The damage
law considered in that section has the particularity of showing elastic-perfect damage-like
law, that is without softening.
Now that the proposed homogenization model is set up, in the next chapter, our aim is to
evaluate its predictions by means of a confrontation with results that will be obtained from
full-field simulations.
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In this chapter, we aim at evaluating the theoretical homogenization model developed and
described in the second chapter. To this end, we performed full-field finite element simula-
tions by relying on the variational commonly referred to now as the phase-field approach,
initially introduced by [19] and interpreted later by [112] as regularized gradient damage
model. Detail on gradient damage models can be found in several other studies among
which [41, 80]. In section 3.1, the choice of gradient damage models for full-field simulations
will be first motivated, and a brief presentation of the main elements of the phase field ap-
proach in presence of a damage threshold (the so-called AT1 model) will be reminded. The
numerical implementation of this variational approach using FEniCS libraries and Python
is briefly described following an alternate minimization algorithm as proposed by [19]. This
first section ends with a comparison between the theoretical overall behavior issued from the
closed-form solutions established on the hollow sphere (see chapter 1, (1.4.4)) and the newly
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obtained numerical results. Then, we propose an assessment of the predictive capabilities of
the Effective Internal Variable homogenization model through the comparison between its
predictions and that of the full-field computations for different macroscopic loading cases,
namely isochoric strain, uniaxial extension, and cyclic loadings. Note that, the microstruc-
ture studied is constituted by a cube of elasto-damageable matrix containing a spherical
linear elastic inclusion.

3.1 Limitations of local damage models : mesh size sensitivity

Pathological limitations of local descriptions of elastic damage models have been well-known
for over 30 years. Their main manifestations are a spurious mesh dependency in presence
of strong localization of deformations and damage resulting from material softening. As we
will see later, several ways are possible in order to circumvent these difficulties : formulation
of non-local damage models introducing an internal length; implementation of some math-
ematical relaxation of energy methods in order to ensure that the corresponding problem is
well-posed. (see for instance [40], [50].
In order to confirm the numerical inadequacy of local models by a finite element calculation,
we adapt to the local damage context (no internal length) the functional of the variational
formulation that will be presented in subsection 3.2.1 for regularized damage model. This
leads to the following two fields’ minimization problem :

E(u, d) =
∫

Ω

(
1
2

εεε : C(d) : εεε + w(d)
)

dΩ − Wext (3.1)

where :

Wext =
∫

Ω
f δu dΩ +

∫
Ω

T δu dS

{
f : volumetric force in Ω

T : surface forces in ∂Ω
(3.2)

In this functional, in addition to the elastic energy, one has the term w(d) which corre-
sponds to the total dissipated energy until time t and is such that for the local already pre-
sented:

w(d) = Yc d (3.3)

where the material constant Yc represents the damage energy release at yield, i.e. a param-
eter of the local damage model which may be obtained from experiences characterizing the
material’s mechanical behavior.
In what follows, we will briefly investigate the effect of mesh sensitivity on results obtained
by means of the local damage model. To this end, we have performed computations on the
one-eighth of a 3D cubic cell, with a 3mm side, consisting of an elastic damageable matrix re-
inforced by an isotropic linear elastic spherical particle at the center whose radius is 2.34mm,
the volume fraction considered throughout this study amounts to 25%.
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The material properties considered are the ones already introduced in (2.55); the composite
is here subjected to an isochoric macroscopic strain :

E(t) = E33(t)
(
−1

2
(e1 ⊗ e1 + e2 ⊗ e2) + e3 ⊗ e3

)
(3.4)

The numerical simulations are performed using FeniCS libraries and the assembly is done
via Python programming language.
Hereafter, in order to illustrate mesh sensitivity, we performed three simulations with tetra-
hedral elements corresponding to three mesh sizes :

Number of elements Mesh size (mm)

h1 139 068 0.1
h2 323 339 0.075
h3 608 791 0.06

(a) (b) (c)

FIGURE 3.1: Illustrations of the three considered meshes for the local isotropic
model, (a) h1, (b) h2, (c) h3

For each of these meshes, we represent in Fig.3.2 the macroscopic response of the composite
as well as the averages of the stress field over the matrix phase and the inclusion. Moreover,
the evolution of the "mean value" of damage, computed using the expression (2.45)1. It can
be clearly seen that the composite behavior in the softening regime is strongly mesh size de-
pendent. In Fig.3.3, it is shown how the localized damage zone (at ultimate damage) differs
from one mesh to another. This localization of the damage field concentrates in increasingly
thin bands for increasing fine meshes. Note that the damage localization in the form of crack
is obtained at the occurrence of damage, inducing then a marked softening regime (the dam-
age goes instantaneously from 0 to 1).
A way to correct this pathology, and that we follow in the rest of the study, is to consider
non-local formulations in the form of gradient damage-based constitutive laws.

1This choice is made in the view of further comparison purpose with the homogenization model.
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(a) (b)

(c) (d)

FIGURE 3.2: Predictions of the local isotropic damage model for a composite
submitted to an isochoric macroscopic strain. Computations for three different
meshes, (a) Macroscopic axial stress, (b) Average axial stress in the matrix, (c)
Average axial stress in the inclusion, and (d) the evolution of damage with

respect to macroscopic strain E33

(a) (b) (c)

FIGURE 3.3: Damage isovalues showing the distribution of damage localiza-
tion for the same microstructure. Three different mesh sizes are considered,

(a) h1, (b) h2, (c) h3
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3.2 A regularized damage approach as a relevant tool of investiga-
tion of quasi-brittle composites

In this section, we first present a summary of the variational regularized damage model used
for the full-field computations and then the alternate minimization algorithm available for
its implementation.

3.2.1 Variational formulation of gradient damage models

As a way of avoiding the pathological problems linked to the Finite Element mesh depen-
dency, we relied on a regularized damage model. This variational approach, introduced by
[19] in connection with the study by [3], consists in minimizing a functional with respect to
two fields (displacement and damage) on the considered structure. It has been interpreted
later as a gradient damage model [88]. Moreover, probably due to their success to describe
the transition from damage to fracture phenomena, gradient damage models have opened
the way to methods widely recognized and diffused today under the acronym of phase-field
methods. As examples of successful applications of gradient damage models mention can
be made of [81],[82], [106], [127] to cite few.

Variational formulation

Let us consider a time-dependent loading in which the evolution would be parametrized by
a "time" variable t. The variational approach is based on the total energy functional including
a gradient of damage term :

E(u, d) =
∫

Ω
Ψ (εεε, d,∇d) dΩ −

∫
Ω

f .udΩ −
∫

∂Ω
T.udS (3.5)

in which
Ψ (εεε, d,∇d) =

1
2

εεε : C(d) : εεε︸ ︷︷ ︸
free energy density

+ w(d) + w1 l2
0∇d.∇d︸ ︷︷ ︸

dissipated energy density

(3.6)

where f and T correspond to external body forces and surface tractions respectively applied
at time t.
The dissipated energy density is written as the sum of a local term w(d), also called the
damage dissipation function, and a damage gradient term w1 l2

0∇d.∇d which involves an
internal length scale l0.

Moreover, it should be noted that the field equations of the mechanical problem (equilib-
rium, damage evolution criterion, and consistency equations) can be obtained from optimal-
ity conditions, taking advantage of the fact that the functional to be minimized is separately
convex with respect to both u and d. The directional derivative for u describes the linear
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variational elasticity problem at fixed d (see [16]):

∂E
∂u

∣∣∣∣
(u,d)

(v, 0) = 0 −→
∫

Ω
(1 − d)2 εεεu : Cs : εεεv dΩ = Wext(v) ∀v (3.7)

And the directional derivative for d gives the variational inequality :

∂E
∂d

∣∣∣∣
(u,d)

(0, β− dn) ≥ 0 −→ Gc

cw

∫
Ω

(
w′(d)

l0
(β − dn) + l0∇d (∇β −∇dn)

)
dΩ ≥ 0 ∀β ≥ dn

(3.8)
which yields the following evolution laws :

f (εεε, d) = (1 − d) εεε : Cs : εεε − Gc w′(d)
cw l0

+ 2
Gc l0
cw

∆d ≤ 0 (3.9)

The determination of l0 relies on a classical approach which consists in approximating the
regularized damage model to the Griffith model, by postulating that the energy dissipated
by damage in the fracture process is equivalent to the Griffith fracture energy. This proce-
dure, for example well described in [88], classically leads for the model considered here to:

l0 =
3 Gc

8Yc
where Gc represents the fracture energy.

In a trivial way, the functional to be minimized then takes the form :

E(u, d) =
∫

Ω

(
1
2
(1 − d)2 εεε(u) : Cs : εεε(u)

)
dΩ +

3
8

Gc

∫
Ω

(
d
l0

+ l0 ∇d.∇d
)

dΩ (3.10)

which is the expression of the above functional for the phase field approach known as AT1
in reference to a proposal of Ambrosio and Tortorelli (see [19]), with the choice C(d) =

(1− d)2Cs. We will see later in chapter 4 other choices of regularized damage laws including
for example the so-called AT2 model.

A brief further comment

In agreement with the GSM framework generally adopted in the thesis, it can be of interest
to comment on the possible thermodynamics potentials allowing to retrieve the above func-
tional in link with (1.16). To this end, as in [65], consider the following thermodynamics and
dissipation potentials: w(εεε, d) =

1
2
(1 − d)2 εεε : C : εεε

φ(ḋ,∇d) = Yc ḋ + 2 l2
0 Yc ∇d.∇ḋ

(3.11)

Starting from these expressions of the potentials w(εεε, d) and φ(ḋ,∇d) , and noting that the
latter corresponds to a simple dissipation structure (see [34, 33])2, it can be proved that one

2

Definition 1. system is said to have simple dissipation if the time integral giving the total dissipation depends only on the
current value of the state variables.
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gets for the energy functional the following form

E(u, d) =
∫

Ω

(
1
2
(1 − d)2 εεε(u) : Cs : εεε(u)

)
dΩ + Yc

∫
Ω

(
d + l2

0 ∇d.∇d
)

dΩ (3.12)

in which, compared to (3.6), use has been done of

w1w(d) =
∫ d

0
Yc dα (3.13)

Expression (3.12) corresponds to the functional described by (3.5) with (3.6).

3.2.2 Numerical modeling using gradient damage models

Main features of the numerical implementation

In order to perform Finite Element based numerical simulations with the gradient damage
model briefly detailed in the previous paragraphs we made use of Python 3 scripting and
FEniCS Libraries3.
We worked on three-dimensional meshes generated thanks to GMSH [45] and treated via
the mshr library in FEniCS. We also relied on the multiple-platform visualization tool Par-
aView. Each mesh is constituted of tetrahedron elements with linear interpolation for the
displacement and damage fields.

The minima of the functional E(u, d) in equation (3.10) is performed thanks to an alternate
minimization scheme as in [19], which is briefly summarized in the table hereafter:

Algorithm 1 The alternate minimization algorithm

1: Initial conditions [u0
n+1 = un, d0

n+1 = dn]

2: for every successive time step do
3: repeat
4: ui

n+1 = argmin
u

E(u, di
n)

5: di
n+1 = argmin

d/dn≤d≤1
E(ui

n+1, d)

6: Until ||
(
ui

n+1, di
n+1

)
−
(

ui−1
n+1, di−1

n+1

)
|| ≤ tol

7: end for

The first step involves solving the weak static equilibrium condition at fixed damage (u-
problem). The second step (d-problem) amounts to solving a variational inequality problem
in link with the irreversibility constraint. The d-problem is solved using the TAO bound-
constraint optimization solver [90] integrated into the PETSc library [6]. At this stage, men-
tion can be made of the study [37] which proposed some improvements to the standard
alternate minimization algorithm.

3All the simulations were performed on macOS 2,5 GHz Intel Core i5 quad core
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Mesh sizes have been carefully considered to be smaller than the characteristic length l0 to
resolve the regularization length scale, which will be disclosed further below for each con-
ducted study. Material properties, as well as specific boundary conditions, will be detailed
for each of the considered cases (hollow sphere, two-phase composite) addressed in Sections
3.3 and 3.4.

3.3 Comparison between numerical results and closed-form solu-
tions on a hollow sphere

In this section we consider, once again, the reference case of an elasto-damageable hollow
sphere submitted to a uniform radial displacement detailed in Sections 1.4 and 2.6. A finite
element simulation of this problem using the regularized gradient damage model is per-
formed and the results are compared to the ones previously established analytically (closed-
form solutions) and the incremental variational homogenization approach developed.

Considering the symmetry of the problem, the numerical simulation can be conducted on
one-eighth of the sphere. We remind that the sphere’s dimensions ratio is b/a0 = 2, b = 1mm
is the external radius, and a0 = 0.5mm is the internal one (which corresponds to a porosity
f = 0.125). As previously, the material properties are also chosen as follows: the ratio of
the bulk modulus and the shear modulus k/µ0 = 30 (near an elastic incompressible sound
matrix).
The mesh size considered here amounts to h ≈ 0.016mm, with the total number of elements
reaching 67836, and the internal length considered here is equal to l0 = 0.1mm. The thresh-

old Yc =
3Gc

8l0
= 0.013MPa is obtained through (1.66).

When it comes to the full-field simulations, a notable difference can be observed in the
reached threshold before the softening takes place. Indeed, in the exact solution, there is
the purely elastic phase until the threshold is reached and then the damaged phase be-
gins. Whereas in the FEM simulations, it has been observed that damage begins evolving
at E33 = 0.0025, in other words before reaching the highest stress value. Schematically, it is
clearly seen from the damage pattern evolution (see Fig. 3.4b, 3.4c, 3.4d) in the numerical
simulation that there is a competition between the damaged zone and a linear elastic one,
the softening occurring only after a stage of damage development.

As mentioned before, Fig. 3.4b, 3.4c, 3.4d represent the evolution of the damage field within
the hollow sphere at three different levels of loading. The first one corresponds to the first
occurrence of damage within the matrix, the second level corresponds to the maximum
stress level (that is right before the softening regime), and the last one corresponds to the
end of the simulation with a damage level ranging from 0.45 -the minimum value for d- to
1. Damage starts from the inner radius and progresses as expected in the sphere when the
applied deformation increases.
Despite the non-local character of the numerical model a qualitative agreement is obtained,
confirming then an interest in the theoretical results.
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(a) (b) E33 = 0.0028

(c) E33 = 0.0068 (d) E33 = 0.009

FIGURE 3.4: (a) Comparison of the mechanical responses of a hollow sphere
submitted to a uniform radial displacement obtained analytically, with the
variational approach developed and thanks to full-field simulations with a
gradient damage model. (b)-(c)-(d) Damage local field distribution at different

loading levels

3.4 Full-field simulations on a bi-phased composite material

To illustrate the predictions of the proposed nonlinear homogenization model, as well as
their evaluation, the studied composite is subjected to different monotonous and cyclic load-
ings which will be thoroughly discussed hereafter.

We performed FE simulations on one-eighth of a cubic cell composed of a spherical elastic
particle at its center surrounded by an elasto-damageable matrix. Throughout the whole
study, we made use of a mesh constituted of tetrahedron elements (44965 elements), which
is illustrated in Fig.3.5 :
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FIGURE 3.5: Mesh illustration

The elastic material properties of the matrix and of the inclusions as well as the volume
fraction are given in (2.55). Using Yc (2.55) and Gc = 6N/mm, the internal length is thus set
to 0.77mm, with the inclusion’s radius being roughly 3 times l0.
For the following simulations, and according to the natural boundary conditions, we do
enforce damage to be null on the edges where the loading is applied. This is done in order
to prevent damage to localize artificially on the surface where the load is applied 4.

3.4.1 Monotonous Isochoric macroscopic strain loading

The bi-phased composite is first subjected to an isochoric macroscopic strain defined by:

E(t) = E33(t)
(
−1

2
(e1 ⊗ e1 + e2 ⊗ e2) + e3 ⊗ e3

)
(3.14)

In Fig. 3.6a, we represent the macroscopic response of the composite under the considered
loading. Regarding Fig. 3.6b and 3.6c, they illustrate respectively the evolution of the aver-
age stress in the matrix and in the inclusion phase as a function of the macroscopic strain.
In Fig. 3.6, for both the composite and the matrix, two regimes are distinguished. The first
regime corresponds to the initial response which is purely elastic, while the second regime is
characterized by a softening response following the development of the matrix damage. We
observe in Fig. 3.6 that the predictions of the theoretical model reproduce qualitatively the
overall predictions of the FEM simulations regarding the response of the composite and the
average local stress in the matrix and in the inclusion. However, the softening behavior in
the theoretical approach is systematically induced by the development of uniform damage
in the matrix, unlike FE simulations where the softening phase is preceded by a pre-peak
positive hardening regime. In addition, it is reminded that the damage criterion (2.44) of the
proposed model is saturated on average rather than locally as is the case in FE simulations.

4However, for the sake of comprehensive exploration and a deeper understanding, a distinct scenario has
been introduced in Appendix C. In this particular scenario, we do not enforce the constraint of null damage on
the edges where loading is applied. One can refer to this appendix for further details.
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This explains the mismatch observed between the damage threshold stresses observed in
the numerical calculation and the theoretical model. In Fig. 3.6d is also represented the evo-
lution of the damage, in an average sense, with the loading. For the sake of comparison, we
used in the FE simulations the equation (2.45) allowing us to evaluate the same quantities
used to calculate d5 in the theoretical model. It is important to note that in the proposed
homogenization model, the value of the homogeneous damage is determined by saturation
of the criterion depending on the second-order moments of the strain in the matrix phase,
εεεm

(2)
and εεεm

(1)
. It must be recalled that this second-order moment reflects the heterogeneity

of the strain field. In the full-field calculation, some heterogeneity of the damage field in the
matrix is observed (see Fig. 3.7). This results from the strain field heterogeneity.

(a) (b)

(c) (d)

FIGURE 3.6: Elastically reinforced composite with an elasto-damageable ma-
trix submitted to an isochoric macroscopic strain for the AT1 model. (a) Macro-
scopic axial stress, (b) Average axial stress in the matrix, (c) Average axial

stress in the inclusion, (d) Damage evolution

5An alternative can be the computation of a spatial average of the damage field, but this wouldn’t be very
meaningful since the damage field tends to some localization and does not define an extensive quantity.
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It is also important to note that the AT1 model implemented here is known to have a rela-
tively rough softening behavior compared to other models, as it exhibits a sharper drop of
stress upon reaching its maximum value. As a result, the damage tends to evolve in a lo-
calized and heterogeneous way. This constitutes a notable difference when compared to the
homogenization model which by construction tends to diffuse damage by retaining a uni-
form per-phase damage value even determined from the second order moment of the strain
field. Moreover, considering the formula (2.45) used to calculate the damage, by comparing
their evolution for both approaches in Fig. 3.6d, the proposed analytical systematically un-
derestimates the second order moment of the strain field.

(a) E33 = 0.0026 (b) E33 = 0.005

(c) E33 = 0.006 (d) E33 = 0.0085

FIGURE 3.7: Damage evolution for the AT1 model at four different loading
levels, each corresponding to (a) damage appearance, (b) maximum stress

level, (c) softening regime, (d) d(x) = 1 locally attained
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In Fig. 3.8a are represented the stress fluctuations within the matrix for both the Effective
Internal Variable model and the full-field simulations. It can be seen that the loading level
corresponding to the start of the softening also corresponds to the decrease of the fluctua-
tions, which is not the case for FE calculations.

The latter is quantified by
√
C(2)(σσσ) :: K (2.16), where C(2)(σσσ) is defined by equation (2.15).

To gain a better understanding of the fluctuations’ evolution, we represent on Fig. 3.8b the
evolution of their two components (see (2.16)), namely

(
σσσd

(2)
)

and
(

σσσd
(2)
)

eq
for both the

homogenization model and the full-field simulations.

The resulting stress fluctuations being directly related to the difference between the two
represented components, although they both decrease, we can clearly see that the difference
between them increases for the numerical results. Whereas for the homogenization model,
beyond the damage threshold, the difference between the two terms seems relatively steady
in comparison to FE simulations.

(a) (b)

FIGURE 3.8: Elastically reinforced composite with an elasto-damageable ma-
trix submitted to an isochoric macroscopic strain for the AT1 model. (a) Stress

fluctuations, (b) Evolution of the fluctuations’ components

We are now interested in the energetic aspects of the damage phenomena in the composite.
In particular, we aim at providing some insight on the distribution of the dissipated energy
in the composite, by distinguishing its local and non-local parts. We will use the following
notation :
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E f (d) =
Gc

l0 cw

(
w(d) + l2

0∇d.∇d
)

E f−local(d) =
Gc

l0 cw
w(d)

E f−gradient(d) =
Gc

l0 cw

(
l2
0∇d.∇d

)
(3.15)

It must be first stated that in the case here of the AT1 model in which w(d) = d. So, the above
E f−local(d) = Ycd will be just proportional to d and will display the same distribution as for
the damage by a factor Yc (here Yc = 2.9 MPa). We recall that this dissipated energy density
is the unique one that is present in the local damage considered for the Effective Internal
Variable model.

In Fig. 3.9 are shown the distribution of the local and non-local components of the dissipated
energy density as well as their sum (the total dissipated energy). It is observed that in gen-
eral, the nonlocal term field reaches much higher values than the local one. In particular, the
interface between the matrix and the inclusion constitutes the zone with the highest damage
gradient value reaching approximately 47 MPa while the local one is about 2.9 MPa. And in
the overall dissipated energy pattern, it can be seen that the regularized term takes over
when it comes to the distribution on the cell.

Moreover, in Fig. 3.9, we also represent the evolution of the overall energies; it is observed
that the gradient term has relatively important values and it is seen that E f−local(d) and
E f−gradient(d) are of the same order.
Choosing to rely on a gradient damage model for FE simulations allowed us to avoid mesh
dependency and thus to obtain a first assessment of the developed model’s predictions in
terms of effective behavior, average stress over the constitutive phases, or damage evolution.
In the case presented here, owing to the relative level of the dissipated energies, the gradient
damage model can hardly be considered as a regularization of the local one.
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(a) (b)

(c) (d)

FIGURE 3.9: Elastically reinforced composite with an elasto-damageable ma-
trix submitted to an isochoric macroscopic strain for the AT1 model. (a) Dissi-
pated energy distribution, (b) Local term of the dissipated energy distribution,
(c) Regularized term of the dissipated energy distribution, (d) Elastic energy,

dissipated energy, and its constitutive terms’ evolution

3.4.2 Monotonous Uniaxial extension

We are now concerned with the assessment of the proposed model predictions by compar-
ison to results obtained from the full-field calculations for a non-isochoric strain loading
which will trigger both the deviatoric and the spherical parts of the stress and the strain
fields. For simplicity, a uniaxial extension along the e3 direction is considered.

E(t) = E33(t) e3 ⊗ e3 (3.16)

Fig. 3.10 shows for this uniaxial extension case the evolution of the axial macroscopic stress,
the average stress in the phases, and damage evolution.
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(a) (b)

(c) (d)

FIGURE 3.10: Elastically reinforced composite with an elasto-damageable ma-
trix submitted to a uniaxial extension for the AT1 model. (a) Macroscopic axial
stress, (b) Average axial stress in the matrix, (c) Average axial stress in the in-

clusion, (d) Damage evolution

Most of the previous comments on the isochoric loading (see subsection 3.4.1), remain valid
for the uniaxial extension loading case, except for the damage stress threshold for which the
Effective Internal Variable model provides a better agreement with the FEM results than for
the previous loading. The damage localization pattern presented in Fig. 3.11 shows also a
more diffuse distribution.
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(a) E33 = 0.0023 (b) E33 = 0.005

(c) E33 = 0.006 (d) E33 = 0.01

FIGURE 3.11: Damage evolution for the AT1 model at four different load-
ing levels, each corresponding to (a) damage appearance, (b) maximum stress

level, (c) softening regime, (d) d(x) = 1 locally attained

Concerning the stress fluctuations in Fig. 3.12a, right after the peak stress, a sudden drop is
observed, followed by an increase. The two components of these stress fluctuations are also
shown and confirm the progressive difference between them in for the full-field computa-
tions results.
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(a) (b)

FIGURE 3.12: Elastically reinforced composite with an elasto-damageable ma-
trix submitted to a uniaxial extension for the AT1 model. (a) Stress fluctua-

tions, (b) Evolution of the fluctuations’ constitutive terms

Here as well, by examining the distributions of the dissipated energy the contribution of its
nonlocal part reaches higher values in comparison to the local term. It leads to a total dissi-
pated energy distribution of E f which is close to E f−gradient. The evolution of the two terms
on the whole composite shows that yet again they are approximately of the same order until
E33 = 0.007. From then on, the damage gradient term takes over and reaches a value twice
as high as the local term at the end of the simulation.

In the damage field distribution, we observe a relatively strong localization of the damage
following a band pattern above the inclusion with zones that remain undamaged for the
current loading.
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(a) (b)

(c) (d)

FIGURE 3.13: Elastically reinforced composite with an elasto-damageable ma-
trix submitted to a uniaxial extension for the AT1 model. (a) Dissipated energy
distribution, (b) Local term of the dissipated energy distribution, (c) Regular-
ized term of the dissipated energy distribution, (d) Elastic energy, dissipated

energy and its constitutive terms’ evolution

3.4.3 Cyclic isochoric macroscopic strain Loading

In this section, we investigate the predictions of the homogenization model when the com-
posite is subjected to a multi-cycle loading. Two types of cyclic loading, the first is shown
in Fig. 3.14a in which we apply a positive macroscopic strain throughout the loading. The
second loading is shown in Fig. 3.14b where a full cycle from positive to negative strains is
applied.
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(a) (b)

FIGURE 3.14: Two different cyclic loadings [isochoric macroscopic strain] : (a)
Three cycles, (b) One full cycle

The material parameters used are those of (2.55) for an elasto-damageable matrix.

For comparison purposes, we applied the homogenization model to these cyclic loadings
and perform also the full-field simulations on the cell already studied.

Fig. 3.15a, 3.15b, 3.15c represent the macroscopic and phase-averaged behaviors over the
matrix and over the inclusion, respectively. The model qualitatively reproduces the FE data
in the softening part of the composite behavior. The evolutions of the local average stress in
the matrix are also in good qualitative agreement. Interestingly a very better agreement is
observed for the inclusion phase. As previously mentioned, the damage in the FE calcula-
tion does not appear for the same loading level as for the homogenization model.

Fig 3.15d represents the evolution of damage with respect to macroscopic load. But con-
trary to Fig. 3.6d, we represent, exclusively for the cyclic loadings, the phase-averaged dam-
age within the matrix. The reason being that the damage estimate d̂ calculated a posteriori
through (2.45) in the numerical simulations do not abide by the irreversibility condition ap-
plied to the damage problem resolution. Though the condition dn+1 ≥ dn can be explicitly
added, this can be an opportunity to confront the average of damage in the matrix obtained
through the numerical simulations and the resulting damage through the proposed analyt-
ical model.
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(a) (b)

(c) (d)

FIGURE 3.15: Elastically reinforced composite with an elasto-damageable ma-
trix submitted to an isochoric macroscopic strain (3-cycle) for the AT1 model.
(a) Macroscopic axial stress, (b) Average axial stress in the matrix, (c) Average

axial stress in the inclusion, (d) Damage evolution

By looking at the evolution of the damage represented in Fig. 3.15d, we can see that the ir-
reversibility condition is well taken into account in the formulation of the theoretical model.
Also, at the first unloading, the level of damage in the homogenization model is about 0.5
as much as the level attained in FE simulations, which consequently affects the softening
behavior of the matrix and therefore of the composite.

We examine now the case where a full cycle of macroscopic isochoric strain (3.14b) is ap-
plied. This complete cyclic loading allows us to quantify through full-field computations the
importance of the unilateral effect on the response of the composite at the local and global
levels. In the considered gradient damage model, the unilateral effects has be accounted for
by following the proposal of [4] (see also appendix A). It notably consists in rewriting the
free energy as in (1.37).
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In the meantime, we test the performance of the homogenization model in its current ver-
sion, that is without the nonlinearity induced by the unilateral effect (see the recent attempt
of [99] in a less difficult context).

(a) (b)

(c) (d)

FIGURE 3.16: Elastically reinforced composite with an elasto-damageable ma-
trix submitted to an isochoric macroscopic strain (full cycle) for the AT1
model. (a) Macroscopic axial stress, (b) Average axial stress in the matrix, (c)

Average axial stress in the inclusion, (d) Damage evolution

In Fig. 3.16a, 3.16b, 3.16c representing the effective behavior of the composite and the aver-
age stress in the constituent, we obtain the same results for the positive macroscopic strains
and a notable difference between FE computations and the homogenization model for the
negative ones. As expected, in the results obtained by FE calculations, a partial recovery of
the damage moduli is noted in the compression regime.

These results clearly show the need to improve the homogenization model by incorporat-
ing the unilateral effect description in the incremental variational approach setting. Clearly
enough, this is a very difficult task.
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3.5 Conclusion

The aim of this chapter was two-fold :

• to perform full-field simulations on nonlinear composites composed of an elastic dam-
age matrix, that is composites with evolving damage

• to take advantage of the above-mentioned simulation in order to assess, at both macro-
scopic and constituents scales, predictions of the incremental variational approach that
was developed in Chapter 2.

To this end, we conducted full-field simulations using the FEM based on variational gradient
damage models which were briefly presented. This choice has been motivated by the patho-
logical mesh sensitivity well-known for simulations carried out with local damage models.
The resulting simulations allow us to avoid such mesh dependency and provide confidence
in the numerical solutions obtained by an alternate minimization of a two-fields functional
(see [19, 112]).
Following the first evaluation previously done in Chapter 2 for a hollow sphere made up
of an elastic damageable matrix and subjected to a radial loading on its outer boundary, we
compare the obtained numerical results to the close-form solution presented in Chapter 1.
We observed that the damage yield stress occurs earlier in the FE computations than in the
two other approaches. In the softening regime, some agreement is observed before notable
differences appear for the highest level of damage.
Then, we focused on bi-phased composites composed of an elasto-damageable matrix rein-
forced by a linear elastic inclusion. This composite has been submitted to different loadings
(monotonous and cyclic). Although the AT1 model implemented here is known for a rather
rough softening behavior and considering the difference in the dissipation energy not be-
ing negligible, the qualitative agreement, for the composite mechanical response, between
predictions of the proposed homogenization model and the results of the full-field simu-
lations seems to be remarkable, even there is room for future improvement. The chapter
ends with the application of cyclic loadings (a 3-cycle loading, and 1 full-cycle loading). The
full-cycle loading ended up showing a relatively more important difference for the negative
macroscopic strains. This is due to the fact that at the present stage of its development the
homogenization model does not take into account the unilateral effect. Further future re-
search efforts must be made in this direction, even if not trivial.
As a possible extension of the present version of the model, we will rather propose in the
next chapter an Effective Internal Variable homogenization model that will include some
hardening-like effects, primarily motivated by some phenomenological evidence.
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In this chapter, we investigate the positive hardening effects which accompany damage
growth in some composite materials. We begin in section 4.1 with some typical examples
of such composites including ceramics matrix reinforced by fibers [42, 5, 23]. We then con-
sider an extended form of the local damage law, following [87] in which the yield quantity
Yc is affine with the damage level. The mathematical structure of the resulting local damage
model requires a slight modification of the previous Effective Internal Variable model that
we discussed in section 4.2. Then, we implement this in the Effective Internal Variable set-
ting delivering the macroscopic behavior of the composite materials with hardening.
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4.1 Some physical evidences of hardening effects in brittle matrix
composites

The very simple objective of this short section is to illustrate some aspects of the mechanical
response of brittle matrix composites in order to motivate interest in the implementation
of hardening-like phenomena in our previous modelings. We limit here ourselves to the
response of this class of composites under cyclic tensile loadings. An example of damage
mechanisms in a ceramic-fiber composite can be found in [8] (see Fig. 4.1). Although these
mechanisms can generate some anelastic deformation (as will be seen more in the next fig-
ure), it is commonly recognized that the first stages of the degradation processes occur in
the form of a matrix microcracking.

FIGURE 4.1: Damage mechanisms in ceramic-matrix composites [8]

For this class of composite materials, here a Sic-Sic-2D, a typical response under a tensile
load applied in the fiber direction as shown in Fig. 4.2. This response corresponds to a hard-
enable behavior together with a degradation of the elastic properties of the composite.



4.1. Some physical evidences of hardening effects in brittle matrix composites 83

FIGURE 4.2: 0◦ tension-compression test [42]

For completeness, the response of the same composite to an off-axis loading (here at 45°
with respect to the fiber direction) is shown in Fig. 4.3. The difference between the two
responses illustrates the material anisotropy which is probably due to a combination of
damage-induced anisotropy and that due to the presence of fiber.

FIGURE 4.3: 45◦ tension-compression test [42]

Numerous models have been on this class of materials in the framework of Continuum
Damage Mechanics, some of them being micromechanically inspired (see for instance [25],
[85], etc.). Successful results have been gained by this type of models. However, in absence
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of an upscaling procedure, these models are not able to quantitatively couple deformation
mechanisms in the reinforcement and the damage in the matrix which is one of the objec-
tives of nonlinear homogenization considered in the present study.
Finally, it must be emphasized in general that, even though the proposed Effective Inter-
nal Variable approach has been implemented for spherical reinforcements, there isn’t any
difficulty to apply it to fiber-reinforced materials.

4.2 Incremental variational principle in presence of hardening

This section is devoted to the adaptation of the Effective Internal Variable approach to the
case where hardening is included in the damage model. We restrict ourselves to the main
points, that need to be considered for the implementation of this extension.

4.2.1 Local behavior and effective response

The starting point to account for the hardening effects consists simply to consider for the
damageable constituents in the composite a variation1 of Yc with d.

Local behavior

In this context, the dissipation potential for a phase r will now takes the following form:

φ(r) (ḋ; d
)
= Yc (d) ḋ (4.1)

where again the resistance to damage Yc (d) is no longer constant but rather an increasing
function of d. Note that in the above writing, the presence of a comma is for recalling that ḋ
is the unique argument of φ(r) and that d serves as a state parameter (see for instance [44],
[104]).

Model formulation

Due to the presence of the internal variable d in the dissipation potential, the context is
similar to that faced by [83] in a very different context of elastoplasticity with nonlinear
kinematics hardening and which requires a slight reformulation of the incremental varia-
tional principle that we considered before. With the help of the new form of the dissipation
potential (4.1), the constitutive law reads now :

σσσ =
∂w(r)

∂εεε
(εεε, d),

∂w(r)

∂d
(εεε, d) +

∂φ(r)

∂ḋ

(
ḋ; d
)
= 0 (4.2)

Applying the same discretization previously used, the equations (4.2) at time tn+1, for an
implicit Euler scheme, are rewritten as :

1With the necessary precaution, this is similar to the so-called R-curve in Fracture mechanics see for instance
[110]



4.2. Incremental variational principle in presence of hardening 85

σσσ =
∂w(r)

∂εεε
(εεε, d),

∂w(r)

∂d
(εεε, d) +

∂φ(r)

∂ḋ

(
d − dn

∆t
; d
)

= 0 (4.3)

Now let us consider the following variational problem :

w∆(x, εεε) = inf
d

J(x, εεε, d) (4.4)

where


J(x, εεε, d) =

N

∑
r=1

J(r)(x, εεε, d)χ(r)(x) and:

J(r)(x, εεε, d) = w(r)(εεε, d) + ∆tφ(r)
(

d − dn

∆t
; dn

) (4.5)

in this case, the Euler-Lagrange equations providing the solution to the variational problem
are the following :

σσσ =
∂w(r)

∂εεε
(εεε, d),

∂w(r)

∂d
(εεε, d) +

∂φ(r)

∂ḋ

(
d − dn

∆t
; dn

)
= 0 (4.6)

We thus consider for the remainder of this chapter that the resolution of (4.3) will be approx-
imated by that of equation (4.6).

As previously, the effective potential is defined as :

w̃∆(EEE) = inf
εεε/⟨εεε⟩=E

⟨w∆(εεε)⟩ = inf
εεε/⟨εεε⟩=E

⟨inf
d

J(εεε, d)⟩ (4.7)

where w∆ is defined by (4.4).

The macroscopic response of the composite, with ΣΣΣ = ⟨σσσ⟩ follows then :

ΣΣΣ =
∂w̃∆

∂EEE
(EEE) (4.8)

4.2.2 Construction of the Effective Internal Variable approach for composites
with hardenable phases

Linearization of the local behavior

Following what has been introduced above and in chapter 2, the incremental potential J is
approximated by a linearized incremental potential J0 chosen in the form:
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J0(x, εεε, d) =

N

∑
r=1

J(r)0 (εεε, d)χ(r)(x)

J(r)0 =
1
2
(1 − d)2 A(r)

0 +
1
2

εεε : C
(r)
0 : εεε + Yc(dn) (d − dn) + ∆t Ψc

(
d − dn

∆t

) (4.9)

where, as previously, A(r)
0 is a uniform per phase scalar and C

(r)
0 is a fourth-order tensor

having the symmetries of the elasticity tensor, also uniform per phase.
Following the idea in section 2.3.2 which consists in subtracting the potential J0 from the
potential J, i.e. J = J0 + J − J0, we replace the incremental potential by its expression in the
variational formulation (4.7).

An upper bound on w̃∆ can be obtained by taking a supremum condition of ∆J with respect
to (εεε, d). As seen in chapter 2, the supremum condition can be replaced by a stationarity one.
The following estimate of w̃∆ is then obtained :

w̃∆(E) ≈ stat
A(r)

0 ,C(r)
0

[
inf

εεε/⟨εεε⟩=E

(
inf

d/Ψc(ḋ)
⟨J0(εεε, d)⟩ + stat

εεε∗,d∗
⟨∆J(εεε, d)⟩

)]
(4.10)

Stationary conditions

Following the steps introduced in chapter 2, we will first write the stationarity of ∆J with
respect to d∗ and εεε∗ which will provide an expression for the parameters A(r)

0 and C
(r)
0 . The

stationarity with respect to these parameters will then allow completing their expressions.
Finally, the stationarity of J0 with respect to d will provide an expression of the damage as a
function of εεε.

1. Stationarity of ∆J

The stationarity of ∆J = J − J0 with respect to εεε∗ and d∗ respectively imply :

{
C
(r)
0 = (1 − d∗)2

C
(r)
s (4.11a)

A(r)
0 = εεε∗ : C

(r)
s : εεε∗ (4.11b)

This shows that the two unknowns A(r)
0 and C

(r)
0 remain unchanged and depend on the state

variables εεε∗ and d∗ which are yet to be determined.

2. Minimization of J(r)0

Moreover, it can be shown that the minimization of J(r)0 with respect to d leads to :

∂

∂d

{
1
2
(1 − d)2 A(r)

0 +
1
2

εεε : C
(r)
0 : εεε + Yc (dn) (d − dn)

}
= 0 (4.12)
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To take simultaneously account of damage yield and/or of hardening effects of damage,
one can consider a generalized expression of the local dissipation function by considering
Yc(dn) such as :

Yc(dn) = Yc (γ + 2 η dn) ; 0 ≤ [γ; η] < ∞ (4.13)

where γ and η are positive scalars, we note that η is the parameter controlling the hardening
effect (further details will be given in section 4.3).

Using the expression of Yc in (4.12), one gets the resulting optimal damage :

d(r)opt = 1 − Yc (γ + 2 η dn)

A(r)
0

(4.14)

which is uniform per phase.

The energy associated with the LCC is then written :

w(r)
0 (εεε) =

1
2

(
1 − d(r)opt

)2
A(r)

0 +
1
2

εεε : C
(r)
0 : εεε + Yc (γ + 2 η dn)

(
d(r)opt − dn

)
(4.15)

The functional (4.10) can be written by applying the minimization condition with respect
to εεε:

w̃∆(E) ≈ stat
A(r)

0 ,C(r)
0

[
w̃0(E) + stat

εεε∗,d∗
⟨∆J(εεε, d)⟩

]
(4.16)

where
w̃0(E) = inf

εεε/⟨εεε⟩=E
⟨w0(εεε)⟩ (4.17)

and represents the effective energy of the LCC.
And finally, considering the upcoming optimality conditions, we will be able to determine
the expressions of the remaining parameters A(r)

0 and C
(r)
0 .

3. Stationarity of
〈

J(r)0 + ∆J(r)
〉(r)

Optimality with respect to A(r)
0 and C

(r)
0 allows to provide the link between (εεε∗, d∗) and the

variables (εεε, d), which are similar as in (2.41) and (2.42). Taking into account hardening in the
formulation of the proposed analytical model does not modify the definition of A(r)

0 which
is expressed as in (2.43) by means of the second-order moment of the strain.

Using the expression of A(r)
0 , the following form is obtained for (4.14)

(
1 − d(r)opt

) 〈
εεε : C

(r)
s : εεε

〉(r)
− Yc(dn) = 0 (4.18)

which provides :

d(r)opt = 1 − Yc(dn)〈
εεε : C

(r)
s : εεε

〉(r) (4.19)
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Finally, carrying (4.14) into (4.11a), we obtain the expression of C
(r)
0

C
(r)
0 =

(
1 − d(r)opt

)2
C
(r)
s =

Yc (γ + 2 η dn)〈
εεε : C

(r)
s : εεε

〉(r)


2

C
(r)
s (4.20)

which represents the moduli tensor of the Linear Comparison Composite (LCC) described
by w0(εεε) (4.15).

We consider now the case of a two-phase composite (N=2 being the number of phases)
composed of an elasto-damageable matrix reinforced by elastic spherical particles.

The nonlinear problem is reduced to the solution of a two-function system of unknowns
A(r)

0 and C
(2)
0 : 

F1

(
A(2)

0 , C
(2)
0

)
= A(2)

0 −
〈

εεε : C
(2)
s : εεε

〉(2)
= 0

F2

(
A(2)

0 , C
(2)
0

)
= C

(2)
0 −

Yc (γ + 2 η dn)〈
εεε : C

(2)
s : εεε

〉(2)


2

C
(2)
s = 0

(4.21)

The resolution of the system then allows to determine the damage and then the mechanical
quantities of interest, locally and globally.

4.2.3 A first illustration of the homogenization model with hardening

In order to take into account the hardening due to the variation of the resistance to damage
with the degradation level, we will consider γ = 1 and different values of parameter η :
η ∈ [3, 5]. Note that γ = 1 together with η = 0 corresponds to the AT1 model already
analyzed in chapter 3, while for completeness we also displayed the case γ = 0 together
with η = 1 which corresponds to the so-called AT2 model that we will analyze in detail in
the next section.
The material properties considered here are the ones introduced in (2.55). The composite is
subjected to an isochoric macroscopic deformation.

In Fig.4.4, is represented the macroscopic response of the composite, the stress averages over
the constitutive phases, as well as damage evolution within the matrix phase.

As previously seen, the AT1 model, is characterized by an elastic regime followed by a dam-
age regime which induces a relatively rough softening behavior.

The model AT2, corresponding to the case [γ = 0, η = 1], shows a damaging process that
starts in the composites from the beginning of the loading, since as it is well-known, there is
no elastic threshold for this model which applies to the matrix phase. For the composite, a
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hardening regime is followed for a softening one which is also accompanied by an unloading
of the inclusion constituent.

The model corresponding to [γ = 1, η = 3] presents first an elastic regime followed by a
hardening one which delays the instant of occurrence of a stress softening. This tendency is
amplified in the case [γ = 1, η = 5].

(a) (b)

(c) (d)

FIGURE 4.4: Elastically reinforced composite with an elasto-damageable ma-
trix submitted to an isochoric macroscopic strain - illustration of the harden-
ing effect, (a) Macroscopic axial stress, (b) Average axial stress in the matrix,

(c) Average axial stress in the inclusion, (d) Damage evolution

To summarize, for the composite, the damage models with hardening of the matrix predict
a macroscopic behavior that manifests the competition between a softening tendency due to
damage growth and the hardening effect which takes its origin in the resistance to damage.
In the next sections, we will assess these predictions by means of their comparison to full-
field simulation results.
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4.3 Gradient damage model accounting for hardening effects

Owing to the change introduced by the hardening term, the corresponding regularized en-
ergy functional has still the following form :

E(u, d) =
∫

Ω

(
1
2
(1 − d)2 εεε(u) : Cs : εεε(u)

)
dΩ +

Gc

l0 cw

∫
Ω

(
w(d) + l2

0∇d.∇d
)

dΩ (4.22)

The function w is continuously monotonic and is generally considered such that w(0) = 0;
w(1) = 1 and w(d ̸= 0) > 0. Finally, cw is a normalization parameter defined by :

cw = 4
∫ 1

0

√
w(x)dx (4.23)

As previously introduced in the above-described framework, two specific models are gen-
erally considered: the so-called Ambrosio-Tortorelli models denoted by AT1 and AT2, and
w(d) amounts to d and d2, respectively. Contrary to the AT1 model which exhibits a sud-
den fracture, the AT2 model predicts the occurrence of damage as soon as the loading takes
place. Due to the limitations, these two models have shown, [65] proposed a more general
expression of the local dissipation function as :

w(d) = γd + ηd2 (4.24)

which corresponds to a damage resistance

w′(d) = γ + 2ηd ;

{
γ = 1 and η = 0 =⇒ AT1

γ = 0 and η = 1 =⇒ AT2
(4.25)

In [135], the condition w(d) = 1 is considered and leads to the one-parameter function
w(d) = (1 − η)d + ηd2. In [65] that we followed here, such condition is not imposed, and
it was established that the normalization parameter that corresponds to the AT-type model
takes the following form :

cw(γ, η) =
1

2 γ2 η3/2

[
2 (γ + 2η)

√
γ + η

(
−8η5/2 +

(
γ2 + 8η2)√η

)

− γ4ln

γ + 2
(

η +
√

η (η + γ)
)

γ

] (4.26)

In the upcoming section, we will focus on two main models deriving from this approach.
The first is commonly known as the AT2 model, its well-known particularity is the absence
of a threshold since damage starts to evolve as soon as the material is loaded. The second
one is more of a general AT-type model exhibiting a linear elastic regime up to a threshold,
followed by an induced positive hardening preceding the softening behavior. For γ = 1, it
can be seen as an AT1-like model with hardening.
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4.4 Model evaluation without threshold : AT2

When it comes to the AT2 model, damage appears for any prescribed loading level as it
has no damage threshold. For this model, the energy functional (4.22) takes classically the
following form:

E(u, d) =
∫

Ω

1
2
(1 − d)2 εεε : C : εεε +

Gc

cw︸︷︷︸
= 2

l0

w(d)︸ ︷︷ ︸
= d2

+ l2
0∇d.∇d


 (4.27)

With
Gc

l0 cw
being fixed by the damage threshold Yc (see (2.55)), the internal length amounts

to 1.03mm (with the inclusion’s radius being roughly 2.2 times l0).

4.4.1 Monotonous loadings

Isochoric macroscopic strain

For the evaluation of the nonlinear homogenization model predictions in the case of no
threshold, the studied composite is submitted once again to a macroscopic isochoric strain
introduced in (3.14). Fig. 4.5 represents the macroscopic response of the composite, the evo-
lution of the stress averages in the matrix as well as in the inclusion, and finally the evolution
of the average damage in the matrix (see eq.(2.37)). Again, though it might not be clear, dam-
age appears from the very first stages of the loading, for this particular model.

Here as well, we observe a qualitative reproduction of the model with a notable difference
in the start of the softening behavior and the remainder of it. Although the AT2 model is
known to exhibit more diffuse damage in the matrix, we still observe a difference between
the two approaches, but the qualitative tendency is similar.
From Fig. 4.5d, which concerns the damage calculated from the second-order moment, it can
be seen that yet again the model underestimates the numerical simulations results.
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(a) (b)

(c) (d)

FIGURE 4.5: Elastically reinforced composite with an elasto-damageable ma-
trix submitted to an isochoric macroscopic strain for the AT2 model. (a) Macro-
scopic axial stress, (b) Average axial stress in the matrix, (c) Average axial

stress in the inclusion, (d) Damage evolution

Also, by examining Fig. 4.6, it can be seen that the actual damage pattern is set from the
beginning of the loading. Compared to the AT1 model, d reaches here the value 1 for a
higher level of macroscopic strain.
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(a) E33 = 0.0026 (b) E33 = 0.004

(c) E33 = 0.006 (d) E33 = 0.01

FIGURE 4.6: Damage evolution for the AT2 model at three different loading
levels, each corresponding to (a) first regime, (b) maximum stress level, (c)

softening regime, (d) d(x) = 1 locally attained

When it comes to the fluctuations represented in Fig. 4.7a, a rather good agreement is ob-
served until E33 = 0.004, which marks the beginning of the softening regime. From this
point on, the theoretical model predicts the drop of the fluctuations whereas, in the FEM
simulations, the fluctuations keep on increasing.
As a way of gaining more clarification on the fluctuations’ evolution, following what was
previously illustrated, we put forth the evolution of the constitutive terms presented in
(2.16). As it can be seen in Fig. 4.7a below, there is a rather good agreement between the
homogenization model and the FEM simulations at the beginning of the loading. And al-
though both terms decrease in the two approaches, the difference between the two terms
is relatively steady in the theoretical approach beyond the peak stress whereas, in the nu-
merical simulations, the difference actually increases with the loading. The fluctuations thus
increase regardless of the development of damage within the matrix phase.



94
Chapter 4. An extension of the EIV model accounting for hardening effects in damageable

composites

(a) (b)

FIGURE 4.7: Elastically reinforced composite with an elasto-damageable ma-
trix submitted to an isochoric macroscopic strain for the AT2 model. (a) Stress
fluctuations in the matrix, (b) Evolution of the fluctuations’ constitutive terms

Finally, in Fig. 4.8 are represented the distributions of the dissipated energy and its different
components (as depicted in (3.15)) at the end of the simulation. We observe that the distri-
bution of the regularized term takes over as it reaches higher values that are concentrated in
the interface between the inclusion and the matrix.
However, if we look at the evolution of these terms, it can be seen that this time around, the
regularized term takes over here as well, it takes values much higher than the local part and
is almost similar to the total dissipated energy. This constitutes a rather important difference
from the model we have implemented where the dissipation potential is local.
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(a) (b)

(c) (d)

FIGURE 4.8: Elastically reinforced composite with an elasto-damageable ma-
trix submitted to an isochoric macroscopic strain for the AT2 model. (a) Dissi-
pated energy distribution, (b) Local term of the dissipated energy distribution,
(c) Regularized term of the dissipated energy distribution, (d) Elastic energy,

dissipated energy and its constitutive terms’ evolution

4.4.2 Cyclic Loading

We will now explore the predictions of the AT2-based formulation when the composite is
subjected to multi-cycle loading. The applied loading is the one already presented in Fig.
3.14a for the same material parameters (2.55).
Fig. 4.9 illustrates the variations of the macroscopic axial stress, phase-averaged stresses,
and damage evolution2. The predictions of the proposed formulation are compared with FE
data from the same cubic unit cell presented earlier. These evolutions are reproduced in a
qualitative way by the developed homogenization model. Due to the difference observed in

2Reminder : we represent, exclusively for the cyclic loadings, the direct average of the damage field within
the matrix
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the softening behavior, the unloadings are not carried out according to the same slope in the
two approaches.

(a) (b)

(c) (d)

FIGURE 4.9: Elastically reinforced composite with an elasto-damageable ma-
trix submitted to an isochoric macroscopic strain (3-cycle) for the AT2 model.
(a) Macroscopic axial stress, (b) Average axial stress in the matrix, (c) Average

axial stress in the inclusion, (d) Damage evolution

When applying a full loading cycle as shown in Fig. 3.14b, we note similar conclusions to
those of the model with threshold presented in section 3.4.3. These results are not plotted
here. Again, improvement of the modeling will require account for unilateral effect.

4.5 Evaluation of the extended AT1 model with hardening

In the models seen so far, although one is with damage threshold and the second without,
softening behavior is still important. We propose here to consider γ = 1, allowing to pre-
serve the elastic regime, and η = 5, this last one being the parameter driving the strain
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hardening.
For this current model, the energy (4.22) is defined as : w(d) =

(
γ d + 2 η d2) and cw is de-

fined using relation (4.26). With
Gc

l0 cw
being fixed by the elastic threshold, the internal length

amounts to 0.39mm.

4.5.1 Monotonous loadings

Isochoric macroscopic strain

The composite is subjected to a macroscopic isochoric deformation, and we consider the
same material properties as before (see 2.55). The predictions of the homogenization model
with hardening are assessed by comparing them to the data from the FE calculations.

(a) (b)

(c) (d)

FIGURE 4.10: Elastically reinforced composite with an elasto-damageable ma-
trix submitted to an isochoric macroscopic strain for the AT1-extended model.
(a) Macroscopic axial stress, (b) Average axial stress in the matrix, (c) Average

axial stress in the inclusion, (d) Damage evolution
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We see on the macroscopic behavior and at the matrix level that the softening effects are
very limited by the hardening contribution. The softening regime in the composite is indeed
delayed to a higher level of stress with in addition a possible gain in ductility and a higher
stress level.

This results in a better agreement between the homogenization model and the full-field sim-
ulations for the composite and in the matrix with a still notable difference in the inclusion.
The evolution of damage is also relatively closer, remembering that for the damage, the
same formula (4.14) involves the second-order moment of the strain field. It can be seen in
Fig. 4.10d that the level of damage is significantly lower than the level attained in the AT1
model. This is a result of diffuse character of the damage field when taking into account the
positive hardening.

(a) E33 = 0.0026 (b) E33 = 0.0075

(c) E33 = 0.0085 (d) E33 = 0.01

FIGURE 4.11: Damage evolution for the AT1-extended model at four different
loading levels, each corresponding to (a) damage appearance, (b) maximum

stress level, (c) softening regime, (d) d(x) = 1 locally attained
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If we look at the localization patterns, we see here that the damage evolves in a progressive
and more diffuse way in the matrix, this can be more clearly seen when compared to damage
evolution for the AT1 model as seen in Fig.3.7d. This makes the theoretical model more
relevant.

Hereafter, Fig. 4.12 represents the fluctuations and the evolution of their two components.
Regarding the fluctuations, we have a better agreement between the homogenization model
and the numerical results than previously. The evolution of both terms in the two approaches
seems to be more consistent. Moreover, the difference between

(
σσσd

(2)
)

and
(

σσσd
(2)
)

eq
are rel-

atively closer compared to the other models.

(a) (b)

FIGURE 4.12: Elastically reinforced composite with an elasto-damageable ma-
trix submitted to an isochoric macroscopic strain for the AT1-extended model.
(a) Stress fluctuations in the matrix, (b) Evolution of the fluctuations’ consti-

tutive terms

Moving forward with the distributions of the dissipated energy and the two terms com-
posing it, it can be seen that the highest levels attained in both Fig. 4.13b and Fig. 4.13c are
around the same magnitude. Also, in, Fig. 4.13d where we represent evolutions of the dif-
ferent energies, it is observed that E f−local(d) and E f−gradient(d) are not of the same order,
the local term of the dissipated energy is higher than the regularized part, which aligns well
with the homogenization model.
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(a) (b)

(c) (d)

FIGURE 4.13: Elastically reinforced composite with an elasto-damageable ma-
trix submitted to an isochoric macroscopic strain for the AT1-extended model.
(a) Dissipated energy distribution, (b) Local term of the dissipated energy dis-
tribution, (c) Regularized term of the dissipated energy distribution, (d) Elas-

tic energy, dissipated energy and its constitutive terms’ evolution

4.5.2 Cyclic Loading

We will now investigate the response of the model with strain hardening when the compos-
ite is subjected to multi-cycle loading. The applied loading is the one presented in Fig.3.15a
for the same material parameters (see 2.55).
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(a) (b)

(c) (d)

FIGURE 4.14: Elastically reinforced composite with an elasto-damageable
matrix submitted to an isochoric macroscopic strain (3-cycle) for the AT1-
extended model. (a) Macroscopic axial stress, (b) Average axial stress in the

matrix, (c) Average axial stress in the inclusion, (d) Damage evolution

Fig. 4.14 illustrates the variations of the macroscopic axial stress, phase-averaged stresses,
and damage evolution. The predictions of the proposed formulation are compared with
FE data from the same cubic unit cell presented earlier. The evolutions obtained through
the two approaches at the global composite level and at the local matrix level are in good
agreement, with however a difference at the inclusion level.

And finally, we apply a full loading cycle as shown in Fig. 3.16a. We can see that for this
model the slope of the second load obtained with the theoretical model, although different,
is considerably closer to that obtained with the FE calculation. In fact, the level of damage
and softening being limited by the introduction of the positive strain hardening, the lack
of consideration of the unilateral effect in the formulation of the model does not lead to a
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difference as important as previously.

(a) (b)

(c) (d)

FIGURE 4.15: Elastically reinforced composite with an elasto-damageable ma-
trix submitted to an isochoric macroscopic strain (full cycle) for the AT1-
extended model. (a) Macroscopic axial stress, (b) Average axial stress in the

matrix, (c) Average axial stress in the inclusion, (d) Damage evolution

4.6 Conclusion

This chapter was dedicated to an extension of the EIV model presented in chapter 2 by
the incorporating a positive hardening accompanying the damage processes. We first recall
some typical examples of the behavior of ceramics matrix reinforced by fibers and for which
this kind of response is observed. And we proceed to a modification of the Effective Inter-
nal Variable formulation in order to include an affine variation of the yield energy with the
damage variable. A first evaluation was made upon the no-threshold model, widely known



4.6. Conclusion 103

as the AT2 model, for a bi-phased composite made up of an elasto-damageable matrix re-
inforced by a linear elastic inclusion. This composite was submitted to monotonous and
cyclic loadings. Although the AT2 exhibits relatively more diffuse damage when compared
to the AT1 model, the damage gradient term of the dissipated energy remains significantly
higher than its local counterpart, making the difference between the two formulations non-
negligible. Despite this observed difference in the dissipated energy, the homogenization
model was able to reproduce qualitatively the FE simulation results at both scales.
This was followed up with the evaluation of the developed model in a case extending the
AT1 model for which we find a linear elastic regime preceding a hardening phase. This is
followed by the occurrence of softening behavior. For this case, the theoretical model shows
a good agreement with the full-field simulations at the global level of the composite and
local level of the matrix, but it overestimates the response in the inclusion.
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Conclusions and perspectives

As a general picture, the objective of this thesis consisted in developing for elasto-damageable
composites a non-linear homogenization method through an extension of the Effective In-
ternal Variable (EIV) method initially introduced by Lahellec and Suquet [75]. The latter
allows to take into account the coupled effect of elasticity and dissipation induced by the
damage process. In this framework, starting from the Generalized Standard description of
the constitutive laws, an incremental potential J is first built thanks to the variational prin-
ciple proposed by [109]. This allows taking advantage of the homogenization variational
procedure of Ponte-Castañeda [116] for nonlinear material described by a single potential.
Following the EIV method, it was possible to proceed simultaneously in the same step to
the linearization of the local behavior as well as the uniformization of intraphase hetero-
geneity This has been done through the proposal of a simple linearized incremental po-
tential J0 as an approximation to J. This approximation has allowed the introduction of an
LCC with per-phase uniform parameters. Finally, the macroscopic behavior has been estab-
lished through the application of linear homogenization tools based on a Hashin-Shrikhman
bound. The nonlinear homogenization elasto-damage model for composites, established in
the framework of this thesis, has been assessed through a comparison of its predictions with
a closed-form solution and more importantly with results obtained from appropriate full
fields simulations. Finally, it has been extended by the incorporation of hardening effects
related to the variation of the resistance to damage.

In detail, and following the different chapters :

• At the outset, this thesis started with a recall of some elements of classical continuum
thermodynamics of irreversible processes and of the formulation of standard dissipa-
tive constitutive laws in the framework of Generalized Standard Materials (GSM). In
this context, the nonlinear behavior of the constitutive phases is entirely determined
by means of two potentials, namely the free energy and the dissipation potential. A
standard local isotropic damage law has been presented using this classical procedure
which couples elasticity and dissipation induced by the damage process.
This preliminary step of the thesis was the occasion to present closed-form solutions
of mechanical fields (including damage one) in a hollow sphere composed of an elas-
tic damageable material subjected to radial loadings as in [30]. These simple solutions
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constituted will serve as a basis for a first assessment of the theoretical model intro-
duced further.

• The main objective being the development of a nonlinear homogenization method for
an elasto-damageable composite, as recalled before, and consistently with the GSM
framework and the associated incremental variational principle, we presented an ex-
tension of the EIV approach to the case of elasto-damageable constitutive behavior of
the composite’s phases. This was followed by a description of its numerical imple-
mentation. The procedure followed consisted in introducing a linearized incremental
potential J0 in order to approximate the local incremental potential J, the first being
easily homogenized with the use of standard linear homogenization schemes and the
difference between these two terms can be estimated via semi-analytical estimates, as
shown in detail. We then proceed to the numerical implementation of the homogeniza-
tion model, which was followed up with a first illustration for a composite composed
of an elasto-damageable matrix reinforced by a linear elastic inclusion. It was observed
that despite the elastic nature of the inclusion, it exhibited a decrease in the average
stress with respect to the macroscopic strain which actually appears to be a conse-
quence of the matrix softening. A first preliminary assessment of the homogenization
model is found in the confrontation of its prediction to closed-form solutions presented
for the hollow sphere subjected to radial macroscopic loading. The agreement between
the two models was found to be reasonably satisfactory in both regimes. For complete-
ness and in order to show the versatility of the proposed modeling approach, we also
investigated the case of a damage law based on a different degradation function that
does not exhibit softening.

• As also already mentioned, full-field simulations have been conducted, thanks to the
FE method and phase-field approaches. Considering pathological limitations of the
numerical use of local damage models (in particular mesh sensitivity shown through
a first few series of simulations), we relied then throughout the whole study on gradi-
ent damage models for elasto-damageable constituents of the considered composites.
These gradient damage models are now well recognized for their strong capability to
describe damage growth and its transition to quasi-brittle failure (see for instance [19],
[82], [93], etc..). The first step of validation by using full-field simulations concerned
the closed-form solution presented for the damageable hollow sphere subjected to ra-
dial loading on its outer boundary. It has been noted that the damage yield stress takes
place earlier in the full-field simulations, but the overall agreement is reasonably good
in the non-negligible part of the softening behavior. This has been followed by the
study of bi-phased composites consisting of an elasto-damageable matrix reinforced
by a linear elastic inclusion. A classical first choice was the AT1 model which is known
for its rough softening behavior. And despite the fundamental difference in the formu-
lation of the gradient damage model and the considered model, the homogenization
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model showed a remarkable qualitative agreement with the full-field computations
predictions. However, we consider that there is still room for improvement. We also
considered cyclic loadings where the full-cycle allows to show some limitations of the
current stage of development of the homogenization model which does not account
for unilateral effects which occur under "compressive-like" loading.

• Finally, an extension was made in order to take into account a positive hardening ac-
companying the damage process. To this end, we have adapted the above EIV for-
mulation by slightly revisiting the incremental variational principle. Consideration of
the hardening has allowed extending the predictive capability of the homogenization
model and to limit or even delay the occurrence of softening in the composite. In this
case, a more diffuse progressive evolution of the damage in the matrix has been ob-
served in the full-field calculations. This resulted in a better agreement between the
homogenization model and the FE calculations.

Work perspectives

Though some progresses have been made by establishing an appropriate framework for
the nonlinear homogenization of the considered composites and have allowed to already
achieve remarkably good results, the present thesis calls for future research efforts on several
points among which the following ones.

• A short-term perspective consists of the consideration of bi-phased composites whose
both phases are affected by the damage. This will only require a few modifications in
the algorithm for the solution to the homogenization problem.

• An important aspect of the full-field simulations that can be also handled without
difficulties lies in the consideration of a representative volume element with multiple
inclusions, as it has been done by [43] in a context similar to that studied here. This will
probably be more representative of the microstructures of some engineering composite
materials.

• We have already started to explore the possibility to implement other linearization
procedure which can allow to go beyond the simple one that was proposed in the the-
sis and to improve it. This could be an opportunity to test out if it is possible to obtain
heterogeneous per-phase damage.
In the same vein, another aspect on which we already started some developments
for elasto-damageable composites concerns the derivation of a Double Incremental
Variational method as proposed by [84] in the context of elasto(visco)plastic compos-
ites in the case of elasto-damageable composites. This has the advantage of separately
proceeding with the linearization of the local behavior and the uniformization of the
intraphase heterogeneities.
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• Taking advantage of the framework established in this work and of previous studies
on the EIV method (see for instance [75] or a previous thesis of [83] in our research
team, it will be possible in a mid-term perspective to take into account coupling be-
tween elasto-damage phenomena and other dissipative behavior such as viscoelastic-
ity or elasto(visco)plasticity.

• The present version of the homogenization model does not account for unilateral ef-
fects during the damage process. Owing to their importance for cyclic loadings of
the composites, new developments in this direction will be required, probably by im-
plementing some regularization/smoothing of the nonlinearity induced by the multi-
modular behavior in presence of unilateral effects (see for instance [99].)

• The important question of stability of the established homogenization models must
deserve attention in future research works, surely by taking advantage of available
studies in the field of quasi-brittle damage [114], [9, 7], etc...) and/or to explore mathe-
matical properties of the condensed incremental potential which is of quasi-hyperelastic
nature. This could be essential for the study of structures made up of the type of com-
posites considered in this thesis.

• Owing to the difficulty to homogenize composites with nonlocal constituents3, one can
refer for local damage models to energy relaxation methods proposed as described in
[50], [101] or [102].

3Mention has to be made of the interesting attempt by [43] to establish an upper bound of the composite by
directly exploiting for the composite the two-field approach of [19].
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Appendix A

On unilateral effects in the context of
isotropic damage models

It is well known that the mechanical response of microcracked media is highly dependent
on the open/closed state of defects present in the material. In particular, it has generally
been observed that compression in the same direction after the application of a tensile load
results in full or partial recovery of the modulus in the compression region. From a model-
ing perspective, describing the unilateral effects in Continuum Damage Mechanics (CDM)
remains a challenging task. The main difficulty lies in the need to predict both the continu-
ity of the material response and the partial or total recovery of the elastic constant during
microcracks closure process.

We propose to follow here a constructive method of writing the energy in the presence of
one-sided effects based on the work of [29]. For the purpose of taking into account the uni-
lateral effects, a differentiation is made for when the microcracks are opened or closed. The
two response domains are bounded by a hyperplane g(ε), the microcracks are opened if
g(ε) > 0 and closed if g(ε) ≥ 0. The strain energy takes the following form :

w(ε, d) =


1
2

ε : C+(d) : ε si g(ε) ≥ 0

1
2

ε : C−(d) : ε si g(ε) ≤ 0
(A.1)

where C+ and C+ represent the elasticity tensor in "tension" and "compression", respectively.
The problem to be solved is to determine not only the function g(ε) defining the hypersur-
face separating the two domains, but also the expressions for C+(d) and C−(d).

Since the thermodynamic potential has to be continuously differentiable, a few conditions
must be applied to the elastic moduli. For this purpose, we will rely on the theorem of [29].
For the σ − ε response to be continuous in the presence of the elasticity jump, that is :
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{
w(ε, d) = w(ε, d)+ = w(ε, d)− , ∀ε / g(ε) = 0

σ(ε, d) = σ(ε, d)+ = σ(ε, d)− , ∀ε / g(ε) = 0
(A.2)

it is necessary that this jump [C(d)] is expressed in the form :

[C(d)] = C+ − C− = s(d)
∂g
∂ε

⊗ ∂g
∂ε

, ∀ε / g(ε) ̸= 0 (A.3)

where s is a continuous scalar-valued function depending on d. This general result is valid
whatever the material symmetry of the medium considered.
Under the assumption of isotropy of the elasto-damageable behavior in the presence of the
unilateral effect, we can write without loss of generality :

{
C+(d) = 3k+(d)J + 2µ+K si g(ε) ≥ 0

C−(d) = 3k−(d)J + 2µ−K si g(ε) ≤ 0
(A.4)

the application of the theorem in this framework of isotropy gives :

[C] = 3
(
k+ − k−

)
J + 2

(
µ+ − µ−)K = s(ε)

∂g
∂ε

⊗ ∂g
∂ε

(A.5)

which, due to the structure of J =
1
3

1 ⊗ 1 and K = I − J, leads to :

µ+(d) = µ−(d) , ∀d (A.6)

the continuity of W is then obtained if the shear moduli does not depend on the microcracks
state.

A first simple choice is to consider the bulk modulus as that of the sound material, k0. This
corresponds to the case where all microcracks are closed and only affect the shear modulus
of the damaged material. Therefore :

k−(d) = k0 , ∀d (A.7)

and k+(d) will be denoted k(d).
In view of (A.5) and (A.6), the tensor [C] is written in the form :

[C] = 3
(
k+ − k−

)
J =

(
k+ − k−

)
1 ⊗ 1 = s(ε)

∂g
∂ε

⊗ ∂g
∂ε

(A.8)

Therefore :
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∂g
∂ε

colinear to 1 (A.9)

that is
∂g
∂ε

= 1. Hence :
g(ε) = 1 : ε = tr (ε) (A.10)

The equation (A.1) takes the form :

w(ε, d) =


1
2

k(d) (tr (ε))2 + µ(d)εd : εd si tr (ε) ≥ 0

1
2

k0 (tr (ε))
2 + µ(d)εd : εd si tr (ε) ≤ 0

(A.11)

and

σ(ε, d) =


σ(ε, d)+ = k(d)tr (ε) 1 + µ(d)εd si tr (ε) ≥ 0

σ(ε, d)− = k0tr (ε) 1 + µ(d)εd si tr (ε) ≤ 0
(A.12)

In the same way, the irreversible thermodynamic force Y and thus the damage criterion are
continuous.
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Appendix B

Model extensions

B.1 Incremental variational approach for elasto-damageable com-
posites : alternative linearization procedure

An extension of the proposed theoretical model can be considered by slightly altering the
linearization procedure.
Indeed, the linearization procedure consisted of the decoupling of strain and the damage
variable as can be seen in the chosen form of J0 in (2.23). However, a term can be added to
the definition of the linearized incremental potential, this term would bring back together ε

and d without altering the constitutive laws, as J0 would take the following form :
J0(x, ε, d) =

N

∑
r=1

J(r)0 (ε, d)χ(r)(x)

J(r)0 =
1
2
(1 − d)2A(r)

0 +
1
2

ε : C
(r)
0 : ε + (1 − d)2 B(r)

0 : ε + Yc (d − dn) + ∆tΨc

(
d − dn

∆t

)
(B.1)

B(r)
0 being a uniform per phase second-order tensor. Also, as a simplification, we’ll consider

here the threshold model with no hardening.

From here on, we can proceed following the same steps introduced in (3). The difference
∆J = J − J0 of the potentials is then written :


∆J(x, ε, d) =

N

∑
r=1

∆J(r)(ε, d)χ(r)(x)

∆J(r) =
1
2
(1 − d)2

[
ε : C

(r)
s : ε −A(r)

0 − 2B(r)
0 : ε

]
− 1

2
ε : C

(r)
0 : ε

(B.2)

We then optimize with respect to the parameters introduced in J0, which gives the final
estimate of w̃∆
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w̃∆(E) ≈ stat
A(r)

0 ,C(r)
0 ,B(r)

0

[
inf

ε/⟨ε⟩=E

(
inf

d/Ψc(ḋ)
⟨J0(ε, d)⟩ + stat

ε∗,d∗
⟨∆J(ε, d)⟩

)]
(B.3)

1. Stationarity of ∆J

The stationarity of ∆J (2.24) with respect to ε∗ can be written as :

∂

∂ε∗

{
1
2
(1 − d∗)2

[
ε∗ : C

(r)
s : ε∗ − A(r)

0 − 2B(r)
0 : ε∗

]
− 1

2
ε∗ : C

(r)
0 : ε∗

}
= 0 (B.4)

which implies
=⇒ (1 − d∗)2

[
C
(r)
s : ε∗ − 2B(r)

0

]
− C

(r)
0 : ε∗ = 0 (B.5)

Similarly, the stationarity condition of ∆J over d∗ reads :

∂

∂d∗

{
1
2
(1 − d∗)2

[
ε∗ : C

(r)
s : ε∗ − A(r)

0 − 2B(r)
0 : ε∗

]
− 1

2
ε∗ : C

(r)
0 : ε∗

}
= 0 (B.6)

This leads to an expression for the first parameter introduced in J0 :

=⇒ ε∗ : C
(r)
s : ε∗ −A(r)

0 − 2B(r)
0 : ε∗ = 0 (B.7)

2. Minimization of J(r)0

The energy associated with the resulting LCC is defined as :

w0(ε) = inf
d/Ψc(ḋ)

J0(ε, d) (B.8)

The infimum of J0(ε, d) with respect to d is given with accountability to the irreversibility
condition, which is written using the Karush-Kuhn-Tucker (KKT) optimality conditions:

∂

∂d
(

J0(ε, d) + λ Ψ(ḋ)
)
= 0

λ ḋ = 0

λ ≤ 0 , ḋ ≥ 0

(B.9)
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which can be rewritten over each phase as :

∂

∂d

{
1
2
(1 − d)2 A(r)

0 +
1
2

ε : C
(r)
0 : ε + (1 − d)2 B(r)

0 : ε + Yc (d − dn)

}
+ λ = 0

λ

(
d − dn

∆t

)
= 0

λ ≤ 0 ;
d − dn

∆t
≥ 0

(B.10)

Case 1. λ < 0. According to (B.10)2, this assumption leads to d = dn which is the same as
the elastic case without the presence or evolution of damage. This case will therefore not be
retained.
Case 2. λ = 0. From (2.35)1, this assumption leads to:

∂

∂d

{
1
2
(1 − d)2 A(r)

0 +
1
2

ε : C
(r)
0 : ε + (1 − d)2 B(r)

0 : ε + Yc (d − dn)

}
= 0 (B.11)

It is this case that we retain.
the resulting expression of the damage variable is as follows :

dopt = 1 − Yc

A(r)
0 + 2B(r)

0 : ε
(B.12)

However, if we rewrite (B.12) as :

(
A(r)

0 + 2B(r)
0 : ε

) (
1 − dopt

)
= Yc (B.13)

considering the uniformity of Yc, the left-hand term must be uniform as well. Therefore,
(B.12) will be approximated by :

d(r)opt = 1 − Yc

A(r)
0 + 2B(r)

0 : ⟨ε⟩(r)
(B.14)

which leads here as well to uniform per-phase damage.

3. Stationarity of
〈

J(r)0 + ∆J(r)
〉(r)

Optimality with respect to A(r)
0 , C

(r)
0 and B(r)

0 allows to link between (ε∗, d∗) and the vari-
ables (ε, d) :

stat
A(r)

0

〈
J(r)0 + ∆J(r)

〉(r)
=⇒

〈
(1 − d)2

〉(r)
=
〈
(1 − d∗)2

〉(r)
(B.15)
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stat
C
(r)
0

〈
J(r)0 + ∆J(r)

〉(r)
=⇒


⟨ε : K : ε⟩(r) = ⟨ε∗ : K : ε∗⟩(r)

⟨ε : J : ε⟩(r) = ⟨ε∗ : J : ε∗⟩(r)
(B.16)

stat
B(r)

0

〈
J(r)0 + ∆J(r)

〉(r)
=⇒

〈
(1 − d)2

1 : ε
〉(r)

=
〈
(1 − d∗)2

1 : ε∗
〉(r)

(B.17)

4. Summary of the resulted equations

Using the optimality conditions above, we can gather them into the following :



(B.15) ⇒ (1 − d)2
[
C
(r)
s : ε∗ − 2B(r)

0

]
− C

(r)
0 : ε∗ = 0

(B.16) ⇒ ⟨ε : C
(r)
s : ε⟩(r) −A(r)

0 − 2B(r)
0 : ε∗ = 0

d(r)opt = 1 − Yc

A(r)
0 + 2B(r)

0 : ⟨ε⟩(r)

(B.15) ⇒ ⟨1 : ε⟩(r) = ⟨1 : ε∗⟩(r)

(B.18)

Assumption 1. in order to move forward and to put to use (B.184), we consider B(r)
0 = b(r)0 1,

with b(r)0 a constant value (uniform per-phase) which can be discussed further.

Using this assumption, (B.182) can be rewritten as :

⟨ε : C
(r)
s : ε⟩(r) −A(r)

0 − 2 b(r)0 tr (ε∗) = 0 (B.19)

Considering the uniformity of the first 2 terms constituting (B.19), it is therefore expected of
tr (ε∗) to be uniform as well. (B.184) would then take the following form :

⟨tr (ε)⟩(r) = tr (ε∗) (B.20)

(B.19) can now be rewritten as :

⟨ε : C
(r)
s : ε⟩(r) −A(r)

0 − 2 b(r)0 ⟨tr (ε)⟩(r) = 0 (B.21)

Now from (B.21), A(r)
0 can be defined and replaced in (B.183), which would then take the

following form :

d(r)opt = 1 − Yc

⟨ε : C
(r)
s : ε⟩(r)

(B.22)
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And finally, by multiplying (B.181) by ε∗ and again using the optimality conditions results,
the following can be obtained :

C
(r)
0 = (1 − d)2

[
⟨ε : C

(r)
s : ε⟩(r) − 2 b(r)0 ⟨tr (ε)⟩(r)

] (
⟨ε ⊗ ε⟩(r)

)−1
(B.23)

Effective response of the elasto-damageable composite

Once all the parameters are known, the effective behavior of the composite can be spec-
ified. In order to do so, we proceed to the minimization of (2.39) with respect to ε. This
functional is stationary with respect to A(r)

0 , C
(r)
0 and d and the term ∆J of this functional

is stationary with respect to ε∗ and d∗. Given this, we can define the local problem that
corresponds to the Euler-Lagrange equations providing the solution to the variational prob-
lem:


div σ(x) = 0 ∀x ∈ Ω

σ(x) = C
(r)
0 : ε(x) + τ

(r)
0 ∀x ∈ Ω, τ

(r)
0 = (1 − d)2 b(r)0 1

⟨ε(x)⟩ = E + Conditions aux limites sur ∂Ω

(B.24)

The behavior of the nonlinear composite can then be approximated from the estimate :

Σ = ⟨σ(x)⟩ = C̃0 : ε(x) + τ̃0 (B.25)

The nonlinear problem is reduced to the solution of a two-function system of unknowns
A(r)

0 and C
(r)
0 :


F1

(
A(r)

0 , C
(r)
0

)
= A(r)

0 −
(〈

ε : C
(r)
s : ε

〉(r)
− 2 b(r)0 ⟨tr (ε)⟩(r)

)
= 0

F2

(
A(r)

0 , C
(r)
0

)
= C

(r)
0 −

(
(1 − d)2

[
⟨ε : C

(r)
s : ε⟩(r) − 2 b(r)0 ⟨tr (ε)⟩(r)

] (
⟨ε ⊗ ε⟩(r)

)−1
)

(B.26)

B.2 Double incremental variational procedure : attempted exten-
sion to elasto-damageable composites

In the development of the theoretical model within the scope of this thesis, a critical aspect of
consideration is the coupling between elasticity and damage. To address this intricate cou-
pling, the approach followed involved the simultaneous linearization of the local behavior
and the uniformization of parameters. However, based on the incremental variational pro-
cedure introduced by Lahellec and Suquet [75] and making use of the procedure proposed
by Agoras et al. [2], in 2019 Luchhetta et al. [83] developed a double incremental variational
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approach (DIV) for nonlinear composites. This new formulation allows dealing sequentially
with the linearization and the uniformity of the local behavior.

The first step in this two-step methodology involves the linearization of the local behavior.
At this stage, the primary objective is to approximate the incremental potential J by a lin-
earized incremental potential JL. This linearized form, although analogous in structure to
the initial potential (as represented by (2.23)), possesses a key distinction. Specifically, the
parameters A0 and C0 here are not uniform per the constitutive phases. As a result, this
initial linearization step leads to the definition of a LCC characterized by heterogeneous
material properties.

Building upon the heterogeneous LCC established in the first step, the second phase of this
methodology involves a process referred to as uniformization. In this stage, the objective is
to approximate the obtained LCC, with its heterogeneous properties, with an LCC with per-
phase homogeneous properties. This approximation makes it amenable to classical linear
homogenization schemes. By achieving per-phase homogeneity in the material properties, it
becomes possible to apply well-established linear homogenization techniques to determine
the effective behavior of the composite.

It is noteworthy that, within the scope of this current research, we have not embarked on
this two-step approach. However, it is an intriguing avenue that could be explored in future
research endeavors.
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Appendix C

Comparative Analysis of
Homogenization Model Results at 10%
Volumetric Fraction and Effects of
Boundary Condition Variations

C.1 Additional Results for 10% Volumetric Fraction

In this appendix, we present additional numerical results obtained using the incremental
variational approach and computational homogenization model for composites with a re-
duced volumetric fraction of 10%. This section complements the main body of the thesis,
where a volumetric fraction of 25% was primarily considered. The purpose of these results
is to demonstrate the model’s predictive capabilities and its sensitivity to changes in mate-
rial configuration.
To maintain consistency with the primary analysis presented in the thesis, we have used
the same material parameters for the composite material (see 2.55) with a 10% volumetric
fraction. These parameters include the elastic constants, damage evolution laws, and failure
criteria. In what follows, we present results for the AT1, AT2, and AT1-extended models and
compare them to full-field calculations.
As shown in Figures C.1,C.2, C.3, we compare the predictions of our homogenization model
with the results obtained from full-field calculations for the 10% volumetric fraction com-
posite. The full-field calculations provide a detailed view of the composite’s mechanical
behavior at the microscale, while our model aims to capture the macroscopic response of
the material.

We observe that, in general, the predictions of our homogenization model are closer to the
full-field calculations when compared to the 25% volumetric fraction case studied in the
main body of the thesis. This result suggests that the homogenization model is more accurate
in capturing the mechanical behavior of composites with lower volumetric fractions.
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(a) (b) (c)

FIGURE C.1: Elastically reinforced composite with an elasto-damageable ma-
trix submitted to an isochoric macroscopic strain for the AT1 model. (a) Macro-
scopic axial stress, (b) Average axial stress in the matrix, (c) Average axial

stress in the inclusion

(a) (b) (c)

FIGURE C.2: Elastically reinforced composite with an elasto-damageable ma-
trix submitted to an isochoric macroscopic strain for the AT2 model. (a) Macro-
scopic axial stress, (b) Average axial stress in the matrix, (c) Average axial

stress in the inclusion

(a) (b) (c)

FIGURE C.3: Elastically reinforced composite with an elasto-damageable ma-
trix submitted to an isochoric macroscopic strain for the AT1 extended model.
(a) Macroscopic axial stress, (b) Average axial stress in the matrix, (c) Average

axial stress in the inclusion
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C.2 Alternative Boundary Conditions and Their Impact on Results

In this appendix, we explore an alternative boundary condition scenario that deviates from
the primary methodology employed throughout this study. Specifically, we investigate the
case where we do not enforce damage to be null on the edges where loading is applied in
full-field simulations. This departure from our standard approach is undertaken to evaluate
the effects on the predictions of the full-field calculations in regard to our homogenization
model when natural boundary conditions are altered.

It is to be noted that this configuration is the initial one that had been considered -and then
put aside-, and the following results are part of the first batch of results obtained. For these,
we had considered a threshold of Yc = 4.8MPa, concerning the rest of the elastic properties
of the composite, they can be found in (2.55), and the applied load is an isochoric macro-
scopic strain.

Throughout the study presented in the main body of this thesis, one of our key practices in
full-field simulations has been to enforce damage to be null on the edges where loading is
applied. This measure is implemented to mitigate the artificial localization of damage on the
surface where the load is applied, ensuring a more representative simulation of the material
behavior under mechanical loading.

In this alternative scenario, where we relax the constraint of enforcing null damage on the
loaded edges, we observe notable differences in the predictions of full-field calculations
compared to our homogenization model. One significant observation is that the overall
agreement between the homogenization model’s predictions and full-field calculations no-
tably improves in this alternative boundary condition setting.

In the absence of enforcing null damage on the loaded edges, we observe a reduction in
stress fluctuations within the matrix material. This effect is particularly pronounced when
the stress reaches a certain threshold, as illustrated in Fig. C.4d and C.6d, which follows the
same tendencies as in the theoretical model.

However, a notable drawback of not enforcing null damage on the loaded edges is the local-
ization of damage in the upper corner of the cell, as shown in Fig. C.5. This localized damage
behavior is a direct consequence of the altered boundary conditions and underscores the im-
portance of our standard practice.



134
Appendix C. Comparative Analysis of Homogenization Model Results at 10% Volumetric

Fraction and Effects of Boundary Condition Variations

(a) (b)

(c) (d)

FIGURE C.4: Elastically reinforced composite with an elasto-damageable ma-
trix submitted to an isochoric macroscopic strain for the AT1 model. (a) Macro-
scopic axial stress, (b) Average axial stress in the matrix, (c) Average axial

stress in the inclusion, (d) Stress fluctuations

(a) (b)

FIGURE C.5: Damage localization (a) AT1 model, (b) AT2 model
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(a) (b)

(c) (d)

FIGURE C.6: Elastically reinforced composite with an elasto-damageable ma-
trix submitted to an isochoric macroscopic strain for the AT2 model. (a) Macro-
scopic axial stress, (b) Average axial stress in the matrix, (c) Average axial

stress in the inclusion, (d) Stress fluctuations

C.3 Conclusion

In this appendix, we have presented additional numerical results for a 10% volumetric frac-
tion, expanding our investigation of the incremental variational approach and computa-
tional homogenization model. Notably, the delayed onset of damage and the closer agree-
ment between the maximum stress values in the model’s predictions and full-field calcula-
tions have been observed.
We have also examined the impact of an alternative boundary condition scenario where
damage is not enforced to be null on the edges where loading is applied. While this approach
yields improved agreement between the homogenization model and full-field calculations
and reduced stress fluctuations, it also leads to undesirable damage localization. The ratio-
nale for enforcing null damage on these edges remains valid, as it prevents artificial damage
behavior that could compromise the accuracy of our simulations. This alternative scenario
serves as an illustrative example of the trade-offs and considerations involved in selecting
appropriate boundary conditions for the study of composites with evolving damage.
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