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Abstract

This dissertation studies weak and strong approximation problems for homogeneous spaces
of algebraic groups defined over some two-dimensional geometric global fields, or p-adic
function fields.

We first consider a field K which is either (a) the function field of a curve over C((t))
or (b) a finite extension of C((t1, t2)). We show that the Brauer-Manin obstruction to weak
approximation is the only one for connected reductive groups over K , generalizing the
known results for K-tori obtained in by Colliot-Thélène, Harari and Izquierdo. Then we
construct counterexamples showing that the Brauer-Manin obstruction to weak approxi-
mation is not enough for homogeneous spaces overK , and thus a more refined obstruction
is needed. Following a construction by Izquierdo and Lucchini-Arteche in the study of local-
global questions, we define an obstruction to weak approximation combining the Brauer-
Manin obstruction and the descent obstruction with respect to torsors of quasi-trivial tori.
We show that this obstruction to weak approximation is the only one for homogeneneous
spaces of connected linear groups over K with connected or abelian stabilizers. For K of
type (a), we also show that the Brauer-Manin obstruction to strong approximation is the
only one for homogeneous spaces of quasi-split semisimple simply connected groups with
toric stabilizers T such thatX2(K,T ) is finite.

Then we look at p-adic function fields K . Using the Rost invariant to which we re-
late Lichtenbaum’s duality pairing for a p-adic curve, we construct homogeneous spaces of
SLn with semisimple simply connected stabilizers for which strong approximation away
from a non-empty set of places fails. To account for such failure, we define a reciprocity
obstruction to strong approximation using H3

nr(Z,Q/Z(2)), the subgroup of elements in
H3(K(Z),Q/Z(2)) that are unramified with respect to all the codimension 1 points of
the K-variety Z . We show that for classifying varieties Z = SLn /H , this obstruction
is related to the group Inv3(H,Q/Z(2)) of degree 3 cohomological invariants of H with
coefficients in Q/Z(2). Then we show that for certain classifying varieties Z including
counterexamples we give above and SLn /T for T a torus, the closure of Z(K) in Z(AS

K)

equals the subset of elements in Z(AS
K) that are orthogonal to H3

nr,S(Z,Q/Z(2)), the sub-
group of “trivial on S” elements in H3

nr(Z,Q/Z(2)). This means that the reciprocity ob-
struction to strong approximation away from S is the only one. Going beyond classifying
varieties, we apply this reciprocity obstruction to K-tori, and we get results compatible to
the known ones obtained by Harari and Izquierdo. At last, we explain that we can adapt a
similar point of view for weak approximation problems for classifying varieties, linking the
reciprocity obstruction to weak approximation with the unramified cohomological invari-
ants. As a quick and direct application, combining Blinstein and Merkurjev’s description of
Inv3nr(T,Q/Z(2)) and the Poitou-Tate type exact sequence obtained by Harari, Scheiderer
and Szamuely gives that the reciprocity obstruction to weak approximation is the only one
for SLn /T where T is a K-torus.
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Résumé

Cette thèse étudie des problèmes d’approximation faible et forte pour les espaces homo-
gènes de groupes algébriques définis sur certains corps globaux géométriques de dimension
2 ou des corps de fonctions p-adiques.

Nous considérons d’abord un corpsK qui est soit (a) le corps de fonctions d’une courbe
sur C((t)), soit (b) une extension finie de C((t1, t2)). Nous montrons que l’obstruction de
Brauer-Manin à l’approximation faible est la seule pour les groupes réductifs connexes sur
K , généralisant ainsi les résultats connus pour lesK-tores obtenus par Colliot-Thélène, Ha-
rari et Izquierdo. Ensuite, nous construisons des contre-exemples montrant que l’obstruc-
tion de Brauer-Manin à l’approximation faible n’est pas suffisante pour les espaces homo-
gènes surK , et qu’une obstruction plus raffinée est nécessaire. En suivant une construction
d’Izquierdo et Lucchini-Arteche dans l’étude de questions locales-globales, nous définissons
une obstruction à l’approximation faible combinant l’obstruction de Brauer-Manin et l’obs-
truction de descente par rapport aux torseurs sous des K-tores quasi-triviaux. Nous mon-
trons que cette obstruction à l’approximation faible est la seule pour les espaces homogènes
de groupes linéaires connexes sur K avec des stabilisateurs connexes ou abéliens. Pour K
de type (a), nous montrons également que l’obstruction de Brauer-Manin à l’approxima-
tion forte est la seule pour les espaces homogènes de groupes semi-simples simplement
connexes quasi-déployés à stabilisateur torique T tel queX2(K,T ) soit fini.

Ensuite, nous examinons les corps de fonctions p-adiques K . En utilisant l’invariant
de Rost auquel nous relions l’accouplement de dualité de Lichtenbaum pour une courbe
p-adique, nous construisons des espaces homogènes de SLn avec des stabilisateurs semi-
simples simplement connexes pour lesquels l’approximation forte en dehors d’un ensemble
non vide de places ne vaut pas. Pour prendre en compte un tel défaut, nous définissons une
obstruction de réciprocité à l’approximation forte en utilisant H3

nr(Z,Q/Z(2)), le sous-
groupe des éléments de H3(K(Z),Q/Z(2)) qui sont non-ramifiés par rapport à tous les
points de codimension 1 de la K-variété Z . Nous montrons que pour les variétés classi-
fiantes Z = SLn /H , cette obstruction est liée au groupe Inv3(H,Q/Z(2)) des invariants
cohomologiques de degré 3 deH avec des coefficients dansQ/Z(2). Ensuite, nousmontrons
que pour certaines variétés classifiantes Z incluant des contre-exemples à l’approximation
forte que nous avons donnés ci-dessus et SLn /T pour T un tore, l’adhérence de Z(K)

dans Z(AS
K) est égale au sous-ensemble d’éléments dans Z(AS

K) qui sont orthogonaux à
H3

nr,S(Z,Q/Z(2)), le sous-groupe des éléments « triviaux sur S » dans H3
nr(Z,Q/Z(2)).

Cela signifie que l’obstruction de réciprocité à l’approximation forte en dehors de S est la
seule. Allant au-delà des variétés classifiantes, nous appliquons cette obstruction de réci-
procité aux K-tores et obtenons des résultats compatibles avec les résultats déjà connus
par Harari et Izquierdo. Enfin, nous expliquons que nous pouvons adapter un point de
vue similaire pour les problèmes d’approximation faible pour les variétés classifiantes, en
reliant l’obstruction de réciprocité à l’approximation faible avec les invariants cohomolo-
giques non-ramifiés. Comme application rapide et directe, la combinaison de la description
de Inv3nr(T,Q/Z(2)) par Blinstein etMerkurjev et de la suite exacte à la Poitou-Tate obtenue
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parHarari, Scheiderer et Szamuelymontre que l’obstruction de réciprocité à l’approximation
faible est la seule pour SLn /T où T est un K-tore.
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Chapter 1

Introduction

1.1 Classical situations . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.2 p-adic function fields . . . . . . . . . . . . . . . . . . . . . . . . . 15
1.3 Two-dimensional geometric global fields . . . . . . . . . . . . . . 18
1.4 Main results of the dissertation . . . . . . . . . . . . . . . . . . . . 22

In this chapter, we first introduce arithmetic problems in classical situations over num-
ber fields, along with existing results of such problems for algebraic groups and their ho-
mogeneous spaces. Then we introduce and present known results about the types of fields
for which we consider these problems in this dissertation, before stating the main findings
in the last section of this chapter.
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1.1. CLASSICAL SITUATIONS

1.1 Classical situations

Figure 1.1: Problem in Sunzi Suanjing:

Solve
x ≡ 2 mod 3

x ≡ 3 mod 5

x ≡ 2 mod 7.

Questions about solving a system of linear congruence equations were raised as early as
in the treatise Sunzi Suanjing written during 3rd to 5th centuries AD (Figure 1.1). Answers
to such questions are now called the Chinese Remainder Theorem, affirming the surjectiv-
ity of the morphism Z →

∏n
i=1 Z/p

ki
i Z for finitely many prime numbers pi and positive

exponents ki ∈ N. This is equivalent to saying that the map Z →
∏n

i=1 Zpi has dense
image in the topological product of p-adic integers for finitely many pi, and hence we can
think of the Chinese Remainder Theorem as an approximation theorem, allowing us to find
an integer that simultaneously approximates a finite number of p-adic integers arbitrarily
well. Going beyond the set of all integers, we can consider the set of integer solutions Y (Z)
of a system of polynomial equations (which defines a variety Y ), and ask the surjectivity
of Y (Z)→

∏n
i=1 Y (Z/piZ).

Let F be a number field. We denote by ΩF the set of places of F , and Fv the completion
of F at the place v which is a local field. In modern terms, the question of strong approxi-
mation for an F -variety Y asks the density of the F -rational points Y (F ) (supposed to be
non-empty) in the adelic space Y (AS

F ) :=
∏′

v/∈S Y (Fv) which is the topological restricted
product with respect to integral points excluding places in a finite set S. If Y (F ) is dense
in Y (AS

F ), we say that strong approximation away from S holds for Y : we can simultane-
ously approximate finitely many Fv-points with v /∈ S by a single F -rational point with the
condition that this point is integral at all other places. With this terminology, the Chinese
Remainder Theorem says that the affine line A1

Q satisfies strong approximation away from
the place∞.

We can generalize this question to the study of the closure Y (F ) in the topological
product

∏
v∈ΩF

Y (Fv) of local points. We say that weak approximation holds for Y if
Y (F ) =

∏
v∈ΩF

Y (Fv), meaning that any collection of local points in finitely many places
can be simultaneously approximated by a rational point. If the variety Y is proper, then
Y (AS

F ) =
∏

v∈ΩF \S Y (Fv). Thus if weak approximation holds for Y , then strong approx-
imation holds for Y away from any finite set S ⊆ ΩF , in particular S = ∅. Apart from
number fields, we can naturally ask these questions for function fields too.
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Introduction

Strong andweak approximation questions have been studied for algebraic groups, which
are algebraic varieties Y for which the set ofK-points Y (K) is always non-empty for any
fieldK and admits a group structure functorial inK . The following result was obtained by
Kneser and Platonov in characteristic 0, and by Margulis and Prasad in positive character-
istics.

Theorem 1.1.1 (cf. Theorem 7.12 of [PR93]). Let G be a connected semisimple algebraic
group over a global field F , and let S be a finite set of places of F . Then strong approximation
away from S holds forG if and only ifG is simply connected and for each almost simple factor
Gi of G, there exists v ∈ S such that Gi(Fv) is noncompact.

Unlike strong approximation, weak approximation is a stably birational property, hence
satisfied by all stably rational varieties (e.g. a quasi-trivial torus). We have the following
result due to Kneser, Harder and Platonov.

Theorem 1.1.2 (cf. Theorem 7.8 of [PR93]). Let G be a semisimple group, either simply
connected or adjoint, defined over a number field F . Then weak approximation holds for G.

Before considering strong and weak approximation questions for more general varieties
Y other than algebraic groups, one first asks naturally if our system of polynomial equations
admits rational solutions at all, i.e. if the set of rational points Y (F ) is non-empty. A
necessary condition for a positive answer is the existence of solutions over all of the local
completions Fv. For certain types of equations, this turns out to be a sufficient condition
too, for example, for quadrics in virtue of the Hasse-Minkowski Theorem. This gives rise
to the definition of the local-global principle (also known as the Hasse principle): given a
family C of algebraic varieties over a number field F , we say that it satisfies the local-global
principle if Y (AF ) ̸= ∅ implies Y (F ) ̸= ∅ for every Y ∈ C.

When the local-global principle does not hold, we hope to find certain obstructions
explaining the failure. Manin introduced the Brauer set Y (AF )

Br in 1970, which is the left
kernel of the pairing

Y (AF )× BrY → Q/Z

((xv)v, α) 7→
∑
v

invv(x
∗
vα)

defined by using the functoriality of the Brauer group and the class field theory exact se-
quence

0→ BrF →
⊕
v

BrFv
Σ invv−−−→ Q/Z→ 0.

The Brauer set Y (AF )
Br contains Y (F ), giving rise to an obstruction to the existence of

rational points. We say that there is a Brauer-Manin obstruction to the local-global principle
for Y if Y (AF ) ̸= ∅ but Y (AF )

Br = ∅. We say that the Brauer-Manin obstruction to the
local-global principle is the only one if the implication Y (AF )

Br ̸= ∅ =⇒ Y (F ) ̸= ∅ holds.

When Y has a F -rational point, we also get an obstruction to strong approximation by
the continuity of this Brauer-Manin pairing. For a finite set S of places, we can consider

13



1.1. CLASSICAL SITUATIONS

the projection Y (AF ) → Y (AS
F ) and say that the Brauer-Manin obstruction to strong

approximation away from S is the only one if Y (K) is dense in the image of Y (AF )
Br

under this projection. With this definition, a series of work by Colliot-Thélène, Xu, Harari,
Borovoi and Demarche shows that, under a necessary non-compactness assumption, the
Brauer-Manin obstruction to strong approximation is the only one for homogeneous spaces
of linear algebraic groups with connected stabilizers (or homogeneous spaces of connected
algebraic groups with connected stabilizers, when assuming a suitable Tate-Shafarevich
group to be finite). In [Dem22], Demeio improved these results by showing that it suffices
to consider a less restrictive obstruction given by the modified Brauer group of “trivial on
S” elements:

BrS Y := Ker(BrY →
∏
v∈S

BrYFv). (1.1)

The Brauer set Y (AS
F )

BrS Y away from S is defined to be the elements in Y (AS
F )which are

orthogonal to BrS Y , and Y (AS
F )

BrS Y always contains the closure Y (K)
S of K-points in

Y (AS
F ). In our study of strong approximation problems in Chapter 4, we will adopt this

point of view and also adapt it to define our analogous reciprocity obstruction.

Similarly, Colliot-Thélène and Sansuc (cf. [CTS87]) defined the Brauer-Manin obstruc-
tion to weak approximation by the pairing∏

v∈ΩF

Y (Fv)× Brnr(F (Y )/F )→ Q/Z

using the unramified Brauer group, which is a birational invariant. The left kernel of the
pairing contains the closure Y (F ), and when they are equal we say that the Brauer-Manin
obstruction to weak approximation is the only one for Y . With work by Sansuc and Borovoi,
we have the following result:

Theorem 1.1.3 ([Bor96]). For homogeneous spaces of connected linear algebraic groups over
a number field, with connected or abelian stabilizers, the Brauer-Manin obstruction to the
local-global principle and to weak approximation are the only ones.

Afterwards, there has been growing interest in studying analogous problems over dif-
ferent fields other than number fields, for example, function fields of curves defined over
various base fields. For such a field K , we can consider a natural set of places given by
the set X(1) of codimension 1 points v with respect to which we can take completions Kv

and formulate the strong and weak approximation problems. This can be illustrated by the
following result of Colliot-Thélène:

Theorem 1.1.4 (Théorème 3.6 of [CT18]). Let K = C(X) be the function field of smooth
projective connected curve X over C. Then strong approximation away from any non-empty
set S ⊆ X(C) holds for homogeneous spaces of semi-simpleK-groups.

However, strong approximation does not hold for tori of dimension > 0 over such a
field. In fact, Harari and Izquierdo gave the following more precise and general result:
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Theorem 1.1.5 (Théorème 3.6 of [HI19]). Let K = k(X) be the function field of a smooth
projective geometrically integral curve X defined over a field k of characteristic 0. Let T be a
K-torus. Then T (K) is always discrete (hence closed) in T (AS

K) for any finite S ⊆ X(1).

In this dissertation, we will be mainly studying weak and strong approximation prob-
lems over the following types of fields: the p-adic function fields, which are function fields
of smooth projective geometrically integral curves defined over a p-adic fields, and some
two-dimensional geometric global fields, for example C((t1, t2)), or the function field of a
smooth projective geometrically integral curve defined over C((t)). We give introductions
and present existing results over these types of fields in the following sections, before stat-
ing the main findings of the dissertation in §1.4.

1.2 p-adic function fields

In addition to global function fields (i.e. function fields over finite fields), function fields
over local fields are also of growing interest in arithmetic geometry. More generally, given
k a complete discretely valued field, we callK a semi-global field over k ifK is a one-variable
function field over k, i.e. a finitely generated extension of k of transcendence degree 1 in
which k is algebraically closed.

In recent years, there has been a series of work on local-global principles over semi-
global fields in general, by Harbater, Hartmann, Krashen, Karemaker, Pop, Colliot-Thélène,
Parimala, Suresh, Pirutka, Wu, Mishra etc. In fact there can be different choices of the set
of places, for example, the set of all discrete valuations on K , or the subset of divisorial
discrete valuations, or the even smaller subset of valuations coming from codimension 1

points of X when K = k(X) for a smooth projective geometrically integral curve X over
k. These different choices can give different results concerning local-global principles, cf.
Example 7.10 of [CT+22].

Now we consider the prototypical case where k is a p-adic field, which gives a field K
of cohomological dimension 3. Let X be a smooth projective geometrically integral curve
over k with function fieldK = k(X). We call K a p-adic function field. We take the set of
places to beX(1), the set of codimension 1 points ofX . For a given valuation v ∈ X(1), we
denote by Kv the completion of K at v. The complex

H3(K,Q/Z(2))→
⊕

v∈X(1)

H3(Kv,Q/Z(2))
Σ invv ◦∂v−−−−−→ Q/Z (1.2)

of the generalizedWeil reciprocity law enables us to define the so-called reciprocity obstruc-
tion, analogous to the Brauer-Manin obstruction over fields of cohomological dimension 2.

Harari and Szamuely studied the local-global principle with respect to the valuations
from X(1) for torsors under tori and reductive groups over K . They first obtained a global
duality theorem between the first Tate-Shafarevich group of the torus and the second Tate-
Shafarevich group of the dual torus.

15
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Theorem 1.2.1 (Theorem 0.1 of [HS16]). There is a perfect pairing of finite groups

X1(T )×X2(T ′)→ Q/Z

whereXi(T ) := Ker(H i(K,T )→
∏

v∈X(1) H i(Kv, T )), and T ′ denotes the dual torus of T .

Building upon this duality theorem, they showed that the failure of local-global princi-
ple for torsors under tori are controlled by the subgroup of locally constant elements in the
pairing of the reciprocity obstruction. Let

H3
lc(Z,Q/Z(2)) :=Ker(H3(Z,Q/Z(2))/ Im(H3(K,Q/Z(2)))

→
∏

v∈X(1)

H3(ZKv ,Q/Z(2))/ Im(H3(Kv,Q/Z(2))))

where Z is a K-variety. The pairing

Z(AK)×H3(Z,Q/Z(2))→ Q/Z

induced by evaluating classes at adelic points is constant on the subgroupH3
lc(Z,Q/Z(2)),

hence defining a morphism

ρZ : H3
lc(Z,Q/Z(2))→ Q/Z

for Z such that Z(AK) ̸= ∅. When Z is a torsor under aK-torus T , they showed that there
is a mapX2(T ′)→ H3

lc(Z,Q/Z(2)) relating ρ to the duality pairing in Theorem 1.2.1, and
in particular, the reciprocity obstruction to local-global principle is the only one for torsors
under tori:

Theorem 1.2.2 (Theorem 0.2 of [HS16]). Assume that Z is a torsor under aK-torus T such
that Z(AK) ̸= ∅ and ρZ is the zero map. Then Z(K) ̸= ∅.

To generalize this result to torsors under reductive groups, they combined the above
theorem with the Rost invariant for simply connected linear algebraic groups, with the
assumption of good reduction of the base curve.

Theorem 1.2.3 (Theorem 0.3 of [HS16]). Let Z be a torsor under a reductive linear algebraic
group G under K . Assume that the smooth projective curve X whose fraction field is K has
good reduction and that the simply connected coverGsc of the derived subgroup ofG is quasi-
split and has no E8 factor. If Z(AK) ̸= ∅ and ρZ is the zero map, then Z(K) ̸= ∅.

As for weak approximation, Harari, Scheiderer and Szamuely investigated such ques-
tions for tori overK . LetA∧ denote the inverse limit of the quotients A/mA for an abelian
group A. They first obtained a Poitou-Tate type exact sequence:
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Theorem 1.2.4 (Theorem 0.1 of [HSS15]). There is an exact sequence of topological groups

0 H0(K,T )∧ P0(T )∧ H2(K,T ′)D

H1(K,T ′)D P1(T ) H1(K,T )

H2(K,T ) P2(T )tors (H0(K,T ′)∧)
D 0.

(1.3)

They used this sequence to analyze the defect of weak approximation for T and ob-
tained the following description of the closure ofK-points T (K) in the topological product∏

v∈X(1) T (Kv).

Theorem 1.2.5 (Theorem 0.2 of [HSS15]). There is an exact sequence

0→ T (K)→
∏

v∈X(1)

T (Kv)→X2
ω(T

′)D →X1(T )→ 0, (1.4)

where X2
ω(T

′) ⊆ H2(K,T ′) is the subgroup of classes whose image in H2(Kv, T
′) is trivial

for all but finitely many v.

Then they showed that the above obstruction is compatible with the reciprocity ob-
struction to weak approximation first studied by Colliot-Thélène, and in particular, the
reciprocity obstruction is the only one to weak approximation for a torus over K .

Theorem 1.2.6 (Theorem 0.3 of [HSS15]). The left kernel of the pairing∏
v∈X(1)

T (Kv)×H3
nr(K(T )/K,Q/Z(2))→ Q/Z

is the closure of the diagonal image of T (K) for the product topology.

Tian generalized their results to connected reductive groups under certain assumptions
which hold for quasi-split connected reductive groups and tori. He established a global
duality for the Tate-Shafarevich groups of 2-term short complexes of K-tori.

Theorem 1.2.7 (Theorem 1.18 of [Tia21a], Theorem 3.5 of [Tia21b]). Let C = [T1 → T2]

be an arbitrary complex of K-tori concentrated in degrees −1 and 0. Let T ′
1 and T ′

2 be the
respective dual torus of T1 and T2, and let C ′ = [T ′

2 → T ′
1]. LetX

i(C) := Ker(H i(K,C)→∏
v∈X(1) H i(Kv, C)) be the Tate-Shafarevich group of the complex C . There is a perfect, func-

torial in C , pairing of finite groups for 0 ≤ i ≤ 2:

Xi(C)×X2−i(C ′)→ Q/Z.
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Tian then considered the complex C = [T sc → T ] where T is a maximal torus of G,
and T sc a maximal torus of Gsc which is the preimage of T under Gsc → Gss → G as in
the diagrams (2.1) and (2.2). Under the assumption that Gsc satisfies weak approximation
and it contains a quasi-trivial maximal torus, Tian gave an exact sequence similar to (1.4)
measuring the defect of weak approximation for G, with X2

ω(T
′) (resp. X1(T )) replaced

byX1
ω(C

′) (resp. X1(C)), and he showed that the reciprocity obstruction to weak approx-
imation is the only one for such aG, with a morphismX1

ω(C
′)→ H3

nr(K(G)/K,Q/Z(2))
relating both obstructions (cf. Theorem 2.4 and Theorem 3.1 of [Tia21a]).

As for strong approximation, a classical and general result by Harder over Dedekind
domains implies that strong approximation away from any non-empty set S ⊆ X(1) holds
for a quasi-split semisimple simply connected K-group (for example SLn).

Harari and Izquierdo studied tori T and described the group A(T ) := T (AK)/T (K) =

T (AK)/T (K) (the last equality comes from Theorem 1.1.5) which measures the defect of
strong approximation. Based on the exact sequence à la Poitou-Tate (1.3), they obtained the
following results:

Theorem 1.2.8 (Corollaire 6.7 and 6.9 of [HI19]). There is an injective morphism

A(T )/Div ↪→ H2(K,T ′)D

whereA(T )/Div denotes the quotient ofA(T ) by its maximal divisible subgroup. The closure
J of its image fits into an exact sequence

1→ J → H2(K,T ′)D →X2(T ′)D → 1.

There is a perfect pairing

A(T )tors ×
H2(K,T ′)∧

Im(X2(K,T ′))
→ Q/Z.

1.3 Two-dimensional geometric global fields

We consider a field K of one of the following two types:

(a) (Semi-global case). The function field of a smooth projective curve X over C((t)).
This is a semi-global field as defined in §1.2. We let the set of places Ω be the set of
valuations coming from X(1) the closed points of the curve X .

(b) (Local case). The field of fractions of a two-dimensional, excellent, henselian, local
domain R with algebraically closed residue field of characteristic zero. An example
of such a field is any finite extension of the field of fractions C((t1, t2)) of the formal
power series ringC[[t1, t2]]. We let the set of placesΩ be the set of valuations coming
from prime ideals of height 1 in R.
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The field K has similar properties comparable to that of the usual global fields, making it
natural to consider arithmetic problems for varieties overK . We list the following common
behavior shared by K and totally imaginary number fields (cf. Theorem 5.5 of [HHK09],
Theorem 1.2, 1.4, 4.7 of [CTGP04], §10.1 of [CTH15]):

(i) the cohomological dimension is two;

(ii) index and exponent of central simple algebras coincide;

(iii) Serre’s conjecture II holds: for any semisimple simply connected group G over K ,
we have H1(K,G) = 1;

(iv) weak approximation is satisfied for semisimple simply connected groups over such
fields.

By Proposition 2.1.(v) of [CTH15] and Théorème 1.6 of [Izq19], we also have the following
exact sequence forK analogous to the class field theory exact sequence for number fields,
allowing us to define the Brauer-Manin obstruction:

BrK →
⊕
v∈Ω

BrKv → Q/Z→ 0.

For K of type (a), Colliot-Thélène and Harari studied tori over K . Adapting the argu-
ments in [HS16] which treat the case of p-adic function fields and give Theorem 1.2.1, they
obtained the following analogous dualities:

Theorem 1.3.1 ([CTH15]). Let T be a K-torus with character group T̂ . There are pairings
of torsion groups

X1(K,T )×X2(K, T̂ )→ Q/Z(−1)

X1(K, T̂ )×X2(K,T )→ Q/Z(−1)

where Q/Z(−1) denotes the direct limit of Z/m(−1) := Hom(µm,Z/m), which is (non-
canonically) isomorphic to Q/Z. Quotienting by the maximal divisible subgroups, we get
perfect pairing of finite groups

X1(K,T )×X2(K, T̂ )/Div→ Q/Z(−1)

X1(K, T̂ )×X2(K,T )/Div→ Q/Z(−1).

Similarly to Theorem 1.2.2 which is a consequence of Theorem 1.2.1, the above Theorem
1.3.1 yields that the obstruction to the local-global principle for a homogeneous spaces Z of
aK-torus is controlled by the subgroup of locally constant elements in the algebraic Brauer
group Br1 Z , as in the case of number fields.

However, they showed examples where weak approximation for a torus T is not con-
trolled by the unramified Brauer group Brnr T , different from the case of global fields. An-
other consequence of such counter-examples is the following result:
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Corollary 1.3.2 (Corollaire 9.16 of [CTH15]). There exists a flasqueK-torusQ such that the
following complex is not exact:

H1(K,Q)→
⊕
v∈Ω

H1(Kv, Q)→X1
ω(Q̂)

D (1.5)

where AD denotes the group of continuous homomorphisms from A to Q/Z(−1).

Therefore, there is no Poitou-Tate type exact sequence in general as in the case of p-adic
function fields (1.3). But if we suppose that X2(K,T ) is finite for the K-torus T , we do
have an exact sequence (cf. Proposition 3.16(ii) of [Izq16])

H1(K,T )→ P1(T )→ H1(K, T̂ )D.

With the crucial hypothesis that there exists a field extension L of K splitting the torus T
such thatX2(L,Gm) = 0, Izquierdo established the following results:

Theorem 1.3.3 (Théorème 3.20 and 3.22 of [Izq16]). ForK of type (a) and aK-torus T , let
L/K be a finite extension splitting T . Suppose that X2(L,Gm) = 0. Then there is an exact
sequence

0 X3(T̂ )D H0(K,T )∧ P0(T )∧ H2(K, T̂ )D

H1(K, T̂ )D P1(T ) H1(K,T )

and an exact sequence

H1(K,T )D P1(T̂ )

H2(K, T̂ ) P2(T̂ )tors (H0(K,T )∧)
D

0 (lim←−m mT (K))D P3(T̂ ) H3(K, T̂ )

where T̂ denotes the character group of T .

Colliot-Thélène and Harari described the defect of weak approximation for a K-torus
T using the modified version Bω of a Brauer group:

Theorem 1.3.4 (Théorème 9.11 of [CTH15]). Let T be a K-torus. Then there is an exact
sequence

1→ T (K)→
∏
v∈Ω

T (Kv)→ Bω(T )
D → B(T )D → 1 (1.6)

where B(T ) (resp. Bω(T )) is defined to be the subgroup of Br1(T )/Br(K) containing ele-
ments vanishing in Br1(TKv)/Br(Kv) for all places (resp. almost all places) v ∈ Ω.
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For K of type (b), Izquierdo obtained results of the same form as Theorem 1.3.1 and
Theorem 1.3.4 (cf. Théorème 3.8 and Théorème 4.9 of [Izq19]).

Then Izquierdo and Lucchini-Arteche studied obstructions to the local-global principle
for homogeneous spaces with connected or abelian stabilizers overK of both types (a) and
(b). They gave examples showing that the usual Brauer-Manin obstruction is not enough
to explain the failure of the local-global principle:

Theorem 1.3.5 (Theorem 1.1 of [IA21]). Let K be a field of type (a) or (b) as above. There
exists a finite extension L of K and a homogeneous space Z/L under SLn,L for some n ≥ 1

with toric stabilizers for which the Brauer set Z(AL)
Br is non-empty, that has points in all

completions of L, but has no L-rational points.

To account for such failures of the local-global principle for homogeneous spaces over
K , they combined the Brauer-Manin obstruction given by the modified Brauer group B,
and the descent obstruction which is another very usual obstruction:

Theorem 1.3.6 (Theorem 5.3 of [IA21]). Let K be a field of type (a) or (b) as above. Let Z
be a homogeneous space of a connected linear group G with connected or abelian geometric
stabilizers. Assume that Z has points in every completion of K . Then there exists a torsor
W → Z of a quasi-trivial torus T such that, if the Brauer setW (AK)

B(W ) is empty, then Z
has a K-rational point.

To get a more conceptual result, they introduced the following obstruction to the local-
global principle, combining the Brauer-Manin obstruction and the descent obstruction with
respect to torsors under quasi-trivial tori:

Definition 1.3.1 (Definition 5.5 of [IA21]). For Z any varieties, we define

Z(AK)
qt,B :=

⋂
f :W

T−→Z
T quasi-trivial

f(W (AK)
B). (1.7)

We have Z(K) ⊆ Z(AK)
qt,B ⊆ Z(AK), and the above Theorem 1.3.5 gives

Corollary 1.3.7 (Corollary 5.6 of [IA21]). Let K be a field of type (a) or (b) as above. Let Z
be a homogeneous space of a connected linear group G with connected or abelian geometric
stabilizers. Assume that Z has points in every completion of K and Z(AK)

qt,B ̸= ∅. Then Z
has a K-rational point.

They also compared this obstruction to the descent obstruction with respect to torsors
under general tori (which cuts out the subset Z(AK)

tor), and they showed that Z(AK)
tor ⊆

Z(AK)
qt,B (cf. Theorem 6.4 of [IA21]).

As for strong approximation, Izquierdo and Harari studied tori over fields of type (a),
and they obtained results similar to Theorem 1.2.8. In this case, we see that strong approx-
imation is to some extent controlled by the Brauer group Bra(T ) which is isomorphic to
H2(K, T̂ ):
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Theorem 1.3.8 (Théorème 5.3 and 5.4 of [HI19]). LetK be a field of type (a) and let T be a
K-torus. There is an injective morphism

A(T )/Div ↪→ H2(K, T̂ )D

where A(T )/Div denotes the quotient of A(T ) := T (AK)/T (K) = T (AK)/T (K) by its
maximal divisible subgroup. The closure J of its image fits into an exact sequence

1→ J → H2(K, T̂ )D →X2(T̂ )D → 1.

There is a perfect pairing

A(T )tors ×
lim←−m

H2(K, T̂/m)

Im(X2(K, T̂ )/Div)
→ Q/Z.

1.4 Main results of the dissertation

Two-dimensional geometric function fields

Let K be a field of type (a) or (b) as in §1.3.

Using dévissage arguments, we first generalize Theorem 1.3.4 for tori to all connected
linear groups G over K :

Theorem 1.4.1 (Theorem 3.2.1). Let G be a connected linear group overK of type (a) or (b)
as above. Then there is an exact sequence

1→ G(K)→
∏
v∈Ω

G(Kv)→ Bω(G)
D → B(G)D → 1

where B(G) (resp. Bω(G)) is defined to be the subgroup of Br1(G)/Br(K) containing ele-
ments vanishing in Br1(GKv)/Br(Kv) for all places (resp. almost all places) v ∈ Ω, and AD

denotes the group of continuous homomorphisms from A to Q/Z(−1).

In other words, the defect of weak approximation is controlled by the modified Brauer
group Bω. However, this does not hold anymore for homogeneous spaces, shown by our
example:

Theorem 1.4.2 (Theorem 3.1.2). Let Q be a flasque torus such that

H1(K,Q)→
⊕
v∈Ω

H1(Kv, Q)→X1
ω(Q̂)

D

is not exact (for example, the one in (1.5)). Embed Q into some SLn and consider the homo-
geneous space Z := SLn /Q. Then the closure Z(K) in

∏
v∈Ω Z(Kv) is strictly smaller than

the subset of elements that are orthogonal to the modified Brauer group Bω(Z).

22



Introduction

Therefore, we need to go beyond the Brauer-Manin obstruction to explain the defect of
weak approximation. We use a similar construction to the one (1.7) used by Izquierdo and
Lucchini-Arteche, combining the Brauer-Manin obstruction and the descent obstruction.
With arguments involving the fibration method, We show that this obstruction is the only
one to weak approximation for homogeneous spaces over K :

Theorem 1.4.3 (Theorem 3.1.3). For G a connected linear group overK , let Z be a homoge-
neous space of G with connected or abelian geometric stabilizers. Define

Z(KΩ)
qt,Bω :=

⋂
f :W

T−→Z
T quasi-trivial

f(W (KΩ)
Bω).

where f runs over torsorsW → Z under quasi-trivial tori T . Then Z(KΩ)
qt,Bω = Z(K).

For K of type (a), we get the following result on strong approximation for homogene-
neous spaces of quasi-split semisimple simply connected groups with toric stabilizers T ,
based on parts of the Poitou-Tate type exact sequence given by Izquierdo in [Izq16] under
the hypothesis of the finiteness ofX2(K,T ).

Theorem 1.4.4 (Theorem 3.4.1). Let K = C((t))(X) be the function field of a smooth pro-
jective geometrically integral curve X over C((t)). Let E be a quasi-split semisimple simply
connected algebraic group overK . Let T be aK-torus such thatX2(K,T ) is finite. Consider
the homogeneous space Z = E/T . For a non-empty finite set of places S ⊆ Ω, there is an
exact sequence of pointed sets

1→ Z(K)
S
→ Z(AS

K)→ (BrS Z/BrS K)D → B(Z)D → 1

where BrS Z := Ker(BrZ →
∏

v∈S BrZKv). In particular, the Brauer-Manin obstruction to
strong approximation away from S is the only one.

p-adic function fields

Let K be the function field of a smooth projective geometrically integral curve X over a
p-adic field k.

We first show that we have very different behavior of strong approximation over K
compared to number fields:

Theorem 1.4.5. There are homogeneous spaces of the form Z = SLn /H withH semisimple
simple connected such that strong approximation away from a non-empty set S ⊆ X(1) does
not hold for Z .

Our constructions includeH of inner type A (Theorem 4.2.6, Corollary 4.2.7 and Exam-
ple 4.2.8), and outer type A (Corollary 4.2.11 and Example 4.2.13).
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For H of inner type A, we have H = SL1(A) for a simple central K-algebra A and
Z = SLn /H is a stably rational K-variety. We show that the maps H1(Kv, H) →
H3(Kv,Q/Z(2)) given by the Rost invariant composed with the sum in the complex (1.2)
of the generalized Weil reciprocity law can be calculated in terms of the Lichtenbaum du-
ality pairing BrX × PicX → Q/Z induced by evaluation on closed points. As a con-
sequence, we give explicit descriptions of H1(Kv, H), which are finite cyclic groups, and
conditions under which the map H1(K,H) →

⊕
v∈X(1)\S H

1(Kv, H) is not surjective,
yielding counter-examples to strong approximation for SLn /H .

For H of outer type A, we have H = SU(A, τ) for a central simple L-algebra A with
L/K-unitary involution τ , where L/K is a separable quadratic extension. We describe the
images ofH1(Kv, H) under the Rost invariant with respect to different ramification types,
and we give counter-examples to strong approximation for SLn /H based on calculations
in the case of inner type A.

To account for such failure, we define a reciprocity obstruction. We use the group
H3

nr(Z,Q/Z(2)), which is the subgroup of elements in H3(K(Z),Q/Z(2)) that are un-
ramified with respect to all codimension 1 points of Z . Analogous to the definition (1.1) of
the subgroup of “trivial on S” elements in a Brauer group used by Demeio, we define

H3
nr,S(Z,Q/Z(2)) := Ker(H3

nr(Z,Q/Z(2))→
∏
v∈S

H3
nr(ZKv ,Q/Z(2)))

and we denote byH3

nr,S(Z,Q/Z(2)) its quotient by constant elements. We define a pairing

Z(AS
K)×H

3

nr(Z,Q/Z(2))→ Q/Z, ((xv)v/∈S, α) 7→
∑
v/∈S

α(xv).

The subset of elements in Z(AS
K) that are orthogonal toH

3

nr,S(Z,Q/Z(2)) contains Z(K)

in virtue of the generalized Weil reciprocity law (1.2), and also its closure Z(K)
S by conti-

nuity of the pairing, giving rise to a reciprocity obstruction to strong approximation away
from S.

When Z is of the form SLn /H , we show that we can also define a pairing using
Inv3(H,Q/Z(2))norm, the normalized degree 3 cohomological invariants of H with co-
efficients in Q/Z(2), and we have the following compatibility given be the commutative
diagram

Z(AS
K) Inv3(H,Q/Z(2))norm Q/Z

Z(AS
K) H

3

nr(Z,Q/Z(2)) Q/Z.

×
≃

×

As a consequence, there is a reciprocity obstruction to strong approximation for the exam-
ples we constructed. Then we show that for certain Z (e.g. the one in Example 4.2.8, or
SLn /T for T a torus), this obstruction is the only one.

Theorem 1.4.6 (Theorem 4.3.10). Let Z = E/SL1(A) with [A] ∈ BrX of exponent m,
and the special rational group E is split semisimple simply connected. For the p-adic curve
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X , suppose Pic0(X)/m = 0, or equivalently mH
1(k,PicX) = 0 (for example X = P1

k the
projective line satisfies this condition). Then there is an exact sequence of pointed sets

1→ Z(K)
S
→ Z(AS

K)→ H
3

nr,S(Z,Q/Z(2))D → 1

for S ⊆ X(1) a non-empty finite set of places. In particular, the reciprocity obstruction to
strong approximation away from S is the only one for Z .

The group H
3

nr,S(Z,Q/Z(2)) measures the defect of strong approximation away from S

forZ , and is finite cyclic of order gcd( I(S)
I(X)

,m)where I(X) (resp. I(S)) is the index ofX (resp.
S). In particular, strong approximation away from S holds for Z if and only of I(S)/I(X) is
coprime tom, and such an S always exists, for example S such that I(S) = I(X).

The following result is obtained by exploiting the Poitou-Tate type exact sequence (1.3)
along with the description of Inv3(T,Q/Z(2))norm given by Blinstein and Merkurjev in
[BM13].

Theorem 1.4.7 (Theorem 4.3.11). Let Z = E/T be a classifying variety of a torus T overK
a p-adic function field, where the special rational groupE is split semisimple simply connected.
Then there is an exact sequence of pointed sets

1→ Z(K)
S
→ Z(AS

K)→ H
3

nr,S(Z,Q/Z(2))D

for S ⊆ X(1) a non-empty finite set of places. In other words, the reciprocity obstruction
to strong approximation away from S is the only one for Z . If we suppose furthermore that
CH2(Z)→ H0(K,CH2(Z)) is surjective, then there is an exact sequence of pointed sets

1→ Z(K)
S
→ Z(AS

K)→ H
3

nr,S(Z,Q/Z(2))D → H
3

nr,X(1)(Z,Q/Z(2))D → 1.

Then we show that our reciprocity obstruction to strong approximation not only works
for classifying varieties, but also applies to tori, compatible with the results in Theorem
1.2.8 obtained by Harari and Izquierdo:

Theorem 1.4.8 (Corollary 4.3.16). The morphism T (AK)→ H3
nr(T,Q/Z(2))D induces in-

jective morphisms
A(T )/Div ↪→ H3

nr(T,Q/Z(2))D,

A(T )tors ↪→ (H3
nr(T,Q/Z(2))∧)D

where H3
nr(T,Q/Z(2))∧ := lim←−m

H3
nr(T,Q/Z(2))/m, the group A(T ) := T (AK)/T (K) =

T (AK)/T (K) measures the defect of strong approximation, and A(T )/Div denotes the quo-
tient of A(T ) by its maximal divisible subgroup.

Finally, we explain that for classifying varieties, our comparison between the two pair-
ings of reciprocity obstruction and cohomological invariants has a parallel form for weak
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approximation problems too, given by the commutative diagram∏
v∈X(1) Z(Kv) Inv3nr(H,Q/Z(2))norm Q/Z

∏
v∈X(1) Z(Kv) H3

nr(K(Z)/K,Q/Z(2))/ Im(H3(K,Q/Z(2))) Q/Z

×

×

≃

(1.8)
where Inv3nr(H,Q/Z(2))norm denotes the subgroup of Inv3(H,Q/Z(2))norm consisting of
the unramified invariants.

As a quick and direct application, we obtain the following theorem giving answers
to weak approximation problems for classifying varieties of tori over K , combining the
Poitou-Tate type exact sequence (1.3) and the description of Inv3nr(T,Q/Z(2))norm in the
work [BM13] of Blinstein and Merkurjev. This result was also obtained by Linh in a differ-
ent way in his very recent work (cf. Theorem B of [Lin22]).

Theorem 1.4.9 (Theorem 4.4.2). Let Z = E/T be a classifying variety of a torus T overK .
Then the reciprocity obstruction to weak approximation is the only one for Z . In fact, there is
a morphism

X1
S(K,T

′)→ H3
nr(K(Z)/K,Q/Z(2))/ Im(H3(K,Q/Z(2)))

such that the subset of elements in
∏

v∈S Z(Kv) orthogonal to the image of X1
S(K,T

′) in
H3

nr(K(Z)/K,Q/Z(2))/ Im(H3(K,Q/Z(2)))with respect to the pairing (1.8) already equals
the closureZ(K) in the topological product

∏
v∈S Z(Kv), whereX1

S(T
′) := Ker(H1(K,T ′)→∏

v∈X(1)\S H
1(Kv, T

′)) for a finite set S.
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This chapter of preliminaries presents useful tools and notions that will be employed in
the rest of the dissertation.
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2.1. DÉVISSAGE

2.1 Dévissage

Dévissage techniques consist of finding a nice resolution for an algebraic group G, i.e. an
exact sequence whereG fits in and the other terms in this sequence satisfy good properties
which we hope to transfer to G or we can use to simplify our computations. For example,
we can sometimes realize G as a quotient variety of simpler algebraic groups to better
understand G. Now we collect a number of such useful dévissage resolutions.

Let G be a linear algebraic F -group. First, we can consider the exact sequence

1→ G◦ → G→ Gf → 1

where G◦ is the neutral connected component of G, and the group Gf of connected com-
ponents of G is finite.

Now we consider G a connected linear group defined over a field F of characteristic 0.
Let Gu be the unipotent radical of G. It is the largest unipotent F -group which is normal
in G. There is a canonical exact sequence

1→ Gu → G→ Gred → 1

where Gred is the largest reductive quotient group of G.

For G a connected reductive group over F (of arbitrary characteristic), we denote by
Gss its derived subgroup, which is a semi-simple F -group normal in G. Let Gtor := G/Gss

which is aF -torus and the largest toric quotient ofG. We have the canonical exact sequence
of reductive F -groups

1→ Gss → G→ Gtor → 1.

Let Gsc be the simply connected cover of Gss. There is a canonical exact sequence

1→ µ→ Gsc → Gss → 1

where µ is a finite F -group of multiplicative type, central in Gsc.

Finally, we consider algebraic tori over F . Recall that a torus T is called flasque (resp.
coflasque) if H1(L, T̂ ) = 0 (resp. H1(L, T̂ ) = 0) for every finite extension L/F . By
[CTS87], there always exist the following exact sequences of tori for a given F -torus T
(the last two sequences are dual to the first two sequences by taking the dual tori):

• 1 → S1 → P1 → T → 1 where S1 is flasque and P1 is quasi-trivial (this is called a
flasque resolution of T );

• 1 → P2 → Q2 → T → 1 where Q2 is coflasque and P2 is quasi-trivial (this is called
a coflasque resolution of T );

• 1→ T → P3 → Q3 → 1 where Q3 is coflasque and P3 is quasi-trivial;

• 1→ T → S4 → P4 → 1 where S4 is flasque and P4 is quasi-trivial.
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Putting all this information together, we get a flasque resolution of a connected reductive
groupG, i.e. an exact sequence 1→ S → H → G→ 1 fitting into the following commuta-
tive diagramwith exact rows and columns where S is a flasque torus and P is a quasi-trivial
torus (cf. [CT08]):

1

��

1

��

1

��

1 // µ //

��

Gsc //

��

Gss //

��

1

1 // S //

��

H //

��

G //

��

1

1 // N //

��

P //

��

Gtor //

��

1

1 1 1.

(2.1)

We have P = Htor, and the kernel N of P → Gtor is a group of multiplicative type. The
finite F -group µ is also the kernel of the morphism S → P . It follows that N is a torus, as
a quotient of the torus S by the finite group µ.

Let ρ : Gsc → Gss → G be the composite map and let T ⊂ G be a maximal torus. Then
T sc := ρ−1(T ) is a maximal torus of Gsc. Applying Appendice A of [CT08] to the maximal
torus T , we obtain a commutative diagram

1

��

1

��

1

��

1 // µ //

��

T sc //

��

T ∩Gss //

��

1

1 // S //

��

TH //

��

T //

��

1

1 // N //

��

P //

��

Gtor //

��

1

1 1 1

(2.2)

with exact rows and columns, where TH ⊂ H is a maximal torus of H .

Similarly, for a connected reductive F -group G, we have the following commutative
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diagram of coflasque resolution:

1

��

1

��

1

��

1 // µ //

��

Gsc //

��

Gss //

��

1

1 // P0
//

��

H0
//

��

G //

��

1

1 // N0
//

��

Q //

��

Gtor //

��

1

1 1 1.

(2.3)

where Q is a coflasque torus and P0 is a quasi-trivial torus, and the rows and columns are
exact sequences.

For a connected reductive group G defined over a field F of characteristic 0, an exact
sequence

1→ µ1 → R→ G→ 1

is called a special covering of G if µ1 is finite central and R is the product of a semisimple
connectedF -group by a quasi-trivialF -torus. Every semisimple connectedF -group admits
a special covering. By Lemme 1.10 of [San81], for every connected reductive F -group G,
there exists an integer n > 0 and a quasi-trivial F -torus PG such that the productGn×F PG

admits a special covering.

2.2 Cohomological invariants

2.2.1 Definitions

Let G be a smooth algebraic group defined over a fieldK . For F a field extension ofK , we
can identify H1(F,G) with the set of isomorphism classes of torsors of GF over F . Then
H1(∗, G) : F 7→ H1(F,G) is a functor from the category of field extensions overK to the
category of sets. Let M be another functor from the category field extensions over K to
the category of abelian groups. An invariant of G with values inM (or anM -invariant of
G is a morphism of functors

I : H1(∗, G)→M,

or equivalently, a collection of maps IF : H1(F,G) → M(F ) for every field extensions
F/K such that for every morphism F ′ → F , we have a commutative diagram

H1(F ′, G) M(F ′)

H1(F,G) M(F )

IF ′

IF
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where the vertical maps are induced by F ′ → F by functoriality. The set Inv(G,M) of all
M -invariants ofG has the structure of an abelian group. A morphismG′ → G of algebraic
groups induce a morphism

Inv(G,M)→ Inv(G′,M).

Therefore, we have a contravariant functor Inv(∗,M) from the category of algebraic groups
over K to the category of abelian groups.

An elementm ∈M(K) defines a constant M -invariant of G by sending an element in
H1(F,G) to the image ofm under the morphismM(K)→M(F ) induced by the inclusion
K → F . The subgroup of constant invariants in Inv(G,M) is isomorphic toM(K).

AnM -invariant ofG is called normalized if it takes the distinguished element ofH1(K,G)

to zero, andwe denote by Inv(G,M)norm the subgroup of normalized elements in Inv(G,M).
Then we have an isomorphism

Inv(G,M) ≃ Inv(G,M)norm ⊕M(K).

2.2.2 Cohomological invariants with values in Hd(∗,Q/Z(d− 1))

For every integer j ≥ 0, we define Q/Z(j) to be the direct sum over all prime numbers p
of Qp/Zp(j) in the derived category of sheaves of abelian groups on the big étale site of
SpecF , where Qp/Zp(j) = colimn µ

⊗j
pn if p ̸= charK , with µ⊗j

pn being the sheaf of pnth
roots of unity, and Qp/Zp(j) = colimnWnΩ

j
log[−j] if p = charK , withWnΩ

j
log being the

sheaf of logarithmic de Rham–Witt differentials (cf. [Kah96]).

Now we look at the functorM defined by

M(F ) = Hd(F,Q/Z(d− 1)).

We denote by Invd(G,Q/Z(d − 1)) the group ofM -invariants of G for such anM , and d
is called the degree.

When the degree d = 1, we have Inv1(G,Q/Z)norm = 0 for G connected (cf. Proposi-
tion 31.15 of [Knu98]).

When the degree d = 2, the group H2(F,Q/Z(1)) is canonically isomorphic to the
Brauer group BrF . The invariants with values in the Brauer group have been studied by
Blinstein and Merkurjev:

Theorem 2.2.1 (Theorem 2.4 of [BM13]). LetG be a smooth connected linear algebraic group
over a field K . Assume that G is reductive if charK > 0. Then there is an isomorphism

Inv2(G,Q/Z(1))norm ≃ PicG.

When the degree d = 3, Rost determined Inv3(G,Q/Z(2)) when G is simply con-
nected quasi-simple, and in this case Inv3(G,Q/Z(2))norm is finite cyclic with a canonical
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generator RG called the Rost invariant (cf. Part II of [GMS03]). In [Mer16a], Merkurjev
studied Inv3(G,Q/Z(2)) when G is an arbitrary semisimple group. In [BM13], Blinstein
and Merkurjev studied the case whenG is a torus. In [Mer16b], Merkurjev studied the case
when G is a split reductive group.

2.2.3 Classifying varieties

A connected algebraic group E over K is called special if H1(F,G) = 1 for every field
extensions F/K . Examples of special groups include GLn,SLn,Sp2n and their products.
We have Inv(E,M)norm = 0 for every M if E is special. Choose an injective morphism
ρ of G into a special group E and the factor variety Z = E/ρ(G) is called a classifying
variety of G, because E(F )-orbits in the set Z(F ) classify torsors of G over F : we have

H1(F,G) = Z(F )/E(F )

identifying H1(F,G) with the orbit space of the action of E(F ) on Z(F ) (cf. Corollary
28.4 of [Knu98]). Different choices of ρ give stably birational classifying varieties. For a
point x ∈ Z(F ), we write x∗E for the fiber of the H-torsor E → Z above the point x
and it is an H-torsor over F , whose class in H1(F,H) is the image of [E] under the map
H1(Z,H)→ H1(F,H) induced by x. In particular, we have the genericH-torsor ξ∗E over
K(Z) corresponding to the generic point ξ ∈ Z .

Theorem 2.2.2 (Rost, cf. Theorem 3.3. of [GMS03]). Suppose that the morphismM(F )→
M(F ((t))) is injective for every field extension F/K . Then the morphism

Inv(G,M)→M(K(Z)), I 7→ IK(Z)(ξ
∗E) (2.4)

is injective.

The assumption in this theorem is satisfied by the functor F 7→ Hd(F,Q/Z(d − 1))

that we defined in §2.2.2:

Proposition 2.2.3 (Proposition A.9 of [GMS03]). The natural morphism

Hd(F,Q/Z(d− 1))→ Hd(F ((t)),Q/Z(d− 1))

is injective.

When M satisfies certain conditions (the notion of cycle module defined in [Ros96]),
Rost showed that we can identify Inv(G,M) with a more precise subgroup ofM(K(Z)).
Examples of cycle modules includeM such thatM(F ) = Hd(F,Qp/Zp(d− 1)) when p is
coprime to charK , but when p = charK this is not a cycle module anymore.

Now we consider functorM defined by

F 7→ Hd(F,Q/Z(d− 1)) = lim−→Hd(F, µ⊗(d−1)
n )
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over a field K of characteristic 0. Such anM is a cycle module.

First we need the following notion before stating Rost’s result. As a consequence of
Gersten’s conjecture for étale cohomology proved by Bloch and Ogus (cf. [BO74]), we
have:

Theorem-Definition 2.2.4 (cf. Theorem 4.1.1 of [CT95], see also (1.1) of [CT15]). LetZ be
a smooth geometrically integralK-variety. The following subgroups ofHd(K(Z),Q/Z(d−
1)) coincide, that we define to be Hd

nr(Z,Q/Z(d− 1)):

(1) the groupH0
Zar(Z,Hd(Q/Z(d−1))) of global sections of the Zariski sheafHd(Z,Q/Z(d−

1)) which is the sheaf associated to the Zariski presheaf U 7→ Hd
ét(U,Q/Z(d− 1));

(2) the group of elementsα ∈ Hd(K(Z),Q/Z(d−1)) that are unramifiedwith respect to
any codimension 1 point P of Z , i.e. we have ∂OZ,P

(α) = 0 ∈ Hd−1(κP ,Q/Z(d−2))

or equivalently α comes from a class in Hd(OZ,P ,Q/Z(d− 1));

(3) the group of elements in Hd(K(Z),Q/Z(d − 1)) which at any point P ∈ Z come
from a class in Hd(OZ,P ,Q/Z(d− 1)).

Then we can state the theorem due to Rost describing precisely the image of the mor-
phism in (2.4).

Theorem 2.2.5 (Rost, cf. Part 1, Appendix C of [GMS03]). There is an invective morphism

θ : Invd(G,Q/Z(d− 1))→ Hd
nr(Z,Q/Z(d− 1)) (2.5)

I 7→ IK(Z)(ξ
∗E).

If the special group E is split semisimple simply connected, then θ is an isomorphism.

To illustrate furthermore how classifying varieties Z of G interact with the group of
cohomological invariants of G, we give the following theorem describing the degree 3 co-
homological invariants of a torus, where the Chow groups of Z come into play:

Theorem 2.2.6 (Theorem B of [BM13]). Let T be an algebraic torus over a field K . Then
there is an exact sequence

1→ CH2(Z)tors → H1(K,T ′) −→ Inv3(T,Q/Z(2))norm
→ H0(K,CH(Z))/ Im(CH2(Z))→ H2(K,T ′).

Here T ′ denotes the dual torus of T , i.e. the torus whose character group is the cocharacter
group of T .

Remark 2.2.7. We can also considerM : G 7→ Hd(G,Q/Z(j)) for j not necessarily equal
to d− 1, and we denote by Invd(G,Q/Z(j)) the group of suchM -invariants of G.
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Remark 2.2.8. When charK = p, we cannot use the theory of cycle modules of Rost.
However, Blinstein and Merkurjev defined in [BM13] a subgroup of balanced elements in
H0

Zar(Z,Hd(Q/Z(j))), and they showed that Invd(G,Q/Z(j)) is isomorphic to such a sub-
group under certain assumptions.

Using flasque resolutions of a tori, Blinstein and Merkurjev turned a torus into a classi-
fying variety and obtained:

Theorem 2.2.9 (Theorem C of [BM13]). let T be a torus over K and let 1 → S → P →
T → 1 be a flasque resolution of T , i.e. S is a flasque torus and P is a quasi-trivial torus.
Then there is a natural isomorphism

Hd
nr(K(T )/K,Q/Z(d− 1)) ≃ Invd(S,Q/Z(d− 1)).

2.2.4 Unramified cohomological invariants

We still suppose charK = 0. An invariant I ∈ Invd(G,Q/Z(d − 1)) is called unramified
if for every field extension F/K and every element a ∈ H1(F,G), we have I(a) inside
the subgroup H3

nr(F/K,Q/Z(d − 1)) of elements unramified with respect to all discrete
valuations of F trivial onK . Under the identification (2.5) when the special groupE is split
semisimple simply connected, the subgroupHd

nr(K(Z)/K,Q/Z(d−1)) ofHd
nr(Z,Q/Z(d−

1)) is identified with the group Invdnr(G,Q/Z(d− 1)) of unramified invariants (cf. Propo-
sition 4.1 of [Mer16b]). We denote by Invdnr(G,Q/Z(d − 1))norm the group of unramified
normalized invariants.

There have been many studies on unramified degree 3 cohomological invariants have
been widely studied. Merkurjev studied Inv3nr(G,Q/Z(2)) for all classical semisimple sim-
ply connected groupsG, and he showed in [Mer02] that Inv3nr(G,Q/Z(2))norm can be non-
trivial only when G is of type 2An−1,

2D3 or 1D4 under certain conditions.

Theorem 2.2.10 (Theorem 5.3 of [Mer02]). LetG be a simply connected group of type 2An−1,
i.e. G = SU(A, τ) where A is a central simple L-algebra of degree n ≥ 3 with L/K-unitary
involution τ over a quadratic separable field extensionL/K . The group Inv3nr(G,Q/Z(2))norm
is cyclic of order 2 generated by exp(A)RG, except for the following cases (when this group is
trivial):

1. exp(A) is odd;

2. n is a 2-power and exp(A) = n;

3. n is a 2-power, exp(A) = n/2 and the discriminant algebra is split.

Theorem 2.2.11 (Theorem 8.5 of [Mer02]). Let G be a simply connected group of type Dn

(we exclude groups of trialitarian type inD4), i.e. G = Spin(A, σ) for a central simple algebra
A of degree 2n over K with an orthogonal involution σ. Let C(A, σ) be the Clifford algebra.
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Then Inv3nr(G,Q/Z(2))norm is trivial, except for the following cases (when this group is cyclic
of order 2 generated by 2RG):

1. n = 3, disc(σ) is not trivial, A is not split and exp(C) = 2;

2. n = 4, disc(σ) is trivial, A is not split and neither component C+ nor C− of C splits.

Garibaldi computed the remaining cases when G is exceptional, i.e. when G is of type
G2,

3D4,
6D4,F4,E6,E7 or E8, completing the computations of Inv3nr(G,Q/Z(2))norm for G

semisimple simply connected. He showed in [Gar06] that for G a simple simply connected
exceptional algebraic group, the group Inv3nr(G,Q/Z(2))norm is Z/2Z if G is of type 3D4

with a nontrivial Tits algebra; otherwise Inv3nr(G,Q/Z(2))norm is trivial.

Blinstein andMerkurjev described unramified cohomological invariants for a torus with
an auxiliary flasque torus. For T a torus overK , by Lemma 0.6 of [CTS87]), we can find an
exact sequence 1→ T −→ T1 → P → 1 with T1 a flasque torus and P a quasi-trivial torus.

Theorem 2.2.12 (Theorem 5.5 of [BM13]). There is a natural isomorphism

Inv3(T1,Q/Z(2)) ≃ Inv3nr(T,Q/Z(2)).
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The results of the first three sections of this chapter appeared in my article [Zha23].
In this article, we study obstructions to weak approximation for connected linear groups
and homogeneous spaces with connected or abelian stabilizers over finite extensions of
C((x, y)) or function fields of curves over C((t)). We show that for connected linear groups,
the usual Brauer-Manin obstruction works as in the case of tori. However, this Brauer-
Manin obstruction is not enough for homogeneous spaces, as shown by the examples we
give. We then construct an obstruction using torsors under quasi-trivial tori that explains
the failure of weak approximation.

In the last section, we show that the Brauer-Manin obstruction to strong approximation
is the only one for homogeneous spaces of quasi-split semisimple simply connected groups
with toric stabilizers T such that X2(K,T ) is finite, where K is the function field of a
curve over C((t)).
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Homogeneous spaces over some two-dimensional geometric global fields

3.1 Introduction

Given an algebraic variety Z over a number fieldK , we say that Z satisfies weak approxi-
mation ifZ(K) is dense in

∏
v∈Ω Z(Kv)with respect to the product of the v-adic topologies,

whereKv denotes the v-adic completion andΩ denotes the set of places ofK . Weak approx-
imation is satisfied for simply connected groups, and when it is not satisfied, we want to
characterize the closureZ(K) of the set of rational points in

∏
v∈Ω Z(Kv) as some subset of

elements satisfying certain compatibility conditions, for example, as the Brauer-Manin set
Z(KΩ)

Br (cf. Section 8.2 of [Poo17]), and this gives an obstruction to weak approximation.

Going beyond number fields, recently there has been an increasing interest in studying
analogous questions over some two-dimensional geometric global fields. As in [IA21], we
consider a field K of one of the following two types:

(a) the function field of a smooth projective curve C over C((t));

(b) the fraction field of a local, henselian, two-dimensional, excellent domainAwith alge-
braically closed residue field of characteristic 0 (e.g. any finite extension of C((x, y)),
the field of Laurent series in two variables over the field of complex numbers).

In case (a), one can consider the set Ω of valuations coming from the closed points of the
curve C . Colliot-Thélène/Harari (cf. [CTH15]) proved the following exact sequence de-
scribing the obstruction to weak approximation for the case of tori T :

1→ T (K)→
∏
v∈Ω

T (Kv)→ Bω(T )
D → B(T )D → 1 (3.1)

where B(Z) (resp. Bω(Z)) is defined to be the subgroup of Br1(Z)/Br(K) containing
elements vanishing in Br1(Zv)/Br(Kv) for all places (resp. almost all places) v ∈ C(1), and
AD denotes the group of continuous homomorphisms from A to Q/Z(−1).

In case (b), one can takeΩ to be the set of valuations coming from prime ideals of height
one in A. Izquierdo (cf. [Izq19]) proved the exact sequence 3.1 in such situations for tori T .

Using some dévissage arguments as in [CTH15], we can first generalize this result to a
connected linear group G over K .

Theorem 3.1.1. (Theorem 3.2.1) We keep the notation as above. For a connected linear group
G over K of the type (a) or (b), there is an exact sequence

1→ G(K)→ G(KΩ)→ Bω(G)
D → B(G)D → 1. (3.2)

In particular, the obstruction to weak approximation is controlled by the Brauer set
G(KΩ)

Bω := Ker(G(KΩ) → Bω(G)
D). However, such an exact sequence does not gener-

alize to homogeneous spaces, and we do find counter-examples:
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Theorem 3.1.2 (Proposition 3.3.1). Let Q be a flasque torus such that

H1(K,Q)→ ⊕v∈ΩH
1(Kv, Q)→X1

ω(Q̂)
D

is not exact (for example the one constructed in Corollary 9.16 of [CTH15]). EmbedQ into some
SLn and let Z := SLn /Q. Then Z(K) ⊊ Z(KΩ)

Bω .

In order to better understand the obstruction to weak approximation for homogeneous
spaces over fields of the type (a) or (b), we should somehow combine the Brauer-Manin
obstruction with the descent obstruction, another natural tool used in the study of such
questions, as done by Izquierdo and Lucchini-Arteche in [IA21] for the study of obstruction
to rational points. We present the following result which applies in particular to homoge-
neous spaces under connected stabilizers:

Theorem 3.1.3 (Proposition 3.3.4). For G a connected linear group, we consider a homoge-
neous spaceZ underGwith geometric stabilizer H̄ such thatGss is simply connected and H̄ torf

is abelian. Define
Z(KΩ)

qt,Bω :=
⋂

f :W
T−→Z

T quasi-trivial

f(W (KΩ)
Bω).

where f runs over torsorsW → Z under quasi-trivial tori T . Then Z(KΩ)
qt,Bω = Z(K).

Notation and preliminaries

The notation will be fixed in this section and used throughout this article. The setting is
pretty much the same as in [IA21] where they treated the problem of Hasse principle for
such varieties.

Cohomology The cohomology groups we consider are always in terms of Galois coho-
mology or étale cohomology.

Fields Throughout this article, we consider a field K of one of the following two types:

(a) the function field of a smooth projective curve C over C((t));

(b) the field of fractions of a two-dimensional, excellent, henselian, local domain A with
algebraically closed residue field of characteristic zero. An example of such a field is
any finite extension of the field of fractions C((X, Y )) of the formal power series ring
C[[X, Y ]].

Both these two types of fields share a number of properties that hold also for totally imag-
inary number fields: (cf. Thm. 5.5 of [HHK09], Thm. 1.2 and Thm. 1.4 of [CTGP04])
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Homogeneous spaces over some two-dimensional geometric global fields

(i) the cohomological dimension is two,

(ii) index and exponent of central simple algebras coincide,

(iii) for any semisimple simply connected group G over K , we have H1(K,G) = 1.

(iv) there is a natural set Ω of rank one discrete valuations (i.e. with values in Z), with
respect to which one can take completions. For type (a), let Ω be the set of valuations
coming from C(1) the set of closed points of the curve C . For type (b), let Ω be the
set of valuations coming from prime ideals of height one in A.

Weak approximation is satisfied for semisimple simply connected groups over such fields
(cf. Theorem 4.7 of [CTGP04] for type (b), and §10.1 of [CTH15] for type (a)).

Sheaves and abelian groups For i > 0, we denote by µ⊗i
n the i-fold tensor product of

the étale sheaf µn of n-th roots of unity with itself. We set µ0
n = Z/nZ and for i < 0, and

we define µ⊗i
n = Hom(µ

⊗(−i)
n ,Z/nZ). Over the fields K we consider, since K contains an

algebraically closed field and thus all the roots of unity, we have a (non-canonical) isomor-
phism µn ≃ Z/nZ. Denote by Q/Z(i) the direct limit of the sheaves µ⊗i

m for all m > 0.
By choosing a compatible system of primitive n-th roots of unity for every n (for example
ξn = exp(2πi/n)), we can identify Q/Z(i) with Q/Z.

For an abelian groupA (that we always suppose to be equipped with the discrete topol-
ogy if there isn’t any other topology defined on it), we denote by AD the group of continu-
ous homomorphisms from A to Q/Z(−1). The functor A 7→ AD is an anti-equivalence of
categories between torsion abelian groups and profinite groups.

Weak approximation and Brauer-Manin obstruction Given a set Ω of places of K ,
let Z(KΩ) :=

∏
v∈ΩK

Z(Kv) be the topological product where each Z(Kv) is equipped
with the v-adic topology, and Kv denotes the completion at v. We say that a K-variety Z
satisfiesweak approximationwith respect toΩ if the set of rational pointsZ(K), considered
through the diagonal map as a subset of Z(KΩ), is a dense subset. Weak approximation is
a birational invariant of smooth geometrically integral varieties, which is a consequence
of the implicit function theorem forKv (cf. Theorem 9.5.1 of [CTS21] and the argument in
the Proposition 12.2.3 of [CTS21]).

There are varieties for which weak approximation fails, thus we try to introduce ob-
structions that give a more precise description of the closure of Z(K) inside Z(KΩ), thus
explaining such failures.

For a variety Z , the cohomological Brauer group Br(Z) is defined to be H2(Z,Gm).

Define also

• Br0(Z) := Im(Br(K)→ Br(Z)),

• Br1(Z) := Ker(Br(Z)→ Br(ZK̄)),
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• Bra(Z) := Br1(Z)/Br0(Z),

• Let w ∈ Z(K) be aK-point of Z , we set Brw(Z) := Ker(w∗ : Br(Z)→ Br(K)) and
Br1,w := Ker(w∗ : Br1(Z)→ Br(K)).Wehave a canonical isomorphismBr1,w(Z) ≃
Bra(Z).

• B(Z) := Ker(Bra(Z)→
∏

v∈Ω Bra(ZKv)),

• BS(Z) := Ker(Bra(Z)→
∏

v∈Ω\S Bra(ZKv)) where S is a finite subset of Ω,

• Bω(Z): subgroup of Bra(Z) containing the elements vanishing in Bra(ZKv) for al-
most all places v ∈ Ω.

Similar to the exact sequence from Class Field Theory for number fields, there is also an
exact sequence (cf. Prop. 2.1.(v) of [CTH15] and Thm. 1.6 of [Izq19])

Br(K)→
⊕
v∈Ω

Br(Kv)→ Q/Z→ 0

and a Brauer-Manin pairing

Z(KΩ)×Bω(Z)→ Q/Z

((Pv), α) 7→
∑
v∈Ω

< Pv, α >

with the following property: Z(K) is contained in the subsetZ(KΩ)
Bω ofZ(KΩ) defined as

{(Pv) ∈ Z(KΩ) : ((Pv), α) = 0 for all α ∈ Bω(Z)}: the set of points that are orthogonal to
Bω(Z). When Z(K) is non-empty and Z(K) = Z(KΩ)

Bω , we say that the Brauer-Manin
obstruction with respect to Bω is the only one to weak approximation.

Tate-Shafarevich groups For a Galois moduleM over the fieldK and an integer i ≥ 0,
we define the following Tate-Shafarevich groups:

• Xi(K,M) := Ker(H i(K,M)→
∏

v∈ΩH
i(Kv,M)),

• Xi
S(K,M) := Ker(H i(K,M) →

∏
v∈Ω\S H

i(Kv,M)) where S is a finite subset of
Ω,

• Xi
ω(K,M) : subgroup ofH i(K,M) containing the elements vanishing inH i(Kv,M)

for almost all places v ∈ Ω.

Algebraic groups and homogeneous spaces For a linear algebraic K-group G, the
following notation will be used:

• D(G): the derived subgroup of G,
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Homogeneous spaces over some two-dimensional geometric global fields

• G◦: the neutral connected component of G,

• Gf := G/G◦ the group of connected components of G, which is a finite group,

• Gu : the unipotent radical of G◦,

• Gred := G◦/Gu which is a reductive group,

• Gss := D(Gred) which is a semisimple group,

• Gtor := Gred/Gss which is a torus,

• Gssu := Ker(G◦ → Gtor) which is an extension of Gss by Gu,

• Gtorf := G/Gssu which is an extension of Gf by Gtor,

• Ĝ: the Galois module of the geometric characters of G.

A unipotent group overK a field of characteristic 0 is isomorphic to an affine spaceAn
K ,

thus K-rational and satisfies weak approximation.

A torus T is said to be quasi-trivial if T̂ is an induced Gal(K̄/K)-module.

3.2 Weak approximation for connected linear groups

The aim of this section is to prove the following theoremwhich concerns the Brauer-Manin
obstruction to weak approximation for connected linear groups:

Theorem 3.2.1. Let K be a field of the type (a) or (b) and let G be a connected linear group
over K . Then there is an exact sequence

1→ G(K)→ G(KΩ)→ Bω(G)
D → B(G)D → 1.

We complete the proof by a series of lemmas.

Lemma 3.2.2. Suppose that Theorem 4.1 holds for Gn where n is a positive integer, then it
also holds for G.

Proof. It follows from the fact that all of the operations in the exact sequence above take
products to products. (For example, the closure of a product is the product of closures.)

An exact sequence
1→ F → H ×K P → G→ 1

where H is semi-simple simply connected, P is a quasitrivial K-torus and F is finite and
central is called a special covering of the reductiveK-groupG. For any reductiveK-group
G, there exists an integer n > 0 such thatGn admit a special covering. By the lemma above,
we can suppose without loss of generality that G admits a special covering itself.
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Lemma 3.2.3. Let S be a finite set of places in Ω. The following sequence is exact

1→ G(K)→
∏
v∈S

G(Kv)→ BS(G)
D

where G is a reductive connected linear group.

Proof. The proof is exactly the same as in Lemma 9.6 of [CTH15], using the special covering
and the fact that H and P both satisfy weak approximation (so does their product) and
H1(K,H) = H1(K,P ) = H1(K,H ×K P ) = 0. We have a commutative diagram where
the rows are exact and the columns are complexes.

H ×K P (K) G(K) H1(K,F ) 1

∏
v∈S H ×K P (Kv)

∏
v∈S G(Kv)

∏
v∈S H

1(Kv, F ) 1

BS(H × P )D BS(G)
D X1

S(F̂ )
D 1

The exactness of the last row comes from the fact that H1(K, F̂ ) ≃ Ker(Bra(G) →
Bra(H ×K P )) and Bra(H ×K P ) ≃ H2(K, P̂ ) (Cor 7.4 and Lemme 6.9 of [San81]), with
the latter isomorphism inducing an isomorphism BS(H × P ) ≃X2

S(P̂ ) by the same ar-
gument as in Section 8.1 of [CTH15]. The commutativity of the right-bottom square can be
deduced from Lemme 8.11 of [San81].

Lemma 3.2.4. Let S be a finite set of places in Ω. The following sequence is exact

1→ G(K)→
∏
v∈S

G(Kv)→ BS(G)
D

where G is a connected linear group overK .

Proof. We use the resolution 1→ Gu → G→ Gred → 1 and the induced diagram

Gu(K) G(K) Gred(K) 1

∏
v∈S G

u(Kv)
∏

v∈S G(Kv)
∏

v∈S G
red(Kv)

BS(G)
D BS(G

red)D.
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Homogeneous spaces over some two-dimensional geometric global fields

taking into account the vanishing of H1(K,Gu). The unipotent radical Gu satisfies weak
approximation (see Section 3.1). The exactness of the rightmost column is known from the
previous lemma, then a diagram chasing gives the result.

Lemma 3.2.5. Let S be a finite set of places in Ω. The sequence∏
v∈S

G(Kv)→ BS(G)
D → B(G)D (3.3)

is exact, where G is a connected linear group over K .

Proof. As in the previous lemmas, we can first treat the case whereG is reductive. Suppose
now that G is reductive, we use a coflasque resolution

1→ P → G′ → G→ 1

where P is a quasitrivial torus and G′ fits into the exact sequence

1→ Gsc → G′ → T → 1

where T is a coflasque torus andGsc is a semisimple simply connected group. Suppose that
the exactness of the sequence in question is known forG′ (replacingG). Then we can prove
the exactness for G by chasing in the following diagram

∏
v∈S G

′(Kv)
∏

v∈S G(Kv) 0

BS(P )
D BS(G

′)D BS(G)
D 0

B(P )D B(G′)D B(G)D 0.

≃

The leftmost arrow is an isomorphism by Proposition 2.6 of [CTH15]. The last two rows
are exact, and this can be proved by chasing the following diagram, as done in the proof of
Lemma 4.4 of [Bor96].

Br(K)

0 Br1(G) Br1(G
′) Bra(P )

0 Br1(Gv) Br1(G
′
v) Bra(Pv)

Br(Kv)

f1 f2

f4

f6

f5

f7 f3

f9 f10

f11 f8
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(The exactness of the rows can be deduced from Proposition 6.10 of [San81] and the fact
that Pic(P ) = H1(K, P̂ ) = 0 since P̂ is a permutation module.)

The exactness of the sequence 3.3 is known for T (Corollary 9.9 of [CTH15] for K of
type (a), and Theorem 4.9 of [Izq19] forK of type (b)), by a similar diagram chasing, we can
prove the result for G′, thus completing the proof. The essential condition we need in this
diagram chasing is that we should have an injection BS(G

′)D ↪→ BS(T )
D, or equivalently

a surjection BS(T ) ↠ BS(G
′). This is indeed true because we have an exact sequence

Bra(T )→ Bra(G
′)→ Bra(G

sc) and Br(Gsc) = Br(K) since Gsc a simply connected group
over a field of characteristic 0 (cf. Corollary in §0 of [Gil09b]).

Now for a connected linear group G (not necessarily reductive), we use again the reso-
lution 1→ Gu → G→ Gred → 1 and the induced commutative diagram

∏
v∈S G(Kv)

∏
v∈S G

red(Kv) 1

1 BS(G)
D BS(G

red)D

B(G)D B(Gred)D

taking into account the vanishing ofH1(Kv, G
u). The injectivity of the middle line follows

from the fact that Bra(Gu) = Bra(An
K) = (Bra(A1

K))
n = 0 (cf. Lemme 6.6 of [San81],

Theorem 4.5.1(viii) of [CTS21]). Then a diagram chasing gives the desired result.

Corollary 3.2.1. (Theorem 3.2.1) With the same notation as above, there is an exact sequence

1→ G(K)→ G(KΩ)→ Bω(G)
D → B(G)D → 1.

The defect of weak approximation A(G) := coker(G(K)→ G(KΩ)) is finite, andG satisfies
weak weak approximation, i.e. there exists a finite set of places S0 such thatG(K) is dense
in

∏
v/∈S0

G(Kv).

Proof. We extend the result with respect to a finite set S of places to all the Ω by following
the same proof used in Cor. 9.9 of [CTH15]. Let AS(G) := coker(G(K)→

∏
v∈S(G(Kv)))

measuring the failure of weak approximation. Let 1 → Q → R → G → 1 be a flasque
resolution of G (cf. Proposition-Definition 3.1 of [CT08]). By Prop. 9.1 of [CTH15] (for
K of type (a)) and Theorem 3.7 with its remark in [CTGP04] (for K of type (b)), we have
AS(G) = coker(H1(K,Q)→

∏
v∈S H

1(Kv, Q)) which is finite and H1(Kv, Q) = 0 for all
v outside the finite set S0 of places of bad reduction ofQ. Therefore, when S does not meet
S0, we have that AS(G) is trivial, proving weak weak approximation. On the other hand,
for S0 ⊆ S, we have AS(G) = A(G). Let S0 ⊆ S ⊆ S ′, and then we have a commutative
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diagram
1 AS′(G) BS′(G)D B(G)D 1

1 AS(G) BS(G)
D B(G)D 1

where the left and the right vertical maps are isomorphisms. Thus the middle map is also
an isomorphism and BS(G) = Bω(G).

3.3 Weak approximation for homogeneous spaces

Nowwe look at weak approximation for homogeneous spaces over such fieldsK . The usual
Brauer-Manin obstruction we used in last section is not enough in this case, as shown by
the following construction of examples:

Proposition 3.3.1. Let Q be a flasque torus such that

H1(K,Q)→ ⊕v∈ΩH
1(Kv, Q)→X1

ω(Q̂)
D

is not exact. Such a torus exists (see Corollary 9.16 of [CTH15] for a construction.) Embed Q
into some SLn and let Z := SLn /Q. Then Z(K) ⊊ Z(KΩ)

Bω .

Proof. We consider the following commutative diagram with exact rows:

Z(K) H1(K,Q) 1

Z(KΩ)
∏

v∈ΩH
1(Kv, Q) 1

1 Bω(Z)
D X1

ω(Q̂)
D 1.

f1

f2 f3

f5

f4

f6

f7

The vanishing of Bra(SLn) on the bottom-left corner comes from the Corollary of [Gil09b]
(section 0). We prove the result by diagram chasing. Since the right column is not exact,
there exists a ∈

∏
v∈ΩH

1(Kv, Q) such that f6(a) vanishes but a /∈ f3(H
1(K,Q)). Since

f4 is surjective, we can find b ∈ Z(KΩ) such that f4(b) = a. By the commutativity of the
bottom square, f5(b) vanishes. We prove that b /∈ Z(K) by contradiction. We suppose
b ∈ Z(K). The torus Q being flasque implies that

∏
v∈ΩH

1(Kv, Q) is finite (cf. Prop. 9.1
of [CTH15] forK of type (a); Thm. 3.7 with its remark in [CTGP04] forK of type (b)), thus
the preimage f−1

4 (a) is open (f4 is continuous, cf. [Čes15]), containing b ∈ Z(K), so we
should be able to find c ∈ Z(K) lying in f−1

4 (a). Then f3(f1(c)) = a by the commutativity
of the top square, contradicting a /∈ Im f3. Therefore, we found b ∈ Z(KΩ)

Bω\Z(K).
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Therefore, we need to find other obstructions. In the rest of this section, we consider
homogeneous spaces Z under a connected linear groupGwith geometric stabilizer H̄ such
that Gss is simply connected and H̄ torf is abelian. This is the assumption already used in
[IA21] and [Bor96], and is satisfied by every homogeneous space under a connected linear
K-group with connected stabilizers (cf. Lemma 5.2 in [Bor96]).

We can find Z ← W → W ′ such that

• W is a K-homogeneous space under G× T,

• T is a quasitrivial torus into whichH torf injects, whereH torf is the canonicalK-form
of H̄ torf associated to Z ,

• W → Z is a T -torsor,

• W ′ is the quotient variety Z/Gss, which is also a homogeneous space ofGtor×T with
geometric stabilizer H̄ torf and the fibers ofW → W ′ are homogeneous spaces ofGssu

with geometric stabilizers H̄ssu.

Indeed, we can embed H tor in a quasi-trivial torus T and consider the diagonal morphism
H → G × T induced by the inclusion H ↪→ G and the composition H → H tor → T .
Then we define W = (G × T )/H , and W → Z is induced by the projection to the first
coordinate. DefineW ′ to be the quotient varietyW/Gssu and we get what we want.

Proposition 3.3.2. The fiberWP above aK-pointP ∈ W ′(K) satisfies weak approximation.

Proof. Since Hss is semi-simple, we consider its simply connected covering 1 → F →
Hsc → Hss → 1 where F is finite and Hsc is simply connected.

We first prove that this covering induces isomorphisms H1(K,Hss) ≃ H2(K,F ) and
H1(Kv, H

ss) ≃ H2(Kv, F ) for all v ∈ Ω. ForK andKv, the two conditions in Theorem 2.1
of [CTGP04] are satisfied, and thus we have a bijection H1(K,Had) → H2(K,µ) coming
from the central isogeny

1→ µ→ Hsc → Had → 1

associated to the center µ of Hsc. Since F is contained in the center µ, we have the exact
sequence

1→ µ/F → Hss → Had → 1

and the commutative diagram with exact rows

H1(K,µ/F ) H1(K,Hss) H1(K,Had) H2(K,µ/F )

H1(K,µ/F ) H2(K,F ) H2(K,µ) H2(K,µ/F ).
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Then the four-lemma gives the surjectivity of H1(K,Hss) → H2(K,F ). The injectivity
comes from the vanishing ofH1(K,Hsc). The proof is the same whenK is replaced byKv.

Then, we prove that
H2(K,F )→ ⊕v∈SH

2(Kv, F )

is surjective, where S is a finite set of places. This is proved by chasing the following
commutative diagram

⊕v/∈SH
2(Kv, F )

H2(K,F ) ⊕v∈ΩH
2(Kv, F ) H0(K, F̂ )D 1.

H2(K,F ) ⊕v∈SH
2(Kv, F )

1

The row in the middle is exact. (See [Izq16] Theorem 2.7 applying d = 0 for K of type (a).
For K of type (b), use Cor. 2.3 of [Izq19] and the exact sequence

H2(U, F )→
⊕

v∈X\U

H2(Kv, F )→ H3
c (U, F )

with X and U defined in [Izq19], and then take direct limit over U .) The surjectivity of
⊕v/∈SH

2(Kv, F ) → H0(K, F̂ )D comes from the injectivity taking the duals H0(K, F̂ ) ↪→
⊕v/∈SH

0(Kv, F̂ ). This yields the surjectivity of H2(K,F ) →
∏

v∈S H
2(Kv, F ), which is

H1(K,Hss)→ ⊕v∈SH
1(Kv, H

ss).

Finally, by Lemme 1.13 of [San81], we haveH1(K,Hss) = H1(K,Hssu) andH1(Kv, H
ss) =

H1(Kv, H
ssu). With the same argument as in Proposition 3.2 of [San81], we can prove

that Gssu satisfies weak approximation (cf. Proposition 4.1 of [Bor66] for the vanishing
of H1(K,Hu) and H1(Kv, H

u). The unipotent radical Hu satisfies weak approximation).
Therefore, we consider the commutative diagram with exact rows (the setWP (K) is non-
empty by Proposition 3.1 of [IA21]):

Gssu(K) WP (K) H1(K,Hssu) 1

∏
v∈S G

ssu(Kv)
∏

v∈S WP (Kv)
∏

v∈S H
1(Kv, H

ssu) 1.

A diagram chasing then gives the desired result.

Proposition 3.3.3. We haveW (KΩ)
Bω(W ) = W (K).
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Proof. Consider (Pv) ∈ W (KΩ)
Bω(W ), and any open subset U containing (Pv), we want to

find Q ∈ U ∩W (K) using fibration method.

Denote by (P ′
v) the image of (Pv) under the induced map g : W (KΩ) → W ′(KΩ). By

the functorality of the Brauer-Manin pairing, (P ′
v) lies in W ′(KΩ)

Bω(W ′). Since W → W ′

is smooth, and the Kv are henselian, we have open maps W (Kv) → W ′(Kv), and thus g
is open. In particular, V = g(U) ⊆ W ′(KΩ) is also open. SinceW ′ is a torus (cf. Theorem
3.2 of [IA21]), we haveW ′(KΩ)

Bω(W ′) = W ′(K). Therefore, there exists P ′ ∈ V ∩W ′(K).
Let (Qv) ∈ g−1(P ′) ∩ U ⊆ W (KΩ), and it can be seen as inWP ′(KΩ) too, as shown in the
following diagram.

W W ′

WP ′ SpecK

∐
v∈Ω SpecKv

□ P ′

(Qv)

This diagram also shows that WP ′(KΩ) ⊆ W (KΩ), and U|WP ′ (KΩ)
:= U

⋂
WP ′(KΩ) is

an open neighborhood of (Qv) in WP ′(KΩ). Since WP ′ satisfies weak approximation by
proposition 3.3.2, there exists Q ∈ WP ′(K) ∩ U|WP ′ (KΩ)

, and thus in W (K) ∩ U , which
proves thatW (KΩ)

Bω(W ) ⊆ W (K).

As in [IA21], we are naturally led to consider the following definition.

Definition 3.3.1. For an arbitrary K-variety Z , we define

Z(KΩ)
qt,Bω :=

⋂
f :W

T−→Z,T quasi-trivial

f(W (KΩ)
Bω).

Using the torsor W → Z defined above, we have Z(KΩ)
qt,Bω ⊆ Z(K). In fact, this is

an equality.

Proposition 3.3.4. Let the notation be as above. Then Z(KΩ)
qt,Bω = Z(K).

Proof. Since for all f , we have

Z(K) ⊆ f(W (K)) ⊆ f(W (KΩ)
Bω),

soZ(K) ⊆ Z(KΩ)
qt,Bω . To prove Proposition 3.3.4, it is equivalent to prove thatZ(KΩ)

qt,Bω

is closed. It suffices to prove that f(W (KΩ)
Bω) is closed for every torus f : W

T−→ Z with
T quasitrivial. Since f is smooth and theKv are henselian, the induced map f : W (KΩ)→
Z(KΩ) is open. Now we’ll prove that f(W (KΩ)

Bω) does not meet f(W (KΩ)\W (KΩ)
Bω),

and combined with the surjectivity of f , we’ll get f(W (KΩ)
Bω) closed.
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Homogeneous spaces over some two-dimensional geometric global fields

Fixing w ∈ W (K) which is a K-point of W , we have the canonical isomorphism
Bra(W ) ≃ Br1,w(W ). Define the map iw : T → W as t 7→ t.w, and we have an in-
duced map i∗w : Br1,w(W ) → Br1,e(T ). Let α be an element in Bω(W ) and we still de-
note by α its image in Br1,w(W ). Let (xv), (yv) ∈ W (KΩ) above (Pv). We’ll prove that∑

v∈Ω < xv, α >=
∑

v∈Ω < yv, α >. Let m : T ×W → W denotes the action of T on
W . Since WPv is a Kv-torsor under T , there exists tv ∈ T (Kv) such that xv = tv.yv. By
the functorality of the Brauer-Manin paring, we have < xv, α >=< (tv, yv),m

∗α >. By
Lemme 6.6 of [San81], we have Br1,(w,e)(W × T ) = Br1,w(W )×Br1,e(T ), and the formula
(24) in [BD13] givesm∗α = p∗T i

∗
w(α) + p∗Wα where pT and pW are the two natural projec-

tions. Then < xv, α >=< tv, i
∗
w(α) > + < yv, α >. But P is a quasi-trivial torus, we have

Bω(P ) ≃ B(P ) (cf. Prop. 2.6 and §8.1 of [CTH15]). Therefore, by the exact sequence in
Theorem 3.2.1, the map P (KΩ) → Bω(P )

D is 0, i.e.
∑

v∈Ω < tv, i
∗
w(α) >= 0 and we get

what we want.

Remark 3.3.2. Actually the above proof also shows that

Z(KΩ)
qt,Bω =

⋂
f :W

T−→Z,T quasi-trivial

⋂
α∈Bω(W )

f(W (KΩ)
α).

With this description, we can prove as done in Theorem 6.4 of [IA21] that

Z(KΩ)
tor ⊆ Z(KΩ)

qt,Bω . (3.4)

But this does not necessarily give an obstruction to weak approximation since we do not
know if Z(KΩ)

tor is closed. We do not know if (3.4) is an equality. One could wonder
whether a “purely descent” description of Z(KΩ)

qt,Bω exists.

3.4 Strong approximation for homogeneous spaceswith

toric stabilizers

We consider K of type (a). For a smooth geometrically integral K-variety Z having local
points everywhere, there is a Brauer-Manin pairing

Z(AK)× BrZ → Q/Z(−1)

whose left kernel contains Z(K) (cf. §8.2 of [CTH15]). By continuity of the pairing, the
closure Z(K)

S of Z(K) in Z(AS
K) is orthogonal to BrS Z := Ker(BrZ →

∏
v∈S BrZKv)

with respect to the pairing

Z(AS
K)× BrS Z → Q/Z(−1)

((xv)v/∈S, α) 7→
∑
v/∈S

α(xv)

where S is a finite set of places. This gives rise to a Brauer-Manin obstruction to strong
approximation away from S. It is also equivalent to considerBrS Z/BrK instead ofBrS Z .
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3.4. STRONG APPROXIMATION FOR HOMOGENEOUS SPACES WITH TORIC
STABILIZERS

Based on parts of a Poitou-Tate type exact sequence given by Izquierdo in [Izq16] under
the hypothesis of the finiteness ofX2(K,T ), we get the following result on strong approx-
imation for homogeneneous spaces of quasi-split semisimple simply connected groups with
toric stabilizers T .

Theorem 3.4.1. LetK = C((t))(X) be the function field of a smooth projective geometrically
integral curve X over C((t)). Let E be a quasi-split semisimple simply connected algebraic
group over K . Let T be a K-torus such that X2(K,T ) is finite. Consider the homogeneous
space Z = E/T . For a finite non-empty set S ⊆ X(1), there is an exact sequence of pointed
sets

1→ Z(K)
S
→ Z(AS

K)→ (BrS Z/BrS K)D → B(Z)D → 1.

In particular, the Brauer-Manin obstruction to strong approximation away from S is the only
one.

Proof. There is a commutative diagram with exact rows

H1(K,T ) H1(K,T )

P1
S(T ) P1(T )

∏
v∈S H

1(Kv, T )

(Ker(H1(K, T̂ )→
∏

v∈S H
1(Kv, T̂ )))

D H1(K, T̂ )D (
∏

v∈S H
1(Kv, T̂ ))

D

X1(K, T̂ )D

1

≃

where the middle column is an exact sequence by Proposition 3.16(ii) of [Izq16], and the
right-most isomorphism comes from the local duality in Proposition 3.4 of [CTH15]. A
diagram chasing shows that the first three terms in the left-most column form an exact
sequence. The exactness of the rest of this column follows by dualization, noting also that
P1

S(T )
D ≃ P1

S(T̂ ) (cf. Proposition 3.12 and Corollaire 3.15 of [Izq16]).

We have a morphism

H1(K, T̂ )→ BrZ, a 7→ a ∪ [E]

by taking cup-product with the class [E] ∈ H1(Z, T ), and this induces an isomorphism
H1(K, T̂ ) ⊕ BrK ≃ BrZ (cf. Proposition 2.9 and 2.10 of [CTX09]). Therefore, we get
isomorphisms

Ker(H1(K, T̂ )→
∏
v∈S

H1(Kv, T̂ )) ≃ BrS Z/BrS K
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Homogeneous spaces over some two-dimensional geometric global fields

X1(K, T̂ ) ≃ Ker(BrZ/BrK →
∏
v∈Ω

BrZKv/BrKv) ≃ B(Z)

where the last isomorphism follows from the definition ofB(Z) and the fact thatBr(ZK̄) ≃
PicTK̄ ⊕ Br K̄ = 0 (cf. Proposition 2.10 of [CTX09]). These maps fit into the following
commutative diagram

E(K) Z(K) H1(K,T ) 1

E(AS
K) Z(AS

K) P1
S(T ) 1

(BrS Z/BrS K)D (Ker(H1(K, T̂ )→
∏

v∈S H
1(Kv, T̂ )))

D

B(Z)D X1(K, T̂ )D

1 1

≃

≃

whose commutativity follows from Proposition 2.9 of [CTX09]. The open subset X\S is
affine whose ring of regular functions is a Dedekind domain, so strong approximation away
from S holds for the quasi-split semisimple simply connected group E (cf. Satz 2.2.1 of
[Har67]). Then a diagram chasing gives the desired result.

51



Chapter 4

Homogeneous spaces over p-adic func-
tion fields

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
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Over function fields of p-adic curves, we construct stably rational varieties in the form
of homogeneous spaces of SLn with semisimple simply connected stabilizers and we show
that strong approximation away from a non-empty set of places fails for such varieties. The
construction combines the Lichtenbaum duality and the degree 3 cohomological invariants
of the stabilizers. We then establish a reciprocity obstruction which accounts for this failure
of strong approximation. We show that this reciprocity obstruction to strong approximation
is the only one for counterexamples we constructed, and also for classifying varieties of tori.
We also show that this reciprocity obstruction to strong approximation is compatible with
known results for tori. At the end, we explain how a similar point of view shows that the
reciprocity obstruction to weak approximation is the only one for classifying varieties of
tori over p-adic function fields.
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Homogeneous spaces over p-adic function fields

4.1 Introduction

In recent years, there has been growing interest in studying the arithmetic of algebraic
groups and their homogeneous spaces defined over fields of cohomological dimension strictly
greater than 2, and in particular, function fieldsK of p-adic curves. For example, in [HS16]
and [HSS15], Harari, Szamuely and Scheiderer studied local-global principle and weak ap-
proximation questions for tori over such fields K , with respect to the valuations coming
from the codimension 1 points of the p-adic curve. For both questions, they showed that
the reciprocity obstruction is the only one. Tian generalized their results on weak approxi-
mation to quasi-split reductive groups in his work [Tia21a]. Very recently in [Lin22], Linh
studied homogeneous spaces of SLn with toric stabilizers, and more generally, stabilizers
in the form of an extension of a group of multiplicative type by a unipotent group. He
showed that the reciprocity obstruction is the only one to both the local-global principle
and weak approximation.

Being a generalized form of the Chinese Remainder Theorem, strong approximation is a
natural question in the study of the arithmetic of algebraic groups and their homogeneous
spaces. For tori over p-adic function fields, Harari and Izquierdo described the defect of
strong approximation in [HI19], based on a Poitou-Tate type exact sequence obtained in
[HSS15].

We study strong and weak approximation questions for homogeneous spaces over a p-
adic function fields. Let K be the function field of a smooth proper geometrically integral
curve X defined over p-adic field k.When studying a homogeneous space Z := G/H for
G a connected K-group G, it is natural to use the construction

G G× T Gtor × T

Z := G/H W := G× T/H W ′ := Z/Gss

H H H tor

T Gss

as in §3.3, where T is a quasi-trivial K-torus into which we embed H tor, and the quotient
varietyW ′ is a torus. The fibers ofW → W ′ are homogeneous spaces of Gss (that we may
always suppose to be simply connected up to replacing the ambient group conveniently)
with semisimple stabilizers. Using fibration methods, we hence reduce to studying the
arithmetic of tori and homogeneous spaces of semisimple simply connected groups with
semisimple stabilizers. Since there are already works on tori, we are motivated to study the
latter case.

First, we consider homogeneous spacesZ ofSLn overK with stabilizers that are semisim-
ple simply connected of type A. Using the Rost invariant, to which we relate the Lichten-
baum’s duality pairing BrX × PicX → Q/Z, we obtain examples where strong approxi-
mation away from a non-empty set S of places does not hold for Z , showing very different
behavior compared to number fields.

In order to explain such failure, we define a reciprocity obstruction to strong approxi-

53



4.1. INTRODUCTION

mation away from S for a K-variety Z using the group

H3
nr,S(Z,Q/Z(2)) := Ker(H3

nr(Z,Q/Z(2)))→
∏
v∈S

H3
nr(ZKv ,Q/Z(2))

where H3
nr(Z,Q/Z(2)) denotes the subgroup the elements in H3(K(Z),Q/Z(2)) that are

unramified with respect to all the codimension 1 points of Z . For classifying varieties
Z = SLn /H , we relate this obstruction to the group Inv3(H,Q/Z(2)) of degree 3 co-
homological invariants ofH with coefficients inQ/Z(2). Then we show in Theorem 4.3.10
that this obstruction is the only one for counterexamples we constructed, meaning that the
closure of Z(K) in Z(AS

K) equals the subset of elements in Z(AS
K) that are orthogonal to

H3
nr,S(Z,Q/Z(2)).

We also apply this obstruction to SLn /T for T a torus. Using Blinstein andMerkurjev’s
description of Inv3(T,Q/Z(2)) in [BM13] along with the Poitou-Tate type exact sequence
in [HSS15], we show in Theorem 4.3.11 that, also in this case, the reciprocity obstruction
to strong approximation away from S is the only one for Z = SLn /T over K a p-adic
function field.

Going beyond classifying varieties, we show in Corollary 4.3.16 that for Z = T a torus,
this reciprocity obstruction to strong approximation is compatible with the known results
in [HI19].

At last, we explain that we can adapt a similar point of view for weak approximation
problems for classifying varieties, linking the reciprocity obstruction to weak approxima-
tion with the unramified cohomological invariants. As a quick and direct application, we
combine Blinstein and Merkurjev’s description of Inv3nr(T,Q/Z(2)) in [BM13] with the
Poitou-Tate type exact sequence in [HSS15] and we get Theorem 4.4.2 saying that the reci-
procity obstruction to weak approximation is the only one for SLn /T over K a p-adic
function field (this method is different from [Lin22] where Linh obtained the same results
for SLn /T ). Weak approximation for SLn /H withH semisimple simply connected is still
an open question, and information from Inv3nr(H,Q/Z(2)) might shed light on possible
directions for such problems.

Preliminaries

Motivic complexes

Let X be a smooth scheme. Lichtenbaum (cf. [Lic87][Lic07]) defined the motivic com-
plexes Z(i) for i = 0, 1, 2, of étale sheaves on X . We write H∗(X,Z(i)) for the étale
(hyper)cohomology groups of X with values in Z(i). The complex Z(0) equals the con-
stant sheaf Z and Z(1) = Gm,X [−1], hence Hn(X,Z(1)) = Hn−1(X,Gm,X). In particular,
H3(X,Z(1)) = BrX , the cohomological Brauer group ofX . The complex Z(2) is concen-
trated in degrees 1 and 2 and there is a product map Z(1)⊗L Z(1)→ Z(2) (cf. Proposition
2.5 of [Lic87]). Over the small Zariski siteXZar, we have the complex Z(2)Zar concentrated
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in degree ≤ 2 defined in a similar way to Z(2).

We denote byA(i) the complexA⊗Z(i) for an abelian groupA (similarly forZ(i)Zar). If
X is defined over a fieldwhose characteristic does not dividem, we have a quasi-isomorphism
of complexes of étale sheaves Z/mZ ⊗L Z(i) ≃ µ⊗i

m , where µm is the étale sheaf of mth
roots of unity, and we set µ0

m = Z/mZ. Thus we shall also use the notationQ/Z(i) for the
direct limit of the sheaves µ⊗i

m for allm > 0 when the base field has characteristic 0.

The exact triangle in the derived category of étale sheaves

Z(i)→ Q(i)→ Q/Z(i)→ Z(i)[1]

yields the connecting morphism

Hn(X,Q/Z(i))→ Hn+1(X,Z(i)),

which is an isomorphism ifX = SpecF for a field F and n > i (cf. Lemma 1.1 of [Kah93]).

Classifying varieties and cohomological invariants

A connected algebraic group E defined over a field K is called special if H1(F,E) = 1 for
all field extensions F/K. LetH be a smooth algebraic group overK . Choose an embedding
ρ : H ↪→ E into a special rational group E. Examples of special rational groups E include
SLn,Sp2n,GL1(A) for a central simple K-algebra A. The variety Z = E/ρ(H) is called
a classifying variety ofH . Different choices of ρ give stably birational classifying varieties.
(cf. §2 of [Mer02].)

For every field extension F/K , the set H1(F,H) classifying H-torsors over F can be
identified with Z(F )/E(F ), the orbit space of the action of E(F ) on Z(F ). For a point
x ∈ Z(F ), we write x∗E for the fiber of the H-torsor E → Z above the point x and
it is an H-torsor over F , and its class in H1(F,H) is the image of [E] under the map
H1(Z,H) → H1(F,H) induced by x. In particular, we have the generic H-torsor ξ∗E
over K(Z) corresponding to the generic point ξ ∈ Z .

Let H be an algebraic group over a field K. The group Invd(H,Q/Z(d− 1)) of degree
d cohomological invariants of H consists of morphisms of functors

H1(∗, H)→ Hd(∗,Q/Z(d− 1))

from the category of field extensions ofK to the category of sets. An invariant is called nor-
malized if it takes the trivial H-torsor to zero. The normalized invariants form a subgroup
Invd(H,Q/Z(d− 1))norm of Invd(H,Q/Z(d− 1)) and there is a natural isomorphism

Invd(H,Q/Z(d− 1)) ≃ Hd(K,Q/Z(d− 1)⊕ Invd(H,Q/Z(d− 1))norm.

Rost proved that if H is absolutely simple simply connected, then Inv3(H,Q/Z(2))norm is
a finite cyclic group generated by the Rost invariant RH (cf. Theorem 9.11 of [GMS03]).
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p-adic function fields

Let k be a finite extension ofQp, and letX be a smooth proper geometrically integral curve
over k. Let K be the function field of X . There is a natural set of places: the set of all
closed points of X that we denote by X(1). For a closed point v ∈ X(1), we denote by
κ(v) its residue field, and Kv the completion of K for the discrete valuation induced by v.
Then κ(v) is also the residue field of the ring of integers Ov and is a finite extension of k.
Therefore Kv is a 2-dimensional local fields, i.e. a field complete with respect to a discrete
valuation whose residue field is a classical local field.

We have a complex in virtue of the generalized Weil reciprocity law (cf. Theorem 6.4.3
of [GS17]):

H3(K,Q/Z(2))→
⊕

v∈X(1)

H3(Kv,Q/Z(2))
Σ−→ Q/Z (4.1)

where the map Σ is given by the composition⊕
v∈X(1)

H3(Kv,Q/Z(2))
∂v−→
≃

⊕
v∈X(1)

H2(κ(v),Q/Z(1))
ΣCorκ(v)/k−−−−−−→ H2(k,Q/Z(1)) = Q/Z.

The above notation of our fields will be fixed for the rest of the article.

Strong approximation

Given a smooth geometrically integralK-schemeZ , for a non-empty open subschemeU ⊆
X sufficiently small, we can find a smooth geometrically integral U -scheme Z such that
Z ×U K ≃ Z . We can thus define the adelic space (which is actually independent of the
choice of the model Z):

Z(AK) := lim−→
U ′⊆U
U ′ ̸=∅

∏
v∈X(1)\U ′

Z(Kv)×
∏

v∈U ′(1)

Z(Ov).

The problem of strong approximation studies the closure Z(K) inside the adelic space
Z(AK) with the restricted product topology, possibly away from a finite set S of places
(in this case, we study Z(K)

S the closure of Z(K) in Z(AS
K) :=

∏′
v/∈S Z(Kv) the re-

stricted product with respect to integral points excluding places in S). If Z(K) is dense in
Z(AS

K), we say that Z satisfies strong approximation away from S: we can simultaneously
approximate finitely many Kv-points with v /∈ S by a single K-rational point with the
condition that this point is integral at all other places. For S ⊆ S ′, strong approximation
away from S implies strong approximation away from S ′.

Strong approximation for semisimple groups has been studied in the general setting. A
K-group G is said to be quasi-split if it has a Borel subgroup defined over K . A K-group
G is called absolutely almost simple if over the algebraic closure it becomes an extension of
a simple group by a finite normal (hence central) subgroup.
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Theorem 4.1.1 (Gille, Corollaire 5.1 of [Gil09a]). LetR be a Dedekind domain with function
fieldK and letG be a semisimple simply connectedK-group which is absolutely almost simple
and isotropic. Suppose the K-variety G is retract rational. Then strong approximation holds
for G over SpecR.

The above theorem implies an earlier result:

Theorem 4.1.2 (Harder, Satz 2.2.1 of [Har67]). Let R be a Dedekind domain with function
field K . Let G be a quasi-split semisimple simply connected K-group. Then strong approxi-
mation holds for G over SpecR.

Corollary 4.1.3. LetX be a smooth proper geometrically integral curve over a p-adic field k,
with function field K = k(X). Let G be a quasi-split semisimple simply connected K-group.
Then strong approximation away from a non-empty finite set of places S ⊆ X(1) holds for G.

Proof. The open subset V := X\S is affine and the ring of regular functions k[V ] is a
Dedekind domain.

When studying strong approximation for classifying varieties Z = E/H , we usually
make use of the following commutative diagram

E(K) Z(K) H1(K,H) 1

E(AS
K) Z(AS

K) P1
S(H) 1

where
Pi

S(H) :=
∏
v ̸∈S

′
H i(Kv, H) (4.2)

denotes the restricted topological product of theH i(Kv, H) for all v ∈ X(1)\S with respect
to the images of the maps H i(Ov,H) for v ∈ U .

Notation

Unless otherwise stated, all (hyper)cohomology groups are taken with respect to the étale
cohomology.

Given an abelian groupA, we denote by mA them-torsion subgroup ofA. The notation
A∧ is the inverse limit of the quotients A/nA for all n > 0. For A a topological abelian
group, denote by AD := Homcont(A,Q/Z) the group of continuous homomorphisms from
A to Q/Z. When there is no other topology defined on A, we equip A with the discrete
topology. The functorA 7→ AD is an anti-equivalence of categories between torsion abelian
groups and profinite groups.
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4.2. FAILURE OF STRONG APPROXIMATION

4.2 Failure of strong approximation

Over p-adic function fields, we construct varieties of the form SLn /H with H semisimple
simply connected and we show that strong approximation away from a finite set of places
fails for such varieties.

4.2.1 Inner type

For a smooth proper geometrically integral curve X over a p-adic field k, we have the
following dualities due to Lichtenbaum:

Theorem 4.2.1 (Lichtenbaum, cf. [Lic69] Theorem 4). There are pairings

ψ : BrX × PicX → Q/Z (4.3)

ρ : H1(k,PicX)× Pic0(X)→ Q/Z

where ψ is induced by evaluation on closed points. These pairings induce dualities

ψ∗ : BrX ≃ PicXD (4.4)

ρ∗ : H1(k,Pic(X)) ≃ Pic0(X)D. (4.5)

Remark 4.2.2. If [A] comes fromBr k via the restriction map, then ψ([A], z) = (deg z)[A].

Construction 4.2.3. Let H be an absolutely simple simply connected group over K of
inner type A. ThenH = SL1(A) forA a simple centralK-algebra. Suppose the class [A] ∈
BrK lies in Brnr(K/k) = BrX . Embed H into a special rational group E which is split
semisimple simply connected (for example, E = SLn or Sp2n). Consider the classifying
variety Z := E/H . Since H also embeds into the special rational group GL1(A), we
have that Z is stably birational to the classifying variety GL1(A)/SL1(A) = Gm which
is rational. Therefore, the variety Z is stably rational. In particular, weak approximation
holds for Z .

The Rost invariant RH has an explicit formula in this situation (cf. [GQM11]): Let
[x] ∈ H1(F,H) = F×/Nrd((A⊗ F )×), then we have

RH([x]) = (x) ∪ [A] ∈ H3(F,Q/Z(2))

where (x) denotes the class in H1(K,µm) = F×/F×m of any representative of [x], and
m is the exponent of A. Moreover, the order of RH ∈ Inv3(H,Q/Z(2))norm equals m (cf.
Theorem 11.5 of [GMS03]).
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We have the following commutative diagram where the first row is the complex (4.1)
by the generalized Weil reciprocity:

H3(K,Q/Z(2))
⊕

v∈X(1) H3(Kv,Q/Z(2)) Q/Z.

H1(K,H)
⊕

v∈X(1) H1(Kv, H)

Σ

RH
⊕

RH fH
(4.6)

Now we show that the composed map fH defined by this diagram is related to the pairing
ψ in (4.3):

Proposition 4.2.4. Let a = ([av])v ∈
⊕

v∈X(1) H1(Kv, H) =
⊕

v∈X(1) K×
v /Nrd((A ⊗

Kv)
×) represented by av ∈ K×

v . Denote by nv the valuation of av with respect to v and let
z :=

∑
v∈X(1) nv · v ∈ PicX . Then

ψ([A], z) = fH(a).

Proof. We have fH(a) =
∑

v∈X(1) Corκ(v)/k(∂v(RH([av]))). By linearity, it suffices to show

ψ([A], nv · v) = Corκ(v)/k(∂v(RH([av]))).

Choose a uniformizer πv of the place v, and write av = uπnv
v with u a unit in Ov. Then

∂v(RH([av])) = ∂v((uπ
nv
v ) ∪ [A]) = ∂v((u) ∪ [A]) + nv∂v((πv) ∪ [A]).

In fact ∂v((πv) ∪ [A]) is the image of [A] under the specialization map

s2−πv
: H2(Kv, µm)→ H2(κ(v), µm)

with respect to the uniformizer −πv (cf. Construction 6.8.6 of [GS17]). Actually s2−πv
([A])

is independent of the choice of the uniformizer πv, since ∂v([A]) = 0, implying that [A] lies
in the image of H2(κ(v), µm)

Inf−→ H2(Kv, µm) (cf. Proposition 6.8.7 and Corollary 6.8.8
of [GS17]). The fact that [A] is unramified at v also gives ∂v((u) ∪ [A]) = 0 (cf. Lemma
6.8.4 of [GS17]). But ψ([A], v) is just the evaluation of [A] at the closed point v followed by
Corκ(v)/k, so we have

ψ([A], nv · v) = Corκ(v)/k(nv∂v((πv) ∪ [A])) = Corκ(v)/k(∂v(RH([av])))

giving the desired result.

The above calculations also give the following result, which will be used later.

Proposition 4.2.5. There is a bijection

H1(Kv, H) ≃ Z/mvZ
[av] 7→ valuation of av mod mv

wheremv denotes the exponent of A⊗Kv ∈ BrKv and av ∈ K×
v /K

×mv
v represents the class

[av] ∈ H1(Kv, H).
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4.2. FAILURE OF STRONG APPROXIMATION

Proof. The map given by the Rost invariant

RH : H1(Kv, H)→ H3(Kv,Q/Z(2))

is injective in this case (cf. Theorem 5.3 of [CTPS12]). Therefore, we can identifyH1(Kv, H)

with its image RH(H
1(Kv, H)). Applying the isomorphism ∂v : H3(Kv,Q/Z(2)) ≃

Br(κ(v)), we see thatH1(Kv, H) ≃ ∂v(RH(H
1(Kv, H))) is in fact a cyclic group generated

by ∂v(RH([πv])) = v∗([A]) ∈ Br(κ(v)) with the calculations in Proposition 4.2.4, where
v∗([A]) denotes the evaluation of [A] at v. By Proposition 6.8.7 and Corollary 6.8.8 of [GS17],
the class A⊗Kv ∈ BrKv comes from v∗([A]) under the injection Br(κ(v)) ↪→ BrKv, and
thus they have the same order.

In virtue of the Lichtenbaum duality (4.4), the non-vanishing of the pairing ψ gives non-
vanishing fH , which can then be used to fabricate examples of non-surjectiveH1(K,H)→⊕

v∈X(1) H1(Kv, Hv). Moreover, this map can be non-surjective even away from a finite
set S of places:

Theorem 4.2.6. If the set of values taken by ψ([A],−) at the divisors supported in S ⊆ X(1)

do not cover all the values taken at the divisors supported in X(1) \ S, i.e.

{ψ([A], z)| Supp(z) ⊆ X(1)\S} ̸⊆ {ψ([A], z)| Supp(z) ⊆ S},

then
H1(K,H)→

⊕
v∈X(1)\S

H1(Kv, H)

is not surjective. As a result, strong approximation away from S does not hold for Z .

Proof. Take a divisor z0 = nv · v supported in X(1)\S such that

ψ([A], z0) ̸∈ {ψ([A], z)| Supp(z) ⊆ S}.

Let a := ([πnv
v ])v ∈

⊕
v∈X(1)\S H

1(Kv, H). By Proposition 4.2.4, the images of elements
in

⊕
v∈S H

1(Kv, H) under fH lie in {ψ([A], z)| Supp(z) ⊆ S}, and thus cannot cancel out
fH(a) = ψ([A], z0). Then chasing the diagram (4.6) shows that a is not in the image of
H1(K,H).

Now consider the following commutative diagram

Z(K) H1(K,H) 1

Z(AS
K)

⊕
v∈X(1)\S H

1(Kv, H) 1

with exact rows. We identify ⊕v∈X(1)\SH
1(Kv, H) with the topological restricted product

P1
S(H) because H1(Ov,H) = H1(κ(v), H) = 0 by Serre’s Conjecture II proved for p-

adic fields (cf. Theorem 1 of §4.1, [KJ69]). The map Z(AS
K) →

⊕
v∈X(1)\S H

1(Kv, H) is
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locally constant. Take one element a ∈
⊕

v∈X(1)\S H
1(Kv, H) which is not in the image

of H1(K,H), for example the a we just constructed. There exists an open subset V of
z ∈ Z(AS

K) which maps to a. A diagram chasing shows that V doesn’t meet Z(K).

For S ⊆ X(1), the index I(S) of S is defined to be the greatest common divisor of the
degrees of all v ∈ S. The index I(X) of X is I(S) for S = X(1).

Corollary 4.2.7. Let A be a simple central k-algebra of exponent m and consider H :=

SL1(AK). Let z0 =
∑

v∈X(1) nv · v be a divisor such that deg z0 ̸≡ 0 mod m. Let S be a set of
places inX(1) not meeting the support of z0 such that deg(z0) is not contained in the subgroup
generated by I(S) in Z/mZ. Then strong approximation away from S does not hold for Z .

Proof. By Remark 4.2.2, we have ψ([A], z0) = deg z0/m ∈ mBrk ≃ 1
m
Z/Z ⊆ Q/Z. When

z is supported in S, the value ψ([A], z) is always a multiple of I(S)/m, which cannot be
equal to deg(z0)/m. The condition in Proposition 4.2.6 is thus satisfied.

Example 4.2.8. Let X = P1
k be the projective line over k = Qp. Then the function field

K = Qp(t). Consider the quaternion algebra A = (p, u) over K with u a non-square
unit in Z×

p . Then [A] ∈ 2BrK comes from the generator of 2BrX = 2Brk. Let H be the
semisimple simply connected groupSL1(A), and consider the stably rational homogeneous
space Z = SLn /H . If S ⊆ X(1) is a subset containing only places of even degrees, for
example (t2 − p), (t4 − p), (t6 − p) etc, then strong approximation away from S does not
hold for Z . In fact, we will see later that strong approximation away from S holds for
Z if and if only the index of S is odd, and the reciprocity obstruction is the only one (cf.
Theorem 4.3.10).

Remark 4.2.9. Our example shows that we have a different behavior over p-adic func-
tion fields compared to the classical situations over number fields. ForH a semisimple and
connected algebraic group defined over a number field F , the canonical map H1(F,H)→∏

v∈ΩF
H1(Fv, H) is always surjective (cf. §5.3 of [KJ69]). The group SLn satisfies strong

approximation away from a non-empty set S ⊆ ΩF of places. A diagram chasing argu-
ment shows that strong approximation away from a non-empty S ⊆ ΩF always holds for
SLn /H . In our case over a p-adic function field K , we still have strong approximation
away from a non-empty S ⊆ X(1) for SLn (cf. Corollary 4.1.3), but not for SLn /H where
H is an absolutely simple simply connected algebraic group. We will give another example
with H of outer type A (cf. Example 4.2.13).

4.2.2 Outer type

Now consider H a simply connected group of outer type An−1, i.e. H = SU(A, τ), where
A is a central simple algebra of degree n ≥ 3 over a (separable) quadratic extension L ofK
with a unitary involution τ which leavesK element-wise invariant. The existence of such
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4.2. FAILURE OF STRONG APPROXIMATION

a L/K-unitary involution on A is equivalent to CorL/K([A]) = 0 ∈ BrK (cf. Theorem 3.1
of [Knu98]). Let

SSym(A, τ)× = {(s, z) ∈ A× × L×|τ(s) = s,NrdA(s) = NL/K(z)}

which is a homogeneous space for GL1(A) under the operation given by x : (s, z) 7→
(xsτ(x), zNrdA(x)). There is an exact sequence 1→ H → GL1(A)→ SSym(A, τ)× → 1

which then induces the exact sequence

GL1(AF⊗L)→ SSym(AF⊗L, τ)
× → H1(F,H)→ H1(F,GL1(A)) = {1}

for any field extensionsF/K . In otherwords, there is a canonical bijection betweenH1(F,H)

and SSym(AF⊗L, τ)
×/ ≈ where the equivalence relation ≈ is defined by (s, z) ≈ (s′, z′) if

and only of s′ = xsτ(x) and z′ = zNrdAF⊗L
(x) for some x ∈ A×

F⊗L (cf. (29.18) of [Knu98]
and §5.5 of [KJ69]).

Over the quadratic extension L/K , the group H is isomorphic to SL1(A). Under the
field extension map, the Rost invariant RH maps to the Rost invariant RHL

. The corestric-
tion map for the field extension L/K takes RHL

to 2RH . Using the formula of the Rost
invariant for SL1(A), we have

2RH(s, z) = CorF⊗L/F ((z) ∪ [AF⊗L]) ∈ H3(F,Q/Z(2))

over a field extension F/K , where (s, z) ∈ SSym(AF⊗L, τ)
×/ ≈ .

We investigate different places v ∈ X(1) in terms of their ramification types. If Lv :=

Kv ⊗ L is a field, then the valuation of v on Kv extends uniquely to Lv (which we denote
by ṽ); moreover, if the residue field κ(ṽ) of Lv is a field extension of degree 2 (resp. 1) of
the residue field κ(v) ofKv, we call such a place inert (resp. ramified). For an inert place v,
the field extension Lv/Kv is unramified. If Lv is not a field, then we have Lv ≃ Kv ×Kv,
and such a place is called totally split.

If v is totally split, then L embeds into Kv. The group HKv is of inner type, and equals
SL1(AKv). We can thus apply our results in §4.2.1. In particular, the order of the Rost
invariant RHKv

equals the exponent mv of AKv . If [AKv ] is unramified at v, we can show
that there is a bijection H1(Kv, H) ≃ Z/mvZ as in Proposition 4.2.5.

Proposition 4.2.10. For an inert place v such that [ALv ] is unramified at ṽ, the image of
2RH : H1(Kv, H)→ H3(Kv,Q/Z(2)) is 0.

Proof. We use the diagram in Proposition 8.6 of [GMS03] which is commutative with exact
rows:

1 H i(κ(ṽ), µ⊗j
m ) H i(Lv, µ

⊗j
m ) H i−1(κ(ṽ), µ

⊗(j−1)
m ) 1

1 H i(κ(v), µ⊗j
m ) H i(Kv, µ

⊗j
m ) H i−1(κ(v), µ

⊗(j−1)
m ) 1

e·Corκ(ṽ)/κ(v) CorLv/Kv

∂ṽ

Corκ(ṽ)/κ(v)

∂v

(4.7)
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where the ramification index e = 1 in our case. Since [ALv ] is unramified at ṽ, it comes from
a certain ᾱ ∈ Br(κ(ṽ)) in the top row of the diagram. The condition CorLv/Kv([ALv ]) = 0

then gives Corκ(ṽ)/κ(v)(ᾱ) = 0 by taking i = 2 and j = 1 in the left square of the diagram.
Now we compose 2RH with the isomorphism ∂v : H

3(Kv,Q/Z(2))
≃−→ Brκ(v) and we get

∂v(CorLv/Kv((z) ∪ [ALv ])) = Corκ(ṽ)/κ(v)(∂ṽ((z) ∪ [ALv ])) = Corκ(ṽ)/κ(v)(ᾱ
ṽ(z)) = 0

by taking i = 3 and j = 2 in the right square of the diagram, where we denote by ṽ(z) the
valuation of z with respect to ṽ.

Corollary 4.2.11. Suppose there is a totally split place v0 such that [AKv0
] is unramified at

v0 with exponent ≥ 3. Let S ⊆ X(1) be a finite set containing inert places v such that [ALv ] is
unramified at ṽ. Then

H1(K,H)→
⊕

v∈X(1)\S

H1(Kv, H)

is not surjective. As a result, strong approximation away from S does not hold for Z = E/H

which is a classifying variety of H .

Proof. Proposition 4.2.5 applies toH1(Kv0 , H) = H1(Kv0 ,SL1(A)) and we know that it is
in fact a cyclic group of order equal to the exponent of [AKv0

]. Construct

(av)v ∈ ⊕v∈X(1)\SH
1(Kv, H)

such that
av0 = [πv0 ] ∈ K×

v0
/Nrd(AKv0

) ≃ H1(Kv0 , H)

for a uniformizer πv0 ofKv0 and av = 0 elsewhere. Then apply Proposition 4.2.4 and we get
fH(a) is of order≥ 3. For v ∈ S, the images ofH1(Kv, H) under fH only give elements of
order at most 2, and thus cannot cancel out fH(a). The same diagram chasing argument as
in Theorem 4.2.6 then gives the result.

There are only finitely many places left: those v such that the field extension Lv/Kv

is ramified, or [ALv ] is ramified at ṽ. In fact, these two conditions cannot hold at the same
time.

If Lv/Kv is ramified, then by Lemma 6.3 of [PS22], we have [ALv ] = α0 ⊗ Lv for some
unramified α0 ∈ Brnr(Kv/K). The compatibility between residue maps and restriction
maps (cf. Proposition 1.4.6 of [CTS21]) shows that [ALv ] is unramified at ṽ. Moreover, the
exponent of [ALv ] is at most 2 because

0 = CorLv/Kv([ALv ]) = CorLv/Kv(ResLv/Kv(α0)) = 2α0.

Lemma 4.2.12. For v ∈ X(1), we have

H1(Kv, µm) ≃ K×
v /K

×m
v = {πrδsut|(r, s, t) ∈ (Z/mZ)3} ≃ (Z/mZ)3
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4.2. FAILURE OF STRONG APPROXIMATION

where π is a uniformizer for Kv, the element δ ∈ Kv is a unit whose image δ̄ ∈ κ(v) is a
uniformizer for κ(v), and u is a unit in Kv whose image ū ∈ κ(v) is a unit of order m in
κ(v×)/κ(v)×m.

If Kv contains a primitivemth root of unity ω (e.g. whenm|(p− 1)), then we have

H2(Kv, µm) ≃ mBr(Kv) = {r(δ, u)ω+s(π, δ)ω+t(π, u)ω|(r, s, t) ∈ (Z/mZ)3} ≃ (Z/mZ)3

where (a, b)ω is a cyclic algebra of degreem.

Proof. The exact rows in (4.7) are in fact split (cf. Corollary 6.8.8 of [GS17]). Taking i =
1, j = 1 gives the first statement, noting that

H1(κ(v), µm) ≃ κ(v)×/κ(v)×m = {δ̄sūt|(s, t) ∈ (Z/mZ)2} ≃ (Z/mZ)2

which is obtained by applying the same exact sequence to the complete discretely valued
field κ(v).

A primitive mth root of unity ω induces an isomorphism µm ≃ Z/mZ. The group
H2(κ(v), µm) ≃ mBr(κ(v)) ≃ Z/mZ is then generated by the cyclic algebra (δ̄, ū)ω̄, where
ω̄ denotes the image of ω in the residue field κ(v). Take i = 2, j = 1 in the split exact
sequence (4.7). A retract of the injection mBrκ(v) ↪→ mBrKv is given by the specialization
map s2π : a 7→ ∂v((−π) ∪ a). The calculations

s2π(r(δ, u)ω + s(π, δ)ω + t(π, u)ω) = r(δ̄, ū)ω̄,

∂v(r(δ, u)ω + s(π, δ)ω + t(π, u)ω) = δ̄sūt

give the second statement.

If the field extension Lv/Kv is unramified and [ALv ] has index n ≥ 3, then by Proposi-
tion 6.6 of [PS22], there is a primitive nth root of unity ρ in Lv such thatNLv/Kv(ρ) = 1 and
[ALv ] = (π, δ)ρ, where π and δ are as in Lemma 4.2.12. In particular, [ALv ] is ramified at ṽ.
There exists an Lv/Kv-unitary involution τ on (π, δ)ρ such that τ leaves i and j invariant,
where i and j are generators of (π, δ)ρ such that in = π, jn = δ, ij = ρji.
Example 4.2.13. Let X = P1

k be the projective line over k with function field K = k(t).
Let k′ = k[T ]/g(T ) be an unramified quadratic extension of k, such that there is a primitive
mth root of unity ρwithNk′/k(ρ) = 1 andm ≥ 3. Examples include k′ = k[T ]/(T 2+T+1)

over k = Q5 with ρ a primitive 3rd root of unity, and k′ = k[T ]/(T 2 − 1+
√
5

2
T + 1) over

k = Q3(
√
−7) with ρ a primitive 5th root of unity, etc. Let L = k′(Xk′) = k′(t) which

is a quadratic extension of K . Let δ be a uniformizer of k, which stays a uniformizer of k′
since the extension k′/k is supposed to be unramified. Let u ∈ k′ be a unit with orderm in
k′×/k′×m. Consider the cyclic L-algebra A = (δ, u)ρ. The non-trivial L/K-automorphism
extends to an L/K-unitary involution τ on A. Let H = SU(A, τ) and Z = E/H be a
classifying variety. The place v0 = (g(t)) is totally split, and H1(Kv0 , H) is cyclic of order
m. There are no ramified places or places v where [ALk

] is ramified. Let S be a subset of
places v where Lv/Kv are (unramified) field extensions. Then strong approximation away
from S does not hold for Z .
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4.3 Reciprocity obstruction to strong approximation

We establish a reciprocity obstruction to strong approximation. This obstruction for classi-
fying varieties is related to the degree 3 cohomological invariants. As a result, the failure of
strong approximation constructed in Section 4.2 is explained by this reciprocity obstruction.
We prove that this reciprocity obstruction to strong approximation is the only one in cer-
tain situations, including the case of Example 4.2.8, and classifying varieties of tori. We also
explain that for K-tori, this reciprocity obstruction to strong approximation is compatible
with the known results in [HI19].

4.3.1 Defining the reciprocity obstruction

Let Z be a smooth geometrically integral K-variety. As a consequence of Gersten’s con-
jecture for étale cohomology proved by Bloch and Ogus (cf. [BO74]), we have:

Theorem-Definition 4.3.1 (cf. Theorem 4.1.1 of [CT95], see also (1.1) of [CT15]). The
following subgroups ofH3(K(Z),Q/Z(2)) coincide, that we define to beH3

nr(Z,Q/Z(2)):

(1) the groupH0
Zar(Z,H3(Q/Z(2))) of global sections of the Zariski sheafH3(Z,Q/Z(2))

which is the sheaf associated to the Zariski presheaf U 7→ H3
ét(U,Q/Z(2));

(2) the group of elements α ∈ H3(K(Z),Q/Z(2)) that are unramified with respect to
any codimension 1 point P of Z , i.e. we have ∂OZ,P

(α) = 0 ∈ H2(κ(P ),Q/Z(1)) or
equivalently α comes from a class in H3(OZ,P ,Q/Z(2));

(3) the group of elements in H3(K(Z),Q/Z(2)) which at any point P ∈ Z come from
a class in H3(OZ,P ,Q/Z(2)).

Remark 4.3.2. Since we do not suppose Z to be proper, the groupH3
nr(Z,Q/Z(2)) can be

strictly bigger than its subgroup H3
nr(K(Z)/K,Q/Z(2)), which is the group of elements

in H3(K(Z),Q/Z(2)) that are unramified with respect to all discrete valuations of K(Z)

trivial on K . Let Zc be a smooth compactification of Z , then we have H3
nr(Z

c,Q/Z(2)) =
H3

nr(K(Z)/K,Q/Z(2)). We will see later in Theorem 4.3.10 that for Z in our Construction
4.2.3, the groupH3

nr(Z,Q/Z(2))/ Im(H3(K,Q/Z(2))) is of ordermwhich accounts for the
defect of strong approximation for Z , but

H3
nr(K(Z)/K,Q/Z(2))/ Im(H3(K,Q/Z(2))) = 0

since Z is stably birational.

Now we define a pairing

Z(AK)×H3
nr(Z,Q/Z(2))→ Q/Z (4.8)
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in a similarway as in §2.2 of [CTPS16], where their original definition applies toH3
nr(K(Z)/Z,Q/Z(2))

instead of H3
nr(Z,Q/Z(2)) (see also Lemma 4.1 of [HSS15]). Let α ∈ H3

nr(Z,Q/Z(2)). For
any field extension F/K and any point x ∈ Z(F ) with image P ∈ Z , we can lift α to a
(unique) element ofH3(OZ,P ,Q/Z(2)) in virtue of 4.3.1(3), and define α(x) to be its image
under the pullback H3(OZ,P ,Q/Z(2))→ H3(F,Q/Z(2)). This defines a pairing

Z(Kv)×H3
nr(Z,Q/Z(2))→ H3(Kv,Q/Z(2)) = Q/Z (4.9)

(x, α) 7→ α(x).

By shrinking the open subset U ⊆ X over which we have the model Z → U of Z , the
element α lies in H3(OZ,Q,Q/Z(2)) for all but finitely many codimension 1 points Q of
the k-variety Z . By the assumption on α, the exceptional Q lie in finitely many closed
fibers Zv1 · · · ,Zvr of Z → U . Hence for v ̸= vi, we have α ∈ H3(OZ,P ,Q/Z(2)) for all
points P ∈ Zv. Therefore, for x coming from Z(Ov), we have α(x) ∈ H3(Ov,Q/Z(2)) =
H3(κ(v),Q/Z(2)) = 0, noting that the residue field κ(v) has cohomological dimension 2.
We can thus sum up these maps to get a well-defined pairing (4.8) for the adelic space.

Remark 4.3.3. In the particular case when Z is proper (so strong approximation is equiv-
alent to weak approximation), the above pairing (4.8) becomes∏

v∈X(1)

Z(Kv)×H3
nr(K(Z)/K,Q/Z(2))→ Q/Z

which is exactly the pairing in §4 of [HSS15] giving the reciprocity obstruction to weak
approximation.

For a subset S ⊆ X(1), we define the subgroup of “trivial on S” elements:

H3
nr,S(Z,Q/Z(2)) := Ker(H3

nr(Z,Q/Z(2))→
∏
v∈S

H3
nr(ZKv ,Q/Z(2))).

In virtue of the complex (4.1) of the generalized Weil reciprocity law, the subset Z(K) ⊆
Z(AS

K) is orthogonal to H3
nr,S(Z,Q/Z(2)) with respect to the pairing

Z(AS
K)×H3

nr(Z,Q/Z(2))→ Q/Z, ((xv)v/∈S, α) 7→
∑
v/∈S

α(xv).

The same holds for the closure Z(K)
S of Z(K) in Z(AS

K) by continuity of the pairing,
giving rise to a reciprocity obstruction to strong approximation away from S. Modulo
constant elements, we can also replace H3

nr,S(Z,Q/Z(2)) by

H
3

nr,S(Z,Q/Z(2)) := H3
nr,S(Z,Q/Z(2))/ Im(Ker(H3(K,Q/Z(2))→

∏
v∈S

H3(Kv,Q/Z(2))))

which is a subgroup ofH3

nr(Z,Q/Z(2)) := H3
nr(Z,Q/Z(2))/ Im(H3(K,Q/Z(2))). We say

that the reciprocity obstruction to strong approximation away from S is the only one if the sub-
set of elements inZ(AS

K) orthogonal toH3
nr,S(Z,Q/Z(2)) (or equivalentlyH

3

nr,S(Z,Q/Z(2)))
equals Z(K)

S
.
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Remark 4.3.4. In the study of local-global principal for torsors under tori over K , Harari
and Szamuely (cf. [HS16]) used the reciprocity obstruction given by a different pairing

Z(AK)×H3(Z,Q/Z(2))→ Q/Z.

This pairing is compatiblewith our pairing (4.8) via amapH3(Z,Q/Z(2))→ H3
nr(Z,Q/Z(2))

that we describe now. By results of Bloch and Ogus ([BO74]), the spectral sequence

Ep,q
2 = Hp

Zar(Z,H
q(µ⊗j

m )) =⇒ Hp+q
ét (Z, µ⊗j

m )

gives rise to an exact sequence

H3(Z, µ⊗j
m )→ H0(Z,H3(µ⊗j

m ))→ H2(Z,H2(µ⊗j
m ))→ H4(Z, µ⊗2

m )

which for j = 2 can be rewritten as

H3(Z, µ⊗2
m )→ H3

nr(Z, µ
⊗2
m )→ CH2(Z)/m→ H4(Z, µ⊗2

m )

where CH2(Z) denotes the second Chow group of codimension 2 cycles modulo ratio-
nal equivalence. When CH2(Z)/m vanishes, the obstructions given by H3(Z, µ⊗2

m ) and
H3

nr(Z, µ
⊗2
m ) are the same. In general, the obstruction given by H3

nr(Z,Q/Z(2)) is poten-
tially more restrictive than the obstruction given by H3

nr(Z,Q/Z(2)).

Remark 4.3.5. In the literature of strong approximation problems away from S over a
number field F , the Brauer-Manin obstruction used to be defined using the projection
πS : Z(AF ) → Z(AS

F ), saying that the Brauer-Manin obstruction to strong approxima-
tion away from S is the only one if Z(F ) is dense in πS(Z(A)Br). Demeio introduced the
modified Brauer group of “trivial on S” elements (cf. §6 of [Dem22])

BrS Z := Ker(BrZ →
∏
v∈S

BrZFv)

and the corresponding Brauer set Z(AS
F )

BrS (for which we can also replace BrS Z by
BrS Z/ Im(BrS F )). This gives a less restrictive obstruction compared to the one defined us-
ing projection, since πS(Z(AF )

Br) ⊆ Z(AS
F )

BrS ; moreover, we have Z(F )S ⊆ Z(AS
F )

BrS

while πS(Z(AF )
Br) can be strictly smaller than Z(F )S (cf. Proposition 4.8 of [Dem22]).

We adopt this point of view and we will show later (cf. Theorem 4.3.10 and 4.3.11) that in
our case, the groupH3

nr,S(Z,Q/Z(2)) of “trivial on S” elements cuts out exactly the closure
Z(K)

S with respect to the reciprocity obstruction.

4.3.2 Application to classifying varieties

Now we calculate this reciprocity obstruction we just defined for classifying varieties. Let
H be an algebraic group over K . Let Z = E/H be a classifying variety where the special
rational group E is split semisimple simply connected (for example, E = SLn or Sp2n).
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The following morphism is defined by evaluating an invariant I ∈ Inv3(H,Q/Z(2)) at
the genericH-torsor ξ∗E (the fiber of theH-torsorE → Z above the generic point ξ ∈ Z):

Inv3(H,Q/Z(2))→ H3(K(Z),Q/Z(2)).

Rost proved that this map is injective, and more precisely, there is an isomorphism

θ : Inv3(H,Q/Z(2)) ≃ H3
nr(Z,Q/Z(2)) (4.10)

(cf. Part 2, Theorem 3.3 and Part 1, Appendix C of [GMS03]). The decomposition

Inv3(H,Q/Z(2)) = Inv3(H,Q/Z(2))norm ⊕H3(K,Q/Z(2))

then induces an isomorphism

H3
nr,S(Z,Q/Z(2)) ≃ Ker(Inv3(H,Q/Z(2))norm →

∏
v∈S

Inv3(HKv ,Q/Z(2))norm)

⊕Ker(H3(K,Q/Z(2))→
∏
v∈S

H3(Kv,Q/Z(2)))

and modulo the constant elements, we get

H
3

nr,S(Z,Q/Z(2)) ≃ Ker(Inv3(H,Q/Z(2))norm →
∏
v∈S

Inv3(HKv ,Q/Z(2))norm). (4.11)

Proposition 4.3.6. There is a well-defined pairing

Z(AS
K)× Inv3(H,Q/Z(2))norm → Q/Z (4.12)

((xv)v, I) 7→
∑

v∈X(1)\S

Corκ(v)/k(∂v(IKv(x
∗
vE)))

induced by evaluating an invariant I at the H-torsors x∗vE over Kv, where x∗vE denotes the
fiber of the H-torsor E → Z above the point xv ∈ Z(Kv). This pairing (4.12) is compatible
with (4.8) in the sense of the commutative diagram:

Z(AS
K) Inv3(H,Q/Z(2))norm Q/Z

Z(AS
K) H

3

nr(Z,Q/Z(2)) Q/Z.

×
≃θ

×

Proof. Let b ∈ H3
nr(Z,Q/Z(2)) and x ∈ Z(F ) be a point over any field extension F/K . We

use the description of the isomorphism θ in Appendix A.2, p.461 of [Mer02]. We define the
class b(x) ∈ H3(F,Q/Z(2)) as the image of b under the pull-back morphism

x∗ : H0
Zar(Z,H3(Q/Z(2)))→ H0

Zar(SpecF,H3(Q/Z(2))) = H3(F,Q/Z(2))

with respect to x : SpecF → Z . Thus we get a map

ÎK : Z(K)→ H3(L,Q/Z(2)), x 7→ b(x)
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which is exactly how we defined our pairing (4.9). This ÎK defines an invariant I ∈
Inv3(H,Q/Z(2)) with θ(I) = b since the map b is constant on the orbits of the E(K)-
action on Z(E). Therefore, we have a commutative diagram

Z(Kv) Inv3(H,Q/Z(2)) Q/Z

Z(Kv) H3
nr(Z,Q/Z(2)) Q/Z.

×

×

≃ θ

Now we sum up these maps and quotient byH3(K,Q/Z(2)) and we get the desired result.

As a result, there is an reciprocity approximation to strong approximation which ac-
counts for our constructions in Section 4.2. Now we study more precise questions of how
this reciprocity obstruction controls strong approximation, for example, is this obstruction
the only one? For this end, we first need to take a closer took at our p-adic function field
K .

Proposition 4.3.7. LetX be a smooth proper geometrically integral curve over a p-adic field
k, with index I(X) and function field K. Let [A0] ∈ Br k of exponent m0 which maps to
[A] ∈ BrK of exponentm. Then

m =
m0

gcd(I(X),m0)
,

and we can always choose [A1] ∈ Br k of exponentmI(x) which maps to [A] ∈ BrK .

Proof. Since [AKv ] ∈ BrKv is unramified, it comes from its evaluation v∗[AKv ] ∈ Brκ(v)

at the place v, which is also the image of [A0] under the restriction map Br k → Br(κ(v)),
given by multiplication by [κ(v) : k] = deg v if we identify both Br k and Br(κ(v)) with
Q/Z. Therefore, the exponentmv of v∗[AKv ] equals m0

gcd(deg v,m0)
, which is also the exponent

of AKv because of the injection Brκ(v) ↪→ BrKv. Each exponent mv of AKv divides the
exponent m of A, and thus their least common multiple lcm(mv)v∈X(1) divides m. On the
other hand lcm(mv)v∈X(1) annihilates all the v∗[AKv ], and thus lcm(mv)v∈X(1) [A] ∈ BrX

vanishes at all the closed points v ∈ X(1). By Lichtenbaum’s duality (4.4), this implies
that lcm(mv)v∈X(1) [A] = 0 ∈ BrX and hence m| lcm(mv)v∈X(1) . Therefore, we have m =

lcm(mv)v∈X(1) . But

lcm(mv)v∈X(1) = lcm(
m0

gcd(deg v,m0)
)v∈X(1) =

m0

gcd(I(X),m0)
,

giving the first statement.

In particular, taking m = 1 shows that Ker(Br k → BrK) is the cyclic subgroup of
order I(X) in Br k ≃ Q/Z. Choose α ∈ Ker(Br k → BrK) of order exactly I(X). Then
[A1] = [A0] + α ∈ Br k has exponent

lcm(m0, I(X)) =
m0I(X)

gcd(I(X),m0)
= mI(X)
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and [A1] maps to [A] ∈ BrK as desired.

Remark 4.3.8. In fact, the particular case m = 1 showing that Ker(Br k → BrK) has
order I(X) gives exactly Theorem 1 of [Roq66] and Theorem 3 of [Lic69], where in the
latter paper Lichtenbaum reduced the calculations to the period of X and used the duality
(4.5).

Remark 4.3.9. In the proof of Proposition 4.3.7, we see that Lichtenbaum’s duality (4.4)
can actually give a local-global principle for BrK , i.e. the natural map

BrK →
∏

v∈X(1)

BrKv

is injective. If α ∈ BrK vanishes in BrKv, then α is unramified because the residue map
factors through the completion. Hence α lies in BrX with evaluation v∗(α) = 0 ∈ Brκ(v)

for all places v, and the duality (4.4) shows that α = 0 ∈ BrK . See also Corollary 10.5.5
and Remark 10.5.7(2) of [CTS21].

Theorem 4.3.10. Let Z = E/SL1(A) as in Construction 4.2.3, with A of exponent m. For
the p-adic curve X , suppose Pic0(X)/m = 0, or equivalently mH

1(k,PicX) = 0 by the
Lichtenbaum duality (4.5) (for example X = P1

k the projective line satisfies this condition).
Then there is an exact sequence of pointed sets

1→ Z(K)
S
→ Z(AS

K)→ H
3

nr,S(Z,Q/Z(2))D → 1

for S ⊆ X(1) a non-empty finite set of places. In particular, the reciprocity obstruction to
strong approximation away from S is the only one for Z .

The group H
3

nr,S(Z,Q/Z(2)) measures the defect of strong approximation away from S

forZ , and is finite cyclic of order gcd( I(S)
I(X)

,m)where I(X) (resp. I(S)) is the index ofX (resp.
S). In particular, strong approximation away from S holds for Z if and only of I(S)/I(X) is
coprime tom, and such an S always exists, for example S such that I(S) = I(X).

Proof. We claim that there is a commutative diagram as follows, and the right column is an
exact sequence:

E(K) Z(K) H1(K,H) 1

E(AS
K) Z(AS

K)
⊕

v∈X(1)\S H
1(Kv, H) ≃

⊕
v∈X(1)\S Z/mvZ 1

H
3

nr,S(Z,Q/Z(2))D Z/ gcd( I(S)
I(X)

,m)Z

1

(nv)v 7→Σnv ·deg v/I(X)fH
h7→h( m

gcd(
I(S)
I(X)

,m)
RH)

≃
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where mv = mI(X)/ gcd(deg v,mI(X)), and we identify
⊕

v∈X(1)\S H
1(Kv, H) again

with P1
S(H) as explained in Theorem 4.2.6.

First we prove that it holds when we take S = ∅ and the corresponding gcd( I(S)
I(X)

,m) =

m.

Definition and exactness of the right column. The Hochschild-Serre spectral sequence

Hp(k,Hq(X,Gm)) =⇒ Hp+q(X,Gm)

along with Br(X) = 0 gives the exact sequence

0→ PicX → H0(k,PicX)→ Br k → BrX → H1(k,PicX).

Since mH
1(k,PicX) = 0, the class [A] ∈ mBrX comes from Br k. By Proposition 4.3.7,

we can choose [A0] ∈ Br k of exponent mI(X) which maps to [A] ∈ BrK . The exponent
of AKv equals mv = mI(X)/ gcd(deg v,mI(X)) as explained in the proof of Proposition
4.3.7.

Let ([av])v ∈
⊕

v∈X(1) H1(Kv, H) represented by av ∈ K×
v , and let z0 =

∑
v∈X(1) nv·v ∈

PicX where nv is the valuation of av at v. Then (nv)v ∈
⊕

v∈X(1) Z/mvZ corresponds to
([av])v ∈

⊕
v∈X(1) H1(Kv, H) under the isomorphism of Proposition 4.2.5. By Proposition

4.2.4 and Remark 4.2.2, the image of fH (the mapΣ◦⊕RH in the diagram (4.6)) is contained
in the subgroup mI(X)Br k = Z/mI(X)Z generated by [A0], and under this identification
[A0] = 1 ∈ Z/mI(X)Z, we have

fH(([av])v) = deg z0 mod mI(X) =
∑

v∈X(1)

(nv mod mv) · deg v mod mI(X). (4.13)

Note that the sum on the right is indeed well-defined because mI(X)|(mv · deg v). The
image of the degree map in Z/mI(X)Z is the cyclic subgroup of order m generated by
I(X). Hence dividing (4.13) by I(X), we can identify the image of fH with Z/mZ, taking
I(X)[A0] ∈ Br k to 1 ∈ Z/mZ as indicated in the diagram.

Now suppose fH(([av])v) = 0 = deg z0/I(X) mod m, or equivalently deg z0[A0] =

0 ∈ mI(X)Br k. Therefore m|(deg z0/I(X)), and z0 ∈ PicX/m has trivial image in Z/mZ
in the following exact sequence

Pic0(X)/m→ PicX/m
deg /I(X)−−−−−→ Z/mZ→ 0 (4.14)

obtained by ⊗Z/mZ the exact sequence

0→ Pic0(X)→ PicX
deg /I(X)−−−−−→ Z→ 0.

But Pic0(X)/m = 0 by our assumption, we can thus find a global function a ∈ K×/K×m

such that the valuation of a at v is congruent to nv modulo m, and a fortiori modulo mv

becausemv|m. So the class [a] ∈ H1(K,H) has image ([av])v under the mapH1(K,H)→
⊕v∈X(1)H1(Kv, H). This proves the exactness at the second term.
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Given any l ∈ Z/mZ, there exists
∑

v∈X(1) lv · v ∈ PicX/m such that

deg(
∑

v∈X(1)

lv · v)/I(X) = l ∈ Z/mZ

by the exact sequence (4.14). Then (lv)v ∈
⊕

v∈X(1) Z/mvZ has image l = Z/mZ under
the map fH , proving the exactness at the third term.

Definition and commutativity of the bottom square. By Proposition 4.2.4, we can iden-
tifyH3

nr(Z,Q/Z(2))D with (Inv3(H,Q/Z(2))norm)D in the sequence. Since Inv3(H,Q/Z(2))norm
is a finite cyclic group of order m generated by the Rost invariant RH , we have an iso-
morphism (Inv3(H,Q/Z(2))norm)D → Z/mZ by evaluating an element at RH . Then the
formula (4.12), the definition of fH , and the identification of Z/mZ as the cyclic subgroup
of Z/mI(X)Z generated by I(X) altogether give the commutativity.

Now consider S ̸= ∅. We use the identification (4.11). Under the field extension map,
the Rost invariant RH maps to the Rost invariant RHKv

of ordermv. Therefore, an element
n0RH ∈ Inv3(H,Q/Z(2))norm is inH3

nr,S(Z,Q/Z(2)) if and only ofmv|n0 for all v ∈ S, or
equivalently n0 is a multiple of

lcm(mv)v∈S = lcm(
mI(X)

gcd(deg v,mI(X))
)v∈S =

mI(X)

gcd(I(S),mI(X))
=

m

gcd( I(S)
I(X)

,m)
,

noting that I(X)|I(S). Then
m

gcd( I(S)
I(X)

,m)
RH ∈ H

3

nr,S(Z,Q/Z(2))

is a generator of this cyclic group of order gcd( I(S)
I(X)

,m), and evaluation at this generator
gives an isomorphism H

3

nr,S(Z,Q/Z(2))D → Z/ gcd( I(S)
I(X)

,m)Z.

Any (nv)v ∈
⊕

v∈X(1)\S Z/mvZ can be completed by elements from
⊕

v∈S Z/mvZ,
whose images under fH give exactly the subgroup generated by I(S)/I(X) in Z/mZ.
Therefore, the exactness of the right column and also the commutativity follow from the
previous case S = ∅.

Since the special rational group E is split semisimple simply connected, it satisfies
strong approximation away from S (cf. Corollary 4.1.3). The rows in the diagram are exact
sequences, then a diagram chasing gives the desired result.

As another application of this reciprocity obstruction to strong approximation, we study
classifying varieties of tori.

Theorem 4.3.11. Let Z = E/T be a classifying variety of a torus T overK a p-adic function
field, where the special rational group E is split semisimple simply connected. Then there is
an exact sequence of pointed sets

1→ Z(K)
S
→ Z(AS

K)→ H
3

nr,S(Z,Q/Z(2))D (4.15)

72



Homogeneous spaces over p-adic function fields

for S ⊆ X(1) a non-empty finite set of places. In other words, the reciprocity obstruction
to strong approximation away from S is the only one for Z . If we suppose furthermore that
CH2(Z)→ H0(K,CH2(Z)) is surjective, then there is an exact sequence of pointed sets

1→ Z(K)
S
→ Z(AS

K)→ H
3

nr,S(Z,Q/Z(2))D → H
3

nr,X(1)(Z,Q/Z(2))D → 1. (4.16)

Proof. We claim that there is a commutative diagram as follows, and the right column is an
exact sequence:

E(K) Z(K) H1(K,T ) 1

E(AS
K) Z(AS

K) P1
S(T ) 1

H
3

nr,S(Z,Q/Z(2))D X1
X(1)\S(K,T

′)D

H
3

nr,X(1)(Z,Q/Z(2))D X1(K,T ′)D

1 1

(4.17)

where T ′ denotes the dual torus of T (i.e. the torus whose character group is the cocharacter
group of T ), and

X1
X(1)\S(K,T ) := Ker(H1(K,T )→

∏
v∈S

H1(Kv, T )),

X1(K,T ) := Ker(H1(K,T )→
∏

v∈X(1)

H1(Kv, T )).

Blinstein and Merkurjev gave a description of Inv3(T,Q/Z(2))norm by the exact sequence
(cf. Theorem B and Lemma 4.2 of [BM13])

1→ CH2(Z)tors → H1(K,T ′)
α−→ Inv3(T,Q/Z(2))norm

→ H0(K,CH2(Z))/ Im(CH2(Z))→ H2(K,T ′).
(4.18)

The morphism α is constructed as follows: for every a ∈ H1(K,T ′), b ∈ H1(F, T ) and
every field extension F/K , the invariant α(a) sends b to aF ∪ b under the cup-product
pairing

H1(F, T ′)⊗H1(F, T )→ H4(F,Z(2)) ≃ H3(F,Q/Z(2)) (4.19)

which is defined using the quasi-isomorphisms

T ≃ T̂ ′ ⊗L Z(1)[1], T ′ ≃ T̂ ⊗L Z(1)[1] (4.20)
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and pairings
T̂ ′ ⊗ T̂ → Z, Z(1)[1]⊗L Z(1)[1]→ Z(2)[2]. (4.21)

On the other hand, there is a Poitou-Tate type exact sequence of topological groups estab-
lished by Harari, Scheiderer and Szamuely (cf. Theorem 0.1 of [HSS15]):

· · · → H1(K,T )→ P1(T )→ H1(K,T ′)D → · · · (4.22)

More precisely, the image of the groupH1(K,T ) inP1(T ) is the right kernel of the pairing

H1(K,T ′)×P1(T )
Σ−→ Q/Z

induced by
H1(Kv, T

′)×H1(Kv, T )→ H3(Kv,Q/Z(2)) (4.23)
which are defined exactly by using (4.19). Taking T to be T ′ in (4.22), and noting that any
elements of P1

S(T
′) can be completed by 0’s into an element of P1(T ′), we get an exact

sequence
X1

X(1)\S(K,T
′)→ P1

S(T
′)→ H1(K,T )D

which can be completed into the exact sequence

1→X1(K,T ′)→X1
X(1)\S(K,T

′)→ P1
S(T

′)→ H1(K,T )D (4.24)

by definition. The pairing (4.23) is actually a perfect duality, and the subgroupsH1(Ov, T ) ⊆
H1(Kv, T ) andH1(Ov, T ′) ⊆ H1(Kv, T

′) are exact annihilators of each other (Proposition
1.1 and 1.3 of [HSS15]). Therefore, by dualizing (4.24), we get the exactness of the right col-
umn in (4.17).

The commutative diagram

H1(K,T ′) Inv3(T,Q/Z(2))

∏
v∈S H

1(Kv, T
′)

∏
v∈S Inv

3(TKv ,Q/Z(2))

α

∏
α

induces a morphism

X1
X(1)\S(K,T

′)→ Ker(Inv3(T,Q/Z(2))norm →
∏
v∈S

Inv3(TKv ,Q/Z(2))norm)

≃ H
3

nr,S(Z,Q/Z(2)).
(4.25)

Now applying Proposition 4.3.6 and the compatibility between the morphism α (4.19) and
the pairing (4.23), we get the commutativity of the two squares at the bottom of (4.17).

Since E satisfies strong approximation away from S (cf. Corollary 4.1.3), chasing the
diagram (4.17) gives the desired exactness of (4.15).

Under the further assumption of the surjectivity of CH2(Z) → H0(K,CH2(Z)), the
morphism α is thus surjective by (4.18), and so is the induced morphism (4.25). Hence the
two bottom rows in (4.17) are injective. Now a diagram chasing gives the exact sequence
(4.16).
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Example 4.3.12. We consider the torus T ′ = RL/K(Gm,L)/Gm in Example 4.14 of [BM13],
where L/K is a degree n field extension induced by a continuous surjective group mor-
phism from the absolute Galois group of K to the symmetric group Sn. For example, the
generic maximal torus of the groupPGLn is of this form. The dual torus T of T ′ is the norm
one torusR(1)

L/K(Gm,L). LetZ = E/T be a classifying variety. ThenH0(K,CH2(Z))/ Im(CH(Z))

is trivial, and we have H3

nr(Z,Q/Z(2)) ≃ Br(L/K). Since local-global principle holds for
the Brauer group ofK (cf. Remark 4.3.9), the groupH3

nr,X(1)(Z,Q/Z(2)) is trivial. We apply
(4.16) and get the exact sequence of pointed sets

1→ Z(K)
S
→ Z(AS

K)→ Ker(Br(L/K)→
∏
v∈S

Br(Kv ⊗ L/Kv))
D → 1.

Remark 4.3.13. The exact sequence in Theorem 4.3.10 actually also takes the form (4.16),
because

H
3

nr,X(1)(Z,Q/Z(2)) ⊆ H
3

nr,S′(Z,Q/Z(2)) = 1

for some finite set S ′ such that I(S ′) = I(X). Therefore, we may hope this exact sequence
to hold in other more general situations.

In fact, the commutative diagram in the proof of Proposition 4.3.6 showing local com-
patibility is generally true for Invd(H,Q/Z(d− 1)) andHd

nr(Z,Q/Z(d− 1)) over any field
of characteristic 0 (while in characteristic p, we can identify Invd(H,Q/Z(d− 1)) with the
subgroup of “balanced elements” in H0

Zar(Z,Hd(Q/Z(d − 1))) under certain conditions,
cf. Theorem A of [BM13]). In particular, taking d = 2, we get the group Inv(H,Br) of
invariants with values in the Brauer group, and

H0
Zar(Z,H2(Q/Z(1))) = H2(Z,Q/Z(1)) = BrZ.

This enables us to relate Inv(H,Br)with the Brauer-Manin pairing, which is used for study-
ing the arithmetic of varieties over a number field F , for which we get the following com-
mutative diagram

Z(AK) Inv(H,Br) Q/Z

Z(AK) BrZ Q/Z.

×

≃

×

(4.26)

Now we explain how this is compatible with known results of strong approximation over
F a number field.

ForH a connected linear group over a fieldK of characteristic 0, Blinstein and Merkur-
jev (cf. Theorem 2.4 of [BM13]) showed that

PicH ⊕ BrK
ν1−−→
≃

Inv(H,Br) ≃ BrZ

whose construction and proof are based on the exact sequence

PicW → PicH → BrY → BrW (4.27)
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associated to a smooth K-variety Y and a Y -torsorW under H , as defined in Proposition
6.10 of [San81]. In fact, if we use the exact sequence in Theorem 2.8 of [BD13] which is
of the same form as (4.27) but with PicH → BrY constructed in a different way via the
abelian group ExtcF (H,Gm) of isomorphism classes of central extensions of K-algebraic
groups of H by Gm, we can still get an isomorphism

PicH ⊕ BrK
ν2−−→
≃

Inv(H,Br) ≃ BrZ (4.28)

with the same proof as in Theorem A of [BM13].

Now for F a number field, the above diagram (4.26) along with the identification (4.28)
gives rise to the following commutative diagram, where the right column is an exact se-
quence of pointed sets (cf. Corollary 2.5 and Proposition 2.6 of [Kot86]):

E(F ) Z(F ) H1(F,H) 1

E(AF ) Z(AF ) P1(H) 1

(BrZ/ Im(BrF ))D (PicH)D.≃

For S ⊆ ΩF such that E satisfies strong approximation away from S (e.g. E = SLn with
any non-empty finite set S), a diagram chasing argument shows that the Brauer-Manin
obstruction to strong approximation away from S (defined using projection and the whole
Brauer group, cf. Remark 4.3.5) is the only one for the classifying variety Z . See Theorem
3.7 of [CTX09] where these results were obtained for the first time.

Now we apply Demeio’s version of obstruction given by BrS Z (see Remark 4.3.5). Let
S be a set containing only non-archimedean places and denote by Z(AF )• the adelic points
where each archimedean component is collapsed to the (discrete) topological space of its
connected components. We have the following commutative diagram

E(F ) Z(F ) H1(F,H) 1

E(AS
F )• Z(AS

F )• P1
S(H) 1

(BrS Z/ Im(BrS F ))
D (Ker(PicH →

∏
v∈S PicHFv))

D≃

(4.29)
where the bottom row is induced by (4.28).

The right column is an exact sequence of pointed sets, which can be seen by chasing the
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following commutative diagram (cf. Theorem 1.2 of [Kot86] for the right-most bijection):

H1(F,H) H1(F,H)

P1
S(H) P1(H)

∏
v∈S H

1(Fv, H)

(Ker(PicH →
∏

v∈S PicHFv))
D (PicH)D (

∏
v∈S PicHFv)

D.

≃

(4.30)

If E(F ) is dense in E(AS
F )• (for example E = SLn), then chasing the diagram (4.29) gives

Z(F )
S
= Z(AS

F )
BrS Z
• , meaning that the Brauer-Manin obstruction to strong approxima-

tion away from S is the only one for Z . See Theorem 6.1 and Remark 6.3 of Demeio’s work
[Dem22] for the general result.

4.3.3 Application to tori

For a torus over a p-adic function field, strong approximation is far from being satisfied.
In fact, Harari and Izquierdo (cf. [HI19]) showed that for K the function field of a smooth
projective X over any field k of characteristic 0, any finite set S ⊆ X(1), and any K-torus
T , the image of T (K) in T (AS

K) is a discrete (hence closed) subgroup. In particular, strong
approximation never holds for a torus of dimension> 0.The groupA(T ) := T (AK)/T (K)

measuring the defect of strong approximation is thus the same as T (AK)/T (K). With the
exact sequence

1→ H0(K,T )∧ → P0(T )∧ → H2(K,T ′)D →X2(K,T ′)D → 1 (4.31)

from the Poitou-Tate type exact sequence in [HSS15], where the pairing

P0(T )×H2(K,T ′)→ Q/Z

comes from the cup-products induced by T ⊗ T ′ → Z(2)[2] (cf. (4.20) and (4.21)), Harari
and Izquierdo described A(T ) when K is a p-adic function field:

Theorem 4.3.14 (Corollaire 6.7 and Corollaire 6.9 of [HI19]). There is an injective morphism

A(T )/Div ↪→ H2(K,T ′)

whereA(T )/Div denotes the quotient ofA(T ) by its maximal divisible subgroup. The closure
J of its image fits into an exact sequence

1→ J → H2(K,T ′)D →X2(T ′)D → 1.

There is a perfect pairing

A(T )tors ×
H2(K,T ′)∧

Im(X2(K,T ′))
→ Q/Z.
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Nowwe explain that this is compatiblewith our reciprocity obstruction given byH3
nr(T,Q/Z(2)).

Proposition 4.3.15. There is a morphismH2(K,T ′)→ H3
nr(T,Q/Z(2)) which fits into the

following commutative diagram

H0(Kv, T ) H2(K,T ′) H3(Kv,Q/Z(2))

T (Kv) H3
nr(T,Q/Z(2)) H3(Kv,Q/Z(2)).

×

× (4.9)

Proof. Given an element a : SpecKv → T in H0(Kv, T ), the functoriality of the cup-
products induced by T ⊗ T ′ → Z(2)[2] gives the following commutative diagram:

H0(Kv, T ) H2(K,T ′) H4(Kv,Z(2))

H0(T, T ) H2(K,T ′) H4(T,Z(2)),

×

a∗

×

a∗

where a∗ denotes the pullback maps induced by a. The identity Id ∈ H0(T, T ) is mapped to
a under a∗, and thus we get the commutativity of the upper part of the following diagram:

H0(Kv, T ) H2(K,T ′) H4(Kv,Z(2))

T (Kv) H4(T,Z(2)) H4(Kv,Z(2))

T (Kv) H3
nr(T,Q/Z(2)) H3(Kv,Q/Z(2))

×

Id∪−

×
(4.33)

evaluation

≃

× (4.9)

(4.32)

where the morphism H2(K,T ′) → H4(T,Z(2)) is given by taking the cup-product with
Id ∈ H0(T, T ).

Nowwe construct and prove the commutativity of the lower part of this diagram. Recall
that (cf. Proposition 2.9 of [Kah12]) for a smooth K-variety Z, we have a natural map
H4(Z,Z(2)) → H3

nr(Z,Q/Z(2)) defined as follows. Let α : Zét → ZZar be the change-
of-sites map. The natural map Q(2)Zar → Rα∗Q(2) is an isomorphism in the derived
category of Zariski sheaves (cf. Lemma 2.5 and Theorem 2.6 of [Kah12]). Since Q(2)Zar is
concentrated in degree ≤ 2, we have R4α∗Q(2) = R3α∗Q(2) = 0, hence R4α∗Z(2) ≃
R3α∗Q/Z(2). Then the Leray spectral sequence for α yields an edge map

H4(Z,Z(2)→ H0
Zar(Z,R

4α∗Z(2)) ≃ H0
Zar(Z,R

3α∗Q/Z(2))
4.3.1
= H3

nr(Z,Q/Z(2)). (4.33)

The construction of the Gersten resolution implies we have the commutative diagram

H4(Z,Z(2)) H4(K(Z),Z(2))

H3
nr(Z,Q/Z(2)) H3(K(Z),Q/Z(2))

(4.33) ≃
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whereH4(Z,Z(2))→ H4(K(Z),Z(2)) is the restriction map. This gives the commutativ-
ity of the lower part of (4.32).

Corollary 4.3.16. The morphism T (AK)→ H3
nr(T,Q/Z(2))D induces injective morphisms

A(T )/Div ↪→ H3
nr(T,Q/Z(2))D,

A(T )tors ↪→ (H3
nr(T,Q/Z(2))∧)D.

Proof. Proposition 4.3.15 along with (4.31) gives the exact sequence

1→ T (K)→ T (AK)→ H3
nr(T,Q/Z(2))D.

Now apply Lemme 2.7 and Théorème 6.6 of [HI19], and we get the first injection.

Themorphism constructed in Proposition 4.3.15 givesH2(K,T ′)/m→ H3
nr(T,Q/Z(2))/m

for allm > 0, and thus a morphism H2(K,T ′)∧ → H3
nr(T,Q/Z(2))∧, compatible with the

pairing in Theorem 4.3.14, yielding the second injection.

4.4 Weak approximation for classifying varieties

In the study of weak approximation problems overK a p-adic function field, we can define
a pairing (cf. [HSS15])∏

v∈X(1)

Z(Kv)×H3
nr(K(Z)/K,Q/Z(2))→ Q/Z (4.34)

whose left kernel contains the closureZ(K) inside
∏

v∈X(1) Z(Kv)with respect to the prod-
uct topology, defining the reciprocity obstruction to weak approximation.

For Z = E/H a classifying variety where the special rational group E is split semisim-
ple simply connected, we can establish the same compatibility between the reciprocity ob-
struction and the cohomological invariants.

An invariant I ∈ Inv3(H,Q/Z(2)) is called unramified if for every field extension F/K
and every element H1(F,H), we have I(a) in H3

nr(F/K,Q/Z(2)) the group of elements
unramified with respect to all discrete valuations of F trivial onK . Under the identification
(4.10), the subgroupH3

nr(K(Z)/K,Q/Z(2)) ofH3
nr(Z,Q/Z(2)) is identified with the group

Inv3nr(H,Q/Z(2)) of unramified invariants (cf. Proposition 4.1 of [Mer16b]). We denote by
Inv3nr(H,Q/Z(2))norm the group of unramified normalized invariants.

Proposition 4.4.1. There is a well-defined pairing∏
v∈X(1)

Z(Kv)× Inv3nr(H,Q/Z(2))→ Q/Z

((xv)v, I) 7→
∑

v∈X(1)

Corκ(v)/k(∂v(IKv(x
∗
vE)))
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induced by evaluating an invariant I at the H-torsors x∗vE over Kv, where x∗vE denotes the
fiber of the H-torsor E → Z above the point xv ∈ Z(Kv). This pairing is compatible with
(4.34) in the sense of the following commutative diagram∏

v∈X(1) Z(Kv) Inv3nr(H,Q/Z(2))norm Q/Z

∏
v∈X(1) Z(Kv) H3

nr(K(Z)/K,Q/Z(2))/ Im(H3(K,Q/Z(2))) Q/Z.

×

×

≃ θ

(4.35)

Proof. Same as that of Proposition 4.3.6.

As an application, we show how this method gives answers to weak approximation
problems for classifying varieties of tori overK . The following result was also obtained by
Linh in a different way in his very recent work (cf. Theorem B of [Lin22]). Now we give
our proof using cohomological invariants.

Theorem 4.4.2. Let Z = E/T be a classifying variety of a torus T over K . Then the reci-
procity obstruction to weak approximation is the only one for Z . In fact, there is a morphism

X1
S(T

′)→ H3
nr(K(Z)/K,Q/Z(2))/ Im(H3(K,Q/Z(2)))

such that the subset of elements in
∏

v∈S Z(Kv) orthogonal to the image ofX1
S(T

′) in H3
nr(K(Z)/K,Q/Z(2))
Im(H3(K,Q/Z(2)))

with respect to the pairing (4.34) already equals the closure Z(K) in the topological product∏
v∈S Z(Kv), where X1

S(T
′) := Ker(H1(K,T ′) →

∏
v∈X(1)\S H

1(Kv, T
′)) for a finite set

S.

Proof. Blinstein and Merkurjev (cf. Theorem 5.5 of [BM13]) gave a natural isomorphism

Inv3(T1,Q/Z(2)) ≃ Inv3nr(T,Q/Z(2))
I1 7→ (b 7→ I1(g∗(b)))

where T1 is a flasque torus, fitting into the exact sequence 1→ T
g−→ T1 → P → 1with P a

quasi-trivial torus (such a resolution for a given T always exists by Lemma 0.6 of [CTS87]).
We have its dual exact sequence 1 → P ′ → T ′

1 → T ′ → 1 where P ′ being the dual of a
quasi-trivial torus is still quasi-trivial. The induced exact sequence

1→ H1(K,T ′
1)→ H1(K,T ′)→ H2(K,P ′)

gives an isomorphismX1
S(T

′
1) ≃X1

S(T
′) becauseX2

S(P
′) = 0 by Lemma 3.2 of [HSS15].

Consider the composite map

X1
S(T

′) ≃X1
S(T

′
1) ↪→ H1(K,T ′

1)
α−−−→

(4.19)
Inv3(T1,Q/Z(2))norm

≃ Inv3nr(T,Q/Z(2))norm ≃ H3
nr(K(Z)/K,Q/Z(2))/ Im(H3(K,Q/Z(2)))

(4.36)
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which gives rise to the map at the bottom of the following diagram

E(K) Z(K) H1(K,T ) 1

∏
v∈S E(Kv)

∏
v∈S Z(Kv)

∏
v∈S H

1(Kv, T ) 1

(H
3
nr(K(Z)/K,Q/Z(2))
Im(H3(K,Q/Z(2)))) )

D X1
S(T

′)D.

(4.37)

The right column of the diagram comes from the Poitou-Tate type exact sequence (4.22)
and is exact by the same argument as in the proof in Proposition 4.3.11. Now we check that
the bottom square of (4.37) is commutative. In virtue of Proposition 4.4.1, it suffices to show
the commutativity of the following diagram

H1(Kv, T ) X1
S(T

′) Q/Z

H1(Kv, T ) Inv3nr(T,Q/Z(2)) Q/Z.

×
(4.36)

(4.19)

×

Let a ∈X1
S(T

′). Let a1 ∈ H1(K,T ′
1), I1 ∈ Inv3(T1,Q/Z(2))norm, I ∈ Inv3nr(T,Q/Z(2))norm

be the images of a through the consecutive maps (4.36). For all b ∈ H1(Kv, T ), we have

I(b) = I1(g∗(b)) = a1 ∪ g∗(b) = a ∪ b

where I(b) (resp. a ∪ b) gives exactly the pairing between b and I (resp. a) with respect to
the lower (resp. upper) row, yielding the commutativity.

The special rational group E satisfies weak approximation, then chasing the diagram
(4.37) gives the desired result.

It is still an open questionwhetherweak approximation holds forZ = SLn /H whereH
is a semisimple simply connected group overK a p-adic function field. In case of a negative
answer, we might hope to find a reciprocity obstruction using H3

nr(K(Z)/K,Q/Z(2)) ≃
Inv3nr(H,Q/Z(2)). Merkurjev studied Inv3nr(H,Q/Z(2)) for all classical semisimple simply
connected groupsG, and he showed in [Mer02] that Inv3nr(H,Q/Z(2))norm is trivial except
for H of type 2An−1,

2D3 or 1D4 under certain conditions, where Inv3nr(H,Q/Z(2))norm ≃
Z/2Z. Garibaldi computed the remaining cases when H is exceptional, i.e. when H is of
type G2,

3D4,
6D4,F4,E6,E7 or E8, and he showed in [Gar06] that for H a simple simply

connected exceptional algebraic group, the group Inv3nr(G,Q/Z(2))norm is Z/2Z if H is of
type 3D4 with a nontrivial Tits algebra; otherwise Inv3nr(H,Q/Z(2))norm is trivial. It would
be interesting to see if weak approximation could fail for SLn /H in the case of a non-trivial
Inv3nr(H,Q/Z(2))norm.
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