Chapter 1

General Introduction 1.1 Research significance and background

In construction, power and wind energy engineering, aerospace and many other industries, there are many vehicle bodies and equipment that are inevitably subjected to random extreme loads from earthquakes, strong winds, tides, uneven road surfaces or tracks [START_REF] Vanmarcke | Structural response to earthquakes[END_REF][START_REF] Kilpatrick | Boundary layer convergence induced by strong winds across a midlatitude sst front[END_REF][START_REF] Gudmundsson | Ice-stream response to ocean tides and the form of the basal sliding law[END_REF][START_REF] Ngwangwa | Reconstruction of road defects and road roughness classification using vehicle responses with artificial neural networks simulation[END_REF][START_REF] Arlaud | Receptance of railway tracks at low frequency: Numerical and experimental approaches[END_REF]. Then, some nonlinear behavior will be induced and displayed. The nonlinear behavior exhibited by these engineering structures can have devastating effects on engineering equipment and systems such as buildings, generators, and aircraft. It takes a lot of human and material resources to repair these damaged buildings and equipment, and some cannot even be repaired or cause huge losses. However, some random factors can have favorable effects on the system, such as noise can induce stochastic resonance, transition, and phase transition, etc [START_REF] Yang | Stochastic p-bifurcation and stochastic resonance in a noisy bistable fractional-order system[END_REF][START_REF] Guo | Frequency-difference-dependent stochastic resonance in neural systems[END_REF][START_REF] Ehsani | Liv-1 zip ectodomain shedding in prion-infected mice resembles cellular response to transition metal starvation[END_REF][START_REF] He | Global low-carbon transition and china's response strategies[END_REF][START_REF] Dutilh | A phase transition model for the speed-accuracy trade-off in response time experiments[END_REF][START_REF] Ashraf | Snapshot of phase transition in thermoresponsive hydrogel pnipam: Role in drug delivery and tissue engineering[END_REF]. Therefore, it is necessary and meaningful to carry out dynamic analysis and response analysis of the system under random excitation or extreme loads. Then, some measures can be taken to reduce the damage to the system, prolong the life of the system or optimize the structure, etc. It is beneficial to the further development of nonlinear theory and is also an urgent need for engineering practice and scientific application.

The mathematical models of mechanical systems can usually be divided into two categories: discrete form and continuous form. It can also be classified according to the linearity or not of the differential equation describing the system or the deterministic, stochastic and fuzzy nature of its mathematical model. The general discrete form of a mechanical system is:

M(t)z(t) = F (t) -F int ( ż, z, t) (1.1)
where t = (-∞, +∞) is the time, z(t) is the vector of responses to be solved, F (t) is the external loading force, while M(t) is the positive definite mass matrix and F int ( ż, z, t) denotes the internal force which comes from linear or nonlinear damping and stiffness of the system. Here are some notes for Eq. (1.1):

• It is a 2nd order ordinary differential equation (ODE) system, where ż = ∂z ∂t and z = ∂ ż ∂t 2 .

• M(t) and F int ( ż, z, t) embed deterministic terms in this work, i.e. the system is considered deterministic.

• It may be a 2-nd order nonlinear ODE system if there are nonlinear terms in F int ( ż, z, t).

• z(t) is a deterministic or stochastic vector depending on whether F (t) is deterministic or stochastic (respectively), and we will inform the reader in the text whenever necessary.

Stochastic or random processes are also called non-deterministic processes. The waveforms of such processes are uncertain, and the amplitude and phase changes are unpredictable, so they cannot be described by definite mathematical expressions. {x k (t)} is a random process if {x k (t j )} is a random variable for any time t j . If we consider a limited set of n times, it has the following expressions 1 :

{x k (t)} = ({x 1 (t 1 )} , {x 2 (t 2 )} , • • • , {x k (t n )}) k = 1, 2, • • •
or:

X(t) = ({x (t 1 )} , {x (t 2 )} , • • • , {x (t n )}) n = 1, 2, • • •
In practice, following the Monte-Carlo method, the characteristics of several processes can be obtained by statistical analysis methods. They may be the means, variances, auto-correlation, and cross-correlation functions, auto-covariance, and cross-covariance functions, auto and cross power spectral densities, coherence functions, probability densities functions, etc.

The first or marginal probability density function p X (x, t) supplies the probability structure of the random variable X(t) for every fixed value of the parameter t. The joint probability densities of higher orders, which can reflect the interdependency between the values of the random function at different times, have the following definitions:

p X (x 1 , t 1 ; x 2 , t 2 )

. . . p X (x 1 , t 1 ; . . . ; x n , t n )

The moment functions of the first and second order of a random process have the following expressions:

E[X(t)] = xp X (x, t)dx E[X(t 1 )X(t 2 )] = x 1 x 2 p X (x 1 , t 1 ; x 2 , t 2 )dx 1 x 2
where E [•] denotes the expectation operator of the quantity"•"; they are called the instantaneous mean and the auto-correlation function, which contain the most important information about the process X(t), and E[X 2 (t)] is the mean-square value at t and this quantity is assumed to be finite in this work. From a statistical point of view, the mean is the average of the values of all sample functions of the random process X(t) at time t for a large number of samples N → ∞. So it also has the following expression:

E[X(t)] = 1 N N k=1 x k (t)
They can describe a Gaussian process completely.

Considering now two stochastic processes, X(t) and Y (t), E[X(t 1 )Y (t 2 )] is the cross-correlation function. The variance used to describe the degree of dispersion of the system at any time t has the following definition:

σ 2 xx (t) = E {X(t) -E[X(t)} 2
and the covariance of the random processes X(t) and Y (t) is:

σ 2 xy (t) = E [{X(t) -E[X(t)]} × {Y (t) -E[Y (t)]}]
The auto-covariance function of X(t) is the covariance between the signal and its time-shifted one:

Σ xt1xt2 (t 1 , t 2 ) = E [{X(t 1 ) -E[X(t 1 )]} × {X(t 2 ) -E[X(t 2 )]}]
The auto-covariance function Σ xt1xt2 (t 1 , t 2 ) is the covariance σ 2 xx (t) when t 1 = t 2 = t. Similarly the cross-covariance function of X(t) and Y (t) is the covariance between these signals considering the same time-shift:

Σ xt1yt2 (t 1 , t 2 ) = E [{X(t 1 ) -E[X(t 1 )]} × {Y (t 2 ) -E[Y (t 2 )]}]
When stationary processes are considered, their means become time independent while correlations and covariance functions depend of the time shift τ = t 2 -t 1 only such that Σ xt1xt2 (t 1 , t 2 ) = Σ xx (τ ) and Σ xt1yt2 (t 1 , t 2 ) = Σ xy (τ ).

Then, it is possible to define the auto and cross power spectral densities (PSD) from the Fourier transformation (FT):

Ŝxx (ω) = FT (Σ xx (τ )) Ŝxy (ω) = FT (Σ xy (τ ))
where ω denotes the circular frequency. The fundamental property being:

σ 2 xx = Σ xx (τ = 0) = +∞ -∞ Ŝxx (ω)dω σ 2 xy = Σ xy (τ = 0) = +∞ -∞
Ŝxy (ω)dω that link the time independent (co)variance of stationary processes to their variance function with a null time shift and to their PSD.

Fourier transform ensures the conversion of signals in the time-frequency domain, and is an important algorithm in the field of digital signal processing [START_REF] Sifuzzaman | Application of wavelet transform and its advantages compared to fourier transform[END_REF][START_REF] Tan | Quantum color image encryption algorithm based on a hyper-chaotic system and quantum fourier transform[END_REF][START_REF] Vashisht | Crack detection in the rotor ball bearing system using switching control strategy and short time fourier transform[END_REF][START_REF] Yu | Optical image encryption algorithm based on phase-truncated short-time fractional fourier transform and hyper-chaotic system[END_REF]. It shows that a signal in the time domain can be decomposed into a superposition of sine waves of different frequencies. The Fourier transform and the inverse Fourier transform are represented by the following equations.

F (ω) = F[f (t)] = ∞ -∞ f (t)e -iωt dt f (t) = F -1 [ F (ω)] = 1 2π ∞ -∞ F (ω)e iωt dω
The Fourier transform has become a routine tool in science and engineering, and the technique can be used in many fields, such as removing noise from sound recordings, using X-ray diffraction to discover the structure of large biochemical molecules such as DNA, improving radio reception, imaging processing etc. In short, the Fourier transform has a wide range of applications in physics, probability theory, statistics, signal processing, cryptography, acoustics, optics, oceanography, structural dynamics and other fields.

In practice, when t ∈ (t 0 , t 0 + T ), the response of a linear and stable structural system can be split in two parts:

transient response and permanent response:

z(t) = z 0 (t) + z 1 (t)
where z 0 represents the transient response, which is influenced by the initial value of z(t 0 ), ż(t 0 ), F (t 0 ); z 1 represents the permanent response due to F (t) ̸ = 0. We can therefore deduce that there are at least as many solutions as there are initial conditions for the system 1.1, so that the solution of the response z(t) to the system 1.1 is not unique in general.

But for a linear and damped stable system, it appears that z(t) → z 1 (t) when t is much larger than t 0 . Thus, when initial conditions are not considered in the search for a general solution for the system 1.1, one can expect that the solution found will match those found for prescribed initial solutions when t is much larger than t 0 . This may allow the comparison of several solutions found when stable systems are considered.

Research status

Due to the development of rocket technology in the aerospace field, the accompanying scientific research problems such as the buffeting of aircraft caused by atmospheric turbulence, the acoustic fatigue of aircraft surface structures caused by jet noise, and the reliability of payloads in rocket-propelled vehicles need to be solved. solve. Therefore, there is an urgent need to apply the existing methods of probability and statistics to mechanical vibration, and then, stochastic dynamics is proposed as a discipline. Stochastic noise theory, random vibration, stochastic structural dynamics, stochastic stability, stochastic optimal control theory, stochastic dynamic system theory, etc. have been successively

developed to meet the needs of aerospace, mechanical, civil and marine engineering [START_REF] Tejada-Guibert | Comparison of two approaches for implementing multireservoir operating policies derived using stochastic dynamic programming[END_REF][START_REF] Boutilier | Stochastic dynamic programming with factored representations[END_REF][START_REF] Huang | Large population stochastic dynamic games: closed-loop mckeanvlasov systems and the nash certainty equivalence principle[END_REF][START_REF] Socha | Linearization methods for stochastic dynamic systems[END_REF][START_REF] Sennott | Stochastic dynamic programming and the control of queueing systems[END_REF][START_REF] Li | Multimodularity and its applications in three stochastic dynamic inventory problems[END_REF]. The stochastic dynamics and control theory of linear systems matured in the 1970s. There are quite a few theoretical methods for the stochastic dynamics and control of nonlinear systems, but there are still many difficulties to be solved. A symposium organized by the Acoustical Society of America in 1962 effectively promoted the study of nonlinear random vibration theory, and subsequently all aspects of nonlinear random dynamics theory were extensively and comprehensively studied [START_REF] Biot | Generalized theory of acoustic propagation in porous dissipative media[END_REF][START_REF] Butler | Approximate power spectral density of the response of a nonlinear system to stationary random excitation[END_REF][START_REF] Maidanik | Response of ribbed panels to reverberant acoustic fields[END_REF][START_REF] Wenz | Acoustic ambient noise in the ocean: Spectra and sources[END_REF].

In 1995, the research progress on various aspects of stochastic structural dynamics was introduced in detail by the American academician Lin, and the German professor Arnold gave a comprehensive introduction to the research on stochastic dynamic systems from a mathematical point of view [START_REF] Lin | Probabilistic structural dynamics[END_REF][START_REF] Arnold | Random dynamical systems[END_REF]. In 2003, Professor Roberts from the United Kingdom introduced the theory and engineering application of equivalent linearization in detail [START_REF] Roberts | Random vibration and statistical linearization[END_REF]. In 2009, an approximate method for determining the response of nonlinear systems under evolutionary random excitation was proposed by the scholar Ioannis [START_REF] Kougioumtzoglou | An approximate approach for nonlinear system response determination under evolutionary stochastic excitation[END_REF]. In 2013, recent results in the analysis, stability and control of nonlinear systems were presented by Sastry [START_REF] Sastry | Nonlinear systems: analysis, stability, and control[END_REF]. In conclusion, the nonlinear stochastic dynamics have been widely studied and many research achievements have been obtained, such as the exact stationary solution, equivalent linearization method, equivalent nonlinear system method, stochastic averaging method, stochastic stability, stochastic bifurcation, first crossing damage, stochastic fatigue crack propagation, and stochastic optimal control, etc [START_REF] Zhu | Exact stationary solutions of stochastically excited and dissipated partially integrable hamiltonian systems[END_REF][START_REF] Kluge | Stochastic stability of the extended kalman filter with intermittent observations[END_REF][START_REF] Meyn | Markov chains and stochastic stability[END_REF][START_REF] Liang | Effects of above-crossing tunnelling on the existing shield tunnels[END_REF][START_REF] Xin | Three-dimensional fatigue crack propagation simulation using extended finite element methods for steel grades s355 and s690 considering mean stress effects[END_REF][START_REF] Moura | A stochastic optimal control approach for power management in plug-in hybrid electric vehicles[END_REF][START_REF] Hua | Stochastic optimal control for energy internet: A bottom-up energy management approach[END_REF].

In stochastic dynamics analysis, random excitation is usually a continuous random process, such as ground motion on bridges or buildings, wind load on wind turbine equipment, and wave impact on tidal generators. High winds, waves, atmospheric turbulence, uneven road surfaces, and earthquakes are often classified as random disturbances. These random disturbances will cause nonlinear random vibration of the system, which will increase the complex mechanical behavior and computational cost of the system. In order to study the dynamics of randomly perturbed systems, it is necessary to describe them by statistical or probabilistic methods and use random samples to approximate these random excitation processes. These random excitations can be modeled as stochastic processes such as stationary or non-stationary Gaussian or non-Gaussian white or colored noise. The response of the SDOF system with Caputotype fractional derivative damping term under Gaussian white noise excitation was investigated [START_REF] Yang | Stationary response of nonlinear system with caputo-type fractional derivative damping under gaussian white noise excitation[END_REF]. A stationary non-Gaussian process was used as an input to the system so that the nonlinear system identification problem can be solved [START_REF] Ralston | Identification of a class of nonlinear systems under stationary non-gaussian excitation[END_REF]. Some methods are reviewed for obtaining the probabilistic characteristics of the response of linear structural systems subjected to normal and non-normal generally non-stationary excitations [START_REF] Di Paola | Non-stationary response of linear systems under stochastic gaussian and nongaussian excitation: a brief overview of recent results[END_REF]. The problems of a marine structural system exposed to flow-induced non-white excitation and a bending beam with a non-Gaussian and non-homogeneous Young's modulus is studied in the numerical example [START_REF] Psaros | Wiener path integral based response determination of nonlinear systems subject to non-white, non-gaussian, and non-stationary stochastic excitation[END_REF]. A system-designed problem was studied to get a wiser solution to energy harvesting in colored noise environments [START_REF] Harne | Prospects for nonlinear energy harvesting systems designed near the elastic stability limit when driven by colored noise[END_REF]. The Probabilistic response of a nonlinear vibration energy harvesting system driven by exponentially correlated Gaussian colored noise was analyzed [START_REF] Liu | Probabilistic response analysis of nonlinear vibration energy harvesting system driven by gaussian colored noise[END_REF]. The stochastic bifurcations and the performance analysis of a strongly nonlinear tri-stable energy harvesting system with colored noise are investigated [START_REF] Liu | Event-triggered sliding mode control of nonlinear dynamic systems[END_REF].

Stochastic dynamics studies the response, stability, distribution, reliability and other dynamic behaviors of dynamic systems under the action of various random factors, as well as stochastic optimal control strategies. Response analysis has always been a hot spot in nonlinear stochastic dynamics research [START_REF] Vt | Radial basis function neural network for approximation and estimation of nonlinear stochastic dynamic systems[END_REF][START_REF] Weiqiu | Nonlinear stochastic dynamics: A survey of recent developments[END_REF][START_REF] Zhu | Nonlinear stochastic dynamics and control in hamiltonian formulation[END_REF][START_REF] Stano | Parametric bayesian filters for nonlinear stochastic dynamical systems: A survey[END_REF][START_REF] Tang | Potential landscape of high dimensional nonlinear stochastic dynamics with large noise[END_REF]. A solution method for the response of a class of nonlinear viscoelastic shear building structures subjected to stochastic excitation was developed [START_REF] Chang | Seismic response analysis of nonlinear structures[END_REF]. The extension of Itô's rule for the case of vector real-valued functions of the response of nonlinear systems excited by zero-mean Gaussian white noise processes is presented [START_REF] Di Paola | Stochastic response analysis of nonlinear systems under gaussian inputs[END_REF]. A new probability density evolution method was proposed for dynamic response analysis and reliability assessment of non-linear stochastic structures [START_REF] Chen | Dynamic response and reliability analysis of non-linear stochastic structures[END_REF]. The probability density evolution method for dynamic responses analysis of non-linear stochastic structures was proposed [START_REF] Li | The probability density evolution method for dynamic response analysis of non-linear stochastic structures[END_REF]. Effects of uncertainties on the dynamic response of the nonlinear vibration systems with general form were investigated [START_REF] Qiu | Non-probabilistic interval analysis method for dynamic response analysis of nonlinear systems with uncertainty[END_REF]. A novel approximate analytical approach for determining the response evolutionary power spectrum of nonlinear/hysteretic structural systems subject to stochastic excitation was developed [START_REF] Kougioumtzoglou | Stochastic joint time-frequency response analysis of nonlinear structural systems[END_REF]. An approximate analytical dimension reduction approach is developed for determining the response of a multi-degree-of-freedom (MDOF) nonlinear/hysteretic system subject to a non-stationary stochastic excitation vector [START_REF] Kougioumtzoglou | Nonlinear mdof system stochastic response determination via a dimension reduction approach[END_REF]. A new quasi-conservative stochastic averaging method was proposed to analyze the Probabilistic response of a nonlinear vibration energy harvesting system driven by exponentially correlated Gaussian colored noise [START_REF] Liu | Probabilistic response analysis of nonlinear vibration energy harvesting system driven by gaussian colored noise[END_REF]. An efficient and accurate algorithm was developed for improving the computational efficiency of structural responses under nonstationary stochastic excitations based on the fast Fourier transform [START_REF] Zhao | Efficient nonstationary stochastic response analysis for linear and nonlinear structures by fft[END_REF]. A unified and efficient direct probability integral method was proposed to calculate the probability density function (PDF) of responses for linear and nonlinear stochastic structures under static and dynamic loads [START_REF] Chen | Direct probability integral method for stochastic response analysis of static and dynamic structural systems[END_REF].

The dynamic responses of a two-degree-of-freedom (2DOF) nonlinear bistable electromagnetic energy harvester under filtered band-limited stochastic excitation were investigated [START_REF] Li | Dynamic responses of a two-degree-of-freedom bistable electromagnetic energy harvester under filtered band-limited stochastic excitation[END_REF].

The research and development of methods to obtain nonlinear system responses are of great significance for revealing the possible phenomena of nonlinear systems under random disturbances. Some exact solutions have been proposed

to solve the equations of nonlinear systems, such as the method of the Fokker-Planck-Kolmogorov equation [START_REF] Bogachev | Fokker-Planck-Kolmogorov Equations[END_REF].

However, the system needs to meet strictly limited conditions, which limits the scope of use of this method and cannot meet the needs of practical engineering. Several numerical methods etc. have been proposed for approximating the response of nonlinear equations. The equivalent linearization method is the most widely used method in practical engineering [START_REF] Iwan | Equivalent linearization for systems subjected to non-stationary random excitation[END_REF][START_REF] Proppe | Equivalent linearization and monte carlo simulation in stochastic dynamics[END_REF][START_REF] Günay | Predicting the seismic response of capacity-designed structures by equivalent linearization[END_REF][START_REF] Su | An iterative equivalent linearization approach for stochastic sensitivity analysis of hysteretic systems under seismic excitations based on explicit time-domain method[END_REF]. Its basic starting point is to find an equivalent linear system that minimizes the mean square difference between it and the original nonlinear system. However, this method can usually only be used to solve weakly nonlinear systems subjected to random external excitation, cannot obtain the probability distribution information of nonlinear responses, and is difficult to apply to the analysis of structural reliability. There are also some commonly used methods with their own advantages and disadvantages, which need to be reasonably selected according to different research objects and analysis purposes, such as Monte Carlo simulation method, random perturbation method, stochastic averaging approach, random finite element method, equivalent nonlinearization method, etc [START_REF] Zio | Monte carlo simulation: The method[END_REF][START_REF] Skorokhod | Random perturbation methods with applications in science and engineering[END_REF][START_REF] Spanos | Stochastic averaging of nonlinear oscillators: Hilbert transform perspective[END_REF][START_REF] Li | Enhancement of random finite element method in reliability analysis and risk assessment of soil slopes using subset simulation[END_REF][START_REF] Cai | An equivalent nonlinearization method for strongly nonlinear oscillations[END_REF][START_REF] Zhang | Dynamic reliability analysis of nonlinear structures using a duffingsystem-based equivalent nonlinear system method[END_REF].

In the study of random vibration, the spectral analysis method has always played a significant role, among which the power spectrum density is the most widely used [START_REF] Veronese | Spectral analysis of dynamic pet studies: a review of 20 years of method developments and applications[END_REF][START_REF] Li | Spectral analysis of heart rate variability: time window matters[END_REF][START_REF] De Carvalho | A novel dft-based method for spectral analysis under time-varying frequency conditions[END_REF][START_REF] Nečas | One-dimensional autocorrelation and power spectrum density functions of irregular regions[END_REF][START_REF] Yan | Analytical local and global sensitivity of power spectrum density functions for structures subject to stochastic excitation[END_REF]. The power spectral density represents the change of signal power with frequency, that is, the distribution of signal power in the frequency domain. The wavelet method is a good way to obtain power spectral density. The characteristics of the wavelet make it suitable for many applications such as compressing signals and images, storing fingerprints, and medical imaging. Wavelet methods are used in many fields such as physics, transportation, medicine, communications, and electrical engineering to solve problems such as cutting, compression, and enhancement of images, compression, and analysis of signals such as music, analysis of biomedical signals, analysis of road surface unevenness, analysis of non-stationary vibration in vehicles, and fault diagnosis of transmission bearings and gears [START_REF] Liu | A wavelet method for solving a class of nonlinear boundary value problems[END_REF][START_REF] Patel | A wavelet method for modeling and despiking motion artifacts from resting-state fmri time series[END_REF][START_REF] Wang | Haar wavelet method for solving fractional partial differential equations numerically[END_REF][START_REF] Saeed | Hermite wavelet method for fractional delay differential equations[END_REF][START_REF] Adigun | A haar wavelet method for angularly discretising the boltzmann transport equation[END_REF][START_REF] Jena | Dynamic behavior of an electromagnetic nanobeam using the haar wavelet method and the higher-order haar wavelet method[END_REF]. The commonly used wavelets are Haar wavelets, Daubechies wavelets, Morlet wavelets, Meyer wavelets, Bernoulli wavelets, and so on. Fractional differential equations were solved using the Legendre wavelets [START_REF] Ur Rehman | The legendre wavelet method for solving fractional differential equations[END_REF]. Bernoulli wavelet method was developed to solve nonlinear fuzzy Hammerstein-Volterra integral equations with constant delay [START_REF] Sahu | A new bernoulli wavelet method for accurate solutions of nonlinear fuzzy hammersteinvolterra delay integral equations[END_REF]. A new method based on operational matrices of Bernoulli wavelet was developed for solving linear stochastic Itô Volterra integral equations, numerically [START_REF] Mirzaee | Application of bernoulli wavelet method for estimating a solution of linear stochastic itô-volterra integral equations[END_REF]. A new computational method based on the Legendre wavelets was proposed for solving a class of variable-order fractional optimal control problems [START_REF] Heydari | A new wavelet method for variable-order fractional optimal control problems[END_REF]. Different types of thresholds and mother wavelets were applied to analyze different signals contaminated

by noise [START_REF] Dautov | Wavelet transform and signal denoising using wavelet method[END_REF]. The dynamic behavior of an electromagnetic nanobeam was studied by using the Haar wavelet method and the higher-order Haar wavelet method [START_REF] Jena | Dynamic behavior of an electromagnetic nanobeam using the haar wavelet method and the higher-order haar wavelet method[END_REF]. A novel and efficient collocation method based on Fibonacci wavelets was proposed for the numerical solution of the nonlinear Hunter-Saxton equation [START_REF] Srivastava | Fibonacci wavelet method for the solution of the non-linear hunter-saxton equation[END_REF].

Harmonic wavelets and generalized harmonic wavelets are a kind of wavelet proposed by Newland in the early 1990s [START_REF] Newland | Harmonic wavelet analysis[END_REF]. The HW of each level does not overlap each other. The Fourier transform modulus of the j-th HW is half of the (j -1)th HW and the Fourier bandwidth of the j-th HW is a fixed value 2 j+1 π. HW is not flexible. Thus, GHW was proposed to solve this problem. Although GHW is orthogonal in the time domain t ∈ (-∞, +∞), they are not orthogonal in a finite region. Thus, Kong proposed PGHW to analyze the vibration signal with limited duration in the engineering field [START_REF] Kong | Wavelet-galerkin approach for power spectrum determination of nonlinear oscillators[END_REF][START_REF] Kong | Wavelet-expansion-based stochastic response of chain-like mdof structures[END_REF][START_REF] Xiao | A stochastic analysis method of transient responses using harmonic wavelets, part 1: Time-invariant structural systems[END_REF][START_REF] Xiao | A stochastic analysis method of transient responses using harmonic wavelets, part 2: Time-dependent vehicle-bridge systems[END_REF][START_REF] Han | Response epsd of chain-like mdof nonlinear structural systems via wavelet-galerkin method[END_REF][START_REF] Kong | Non-stationary response power spectrum determination of linear/non-linear systems endowed with fractional derivative elements via harmonic wavelet[END_REF]. This kind of wavelet is orthogonal in its fundamental period [0, T ) and extends to infinity according to this fundamental period. Deterministic and stochastic responses of linear and nonlinear MDOF invariant systems were obtained or characterized by using this PGHW method [START_REF] Kong | Wavelet-galerkin approach for power spectrum determination of nonlinear oscillators[END_REF][START_REF] Kong | Wavelet-expansion-based stochastic response of chain-like mdof structures[END_REF][START_REF] Han | Response epsd of chain-like mdof nonlinear structural systems via wavelet-galerkin method[END_REF]. The stochastic response of a linear time-varying vehicle-bridge system was studied also by using this PGHW method [START_REF] Xiao | A stochastic analysis method of transient responses using harmonic wavelets, part 2: Time-dependent vehicle-bridge systems[END_REF].

The Galerkin method is a numerical analysis method invented by the Russian mathematician Boris Grigorievich Galerkin. The Galerkin method adopts the weak form corresponding to the differential equation. Its principle is to select finite polynomial functions (also known as basis functions or shape functions), superimpose them, and then require the weighted integral of the result in the solution domain and on the boundary to satisfy the original equation. A set of linear algebraic equations that are easy to solve can be obtained, and the natural boundary conditions can be automatically satisfied. The wavelet-Galerkin method is the Galerkin method that selects the wavelet as the basis function. The wavelet-Galerkin method used in this work selects PGHW as the basis function. And combined with the properties of PGHW, the studied differential equation can be transformed into a series of algebraic equations. For the linear case, it can be solved directly. For the nonlinear case, it is common to use iterative methods to obtain its numerical solution, because it is difficult to obtain its analytical solution. Iterative methods of the Newton and quasi-Newton methods are chosen in this work to obtain numerical solutions of nonlinear algebraic equations.

Main work

In this work, several types of nonlinear systems under different random excitations are taken as the research objects, combined with PGHW, wavelet-Galerkin method, the Newton and quasi-Newton methods, and the main results such as the displacement of the system and the variation of response PSD and EPSD with time and frequency are obtained.

This research is divided into the following parts:

In the first chapter, the research significance and background, the status of the study, and the main work are presented.

In the second chapter, the HW, GHW, PGHW are introduced first.

In the third chapter, the PGHW method is used to analyze the response of the Duffing oscillator subject to seismic excitation. The wavelet-Galerkin method is used to study the motion equation, and a set of nonlinear algebraic equations can be obtained. And the quasi-Newton method is selected to solve these equations. Then, the displacement and EPSD of the response can be obtained by using the solved wavelet coefficient. In the end, a numerical example is shown to prove the feasibility and efficiency of the proposed method.

In the fourth chapter, the proposed method is used to analyze the response of the chain-like MDOF nonlinear structural system with seismic excitation in the time and frequency domain. The displacement and EPSD of a 4-DOF system under excitation are obtained and shown in the numerical example. And the system of linear oscillators coupled to MDOF nonlinear attachment with combined periodic and stochastic seismic excitation is studied. PGHW, wavelet-Galerkin, and quasi-Newton methods are used to solve the motion equations. In the numerical example, it is concluded that Rank-1 iB is the best algorithm to approximate the Jacobi matrix in this study by comparing other algorithms. Then, the displacement and EPSD of response are obtained and shown by using the optimal algorithm.

In the fifth chapter, a PGHW method is used to analyze the forced response of a periodic time-varying rotor-blade nonlinear system undergoing mechanical vibrations. The trigonometric functions contained in M(t), C(t), K(t) can be transformed into exponential functions according to the Euler formula, and then these time-varying elements can result in a frequency shift for the wavelet function. The displacement and the EPSD of the response can be obtained and the time-frequency analysis is shown in the numerical example.

In the sixth chapter, the conclusion and the perspectives for future research work are presented.

Chapter 2

Presentation of the methods

In this chapter, information about HW, GHW, and PGHW is presented here.

The wavelet transform is introduced through the concept of the Short Time Fourier Transform [START_REF] Wang | Motor fault diagnosis based on short-time fourier transform and convolutional neural network[END_REF][START_REF] Mateo | Short-time fourier transform with the window size fixed in the frequency domain[END_REF][START_REF] Li | Adaptive short-time fourier transform and synchrosqueezing transform for non-stationary signal separation[END_REF], which is a signal analysis tool that can transform the signal into the time-frequency domain. Time and frequency are essentially two opposite scales. The smaller the time window is, the more frequency components are obtained, which is suitable to analyze the situation where the signal sample contains more frequency components; on the contrary, it is suitable to analyze the situation where the signal sample contains fewer frequency components. The basis of the Fourier transform is the trigonometric function, and the basis of the wavelet transform is the mother wavelet function. The selection of the mother wavelet function must satisfy the following two conditions.

1. The integral sum of the mother wavelet function over the definition domain is zero. 

-∞ |ψ(t)| 2 dt < ∞
There are infinitely many mother wavelet functions that satisfy the above two constraints and an appropriate mother wavelet function needs to be selected according to the requirements.

The expression of HW

Harmonic wavelets are a kind of wavelet proposed by Newland in the early 1990s [START_REF] Newland | Harmonic wavelet analysis[END_REF], and its scale function and wavelet function have the following expressions. After the time translation and scale transformation, the time domain expression of HW and its expression in the frequency domain are shown below.

ψ 2 j -k = exp i4π 2 j t -k -exp i2π 2 j t -k i2π (2 j -k) Ψj,k (ω) = 1 2 j exp -iωk 2 j Ψ ω 2 j
where t represents time, ω represents angular frequency, i is imaginary unit, j represents scale factor, k = 2 j , 2 j + 1, ..., 2 2j -1 represents translation factor.

The expression of GHW

The HW of each level does not overlap each other. The Fourier transform modulus of the j-th HW is half of the (j -1)th HW and the Fourier bandwidth of the j-th HW is a fixed value 2 j+1 π. HW is not flexible. 

ΨG (mi,ni),k (ω) =    1 (ni-mi
)∆ω e -i(ωkT /n1-mi) , m i ∆ω ≤ ω ≤ n i ∆ω, 0, otherwise .

(2.1)

ψ G (mi,ni,k (t) = exp [in i ∆ω (t -(kT /n i -m i ))] -exp [im i ∆ω (t -(kT /n i -m i ))] i (n i -m i ) ∆ω (t -(kT /n i -m i )) (2.2) 
where (m i , n i ) is a non-negative integer representing for wavelet scales, k = 0, 1, ..., N t -1 (N t = n i -m i ) is the index of the time translation of wavelet; The superscripts G represent that the wavelet is generalized; The superscript i denote the imaginary unit; ∆w = 2π T is the sampling interval; T is the finite duration of the signal.

The expression of PGHW

The Fourier bandwidth of each level of GHW is not the fixed value 2 j+1 π, but is determined by (m j -n j )2π, where m j , n j are the j-th wavelet scales. Thus, GHW can be regarded as an improved version of HW. Although GHW is orthogonal in the time domain t ∈ (-∞, +∞), they are not orthogonal in a finite region. There are many inconveniences in expressing time-limited vibration signals in the engineering field. The generalized harmonic wavelet function can be extended periodically in the time domain in order to express the finite-duration signal as the weighted sum of infinite-duration wavelet functions. Thus, Kong proposed PGHW to analyze the vibration signal with limited duration in the engineering field [START_REF] Kong | Wavelet-galerkin approach for power spectrum determination of nonlinear oscillators[END_REF][START_REF] Kong | Wavelet-expansion-based stochastic response of chain-like mdof structures[END_REF][START_REF] Xiao | A stochastic analysis method of transient responses using harmonic wavelets, part 1: Time-invariant structural systems[END_REF][START_REF] Xiao | A stochastic analysis method of transient responses using harmonic wavelets, part 2: Time-dependent vehicle-bridge systems[END_REF][START_REF] Han | Response epsd of chain-like mdof nonlinear structural systems via wavelet-galerkin method[END_REF][START_REF] Kong | Non-stationary response power spectrum determination of linear/non-linear systems endowed with fractional derivative elements via harmonic wavelet[END_REF]. The PGHW function has discrete frequencies. This kind of wavelet is orthogonal in its fundamental period [0, T ) and extends to infinity according to this fundamental period. Generally, PGHW can be expressed as an infinite summation of GHW in the following form

ψ G,per (m,n),k (t) = 1 n -m n-1 q=m e i∆ωq(t-(kT /n-m))
(2.

3)

The Fourier transform of Eq. (2.3) gives the representation of PGHW in the frequency domain as

ΨG,per (m,n),k (ω) = 1 2π(n -m) n-1 q=m e -i(2πkq/n-m) δ(ω -q∆w) (2.4)
where (m, n) is a non-negative integer representing for wavelet scales, k = 0, 1, ..., N t -1 (N t = n -m) is the index of the time translation of wavelet; The superscripts G and per represent that the wavelet is generalized and periodic respectively; The superscript i denote the imaginary unit; ∆w = 2π T is the sampling interval; T is the finite duration of the signal.

It can be seen from Eqs. (2.3) and (2.4) that PGHW is a summation of several harmonic functions in the time domain, and it is a summation of several δ functions located in the non-overlapping narrow bandwidths in the frequency domain.

Let T = 20.48s, the PGHW with different scales and translations are shown in Fig. 2.1. It can be seen from Fig. 2.1 that the real and imaginary parts of PGHW are the even and odd functions, respectively. The center of symmetry varies with k. From (a) and (b) in Fig. 2.1, it can be found that the vibration frequency of the next scale becomes higher. By comparing (a) and (c) in Fig. 2.1, it is obvious that the change of k only determines the position of the wavelet in the basic period [0, T ). And from (c) and (d) in Fig. 2.1, it can be known that the wavelet will be compressed horizontally without changing the general shape when the value of n -m becomes larger.

The transformation and reconstruction of PGHW

The transformation and reconstruction of PGHW can realize the transformation of known signals between time and frequency domains. Similar to the transformation of GHW, the transformation and reconstruction of PGHW can be expressed as and

W G,per (mi,ni),k = n -m T T 0 f (t) ψG,per (mi,ni),k (t)dt (2.5) W G,per (mi,ni),k = n -m T T 0 f (t)ψ G,per (mi,ni),k (t)dt
f (t) = i k W G,per (mi,ni),k ψ G,per (mi,ni),k (t) + i k W G,per (mi,ni),k ψG,per (mi,ni),k (t) (2.6)
where m i , n i are the i-th wavelet scale, a bar over symbols represents the complex conjugate operation; In particular, a uniform constant bandwidth is always chosen for all scales, that is,

n j -m j = n i -m i = n -m, i, j = 1, 2, • • • , N J,N J = N/(2(n -m))
, N is the total number of samples; The subscripts i and j here denote the i-th and j-th scales. In the following, W i,k , ψ i,k (t) will replace W G,per (mi,ni),k , ψ G,per (mi,ni),k (t) for simplicity.

When f (t) is a real-valued process, Wi,k is the complex conjugate of W i,k . Then the reconstruction of PGHW (2.6) can be simplified as

f (t) = 2Re i k W i,k ψ i,k (t)
Note that numerical integration based on Eq. (2.5) may not be able to provide effective and accurate wavelet transforms because of the high-frequency oscillation of high-order wavelets, and integral and double summation may lead to cumbersome numerical algorithms. Therefore, the transformation and reconstruction of PGHW based on FFT were proposed to speed up the wavelet transform and inverse transform process of PGHW [START_REF] Kong | Wavelet-galerkin approach for power spectrum determination of nonlinear oscillators[END_REF]. It offers a significant advantage in terms of computational effort when long sequences are considered.

According to the time-domain expression of PGHW shown in Eq. (2.3), Eq. (2.5) can be written in the following form.

W G,per (mi,ni),k = n -m T T 0 f (t) 1 n -m n-1 q=m e -i∆ωq(t-kT /(n-m)) dt (2.7) = 1 T n-1 q=m e i∆ωqkT /(n-m) T 0 f (t)e -i∆ωqt dt = n-1 q=m F (q∆ω)e i2πkq/(n-m)
According to Eq. (2.7), the flow chart of the fast PGHW transform based on FFT is obtained and shown in Fig. 2.2. The decomposition of the Fourier series of the exponential form of the signal f (t) is used here.

f (t) = ∞ q=-∞
Fq e iq∆wt (2.8)

Fq = 1 T T 0 f (t)e -iq∆wt dt (2.9)
where T is the period and ∆w the angular frequency of the signal f (t). Note that the coefficients of the Fourier series of the signal f (t) are presented in Eq. (2.9), which is used in the derivation of Eq. (2.7).

𝑓𝑓 1×𝑁𝑁 � 𝐹𝐹 1×𝑁𝑁 FFT � 𝐹𝐹 1×(𝑁𝑁/2)
Take half of the data because of its symmetry.

� 𝐹𝐹 (𝑠𝑠) 1×(𝑚𝑚-𝑛𝑛)

, Eq. (2.6) can be expressed in the following form 

𝑠𝑠 = 𝑚𝑚 𝑖𝑖 + 1, … , 𝑛𝑛 𝑖𝑖 Split it into pieces iFFT 𝑊𝑊 𝑚𝑚 𝑖𝑖 ,𝑛𝑛 𝑖𝑖 ,𝑘𝑘 𝐺𝐺,𝑝𝑝𝑝𝑝𝑝𝑝 , 𝑘𝑘 = 1,2, … , 𝑁𝑁/(𝑛𝑛 -𝑚𝑚)
f (t) = i Ψ i C i + i Ψi Ci (2.10) = i [ψ G,
c i,k =      W G,per (mi,ni),l if k = N l/(n -m), l = 0, 1, • • • , n -m -1 0, otherwise
According to Eq. (2.11), Ψ i has the following expansion form

Ψ i =         ψ G,per (mi,ni),0 (t 0 ) ψ G,per (mi,ni),1 (t 0 ) • • • ψ G,per (mi,ni),N -1 (t 0 ) ψ G,per (mi,ni),0 (t 1 ) ψ G,per (mi,ni),1 (t 1 ) • • • ψ G,per (mi,ni),N -1 (t 1 ) . . . . . . . . . . . . ψ G,per (mi,ni),0 (t N -1 ) ψ G,per (mi,ni),1 (t N -1 ) • • • ψ G,per (mi,ni),N -1 (t N -1 )        
And according to the periodicity of PGHW, Ψ i can be given in the following form

Ψ i =         ψ G,per (mi,ni),0 (t 0 ) ψ G,per (mi,ni),0 (t N -1 ) • • • ψ G,per (mi,ni),0 (t 1 ) ψ G,per (mi,ni),0 (t 1 ) ψ G,per (mi,ni),0 (t 0 ) • • • ψ G,per (mi,ni),0 (t 2 ) . . . . . . . . . . . . ψ G,per (mi,ni),0 (t N -1 ) ψ G,per (mi,ni),0 (t N -2 ) • • • ψ G,per (mi,ni),0 (t 0 )        
Ψi can also be obtained in the same way, and the following equation can be obtained by combining with Eq. (2.10)

f (t) = i Ψ i C i + i Ψi Ci (2.12) = i ψ G,per (mi,ni),0 * C i + ψG,per (mi,ni),0 * Ci
where * is the convolution operation symbol, ψ G,per (mi,ni),0 is the convolution kernel of matrix Ψ i . The following equation is obtained by performing Fourier transform on both sides of Eq. (2.12)

F ω) = i ψG,per (mi,ni),0 * Ĉi + ψG,per (mi,ni),0 * Ĉi
whereˆrepresents its corresponding Fourier transform in order to distinguish it from other superscripts. Therefore, the flow chart of fast PGHW inverse transform based on FFT is obtained and shown in Fig. 2.3.

𝐶𝐶 i 0 = 𝑊𝑊 𝑚𝑚 𝑖𝑖 ,𝑛𝑛 𝑖𝑖 ,0 𝐺𝐺,𝑝𝑝𝑝𝑝𝑝𝑝 , … , 𝑊𝑊 𝑚𝑚 𝑖𝑖 ,𝑛𝑛 𝑖𝑖 ,(𝑛𝑛-𝑚𝑚-1) 𝐺𝐺,𝑝𝑝𝑝𝑝𝑝𝑝 T ̅ 𝐶𝐶 i 0 = � 𝑊𝑊 𝑚𝑚 𝑖𝑖 ,𝑛𝑛 𝑖𝑖 ,0 𝐺𝐺,𝑝𝑝𝑝𝑝𝑝𝑝 , … , � 𝑊𝑊 𝑚𝑚 𝑖𝑖 ,𝑛𝑛 𝑖𝑖 ,(𝑛𝑛-𝑚𝑚-1) 𝐺𝐺,𝑝𝑝𝑝𝑝𝑝𝑝 T 𝐶𝐶 i = 𝑊𝑊 𝑚𝑚 𝑖𝑖 ,𝑛𝑛 𝑖𝑖 ,0 𝐺𝐺,𝑝𝑝𝑝𝑝𝑝𝑝 , 0, … , 0, … , 𝑊𝑊 𝑚𝑚 𝑖𝑖 ,𝑛𝑛 𝑖𝑖 , 𝑛𝑛-𝑚𝑚-1 𝐺𝐺,𝑝𝑝𝑝𝑝𝑝𝑝 , 0, … , 0 T � 𝐶𝐶 i = � 𝑊𝑊 𝑚𝑚 𝑖𝑖 ,𝑛𝑛 𝑖𝑖 ,0 𝐺𝐺,𝑝𝑝𝑝𝑝𝑝𝑝 , 0, … , 0, … , � 𝑊𝑊 𝑚𝑚 𝑖𝑖 ,𝑛𝑛 𝑖𝑖 , 𝑛𝑛-𝑚𝑚-1 𝐺𝐺,𝑝𝑝𝑝𝑝𝑝𝑝 , 0, … , 0 T Add 𝑁𝑁 𝑛𝑛-𝑚𝑚 -1 zeros Ψ 𝑚𝑚 𝑖𝑖 ,𝑛𝑛 𝑖𝑖 ,0 𝐺𝐺,𝑝𝑝𝑝𝑝𝑝𝑝 , � Ψ 𝑚𝑚 𝑖𝑖 ,𝑛𝑛 𝑖𝑖 ,0 𝐺𝐺,𝑝𝑝𝑝𝑝𝑝𝑝 � Ψ 𝑚𝑚 𝑖𝑖 ,𝑛𝑛 𝑖𝑖 ,0 𝐺𝐺,𝑝𝑝𝑝𝑝𝑝𝑝 , � � Ψ 𝑚𝑚 𝑖𝑖 ,𝑛𝑛 𝑖𝑖 ,0 𝐺𝐺,𝑝𝑝𝑝𝑝𝑝𝑝 FFT Ĉ𝐶 𝑚𝑚 𝑖𝑖 ,𝑛𝑛 𝑖𝑖 ,0 𝐺𝐺,𝑝𝑝𝑝𝑝𝑝𝑝 , ̂̅ 𝐶𝐶 𝑚𝑚 𝑖𝑖 ,𝑛𝑛 𝑖𝑖 ,0 𝐺𝐺,𝑝𝑝𝑝𝑝𝑝𝑝 FFT × � 𝐹𝐹 i 𝑓𝑓 = ∑𝑓𝑓 𝑖𝑖 iFFT 𝑓𝑓 𝑖𝑖 ∑ Figure 2.3: Flow chart of the fast PGHW inverse transform

The connection coefficients of PGHW

The transformation and reconstruction of PGHW are expressed in Eqs. (2.5) and (2.6). But the integral and double summation may lead to cumbersome numerical algorithms. Therefore, the transformation and reconstruction of PGHW based on FFT were proposed in [START_REF] Kong | Wavelet-galerkin approach for power spectrum determination of nonlinear oscillators[END_REF]. The selection of parameters in this FFT operation will affect the accuracy of the results. The maximum time period T should be large enough to ensure that the complete period of the signal is included. The total number of sampling points N should be large enough, that is, the sampling interval ∆t should be small enough, and then more accurate results will be obtained. And the larger the scale interval N t is selected, the more accurate the result will be.

The connection coefficients of PGHW are defined as the wavelet transform of the PGHW function or the inner product of the time-dependent elements and the PGHW function or its derivative function. The symbol of inner product operation a, b represents integral operation T o a bdt. It will be presented and analyzed in each chapter because it plays an important role in the calculation process of obtaining the main results.

The case with time-invariant coefficients

According to the expression of PGHW, the wavelet transform of PGHW function is also called the connection coefficient of PGHW, which can be expressed as

C 0 i,k;j,l = ψ i,k (t), ψj,k (t) T 0 = T 0 1 n -m ni-1 q=mi e i∆ωq(t-kT n-m ) 1 n -m nj -1 p=mj e -i∆ωp(t-lT n-m ) dt (2.13) = 1 (n -m) 2 ni-1 q=m nj -1 p=mj T 0 e i∆ω[(q-p)t+ T n-m (pl-qk)] dt
When the scale subscript i ̸ = j, that is q ̸ = p, then it is easy to get C 0 i,k;j,l = 0. When the scale subscript i = j, Eq. (2.13) can be simplified as follows.

C 0 i,k;j,l = T (n -m) 2 ni-1 q=mi e i2πq l-k n-m (2.14)
Similarly, the wavelet transform of the derivatives of the PGHW function can be simplified as follows.

C 1 i,k;j,l = ψi,k (t), ψj,k (t) T 0 =    i2π (n-m) 2 ni-1 q=mi qe i2πq(l-k/n-m) , for i = j 0, otherwise (2.15) 
C 2 i,k;j,l = ψi,k (t), ψj,k (t) T 0 =    -2π∆ω (n-m) 2 ni-1 q=mi q 2 e i2πq(l-k/n-m) , for i = j 0, otherwise (2.16) 

The case with time-varying coefficients

The time-varying elements contained in M(t), C(t), K(t) are some trigonometric functions. These time-varying elements can be rewritten as the form of exponential functions according to the Euler formula

     r s sin(ωt) = r s (e ip∆ωt -e -ip∆ωt )/2i r c cos(ωt) = r c (e ip∆ωt + e -ip∆ωt )/2
Then, the connection coefficients of PGHW, that is, the inner product of the time-dependent elements and PGHW functions, can be obtained as

             C 0 ik,jl = e ip∆ωt ψ ik (t), ψjl (t) , C 0 ik,jl = e ip∆ωt ψik (t), ψjl (t) C 1 ik,jl = e ip∆ωt ψik (t), ψjl (t) , C 1 ik,jl = e ip∆ωt ψik (t), ψjl (t) C 2 ik,jl = e ip∆ωt ψik (t), ψjl (t) , C 2 ik,jl = e ip∆ωt ψik (t), ψjl (t) 
(2.17)

According to the properties of Fourier transform

a(t), b(t) = 2π a(ω), b(ω) , ā(t), b(t) = 2π ⟨a(-ω), b(ω)⟩
and the Fourier transform of PGHW functions e ip∆ωt φ ik (t)

FT → φ ik (ω), e ip∆ωt φik (t) FT → iωφ ik (ω), e ip∆ωt φik (t) FT → -ω 2 φ ik (ω), φjl (t) 
FT → φjl (ω + p∆ω), where FT denotes Fourier transform, the expressions of the connection coefficients of PGHW Eq. (2.17) in the frequency domain can be obtained as follows

             C 0 ik,jl = 2π ⟨φ ik (ω), φjl (ω + p∆ω)⟩ , C 0 ik,jl = 2π ⟨ φik (-ω), φjl (ω + p∆ω)⟩ C 1 ik,jl = 2π ⟨iωφ ik (ω), φjl (ω + p∆ω)⟩ , C 1 ik,jl = 2π ⟨iω φik (-ω), φjl (ω + p∆ω)⟩ C 2 ik,jl = 2π -ω 2 φ ik (ω), φjl (ω + p∆ω) , C 2 ik,jl = 2π -ω 2 φik (-ω), φjl (ω + p∆ω) (2.18)
From Eq. (2.18) it can be seen that the term e ip∆ωt results in a frequency shift of the wavelet function.

The PGHW has a finite frequency band [m i ∆ω, n i ∆ω) at each scale, which does not overlap in different scales. And according to the representation of PGHW (2.3),(2.4), the integral operation or the inner product operation for obtaining the wavelet coefficients can be converted into the addition operation [START_REF] Spanos | Harmonic wavelets based excitation-response relationships for linear systems: A critical perspective[END_REF], [START_REF] Xiao | A stochastic analysis method of transient responses using harmonic wavelets, part 2: Time-dependent vehicle-bridge systems[END_REF] 

                                                                        C 0 ik,jl = 2π ∆ωN 2 t qu q=q d e i2π[(l-k)q+prl]/Nt C 1 ik,jl = 2πi N 2 t qu q=q d qe i2π[(l-k)q+prl]/Nt C 2 ik,jl = -2π∆ω N 2 t qu q=q d q 2 e i2π[(l-k)q+prl]/Nt                                                  if i = j -p q , p ≥ 0, then q d = m i , q u = n i -1 -p r if i = j -p q + 1, p < 0, then q d = m i , q u = m i -1 -p r if i = j -p q , p < 0, then q d = m i -p r , q u = n i -1 if i = j -p q -1, p > 0, then q d = n i -p r , q u = n i -1 C 0 ik,jl = C 1 ik,jl = C 2 ik,jl = 0 else (2.19)                                             C 0 ik,jl = 2π ∆ωN 2 t qu q=q d e i2π[(k-l)q+prl]/Nt C 1 ik,jl = -2πi N 2 t qu q=q d qe i2π[(k-l)q+prl]/Nt C 2 ik,jl = -2π∆ω N 2 t qu q=q d q 2 e i2π[(k-l)q+prl]/Nt                    if i = p q + 2 -j, p > 1, then q d = m i , q u = m i + p r -2 if i = p q + 1 -j, p > 0, then q d = m i + p r -1, q u = n i -1 C 0 ik,jl = C 1 ik,jl = C 2 ik,jl = 0 else (2.20)
where p q and p r denote the quotient and remainder of p divided by N t .

The EPSD of PGHW

By considering the orthogonality of PGHW and the slowly time-varying property of engineering-related stochastic processes, the relationship between the mean squared modulus of the wavelet coefficient and the response PSD is derived in a heuristic manner [START_REF] Spanos | Stochastic processes evolutionary spectrum estimation via harmonic wavelets[END_REF], [START_REF] Kong | Wavelet-galerkin approach for power spectrum determination of nonlinear oscillators[END_REF]. For a stochastic process X(t), multiplying both sides of Eq. (2.6) by their complex conjugates and integrating with respect to t yields

T 0 |X(t)| 2 dt = i k j l W i,k W j,l T 0 ψ i,k (t)ψ j,l (t)dt + W i,k Wj,l T 0 ψ i,k (t) ψj,l (t)dt + Wi,k W j,l T 0 ψi,k (t)ψ j,l (t)dt + Wi,k Wj,l T 0 ψi,k (t) ψj,l (t)dt (2.21) 
According to Eq. (2.21) and the 0th order wavelet coefficient

C 0 i,k;j,l = ψ i,k (t), ψj,k (t) T 0 =            T (n-m) 2 ni-1 q=mi e i2πq l-k n-m =      T n-m , for l = k, 0, for l ̸ = k, for i = j 0, otherwise
The relationship between the mean squared modulus of complex-valued function and its wavelet coefficient can be obtained as

T 0 E |X(t)| 2 dt = T 0 σ 2 X (t)dt = 2T n -m i k E |W i,k | 2 (2.22)
Note that the slow time-varying property of the variance σ 2 (t) on the time scale ∆T = T /(n -m). Thus, the Eq.

(2.22) can be recast as

k σ 2 X (t k ) ∆T = 2∆T k ωu 0 S X (ω, t k ) dω = 2∆T ∆Ω i k S X (ω i , t k ) = 2T n -m i k E |W i,k | 2
where ω u is the cut-off frequency of the double-sided PSD S X (ω, t). The frequency bandwidth of each scale, ∆Ω = (n -m)∆ω, is always chosen to be small enough to ensure adequate frequency resolution. Therefore, the relationship between the PSD and the mean square modulus of wavelet coefficient of a stochastic process is given as

S X (ω i , t k ) = T 2π(n -m) E W X i,k 2 (2.23)
where

t k ∈ [kT /N t , (k + 1)T /N t ) , ω i ∈ [m i ∆ω, n i ∆ω) , k = 0, 1, • • • , N t -1, i = 1, 2, • • • , N/(2N t ).
Chapter 3

Response analysis of Duffing oscillator via wavelet-Galerkin method

Introduction

Duffing oscillator is described by the nonlinear differential equation that can model the behavior of many practical problems arising in physics, engineering, and other fields [START_REF] Wu | A method for obtaining approximate analytic periods for a class of nonlinear oscillators[END_REF][START_REF] Maȋmistov | Propagation of an ultimately short electromagnetic pulse in a nonlinear medium described by the fifth-order duffing model[END_REF][START_REF] Elías-Zúñiga | Exact solution of the cubic-quintic duffing oscillator[END_REF]. It is a typical nonlinear vibration system, and its model is representative, although it is a nonlinear vibration model derived from a simple physical model. It has the following equation form.

z(t) + c ż(t) + kz(t) + h(z, ż) = f (t) (3.1)
where z represents the relative displacement, c = 2ω 0 ζ 0 is the damping coefficient, ζ 0 is the critical damping ratio,

ω 0 = 4π rad/s is the natural angular frequency, k = ω 2 0 is the stiffness coefficient; h(z, ż) = εω 2 0 z 3 + 2λω 0 ζ 0 ż3 is the nonlinear term, ε, λ control the strength of the nonlinearity; f (t) is the external excitation.
The mathematical models of many nonlinear vibration problems in engineering practice can be transformed into this equation to study, such as ship rocking, structural vibration, chemical bond breaking, etc [START_REF] Choi | Nonlinear site amplification as function of 30 m shear wave velocity[END_REF][START_REF] Neild | A review of time-frequency methods for structural vibration analysis[END_REF][START_REF] Lu | Nonlinear dissipative devices in structural vibration control: A review[END_REF]. In addition Duffing system is also very widely used in practical engineering, such as fault detection of the sharp touching rotor, weak periodic signal detection, periodic oscillation analysis of power system, simulation and control of periodic circuit system, etc [START_REF] Medici | Safety and health concerns for the users of a playground, built with reused rotor blades from a dismantled wind turbine[END_REF][START_REF] Su | Numerical investigation of rotor loads of a shipborne coaxial-rotor helicopter during a vertical landing based on moving overset mesh method[END_REF][START_REF] Yao | Weak periodic signal detection by sine-wiener-noise-induced resonance in the fitzhughnagumo neuron[END_REF][START_REF] Akilli | Automated system for weak periodic signal detection based on duffing oscillator[END_REF][START_REF] Lazer | Large-amplitude periodic oscillations in suspension bridges: some new connections with nonlinear analysis[END_REF][START_REF] Zhang | Analysis on the fluid flow in vortex tube with vortex periodical oscillation characteristics[END_REF][START_REF] Luo | An analytical prediction of periodic flows in the chua circuit system[END_REF].

In recent years, the study of Duffing oscillators has received considerable attention due to various engineering applications. So far, several methods have been proposed to deal with nonlinear Duffing oscillators. Some of these methods are the homotopy analysis method, harmonic balance method, homotopy perturbation method, frequency-amplitude formulation, energy balance method, max-min approach, coupled homotopy-variational approach, and modified variational approach, etc. In this work, the wavelet-Galerkin method is used to obtain the response information of the duffing oscillator.

The main result

In this section, the wavelet coefficient of the response of the duffing oscillator can be obtained. Consider the duffing oscillator shown in Eq. (3.1). According to the transformation of PGHW, Eq. (3.1) can be written in the following form:

i k W z i,k ψi,k (t) + W z i,k ψi,k (t) + c i k W z i,k ψi,k (t) + W z i,k ψi,k (t) (3.2) +k i k W z i,k ψ i,k (t) + W z i,k ψi,k (t) + h(z, ż) = f (t)
where W f i,k is a wavelet coefficient vector at the i-th scale and the k-th time translation with dimension N t × 1.

Multiplying both sides of Eq. (3.2) with ψj,l (t) and taking integrals with respect to t on time interval [0, T ) yields

i k T 0 W z i,k ψi,k (t) + W z i,k ψi,k (t) ψj,l (t)dt +c i k T 0 W z i,k ψi,k (t) + W z i,k ψi,k (t) ψj,l (t)dt (3.3) +k i k T 0 W z i,k ψ i,k (t) + W z i,k ψi,k (t) ψj,l (t)dt + T 0 h(z, ż) ψj,l (t)dt = T 0 f (t) ψj,l (t)dt
According to the orthogonality of PGHW and its complex conjugate, that is 

T 0 ψi,k (t) ψj,l (t)dt = 0 T 0 ψi,k (t) ψj,l (t)dt = 0, i ̸ = j or k ̸ = l T 0 ψi,k (t)
W z i,k A i,k;j,l + T 0 h(z, ż) ψj,l (t)dt = T n -m W f j,l (3.4) 
where A i,k;j,l = C 2 i,k;j,l + C 1 i,k;j,l c + C 0 i,k;j,l k is a linear combination of the connection coefficients depending on the wavelet functions and the parameter matrices of the system. W f j,k is a wavelet coefficient vector at the j-th scale and the l-th time translation with dimension N t × 1.

A j W j,z + H j = T n -m W j,f (3.5) 
where A j , W j,z , H j , W j,f are given as

A j =         A j 0,0 A j 1,0 • • • A j Nt-1,0 A j 0,1 A j 1,1 • • • A j Nt-1,1 . . . . . . . . . . . . A j 0,Nt-1 A j 1,Nt-1 • • • A j Nt-1,Nt-1         Nt×Nt , W j,z =         W j,z 0 W jz 1 . . . W j,z Nt-1         Nt×1 , H j = T 0         h(z, ż) ψj,0 (t) h(z, ż) ψj,1 (t) . . . h(z, ż) ψj,Nt-1 (t)         Nt×1 dt, W j,f =         W j,f 0 W j,f 1 . . . W j,f Nt-1         Nt×1 .
Then, the Newton and quasi-Newton methods shown in Appendix 3 are used to solve Eq. (3.5). The DFP algorithm is selected to approximate the Jacobian matrix, and its formula is shown in Eq. (6.8). By setting an appropriate threshold, a wavelet coefficient α meeting the required accuracy can be obtained. Here, the convergence of the wavelet coefficient α is measured by the L2-norm. Then the relative error of the wavelet coefficients α (n+1) and α (n) is defined as

error(n + 1) = | α (n+1) -α (n) | T × | α (n+1) -α (n) | (3.6)
When error(n + 1) < 10 -p , the wavelet coefficient α meeting the required accuracy is obtained. Here p is a positive real number. And the more accurate result can be obtained when p becomes larger.

Numerical example

In this section, the Duffing system excited by the Kani-Tajimi seismic spectrum is studied. And the numerical simulation is based on the computer with Intel(R) Core(TM) i5-10210U. Consider the duffing oscillator shown in Eq. (3.1). Set

ζ 0 = 0.1, ω 0 = 4π rad/s, ε = 5, λ = 2.
And the initial conditions are z(0) = 0, ż(0) = 0.

The excitation is a non-stationary stochastic process f (t) with uniform modulation. The EPSD of the non-stationary stochastic process can be written as a uniformly modulated form

S f f (ω, t) = g 2 (t)S ω (ω) (3.7)
where g(t) = η[exp(-0.2t) -exp(-0.4t)] is the modulating function; η = 4 is a normalization parameter so that g max (t) = 1; S ω (ω) is the time-independent two-sided PSD of the stationary stochastic process ω(t) represented by the Kani-Tajimi seismic spectrum, that is It should be noted that the selection of the value of n -m is very important. First, the value of n -m must ensure that the number of wavelet scales N Ω = N/2(n -m) is an integer. And the larger the scale interval n -m is chosen, the more accurate the result will be, but the more time it will take. Thus, n -m = 32 and N = 1024 were chosen by considering both the accuracy of the result and the time required for calculation. In the following examples, these values are set for similar reasons.

S K-T ω (ω) = S 0 1 + [2ζ s (ω/ω s )] 2 1 -(ω/ω s ) 2 2 + [2ζ s (ω/ω s )]
Then, the following spectral representation method is used to generate samples [START_REF] Liang | Simulation of nonstationary stochastic processes by spectral representation[END_REF]:

f s (t) = √ 2 n k=1 [2S(ω, t)∆ω] 1/2 cos (k∆ωt + φ k ) (3.8)
where φ k represents a uniformly distributed stochastic variable in interval [0, 2π]. f s (t) is a sample of the non-stationary stochastic process f (t). And combined with Eq. (3.7), the typical sample f s (t) can be obtained in Fig. 3.2. In order to observe the iteration process and accuracy, the relative error of the wavelet coefficients α (n+1) and α (n) It can be seen from Fig. 3.4 that the relative error is close to 0, which has reached an acceptable convergence range.

They can reach the expected threshold error(n + 1) < 5 × 10 -4 when the sixth and fifth iterations are performed respectively. In order to observe and compare the results more clearly, the calculation time required by these two methods is listed in Table 3.1.

The number of iterations The time required Quasi-Newton method 6 123s Newton Method 5 604s

Table 3.1: The comparison of Newton and quasi-Newton methods It can be seen from Table 3.1 that the total time required for the quasi-Newton method is one-fifth that of the Newton method. It consumes less but it is more efficient. Thus, the quasi-Newton method is better than the Newton method.

Stochastic excitation

Let N sample = 100 and the values of other variables are the same as described in Subsection 3.3.1. By using the Newton and quasi-Newton methods to solve Eq. (3.5) respectively and according to the formula for calculating the EPSD based on solved wavelet coefficients, the surface and contour of the response EPSD are obtained and shown in Note that the variance of the response has the following relationship with PSD:

σ 2 zz (t) = ∞ -∞ 2S zz (ω, t)dω (3.9)
Then, the variance of the response can be obtained and shown in Fig. 3.8. Note that the setting of the value of N sample is important. Because it has to be large enough to effectively model the stochastic process. However, the computation time and memory required will definitely increase as its value increases. N sample is set to 100 in the case where both conditions are considered as much as possible. The differences in the variance of the typical moments obtained by using the two methods are calculated and shown in Fig. 3.9 (In the case where the quasi-Newton method is used to solve the nonlinear algebraic equations). The differences between the typical moments 2.56s, 5.12s, 7.68s are shown because the variances of these moments have large differences, which can be seen in Fig. 3.8. And it can be seen from Fig. 3.9 that the differences start to smoothly approach 0 when N sample is between 60 and 100. Therefore, N sample = 100 is suitable for this work. The value of N sample can be increased if more accurate results are needed, but it will take more computation time and memory. The average number of iterations and total calculation time are shown in Table 3.2. It can be seen from Table 3.2 that the total time required by the quasi-Newton method is one-fourth that of the Newton method. And as N sample increases, the efficiency gap between these two methods will become larger. Therefore, it can be concluded that the quasi-Newton method is better than the Newton method.

The average number of iterations The total time Quasi-Newton method 5.02 12982s Newton Method

51843s

Table 3.2: The comparison of Newton and quasi-Newton methods

Chapter 4

Wavelet-Galekin method for MDOF time-invariant systems In actual engineering, some facilities are often subjected to extreme loads, such as earthquakes, strong winds and waves, which are stochastic and unstable. Under these non-stationary stochastic loads, structural systems usually exhibit nonlinear behavior. But it is a challenge in the field of random vibration to study the nonlinear random response behavior of such complex structures under non-stationary excitation. Random vibration theory was proposed in the 1950s to solve the problems of aircraft wing vibration, aircraft fatigue damage, and the reliability of launch vehicles in aerospace [START_REF] Cooley | An algorithm for the machine calculation of complex fourier series[END_REF]. The random vibration analysis methods of nonlinear systems mainly include Fokker-Planck-Kolmogorov (FPK) equation method [START_REF] Naess | Stationary and non-stationary random vibration of oscillators with bilinear hysteresis[END_REF], random average method [START_REF] Huang | Stochastic averaging of quasi-integrable hamiltonian systems under bounded noise excitations[END_REF], statistical moment method [START_REF] Caughey | The behavior of linear systems with random parametric excitation[END_REF], random perturbation method [START_REF] Cveticanin | The homotopy-perturbation method applied for solving complex-valued differential equations with strong cubic nonlinearity[END_REF], equivalent linearization method [START_REF] Fujimura | Tail-equivalent linearization method for nonlinear random vibration[END_REF], equivalent nonlinear system method [START_REF] Lutes | Approximate technique for treating random vibration of hysteretic systems[END_REF] and probability density evolution method [START_REF] Li | Stochastic dynamics of structures[END_REF]. But wavelet analysis theory can analyze these random vibration behaviors more efficiently in the time-frequency domain.

The wavelet analysis is a mathematical method for seismic signal analysis proposed by Grossman and Morlet in the 1980s [START_REF] Grossmann | Decomposition of hardy functions into square integrable wavelets of constant shape[END_REF]. In 1985, Meyer proved the existence of wavelet function and proposed the Mallat algorithm based on the idea of multi-resolution analysis [START_REF] Mitiche | Image segmentation by conventional and information-integrating techniques: a synopsis[END_REF]. The Mallat algorithm plays a very important role in wavelet analysis, just like the fast Fourier transform (FFT) method in the classic Fourier transform. The emergence of wavelet analysis is regarded as the breakthrough development of Fourier analysis. After that, the wavelet analysis theory has attracted the attention of many researchers and has been widely used in computer vision, pattern recognition, signal processing, differential equations, nonlinear science and so on [START_REF] Alolfe | Computer-aided diagnostic system based on wavelet analysis for microcalcification detection in digital mammograms[END_REF][START_REF] Amin | Wavelet-based computationally-efficient computer-aided characterization of liver steatosis using conventional b-mode ultrasound images[END_REF][START_REF] Kaur | Eeg signal denoising using hybrid approach of variational mode decomposition and wavelets for depression[END_REF][START_REF] Rioul | Wavelets and signal processing[END_REF][START_REF] Nasab | Wavelet analysis method for solving linear and nonlinear singular boundary value problems[END_REF][START_REF] Kazemi Nasab | Lie group analysis and wavelet analysis method for solution of a stefan problem[END_REF].

Recently, some developed wavelets have been applied to solve differential and integral equations, such as Shannon wavelet [START_REF] Cattani | Shannon wavelet analysis[END_REF], harmonic wavelet (HW) [START_REF] Newland | Harmonic wavelet analysis[END_REF] and generalized harmonic wavelet (GHW) [START_REF] Newland | Harmonic and musical wavelets[END_REF]. Based on the wavelet theory, the transformation of HW was proposed by Newland in 1993. The HW is a signal analysis tool that combines the advantages of both short-time Fourier transform and continuous wavelet transform. A method based on the transformation of HW was proposed to evaluate the dispersion phase and group velocities [START_REF] Park | Evaluation of the dispersive phase and group velocities using harmonic wavelet transform[END_REF]. The periodic signal with localized random or high-frequency noise was analyzed by using HW [START_REF] Cattani | Harmonic wavelet approximation of random, fractal and high frequency signals[END_REF]. Then, Newland proposed music wavelets, also called GHW, to improve the inflexibility of HW. A GHW based on the statistical linearization technique was developed for determining the response EPSD of nonlinear time-varying oscillators by Kong [START_REF] Kong | Nonlinear system response evolutionary power spectral density determination via a harmonic wavelets based galerkin technique[END_REF]. Wang proposed a method to estimate the cross EPSD of spatially variable seismic ground motions by using GHW [START_REF] Wang | Cross evolutionary power spectra estimation of spatially variable seismic ground motions via harmonic wavelets[END_REF]. HW and GHW are orthogonal in the time domain t ∈ (-∞, ∞), but they are not orthogonal in a finite interval. It is inconvenient to analyze the vibration signal with a limited duration in the engineering field. Then, Kong proposed the PGHW [START_REF] Kong | Wavelet-galerkin approach for power spectrum determination of nonlinear oscillators[END_REF] and the Newton method was used to study the SDOF system. The Newton method has to calculate a complex Jacobian matrix, which takes a lot of time. Therefore, the quasi-Newton and PGHW methods are considered to solve more complicated MDOF nonlinear structural systems in this work.

The PGHW method is used to obtain the displacement and EPSD of the response of MDOF nonlinear structural systems.

By using the wavelet-Galerkin and quasi-Newton methods, the wavelet coefficient of the response can be obtained in Section 4.1.2. The response of a 4-DOF nonlinear structural system excited by the Clough-Penzien seismic spectrum is analyzed in Section 4.1.3.

The wavelet-Galerkin solution for the MDOF system

In this section, the wavelet coefficient of the response of the MDOF structure system can be obtained. First, the wavelet-Galerkin method is used for the system, and a set of nonlinear algebraic equations can be obtained. Then, the quasi-Newton method is introduced to solve these equations, it does not have to calculate the complex Jacobian matrix like the Newton method. By using these wavelet coefficients, the displacement and EPSD of the response can be obtained in the time-frequency domain.

The formulation of wavelet-Galerkin for the MDOF system

The chain-like MDOF structure is a typical simplification used to analyze multi-story buildings. Each inter-story element can be given a different type of structural nonlinearity. The chain-like MDOF system can be seen as a cascaded form of multiple SDOF systems, that is, it can be decomposed into a series of SDOF elements. Many practical engineering systems are governed by motion equations with the characteristic of a chain-like system, such as transmission towers, offshore platforms, wind turbines, aircraft wings and so on [START_REF] Smyth | Development of adaptive modeling techniques for non-linear hysteretic systems[END_REF], [START_REF] Hernandez-Garcia | An experimental investigation of change detection in uncertain chain-like systems[END_REF], [START_REF] Marian | Optimal design of a novel tuned mass-damper-inerter (tmdi) passive vibration control configuration for stochastically support-excited structural systems[END_REF], [START_REF] Zhan | A local damage detection approach based on restoring force method[END_REF]. 

𝑚𝑚 1 𝑚𝑚 2 𝑚𝑚 n 𝑑𝑑 -1 𝑚𝑚 n 𝑑𝑑 …… 𝑚𝑚 1 𝑓𝑓(𝑡𝑡) 𝑚𝑚 2 𝑓𝑓(𝑡𝑡) 𝑚𝑚 n 𝑑𝑑 -1 𝑓𝑓(𝑡𝑡) 𝑚𝑚 n 𝑑𝑑 𝑓𝑓(𝑡𝑡) 𝑐𝑐 1 𝑐𝑐 2 𝑐𝑐 n 𝑑𝑑 -1 𝑐𝑐 n 𝑑𝑑
Mz(t) + C ż(t) + Kz(t) + h(z, ż) = F (t) (4.1) 
where z(t) = [z 1 ; z 2 ; ...; z n d ] is the relative displacement vector between adjacent floors with dimension n d × 1; h(z, ż)

is an arbitrary non-linear term depending on the instantaneous values of the displacement and the velocity vectors;

F (t) = [m 1 ; m 2 ; . . . ; m nd ] × f (t)
represents an n d dimensional non-stationary stochastic process with zero-mean, and S f f (ω, t) is the PSD of the stochastic process; M, C and K represent the mass, damping and stiffness matrices of the chain-like MDOF structure system, respectively.

M =         m 1 0 • • • 0 m 2 m 2 • • • 0 . . . . . . . . . . . . m n d m n d • • • m n d         , C =            c 1 -c 2 0 • • • 0 0 c 2 -c 3 • • • 0 . . . . . . . . . . . . . . . 0 0 • • • c n d -1 -c n d 0 0 • • • 0 c n d            , K =            k 1 -k 2 0 • • • 0 0 k 2 -k 3 • • • 0 . . . . . . . . . . . . . . . 0 0 • • • k n d -1 -k n d 0 0 • • • 0 k n d            . (4.2)
The cubic nonlinearity is

h(z, ż) =         ε 1 k 1 z 3 1 ε 2 k 2 z 3 2 . . . ε n d k n d z 3 n d         +         λ 1 c 1 ż3 1 λ 2 c 2 ż3 2 . . . λ n d c n d ż3 n d         (4.3)
where ε 1 , ε 2 , . . . , ε n d and λ 1 , λ 2 , . . . , λ n d are the parameters that control the strength of the stiffness and the damping of the considered system, respectively; k 1 , k 2 , . . . , k n d and c 1 , c 2 , . . . , c n d are the coefficients of the mass, damping and stiffness matrices in (4.2).

According to the transformation of PGHW (2.6), Eq. (4.1) can be written in the following form:

M i k W z i,k ψi,k (t) + W z i,k ψi,k (t) + C i k W z i,k ψi,k (t) + W z i,k ψi,k (t) (4.4) +K i k W z i,k ψ i,k (t) + W z i,k ψi,k (t) + h(z, ż) = F (t)
where W z i,k is a wavelet coefficient vector at the i-th scale and the k-th time translation with dimension (n d N t ) × 1.

Multiplying both sides of Eq. (4.4) with ψj,l (t) and taking integrals with respect to t on time interval [0, T ) yields

M i k T 0 W z i,k ψi,k (t) + W z i,k ψi,k (t) ψj,l (t)dt (4.5) 
+C i k T 0 W z i,k ψi,k (t) + W z i,k ψi,k (t) ψj,l (t)dt +K i k T 0 W z i,k ψ i,k (t) + W z i,k ψi,k (t) ψj,l (t)dt + T 0 h(z, ż) ψj,l (t)dt = T 0 F (t) ψj,l (t)dt
According to the orthogonality of PGHW and its complex conjugate, that is 

T 0 ψi,k (t) ψj,l (t)dt = 0 T 0 ψi,k (t) ψj,l (t)dt = 0 T 0 ψi,k (t)
W z i,k A i,k;j,l + T 0 h(z, ż) ψj,l (t)dt = T n -m W F j,l (4.6) 
where A i,k;j,l = C 2 i,k;j,l M + C 1 i,k;j,l C + C 0 i,k;j,l K is a linear combination of the connection coefficients depending on the wavelet functions and the parameter matrices of the system. W F j,k is a wavelet coefficient vector at the j-th scale and the l-th time translation with dimension (n d N t ) × 1.

Note that the connection coefficient is equal to zero when different wavelet scales are involved. So, only the case of i = j in Eq. (4.6) is meaningful and can be used to solve this equation. And it is readily seen that Eq. (4.6) can be recast into a matrix form:

A j W j,z + H j = T n -m W j,F (4.7) 
where A j , W j,z , H j , W j,F are given as

A j =         A j 0,0 A j 1,0 • • • A j Nt-1,0 A j 0,1 A j 1,1 • • • A j Nt-1,1 . . . . . . . . . . . . A j 0,Nt-1 A j 1,Nt-1 • • • A j Nt-1,Nt-1         (n d Nt)×(n d Nt) , W j,z =         W j,z 0 W jz 1 . . . W j,z Nt-1         (n d Nt)×1
,

H j = T 0         h(z, ż) ψj,0 (t) h(z, ż) ψj,1 (t) . . . h(z, ż) ψj,Nt-1 (t)         (n d Nt)×1 dt, W j,F =         W j,F 0 W j,F 1 . . . W j,F Nt-1         (n d Nt)×1
.

Numerical solution based on the quasi-Newton Method

It is well known that the existence of analytical solutions can improve computational efficiency for solving equations.

For the linear case (H j = 0), the wavelet coefficient of the response can be obtained by solving Eq. (4.7) directly.

Then the response z(t) can be obtained by performing the reconstruction of PGHW. But for the nonlinear case, it is difficult to obtain analytical solutions. Generally, its numerical solution can be obtained by using some iterative methods. Therefore, Newton and quasi-Newton Methods are chosen to solve Eq. (4.7).

The Newton method requires an iterative solution of the following equation

F α (n) + ∆F α (n) α (n+1) -α (n) = 0 (4.8) 
where

α = W z 1,0 , W z 1,1 , • • • , W z 1,n d Nt-1 , W z 2,0 , W z 2,1 , • • • , W z 2,n d Nt-1 , ..., W z NΩ,0 , W z NΩ,1 , • • • , W z NΩ,n d Nt-1 T
is the unknown wavelet coefficient of the system response; the subscript (n) denote the n-th iteration of the approximate solution; And F(α), ∆F(α) are given by

F j l (α) = F((j -1)(n -m) + (l + 1)) = k W j,z k A j k;l + T 0 h(z, ż) ψj,l (t)dt - T n -m W j,F l = 0 (4.9) (j = 1, 2, • • • , N Ω ; k, l = 0, 1, • • • , N t -1; ) and [∆F(α)] = ∂F(α) ∂α = [∆F(α)] L + [∆F(α)] N L (4.10)
It is easy to see that F(α) is a vector with dimension (n d N/2) × 1 and ∆F(α) is a Jacobian matrix with dimension

(n d N/2) × (n d N/2
) . The Jacobian matrix ∆F(α) can be divided into linear and nonlinear parts, that is, [∆F(α)] L and [∆F(α)] N L . Clearly, these two parts can be represented as

[∆F(α)] L =         A 1 0 • • • 0 0 A 2 • • • 0 . . . . . . . . . . . . 0 0 0 A NΩ         , [∆F(α)] N L ((j -1)(n -m) + (l + 1), (i -1)(n -m) + (k + 1)) = T 0 ∂h(z, ż) ∂W z i,k ψj,l (t)dt = T 0 ∂h ∂z ∂z ∂W z i,k + ∂h ∂ ż ∂ ż ∂W z i,k ψj,l (t)dt = T 0 ∂h ∂z ψ i,k (t) + ∂h ∂ ż ψi,k (t) ψj,l (t)dt.
By setting the threshold condition, the wavelet coefficient α satisfying the condition can be obtained when the (n + 1)th iteration is performed. Then, the response z(t) is obtained by performing the reconstruction of PGHW. This is the calculation process of the Newton method.

In the iterative process of the Newton method, the Jacobian matrix ∆F(α) and its inverse matrix need to be calculated in every step. The calculation is very complicated. And the calculation will be more complicated when the considered system is more complex. But, the quasi-Newton method simplifies the calculation process by approximating the Jacobian matrix. The most commonly used algorithms are the algorithms of Rank-1 iB, Rank-2 BFS, DFP, and BFGS.

The DFP algorithm is selected to approximate the Jacobian matrix, and its formula is shown in Eq. (6.8).

The flowchart of this iterative process is shown in Fig. 4.2. Here, some notes about the iterative process of the quasi-Newton method are given.

1. It is the linear case when H j = 0. The wavelet coefficient α (0) can be obtained by directly solving Eq. (4.7).

2. When the wavelet coefficient α (0) is obtained, the new z(t), ż(t), F(α) and ∆F(α) should be obtained for the next iteration. In the iterative process, the Jacobian matrix ∆F(α) only needs to be calculated once. Then, the DFP algorithm is used to estimate the Jacobian matrix ∆F(α). It reduces the complexity and improves the efficiency of the calculation.

3. By setting an appropriate threshold, a wavelet coefficient α meeting the required accuracy can be obtained.

Here, the convergence of the wavelet coefficient α is measured by the L2-norm. Then the relative error of the wavelet coefficients α (n+1) and α (n) is defined in Eq. (3.6)

Consider the linear result of Eq. (4.7) as the value of 𝛼𝛼 (0) .

Use fast wavelet transform to reconstruct the 𝐳𝐳 0 𝑡𝑡 and ż𝐳 0 𝑡𝑡 Calculate the 𝐅𝐅(𝛼𝛼 0 ) and the Jacobian matrix Δ𝐅𝐅(𝛼𝛼 0 ) according to Eq. (4.9) and Eq. (4.10)

Obtain the 𝜶𝜶 𝑛𝑛+1 according to Eq. 

Mz(t) + C ż(t) + Kz(t) + h(z, ż) = F (t)
The initial conditions are considered as z(0) = 0, ż(0) = 0. The cubic nonlinearity is considered as in Eq. (4.3), and The Kanai-Tajimi seismic model is commonly used in seismic engineering [START_REF] Kanai | An empirical formula for the spectrum of strong earthquake motions[END_REF]. But, it inappropriately exaggerates the low-frequency ground motion energy, and may give unreasonable results for the seismic response analysis of long-period structures. The Clough-Penzien model filters out excitation at very low frequencies, which greatly improves this shortcoming [START_REF] Lin | Response of base-isolated buildings to random excitations described by the clough-penzien spectral model[END_REF]. Thus, the Clough-Penzien seismic model in [START_REF] Huang | Earthquake responses for non-proportion damping system based on clough-penzien three-step non-stationary seismic random model[END_REF] is considered here.

ε 1 , ε 2 , . . . , ε n d = 4,
S C-P ω (ω) = ω 4 g + 4ξ 2 g ω 2 g ω 2 ω 2 g -ω 2 2 + 4ξ 2 g ω 2 g ω 2 • ω 4 ω 2 f -ω 2 2 + 4ξ 2 f ω 2 f ω 2 S 0
where ω g = 13.96 rad/s, ξ g = 0. when the fourth iteration is performed. Therefore, it can be concluded that the result of this iteration process has reached an acceptable range of convergence. According to Eq. (3.9), the variance of the response can be obtained and shown in Fig. 4.13. There is a small gap at the peak of all comparison results, but it is acceptable. Therefore, the effectiveness of the method proposed in this work is verified. The dynamic analysis of the coupled system of oscillators has always attracted the attention of many researchers. The dynamics of a linear structure weakly coupled to a local nonlinear attachment possessing essential stiffness non-linearity was studied [START_REF] Vakakis | Energy pumping in nonlinear mechanical oscillators: part ii:resonance capture[END_REF], [START_REF] Vakakis | Dynamics of linear discrete systems connected to local, essentially non-linear attachments[END_REF]. And interesting energy exchange phenomena can occur in this type of coupled oscillator. And it was shown that the irreversible energy transfer is caused by resonance capture of the linear system and the nonlinear attachment. The nonlinear attachment essentially acts as NES when it acts as a passive recipient of vibration energy from the linear oscillator. The passive energy pumping in the system of damped coupled oscillators was studied and this single-degree-of-freedom (SDOF) NES is capable of absorbing significant portions of the energies generated by transient, broadband external excitations [START_REF] Vakakis | Isolated resonance captures and resonance capture cascades leading to single-or multi-mode passive energy pumping in damped coupled oscillators[END_REF]. The alternative mechanisms of targeted energy transfer were studied by Maniadis [START_REF] Maniadis | Classical and quantum targeted energy transfer between nonlinear oscillators[END_REF], and it was found that a quantum wave packet on the donor at the classical energy for targeted transfer was transferred to the acceptor. And then an alternative design based on MDOF essentially nonlinear attachments that enable simultaneous energy absorption from the linear system was proposed [START_REF] Tsakirtzis | Multi-frequency nonlinear energy transfer from linear oscillators to mdof essentially nonlinear attachments[END_REF]. In order to study the dynamics of the coupled system of oscillators, the periodic orbits of the undamped and unforced system using asymptotic and reduction techniques were studied numerically and analytically [START_REF] Tsakirtzis | Complex dynamics and targeted energy transfer in linear oscillators coupled to multi-degree-of-freedom essentially nonlinear attachments[END_REF].

The typical cubic nonlinear terms and sinusoidal nonlinear terms are the common forms to express the nonlinearity of the system. The asymptotic perturbation method was used to investigate nonlinear oscillations and chaotic dynamics in a rotor-active magnetic bearings (AMB) system with quadratic and cubic nonlinearities and parametric excitation [START_REF] Zhang | Periodic and chaotic motions of a rotor-active magnetic bearing with quadratic and cubic terms and time-varying stiffness[END_REF].

The dynamic behaviors of 2-degree-of-freedom Duffing system with cubic coupled terms were studied [START_REF] Wei | Resonance and bifurcation in a nonlinear duffing system with cubic coupled terms[END_REF]. The influence of nonlinear damping which is a function of both the velocity and displacement was investigated for an SDOF isolator, and it was theoretically shown that cubic nonlinear damping can produce much better isolation performance [START_REF] Xiao | The transmissibility of vibration isolators with cubic nonlinear damping under both force and base excitations[END_REF]. The fundamental properties of a novel four-dimensional continuous-time autonomous system with a cubic nonlinear term were investigated [START_REF] Pham | A no-equilibrium hyperchaotic system with a cubic nonlinear term[END_REF]. A six-dimensional continuous real autonomous chaotic system with complex variables and cubic nonlinear terms was proposed and the characteristics of this system were studied [START_REF] Mahmoud | Dynamical behaviors, control and synchronization of a new chaotic model with complex variables and cubic nonlinear terms[END_REF]. An iterative procedure for calculating the steady-state output waveform of nearly sinusoidal nonlinear feedback oscillators was proposed [START_REF] Buonomo | Asymptotic formulas in nearly sinusoidal nonlinear oscillators[END_REF]. A disturbance estimation approach is presented for a class of multiple-input-multiple-output (MIMO) nonlinear robotic systems subject to sinusoidal disturbances with unknown frequencies [START_REF] Wen | Estimation of unknown sinusoidal disturbances using two-step nonlinear observer[END_REF]. The vibration of a doubly fixed beam under a sinusoidal flow using a nonlinear attachment was studied [START_REF] Mamaghani | Irreversible passive energy transfer of an immersed beam subjected to a sinusoidal flow via local nonlinear attachment[END_REF].

Wavelet analysis is an important method in signal and image processing. Wavelets can efficiently and accurately represent general signals. Then, there are various techniques based on wavelets to obtain numerical solutions of differential equations [START_REF] Cha'o-Kuang | The solution of the blasius equation by the differential transformation method[END_REF], [START_REF] Cortell | Numerical solutions of the classical blasius flat-plate problem[END_REF], [START_REF] Abbasbandy | A numerical solution of blasius equation by adomian's decomposition method and comparison with homotopy perturbation method[END_REF], [START_REF] Ahmad | Numerical solution of blasius equation through neural networks algorithm[END_REF], [START_REF] Asaithambi | Numerical solution of the blasius equation with crocco-wang transformation[END_REF], [START_REF] Aminikhah | Numerical solution of the blasius viscous flow problem by quartic b-spline method[END_REF]. Morlet proposed the concept of wavelet analysis to automatically reach the best trade-off between time and frequency resolution [START_REF] Morlet | Wave propagation and sampling theory-part 1: Complex signal and scattering in multilayered media[END_REF]. Beylkin firstly carried out the study of numerical calculation based on Daubechies wavelet [START_REF] Beylkin | On the representation of operators in bases of compactly supported wavelets[END_REF]. Then, some developed wavelets were applied to solve differential and integral equations, such as harmonic wavelet (HW) [START_REF] Newland | Harmonic wavelet analysis[END_REF], generalized harmonic wavelet (GHW) [START_REF] Newland | Harmonic and musical wavelets[END_REF],

and PGHW [START_REF] Kong | Wavelet-galerkin approach for power spectrum determination of nonlinear oscillators[END_REF]. The wavelet-Galerkin method was proposed for numerically solving second-order elliptic partial differential equations (PDEs) on general domains using the Wavelet Element Method [START_REF] Berrone | Towards a realization of a wavelet galerkin method on non-trivial domains[END_REF]. The discrete wavelet Petrov-Galerkin method for integral equations of the second kind with weakly singular kernels was developed and it is suitable for solving boundary integral equations [START_REF] Chen | Discrete wavelet petrov-galerkin methods[END_REF].

Thus, the system of linear oscillators coupled to MDOF nonlinear attachment with combined seismic excitation is studied in this work. PGHW and wavelet-Galerkin methods are used to solve the motion equations of this system, and then a set of nonlinear algebraic equations can be obtained. The quasi-Newton method is selected to solve these equations and four algorithms are used to estimate the Jacobian matrix. And the information of these iterative processes is shown and compared in order to find the optimal algorithm to solve this problem. Then, the displacement and EPSD of response are obtained.

Mathematical background

The system of 2-DOF linear primary oscillator connected through a weak linear stiffness ε to a 3-DOF nonlinear attachment possessing essential stiffness nonlinearities is considered here. The coefficients of the primary system are normalized to unity. The combined periodic and stochastic excitation f p (t) + f s (t) is applied to the primary system and not directly to the nonlinear attachment. The motion equations of the system are [153]

                     ü1 + ω 2 0 + a u 1 -au 2 + ελ u1 = f p (t) + f s (t) ü2 + ω 2 0 + a + ε u 2 -au 1 -εv 1 + ελ u2 = f p (t) + f s (t) µv 1 + h 1 (v 1 , v 2 , v 3 ) + ε (v 1 -u 2 ) + ελ ( v1 -v2 ) = 0 µv 2 + h 2 (v 1 , v 2 , v 3 ) + ελ (2 v2 -v1 -v3 ) = 0 µv 3 + h 3 (v 1 , v 2 , v 3 ) + ελ ( v3 -v2 ) = 0 (4.11)
where ε is a weak linear stiffness and it is a small parameter satisfies 0 < ε ≪ 1; each mass of the nonlinear attachment is equal to µ; linear and nonlinear subsystems have linear viscous dampers with small constants ελ;

h 1 (v 1 , v 2 , v 3 ), h 2 (v 1 , v 2 , v 3 ), h 3 (v 1 , v 2 , v 3
) are the nonlinear terms; f p (t) = f p1 sin (f p2 ωt) is a periodic excitation, and f s (t) is an unstable non-Gaussian stochastic excitation;

The motion equations Eq. (4.11) can be expressed in the following matrix form

Mz(t) + C ż(t) + Kz(t) + h(v 1 , v 2 , v 3 ) = F (t) (4.12)
where z(t) = [u 1 ; u 2 ; v 1 ; v 2 ; v 3 ] is the displacement vector; M, C and K represent the mass, damping and stiffness matrices of the system, respectively.

M =            1 0 0 0 0 0 1 0 0 0 0 0 µ 0 0 0 0 0 µ 0 0 0 0 0 µ            , C =            ελ 0 0 0 0 0 ελ 0 0 0 0 0 ελ -ελ 0 0 0 -ελ 2ελ -ελ 0 0 0 -ελ ελ            , K =            ω 2 0 + a -a 0 0 0 -a ω 2 0 + a + ε -ε 0 0 0 -ε ε 0 0 0 0 0 0 0 0 0 0 0 0            , (4.13) 
h(v 1 , v 2 , v 3 ) =            0 0 h 1 (v 1 , v 2 , v 3 ) h 2 (v 1 , v 2 , v 3 ) h 3 (v 1 , v 2 , v 3 )            , F (t) =            f p (t) + f s (t) f p (t) + f s (t) 0 0 0           
The system decomposes into two uncoupled oscillators. One is a 2-DOF linear primary system with natural frequencies ω 1 = ω 2 0 + 2a and ω 2 = ω 0 < ω 1 , corresponding to out-of-phase and in-phase linear modes, respectively; and the other is a 3-DOF nonlinear oscillator with a rigid-body mode and two flexible nonlinear normal modes [START_REF] Tsakirtzis | Multi-frequency nonlinear energy transfer from linear oscillators to mdof essentially nonlinear attachments[END_REF].

The spectrum comprises some of the predominant features of seismic shaking is considered [START_REF] Spanos | Harmonic wavelets based statistical linearization for response evolutionary power spectrum determination[END_REF] 

S(ω, t) = S 0 ω 5π 2 e -s1t t 2 e -( ω 5π ) 2 t , t ≥ 0, -∞ < ω < ∞ (4.14)
One sample of the stochastic excitation f s (t) is produced by using the spectral representation method of a stochastic process [START_REF] Liang | Simulation of nonstationary stochastic processes by spectral representation[END_REF] 

fs (t) = √ 2 n k=1 [2S(ω, t)∆ω] 1/2 cos (k∆ωt + φ k ) (4.15)

Main results

The wavelet-Galerkin method is used for the motion equations Eq. (4.12) so that a set of nonlinear algebraic equations can be obtained. According to the transformation of PGHW Eq. (2.5), the motion equations Eq. (4.12) can be written in the following form:

M i k W z i,k ψi,k (t) + W z i,k ψi,k (t) + C i k W z i,k ψi,k (t) + W z i,k ψi,k (t) (4.16) +K i k W z i,k ψ i,k (t) + W z i,k ψi,k (t) + h(v 1 , v 2 , v 3 ) = F (t)
where W z i,k is a wavelet coefficient vector at the i-th scale and the k-th time translation with dimension N t × 1.

Multiplying both sides of Eq. (4.16) with ψj,l (t) and taking integrals with respect to t on time interval [0, T ) yields

M i k T 0 W z i,k ψi,k (t) + W z i,k ψi,k (t) ψj,l (t)dt (4.17) +C i k T 0 W z i,k ψi,k (t) + W z i,k ψi,k (t) ψj,l (t)dt +K i k T 0 W z i,k ψ i,k (t) + W z i,k ψi,k (t) ψj,l (t)dt + T 0 h(v 1 , v 2 , v 3 ) ψj,l (t)dt = T 0 F (t) ψj,l (t)dt
According to the orthogonality of PGHW and its complex conjugate, that is

T 0 ψi,k (t) ψj,l (t)dt = 0 T 0 ψi,k (t) ψj,l (t)dt = 0, i ̸ = j or k ̸ = l T 0 ψi,k (t) ψj,l (t)dt = 0
the Eq. ( 4.17) can be simplified to

M i k T 0 W z i,k ψi,k (t) ψj,l (t)dt (4.18) +C i k T 0 W z i,k ψi,k (t) ψj,l (t)dt +K i k T 0 W z i,k ψ i,k (t) ψj,l (t)dt + T 0 h(v 1 , v 2 , v 3 ) ψj,l (t)dt = T 0 F (t) ψj,l (t)dt
The cumulative parts in Eq. (4.18) are defined as the connection coefficients C 2 i,k;j,l , C 1 i,k;j,l , and C 0 i,k;j,l , which are shown in Eqs. (2.14)- (2.16). They are transformed into a simpler computational form according to the orthogonal property of the PGHW. The Eq. (4.18) can be simplified into the following form.

i k

W z i,k A i,k;j,l + T 0 h(v 1 , v 2 , v 3 ) ψj,l (t)dt = T n -m W F j,l (4.19) 
where A i,k;j,l = C 2 i,k;j,l M + C 1 i,k;j,l C + C 0 i,k;j,l K is a linear combination of the connection coefficients depending on the wavelet functions and the parameter matrices of the system. W F j,l is a wavelet coefficient vector at the j-th scale and the l-th time translation with dimension N t × 1.

Note that the connection coefficient is equal to zero when different wavelet scales are involved. So, only the case of i = j in Eq. (4. [START_REF] Socha | Linearization methods for stochastic dynamic systems[END_REF]) is meaningful and can be used to get the solution.

Thus, a series of nonlinear equations can be derived from the motion equations Eq. (4.12) according to the wavelet-Galerkin method. The quasi-Newton method is introduced to solve these equations. By setting an appropriate threshold, a wavelet coefficient α meeting the required accuracy can be obtained as the following form

α = W z 1,0 , W z 1,1 , • • • , W z 1,n d Nt-1 , W z 2,0 , W z 2,1 , • • • , W z 2,n d Nt-1 , ..., W z NΩ,0 , W z NΩ,1 , • • • , W z NΩ,n d Nt-1 T
Here, the convergence of the wavelet coefficient α is measured by the L2-norm. Then the relative error of the wavelet coefficients α (n+1) and α (n) is defined in Eq. (3.6). More details of this iterative algorithm are shown in [START_REF] Han | Response epsd of chain-like mdof nonlinear structural systems via wavelet-galerkin method[END_REF].

Then, the response displacement can be obtained according to the reconstruction of PGHW Eq. (2.6), and the EPSD of the signal can be obtained according to the relationship between the EPSD and the mean square modulus of wavelet coefficient shown in Eq. (2.23) [START_REF] Spanos | Stochastic processes evolutionary spectrum estimation via harmonic wavelets[END_REF].

Numerical example

In this section, the quasi-Newton method will be chosen to solve the equation Eq. (4.19). The algorithms of Rank-1 iB, Rank-2 BFS, DFP, and BFGS will be chosen to estimate the Jacobian matrix. The calculation information of these four algorithms will be listed and compared to find the best algorithm to solve this problem.

Here, typical cubic nonlinear terms and sinusoidal nonlinear terms are considered so that a more general conclusion can be obtained.

Case 1: Cubic nonlinear terms

             h 1 (v 1 , v 2 , v 3 ) = c 1 (v 1 -v 2 ) 3 h 2 (v 1 , v 2 , v 3 ) = c 1 (v 2 -v 1 ) 3 + c 2 (v 2 -v 3 ) 3 , c 1 = c2 = 0.002; h 3 (v 1 , v 2 , v 3 ) = c 2 (v 3 -v 2 ) 3 Case 2: Trigonometric nonlinear terms              h 1 (v 1 , v 2 , v 3 ) = c 1 sin (v 1 -v 2 ) h 2 (v 1 , v 2 , v 3 ) = c 1 sin (v 2 -v 1 ) + c 2 sin (v 2 -v 3 ) , c 1 = c2 = 0.04; h 3 (v 1 , v 2 , v 3 ) = c 2 sin (v 3 -v 2 )

Deterministic excitation

Consider the motion equations Eq. (4.12) shown in Section 4. The approximation of the Jacobian matrix is very important. Rank-1 Broydon, Rank-2 BFS, DFP and BFGS algorithms are selected to approximate the Jacobian matrix. In order to observe the iteration process and accuracy, the relative error of the wavelet coefficients α (n+1) and α (n) (3.6) obtained by using these four algorithms are calculated and shown in The relative error between the results solved by these algorithms and the Runge-Kutta method is defined as the following form

er z = |z -z Runge-Kutta |
And the other information about these iterative processes is shown in The response displacements z(t) obtained by using these algorithms are obtained, and only the displacements of u 1 , v 1 , and v 3 obtained by using the algorithm of Rank-1 iB are shown in Fig. 4.17 and Fig. 4.18 for brevity. It can be seen from Fig. 4.17 and Fig. 4.18 that the nonlinearity is most evident in the displacement of v 3 .

Rank- 

Stochastic excitation

The Rank-1 iB algorithm is selected to approximate the Jacobian matrix in this section according to the conclusion in Section 4. Response and EPSD of rotor-blade nonlinear system with non-stationary non-Gaussian stochastic excitation via PGHW method

Introduction

Rotating machinery is a kind of widely used mechanical equipment, which plays an important role in many industries such as aerospace, electric power, and wind engineering. Various abnormal vibrations in rotating machinery may seriously threaten the safe operation of the machinery. Therefore, it is very important to analyze the response of the rotating machinery subjected to external excitation. The research on the dynamic characteristics of this type of machinery, that is, rotor dynamics, has become a current hot research problem [START_REF] Shad | Modeling and analysis of nonlinear rotor dynamics due to higher order deformations in bending[END_REF], [START_REF] Cao | Nonlinear dynamic analysis of fractional order rub-impact rotor system[END_REF], [START_REF] Didier | Multi-dimensional harmonic balance with uncertainties applied to rotor dynamics[END_REF], [START_REF] Chattopadhyay | A multidisciplinary optimization approach for vibration reduction in helicopter rotor blades[END_REF], [START_REF] Xiang | Nonlinear dynamics of an asymmetric rotor-bearing system with coupling faults of crack and rub-impact under oil-film forces[END_REF], [START_REF] Cao | Mechanical model development of rolling bearing-rotor systems: A review[END_REF].

The problem of the rotor-blade system was intensively studied during the 20th century with both formal, analytical approaches [START_REF] Wright | Vibration modes of centrifugally stiffened beams[END_REF][START_REF] Carnegie | Vibrations of rotating cantilever blading: Theoretical approaches to the frequency problem based on energy methods[END_REF] and practical approaches [START_REF] Khulief | Lead-lag vibrational frequencies of a rotating beam with end mass[END_REF][START_REF] Putter | Natural frequencies of radial rotating beams[END_REF] being used. The main limitations of these results lie in two factors: first, the rotor was considered to be fixed for much of this time, and thus the study of the blade led to the study of a rotating beam or plate; second, the type of excitation considered was relatively simple usually deterministic functions.

The relaxation of the assumption of a fixed rotor or hub led to the integration of this field of study with the mathematical theory of Floquet and Lyapunov for the time-periodic system, giving rise to the application of techniques like the harmonic balance method (HBM) to study this type of system. Early in-depth studies of this approach can be seen in [START_REF] Xu | Modale behandlung linearer periodisch zeitvarianter bewegungsgleichungen[END_REF] and [START_REF] Wereley | Frequency response of linear time periodic systems[END_REF], and these have been applied to concrete problems as shown in [START_REF] Christensen | Active vibration control of rotor-blade systems: Theory and experiment[END_REF]. These still consider a completely linear system and the stochastic analysis is mostly absent.

The use of the rotor-blade dynamical models, or models based on this, has been widespread in the last couple of decades:

it has been applied to gas turbines, compressors, helicopter propulsion, and tidal and wind turbines. This has led to the steady addition of more complex models: 1) complex mechanical behavior of blades, including composite materials; 2) stochastic inputs forcing the system; 3) uncertainty quantification applied to the material and mechanical parameters of the system; 4) modal analysis and general system characterization.

Current trends can be grouped into 3 large groups:

A) artificial intelligence tools to study this type of system: an emulator to study response as a function of uncertain mistuning was proposed [START_REF] Bae | Accelerated multifidelity emulator modeling for probabilistic rotor response study[END_REF]. Different machine learning methodologies were utilized to study uncertainties inherent to the manufacture of rotor blades in helicopters [START_REF] Chatterjee | The stochastic aeroelastic response analysis of helicopter rotors using deep and shallow machine learning[END_REF].

B) experimental techniques to characterize the in-service system: a novel experimental technique based on optical fiber was proposed to measure the response of a helicopter rotor-blade system [START_REF] Weber | Application of fibre optic sensing systems to measure rotor blade structural dynamics[END_REF]. A hybrid method involving digital image correlation was utilized to characterize the properties (particularly the sectional stiffness) of a helicopter rotor-blade [START_REF] Pflumm | Hybrid experimental measurement of sectional stiffness properties of the merit rotor blade with digital image correlation[END_REF].

C) computational and analytical developments: a computational finite-element (FE)-based technique was proposed to develop a stochastic reduced order model for rotating bladed disk [START_REF] Kumar | Stochastic reduced order modelling and analysis of rotating bladed discs[END_REF]. An analytical and experimental approach was used to study multi-source nonlinearities in the rotor-blade system [START_REF] Li | Theoretical and experimental investigations on steady-state responses of rotor-blade systems with varying rotating speeds based on a new nonlinear dynamic model[END_REF]. A method based on chaos exponentials (related to the polynomial chaos method) was proposed to project the Blade Element Momentum equations that describe the loading on a wind turbine [START_REF] Fluck | A fast stochastic solution method for the blade element momentum equations for long-term load assessment[END_REF]. An analytical approach based on stochastic calculus was taken to address error and noise in the inputs of wind turbines with a particular emphasis on the flutter-type dynamical instability [START_REF] Caracoglia | Stochastic dynamics of rotating wind turbine blades influenced by turbulence and aeroelastic uncertainties: Recent developments[END_REF]. The dynamic reliability of a compressor rotor system with stochastic stress and strength was investigated [START_REF] Zhao | Reliability analysis of aero-engine compressor rotor system considering cruise characteristics[END_REF].

Our present work belongs to the last one. Within the context of the rotor-blade system, the key feature of the current research is the combination of complex system elements and load. The modeling of the rotor-blade system involving a rotor or hub is traditionally expressed relative to a fixed reference frame, and the different blades are described as deformable bodies in a corotational reference frame. This approach allows for the capture of coupled vibratory behaviors between blades and hub, but the resulting motion equation is that of a linear time-periodic (LTP) system: the equations of the system have coefficients that change periodically with time. The system considered here is that of a proper rotor-blade system described by LTP equations with the nonlinear terms, and the load or excitation is non-stationary, non-Gaussian, and stochastic. Our method shows the robustness to provide accurate solutions to complex mechanical models with excitation that is traditionally difficult to treat.

The PGHW method was proposed to analyze finite-time vibration signals, due to the orthogonal properties of this wavelet. Deterministic and stochastic responses of linear and nonlinear multi-degree-of-freedom (MDOF) invariant systems were obtained or characterized by using this method [START_REF] Kong | Wavelet-galerkin approach for power spectrum determination of nonlinear oscillators[END_REF][START_REF] Kong | Wavelet-expansion-based stochastic response of chain-like mdof structures[END_REF][START_REF] Han | Response epsd of chain-like mdof nonlinear structural systems via wavelet-galerkin method[END_REF]. The stochastic response of a linear time-varying vehicle-bridge system was studied also by using this wavelet method [START_REF] Xiao | A stochastic analysis method of transient responses using harmonic wavelets, part 2: Time-dependent vehicle-bridge systems[END_REF]. In this work, the periodic time-varying rotorblade nonlinear system excited by the non-stationary non-Gaussian stochastic process with non-uniform modulation is studied also by using the PGHW method. The forced vibration response of this time-varying periodic system with nonlinear stiffness subject to both deterministic and stochastic excitation is provided. The displacement and EPSD of the response can be obtained by using the resolved wavelet coefficients.

This work is organized as follows: the mechanical model of the rotor-blade system is introduced in Section 5.2. The main results obtained by using the wavelet-Galerkin method and quasi-Newton method are presented in Section 5.3.

Finally, the time-frequency analysis is presented and discussed in the numerical example in Section 5.4.

Mechanical Model

The mechanical model of a rotor-blade system with tip masses, rotating in a suspended hub, is considered and shown in Fig. 5.1. The hub motion is described by the horizontal position x h and the vertical position y h in the inertial (x, y)-coordinate system. The hub vibrates in the (x, y) plane. Rotor angular displacement and gyroscopic effects are assumed to be negligible, which simplifies the mathematical model used to describe system dynamics. The identical flexible blades with tip masses are radially attached to the rigid rotor and the motion of the blades is also assumed to be planar. For each i-th blade, the deflection of an arbitrary point is described by its position (x i , y i ) in the moving local (x bi , y bi )-coordinate system. The angular position of the rotor is given by θ(t) in the (x, y)-coordinate system. For more details, please refer to [START_REF] Christensen | Design of active controlled rotor-blade systems based on time-variant modal analysis[END_REF]. The motion equation of the rotor-blade system is derived using Lagrangian dynamics. Then, a time-varying system that depends on the rotor angular position θ(t) and the rotational speed Ω can be given by

M(Ω, t)z(t) + C(Ω, t) ż(t) + K(Ω, t)z(t) + h(x h , y h ) = F (t) (5.1)
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where M(t) = M(t + T p ), C(t) = C(t + T p ) and K(t) = K(t + T p ) are the periodic matrices with a period of T p = 2π/Ω, representing the mass matrix, damping matrix and stiffness matrix, respectively, it is further assumed that the rotational velocity is constant, which implies θ i (t) = Ωt + π (iq-1) 2

; h(x h , y h ) is the nonlinear term; F (t) represents the external excitation; z(t) = {x h , y h , q 1 , q 2 , q 3 , q 4 } T is the generalized coordinate vector, where q iq = [q iq,1 , q iq,2 , ..., q iq,jq ] T , i q = 1, 2, 3, 4, the total degree of freedom (DOF) is n d = 2 + 4j q and j q is the number of modes. In this model, the vibration of the blades has been expressed using a truncated modal base, relying on the assumed-modes method.

The main results

Consider the periodic time-varying form of the rotor-blade nonlinear system shown in Considering only the first bending mode of the blades, i.e., considering i q = 4, j q = 1, then these time-varying matrices with period of T p = 2π/Ω can be obtained as follows [START_REF] Christensen | Active vibration control of rotor-blade systems: Theory and experiment[END_REF] 

M(t) =               m 1 0 -Ψ sin 1 -Ψ sin 2 -Ψ sin 3 -Ψ sin 4 0 m 2 Ψ cos 1 Ψ cos 2 Ψ cos 3 Ψ cos 4 -Ψ sin 1 Ψ cos 1 m q1,1 0 0 0 -Ψ sin 2 Ψ cos 2 0 m q2,1 0 0 -Ψ sin 3 Ψ cos 3 0 0 m q3,1 0 -Ψ sin 4 Ψ cos 4 0 0 0 m q4,1               C(t) =               c x h 0 2ΩΨ cos 1 2ΩΨ cos 2 2ΩΨ cos 3 2ΩΨ cos 4 0 c y h 2ΩΨ sin 1 2ΩΨ sin 2 2ΩΨ sin 3 2ΩΨ sin 4 0 0 c q1,1 0 0 0 0 0 0 c q2,1 0 0 0 0 0 0 c q3,1 0 0 0 0 0 0 c q4,1               (5.2) 
K(t) =               k x h 0 ΨΩ 2 sin 1 ΨΩ 2 sin 2 ΨΩ 2 sin 3 ΨΩ 2 sin 4 0 k y h -ΨΩ 2 cos 1 -ΨΩ 2 cos 2 -ΨΩ 2 cos 3 -ΨΩ 2 cos 4 0 0 k q1,1 0 0 0 0 0 0 k q2,1 0 0 0 0 0 0 k q3,1 0 0 0 0 0 0 k q4,1              
where

m 1 = m x h + 4 iq=1 m ti q + ρ iq L iq , m 2 = m y h + 4 iq=1
m ti q + ρ iq L iq , Ψ = 0.135, sin iq = sin(Ωt + π(i q -1)/2), cos iq = cos(Ωt + π(i q -1)/2), k qi q ,1 = 1961 + Ω 2 -16.85sin qi q , i q = 1, 2, 3, 4, and other parameters of this rotor-blade system are shown in Table 5.1.

Rotor/Hub Blades and Tip masses

Mass

m x h = 1.0034 × 10 1 kg Tip mass m qi q ,1 = 1.61 × 10 -1 kg m y h = 9.034 kg Damping c x h = 1.2 N•s/m Damping c qi q ,1 = 8 × 10 -1 N•s/m c y h = 1.5 N•s/m Stiffness k x h = 6.6 × 10 4 N/m Length L iq = 4 × 10 -1 m k y h = 7.7 × 10 4 N/m Density ρ iq = 1.95 × 10 -1 kg/m Table 5.1: Rotor-blade properties
The rotor-blade system is represented using the assumed-mode method for the bending of the blades. To achieve this, a finite element discretization of the blades is applied and the corresponding eigenvalue problem is solved. The solution of the eigenvalue problem provides polynomial approximations of the mode shapes Φ i (x i ) of the blades. Applying modal truncation (thus the higher modes can be neglected), the mode shapes are substituted into the equation of motion of the system: the transverse vibration of each blade is represented under the form d i = q i (t) Φ i (x i ), where q i are modal variables and Φ (x i ) are the assumed modes of the blades. The assumed modes are set to be equal to the mode shapes. When this representation of the transverse displacement is introduced in the motion equation of the system and grouped into matrix form it is convenient to express these in terms of 1) The time-varying component, usually sine and cosine functions dependent on Ω and t.

2) The time-invariant coefficients. The coefficients involve different parameters of the system, including the integrals of the mode shapes Φ i . These coefficients are renamed as ϕ.

The expression of ϕ for each blade is

ϕ = m ti (Φ i (L i ) + r ti Φ ′ i (L i )) + ρ i Li 0 Φ i (x i ) dx i
where m ti = m qi q ,1 the corresponding tip mass attached to the blade, r ti the tip mass radius, L i and ρ i are the length and density of the i-th blade, Φ i (x i ) is the mode shape of the i-th blade and Φ ′ i (L i ) its derivative with respect to x i , x i is the position along the i-th blade. Here i q is expressed as i for brevity. More details about the system and parameters can be found in [START_REF] Christensen | Active vibration control of rotor-blade systems: Theory and experiment[END_REF].

Substituting the transformation and reconstruction of PGHW Eq. (2.6) in Eq. (5.1), the following motion equation of the rotor-blade system can be rewritten as:

M(t) i k W z ik ψik (t) + W z ik ψik (t) + C(t) i k W z ik ψik (t) + W z ik ψik (t) + (5.3) 
K(t) i k W z ik ψ ik (t) + W z ik ψik (t) + h(x h , y h ) = F (t)
where W z ik is the wavelet coefficient of z(t) at the i-th scale and the k-th time translation with dimension n d × 1.

Multiplying both sides of Eq. ( 5.3) with ψjl (t) and taking integrals with respect to t on time interval [0, T ] yields Then, the Eq. ( 5.4) can be transformed into a set of algebraic equations of wavelet coefficients

T 0 M(t) i k [W z ik ψik (t) + W z ik ψik (t)] ψjl (t)dt+ T 0 C(t) i k [W z ik ψik (t) + W z ik ψik (t)] ψjl (t)dt+ T 0 K(t) i k [W z ik ψ ik (t) + W z ik ψik (t)] ψjl (t)dt + T 0 h(x h , y h ) ψjl (t)dt = T 0 F ( 
i k A ik,jl W z ik + T 0 h(x h , y h ) ψjl (t)dt = T N t W F jl (5.5)
where W z ik , W F jl denote the wavelet coefficient vectors of response and loads in all scales with dimension 2n d N t N j ×1; A ik,jl is defined as the connection coefficient matrix with dimension 2n d N t N j × 2n d N t N j ; And they are given as follows. 

A ik,jl =                            Āφφ NtNj • • • . . .
• • • A φφ NtNj                            W z ik = (W z Nt ) H • • • (W z 2 ) H (W z 1 ) H (W z 1 ) T (W z 2 ) T • • • (W z Nt ) T W F ik = (W F Nj ) H • • • W F 2 H W F 1 H W F 1 T W F 2 T • • • (W F Nj ) T 57 with A φφ ij =         A φφ ij,11 A φφ ij,21 • • • A φφ ij,Nt1 A φφ ij,12 A φφ ij,22 • • • A φφ ij,Nt2 . . . . . . . . . . . . A φφ ij,1Nt A φφ ij,2Nt • • • A φφ ij,NtNt         , A φφ ij =         A φφ ij,11 A φφ ij,21 • • • A φφ ij,Nt1 A φφ ij,12 A φφ ij,22 • • • A φφ ij,Nt2 . . . . . . . . . . . . A φφ ij,1Nt A φφ ij,2Nt • • • A φφ ij,NtNt         Āφφ ij = (A φφ ij ) H , Ā φφ ij = (A φφ ij ) H , W z i =         W z i1 W z i2 . . . W z iNt         , W F j =         W F j1 W F j2 . . . W F jNt        
The quasi-Newton method is chosen to solve Eq. (5.5). It requires an iterative solution of the following equation

F α (n) + ∆F α (n) α (n+1) -α (n) = 0
where α = W z ik is the unknown wavelet coefficient vector of the response of the system, and subscript (n + 1) denote the (n + 1)-th iteration of the approximate solution; F (α) , ∆F (α) are given as

F(α) = i k A ik,jl W z ik + T 0 h(x h , y h ) ψjl (t)dt - T N t W F jl [∆F(α)] = ∂F(α) ∂α = [∆F(α)] L + [∆F(α)] N L
Notice that F(α) is a vector with dimension 2n d N t N j × 1 and ∆F(α) is a Jacobian matrix with dimension

2n d N t N j × 2n d N t N j .
The Jacobian matrix ∆F(α) can be divided into linear and nonlinear parts, that is, [∆F(α)] L and [∆F(α)] N L . For more details, please refer to [START_REF] Han | Response epsd of chain-like mdof nonlinear structural systems via wavelet-galerkin method[END_REF].

The quasi-Newton method simplifies the calculation process by approximating the Jacobian matrix. Here, the Rank-1 iB algorithm is selected to approximate the Jacobian matrix, and its formula is shown in Eq. (6.6).

The relative errors of the wavelet coefficients α (n+1) and α (n) are defined by the L2 norm and it is shown in Eq. (3.6).

By setting the threshold condition, the wavelet coefficient α satisfying the condition can be obtained when the (n + 1)th iteration is performed. Then, the response z(t) can be obtained by performing the reconstruction of PGHW. And the EPSD of the signal can be obtained according to the relationship between the EPSD and the mean square modulus of the wavelet coefficient shown in Eq. (2.23).

Numerical example

The motion equation of the rotor-blade system is derived as the periodic time-varying form with period T p = 2π/Ω in Eq. ( 5.1)

M(t)z(t) + C(t) ż(t) + K(t)z(t) + h(x h , y h ) = F (t) (5.6) 
where M(t), C(t) and K(t) are the mass matrix, damping matrix and stiffness matrix, respectively, and the values of M(t), C(t) and K(t) are shown in (5.2); the initial conditions are considered as z(0) = 0, ż(0) = 0(for the Runge-Kutta algorithm); j q is set to 1, then z(t) = {x h , y h , q 1 , q 2 , q 3 , q 4 } T = {x h , y h , q 1,1 , q 2,1 , q 3,1 , q 4,1 } T can be obtained; the nonlinear terms are considered as

h(x h , y h ) = [n x k x h x 2 h , n y k y h y 2 h , n 1 k q1,1 q 2 1,1 , n 2 k q2,1 q 2 2,1 , n 3 k q3,1 q 2 3,1 , n 4 k q4,1 q 2 4,1 ] T
where k x h , k y h and k q1,1 , k q2,1 , k q3,1 , k q4,1 represent the stiffness of the rotor and blades, n x = n y = 5, n 1 = n 2 = n 3 = n 4 = 0 are coefficients that control the strength of the nonlinearity; the stochastic excitation is considered as

F (t) = [l x , l y , l 1 , l 2 , l 3 , l 4 ] T × f (t)
where f (t) is the non-stationary non-Gaussian stochastic process with non-uniform modulation, l y = 1, l x = l 1 = l 2 = l 3 = l 4 = 0 are the amplitudes of the excitation. Thus, the nonlinearity is considered only in the rotor part and the stochastic excitation is considered only in the y h -DOF.

The EPSD of the non-stationary non-Gaussian stochastic process can be written in the following form:

S ff (ω, t) = g 2 (t)S ω (ω) (5.7)
where the modulating function g(t) is chosen as

g(t) =              ( t 0.5 ) 2 , if 0 ≤ t < 0.5 1, if 0.5 ≤ t ≤ 2.5 exp(-0.3 × (t -2.5)), if 2.5 < t < T
It is shown in Fig. 5.3 that the maximum value g max (t) is equal to 1, which ensures that the maximum value of the modulated excitation do not change.

Power spectral density (PSD) refers to the concept of density to represent the distribution of signal power at each frequency point, is a measure of the mean square value of random variables, and is the average power dimension per unit frequency. It is the statistical result of the response of the structure under random dynamic excitation, and it is a relationship curve between the power spectral density value and the frequency value. Mathematically, the area under the power spectral density value-frequency value curve is the mean square value. When the mean value is zero, the mean square value is equal to the variance, that is, the square value of the response standard deviation. PSD is an effective tool for random vibration analysis. The PSD considered in this work is assumed to follow the following form

S ω (ω) =      1, if ω ≤ 10∆ω 0, else (5.8) 
The contour of S ff (ω, t) in Eq. (5.7) with the PSD of the fluctuating wind speed is shown in Fig. 5.4. It can be seen from Fig. 5.4 that the maximum PSD exists when the angular frequency is equal to 0 rad/s and the time is 0.5s to 2.5s.

The result that the maximum PSD appears at 0.5s to 2.5s is affected by the modulation function g(t). This result shows that the PSD of the stochastic process can be affected by the modulation function. Then, the spectral representation method is used to generate samples [START_REF] Liang | Simulation of nonstationary stochastic processes by spectral representation[END_REF]:

f 0 (t) = √ 2 N ϵ=1 [2S(ω, t)∆ω] 1/2 cos (ϵ∆ωt + φ ϵ ) (5.9) 
where φ ϵ represents a uniformly distributed stochastic variable in interval [0, 2π]. Then a non-Gaussian sample can be obtained by

f (t) = -   m y h + 4 iq=1 m ti q + ρ iq L iq   f 0 (t) * |f 0 (t)|
And combined with Eq. (5.9), the typical sample f (t) can be obtained in Fig. 5.5. It is considered as the excitation in this subsection.

In order to obtain the frequency domain information of the signal, the following well-known Fourier transform is defined. Then, the amplitude of f (t) is obtained and shown in Fig. 5.5.

F (ω) = F T [f (t)] = +∞ -∞ f (t)e -iωt dt (5.10) 
It can be seen from Fig. 5.5 that the sample f (t) in the time domain will be affected by the modulation function, but its frequency domain information does not show similar effects. And it should be stressed that this excitation contains a relatively large number of frequency components as displayed on the right side of Fig 5 .5.

The quasi-Newton method is used to solve Eq. (5.5) in Section 5.3 and according to the reconstruction of PGHW, the displacement of response can be obtained and shown in Fig. 5.6-5.9. q 3,1 , q 4,1 are the same as q 1,1 , q 2,1 , so they are not shown in the following for brevity. In addition, the Runge-Kutta algorithm is used to get the results for verification, and they are consistent. It verifies the correctness. The amplitudes of x h , y h , q 1,1 , q 2,1 in the frequency domain are .9 that the predominant peaks of x h , y h and , q 1,1 , q 2,1

occur at frequencies of about ±92.68 rad/s and ±124.10 rad/s, respectively.

To put these results into context, the Floquet-Lyapunov (FL) theory as applied to the modal analysis of the LTP system has been used to calculate the frequencies of the free linearized system, that is with h (x h , y h ) = 0. This is equivalent to a linear approximation of the problem. It should be emphasized that the case under study corresponds to a forced It can be seen from Fig. 5.6 that the first amplitude peak is close to the first F-L angular frequency ω F L1 and the other is close to the second angular frequency ω F L2 . It can be seen from fig. 5.7 that the amplitude peak is closer to the second F-L angular frequency ω F L2 , with no important additional frequency content. This is because the excitation is added to the y h -DOF. The x h -DOF and y h -DOF are those in which the nonlinear terms are considered.

The peaks contained in the modal components show, approximatively, the characteristic behavior of the LTP system.

The frequency content of q 1,1 and q 2,1 has a peak around the F-L frequencies ω F L3 , ω F L4 , ω F L5 and ω F L6 . These frequencies are themselves relatively close, given the fact that their modal discretization is identical, in other words, the same polynomial describes their mode shape. And there are two peaks in the frequency content of q 1,1 and q 2,1 , the corresponding angular frequency values are 61.26 rad/s and 124.10 rad/s respectively. These frequencies are close to the characteristic harmonics derived from the y h -DOF of the LTP system: ω sn = ω s ± nΩ, where n is an integer and s designates the corresponding fundamental frequency. There are 6 fundamental frequencies since 6-DOF are considered in this case. It means that the F-L frequencies ω F L1 , ω F L2 , ω F L3 , ω F L4 , ω F L5 and ω F L6 can be assigned to w s . More significant information will be demonstrated when ω s = ω F L2 , since the excitation is considered in the y h -DOF. Thus, the discussion based on ω s = ω F L2 is shown in the following. In this case, ω s = ω F L2 = 90.02 rad/s, Ω = 10π = 31.42 rad/s, the following harmonics can be obtained: 58.60 rad/s and 121.44 rad/s for n = 1. These two angular frequency values are close to the angular frequency values 61.26 rad/s and 124.10 rad/s at the peaks of the frequency content of q 1,1 and q 2,1 in Fig. 5.8 and 5.9.

The amplitude peaks of response occur close to the system frequencies of the corresponding LTP system (that is, the frequencies where the nonlinear terms have been neglected) or one of the harmonics that correspond to the DOF in which the forcing function is applied.

By setting the iteration threshold er α (n + 1) < 5 × 10 -4 in Eq. (3.6), the relative error of wavelet coefficients α (n+1)

and α (n) is calculated and shown in Fig. 5.10. It can be seen from Fig. 5.10 that the relative error is close to 0 when the fifth iteration is performed, which has reached an acceptable convergence range. All the results are consistent, which verifies the correctness of the method. It can be seen from Fig. 5.16-5.19 that the maximum power is exhibited at t = 2.91 s for x h , y h , q 1,1 and q 2,1 . This is because the adjustment function g(t) makes the excitation reach its maximum value at 0.5s to 2.5s, and gradually decrease or increase at other times. This phenomenon can also be seen in Fig. 5.12-5. There are two representation methods for the PSD of the stochastic process, one is the double-sided PSD, which is generally used to describe the signal of a real stochastic process, and the other is the one-sided PSD, which is generally used to describe the signal of a complex stochastic process. All PSD here is double-sided, so the variance of the response is defined as the following relationship with PSD

σ 2 z (t) = ∞ -∞ 2S z (ω, t)dω (5.11)
If the PSD is one-sided, the variance of response is calculated by σ

2 z (t) = ∞ -∞ S z (ω, t)dω.
The variances calculated by Eq. (5.11) and the formula of the theoretical variance σ Here are some notes for the PGHW method and Runge-Kutta algorithm.

2 z (t) = E[z 2 (t)] -E[z(t)]
• The PGHW method: the selection of the value of the scale interval n -m is very important. The larger it is chosen, the more accurate the result will be, but the more time it will take. The accuracy of the calculation will be reduced if it is not possible to spend a lot of calculation time in practical applications. If this value is not large enough, the errors at the beginning, end, and peak of the signal will be more obvious than in other parts. And it is easy to see that no initial conditions are considered in the procedure of this work, so the transient response is neglected. This type of problem can be seen in other scientific work as well [START_REF] Kong | Wavelet-galerkin approach for power spectrum determination of nonlinear oscillators[END_REF][START_REF] Lutes | Stochastic analysis of structural and mechanical vibrations[END_REF][START_REF] Failla | A wavelet-based spectrum for non-stationary processes[END_REF]. The following two ideas can be attempted to improve it: 1) the high-frequency content of the initial response can be seen analytically in the case of the linear system; 2) the high scales of the Morlet wavelet with a short period of duration can be used to capture the high-frequency content at the initial phase of the signal.

• The Runge-Kutta algorithm: the basic assumption when applying this algorithm relates to the continuity and differentiability of the solution being approximated. Additionally, the algorithm used does not, in general, perform well when the system under study is numerically stiff (This is because the stability region of this method is confined to a specific region). While these assumptions are reasonable for a wide variety of practical problems, more specialized situations that do not conform to these assumptions would require special-purpose numerical methods to address these limitations. For the problem used in this work, these assumptions seem to be met sufficiently well.

Chapter 6 Conclusion

In this study, the nonlinear time-varying system subject to non-Gaussian non-stationary stochastic excitation was considered. The displacement of the system response, the variation of response PSD and EPSD with time and frequency, and the response analysis were obtained.

First, the response of the Duffing oscillator subject to seismic excitation was studied. The PGHW and wavelet-Galerkin methods were used for the motion equation and a set of nonlinear algebraic equations was obtained. The quasi-Newton method was used to solve these equations and the DFP algorithm was used to approximate the Jacobian matrix, which is more efficient than the Newton method. The displacement and EPSD of the response were obtained by using the solved wavelet coefficient and shown in the numerical example.

And the response of the chain-like MDOF nonlinear structural system was analyzed in the time-frequency domain. The proposed method was used to deal with the motion equation, and the displacement and EPSD of a 4-DOF system under excitation were obtained and shown in the numerical example. All the results have proved the feasibility and efficiency.

Then, the response of linear oscillators coupled to MDOF nonlinear attachment with the combined periodic and stochastic seismic excitation was analyzed. The typical cubic nonlinear terms and sinusoidal nonlinear terms were considered. The spectral representation method of the stochastic process was used to generate samples of the seismic excitation of the system. The quasi-Newton method was selected to solve these equations obtained by using the PGHW and wavelet-Galerkin methods for the motion equations. The algorithms of Rank-1 iB, Rank-2 BFS, DFP, and BFGS were used to estimate the Jacobian matrix. The Rank-1 iB algorithm was the best algorithm to solve these equations by comparing information such as the number of iterations, calculation time, and relative error. And also the displacement and EPSD of the response were obtained according to the solved wavelet coefficients.

Last, the PGHW method was used to analyze the periodic time-varying rotor-blade nonlinear system excited by the non-stationary non-Gaussian stochastic process with non-uniform modulation. The trigonometric functions sin(Ωt + π(i q -1)/2), cos(Ωt + π(i q -1)/2) contained in M(t), C(t), K(t) were unified into ± sin(Ωt), ± cos(Ωt) according to its properties, and then transformed into exponential functions ±(e ip∆ωt -e -ip∆ωt )/2i, ±(e ip∆ωt + e -ip∆ωt )/2 according to Euler formula. These time-varying elements led to a frequency shift of the wavelet function based on the properties of the PGHW function and Fourier transform, which improved the efficiency of the calculation of wavelet coefficients. The motion equation of the rotor-blade system with a periodic time-varying form derived using Lagrangian dynamics was transformed into a series of algebraic equations by using the wavelet-Galerkin method. The wavelet coefficients of the response were solved by using the quasi-Newton method, which used the Rank-1 iB algorithm to approximate the Jacobian matrix. The displacement and the EPSD of the response were obtained by using the proposed method and the Monte Carlo method. The consistency of all these results validated the feasibility and effectiveness of the method.

Perspectives for future research work:

1. Extend this PGHW method to the mechanical systems subject to different types of stochastic excitations.

2. Further explore the connection between the PGHW decomposition and reconstruction of the system and excitation.

3. Continue to study other possible methods for solving and analyzing nonlinear systems. years. The modern Monte Carlo method does not need to do the experiment by hand but uses the high-speed operation ability of the computer to make the original time-consuming and laborious experimental process into a quick and easy thing. Not only is it used to solve many complex scientific problems, but it is also frequently used by project managers.

Monte Carlo methods are very adaptable, and the complexity of the problem geometry has little effect on it. The convergence of this method refers to the convergence in the sense of probability, so the increase in the dimension of the problem will not affect its convergence speed, and it will not take up a lot of storage space, these are the advantages of using this method to deal with large and complex problems. Therefore, with the development of electronic computers Thus the iterative formula of the Newton iterative method is obtained. 

x k+1 = x k - f (x k ) f ′ (x k ) , k = 1,

Quasi-Newton method

The Newton method is a further development of the gradient descent method. It is stable and can comprehensively determine the appropriate search direction to speed up the convergence speed. However, the Newton method has the following two drawbacks:

1. The Jacobian matrix f ′ (x k ) must be positive definite.

2. The calculation of the Jacobian matrix and its inverse matrix is quite complicated, and the amount of calculation and storage is large. This problem becomes more prominent as the matrix dimension increases.

To overcome these two problems, the quasi-Newton method was proposed. The quasi-Newton method is one of the most effective methods for solving nonlinear optimization problems. It was proposed by the American physicist Davidon in the 1950s [START_REF] Davidon | Variance algorithm for minimization[END_REF]. The algorithm designed by Davidon was considered to be one of the most creative inventions in the field of nonlinear optimization at the time. Fletcher and Powell then demonstrated that this new algorithm was far faster and more reliable than other methods, allowing the discipline of nonlinear optimization to develop rapidly [START_REF] Fletcher | A rapidly convergent descent method for minimization[END_REF]. In the following decades, quasi-Newton methods have flourished and a large number of deformation formulations and related papers have appeared [START_REF] Dennis | Quasi-newton methods, motivation and theory[END_REF][START_REF] Pfrommer | Relaxation of crystals with the quasi-newton method[END_REF][START_REF] Schoenberg | Optimization with the quasi-newton method[END_REF][START_REF] Schraudolph | A stochastic quasi-newton method for online convex optimization[END_REF][START_REF] Byrd | A stochastic quasi-newton method for large-scale optimization[END_REF].

The main idea of the quasi-Newton method is based on the information of the secant equation.

f ′ (x k ) = f (x k+1 ) -f (x k ) x k+1 -x k
This method approximates the Jacobi matrix f ′ (x k ) instead of computing it, thus reducing a large amount of computation. There is a correction equation in order to obtain the Jacobi matrix f ′ (x k ).

f ′ (x k ) = f ′ (x k-1 ) + ∆f ′ (x k ) (6.5)

The Jacobi matrix f ′ (x k ) can be updated in each iteration according to the Eq. (6.5). Different quasi-Newton methods 
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The expression of the Rank-1 iB algorithm is shown as follows.

B k+1 = B k + (s k -B k y k )s T k B k s T k B k y k (6.6)
The expression of the Rank-2 BFS algorithm is shown as follows.

B k+1 = B k + µ k s k s T k -s k y T k B k -B k y k s T k s T k y k (6.7)
where

µ k = 1 + y T k B k y k /s T k y k .
The expression of the DFP algorithm is shown as follows.

B k+1 = B k + s k s T k s T k y k - B k y k (B k y k ) T y T k B k y k (6.8)
The expression of the BFGS algorithm is shown as follows.

B k+1 = I - s k y T k y T k s k B k I - y k s T k y T k s k + s k s T k y T k s k (6.9)
By setting an appropriate threshold, a wavelet coefficient α meeting the required accuracy can be obtained. Here, the convergence of the wavelet coefficient α is measured by the L2-norm. Then the relative error of the wavelet coefficients α (n+1) and α (n) is defined as error(n + 1) = | α (n+1) -α (n) | T × | α (n+1) -α (n) | (6.10)

When error(n + 1) < 10 -p , the wavelet coefficient α meeting the required accuracy is obtained. Here p is a positive real number. And the more accurate result can be obtained when p becomes larger.

Analyse de la réponse de systèmes mécaniques soumis à des excitations déterministes et stochastiques par la méthode des ondelettes-Galerkin Résumé Dans les domaines de l'aérospatiale, du génie civil ou du génie mécanique, les équipements peuvent être soumis à des charges aléatoires exceptionnelles provenants des tremblements de terre, tempêtes, pistes accidentées, etc. L'analyse de la réponse du système sous ces chargements est donc nécessaire pour son dimensionnement.

Au cours des années, les transformées en ondelettes ont été développées sur la base de la transformée de Fourier, avec l'ajout d'informations de localisation temporelle, pour devenir des outils essentiels du traitement du signal et l'analyse spectrale. Alors que la fonction trigonométrique est la fonction de base de la transformée de Fourier, la transformée en ondelettes utilise la fonction d'ondelette décroissante de longueur finie. Ces transformées ont plusieurs avantages. Par exemple, elles permettent un choix plus flexible de la résolution pour l'analyse du signal, elles effectuent une analyse multi-échelle du signal simultanément dans les domaines temporel et fréquentiel, elles peuvent analyser des signaux abrupts, etc. Parmi ces transformées en ondelettes, l'ondelette harmonique généralisée périodique (PGHW) permet l'analyse des signaux de durée limitée et peut être utilisée pour développer les équations du mouvement des systèmes non linéaires à excitation aléatoire.

Ainsi, la base de représentation des PGHW est d'abord utilisée pour analyser la réponse de l'oscillateur de Duffing soumis à une excitation sismique. Avec la méthode des ondelettes de Galerkin, un ensemble d'équations algébriques non linéaires sont obtenues à partir de l'équation de mouvement. Plus efficace que la méthode de Newton grâce à une approximation de la matrice Jacobienne dans le processus itératif, la méthode quasi-Newton de Davidon-Fletcher-Powell (DFP) est choisie pour résoudre ces équations. Le déplacement et la densité spectrale de puissance estimée (EPSD) de la réponse peuvent alors être obtenus grâce aux coefficients d'ondelettes calculés. Un exemple numérique démontre la faisabilité et l'efficacité de cette méthode.

Ensuite, la méthode proposée est utilisée pour analyser la réponse de différents systèmes non linéaire à plusieurs degrés de liberté (M-DOF). D'abord, le déplacement et l'EPSD d'un système 4-DOF soumis à une excitation sismique sont analysés. Puis un système linéaires couplé à un système non linéaire soumis à une combinaison d'excitations périodique et stochastique est étudié. Le système non linéaire absorbe passivement l'énergie à large bande du système linéaire, agissant comme un puit d'énergie (NES). La méthode des ondelettes de Galerkin est utilisée pour exprimer les équations de mouvement par un ensemble d'équations algébriques non linéaires. Dans l'exemple numérique, les algorithmes de Broyden inverse Rank-1 iB, de Broyden-Fletcher-Shanno Rank-2 BFS, de DFP et de Broyden-Fletcher-Goldfarb-Shanno sont utilisés pour estimer la matrice Jacobienne. Le nombre d'itérations, le temps de calcul et l'erreur relative sont comparés, montrant que l'algorithme iB de rang 1 est mieux adapté pour ce problème dans les deux cas analysés.

Enfin, la méthode proposée est utilisée pour analyser la réponse forcée d'un système de rotor-pale variant périodiquement dans le temps et sollicité par un processus stochastique non-stationnaire non-gaussien à modulation non-uniforme. Les fonctions trigonométriques du système peuvent être combinées avec celles de PGHW dans la méthode des ondelettes de Galerkin pour décrire le mouvement et la méthode quasi-Newton avec Rank-1 iB est utilisée pour approximer la matrice Jacobienne. Avec les coefficients d'ondelettes obtenus, l'EPSD de la réponse est obtenue. L'algorithme Runge-Kutta et la méthode Monte Carlo sont utilisés pour vérifier ces résultats.

Mots clés PGHW; méthode Wavelet-Galerkin; méthode Quasi-Newton; excitation stochastique; EPSD; analyse temps-fréquence Response analysis of mechanical systems subjected to deterministic and stochastic excitations by the wavelet-Galerkin method

Abstract

In the aerospace, civil and mechanical engineering fields, equipment can be subjected to exceptional random loads from earthquakes, storms, uneven tracks, etc. The analysis of the system response under these loads is therefore necessary for its design.

Over the years, wavelet transforms have been developed based on the idea of Fourier transform whit the addition of temporal location information to become essential tools in signal processing and spectral analysis which can transform the signal between the time and frequency domains. The primary function of the Fourier transform is the trigonometric function, while that of the wavelet transform is the finite-length decaying wavelet function. Wavelet transforms have several advantages, for example, they allow a more flexible choice of the resolution to analyze the signal, they perform a joint multi-scale analysis of the signal simultaneously in the time and frequency domain, they can analyze abrupt signals, etc. Among wavelet transforms, the periodic generalized harmonic wavelet (PGHW) allows the analysis of vibration signals of limited duration and can be used as a basis for developing the equations of motion of nonlinear systems with random excitation.

First, the PGHW basis is used to analyze the response of the Duffing oscillator subjected to seismic excitation. With the Galerkin wavelet method, a set of nonlinear algebraic equations are expressed from the equation of motion. The Davidon-Fletcher-Powell (DFP) quasi-Newton method is chosen to solve these equations. It is more efficient than the Newton method due to an approximation of the Jacobian matrix in the iterative process. Then, the displacement and the estimated power spectral density (EPSD) of the response can be obtained from the solved wavelet coefficients. A numerical example is presented to demonstrate the feasibility and effectiveness of the proposed method.

Next, the proposed method is used to analyze the response of various nonlinear multi-degree-of-freedom (M-DOF) systems. First, the displacement and EPSD of a 4-DOF system subjected to seismic excitation are analyzed. Then, a linear system coupled to a nonlinear system subjected to a combination of periodic and stochastic excitation is studied. The nonlinear system passively absorbs the broadband energy of the linear system, acting as a nonlinear energy sink (NES). PGHW and Galerkin wavelet methods are used to express the equations of motion by a set of nonlinear algebraic equations. In the numerical example, the algorithms of Single rank inverse Broyden (Rank-1 iB), Rank-2 Broyden-Fletcher-Shanno (Rank-2 BFS), DFP, and Broyden-Fletcher-Goldfarb-Shanno (BFGS) are used to estimate the Jacobian matrix. The number of iterations, calculation time, and relative error are compared, and it is concluded that the Rank-1 iB algorithm is better at solving this problem in both cases analyzed. Finally, the displacement and EPSD of response are obtained and shown by using the optimal algorithm. Finally, the PGHW method is used to analyze the forced response of a rotor-blade system varying periodically in time. A non-stationary non-Gaussian stochastic process with a non-uniform modulation is considered for its solicitation. The trigonometric functions of the system can be combined with those of PGHW in the Galerkin wavelet method to describe the motion and the quasi-Newton method with Rank-1 iB is used to approximate the Jacobian matrix. With the obtained wavelet coefficients, the EPSD of the response is produced. The Runge-Kutta algorithm and the Monte Carlo method are used to verify these results.

Keywords PGHW; Wavelet-Galerkin method; Quasi-Newton method; Stochastic excitation; EPSD; Time and frequency analysis
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 2 The integral sum of the square of the mother wavelet function over the definition domain is finite.
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 21 Figure 2.1: The amplitude of the real and imaginary parts of ψ G,per (m,n),k (t)
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 22 Figure 2.2: Flow chart of the fast PGHW transform
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 2 -∞ < ω < ∞ where ω s = 20 rad/s, ζ s = 0.24 denote the damping ratio and stiffness of the local ground site, respectively; S 0 = 1 is a PSD intensity magnitude coefficient. The surface and contour of S f f (ω, t) in Eq. (3.7) with the Kani-Tajimi seismic spectrum are shown in Fig. 3.1.
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 32 Figure 3.2: A sample f s (t) of the stochastic process f (t)
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 33 Figure 3.3: The displacement of z(t)
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 36 is calculated and shown in Fig.3.4. The iteration threshold is set as error(n + 1) < 5 × 10 -4 .
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 3 Fig. 3.6 and Fig. 3.5. The response EPSD at several typical moments are shown in Fig. 3.7.
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 3839 Figure 3.8: The variance of displacement
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 1 Response and EPSD of chain-like MDOF nonlinear structural systems via wavelet-Galerkin method 4.1.1 Introduction
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 41 Figure 4.1: The model of the MDOF structural system subject to the seismic excitation
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 842 Figure 4.2: The flowchart of quasi-Newton method
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 8 are damping ratio and predominant frequency of foundation soil; ω f = 2.692 rad/s and ξ f = ξ g = 0.8 are used to simulated the variation of low-frequency seismic energy; S 0 = 1 cm 2 /s 3 is spectral intensity factor. The determination of these values refers to the building seismic design code issued by China (GB50011-2001). The surface and contour of S f f (ω, t) in Eq. (3.7) with the Clough-Penzien seismic model are shown in Fig. 4.3.
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 44 Figure 4.4: A sample f s (t) of the stochastic excitation f (t)
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 45 Figure 4.5: The relative error of wavelet coefficients α (n+1) and α (n)
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 46 Figure 4.6: The displacement of z 1 (t), z 2 (t), z 3 (t), z 4 (t)
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 4748 Figure 4.7: The surface and contour of the response EPSD (node = 1; Wavelet-Galerkin)
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 49410411412413 Figure 4.9: The surface and contour of the response EPSD (node = 4; Wavelet-Galerkin)

2 . 2 .

 22 Let T = 102.4, N = 1024, t = [0, T ), ∆t = 0.1, ω max = π/∆t, ∆ω = 2ω max /N, N t = n -m = 32, N J = 16; µ = 0.08, ε = 0.2, λ = 0.5, ω 0 = 1 rad/s, a = 1, f p1 = 1, f p2 = 10, S 0 = 1, s 1 = 0.08. The periodic excitation f p (t) is shown in Fig. 4.14. And a typical sample fs (t) can be obtained and shown in Fig. 4.14 according to the non-separated PSD (4.14) and spectral representation method (4.15). Thus, a sample of the combined periodic and stochastic excitation f p (t) + fs (t) can be obtained and shown in Fig. 4.15.
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 414415 Figure 4.14: The periodic excitation f p (t) and a sample fs (t) of the stochastic excitation f s (t)
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 4 Fig. 4.16. The iteration threshold is set as error(n + 1) < 2 × 10 -2 .
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 416 Figure 4.16: The relative error (Case 1 and Case 2)
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 417418 Figure 4.17: The displacement of u 1 , v 1 , and v 3 (Case 1)
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 24 And the cubic nonlinear terms and trigonometric function nonlinear terms are considered here. Let N sample = 200 and the values of other variables are the same as described in Section 4.2.4. By using the quasi-Newton and Monte Carlo methods and according to Eq. (2.23), the surface and contour of the response EPSD are obtained and shown in Fig. 4.19-4.22. Here only the EPSD of u 1 and v 1 are shown for brevity. It can be seen from Fig. 4.19-4.22 that similar results can be obtained by using the wavelet-Galerkin and Monte Carlo methods, which verifies the effectiveness.
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 419420 Figure 4.19: The contour of the response EPSD of u 1 and v 1 (Case 1; wavelet-Galerkin)
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 421 Figure 4.21: The contour of the response EPSD of u 1 and v 1 (Case 2; wavelet-Galerkin)
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 51 Figure 5.1: The rotor-balde system

  (5.1) at the constant angular velocity Ω = 300 rpm = 10π rad/s. The schematic of the time-varying assembled matrices M(t), C(t), K(t) are shown in Fig. 5.2.
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 52 Figure 5.2: The schematic of assembled matrices M(t), C(t), K(t)
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 53 Figure 5.3: The modulating function g(t)
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 542 Figure 5.4: The contour of S ff (ω, t)
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 55 Figure 5.5: A sample f (t) of the stochastic process f (t) and its amplitude

  vibration and that the transient component of the response is included in the analysis. Consequently, the frequencies derived from the FL theory are not expected to fully coincide with the empirical results from the PGHW and MC methods. The frequencies of the linear free system as determined by the F-L theory are 76.69 rad/s, 90.02 rad/s, 113.04 rad/s, 113.16 rad/s, 115.49 rad/s, 117.36 rad/s. These results are shown in Fig. 5.6-5.9 for a clearer view.
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 518519 Figure 5.18: The EPSD q1,1 at different typical moments
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 2 are shown in Fig. 5.20-5.23. The consistency of these results ensures the effectiveness of the proposed method.
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 523 Figure 5.23: The variances of q 2,1
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 4 Study the controllers and shock absorbers of mechanical systems and solve the equations of motion of such systems by this PGHW method or other feasible methods.
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 61 Figure 6.1: Distribution of sample points
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 2 k+1 = x k -(f ′ (x k )) -1 f (x k ) , k = 1, 2, . . . n(6.4) 

  have different construction formulas to get the Jacobi matrix ∆f ′ (x k ). The most commonly used algorithms are Broyden rank-1, Broyden rank-2, DFP, BFGS and L-BFGS algorithms. The formulas of these algorithms are shown below, where B k+1 = (∆f k+1 (α)) -1 , B k = (∆f k (α)) -1 , s k = x k+1 -x k and y k = f k+1 -f k .

  ψj,l (t)dt = 0 and the connection coefficients shown in Eqs. (2.14)-(2.16), the Eq. (4.5) can be simplified to

	i	k

Table 4 . 1 :

 41 λ 1 , λ 2 , . . . , λ n d = 2. The values of k 1 , k 2 , . . . , k n d and c 1 , c 2 , . . . , c n d are shown in Table 4.1. The coefficients of mass, damping and stiffnessThe stochastic excitation is considered as F (t) = [m 1 ; m 2 ; m 3 ; m 4 ] × f (t), f (t) is a non-stationary stochastic process with uniform modulation. The evolutionary separable PSD of the non-stationary stochastic process can be written as Eq.

	Parameters\node	1th	2th	3th	4th
	Mass [T]	1	1	1	1
	Damping	5.4	4.4	3.1	1.7
	Stiffness [kN/m]	828	678	481	256

(3.7) and the modulating function is g(t) = 4 × [exp(-0.15t) -exp(-0.3t)].

Table 4 .

 4 2 and Table 4.3.It can be seen from Table4.2 and Table4.3 that there are some differences in the number of iterations and calculation time and the relative errors of response u 1 , u 2 , v 1 , v 2 , v 3 are almost the same. It can be concluded that the algorithm of Rank-1 iB is a better one for solving this problem in both cases because it uses the least number of iterations and

	computation time.				
		Rank-1 iB Rank-2 BFS	DFP	BFGS
	Number of iterations	13	15	13	15
	Calculation time	153.26 s	154.97 s	186.25 s 189.78 s
	Relative error of u 1	6.4024	6.4023	6.4022	6.4023
	Relative error of u 2	6.6268	6.6267	6.6265	6.6267
	Relative error of v 1	11.7697	11.7730	11.7672 11.7730
	Relative error of v 2	8.6431	8.6292	8.6327	8.6292
	Relative error of v 3	9.2909	9.3008	9.2322	9.3008

Table 4 . 2 :

 42 Calculation information of Case 1.

Table 4 . 3 :

 43 Calculation information of Case 2.

		1 iB Rank-2 BFS	DFP	BFGS
	Number of iterations	7	9	9	9
	Calculation time	134.78 s	139.60 s	167.77 s 165.41 s
	Relative error of u 1	6.0235	6.0217	6.0234	6.0217
	Relative error of u 2	6.2741	6.2731	6.2741	6.2731
	Relative error of v 1	12.5704	12.5917	12.5725 12.5917
	Relative error of v 2	11.3829	11.2368	11.3781 11.2368
	Relative error of v 3	11.7049	11.5610	11.6939 11.5610

  [START_REF] Yu | Optical image encryption algorithm based on phase-truncated short-time fractional fourier transform and hyper-chaotic system[END_REF], the part with the strongest energy (Fuschia area) is displayed around 3s. And the maximum errors and their corresponding time and frequency values are shown in Table5.2. It can be seen from Table5.2 that the maximum errors are very small, so they can be ignored. The corresponding frequency values of the maximum errors of EPSD x h ,EPSD y h and EPSD q1,1 , EPSD q2,1 are 91.1062 rad/s and 127.2345 rad/s respectively. It can be clearly seen that the maximum errors occur around the frequency values corresponding to the predominant peaks at each part. The corresponding time value of the maximum errors is

about 3s, which is also because of the adjustment function g(t).

Table 6 . 2 :

 62 Approximate value of π with different number of samplesWith the development of computer technology, the Monte Carlo method has been rapidly popularized in the past 10

The random process {x k (t)} or X(t) will be considered in the vector z(t) with the stochastic case
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The rotor orbit is shown in Fig. 5.11, where + represents the starting point and O represents the ending point. A 2-D histogram of the passage is also presented in Fig. 5.11. From these graphics, the range of motion under this excitation can be seen. As expected, the range of motion in the direction in which the excitation is being applied, y h is larger than that of x h . No closed orbit can be easily distinguished, which reflects the fast variation of the forcing function. Relating to the trend in the excitation, three phases can be distinguished: a first phase in which the rotor is rapidly moving away from equilibrium, a phase around a relatively established orbit that then decays back towards the equilibrium as the excitation diminishes in the last part of the sampled time interval.

Concerning the histogram graph: a mesh is imposed over the space of motion, and each point in the time-domain solution is classified within one of the cells of the mesh. The high-frequency cells correspond to those in which the center of the rotor has occupied the most. Consistent with the last paragraph, the cells with the highest occupation are first concentrated around equilibrium, with a cluster of cells of large occupation on a region surrounding the equilibrium. Monte Carlo method, also known as the statistical simulation method and statistical experiment method, is a numerical simulation method guided by the theory of probability and statistics proposed in the 1940s due to the development of science and technology and the invention of electronic computers. It is widely used in financial engineering, macroeconomics, biomedicine, computational physics (such as particle transport calculations, quantum thermodynamic calculations, aerodynamic calculations), machine learning, and other fields.

The Monte Carlo method with N sample = 200 is considered here. Then, the EPSD of the response can be solved directly according to Eq. (2.23). These corresponding results are presented in Fig. 5.12-5.15. In order to further verify the consistency of the results, the EPSD of the response at several typical moments are shown in Fig. 5. 16-5.19. And

Appendix 1

Ode is a Matlab function dedicated to solving differential equations. There are seven functions for finding numerical solutions of differential equations in Matlab: ode45, ode23, ode113, ode15s, ode23s, ode23t, ode23tb. The details about these ode solvers are shown in Table 6.1. There are two types of solvers, variable-step and fixed-step. Different types have different solvers, among which ode45 solver is a type of variable-step and uses the fourth-order and fifth-order Runge-Kutta algorithm, which means that it provides candidate solutions by the fourth-order method and controls the error by the fifth-order method. Other variable-step solvers using the same algorithm are ode23. Ode45 is the preferred method for solving numerical problems. In numerical analysis, the Runge-Kutta methods are a family of implicit and explicit iterative methods, which include the Euler method, used in temporal discretization for the approximate solutions of simultaneous nonlinear equations.

These methods were developed around 1900 by German mathematicians named Carl Runge and Wilhelm Kutta [START_REF] Hairer | The numerical solution of differential-algebraic systems by Runge-Kutta methods[END_REF].

The Runge-Kutta method is a high-precision single-step algorithm that has been widely used in engineering. The Runge-Kutta method is derived from the corresponding Taylor series method, in which the interpolation nodes are expanded by the Taylor series at each interpolation node, and the truncation error order is O (h n ). According to O (h n ), the derivative calculation of higher order can be omitted, and this method can construct the Runge-Kutta method of arbitrary order. Among them, the fourth-order lunger-Kutta method is the most commonly used one. It is quite accurate, stable, and easy to program. It is generally not necessary to use higher-order methods because the additional computational errors can be compensated by increasing the accuracy. If higher accuracy is required, it can be achieved by reducing the step size.

The exact solution of the first-order initial value problem

has derivatives of all orders and is continuous on [x 0 , X]. The fourth-order Runge-Kutta method for calculating y n+1

has the following equation.

The truncation error order of Eq. (6.1) is O h 5 .

Appendix 2

The Monte Carlo method, also known as the statistical simulation method or statistical experiment method, is a numerical calculation method guided by the theory of probability and statistics proposed in the mid-1940s due to the development of science and technology and the invention of electronic computers. It is a way to solve many computational problems using random numbers or, more commonly, pseudo-random numbers. The problem to be solved is linked with a certain probability model, and the statistical simulation or sampling is realized by an electronic computer to obtain the approximate solution to the problem.

The method was invented in the 1940s by scientists Stanislaw Marcin Ulam, Enrico Fermi, Johnvon Neumann and Nicholas Constantine Metropolis while working on the nuclear weapons program at Los Alamos National Laboratory.

In order to symbolically indicate the probability and statistical characteristics of this method, it is named after Monte Carlo, a city famous for gambling in Monaco. The basic idea of the Monte Carlo method has been discovered and utilized by people a long time ago. As early as the 17th century, it was known to use the 'frequency' of an event to determine the 'probability' of an event. In the 18th century, the famous needle problem was proposed by Georges Louis Leclerede Buffon [START_REF] Wegert | From the buffon needle problem to the kreiss matrix theorem[END_REF]. This is the Monte Carlo simulation experiment, and he later wrote this experiment into his paper. This is considered the origin of the Monte Carlo method. In the 19th century, people used the method of throwing a needle to determine the value of π. The method of statistical sampling is actually known to mathematicians for a long time, but before the advent of computers, the cost of random number generation is very high, so this method has no practical value. With the rapid development of computer technology in the second half of the 20th century, stochastic simulation technology quickly entered a practical stage.

Usually, Monte Carlo methods solve various mathematical problems by constructing random numbers that conform to certain rules. For those problems that are too complicated to obtain analytical solutions or have no analytical solutions at all, the Monte Carlo method is an effective method to obtain numerical solutions. A simple application of the Monte Carlo method to approximate the calculation of pi is presented below. Two random numbers between 0 and 1 are generated by using Matlab, and then see if the point with these two real numbers as the abscissa and ordinate is within the unit circle. A series of random points are obtained, and the number of points within the unit circle and the total number of points can then be counted. The ratio of the area of a circle to the area of a square is pi:1, and the statistical result ratio is the value of pi. When there are more random sampling points, the result is closer to pi. These results are shown in fig. 6.2 and Table 6.2.

Appendix 3

Iterative methods for nonlinear equations Nonlinear equations are equations in which the relationship between the dependent variable and the independent variable is not linear but, for example, squared, logarithmic, exponential, trigonometric, etc. Solving such equations is often difficult to obtain exact solutions, and often requires approximate solutions. The common methods of approximation are the Bisection method, fixed point method, Newton iteration method, and quasi-Newton iteration method, etc.

For the function y = f (x) that is continuous on the interval [a, b] and f (a) -f (b) < 0, the Bisection method continuously divides the interval where the zero point of the function f (x) is located, so that the two endpoints of the interval gradually approach the zero point, and then the zero point approximation is obtained. The algorithm of this method is simple and easy to program. However, if there are several zeros on [a, b], only one of the zeros can be calculated. Even if there are zeros on [a, b], the formula f (a)f (b) < 0 may not be satisfied. These limit the use of this method. The fixed point method needs to change the equation f (x) = 0 to the equivalent form x = φ(x) which is convenient for iteration so that the iterative formula x k+1 = φ(x k ) can be constructed. If the obtained sequence x k satisfies lim k→∞ x k = x * , then x * is the fixed point or approximate solution. There are two necessary conditions in applying this method: formulating the equation into a suitable operator equation and choosing a suitable space and finding the solution of the equation in it. These also limit the use of this method. Then, the most commonly used Newton method and quasi-Newton method are introduced.

Newton method

For the nonlinear equation f (x) = 0, various iterative formats x k+1 =φ(x k ) can be constructed to solve the nonlinear equation solution or optimization problem. The Newton iterative method is an iterative format constructed by Taylor expansion of the function f (x) = 0 at x 0 .

Take only the linear part of the Eq. ( 6.2) as an approximation to f (x), then the nonlinear equation f (x) = 0 can be rewritten as

If f ′ (x 0 ) ̸ = 0, then the following equation can be get.

x = x 0 -f (x 0 ) f ′ (x 0 )