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A Deligne-Riemann-Roch isomorphism

REMERCIEMENTS

Je souhaite d'abord exprimer toute ma reconnaissance a mon directeur de these Damian Rossler pour le sujet qui est

FOREWORD

Then he [Poirot] uttered an exclamation: '' But where is it that you are taking me? This is the seashore ahead of us!" " Ah, I must explain our geography to you. You'll see for yourself in a minute. There's a creek, you see, Camel Creek, they call it, runs inland -looks almost like a river mouth, but it isn't -it's just a sea. To get to Alderbury by land you have to go right inland and round the creek, but the shortest way from one house to the other is to row across this narrow bit of the creek. Alderburry is just opposite -there, you can see the house through the trees" . '' Five little pigs" , Agatha Christie Towards the end of this work, Thomason's ghost appeared in the au thor's dream. Encouraged by the story of Thomason and Trobaugh, he was hoping for some divine intervention. However, even before asking anything, Thomason started to explain, somewhat reluctantly, the definition of a lo cal complete intersection morphism, and not even the definition of [P71] but rather that of [START_REF] Fulton | Riemann-Roch algebra[END_REF]. To Thomason I could have explained why he shouldn't be listed as a coauthor.

Concerning working with stacks, I met Jose Burgos on a train (also in a dream) where I explained to him that the category of G-equivariant sheaves on a scheme X is naturally equivalent to that of ordinary (cartesian) sheaves on the quotient stack [X/G\. For him this was very natural, and he made an immediate reference to Thomason's work, where he observes that by Morita equivalence, the G-sheaves o n X x ^G are equivalent to that of the ii-sheaves on X . Of course, there is no real relationship between the two observations, albeit both being true, but this was one of the main motivations for intro ducing stacks in the mixture.

We finish with the following synopsis of '' The Dreams in the Witch House" by H. P. Lovecraft:

INTRODUCTION

This thesis consists of two main parts.

Brauer-Manin obstruction for zero-cycles on curves

The first part (c.f. chapter 1) concerns a positive result on a Hasse-type principle for zero-cycles of degree one curves. The " Hasse principle" , stated somewhat informally, says that whenever a variety over a number field k has points in every completion of k, it actually has a fc-rational point. Formu lated liked this the Hasse principle is well-known to be false in general, but there are however many instances where one can say something. We prove that under finitude of the Tate-Shafarevich group, if a curve over a number field has a zero-cycle of degree one in every completion orthogonal to a finite subquotient of the Brauer-group it has a global zero-cycle of degree one. We also introduce the concept of a " generic period" and relate it to the Brauer-Manin obstruction, as well as give another description of the generic period in terms of Suslin homology. The result on zero-cycles on curves was also independently found by Victor Scharaschkin and a joint article on this topic is being processed.

A Deligne-Riemann-Roch isomorphism

The second part is the principal part of this thesis. This work grew out of an attempt to answer equivariant analogues of Deligne's program in [Del87]. This on the other hand was inspired by the philosophy of S. Arakelov in [Ara74a], [Ara74b] and is an attempt to understand the works of [Fal84] and [HG84]. The program has two parts, one geometric and one analytic, and we will only treat the geometric. The context is the following for which Deligne's introduction in [Del87] is the best reference. If / : X -> Y is a proper morphism of smooth quasi-projective varieties over a field k, one version of the , chapter 15) states viii Contents that there is a commutative diagram K 0(X ) -~Tf)c> 0 , C t f ( X ) Q .

RI.

/.

κ " ( Υ ) -------® ( CH' ( y ) Q

As a special case, we get an identity

ci(R f* (E )) = f*(T d {T j)c h (E ))W
where / *(? )^ denotes the degree 1-part of /*(?)(£?). For smooth varieties we have an identification Pic(y) = CH1(F ) and the above can thus be un derstood as an equality in the rational Picard group, which has a categorial interpretation as the category of rational line bundles *pic(X)Q modulo iso morphisms (c.f. Definition 6.5.0.2). The departure point is the following:

Question 1. Can we define two functors from the category of vector bundles to the category of line bundles (possibly up to torsion) P ( X ) -?pic(K)Q and a natural isomorphism of the two, that naturally realizes the above identity?

One of the functors, the lifting of c i(R f* (E )) has a natural interpretation as the determinant (in the sense of [FK76]) of the perfect complex R f*(E ), which is a natural line bundle. We are led to the following question: Question 2. Can we define categorial versions of all the groups involved, introduce the proper kind of functors, and define isomorphisms thereof, lifting the Grothendieck-Riemann-Roch identity?

In [Del87] these questions are completely solved for the case of a smooth curve C -► S and the determinant of the cohomology. To answer this ques tion in general one is led, among many other things, to consider the category of virtual vector bundles on a scheme X , defined as in [Del87], section 4. It amounts to the fundamental groupoid of Quillen's construction of the al gebraic /T-theory space of X . It arises in a purely categorical fashion as a universal Picard category with respect to an exact category in a way anal ogous to that of the relation of the category P ( X ) and K 0(X ). In chapter 2 we recall this theory and prove that the same construction is possible in the context of Waldhausen categories, i.e. replacing exact categories by cate gories with cofibrations and weak equivalences. This allows us to put ourself in the setting of [RT90]. As such, the dependence on the derived category is revealed and we can consider virtual categories of perfect complexes on a scheme and define pushforward of a proper perfect morphism f : X -> Y of Notherian schemes in quite large generality, as well as define virtual cat egories of complexes with support on a closed subset. This part is more or less independent of the rest of the text, but can be used to extend several of the results on functoriality from the regular case to the general case. As another corollary we find that the derived category of a (small) complicial biWaldhausen category C determine, via virtual categories, K 0(C) and K\(C) and thus we have a derived category-categorization of K\{C). Not surpris ingly it involves " distinguished triangles of distinguished triangles" .

The correct equivariant base-setting for the above is, if one is to believe the philosophy of [Toe99a], that of algebraic stacks. In chapter 3 we give a treatment of this idea. We associate various virtual categories to an algebraic stack and record their main properties. This includes the new cohomological virtual category, W {X ), inspired by [Toe99a], which is a virtual version of the A'-cohomology spectrum of ibid. For a regular scheme this is just the usual virtual category tensor Q. Here we also prove a fundamental splitting principle, Theorem 3.2.1, inspired by [Fra90], which gives us a criterium for when we can descend an isomorphism in a Picard category from a flag vari ety. Following [START_REF] Borel | Stable real cohomology of arithmetic groups[END_REF], we also show that the virtual category of an algebraic stack admits canonical Adams-operations (c.f. Proposition 3.3.1).

The next chapter 4 is the most important background-material for appli cations to functoriality. We apply the philosophy of [Rio06] and establish a version of the following meta-Theorem (compare Theorem 4.0.6): Any op eration on the presheaf X i-> K q( -)q on the category of regular schemes has a canonical lifting to an operation on the cohomological virtual category of a regular algebraic stack, strictly stable under base-change of the same. Again applying the philosophy of [Rio06] we are able to construct a virtual version of the weight filtration of if-cohomology. For regular schemes this gives a weight filtration of the virtual category tensor Q, and since there is much control of K Q and K\ of such a scheme it will allow us to make sense of a statement like: Given a regular scheme X , and a line bundle on L, for big enough n, there is a canonical isomorphism (L -l)® n = 0 valid in the virtual category of X tensor Q. This whole machinery is made possible by a certain rigidity-statement that is based on the fact that Α'χ(Ζ) is torsion and so certain homotopy-classes in question lift to homotopies up to unique homotopy and define operations on the virtual category. Now, the correct setting of 2 is without a doubt working with simplicial sets such as Quillen's construction of A'-theory and some formalism of oo-categories, and one might ask oneself if it there is a strictification-process (c.f. [START_REF] Smith | Homotopy commutative diagrams and their realizations[END_REF]) that allows us to lift homotopy-classes to canonical maps of spaces, up to some weak form of equivalence. The obstructions to doing so rationally are given by elements of a group of power-series with coefficients in K i(Z)q, and it is well-known from Borel's work on regulators (c.f. [Bor74]) that jRT<(Z )q has free rank 1 for i = 1 mod 4, i > 1 and thus the above theory is insufficient to provide much finer information than for virtual categories. Thus any attempt to provide a full solution to the Deligne-problem necessarily needs new ideas. Results in this and the previous chapter are stated for somewhat general algebraic stacks, but in the actual applications of this thesis only the non-equivariant and the ^"-equivariant case will be considered. It is the hope that we can prove functorial Lefschetz-type formulas for algebraic stacks in the future and that these results will be helpful.

In chapter 5 we establish a fundamental functorial base-change-property, the excess-base-change formula (c.f. Theorem 5.1.2). If / : X -> Y is a proper morphism of smooth quasi-projective varieties over a field k and q : Y ' -► Y is a any morphism, X ' := X Xy Y ' and we have morphisms induced by base-change /' : X ' -> Y', q' : X ' -► X , this states that R fl (Λ_ ,(£ ) 0 Lq'*(x)) = L q 'R f.{x ) is an equality in Ko(Y'), for any x £ K q(X ). Here E is the so called excessbundle (c.f. [Ful98], 6.3) that arises whenever the diagram f q ' 9 X -^Y

is not transversal and \ -i(E ) = X ^0( -l ) 1 A1 E. Whenever / or q is flat E = 0 and this is just the usual base-change-formula. This is established as a functorial isomorphism, up to sign, valid for algebraic stacks satisfy ing the additional condition that any coherent sheaf on the algebraic stack is the quotient of a vector bundle. Particular focus has been paid to this isomorphism for several reasons. First of all, it gives an example of how to construct functorial isomorphisms of a special type in a relatively simple sit uation, and how to use the deformation to the normal cone to resolve these types of questions. Second of all, it is a formula that we will have to apply in many different contexts and in particular in the very statements of our functoriality Riemann-Roch-like theorems of the next chapter.

In the final chapter 6 we put together the obtained results and reap the fruits of our labor. The first of these is a functorial construction of multiplica tive characteristic classes on the cohomological virtual category on a regular algebraic stack. These are conceived as certain multiplicative determinant functors P (X ) -► W (X )* determined by compatibility with base-change and what they are on the category of line bundles, just like in the classical situa tion (c.f. [START_REF] Fulton | Riemann-Roch algebra[END_REF], chapter I, §4). The main example to have in mind is that of Bott's cannibalistic class arising in the Adams-Riemann-Roch theorem. Next we formulate a completely unique Lefschetz-isomorphism for cyclic diagonalizable groups T acting on regular schemes (c.f. section 6.2). This is a functorial version of Thomason's coherent Lefschetz trace-formula in [Tho92] and relates the trace of a T-representation on X with the trace of the rep resentation restricted to the fixed-point set X T of T acting on X . We also establish a completely unique functorial Adams-Riemann-Roch theorem, at least rationally, thus giving a positive response to Deligne's program for the determinant of the cohomology, for the category of regular schemes and pro jective morphisms between them. In the final section we relate this Adams-Riemann-Roch-isomorphism to the Deligne-Riemann-Roch-isomorphism for curves already alluded to and show they necessarily must coincide. We also apply this to study a conjecture of [Koc98].

The proof of all these '' functoriality theorems" use the deformation to the normal cone and an adaption of the techniques that arise to the functorial context. To a great extent this has already been worked out by J. Franke in [Fra] who have also established a solution (unpublished) to Deligne's program in a less restrictive context. Loc. cit. is the culmination of a series of papers ([Fra90], [Fra91]) and is in a context different from ours. J. Franke focuses on a Grothendieck-Riemann-Roch formulation of the Riemann-Roch prob lem and obtains general results by considering Chern classes as intersection classes. However, in the non-equivariant setting we focus on the Adams-Riemann-Roch formulation for regular schemes. No attempt to compare the two theorems have been made, but since their constructions are very similar this should be possible with the formalism available in the respective papers. It should lastly be noted that the author has been very lucky to have access to the unpublished manuscript [Fra].

Part I 1. BRAUER-MANIN OBSTRUCTION FOR ZERO-CYCLES ON CURVES

No need for doctors half the time. The French understand these things.

Brauer-Manin obstruction

For the purposes of this paper, a variety is a finite type, separated and geometrically integral scheme over a field k. We first recall the definition of the Brauer-Manin obstruction. Henceforth the symbols X and U will be used to denote geometrically integral varieties over a field k, and in case they are mentioned together U is a non-empty open subset of X . Suppose k is perfect. Set Bt(X ) := Hlt(X, Gm). By functoriality, an Lpoint (for L/k a finite field-extension) spec L -> X defines a homomorphism B rX -► BrL. Furthermore, since L/k is finite, we can take corestriction Br L °^es Br k. Hence, by extending by linearity, we obtain a pairing between Z0(X ) x B r(X ) -* Brk.

(1.1)

Here Zo(X ) denotes the group of 0-cycles on X . Now, let A; be a number field, and set kv to be the completion of k at a place v. For a k-variety X , we denote X Xkkv by X v, and X Xk k by X for a separable closure k oi k.

Denote by Z£(X ) the group Πυ Zo{Xv)• Suppose for the purposes of the introduction that X is smooth. In the case B is a subgroup of the unramified Brauer group Brnr(X ) (the Brauer group of any smooth compactification of X , which we will assume for now exists; it is a birational invariant, c.f. [START_REF] Grothendieck | Le groupe de Brauer III, Dix exposés sur la cohomolo gie des schémas[END_REF], Theoreme 7.4), it is possible to show that we can define a pairing Z0 a(X ) x B ^Q / Z as follows: Given a zero-cycle (zv)v and an element a £ B, one obtains elements (a(zv)v) £ Br kv by evaluating as in (1.1). By local class field theory we have injections iv : Br kv *-»• Q/Z and it is possible to show that by virtue of a € Brnr(X ), the element {(zv),a ) = J2v^(ci(zv)) is a finite sum and thus well-defined. Now, one puts, for B C Brnr X , Z S (X )B = (C O 6 Z g (X ) I Vv, deg zv = 1, (& ),< *) = 0, Va € B } .

The corestriction-map is the identity on the level of Q/Z for non-archimedean places (see [START_REF] Serre | Corps locaux[END_REF], XI, Prop 2, ii) and X III, Theorem 1). Using this together with the fundamental short exact sequence of class-field theory, 0 -► Br k -► Br kv -► Q/Z -► 0, one shows that Z o (X )1, the zero-cycles of degree 1, are indeed included in the above defined set. This follows in a way completely analogous to the case of points (see Manin, loc.cit.). For the same reasons, the above pairing with Bro(k), i.e. the image of Br k in B rX , is seen to be zero. If the set Ζ β (Χ )Β is non-empty, we say there is no obstruction associated to B for existence of zero-cycles of degree 1. Now let V be a class of varieties with an assignment B = B (X ) C Brnr(X ) for any X G V. If for all X in V we have Ζ } ( Χ ) Β φ 0 = s-Z"(X)1 φ o then we say the Brauer-Manin obstruction is the only one to the existence of zero-cycles of degree 1 associated to B. Let B r i(X ) = ker[BrX -> B r(X )]. The group EpO := ker Βγι * -> Π Βγ ιΛ «/ ΒγΑ:«' is the group of (algebraic) locally constant elements of the Brauer group. Whenever X is a proper variety, the quotient of B (X ) by the image Br0(fc) of Br k comes with a canonical isomorphism B (X )/B r0(k) ~ Ill^P ic p O ) = ker (u \ k , P ic (X ))

J l H ^f c ^P i c ^) ) )

V via the Hochschild-Serre spectral sequence (see [START_REF] Skorobogatov | Torsors and rational points[END_REF], Corollary 2.3.9, the case Μ = Z. This is an isomorphism essentially because H 3(k, Gm) = 0 for local and global fields). Here and henceforth H x{k, M ) denotes etale cohomology, which reduces to Galois-cohomology of r fc = Gol(k/k) with values in M . By Lemma 1.3.3 below, E (X ) C B r i(X ) is unramified in the sense that it does not depend on the choice of smooth compactification.

Let X be a smooth quasi-projective variety defined over a perfect field k. Denote the semi-Albanese variety of X by SAlb^. There is a certain torsor SAlb^• under SAlb^, universal with respect to morphisms into torsors under semiabelian varieties (see definition 1.3.0.1). The period, P = Ρ χ , of X is defined as the order of [SAlb^] in H 1(k,SAlb^). In Theorem 1.4.1 in section 1.4 we give another characterization of the period in terms of Suslin homol ogy (see Appendix ). The index I = Ιχ of a variety X over a field k is defined to be least positive degree of a zero-cycle on X with respect to k. Define the generic period P as the supremum of all Pu over all open non-empty subsets U of X . Note that Pu | Iu and and it is well known that the index of an open subset of X is the same as that of X (see [START_REF] Colliot-Thélène | Un théorème de finitude pour le groupe de Chow des zéro-cycles d'un groupe algébrique linéaire sur un corps p-adique[END_REF], "Complement" ). Thus we see that all Pu are bounded by I, so the supremum exists. Moreover P\I. Our first result is a stronger version of a theorem originally due to S. Saito [START_REF] Saito | Some observations on motivic cohomology of arithmetic schemes[END_REF] (stronger, because here we only need the conjecturally finite group B(C)/ Br0(A:) as opposed to the whole Brauer group). S. Saito's theorem has also been re proved by Colliot-Thelene in [START_REF] Colliot-Thélène | Conjectures de type local-global sur l 'image des groupes de Chow dans la cohomologie étale[END_REF].

Th eorem 1.1.1. Let C be a smooth projective curve over a number field k, let A be its Jacobian, and assume that III1 (^4) is finite. Then the obstruction associated to B(C ) for zero-cycles of degree 1 is the only one: if Z " (C )B(c) φ 0 then 1 = 1.

We have an obvious corollary which does not include the group Zfi (see introduction): C orollary 1.1.2. Let C be as above and keep the same assumptions. Then if C has no Brauer-Manin obstruction associated to E( [START_REF] Fulton | Intersection Theory[END_REF] for points, then C has a zero-cycle of degree 1, i.e.: if C (Afc)B^ Φ 0 then 1 = 1.

For general projective, smooth, geometrically integral varieties A;-varieties Colliot-Thelene (see [START_REF] Colliot-Thélène | Conjectures de type local-global sur l 'image des groupes de Chow dans la cohomologie étale[END_REF]) has conjectured that the Brauer-Manin obstruction is the only obstruction to the existence of global 0-cycles of degree 1 on X . In §1.3, we shall prove a very weak version of this conjecture. Theorem 1.1.3. Let X be a projective, smooth geometrically integral variety over a number field k. Denote by A the Albanese variety of X and assume that

ΠΙ1 (Λ ) = ker[H1( M ) -► ® H Η^ν,Α)} V is finite. If Z q( X ) ^x ^ Φ 0 then P = 1.
Thus the Brauer-Manin obstruction is the only obstruction to the generic period being 1. The proof makes use of semi-Albanese torsors, and thus depends in an essential way on a result due to Harari and Szamuely Theorem 1.1 [START_REF] Harari | Local-global principles for 1-motives Duke Math[END_REF],

Remark 1.1.3.1. We note that Pu can indeed be larger than Ρχ for U open in X . For example, if X is a proper curve of genus 0, then via the anti-canonical embedding it can be written as a conic in P2:

X :a X 2 + bY2 = cZ 2.
Hence the index is either 1 or 2, and it is 1 exactly when we have a rational point. Now, removing two points at infinity, we obtain

U : ax2 + by2 = c
which is a torsor under a torus. Because Pu divides /, it is either 1 or 2, and because the torsor is trivial exactly when Pu is 1, we see that Pu -I ■ Hence we have in this case that P = I. However since the Albanese of X is trivial, Ρχ is certainly 1. In general one can show that for smooth curves over any field, the two invariants are the same. To the author's knowledge, not very much is known about the quotient 7/P, but in general it is not always 1. For arbitrary varieties, even over a number field, they are not equal. Indeed, one can construct varieties with points exactly when they have a zero-cycle of degree 1, without B-obstruction and without rational points. 0. Wittenberg informs the author that the del Pezzo surface of degree 4

vw = x2 -5 y2 (v + w )(v + 2 w ) = x 2 -5 z 2
examined by Birch and Swinnerton-Dyer in [START_REF] Birch | The Hasse problem for rational surfaces[END_REF] provides such an example.

Furthermore, in [START_REF] Wittenberg | On Albanese torsors and the elementary obstruction[END_REF], 0. Wittenberg relates the generic period to more clas sical invariants. He shows among other things that for a smooth proper geometrically integral variety X over a number field k, such that X (A k) φ 0 and the Tate-Shafarevich group of the Picard variety of X over k is finite, there is an equivalence between the following statements (see ibid., Theorem 3.3.1):

(a) X (A k) B φ 0;

(b) The elementary obstruction (see [START_REF] Skorobogatov | Torsors and rational points[END_REF], Definition 2.3.5) of X vanishes ;

(c) The generic period is 1.

Remark 1. 1.3.2. In [START_REF] Poonen | The Cassels-Tate pairing on polarized abelian va rieties[END_REF] it is claimed that over a global field k and a principally polarized abelian variety A over k, there is the Cassels-Tate pairing (defined in loc.cit.) 

Ill1 (A ) x ΠΙ1 (A) -»■ Q/Z,

A Short Proof of S. Saito's Theorem

In this section we give our proof of Theorem 1.1.1. We let C be a geomet rically integral, smooth projective curve over a number field k, without any B(C)-obstruction to zero-cycles of degree 1. Also suppose that III1 (^4) is finite, where A is the Jacobian variety Pic£yfc of C. Recall that there is a uniquely defined morphism p : C -► P ic ^fc, where Pic^/fc is a torsor under A , and that the morphism is universal with respect to morphisms into torsors under abelian varieties. See Theorem 1.3.1 for the statement of the existence over a perfect field (well known for curves) and a reference for proof, or the discussion in chapter V, paragraph 23, [START_REF] Serre | Groupes algébriques et corps de classes[END_REF] for the case of a general field. By functoriality of the pairings, if C has no B(C')-obstruction to the existence of zero-cycles of degree 1, then P ic ^fc does not have any obstruction associated to E(Pic£yfc). Using a result of Manin, by finitude of III1 (A ), P ic ^fc has a fc-rational point (see Theorem 6.2.3 of [19] for a proof, or the original article of Manin [START_REF] Yu | Le groupe de Brauer-Grothendieck en géométrie diophantienne[END_REF]).

Denote by CH0(X ) the usual 0-th Chow group of a variety X , that is, the full group of zero-cycles modulo rational equivalence and recall that k denotes a separable closure of k. We now record the following general (well known) fact:

Lem m a 1.2.1. [[11], Prop 2.5] Let X be a smooth, proper and geometrically integral variety over a global field k and assume that X has a zero-cycle of degree one locally everywhere. Then P ic (X ) -P ic (X )rfc. In the case X is a curve, we see that in particular, C H opf) = P ic (X ) surjects onto the k-points of the Picard-scheme Picx /k(k) = Pic(A ')I\

Proof. We include a proof for completeness. The Hochschild-Serre spectral sequence provides us with the exact sequence 0 -»• PicpO -► P ic (X )rfc -► BrA: Λ B rX .

If X has a fc-point, this point splits the map j and so j is injective. By a restriction-corestriction argument the same stays true if X has a zero-cycle of degree 1. Global class-held theory tells us that the map Brfc -► Br kv is injective. The condition that we have a zero-cycle locally everywhere gives us that 0 " Br kv -> Br X v is injective, and one concludes that P ic (X ) -> P ic (X )rfc must be surjective, and hence bijective. □

We have a natural identification Pic^r/fc = LLez P ic*/A:i where P ic ^fc is the n-th Baer sum of torsors. This comes with a natural map deg : Picx/k(k) -* ■ Z, sending an element in Pic*/*.(&) to η € Z, and the following diagram is commutative:

C H op O -----P ic x /fe(A;). deg deg z ----= z
Since the first map is a bijection, we see that deg is surjective whenever deg is, and thus with the assumption that we have an adelic zero-cycle of degree 1 orthogonal to B(C), we see that the index is one and the theorem is proved.

Brauer-Manin obstruction and Generic Periods

In this section we give the proof of the main theorem, roughly as follows. After recalling the definition of the semi-Albanese torsor we first show that under the right conditions the period is equal to 1 (Lemma 1.3.2). We then recall that the group of locally constant elements is invariant under restriction to Zariski opens (Lemma 1.3.3) and then put this together to prove Theorem 1.1.3. The main technical tool is a recent result on the Hasse principle for semiabelian varieties by Harari and Szamuely [START_REF] Harari | Local-global principles for 1-motives Duke Math[END_REF]. First, let U be a quasi-projective, smooth variety over a field k. Recall that a semi-abelian variety is a commutative group-variety which is an extension of an abelian variety by a torus. Suppose we are given a fc-morphism p : U -» S1 where S1 is a torsor under a semi-abelian variety S'0 over k, with the following universal property: Given any /c-morphism m : U -> ■ T 1, where T 1 is a torsor under a semi-abelian variety T° over k, there is a unique fc-morphism f 1 : S'1 -> T 1 such that hop = f 1 and there a unique fc-morphism of algebraic groups f ° : S° -► T ° such that /: is /°-equivariant. This clearly determines the quadruple ([/, S°, Sx,p), if it exists, up to unique isomorphism. D efinition 1.3.0.1. A quadruple (U, S°, S \p ) as above is a semi-Albanese torsor of U.

Suppose that k is perfect. The following is a formal consequence of its solution over an algebraically closed field [START_REF] Serre | Morphismes universels et variétés d'Albanese, Variétés de Picard[END_REF] (see Theorem 7) and the descent theory of [START_REF] Serre | Groupes algébriques et corps de classes[END_REF] (see p. 112, 4.22), which was already remarked in [START_REF] Ramachandran | Duality of Albanese and Picard 1-motives[END_REF]:

Th eorem 1.3.1. Let U be a quasi-projective smooth variety over a perfect field k, then a semi-Albanese torsor exists. Remark 1.3.1.1. If X is also proper the semi-Albanese variety is the Albanese variety, and the semi-Albanese torsor is an "Albanese torsor" , i.e. it is uni versal with respect to morphisms into torsors under abelian varieties. In this case it is desirable to write it as Alb^ instead. In general, if X c denotes a smooth compactification of X , then if H x(X c, C?xe) = 0 the abelian-variety part of the semi-Albanese variety is trivial and the semi-Albanese torsor is a torsor under a torus and is universal with respect to morphisms to torsors under tori.

Lem m a 1.3.2. Let V be a torsor under a semi-abelian variety S which is an extension of an abelian variety A by a torus T, defined over a number field k and suppose that III1 (A ) is finite. Then the obstruction associated to B (V) for zero-cycles of degree one is the only one for rational points on V. That is, if Z § (V )BW φ 0 then V (k) φ 0.

Proof. Since V has a zero-cycle of degree one locally everywhere, it actually has a fey-rational point for every v. For each place v, let Qv be such a /^-rational point, and suppose that Q = (Qv)v is any point in f L V(kv) which we can suppose is adelic. A restriction-corestriction argument shows that iv(a(zv)) = deg(zv)iv(a(Q v)) for any zero-cycle zv on Vv, for a locally constant (i.e. in B (V )). Hence we can replace all zero-cycles of degree one with this adelic point Q, which will be orthogonal to E (V ). The statement we now want to prove is well known for rational points whenever S is an abelian variety (see Theorem 6.2.3 of [19] for a proof, or the original article of Manin [START_REF] Yu | Le groupe de Brauer-Grothendieck en géométrie diophantienne[END_REF]) or S' to be a torus (see Theorem 6.2.1,[START_REF] Skorobogatov | Torsors and rational points[END_REF]). The result for B (V ) in the case of arbitrary S is a result of Harari and Szamuely, [START_REF] Harari | Local-global principles for 1-motives Duke Math[END_REF]. □

We record the following lemma of invariance of B under restriction to open subsets.

Lem m a 1.3.3. [[15], Lemma 6.1 or [6], Theorem 2.1.1]Let k be a num ber field and let X be a smooth proper geometrically integral variety over k. Suppose U is a non-empty Zariski-open set in X . Then B (CO = B(AT).

We now turn to:

Proof, (of Theorem 1.1.3). Let X be as in the theorem. Let U be an open set of X , and let p: U -*■ SAlb^ be its semi-Albanese torsor. Since by the above lemma, B(U ) = B (X ), and these elements are locally constant, U has no B((7)-obstruction. By functoriality of the Brauer-Manin pairing, the same holds true for SAlb^. Because of the finiteness assumption on III1 (A ), Lemma 1.3.2 implies that the torsor is trivial and so Pu, the period for U, is 1. This is true for any open in X , and hence the generic period is 1. □ Remark 1.3.3.1. Suppose now that U is a torsor under a torus, and X a smooth compactification thereof. If X has no B (X)-obstruction associated to zero-cycles of degree 1, by Theorem 1.1.3 we thus obtain that the period of U is 1 (this rests only on Theorem 6.2.1, [START_REF] Skorobogatov | Torsors and rational points[END_REF] and doesn't utilise the full result of [START_REF] Harari | Local-global principles for 1-motives Duke Math[END_REF]). But then it has a point and we recover a result by Colliot-Thelene and Sansuc saying that the Brauer-Manin obstruction is the only one for smooth compactifications of A:-torsors under tori (see [START_REF] Skorobogatov | Torsors and rational points[END_REF], Theorem 6.3.1, and the remark afterwards saying that we only need to consider locally constant elements). In any case, the generic period contains more information than the period associated to only X . An interesting question (suggested by Colliot-Thelene) would be to calculate the generic period of (a compactification of) a non-abelian algebraic group and compare it to its index.

Alternative Description of the Period

In this section we give an additional description of the period as a cokernel of a map deg :

h o(X )rfc -*• Z. Suppose k is perfect. The semi-Albanese scheme of X -► spec k is the fc-group scheme SAlbX/fc = U SAlb^- nez
where SAlbJ is the n-fold Baer sum of torsors, and for n = 0 it is the semi-Albanese variety. In [START_REF] Ramachandran | Duality of Albanese and Picard 1-motives[END_REF], 1.2, Ramachandran shows that this is a groupscheme with various functorial and universal properties. We mimic his ap proach: We have an obvious IVequivariant map X (k ) -* SAlb^(fc), and we define a map from the group of zero-cycles Z0(X ) to the /c-points of the Albanese scheme to be the unique group-homomorphism whose restriction to X (k) is the above map. Taking Galois-invariants gives a homomorphism of groups Z 0(X ) -► SAlby^ffc). By naturality and the fact that S (A l) = S(k) for semi-abelian varieties S we see that this map factors over the Suslin ho mology group h0(X ) (see Appendix for a definition of Suslin homology and argue as in [START_REF] Spiess | On the Albanese map for smooth quasi-projec tive varieties[END_REF], Lemma 3.1).

Hence, there is a canonical homomorphism ho(X) -► SAlbx/k(k) such that the restriction to degree 0 is the generalized Albanese map (which we will refer to simply as the "Albanese map" ) of [START_REF] Spiess | On the Albanese map for smooth quasi-projec tive varieties[END_REF] and the structural morphism X -> spec k induces the following commutative diagram (where the exactness on the left of the first line is our definition of h0(X )°)

0 ------h0( X ) °---------h0( X ) -----------ho(fc) = Z 0 ----»-SAlb*(A;)----SAlb x/k(k)------>-SAlbfc/fc(fc) = Z D efinition 1.4.0.1.
Let X be a quasi-projective smooth variety over a per fect field k. We define

Sx = # { coker deg : h0( X ) rfc -> Z }.
Th eorem 1.4.1. Let X be a quasi-projective, smooth geometrically integral variety over a field of characteristic 0. Then Sx = Ρ χ .

Proof. By the preceding remarks we have the following commutative diagram of Galois modules with exact rows:

0 ------h0( X ) °---------h0( X ) --------Z -----0 • v 0 -----SAlb^ (k )-----SAlb Y/,.(*•)-----Z -----0
Here p is the Albanese map (loc. cit.). Taking Galois cohomology gives us the following diagram

h0p O r* -------Z -------H1 (fc, h o(X )°) P SAlby/h(k )----^ Z -----H\k, SAlb°x (k)).
The image of 1 in H 1(k, SAlb^•) is represented by the cocycle σ ι -> χζ-χο, for χ0 £ SAlb^(fc), i.e. it is the class of the semi-Albanese torsor. Now, the gen eralized theorem of Roitman can be formulated as that under the conditions of the lemma, the Albanese map is surjective and the kernel of the same is uniquely divisible. This is the main theorem of Spiess and Szamuely [START_REF] Spiess | On the Albanese map for smooth quasi-projec tive varieties[END_REF]. It is established for a smooth connected variety X admitting a smooth projec tive connected compactification over an arbitrary algebraically closed field of char.p (for p > 0) and states that the Albanese map is an isomorphism on the prime-to-p torsion subgroups. Since we are in characteristic 0, the smooth projective compactficiation is provided by Hironaka. Finally, because for a uniquely divisible Galois-module Μ , H% (k,M) = 0 for i > 0, the rightmost homomorphism is an isomorphism which finishes the theorem. □

Appendix -Suslin homology, ho

In this section we recall some basic properties of the Suslin homology-group ho. Let X and Y be any separated schemes of finite type over a field k. If Y is connected, an elementary finite correspondence from Y to X over A; is an integral closed subscheme Z of X χ& Y, finite and surjective over Y. A finite correspondence between X and Y is a formal Z-linear sum of elementary finite correspondences, and we denote the group of such as C or(Y ,X ). Any closed subscheme Z οί X XkY defines a finite correspondence by associating to it the correspondence Σ ηίΖί,τ&i where the sum is over irreducible com ponents Zi of Z, such that Z*,red is finite and surjective over Y, and n* is the geometric multiplicity of Zitieci in Z (compare [START_REF] Mazza | Lectures on Motivic Cohomology[END_REF], Construction 1.3). If Y = Ya is the decomposition of Y into its connected components, one defines Cor(F, X ) = 0 QC or(Y^,X). Note that the finite correspondences from spec A ; to X , Cor (spec k, X ), is just the group of zero-cycles on X .

If P is a fc-point of Y and Z is a closed subscheme of X Y, denote by Z (P ) the scheme-theoretic fiber of Z over X = X x^ P. Consider the points 0 and 1 of A\ and define a map Cor(A \,X) -> Cor (spec A;, X) by Z ^ Z{0) -Z (l).

We define ho(X), the 0-th Suslin homology of X, to be the group of zerocycles on X modulo the group generated by finite correspondences coming from to X in the above sense. We note the following properties, which are not difficult to show. P rop osition 1.5.1. Let X,Y be two separated schemes of finite type over a field k. Then the following holds:

(a) Let CHo(X) be the O-th Chow group. There is a map h op i) -* ► CHo(X)

which is moreover an isomorphism if the structural morphism X -► spec k is proper.

(b) ho is covariantly functorial with respect to morphisms f : X -► Y.

(c) The degree map mapping a zero-cycle ^2ni[k(Pi) : k] factors over ho(X) -> h0(A:) = Z where the map ho(A') -► ho(fc) is given by the structural morphism X -* speck.

For lack of a specially tailored reference, we include the following proofs:

Proof. Let V be a dimension 1 integral closed subscheme of X XfcP^ which is dominant on the second factor. Then [V (0)] -[V [START_REF] Birch | The Hasse problem for rational surfaces[END_REF]] is a zero-cycle on X and it follows as in [START_REF] Fulton | Intersection Theory[END_REF], Proposition 1.6, that rational equivalence on zero-cycles is generated by the relation determined by all such V. Now, if Z C X x k A 1 is an elementary finite correspondence its closure Z in X x* P*. defines such an object. This shows there is always a map h0(X ) -► CH0(X ). Suppose X -> spec k is moreover proper. A closed integral subscheme Z C I x fcPj[ which is dominant over P* is proper over spec k by virtue of X being proper, and if Z is moreover of dimension one it is finite over P£. As such it determines a closed integral subscheme Z C X x k which is a finite elementary correspondence from A\ to X . This is inverse to the above operation and proves (a). Now, let / : X -> Y be a morphism of separated schemes of finite type over a Noetherian base S. If Z C X is a closed integral subscheme, finite and surjective over S, then the schematic image f(Z) is a closed integral subscheme of Y, finite and surjective over S (see [START_REF] Mazza | Lectures on Motivic Cohomology[END_REF], Lemma 1.4)

. If Y is connected, the pushforward is defined as f*(Z) = df(Z) where d = [k(Z) : k(f(Z))],
which is finite, and the definition for general Y is similar. The above rule thus assigns a homomorphism /* : C or(V ,X ) -► Cor(V, Y) to a separated scheme V of finite type over S. Putting S = or spec k we obtain pushforwards on Cor(A£, -) respectively Cor(spec k, -), and they clearly respect the obvious compatibility conditions for restricting to the points 0 and 1, so we obtain a homomorphism f* : h0(X ) -h0(Y).

The last point is now a consequence of the definition of the degree-map.

□

Part II

SOME PRELIMINARIES

This little pig went to the market

The virtual category

Given a small exact category C, we can consider its /T-theory. The first case of K Q can be defined explicitly in terms of the category C, as the Grothendieck group of C. This is the free abelian group on the objects of C, modulo the relationship

B = A + C if 0 -+ A -+ B ^C -+ 0
is an exact sequence in C. A more sophisticated approach was taken by Quillen,[Qui73], where he constructs a certain topological space BQC asso ciated to a (small) exact category C such that

KiiC) := ni+1(BQC).

This encompasses the old definition of Grothendieck groups and gives new groups satisfying certain functorial properties when we specialize C to the exact categories of coherent or locally free sheaves on schemes. We refer to loc.cit. for details. Now, let X £ ob(Top.) be a pointed topological space. One defines the fundamental groupoid of X to be the category whose objects are points of X , and morphisms are homotopy-classes of paths, i.e. it is associated to the diagram

[p x =r x]

where P X is the space of paths of X. Denote the corresponding functor by 7Γ/ : Top. -► G rp.

Deligne, [Del87] defines a category of virtual objects of an exact category, which offers a type of generalization of the derived category and also the K$ of the category. Let C be a small exact category. The category of virtual objects of C, V(C) is the following: Objects are loops in BQC around a fixed zero-point, and morphisms are homotopy-classes of homotopies of loops. Recall that BQC is the geometrical realization of the Quillen Q-construction of C. Addition is the usual addition of loops. This construction is the fundamental groupoid of the space VtBQC. In case C is not small we will always consider an equivalent small category, and ignore any purely categorical issues this might cause. We record the following proposition: P rop osition 2.1.1. V(C) is a groupoid, i.e. any morphism is an isomor phism, and the set of equivalence-classes is in natural bisection with K q(C). For any object c £ obV{C), we have Autv(C)(c) = wi(ClBQC) = Ki(C).

Deligne also provides a more algebraic and universal definition of V(C). We will give an additional description.

Algebraic definition

The above category is a so called universal Picaxd category with respect to C. A (commutative) Picard category is a groupoid C with an auto equivalence P i -► P(BQ for any object Q of C, satisfying certain compatibilityisomorphisms plus some commutativity and associativity-restraints (c.f. [Del77], X V III, Definition 1.4.2 for the definition of a strictly commuta tive Picard category, or [GL00], 14.4, axiome du pentagone et de l'hexagone): There is an associativity-isomorphism such that ax,y,z ■ {x@y)@z x®(y®z) (w 0 x)_0 (y 0 z) ((w 0 x) 0 y) 0 z w 0 (x 0 (y 0 z))

Q>w,x ,y ©lz (w 0 (x 0 y)) 0 z ----*Θ>"> w 0 ((x 0 y) 0 z) Ιχ,y,z d w $ ;,y,5

0>w,x,y®z

commutes. There is a commutativity-isomorphism cx > y : x 0 y -> y 0 x such that / \ , .

(x 0 y) 0 z --------------*~x 0 (|/0 2 ) z@{x@y) χ θ (ζ φ ν )) N. 0 > z , . Q>x,z,y / '\ Cz x ® l y , / (z Θ x) Θ y -----------------► (x Θ z) 0 y commutes.
It follows that a category such as this has a zero-object, has in verses etc. (see [Del77], XV III, 1.4.4). In other words, a Picard category is a symmetric monoidal groupoid whose functor -0 Q is an equivalence of cat egories for each object Q in C. It is moreover said to be strictly commutative if cX jX : i ® i -> 1 0 ϊ is the identity. In general we denote by e(x) = cx,x. An additive functor between Picard categories is defined to be a monoidal functor between Picard categories. Observe we merely have isomorphisms B 0 ( -B) -► 0, not equality. For any exact category C, the universal Picard category V(C) is a Picard cate gory C with a functor [] : (C,is) -> V(C) which is universal with respect to morphisms T : (C, is) -► P into Picard categories P, satisfying the following compatibility conditions: a) For any short exact sequence

A : 0 -► A' -+ A -* A" -> 0,
there is an isomorphism, functorial with respect to isomorphisms of exact sequences,

T(A) : T(A) -> T(A') © T(A").

b) For any 0-object of C, there is an isomorphism T ( 0 -----------------T

) ~ 0. c) If φ : A -► B is an isomorphism, with exact sequence 0 -* A -» B -► 0, the induced map Τ(φ) is the composite T(A) T ( 0) © T(B) -+ T(B).

(A) + T(C/A) T(B) + T{C/B)-----T(A) + T(B/A) + T{C/B)

1 X®Cyf z Q>w®x,y,z is commutative.

In [Del87] it is shown that the functor (C, is) -> V(C) factors as

(C,is)^(^(C)A-i.)^V(C). (2.1)
Here D b(C) is the derived category of C (supposed to be the full subcategory of a fixed abelian category), formed out of all complexes with bounded co homology, where homotopic complexes are identified, and then localized at the thick subcategory of acyclic complexes. The extra suffix is to denote we consider the category where the objects are the same, but the morphisms are the quasi-isomorphisms, i.e. morphisms in the category of complexes that induces an isomorphism in the derived category.

Additional descriptions

In this section we give some additional descriptions of the virtual category associated to the category of vector bundles over a fixed scheme X . But first, given a small exact category C, there are two major spaces (or more prop erly, 5 1-spectra in the sense of topology) can be associated to this, namely that of the Waldhausen [START_REF] Birch | The Hasse problem for rational surfaces[END_REF]. K Q provides the '' correct" definition of higher if-theory, however, K T provides the better definition in terms of functorial properties. We denote them by K Q and K T respectively. Also, denote by P (X ) the category of (coherent) locally free sheaves on X .

Prop osition 2.3.1 ([RT90], Corollary 3.9, Proposition 3.10). We have nat ural maps

Q B Q (P (X )) ->• K Q(X) -► K T{X).
For general X , the first map is an homotopy-equivalence. Whenever X has an ample family of line bundles ([P71], II. 2.3) or the resolution property (i.e. any coherent sheaf is the quotient of a coherent locally free sheaf) the last map is also an homotopy equivalence. In particular, whenever X has an ample family of line bundles we can define the virtual category as the fundamental groupoid of K T.

Proof. The only non-obvious part is to show that the fundamental groupoid of K T is a Picard category and that the natural map above is an equivalence of Picard categories. However, this follows from the description of the map and the fact that K T -flBS. □ X has in particular an ample family of line bundles whenever X is sep arated and regular, or is quasi-projective over an affine scheme. [RT90], Lemma 3.5 gives an additional list of spaces homotopy-equivalent to KT(X) for quasi-compact schemes X. D efinition 2.3.1.1. The fundamental groupoid of K® and KT are denoted by V(X) or VQ(X) and VT(X) respectively.

Both these definitions make V ? into a contravariant functor from the category of schemes to the category of groupoids, V ? : Schemes -► Grp, via the pullback operation, L f* = /*, and we have a natural transformation of functors V Q -> V T. It is not, in general, covariant with respect to even proper morphisms / : X -*Y. However, we have: 3.16.4-3.16.6). V T is a covariant functor from the category • of Notherian schemes and perfect (see [RT90], 2.5.2) proper morphisms.

Prop osition 2.3.2 ([RT90],
For example, any local complete intersection (as defined in [P71], VIII, Proposition 1.7) proper morphism between Notherian schemes.

• of quasi-compact schemes and perfect projective morphisms.

• of quasi-compact schemes and flat proper morphisms. (b) For any object A, the cofibration sequence Σ : A = A -**■ 0 decomposes the identity-map as:

D
[A] <3 [A] ® [Oj £ [A]
where SR : [A] 0 [0] -> [A] is given by the structure of [0] as a right unit (see Lemma 2.3.3 for a unicity and existence statement).

(c) Suppose we have a commutative diagram

Σ ' : 4 Σ " - -s ' - Λ----5 --- I I I A">-----B" - C" Σ λ Σ σ
were all the vertical and horizontal lines are cofibration sequences.

Then the diagram

[B'\ 0 [B" {Σβ} { Σ ' } Θ { Σ " } [Ar] θ [C] 0 μ"] 0 \c"} [B] {Σ} μ] 0 [ α ] {Ea}®{Ec} [A!] 0 μ "] 0 [C'\ 0 [C"] is commutative.
It is furthermore said to be commutative if P is commutative and the following holds:

(d) The triangle [A'] 0 [A"] μ " ] 0 μ ' ] [Λ'ΙΜΊ commutes.
We record the following lemma: 

] = < 5 R([0]) = ^([O ]). □
We note the following theorem which extends Deligne's categorical de scription of the virtual category: Th eorem 2.3.4. Let A be a small Waldhausen category xvith weak equiva lences w. Then there is a universal category for determinant functors:

[-]:(A ,w )-+V(A ).

More precisely, for any Picard category P, the category of determinant func tors is equivalent to the category of additive functors V(A) -*• P. Moreover, this category is the fundamental groupoid of the Waldhausen K-theory space of A.

Proof. The proof is essentially by definition. Recall that the Waldhausen Ktheory space is the loop space of the geometric realization of the bisimplicial set N .w S 'A where wSpA is the category whose objects are, for 0 < i < j < p , sequences At > -► Aj of cofibrations with Ao = 0 and with choices of quotients Aj/Ai, and natural compatibility with composition so that A{ > -► Aj > -► A^ coincides with Ai > -> Ak for i < j < k, and whose morphisms between two objects A and A' are given by weak equivalences Ai -> Λ' making all the diagrams commute. NpwSqA is the p-nerve of the category wSqA. The categories wSoA, wS\A, wSiA are, respectively, the trivial category, the cat egory of objects of A and weak equivalences as morphisms, and the category of cofibration sequences with weak equivalences of cofibration sequences as morphisms.

The geometric realization in question is the (left-right) realization

| < 7 »-* ■ \p > -► NpwSqA\\.
Thus we obtain from the above description that the " 0-simplices" are simply reduced to a point and the " 1-simplices" in the ^.-direction is obtained by adjoining the set 

|p i -► NpwSiA\ x Δ 1.
N0 wSi(A) -> N0 wS2 (A ) -► N0 wSi(A),A ^ [A -► A 0] ^ A.
Axiom c: We first show that the commutativity can be rephrased as:

i A > -* B > -► C of cofibrations then [C ]---------------[A] + [C/A] [B] + [C/B] [A] + [B/A] + [C/A]
commutes. This is clear since

A-------»c
is a 3-simplex (an object in NowS^A) and provides the necessary relationship between morphisms induced from the 2-simplices in N0 WS2 A (one also needs to use the commutativity in Axiom d, which is easy). For the full theorem we use that the two 3-simplices

A' > -»• B' > -► B and A' >-> A > -► B are glued together along the 2-simplex A ' > -> • B.
We need to prove this construction is universal. Let [| : (.4, w) -* ■ P be a determinant functor. We construct maps fn : wSn(A ) -> ΠΓ=ι where the latter denotes the naive sum of Picard categories with indice-wise objects, homs and additions. We put

/ « ( 0 >-* .A i > -► . . . > -> • A n) -( [Αχ], [A2] -[A i],..., [v in ] -[An_i]).

Bx

Equip Π* P with the structure of a simplicial category by the '' bar simplicial resolution" -structure; the " n-simplices" are given by the product of categories Π ι P and that do(gi,.. . ,gn) = (<?2 , ■ •■■,9η) and for 0

< i < n, di(gi, • • ■, < 7n) (gi) • • • > Qi-i ) QiQi+1> 9i+2> ■ • • t Qn)
and dn(g\,..., gn-\ , gn) dn(gi, ■ ■ ■ , 9n-i)• The face-maps are given by

{gi> • • • > 9n) (#1) • • • ) 9i> i7i+l) • • • j ^n) •
By taking nerves, we obtain a map of bisimplicial sets N,wS,(A ) -► N, P. It is readily viewed that the simplicial category P has a natural augmen tation to the '' constant" simplicial category P and as such a natural mor phism of nerves N, J|* P -> N.P. Upon applying geometric realizations and fundamental groupoids we obtain a canonical map K(A) -► \P\ of topolog ical spaces. Or rather a map d(K(A)) -> • »ί?|Ρ| of simplicial sets, where d denotes the diagonal of a bisimplicial set and S is the functor associating to a simplicial set its singular complex. Applying the functor 717 to this gives us the required canonical functor, in view of the fact that in general nf S\P\ = π/P = P.

Remark 2 .3 .4.1. Let A be any (small) saturated Waldhausen category (see [RT90], Definition 1.2.5), so that in particular the localization w~lA is well behaved. Then any functor from the groupoid F : (w -1A , w) -* P to a (small) groupoid P corresponds in fact to a map of topological spaces |P| : |w5 iA| -► |P|, and the functor F is recovered by applying the functor TTf. This follows from the fact that for two simplicial sets X and Y, there is a natural bijection homj'op(|X|, \Y\) = homs(X, 5 | y| ) and that the fundamen tal groupoid of a simplicial set Y and S\Y\ are in fact the same; see [PGG99], chapter I, Proposition 2.2 and section 8 . It is also clear that the fundamental groupoid of the nerve of a groupoid is in fact the same groupoid. Also, any functor F : itf(K(A)) -> P of (small) Picard categories correspond to a map of topological spaces K (A ) -> |P| by, for example, sending an n-simplex of the simplicial set ItoS'gAAl of the form A\ > -► A2 > -> ■ ■ ■ > -> A 1+1 to the n-th nerve F(An+1) ~ F(An+1/An)®F(An) ~ ~ F(An+i/An)®F(An/An-i ) 0 ... Θ F(Ai) of P. The functor |F| can again be recovered by applying the functor W f. Thus, the above problem of describing determinant functors can likewise be formulated as a lifting-problem of maps of topological spaces. We ask for which continuous functions / : IwS'iAl -► |P| there is a lift as in the diagram below |tuSiA|----* K { A ) 

: A -> B -> C -> A [l]
there is an isomorphism functorial with respect to isomorphisms (in D(A)):

{ Σ } : [B] ~ [A] Θ [C],
(b'): For any object A, the distinguished triangle Σ : A = A -> 0 -».A [START_REF] Birch | The Hasse problem for rational surfaces[END_REF] decomposes the identity-map as:

[Λ]-Ε>μ]θ[ο]^[/ΐ].
(c '): For any distinguished triangle of distinguished triangles, i.e. a diagram of the form:

Σ α : A'• A- ■A"-----*A'[ 1] Σ β : B' B B" [1] Σ σ : C c- 1] Σ λ [1] : A' 1]-A 1]----*A"[ 1]----^ A' 2]
Σ' Σ " Σ' [START_REF] Birch | The Hasse problem for rational surfaces[END_REF] where all the rows and columns are distinguished triangles, the following di agram is commutative:

[B'\ 0 [B"\ {Σβ} {Σ'}®{Σ"} [B] {Σ} μ ;] 0 [ σ ] θ [a "\ θ [c"\ [A] 0 [C\ {Σλ}Θ{Σ0} [A1 ] 0 [A") 0 [C'} © [C"]
In case P is also commutative, we add the axiom (d') The natural triangles

A -+ A 0 B A -> A[l] and B -► B @ B -A-+ B[ 1] induce a commutative diagram [A © B )-------[B 0 A] [A] θ [B ]-----[B] 0 [A].
Proof. We can suppose by the above remark that the cofibrations are given by degree-wise split monomorphisms, and these yield all distinguished triangles in D (A ). It is thus clear that the above data (o') -(c') determine the data (a) -(c), and that the data (d) and (<f) are equivalent, so we show the converse statement. Since D (A ) admits a calculus of fractions it is immediate to verify that if a cofibration sequence Σ : 

A' > -> B' -» C' is isomorphic to a distinguished triangle A -> B -> C -> A [l] we have an induced isomorphism [B'] -[A'] 0 [C'\

□

Remark 2.3.7.1. Determinants on (small) triangulated categories were also studied in [Bre], where similar results were obtained.

C orollary 2.3.8 (Knudsen, [Knu]). Let i : E -► A be an exact fully faithful embedding of an exact category £ in an abelian category A, such that for any morphism in £ which is an epimorphism in A, is admissible in S. Denote by C{£) the full subcategory of bounded complexes of the category of complexes in A. Then we have a natural equivalence of categories between the virtual category of(£,is) and the virtual category of (C(£),q.i.) of complexes in E with quasi-isomorphisms in A.

B C ---- B σ B '---- Proof.
Equip the category C(£) with the structure of a complicial biWaldhausen category where the weak equivalences are given by quasi-isomorphisms and the cofibrations are either of the two following: degree-wise admissible monomorphisms or degree-wise split monomorphisms whose quotients lie in C{S). Denote the corresponding biWaldhausen categories by E and E. By [RT90], Theorem 1.11.7, we have natural homotopy-equivalences

K(S) ^ K(E) ~ K(E)
and hence equivalent virtual categories. Moreover, this does not depend on the choice of A. □

If i : S -► A is the fully faithful Gabriel-Quillen embedding reflecting exactness (see [RT90], Appendix A ), or if £ is the category of coherent vector bundles and A is the category of coherent sheaves respectively on a scheme, i satisfies the above hypothesis. C orollary 2.3.9. Let A be a small complicial biWaldhausen category. Then K q and K\ are functorially ( with respect to triangulated functors, i.e. func tors preserving the above structures) determined by the structure of a trian gulated category of the homotopy category Ho(A) = Db(A) and its isomor phisms.

VIRTUAL CATEGORIES ASSOCIATED TO ALGEBRAIC STACKS

This little pig stayed at home

Various categories

We will freely use the language of Appendix C in this chapter where we ex pand slightly on the concept of a virtual category of an algebraic stack. We will always consider the a stack as a simplicial sheaf via the extended Yoneda functor C.0.18.1. Also, for the purposes of this section, all algebraic stacks are separated locally of finite type over some (non-fixed) Notherian scheme S.

D efinition 3.1.0.1. Given an algebraic stack X , there are for our purposes four main candidates for virtual categories one might consider, namely any one of the following Picard categories (a) the virtual category of locally free sheaves on X , V(X) = Vnaive(X ).

(b) the virtual category of coherent C^-modules on X, Vcoh(X).

(c) the fundamental groupoid of K sm (X), the cohomological virtual cate gory, W(X).

(d) the fundamental groupoid of Gsm (X), the coherent cohomological vir tual category, W/ co/ l(A').

By the remarks concluding the Appendix C we have additive functors of fibered Picard categories, V( -) -► W{-) and K 0/ l( -) -► Wco/ l( -). Notice that since the automorphism-group of any object of W(X) or W ^^X ) is a Q-vector space they are automatically strictly commutative. D efinition 3.1.0.2. Since K 3m is flabby, to give operations involving W(X) it is sufficient to construct functorial homotopies on the /f-theory spaces of the vertices of simplicial algebraic space M{X/X) for some presentation of X. The same remark applies to Wcoh(X)• We will say that any such constructed operations are given by cohomological descent.

Given a morphism F : X -► y of algebraic stacks locally of finite type over a Notherian scheme S, recall that for a coherent sheaf T we can define FCF+F by a Cech-cohomology argument (compare [Del74], Definition 5.2.2.). We know by [01s05], Theorem 1.2, that whenever F is moreover proper, FCF+F is coherent whenever T is coherent. Suppose in addition that F is of finite cohomological dimension so that R?F*{T) = 0 for large enough i. Then the usual formula defines a pushforward on RF* : Vcoh(X) -► Vcohiy). It is more subtle to define the corresponding functor Wcoh{X) -> Wco^y). If F : X -* y is a proper morphism, and given a proper surjective morphism X -» X with X a scheme, we obtain a diagram of By [Toe99a], Theoreme 2.9, given a proper surjective morphism X -* X with X a scheme and X is Deligne-Mumford, there is a weak equivalence G (N {X / X )) -> Gsm(X ). Applying the fundamental groupoid-construction thus gives an equivalence of categories π/(Gsm(λ ί(Χ /X ))) -> Wcofl(X ) and we define RF* = 9*(p»)-1 : Wcoh(A ') -> W ^^y ) (compare [Toe99b], Section 3.2.2). We have essentially proved:

P rop osition 3.1.1. Suppose F : X -> y

is a proper of finite cohomo logical dimension morphism of separated Deligne-Mumford stacks of finite type over a Notherian base-scheme S. It is possible to define

a functor R F* : Wcoh(X) -* ■ Wcoh(y) such that the diagram RF*{F) = ^( -l ^i F F . J F M {X /X )
with proper morphisms and applying the functor Gsm() we obtain a diagram

Gsm{M {X/X)) = G {N {X / X )) Gsm(X ) Gsm(y ) V ^X ) - ^W c o h i X ) R F . R F .
is commutative up to canonical equivalence of functors.

w^y) vcoh(y)

Proof. The statement is clear as soon as we can show that there is always a choice of a proper surjective X -► X with X a scheme. It is clearly inde pendent of such a choice. But this is [01s05], Theorem 1.1, which moreover shows we can pick X to be quasi-projective over S. □

The following uses a standard argument factorizing a projective morphism as a closed immersion and a projective bundle projection: P rop osition 3.1.2. Suppose F : X -> y is a (representable) projective local complete intersection morphism of algebraic stacks with y quasi-compact and y has the resolution property, i.e. any coherent sheaf is the quotient of a locally free sheaf. Then there is a natural functor

RF* : V(X) -> V0>)
compatible with the functor defined on Vcoh under the additive functor V (-) -► Vcoh( -) .

Proof Suppose J7 is a locally free sheaf on X. In case f = i is a regular closed immersion, by assumption the coherent sheaf i* T has a finite locally free resolution and the inclusion of the category of vector bundles into the category of coherent sheaves with finite locally free resolutions is an equivalence of categories. In the case of a projective bundle-projection, P (£ ) -► 3^, by Theorem C.0.20 the functor rk£-1

0 v q >) -ν(ψ(ε)) 1=0 sending (J-i)-!Lq-1 to π*Τι ® O(-i
) is an equivalence of categories, thus we can assume our vector bundle is of the latter form. In this case one simply defines Rnt by taking cohomology and can be calculated to be

Λ 7 Γ ,(7 Γ * ^® σ Η )) = ^< ® Λ τ Γ * ο Η ) = °i J-0 II I = u
Given a factorization of F as F : X -► P (£ ) -► y we define the functor RFt : V(X) -► V (3Ό as the obvious composition. Arguing as in [START_REF] Fulton | Riemann-Roch algebra[END_REF], chapter V, one sees that this does not depend on factorization up to canonical isomorphism. The extension to algebraic stacks does not cause any serious issues. The last point is obvious. □ Remark 3.1.2.1. Whenever we are working in a category of stacks where perfect complexes can be used to define algebraic /^-theory the above is just a consequence of preservation of perfectness of a complex under proper local complete intersection morphisms. The compatibility under composition is given by Grothendieck's spectral sequence.

Similarly, if E is a vector bundle on and F : X -*• y is any morphism, we define a functor LF*

: V(y) -► V{X) via LF*[E) = [F*E\.
Let us just recall the usual definition of the base-change morphism, which always exists. Let /'

X-

■Y be a Cartesian diagram of schemes. By adjointness, we have an equality of morphisms in the derived category of quasi-coherent complexes schemes;

Hom(Lf*Rg*E, R g'M '*E ) = Hom(Rg*E, Rf.Rg'tL f*E )
and since Rf*Rg+ -Rg*Rfl this is equal to

Hom(Rg"E, Rg*RftLf*E ).
By the adjunction morphism E -► Rf'^Lf'*E we thus obtain a map

Hom(Rg*E, Rg*E) -> Hom(Lf*RgtE,Rg'm Lf*E ).
The base-change morphism is the morphism which is the image under the identity-map on the left-hand-side. 

χ -9 -+γ be a transversal diagram, and let E G Db(X) be a complex with quasi-coherent cohomology. In this case the base-change morphism is an isomorphism

Lf*Rg*E ~ Rg'"Lf*E.
Since it is natural it also satisfies descent with respect to any smooth equivalence relationship and thus we have

C orollary 3.1.4. Let X ' Y ' r x Y be a

transversal Cartesian diagram of quasi-compact algebraic stacks with the resolution property and representable morphisms, f and f local complete intersection projective morphisms. Then there is a natural transformation

Lg*Rf* = Rf'+Lg /* of functors V (y ') -*V(X).
Proof. From the above one readily obtains that if a vector bundle E is /*acyclic, f*E is also g*-acyclic and that g'*E is /^-acyclic, inducing an iso morphism g*f*E -* fig'*E. If / is a projective bundle-projection we can, by Theorem C.0.20, assume that E is of the form f*Ei ® 0(-i) which is a sum of /*-acyclic objects. In the case / is a closed immersion /* is auto matically exact. The general case is obtained via the composition of the two which by standard techniques is seen to be independent of the choice of the factorization.

□

The following will be used later Lem m a 3.1.5. The following diagrams are commutative whenever all of the morphisms are defined:

(a) Let 

*R (fe)> --------------------------R { f 'e ') M '* Lg'Rf+Re" ----~R flL g '*R e *-----R f'*R e'M '* is commutative. (b) Let
be composition of two transversal cartesian diagrams. Then the third diagram is also transversal and the diagram

L(gh )*R f, ----------------------------R f'M g'h ')* Lh*Lg*Rf, ---->-Lh*R f\Lg'* -----Rf\Lh!*Lg'* Proof.
Left to the reader (compare the unproved result of [Del77], XII, Propo sition 4.4). □

The following is trivial:

Lem m a 3.1.6 (Projection formula). Let f : X y be a local complete intersection projective morphism of algebraic stacks with the resolution prop erty. Suppose F is a virtual bundle on y and E is a virtual bundle on X. Then there is a functorial isomorphism Rf*(E 0 Lf*F) -> Rf*(E) 0 Lf*F compatible with transversal base-change, i.e. for a diagram as in Corollary 3.1.4, 

there is a commutative diagram Lg*Rf*(E 0 Lf*F)---------Lg*(Rfm {E) 0 Lf*F) Rf*{Lg'*E 0 L g f'F )-----Rf\{Lg'*E) 0 Lg*Lf*F)
where the horizontal lines are given by the projection-formula and the vertical lines are given by base-change.

χ•- X " f" Y " γ•

A splitting principle

Below we sketch a criterion for when we can descend a morphism on the level of the maximal flag-variety to the base 1. First, let E be an vector-bundle of rank e + 1 on a separated algebraic stack X. The space p1 : Y\ = P (E ) -» X is a projective bundle which on which we have a canonical sub-line bundle 0 ( -1), and a canonical quotient-bundle of p1* E. Repeating this construction with the quotient-bundle, we eventually obtain a map p :

y = 34 -■ ► 3e-1 ... -» 3^i -i = Xi
where the top space is the maximal flag-variety of E on X, which also comes equipped with a canonical maximal flag. Suppose P is a functor from the category of separated algebraic stacks to the category of Picard categories such that for any X there is a distributive additive functor V ( -) x P ( -) P ( -) moreover satisfying the projective bundle axiom; for any X, the functor

x u n x ) -m s »
given by (/i)®=0

fi ® 0 is 811 equivalence of categories. Then the following is a version of an observation of Franke in terms of Chow cat egories of ordinary schemes (see the article by J. Franke, " Chern Functors" in [Fra91], 1.13. Proof. From the projective bundle axiom it follows each pl* is injective on the level of automorphism-groups, i.e. for any object A in P (3;i), Autpq^)(A) -► Autyt+1(pi*A) is injective, so the functor is faithful. For (b), the condition is obviously necessary. To prove that the condition is sufficient we can assume AutP (y

A = B. Let 0 = E0 C Ei C ... C Ee = p*E
x ^)(^) = © • • • ® A.u.tP{x){A).
jl Ji=0

je=0,ji=0

Representing / in the form suggested above, we see that pl(f) = pl(f) exactly when all components of / are zero except for the one belonging to ( j i , ... ,je) = (0 , . . . , 0 ), which means exactly that / is equal to p*h for some morphism h: A -► A. Moreover h is unique because of (a). □

By base-change to the flag-variety we can suppose we have nice enough flags. If we define an isomorphism dependent on this flag, the content of the proposition is that this descends to the base whenever this isomorphism isn't dependent on the flag.

Adams and λ-operations on the virtual category

Let S be a scheme, and X an algebraic stack over S. Recall that we denote by ~P{X) the category of vector bundles on X. Denote by V(X) the virtual category thereof. We have the following result which is more or less contained in [START_REF] Borel | Stable real cohomology of arithmetic groups[END_REF]; Prop osition 3.3.1. There is a unique family of determinant functors Φ* : Ρ (Λ ') -► V(X), and thus Φ* : V{X) -► V(X), stable under pullback, such that

• If L is a line bundle, Φk(L) = L®k. • ο Φ*' rs-» ψ**'.
Proof. Unicity of the operations clearly follows from the characterizing prop erties and the splitting principle (Theorem 3 .2 .1). To prove existence, we ap ply the ideas of loc.cit.. Let N be a complex of vector bundles, and C N be the cone of the identity morphism id : N -> N. Furthermore, let Sk be the k-th symmetric power, so that the p-th term of SkC N is Sk~pN ® A pN, when ever N is reduced to a vector bundle in degree 0 (for details, see loc.cit., p. 4). Finally, for a bounded complex iV.

= [... -> Ν^χ -► iV* -> ■ Ni+i -► ...], define the secondary Euler characteristic χ '(Ν ,) = ^^(-l ) FH _1p[7Vp] e V(X).
One of the key ideas of loc.cit. (formula (3.1)) is the formula in K0(X), for a vector bundle E,

φ k(E) = x '(SkCE).
We propose the same definition for Adams operations in the virtual category V(X). Clearly Φ *(£) = L®fc for a line bundle L. Now, given a flag Εχ C E2 C ... C En, define Ει •Εζ... • En to be the image of Εχ ® E2 Θ ■ ■. 0 En in SnEn. Suppose that we have an exact sequence of vector bundles 0 -► E' -► E E " 0, and consider the filtration

SkCE' = C E '.C E '....... C E '.C E ' C C E '.C E 1 ....... C E '.C E C C E '.C E '....... CE.CEC... C ...... C E .C E = SkCE
induces by a certain addivity of the secondary Euler characteristic, isomor phisms

fc-l X'(S kC E ) = x '(S kC E ") + X'(S kC E ') + ^ x,(5 iC E " < g> S ^C E ') i = 0 = x '(S kC E ") + x'{S kC E ')
since the secondary Euler-characteristic of a product of acyclic complexes is 0 and by the multilinearity-property of loc.cit (formula (2 .1)). We need only verify that this operation respects filtrations. Let F C H C E be an admissi ble filtration, and consider the double graded filtrations of SkC E , where A ij = Sk~l~j CE.Sj CF.SlC H . Applying secondary Euler characteristics in every direction, we obtain that the diagram of isomorphisms

*!{SkC E ) ----------------------*-x '(S kC H ) + X'(S kCE/H) X,(SkC F ) + X'(S kC E / F )-----x '(S kC F ) + X'(S kCH/F) + X'(S kCE/H) constructed above commutes. Condition " b)" of Definition 2 .3.2.1 is trivial.
Also everything is clearly stable under pullback. The last point now follows by unicity. □ Remark 3.3.1.1. In the next chapter we will show that whenever we restrict ourselves to regular schemes, the constructed Adams-operations are actually unique, at least whenever one inverts 2 or more primes in the virtual category.

We record the following corollary (of the splitting principle applied to the above case): C orollary 3.3.2. Φ* : V(X) -> V(X) is a ring-homomorphism in the sense that there are natural isomorphisms, for A, B € obV(X),

Vk{A ® B )~ Φ *(Λ ) ® Φk(B)
compatible with the above sum-operation and compatible with base-change.

Proof. We only need to verify the multiplicative operation. It suffices to show that for any A e V{X),B € P (A '), Φk(A ® B) = Φ *(Λ) ® Φ *£ ) naturally.

Or, by the splitting principle since Φ* is already an additive determinant functor, that if B is a line bundle, then Φ *(Α ® L) = fyk(A) ® L®k naturally. For this we can assume that A is also a line-bundle M, in which case we have

Φk(M ® L ) = (M ® L)®k = M®k ® L®k = Φk{M) ® Φk(L). □
We also have a functor

A_i : P (A ') -> V{X)
defined as follows. If E is a vector-bundle on X, we define λ-ι(Ε) as the alternating product of exterior powers Σ " 0( -1)' A* E. This is an object which is unique up to canonical isomorphism. Given a short exact sequence of vector-bundles 0

-► F A E -► E/F -> 0 we can define an isomorphism A_ ! ( £ ) -η. X-i(F) ® A-i(E/F) (3.1)
as follows; for an integer k, such that 0 < k < n = rkF, we have a well known natural filtration (c.f. [P71], Ch. V, Lemme 2.2.1) of ΛkF whose z-th instance is given by F l Ak E = Im [A*F® Ak~% E -► AkE], and with successive quotients A% F ® Ak~% F/E, thus giving isomorphisms

k AkE ~ ^ AlF ® Ak~*E/F. (3.2) i= 0
Now, given two virtual vector bundles A and B , we have

A ® B + ( -A ) ® B = (A + ( -Λ ) ) ®£=0®5=0
and thus an isomorphism

(-A) ® B) ~ -(A ® £?). Analogously we obtain A ® ( -5 ) ~ -(.A ® B). The diagram (-A) ® ( -B ) -----------{A ® ( -5 ) ) -(A ® B) = A 0 B -((-® B )
is only commutative up to sign e(A < g> B) (c.f. [Del87], 4.11 a) + b)). We define the isomorphism ( -l ) fc

Ak E = Σ *1 0[(-l ) 1 A1 F ] ® [(-l ) fe_l Ak~l E/F] via (3.2), the isomorphism ( _ l ) k A* F ® A k~iE/F = ( -1) * -* ( ( ( -1)* Ai F )® A k~iE/F) = ( ( -l ) i Ai F) < g> ( -l ) fc_i Afc_i E/F.
The isomorphisms (3.1) and (3 .2) are easily verified to be compatible (up to sign) with successive admissible filtrations

F ' C F C E by considering the double filtration F tJF = Im[AlF ' < g> A*F ® Ak~l~iE -> AkE],
These operations are however only commutative and associative up to a nightmare of signs, but become commutative and associative once one get rid of these.

Deformation to the normal cone

In this section we recall for the convenience of the reader some very wellknown facts about the deformation to the normal cone slightly extended to the case of stacks. Some of these observations already appear in [Fra]. A reference for details of the below is [Ful98], chapter '' Deformation to the Normal Cone" .

First of all, given a section s : Οχ -> £ of a rank n vector bundle £ on an algebraic stack X, one has an induced dual section sv : £v -> Οχ given by the composition of Οχ -* ■ £ with £ < g> £v -► Οχ. This leads to a sequence

0 -► An£v -> An_1£v A 2£v £'v -> Ox -> Oz{s) -> 0 ,
called the Koszul complex, which in local coordinates is given by

j βχ A ... A ej h->• ^( -l ) lsv (ej)ei A ... Ael A ... A ej i = 0
where Z (s ) is the zero-locus of the section s. We say that s is a regular section if the above complex is exact. Suppose that i : X -► y is a regular closed immersion of algebraic 5-stacks, and let N = Ny/χ be the normal bundle to i. We have a map P^. -> P^, and we define M as the blow-up of in X x {o o } i.e. Proj(X) where J is the ideal of the immersion I (see [GL00], 14.3). We have a natural ). The last isomorphism N^/pi ~ 1 is non-canonical, but we fix one once and for all to lax the notation. The exceptional divisor on M is a Cartier divisor isomorphic to P(JV 0 1) and the fibre over oo is isomorphic to the union of this exceptional divisor and Blxy, gluing together along a subscheme isomorphic to P (N). We have that for s € P 1, 7r-1(s) = y if s φ oo, and is equal to F(N 0 1) U B lx y , and the image of X does not meet Blxy. In fact, it is embedded via the sub-bundle

0 -► 0P( -1) -► p*N 0 1 ξ -> 0
where Op(-1) is the universal sub-bundle and ξ = Τρ/χ(-1) is the universal quotient-bundle. By [Ful98], Appendix B. 5.6., we know that the section determined by O p (-l) -> p*N 0 1 -η. p*N (3.3) is a regular section with zero-locus equal to X = P ( l ) C P {N 0 1). We also have another section defined b y l -> p*N @1 -> ξ which is also regular with the same zero-locus. The following is at worst an exercise: P rop osition 3.4.1.

• Suppose that we have two regular immersions i : X y , j ' . y Z with normal bundles Ni, Nj and N^, where h = joi. We have an exact sequence, localized on X :

0 Nj -> N h ^ Ni 0.
• We can simultaneously deform to the normal cone for i and j o i, to the natural embedding of the form Let i : X ^ y be a closed regular embedding. Let N v be a vector-bundle on y, and suppose we are given a regular section on N which gives a Koszul resolution s : N v -► Oy of Οχ. Then under the deformation to the normal cone this restricts over the infinite fiber to the Koszulresolution π*Ν^(-1) -► Op given by (3.3).

X ^ F(Ni

Proof. The first property is [START_REF] Fulton | Riemann-Roch algebra[END_REF], chapter IV, Proposition 3.4, the second and third follows from [Ful98], Appendix B, B.6.9. Denote by M the defor mation to the normal cone of i. Let q : M -► P^ -► y and π : Ρ(Λ^ 0 1 ) -► X be the natural projections, and g : P = P(Ari 0 1 ) -» M be the natural inclu sion. q*s : q*Nv -> Om is determined by a section which has a simple zero on the exceptional divisor, so it factors over q*Nv <g) O(P) -> ■ Om-This is a Koszul resolution of P *. Restricting to P, we obtain a Koszul-resolution 

g* ® O(P)) = g' q*Nv ® 0(P)\P -> 0 P of X.
X x {o o } 9 > y x {o o } X' x {o o } 9 > y' x {o o } V \,-----2-----PJ,,
one obtains the lemma.

□

RIGIDITY AND OPERATIONS ON VIRTUAL CATEGORIES

This little pig had roast beef

In this section we exhibit certain rigidity-properties of the virtual categories we axe working on, and also the main technical results of this part of the thesis. As such, it rests heavily on the results obtained in [Mor99], [Rio06] and [ W 99], and can perhaps in many instances be seen as reformulations of results therein obtained. The formulation in terms of if-cohomology was inspired from [Toe99a].

The main result of this section (Theorem 4.0.6) can be phrased, in a certain situation, that there is a certain commutative diagram

homn(<K)()CQ, JC q) - ■ = = h o m g^set(-Ko(-)q,-K o(-)q ) •
Here homfnopset(-^o(-)q> -Ko(-)q) is a set of natural endo-transformations of the presheaf K 0( -) on the category of regular schemes, and hom(VQ, Vq) is the set of endo-functors of the virtual category of algebraic vector bundles strictly stable under pullback. Finally, /Cq is a simplicial sheaf representing (rational) algebraic /^-theory. This allows us to associate functorial opera tions on Vq via the corresponding operations on K 0. We refer to the theorem for a precise formulation.

Let X be a separated regular Notherian scheme of finite Krull dimension d.

Then it is well known (see for example [START_REF] Fulton | Riemann-Roch algebra[END_REF], chapter V, Corollary 3.10, [P71], chapter VI, Theoreme 6.9 or use [RT90], Theorem 7.6 and ( 10.3 .2)) then any element x of Kq(X) of virtual rank 0 is nilpotent, and moreover we have xd+l = 0. One can prove this in several ways, but one of the most natural ways is to construct a certain filtration on K0(X) which can be compared to other filtrations in terms of dimension of supports, a filtration that will terminate for natural reasons (see loc.cit.). One such filtration is the 7 -filtration Flf, built out of the Λ-ring structure on K0(X) (see [START_REF] Fulton | Riemann-Roch algebra[END_REF],

chapter III, p. 48 or [P71], chapter V, 3.10). We wish to incarnate this kind of nilpotence in the virtual category of X . Obviously, if x is a virtual vectorbundle of rank 0 , then we know that a high enough power of it is isomorphic to a zero-object, but only non-canonically. A naive idea is to search for a decreasing filtration Filp of V(X) which has the property that the functors Filp -► Filp_1 are faithful functors, and for big enough p, Filp is a category with exactly one morphism between any two objects.

The approach we have chosen to the problem is to construct the filtration already on the level of classifying spaces of the P 1-spectrum representing rational algebraic /i-theory in S ')i(S ), and then use simplicial realizations to obtain a canonical filtration of BQP(X) which eventually terminates or becomes trivial. For the notation used in this section we refer the reader to the Appendix. Grayson (see [Gra95]) proposes that there should be a multiplicative filtra tion Wp of a space K(X) representing the A'-theory of X ;

.

. .W2 W 1 W° = K(X)
such that the two following properties are satisfied:

(a) For any t, the quotient W t/Wt+1 is the simplicial realization of a sim plicial abelian group.

(b) The Adams operations Φ* act by multiplication by A;* on W t/Wt+1.

Such a filtration would immediately give an exact couple and thus give rise to an Atiyah-Hirzebruch spectral sequence

Εξ* = H*-'(X ,Z (-q)) =*• K -p -,(x )
relating '' motivic cohomology" (that is, cohomology of Ζ (ί) = Z (t)w := Q2t(Wt/Wt+l), in the sense of spectra with negative homotopygroups) on the left with algebraic K -theory on the right. In loc. cit. it is noted that the Postnikoff filtration satisfies the first but not the second property. For smooth schemes over a field [Lev05] constructed a coniveaufiltration which gives the correct spectral sequence for smooth varieties over a field. The starting point of this section is the following theorem, which states that if we tensor with Q we can construct a Grayson-like filtration with various functorial properties. The author ignores if the filtration of [Lev05] coincides with the one considered in this section, both considered as objects of the appropriate homotopy category of schemes. Theorem 4.0.3. There are H-groups {F il^} ^0 (i.e. group-objects) and {]Hi(*)}°°o of T iffis)•, determined up to unique isomorphism, satisfying the following properties:

(a) Fil° = (Z x Gr)Q and for any i > 0, there are morphisms Fil^+1^ -> Fil(i).

(b) For any i,j, there are natural pairings F il^ A F il^ -> Fil(-I+^ making, for i' < i,j' < j, the following diagram commutes

Fil(i) A F i l ^-----^ Fil(i+j) • F i l ^A F i l ^----^ Fil(i'+J,) (c 
) For any i,j, there are natural pairings A -+ .

(d) There is a factorization Fil^t+1^ -> • Fil^I+1^ x lW « F il^ which is com patible with the two above products. The pairings are also associative in the obvious sense.

(e) The Adams operations Φ* act on all the above objects and morphisms and acts purely by multiplication by k1 on .

Proof. It follows from Theorem A.0.12 that we have a filtration of B G Lq in SH(9\s) given by Filp = ® n>p HI". By definition there is an evaluationfunctor evn : SH(9\s) -* ^O ^s)• sending a spectra (c.f. Appendix A) E to En. Evaluating at 0 we obtain a canonical filtration of ev0(BGLQ) ~ (Z x Gr)uj (see Definition A.0.7.3), a filtration {F il^}~p in 7i(iR s)•• We similarly define = evo(BP) so that F il^ = 0 Fil^-1^. They are the 0-th space of a P 1-spectrum and automatically H-groups. We similarly define Adams operations Φ* on the various objects via the same functor evo-We need to verify the other claimed properties.

Let A" be a pointed simplicial sheaf, and define Q?X = HornΛO P Q h", (<»") , X ) , the right adjoint to Sj A -. Also denote by ΡΩ• 7 the total derived functor of ClJ in H ffis )•• Now, as before, denote by Φ the Yoneda-functor Φ : K s -A°PShv(iHs,sm) -H(ns) and for any object G G H(?Rs) we denote by 0 G the presheaf

3 U i -> Hom-ft((Ks)(<£i7, G).
We then have: Lem m a 4.0.4. Let j > 0. We have the following natural isomorphisms of presheaves on in the following cases:

• φ(ϋΏΡ(Z x Gr)q) = K j{-)q.

• = Kj(-)(% \ the presheaf of sections of Kj(-) with Ψ*eigenvalue k% (which is independent of k >2).

. φ(F i l « ) = F ^o R q = Θ ^ο Η ^, where

F % P Q q = (J im[Kg{X)Q K0(X)q} zcx
and the union is over all closed subschemes Z c X of codimension at least i, and Kq(X) is the Grothendieck group of complexes of vector bundles on X acyclic outside of Z, and the map is the natural one.

• Let P°° = colimnPn, then φ(P00) = P ic(-), φ(ϋΩP°°) = Gm and 0 (# fiJP°°) = 0 otherwise.

Proof. In view of how the Adams-operations act on the various objects in volved, using Theorem A .0.8 the first non-trivial part is the equality ®p>t Ko(~){p ) = F1 Ko{-)q which is [Sou92], chapter I, Lemma are bijective in the case y and X are products of any of the following:

• (Z x Gr)Q.

• Fil(i).

• H (i).

• P°°.

Proof. The cited proof goes through with the following remarks. By ibid, Lemme III. 19, for any objects X and E in T iffis)• with E an //-group, there is an injection HomH(iRs). (X , E) -► Hom-^(^s) (X, E ) whose image is that of morphisms X -^>• E such that / * (•) = • £ Hom^fns)(S,E). Thus one reduces to the non-pointed case. The objects in question are retracts of (Z x Gr)Q or equal to P00, which are the cases treated in the reference and one concludes. □

We are now ready to complete the proof of Theorem 4.0.3. Using the above two lemmas we deduce morphisms F il^ x F il^ -► Fil^+•^ from the morphisms FiKQ (-)x F jKo(-) -> Fl+jK0(-) and similarly for

x H ^ -> Ifli'+i). As in ibid, Lemma III.33 we have the following proposition: for an //-group E and objects A, B of H(9Ks)•, the map Ηοην^^) . (A A B,E) -> HomW((Rs)# (ΑχΒ,Ε) is injective and its image consists of morphisms AxB -> E such that the restriction to • x B and A x • is zero. It follows that both of the two morphisms factor as F il^ A F il^ -> Fil('t+^ and A H ® -* The same argument shows the necessary diagrams are commutative. The Adams-operations act appropriately for the same reason.

□

The main theorem of this section is now the following: to Ki(Z) = Z/2-modules, and all the groups in question are 2-divisible by construction. Now, suppose we have φ 6 Hom/(V^•, Vy) and an automor phism φ, i.e. a functorial isomorphism of functors φ ~ φ. Suppose for simplicity that X = y = (Z x Gr. It is easy to see it determines an element in HonifK°PSet(-Ko(-)qj )q)> and moreover that any such element deter mines an automorphism of φ. The latter group is zero by Theorem A.0.8 and an argument analogous to the proof in the previous lemma. □

Under the conclusion of the above theorem we say that the functor Vx -► Vy lifts that of φΧ -* φy. We say the lifting given by the section of the theorem is given by '' rigidity" .

To state the next proposition, denote by φ ΐς^(Λ ') and ^Picq(A') the Picard category of line bundles on X localized at an integer n or Q respectively (c.f. B.0.14.1).

P rop osition 4.0.7. Let /S be the category of regular algebraic stacks over S and let Φ' : ίΗ<ΣΪ)/S -► 7ί(ΰΚ) be the functor determined by the extended Yoneda-functor (see Definition C. 0.18.1) and for an object X of de note by φ'{Χ) the functor £H<£I)/S -► Grp such that fi(X)(y) = V x ^'(y )). Then we have the following equivalences of functors:

• φ' { { Z x Gr)(j) = the fibered Picard category over 9K£t)/S that is the fundamental groupoid of K-cohomology.

• Let n be an integer. Then «^(P00^]) = and φ'{P q ) = ^Icq, the fibered category of line bundles localized at n or Q over 9\£t)/S, associating to any object of iRCf) /S the category of localized linebundles thereupon.

Proof. The first statement is essentially by definition. Consider the second statement. For a simplicial sheaf X and a sheaf of groups G, a G-torsor is a simplicial sheaf 3^ -► X with a free action of G such that y/G = X. In other words, a collection of G-torsors ^[n] on X [n] such that for a morphism φ ■ .

[n] -» [m] there are induced morphisms φ* interchanging the data in the obvious manner. Now, it follows from [W 99], Section 4, Proposition 3.8 that for a simplicial sheaf X , φ'(Ϋ°°)(Χ) is the category of Gm-torsors on X. Thus, for a regular algebraic space U it is clear that this is the category of line bundles on U. Let U be an regular algebraic stack with smooth presentation X -► U with X an algebraic space. Then U identifies with the simplicial sheaf whose n-simplices are given by X Xu X *u ■■■ x u X , n-time, and face and edge-maps by repeated diagonals and projections as face and edge-maps. Since a morphism of line bundles is necessarily injective one verifies that a Gm-torsor on U necessarily has isomorphisms as transition-morphisms, and we conclude by smooth descent.

□

Remark 4.0.7.1. By [AK04], Lemma 3 .2 , it follows that a Deligne-Mumford stack M , separated and of finite type over a Notherian base scheme with moduli space M , then (M)q -> ^Hc(.M)q is an equivalence of categories.

A priori the operations given by rigidity are abstract and one might want to relate them to other operations. One standard way of doing so is as follows. Restricting any '' virtual" operation given by a morphism (Z x Gr)Q -> ( Z x Gr)q along P°° -► ({0 } x Gr)Q -► (Z x Gr)Q gives us the behavior of the operation on an actual line bundle where we can often write down explicitly what it does. Then by the splitting principle one can often compare this to other operations. D efinition 4.0.7.1. We denote by FlW(-) (resp. W ^) the category fibered in groupoids </>'(Fil^) (resp. </>'(Η^)) over

Notice that for an algebraic stack X that is not an algebraic space F°W(X) = W(X) is in general not the virtual category V(X)q of X.

We record the following. lifting the pairings F1 K0(X)q x F^K0(X)q -> Fl+iK 0(X)q on regular schemes, such that for i' < i , f < j, we have a commutative diagram

F*W(~) x F W ( -) -----* F i+iW{~) Fi> W(-) x F i'W (-)-----F i,+i'W {-) (c) There are unique pairings x -> W^t+i\ extending the usual pairings K q {X )( ^> x K0(X )^ -> K 0(X)^l+^ on regular schemes. (d) The pairings are compatible with the isomorphism F W ( -) = F ^W i -) x W (i)
and they all satisfy the obvious associativity constraints.

(e) The above is compatible with zero-objects in that a zero-object in one variable maps to a zero-object in the second.

(f) The Adams-operations act on all the objects and functors involved, and these operations are moreover, up to unique isomorphism, uniquely de fined as liftings of the usual Adams operations.

(g) Let X be a regular algebraic stack of dimension d with finite affine ^sta bilizers. Then F d+2W (X ) is equivalent to the trivial category with one object and the identity as only morphism and we have an equivalence of categories: W (X) = W®(X).

Proof. (b),(c),(d) and (f) are clear from rigidity. For (a), it is enough to show that for any X and object x of Fl~1W(X), Autjpi-iw^Oc) -> AutFilV(A,)(£) is injective. But this is clear since this map identifies with the injection Fl~xK[m{X) -► FlKfm(X). (e) follows from the description of the pairing in Theorem 4.0.3. Since we will only be concerned with (g) for a scheme we give the proof in this case.

Lem m a 4.0.9. Let X be a regular scheme with d = dim X , and i = 0,1. Re call that F^Ki{X) q is the filtration on Ki(X)q determined by FiKi(X)Q = 0 ρ^. K i{X)<*l Then F ^K ^X ) ® = 0.

Proof. Consider the Quillen coniveau spectral sequence

£?'5P 0 = 0 * -ρ -5( Φ ) ) = * • K -p -, W xex(p)
where X ^ denotes the codimension p-points of X and k(x) is the residue field of x. By [Sou85] Theoreme 4, iv), we have that, for z = 0 , 1 ,

d « λ = 0 £ r ''" i W Q • p= 0
Furthermore, it is remarked in [HG87], proof of Theorem 8 .2 , that the Adams operations act on the spectral sequence and in particular on Ef~p~% (X) by kp+l (i = 0 ,1 and r > 1). Also, Ef~p~l(Φ*1 ) converge towards the Adams operations on Ki(X). Thus, for i = 0,1, it follows that K i(X Y d+i+1+k^ = 0 for k > 0 so that F d+t+1K i(X )q = 0. Of course, for i = 0 , this is wellknown. □

We immediately deduce that the categories FPW(X) are trivial, i.e. all objects are uniquely isomorphic, for p > dim X + 2. □ Remark 4.0.9.1 . The proof of property (g) in the case of a regular alge braic space goes through verbatim. The general case is obtained in a simi lar way, but one has to work instead with the spectral sequence E ['q{X) = = > K s _^_q(X ) which exists by a Brown-Gersten argu ment applied to the flabby ^-spectrum representing cohomological K -theory and by virtue of Gs™ = K*m by Poincare duality for the cohomology of the Ζζ-theory for regular algebraic stacks (see Theorem C.0 .2 2 ). Then each (7ξ,Γβ< ι is a gerbe banded by some reduced algebraic group H, which is in fact neces sarily an abstract finite group over the algebraic closure of the moduli space.

To understand the Adams operations we can by etale descent moreover sup pose that the moduli space spec k(x) of G^)red is separably closed so that the gerbe is trivial and red = [spec k{x)/H]. By the arguments of [Tho8 6 ], 2.3 there is a spectral sequence Then K r ( G (,™i)q = Ki(speck(x))Q for all i. The Adams operations Φ* act on K?m(G^red) via the restriction of /^(spec k(x)) to the H-invariant part and thus by kl. The rest is similiar but skipped.

Remark 4.Ο.9.2. From [Lev99], Theorem 11.5 it follows that if R is a Dedekind domain, and X is a regular finite type spec # -scheme, then the 7 -filtration on K n(X ) for any integer n terminates after d + n + 1 steps.

We harvest some obvious corollaries: C orollary 4.0.10. Let X be a regular algebraic stack. The Adams operations on W(X) are compatible with the Adams operations constructed onV(X) in Proposition 3.3.1 under the functor V(X) -* W(X). Moreover, there is a determinant functor det: W{X) -► ^Pxc(A')q such that the diagram

V(X)• V(X)• det W(X) W(X) det y i c (X )-----$ i c ( * ) Q commutes up to canonical natural transformation.
Proof. By rigidity the two Adams-operations coincide on line bundles and we conclude by the splitting principle. Moreover, ^«(A Q q clearly satisfies £ f'5 = K, Π") coherent descent since it is a localization of the category ^ic(A ') which does. The determinant functor then exists by cohomological descent and the dia gram commutes again by rigidity and the splitting principle. □ C orollary 4.0.11. There are unique X-operations on FlW(-) \-operations satisfying, for a regular algebraic stack X, k Xk(x + y) = ^ XJ(x) < g> Ak~3(y) j=o and for a vector bundle E one has : AkE ~ AkE and for an exact sequence of vector bundles 0

-> E ' -> E -* E " -> ■ 0 a commutative diagram of isomorphisms Xk{E) = Z U χά(Ε') ® λk~j (E") t t Ak(E) = Σ*=ο Aj (£ ') ® Λk~j {E")
with the lower row defined as in (3.1).

Proof. Unicity is clear by the splitting principle. Existence of the A-operations are given by rigidity, and we suppose for simplicity that i = 0. □ C orollary 4.0.12. Let X be as in (g) in Theorem 4.0.8. There are 7operations on the virtual category W(X) = W, j > 2, 7 ^, inducing the natural operations on Kotq. For a virtual bundle of rank 0,

ηί{ν) G W U).

Furthermore, for any two virtual objects x and y in F % W, we have a family of isomorphisms in F l+i~1W , functorial in x and y;

7 fc(x + y) ~ 0 7 J(x)7fc_j(i/). (4.1)
Since for a line bundle L, 1 -L identifies with an object of F 1W, we have that (1 -L )% is an object of F lW. We then have canonical isomorphisms in F*W:

7*(1 -£ ) -(1 -L)* and 7 l(L -1) = 0 for i > 2 .
Given a vector bundle Ε of rank n, we have a canonical isomorphism 7 n(Eη) = ( -1)ηΛ _ι(E ) and for any k > 0 a trivialization 7 k+n(E -n) = 0 such that for a short exact sequence of vector bundles 0 -> E' -> E -> E " -* 0 of ranks η', n and n" we have an isomorphism

7 n(E -η) = ΣΓ=ο Ί \ Ε ' ~ n') ® 7^( E " -n") . (-1 )ηλ-ι{Ε) = ( -1 ) " 'λ -χ(Ε') (8> ( -l ) " " A _ 1(E ff)
Thus the functor E 1 -»• A_i E defined on vector bundles has essential image in FTkEW. Moreover, the trivialization 7 k+n(E -n) = 0 is compatible with the trivializations given by (4-1) and admissible filtrations.

Proof. All statement except the last one are direct consequences of rigidity. By definition (c.f. [START_REF] Fulton | Riemann-Roch algebra[END_REF], chapter III) and rigidity we are given a relation ship of 7 and λ-operations Σ»=ο 7 l (uK = Σ ι ^*(«) {jziY so that, in view of that 1/(1 -t)r+1 = ( ^r) i ; , the relationship, for k > 0, in W(X)

7 » = Σ x(u) ( k " Λ = A' ( « + k -1). t = 0 ' '
If u is a virtual bundle of rank 0 we deduce the equality in F kW compatible with sums and the product on the filtration. Now, for a line bundle L one has An(-L) = ( -L)n and thus one has for a vector bundle of rank n a canonical isomorphism

7 n(E -n) = An(E -1) = ( -l ) nA _ i(F ),
where the latter isomorphism is an isomorphism in V(X). We hereby identify λ_ι (E) as an element in F nW(X). One also obtains a trivialization

7 k+n[E -n) = Xk+n(E + k -1) = Ak+n(E + k -1) = 0 in W(X).
We need to verify that the isomorphism lies in F k+nW(X). We proceed by induction. For a line bundle this is given by rigidity. Suppose we have verified the all the given statements for vector bundles of rank strictly less than n for all regular schemes. Suppose E is of rank n. Given an admissible filtration F" C F' C E of with F" and F' of ranks n" and n' respectively consider the following diagram

(F ' -n')f-i{E/F' -( n -n")) -£ f(F " -n")i{F/F" -( η ' -π"))Ίη-^{Ε/Ρ' -(n
where the morphisms are given by the various trivializations 7 *(<)-rk ^>) = 0 in F lW whenever i > rk <> and the isomorphism 7 rk<^(<> -rk 0 ) = A_1(<0>)

given by induction hypothesis. 

-n) = 0 in F n+kW(X) for 1 (F')X-i (E/F'

X^E)

Σ l'{F " -n")in~'(E/F" -{n -n")) k > 0. We need to verify that its image in W{X) coincides with the trivialization t : \k+n(E + k -1) = Ak+n(E + k -1) = 0. This follows by additivity and induction on k.

□ C orollary 4.0.13. Let X be a regular scheme of dimension d . Then for any virtual bundle v in W{X) of rank 0, k > 1, ηά+Η{ν) ~ 0 canonically.

Proof. This follows from Theorem 4.0.8 and Corollary 4.0.12. □ Proposition 4.0.14. Let X be a regular scheme of dimension d. Then for any k, and a virtual bundle v, an isomorphism tyk(v) = klv in W(X) defines a projection of v into . Thus it implies that there is a canonical isomorphism Φη(ι>) = knv for any n.

Proof. By Theorem 4.0.8 there is an equivalence W(X) = W ^(X) so that υ is equivalent to an object of the form Σ, with π* : -► W(X). Applying Φ•7 we obtain an isomorphism (W -k% )vi = 0 in W® and so Vj = 0 for j 7^0 . □

The following is trivial:

C orollary 4.0.15. LetX be a regular scheme. Then the functor R : W(X) -> W(X) associating to a virtual bundle u the virtual bundle

R(u) = (v -rku) -(det u -1)
has essential image in F2W. For u and v both virtual bundles on W(X) there is a canonical isomorphism

R(u + v) = R(u) + R(v) -(det u -l)(det(w -1)
in F2W(X) where the product (detu -l)(detu -1). These are stable by pullback of regular schemes. They moreover correspond to the isomorphisms defined by rk(w + v) = rku + rku and

det(u + v) -1 = (det u -l)(det v -1) + (det u -1) + (det v -1)
defined as in [Del87], (9.7.8). Thus, a virtual bundle of rank 0 and with trivialized determinant bundle defines an element in F2W.

A FUNCTORIAL EXCESS FORMULA

This little pig had none

This section is the report of a failed attempt to construct a completely canonical simplicial description of the excess-formula of [P71] VII, Proposi tion 2.7. A word about application is in order. The argument is given for quite general stacks. However, by [Tot04] essentially all stacks in question are stacks of the form [U/GLn] with U quasi-affine. This is good to keep in mind since it reduces the arguments to equivariant geometry on quasi-affine schemes, but the arguments in the general case are however the same and we proceed to give this result. Given a 2-cartesian diagram of algebraic stacks with representable morphisms it is innocuous to identify it with a Cartesian diagram of schemes or alge braic spaces with descent data. We will thus routinely apply the terminol ogy '' cartesian diagram" for a 2-cartesian diagram and moreover work with a strictly commutative version of the virtual category of vector bundles, defined as follows: Proof, (c.f. [Del87], 4.9) Let X be a vector bundle and consider the sequence X A X -f X A x where u is the diagonal and v is the map (a, b) i-► a -b. Then the symmetry automorphism induces 1 on the sub object and multiplication by ( -1) on the quotient object. □

As an informal corollary of the above proposition is that most of the naive diagrams of isomorphisms we can write up commute, in particular the isomorphisms (3.3) and (3.1) become completely canonical and commutative.

A rough excess-isomorphism

Suppose we are given a cartesian diagram

X - Y f X ' Y '
with / a closed immersion. Let x be a virtual vector-bundle on Y, and suppose we have two morphisms σ : iVv -> Ογι,σ' : iV/V -> • Οχ> defin ing Koszul-resolutions of Oy and Οχ respectively that axe compatible in the sense that we have a morphism 7 : g*Nv -* ■ iV/V compatible with the resolutions g*a and σ' in such a way that the natural diagram

g*Nv g*0Y, ■ / V N' ■Οχ,
commutes. This imphes that / and f are both closed regular immersions. Writing J and (resp. T ') for the ideals defining the immersions / : X -► Y (resp. f : X ' ^ Y') and let NJ = J/J2 and NJ, = I '/ I '2 be the conormal bundles of the immersions. By restricting to X via /' we obtain a commutative diagram

f'*g*Nv f * N ,v g'*Nf ■NJ,
where the vertical morphisms necessarily are isomorphisms. Denote the ker nel of 7 by F. The bundle f * F ~ E is called the '' excess bundle" (c.f.

[Ful98], Section 6.3. Our definition is however dual that of ibid), so F pro vides an extension of E to X 1 . Also, suppose that the virtual vector-bundle x extends to a virtual vector-bundle χγ> on Y', i.e. there is an isomorphism r : f*x y -► x. Then we define a rough excess-isomorphism by Φ χ ν "σ , σ ' , τ(χ ) :

Lg*Rf.(x) σ'χ£'Γ \ -i(L g*N y) < g> Lg*(xY>) 7 Rfl(Ox) < 8 > A_i(F) ® Lg*(xY>)

Rfm (X.1(E)®Lgf*x).

The first isomorphism is given by the extension χγ> together with the resolu tion σ and then applying g*. On the second to last line we use the projection formula once again, and then the definition of /'* for the last line. We will later show that this isomorphism is independent of the subscripts χγ<,σ, σ', r.

The first result in this direction is the following which links it to the basechange-isomorphism:

Lem m a 5.1.1. Suppose that the above square is Tor-independent. Then the constructed isomorphism coincides with the image of the base-change isomor phism (see Lemma 3.1.3 of this thesis) in the virtual category.

Proof. Denote by Lg*Rf*x ^ Rf^Lg'*x the base-change isomorphism. The statement of the lemma is that for an extension xy of x to Y7, the outer contour of following diagram is commutative. Here the outer right contour connecting Lg*Rf*x and R flLgf*x is the proposed rough excess-isomorphism. First of all, the tri angles commute per definition. The square commutes since it is induced Let S henceforth be a regular base scheme and let '' virtual category" and '' virtual objects" be substitutes for '' strictly commutative virtual category" and '' strictly commutative virtual objects" until the end of this section. The main theorem of this section is the following: Th eorem 5 .1 .2 . Suppose we have a Cartesian square S of algebraic S-stacks and representable morphisms

L g 'R f.(x )----£Lg*xY' ® Lg*X.1N s / Lg*xY> ® A_iJV/V R f ' M ' x Rfl(LrLg'xY') R S ', (L r (\ ^(F )® L g ' (xY.))) λ -i (F 7V) Θ Lg*(xY. Lg*xy> 0 R f 'M 'o • by the natural isomorphisms Lg*X-iNv diagram A_i-/V'v
X r x• γ Ύ '
where g and g' are arbitrary morphisms, and f and f are (representable) projective local complete intersection morphisms.

Then there is a unique family of isomorphisms of functors in the (strictly commutative) virtual category of vector bundles:

* ε : R fi (X-i(E) 0 Lg'*{x)) ~ Lg*Rf.{x)
where E is the excess bundle, with the following properties: x-----*Y X ' ----------^Υ ' q ο" 9 '

9'

"

X ------+ Υ s y χ>--------------------V '
where the right-hand and left-hand vertical squares are transversal and Cartesian. The upper and lower diagrams are denoted by £ and 8 respectively and are supposed to be as in the introduction. Symbolically we summarize the cube by a morphism of diagrams Q :

£ -* ► £. There is then a commutative diagram R fK ^-i(E ) ® Lg'*(Lq*x)) q g '= g 'q'" , q " 'E = E R f:(\ _ 1(q »*E )® (L q "*L g ,*x)) R f*L q"*(X -i(E ) ® Lg'*x)) base-change Lq'"*(R ft (X -i(E ) ® L g '*x )f L i*R ft (Lq*{x))

base-change

Lg* Lq'* Rf*{x)

*Ψ£(χ) t q "'=q 'g

Lq'"* Lg*Rfif{x)

We will sometimes write this as Φ^ο Q* ~ Q* ο φ £. In particular there is an isomorphism Φ£-(<?*(z )) -q'"*^s{x)• (b) Suppose f is a regular closed immersion and suppose that we are given a (representable) regular closed immersion h : Z -> Y ' such that the fiber product Ζ χ γ Ύ is empty. Denote by h! : Z ' -» X ' the fiber product Z Χγ> X ' and suppose it is also a regular closed immersion. Then and

RK(Oz> ) ® Rfl {X-i{E) ® Lg'*(x)) Rti.(0Z')®Lg*Rf,(x)
are both canonically trivialized by the condition that Z ' (resp. Z ) doesn't intersect X (resp. Y ). We demand that the excess-isomorphism inter changes these trivializations.

(c) Normalization: Suppose that f is a closed embedding of a Cartier divi sor Y in Y ', and that X = X '. Let

0 -> 0 { -Y ) -> Oy> A CV -► 0
be the canonical Koszul resolution. Then, whenever x extends to a virtual bundle Χγ> on Y ', Φ^ is given by the rough excess-isomorphism: with associated excess-bundles E, E ' and E ", the following diagram commutes

R{f' oe'),{\-1{E")®Lg*x) f'oe'=f'e' Rf',Re:(X-1(E")®Lg*x) 0-+E-+E"-+e'*E'->0 RfiiX-xiE') < g> R e'"(\-i(E) ® Lg'x)) ψε RfK^-i(E') ® Lg'*Re*(x)) ψε, Lg"*Rf*Re*(x) f o e = f e
Lg"*R{f o e ) , ( i )

where we use the projection formula on second left up-to-down arrow. This will be naively written as ^ε'^ε ~ ^s" (e) Stability under the projection formula. There is

a commutative diagram R fi (X-i(E) ® Lg'*(x ® Lf*y))-----Lg'Rf.{x ® Lf*y) Rfi ( λ -ι (E) ® Lg'*(x)) ® Lg*y----»-Lg*Rf*(x) ® Lg*y
where the horizontal isomorphisms are given by excess and the vertical ones are given by the projection formula.

C orollary 5. Let i : Y -► Y ' be a regular closed embedding with Y ' being an algebraic stack with the resolution property. Then we have a functorial isomorphism

Li*R i*(x) ~ A _i(Νγ/γι) ® x.
Proof. Indeed, take X = X ' = Y, f = z, /' = j = id and use that the excess-bundle is just the conormal-bundle. □

The method of proof that we have chosen is that of deformation to the normal cone and goes roughly as follows: We first prove the theorem for closed immersions in the model situation of a zero-section in a projective bundle. After this we prove the theorem for projective bundle-projections using standard techniques. One then needs to show that for general pro jective morphisms, the excess-isomorphism does not depend on choice of factorization and thereby define the isomorphism.

Excess for projective bundle-morphisms, uniqueness

Proposition 5.2.1. Suppose that f is a projective-bundle projection. Then the excess-isomorphism associated to f is uniquely determined and is neces sarily given by flat base-change.

Proof. Conditions (a) and (e) show that the excess-isomorphism is necessarily given by flat base-change. Indeed, first one notes that if / : IP (TV) -► Y any (strictly commutative) virtual object of V (Ψ(Ν))± is equivalent to an object of the form f*xi < 8> 0 (-i) for objects Xt in V(Y)±. By condition (e) we are reduced to the case of an object of the form 0 (-i). Next one applies it to the cube of the theorem with all but one side being given by a trivial diagram, i.e. two of the morphisms are the identity. Moreover, the base-change isomorphism is compatible with base-change and composition itself by Lemma 3.1.5. The trivialization-condition is trivial. □

As a corollary, the property (a) and (e) are satisfied if we take the excessisomorphism to be the base-change-isomorphism in the case of a projective bundle projection. This is Lemma 3.1.5 and Lemma 3.1.6.

Excess for closed immersions, uniqueness

The main object of this section is to prove the following theorem Th eorem 5 .3 .1 . If f is a closed immersion, then the excess-isomorphism, if it exists, is uniquely determined by the conditions in the theorem.

Proof. For the case of closed immersions we will use the deformation to the normal cone to reduce ourselves to the '' linear" situation. First of all, denote by £ the Cartesian diagram

F ' M '• ■PF -M
where M ' and M are the deformation to the normal cone of f and / respec tively. Denote by Sq and the two following diagrams:

X - f Y X Y /' (5.1) X ' -^-Y ' Ρ(ΛΓ'© 1 )-2 »P (J V © 1)
where /, f the canonical zero-sections with projections π' and π, g being given by the morphisms induced by an inclusion of vector-bundles N ' C g'*N.

In the following we abuse notation a bit to show unicity, but only in the sense that was used in the formulation of the theorem. Thus Φ5 denotes the (rough) excess-isomorphism for the diagram 5 for example and for a functor F, F ^s denotes the image of the excess-isomorphism under F. We have embeddings io : £q -^ £ and : E^ -* ■ E and a projection Π : E -> £0, satisfying Π o iQ = id. By property ( 1) of the theorem we see that Φ,^ο = and \]/£oo*m = Also, applying the natural transformations id ~ LiqLU* and id ~ one sees that the functor Φ£0 is determined by the functor Rio^Lil^sLU*. Fixing a rational function A on P^ with divisor (0) -(oo) defines an isomorphism

O(X') ~ 0{P(N' Θ 1) U D') ~ 0{¥{N' 0 1)) ® O(D') (5.2)
of line-bundles on M'. Here P(TV7 0 1) and D' are the two components of the blow-up at infinity in the deformation to the normal cone, intersecting in P(Ar'), and the image of X does not intersect that of D'. We have natural Koszul resolutions

0 -> 0 (-X ') ^Ο ^Ό χ ' -+ 0 0 0{-D ') -> 0 ^0 D, ^0 0 -► 0 (-¥ (N ' 0 1)) O 0P{N,el) -* 0 and a resolution 0 -► 0{-D ') ® 0 (-f (N > 0 1)) O (-D ') 0 0{-¥{N' 0 1 ))-* O -* Od'OP{N'®1) = Op(N>) -> 0
which together define an isomorphism, via (5.2) (see also [START_REF] Fulton | Riemann-Roch algebra[END_REF], Proposition 4.4)

0 ~ (1 -O (-X ')) -(1 -O(-D')) -(1 -0(-P (N ' 0 1)) + ( 1 -0(-P (N ' © 1))(1 -O(-D')) -Ο χ ι -Od> -(9p(jv'®l) + O f ( N ' )
and hence an isomorphism

Ο χ ' -0 D ' + O p ( 7 V ' ® l ) -O p ( N ')•
Via the projection-formula this gives an equality Note also that by symmetry, the same conclusion holds with Φ and φ in place of F and /. Now, the diagrams that arise for application of condition (a) are the following: 

P (h'*M)----*P(p*N)

where £ C M C p*N is the universal flag on G. We can now filter p*N/M by a maximal flag on G which is in particular a flag of p*N including M. Now one easily sees that we can compose our big diagram as a composition of smaller diagrams which are either transversal or codimension 1-cases like in (c). By (d) this does not depend on the choice of flag and we conclude by the splitting principle.

Excess for closed immersions, rougher excess and existence

The previous section gave a recipe for the construction of the excess-isomorphism, which we spell out. Let M (resp. M ') be the defor mation to the normal cone of / (resp. /'). Denote by ip, ίϋηΡ(Νφΐ) (resp. (5.6)

P1 ------------►PL

F ' / F / * G ' ' ---------------------------------M Q M'• G ' M Μ' Q" Q' •Pf
Applying g* to this we obtain

The isomorphism from the third and fourth line comes from (5.3), the iso morphism between the fourth and the fifth come from a Koszul-resolution and the projection formula similar to that of (5.4). This is the rough excessisomorphism already exhibited in Section 5.1.

In the case of a general diagram 8

X Y r X ' Y'
the isomorphism #£ is defined in the following fashion, using the notation of the previous section: 

~ Ri0 0>M *00L G * R F ,L n * (f) ~ R i o o ^L ^R f ^J 7) ^ β ο ο , ^/ ; ( Λ -ι ( £ ) ® ^( ^) )
The (5.9) Λ"ι((ξ')ν) 0 λ^ι(π'Έ) @ π''ρ'Τ (5.11

ρ ? ' ί\ Γ η*τ\ / U > i r V ? ξ ν < r * * r )
of (5.7). Applying π* on both sides gives the required isomorphism, since π^oo/, = f and πζ0 = id. We claim this " rougher excess-isomorphism" satis fies the axioms of the theorem. It is immediate to verify condition (b). We need to verify the others.

Prop osition 5.4.1. Let y\ y

X ' -------* Υ ' q q" i " X ------+ Y >r / X ' ---9 ----* γ •
be a commutative cube such as in condition (a) of Theorem 5.1.2. Then the rougher excess-isomorphism satisfies the conclusion of ibid.

Proof. This will essentially be by functoriality of the blow-up-construction. Keep the notation as introduced. In the cube in the introduction of this section the fibre over 0 is the diagram we start with, whereas the fiber at oo is, minus some unwanted factors: ------------------------► 

A -----------1---------/ Ψ{Ν' 0 1) -----------► Ψ(Ν 0 1) q " 7 7" X -

P(JV' 0 1 )--------------»-P(TV 0 1)

The full factors overoo would include factors D ,D ',D ,D ', which don't meet the images of Υ, X , Y and X respectively. Let's denote by i0, i'0, i'q, «ο, 

*? α rQfi Tq

and by verifying immediately (c.f. Lemma 3.1.6) that the base-changes in volved are stable under the projection formula.

In the next square, the induced isomorphism induces a commutative di agram of isomorphisms: change, and the next square is also commutative. Finally, the lower square is commutative for the same reason as the other first square above, i.e. by Lemma 3.1.5. Applying π* as in the definition of our morphism we obtain the commutativity, modulo showing commutativity in the model situation. With the notation of the left diagram of (5.1), we are left to consider the diagram Denote by ξ ,ξ ',ξ , ξ7 the universal quotient bundles on Ψ(Ν φ 1),P (N1 0 1), P(./V 0 1) and Ϋ(Ν' 0 1) respectively. The proposition

Q "'*0 X' λ Q'"*{@F(N'+1)) + Od -Ορ(ΛΓ'+1))®Γ>)
Moreover, in the second line there is an induced isomorphism and thus also an induced isomorphism of superfluous terms (see Lemma 3.4.2):

°D ~ 0 ρ ( ί ν '+ ι ) ) η ϋ -Q "'* ~ Ο ρ ( Λ Γ '+ ι ) ) η β ) •
Hence calculating the Euler-characteristic to 0 is compatible with this base-~ 9 x ---------------------/ y / / P(JV' 0 1) -1----------P(AT 0 1) The upper middle diagram commutes by general nonsense; the isomorphisms are just given by certain natural transformations.

I'" q"> X -----------------9 ---->- Y Y Q P (N f 0 1) 9 P (TV 0 1) α Ρ (JNT+J - (CVjv'+i)) Οι ^Ρ(ΛΓ'+1)) "*■ is that

Rfi(X-i(E)

g'i.q-----------------------

► H i . f 's 'U resolution resolution ST(A_i(ev) ® ί γ ) -----------\-i(gT) ® g*n*q* \ -m v) V 'V ( A -i(f) ® 0 λ-ι(ξ' ) ® λ_ι(π' E) ®
To see why the lower middle diagram commutes, consider the diagram

0 -----V * £ -----< t"'g 'iy -----?'"*(£')V ■0 π' E ' -* C V .

9*ξ (O'

where all the vertical maps are isomorphisms. Indeed, all the maps exist by functoriality, and they are isomorphisms by the assumption on transversality. Here Ε ,Ε ',Ε " denote vector-bundles on P (M ' 0 1) which extend the excessbundles E, E' and E" respectively. Using the canonical Koszul resolutions, the proposition is that the following diagram is commutative: A few comments are in order. Since there is a Koszul resolution iVv ( -1) -► Opy(jv®i) of Y on Ψγ(Ν 0 1) the virtual bundle Re^T) has 3) is compatible with fil iations and the diagram (5 .12) and the composition of all the rightmost downwards arrows is the isomorphism determined by 8" for the same reason.

We refrain from giving all the details of the fact that the other diagrams commute. The interested reader can however easily verify that they do using that all the Koszul-resolutions involved are compatible and using the follow ing lemma which we give without proof, which after an inspection takes care of (A ) and (B ). The other diagrams commute for similar, albeit slightly more involved, reasons.

Lem m a 5. Let F be a virtual vector-bundle on X , and let F ' be a virtual vector bundle on Z which extends to a virtual vector bundle Fy on Y. Then the diagram

A_x(iVv) < 8> \_i(Nx) ®F^® p*F --------A_X(M V) ® ® p*F g*{F' ® \-i(g*Nv) ® τr * F )----^® / .(F ))
commutes. Here Φ* denotes the isomorphism determined by the Koszul res olution □

x --i' %

Wx'(g*N)-^TY,(N)

π ' 7Γ

X ' --g ---y'

P'

with 7Γ and π' smooth, we get an isomorphism

Φτ,τ',r • F T

We define the excess-isomorphism Φ£ Τ via the naive composition of the excess-isomorphisms of the two diagrams. Given a factorization r, denote by ET the associated excess bundle. In general, if we have two factorizations with a morphism r, 

X X γ r Y f X..X

Φ τ,τ' -Φτ,τχτ',ρτ1 {Φτ',τχτ',pr2) • -®τ' * ET

T his defines an isomorphism φτ<τ> : ET> -» ET which satisfies the cocycle condition φτιτ/φτ^τ» = φτ%τ» so they glue together an virtual excess-bundle E, determined up to canonical isomorphism. Of course, one could directly define it as the kernel of " le complexe cotangent" of Illusie as defined in [GLOO], Theoreme-definition 17.3 (3) (notice there is however a famous error in the definition of the lisse-etale site which causes it to not be functorial. Since all our morphisms in question are representable this doesn't cause any issues) Given any such factorization r, we define an excess-morphism Ψ£)Τ as the naive composition of the two, using the above definition of the excessbundle. We give a standard list of basic compatibilities needed:

Lem m a 5 .5 .1 . We suppose the diagrams £ implicit.

• Let i be a section to a projection bundle-projection π : Py(iV) Then ΦπΦί = Id.

Y.

• Suppose that we have a Cartesian diagram

Py (i*iV) --Py/(iV) Y Y '
with i a regular immersion. Then ΦίΦπ' = Φ,τΦι'.

• Suppose we have a diagram

Ψ Υ'(Ν) π γ -* -* Υ '
with % and j being regular closed immersions and π the projective bundleprojection. Then Φ* = ΦπΦj.

Proof. In the first case there is no excess and the statement becomes that composition, which is the identity.

For the second case, we can suppose by additivity and standard reduction that our bundles are of the form %*F ® 0 (-k) for 0 < k < n = rkiV. The argument is now a lengthy but elementary application of the relationship ϋπ*π* = Id together with stability under base-change already established for closed immersions, which we leave to the interested reader.

For the third point, one uses the Lichtenbaum-trick to reduce to the case of a morphism with section: We can factor as follows, for big enough n;

IPq(£ ) P y ( f E ) X ■ P z{q*(E ® 0 Q{n)))
The first lower triangle can be written in this form because Y has the res olution property, q*(E < g> O q ( u ) ) is locally free for large enough n and both / and g are supposed to be projective (see the argument in [START_REF] Fulton | Riemann-Roch algebra[END_REF], chapter IV, Proposition 3 .12). Now, we have by Lemma 5. 

APPLICATIONS TO FUNCTORIALITY

This little pig cried 'wee wee wee ' all the way home

Explicit construction of characteristic classes

Let X be an algebraic stack and consider the virtual category V{X). Consider the full subcategory V(X)* of V(X) consisting of the elements whose image [-] in K0(X) is invertible. It is clear that tensor-product on V(X) satisfies the pentagonal and hexagonal axioms for a Picard category (c.f. 2 .2). Also, by construction, for a fixed object B in V(X)*, A i-► A® B is essentially surjective, and fully faithful since it acts on the automorphism-group K\(X) of an object by [B] which is an automorphism in view of the fact that K\{X) is a Ko(A")-module. It follows that the category V(X)* together with the tensor product is a Picard category and thus for any object B in V{X)* there is an element, B~l, unique up to unique isomorphism such that B®B~l = 1.

As with the category V(X), V(X)* comes equipped with a plethora of signanomalies associated with the fact that they are not strictly commutative. We start by showing that certain characteristic classes are constructible in a quite general context whenever we ignore these signs.

D efinition 6 .1 .0 .1 . Suppose (P, 0 ) is a Picard category with a distributive functor ® : P x P -► P with associativity and commutativity-constraints satisfying the hexagonal and pentagonal axioms (c.f. 2 .2) so that ® makes P into a (non-unital) monoidal category. We call (P, 0 , ®) a Picard ring and often omit reference to © and ®. It is said to be strictly commutative if the operations © and ® are strictly commutative, i.e. the symmetry-isomorphism X ® X -> X © X and Y®Y -> ■ Y ® F is the identity. A ring functor of Picard rings is a functor of Picard rings which is monoidal for both operations © and ®. We say that a category P fibered over a category C is a category fibered in Picard rings over a category C if for any object X of C, P(X) is a Picard ring, and such that for any morphism / : X -> Y in C, there is a ring functor /* : P(Y) -► P(X) satisfying the obvious associativity constraints.

Clearly the virtual category V(X) is a Picard ring and V defines a cate gory fibered in Picard rings over the category of algebraic stacks. In general, for a Picard ring P, we can consider the full subcategory of elements P* whose isomorphism-class in πο(Ρ) is invertible under the operation 7r0(cg>). By the same argument as above, (P*, <g>) forms a Picard category, and similarily for a category fibered in Picard rings P one obtains a category fibered in Picard categories P*. Similarly for the cohomological virtual category W(X).

For the next proposition, recall that by [Tot04], Theorem 1.1, Proposition 1.3, a normal separated Notherian algebraic stack (over specZ) with affine geometric stabilizers has the resolution property if and only if it is of the form [U/GLd] for quasi-affine U. In particular, a regular algebraic stack with affine stabilizers is of the form [U/GL^] for regular quasi-affine U if and only if it has the resolution property. This is in the same spirit as the following result which we shall also quote often: Th eorem 6 .1 .1 [START_REF] Weibel | Homotopy algebraic K-theory[END_REF], Proposition 4.4). Let X be a scheme admitting an ample family of line bundles. Then there is a vector bundle ξ -i ► X and a ξ-torsor f : T -> X such that T is affine.

Prop osition 6 .1 .2 (Multiplicative characteristic classes in cohomological virtual categories on quotient stacks). Consider the cohomological virtual category W considered as a Picard ring fibered over the category of regu lar algebraic stacks with the resolution property and finite affine stabilizers (by the above, necessarily of the form [U/GLd] for quasi-affine U). Suppose we are given a powerseries

OO F = l + ^ a{x1 6 1 + x<Q>[[x]]. t = l
There is then a unique functor θ : V -► W, up to unique isomorphism, such that:

(a) Θ is a determinant functor V -> W*. (b) For a line bundle L on X there exists an isomorphism Q(L) = F(L-1),
which is well-defined by virtue of point [START_REF] Fulton | Intersection Theory[END_REF] of Proof. As for existence, we first recall the formalism of Hirzebruch polyno mials. Let R be a Λ-ring and denote by 7 the corresponding 7 -structure (c.f.

[WF85], chapter III). Suppose that φ(χ) G 1 + xi? [[x]]. We can associate multiplicative maps Μφ{χ) : R -► R as follows. First, for u a line element, we simply define Μφ(η) -φ{η -1).

If e is a sum of line elements it*, we set

Μ Φ(ε) = Π Μ*("ί)• i
If Wi are independent variables, we consider the power-series for some degree j-homogenous polynomial Hj in the elementary symmetric functions Sk in the W^ Here the Hj are the associated (multiplicative) Hirzebruch polynomials. Now, regular schemes have the resolution property so by [Tot04], Theorem 1.1 they are of the form prescribed. Let X be a regular scheme, R = K0(X)q and φ = F. The associated H f and Mp define homomorphisms Ko(X)q -► Kq(X)q functorial on the category of regular schemes. By rigidity they define functors, which we denote by Hj : W and M :W -»• W, such that for a line bundle L on a regular algebraic stack, Hj(L) = a,j(L-l)j and M(L) = l + Σ ^ι ca(L-l)k. This sum is again well-defined by point ( 7) of Theorem 4.0.8. Rigidity also implies that for a sum of virtual bundles u + v on an algebraic stack X, there is a canonical isomorphism Hj(u

+ v) -> • Σ Hiiu) ® Hi-j(v) in It follows that there is an isomorphism M(u + v) -► M(u) ® M(v) in W(X)
* and thus Θ defines a determinant functor by the composition V(X) -> W(X) -* ■ W(X)* and it is functorial by construction and satisfies the conditions of the theorem. We are left to establish unicity. Suppose X -[U/GLd] is a regular algebraic stack with quasi-afline U. By the splitting principle it is sufficient to verify that the object S(L) in W(X) is uniquely determined. The trivial bundle on U is then GLd-equivariantly ample and there exists a GL^-equivariant locally split monomorphism L C Or for big enough r. This defines a section i : X -* to the natural projection p : -> • X and L = i*0( 1) = Li*0( 1). Since the algebraic stacks have the resolution property we can apply the functor Ri* and we then have an isomorphism

R%Q(L)----------Ri*Li*®(0( 1 ))----------Ri.(Ox ) ® θ (0 (1 )) RUF{L -1 )-----RnLi*F{0{ 1) -1 )----^ Ri,(Ox) ® F (0 ( 1) -1)
Since Rp*Ri* = id the isomorphism Q(L) -> F(L -1) is determined by the isomorphism Θ(0( 1)) -> F(0{ 1) -1) on PJ. However, 0(1) on P^. is the pullback of 0 (1 ) on Pg via the unique (in general non-representable) morphism X -> spec Z and this isomorphism is tautologically rigidified since W(Fj) -V (P 2 )q doesn't have any non-trivial automorphisms. □

ΜΦ(Μ = Σ ί

Any class constructed in the above fashion will be called the associated multiplicative class to the given data. We now harvest the following corollary of the previous proposition. C orollary 6.1.3 (Bott's cannibalistic class). Let X be a regular al gebraic stack with finite affine stabilizers of the form [U/GLd] for a quasi-affine U.

• For k > 1, there is then a unique Bott-element 9k ' ■ V(X) -> W(X)
which is k times the associated multiplicative class of the polynomial

F(x) = A:_1( l + (x + 1) + (x + l ) 2 + ... + (x + l ) fc_1) G 1 + Q[x].
• Suppose that v is a virtual vector bundle of rank r. Then 02 (-v) is equal to

1 ( Λ v -r t (v -r ) 2 -7 2(u -r) {v -r )z -2η2(υ -r)(v -r) + ηζ{υ -r) ¥ V 2 4 8 modulo FWW{X) \
Proof. This is all contained in the preceding proposition, except for the last point which is a direct calculation of the relevant Hirzebruch polynomial. □

An explicit functorial Lefschetz formula for cyclic diagonal actions

In this section we recall and formulate the Lefschetz-Riemann-Roch theorem of [Tho92] (in particular, Theoreme 3.5) for regular schemes with the action of cyclic diagonalizable group (see below), and make it functorial. Recall that a regular scheme is to be understood as Notherian, separated regular scheme. Let S' be a connected separated Notherian scheme, and T = spec S[M] a diagonalizable group of finite type determined by an abelian group M. By [START_REF] Colliot-Thélène | Conjectures de type local-global sur l 'image des groupes de Chow dans la cohomologie étale[END_REF]. Given a T-equivariant S'-scheme X, we denote by i : X p -► X the fixed-point scheme of X under Tp-Theorem 6 .2 .1 ([Tho92]). Keep the above assumptions and assume in ad dition that X is a regular scheme.

(a) X T is also a regular scheme.

(b) For any prime ideal p ofZ[M], we have an isomorphism of localizations atp, i . : K t(Xp,T)(p}~K ,(X ,T ){p). (c) If

Ni is the normal bundle to i : X p -► X , the inverse to i* is given by (λ-χ,/ν^) -1 ® i* (part of the statement is that A_i(AT>/) is invertible in Ka(X' ,T)w).

(d) Suppose that Y is also a regular and T-equivariant S-scheme with j : Y p ->Y and that f : X -* Y is a proper T-equivariant morphism with induced morphism f : X p -* Y p, then we have the formula

R l . ( T ) = R f . ((λ-ι f ' N j ) ® ίλ-ιΛ'/)•1 ® U 'T ) in K,(Y»,T)M.
We digress for a short moment on the following case. Suppose M = Zr ®Z/n and T = Ds(M) =

x μη, a '' cyclic diagonalizable group" (com pare [Tho92], Remarque 1.5 and [Seg68]) and let X be a finite-dimensional connected regular S'-scheme with trivial T-action, and L a line-bundle on X with no trivial eigenvalues by the action of T. That is, L is given by a line bundle L0 and a grading A G M\ 0. Let Φη be the n-th cyclotomic polynomial and ρ = pr • ker[Z[M] = Z [T0,TU.. .,Tr]/(T£ -1) Z [T ,T i,... ,ΤΓ]/(Φ")] where the homomorphism is the canonical one. Then Kp = 0 so X p -X T and we can verify directly that the element 1 -L is invertible in Kq(T, X)(p). Indeed, first we see that when Lq = 1 is the trivial bundle, 1 -A is invertible since it is not zero in Z [M ](p)/p which is just the field Q (^n) ( x i , ..., xr), the function field of the n-th cyclotomic field with r independent variables. Then, we calculate, Ko(XT,T)(p y .

1 _ 1 1_________ 1 1 -XLq 1 -A + A -AL0 1 -A 1 -A/ (1 -X)Lo -ϊ ^λ Σ ( γ ^)
an additive functor from V(X) to the Picard category V(X,T)*p^ of in vertible elements and for a vector bundle E = ®\eM,x^oE\ with no triv ial eigenvalues for the action of T, A_i(J5l) = ®\eM,\^oA-i(E\) = Λ_ι(E). Now, returning to the case of a virtual bundle u = we put Λ_ι(μ) = ®λ6Μ,λ^ολ-ι(ΐίλ)• And thus for the same vector bundle we propose the element λ _ ι ( £ ) -1 = Λ _ ι(-E). Next, we show that this constructed class is unique. By the splitting prin ciple we can suppose that E is a line bundle. The scheme X is regular and thus has an ample family of line bundles (c.f. [P71], II 2.2.4). The argu ment of [START_REF] Weibel | Homotopy algebraic K-theory[END_REF], Proposition 4.4 then provides us with a T-equivariant torsor spec R ->X under a T-equivariant vector bundle, which can be chosen with trivial T-action. Then spec R is regular and

V(T, X)(p) -► V(T, spec R)(p)
is an equivalence of categories so we can suppose X is affine regular. But then the trivial bundle Οχ is equivaxiantly ample and choosing a surjection On -» Ly we obtain that L = i*(0( 1)) for a section i : X -► to the natural projection p : Ϋχ -► X. Then Ri*(A-i(L\)) = Ri*Li*A-i(L\) = Ri*Ox<g>A-i(G(l)\) and Ri* is faithful by virtue of it having a right inverse Rp*. But A_i(0(1)a) is the unique pullback of A_i(0(l)>) on P^ and in this case V (P z,T)y,) has no nontrivial morphisms and the objects A _ i(± 0 (l)> ) are uniquely determined. □

Let X be a regular T-scheme and denote by X T = \X\ and suppose that -► X is a closed regular immersion. Assume in addition that the square

\X\ /' \y\ Ιγ X Y
is Cartesian. First, also suppose that / is a closed regular immersion. We obtain a surjection NX/Y -» and the kernel is the excess bundle E. By [Ful98], Example 6.3.2, we also have a surjection -» N\XyX whose kernel is also E. Hence we obtain the formula

A-i(A^|y|/y ) = A-iiVpq/^ < S > A~\(E)
and since N|y|/y and N^XyX have no non-trivial eigenvalues for the action of T so that

X.^E) = ( λ -, Λ , ν )-1 ® A -. W | , K)
where the (X-iN^x yx )~l is defined as above. Via the projection formula we immediately see that the Lefschetz-formula above takes the form of an excess intersection-formula, valid without any localization. Note that since X is regular it has the resolution-property, and by [Tho87b] it also has the T-equivariant resolution property so the excess-formula of Theorem 5 .1.2 can be applied to stacks of the form [X/T\ and it is clearly valid after localization.

In the rest of this section we put together the already constructed iso morphisms to obtain a functorial Lefschetz-formula. Fix T a cyclic diago nalizable group of finite type (i.e. of the form Ds pecz(Z r 0 Z/n). Let X be a T-equivariant regular scheme, and denote by |X| the fixed point set ix : \X\ -► X of the action of T, and write αχ for the class Α _ι(Α Γ |χ|/χ) in V{X, T)(p). Denote by Lx : V(X,T)^p' ) -» ■ V(\X\,T)(p ) the functor x i -► q ^•1 ® Li*x x where αχ1 is the class constructed above. Then Lem m a 6.2.3. Let X be a regular T-scheme for a cyclic diagonalizable group. Then there are natural equivalences of functors LxRi* = id and Ri*Lx = id. Moreover, for q : X ' -> ■ X with induced morphism |g| : |X'| -> |X| there is a natural isomorphism Lx>Lq* = aX'/XLx \ q \ * for α.χ'/χ = A-i(ker[iVpq/X -» TV|^-,|/X,]).

Proof. By Corollary 5.1.3, there is a self-intersection formula Li*x R i x = αχ and thus naturally aj}Li*x R i x = id. By Theorem 6.2.1, Ri* induces a bijection on automorphism-groups and surjection on objects and is thus an equivalence of categories and to exhibit a natural isomorphism R ix^Lx = id it suffices to establish R ix^L xR ix^ = R ix *. We can construct such an isomorphism using the isomorphism Li*x R ix tir = αχ already established. Given q : X ' -* ■ X , then αχ'/χαχ1 = a^}, and we thus define the isomorphism in the second part of the lemma. □ C orollary 6.2.4. Given a proper morphism f : X -*Y, there is a canonical isomorphism of functors T / : R\f\tLx -► Lyi?/*.

Proof. Apply the above explicit equivalence of categories to the composition of functors R\f\*Riy^ = Rix^Rf*. □ Given a projective morphism f : X ->Y and any morphism q \Y' ->Y, both in ϋΗχ, there is the question of how the just established isomorphism transforms under base-change. Consider the cube ix, with commutative squares. Since the cube is not transversal in the sense of Theorem 5.1.2 we cannot directly apply the functorial excess-formula to calculate this. We proceed as follows. For a projective morphism f : X ->Y in ΰ\τ we can define the cotangent complex which is a two-term complex of equivariant vector bundles canonically determined up to canonical quasi isomorphism, Lx/y = Lf. If / is a closed immersion Lx/y = [N -0] for N the conormal bundle and if / is smooth

Lx/Y = [0 -> Ω χ / y j .
For a composition of projective local complete intersection morphism X Y -2+ Z there is an exact triangle

L x /y -> L y /z -> Lx/z -> Lx/Y[ 1]
(c.f. [P71], V III, 2, the arguments are easily made equivariant). In the above setting, we obtain exact triangles whereas E' is represented by a complex whose X -i(E ') = aE< can be defined by A_i(L|x|/|y| -L\Xi\ / \ y > \ ) which is seen to be well-defined. Moreover, using excess and the isomorphism ix^Lx = id one constructs an isomorphism

R\f\.{ctE' 0 V " * ) = Lq"*R\fU (6 .1) and by functoriality we have an isomorphism αγ>/γ 0 Χ -ι(Ε ) = αχ</χ ® Λ_ι (E f). We then have two isomorphisms

Lq'"*Ly R/* = <Χγ>iy LyiL c [ R f * = ayyyLy/.R/'(A_i(.E') 0 Lq*) (6.2) Lq"'*R\f\>Lx = R\f%{aE'® L q "* L x ) (6.3) = R\f'\*(oLE' 0 Οίχι/χ 0 Lx>Lq*) = R\f\*(X-i{E) 0 Q -γι jy 0 L x 'Lq*) -ocY//YR\f\*Lxi(X-i(E) 0 Lq*))
Prom the definition it is not difficult to verify that these two isomorphisms are compatible with the isomorphisms Lyi?/* = R\f\*Lx and L y R fl = R\f\*Lx>. The theorem is that these properties essentially characterize the Lefschetz-isomorphism:

Th eorem 6.2.5 (Functorial Lefschetz-Riemann-Roch for cyclic diagonalizable groups). (b) Stability under base-change in IKr/ if q' : Y' -> Y is an equivariant morphism such that q : X ' -> Y ' is also in the isomorphisms (6.2) and (6.3) intertangle to give a commutative diagram:

Lq"'*LYRf* -J f Lq'"*R\f\*Lx (6.2) ocy/γLy>i? / '(A _ i(F ) ® Lq*)

(6.3) L/' aYt/YR\fULx l(X ^(E )® L q * ) (c) Suppose Z

is also in and h : Z -+ Y is closed regular immersion T-equivariant immersion and f : X -► Y is a morphism

whose image is disjoint with that of Z. Then both sides o/T/ are canonically trivialized and we require that T respects these trivializations.

(d) The isomorphism is compatible with the projection-formula, i.e. the diagram

R\fULx (u ® L f* v ) R\f\*Lxu < g> L\f\*LiyV R\f\*Lx u® LiYV• LYR f*(u ® Lf*v) LY(R fifu ® v ) commutes.
Remark 6.2.5.1. The proof proceeds as in the case of the functorial excessformula and also follows the corresponding proof for Grothendieck-Riemann-Roch in the unpublished manuscript [Fra], which uses a reduction to the arithmetic case. This in turn is an adaption of the usual proof of [P71] to the functorial situation. Clearly the isomorphism exists in greater generality by Corollary 6.2.4, the stronger statement is the uniqueness-property. It is possible to establish a similar isomorphism for more general diagonalizable groups but one has to introduce a normalization-condition analogous to that of the rough excess-isomorphism in 5.1.

Proof. The isomorphism has already been constructed and the properties follow either from construction or from the discussion. We review its con struction in the case of a closed immersion and a projective bundle projection to possibly clarify the situation. We can assume x is of the form LJ'dk ® O (-k ) for n = rkN. The right hand side is thus isomorphic to, via the projection formula,

Σ R lflx A ^-iiN x )-1 ® Li*xO (-k)) < g> ak). (6.4) k , X
By Corollary 5.1.3, there is a canonical isomorphism of functors L ixR ix<t(-) = Χ-ιΝχ ® ( -) and thus Λ_1(7νλ ) _1 ® Li*xRix = id. Moreover, it is known that Ri\t* is an equivalence of categories. Thus any x is of the form Rix>*y and we deduce the isomorphism βϊΑ,*Λ_ι(Α^λ

) _1 ® Li*xx = A_i(iVA) -1 ® Li*xRix^y = R iXi*y = x.
Applying this isomorphism to (6.4) we obtain Y^kR f* (0 (-k)) ® Ofc. For k > 0, R f* (0 (-k)) = 0 and for A; = 0 , R f* (0 ) = Ό. In general we compose this with the excess-isomorphism for the Cartesian square. For a projective bundle-projection it is also true that E = E' -0 for base-changes. That this respects composition is done exactly as in the case of the excess-isomorphism.

We are left to show that the morphism is unique. We can clearly suppose Y is connected and treat the cases of a closed immersion and projective bun dle projections separately. In the case of a closed immersion it is immediate to verify that all the schemes that arise in the case of a deformation to the normal cone are regular T-schemes so thus we stay in the correct category. The essential point is the trivialization condition (c) to exclude unwanted factors. Then a deformation to the normal cone-argument analogous to that of argument related to the excess-formula shows that we axe reduced to the case of an embedding i : X -► Ρ (N ) for some equivariant vector bundle N of rank n defined by an inclusion L C N for some line bundle N. Let p : P X(N ) -> X be the projection.

Then | P x ( i V ) | = U A € M P | x | ( i V l | x | , *) (loc.cit.
). For a virtual bundle u the isomorphism u -Li*Lp*u and com patibility with the projection formula shows that we are reduced to showing that T i(O ) is uniquely determined. We apply the base-change-property to the Cartesian diagram

\x\ -IIagm lP\x\(N\myX) Ιχ *PX (N)
and see that T i(0 ) is determined by the functor T|<| and hence by T|j|(0 ). Since |Px(iV)| = Π λ€Λί P|x|(-W||x|,a) an(^ we can assu*116 ^ to be connected we can assume furthermore that Y = Ψ\χ\(Νχ) for some fixed A € M and vector bundle N = N\ on \X\ = X with single grading A. We need to verify that the Lefschetz-isomorphism R f*0 -► Rf+O in this case necessarily is the identity. By 6.1.1 there exists a torsor t : spec R -> X under some vector bundle on X which we endow with the trivial action. Then by the affine bundle theorem of [Tho87a] there are equivalences of categories Lt* : V (X ,T ) -> V (spec R ,T ) and thus V (X ,T )(P) -> V (spec i? ,T )(p) as well. Similarly there is an equivalence V (Ψ χ (Ν ),Τ )^ -> V (P s p e c T ) ( p ) and by the base-change-property we can assume that X is in fact affine. Then we can choose a surjection Ot -► N v so that we have a flag L c N C Or which is concentrated on the single grading A. Consider the Grassmannian τ : G -Gr1>n<r -► X of flags L' C N ' C Or on X with U (resp. A^;) have rank 1 (resp. n). Then G is regular, has trivial T-action and the flag L C N C Or defines a section j : X -* G. If C C Af C Or is the universal flag on G, p*j*C C p*j*M similarly define a section j ' : P (N ) -> F(Af) so that we have a Cartesian diagram X -L p (jV ) .

Ϊ G -^ Ρ(Λ0

Then compatibihty with the projection-formula shows that

R j'.r i = R j'.{o x ) ® r i'.

However, R j[ is faithful since Rr^Rjl = id so Τ» is determined by T^. The varieties G and Ψ(λί) are equivariantly defined over spec Z. This shows that Tj/ is obtained by base-change from X -> spec Z so we can assume that X = Z. In this case uniqueness is tautological since G is cellular so K x(G ,T)[p)tq is a free K i(L, T^p^Q-module and (c.f. beginning of this section)

Κι{%>Τ)(ρ)β -K i(Z ) Q [M ](P) = 0 since Κ ι(Ζ ) = ± 1 .
Now, consider the case of a projective bundle projection p : Pγ (Ν ) -► Y for some T-equivariant vector bundle N on Y. Arguing as above, we reduce to the case of Y = |F| being an affine scheme and the case of a virtual bundle of the form 0 ( -i) on Pγ (Ν ). If N = with N\ of rank n\, choose a locally split injection N C Or which restricts to Νχ c Or xx on each grading and consider the Grassmannian G = GrH)r of flags N ' C ®\zm OT \ with N ' of rank n. In a way similar to the case of closed immersions we reduce to the case of the diagram

Ι Ι λ € Α ί ^Γηλ)Γχ(Λ/λ)-----P g (AA) Ι Ι λ ε Λ / ^Γ «λ,»•λ ^Γη,Γ
where Λ/' is the universal rank n subbundle of on G. Again this diagram is equivariantly defined over spec Z and we conclude as before. □

An Adams-Deligne-Riemann-Roch formula

In this section we state and prove a functorial Adams-Riemann-Roch formula. We will continuously work in the category V (X )q of virtual vector bundles on a scheme X, which comes equipped with Adams operations and various other operations (c.f 3.3.1). This coincides with the cohomological virtual category W {X ), and whenever X is regular it also comes equipped with various additional operations considered in 4 which we shall use freely. Also recall that a regular scheme is a separated, Notherian regular scheme. We recall to the reader that one formulation of the Adams-Riemann-Roch formula is as follows (c.f. [WF85], V, Theorem 7.6). Suppose that / : X -* Y is a projective local complete intersection morphism of schemes and that Y has an ample family of line bundles so that any coherent sheaf is the quotient of a coherent locally free sheaf. Also, define Ω/ to be the class of the cotangent-bundle of /, and θ\ t j = where is the unique multiplicative characteristic class in K q(X ) such that for a line bundle L, 6k{L) = 1 + L + ... + L fe-1. Then for any k > 1, we have a commutative diagram

K q( X ) ^-* K o(X )q . Rf* k R f* K 0( Y ) -^K 0(Y )Q
To formulate the functorial version of the Adams-Riemann-Roch formula, re call the following Lemma which is a corollary of Corollary 6.1.3 while noticing that for an regular scheme, W (X ) = V (X )q :

Lem m a 6 .3 .1 . There is a unique family of functors, determined up to unique isomorphism, on the category of regular schemes, stable under base-change, such that for a regular scheme X ek • . v(x) -> K(X)Q such that 0k is a determinant functor P (A ") -> F (X )q and for a line bundle L on X there exists an isomorphism

fc-1 ek{L) = 1 + L + ... + L * -1 = 1 + L + ... + L k-X = Σ ahk{L -l ) j j =o
where ajtk = (J). Now, given a projective morphism / : X -> Y of regular schemes fac toring as X ^ P Y for a closed immersion i and smooth morphism p, define 1(Ω/)ίιΡ to be the virtual bundle 9k(N'/ -ί*Ωρ/γ). We analyze its properties before stating the functorial Adams-Riemann-Roch-theorem. The usual proof in [P71], V III, Proposition 2 .2 , shows that the virtual bundle Ny -i*Vtp/Y glues together to a virtual bundle Ω/ which is independent of factorization . We define := ^1(Ω/) which is an object dependent only on / determined up to unique isomorphism. Moreover, suppose q : Y f ->Y is any morphism such that /' : X ' = Y ' X y X -► Y' is also a projective morphism of regular schemes. Then it is clear from the definition that there is a canonical isomorphism Lq*9^j = θ^, ® Θ^Ε with E the excess bundle of the diagram X ' -----Y ' .

X -----*-Y One deduces from the splitting principle an isomorphism 0kE ® A_x(£?) = Φk(X -i{E )) (6.5) and thus an isomorphism

L q 'e ;} 0 A_!< £ ) = θζ), ® (6 .6 ) 
Finally, for a composition of projective morphisms of regular schemes,

X -> Y Z , there is also a canonical isomorphism eklf = ® L r < t i (6•7) (c.f. [P71], V III, Proposition 2 .6 ).
Th eorem 6 .3 . 2 (Functorial Adams-Riemann-Roch). Suppose f : X ->Y is a projective morphism of regular schemes (automatically a local complete in tersection ), and k > 1 . There is a unique family of functorial isomorphisms : Φ*β/, -i?/*(0*j ® Φ*) (6.8) characterized further by the following properties:

(a) Stability under composition of projective local complete intersection mor phisms: That is, for a composition of projective morphisms

X 1 > γ 1+Z, the isomorphism R in M K lf ® * ' («)) < 6 = β ( 9 / ) . ( β , Γ > £ /* « £ > »*(«)) = R g .(0 £ e Rf.(0;} ®«'(«))) =' R g.K l-*kRf.(u) Φ kRg*RM u) Φ kR(gf)*u i s 1pk,gf• (b) Stability under the projection-formula: That is, the diagram VkRf*(u ® L f * v )----->-R f * % ) ® ® Lf *v)) ΦkRf*{u) < g> Φ *(υ )----> ■ Rf*{0k) < g> Φk(u)) < g> Φk(v)
commutes where the horizontal isomorphisms are given by Φ*.^ and the vertical isomorphisms are given by the projection-formula.

(c) Compatibility with base-change and excess: Suppose q : Y' -► Y is a morphism such that the induced morphism f : X ' = Y' Χ χ Y -► X is also a projective morphism of regular schemes, and denote by q' : X 1 -> X the morphism obtained by base-change, and denote by E the associated excess bundle. Then the diagram

Lq*VkR f .(u )-------- Theorem 5. 1.2 ^R f^X -x iE ) ® Lq'*u) Ψ k,f Lq*^kj ------L q 'R f.(rk) ® y k(u)) Theorem 5.1.2 R f:{X -1(E )® L q ,*(9k) ® V k(u)) Rfi(ej,]k ® Φ *(λ _ι(E ) ® Lq'*u)) R fl{X -i{E ) ® 1 4 % ) ® Φ ^' η) (6.6) Rfi(9j,\ ® Φ * (λ _ ι(£ )) ® Φ ^' ι ζ )
commutes, where the diagonal morphism is deduced from the isomor phism (6.6). In particular, fork = 1 this reduces to the excess-isomorphism of Theorem 5.1.2 and ifq is flat the isomorphism strictly commutes with pullback.

(d) Suppose we are given a closed immersion h : Z -► Y whose image in Y doesn't intersect that of X . Then both Rh*(Oz) ® ΦkRf*(u) and Rh*(Oz) ® R f*(°kl f ® Φ ^μ )) ο-τβ canonically trivialized. We demand that the isomorphism ipkj interchanges these trivializations. We don't require Z to be regular.

Proof. The proof proceeds as in the case of the functorial excess-formula and also closely follows the corresponding proof for Grothendieck-Riemann-Roch in the unpublished article [Fra], which uses a reduction to the arithmetic case. We indicate the necessary changes from the case of the excess-isomorphism. Suppose i : X -*• Y is a regular closed immersion of regular schemes. Given a Koszul resolution built out of s : N v -* Ογ of Οχ, one first defines a rough Adams-Riemann-Roch-isomorphism for closed immersions as follows: Let L be a line bundle on X and C an extension of X to a line bundle on Y . As in (6.5) we have a natural isomorphism 6k(N y) 0 A_i(iVv) ~ 'I'fc(A_1(ArV)).

Then we have an isomorphism

Φki*{L) ~ 0 C) ~ ek(N v) 0 A _iN w 0 £®fe.
This is, by another projection-formula-argument, isomorphic to 2*(#i,fc(-/VjV) 0 Φ kL).

One needs to verify that the deformation to the normal cone-argument can be used to reduce to this case. The same proof goes through with the remark that if X -* ■ Y is a closed regular immersion of regular schemes, then the blow-up of Y in X is a regular scheme with regular exceptional divisor. Indeed, the exceptional divisor is simply Pχ(Ν) so thus regular. It is a regular Cartier divisor in ΒΙχΥ and so forces ΒΙχΥ to be regular (see [AG67], 19.1.1). Thus we stay in the correct category of regular schemes while deforming.

We are left to show that the morphism is unique. A deformation to the normal cone-argument (which is justified by the above reasoning) shows that we are reduced to the case of an embedding * : X -* ■ P(JV) for some vector bundle N of rank d defined by an inclusion L C N for some line bundle L. Let p : P (N ) -► X be the projection. By stability under the projection formula we have a commutative diagram

Ri*{Vk(E ) 0 0iifc) -----R i ^k(Li*Lp*E) 0 9itk) -------Φk(Lp*E) 0 R i ^k) Φk(R itE ) --------------Φk(R i*Li*Lp*E )--------^ Φk(Lp*E) 0 Φk{Ri*Ox )
and thus we can assume that E = Οχ. By Theorem 6.1.1, there exists an affine torsor T -* Y under some vector bundle E on Y, and base-change to this variety is an equivalence of virtual categories so we can assume X and Y axe affine. We loose the assumption that Y = Ψ(Ν) but gain that X is affine. By another deformation to the normal cone argument we can again assume Y = P (N ). Since X is affine iVv is generated by global sections Οχ -> N v for some n and we have an injection N c Οχ. Consider the flag variety G = Grnid)1)X of locally split flags V C N ' C Od, with L' and N ' of rank 1 and d respectively. The flag L C N C O d defines a section s : X -> G to on X. Then we obtain the isomorphism 9k(f*Nv < g> 0( 1)) = 0^(0χ ) ® θΐς(Ωχ/γ) = /c#fc(Qx/y). Thus we want to construct isomorphisms

R f . m r N v ® o ( i ) ) ® o ( -i f c » = ; °...... d _ j .
We need the following lemma:

Lem m a 6. In particular, this result holds as an identity on R = K q(¥ (N )x)q when ever inserting Z = ( 0 ( -1) -1) and Sj = rf(Nd) and by ridigity this lifts to the virtual category. Also, by rigidity there is a canonical isomorphism Fi,k(Z) and 9k(f*Nw ® 0 (1 )) < S > O (-ik ) and we define the Adams-Riemann-Roch-isomorphism as the isomorphism interchanging the two calculations we have done above. By functoriality of the rigidity-construction this isomor phism clearly satisfies all the proposed properties, except possibly the one concerning compatibility of composition of morphisms. We now show uniqueness for f : X = P (N ) -► Y a projective bundle pro jection for some vector bundle N on Y of rank d. By Theorem C.0.20 we can assume u = 5Zi=o f* Ui ® 0 ( -z) for virtual bundles U{ on Y. By ad ditivity and compatibility with the projection formula we can assume that u = O ( -i ) for some i, 0 < -i < d. Again as in the case of a closed immersion we can assume that Y is affine and that we have an injection N C O\ and consider the Grassmannian G r ^y of locally split flags N ' C On with N ' a rank d vector bundle with universal flag λ ί C On. Again, arguing as above one reduces to the case of F(Af) -► Grα,η,γ and then Y = specZ where the statement is tautological. Now, given a factorization / : X A F (N ) Y one defines Φη,/,ϊ,ρ via V'fc.pV'fc,» which is defined by requiring that condition 1 . holds. One needs to go over the same steps as in the case of the excess formula to establish that it is in dependent of factorization and satisfies the conditions of the theorem. They are proved similarly, with one exception: Lem m a 6.3.4. Suppose we are given a Cartesian square

F x (N x ) ^U F Y(N ) X -----!----* Y
of morphisms in of regular schemes with i, i! closed immersions, N a vector bundle on Y, p the natural projection and Νχ = Ν\χ. Then Φη#Φη,ϊ' -

Φίς,ίΦΐί,ρ' •

Proof. This can be done by direct calculation, but we show how to reduce to the arithmetic situation. All functors are compatible with the projection formula so we only need to show that φ^ρφ^ν (u) = φ ^ίφ ^^) for virtual bundles u = 0 ( -i), i = 0 ,1 ,..., d -1 with d being the rank of N. By Theorem 6.1.1 and the properties already established we may assume that Y, and thus X, is affine. Also, a deformation to the normal cone-argument shows that we can suppose Y = FX{M ) for a vector bundle M on X and a Grassmannian argument as in the proof of the main result of section 6 .2 shows we can reduce to the case of a diagram of Grassmannians and reduces to the case of Grassmannians over spec Z in which case the isomorphisms are rigidified. □

The rest of the proof is just like in the proof of the excess formula. We conclude the proof of the Adams-Riemann-Roch theorem. □

Recall that the relative dimension of a local complete intersection mor phism / : X -> Y is the rank of the virtual bundle Ω/ defined at the be ginning of this section. This is locally constant on X. Also, denote by F V i X ) = F *W (X ) and V ( X ) « = W {X )^ where F iW {X ) is part of the filtration of the cohomological virtual category exhibited in 4. This is moti vated by the equivalence of categories V (X )q = W (X ). C orollary 6.3.5. Let f : X -* Y be a projective local complete intersection morphism of regular schemes of constant relative dimension n. Then the morphism Rf* : V (X ) -> V (Y ) restricts canonically to a morphism R f* : F lV (X ) -> F l~nV(Y). In other words, the essential image of F % V (X ) in V (Y ) lies in (the essential image of) F t~nV(Y).

Proof. Denote by pj the composition of V -► V^') y . Then, by Propo sition 4.0.14, any object v € F lV (X ) is equivalent to a sum of the form ^2j>ivj f°r vj € V(X)W. Let P(t) be the multiphcative characteristic class associated to (i -l)/log(£) which exists and is unique by Proposition 6.1.2 and the arguments of Lemma 6.3.1. An application of the splitting principle establishes that for a virtual vector bundle v of rank r, there is a canonical isomorphism '^ΙίΡ(ν)θ^1(υ) = k~rP (v) stable under arbitrary base-change of regular schemes. An application of the above Riemann-Roch theorem to the

virtual bundle v = -Ρ(Ω/) ® Ρ (Ω / )_1 ® v € F lV establishes an isomorphism, putting Vj = ρ^[Ρ(Ω/)-1 ® v] Ψ * β / " (Ρ (Ω ,)® ^) = # Λ (0 *(Ω /) -1® Φ * Ρ (Ω /) ® ^•)

= ^-ηβΛ(Ρ(Ω/ )®^•).

Because the Adams-Riemann-Roch isomorphism is functorial we obtain, by Proposition 4.0.14, a functorial projection of Rf*(v) onto F l~nV(Y). □ D efinition 6.3.5.1. Given a projective local complete intersection morphism / : X -► Y of regular schemes of constant relative dimension n, define /* : y W (X ) -> V ^{ Y ) to be the functor induced by the preceding corollary.

Remark 6.3.5.1. Using this, it should be possible to establish an analogous Grothendieck-Riemann-Roch formula for the " Chow categories" V W (X ), at least for regular schemes. The author has not compared this construction to that of [Fra90] or such a result to the results of [Fra]. This approach should however be analogous to that of [HG87].

Application to Adams-Riemann-Roch transformations

In this section we propose an Adams-Riemann-Roch transformation a la Baum-Fulton-MacPherson-Gillet (c.f. [PB75], [START_REF] Gillet | Riemann-Roch for general algebraic varieties[END_REF]). For a scheme Z, denote by G(Z) = Go(Z )q, the Grothendieck group of co herent sheaves on Z , tensor Q. Suppose that Z is a closed subscheme of a scheme X which is smooth of finite type over a regular scheme S. De note by Kq(X) the Grothendieck group of complexes of coherent locally free sheaves acyclic away from Z and KZ(X) = Kq(X)q. By Poincare duality, Kq(X) = Gq(Z) and KZ(X) = G(Z) via the map sending a complex a representing an element in Kq(X) to its homology in Gq(Z). We will use this implicitly in some instances. If we set U = X \ Z, we can evaluate the quotient-space X/U 4 on the object Z x Gr in Voevodsky's A 1-homotopy cate gory. The result identifies with the fundamental group of the homotopy-fiber BQP(X) -► BQP(U) of Quillen's Q-construction on the category of coher ent locally free sheaves on X and U respectively which is also K Z(X). Using this observation we can also construct Bott-classes and Adams-filtration for the group K Z(X). The cotangent-complex Lx/s is a perfect complex on X and so quasi-isomorphic to a strictly perfect complex, i.e. a finite complex of locally free sheaves, and as such defines an element in K(X). In particular there is an element ^(Z/xys)-1 in K(X). Moreover the Adams operations act on K Z(X) via a unique extension from the case Z = X, by evaluating the Adams-operations Φ* : Z x Gr -» Z x Gr on X/U, which coincides with the Dold-Puppe construction (for the latter construction, if not comparison, c.f. [START_REF] Dold | Homologie nicht-additiver funktoren. anwendungen, Annwendungen[END_REF] or [HG87]). We denote it by Φ | *.

Prop osition 6.4.1. Let Z be a closed subscheme of a scheme X , with X of smooth of finite type over a regular basescheme S. For a positive integer k, and a coherent sheaf T on Z, and a quasi-isomorphism -*• E* for E* a complex of locally free sheaves on X . We define the Adams-Riemann-Roch transformation Proof. Suppose X and X ' are two schemes smooth over S, with closed sub scheme Z . We need to confirm Tz,x(F) = TZ , X ' ( F ) • Clearly Tz,x(-F) does not depend on E * and the choice of quasi-isomorphism. The result easily follows from the Adams-Riemann-Roch theorem for closed immersions of regular schemes while considering the square X 4 considered in Voevodsky's A1-homotopy category. □ z X x5X' X' P rop osition 6.4.2. Fix a regular scheme S, and let Z be a scheme of finite type over S. Then, for any positive integer k, there are natural Adams-Riemann-Roch-transformations

r k z : G (Z )q -G (Z )Q such that: • If f : Y X is a proper morphism, R f*rk = τ£#/*. • If a G K 0(X ) and β G G {X ) then Τχ(α < g> β) = Φka ® Τχ(β).
• If Z is a closed subscheme of a regular scheme X with inclusion i : Z -> • X , then τ| (α ) = 9k(Li*Lx/S)~x < E > Φk(a).

• If f : Y -> X is a projective local complete intersection morphism, then K (X ) r ^K ( X ) ek(nf) r K ( Y ) ^+ K ( Y ) commutes.
If Z is a closed subvariety of X , then Tx (O v ) = [V] + terms lying in the(n + 1 )st weight-filtration ofG(X).

Proof. The extra details not already provided are given in the same way as in the Riemann-Roch theorem of [PB75], [START_REF] Gillet | Riemann-Roch for general algebraic varieties[END_REF] or [Ful98], chapter 18. The essential contribution of the functorial Adams-Riemann-Roch theorem is the formulation of the above theorem in the case of supported if-theory. We leave the precise wording to the reader. □

Mumford's isomorphism and comparison with Deligne's isomorphism

Let / : C -> S be an flat local complete intersection generically smooth proper morphism with geometrically connected fibers of dimension 1 , with S any connected normal Notherian locally factorial scheme. Given a virtual bundle v on C, denote by Af(v) = X(v) = det Rf*v for ω = u>c/s being the relative dualizing sheaf, also write An = det R ffcj®Js. Let f : Cg -> M g (resp. Cg -> A4g) be the universal stable curve of genus g (resp. universal smooth curve of genus g) and let A g = M g \ M g the discriminant locus of singular curves and write δ = O s(Ag) and μ = A f12 ® 5_1. Then we have an isomorphism An = μη(η_ 1 ) /2 ® Αχ (6.9) on M g which is unique up to sign (see [Mum77], Theorem 5.10). One deduces the same formula over a general base for a stable curve. In the case C is regular the corresponding factor < 5 _1 is related to the conductor of the curve (see [Sai8 8 a]). In the case C is non-regular (with the same hypothesis on S) an unpublished result of J. Franke as a consequence of his functorial Riemann-Roch in [Fra] establish a formula of the "discriminant" as a localized Chern class.

The classical proof (see [Mum77], loc.cit.) in the stable case is a simple calculation using Grothendieck-Riemann-Roch and the facts for any 3 6 N, we have that (a) the Picard-group of the moduli-functor of smooth curves is torsion-free.

(b) H °(M g,z>Gm) = ±1 (c.f. [MB89], Lemme 2.2.3).

We show that our formalism and Adams-Riemann-Roch theorem restricted to dimension 1 implies a version of these results. It should also be noted that the context is greatly simplified by the assumption that we tensor with Q.

In particular, inverting 2 eliminates sign-considerations which are without a doubt the greatest obstacle to obtaining integral functorial isomorphisms. D efinition 6 .5.0 .1 . Henceforth " / : C -> S is a curve" is to be as above, with the additional hypothesis that C and S are regular. D efinition 6 .5.0 .2 . (Compare with [Fal84]) Given a scheme X, define ^3ic(X)q to be the Picard category of line bundles on X with isomorphisms, ^ic (X ), localized at Q (c.f. B.0.14.1). This category can be described as follows. The objects are (L , I) with L a line bundle and I a positive integer. Moreover, we have Hornw ) q ((L , 0, (M ,m )) = Jim Hom<pic(x)(L®nm, M®nl)

where the limit is taken over integers ordered by divisibility. Given two line bundles L, M on a scheme X , a Q-morphism / : L -* M i.e. for big enough n, there exists a morphism L®n M®n, up to obvious equivalence.

First a preliminary calculation showing that we obtain a version of (6.9). line bundle (L ,M ) on S. The symbol (•,•) satisfies bimultiplicativity with respect to tensor product and has a cohomological description: if u and v are virtual vector bundles of rank 0 on C, then (see [Del87], 7.3.1);

(det u, det v) = A(u 0 v) (6 .10) and so in particular

(L, M ) = A(L 0 M )\ (L )~1 \ (M )~l \(Oc ).
Using this the discriminant section Δ is equivalent to a rational section (ω,ω) -> λ (ω )® 12 which we shall also call the discriminant section. Given any virtual bundle v on C, define R(v) -(v -Ot q v) -(det v -Oc), one defines Ic/sC2{y) = A(~R (v)).

P rop osition 6 .5 .2 . Let f : C -► S' be a curve. Then there exists a unique canonical <Q >-isomorphism

Ξ : A(7 2(u -rku)) = Ic/sC2(u)
functorial on virtual bundles u on C, such that the isomorphism is compat ible with the trivializations for u a line bundle and such that the following condition A holds: for an isomorphism u = v + w the isomorphism A(7 2( « -rku)) -► Χ (γ (υ -rk u ))® A ((f-rku))(g>(ii;-rkw)))<S>A(7 2(u;-rktu))

is compatible with the isomorphism Ic/sC2 (u) -» Ic/sC2(v) ® (det v, det w) 0 Ic/sC2(w) via Ξ and (6.10).

Proof. The proof is inspired by a reduction to the line bundle technique in [Fra]. Suppose that E is a vector bundle on C. In case E is a line bundle both sides are canonically trivialized and we thereby define the isomorphism. Given a filtration I : (0) C E\ C ... C En-\ C En = E with line bundle quotients E ijE ^i = Li and E = L{. We have an induced isomorphism

7 2(E -n ) ~ £ ( L , -1 ) ® {L} -1) i < j
and thus an isomorphism A( 72(En)) = ^iKj(Li, Lj) and the same re lationship holds for Ic / s ^iE ) (see [Del87] (9.7.9)). We thus obtain unic ity and to construct an isomorphism we only need to show it that is in dependent of the filtration I. We proceed by induction on the length of I. For E of rank 2 , by Corollary 4.0.12 there is a canonical isomorphism j 2(E -2) = 1 -E + det E = -R (E -2) 5 which gives an isomorphism which is compatible with arbitrary admissible rank 1 subbundles of E. We proceed by induction. For any admissible subbundle M of rank 1 or 2 of E we obtain an isomorphism Em ' ■ A ( 7 Let R be a discrete valuation ring, and C -> spec R a curve with special point s and generic point η as above. Let (u, t) be a couple with u a virtual bundle on C with a trivialization t : det -> 1 on the generic fiber. Then the bundle (u, v) has a canonical trivialization by t on R over the generic point via the isomorphism (u, v) = (det it, det v) = A ((det u -1) < g> (det v -1)). Then for another virtual bundle v on C, we define c f (u, t). Ci(v) to be the order of this trivialization. In a similar vein, suppose that (u,s) is a couple with u a virtual bundle on C with an isomorphism s ' • u\\cv -+ L on the generic fiber with L a line bundle. Then IC^iu) has a canonical trivialization by s on R over the generic point, c.f. [Del87], Proposition 9.4 (ii) or above definition, and we define c%(u, s) to be the order of this trivialization.

The following is a slight extension of Lemma 2 in [Sai8 8 a], to which we refer the reader for an idea of the proof.

Lem m a 6.5.4. Let X be a regular scheme and Z an effective divisor of X with complement U. Suppose we two strict perfect complexes E ,F on X , and a have a quasi-isomorphism t : E\u -► F\u over U. Denote by deti the corresponding rational section of the line bundle Homo* (det E, det F ) , and d iv i its divisor. Then the bivariant class c^z {E -> F)D acts as the intersection class C H j(X ) -> C H j_i(Z ) given by simply restricting along d ivi.

C orollary 6.5.5. The class Ci(u,t).Ci(v) defined above coincides with ci,Ca(det u, det t).c\(det v) Π [X ].

Proof. This follows from the above description and an application of Riemann-Roch for singular curves (on the special fiber) as in [Ful98], Example 18.3.4. □ Lem m a 6.5.6. Keep the assumptions and notations of the above defini tion. The cotangent sheaf Ωο/s is a line bundle on the generic fiber and thus /6 ,2(Ωσ/5) is canonically trivialized over the generic fiber. With this trivialization we have c^i^lc/s) = C2CS (^c/s)j the associated localized Chem class (c.f. [Blo87], section 1).

Proof. First of all, 7 2(Slc/s -1) -A2n C/S, where A2 denotes the A-operation on the virtual category, so that X2Qc/s is trivialized over the generic fiber. By [START_REF] Mumford | Stability of projective varieties[END_REF], Proposition 2.3 the alternating lengths of the cohomology of A2(Qc/s) is C2C3(^C/s)■ It follows that the order of the above induced triv ialization of det β / »(7 2(Ω(^/5 -1 )) = det Rft,(X2Clc/s) is c2cs(^-c/s) 

A Deligne-Riemann-Roch formula for the Determinant of the cohomology

As before, given a virtual bundle v and a proper perfect morphism f \ X ->Y then A(u) = deti?/*(u).

T h eorem 6 .6 . which is compatible with the Deligne-isomorphism up to torsion. Remark 6 .6 .1.1 . A word of caution is in place. We haven't actually con structed classes 6J2 etc for the virtual category of vector bundles on any stack. The bundles A(6 j2 <g) Φ2u) etc. in question refer to the bundles one obtains by smooth descent from the case of a regular scheme, in which case it does make sense.

Proof. By descent we can suppose that S is a regular scheme. Rigidity provides us with, for a virtual bundle u of rank m, a canonical and functorial isomorphism

Φ2( « ) -m = ( u -m)®2 + 2 (u -m) -2η2(η -m).
We can multiply this out and use that there is a functorial product on the filtration F lV (C ) to cancel out all the terms that are in F 3V(C ). This pro vides us with a choice of canonical isomorphism with the right-hand side of the Deligne-Riemann-Roch theorem, compatible with base-change and sums.

We verify that it is unique. This is an argument given in [Fra] which we re consider here (more or less verbatim). Given any functorial isomorphism as above the lack of compatibility with the Deligne-isomorphism for a virtual bundle u is given by an element θχ/γ{η) £ H°(S, Gm)<Q which is stable under pullback of smooth curves, as well as isomorphisms and sums of virtual bun dles. Locally on the base S the virtual bundle u is a sum of line bundles, so we can assume u is a line bundle. To show that Cx/y(L) = 1 we can assume S is the spectrum of an algebraically closed field. Given a line bundle of degree d it is the pullback of the universal degree d-bundle Vd of C9^ -*• P9 id, moduli of genus ^-curves with a given degree d bundle, thus constant. We remark that Pg^ is smooth over M.g and thus regular since M.g is smooth over spec Z. Thus we are given universal constants (cdi9) e H °(M g,G m)q on M g which are 1 by virtue of the fact that H°(M .g, Gm) = ± 1 . □

A conjecture of Kock for the determinant of the cohomology

We recall the setting of [Koc98] in the special case of K 0. Let S be an sep arated Notherian scheme and G a flat separated finite type group-scheme over S. Suppose we are given a G-projective local complete intersection morphism f : X Y of G-equivariant schemes such that on Y any Gcoherent module is the quotient of a locally free G-module. Denote by K (X ,G ) the group K o(X ,G )q of G-equivariant K -theory of vector bundles of X tensor Q. Then the method of Proposition 3.1.2 furnishes a pushforward Rf* : K (X ,G ) K (Y,G ). D efinition 6 .7.0.1. Fix a G-equivariant factorization / : X h P y (£ ) A Y for some vector bundle S on Y and denote by Ω the sheaf of relative differentials of P (£ ) -> Y. Let d be the rank of 8 and denote by K (Y ,G ) the ring K(Y, G )q completed at the ideal generated by elements of the form λ

1 ( ί ) -< ί , λ 2(£) λ •< ( £ ) -1 .
Then the following is proved:

P rop osition 6.7.1 ([K5c98], Theorem 4.5). The Bott element θ'^1 := 9k(Nii*Q) ( defined as before) defines an element in K (X ,G ) <3>k (y ,g ) K (Y ,G ) and for any k > 2 there is a commutative diagram

K {X , G ) --------K {X , G) ® *(y |G ) K{Y, G ) . Rfm R f * k {y , G)-------si------► κιχ, g)
We recast it in the following way to provide a formula for the first Chernclass of the cohomology, or equivalently, the determinant of the cohomology. Let / : X -► y be a representable proper local complete intersection mor phism of separated Notherian algebraic stacks with the resolution property and with smooth groupoid representations [p, q : R =$ X ] and \p',q': Rf Y] respectively, with induced morphisms g : X -> Y,h : R -+ R', and consider the following two " determinant of cohomology" -functors. First of all, given a vector bundle E on X, one pushforwards to obtain a perfect complex Rf*E on y, and then apply the determinant to obtain the determinant of the cohomology, Xi{E), considered as a linebundle on y. On the level of in groups this corresponds to the homomorphism K (X ) ^ K{y) ^ Pic(^)q, where the pushforward is the one exhibited in [Koc98] for quotient-stacks and Proposition 3 .1.2 in this text, and the last homomorphism is the deter minant homomorphism. In a different vein, consider the same vector bundle E, and consider the perfect complex Rg*E on Y. Since one has the rela tion det Lq* = q* det, the base-change-isomorphism equips the determinant det Rg*E with descent-data with respect to R' =4 Y, thus we obtain another linebundle λ2{E) on y. The main observation of this section is that in the above setting, descent commutes with pushforward: Lem m a 6 .7 .2 . There is a natural equivalence of determinant functors Αχ ~ λ2, and we denote both by X := det i?/».

Proof. The proof is just unwinding the definitions. The definition of Ai is obtained by choosing an β -equivariant ^«-acyclic resolution E -► F, and then applying g*, and finally the determinant functor. The descent-data for g*F for acyclic F is given by the base-change-isomorphism, so that the following diagram is commutative

Lpf*Rg*E----»-R K L p *E ----Rh*Lq*E------^ Lq'*Rg*E p'*g*F----------K p * F ----------K q*F ----------q'*g*F
in the derived category of perfect complexes on R'. The upper line is given by a quasi-isomorphism composed by smooth base-change and descent-data, whereas the lower one is an isomorphism given by ordinary smooth basechange and the vertical maps are the natural quasi-isomorphisms. Apply ing the determinant functor to the perfect complex Rg*E transforms quasi isomorphisms to isomorphisms and derived pullbacks to pullbacks and thus provides us with descent-data of Rg*E. This is the definition of Λ2 and provides us with the requested equivalence of functors. □

Notice that Ai defines a determinant functor from the category of vir tual vector bundles on X admitting a /.-acyclic resolution, whereas Λ2 is defined on the category of virtual vector bundles on X admitting ^.-acyclic resolutions on X. Pic(Y, G). Also, by the usual equivalence of the Adams-Riemann-Roch and Grothendieck-Riemann-Roch theorem one ob tains expressions for the Chern-classes and the corresponding equivariant Grothendieck-Riemann-Roch theorem for the first Chern-class. This is ex ample 5.11 of loc.cit. which is only known under the condition that / is continuous with respect to the 7 -filtration on the if-groups, i.e. if F nK de notes the 7 -filtration on K , then for any n we require that there is an m such that R f*F mK (X , G) C F nK(Y, G) (c.f. [Koc98], section 5).

A P PE N D IX A. A1-HOMOTOPY THEORY OF SCHEMES

The chauffeur held open the door of the car. Lady Dittisham got in and the chauffeur wrapped the fur rug around her knees.

This section is to recall some necessaxy results and and to fix some no tation. In what follows we have but slight extensions of the theorems in the reference-list, and we hope the reader agrees that not spelling out the proofs does not cause any harm. One word of warning though, we have al most completely ignored issues related to smallness of categories. This can be amended by inserting the word '' universe" at the appropriate places.

Denote by Δ the category of totally ordered finite sets and monotonic maps. Hence, the objects are the finite sets [n] = { 0 < 1 < 2 < ... < n } and the morphisms of Δ are generated by the maps

S i: [η -1] -► [n], defined by S^j) = j J.'+ ^ j. < * and d : [n] -► [η -1], defined by o ^j) = | j ' _ ^ *
These maps are the face resp. the degeneracy-maps, and satisfy the usual simplicial relationships ([PGG99], chapter 1 ). If C is any category, we denote by sC or Δ ορ£ the category of simplicial objects of C, i.e. the category whose objects are functors Δ ορ -> C, and morphisms are natural transformations of functors. Let T be a site, and denote by S h v(T ) the category of sheaves of sets on T, and Δ ορ S h v(T ) the category of simplicial sheaves. Note that if we are given a simplicial set E, we can associate to it the constant simplicial sheaf, which we also denote by E, and thus we obtain a functor

Δ ορ Set cor^nt A opS h v(T ).

The standard n-simplices Δ η define thus by the Yoneda lemma a cosimplicial object Δ a °p S h v(T )

n i -► Δ "
and we give the category Δ ορ S h v(T ) the structure of a simplicial category with a simplicial function object h om (-, -) given by hom (A', y) := HomAoPShv(r)(A' x Δ * ,^).

Before continuing, we recall the fundamental lemma of homotopical algebra Th eorem A . 0.4. [[PGG99], II. 3.10] LetC be a closed simplicial model cat egory with associated homotopy-category H, and X , y e ob(C). Suppose furthermore that X ' -» X is a trivial fibration with X ' cofibrant and y ^y ' is a trivial cofibration with y fibrant. Then we have a natural identification hom n^,^) = 7 r 0 (hom (#' ,y)).

An adjoint to the functor Δ ορ Set -* ■ A opS h v (T ) given by X i-> hom (*, X ), which we sometimes write as X i-> |X|. We denote by Ή3(Τ ) the corresponding homotopy-category obtained by inverting the weak equivalences in Δ ορ S h v(T ). To fix ideas, unless explicitly mentioned, from here on S will denote a regular scheme and T a full subsite with enough points of Sch/Ssm the category of S-schemes equipped with the smooth topology 1 , and denote the corresponding homotopy-category by Tis(T). Most often, we will be concerned with the category 9\s of regular iS-schemes with the smooth topology. When S = spec Z, we write ϋΚζ = 9^• Since any smooth morphism locally for the etale topology has a section we can identify the various topoi of sheaves of regular S-schemes with etale or smooth topology or of affine regular S'-schemes with the etale or smooth topology with a " big regular etale S"-topoi. They are given a conservative set of points by regular local strict henselian rings. D efinition A .0.5.1. Suppose T is such that for any X £ ob(T), Αχ is also an object in T. We say that X (Ξ Ή8(Τ ) is A 1-local with respect to T, if for any y £ S h v(T ) the map HomWs(T)(;y x A 1, Λ') -+ Hom^s (7') [y ,X ) is bijective. We say a morphism / : X -> y in Δ ορ S h v(T ) is AMocal if for any AMocal object Z , the natural map D efinition A .0 .6 .1 . We denote the corresponding homotopy category by H (T). Whenever T = Sm/Sms, the corresponding homotopy-category is the A 1-homotopy category of schemes over S defined by loc.cit., but it will not directly play a role in what we do. When the site is T = iHsm, the category of regular schemes with the smooth topology, the corresponding homotopy category is denoted by

We also have natural pointed ana logues. Replacing in all previous definitions pointed versions, we obtain the A^homotopy category of pointed simplicial sheaves H ,(T ) as a localization of the category of pointed simplicial sheaves; Δ ορ S h v(T ).. For two objects (,X , x), (y, y) € 7i.(T) we define X A Y in the usual way as the coequalizer of Xxy,xxy=$Xxy.

For a simplicial sheaf X , we denote by X+ the simplicial presheaf with a disjoint point. The functor X -> X+ is left adjoint to the forgetful functor

H .(T )-> H { T ).

The stable homotopy-category of schemes is stabilized out of the '' unsta ble" one with the proper notion of a circle. As before, let T denote a (small) site with enough points. D efinition A .0 .6 .2 . Let T G A opS h v (T )#. A T-spectra is a set E = (dn, E n)neN of objects in Δ ορ S h v (T ). with morphisms dn : T A Era -► En+1.

A morphism of T-spectra / : E -> F is a set of morphisms f n : En -> F n such that the diagram commutes T Λ En ----*■ En+i .

T AFn---► F n+i D efinition A .0 .6 .3. Let E be a T-spectra, and denote by Ω χ (-) = Ω (-) = i?H om (T,-) the total derived functor (in Ti.(S )) of the right adjoint to T A -. We say that E is a Ω-spectra if for any n the induced morphism En -► Ω (Ε η+1) is in fact an isomorphism. We can naively construct " a" stable homotopytheory by taking the category of Ω-spectras with respect to T = (P 1, oo), and denote it by SHnaive(T), and giving morphisms E -► F by morphisms En -> Fn in Ti,(S) for any n such that the obvious diagram commutes (c.f. [Rio06], Definition 1.124). D efinition A .0.6.4. Let be a morphism / : E -► F of T-spectras. Then / is a projective cofibration if /o is a monomorphism and for any n > 0 ,

T Λ F n \J E "+i -+ F n+i Τ Λ Ε η
is also a monomorphism. Its an A x-projective fibration (resp. A 1-projective equivalence) if every map f n is a A 1-fibration (resp. A 1-weak equivalence).

Th eorem A .0.7 ([Rio06], Premiere partie). Let T = (P 1, oo). The cate gory of T-spectras equipped with projective cofibrations as cofibrations, A 1projective fibrations as fibrations and A 1-projective equivalences as weak equiv alences is a closed model-category.

We define the following as the stable homotopy-category of T. D efinition A .0.7.1. Let T = (P 1, oo). Then the stable homotopy-category S H (T ) is the full subcategory, of the corresponding homotopy-category, of Ω-spectras. D efinition A .0.7.2 . For a fixed scheme S, let Gr^r be the Grassmannian of locally free quotients of rank r of Og+T viewed as an object of Shv(T). Notice that Gr^r ~ Grr^. Let T be a locally free sheaf of rank r. We have natural morphisms Gr^r -► Grd+1)T. and Gr^,. -► Grdir+1 by sending φ : Od+r -» T to Od+r+1 T and Qd+r+l % f φ Q respectively. We denote by Gr^ = lim _ Gr^,. and Gr = lim _ Gr^ for these maps. Here the direct limits are taken in S h v(T). Since all things here naturally pointed (by Grd,o for any d), we also obtain a pointed element Gr € H ,(T ). Notice that Fd = Grdil ~ GriiC i and denote by P°° = Gri.

By the method of [Rio06], Definition III. 101, it is possible to define a sheaf (Z x Gr)[^] and (Z x Gr)Q with a natural morphism Z x Gr -> (Z x Gr)[^] and Z x Gr -► (Z x Gr)Q. In a similar fashion to loc. cit., to lax notation first put Gr^r = Grd+r,r so that Pd = Grd+1,1 and define a morphism πια^ : QTd,i Qr^°.i by sending a surjection p : Od -» C to p®" : (Od)®a -» £®a. One verifies the relation --------------------------------Gr ' G r d + i , i ------------------------G One of the main observations of [W 99] is the following theorem, which states that algebraic if-theory is represented by an infinite Grassmannian. The version presented below is proven in exactly the same way as in the article in question, with the exception of using smooth descent for rational if-theory instead of Nisnevich descent. Note that since any smooth morph ism locally for the etale topology has a section we have etale descent whenever we have smooth descent, and in the former case the statement we are looking for is [RT90], Theorem 1 1 .1 1 ; Th eorem A .0 . 8 ([W 9 9 ], Theorem 4.3.13). LetS be a regular scheme. Then we have canonical functorial isomorphisms H om ".(O Ts>,")(S "A A :+ , (Z x G r)Q) = Hom "(,ls" j ( ; r , n '>(Z x G r)") K n(X )Q for X a regular S-scheme, where K n refers to Quillen's K-theory defined as above. In particular, we have an isomorphism

Homw(* S sTn)(X , (Z x Gr)Q) ~ K 0(X )q.
Proceeding as in [Rio06], Chapitre III, one constructs a product (Z x Gr)Q Λ (Z x Gr)Q -► (Z x Gr)Q in H.(9is,am)• P rop osition A . 0.9. Consider the natural map t : P 1 -> {0 } x Gr -► (Z x Gr)Q. Then the data E = (E*, di) defined by Ej = Z x Gr and the product d i:

P 1 Λ (Z x Gr)Q (Z x Gr)Q Λ (Z x Gr)Q -> (Z x Gr)Q
is a naive spectrum, which we denote by K naive.

Proof. We need to show that the natural map (Z x Gr)Q -► i?Hom .((P1, oo), (Z x Gr)<j) is an isomorphism. However, this follows from the fact that for any 5-scheme X , the map

K n(X ) ^{ye K M ) , oo*y = 0 G K n(X )}
given by x i-»• x S u, where u = 0(1) -1, is bijective, which in turn is a consequence of the projective-bundle-formula for K-theory. □ Notice there is an obvious forgetful functor

S H (T ) -SH naive(T).

There are a priori several liftings of the naive spectrum constructed above representing algebraic K -theory, and we make the following definition: D efinition A.0.9. Let S' be a Notherian, regular scheme. By the Yoneda lemma, we have a functor Φ : T -> S h v(T ) -► Δ ορ S h v(T ) -> H{T).

If G is any object of Ή (Τ), we denote by φΟ the presheaf on T defined by

T 3 U i -► Horner) (ΦΙΙ, G).
In particular, we have an isomorphism φ(Έι x Gr)<j K o( -)q.

Th eorem A .0 . 1 1 (Theoreme 111.29 in [Rio06]). Let S be a regular scheme. Given two (pointed) presheaves T , Q on 9^5 denote by Hom^°p get (^, Q) (resp.

Horn, tjfp Set (!F, Q)) the set of (pointed) natural transformations from T -> Q.

Then the natural morphism

Hom W(tKS j!m ) ( ( Z x Gr)Q, ( Z x G r)Q ) -»• R om ^p Set(K 0(-)q, K 0(-)q ) (resp. Homtt.(tKS)37n)((Z x Gr)Q, (Z x Gr)<j) -* Set(K 0( -)Q, K 0( -)q))
is bijective.

Th eorem A.0.12. [ Theoreme IV.72 in [Rio06]] We have a natural decom position in terms of ''Adams eigenspaces",

B G L q ~*) ALAL ie z
In S H ffis)•

Since the above theorem will play a crucial role, we will mention the highlights of the proof. First, put

P» = ^l o g "(l + tf)€Q [[t7]],
and

J 2 ^nP n = { l + U ) k = Ψ*.
This element will play the role of the k-th Adams operator. Let A be an abelian group and define the operator Ω on A [[i7]] by the formula and by Aa the following inverse limit: Consider the characteristic function π* associated to {z } viewed as an element Qz . It corresponds naturally to the element (pi+n)nen in hmQn (where we put pk = 0 for k < 0). They naturally define an orthogonal family of idempotents in Endsft(s)(BGLQ). S7i(d\s) being an pseudo-abelian category, we can consider the image of and we denote it by H ^. It is formal that Φ* above acts as multiplication by k1 on .

..Λ a[[u]]-

C orollary A.0.13 ([Rio06], Corollaire IV.75). We have a decomposition

Ki(Xh = @ K i(X)'J\ je N D efinition A .0.13.1. Let C be a closed simplicial model category, and sup pose that X is an object of C. Given a fibrant replacement X -► X ', consider the functor Vx taking an object X of C to the fundamental groupoid of hom (X, X'). This is independent up to unique isomorphism of the choice of fibrant replacement by abstract nonsense. We call Vx the associated cate gory fibered in groupoids over C. A 1-and 2-morphism of categories fibered in groupoids over C is the standard one and we denote by Hom/(V*, Vy) the set of 1-morphisms Vx -► Vy strictly functorial with respect to pullback.

Very often, these groupoids have the structure of Picard categories and they form Picaxd categories fibered in C. Recall from [Fra91], 3.6 that a Picard category fibered over C, P, is, for every object X of C, a Picard category Ρχ and for every morphism X -» Y an additive functor Ργ -> Px compatible with composition in the obvious sense. The following proposition is formal, and is surely known in more generality: P rop osition proof of [Rio06'], Chapitre III, section 10] Let T be as above and consider the category of pointed or unpointed simplicial (pre-) sheaves on T. Suppose X and y are objects thereof, with X cofibrant and y fibrant, with associated fibered categories in groupoids Vx, Vy, and suppose that • HomW(c)(A',n ;}') = 0.

• hom (A', }>) is an H-group.

M = Z r, Ds(M) =

and when M = Z/m, Ds(M) = ts-Recall that a split reductive group-scheme over a basescheme S' is a smooth affine 5 -groupscheme with geometrically connected fibers that are reductive groups and with a split (i.e. diagonalizable) maximal torus (c.f. [AG70c], X X II 1.13, X IX 1.6 , 2.7). These groups are uniquely defined over Z (c.f. [AG70c], X X V 1 .1, 1.2, X X III 1 .1).

Lem m a B.0.15 ([AG70a], Proposition 4.7.3). Let D be a diagonalizable group corresponding to a finitely generated abelian group M, and let X be an S-scheme with trivial D-action. Then there is a natural equivalence between D-equivariant vector bundles on X and the category of M -graded vector bun dles.

C orollary B.0.16. Let D ,X , S be as in the previous lemma. Then if[X/D] denotes the quotient stack, there is a natural equivalence of virtual categories

V{[X!D]) = V(X,D) = xmsMV(X).

In other words, a D-equivariant virtual bundle on X is diagonalizable. D efin ition B.0.16.1. Let G be a split reductive or diagonalizable group over specZ and denote by R(G ) = K 0(Z ,G ) the representation-ring of G, i.e. the group of representations of G over specZ. Suppose G acts on an algebraic space X and denote by [X/G] the quotient stack. If p is a prime ideal of R (G ), let S = R \ p. Then S acts on V([X/G}) = V (X , G) and we define the locahzation V (X , G )(p) to be the localization with respect to this set.

C. ALGEBRAIC STACKS

In this section we recall the theory of algebraic stacks. It is neither selfcontained nor complete, and we refer the reader to for example [GLOO] or [DM82] for more exhaustive treatments. Recall the following notion of an algebraic space over a base-scheme S ([GLOO], definition 1 .1). This is a sheaf on the category of affine schemes over S equipped with the etale topology coming with some additional algebraicity conditions.

We recall the following definitions (see Definition 3.1 and Definition 4.1,[GLOO]): D efinition C .0.16.2. A pre-stack over S, or S-prestack, is an category X fibered in groupoids over (Aff /S)et such that (a) The set of isomorphisms is a sheaf.

It is furthermore a stack, if (b) For any covering (cpi : Vi -> U) ) in (A f f /S)et, any descent datum (xi, fa ) relative to this cover is effective, i.e. X is a sheaf of groupoids. More generally, for any site C, a stack on C is to be understood as a sheaf of groupoids.

(c) ([GLOO], Definition 3.10.1) A morphism of stacks F : X -> y is said to be representable (schematic), if for every U G (A ff/ S ) and y : U ^ y, the morphism Fu ' ■ X ><F,y,y U -► U is a morphism of 5-algebraic spaces (5-schemes). Furthermore, given a property P of morphisms of algebraic spaces X -> Y , stable by base-change Y' -> Y and is local for the etale topology on 7 , we say that a representable morphism F : X -> y possess the property P if Fu does for every U £ (A ff/S ), y : U -> y. For example, separated, quasi-compact, locally of finite type, locally of finite presentation, of finite type, an open immersion, a closed immersion, affine, quasi-afiine, finite, quasi-finite, proper, fiat, non ramified, smooth, etale and closed regular immersion. See loc.cit. 3.10 for additional properties.

We say that a stack is algebraic (or Artin) if

(d) The diagonal 1-morphism X -^X x sX
is representable, separated and quasi-compact.

(e-i) There exists an algebraic 5-space X (a presentation of A"), and a surjective, smooth 1-morphism X -^X .

(e-ii) It is said to be Deligne-Mumford if the above presentation can be chosen to be etale.

(f) Let P be a property of morphisms between algebraic spaces such that if for any smooth X ' -» X, X -» ■ Y has property P if and only if X ' -► Y does. We then say that a 1-morphism (not necessarily representable) F : X -> y has property P if for any smooth presentation y : Y -> y F and smooth presentation x : X ' -► X x x>ytF Υ, X ' A Χ χχ ^Υ Λ Υ has property P.

Furthermore, let T be a full subsite of (A ff/ S )et (i.e. a full subcategory with a Grothendieck topology such that a cover in the former is one in the latter). By abuse of language, we say that that a category fibered in groupoids over T is resp. a stack, an algebraic stack or Deligne-Mumford stack if it is the restriction of a stack, algebraic stack or Deligne-Mumford stack.

We have the following examples;

• Any scheme or algebraic space is an algebraic stack. Algebraic spaces are exactly the algebraic stacks with trivial automorphism-group.

• ([GL00], Cor. 1 0 .8 ) Let S be an scheme, Y -» X a morphism of algebraic 5-spaces. Also, let G be a separated algebraic X-space groupobject, flat and of finite presentation over X. Then the fppf stackquotient \Y/G/X] is an algebraic stack.

• ([Knu83], Theorem 2.7) Let 2g -2 + n > 0. Then the moduli space of n-pointed stable curves of genus g, M.g,n = M.g,n,specZ is a proper, smooth Deligne-Mumford stack over specZ. The moduli space of npoint smooth curves of genus g is denoted by M.gn. To be explicit, in the latter case, for a scheme T, the objects of Μ 9>η(Τ) are smooth morphisms p : C -> T with curves of genus ^-fibers plus n distinct sec tions. A morphism from p : C -► T and p' : C' -> • T is an isomorphism / : C -» C' such that p = p' f and preserving the sections.

• ([GL00], 2.4.6 and 4.6.

3) The moduli space of principally polarized abelian schemes of dimension g, A g,\ = -A9,i,S pecZ, is a Deligne-Mumford stack over spec Z.

The following is a version of the definition [GL00], Application 14. -S is regular, dim^ruZi^ < 2, G is affine and smooth with con nected fibers.

-G is semi-simple or split reductive, S has an ample family of line bundles, for example S affine or regular.

-S regular, and G reductive.

It follows as in [AG67], Proposition 5.5.5 (v) that if / : X -* ■ Y is an equivariant morphism of normal 5-schemes with Y -> S separated, and X is projective over the base S, then f : X -* Y is actually equivariantly projective.

• ([PD69], [Knu83]) Consider the universal n-pointed (by Si,..., sn) sta ble curve of genus g, π : Cgri -> M g,n, together with the relative dualizing sheaf α9η/Μ9η• ^or ^ -3, the line bundle ^csn/^9n(si + S2 + .. • + sn)®fe is very ample with respect to π and embeds C9tn into FM " c9,n/Mg,n(s 1+ S2+. • -+Sn)®fc)) and ^ n(s1+ s 2+ . . .+sn)®fe is locally free.

• The universal principally polarized abelian scheme of dimension g, π :

V9)i -A g,i has a principal polarization A and 4A defines an embedding into projective space P^[ 1 for N = 4s -1.

Given a presentation X -► X, we can associate to it the following groupoid: [Xl =$ X 0], where X q = X and X\ = X Χχ X , the two arrows being the natural projections. More generally, and conversely, we have the following result:

Prop osition C.0.17 ([GLOO], Corollaire 10.6). Let X = [s,t: X\ X 0] be a groupoid of algebraic spaces X q, X \, and s, t both be faithfully flat and of finite presentation. Furthermore suppose that δ = (s,t) : X \ -* ■ X q Xs Xo is separated and quasi-compact. Then the associated fppf S-stack (see [GLOO],9.3), Xfppf, is an algebraic S-stack.

Given an algebraic stack X, an algebraic space X and a fppf-morphism X -► X, the associated groupoid [X i Xq] is an fppf-presentation of X. We now recast the above in a setting which will make it more natural to apply various auxiliary results, which is that of a simplicial setting. D efinition C.0.17.1. Let T be a site. The category of presheaves and sheaves on this site is denoted by pShv(T) and Shv(T) respectively.

The category of simplicial objects of a category C, i.e. functors -► C, is denoted by or sC.

Recall that whenever T has enough points a morphism of simplicial presheaves in T is said to be a local equivalence if it induces weak equiv alences of simplicial sets on all stalks. Let U -* X be a morphism of an object X in T. The nerve of this morphism is the simplicial object N{U/X) whose n-simplices are given by the product U Χχ U ΧχΙΙ... XxU (n times). Given a presheaf of simplicial sets on T we have an associated cosimplicial functor Δ -► Set, [n] t-► F {N (U / X)n). The Cech cohomology with respect to the covering U -*• X is the simplicial set H (U/X,F) := ho]imA F {X {U / X )n).

We say that T satisfies descent if for any X and any covering U -> X in T, the map r(X)-+H(U/X,F) is a weak equivalence. D efinition C .0.17.2. A presheaf T of simplicial sets on a site T is said to be flabby, if for any (and thus each) simplicially fibrant replacement T -> and any X e T , the map 

2). T is flabby if and only if it satisfies descent.

Thus any simplicially fibrant simplicial presheaf satisfies descent. It fol lows from the definition that a groupoid is flabby if and only if it is a stack. If X is an 5-stack, there is sheaf of simplicial sets defined as follows: Let U be an object in (Aff/S), and let X be the associated fibered category over (Aff/S). The category Fx{U) := Homcat/s{U,X) is a groupoid, and its nerve is a simplicial set BFx. D efinition C .0.18.1. Let T be a site, and consider the category of simplicial presheaves on T, A^p S h v(T). The full subcategory of simplicial sheaves is denoted by A opS h v(T). If <£f) is the category of stacks on T, we call the functor B : £f)(T) -*• A opS h v(T ) constructed above the extended Yoneda functor.

Prop osition C.0.19 ([Hoi], Corollary 4.5,Theorem 5.4). Suppose that T is a (small) site with enough points with associated simplicial homotopy category HS (T) (see Theorem A.0.5). Then the functor S h v(T ) -► HS (T) determined by the Yoneda embedding is a full embedding. The essential image of the extended Yoneda functor from £f) is equivalent to the category whose objects are stacks and morphisms are 1-morphisms up to 2-morphism.

Furthermore, a (cartesian) quasi-coherent O^-module on an algebraic stack X viewed as a simplicial set is an assignment of a quasi-coherent (resp. As an example (c.f. [Del74], 6.1.2), let G be a group scheme, finitely pre sented, separated and faithfully flat over a scheme S. Let X be an algebraic space over S. We say that G acts on X if there is a morphism μ : GxsX -► X satisfying the usual associativity and unit-constraints. If F is a Ο χ-module, we say that G acts on J-, or that T is G-equi variant, if there is an isomor phism of C?GXsx-modules φ:μ*? = ρ* T satisfying the associativity constraint, on G Xs G Xs X ' • p*23( 1 x μ)*φ =(μχ 1 )*φ.

We employ the analogous definition for complexes of quasi-coherent Ο χmodules. To an algebraic space X with a group action G, we can form the following simplicial algebraic space:

[X/G/S] : = I ^G x s i H g xsG xsX...

Here the maps are either projection or multiplication-maps, and the non written arrows in the other directions are given by repeated applications of the unit-map e. The above condition that T is G-equivariant can equivalently be rephrased as that T is the degree 0-part of a cartesian C?[χ/c/s]-module on [X/G/S] with descent-data.

Yet another way of defining a quasi-coherent Οχ on an algebraic stack X, is in the following way: Given an algebraic space U and a 1-morphism with U an algebraic space, s : U -> X, we have an quasi-coherent O^-module T s on U. Given two 1-morphisms of algebraic spaces s : U -+ X ,t : V -> X, a morphism f :U -*V, and a 2-isomorphism h : t o f ^ s, an isomorphism Φί,ί,Η • f -Ft -s-Given morphisms of algebraic spaces U V W, and 1-morphisms s : U -► X, t : V -> X,w : W -> X, and 2-isomorphisms h : t o / ^ s and j : w o g t an equality

Φf,t,h ° f Φg,' W ,j = Φfogtw,hoj ■ Given two quasi-coherent C^-modules T and £, a morphism between them is morphism T s -* £s for every morphism s : U -* ■ X with U an algebraic space compatible with the isomorphism φ in the obvious way.

D efinition C .0.19.1. The Quillen /T-theory space of an algebraic stack X, K (X ) is defined to be the space QBQC, with C being the exact category of (coherent) vector bundles on X. The if-theory groups Ki(X ) are defined to be 7Tj of the corresponding loops-space QBQC. Similarly, one defines the G-theory space and G-theory of an algebraic stack X , Gi(X), as the corre sponding object considering the category of coherent (9*-modules instead.

The main standard properties of K -and G-theory are summarized in the following theorem (compare with [Toe99a], Proposition 2.2, note however that it does not seem to be true that most of the results in this proposition au tomatically generalize from the case of schemes. Indeed, this is the main point of the article [Tho87a] where the equivariant versions of non-cohomological K and G-theory are studied):

Theorem C.0.20. Fix a separated algebraic stack X. Then we have • K (-) is contravariantly functorial mth respect to 1-morphisms of alge braic stacks, and is covariantly functorial with respect to representable projective morphisms between algebraic stacks with the resolution prop erty.

• G(-) is covariantly functorial with respect to proper representable 1morphisms.

• Let £ be a vector bundle of rank n on X , and consider the canonical bundle 0(1) on π : Projx(Sym*S) = P (£ ) -* X . Then we have a homotopy equivalence n-1

V K(X) -K(P (£ ))

= 0

induced by (fj)]Zo l -i " Z)j=o 7Γ*Λ ® Same formula holds for G.

• Let £ be a vector bundle on X , and T a torsor of ε over X. Then G(X) -* G(T) is a homotopy equivalence.

Proof. The first result is proven as in [Tho87a], Theorem 3.1. and most of the results are proven using the classical techniques or modifying the same using loc.cit. As we shall only need the above theorems in the special cases of their associated virtual categories we will contend ourselves with the above statements without proofs. □

An additional object will enter into our stage, A'-cohomology, which in this form is borrowed from [Toe99a]. D efinition C .0.20.1. Let T = Aff/Ssm , the category of affine 5-schemes with the smooth topology. Denote by K 'q' a T-simplicially fibrant model of the simplicial presheaf on T that represents rational Thomason algebraic if-theory and let X be a simplicial T-sheaf. The if-cohomology K sm is the simplicial presheaf (automatically flabby) X K sm (X) := hom (X, K qT). We define the if-cohomology groups K-m(X) to be ^(h o m (X ,K q1 ')). Also define Gq 1 to be the G-cohomology of [Toe99a].

The definition of K sm(X ) of [Toe99a] is different, and exhibits K sm (X) more properly as a 5 1-spectrum. But by ibid Proposition 2.2, the given spectrum is flabby when restricted to the small smooth site on the alge braic stack (i.e. a smooth presentation is a cover) and equal to ordinary (rational) Thomason if-theory for a regular Notherian finite dimensional al gebraic space or scheme. Because holim preserves weak equivalences, for a regular stack with smooth presentation X -► X, we have weak equivalences K sm (X) = H(X/X), K sm) = Ή.(Χ/Χ, i f JO = hom (A', Κ ξ τ ) so Toen's ifcohomology necessarily coincides with our if-cohomology in this case. Also recall that for a scheme in addition to being finite dimensional Notherian admit an ample family of line bundles KqT(X) represents rational Quillen if-theory. By [Tho85], Theorem 2.15 rational G-theory has etale descent for separated Notherian schemes of finite Krull-dimension and thus rational G-theory has descent for algebraic spaces. It should be noted that Toen's corresponding G-cohomology theory does not have smooth descent in general so cannot be defined as values of an algebraic stack in some simplicial sheaf representing G-theory in A 1-homotopy theory. By [Toe99a], Proposition 1.6, there is a natural transformation i f -► Κ ' ζ 1' that can be realized as, for a smooth presentation X -► X, the augmenta tions K(X) ->• H(X/X, K Q). With these remarks it follows from Theorem A.0.8 that we have the following proposition: Prop osition C.0.21. Let T = be the category of regular S-schemes with the smooth topology. Then for any regular algebraic S-stack X there is an A 1-weak equivalence KqT -» ( Z x Gr)q so that K°m{X) = Hom*(:r)(X,

x Gr)Q).

Prop osition C.0.22 ([Toe99a], Proposition 2.2). The conclusions of The orem C.0.20 hold with i f (resp. G ) replaced by K sm (resp. Gsm), at least whenever restricted to the category of regular stacks. Moreover, for a regular algebraic stack there is Poincare duality; the natural map Ksm (X) Gsm (X) is a weak equivalence.

  d) T is compatible with filtrations, i.e. for an admissible filtration A C B C C, the diagram T{C)-

( a )

 a For any cofibration exact sequenceΣ : A' ~ A -» A" an isomorphism { Σ } : [A] -► [A'] 0 [A!'\functorial with respect to weak equivalences of cofibration sequences.

  diagram of schemes. We say the diagram is transversal or Tor-independent or that X and Y 1 are transversal or Tor-independent over Y ([P71], III, Definition 1.5) if the diagram is a Cartesian diagram of schemes, with Y quasi-compact, / quasi-compact and quasi-sepaxated and if for any x € X, y' £ Y' mapping to the same point y G Y, we have Tor?Y,v{0XtX, 0 Y> ty>) = 0, for i > 0, and / is of finite Tor-dimension. Lem m a 3.1.3. [SGA6, IV 3.1] Let Υ•

  of two transversal cartesian diagrams. Then the third diagram is also transversal and the diagram Lg

  2): Theorem 3.2.1. [Splitting principle] Let pi,p2 ■ y Χχ y -► 3^ be the two projections, and r = ppi = pp2 -Then (a) p* : P(X) -* ■ P(y) is faithful. (b) Suppose we have two objects A, B (z obP(X), and f : p*A -»• p*B a morphism in Horn.P^(p*A,p*B), then f comes from a (unique) morphism h: A -+ B if and only if p\{f) = p*2{f) in HornP{yXxy)(r*A,r*B).

1

 1 be the universal flag on 3^, and Li = Ei/Ei-ι, then by the projective bundle axiom we have natural isomorphisms e Autp(y) (A ) = 0 -0 l?i <g>... < g> L{e ® p* Autp(Ar)(i4)

  1-morphism from 7Γ : M -> P^ -' * P^ which is flat if Y is, and by the universal property of blowing-up the map -► Pj, lifts to M , so we have a diagram Ρ χ ---------------A f . PM oreover, ./ν*χ{οο}/ρΐ, -Νχ/y 0 N^/pi -N 0 1 (see [Ful98], Appendix B.6.3 and chapter IV, Proposition 3.6

  /' are closed regular embeddings, the two deformations associ ated to them are compatible in the sense that they restrict to a Cartesian diagram g' X y r P (iV /'© l)-^P (iV /01) over the infinite fiber.

  By [WF85], chapter IV, Proposition 3.2, i*Ny = N^, and qog = ion, so g*q*Nv = w*g*Nv = π*Ν^• We also have, by [Ful98], B.6.3, 0(P)\p = Op(-1), and that the section is the right one is clear. diagram. Let M ' and M be the deformations to the normal cone of X' C y' and X C y respectively, and G : M -> M' the induced map. Θ 1) = G~l(Fx{N 01)). Proof. By [Ful98], Appendix B, B.6.9, given the above kind of diagram, and exceptional divisors E (resp. E ') of Blyy' (resp. ΒΙχΧ'), and G : Blyy' -► ΒΙχΧ' then G~l E = E '. Applying this to the diagrams

  6 . The last point is established as in [W 99], Section 4, Proposition 3.8. □ Lem m a 4.0.5. [[Rio06], proof of Theoreme 111.29 + 31, ] Suppose S is a regular scheme, and X and y are objects of7i(fRs)•• Then the natural maps HomK(iHs). (X, y ) -»• Hom. ty^p ^(φΧ, φν) and -► Hom^PSet{ ^X ^y )

  Theorem 4.0.6 (Rigidity), [proof of [Rio06], Section III. 10] Suppose S = spec Z. In the cases considered in the above lemma, except whenever in volves a factor o ff00, the morphisms Komf (Vx , Vy) -»• Hom<K°PSet(ΦΧ, 4>y) and Hom/i#(V*, Vy) ->• Hom.iinoPs e t ( ^, ^) have natural sections (and are thus surjective), which are canonical up to unique isomorphism (see A.0.13.1 for a definition of the functor V ). More over, any isomorphism of two functors Vx -> Vy is unique up to unique isomorphism. Proof. This follows directly from Lemma 4.0.5 and by considering the com position HomW(fKs)(;r, y) Hom /(V*, Vy) -*• Homfflopset (</>#, (f>y) obtained from pre-rigidity in Proposition A.0.14. The essential point is that the groups Ηοπι•Η(9Ϊ5)(Λ ', Ω }') disappear since they can all be related

Theorem 4

 4 .0 .8 . The functors FlW(-) have the following properties. (a) The functors Fi~1 W(-) -> F lW{-) are faithful. (b) There are pairings, unique up to unique isomorphism, F W ( -) x FjW (-) -* Fi+jW ( -)

  For a line bundle rigidity provides us with an isomorphism XkL ~ AkL = L if k = 1 and an isomorphism with 0 if k > 1. Now recall the identity φ* _ A^* -1 + ... + ( -l ) fe-1Afc-1t f1 + ( -l ) fcA;Afc = 0 in on the level of K 0. It thus lifts by rigidity to W. When E is of rank 2 , it is left as an exercise to the reader, using the exact sequences0 -► S T -'E < g> A 2E -> 5" E Sn+lE 0,to use our construction of on the level on V to give the same identity, inductively. Here of course rigid A operations are replaced by the usual A operations. One then uses the former corollary to deduce, again inductively, an isomorphism AkE ~ AkE valid for vector bundles of rank 2 satisfying the additivity property searched for. One proceeds by induction on the rank of E. Given a filtration F ' C E one defines an isomorphism t£,F' ' ■ XkE -► AkE by requiring the diagram in the statement to commute. Given two filtrations F " C F ' C E one verifies that by induction hypothesis that ts^F" = tE,F' in a way stable by base-change of regular schemes. Given two unequal line bundles L' C E and L" C E we consider the Grassmannian p : G tl',l",2 (E ) -* X classifying bundles M of rank 2 such that L', L" C M C E. Then Rp* 1 = 1 so that by the projection formula A = Rpt (Lp* A) for any A and it follows that tp* e,p* v determines tE,L'• But by what we established tp-e,p• l ' = tp•e,m = tp*E,p' L" for M. C p*E the universal rank 2 sub bundle on Grl,l',2 (E). We conclude by the splitting principle.

  The outer contour commutes by definition of the 7 -operations. The middle square commutes by compatibility with admis sible filtrations of(3.3), the upper square commutes by induction hypothesis as does the right hand diagram. Thus the diagram determined by F' C E commutes if and only if the diagram determined by the diagram determined by F" C E commutes. Arguing as in the previous corollary one sees that this morphism is independent of choice of F" and F' and by the splitting principle one obtains that the diagram associated to F' C E commutes. In the same way we obtain a canonical trivialization 7 n+k(E

D efinition 5

 5 .0.15.1. The objects of V±(X) and V{X) are the same. We define Homv'±(x)(A , B) as the quotient of Homy(χ) (A, B ) by the relation that two morphisms h, h': A -► B are equal if hoh'~l = [-1] G Aut(^4). Here [ -1] corresponds to the nontrivial element in the image of ± 1 = Auty(z)(0 ) -► Auty(x) (0) = A u ty(x)(A ) determined by the morphism X -> specZ. Lem m a 5.0.16. Let e(X) be the automorphism of X determined by the symmetry [X] + [V] ~ [Y-] + [X] evaluated at Y = X . Then e(X) is in the above image.

  (a) It is stable under transversal base-change. Consider the following cu bical diagram 9'

  Λ_ι (E) < g> g'*x. (d) Given the composition of upper Cartesian diagram 8 and lower Carte sian diagram S' ( giving E"

-

  Op(WQi) < 8> Φ^Π* + Ορι ® Φ£Π* -Οοι®ψ (νι® \) ® Φ^Π* The condition (b) of the theorem canonically determine Od> ® Φ^Π* and Ο ο ι® ϋ{ν '® \ ) ® Φ^Π* and thus ίο,*Φ£0 is determined by Op(jv'®i) ® Φ^Π* = *oo,**^o^fn* =We recall from Lemma 4.5, chapter V,[START_REF] Fulton | Riemann-Roch algebra[END_REF] (see the proof for this slightly more refined statement):Lem m a 5 .3 .2 . Let F : P -* ■ M be a regular embedding, and let Φ : Y be a morphism, and take the fibre square a regular embedding of the same codimension as F, then this square is transversal.

  ---P(TV 0 1) ■MThe morphisms P^ e-* M ', Py c-»• M are both regular by Theorem 4.5, chap ter IV,[START_REF] Fulton | Riemann-Roch algebra[END_REF], all diagrams Cartesian and codimension is preserved so we can apply the above lemma. Hence all diagrams are transversal and we can apply (a). Thus we are reduced to showing uniqueness for the diagram S^. We pro ceed by induction on the dimension of E. In case the dimension of E is 0 , then indeed the diagram is transversal and the isomorphism is fixed by transversal base-change. In the case the of rk E > 0, consider the following Grassmannian G = Grijmjjv -* Y parameterizing flags L C M C N, with L, M of rank 1 ,m and m = rk TV'. Then Lp* : V(Y) -► V{G) is faithful, and an easy verification can be used to show that by the transversal base-change property we can assume our diagram is of the form G r j ,Tn,g'*N ' -*■ G r 1,771,.N

  io', ^θ'ηΡ(Ν'φΐ) the closed immersions of D and D ΠΨ(Ν 0 1) (resp. D' and D/nP(iV /0 l ) ) in M (resp. M 1 ) and consider the diagram given by a cubical diagram as in (i). By the universal property of blow-ups ([Ful98], Appendix B.6.9) we obtain commutative diagram where all the squares are Cartesian, except possibly the front and back vertical ones. We construct a sort of preliminary excess-isomorphism for the diagram £^ considered in(5.1). If ξ and ξ' denote universal quotient bundles on P (N 0 1) respectively P (N ' 0 1), we have a short exact sequence 0 _ π'*Ε -9*ξν -( Ο ν -0(5.3) where E is the excess bundle of the diagram. Then we have a canonical Koszul resolution0 -> Ληξν ξν -* ■ (9p(jvei) ~^ f*Oy ~^ 0• (5-4)So, let T first be a vector bundle on X. Since tensoring with a vector-

  *Li*Q LG*RF>LYr(T) ~ R i00tM *00LG*RF*LYl*{T) + R iD'i*Li*D,LG*RF*LU.*(Jr) -RiD'np(N'®i),*Li*D,nr^ N,el^ LG* R F* L IT (JF)

  term Rio' ,*Li*D, LG* RF+LTl* (J7) is isomorphic by flat base-change to R iDl^Li*D,LU*Lg*Rf,(JF) and is canonically trivialized since the intersection of D' and D' Π P(A^' ® 1) with Y is empty, and the second isomorphism is the rough excess-isomorphism

  i'o, i'o the inclusions of Y, Y', X\ Y^Y' and X ' in M ' and M respectively. Also denote by *(»>*£»>*«»*oo (resp. and i^,) the inclusions over oo of Υ,Ψ(Ν 0 1 ),P {N' Θ 1),Ϋ,Ψ{Ν ® Θ 1) (resp. D' and D) in ¥γ,Μ ,Μ ',Ψ ~.,Μ ,Μ ' (resp. M and M'). Also introduce the projections 7Γ: P ^ Y and W : P i Y. Then we find that the following diagram is commutative The upper square in this diagram is commutative by our choice of Λ G /c(P^)

0

  L~g'*{Lq*x))---L?Rf.{Lq'(x)) Rft(X-i(q"*E) 0 (Lq"*Lg'*x)) Lg* Lq'* Rf*(x) Rf'M"*{\.x{E) ® Lg'*x) ) Lq'"*Lg*Rf*(x) Lq'"*(Rf*( Λ _ι(E) 0 Lg'*x))---Lq'"*Lg*Rf*{x)is a commutative diagram, where the horizontal morphisms are the already constructed candidates for the excess-formula isomorphisms in (5.7). We will show that the above diagram is commutative by chopping it up into smaller pieces.

  _,(£ ) ® ?v) 7 . (λ .,((Τ £ )«i"V ) f (!.(U(E) ® j")).

Proposition 5 . 4 . 2 .

 542 The upper and lower diagrams are commutative again by applying Lemma 3.1.5. The details are left to the reader.□ Let e : Y -» Y', f : Y' -* ■ Y " be two regular closed immersions, and g : X " -► Y " another regular closed immersion, with asso ciated diagrams £, S' and big diagram S", Then Φ^» is the composition of Φ^/ and Φ^ in the sense ofTheorem 5.1.2, condition (d).Proof. By a deformation to the normal cone argument we can suppose that our immersions are of the form Denote by p : P y ( M 0 1) -> Υ,ρ' : Pχ (Μ ' 0 1) -» ■ X, π : P γ (Ν 0 1) -> • Y and π' : Ρχ (Ν ' 0 1) -» ■ X the various projections. DefineN 1-:= ker[Mv -> iVv] = (M /N) y, N f± := ker[M,v iV'v]) = {Μ'/Ν'Υ.The map 0 ( -1) -> p*M 0 1 -» p*(M ) defines a regular section of p*M[START_REF] Birch | The Hasse problem for rational surfaces[END_REF] which vanishes exactly at Y, and in the same way we get a regular section of the vector bundle p*(M/N)[START_REF] Birch | The Hasse problem for rational surfaces[END_REF] which vanishes exactly at Ργ (Ν 0 1) (see [Ful98], Appendix B. 5.6). We have the following commutative diagram with --^E " ----^g*p*Mv( -1 )----*p'*M'y{ -1 )----^0E ------g*P*Nv( -1 )-----p'*N'y( -1)

  i(E')®X-i(Lg'' Lw' Nv (-l))®Lg,'Lir"

  P y (M 0 1) given by X-i(Lp*Nv(-1)) ® Lp*T and the left arrow of diagram (E ) is defined using this. The composition of the left arrows of the diagrams (B ), (C ) and (D ) constitute the isomorphism determined by 8 and finally the composition of the leftmost arrows of (E), (F ) and (G ) give the isomorphism determined by 8'. Moreover (F ) commutes since the isomorphism(3.

4 . 3 .

 43 Suppose X -► Y is a closed regular immersion and let σ : M v -> Ογ be a Koszul resolution of X (i.e. dual to a regular section Oy -> M ) and let N ' be a subbundle of M . Let N 1-= ker : M v -► N y, and let g : Z ->Y be the substack o fY defined by σ(Ν±). Then restricting σ to N 1 we obtain a Koszul resolution for Oz, and g*a : g*Ny -► Oz defines a Koszul-resolution of Όγ on Z. Per definition we have an exact sequence 0 -► N 1--> M v -► iVv -

  Here the diagram is Cartesian and s is the section determined by j and base-change: Then ΦπΦ _,• = ΦπΦί/Φ3 = ΦίΦπ/Φβ = Φ* by the preceding P rop osition 5.5.2. With the above virtual excess bundle the Φ,ττ does not depend on choice ofr. the composition of two base-change isomorphisms is the base-change of the Ψ γ{ΐ*Ν )-^Ψ γ,{Ν) Τ equal to the naive composition of the isomorphisms induced by i and π. By abuse of notation, we obtain equalities of isomorphisms Φ/,σ = = Φ,τΦ,/Φί» = Φ ^Φ = Φ π/Φ,Φί» = Φ Λ = Φ/,τ.Hence all isomorphisms Φ/? are in fact one single morphism, defining Φ^. g projective local complete intersection morphisms. Then Φ, ο Φ9 = φ /9.

  [AG70a], 1.4.7.3, a T-representation E on S is equivalent to a grading of weights φ λ€Μ Εχ and so the /^-groups of T-equivariant locally free sheaves are given by K*(S,T) = K+(S) ® Z[M ], and to any prime ideal p of Z [M] consider Kp = {A € M |1 -[A] G p C Z [M]} and associate to it the sub group-scheme Ds(M/Kp) = Tp C T. Tp is called the support of p and has the property that for any closed diagonalizable sub group-scheme T' = Ds(M/K) C T, p is an inverse image of Z [M] -> Z [M/K\ if and only if Tp C T ' (see loc.cit. Proposition 1.

  Define E (resp. E') to be the homology of [LX/Y -*• Lx > / Y> ] (resp. [L\ X|/|yj -> L\x'\/\Y'\}• Then E is the excess-bundle of the Cartesian square

  Fix positive integers r and, n and let Μ = I I 0 Z/n and let T = specZ[M] be the associated diagonalizable group. Consider the category ΐΡΟ τρ of T-equivariant regular schemes and morphisms given by f : X -► Y a T-equivariant morphism of regular schemes which is equivariantly projec tive, i.e. factors equivariantly into a projective bundle X P (E ) -► Y for a closed immersion X ¥ (E ) and an equivariant vectorbundle E on Y. Denote the induced morphism on fixed points \ f\ : |X| -► |Y|. Then there is a family, unique up to unique isomorphism, of functor-isomorphisms for f a morphism in T/ : R\f\*Lx -L YRU satisfying the following compatibilities: (a) Stability under composition: Given X Y ,Y Z in 9^, the compo sition R(\g\\f\).Lx ϊ ί R\g\.LyR f. U LzR (g f), is T gf.

  Suppose i : X -* ■ Y is a closed immersion of regular T-schemes. Thus we can apply the excess-formula to algebraic stacks of the form [X/T] which gives an isomorphism, by the arguments preceding the theorem, a:^1 < g> L iy R f* = .R|/|, (a * 1 < g> Li*x ) . It moreover satisfies the given conditions by virtue of them being satisfied for the excess-isomorphism. This also gives a description of Lefschetz for closed immersions via a rough excess-argument. Now, suppose / : F (N ) -> Y is a projective bundle projection for N a T-equivariant vector bundle on Y, whose restriction Ν\\γ\ is diagonalized to ®\€m N x. Then |Ρ|Υ|(θΝλ)| = ] } XeMP|K|(N x) (c.f. [KK01], Proposition 2.9). Thus we are given a diagram ΠλεΛΓ P|yI (N x )----P|yI ( N I|yI)----P y (N ) f \y\------y with Cartesian square. We treat first the left triangle and suppose that Y = |y|. Denote by ix : Ψγ(Νχ) -► P γ (Ν ) the closed immersion, i = Jjz* : J_JPy(iV^) -► Py(iV), |/|λ = f i x and |/| = ft. For any virtual bundle x, we need to construct a functorial isomorphism R f.(x ) = Σ R\f\X | .(X ^^N> , ) -, ® L ix'x).

  3.3 ([WF85], II,Lemma 3.3). Let R be a commutative ring in which k is invertible. For a,b £ R, define a 0 b = (1 + a)( 1 + b) -1 and for an integer j define [j]a = a 0 a 0 ... 0 a taken j times. Let α χ , ... ,a,i,Z be independent variables and define * [ [ « , , ...,a d, Z]] 3 Fn,k(Z ) = (1 + Z )" fc <■ [k\{Z © a,•) There exists unique elements bl Qk, ..., b1 ^ e i?[[si,. . . , s j] (where Sj are the elementary symmetric functions in the aj) such that d Fi,k(Z) = btf + b f Z + ... + bf_xZ d~x mod JJ Z 0 aj 3=1

  jF) = Li*9k{Lx/s)~l ® ^z,x(F*)• This is well-defined and does not depend on the choice of X .

  2(E -n)) -> /c/sC^-E1 ) by requiring the condi tion A. Moreover, if L c M then one easily verifies that Em -E l because of the induction hypothesis. In general, suppose we are given two different admissible rank 1 subbundles L and L' of E. Let p : G = ME) -c be the Grassmannian variety of admissible rank 2 subbundles M of E with two admissible sublinebundles L C M and U C M. Then p : G -* C is birational and proper with Rp* 1 = 1 . The above discussion carries over to the composition G -» ■ C -*• S and one reduces to comparing the isomorphism Ep.L and Ξρ.χ/ for the bundle p*E. By the above they are equal to Em for the universal rank 2-bundle M on G. □ P rop osition 6.5.3. Suppose C -»■ spec R is 0 local complete intersection curve (c.f. 6.5.0.1, it is automatically projective by [Lic68], Section 23) where R be the spectrum of discrete valuation ring with special point s and generic point η. Let Ωο/s be the coherent sheaf of relative differentials and Uc/s -ω the relative dualizing sheaf. The bundle IC 2 {^c/s) is canonically trivialized over the generic point and the order of the trivialization at η is equal to the order of the discriminant. Proof. By the general theory Clc/s comes equipped with a natural morphism Ω,ο/s -► o j inducing an isomorphism det ilc/s = < *> . The Adams-Riemann-Roch theorem provides us with a canonical Q-isomorphism Λ(ι)® 16 = λ (ι _ 2(Q,c/s -1) + ( Ω σ /s -I)®2 -72(^c/s ~ 1))• By the cohomological description of the Deligne-pairing in (6.10), we have canonical isomorphisms A ((ficys-1)®2) = (υ,ω) and-(Ωο/s-1) = -R(^c/s)-(ω -1) so that A( -(£lc/s ~ 1)) = -^c/s^M^c/s) ® λ(ω -1) = Ic/s^i^c/s) where the last isomorphism is by Lemma 6.5.1. Thus we obtain a canonical isomorphism A(u;)®12 = (ω,ω) 0 Ic/sCi&c/s) which restricts to λ (ω )® 12 = (ω,ω) over the generic fiber via the trivi alization /c/s^M^c/s) over the generic fiber defined by the trivialization Ic/sG2 (bJCr)/spec η) = 1. Thus the order of the generic trivialization 1 -* ■ IC 2 (tic/s) is the discriminant. □ D efinition 6 .5 .3.1.

Th eorem 6 . 7 . 3 .

 673 Let f : X -* y be a representable projective local complete intersection morphism of regular stacks. Then we have equalities det(Rf*E)®k = det( Λ / * ( ^ ® φΙζΕ )) in P ic (^)Q. Proof. By Theorem 6.3.2, for a P-equivariant vector bundle E the Adams-Riemann-Roch isomorphism ^kRgt E = R fm (6~\ ® ipkE) associated to g : X -* Y is stable under smooth base-change and thus defines descent-data of the isomorphism of Q-line bundles det(Rg*E)®k = d e t(* fcRg,E) = det Λ/*(0~£ ® i/jkE). By Lemma 6.7.2 the class in Pic of left hand side coincides with the map K (X ) K (y ) ^ P ic (^)Q and the right hand side det R ft (9~l ® ^kE) coincides with K (X ) k --> • K {y ) Pic(3^)<Q. □ Thus we obtain a non-completed version of Kock's Adams-Riemann-Roch. Define an action of a € K (Y, G) on (r, L) 6 Z 0 Pic( Y, G) by a.(r, L) = (r • rka, det(a)r ® 6rka).

Then Z 0

 0 Pic(Y, G) is a K(Y, G)-module and we put Pic(Y, G) to be the quotient of (Z 0 Pic(Y, G)) ®k (y,g) K (Y, G) by Z ®k {y,g) K (Y ,G ). It fol lows from Lemma 6 .7.2 that the image of the right side in Pic(Y, G) of the above theorem necessarily coincides with the image under Rf*(9'kl < g> fykE) in K(Y, G) 

D

  efinition A.0.4.1. Let / : X -* y be a morphism of simplicial pre-sheaves. Then (a) / is said to be a (simplicial) weak equivalence if, for any conservative family {x : S h v(T ) -> Set} of points of T, x (f ) : x{X ) -*• x{y) is a homotopy-equivalence of simplicial sets. (b) / is called a cofibration if it is a monomorphism. (c) / is called a fibration if it has the right lifting property with respect to trivial cofibrations, i.e. cofibrations which are also weak equivalences. Th eorem A.0.5. [[VV99], Theorem 2.1.4] For any (small) site with enough points T, the above equips Δ ορ S h v (T ) with the structure of a closed model category.

HomWs( 5 )

 5 (y , Z ) -* HomWi(T)(A' , Z ) is bijective. Now equip Δ ορ S h v(T ) with AMocal weak equivalences, cofi brations and AMocal fibrations. Then we have: Th eorem A.0.6 ([W 9 9], Theorem 2.3.2). This equips Δ ορ S h v(T) with the structure of a closed model-category.

  r (d+ i ) M = Q r (rf*+ [(d+ i)"-d » ] ,iand define ma : P °° -► P °° to be the induced morphism. The relation mab = πΐαΤΠι, is easy. 2 D efinition A .0.7.3. One defines P °°[] (resp. P q ) as the inductive limit over nria s ordered by division for a = nk,k G N (resp. ma's ordered by division for all a G N).

2

  To make the above a proper definition and make the diagram commute on the nose, one needs to define a natural isomorphism Sa,d • (Od)®a -> Oda. It can be done as follows. We define a strict total order on {e},e^,... e^} x ... x {e", eg,... e^}, i.e. the structure of the category [na -1] inductively as follows. First e\x x ef2 x ... x e£a <e]i xe]2x...x e"a: If m a x i < max ji. If there is equality im = maxik = max j/ = jn , then if maxik \ in < maRepeatedly removing such m, n's we obtain an order on all objects except when the ik are a permutation of the ji$. With these, pick the lexicographic order. We then define an isomorphism δα^ • (Od)®a -► Od< l by sending a basis-element e^xe^x.-.x e?a to the basis fi with i G [na -1] via the ordering just constructed. As such, the element e\ x e\ x ... x ef is the smallest element, e\ x e| x e\ x ... x e\ < e\ x e\ x e\ x ... x e\ and e\ x e\ x ... x e\ is generally a big element.

  a A m * m ))• Now, by [Rio06], Theorem IV. 55, then we have bijections Hom 5w(5)(BGL,BGLQ) ~ \im(K0(S)Qf , and there is a natural map Qz -» \im(KQ(S)Qf induced by a commutative diagram (whenever A is a Q-vector space, see loc.cit. Lemme IV. 66a ")neN) = (o»h-i)n and σ ((α η)ηεΝ)) = Σ ηβΝαηρη. Here this induces an isomorphism Σ : Az ~ lim An defined by [(α*)ί£ζ]ΐεζ •-*■ Σ ai+nPn £ a(f) = (i + to J , .<4[[£/]](loc.cit. Corollaire IV.67), and this is the map alluded to above. Composing the above two maps, we obtain a map Qz -► EndsW((Ks) (B G L q) .

3 . 4 D

 34 efinition C.0.16.3. We say that a representable 1-morphism F : X -+ Y of algebraic stacks is projective (or quasi-projective) if there is a coherent locally free sheaf £ on Y and 2-commutative diagram X -'*¥ (€ ) p Y with / a (representable) closed immersion (resp. quasi-compact immersion) and P is the canonical projection.1 We have the following examples of projective morphisms. • ([Tho87b], Corollary 3.4) Suppose Y is a normal scheme, S separated and Notherian, G -» S' a separated group scheme of finite type. Sup pose that we have a G-equivariant morphism / : Y -> S, i.e. a mor phism [Y/G/S] -► [S/G/S] which is a projective morphism of schemes. The morphism [Y/G/S] -> [S/G/S1 ] is projective in the following cases:

  F{X) -* f*(X)is a weak equivalence of simplicial sets.Th eorem C.0.18 ([Toe99a], Theoreme 1.

  coherent, locally free, etc) T n on each Xn such that for any φ :[n] -► [m] we have an isomorphism φ* : φ*Τη -► T m compatible with compositions [n] -> [n'] -> [n"\.Coherent and locally free sheaves are defined analogously.

  which is perfect modulo maximal divisible subgroups. Having such a result in the function field case is exactly what is lacking to prove that the Brauer-Manin-obstruction associated to B is the only one for abelian varieties over function fields. If we would have this one could extend Theorem 1.1.1 to any global field. In personal communication B. Poonen informs the author that to his knowledge there is no written proof of this fact in the function field case.

  with exact columns and vertical isomorphisms. By the same description, the middle horizontal morphism is clearly the base-change-isomorphism for the trivial bundle Ox . For the inner contour, we can assume that V = f*V' for an actual vector bundle V ' on Y '. A vector bundle V on Y is /«-acyclic (recall that / is a closed immersion) as well as ^'' -acyclic, and thus the description of [Del77], Tome 3, XVII, 4.2.12 and Proposition 4.2.13 applies. The statement of the latter is a comparison of the base-change-isomorphism in the derived category and the one induced on actual complexes as well as compatibility with projection formula, and amounts to what we need. Details are left to the reader. □

			and the commutative
	g 'l -	■ r
	g*0Y.	■ox,
		f'*Ox =	f\g>*Ox

  Combine Proposition 6 .5.2 and Corollary 6.5.6 and the main result of [Blo87] which identifies the localized Chern class with the Artin conductor. Remark 6 .5 .7.1. The proof of Corollary 6.5.7 is essentially different from that of [Sai8 8 a] in that it does not use any kind of semi-stable reduction techniques. It does however share similarity to that of[Fra]. Remark 6 .5 .7 .2 . Given a rich enough theory of integrals over Chern classes the reasoning above would imply that for / : X -* ■ S a projective local complete intersection morphism of regular schemes of pure dimension n and Y^ki = n, λ (Π l ki {E% -rk £*)) = det Jx^s Π c^ (£*). It seems reasonable that it is possible to deduce these relations if one takes the theory of Chern classes to be that of [Elk89], at least rationally. Also, if / is flat generically smooth of relative dimension d and S a discrete valuation ring and a complex of vector bundles E * on X acyclic outside a closed subscheme Z over the special point, the above suggests that the order of vanishing of Χ(^ά+1(Ε* -d))) at the generic point is the localized Chern class c%+1(E*). This is predicted by the analogous situation in Chow categories,[Fra].

	C orollary 6.5.7 (Conductor-Discriminant formula by T. Saito). With the
	above assumptions, the order of the discriminant rational section Δ of the
	line bundle Homc>s ((u;, ω), λ(ω)® 12) is equal to minus the Artin conductor of
	C -+ S (c.f. [Sai88a]).	
	Proof.	
		• We
	conclude by Proposition 6.5.2.	□

□

Some preliminaries

in TV 0 1 where we embed it as x i-> (0, x). In other words, it embeds as X = P ( l ) -> P (N 0 1) or as the zero-section X -► N followed by the open immersion N -> P (N 0 1). Let p : P = P (N 0 1) -► X be the projection. On F (N 0 1) we have a universal exact sequence

Here taking a Picard category P modulo a full sub Picard category P', is to be under stood as the category P" defined as follows: objects axe those of P with the equivalence relation that a~6ifa -6 is in the essential image of P' in P. Morphisms are described by removing automorphisms coming from P'. It is clearly also a Picard category.

This also follows from 72(E -2) = \ 2(E -2 + 2 -1) = X2(E -1).

i.e. a full subcategory such that any open cover of T is an open cover of Sch/Ssm■

The author hopes to treat this case in a near future.

This is what many authors call a ''strongly projective" (or ''strongly quasi-projective") 1-morphism.

P rop osition 5.4.4. Consider the isomorphism considered in condition (c). Then this coincides with the above constructed isomorphism.

Proof. This is easy. By the argument of Proposition 3.4.1 the Koszul res olution determined by the Cartier divisor deforms to the Koszul resolution in the model situation. Since the constructed excess-isomorphism has been verified to be stable under such transformations we are done. □

We thus conclude the demonstration in the case of a regular closed im mersion. □

General excess isomorphism

In this section we will tie together the isomorphisms constructed in the pre ceding sections and finally construct the total excess isomorphism.

Suppose first that we have a diagram £ and a decomposition of a proper morphism / : Y -> Y ' as fT : Y A PY>{N) A Y ' where i is a regular closed immersion and π is a projective bundle-projection. By base-change we obtain the composition of two Cartesian diagrams Since the rank 0-part of theory of a regular scheme is nilpotent, more precisely (1 -Lo)k = 0 for k > dim X, this sum is well-defined 2. D efinition 6 .2 .1 .1 . Fix a cyclic diagonalizable group-scheme T over specZ and denote by 9V the category whose objects are regular T-schemes and morphisms are T-equivariant morphisms of T-schemes. For a T-scheme, de note by |X| = X T and V(X,T) the virtual category of T-equivariant vector bundles on X denote by V (X , T )(p) the localization (c.f. B.0.14.1) of V(X, T) at the prime ideal p -ρτ exhibited above and then at Q. Also, denote by αχ the virtual bundle A -^A ^y ^) in V(\X\,T).

The following lemma gives an explicit construction of the class A_i(iV|^|/A•)-1 appearing in Thomason's result in a special case.

Lem m a 6 .2 .2 (Inverting A_i). Let T be a cyclic diagonalizable group-scheme corresponding to a finitely generated abelian group M = Z r x Z/n. Let X be a regular scheme with a trivial T-action and E a vector bundle on X with no trivial eigenvalues for the action of T. There is then a unique way of expressing the inverse bundle A _ i{E)~l as a power-series in V (X,T)^ such that it stable under base-change and compatible with exact sequences.

Proof. First notice that there is an equivalence of categories V(X, T )(p) = (V(X)q ® Q [M ])(P) 3. Let E be such a vector bundle. Since |X| = X it is given by a grading E = ®\εμ,χφοΕ\. Then we propose that for a virtual bundle u\ on X with pure weight λ Φ 0 00 / λ \ fe

, by Corollary 4.0.13, there is a completely canonical trivialization 7 k(u) = 0 in V"(X)q and by truncating the powerseries at such a k these isomorphisms glue together to an object. By the same corollary, for u = L a line bundle, 

where the upper square is the base-change-property and the lower square is the natural transformation associated to the projection-formula. Since Rr'^Rs't = id, Rs't is faithful and thus φ^ϊ is determined by φ^ΐ' < S > # s*( 1) which is determined by 4>k,i'• However, X is regular and we can suppose without loss of generality that it is connected and so integral. As such it has a morphism to spec Z and we may assume that X is spec Z. In this case the virtual category under consideration doesn't have any non-trivial automor phisms, since Κχ(Ζ) ± 1 and we tensor with Q. Thus the isomorphism in question is uniquely rigidified in the case of a closed immersion.

Suppose now that / : Ψ(Ν) = X -> Y is a projective bundle projection for some vector bundle N on Y of rank d. By Theorem C.0.20 we can assume u = Σ ΊΖ o Lf*Ui < g> 0 ( -i) for virtual bundles Ui on Y. By the projectionformula and the multiplicative property of the Adams operations of Corol lary 3 .3 .2 , we only need to define the isomorphism for bundles of the type u = 0 ( -i). We calculate both sides. First, ΦkR f* (0 (-i)) = 0 if i > 0 and isomorphic to 1 if i = 0. On the other hand, there is a universal exact sequence 0 -Ωχ/γ -/*iVv ® 0(1) ^O x -+ 0 Lem m a 6.5.1. Let f : C -> S be a smooth curve. Then there is a unique canonical Q-isomorphism

stable under base-change S' -> S.

Proof. Uniqueness follows from descent and the preceding remarks adding that M.g is smooth over specZ and so regular. We can also assume that S is the spectrum of a discrete valuation-ring since isomorphisms would then glue together to a global one by virtue of them being canonical. In this case / is automatically projective by [Lic68], Section 23. Let Uf = Ωο/s be the relative dualizing bundle of /. Applying the Adams-Riemann-Roch theorem to the case ( 1 -a;/), we obtain the " Grothendieck-Serre duality" -isomorphism

and in particular for fc = 2 one has a canonical Q-isomorphism A0 -Ai.

Consider the cannibalistic Bott-class

Of,I

The truncation is sufficient for our purposes since the relative dimension C -► S is 1 and Corollary 6.3.5, so that F 3V (C ) has image in F 2V (S ) and the determinant functor is trivial on this category. It is moreover stable under base-change by functoriality of the Adams-Riemann-Roch theorem.

For k = 2 , inserting this into the Adams-Riemann-Roch-theorem for the trivial line bundle and applying Grothendieck-Serre-duality this reduces to the expression Aj6 = Aj6 = Al ® ΑΓ4 ® A2 = Xl < g> A2 so that A}3 = λ2• Repeatedly applying the theorem to the case of 1 -u j one proceeds by induction on n to establish the general formula for An. □ Thus for any curve f : C -* S we obtain a canonical rational Q-morphism Δ : A(cj®2) -> Α(ω)® 13 which restricts to the above one over the smooth locus. This is the usual discriminant morphism considered in [Sai8 8 a], for example. We intend to compare our Adams-Riemann-Roch-isomorphism with that of Deligne (see [Del87], Theoreme 9.9). Let's just first recall the main ingre dients. Let C -► S be a local complete intersection projective morphism of schemes with geometrically connected fibers of dimension 1 . Given two line bundles L and M on C, by [Del77], X V III, 1.3.11,[Elk89], one can form the Then we have a canonical map Homw(c)(Ar,y) -Eomf (Vx ,Vy) which associates to an element of the left a functor of fibered categories φ : Ύχ -► Vy, canonical up to unique isomorphism.

Proof. If Φ is in H o m ^c )^, y) = 7To(hom(A?, }>)), it induces for any X £ C a map φχ : V x(X )

V y (X ), functorial in X , by choice of a representative φ of Φ in hom (A' , . If φ and φ' induce the same homotopy-class, there is a homotopy h : Δ 1 x X -> y from φ to φ' which gives an isomorphism isoh,x ' • Φχ -* Φ'χ• Moreover, it is easy to see that if there are two homotopies h and h! which are homotopic, they induce the same isomorphism of functors. The obstruction for isOhtx to be canonical lies in the fundamental group of hom (Af, 3 7 ) 

S S d£S

The natural localization functor πs : P S-1P is clearly universal with respect to additive S'-equivariant functors of P to commutative Picardcategories which are S'-divisible in the sense that multiplication by any s < = S gives an autoequivalence. The first example of localizations of Picard categories are given by localiza tion at the multiplicative set {n\ i e Z } for some integer n. We can also localize with respect to N \ { 0 }. The associated categories are denoted by P[^] and Pq respectively. In particular we can localize the virtual category of an algebraic stack V (X ). When dealing with functorial Lefschetz later it will be necessary to localize with respect to other multiplicative sets. We treat the case of diagonalizable groups but to keep true to [Tho92] and later developments by for example [GV02] we also mention the case of a split reductive group 1 First, recall that a diagonalizable group over a scheme S (c.f. [AG70a], I. 4.4,[AG70b]), §1 is a group scheme determined by a constant character-group (supposed to be of finite type). M, it will be denoted by Ds{M). When