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n’aurait pas été possible.
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Résumé

Développements méthodologiques pour l’intégration

de données omiques: applications à l’oncologie et

aux neurosciences

Les données dites ”omiques”, sont des données massives et hétérogènes,

issues de la mesure de différents objets biologiques. Par exemple, la

génomique s’intéresse à l’étude du génome (ADN), la transcriptomique

à l’étude des transcrits (ARNs), la protéomique à l’étude des protéines,

etc. L’interaction de l’ensemble de ces omiques entre elles ainsi qu’avec

des facteurs environnementaux produit - à l’échelle d’une cellule, d’un

tissu, ou d’un organisme - un ensemble de caractères observables appelé

phénotype. Un des objectifs ultimes de la recherche en sciences de la vie

est l’élucidation de la diversité du phénome (c’est-à-dire de l’ensemble

des phénotypes observables) par l’identification des facteurs internes,

environnementaux et de leurs interactions, associés à chaque phénotype.

Ce manuscrit de thèse aborde la question de l’intégration de données

- définie comme une solution permettant l’utilisation de multiples sources

d’information (données) pour mieux comprendre un système, une sit-

uation, une association, etc. - et particulièrement de la question de

l’intégration de données omiques, c’est-à-dire tout type d’intégration
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de sources de données provenant de différentes omiques, et/ou d’une

même omique mesurée dans différents contextes expérimentaux et/ou

de données omiques avec un type de données non-omique.

Dans une première contribution, nous proposons une nouvelle stratégie

pour le clustering consensus de données multi-omiques pour la détection

de sous-types moléculaires de cancers. Cette stratégie permet, à par-

tir de clusterings de cohortes de patients obtenus en considérant di-

verses données omiques et/ou différents algorithmes de clusterings exis-

tants, de produire un clustering consensus en réconciliant l’ensemble des

prédictions contenues dans les clusterings soumis en entrée de l’algorithme.

Deux scénarios d’intégration ont été testés : une intégration dite ”multi-

to-multi”, produite par intégration de clusterings multi-omiques et une

intégration dite ”single-to-multi”, produite par l’intégration de cluster-

ings générés indépendamment pour différents omiques.

Dans une seconde contribution, nous proposons une stratégie de

détection de groupes de liens différentiellement co-exprimés identifiés

par la comparaison de plusieurs jeux de données de type cas/contrôle.

Elle repose sur la construction et l’analyse de réseaux multi-couches

de co-expression différentielle, chaque couche représentant l’ensemble

des dérégulations de la co-expression génique observée pour un con-

texte expérimental donné. La détection de groupes de liens de co-

expression différentielle topologiquement similaires (c’est-à-dire impli-

quant un même ensemble de gènes) et observées dans les mêmes sous-

ensembles de couches du réseau permet d’identifier des mécanismes

associés à une maladie dans différents contextes expérimentaux (tis-

sus, stade de développement, etc.), ou associés à différentes maladies.
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Nous avons appliqué la stratégie développée à la détection de motifs

de co-expression différentielle dans l’hippocampe et le cortex de souris

modèles de la maladie d’Alzheimer, ce qui nous a permis d’identifier des

motifs clés de dérégulation de l’expression génique associés au phénotype

pathologique. Certains de ces motifs ont été observés dans le cortex

comme dans l’hippocampe, tandis que d’autres apparaissent spécifiques

à l’une ou l’autre des deux structures cérébrales. Cette preuve de con-

cept démontre la pertinence de la stratégie pour l’identification de per-

turbations de la co-régulation génique et la caractérisation transcrip-

tomique de la diversité des phénotypes.

Mots-clés Données omiques ; Intégration de données ; Oncologie ; Neu-

rosciences ; Bioinformatique
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Abstract

Methodological developments for omics data inte-

gration: applications to oncology and neurosciences

”Omics” data are massive and heterogeneous data types, obtained from

the measurement of different biological objects. For example, genomics

is the study of the genome (DNA), transcriptomics is the study of tran-

scripts (RNAs), proteomics the study of proteins, etc. The interaction

of all these omics with each other and with environmental factors pro-

duces - at the scale of a cell, a tissue, or an organism - a set of observable

characteristics called phenotype. One of the ultimate goals in life sci-

ence research is the elucidation of the diversity of the phenome (i.e., the

set of observable phenotypes) by identifying the internal and environ-

mental factors and their interactions associated with each phenotype.

This thesis manuscript addresses the issue of data integration - de-

fined as a solution allowing the use of multiple sources of information (or

data) to better understand a system, a situation, an association, etc. -

and particularly the issue of omics data integration, i.e., any kind of in-

tegration of data sources coming from different omics, and/or from the

same omics measured in different experimental contexts and/or from

omics data with a non-omics data type.
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In a first contribution, we propose a novel strategy for the consensus

clustering of multi-omics data, designed for the prediction of molecu-

lar subtypes of cancers. This strategy aim, from a set of clusterings

of a patient cohort obtained by considering various omics data and/or

different existing clustering algorithms, to produce a consensus clus-

tering by reconciling all the predictions contained in the clusterings

submitted as input to the algorithm. Two integration scenarios were

tested: a ”multi-to-multi” integration scenario, through the integra-

tion multi-omics clusterings obtained from existing integrative cluster-

ing strategies, and a ”single-to-multi” integration scenario, through the

integration of single-omics clustering independently produced for sev-

eral omics.

In a second contribution, we propose a novel strategy for detecting

differentially co-expressed link communities by comparing co-expression

patterns in multiple case/control datasets. The strategy is based on the

construction and analysis of multi-layer differential co-expression net-

works, each layer representing a set of dysregulations of gene pairwise

co-expression observed in a given experimental context. The detection

of topologically similar (i.e., involving the same set of genes) link com-

munities consistently observed across subsets of layers of the network

allows the identification of molecular mechanisms associated with a dis-

ease in different experimental contexts (tissues, developmental stage,

etc.), or associated with multiple diseases. We applied this strategy for

the detection of differential co-expression patterns in the hippocampus

and the cortex of Alzheimer’s disease model mice, allowing the iden-

tification of key gene co-expression dysregulation patterns associated

10



with the pathologic phenotype. Some of these patterns were observed

in both the cortex and the hippocampus, while others appeared to be

specific to one or the other of the two brain structures. This proof of

concept demonstrates the relevance of the strategy for identifying gene

co-regulation perturbations and to characterize the transcriptomic di-

versity of phenotypes associated with disease.

Keywords Omics data ; Data integration ; Oncology ; Neurosciences ;

Bioinformatics
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Résumé étendu

Développements méthodologiques pour l’intégration

de données omiques: applications à l’oncologie et

aux neurosciences

Les données dites ”omiques”, sont des données massives et hétérogènes,

issues de la mesure de différents objets biologiques. Par exemple, la

génomique s’intéresse à l’étude du génome (ADN), la transcriptomique

à l’étude des transcrits (ARNs), la protéomique à l’étude des protéines,

etc. L’interaction de l’ensemble de ces omiques entre elles ainsi qu’avec

des facteurs environnementaux produit - à l’échelle d’une cellule, d’un

tissu, ou d’un organisme - un ensemble de caractères observables appelé

phénotype. Un des objectifs ultimes de la recherche en sciences de la vie

est l’élucidation de la diversité du phénome (c’est-à-dire de l’ensemble

des phénotypes observables) par l’identification des facteurs internes,

environnementaux et de leurs interactions, associés à chaque phénotype.

Contexte Les récentes avancées en matière de séquençage et d’acquisition

de données ont permis l’augmentation du volume et de la diversité des

données collectées en biologie, ainsi que le développement de nouveaux

modèles de recherche, comme la médecine de précision. Ainsi, de plus en
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plus d’objets biologiques différents, identifiés par type d’omiques, sont

susceptibles d’être mesurés et analysés. Les données sont également de

plus en plus accessibles à la communauté scientifique grâce au développement

de nombreuses bases de données spécialisées dans le dépôt de données

omiques et non-omiques, comme des données de connaissance (inter-

actions protéiques, voies biologiques, annotations géniques, etc.), des

métadonnées telles que des données cliniques, etc.

Les omiques sont aujourd’hui mesurées de façon routinière et de

nombreuses méthodes et outils spécialisées pour l’analyse de chaque

type d’omique ont été et sont toujours développées. Mais si l’étude

individuelle de chaque type de données est très informative, leur analyse

simultanée peut permettre de révéler de nouveaux motifs d’interactions

entre les omiques, une signature moléculaire, en lien avec un phénotype

d’intéret. C’est pourquoi la question de l’intégration de données est

une problématique essentielle en bioinformatique et en médecine, afin

de mieux comprendre les mécanismes moléculaires associés à différentes

maladies.

Nous définissons la notion d’intégration de données en tant que solu-

tion permettant l’utilisation de multiples sources d’information (données)

pour mieux comprendre un système, une situation, une association,

etc., selon la définition proposée par [Gomez-Cabrero et al.]. Nous

définissions la notion d’intégration de données omiques comme tout

type d’intégration de multiples sources de données provenant de différentes

omiques, et/ou d’une même omique mesurée dans différents contextes

expérimentaux et/ou de données omiques avec un type de données non-

omique.
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Dans ce manuscrit de thèse, je considère la question de l’intégration

de données omiques par le développement de deux nouvelles stratégies

pour l’analyse et l’intégration de données omiques. La première per-

met l’intégration de différents types données omiques par une anal-

yse de ”clustering consensus” et a été appliquée dans un contexte de

sous-typage moléculaire de patients atteints de différents types de can-

cer. La seconde permet la détection de motifs de différence de co-

expression génique à travers plusieurs conditions expérimentales et a

permis d’identifier des motifs de co-expression différentielle dans l’hippocampe

et le cortex de souris modèles de la maladie d’Alzheimer.

Clustering Consensus pour le sous-typage de cancers Un cancer peut se

développer sous différents sous-types moléculaires, selon les mutations

et les gènes impactés. Ces sous-types moléculaires ne présentent pas

les mêmes mécanismes de développement de la maladie, et répondent

différemment aux traitements. Ainsi, l’identification du sous-type est

cruciale pour la mise en place de traitements adaptés à chaque indi-

vidu. Cette prédiction du sous-type de cancer a longtemps été réalisée

en considérant spécifiquement les profils d’expression génique (tran-

scriptomique) des patients, par une approche de clustering, c’est-à-

dire en regroupant les individus de telle sorte que les patients au sein

d’un groupe présentent des caractéristiques transcriptomiques simi-

laires entre eux, mais dissimilaires avec les individus des autres groupes.

Cependant, d’autres types d’omiques participent à la mise en place du

phénotype pathologique, et une intégration d’autres sources de données

omiques pourrait permettre une compréhension bien plus exhaustive
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des mécanismes moléculaires sous-jacents. Ainsi, récemment, l’effort a

été mis sur le développement de méthodes pour le sous-typage multi-

omique de cancer, basées sur des stratégies de clustering mutli-omique.

Plusieurs outils ont été développés à cet effet, dont certains ont été

testés et comparés par [Rappoport et Shamir] pour le sous-typage de

10 types de cancer par l’analyse de données d’expression génique, de

méthylation de l’ADN, et d’expression de micro-ARN. Cette évaluation

comparative a mis en évidence qu’aucune des stratégies testées n’était

meilleure que toutes les autres sur la base des métriques de qualité

évaluées dans cette étude, et qu’il n’était ainsi pas possible de recom-

mander l’utilisation d’une stratégie en particulier. Cela illustre une

problématique récurrente en bioinformatique - que ce soit dans un con-

texte multi-omique ou single-omique (un seul type de données con-

sidéré) - qui est la question de l’estimation de la qualité biologique de

résultats d’analyse, et celle du choix d’une stratégie d’analyse parmi

l’ensemble des méthodes existantes.

Face à l’hétérogénéité des données omiques et la diversité des méthodes

de clustering single- et multi-omiques, nous avons développé une stratégie

de clustering consensus qui permet de s’attaquer au problème de l’intégration

de données omiques tout en tirant partie des stratégies de clustering

existantes. La stratégie repose sur la notion de Clustering par Ac-

cumulation de Preuve (CAP), introduite par [Fred et Jain]. Dans ce

contexte, on considère chaque co-occurrence de patients dans les clus-

ters prédits par un algorithme de clustering existant comme une preuve

de l’association de ces patients. C’est l’accumulation de ces preuves par

l’inclusion de divers clusterings produits par d’autres méthodes et/ou
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sur d’autres jeux de données qui permet de distinguer les associations

les plus ”supportées” par l’ensemble des jeux de données et des outils

de clusterings utilisés sur ces jeux de données.

La stratégie d’intégration par clustering consensus développée au

cours de cette thèse est détaillée dans ce manuscrit, et la publication

associée est accessible avec la citation suivante :

[Brière et al.] Galadriel Brière, Élodie Darbo, Patricia Thébault,

and Raluca Uricaru. Consensus clustering applied to multi-omics dis-

ease subtyping. BMC Bioinformatics, 22(1):361, July 2021, doi: 10.1186/s12859-

021-04279-1.

Dans cette étude, nous avons considéré la question du sous-typage

multi-omique par deux approches:

(i) Par une approche ”Multi-to-Multi”, nous choisissons de tirer par-

tie de l’ensemble des stratégies de clustering multi-omique exis-

tantes et de réconcilier les prédictions réalisées par ces différents

outils. L’algorithme prend donc en entrée un ensemble de clus-

terings multi-omiques et produit un consensus mutli-omique en

réconciliant les prédictions contenues dans les clusterings soumis.

(ii) Par une approche ”Single-to-Multi”, nous produisons d’abord un

ensemble de clusterings pour chacun des omiques considérés et le

consensus mutli-omique est produit en réconciliant les prédictions

single-omiques contenues dans chaque clustering single-omique con-

sidéré en entrée.

Nous avons testé notre outil sur un ensemble de 10 types de cancer
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pour l’intégration de 3 omiques et en comparaison avec des stratégies

existentes. Les résultats obtenus démontrent l’intérêt de telles méthodes

consensus pour le sous-typage et l’intégration de données omiques.

Intégration de réseaux de co-expression différentielle La question de

l’intégration des données ne se limite pas à l’analyse conjointe de divers

types de données omiques, puisque la diversité des conditions expérimentales

sous lesquelles ces données sont récoltées peut également faire émerger

un besoin d’intégration pour élucider les mécanismes moléculaires as-

sociés à différents phénotypes.

Nous nous sommes intéressées à la caractérisation des motifs de

co-expression génique différentielle associés à l’hippocampe et au cor-

tex d’un modèle murin de la maladie d’Alzheimer. L’objectif était

d’identifier des motifs de dérégulation transcriptomique spécifiques à

une structure cérébrale, ou observés de manière récurrente dans l’hippocampe

et le cortex de ces souris modèles.

L’analyse de co-expression génique permet d’identifier, à travers

un ensemble d’échantillons, des motifs d’association des gènes. Cette

analyse vise à identifier des groupes (modules) de gènes dont le profil

d’expression est similaire dans l’ensemble des échantillons observés. Il

a été montré que les gènes co-exprimés présentent généralement une

similarité fonctionnelle, ce qui permet d’inférer des informations sur

des gènes peu annotés en utilisant un concept de ”culpabilité par asso-

ciation” (guilt by association). Ces modules de gènes peuvent donc être

associés à des fonctions biologiques et des phénotypes d’intérêt. Cepen-

dant, pour les jeux de données de type cas/contrôle, l’analyse de co-
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expression ne permet pas directement de mener une analyse compara-

tive des phénotypes inclus, et une analyse de co-expression différentielle

est plus appropriée. Les stratégies d’analyse de co-expression différentielle

permettent d’identifier des associations géniques conditionnelles, c’est-

à-dire des liens de co-expression qui apparaissent ou disparaissent en

fonction selon les conditions expérimentales. Ces approches ont pour

but d’identifier les motifs de dérégulation de la co-expression génique et

sont particulièrement utilisées dans la comparaison de groupes d’échantillons

sains et malades pour identifier les perturbations transcriptomiques as-

sociées à une maladie d’intérêt.

Dans notre étude d’un jeu de données issues de mesures transcrip-

tomiques sur l’hippocampe et le cortex de souris témoins et de souris

modèle de la maladie d’Alzheimer, nous avons construit un réseaux de

co-expression différentielle composé de deux couches, chacune représentant

les dérégulations observées respectivement dans l’hippocampe et le cor-

tex de souris modèle en comparaison avec les échantillons témoins cor-

respondants. Puis, nous avons appliqué une stratégie de détection

de communauté dans les réseaux multi-couche, inspirée des travaux

de [Ahn et al.] et de [Salem et Ozcaglar] portant sur la recherche de

communautés de lien dans les réseaux single- et multi-couches. Con-

trairement aux méthodes traditionnelles de clustering de graphe qui

consistent à identifier des groupes de nœuds dans un graphe, notre

stratégie identifie des groupes d’arêtes, similaires d’un point de vue

topologique et co-occurentes à travers les couches du réseau. Ce type

de partitionnement à l’avantage de considérer le contexte des associa-

tions observées (c’est-à-dire en tenant compte de la ou des couches dans
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lesquelles elles apparaissent). Les sets de genes obtenus en considérant

les gènes impliqués dans chaque communauté de lien sont chevauchants,

c’est-à-dire qu’un même gène peut être retrouvé dans différentes com-

munautés, ce qui est une force dans ce contexte puisqu’un même gène

peut être associé à plusieurs fonctions biologiques, où ne pas intéragir

avec les mêmes ensembles de gènes en fonction du contexte expérimental.

A l’issue de cette analyse, nous proposons un ensemble de gènes

d’intérêt pour la recherche liée à la maladie d’Alzheimer, potentiels

acteurs clés dans le développement du phénotype pathologique.
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Chapter 1

Background and definitions

Living organisms can be modeled as complex and open systems, whose

functioning depends on many components in constant interaction within

themselves and with their environment, and whose understanding and

characterization can only be done through an interdisciplinary and

experience-based study.

With the recent increase in the diversity and quantity of data mea-

sured in biology, the modelling of complex and multi-level processes

in the cell has become a new challenge in bioinformatics studies. More

specifically, the objective is to provide mathematical and and computa-

tional tools to improve our understanding on the relationships between

genotype and phenotype.

To answer this question, it is essential to identify the different bio-

logical objects in all their diversity and their connections/relations with

the aim to address the complexity of a biological system.
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Figure 1.1: Different types of omics data
Adapted from Momeni et al., Journal of Biomedical Informatics, 2020 [1]

1.1 The need for data integration strategies in life

sciences

In bioinformatics, the study of the various molecular components of

living systems are often called ”omics”, referring to different families of

molecules, from DNA for genomics, to RNA for transcriptomics, pro-

teins for proteomics, and so on... All of these omics participate in the

organization of living organisms, and the study of interaction mecha-

nisms within and across omics is essential to characterize a phenotype

extensively.

The major omics families are represented in Figure 1.1, adapted from

Momeni et al., Journal of Biomedical Informatics, 2020 [1].

To guide the reader, and before addressing the problem of the data

integration with its many variations, the following section will provide

the essential concepts to understand the richness of biological data that

became central in bioinformatics.
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1.1.1 ”Omics” and their interactions

Each type of omics can generally be defined as measures of a specific

biological component. The improvement of data production techniques

based on each of these elements has experienced an unprecedented in-

crease since the beginning of this century. In close connection with the

ability to measure these biological components, new ”omics” terms are

regularly suggested to the scientific community. The following para-

graphs propose to define and illustrate some of the major omics types

and their potential in life science research.

Genomics refers to the study of DNA, the molecule that carries genetic

information of all known organisms and DNA-viruses. DNA encodes

all the instructions necessary for the essential processes of living beings,

from their development to their functioning, growth and reproduction.

The structure, variability, evolution and function of DNA are therefore

properties that are widely studied. Structural patterns studied in DNA

include Copy Number Variations (CNV), i.e., the number of copies of a

segment in the genome for a given species, or genomics rearrangements.

DNA-variability is also studied via the detection of Single Nucleotide

Polymorphism (SNP) and insertion-deletion (indels) events. Functional

genomics focuses on identifying and annotating DNA sequences into

functional units.

Epigenomics refers to the study of all epigenetic modifications of the

DNA, i.e., all the reversible modifications of the DNA which do not

affect its sequence but which modify its accessibility, its compaction
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and/or its transcription into RNA. The study of the epigenome is a

crucial key to understanding the relations between genotype and phe-

notype. Essential epigenetic events include micro-RNA (miRNA) and

Transription Factors (TF) binding to DNA, DNA mehtylation, histone

modification and chromatin accessibility.

Transcriptomics refers to the study of RNA, product of DNA tran-

scription. RNA plays multiple roles, acting as a transmitter of genetic

information (messenger-RNA or mRNA, translated into protein), as a

catalyst for certain metabolic reactions (ribozymes, ribonucleic acid en-

zymes), but also as a transcriptional regulator (ribosomal-RNA rNRA,

transfert-RNA tRNA, ...), post-transcriptional regulator (small-RNA

sRNA, in particular micro-RNA, miRNA) and epigenome regulator.

Transcriptomic studies aim at characterizing RNA in terms of sequence,

structure, function, and expression.

Proteomics refers to the study of proteins, which play many functions,

from catalysis of all chemical reactions constituting the metabolism,

regulation of gene expression, to transmission of cellular signals, intra-

cellular transport, as well as cellular and tissue structure. Proteomics

aims at characterizing proteins by their sequence, localization in the

cell, structure, function and expression.

Metabolomics refers to the study of the metabolome (i.e, the set of

metabolites intermediate and end products of metabolism) and its char-

acteristics regarding various environments.
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1.1.2 Phenome

The five omics presented above already merit a joint study to offer a

global characterization of a cell, all other conditions being fixed. Nev-

ertheless, the phenotype of a cell (i.e., the set of its observable traits), is

the result of an interaction between its genotype and its environment,

and therefore, the characterization of a cell , tissue or organism must

also be done according to the set of all its possible phenotypes, also

known as its phenome, which depends on both internal and external

factors.

Internal factors For multi-cellular organisms, the phenotype can be de-

fined at the cell level or at the organism level. The genome is obviously

a main factor of the phenotype. At the cellular level, the phenotype

mainly varies according to the tissue considered. At the organism scale,

the phenotype also varies according to the development stage (devel-

opmental phenotypes and aging phenotypes).

External factors Organisms are in constant interaction with their en-

vironment, and are subjected to different types of stress (biotic and

abiotic) with diverse effects on the phenotype. They can also evolve in

cooperation with other organisms, which will influence their own phe-

notypic traits (symbiosis, parasitism, microbiota).

All of these factors, genetic and environmental, often in a coordi-

nated manner, can cause perturbations that lead to the development

of a pathological phenotype. By describing and highlighting the mech-
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anisms responsible for the pathology through all layers of omics, it is

possible to identify key factors in the establishment or the regulation

of the disease.

The measurement of these different omics profiles has allowed the de-

velopment of new medical disciplines, such as precision medicine which

aim at evaluating the multi-omics characteristics of each patient to pro-

pose treatments tailored to each molecular profiles; but also new fields

of research in data analysis for the integration of these massive and

heterogeneous information.

1.1.3 A plethora of data

As previously described, the diversity of omics data has the great advan-

tage to help researchers to increase the quality of models or predictions.

These data can be complemented by a wealth of non-omics data, such

as knowledge data already acquired by the scientific community. The

following section focuses on assessing the richness of the different types

of omics and non-omics data as well as their accessibility.

1.1.3.1 Types of data in life sciences

Omics data There are two main types of data when considering omics:

Sequence data: DNA sequences (genomics - DNA-sequencing), RNA

sequences (transcriptomics - RNA-sequencing), transcription sites

and other protein binding sites (epigenomics - ChIP-sequencing),

DNA methylation sites (epigenomics - bisulfite-sequencing), pro-

teins (proteomics - protein-sequencing), etc.
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Abundance data: counts (transcriptomics - RNA-sequencing), arrays

(transcriptomics - microarrays; epigenomics - methylation arrays),

metabolite quantification (metabolomics - mass spectometry, Nu-

clear Magnetic Resonance spectroscopy), protein quantification

(proteomics - mass spectometry), etc.

Sequence data are used to produce genome assemblies, homology

analysis, functional annotation, SNPs and other variants detection, and

identifying protein binding sites or methylation sites.

Abundance data are used to perform comparative analysis of RNA,

methylation, proteins or metabolites levels with respect to various ex-

perimental conditions, or as representations of a system’s molecular

profile.

Metadata Omics data are often complemented by metadata to de-

scribe the overall conditions of the experiment. It includes clinical

data, that describe the samples of the omics-analysis. Clinical data

can take many forms, from quantitative data from various clinical tests

or samples description (age, drug dosage, survival, weight, ..), qualita-

tive data (gender, ethnicity, tumor stage, background information, ...)

or even image data (e.g., MRI).

Knowledge data Finally, omics data can be considered with respect

to knowledge data, that can also take many forms, from networks

(Protein-Protein Interaction PPI network, molecular pathways, ...), on-

tologies (Gene Ontology GO, Disease ontology, ...), gene-sets (hallmark

gene-sets, regulatory gene-sets, ...), genome assemblies and known vari-

32



ants, etc.

1.1.3.2 Data accessibility

Many efforts have been made by the scientific community to make all

of this data, metadata and knowledge increasingly accessible, with the

creation of numerous public databases. For example, we can cite knowl-

edge databases on genes and their sequences such as GenBank [2], on

protein interactions such as Stringdb [3], on biological processes such

as KEGG Pathways [4] and WikiPathways [5], or which propose an-

notated gene-sets such as the Gene Ontology [6] or the molecular sig-

nature database MsigDB [7]. The Gene Expression Omnibus (GEO)

database [8] originally hosted RNA-arrays data, but has extended to

host all types of gene expression data as well as other omics-sources

for a wide range of organisms and studies. Moreover, some databases

gather knowledge data, experiment data and metadata for specific re-

search fields such as The Cancer Genome Atlas (TCGA) [9] for cancer

research, or Synapse [10] which proposes portals for brain and mental

health research or for Alzheimer’s disease.

These data, hosted on public databases, are both available to the sci-

entific community and easily accessible, the bioinformatics community

being very active in the development of solutions to facilitate the re-

trieval of these data. Many Application Programming Interfaces (API)

have been developed, for example the Bioconductor/R GEOquery pack-

ages, to access GEO database data, or msigdb to access the MsigDB

molecular signature database, among many others.
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1.2 A definition of data integration

Over the past decades, the amount of biological data being gathered has

increased enormously thanks to advances in biotechnology, in particular

the new sequencing technologies. Today, the amount of data available

and its great diversity offer new opportunities for researchers to develop

novel, faster, more efficient and sophisticated analysis strategies in or-

der to extract knowledge from these massive and complex data. From

this abundance of available data, new areas of research are emerging,

such as precision medicine, which aims to provide care tailored to each

molecular profile.

With the increase of available data, knowledge is growing, organized

in numerous databases and made available to the scientific commu-

nity: e.g., ontologies, known molecular pathways, protein-protein inter-

actions, specialized atlases, candidate disease genes, ... This knowledge

can be used not only to describe analysis results (for example, for an-

notating gene sets), but also directly during analysis, using supervised

learning algorithms for instance.

With this abundance of massive and heterogeneous data comes a

need to develop new methods in order to take advantage of all these

resources, which taken independently, reveal specific but also comple-

mentary patterns of interest. Indeed, a simultaneous analysis of het-

erogeneous data sources could reveal new interaction patterns in the

data, which would not be observed by analyzing each data source in-

dependently. This has motivated the development of a research field

interested in the implementation of new analysis strategies for data
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integration.

Although the issue of data integration is gaining more and more

attention in the scientific community, few publications actually define

this notion.

Introduced in the context of accession to databases sharing overlap-

ping content, the term ”data integration” initially considered only the

aspect of data access. In life sciences, this aspect of data integration has

been studied: Lapatas and co-authors refer to data integration as ”the

computational solution allowing users, from end user (GUI) to power

users (API), to fetch data from different sources, combine, manipulate

and re-analyze them as well as being able to create new datasets and

share these again with the scientific community” [11].

Many efforts have been made to provide unified access to data gath-

ered from multiple sources through public databases. Moreover, efforts

have been made to introduce standard data format for each data type:

fastq/fasta files for sequences, SAM files for alignments, etc. Important

efforts have also been made to define ontologies, formal systems for

modelling concepts and their relationships in diverse domains. These

systems are crucial to organize knowledge data and make it widely

accessible to the scientific community. There is even an initiative to

improve the interoperability of these ontologies (The Open Biomedical

Ontologies (OBO) Foundry [12]).

Therefore, currently in life sciences, the critical aspect of data in-

tegration is not accessing data from several sources, but rather their

joint exploration. Hence, in this thesis, data integration is defined as

”the use of multiple sources of information (or data) to provide a better
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understanding of a system/situation/association/etc”, as described by

Gomez-Cabrero and co-authors in [13].

Moreover, in this manuscript, the terms ”omics data integration”

will not only refer to the integration of multiple omics data types but

also to any (single- or multi-) omics data integration with other non-

omics data types such as clinical data or knowledge data.

1.3 Different types of data integration

Data integration can take many forms, according to the experimental

context and biological question it is applied to.

1.3.1 Depending on the structure of the data

Data integration can take three major forms depending on the data

to fuse and the relationship between the datasets: vertical data inte-

gration, horizontal data integration and a ”diagonal” data integration,

which is neither vertical nor horizontal. These are represented in Fig-

ure 1.2, adapted from Eidem et al., BMC Medical Genomics, 2018 [14].

1.3.1.1 Vertical integration

Vertical data integration considers the same set of samples, for which

different data sources have been measured. The various data sources

to fuse might consider related objects (e.g., correspondence between

genes and proteins when considering genomics and proteomics data) or

entirely unrelated objects (e.g., genes from genomics data and clinical

metadata), i.e., with or without any bipartite relations between the

data sources.
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VERTICAL HORIZONTAL DIAGONAL

Figure 1.2: Vertical, horizontal and diagonal integration
Adapted from Eidem et al., BMC Medical Genomics, 2018 [14]

Vertical integration is mostly used to predict or characterise a trait

on the samples of the experiments, for instance considering the various

omics profiles of a set of patients to perform multi-omics-based disease

subtype prediction [15], or to predict patients survival [16] based on

their multi-omics profiles.

However, vertical integration can also be used to predict or charac-

terize the behaviour or importance of features or group of features from

the experiments [17, 18].

1.3.1.2 Horizontal integration

Horizontal data integration considers the same set of features measured

for different samples across independent experiments. Horizontal data

integration is used to characterise features according to various exper-
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imental conditions of interest.

When the independent experiments to integrate have been generated

to answer the same biological question, horizontal integration can be re-

ferred to as meta-analysis [19]. Meta-analysis can be used to synthesise

the results of multiple experiments, test whether the experiments result

in similar conclusions or increase the statistical power and improve the

robustness of the results [20, 21].

When the independent experiments to be fused have been gener-

ated to answer various biological questions, horizontal integration can

be used to construct features cross-experiment ”repertoires”, groups of

features that behave similarly in a subset of experiments [22, 23] or

group phenotypes according to the proximity of their molecular pro-

files [24].

1.3.1.3 Diagonal integration

When looking to integrate different data sources acquired on differ-

ent samples, a coherent mapping between the entities of the differ-

ent datasets must be found. This kind of heterogeneous-sample and

heterogeneous-feature integration is called diagonal integration, an in-

tegration that can exploit the advantages of both vertical and horizontal

integration, provided a mapping unifying the set of samples, or the set

of omics features.

This is a particularly important problem for single-cell omics data

integration, since in this type of dataset, the sample measured is the

cell. Existing omics data acquisition techniques being destructive, it

is currently impossible to measure different omics for the same cell.
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Thus, an integration of single-cells multi-omics data would necessarily

be diagonal.

Two types of strategies can be used: feature anchoring or sample

anchoring.

Feature anchoring strategies map heterogeneous features to a common

factor. For instance, the gene can be used as a key for anchor-

ing features, as it can be associated to a sequence (genomics), a

transcript (transcriptomics), a regulatory site (epigenomics) or a

protein (proteomics). Most often, the anchoring of features will be

done by considering gene-sets or by defining ”metagenes”, which

represent the same biological signal [25, 26, 27]. In this config-

uration, it becomes possible to apply an horizontal integration

strategy.

Sample anchoring consists in identifying groups of similar samples

between datasets, i.e., by associating samples with labels. For ex-

ample, in single-cell, by identifying in each omics datasets different

cell types and vertically integrating omics data on these cell types,

rather than on each cell [25, 28]. An equivalent in oncology would

be to use clinical characteristics and to perform omics integration

on this set of common clinical labels, rather than directly on the

set of patients.

1.3.2 Depending on the integration strategy

There are numerous ways to perform data integration with different

levels of complexity, from the ”simple” concatenation of omics to the
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inference of complex statistical models.

1.3.2.1 Early integration

Early integration strategies rely on the concatenation of data into a

single matrix. The main advantage of early integration strategies is

the ease of their deployment, since it is possible to use already existing

single-omics analysis strategies on the concatenated dataset.

But this type of method also has many disadvantages:

- It can only consider data that can be concatenated. Generally, it

is not possible to directly integrate knowledge or clinical data,

which can take very different forms from omics data (i.e., gene-

sets, networks, ...).

- Without corrective efforts, it can largely favor the types of data that

will present the most features [29]. With unequal dataset sizes, the

signal carried by the omics ”dominated” in size can be completely

lost.

- It further accentuates the problem of the statistical power of omics

datasets. There are already dimensionality problems in single-

omics data analysis, which is even more amplified by adding new

datasets by simple concatenation.

- It does not take into account the interactions, known or measurable,

between omics.

- It does not take into account the distributions of the various input

omics.
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Thus, the methods of early integration will try to answer these prob-

lems by various processes. For example, many methods seek to reduce

the dimensionality of the data, first by filtering the features of each

omics before concatenating them, and then by using dimension re-

duction methods. For example, the LRAcluster algorithm developed

by Wu et al. [30], proposes a low-rank approximation approach before

clustering the data projected on the reduced space, rather than directly

applying a clustering algorithm on the concatenated data. LRAcluster

defines several probabilistic models depending on the type of data and

its distribution, and also allows to integrate categorical data, in addi-

tion to numerical data. Wang et al. [31] introduce a learning model that

learns features weights using joint structured sparsity-inducing norms.

1.3.2.2 Late integration

In contrast to early integration strategies, late integration methods will

first make predictions on each of the omics individually and then inte-

grate the results of this analysis. The main advantage of this type of

methods is that they can use specialized prediction algorithms for each

omics (including for example supervised analysis methods, which allow

to take into account known properties and knowledge data). It will

also be easier to integrate other types of non-omics data, provided that

they can be represented in the same way as the result of a prediction

(e.g., clustering or ranking). However, as for early integration meth-

ods, interaction patterns between omics are not taken into account.

An example of late integration tool is the Cluster Of Clusters Analysis

(COCA) [32], which allows to fuse different clusterings produced on
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different types of omics data.

1.3.2.3 Transformation-based

Transformation-based strategies rely on transforming the input datasets

prior performing integration. This kind of intermediate integration can

rely on various transformations of the data, including representing data

as networks, or mapping input data into higher dimensional space via

feature mapping. The predictions are then made by integrating the

transformed data.

Network-based Network-based approaches rely on representing input

data as networks and using this representation for integrating datasets

and make final predictions. For instance, SNF (which stands for Simi-

larity Network Fusion) [33] integrate multi-omics data by computing a

sample-sample similarity network for each omics data type and fuses the

resulting networks to obtain a multi-omics patients clustering. To iden-

tify co-expressed gene modules in multiple transcriptomics datasets,

Salem and Ozcaglar [34] first compute a co-expression network for each

transcriptomic dataset and mine the obtained multi-layer network to

identify co-expressed communities.

One of the advantages network-based approaches is that the network

representation is quite standard and can be applied to various types of

data. Knowledge-networks (protein interaction networks, pathways, ...)

can easily be added to the omics networks before the integration step.

Network approaches also allow to define (in addition to the relations

within a single omics which will constitute a layer of the multi-layer net-
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work to integrate) bipartite relations between the different layers, which

allows to take into account the relations between the omics. These bi-

partite relations between layers can also be added between the layers of

multi-layer networks considering very different data sources. Very good

examples of this versatility are demonstrated in the work of Valdeoli-

das et al. [35]: making advantage of a random-walk-based algorithm,

the authors predicted genes associated with a syndrome using both

biological networks (e.g., PPI network, co-expression network) and dis-

ease similarity networks, associating bipartite relationships based on

protein-transcript matches and on known genes associated with each

disease.

Multiple Kernel Learning Multiple Kernel Learning strategies asso-

ciate a kernel function to each set of omics or non-omics data to infer

objects’ relative similarities for each data type. Then the kernels are

combined by defining an optimization procedure in order to obtain a

global similarity of the objects taking into account the different types

of input data. The advantage of working with these kernel functions is

that they are able to solve non-linear problems by mapping the data

into a high-dimensional feature space. Moreover, there are already

many kernel functions adapted to different types of data [36, 37, 38],

numerical as well as categorical, and applicable to supervised as well

as unsupervised analyses, which allows to use multiple kernel learning

to integrate very diverse types of data.

There are many Multiple Kernel Learning strategies [39], one of

the most popular ones developed for omics data integration being the
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approach proposed by Speicher and Pfeifer for cancer subtype predic-

tion [40].

1.3.2.4 Dimension reduction-based

The dimension-reduction approach are among the most classic approaches

to data analysis. Principal Component Analysis (PCA) is an unsu-

pervised learning strategy that transforms high-dimensional data into

fewer dimensions to simplify data complexity while retaining trends

and patterns in the data [41]. PCA has many outcomes and can be

used to cluster samples or features, for feature extraction, for visual-

ization purposes, etc. A more recent example of dimension reduction

strategies applied in bioinformatics is t-distributed stochastic neighbor

embedding (t-SNE), broadly used for clustering and visualizing single-

cell transcriptomics data [42]. Traditionally used for single-omics data

analysis, dimensionality reduction strategies have also shown their use-

fulness for heterogeneous data integration, thanks to joint dimension-

ality reduction strategies, or autoencoders.

Joint Dimensionality Reduction Joint Dimensionality Reduction strate-

gies seek to project the different input data into a common reduced

space by decomposing each starting matrix into a product of two ma-

trices: a low-dimensional factor matrix, common to all omics, and a

weight or projection matrix, specific to each omics. The advantage of

this type of method is that it allows both to infer multi-omics proper-

ties on the samples, for example by clustering the factor matrix, but

also on the features, by analyzing the weight matrices to identify key
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biomarkers or essential pathways.

Many strategies have been developed for Joint Dimensionality Re-

duction based on various approaches, including Canonical Correlation

Analysis, Non-negative Matrix Factorisation or Principal Component

Analysis. A number of these methods have been reviewed and bench-

marked elsewhere [18, 43].

Autoencoders Autoencoders are artificial neural networks trained to

encode data into a low-dimensional latent space. The encoded data

can be decoded to reconstruct the original data. Autoencoders have

been used to jointly analyze multiple datasets in various studies [44,

45] but their use for omics data integration is relatively recent. A

few autoencoders developed specifically for omics data integration have

been reviewed in [46]. As for the joint dimension methods, autoencoders

have the advantage of being able to infer properties on samples, as well

as on features, considering many types of data, numerical as well as

categorical or image data.

1.3.2.5 Hierarchical

Hierarchical data integration strategies integrate omics by modeling

cross-omics interactions and regulations, combining omics in an unified

model. Typically, hierarchical integration based strategies use prior

knowledge on omics and their interactions (i.e., they rely on known bi-

partite relations between omics) to direct a sequential integration. For

instance, to better unerstand cis- and trans-regulations in cancer, Aure

et al. apply a sequence of sub-analysis on Copy Number Variation data,
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expression data and finally a combination of both, to narrow down a list

of relevant genes [47]. Similarly, in [48], Chari et al. developed a sequen-

tial strategy to identify cancer-associated genes disrupted at multiple

omics levels using transcriptomic and epigenetic data, by searching for

(1) differentially expressed genes that also show (2) copy number vari-

ation, methylation changes or other epigenetic events within the same

sample, (3) within multiple samples and (4) at a minimal frequency in

the full cohort.

1.3.2.6 Conclusion

Although we have so far identified different classes of integration strate-

gies, it is important to note that, in practice, most omics data integra-

tion methods are based on a combination of these different strategies.

For example, LRAcluster [30] or concactAE [49] independently project

the omics data into a reduced space (using respectively a low-rank ap-

proximation or an auto-encoder approach) and then concatenate these

projections to produce a prediction, making them early integration

strategies while relying on dimension reduction. Another example is

the KLIC (Kernel Learning Integrative Ckustering) tool that combines

consensus clustering (late integration) and multiple kernel learning [50].

1.3.3 Depending on the task

Strategies developed by the scientific community are generally built to

answer a specific type of biological question, although some solutions

are more versatile than others.

From a general point of view, the global question is always related
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to find some patterns in the data, whether it relates to the samples or

to the features of an experiment. Specifying the biological question is

the first essential step before developing a new method. In this scope,

the following sections propose to illustrate the different tasks that are

the most common in bioinformatics.

1.3.3.1 Dimensionality reduction

While multi-omics data projection into a common reduced space is

not the final product of dimensionality reduction strategies, such pro-

jections allow a variety of downstream analysis, which justifies their

classification in a specific task. Indeed, from examining the factor

matrix, downstream analysis include sample clustering/classification,

biomarker prediction or network inference. From examining omics-

specific weight matrices, the omics-specific contribution to detected

factors can also be measured.

1.3.3.2 Prioritization

A common task of data integration strategies is the generation of or-

dered lists of biomarkers (generally at the gene level) associated with a

phenotype of interest, most often associated with a disease. The idea

is to prioritize features by order of importance in their contribution to

the disease phenotype, in order to identify candidate genes that best

characterize the multi-omics molecular state associated with the dis-

ease and that could be interesting targets for the development of new

drugs. Features are associated with a score that determines their rank

and the probability of their association with the phenotype of interest.
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Most often, prioritization methods consider genes [51, 52, 53], but it is

also possible to prioritize variants [54], pathways [55], metabolites [56]

or drugs [57].

1.3.3.3 Classification

Classification methods seek to assign labels to objects of a multi-omics

dataset by learning on similar datasets with known labels. The classifi-

cation allows, for example, to predict the molecular subtypes of diseased

individuals by considering all available omics layers [58]. Automatic

classification of patients via multi-omics strategies is of great interest

for the development of personalized medicine.

Almost all classification approaches seek to infer labels on the sam-

ples in the experiment. Indeed, annotating samples usually ”only”

requires clinical expertise, whereas inferring labels on different types of

omics features can be very complex, especially since the bipartite re-

lationships between omics layers are not fully resolved. However, very

recently, a strategy to classify genes according to their impact on can-

cer into three distinct classes (neutral, tumor supressor or oncogene),

has been introduced and has shown interesting results [59]. This type

of method will surely develop as the knowledge of multi-omics molecu-

lar mechanisms associated with cancer and other complex diseases will

grow.

1.3.3.4 Clustering

Clustering is a widely used analysis, either to identify groups of homo-

geneous samples, or groups of genes (or modules) associated in some

48



way (most often, co-expressed). In a multi-omics context, most of the

integrative strategies focus on grouping samples showing similar multi-

omics molecular profiles. In disease research, such groupings allow the

identification of potential molecular subtypes of the disease. Some of

these multi-omics clustering strategies have been reviewed in [60].

Because bipartite relationships between features of multi-omics datasets

are not always resolved, multi-omics gene cluster prediction is a more

complex task, although some strategies have been developed for multi-

omics gene module prediction using methylation and expression data [61,

62].

Most of integrative strategies for gene module predictions rather fo-

cus on performing meta-analyses using a set of similar experiments to

increase the robustness of discovered modules. For instance, MONET [63],

which was primarily developed for multi-omics samples clustering was

as well used to infer gene modules based on RNA-sequencing and mi-

croarray data. In [34], co-expressed genes modules are predicted using

transcriptomics data from multiple human tissues.

1.3.3.5 Network inference

The representation of data and knowledge in the form of a network

is particularly informative, as it allows to represent the interactions

occurring within an omic dataset, but also across omics, and in a con-

densed way. Network inference, thus, provides a better understanding

of the complex regulatory mechanisms within and across omics and

their downstream analysis is also quite informative (clustering based

on modularity optimisation or random walks; node prioritization based

49



on their degree or centrality; etc.). A number of strategies for network

inference from multi-omics data have been developed, some of which are

reviewed in [64], for homogeneous as well as heterogeneous networks.

1.4 Conclusion

This chapter discussed the importance of and recent interest in the

integration of omics and non-omics data, which can:

- provide a better understanding of the complex mechanisms of regu-

lation and interaction between different omics layers;

- improve the robustness of predictions through meta-analysis;

- complete our knowledge and characterization of observable phenomes

at the cell or organism level;

- take into account the knowledge already available and accessible to

the scientific community when analyzing new data.

In light of this potential, many data integration strategies have been

developed in the last few years, to address different tasks. These strate-

gies rely on different ways of conceiving integration, whether early, late

or intermediate. Each analysis method is often specialized for a spe-

cific combination of omics data, and/or a specific task, although some

are much more versatile than others. Each also rely on different un-

derlying mathematical concepts, and do not base their predictions on

the same type of patterns of interest to look for in the data. Thus,

even for the same precise task, and by fixing the nature of the integra-

tion, different data integration methods produce different results whose
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biological quality is sometimes difficult to estimate or compare. In ad-

dition to depicting the interest of data integration, which is no longer

to be demonstrated, this brief state of the art also gives the intuition

of the importance of identifying ways to reconcile the results produced

by a set of integration methods on the same task and the same data,

since each one will propose different predictions according to the type

of pattern on which they have based their predictions.
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Chapter 2

Personal contributions

2.1 Context and objectives

Omics and non-omics data heterogeneity As discussed in the first chap-

ter, the heterogeneity of omics and non-omics data motivates but also,

and especially, challenges the issue of data integration. A fundamental

question in this field of research is the unification of the information

carried by each type of omics and non-omics data.

Various existing analysis strategies Whether it is for single- or multi-

omics analysis, numerous analysis strategies exist. These diverse meth-

ods consider various types of patterns in the data and make predictions

based on these targeted patterns. Similarly to omics data that can

be fused to offer a more complete view of a biological phenomenon,

taking advantage of all the existing prediction methods should also be

highly advantageous. This is all the more true when we do not have a

standard measure of quality of a result that is the typical case in life

sciences, and when newly published strategies in rapidly evolving fields,

like bioinformatics, claim to perform better than existing methods [65].
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Objective In this context of abundant heterogeneous data and anal-

ysis strategies, the main objective of this thesis is the development of

new data analysis strategies allowing to take into account highly het-

erogeneous data, both omics and non-omics (including omics data de-

rived predictions), in an integrative context (either to infer multi-omics

mechanisms or in relation to phenome diversity) and in relation to com-

plex multi-factorial diseases (e.g., cancer and neurodevelopmental and

neurodegenerative diseases).

With respect to the types of integration presented in the previous

chapter, both vertical and horizontal integration are considered in this

work. Though diagonal integration is not specifically discussed in this

manuscript, note that it can be tackled from a vertical or a horizontal

point of view, provided prior anchoring of samples or features.

Furthermore, it is important to note that the two integration con-

texts considered here have very different characteristics. In the case

of omics data integration for the resolution of multi-omics molecular

mechanisms, the objective is the identification of consistent, homoge-

neous patterns across the various omics datasets. On the other hand,

the elucidation of the diversity of molecular mechanisms associated with

various phenotypes must be based on a comparative analysis for which

it is the heterogeneity of the patterns across the datasets that is inves-

tigated. These two biological questions must therefore be tackled using

different approaches, based on the search for homogeneous patterns in

one case, and heterogeneous ones in the other.
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2.2 First contribution: Data integration applied to

oncology

2.2.1 Context: multi-omics disease subtyping

Cancer is a genetic and multi-factorial disease that is primarily defined

by its organ of origin (brain, breast, kidney, etc.). However, even for

cancers affecting the same organ, the molecular mechanisms underly-

ing disease progression and development have been shown to differ and

do not have the same impact on the prognosis of affected patients.

Therefore, a major objective in oncology research, from a precision

medicine perspective, is the identification of ”intrinsic” molecular can-

cer subtypes in order to treat patients accordingly to their molecular

alterations.

For instance, for classifying breast cancer, in addition to character-

izing clinical parameters (histology grade, tumor size, etc.), molecu-

lar characteristics are also evaluated: estrogen and progesterone recep-

tors status, human epidermal growth factor receptor 2 (HER2) status,

etc. The combination of these clinical and molecular characteristics are

used to classify breast cancer into coherent subtypes, which are increas-

ingly well described in breast cancer research and are associated with

very different prognoses, each being treated specifically (for instance,

chemotherapy or immunotherapy depending on the cancer subtype).

With the advances in microarray technologies and classification meth-

ods and in particular the PAM50 strategy which has been developed

specifically for breast cancer subtyping and has become a gold-standard

for this cancer type, the detection of these breast cancer molecular sub-
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types can now be predicted ”routinely”, based on the analysis of the

expression of 50 specific genes [66]. While the classification proposed by

PAM50 has become a reference for the classification of breast cancers,

it is not without flaws, and other types of classifications exist, based

on the analysis of other omics (miRNA arrays, CNVs, etc.) [67]. More-

over, the expression of the genes considered by PAM50 is by nature

influenced by genetic and epigenetic factors and therefore a product of

multi-omics coordinated regulation mechanisms. Thus, a classification

of molecular subtypes based not only on the analysis of a single omic

but of several types of heterogeneous omics could reveal homogeneous

subtypes within the various omics scales.

This explains why the characterization of cancer (and other dis-

eases) has largely developed in the last few years towards approaches

allowing the integration of multi-omics data. The most widely used ap-

proaches for the multi-omics prediction of cancer subtypes are based on

multi-omics clustering, i.e., the horizontal integration of omics datasets

using a clustering approach. These approaches cover all the integra-

tion strategies presented in the first chapter of this manuscript: early

(e.g., [30]) and late integration (e.g., [32]), network-based (e.g., [33])

and multiple kernel learning approaches (e.g., [40]), joint dimensional-

ity reduction (e.g., [18]), etc.

In a review of nine different multi-omics disease subtyping tools [60],

the authors concluded that their benchmark performed on ten cancer

types did not identify a strategy that was better than all the others on

the basis of the quality metrics evaluated (clinical labels enrichment in

clusters and survival analysis), and that therefore the recommendation
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of a specific multi-omics clustering method was far from obvious.

2.2.2 Solution: Consensus Clustering applied to multi-omics

disease subtyping

Here, the question of multi-omics disease subtyping is tackled with a

consensus clustering strategy.

Consensus clustering (later abbreviated to CCl) is the task of combin-

ing multiple and potentially conflicting clustering results into a single

unified clustering. Because of its versatility, consensus clustering offers

many advantages for data integration.

CCl for disease subtyping and beyond Clustering (i.e., the task of group-

ing objects into clusters in such a way that individuals within a cluster

are similar to each other and dissimilar to individuals in other clusters)

is a standard task in many fields of research, as it allows to apprehend

a wide variety of questions. Although the method developed in this

thesis was designed to specifically address the question of multi-omics

subtyping and thus the integration of clusterings of patient cohorts, it

could in theory be applied to any type of question that can be solved

by a clustering analysis.

CCl for integrating heterogeneous predictions from existing integrative

clustering strategies Consensus clustering has the potential to recon-

cile results obtained from running various existing multi-omics cluster-

ing tools on the same datasets, and therefore benefits from the vari-

ous predictions made by looking at different patterns of interest in the
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multi-omics data.

CCl for integrating heterogeneous data types Any kind of data that can

be clustered (numerical matrices, networks, trees, etc.) can be injected

in a consensus clustering analysis, which makes it easy to fuse new types

of data. Moreover, categorical data can be used directly as a clustering

(e.g., if PAM50 subtypes are known, they can be used directly as an

input clustering).

The publication related to this contribution is proposed and dis-

cussed in details in Chapter 3 of this manuscript and can be accessed

here:

Galadriel Brière, Élodie Darbo, Patricia Thébault, and Raluca Uri-

caru. Consensus clustering applied to multi-omics disease subtyping.

BMC Bioinformatics, 22(1):361, July 2021, doi: 10.1186/s12859-021-

04279-1.

2.3 Second contribution: Data integration applied

to neurosciences

2.3.1 Context: deciphering Alzheimer’s disease phenome di-

versity

Alzheimer’s Disease (AD) is a genetic and multi-factorial neurodegen-

erative disease and the leading cause of dementia in humans. AD

is characterized by a progressive atrophy of certain cerebral areas, a

pathological accumulation of amyloid-beta plaques in the extracellular
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matrix, and a loss of neurons associated with a process of neurofibril-

lary degeneration. These events in the brain can take place over decades

and well before the first symptoms of the disease. They appear, in the

early stages of the disease, mainly localized in the hippocampus and

entorhinal cortex, then gradually spread to the whole brain [68].

A complete characterization of the molecular mechanisms associated

with the development of AD must therefore require a spatio-temporal

analysis able to take into account the diversity of phenomes in AD,

depending on the type of cells involved (neurons, astrocytes, microglia,

etc.) and/or the cerebral structure considered, as well as the patho-

logical stage (which is strongly linked to aging). Thus a study of the

transcriptome diversity associated with the different spatio-temporal

contexts should reveal context-specific and context-recurrent perturba-

tions at the transcriptomic level.

Classical transcriptomic data analysis include the identification of

Differentially Expressed (DE) genes across experimental contexts (often

comparing disease and healthy samples) and the identification of co-

expressed gene modules, genes showing similar expression profiles across

samples. Unlike DE analysis, co-expression analysis was not developed

for comparative analysis but rather for identifying co-regulated genes in

a specific experimental context. A equivalent of DE analysis applied on

co-expression is Differential Co-expression (DC) analysis, which aims

at identifying changes in gene co-regulation between two experimental

settings (e.g., disease and control samples).

Both co-expression and differential co-expression patterns can be

represented using networks, with nodes corresponding to genes and the
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weight on the link between two genes corresponding respectively to

the intensity of their co-expression or of their differential co-expression.

Constructed from various experimental contexts, multiple (i.e., multi-

layer) co-expression networks or Differential Co-expression Networks

(DCNs) can be analyzed to identify the various co-regulation or, re-

spectively, differential co-regulation patterns observed in the diverse

phenotypes considered. Identifying gene communities in such multi-

layer networks could help unravel the transcriptomic mechanisms re-

currently occurring across phenotypes or specific to a given phenotype.

2.3.2 Solution: Network-based approach for multi-group dif-

ferential co-expression analysis

Here, the problem of finding co-expression dysregulations in multi-

group datasets is addressed by the computation and analysis of multi-

layer differential co-expression networks.

Community detection in multi-layer networks Community detection (lat-

ter abbreviated to CD), traditionally performed on single-layer net-

works but here extended to the analysis of multi-layer networks, is the

task of clustering the nodes of a network in such a way that nodes from

a same community are densely connected while loosely connected to

nodes from other communities.

CD in multi-layer networks for phenome characterisation During this

thesis, we developed a solution for identifying communities in multi-

layer networks that we applied specifically on a multi-layer Differential
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Co-expression Network. A layer in this network depicts gene differ-

ential co-regulations in a specific experimental context, i.e., in a spe-

cific disease phenotype compared to its respective control in the same

context. The computed communities may result from dense connec-

tivity observed in multiple layers, or in a specific layer of the network,

thus indicating whether the co-expression perturbations are context-

dependant or induced by disease in all the considered experimental

contexts.

CD in multi-layer networks for integrating heterogeneous data types While

applied specifically on multi-layer differential co-expression networks,

the strategy could be applied for other biological questions (including

multi-layer co-expression network analysis), but also in more diverse

contexts, including multi-omics gene community detection, provided

that each omics data type can be represented as a network and that

there are bijective relations between features of each omics data type

(i.e., each omic dataset can be represented as a gene network). Knowl-

edge data such as protein-protein interactions networks or patwhays

can also be included a supplementary layers of the multi-layer network.

The article associated to this contribution, though yet unpublished,

will be presented and discussed in details in Chapter 4 of this manuscript:

Galadriel Brière, Agnès Nadjar, Raluca Uricaru and Patricia Thébault.

Network-based approach for multi-group differential co-expression anal-

ysis: application to the 5xFAD mouse model of Alzheimer’s Disease

Unpublished work.
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A preliminary version of this work was presented at the 2022 edi-

tion of Journées Ouvertes en Biologie, Informatique et Mathématiques

(JOBIM):

Galadriel Brière, Agnès Nadjar, Raluca Uricaru and Patricia Thébault.

Condition-specific and recurrent perturbation-communities in multiple

differential co-expression networks. In Journées Ouvertes en Biologie,

Informatique et Mathématiques, 2022.
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Chapter 3

Consensus clustering applied to

multi-omics disease subtyping

3.1 Context

Consensus clustering, also referred as ensemble clustering, is of par-

ticular interest to perform disease subtyping in a multi-omics context.

Indeed, consensus clustering, which consists in producing a consensus

from a set of input clusterings, aim at reconciling the predictions made

in each of the inputs. An advantage of such strategies is that it allows

to consider data integration at two levels:

(i) either by clustering each omic source independently and reconciling

the single-omics predictions to produce a multi-omics clustering

(a.k.a ”single-to-multi” integration strategy),

(ii) or by first clustering the multi-omics data using existing integra-

tion strategies (which are numerous, and have been introduced in

Chapters 1 and 2 of this manuscript) and then reconciling these

multi-omics predictions into a multi-omics consensus (a.k.a ”multi-

to-multi” integration strategy).
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In the first scenario, one may use specialized algorithms for each of

the omics in order to produce single-omics clusterings of the highest

possible quality before the integration step. In the second scenario,

algorithms specialized in multi-omics data integration may be used,

each of them giving a different view of the omics interactions patterns

observed in the datasets. In other words, consensus clustering has the

potential to leverage the strengths of different single or multi-omics

analysis strategies.

Moreover, clusterings can be produced from many types of data,

omics or non-omics, numerical or categorical, in the form of matrices,

networks or trees, facilitating the addition of clusterings from other

data sources to be taken into account in the integration.

3.2 State of the art on consensus clustering

Many consensus clustering strategies have been developed, that can be

classified in two major families [69, 70]:

Co-occurrence based approaches focus on grouping objects based on

their co-occurrences in input clusters. Basically, the idea is that

objects that are often clustered together should be classified in the

same consensus cluster, and the consensus clustering is obtained

using a voting process among the objects.

Median partition based approaches focus on producing a consensus

clustering by maximizing its similarity with all input clusterings.

Originally, consensus clustering strategies have been developed for

fusing clustering results obtained from the same dataset, and often
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using only one clustering algorithm but run using various initializa-

tion parameters (e.g., number of clusters). When considering a single

dataset it is expected that the different clusterings look similar. This

may motivate the choice of using median partition based approaches.

However, this is less the case when using consensus clustering to fuse

partitions obtained from various datasets. In this case, co-occurrence

based approaches seems more likely to resolve contradictory predictions

obtained on the different datasets. Therefore, the following literature

review focus on co-occurrence based approaches, and on two major pub-

lications, namely : (i) the ”Consensus Clustering” algorithm proposed

by Monti et al. [71] that later inspired the ”Cluster of Clusters Analysis”

(COCA) strategy introduced by Cabassi and Kirk [50] (specifically de-

signed for integrating multi-omics clusterings), and (ii) the ”Evidence

Accumulation Clustering” strategy introduced by Fred and Jain [72]

which inspired our own contribution, detailed in Section 3.3.

3.2.1 ”Consensus Clustering” by Monti et al. and Cluster of

Clusters Analysis

3.2.1.1 Strategy

Cluster of Clusters Analysis (COCA) was first introduced in [73] for

multi-omics breast tumor subtyping, and has since, been applied in

numerous disease subtyping studies [74, 75, 76]. Recently, the approach

has been rigorously benchmarked, and an R package introduced in [50].

COCA makes use of the co-occurence based Consensus Clustering

strategy introduced by Monti et al. (later referred as CCm) in [71].

The idea behind CCm is that, by perturbing an original dataset and
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clustering each of the perturbed datasets, a consensus clustering can

be found by examining the co-occurrences of objects in the generated

clusterings. The consensus clustering structure obtained is supposed to

be robust to perturbations of the data and stochasticity of the cluster-

ing algorithm used. Perturbed versions of the original dataset can be

obtained by resampling the objects to cluster and/or the features of the

dataset. Indeed, a robust clustering structure should not be impacted

by such perturbation of the original data.

CCm procedure CCm strategy is illustrated in the red box of Fig-

ure 3.1.

After computing clusterings on the perturbed datasets, objects co-

occurences in clusters are summarized in co-clustering matrices defined

as follow: Let X = [x1, ...., xN ] be the set of objects and c = [c1, ...., cN ]

their respective cluster labels, the associated N×N co-clustering matrix

C is constructed such that Cij = 1 if ci = cj and Cij = 0 otherwise.

Given a set of H co-clustering matrices C = [C1, ...., CH ] computed

from clustering H perturbed datasets D = [D1, ..., DH ] with a fixed

number of clusters K, a N ×N consensus matrix ∆K is computed as a

properly normalized sum of the co-clustering matrices:

∆K
ij =

∑H
h=1C

h
ij

max(1,
∑H

h=1 I
h
ij)

where Ih is the N ×N indicator matrix such as Ihij = 1 if both objects

i and j are present in the perturbed dataset Dh and 0 otherwise.

The consensus matrix is then used to assess the stability of the

perturbed clustering results for a given number of clusters K: if all the
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Figure 3.1: Consensus clustering by Monti et al. (red box) and Cluster of Clusters
Analysis (COCA) (blue box)

elements in the consensus matrix are close to one or zero, this indicates a

consensus in the input predictions because the objects will either have

been predominantly classified in the same clusters or predominantly

classified in different clusters. Note that the perturbed datasets are

all clustered using the same number of clusters K, but that several

values can be tested and the optimal number of clusters Kopt can be

determined by comparing the consensus matrices produced with the

different values of K. When the number of cluster is not known, Kopt

should be estimated before producing the consensus clustering.

Finally, the consensus matrix can be clustered to obtain the final

consensus clustering.
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COCA procedure COCA strategy is illustrated in the blue box of Fig-

ure 3.1. COCA directly uses the CCm procedure but providing a Ma-

trix of Clusters (MOC) as input. The MOC is computed from a set of

omics-specific clusterings with no assumption on the number of clusters

each omics-specific clustering should contain (i.e., input single-omics

clusterings may or may not contain the same number of clusters).

In [50], given a set of clusterings C = [C1, ...., CM ], the number of

clusters obtained in each clustering K = [K1, ...., KM ] obtained on M

omics datasets, K̄ =
∑M

m=1Km the total number of obtained clusters

and mk the kth cluster from clustering Cm, the MOC is a K̄×N matrix

defined as:

MOCn,mk
=





1 if cmn = mk

0 otherwise

where cmn is the label of object n in clustering Cm.

3.2.1.2 Advantages and limitations of Cluster of Clusters Analysis

Cluster of Clusters Analysis displays several advantages, in addition to

those conferred by consensus clustering strategies in general, already

discussed in Section 3.1 of this chapter. First, each omics data source

can be clustered using a different number of clusters. Moreover, this

strategy allows for missing data, since individuals that were not mea-

sured for all omics sources can be included in the Matrix of clusters

(MOC) by setting the cells corresponding to the missing omics clusters

to zero. Finally, even though the number of clusters in the final con-

sensus clustering has to be fixed, an optimal value can be estimated

by comparing consensus matrices computed from various numbers of
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clusters.

However, this strategy suffers from some limitations, notably a sensi-

tivity to the inclusion of low quality clusterings, since all input clusters

have the same influence on the final clustering, as discussed in [50].

Finally, when benchmarking COCA on several cancer datasets, we ob-

served that, in several cases, the clustering returned by COCA was very

similar to one of the input clusterings (Adjusted Rand Index close to

1) and weakly similar to all the other clusterings (cf. Figure 4 from

Section 3.3). In these cases, one may question the consensus of the

final clustering.

3.2.2 Evidence Accumulation Clustering

3.2.2.1 Strategy

Evidence Accumulation Clustering (EAC) was introduced by Fred and

Jain in [72] to combine clustering results obtained on the same dataset

but using different clustering strategies and/or different parameter con-

figurations of the same clustering algorithm. The motivation behind

this work is to take advantage of existing clustering algorithms. In-

deed, not all the types of patterns that can be found in the data in

practice are detectable by a single clustering strategy. However, we can

take advantage of different clustering strategies in order to detect all

these patterns.

According to the concept of EAC, each association of objects in the

same cluster is considered as an independent evidence of their associa-

tion, and the set of associations predicted by the input clusterings are

considered as an accumulation of evidences that can be used as a new
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similarity measure between objects.

The strategy is illustrated in Figure 3.2 and can be formulated

as follow: Let X = [x1, ...., xN ] be the set of objects to cluster and

C = [C1, ...., CP ] a set of P clusterings of those objects, a N × N

co-association matrix can be computed as

Aij =
aij
P

where aij is the number of times object i and object j were assigned to

the same cluster among the P clusterings. The obtained co-association

matrix is used as a novel similarity measure for clustering the objects.
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Figure 3.2: Evidence Accumulation Clustering

3.2.2.2 Advantages and limitations of Evidence Accumulation Clustering

Evidence Accumulation Clustering display several advantages, in ad-

dition to those conferred by consensus clustering strategies in general,

already discussed in Section 3.1 of this chapter.

First, no assumptions are made regarding the number of clusters,

whether it be for generating input clusterings or for generating the

consensus clustering. Moreover, although this strategy does not imply
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assigning a weight to the input clusterings according to their estimated

quality, it is quite robust to the integration of low quality clusterings

since these are more likely to propose divergent associations from the

other clusterings. Indeed such dissimilar predictions will moderately

impact the co-association measure, provided that a large number of

clusterings are fused. Finally, the notion of consensus when considering

EAC is quite suitable, since the co-association similarity can be seen as

the result of a voting mechanism.

However, EAC was developed and applied for integrating cluster-

ings obtained from a single data-source and has not been applied in a

multi-source data integration context. For the same reason, there is no

procedure to deal with missing data (objects that would not have been

measured for all the omics considered).

3.3 Contribution

In the following contribution for multi-omics consensus clustering, we

developed a novel EAC-based approach for multi-omics disease subtyp-

ing that we applied on 10 cancer datasets composed of gene expres-

sion, miRNA expression and methylation data and compare the results

with those of COCA generated from the same set of input clusterings.

We considered two integration strategies: multi-to-multi and single-to-

multi integration scenarios. This novel strategy includes a procedure

for handling missing data, allowing the consensus classification of in-

dividuals that may not have been measured for all omics considered.

Moreover, we show that it is quite robust to the inclusion of low quality
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clusterings, as the spurious associations predicted in these clusterings

will be counterbalanced by the accumulation of consistent associations

across the other clusterings.
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Background
Recent advances in biological data acquisition have made it possible to measure a wide 
range of data. Polymorphism data, DNA methylation, RNA expression, and copy num-
ber variations as well as other “omics” data are now routinely observed and analyzed. 
Each omics type has the potential to reveal different molecular mechanisms associated 
with a phenotype, and making use of all available omics data could decipher complex and 
multilevel molecular interactions. Though several integrative tools have been developed, 
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with all of them aiming to answer biological questions by using multiple available data 
sources, the issue of omics data integration is far from solved. Along with the issue of 
omics data heterogeneity and integration, scientists are challenged with the diversity of 
strategies and methods available to answer the same biological question, each approach 
having its own perks and benefits.

The question of cancer subtyping is particularly representative of this kind of issue. 
By performing a clustering analysis, disease subtyping aims at detecting subgroups of 
patients (samples) showing similar characteristics. Even in the single-omics context, 
such analysis can be challenging, and numerous clustering strategies have been imple-
mented and/or tested to this end: hierarchical clustering strategies, density-, distribu-
tion- or centroid-based strategies, supervised and unsupervised strategies, etc. The 
selection of a clustering method as well as of the optimal parameters to use is generally 
tricky. Moreover, the various biological mechanisms that are involved may vary from one 
patient to another: each tumor is different and has its own characteristics, both in the 
tumor cells themselves and in their interaction with their environment. As these mecha-
nisms are not restricted to a single molecular level, the detection of groups of patients 
showing similar characteristics across different omics is a key issue to enable personal-
ized medicine, which aims to offer patients a treatment adapted to the characteristics of 
their tumors.

This detection of groups of patients showing similar characteristics across different 
omics motivated the development of new computational methods implementing dif-
ferent strategies to analyze several omics datasets simultaneously (for detailed reviews, 
see [1, 2]). According to the classification proposed in [1], the early integration strat-
egy consists of concatenating omics datasets in a large matrix and applying a cluster-
ing method conceived for single-omics data [3, 4]. However, late integration approaches 
first cluster each omics dataset independently and fuse single-omics clusterings into one 
multi-omics clustering [5, 6]. Other approaches perform intermediate integration, fusing 
sample similarities across omics [7–9], using dimension reduction strategies [10, 11], or 
statistical modeling with Bayesian frameworks [12–14].

To tackle both issues mentioned above, i.e., multi-omics and multi-strategy integra-
tion, one may want to apply a particular type of late integration strategy by taking mul-
tiple clustering results (using different data, methods and parameters) and fusing all of 
them into one consensus clustering. Such a consensus clustering should benefit from 
the complementary information carried by various omics data and capitalize upon the 
strengths of each method while fading their weaknesses.

Note that with respect to classical late integration strategies that start from the raw 
omics datasets (e.g., PINS [6] uses perturbations of raw omics data to generate the most 
stable multi-omics clustering), consensus clustering methods rely solely on clustering 
results. This property is essential, as it allows for any clustering algorithm and any clus-
tering result to be used, regardless of the availability of the raw omics dataset and of its 
type.

A naive way to compute a consensus clustering would be to perform the intersection of 
the clustering results, i.e., by simply taking the associations on which all methods agree. 
However, the greater the number of clusterings to fuse, the smaller the intersection is. 
Moreover, when clusterings show different numbers of clusters, the question of the 
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intersection is not trivial. Therefore, the issue of consensus clustering requires further 
methodological developments.

To compute a consensus clustering from a set of input clusterings, two main strategies 
exist: object co-occurrence-based approaches and median partition-based approaches 
[15]. In the former strategy, consensus clustering is computed from a matrix counting 
co-occurrences of objects in the same clusters [5]. The latter strategy focuses on find-
ing a consensus clustering maximizing the similarity with the input partitions. Both 
strategies raise several nontrivial questions. The choice of a clustering algorithm and its 
tuning is not straightforward when working with a co-occurrence matrix. However, for 
the median partition-based approach, the choice of a similarity measure is determinant. 
Nevertheless, for consensus clustering in a multi-omics multi-method context, compar-
ing co-occurrences of objects is more pertinent than comparing similarities between 
partitions.

Here, we present ClustOmics, a new graph-based multi-method and multi-source 
consensus clustering strategy. ClustOmics can be used to fuse multiple input clustering 
results, obtained with existing clustering methods that were applied on diverse omics 
datasets, into one consensus clustering, regardless of the number of input clusters, the 
number of individuals clustered, the omics and the methods used to generate the input 
clusterings.

The co-occurrence strategy implemented in ClustOmics (detailed in the “Meth-
ods”  section) is based on evidence accumulation clustering (EAC), first introduced by 
Fred and Jain  [16]. The idea is to consider each partition as independent evidence of 
data organization and to combine them using a voting mechanism. Similar to clustering 
methods that use a distance or a similarity measure to compare objects, EAC consid-
ers the co-occurrences of pairs of objects in the same cluster as a vote for their associa-
tion. The underlying assumption is that objects belonging to a natural cluster are more 
likely to be partitioned in the same groups for different data partitions. Thus, one can 
use the counting of the co-occurrences of the objects in clusters as a pairwise similar-
ity measure. We further refer to these co-occurrence counts as the number of supports. 
This measure, summarizing the results from the input clusterings, is a good indicator of 
the agreement between the partitions and allows production of a new partitioning that 
can be qualified as consensual. Although computationally expensive, this strategy allows 
exploiting all clustering results, regardless of the number of clusters and their size and 
shape.

We designed ClustOmics as an exploratory tool to investigate clustering results in 
order to increase the robustness of predictions, taking advantage of accumulating evi-
dence. To allow the user to tackle a specific question and to explore relationship patterns 
within input clusterings and generated consensus, we store the data in a non-relational 
graph-based database implemented with the Neo4j graph platform [17]. The use of a 
graph native database facilitates the storage, query and visualization of heterogeneous 
data, hence allowing the development of a solution that is flexible to various integration 
strategies. Indeed, by fusing clusterings from different clustering methods, different data 
types, different experimental conditions, or several options at the same time, through 
the use of what we call integration scenarios, ClustOmics can address a wide range of 
biological questions.
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ClustOmics was applied in the context of multi-omics cancer subtyping, with TCGA 
data from different cancer types and multiple omics datasets. Input clusterings were 
computed with several single and multi-omics clustering methods and then were fused 
in a consensus clustering. Further details on the strategy implemented in ClustOmics 
are given in “Methods” section. To assess the benefit of this novel method, we further 
explored the robustness of our consensus clusterings with respect to the input cluster-
ings, as well as their biological relevance, based on clinical and survival metadata avail-
able for each patient. We compare the ClustOmics results with those of COCA [5], a 
well-known co-occurrence-based consensus clustering tool that has already been used 
to combine multiple omics datasets to reveal cancer subtypes [18].

Results
Consensus clustering for disease subtyping in a multi-omics context can be imple-
mented as an a priori solution making a consensus of omics-specific input clusterings 
or by a posteriori computing a consensus from multi-omics input clusterings. To better 
understand the perks and benefits of fusing omics data in one way or another, ClustOm-
ics was tested in these two contexts based on two integration scenarios.

First, we used ClustOmics to fuse multi-omics clusterings computed with existing 
integrative methods. In this scenario (multi-to-multi, MtoM), the integration of omics 
is performed by various existing clustering tools, and ClustOmics computes a consensus 
result of the different multi-omics clusterings produced. The second scenario (single-to-
multi, StoM) involves both methods and omics integration, as only single-omics cluster-
ings computed from various methods are fused into one consensus clustering. See Fig. 1 
for a visual representation of these two scenarios.

Below, we analyze and compare ClustOmics and COCA consensus multi-omics clus-
terings (produced using the same set of input clusterings) for the two integration sce-
narios, on TCGA data from ten different cancer types, three omics datatypes (gene 
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expression, miRNA expression and methylation) and various input clustering strategies 
(described in “Methods - Datasets and tools used for computing input clusterings” sec-
tion). We further focus on breast cancer and analyze the ClustOmics results for the sin-
gle-to-multi scenario on the breast dataset.

Results overview of the ten cancer types for the two integration scenarios

Running ClustOmics and COCA on the ten cancer datasets with respect to the different 
integration scenarios implies starting by computing single- and multi-omics input clus-
terings to group patients according to their single- and multi-omics profiles.

For the multi-to-multi (MtoM) scenario, multi-omics input clusterings were obtained 
with existing multi-omics clustering tools: PINS [6], SNF [7], NEMO [8], rMKL [9] and 
MultiCCA [10] (see Table 6).

For the single-to-multi (StoM) scenario, the same tools listed above were applied, 
except for the MultiCCA tool, which can only be used in a multi-omics context and was 
replaced with the simple yet robust state-of-the-art method, K-means clustering [19]. In 
this scenario, the tools were applied to each omics dataset independently. Moreover, to 
evaluate the benefits of including patients with missing data (that were not measured for 
all of the three omics), two different runs were performed. In the first run, referred to as 
StoM OnlyMulti, only patients measured for the three omics were considered, that is, 
patients with no missing data. For the second run, named StoM All, all available patients 
for each omics were kept, implying that in this scenario the set of patients clustered in 
input clusterings was different across omics.

A survival and clinical label enrichment analysis was conducted on ClustOmics and 
COCA multi-omics consensus clusterings, as well as on the single-omics and multi-
omics input clusterings (see “Methods - Biological metrics” section for more details on 
the biological metrics used). An overview of the results for the ten cancer types is dis-
played in Fig. 2.

In terms of clinical label enrichment in clusters, the number of clinical labels signifi-
cantly enriched varies from 19 to 26 (for a total of 79 enrichment p values computed 
from 32 distinct clinical labels), depending on the clustering tool. The majority of clinical 
labels found enriched in ClustOmics consensus clusters were also found enriched for at 
least one input clustering as well as in the corresponding COCA consensus, and clinical 
labels stably enriched in input clusterings were also found enriched in ClustOmics and 
COCA consensus clusterings. For details with respect to the distribution of the clinical 
labels found enriched in input and consensus clusterings for the MtoM and StoM sce-
narios, see Additional file 1: Figure S1.

The survival analysis results show high heterogeneity, supporting the idea of comput-
ing a consensus clustering, especially when no gold-standard metric or ground-truth 
data are available. In this sense, it is important to stress out that ClustOmics succeeded 
to compute biologically relevant consensus partitions from input clusterings of variable 
quality. Indeed, in the multi-to-multi case, ClustOmics managed to find 4 out of 10 sig-
nificant log-rank p values, counterbalancing the PINS and MultiCCA mitigated results, 
although they were part of the input clustering results used for this integration scenario. 
For the same set of input clusterings, COCA MtoM yielded to a 3 survival-wise signifi-
cant consensus result.
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Interestingly, for the single-to-multi scenario, Fig.  2 clearly shows that considering 
individuals with missing data (StoM All) greatly improves the consensus clusterings, 
both in terms of clinical label enrichment and survival analysis, for ClustOmics as well 
as for COCA. For the StoM All scenario, COCA found 4 additional enriched clinical 
labels with respect to ClustOmics but yielded only 2 out of 10 survival-wise quality clus-
terings, compared to 4 for ClustOmics. The quality results for omics-specific input clus-
terings used for this scenario do not appear in Fig. 2 but are further detailed in “Results 
- Integration of single-omics clusterings” section.

Detailed results for the MtoM and StoM integration scenarios are given in the follow-
ing two sections.

Integration of multi‑omics clusterings (multi‑to‑multi scenario)

Input multi-omics clusterings were computed with the five multi-omics clustering meth-
ods presented in “Methods - Datasets and tools used for computing input clusterings” 
section using default parameters and following recommendations of the authors. The 
clusterings were produced using the multi-omics patients exclusively (those for which all 
three omics data are available). To make all input clusterings comparable, we ran NEMO 
in the same way, though compared to the other five tools, NEMO is able to handle par-
tial data.

ClustOmics was run with the min_size_cluster parameter arbitrarily set to 8 nodes 
for all cancer types, meaning that clusters of size below 8 were removed from the con-
sensus clustering, with the corresponding individuals being reassigned to consensus 
clusters exceeding the size threshold. We also set the min_size_consensus parameter 
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to 95% of the population to ensure that less than 5% of individuals are being reas-
signed to consensus clusters, either because of the number of support thresholds on 
the integration graph or because of the filter on the size of the clusters. The quantita-
tive global measures on the ClustOmics consensus clusterings are detailed in Table 1.

Note that the maximum number of supports promoting the association of two 
patients in the same consensus cluster is bounded to 5, as five input clusterings (com-
puted from five integrative clustering tools) were used for this integration scenario. 
After testing all possible thresholds on the number of supports, the optimal filtering 
threshold was obtained for each cancer type (2, 3 or 4, depending on the cancer type), 
meaning that only pairs of patients clustered in the same multi-omics cluster by at 
least 2 to 4 clustering methods were considered to compute the consensus clustering.

When comparing input and ClustOmics consensus clusterings, we observe a cer-
tain consistency in terms of the number of clusters. COCA, however, resulted in 2 to 
3 clusters independently from the cancer type, which suggests a lower sensitivity to 
input clustering dissimilarities compared to ClustOmics.

Two cancer datasets, COAD and LUSC, showed the lower consistency between 
the input predictions and clustered with a number of supports of 2. For LUSC cancer 
type, the consensus clustering resulted in only 2 clusters, despite the large size of the 
available cohort (341 individuals). The computation of the adjusted Rand index (ARI) 
[20] between input clusterings, a measure of similarity between partitions, showed 
that for these two cancer types, SNF and NEMO clusterings were very similar (with 
an ARI value of 0.7 for COAD SNF and NEMO clusterings and of 0.9 for LUSC; see 
Additional file  1: Figure  S2) while the 3 other input clusterings showed high pair-
wise dissimilarity ( ARI ≤ 0.4 ). The resulting consensus clusterings for both Clus-
tOmics and COCA were very similar to SNF and NEMO and dissimilar to the other 
input clusterings, failing to compute an actual consensus of all input partitions. For 
the other cancer types, similarities between input clusterings were more balanced, 
enabling ClustOmics to reconcile predictions. ARI heatmaps comparing input and 

Table 1  Multi-to-Multi Scenario: Number of patients initially clustered by ClustOmics, number of 
patients reassigned to consensus clusters, number of supports used to filter the integration graph, 
number of consensus clusters generated by ClustOmics and COCA, and average number of clusters 
in input clusterings

Cancer # patients 
clustered

# patients 
reassigned

# supports 
threshold

# clusters 
ClustOmics

# clusters 
COCA

Avg # 
clusters 
inputs

AML 165 5 4 6 3 4.6

BIC 619 2 4 5 2 4.0

COAD 220 0 2 3 3 5.2

GBM 267 7 4 3 3 3.4

KIRC 176 7 3 3 3 4.2

LIHC 363 4 4 5 2 3.2

LUSC 341 0 2 2 2 3.4

OV 285 2 4 5 2 3.4

SARC​ 257 0 3 3 3 3.4

SKCM 351 0 3 5 3 4.8
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consensus clustering similarities for the ten cancer types in the MtoM scenario are 
available in Additional file 1: Figure S2.

Unsurprisingly, from Table  1, we remark that filtering the integration graph with a 
higher number of supports generally results in reassigning individuals (from 2 to 7) to 
consensus clusters. The predictions regarding these reassigned patients do not neces-
sarily meet the number of supports threshold for which the consensus clusters were 
computed.

Figure 3 presents survival analysis results for the various multi-omics clusterings given 
as input to ClustOmics and COCA MtoM and for the resulting consensus clusterings. 
When looking at the input clustering survival results, we can differentiate two cases:

•	 For AML, LIHC, SARC and SKCM, the input clusterings show a quite high heteroge-
neity in terms of survival quality

•	 For BIC, COAD, GBM, KIRC, LUSC and OV cancer types, the input clusterings 
show relatively homogeneous survival quality

For the first group of cancer types, the heterogeneity of input clustering survival quali-
ties indicates how the choice of one clustering method can drastically impact the results. 
For these cancer types, ClustOmics produced consensus clusterings of a survival-wise 
quality approaching the median quality value, considering the input clusterings. Indeed, 
from input clusterings of various quality, ClustOmics was able to extract the most stable 
patterns across the input partitions.

When input partitions show homogeneous survival quality, ClustOmics gives similar 
results, which is an expected behavior. The largest deviation from the median is found 
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for the KIRC cancer type, for which both COCA and ClustOmics consensus clusterings 
produced a partition of higher quality than could have been expected.

Consensus clusterings were also investigated for clinical labels enriched in clusters. 
For the ten cancer types, ClustOmics and COCA found 20 common clinical labels as 
being enriched, of which 19 were also found enriched in at least one input clustering. 
However, 16 labels were found as enriched in at least one input clustering but not in the 
consensus clusterings (see Additional file 1: Figure S1B). Table 2 give complete details on 
the clinical labels enriched in ClustOmics consensus clusterings for the ten cancer types.

For AML, for example, ClustOmics computed clusters enriched for the CALGB 
cytogenetics risk category, a risk classification based on the Cancer and Leukemia Group 
B clinical trial [21], and for the French–American–British (FAB) morphology code, a 
clinical classification for AML tumors [22]. Reassuringly, BIC consensus clustering was 
found enriched for the PAM50 classification, a widely used breast-cancer subtype pre-
dictor [23].

Integration of single‑omics clusterings (single‑to‑multi scenario)

To assess ClustOmics performance when fusing simultaneously input clusterings com-
puted from different omics data and with different clustering methods, we investigated 
a second integration scenario, combining single-omics clusterings produced indepen-
dently on each omics dataset. The overall cancer consensus results for this scenario are 
displayed in Fig. 2 and discussed in detail in this section.

As stated above, single-omics clusterings were computed using the following five clus-
tering tools: PINS [6], SNF [7], NEMO [8], rMKL [9] and K-means clustering [19] (with 
an optimal number of clusters computed with the Silhouette index [24]).

Table 2  Clinical labels found enriched in multi-to-multi (MtoM) scenario consensus clusters, in 
single-to-multi (StoM All) scenario consensus clusters, and for both scenarios

Cancer Scenarios Enriched clinical labels

AML Both Age at initial pathologic diagnosis

CALGB cytogenetics risk category

Leukemia French–American–”British Morphology Code

BIC Both Age at initial pathologic diagnosis, PAM50 call

Pathologic N, Pathologic Stage, Histological type

Estrogen receptor status, Progesterone receptor status

StoM All Pathologic M, Pathologic T

COAD MtoM Histological type

StoM All Age at initial pathologic diagnosis

GBM Both None

KIRC Both Pathologic M, Neoplasm histologic grade

StoM All Pathologic T

LIHC Both Gender, Age at initial pathologic diagnosis, Fetoprotein outcome value

LUSC Both None

OV Both None

SARC​ Both Gender, Age at initial pathologic diagnosis, Histological type

MtoM New neoplasm event type

SKCM MtoM Age at initial pathologic diagnosis
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To assess the benefit of including individuals with missing data (not measured for 
all omics), two analysis were performed for this scenario:

•	 For StoM OnlyMulti, input clusterings were computed using exclusively multi-
omics patients. Given that this is the same set of individuals as in the MtoM 
integration scenario, the same parameters were used for all cancer types, i.e., 
min_size_consensus = 95% and min_size_cluster = 8.

•	 For StoM All, omics clusterings were computed using all available patients. As the 
proportion of missing data varies between cancer types (up to 66% partial data 
for KIRC; see Table 5) and between omics, input clusterings do not apply to the 
same set of patients as in the scenarios previously described. To account for this 
increase in the number of patients to be clustered, min_size_cluster was set to 5% 
of the multi-omics population. The min_size_consensus parameter was set to 95% 
of the multi-omics population.

As shown in Fig. 2, fully exploiting the available data (including patients with missing 
data) greatly improved the consensus clusterings, for both ClustOmics and COCA. 
Moreover, for 3 cancer types, BIC, GBM and LUSC, capitalizing on all available indi-
viduals resulted in increasing the number of supports used to filter the integration 
graph. The largest increase in the number of supports threshold was observed for 
BIC, i.e., from 7 supports in the StoM OnlyMulti up to 11 in the StoM All run. For 
LIHC, OV and SKCM, however, we observe a decrease of −2 , −1 and −1 , respectively, 
in the number of supports. For the other cancer types, the threshold on the number 
of supports is identical between the two runs. In the follow-up of this study, we will 
focus on the results of the StoM All run.

In this scenario, the maximum possible number of supports is 15 as the five cluster-
ing methods were run on three omics datasets for each cancer. Note that for this sce-
nario, the threshold on the number of supports used to filter the integration graph has 
great influence on the capacity of ClustOmics to produce consensus clusters across 
omics and on the interpretation of the results. Indeed, the threshold has to be greater 
than 5 to ensure that all the conserved integration edges rely on an association that 
is consistent across at least two different omics (one omics type being represented 
by five input clusterings). To ensure that all integration edges are built upon all three 
omics, the threshold must be 11 or higher. One should estimate an acceptable thresh-
old depending on the experimental design and the biological question to address.

In our case, as we did not wish to bring any a priori preconceptions on which omics 
should have a stronger impact on the results (indeed, one omics data type could par-
ticularly well explain the disparities in molecular profiles of patients for a cancer type 
but not for the others), we considered a number of supports of 7 to be sufficient to 
ensure that selected integration edges are either moderately consistent across the 
three omics or strongly consistent in one omics type.

Together with the constraint to preserve at least 95% of the multi-omics popula-
tion (min_size_consensus parameter), this gave a number of supports used to filter the 
integration graph ranging from 7 to 11. The results for this scenario are displayed in 
Table 3.
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One of the major benefits of this integration scenario (in addition to the fact that 
single-omics clusterings are easier to compute) is its ability to cluster individuals that 
did not appear in all input partitions. Interestingly, although multi-omics patients have 
better chances to show high numbers of supports (as they appear in all input cluster-
ings), some proportion of those multi-omics patients had to be reassigned to consensus 
clusters, while other individuals who were not measured for the 3 omics were clustered 
immediately, which suggests a good agreement between the input clusterings for the 
classification of these individuals.

Input clusterings can show great similarity for a given omics type. If this omics type 
allows differentiation of groups of individuals in a clear-cut way, it will drive consen-
sus clustering. However, if the omics type is less relevant to partition patients, input 
clusterings are more likely to show different patient associations. Such clusterings add 
noise-like integration edges in the integration graph, with low number of supports on 
edges. Therefore, we expect each omics to have a different impact on the final consensus 
clustering. To evaluate the impact of omics-specific input clusterings on the consensus 
result, we used the adjusted Rand index (ARI) [20].

In Fig.  4, ClustOmics and COCA consensus clusterings were compared to each of 
the input clusterings. The relative proximity of a clustering consensus to the different 
input clusterings, as measured by the ARI, indicates the ability of the tool to produce a 
partition that can genuinely be considered as reconciling the input predictions. In that 
respect, the ARI of a consensus clustering in relation to its inputs should be maximized 
for a maximum of input clusterings, including for those coming from different omics. 
The highest similarity between consensus and input clusterings from different omics 
sources is observed for the SARC cancer dataset (see Fig. 4), with ARI values ranging 
from 0.4 up to 0.9 for at least one input clustering computed from each of the three 
omics datasets, suggesting similar associations at different molecular levels. For the 
other cancer types, the agreement between omics sources is less straightforward. Inter-
estingly, for all cancer types, COCA and ClustOmics consensus clusterings resemble the 

Table 3  Single-to-Multi All Scenario: Total population size (which are multi-omics), number of 
patients clustered or reassigned to consensus clusters (which are multi-omics), number of supports 
used to filter the graph, number of clusters generated by ClustOmics, number of clusters generated 
by COCA, and average number of clusters in the input clusterings

Cancer Total (multi-omics) Clustered 
(multi-
omics)

Reassigned 
(multi-
omics)

# supports 
threshold

# clusters 
ClustOmics

# 
clusters 
COCA

Avg # 
clusters 
inputs

AML 197 (170) 176 (163) 21 (7) 8 7 4 6.60

BIC 1096 (621) 600 (600) 496 (21) 11 6 2 3.87

COAD 303 (220) 276 (220) 27 (0) 7 6 4 3.47

GBM 578 (274) 434 (262) 144 (12) 9 11 2 4.13

KIRC 534 (183) 316 (174) 218 (9) 9 9 2 4.07

LIHC 377 (367) 363 (354) 14 (13) 8 5 2 4.73

LUSC 501 (341) 337 (321) 164 (20) 8 4 2 4.73

OV 591 (287) 393 (272) 198 (15) 9 9 2 3.47

SARC​ 261 (257) 261 (257) 0 (0) 8 3 3 4.33

SKCM 368 (351) 345 (329) 23 (22) 8 6 4 4.67
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same input clusterings (computed from the same set of omics sources), thus suggesting 
that some omics are more appropriate to explain molecular differences between indi-
viduals. Unsurprisingly, gene expression impacts consensus clustering on most cancer 
types, but miRNA and methylation data also guided consensus clusterings, especially in 
COAD, LIHC and OV. Figure  4 also shows that the dispersion of ARI values is much 
greater for COCA consensus clusterings than for ClustOmics. While COCA consensus 
clusterings are very similar (if not identical) to a few input clusterings but very dissimilar 
to the others, ClustOmics produces a consensus that is closer in average to all inputs.

Survival analysis for this integration scenario (see Fig. 5) shows two groups of cancer 
types, as already noted for the multi-to-multi scenario. For BIC, COAD, LUSC and OV, 
gene expression, methylation and miRNA input clusterings show homogeneous survival 
p values. For these cancer types, ClustOmics computed a consensus clustering with sim-
ilar quality scores. For the cancer datasets showing higher heterogeneity among input 
clusterings survival quality, ClustOmics found significant survival p values for AML, 
KIRC, LIHC and SKCM, despite some low-quality clusterings that were given as input.
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Clinical labels found enriched in consensus clusters are listed in Table 2. AML clusters 
were found enriched for both CALGB and FAB classifications, KIRC clusters for histo-
logic grade and pathologic M and T (referring to the TNM classification of tumors [25]), 
LIHC clusters for gender, age at diagnosis and fetoprotein outcome value, while SKCM 
clusters showed no enriched clinical parameters. While BIC consensus clustering did 
not show good survival-wise results, pathologic M, N and T labels were found enriched 
in clusters, as well as pathologic stage, histological type, PAM50 call, and estrogen and 
progesterone receptor status.

In the following section, we further explore the single-to-multi consensus clustering 
for BIC dataset.

Study case: BIC single‑to‑multi consensus clustering

In this section, we focus on the consensus clustering of the 15 single-omics clusterings 
for the BIC dataset (five clustering methods, listed in the previous section, applied on 
three omics data types) and analyze these results in parallel to the PAM50 classification. 
As the PAM50 classification is computed from the expression of 50 specific genes, while 
in this work, we capitalize on three different omics, a certain heterogeneity in the clus-
ters when compared to the PAM50 prediction is expected. Moreover, this heterogeneity 
is to be further explored, as it could reveal subtypes that are not distinguishable when 
considering only PAM50 genes but that are heterogeneous when integrating other data 
sources.

From the 1096 patients available in the BIC dataset (of which only 621 patients are 
measured for the three omics), ClustOmics succeeded in primarily classify 600 multi-
omics patients in consensus clusters, with a number of supports threshold of 11 (see 
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Table 3). The remaining 21 multi-omics individuals were reassigned to consensus clus-
ters, as well as the 475 individuals with missing data. The consensus clustering resulted 
in a partition with 6 clusters, with sizes ranging from 115 to 254 individuals (the mini-
mum allowed size for a cluster min_size_cluster being set to 5% of the multi-omics popu-
lation, that is, 31 individuals for BIC).

As the PAM50 clinical labels were missing for 255 patients, we applied the original 
classifier introduced by Parker et al. [23] to call the missing labels. To estimate the qual-
ity of reassessed PAM50 labels, we evaluated the concordance between available PAM50 
labels and recomputed PAM50 labels. The F1-scores showed the Basal, Luminal A, 
Luminal B and Her2 PAM50 labels to be well predicted (F1-score of 0.89, 0.75, 0.74 and 
0.64, respectively). Predictions for the Normal-like class are less reliable (F1-score of 
0.27) due to the small size of the class (23 individuals).

We further mapped the PAM50 calls to ClustOmics consensus clusters and observed 
significant concordance, as depicted in Fig. 6.

Indeed, Luminal A samples are overrepresented in the consensus clusters B and E, 
Luminal B samples in A and D, Her2 samples in A, and Normal-like samples in con-
sensus cluster C (see Fig. 6 and Table 4). The vast majority of basal-like samples were 
classified in consensus cluster F, which gathers 190 of the 197 basal samples, with the 
remaining 7 being clustered in consensus clusters B, C and D.

This mapping of PAM50 calls on consensus clusters, which seems fuzzy at first 
glance, is not surprising as it has been shown that separation of Luminal A and B 

Fig. 6  BIC consensus clustering with patients colored according to the PAM50 prediction. Annotated 
screenshot from the Neo4j browser for graph visualization
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samples was not reconstructed by RNA-seq unsupervised analysis [26]. Several stud-
ies also reported that the separation between Luminal subtypes was not consistent, 
suggesting that Luminal A and Luminal B samples may represent part of a continuum 
rather than distinct subgroups [26–28].

Moreover, clinical label enrichment analysis and additional tests applied to describe 
the clusters show good mapping between ClustOmics clusters and key biological clin-
ical labels such as estrogen receptor and progesterone receptor status (ER/PR) or his-
tological type of tumor (see Table 4).

Finally, we investigated the biological relevance of ClustOmics consensus cluster-
ing by comparing gene expression profiles between clusters. We computed the top 
1000 genes differentially expressed across groups by applying the Kruskal–Wallis test 
[29] and selecting FDR adjusted p values below 0.001 (see Additional file 1: Figure S3). 
We clustered the top 1000 genes in 6 clusters using hierarchical clustering and for 
each gene list, we looked for overrepresented biological process (BP)-related Gene 
Ontology terms (GO terms). One of the gene clusters showed no significant results 
(FDR adjusted p values ≥ 0.05 ), but the other 5 gene lists were found enriched for 
cilium organization and assembly, response to transforming growth factor β , tissue 

Table 4  Over- and underrepresented clinical labels within BIC consensus clusters. ER+/ER− and 
PR+/PR−, respectively, correspond to estrogen receptor status and progesterone receptor status, 
positive and negative. M, N, and T stages refer to the TNM staging system

Cluster Over-represented labels Under-represented labels

A Infiltrating Ductal Carcinoma Infiltrating Lobular Carcinoma

Her2, Luminal B Basal, Normal-like

ER+ ER−
B MX, N3, T3 M0

Stage III

Infiltrating Lobular Carcinoma Infiltrating Ductal Carcinoma

Luminal A Basal

ER+, PR+ ER−, PR−
C MX, T3 M0, T2

Infiltrating Lobular Carcinoma Infiltrating Ductal Carcinoma

Normal-like Basal, Luminal B

ER+, PR+ ER−, PR−
D Stage X

Mucinous Carcinoma Infiltrating Lobular Carcinoma

Luminal B Basal, Normal-like

ER+, PR+ ER−, PR−
E T1

Stage I

Luminal A Basal, Luminal B

ER+, PR+ ER−, PR−
F N0

Stage II Stage III

Infiltrating Ductal Carcinoma, Medullary Carcinoma, 
Metaplastic Carcinoma

Infiltrating Lobular Carcinoma

Basal Luminal A, Luminal B

ER−, PR− ER+, PR+
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migration, T-cells activation, mitotic nuclear division or other biological processes 
(see Additional file 1: Figure S4).

More precisely, we found that the gene cluster X2, associated with cilium organization 
and assembly, microtubule bundle formation and regulation of intracellular steroid hor-
mone receptor signaling pathway, was downregulated in consensus cluster F (composed 
mainly of Basal-like samples), compared to other consensus clusters. Gene cluster X3 
was associated with response to transforming growth factor β , extracellular organiza-
tion, transmembrane receptor protein serine/threonine kinase signaling pathway and 
regulation of muscle cells. Those genes appear downregulated in consensus clusters A 
(Her2, Luminal B samples), D (Luminal B samples) and F (Basal-like samples). Gene 
cluster X4, associated with epithelium migration and astrocyte differentiation, was found 
downregulated in consensus clusters A and D (both enriched in Luminal B samples) and 
upregulated in consensus cluster F (Basal-like samples). Gene cluster X5 is associated 
with T-cell activation, lymphocyte and leukocyte differentiation, membrane raft organi-
zation and regulation of peptidase activity and is downregulated in consensus clusters A 
and D (Luminal B samples). Finally, gene cluster X6, related to chromosome segregation 
and mitotic nuclear division, was found upregulated in consensus cluster F (Basal-like 
samples) and downregulated in consensus clusters B (Luminal A), C (Normal-like) and E 
(Luminal A).

Discussion
The novel method that we present in this paper deals with two key issues raised by the 
present context in biology and medicine and, in parallel, in bioinformatics. Indeed, these 
domains are witnessing an actual revolution in the acquisition of molecular data and 
thus facing a flood of various types of omics data. The ultimate goal is to benefit from 
the diversity and complementarity of these omics data (data on DNA methylation, copy 
number variations, polymorphism, etc.) by analyzing them simultaneously. However, 
multi-omics data integration is only one facet, as we also face an outburst of biocom-
putational approaches meant to deal with this unprecedented variety and quantity of 
data, and the choice of a method or of the optimal parameters is generally challenging. 
In this paper, both simultaneous integration of multiple omics and of various methods 
are tackled in an innovative manner through an original integration strategy based on 
consensus.

More specifically, in this work, we address the cancer subtyping problem from a per-
sonalized medicine-related perspective, which is gaining increasing attention. To treat 
patients according to their disease profile, one should be able to distinguish between 
disease subtypes. These disease subtypes can be predicted from omics data (tradition-
ally gene expression but also methylation, miRNA, etc.) by performing patient clustering 
(hierarchical clustering, density-based clustering, distribution-based clustering, etc.). 
Our novel graph-based multi-integration method can fuse multiple input clustering 
results (obtained with existing clustering methods on diverse omics datasets) into one 
consensus clustering, regardless of the number of input clusters, number of objects clus-
tered, omics and methods used to generate the input clusterings.

To compute a consensus clustering, our method, implemented in a tool called Clus-
tOmics, uses an intuitive strategy based on evidence accumulation. The evidence 
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accumulation counts (i.e., the number of supports on the integration edges) make the 
consensus clustering results easier to interpret, as they provide insight into the extent 
to which the consensus clustering can be considered multi-source (issued from multiple 
omics) and to the overall agreement of input partitions.

The original EAC strategy as proposed by Fred and Jain  [16] uses input partitions 
obtained by running the K-means algorithm multiple times ( ≈ 200 ) with random ini-
tialization of cluster centroids. From these partition results, a co-occurrence matrix is 
computed, and a minimum spanning tree algorithm is applied to find consensus clusters, 
by cutting weak links between objects at a threshold t defined by the user. The authors 
recommend that clusterings obtained for several values of t should be analyzed. In Clus-
tOmics, we developed a weighted modularization optimization strategy to automatically 
select the best filtering threshold. Additionally, rather than generating input clusterings 
from running the same algorithm multiple times as proposed by Fred and Jain, here, we 
benefit from using various clustering strategies, each searching for different patterns 
and giving different insights to the data. This approach also allows the use of algorithms 
that are specialized for one omics type. Moreover, by taking as input a high number 
of clusterings obtained with a same tool with varying parameters, the convergence of 
the consensus clustering, especially in a single-omics context, can be improved, and 
this improvement can also be achieved by ClustOmics by giving the appropriate input 
clusterings.

Though our method does not formally weight input datasets (e.g., according to their 
level of confidence), one can artificially enhance the impact of one or several omics 
sources by providing supplementary single-omics input clusterings. In the same way, 
when dealing with missing data, patients measured with all omics are more likely to 
accumulate supports and therefore more likely to cluster together. In a context of multi-
source integration, favoring individuals with the least quantity of missing data makes 
it possible to highlight the predictions supported by several data sources, which is the 
desired behavior. In a context of single-source integration, the same set of objects is usu-
ally used in all input clusterings (apart from a few specificities of the input clustering 
tools used).

TCGA real datasets from three different omics and ten cancer types were analyzed 
with respect to two integration scenarios: (1) fusing multi-omics clusterings obtained 
with existing integrative clustering tools and (2) fusing omics-specific input clusterings. 
In both cases, ClustOmics succeeded in computing high-quality multi-omics consen-
sus clusterings, with clusters showing different survival curves and enriched for clinical 
labels of interest, coherent with what could be found in the cancer literature. Moreover, 
the results indicate that ClustOmics is robust to heterogeneous input clustering qualities 
(reconciling and smoothing the disparities of partition) and in comparison with a state-
of-the-art consensus-based integration method, COCA.

The overall results show that the rMKL tool outperformed the other tools when con-
sidering the survival and clinical label enrichment metrics. However, our method is not 
meant to compete with existing single or integrative omics clustering methods, as it 
implements a more generic strategy. While “classical” tools take raw omics data as input, 
ClustOmics starts from classification results, thus allowing fusing any type of data, as 
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the classification results may correspond to clustering results (obtained from the analy-
sis of one or several omics), to biological annotations, to clinical data, etc.

In contrast, ClustOmics aims at capitalizing on the preliminary input predictions to 
increase their robustness by taking advantage of accumulating evidence to reveal sharper 
patterns in the data. This selection of robust patterns across input partitions renders 
ClustOmics stable when facing heterogeneous input clusterings and is particularly use-
ful when no gold-standard metric is available to assess the quality of the results. Hence, 
with a sufficient number of input clusterings, no prior analysis of the input is needed, 
given that low-quality clusterings, likely to add noise to the integration graph, play a 
smaller part in the evidence accumulation. Omics for which the separation of samples 
is clear-cut will drive the consensus clustering, while omics that do not show interest-
ing patterns across samples will be faded via the integration graph filtering step. For the 
same reason, it is important to highlight that as long as the signals in the available omics 
are strong, ClustOmics is able to cluster samples that do not appear in all omics datasets, 
making use of available data and addressing the issue of partial data.

Finally, though presented in a disease subtyping context, one should grasp that our 
method is not limited to this application case. ClustOmics is generic and adaptable to 
a wide range of biological questions, as one can use any kind of partitioning of the data, 
including clinical labels, groups of genes of interest, etc., as an input clustering. A major 
strength of ClustOmics resides in its exploratory aspect, resulting both from a flexible 
intrinsic model that gives the user complete power on the integration scenario to inves-
tigate and from the use of the graph-oriented database Neo4j. All input data and meta-
data are stored in this kind of database, which may easily be queried and visualized by a 
nonspecialist with the Neo4j browser.

Conclusion
Facing the diversity and heterogeneity of omics data and clustering strategies, one might 
want to make profit from all available data to compute a consensus clustering. Clus-
tOmics is able to fuse any set of input clusterings into one robust consensus, which can 
easily be interpreted based on the number of supports evidence accumulation scores. 
ClustOmics can be adapted to answer a wide range of biological questions. The use of 
integration scenarios allows users to explore various integration strategies, by adding or 
discarding data sources and/or clustering methods.

Methods
In this section, we detail the strategy implemented in ClustOmics. We then describe 
the datasets and the metrics that were used to evaluate our new method. For the sake 
of simplicity as, in this paper, ClustOmics was applied in the context of cancer subtyp-
ing, we will further refer to objects of interest as Patients. However, ClustOmics can be 
applied to different biological entities such as genes or cells.

ClustOmics integration strategy

The ClustOmics integration strategy, depicted in Fig. 7, starts from a set of input cluster-
ings generated with various clustering methods and/or from different omics sources.
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First, from a patient metadata file and from available input clusterings, a support graph 
(SG) is instantiated. In this graph, each Patient (P) corresponds to a node and shares a 
support edge with another patient when classified in the same cluster (co-clustered) in 
at least one input clustering. One support edge relates to one input clustering tool, and 
each support edge displays one or multiple attributes to indicate the omics sources sup-
porting the co-clustering of the patients.

Next, given an integration scenario, meaning a list of omics and methods to integrate, 
the corresponding integration graph (IG) is computed. Then, the integration graph is 

Fig. 7  An overview of the strategy implemented in ClustOmics
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filtered and clustered to produce a consensus clustering according to the given integra-
tion scenario.

Below, we detail the integration graph computation, filtering and clustering steps, 
resulting in a ClustOmics consensus clustering.

Compute the integration graph (IG)

Given an Integration Scenario (defined by a set of input clusterings), ClustOmics exploits 
the information on the support edges to compute the so-called number of supports, by 
counting the considered input clusterings sustaining the association of patients. The 
numbers of supports are reported on the Integration Edges and so, for a given integra-
tion scenario, a pair of patients may share at most one integration edge. In this way, het-
erogeneous data is aggregated into co-occurrence counts that are used as a similarity 
measure to perform evidence accumulation clustering (EAC) [16].

Filter and cluster the integration graph

Integration graphs are generally densely connected, as each pair of nodes may have been 
clustered together at least once over the set of omics and methods. However, as inte-
gration edges are weighted with the number of supports agreeing on the corresponding 
associations, the most robust integration edges can be distinguished from predictions 
that are not consistent across omics and methods. Hence, ClustOmics filters the graph 
according to the number of supports by removing non-consistent integration edges. 
The goal is to obtain a filtered graph foreshadowing natural clusters that correspond 
to a consensus. The choice of a threshold to filter the integration edges is therefore 
determinant.

Figure  8 depicts the impact of an increasing number of support-filtering thresholds 
on the internal structure of the integration graph. One can observe that two issues arise 
from this filtering process:

•	 First, increasing the threshold generates smaller graphs. Indeed, pairs of nodes that 
do not share any integration edge with a sufficient number of supports are removed, 
leading to a partial classification of the input set of patients.

•	 The second issue is the loss of structure in the filtered integration graph: when filter-
ing at a high threshold, the resulting graph may become too sparse to be considered 
informative, like the graph in Fig. 8c with numerous small connected components.

Therefore, producing a relevant classification requires finding the best compromise for 
the support threshold. For this effort, ClustOmics tests all possible configurations by 
iteratively filtering the integration graph with increasing support thresholds. At each 
iteration, ClustOmics uses state-of-the-art graph clustering methods (see the subsec-
tion below) to compute consensus clusterings for the corresponding filtered integration 
graph.

The resulting consensus clusterings should be analyzed with respect to the number of 
supports used to filter the graph prior to clustering. This number of supports indicates 
the level of agreement between the input clusterings and gives insight on the extent to 
which the resulting consensus clustering can be considered as being truly multi-omics.
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Moreover, to deal with the two issues described above and to keep merely informative 
results, each integration graph consensus clustering result goes through an additional 
filtering step with the two following parameters:

•	 the min_size_cluster parameter indicates the minimum accepted size for a clus-
ter that is part of the consensus clustering. Clusters with less than min_size_cluster 
nodes are removed from the analysis.

•	 the min_size_consensus parameter indicates to what extent ClustOmics is allowed to 
discard nodes, i.e., patients. ClustOmics will further consider only consensus cluster-
ing results having at least min_size_consensus nodes.

Finally, a quality metric, i.e., the weighted MQ index, is computed for all consensus clus-
terings that passed the filtering steps.

Optionally, one may want to reconsider the individuals that were discarded during the 
filtering steps (either when filtering-out integration edges or small clusters) and analyze 
them with respect to the consensus clusters. With this in mind, ClustOmics is able to 
reassign filtered-out individuals with respect to the mean number of supports shared 
with patients from consensus clusters, though such additional predictions do not neces-
sarily meet the threshold with which the consensus clusters were originally computed.

Below, we give insights on the graph clustering algorithms that are used to compute 
the consensus clusters, as well as on the quality metric employed for the identification of 
a robust consensus clustering, the weighted modularization quality.

Graph clustering algorithms

ClustOmics filters the integration graph for each possible threshold on the number of 
supports and, for each filtered graph, ClustOmics computes two consensus cluster-
ings with two state-of-the-art, complementary graph clustering algorithms: the Lou-
vain community detection (LCD) algorithm, based on modularity optimization [30], 
and the Markov clustering (MCL) algorithm, based on the simulation of stochastic 

(a) No filtering
197 nodes, 8122 edges

(b) nb supports ≥ 3
170 nodes, 3471 edges

(c) nb supports ≥ 5
148 nodes, 1244 edges

Fig. 8  An integration graph filtered with increasing threshold values: 1, 3, and 5 (the maximum number of 
supports for an integration edge being 5 in this example). Screenshots from the Neo4j browser for graph 
visualization
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flow in graphs [31]. MCL and LCD are unsupervised clustering algorithms and do not 
require the number of clusters to be estimated in advance.

Modularity optimization is one of the most popular strategies in graph cluster-
ing algorithms [32], while MCL/MCL-based methods have proven highly efficient in 
various biological network analyses (protein-protein interaction networks [33, 34], 
protein complex identification [35], detection of protein families [36]). Moreover, 
modularity optimization algorithms have been shown to present a resolution issue 
[37, 38]: a tendency to fuse small clusters (even for those that are well defined and 
have few interconnections), thus favoring the formation of larger clusters than those 
computed by MCL [39]. Small clusters predicted by MCL can be an issue in the Clus-
tOmics case, as it removes clusters smaller than the user-defined min_size_cluster 
parameter, considering them to be non-informative.

Selection of the best consensus clustering based on the weighted MQ index

The modularization quality (MQ) was first defined by Mancoridis et al. in the context 
of software engineering [40]. Compared to the popular modularity measure [41] opti-
mized in graph clustering algorithms, which compares the distribution of edges with 
respect to a random graph with the same number of vertices and edges as the original 
graph, the modularization quality (MQ) evaluates the quality of a clustering as the 
difference between internal and external connectivity ratios; that is, the ratio between 
the number of connections observed within a given cluster and between two given 
clusters, and the maximum possible number of such edges. An optimal clustering for 
this measure should maximize the intraconnectivity ratio (every two nodes belonging 
to the same cluster share an edge) and minimize the interconnectivity ratio (nodes 
classified in different clusters do not share edges). Indeed, in the context of consensus 
clustering based on evidence accumulation, it makes more sense to compare the dis-
tribution of the edges in the integration graph to the case where all nodes would have 
been partitioned in the same optimal way in all input clusterings, i.e., a graph where 
all intracluster nodes are connected, and all intercluster nodes are disconnected.

Moreover, we adapted the original MQ index for weighted undirected graphs with 
no self-loops (in our case, a Patient node cannot share an integration edge with itself ). 
We denote this adaptation of the modularization quality as the weighted modulariza-
tion quality (wMQ).

Let G = (V ,E) be a graph where V denotes the set of nodes and E the set of edges of 
G. Let C = (C1,...,Ck) be a consensus clustering with K clusters and |Ci| the number of 
nodes classified in cluster Ci . Let us also note w(e) the weight of a given edge, W (eii) 
the sum of weights of the edges internal to Ci cluster (connecting vertices from Ci ), 
W (eij) the sum of weights between clusters Ci and Cj (connecting a vertex from Ci to a 
vertex from Cj ) and max(wIG) the maximum possible weight on the edges of the given 
integration graph (the maximum possible number of supports, also corresponding to 
the number of input clusterings being fused). We therefore define the wMQ index 
computed for a consensus clustering C obtained on the integration graph IG as:
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The first term of the sum corresponds to the weighted internal connectivity ratio for a 
cluster Ci . Indeed, the sum of the internal edges weights W (eii) is adjusted with the max-
imum possible value of the sum of the edges linking a set of |Ci| nodes, which would be 
reached if all Ci nodes were connected with max(wIG) weighted edges. Note that for an 
undirected and no self-loop graph, the maximum number of edges in a subgraph of |Ci| 

nodes is 
(
|Ci|

2

)
 . Similarly, the second term of the sum represents the weighted external 

connectivity ratio of a cluster Ci , given by the sum of the weights of the edges linking a 
node from cluster Ci to a node belonging to a cluster Cj (  = Ci).

The wMQ values range from −1 to 1, where a wMQ of −1 corresponds to the case 
where there is no intracluster edge and all intercluster pairs of vertices are connected 
with edges of weight max(wIG) . A wMQ of 1 corresponds to the case where no interclus-
ter vertices are connected, and all pairs of intracluster vertices are connected with edges 
of weight max(wIG) . A high-standard consensus clustering should maximize this index.

ClustOmics computes the wMQ for the LCD and MCL consensus clusterings obtained 
with various numbers of support-thresholds and having passed the filtering steps, and it 
returns the clustering that maximizes this quality measure.

Datasets and tools used for computing input clusterings

We used ClustOmics to predict cancer subtypes from gene expression, microRNA 
expression and DNA methylation datasets available in The Cancer Genome Atlas 
(TCGA) [42]. Our case-study is based on the same datasets as in Rappoport and 
Shamir’s review on multi-omics clustering methods [1]. The data cover ten cancer types: 
leukemia (AML), breast (BIC), colon (COAD), glioblastoma (GBM), kidney (KIRC), liver 
(LIHC), lung (LUSC), ovarian (OV), sarcoma (SARC) and skin (SKCM). For each cancer 
type, from 197 and up to 1098 patients were measured for at least one of the three omics 
(expression, miRNA and methylation), of which 170 to 621 patients were measured for 
all three. More details on missing data per cancer type are given in Table 5.

To generate input clusterings to be fused by ClustOmics, we used five state-of-the-
art integrative clustering tools, summarized in Table 6: PINS [6], SNF [7], NEMO [8], 
rMKL [9] and MultiCCA [10]. The first four tools can be used in a single-omics context 
as well as in a multi-omics context, for which they were all designed. Though NEMO is 
the only tool that can handle partial data, for comparability purposes, this functionality 
was not used in the analyses we conducted. Each tool has been run with default param-
eters and based on recommendations of the authors. For the single-to-multi scenario, we 
also computed single-omics input clusterings with K-means clustering [19], for which 
the optimal number of clusters K was determined using the Silhouette index [24], with 
values of K ranging from 2 to 20.

Computation of COCA consensus clusterings

To assess the performance of ClustOmics with respect to a state-of-the-art integration 
method based on consensus clustering, we applied cluster-of-clusters analysis (COCA) 

wMQ(IG,C) =
1

k ×max(wIG)

k
�

i=1





2×W (eii)

|Ci| × (|Ci| − 1)
−

1

k − 1

�

j �=i

W (eij)

|Ci| × |Cj|
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[5] on each integration scenario and from the same set of input clusterings as for Clus-
tOmics. COCA had already been applied to cancer-subtyping in a multi-omics context 
[43, 44].

COCA is an integrative clustering tool based on the consensus clustering (CC) algo-
rithm introduced by Monti et al. [45]. The CC algorithm implements a resampling- and 
co-occurrence-based strategy to assess the stability of clusters when analyzing a single 
dataset. By resampling a single dataset multiple times and applying a clustering algo-
rithm on each perturbed dataset, and from the co-occurrences counts of samples in 
clusters, a consensus matrix is computed and used as a similarity matrix to compute 
a final consensus clustering. COCA was run using default parameters, under the same 
integration scenarios as in ClustOmics, and using the same set of input clusterings.

Clustering pairwise similarity metric

To evaluate the similarity of ClustOmics and COCA consensus clusterings with respect 
to their inputs or each other, we used the adjusted Rand index (ARI) [20], a measure of 
similarity between two data clusterings. While the ARI has been used to evaluate the 
quality of classifications compared to ground-truth data, here, we use it to compare the 
similarity of various clusterings, without considering any quality aspect.

Table 5  Number of patients measured per omics for each cancer type. Total: Number of patients 
measured for at least one omics (of which those having been measured for the three omics); 
proportion of partial data; Exp+Met: Patients measured for expression and methylation only; 
Exp+miRNA: Patients measured for expression and miRNA only; Met+miRNA: Patients measured for 
methylation and miRNA only; Exp: Patients measured for expression only; Met: Patients measured for 
methylation only; miRNA: Patients measured for miRNA only

Cancer Total (multi-omic) % partial data Exp+ Met Exp+ miRNA Met+ miRNA Exp Met miRNA

AML 197 (170) 13.71 0 3 15 0 9 0

BIC 1096 (621) 43.34 159 132 2 181 1 0

COAD 303 (220) 27.39 57 0 0 8 18 0

GBM 578 (274) 52.60 4 245 3 5 4 43

KIRC 534 (183) 65.73 135 71 0 144 1 0

LIHC 377 (367) 2.65 4 0 5 0 1 0

LUSC 501 (341) 31.94 29 1 0 130 0 0

OV 591 (287) 51.44 7 0 166 9 122 0

SARC​ 261 (257) 1.53 2 0 2 0 0 0

SKCM 368 (351) 4.62 16 1 0 0 0 0

Table 6  Methods used to compute input clusterings

Software Multi-omic context Single-
omic 
context

PINS [6] Yes Yes

SNF [7] Yes Yes

NEMO [8] Yes Yes

rMKL [9] Yes Yes

MultiCCA [10] Yes No

k-means [19] No Yes
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Biological metrics

To explore the biological relevance of input clusterings and consensus clustering results, 
we computed the overall survival rate of patients. As cancer acuteness is proved to be 
related to its molecular subtype [46–48], we further investigated whether it was signifi-
cantly different across clusters using the exact log-rank test for more than two groups, 
introduced in [49]. For each clustering, the p value of the log-rank test was computed 
using 100, 000 random permutations of the data.

In addition, we performed an analysis of clinical labels enrichment in clusters, using 
32 labels available from TCGA metadata (see Table 7). The idea is that patients affected 
by the same cancer subtype should also share, to a certain extent, the same clinical char-
acteristics. The abundance of clinical labels in clusters and their statistical over-repre-
sentation provide information on the biological robustness of clusterings. To perform 
this analysis, we used pancancer (e.g., age at diagnosis or pathologic stage of cancer) 
and cancer-specific clinical labels for each cancer type (e.g., presence of colon polyps 
for colon cancer, or smoking history for lung cancer). Clinical labels that were absent for 
more than half of the patients were removed from the analysis. We used the χ2 test for 
independence for discrete parameters and the Kruskal-Wallis test for numeric param-
eters to assess the enrichment of the clinical labels in a cluster. To increase the robust-
ness of the results, we applied a bootstrapping strategy, computing the test on randomly 
permuted data to derive an empirical p value (100, 000 permutations).

One must keep in mind that molecular data do not always explain survival or clinical 
differences between groups of samples. Therefore, in the discussion of the results, we 
consider survival and clinical analysis as ways to interpret patterns captured by the vari-
ous clustering results and do not favor one metric over the other.

Finally, to evaluate differentially expressed genes across consensus clusters gener-
ated using the StoM scenario on the BIC study case, we applied the Kruskal-Wal-
lis test on each gene available from the BIC expression dataset. The p values were 
adjusted to control the false discovery rate (FDR) [50], filtered with a 0.001 signifi-
cance threshold, and top 1000 most significant genes were retained for further 

Table 7  Pancancer and cancer-specific labels used for clinical label enrichment analysis. 
Pathological M, N and T labels refer to the TNM staging system, which describes the anatomical 
extent of tumor cancers [25]

Pan-cancer Age at initial pathologic diagnosis, Gender, Pathologic M, Pathologic N, Pathologic T, Pathologic 
stage, Histological type, New neoplasm event type, Neoplasm histologic grade

AML CALGB cytogenetics risk category, FAB morphology code

BIC PAM50Call RNAseq, Estrogen receptor status, Progesterone receptor status, ER level cell percentage 
category, PR level cell percentage category

COAD Presence of colon polyps, History of colon polyps

GBM Prior glioma

KIRC Hemoglobin result, Platelet qualitative result, Serum calcium result, White cell count result

LIHC Adjacent hepatic tissue inflammation extent type, Albumin result specified value, Creatinine value, 
Fetoprotein outcome value, Fibrosis ishak score

LUSC Tobacco smoking history, Number pack years smoked

OV No supplementary clinical label

SARC​ No supplementary clinical label

SKCM Melanoma Clark level value, Melanoma ulceration indicator



Page 26 of 29Brière et al. BMC Bioinformatics          (2021) 22:361 

analysis. Using hierarchical clustering [51], we clustered the top gene list and investi-
gated clusters for enriched Gene Ontology [52] biological process terms with Cluster 
Profiler [53]. FDR-adjusted p values were filtered with a 0.05 cutoff.

Implementation

ClustOmics is implemented based on the Neo4j graph database management system 
and uses APOC and Graph Data Science Neo4j libraries. Queries on the graph data-
base are performed in Cypher, Neo4j’s graph query language, and are encapsulated in 
Python scripts. To facilitate its use, ClustOmics can be run through the Snakemake 
workflow management system.

ClustOmics was tested on a desktop-computer with an Intel Xeon processor (2.70 
GHz, 62 GB of RAM) running on Ubuntu 18.04. For the TCGA real datasets that it 
was applied to, the ClustOmics runtimes range from a few minutes for small datasets 
(AML, multi-to-multi scenario) up to 2 h for the largest dataset (BIC, single-to-multi 
scenario), with most of the computation time being consumed for the construction of 
the integration graph. With the graph stored in a Neo4j database, this step is only to 
be performed once for each integration scenario, and parameters for graph filtering 
can be further set and tuned without recomputing the graph.

The ClustOmics source code, released under MIT license, and the results obtained 
on the ten cancer types with the two integration scenarios described in this paper are 
available on GitHub: https://​github.​com/​galad​rielb​riere/​Clust​Omics.
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Supplementary material

Supplementary Figure 1 Distribution of clinical labels found enriched upon all cancer types :
(A) in the consensus clusterings for both MtoM and StoM All scenarios, (B) in MtoM
consensus clusterings and the corresponding inputs, (C) in StoM All consensus clusterings and
the corresponding inputs.
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Supplementary Figure 2 ARI heatmaps revealing input and consensus clustering similarities for
the MtoM scenario, upon the ten cancer types.
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Supplementary Figure 3 Expression heatmap of top 1000 differentially expressed genes across
breast-cancer ClustOmics StoM consensus clusters. Genes are displayed in rows and clustered
according to their expression profile. Patients are displayed in columns and are ordered according
to their consensus cluster attribution. PAM50 labels are given as supplementary annotations for
patients.
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Supplementary Figure 4 GO (Biological Process) enrichment analysis of 5 gene clusters found
differentially expressed across breast-cancer StoM consensus clusters. P-values have been
adjusted using the Benjamini-Hochberg correction and filtered with a 0.05 cutoff.
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3.4 Discussion

Omics data integration is a challenging task, requiring complex method-

ological developments to enable the simultaneous analysis of multiple

types of interactions. While existing integration strategies can already

manage the integration of some types of omics data, the addition of

novel omics or non-omics data types may be difficult to implement,

notably for algorithms designed to handle specific types of omics data

(e.g., using correlation to characterize the interactions between copy

number and expression). In this context, consensus clustering presents

itself as an interesting alternative. Indeed, the integration of new types

of data is straight-forward as clusterings can be easily generated from

any type of data. Moreover, this type of strategy allows the use of

specialized clustering tools for each considered dataset, as well as tak-

ing advantage of the strengths of different clustering algorithms while

smoothing their weaknesses. ClustOmics, the tool developed during

this thesis for the integration of omics data by consensus clustering, has

been applied on multi-omics cancer datasets for the detection of cancer

subtypes, thus clustering cohorts of patients. The same methodology

could be applied for clustering different objects (for example genes) but

one should keep in mind that the search for a consensus should be made

in a context where homogeneous patterns (or at least consistent pat-

terns between omics datasets) are expected. This does not mean that

only vertical integration (same samples across datasets) can benefit

from this type of strategy. Indeed, horizontal integration via consensus

clustering would be possible as long as the samples considered through
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the analyses present a certain homogeneity: for example, a consensus

clustering of genes could be produced by integrating micro-array and

RNA-seq data produced independently, but under similar experimental

conditions (e.g., for the same disease and in the same tissue). However,

when aiming at characterizing the heterogeneity of molecular patterns

occurring under various experimental conditions (e.g., various diseases

and/or tissues), consensus clustering is no longer appropriate, since it

will search for homogeneous patterns in the data. Thus, other types

of methods must be introduced for the integration of omics data in a

context where the heterogeneity of the data is the pattern of interest

on which to base predictions.
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Chapter 4

Network-based approach for multi-

group differential co-expression

analysis: application to the mouse

model of Alzheimer’s Disease

4.1 Context

With the increasing availability of datasets acquired world-wide, data

measured in different experimental contexts have been compared and

confronted using meta-analysis strategies, allowing the creation of dif-

ferent atlases [77, 78, 79] and repertoires [80, 81] describing the organi-

zation and molecular characteristics associated to different diseases, tis-

sues, organisms, etc. This chapter focuses on the issue of data integra-

tion in a meta-analysis context, and aim to describe the molecular fea-

tures observed across different phenotypes associated with Alzheimer’s

disease.
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4.1.1 Alzheimer’s disease and its 5xFAD mouse model

Alzheimer’s disease (AD) is a neurodegenerative disease, the leading

cause of dementia in humans worldwide, and is characterized by cog-

nitive impairments and neurodegeneration associated with neuron loss

and synaptic alterations. AD is a multi-factorial disease and many

genetic and non-genetic risk factors have been proposed. In partic-

ular, 3 genes (APP, PSEN1 and PSEN2) are regarded as diagnostic

biomarkers, as they are known to carry mutations associated with AD

and to be involved in the metabolism of amyloid-β (Aβ). It is the

aggregation of this molecule in neuritic plaques in brains affected by

AD that is considered characteristic of the disease. Furthermore, the

ϵ4 allele of the APOE gene is associated with an increased risk of an

early-onset AD, which could be explained by an inhibition of Aβ degra-

dation and a promotion of their aggregation [82]. This allele could also

be linked to abnormal and pathological phosphorylation of the tau pro-

tein, causing the aggregation of neurofibrillary tangles in neuronal cells

and contribute to other pathological dysregulations, such as disruption

of microglial homeostasis, alteration of synaptic integrity and plastic-

ity, or metabolic dysfunctions [82]. Indeed, AD seems associated with

metabolic disorders, type 2 diabetes and metabolic syndrome being

known risk factors of AD [83].

Although several mechanisms have been proposed to explain the

onset and development of AD, they are not entirely satisfactory and

some are questioned by the scientific community. Recently, the Aβ

hypothesis, which suggested that AD was caused by Aβ accumulation,

has been challenged based on failures of Aβ hypothesis-based clinical
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trials and the discovery of the presence of amyloid plaques in more than

40% of cognitively healthy elderly persons over 80 years of age [84].

Moreover, recent studies suggested that AD may be an autoimmune

disease, as bacterial and viral infections in the brain have been associ-

ated with an increased risk of disease development. In this new model of

the disease, the formation of beta amyloid plaques could be accelerated

by overexposure to microbial infections [84].

The role of microglial cells in AD is also far from being elucidated,

and their beneficial and/or detrimental role in AD is still debated [85].

Recently, an evaluation of the gene expression profiles of Aβ plaque-associated

and plaque-distant microglia populations revealed several transcrip-

tomics perturbations causing opposite effects on the surrounding cells

and further supported the importance of characterizing microglia het-

erogeneity for the elucidation of their role in the disease [86].

In brief, while some of the effects and risk factors of AD have been

well characterized, the overall pathological mechanisms are not yet elu-

cidated and are still a matter of debate in the scientific community.

Unraveling the molecular mechanisms of AD is a complex task, all the

more so with the interaction of genetic and non-genetic factors caus-

ing or promoting the development of the disease. In this context, the

development of animal models that encapsulate the pathophysiological

processes of the disease facilitates the deciphering of these mechanisms.

It allows collecting data for large cohorts, while limiting the factors of

variation between samples. Notably, mice models are particularly use-

ful, and several such models of AD have been developed by including

mutations or by knockdown of AD-related genes [87].
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None of these models are ideal, nevertheless some of them are more

sophisticated than others. Notably, the 5xFAD model of AD is inter-

esting because it develops intense and early amyloid pathology, while

recapitulating many of the symptoms observed in AD, including cogni-

tive impairment, synaptic loss, neurodegeneration and gliosis [88]. This

mouse model of early-onset AD expresses human APP transgene with

three mutations and human PSEN1 transgene with two mutations, and

was developed with the aim of facilitating the transfer of findings from

mouse models to human clinical trials [89].

Several studies have sought to extensively characterize the 5xFAD

phenotype, often with a focus on their transcriptomics profiles using

differential expression analysis and co-expression analysis [89, 90, 91,

92, 93].

4.1.2 Co-expression and differential co-expression

One key analysis to gain insights from transcripts data is Differential

Expression (DE) analysis that seeks to identify genes whose expression

changes between two or more sample-groups. DE analysis is often, if not

always, performed in transcriptomics studies. However, it only captures

abrupt changes in gene expression, and does not account for possible

interactions between transcripts. To meet these needs Co-Expression

(CE) analysis has been developed, which looks for patterns of associ-

ation between transcripts and infers gene networks. CE analysis aims

at identifying co-expressed genes, i.e., genes that show similar expres-

sion profiles for a set of samples. From the computation of expression

profiles pairwise similarities, a gene co-expression network is built, in
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which nodes represent the genes and weighted edges depict the strength

of the gene associations. Thereafter co-expression networks are usually

clustered to identify gene modules, i.e., groups of co-expressed genes,

that are interpreted as groups of co-regulated genes. Note that if gene

pairwise association is most often measured using correlation, other

strategies exist [94].

Co-expression analysis is widely used as it may bring to light inter-

esting processes:

(i) genes belonging to the same co-expression module often share a bi-

ological function. Based on the principle of ”guilt-by-association” [95],

this allows identifying new genes involved in a biological process

of interest, or alternatively, predicting the function of a gene of

interest;

(ii) the expression profile (eigengene) of a co-expressed gene module

can be correlated to a trait of interest, and thus highlight potential

interactions between gene co-expression and phenotype [96];

(iii) the detection of relationships between co-expressed gene modules

may reveal a higher-order organization of the transcriptome [97].

However, co-expression analysis does not directly allow for compar-

ative analysis of gene associations in different phenotypes (e.g., dis-

ease/control datasets). Therefore, when performing CE analysis on

multi-group transcriptomics datasets, co-expressions are often com-

puted either on the full dataset without distinction of experimental

sample-groups, or on a subset of the samples. For instance, in [90], co-

expression is computed on a transcriptomics dataset gathering 5xFAD
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samples and their wild-type (WT) counterparts in various brain tissues

and time-points. Expression profiles of each discovered co-expressed

module are then correlated to the metadata of the experiment (time-

point, strain, tissue and sex) and other clinical traits of interest (Aβ

plaques counts and sizes, microglial counts, etc.) to identify co-expressed

modules that appear to be associated with the 5xFAD model and the

phenotypic traits induced by this model.

As correlation is a relatively noisy measure of gene association, it

needs to be calculated on a large set of samples as for it to be robust

(some co-expression analysis tools recommend a minimum of 20 sam-

ples [98]). Thus, when the experimental groups in a dataset are small,

measuring correlation for each sample-group becomes tricky. Nonethe-

less, whenever possible, correlation should be measured for each sample-

group independently, as measuring the correlation on heterogeneous

groups of samples can lead to spurious predictions. This phenomenon

is called the Simpson’s paradox (see description in Figure 4.1) and it

refers to a phenomenon in which a trend observed from the union of sev-

eral sample-groups together is reversed or disappears when the groups

of samples are distinguished, or vice versa. Two examples are given

in Figure 4.1: (A) a correlation is observed when considering sample-

groups 1 and 2 together, yet when considering samples from group 1 and

group 2 separately, the correlation trend disappears; (B) the opposite

effect is observed, with correlation trends witnessed from each sample-

group taken individually, while they disappear when considering the

full set of samples.

This phenomenon was already described when comparing transcript
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SC: 0.75

A

B

SC: -0.04 SC: 0.07

SC: -0.04 SC: -0.52 SC: 0.4

Figure 4.1: Illustration of the Simpson’s paradox in two-groups transcriptomics data.
Spearman’s correlation coefficients (SC) are given under each correlation plot. A: Co-
expression observed over all samples (SC = 0.75), but not within experimental groups
(SC = −0.04 in Group 1, 0.07 in Group 2) B: No co-expression signal over all samples
(SC = −0.04), while co-expression patterns are observed within each experimental
groups (SC = −0.52 in Group 1, 0.4 in Group 2)

and protein abundance data [99] or when comparing transcripts expres-

sion across various sample-groups [100]. To our knowledge, apart from

a few mentions of this phenomenon in co-expression analysis related

literature [101, 102], the question of the existence and of the frequency

of this paradox in co-expression data has not been addressed. In our

opinion, the possibility of Simpson’s paradox occurring in multi-group

transcriptomics co-expression data should not be ignored, and, when

possible, co-expression analysis should be performed on homogeneous

sample-groups.

Besides avoiding Simpson’s paradox, independent analysis of co-

expression patterns in different groups of samples and their compar-

ative evaluation should be highly informative and allow the detection

of several differential co-expression patterns. In this regard, several

strategies meant to perform Differential Co-expression (DC) analysis
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have been developed.

Figure 4.2: Several examples of differential co-expression patterns:
Several DC patterns can occur: (A) the presence of a co-expressed module in one
sample-group but not in the other; (B) some changes in the structure of a co-expressed
module; (C) a change in the co-expression strength of a module (gain or loss in
correlation); (D) a co-expressed module that is split into several co-expressed modules
in the other sample-group; (E) genes ”hopping” from one co-expression module to
another. (Figure adapted from [103].)

In control/disease experimental designs for example, comparing co-

expression patterns in diseased versus control samples may highlight

key differential association patterns that are indicators of a deregula-

tion in gene co-expression related to the pathological phenotype. As

illustrated in Figure 4.2 (adapted from a review of the literature on CE

and DC analysis [103]), several DC patterns can be identified.

DC analysis has been applied in various cancer research studies.

In [104], co-expression networks are built and compared between healthy
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control and diseased samples from 5 cancer types. The authors ob-

served that a loss of connectivity in the co-expression network was a

common topological trait of cancer networks, and proposed novel cancer

biomarkers. [105] highlighted a novel differentially co-expressed gene

module, specifically co-regulated in ovarian cancer compared to healthy

samples and to nine other cancer types. Moreover, in [106], DC anal-

ysis was used to uncover a novel critical signalling pathway altered

in cancer, while in [107] it allowed to identify new candidate cancer

biomarkers. Finally, DC analysis was used for characterizing tissue or

timing specificity of co-expression patterns [108, 109]. While most stud-

ies focused on the analysis of mRNA expression data, DC analysis has

also been applied to unravel mi-RNA [110] and protein[111] differential

co-expression.

In neuroscience research, DC analysis was used to identify disease-

specific co-expression patterns [112], to uncover disease-specific biomark-

ers [113] or disease-specific co-expression modules [114].

4.2 State of the art on differential co-expression

analysis

Several strategies have been developed for differential co-expression

analysis, some measuring DC for known gene sets, while others per-

forming de novo DC detection. The strategies also differ according to

their object of study: some consider and compare co-expression pat-

terns, while others directly consider the co-expression difference. In

this section, the major DC strategies are described.
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4.2.1 Targeted approaches

Targeted approaches consider predefined gene sets, for instance gene

sets from known pathways, or from co-expression modules inferred from

analysing co-expression patterns in one sample-group. Several metrics

have been developed to evaluate DC between various sample-groups,

for a predefined gene set:

– the Centered Concordance Index (CCI) evaluates the co-expression

concordance of a co-expressed gene module in a sample-group [115].

Measured for various sample-groups, CCI values can be compared

to identify sample-group specific co-expression;

– Gene Sets Net Correlations Analysis (GSNCA) compares weight

factors assigned to genes of a gene set in various sample-groups [116];

– Gene Set Co-expression Analysis (GSCA) approach introduces a

novel metric, the Dispersion index, that can be used to character-

ize DC across two sample-groups, and uses samples permutations

between experimental sample-groups to evaluate the strength of

the DC [117].

4.2.2 De novo approaches

Non-targeted approaches aim at identifying, de novo, DC patterns from

a set of transcriptomics data. Several approaches focus on the compar-

ison of co-expression networks, while other directly target differential

co-expression.
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4.2.2.1 Co-expression based

Several co-expression based strategies first build co-expression networks

and identify co-expressed gene modules for each sample-group. These

group specific modules are then tested for co-expression in other sample-

groups, with metrics such as those presented above for targeted ap-

proaches (Section 4.2.1). For instance, in CoXpress [118], co-expressed

gene modules are inferred independently in control and disease sample-

groups, and modules with significant average co-expression in one ex-

perimental group with respect to the other are considered differentially

co-expressed. In [119], a similar strategy is applied to identify DC

modules in AD and healthy samples, using the CCI metric to compare

modules obtained for each sample-group. These strategies are mainly

able to identify DC patterns A and C in Figure 4.2.

Weighted Gene Co-expression Network Analysis (WGCNA) [96] is

the most popular tool for CE analysis. It also proposes ways to eval-

uate DC by providing a module preservation metric and consensus co-

expression networking. In [120], DC patterns between healthy persons

and mild and severe COVID-19 cases are being sought. The authors use

WGCNA to compute a reference co-expression network from healthy

samples, and then test whether the co-expressed modules are preserved

in diseased samples.

In [121], the connectivity of co-expression networks from lean and

obese mice are directly compared to identify differentially connected

genes, considered as body weight-related genes, which corresponds to

a search for changes in structure of the co-expression networks, as de-

picted in Figure 4.2-B.
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In [122], a consensus network is computed from white and grey mat-

ter brain tissues sample-groups in multiple sclerosis, in order to detect

similarities and differences in co-expression patterns of these tissues.

However, one could argue that measuring preservation (or consen-

sus) across co-expression networks is more suitable for identifying shared

patterns of co-expression than for detecting differential co-expression

patterns. Indeed, preservation and consensus metrics will specifically

target similarities in co-expression networks, rather than differences.

4.2.2.2 Differential Co-expression based

In co-expression based strategies, DC is evaluated by comparing group-

specific co-expression networks, or by comparing overall module co-

expression from one sample-group to another. However, other strategies

directly focus on differential co-expression, at the module, or gene-pair

level.

Module-based DC strategies aim at discovering differentially co-

expressed modules from multi-group transcriptomics data. For in-

stance, in DiffCoEx [123], a matrix of correlation differences is com-

puted from a set of correlation matrices obtained for various sample-

groups. This matrix is further processed with a WGCNA-like analysis

that directly identifies DC modules, i.e., using a Topological Overlap

analysis on the soft-thresholded matrix of correlation differences. The

robustness of the DC is then assessed for each module and between

modules using the dispersion index presented in Section 4.2.1. This

strategy allows DiffCoEx to detect three types of DC patterns in the

data:
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(i) intra-module DC (i.e., a module co-expressed in one condition but

not the other, cf. patterns A and C in Figure 4.2);

(ii) inter-module DC (i.e., two genes modules that are co-expressed in

one condition but not the other, cf. pattern D in Figure 4.2);

(iii) genes ”hopping” from one module to another (cf. pattern E in

Figure 4.2), which are clustered in a separate module.

Similarly, DICER [114] introduces the concept of meta-modules, i.e.,

pairs of gene sets with no intra-module DC while presenting disrupted

inter-module co-expression (cf. pattern D in Figure 4.2). DICER can

also detect modules with impaired intra-module DC (cf. pattern A and

C in Figure 4.2).

By design, such differential co-expression based methods are able

to detect more types of DC patterns in the data than co-expression-

based ones. However some of the patterns remain undetectable, such

as changes in the structure of a module (pattern B in Figure 4.2), since

the DC is assessed at the module level rather than at the gene-pair

level.

Network-based strategies aim at building and analysing Differential

Co-expression Networks (DCNs). In DCNs, nodes represent genes and

edges represent a DC between two genes. The robustness of the DC is

directly measured at the gene-pair level, i.e., edges in the network. For

example, in [124], the DCN is constructed by estimating the fold-change

of the correlation between two co-expression links. Some strategies

use the Fisher transformation of the correlation coefficients in order to

perform a z-test of the correlation difference to build the DCN [125],
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others use Bayesian frameworks to estimate the DC of gene pairs [126].

As the DCN topology can be directly mined in order to identify the

set of patterns described in Figure 4.2, DCN-based methods are among

the most flexible approaches. On the other hand, since each pair of

genes has to be tested to estimate the quality of the DC, network-

based DC strategies tend to be highly computationally intensive. Also,

if the use of permutation-based strategies over samples from different

experimental groups may improve the robustness of the DC compu-

tation, applying them in practice is not easy as it requires an intense

computational effort. In [127], Bhuva et al. review and benchmark dif-

ferent DCN-based strategies and conclude that z-score based methods

perform well, while scaling up to real transcriptomics datasets.

4.2.3 Differential Co-expression analysis for more than two

groups

When considering datasets with multiple case/control sample-groups

(i.e., diseased and control samples at different time-points and/or for

multiple tissues and/or for multiple diseases, etc.), investigating DC al-

lows pruning context-specific co-expression patterns and keeping those

patterns directly associated with the disease phenotype. Tissue-specific

or time-point-specific co-expression patterns, for example, will not be

considered unless they appear deregulated in the disease phenotype.

Moreover, integration of DC patterns observed between control and

diseased samples obtained for various experimental contexts has the po-

tential to highlight recurrent dysregulation patterns across the sample-

groups, or specific to one (or to a subset) of the experimental conditions.
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Only few strategies allow to directly perform multi-group DC anal-

ysis. The module-based DiffCoEx method proposes a differential asso-

ciation metric for more than two groups but does not allow to consider

the experimental groups as being ”paired” (disease/control), meaning

that each experimental group is compared to all the others regardless

of the experimental context. Similarly, when faced with more than two

classes of samples, DICER proposes a DC metric based on ”one vs. all”

comparisons. However, this type of metric does not allow the integra-

tion of multiple paired datasets. Bi-clustering strategies (simultaneous

clustering of features and samples) could help to identify DC modules

from various case/control conditions, but do not consider sample labels,

which are known in such experimental designs.

The comparison of several disease/control groups in various experi-

mental conditions can be achieved using a late integration strategy to

fuse DC patterns from each given comparison. For example, by inte-

grating DC modules produced by DC-module-based methods on each

paired dataset, or by integrating different DCNs produced by network-

based methods. Still, late integration of DC modules from a module-

based strategy is not straightforward. Indeed, consensus strategies are

not adequate in this context, since they would only detect similarities

across modules computed from the various case/control comparisons.

Also, a naive integration strategy such as the intersection of the modules

of each case/disease analysis, is not effective in practice when integrat-

ing more than two lists of modules. Inversely, integrating differential

co-expression networks can be conceived by considering each DCN as

a layer of a multi-layer DCN network. In such multi-layer networks,
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each layer should be composed of the same set of nodes (genes), with

potentially different links (differential co-expression). The multi-layer

network can then be mined to identify DC gene modules persistent

across layers, or specific to a subset of layers of the multi-layer DCN.

4.3 Contribution

In the following contribution for multi-group DC analysis, we propose

a novel strategy for building and analyzing multi-layer DCNs. The

strategy is based on the identification of link communities, rather than

node communities in the network. We applied this strategy to detect

recurrent and specific DC-patterns occurring in the hippocampus and

the cortex of 5xFAD mice compared to their respective controls.
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Abstract

Differential co-expression analysis allows the detection of perturbations in

gene co-expression in response to a disease, a stress or any experimental con-

dition of interest, compared to a control state. Comparing co-expression dys-

regulations across a set of experimental designs could highlight key signatures

of genes responses to various perturbations.

In this work, we implemented a strategy to detect groups of differentially

co-expressed gene pairs, (i.e., differentially co-expressed links, in multi-layer

differential co-expression networks) and applied it to detect and characterize

differential co-expression patterns induced in the cortex and the hippocampus

of 5xFAD mice, model of Alzheimer’s disease.

The strategy is based on the idea of link clustering, an innovative way of

defining communities in networks. Differentially co-expressed links are grouped

according to their similarity in terms of topological proximity and co-occurrence

score in the multi-layer differential co-expression network.
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GLOSSARY AD: Alzheimer’s Disease ; BP: Biological Process ; CC: Co-expressed

Cluster ; CNS: Central Nervous System ; DC: Differential Co-expresion / Differ-

entially Co-expressed ; DCL: Differentially Co-expressed Link ; DCN: Differential

Co-expression Network ; DE: Differential Expression / Differentially Expressed ; FC:

Fold Change ; FDR: False Discovery Rate ; GEO: Gene Expression Omnibus ; GO:

Gene Ontology ; LPS: Lipopolysaccharide ; MAMs: Mitochondria-Associated endo-

plasmic reticulum Membranes ; MCL: Markov Clustering ; QCH: Query Composite

Hypothesis ; TF: Transcription Factor ; WT: Wild Type

1 INTRODUCTION

Diseases are complex and dynamic systems whose state varies according to pheno-

types, tissues, and time, with eventual pre-symptomatic, symptomatic, and recovery

phases. To better characterize a disease, its heterogeneity with respect to time and

location must therefore be considered.

Nowadays, tremendous amounts of biological data are measured across experi-

ments and made available to researchers, among which omics data are particularly

abundant. It is now possible to capture transcriptomics profiles under many exper-

imental conditions (RNA-sequencing), and even at the scale of the cell (single-cell

RNA-sequencing). Simultaneous analysis and comparison of transcriptome profiles

from different experimental conditions can therefore contribute to the systematic char-

acterization of complex diseases in a dynamic fashion, considering recurrent or specific

disease-induced perturbations observed within and across these different experimental

conditions.

One of the key approaches when analyzing transcriptomic data is differential ex-

pression (DE) analysis. Although it is essential to capture changes in transcripts’

expression levels across two or more sample groups, it does not provide information

on whether and how these transcripts interact with each other. Co-expression analysis

on the other hand - often performed through transcripts pairwise correlation analysis

- is used to detect groups of genes whose expression varies in a similar way across

a group of samples. These genes are considered co-regulated or co-activated. The

construction and analysis of co-expression networks allow the detection of modules of

so-called co-expressed genes, which are more likely to be regulated by the same molec-

ular mechanisms, and whose biological function is generally similar. However, unlike
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DE analysis, co-expression analysis as generally performed is not adapted to highlight

differences among groups of individuals. Indeed, when measured in a heterogeneous

set of samples, e.g., case/control sample groups, correlation only enables the detection

of genes whose expressions vary similarly in all samples, and thus, whose co-expression

is independent of the disease state. Moreover, observing overall correlation with no

distinction of the experimental sample groups might lead to incorrect predictions, as

overall co-expression and group-specific co-expression could reveal reverse correlation

trends, as described by the Simpson’s paradox [1].

In recent years, differential co-expression analysis has therefore gained attention.

Differential co-expression (DC) analysis compares gene co-expression in different sam-

ple groups to detect genes whose co-expression is dissimilar between experimental

groups. For example, when comparing diseased and healthy samples, DC analysis

may reveal potential regulators that initiate or participate in the pathogenesis [2, 3].

In addition to providing useful insights on gene interactions, DC strategies can help

identifying novel actors of pathogenesis compared to DE analysis, as genes that are

not significantly under- or over-expressed may still have significant impact through

DC with others [4].

DC analysis can be performed using two main strategies: module- or network-

driven approaches. Module-based approaches seek to identify groups of differen-

tially co-expressed genes, exhibiting an overall gain or loss of correlation within and

across modules [4, 5]. Network-based approaches, on the other hand, rely on the

construction of differential co-expression networks (DCN) by directly searching for

co-expression perturbations at the gene pair level (a link in the DCN relates differen-

tially co-expressed gene pairs) in order to capture their conditional association [6, 7].

For the comparative analysis of several diseases, tissues and/or time-points, network-

based methods are more adapted than module-based strategies. Indeed, the combina-

torics engendered when comparing DC modules produced from multiple case/control

comparisons is highly complex, whereas network-based methods facilitate the compar-

ison of DCNs given that they have the same set of nodes (genes/transcripts). DCN

computation is generally a two-step process. First, the difference in co-expression

between genes is estimated using a conditional association metric. Then, the robust-

ness of the conditional association is estimated to filter out non-significant DC pairs.

Several strategies exist for this task and have been reviewed and benchmarked else-
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where [3, 8, 9]. Many of these strategies rely on computing a z-score of the correlation

difference between gene pairs from two sample groups to estimate the conditional asso-

ciation between genes. Other association models are also used, including F-statistics,

generalized linear models, or empirical Bayesian approaches. Statistical tests applied

to assess DC score significance include the z-test (for z-score based methods), per-

mutation and modulation tests. However, due to the large number of gene pairs

in an expression dataset, DC scoring methods based on repeated measures such as

permutations and test modulations are highly computationally intensive.

In this work we introduce a new strategy, based on a multi-layer Differential Co-

expression Network (DCN), for the de novo detection of recurrent and specific DC

patterns in multiple groups, in an effort to systematically characterize co-expression

perturbations induced by disease in diverse experimental contexts. A layer in such

multi-layer DCN corresponds to the co-expression perturbations observed for a given

case/control comparison.

We apply this multi-group DC strategy to detect and describe DC patterns in-

duced in the 5xFAD model of familial Alzheimer’s Disease (AD), in two cerebral

structures: the cortex and the hippocampus. 5xFAD mice express human APP and

PSEN1 transgenes and develop several AD-related pathologies, including severe amy-

loid pathology, astrogliosis and microgliosis, synaptic degeneration and neuron loss.

While the phenotypic effects induced in the 5xFAD model are well described, the

mechanisms involved in the pathogenesis are unclear. In the present work, we aimed

at identifying the critical regulatory disruptions and the key actors in these dysregu-

lations.

2 MATERIALS AND METHODS

2.1 Dataset

In this work we used the RNA-sequencing dataset GSE168137 from the GEO database [10].

This dataset was generated by Forner et al. [11] to investigate the transcriptional char-

acteristics of the 5xFAD (C57BL/6 background) Alzheimer model across the lifespan

and for two brain regions: hippocampus and cortex. Bulk-RNA-sequencing was per-

formed on 192 5xFAD and corresponding wild-type (WT) C57BL/6 samples at four

time-points (4, 8, 12 and 18 months-old) for both tissues. For each brain structure,
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about 50 samples from each genotype were sequenced, and for each genotype-cerebral

structure combination, 10 samples were mesured for time-points 4, 8 and 12 months-

old, and 20 samples for time-point 18 months-old.

Raw data was filtered out to remove lowly expressed genes (normalized counts

>= 10 in all samples), keeping about 13000 genes. We further filtered those, keep-

ing only genes exhibiting high variance: top 5676 highest variance genes, including

Psen1 (5676th top variance gene) and App (67th top variance gene), the two human

transgenes expressed in 5xFAD mice. Count data for these top variance genes was

further normalized using the variance stabilizing transformation from the DESeq2

R/Bioconductor package [12].

2.2 Differential co-expression (DC) computation

Correlation is a noisy measure of gene co-association. The fewer the samples in the co-

expression computation within an experimental group, the less reliable this measure is.

Thus, we preferred to privilege the quality of the measured correlation to the diversity

of the experimental settings brought in this experiment by the different time-points

measured. Thus, correlations were measured for the cortex and hippocampus of WT

and 5xFAD mice considering all available time-points (which represents about 50

samples per structure and genotype) rather than with distinction to the time-points.

Correlations in 5xFAD transgenic mice and C57BL/6 wild-type mice were com-

puted independently in the hippocampus and the cortex samples (see Figure 1-A:

Condition-wise DC-scoring). This allowed us to test whether a DCL was observed

when:

(i) comparing C57BL/6 and 5xFAD correlations in the hippocampus;

(ii) comparing C57BL/6 and 5xFAD correlations in the cortex.

To evaluate genes conditional associations 5xFAD and C57BL/6 sample groups, it

is necessary to apply an appropriate transformation on the correlation coefficients, in

order to correct the skewness of the distribution observed for values close to ±1. We

apply the Fisher transformation of correlation coefficient on Spearman’s correlation

coefficients to approximate a normal distribution in each sample group, and in order

to compute z-scores of correlation difference for each gene pair across samples groups,

following the procedure described in [6]. P-values are then derived from the differ-

ential co-expression z-scores to assess the significant of the z-test in each pairwise
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5xFAD/WT comparison. Thus, two sets of p-values were derived in this study, one

for each cerebral structure.

To identify pairs of differentially co-expressed genes within and across tissues,

we applied a p-value integration strategy based on composite-hypothesis testing (see

Figure 1-A: DC-scores integration), by using the QCH (Query Composite Hy-

pothesis) R package [13]. QCH uses mixture models to classify gene-pairs into differ-

ent classes and provide a control for Type-I errors. We considered 4 classes to which

each gene-pair investigated could belong to:

- C1 = DC in neither of the cerebral structures,

- C2 = DC only in the hippocampus,

- C3 = DC only in the cortex,

- C4 = DC in both tissues.

The False Discovery Rate (FDR) was controlled using α = 1e−4 and significant pairs

from classes C2, C3 and C4 were selected.

Using Fisher’s transformation of the correlation coefficients to correct the skewness

of the correlation coefficients distribution for coefficients close to ±1, the closer the

original coefficients are to ±1, the more extreme the Fisher-transformed values, and

thus the significance of the z-test. In some cases, this can lead to observing correlation

differences that are statistically significant but not biologically interpretable. Thus,

we apply an additional filter on gene pairs to ensure that their difference in correlation

on the untransformed coefficients reaches at least ±0.4, which we can interpret as an

activation or inhibition of co-regulation in one sample group with respect to the other.

2.3 Multi-layer Differential Co-expression Network (DCN)

construction

From the set of DC gene pairs identified as described above, we computed a multi-

layer DCN with genes corresponding to nodes and pairs of DC genes representing

links (DCL) in the network (see Figure 1-A: DC-scores integration). Note that

the computation of the co-expression difference can be done in an unsigned or in a

signed fashion, depending on whether one wants to identify dysregulated biological

processes in a broad way, or specifically identify an activated or a deactivated process.
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The choice between a strategy or the other will impact the organisation of DCLs in

the different layers of the DCN. Indeed, the signed approach will contain twice as

many layers as the unsigned one, as the set of DCs observed in one sample group will

be split in two based on the sign of the correlation (positive or negative).

Both strategies were tested below on the dataset described in Section 2.1. For

the unsigned strategy, DCLs were organised in two layers: one gathering all DCLs

observed in the hippocampus and the other in the cortex, regardless of the direction

of the correlation.

When taking the sign of the DC into account, four layers were considered: two

layers composed of those DCLs with a positive DC score (i.e., gain of correlation in

5xFAD samples) in the hippocampus and the cortex respectively, and two considering

DCLs with a negative DC score (i.e., loss of correlation in 5xFAD samples) in the

hippocampus and the cortex respectively.

2.4 Link clustering of the multi-layer DCN

Given a multi-layer DCN built as described above, we look for groups of genes whose

co-expression seems to be disrupted in a consistent way from the point of view of

the affected genes (i.e., high density of DCLs within the group of genes) and/or of

the affected layers (i.e., groups occurring across one or more layers of the multi-layer

DCN).

To this end, we implement an approach based on the identification of so-called

link communities.

The concept of link communities was first introduced by Ahn et al. [14] in single-

layer networks. Rather than identifying groups of strongly interconnected nodes (as

in classical node clustering strategies), link clustering aims at identifying groups of

links that have high topological similarity, i.e., that are connected to the same sets of

nodes. In cases where communities are highly overlapping in a network (with more

external connections than internal), classical node community detection strategies fail

at detecting structure, while link-based communities have the advantage of capturing

relationships between overlapping groups. In biological networks, as a gene may be

involved in several biological processes and therefore belong to several overlapping

communities, link clustering is indeed of high relevance. Moreover, in the context of

multi-layer differential co-expression network analysis, identifying link communities
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makes even more sense, as a gene may display highly different interactions among

the layers of the network. Being able to capture these different interactions as dis-

tinct link communities rather than forcing a gene to be part of a unique commu-

nity, may help identifying those genes that can switch interactions depending on the

layer/experimental condition considered.

Link community clustering has been extended to multi-layer networks by Salem

et al. who applied it to analyse multi-tissue co-expression networks [15]. Here we

implement a similar strategy to explore multi-layer DCNs (see Figure 1-B). The

link clustering is performed on a DCL-network (that we call hybrid similarity DCL-

network below), in which an edge between two DCLs exhibits a hybrid measure of

similarity computed as a weighted average between a topological similarity and an

attributive similarity measures.

Topological similarity A single-layer summary network is computed from the

multi-layer DCN, resuming the DCLs observed in at least one of the layers (see

Figure 1-B: Topological similarity computation) . Note that DCLs observed

in multiple layers are only present once in the summary network, and all links are

unweighted. The topological similarity is computed for all pairs of DCLs in the

summary network as follows.

Let us consider two DCLs in the summary network, eik as a DCL between gene i

and gene k, and ejl, as a DCL between gene j and gene l. The topological similarity

between eik and ejl is given by:

St(eik, ejl) =





|N(i) ∩N(j)|
|N(i) ∪N(j)| if k = l

|((N(i) ∪N(k)) ∩ ((N(j) ∪N(l))|
|((N(i) ∪N(k)) ∪ ((N(j) ∪N(l))| if k ̸= l

where N(i) represents the set of neighbours of i in the summary network, including

i itself.

The topological similarity is computed as the ratio of shared neighbors between

the two DCLs and the total of neighboring genes. When two DCLs share a gene

k, the neighborhood of the common gene is not taken into account, as neighboring

nodes from k would automatically be shared between the two DCLs, thus artificially

increasing their topological similarity. The topological similarity ranges from 0 (the

two DCLs do not share any neighbors) to 1 (all neighbors of one of the two DCLs are

9



also neighbors of the other).

Attributive similarity In the summary network, two DCLs can be similar in

terms of topological structure, but never co-occur in the same layer of the multi-layer

DCN. To avoid such chimeric associations, an attributive similarity is introduced.

Unlike the topological similarity, the attributive one is computed on the initial multi-

layer DCN (see Figure 1-B: Attributive similarity computation), as the ratio

between the number of layers in which the two DCLs coexist and the total number

of layers L:

Sa(eik, ejl) =
|I(eik) ∩ I(ejl)|

L

where I(eik) is the set of layers of the multi-layer DCN in which the DCL eik

occurs.

The attributive similarity ranges from 0 (the two DCLs never co-occur in the set

of layers) to 1 (the two DCLs always co-occur in the set of layers).

Hybrid similarity Finally, in order to ensure that two DCLs are similar both in

terms of (i) topology in the summary network and (ii) co-occurrence in the input

layers of the multi-layer DCN, we combine the two similarity measures to compute a

hybrid similarity measure. For each pair of DCLs eik and ejl:

Sh(eik, ejl) = α× St(eik, ejl) + (1 − α) × Sa(eik, ejl)

where α is a user-defined parameter (real number between 0 and 1) that corresponds

to the weight given to the topological similarity, and 1 − α the weight given to the

attributive similarity.

When tuning the α parameter, one should consider the heterogeneity of the input

layers and the density of the summary graph as they can respectively influence the

distribution of attributive and topological similarities. Indeed, when the layers are

highly heterogeneous and most DCLs occur in a single layer of the multi-layer DCN,

the attributive similarity is skewed towards low similarities. Inversely, when the

majority of DCLs are shared across layers, the attributive similarity is skewed towards

high similarities. On the other hand, the distribution of topological similarities is

skewed toward low values when the summary graph is very sparse (most DC-genes
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will not share neighbors in the summary graph as they display few DCLs) or skewed

towards high values when the summary graph is very dense (most DC-genes will share

many neighbors in the summary graph since they display many DCLs). Therefore, one

should tune α such that both weighted distributions approximately have the same

mean, so that both metrics can participate in the signal expressed by the hybrid

similarity.

Clustering the hybrid similarity DCL network A hybrid similarity DCL-

network is built (with or without prior thresholding of hybdrid similarities), with

DCLs as nodes (squares in Figure 1-B: Hybrid network computation), and

edges being weighted with the hybrid similarity between their respective DCLs.

We cluster this DCL network using the Markov Clustering (MCL) algorithm [16]

in order to produce groups of DCLs, i.e., link communities, rather than groups of

genes. It is straightforward to see that given that the clusters are computed at the

edge level, a gene can be part of several DCL communities (see Figure 1-B: Hybrid

network clustering).

The link (DCL) communities detected by clustering the hybrid similarity DCL-

network are mapped on each layer of the initial multi-layer DCN. This allows com-

puting the occurrence score of a DCL-community Ci in a layer Lj as the proportion

of DCLs in the community Ci that occur in the layer Lj:

O(Ci, Lj) =
|E(Ci) ∩ E(Lj)|

|E(Ci)|

where E(Ci) is the set of DCLs composing DCL-community Ci, and E(Lj) the set of

DCLs on layer Lj.

2.5 Gene Ontology Enrichment Analysis

In order to assess the biological relevance and the biological function of gene sets

revealed by the DC procedure, we performed a Gene Ontology (GO) enrichment

analysis. With the R/Bioconductor package clusterProfiler [17], we searched for en-

richment in biological processes (GO-BP) with a 0.05 p-adjust cutoff and only level

10 terms in the ontology were retained.
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3 RESULTS

To characterize and compare potential perturbation patterns induced in the 5xFAD

mouse model of Alzheimer’s disease, we investigated differential co-expression in

the hippocampus and cortex of these mice, in comparison to their wild-type (WT)

C57BL/6 counterparts. DCLs computed in each sample group were organised into

multi-layer DCNs in both an unsigned and signed fashion in order to identify (i)

broadly dysregulated processes induced by 5xFAD mutations, (ii) specifically acti-

vated and deactivated processes in 5xFAD mice compared to the WT samples.

3.1 DCL detection and multi-layer DCN construction

After computing z-scores of correlation difference between the hippocampus and the

cortex of 5xFAD and WT samples, two sets of p-values were obtained, character-

izing the significance of the correlation change in each tissue. DCLs were selected

using a composite-hypothesis-based strategy with the QCH R package to directly

identify the class of each gene pair (not DC, DC in hippocampus, DC in cortex or

DC in hippocampus and cortex), followed by a filtering step to control both the FDR

(α = 1e − 4) and the intensity of the correlation difference (keeping DCLs showing

abs(DC) >= 0.4). See Section 2.2 above for complete details on the DC computation

procedure.

In total, 3527 DCLs were identified, involving 1258 genes. Most of the DCLs (2466)

occurred in both the cortex and hippocampus, while some of them were found only in

one tissue (917 in the hippocampus and 144 in the cortex). All DCLs identified in both

brain structures showed the same sign of correlation difference, which indicates that

the dysregulations induced in the 5xFAD genotype operate in the same direction,

independently from the cerebral structure. However, regardless of the sign of the

DC, the intensity was higher in the hippocampus, suggesting that the impairments

induced in the 5xFAD model are stronger in the hippocampus than in the cortex (see

Figure 2).

Notably, App and Psen1 human-transgenes expressed in 5xFAD mice were not

found differentially co-expressed with any other gene, and additional DE analysis also

showed that neither was significantly differentially expressed. This suggests that the

set of dysregulations observed in the data is not the result of an abrupt difference in

expression or co-expression of Psen1 transgenes and/or App detectable over multiple
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Figure 2: DCLs absolute differential correlation for (a) correlation gain in 5xFAD
samples; (b) correlation loss in 5xFAD samples. Reported p-values were computed
with the Wilcoxon-Mann-Whitney test, using the R packages ggstatsplot [18].

development stages in hippocampus and cortex, but of a more subtle and/or trans-

omic mechanism and/or operating at a given time-point but not extending over time.

Further on, the set of DCLs was used to build two multi-level networks: one

unsigned, composed of two layers (hippocampus and cortex, regardless of the DC

direction) and one signed. For the signed version, the set of DCLs was split with

respect to the sign of the correlation, thus generating four layers (each tissue-specific

layer being split in two, respectively for DCLs gaining in correlation in 5xFAD samples

or losing in correlation in 5xFAD samples).

3.2 Unsigned communities reveal dysregulated biological pro-

cesses

After building the unsigned two-layers DCN, the summary network was used to com-

pute the topological similarity for each pair of DCLs, while the pairwise attributive

similarity was obtained from the per-layer DCL occurrences matrix. DCLs hybrid

similarities were computed by combining both similarities using α = 0.7, i.e., giv-

ing more weight to the topological similarity (see Section 2.4). Indeed, because the

multi-layer DCN is composed of two layers only, DCLs attributives similarities can

only take three values: 0 (DCLs never co-occurring in any of the 2 layers), 0.5 (DCLs

co-occurring in one of the two layers) or 1 (DCLs co-occurring in both layers). As most

of the DCLs occur in both layers, the attributive similarity distribution is skewed,

with very few DCL-pairs never co-occurring in an input layer (≈ 2%), most DCL-

pairs co-occurring in one out of two layers (≈ 49%) or co-occurring in both cortex
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Figure 3: Layer-wise unsigned DCL-communities occurrence scores (and sizes).

and hippocampus (≈ 49%). On the other hand, topological similarities may range

from 0 to 1, but 75% of the observed topological similarities were below 0.25 .

Only DCL pairs with hybrid similarities above 0.5 were further kept and clustered

using MCL with default parameters. When considering only DCL-communities with

at least 10 DCLs, we obtained 11 such DCL-sets with sizes ranging from 12 to 1477

DCLs (corresponding to a number of genes ranging from 13 to respectively 844 genes).

The DCL-communities occurrence scores computed for the input layers showed

that except for 3 of them (communities 4, 6 and 10) that occurred exclusively in the

hippocampus, the majority of the communities were occurring in both the cortex and

the hippocampus (a community is considered to be common to both structures if at

least 75% of the DCLs from this community are present in both layers) (see Figure 3).

Unsigned DCL-communities 1 to 6 are represented in Figure 4, with genes (nodes)

colored according to expression Fold Change (FC) and DCLs (edges) colored accord-

ing to their Differential Co-expression (DC) in hippocampus and cortex.

A first general observation is that the computed DCL communities display differ-

ent topological properties, below we thoroughly analyze the six largest among them:

Unsigned DCL-community 1 (U1) contains genes showing positive and neg-

ative DC in both cortical and hippocampal tissues with three hub genes, namely

S1pr3, Sbno2 and Dhrs1, showing relatively modest differentially expression (from

0.4 to 1.3 log2-FC). While Dehydrogenase/Reductase Member 1 (Dhrs1 ) was not

reported directly to be involved in AD, it has been associated to Specific Language
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Figure 4: Representation of 6 largest unsigned DCL-communities. Nodes (correspond-
ing to genes) are colored by tissue-specific expression Fold Change (FC) in 5xFAD
samples compared to WT samples (greener for genes up-regulated in 5xFAD). Edges
(DCLs) are colored by tissue-specific differential co-expression (DC) in 5xFAD sam-
ples compared to WT samples (redder for gain in co-expression in 5xFAD). The first
row considers DC and FC in the hippocampus, while the second row considers DC
and FC in the cortex.

Impairment, another brain disorder [19]. Moreover, Strawberry Notch Homolog 2

(Sbno2 ) is reported to be involved in macrophages activation and the inflammatory

response in the Central Nervous System (CNS) [20]. Even more interestingly, S1pr3

is a receptor for the lysosphingolipid sphingosine 1-phosphate (S1P). S1P has neuro-

protecive properties and is regulated by the Apolipoprotein E (Apoe), whose ϵ4 allele

is known to be a major risk factor for AD [21, 22]. It has been shown to inhibit

the classical complement cascade by binding to activated complement component 1q

(C1q) in Aβ plaques [23]. While Apoe was not DC with S1pr3, Sbno2 or Dhrs1,

all 3 C1q chains (C1qa, C1qb and C1qc) as well as other C1q-related genes (C1qtnf4

and C1qbp) showed positive DC with S1pr3, Sbno2 and Dhrs1, and are part of DCL-

community U1. GO analysis of genes involved in U1 showed significant enrichment

for axonogenesis, synaptic transport and neuron and dendrite development, amongst

other biological processes (see Figure 5).

Unsigned DCL-community 2 (U2) is composed of up-regulated genes in 5xFAD

samples, while displaying dense and inter-connected DCLs. Four genes, namely Grn,

Sgpl1, Ctsb and Vsir were found switching co-expression patterns and gaining in

correlation with those densely DC and up-regulated genes, while themselves not being

as significantly up-regulated (between 0.4 to 1.3 log2-FC). Grn, Sgpl1, Ctsb and Vsir

are annotated in the Mammalian Phenotype ontology [24] as involved in abnormal

and increased inflammatory response (MP:0001845 and MP:0001846). The overall
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DCL-community was found enriched for GO terms related to leukocyte and myeloid

cell differentiation as well as Lipopolysaccharide (LPS)-mediated signalling pathway

(see Figure 5). The subset of densely DC and up-regulated genes included genes

involved in autoimmune diseases and amyloid plaque formation, notably the well

described AD-related genes Trem2 and Apoe. All 3 C1q chains also occur in this

DCL-community, in addition to being found in the first DCL-community.

Unsigned DCL-community 3 (U3), 4 (U4) and 6 (U6) each are composed

of DCLs originating from a single gene, respectively Klk6, Cd44 and Gpam. DCLs

for U4 were observed in both the cortex and the hippocampus, while DCLs from U5

and U6 mainly occurred in the hippocampus (see Figure 3 and Figure 4). Kallikrein-

related peptidase 6 Klk6 has previously been described as contributing to vascular

abnormalities in AD [25], Cd44 antigen variants have been linked to Aβ-induced

neuronal toxicity and AD [26] and Glycerol-3-phosphate acyltransferase 1 Gpam,

while not directly described as involved in AD, is related to mitochondria-associated

endoplasmic reticulum membranes (MAMs), known to regulate autophagy and to be

associated to AD [27, 28].

Unsigned DCL-community 5 (U5) gathers about 40 genes, mostly displaying

positive pairwise DC, both in the cortex and the hippocampus, including gliogenesis

related genes such as Vimentin Vim, Glial fibrillary acidic protein Gfap and C-X3-C

motif chemokine receptor 1 Cx3cr1, among others.

3.3 Signed communities highlight activated and deactivated

biological processes

Unsigned DCL communities can be hard to interpret because they consider in a

equal manner DCLs exhibiting gain and loss of co-expression in 5xFAD compared

to WT samples. To, first, specifically identify DCL-communities co-expressed in

5xFAD but not in WT and, second, DCL-communities co-expressed in WT but not

in 5xFAD on the other, we further conducted a signed analysis of the DCN (thus

splitting the previously described two-layer DCN into four layers showing gain and

loss of correlation for each tissue). Hybrid similarities were computed giving the same

weight to topological and attributive similarities (i.e., α = 0.5), and only similarities
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Figure 6: Layer-wise signed DCL-communities occurrence scores (and sizes).

above 0.3 were kept in the hybrid similarity DCL network. Markov clustering was

run with default parameters and 9 DCL-communities with at least 10 DCLs were

kept (sizes ranging from 15 to 1397 DCLs, and respectively 15 to 695 genes). Because

the DCLs identified in both cerebral structures had the same direction (either gain in

5xFAD or loss in 5xFAD for both cerebral structures), DCL-communities detected as

occurring in two layers were found on layers displaying the same sign (see Figure 6).

Note that for other experimental designs, this is not necessarily expected (for instance

when including a layer considering response to a drug or a treatment meant to restore

normal co-expression).

Among the 9 DCL-communities, 5 were found in both the cortex and the hip-

pocampus, and 4 occurred specifically in the hippocampus. Signed DCL-communities

1 to 6 are represented in Figure 7, with DCLs (edges) colored according to their Dif-

ferential Co-expression (DC) in the hippocampus and the cortex. We also colored

genes (nodes) according to their expression Fold Change (FC) to provide additional

information on gene expression patterns observed when comparing 5xFAD and WT

mice.

Signed DCL-community 1 (S1) shows impaired co-expression, with a loss of

correlation in the 5xFAD genotype compared to WT mice. Genes involved in this

community were found to be associated with axonogenesis and neuronal development

(see Figure 5). This DCL-community is composed of two connected components:
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Figure 7: Representation of 6 largest signed DCL-communities. Nodes (correspond-
ing to genes) are colored by tissue-specific expression Fold Change (FC) in 5xFAD
samples compared to WT samples (greener for genes up-regulated in 5xFAD). Edges
(DCLs) are colored by tissue-specific differential co-expression (DC) in 5xFAD sam-
ples compared to WT samples (redder for gain in co-expression in 5xFAD). The first
row considers DC and FC in the hippocampus, while the second row considers DC
and FC in the cortex.

the largest one includes S1pr3, Sbno2 and Dhrs1 as the main actors in dysregula-

tion, while the second connected component is composed of DE genes and highlights

Contactin-associated protein-like 2 (Cntnap2 ) as being dysregulated with most of

those up-regulated genes, though not being itself particularly differentially expressed

(−0.2 log2-FC in cortex and hippocampus). Cntnap2 has already been reported as

being down-regulated in AD [29]. Here we also find that it appears to lose in corre-

lation with genes involved in leukocyte-mediated immunity, including C1q-chains.

Signed DCL-community 2 (S2) reveals a co-activation of genes involved in

leukocyte and myeloid cell differentiation associated to the 5xFAD genotype. These

genes were also up-regulated in 5xFAD samples compared to WT. Interestingly, the

LPS-mediated signaling pathway was also found enriched in this community, indicat-

ing possible inflammation in the cortex and hippocampus of 5xFAD mice. Moreover,

the genes composing this community are densely DC with each other and correspond

to those found in the unsigned DCL-community U2 4.

In signed DCL-community 3 (S3) we observed an activation in the co-expression

of genes involved in the positive regulation of angiogenesis, a biological process known

to be impaired in AD [30]. Once again, Dhrs1, S1pr3, Sbno2, Klk6 and Cd44 genes

were the most affected.
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Signed DCL-communities 4 (S4), 5 (S5) and 6 (S6) present a similar struc-

ture, with S4 and S5 being specific to the hippocampus, while S6 appears in both

cerebral structures. They are composed of DCLs originating from a single gene for

each one of them, Cd44, Gpam (both of them having already been identified as hubs

in unsigned DCL-communities) and Plxcd2, a mitogen for neural progenitors involved

in proliferation and differentiation in the developing nervous system [31].

3.4 The role of Transcription Factors in DC communities

Transcription Factors (TF) play a key role in the regulation of gene expression. Using

the AnimalTFDB3.0 database [32] we identified several TFs that might be implicated

in differential co-expression, in signed and unsigned DCL-communities. In particular

4 of these TFs, namely Irf8, Spacdr, Plek and Mafb, retained our attention as they

shared a high number of DCLs with other genes and were consistently clustered in

the same DCL-communities (enriched with genes participating in inflammation) in

both signed (S2 community) and unsigned strategies (U2 community).

Furthermore Irf8, Spacdr, Plek and Mafb show DC with, respectively, 21, 22, 28

and 81 targets, with which they gain correlation in 5xFAD samples compared to WT,

in both cortex and hippocampus (Figure 8). While these TF were not found DC

with every gene from the DCL-community U2, we show that their overall correlation

significantly changes, as displayed in Figure 9, and especially in the hippocampus.This

seems to indicate that Irf8, Spacdr, Plek and Mafb could play a major role in the

regulation of inflammation and myeloid cell differentiation.

More specifically, Mafb DC-targets include the 3 C1q-chains, an interaction that

has already been described in the literature [34, 35] in diverse macrophage pheno-

types, including in the context of autoimmune diseases. On the other hand, Irf8

is known to regulate myeloid lineage diversification [36]. Also, the product of Plek,

Pleckstrin, has been reported to be involved in various inflammatory diseases, in-

cluding diabetes, cardiovascular diseases and rheumatoid arthritis [37, 38]. Spacdr is

orthologous to several human genes including TSC22D4, a transcriptional regulator

that could be involved in AD by enhancing the assembly of NRBP1 and CRL, that

target and degrade BRI2 and BRI3, two inhibitors of APP processing and amyloid

β oligomerization [39].
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Figure 8: TF correlation with DC targets. Reported p-values were computed with the
Wilcoxon-Mann-Whitney test, using the R packages ggstatsplot [18] and ggsignif [33].
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Figure 9: TF correlation with genes in U2 community. Reported p-values have been
computed with the Wilcoxon-Mann-Whitney test on absolute correlation values, using
the R packages ggstatsplot [18] and ggsignif [33].
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3.5 Co-expression in DC communities

Although there is a clear link between co-expression and differential co-expression, the

detection of DCL-communities as performed here does not allow to conclude regarding

gene co-expression within these communities. Indeed, a set of DC targets with the

same hub gene could be so in an independent fashion, i.e., without exhibiting any

particular association between themselves. However, co-expression analysis within

identified signed and unsigned DCL-communities showed clear correlation patterns

within these gene sets, thus supporting the relevance of identifying DCL-communities

in multi-layer DCNs.

We illustrate this by revealing patterns of correlations observed in the U1 and

U2 communities of the unsigned strategy (see Figures 10 and 11). Here we present

co-expression patterns in WT and 5xFAD hippocampus samples, as DC was more

intense in the hippocampus (cf. Figure 2), but we have made similar observations in

the cortex.

As previously described, DCL-community U1, is composed of DCLs incident

to 3 hub genes: S1pr3, Sbno2 and Dhrs1. These genes show losses as well as gains of

correlations with their targets in 5xFAD compared to WT samples. No assumption

can be made on potential interactions within these targets, since we did not identified

DCLs among them, other than those with S1pr3, Sbno2 and Dhrs1. However, when

investigating co-expression patterns within the gene set (see Figure 10), we found

that

(i) genes displaying negative DC with S1pr3, Sbno2 and Dhrs1 were co-expressed

in WT and 5xFAD samples (Co-expressed Cluster CC1 in Figure 10),

(ii) genes displaying positive DC with S1pr3, Sbno2 and Dhrs1 were co-expressed

in WT and 5xFAD samples (Co-expressed Cluster CC2 in Figure 10), and

(iii) genes displaying negative DC with S1pr3, Sbno2 and Dhrs1 were found in-

versely co-expressed with genes displaying positive DC with those 3 hub genes

(inverse correlation trend between CC1 and CC2 in Figure 10).

This co-expression analysis reveals that the topology observed in this commu-

nity is the result of a switch in the co-expression of S1pr3, Sbno2 and Dhrs1 with

one group of co-expressed genes (negative-DC targets, CC1) to another (positive-DC

23



Figure 10: Correlation heatmap of genes from DCL-community U1 in WT and 5xFAD
hippocampus samples, showing a switch of genes S1pr3, Sbno2 and Dhrs1 from co-
expression cluster CC1 in WT samples to co-expression cluster CC2 in 5xFAD sam-
ples.

targets, CC2), depending on the genotype. When performing GO:BP enrichment

analysis on both co-expressed clusters (CC), we found that CC1 is related to neuron

development (GO:0048666, p.adjust = 2.313E − 8) and axonogenesis (GO:0007409,

p.adjust = 1.552E−5), while CC2 is involved in macrophage activation (GO:0042116,

p.adjust = 2.814E−3), inflammatory response (GO:0006954, p.adjust = 5.634E−3)

and leukocyte mediated immunity (GO:0002443, p.adjust = 5.491E − 3).

We did not observe an overall change in correlation of the two co-expressed clusters

between the WT and 5xFAD conditions, as each of the CCs remained co-expressed

in both conditions (excluding S1pr3, Sbno2 and Dhrs1 ), which was expected from

the topology of the community (no DCLs other than those incident to S1pr3, Sbno2

and Dhrs1 ). This suggests that the co-activation of the CC1 and CC2 gene-sets is

not dependent from the co-regulation of S1pr3, Sbno2 and Dhrs1.

For the DCL-community U2, which, as previously described gathered much

more interconnected genes, the gain of co-expression is clearer, which was expected

from the topology of the DCL-community. Inter-DC genes gained in correlation in

the 5xFAD genotype, forming a co-expressed cluster (CC2 in Figure 11) involved in

the regulation of cytokine production (GO:0001817 , p.adjust = 1.527E − 11) and

leukocyte activation (GO:0045321, p.adjust = 1.446E − 14). The function of CC1

is not clear, as only high-level GO:BP terms were found enriched, but seems related
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Figure 11: Correlation heatmap of genes from DCL-community U2 in WT and 5xFAD
hippocampus samples showing a switch of genes Grn, Sgpl1, Ctsb and Vsir from co-
expressed cluster CC1 in WT samples to co-expressed cluster CC2 in 5xFAD samples,
and an overall gain of co-expression in CC2 in 5xFAD samples.

to protein transport (GO:0015031, p.adjust = 4.633E − 6). Grn, Sgpl1, Ctsb and

Vsir, which were at the periphery of the DCL-community, losing co-expression with

a subset of their targets, were found co-expressed with CC1 in the WT condition,

but co-expressed with CC2 in the 5xFAD condition. The clear gain in co-expression

of genes from CC2 along with a switch of Grn, Sgpl1, Ctsb and Vsir co-expression

indicate those 4 genes may play a role in the establishment of the co-regulation of

genes involved in the the inflammatory response in the 5xFAD model.

When considering signed DCL-communities, similar observations were made, with

the difference that the various co-expression groups to which a gene can belong, con-

ditionally to the genotype of the mice, are no longer classified in the same DCL-

community, but in different communities (loss on one side, gain on the other). The

application of the signed analysis is advantageous for the biological interpretation of

the communities, allowing the identification of both deactivated and activated pro-

cesses. However, the unsigned analysis has the advantage of producing more synthetic

results on the different biological processes in which a same gene can participate con-

ditionally to the different experimental conditions of interest.
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4 DISCUSSION

In this work we introduce a novel differential co-expression (DC) analysis strategy

based on the detection of differential co-expression link (DCL) communities in a

multi-layer differential co-expression network (DCN). By triggering groups of links

(DCLs) in the graph rather than groups of nodes (genes) and also thanks to our

hybrid similarity metric, we can ensure that the identified gene sets share DCLs that

are similar both in terms of topology on a layer of the DCN (i.e., act similarly in a

specific experimental condition) but also in terms of co-occurrence (i.e., are present in

several layers of the network, thus in several experimental conditions). This allows us

to reveal recurrent as well as specific perturbations induced in various experimental

conditions. Note that the detection of recurrent DCL-communities is flexible, as DCLs

that were not found in all layers of the network can still be classified as belonging

to a recurrent community if presenting strong enough topological similarity with the

other DCLs of the community. This reduces the impact of potential false-negatives

during the construction of the multi-layer DCN.

Moreover, our link clustering strategy has the advantage of producing overlapping

gene communities, which are more relevant from a biological point of view than

forcing the assignment of a gene to a unique cluster. For instance, the 3 C1q chains

were found in community U1, associated to axonogenesis and neuron development, as

well as in community U2, associated to leukocyte and myeloid cells differentiation and

inflammation. This is particularly interesting in the context of multi-group differential

co-expression analysis, since a gene is expected to interact with different sets of genes

depending on the experimental condition considered.

We applied the approach on a transcriptomic dataset to explore the variability of

co-expression perturbations induced by the 5xFAD genotype on the cortex and the

hippocampus. We observed that the two brain structures responded similarly, pre-

senting a majority of DCLs in common. However, the hippocampus seems to exhibit

more intense dysregulations than the cortex. The major DCL-commmunities detected

were identified on both tissues of the multi-layer DCN, and DCLs that are specific

to one or the other structure were not sufficiently numerous to detect hippocampus-

or cortex-specific DCL-commmunities that are easily biologically interpretable, the

few layer-specific DCL-communities found having been poorly annotated by GO en-

richment analysis. However, although the enrichment analysis did not find a clear
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functional link for these tissue-specific DCL-communities, the involved hub genes do

appear to play a role in AD (notably, Cd44, Gpam and Plxcd2).

GO-term enrichment analysis of the other major DCL-communities showed their

biological relevance, since they were found enriched with AD-relevant biological pro-

cesses, including inflammation-related pathways or neuron-development-related pro-

cesses. From a topological point of view, the computed communities revealed hub

genes and interactions that are consistent with the published literature on Alzheimer’s

disease, including interaction patterns between Mafb and C1q-chains or the central

role of S1P receptors.

Moreover, we also found clear co-expression patterns between the members of

DCL-communities, which was not particularly expected but suggests that different

targets of a same DC-gene are likely to be functionally linked or co-regulated, even if

they do not share DCLs with one another.

We thus propose several genes that seem to be particularly involved in the co-

expression perturbations induced by the 5xFAD model (of which, S1pr3, Sbno2,

Dhrs1, Grn, Sgpl1, Ctsb, Vsir, Klk6, Cd44, Gpam and C1q-related genes), including

some transcription factors (particularly, Mafb, Irf8, Plek and Spacdr). While some

of these genes showed differences in expression, we observed that many genes sharing

DCLs were not particularly, if at all, differentially expressed. Thus, compared to a

classical differential expression analysis, differential co-expression not only proposes a

topology of the interactions between genes, but also allows the detection of key actors

of the disease that would have been missed if considering the expression level solely.

Two strategies for DCL-community detection were tested: an unsigned and a

signed one. The former approach is particularly interesting for identifying the different

biological processes to which a gene can participate in different experimental contexts.

The latter allows to finely annotate gene-communities by precisely identifying the

biological processes that are deactivated or activated in 5xFAD samples compared to

their WT counterparts.

In this study, we did not explore DC accross time-points. Indeed, because the

correlation is a noisy estimation of co-expression which needs to be measured on many

samples to be reliable, we preferred to take advantage of all the samples available

for a given brain structure. However, since most DCLs were identified in both the

hippocampus and the cortex, it would be interesting to perform a complementary
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DC analysis, considering in the same experimental group the samples from the two

brain structures, but distinguishing the time-points in order to identify potential

DCL-communities occurring at a specific development stage and their evolution over

time.

Finally, the approach would benefit from being applied to a dataset gathering

more heterogeneous sample groups, in order to demonstrate its potential on multi-

layer DCNs that are more dissimilar. For example, an application to different CNS

diseases could reveal specific or shared responses to a disease or a family of diseases.

5 CONCLUSION

We propose a new strategy for the construction and analysis of multi-layer differen-

tial co-expression networks, based on the detection of communities of differentially

co-expressed links. The resulting communities are composed of genes with topolog-

ically close differential co-expression patterns, occurring in one or several layers of

the network. The detection of such link communities allows to better understand the

dysregulation patterns induced by one or more experimental conditions of interest

compared to their respective control states.
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4.4 Discussion

Multi-layer DCN link-clustering has the potential to highlight key dys-

regulations in genes co-regulation occurring in all or a subset of investi-

gated experimental contexts. Moreover, it has the advantage to produce

overlapping gene communities, and can thus resolve the different im-

plications that the same gene can present under different experimental

conditions. Applying this strategy to a two-layer DCN build from DC

analysis in the cortex and the hippocampus of 5xFAD mice compared

to their respective control, we found key deregulation communities that

occurred in both cerebral structures and several structure-specific DC

patterns. This network-based strategy can detect various types of DC-

patterns across layers. DC-modules with loss or gains in correlation

in hippocampus and cortex 5xFAD samples compared to controls sam-

ples (patterns A and C from Figure 4.2) were identified, as well as

”gene hopping” patterns occurring in both cerebral structures (pattern

E from Figure 4.2). We also propose several genes, and specifically

transcription factors, that appear as key actors of DC.

Since we observed a large overlap of hippocampus- and cortex-DC

patterns, a complementary analysis on the dataset studied in this work

could consider time-points rather than brain structure to compute lay-

ers of the multi-DCN to investigate the time-course behaviour of DC

in the 5xFAD model.

More broadly, the approach would benefit in considering more het-

erogeneous DC-layers, for instance by integrating several neurodevelop-

mental or degenerative diseases, or datasets from various cancer types.
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The limiting factor in the choice of data sets considered remains the

number of replicates per sample-group, in order to obtain robust mea-

surement of gene association.

Moreover, knowledge data such as protein-protein interactions or

pathways could be included as supplementary layers in the analysis.

Layers could also be computed from other omics, for instance using

proteins or miRNA abundance, to offer a multi-omics view of differen-

tial regulation induced in a disease.
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Chapter 5

Conclusion

The integration of omics and non-omics data is currently a major chal-

lenge in biological data analysis. The advantages of integrative data

analysis for identifying and describing complex omics interactions are

clear. After the development of new data acquisition technologies, it is

the development of omics integrative strategies that is now in full swing,

and there is no doubt that these strategies will continue to develop and

become increasingly sophisticated.

In this thesis manuscript, we focused on two major biological ques-

tions associated with data integration:

(i) The identification of interaction patterns between multiple types

of omics data in order to resolve multi-omics mechanisms associ-

ated with a phenotype of interest (particularly in a multi-omics

subtyping context).

(ii) The elucidation of phenome heterogeneity by characterizing molec-

ular patterns associated with different phenotypes of interest (es-

pecially in the context of analysis of differential co-expression pat-

terns associated with Alzheimer’s disease).

158



Our first contribution on the subject of omics data integration ad-

dresses the first type of question, i.e., the resolution of multi-omics

mechanisms associated to a phenotype of interest, and in our case the

prediction of novel cancer subtypes through the analysis of multi-omics

datasets. The solution computes a consensus clustering by reconcil-

ing the predictions contained in various input clusterings. In addition

to tackling the issue of integrating heterogeneous omics and non-omics

data, consensus clustering is able to reconcile conflicting predictions ob-

tained through to different analysis strategies, and thus take advantage

of existing integration strategies. Thus, we have shown the efficiency

of consensus clustering for the integration of omics data at two scales:

in a multi-to-multi integration scenario, for the integration of multi-

omics predictions, and in a single-to-multi integration scenario, for the

integration of single-omics predictions into a multi-omics consensus.

Our second contribution addresses the second type of question, i.e.,

the evaluation and characterization of the diversity of molecular pat-

terns associated with different phenotypes. Aiming at characterizing

differential co-expression patterns induced in the hippocampus and the

cortex of a mouse model of Alzheimer’s disease, we developed a novel

strategy for the computation and analysis of multi-layer Differential

Co-expression Networks. Based on the detection of groups of differ-

entially co-expressed gene pairs, the strategy allowed the detection of

several patterns occurring in both brain structures and tissue-specific

differential co-expression patterns. Applied on different datasets, the

strategy could be used to detect gene conditional associations across a

wider range of experimental conditions, including tissues, time-points
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or diseases. Moreover, we particularly focused on the detection of differ-

ential co-expression patterns but the same strategy could be applied to

the co-expression and differential co-expression of genes, micro-RNAs

and proteins. Since the strategy is network-based, knowledge data such

as pathways or protein-protein interactions could also be included as

supplementary layers.

In the course of these methodological developments, we were con-

fronted with the problem of estimating the quality of the predictions

obtained from integrating heterogeneous data sources (and which mo-

tivated the development of a consensus approach for our first contri-

bution). Indeed, we noticed that the traditional quality metrics were

not always adapted to the estimation of the quality of results produced

by the integration of several data sets. Indeed, the seemingly simple

choice of an appropriate metric to assess the quality of results, remains

a real challenge, usually overlooked.

When ”ground-truth” data is available an objective quality evalu-

ation can be made, however, in bioinformatics studies it is rarely the

case. Models of omics data organisation are more easily available, but

often predicted in other contexts. For example, for the multi-omics

subtyping of breast cancer, one may estimate the quality of the results

by comparing them to the subtypes predicted by the PAM50, which

became a reference in breast cancer subtyping. However, this classifi-

cation remains a prediction made on the basis of the expression of 50

genes, and it is not expected to be equally consistent when considering

other types of omics, which has been demonstrated in [128]. Although

other quality metrics can be used (e.g., survival or clinical similarities
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of patients), they represent only one interpretation of the predictions,

and predicted subtypes could be of high quality without showing dif-

ferences in survival rates, for example. The question of the choice of

quality metrics is therefore crucial, and the assessment of the quality

of multi-omics predictions should be based on quality metrics adapted

to this context.

Another example of bias in quality assessment is the use of gene on-

tology enrichment analysis for estimating gene sets robustness. Gene

ontology enrichment analysis is traditionally used to annotate gene sets

but also to evaluate their quality, gene sets with a high functional en-

richment being considered of high quality. However, as pointed in [129],

58% of the gene ontology annotations concern only 16% of the human

genes, which is the source of a strong bias in the interpretation of

results. Gene sets that might otherwise be coherent but which are

composed of poorly annotated genes, will thus be perceived as being of

poor quality, which is a brake on new discoveries. Similarly, the anno-

tation of these gene sets is also impacted by the updates of databases.

A gene set considered to be qualitative at a given time will not neces-

sarily remain so, or inversely, a gene set considered low-quality could

be better annotated in the future by means of novel annotations added

to the Gene Ontology. A similar quality metric for biological networks

is the computation of their enrichment for known protein-protein in-

teractions, which suffers the same bias as Gene Ontology enrichment

strategies. Such knowledge-based metrics, while incredibly relevant for

annotating gene sets and biological networks, should be employed with

consideration to their potential biais. The question of evaluating pre-
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dictions obtained from the integration of omics and knowledge data may

also arise, since it cannot be resolved with these same knowledge-based

evaluation metrics.

Thus, although integrative methods have become widely available

in recent years, there is a lack of quality metrics adapted to this type

of context. This observation has motivated some research work on the

harmonization of ”Figures of Merit”, novel quality descriptors applica-

ble to different omics data types in 2020 [130]. Such developments for

the standardization of quality metrics in bioinformatics could, in the

long run, offer a coherent framework adapted for each type of omics

data, as well as knowledge data integration.
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[16] Iliyan Mihaylov, Maciej Kańdu la, Milko Krachunov, and Dimi-

tar Vassilev. A novel framework for horizontal and vertical data

integration in cancer studies with application to survival time

prediction models. Biology Direct, 14(1):22, November 2019.

165



[17] Mengyun Wu, Huangdi Yi, and Shuangge Ma. Vertical integration

methods for gene expression data analysis. Briefings in Bioinfor-

matics, 22(3):bbaa169, May 2021.

[18] Laura Cantini, Pooya Zakeri, Celine Hernandez, Aurelien Naldi,

Denis Thieffry, Elisabeth Remy, and Anäıs Baudot. Benchmark-
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Riquelme, and Pedro Carmona-Sáez. A survey of gene expression

meta-analysis: methods and applications. Briefings in Bioinfor-

matics, 22(2):1694–1705, March 2021.

[24] Peter H. Sudmant, Maria S. Alexis, and Christopher B. Burge.

Meta-analysis of RNA-seq expression data across species, tissues

and studies. Genome Biology, 16(1):287, December 2015.

[25] Yang Xu and Rachel Patton McCord. Diagonal integration of

multimodal single-cell data: potential pitfalls and paths forward.

Nature Communications, 13(1):3505, June 2022. Number: 1 Pub-

lisher: Nature Publishing Group.

[26] Joshua D. Welch, Velina Kozareva, Ashley Ferreira, Charles Van-

derburg, Carly Martin, and Evan Z. Macosko. Single-Cell Multi-

omic Integration Compares and Contrasts Features of Brain Cell

168



Identity. Cell, 177(7):1873–1887.e17, June 2019. Publisher: Else-

vier.

[27] Chao Gao, Jialin Liu, April R. Kriebel, Sebastian Preissl,

Chongyuan Luo, Rosa Castanon, Justin Sandoval, Angeline

Rivkin, Joseph R. Nery, Margarita M. Behrens, Joseph R. Ecker,

Bing Ren, and Joshua D. Welch. Iterative single-cell multi-

omic integration using online learning. Nature Biotechnology,

39(8):1000–1007, August 2021.

[28] Kai Cao, Yiguang Hong, and Lin Wan. Manifold alignment for

heterogeneous single-cell multi-omics data integration using Pa-

mona. Bioinformatics, 38(1):211–219, January 2022.

[29] Jeppe S. Spicker, Søren Brunak, Klaus S. Frederiksen, and Henrik

Toft. Integration of Clinical Chemistry, Expression, and Metabo-

lite Data Leads to Better Toxicological Class Separation. Toxico-

logical Sciences, 102(2):444–454, April 2008.

[30] Dingming Wu, Dongfang Wang, Michael Q. Zhang, and Jin Gu.

Fast dimension reduction and integrative clustering of multi-

omics data using low-rank approximation: application to cancer

molecular classification. BMC Genomics, 16(1):1022, December

2015.

[31] Hua Wang, Feiping Nie, and Heng Huang. Multi-View Clustering

and Feature Learning via Structured Sparsity. In Proceedings of

the 30th International Conference on Machine Learning, pages

352–360. PMLR, May 2013. ISSN: 1938-7228.

169



[32] Katherine A. Hoadley, Christina Yau, Denise M. Wolf, Andrew D.

Cherniack, David Tamborero, Sam Ng, Max D. M. Leiserson,

Beifang Niu, Michael D. McLellan, Vladislav Uzunangelov, Ji-

ashan Zhang, Cyriac Kandoth, Rehan Akbani, Hui Shen, Lars-

son Omberg, Andy Chu, Adam A. Margolin, Laura J. van’t

Veer, Nuria Lopez-Bigas, Peter W. Laird, Benjamin J. Raphael,

Li Ding, A. Gordon Robertson, Lauren A. Byers, Gordon B. Mills,

John N. Weinstein, Carter Van Waes, Zhong Chen, Eric A. Collis-

son, Christopher C. Benz, Charles M. Perou, and Joshua M. Stu-

art. Multiplatform Analysis of 12 Cancer Types Reveals Molec-

ular Classification within and across Tissues of Origin. Cell,

158(4):929–944, August 2014.

[33] Bo Wang, Aziz M. Mezlini, Feyyaz Demir, Marc Fiume, Zhuowen

Tu, Michael Brudno, Benjamin Haibe-Kains, and Anna Golden-

berg. Similarity network fusion for aggregating data types on

a genomic scale. Nature Methods, 11(3):333–337, March 2014.

Number: 3 Publisher: Nature Publishing Group.

[34] Saeed Salem and Cagri Ozcaglar. Hybrid coexpression link sim-

ilarity graph clustering for mining biological modules from mul-

tiple gene expression datasets. BioData Mining, 7(1):16, August

2014.

[35] Alberto Valdeolivas, Laurent Tichit, Claire Navarro, Sophie Per-
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Gutierrez, Enikö A Kramár, Dina P Matheos, Jimmy Phan, Do-

minic I Javonillo, Kristine M Tran, Edna Hingco, Celia da Cunha,

180



et al. Systematic phenotyping and characterization of the 5xfad

mouse model of alzheimer’s disease. Scientific data, 8(1):1–16,

2021.

[91] Asli Uyar, Ravi Pandey, Christoph Preuss, Kevin Kotredes,

Gareth Howell, Michael Sasner, and Gregory Carter. Aging re-

lated transcriptomic changes in the mouse models of alzheimer’s

disease. Innovation in Aging, 4(Suppl 1):117, 2020.

[92] Christoph Preuss, Ravi Pandey, Erin Piazza, Alexander Fine,

Asli Uyar, Thanneer Perumal, Dylan Garceau, Kevin P Kotredes,

Harriet Williams, Lara M Mangravite, et al. A novel systems biol-

ogy approach to evaluate mouse models of late-onset alzheimer’s

disease. Molecular neurodegeneration, 15(1):1–16, 2020.

[93] Lukas da Cruz Carvalho Iohan, Jean-Charles Lambert, and Mar-

cos R Costa. Analysis of modular gene co-expression networks

reveals molecular pathways underlying alzheimer’s disease and

progressive supranuclear palsy. Plos one, 17(4):e0266405, 2022.

[94] Lin Song, Peter Langfelder, and Steve Horvath. Comparison of co-

expression measures: mutual information, correlation, and model

based indices. BMC bioinformatics, 13(1):1–21, 2012.

[95] Sara Movahedi, Michiel Van Bel, Ken S Heyndrickx, and Klaas

Vandepoele. Comparative co-expression analysis in plant biology.

Plant, cell & environment, 35(10):1787–1798, 2012.

181



[96] Peter Langfelder and Steve Horvath. Wgcna: an r package

for weighted correlation network analysis. BMC bioinformatics,

9(1):1–13, 2008.

[97] Peter Langfelder and Steve Horvath. Eigengene networks for

studying the relationships between co-expression modules. BMC

systems biology, 1(1):1–17, 2007.

[98] Peter Langfelder and Steve Horvath. WGCNA package: Fre-

quently Asked Questions. https://horvath.genetics.ucla.

edu/html/CoexpressionNetwork/Rpackages/WGCNA/faq.html.

[99] Alexander Franks, Edoardo Airoldi, and Nikolai Slavov. Post-

transcriptional regulation across human tissues. PLoS computa-

tional biology, 13(5):e1005535, 2017.

[100] Michael Brimacombe. Genomic aggregation effects and simpson’s

paradox. 2014.

[101] Benjamin D Harris, Megan Crow, Stephan Fischer, and Jesse

Gillis. Single-cell co-expression analysis reveals that transcrip-

tional modules are shared across cell types in the brain. Cell

Systems, 12(7):748–756, 2021.

[102] Li Yieng Lau, Antonio Reverter, Nicholas J Hudson, Marina

Naval-Sanchez, Marina RS Fortes, and Pâmela A Alexandre. Dy-
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biomarker candidates for cervical cancer as identified by differen-

tial co-expression network analysis. Omics: a journal of integra-

tive biology, 23(5):261–273, 2019.

[108] Emma Pierson, GTEx Consortium, Daphne Koller, Alexis Bat-

tle, and Sara Mostafavi. Sharing and specificity of co-expression

networks across 35 human tissues. PLoS computational biology,

11(5):e1004220, 2015.

183



[109] Yongchun Zuo, Guanghua Su, Shanshan Wang, Lei Yang, Mingzhi

Liao, Zhuying Wei, Chunling Bai, and Guangpeng Li. Exploring

timing activation of functional pathway based on differential co-

expression analysis in preimplantation embryogenesis. Oncotar-

get, 7(45):74120, 2016.

[110] Malay Bhattacharyya and Sanghamitra Bandyopadhyay. Study-

ing the differential co-expression of micrornas reveals significant

role of white matter in early alzheimer’s progression. Molecular

BioSystems, 9(3):457–466, 2013.

[111] Nicholas T Seyfried, Eric B Dammer, Vivek Swarup, Divya

Nandakumar, Duc M Duong, Luming Yin, Qiudong Deng,

Tram Nguyen, Chadwick M Hales, Thomas Wingo, et al. A

multi-network approach identifies protein-specific co-expression

in asymptomatic and symptomatic alzheimer’s disease. Cell sys-

tems, 4(1):60–72, 2017.

[112] Fan Xu, Jing Yang, Jin Chen, Qingyuan Wu, Wei Gong, Jianguo

Zhang, Weihua Shao, Jun Mu, Deyu Yang, Yongtao Yang, et al.

Differential co-expression and regulation analyses reveal different

mechanisms underlying major depressive disorder and subsyndro-

mal symptomatic depression. BMC bioinformatics, 16(1):1–10,

2015.

[113] Fereshteh Izadi and Mohammad Hasan Soheilifar. Exploring po-

tential biomarkers underlying pathogenesis of alzheimer’s disease

by differential co-expression analysis. Avicenna Journal of Medi-

cal Biotechnology, 10(4):233, 2018.

184



[114] David Amar, Hershel Safer, and Ron Shamir. Dissection of reg-

ulatory networks that are altered in disease via differential co-

expression. PLoS computational biology, 9(3):e1002955, 2013.

[115] Zhi Han, Jie Zhang, Guoyuan Sun, Gang Liu, and Kun Huang. A

matrix rank based concordance index for evaluating and detecting

conditional specific co-expressed gene modules. BMC genomics,

17(7):303–315, 2016.

[116] Yasir Rahmatallah, Frank Emmert-Streib, and Galina Glazko.

Gene sets net correlations analysis (gsnca): a multivariate differ-

ential coexpression test for gene sets. Bioinformatics, 30(3):360–

368, 2014.

[117] YounJeong Choi and Christina Kendziorski. Statistical methods

for gene set co-expression analysis. Bioinformatics, 25(21):2780–

2786, 2009.

[118] Michael Watson. Coxpress: differential co-expression in gene ex-

pression data. BMC bioinformatics, 7(1):1–12, 2006.

[119] Shunian Xiang, Zhi Huang, Tianfu Wang, Zhi Han, Christina Y

Yu, Dong Ni, Kun Huang, and Jie Zhang. Condition-specific

gene co-expression network mining identifies key pathways and

regulators in the brain tissue of alzheimer’s disease patients. BMC

medical genomics, 11(6):39–51, 2018.

[120] Aliakbar Hasankhani, Abolfazl Bahrami, Negin Sheybani, Behzad

Aria, Behzad Hemati, Farhang Fatehi, Hamid Ghaem Maghami

Farahani, Ghazaleh Javanmard, Mahsa Rezaee, John P Kastelic,

185



et al. Differential co-expression network analysis reveals key hub-

high traffic genes as potential therapeutic targets for covid-19

pandemic. Frontiers in Immunology, 12, 2021.

[121] Tova F Fuller, Anatole Ghazalpour, Jason E Aten, Thomas A

Drake, Aldons J Lusis, and Steve Horvath. Weighted gene co-

expression network analysis strategies applied to mouse weight.

Mammalian Genome, 18(6):463–472, 2007.

[122] Keping Chai, Xiaolin Zhang, Huitao Tang, Huaqian Gu, Weip-

ing Ye, Gangqiang Wang, Shufang Chen, Feng Wan, Jiawei

Liang, and Daojiang Shen. The application of consensus weighted

gene co-expression network analysis to comparative transcrip-

tome meta-datasets of multiple sclerosis in gray and white matter.

Frontiers in neurology, 13:807349, 2022.

[123] Bruno M Tesson, Rainer Breitling, and Ritsert C Jansen. Diff-

coex: a simple and sensitive method to find differentially coex-

pressed gene modules. BMC bioinformatics, 11(1):1–9, 2010.

[124] Hui Yu, Bao-Hong Liu, Zhi-Qiang Ye, Chun Li, Yi-Xue Li, and

Yuan-Yuan Li. Link-based quantitative methods to identify differ-

entially coexpressed genes and gene pairs. BMC bioinformatics,

12(1):1–11, 2011.

[125] Jiexin Zhang, Yuan Ji, and Li Zhang. Extracting three-way gene

interactions from microarray data. Bioinformatics, 23(21):2903–

2909, 2007.

186



[126] Duolin Wang, Juexin Wang, Yuexu Jiang, Yanchun Liang, and

Dong Xu. Bfdca: A comprehensive tool of using bayes factor for

differential co-expression analysis. Journal of molecular biology,

429(3):446–453, 2017.

[127] Dharmesh D Bhuva, Joseph Cursons, Gordon K Smyth, and

Melissa J Davis. Differential co-expression-based detection of con-

ditional relationships in transcriptional data: comparative analy-

sis and application to breast cancer. Genome biology, 20(1):1–21,

2019.

[128] Dvir Netanely, Ayelet Avraham, Adit Ben-Baruch, Ella Evron,

and Ron Shamir. Expression and methylation patterns parti-

tion luminal-a breast tumors into distinct prognostic subgroups.

Breast Cancer Research, 18(1):1–16, 2016.

[129] Aurelie Tomczak, Jonathan M Mortensen, Rainer Winnenburg,

Charles Liu, Dominique T Alessi, Varsha Swamy, Francesco Val-

lania, Shane Lofgren, Winston Haynes, Nigam H Shah, et al. In-

terpretation of biological experiments changes with evolution of

the gene ontology and its annotations. Scientific reports, 8(1):1–

10, 2018.

[130] Sonia Tarazona, Leandro Balzano-Nogueira, David Gómez-
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