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Abstract

Supercoiled DNA often adopts tree-like double-folded branching configurations. In this
context, I propose a framework to generate expected bacterial chromosome structures at multi-
ple scales.

Stage I: A lattice model for the dynamics of randomly branching double-folded ring poly-
mers
First, I studied an elastic lattice model for tightly double-folded ring polymers, which allows
for the spontaneous creation and deletion of side branches coupled to a diffusive mass trans-
port, which is local both in space and on the connectivity graph of the tree. I performed Monte
Carlo simulations and studies systems belonging to three different universality classes: ideal
double-folded rings without excluded volume interactions, self-avoiding double-folded rings
and double-folded rings in the melt state. The observed static properties are in good agreement
with exact results, simulations, and predictions from Flory theory for randomly branching poly-
mers. For example, in the melt state rings adopt compact configurations and exhibit territorial
behaviors [1].

Stage II: Coarse-grained models of supercoiled DNA at multiple scales
Second, I built a coarse-grained model of bacterial DNA, which is known to adopt tree-like
plectonemic structures due to negative DNA supercoiling. To that end, starting from the first
model, I included the possibility to generate long branches, with the average length becoming
the parameter of the model.Considering DNA concentration similar to the in vivo situation, we
adjusted this average plectoneme length parameter in order to reproduce as well as possible
contact properties between chromosomal loci as obtained from high-throughput chromosome
conformation capture methods (Hi-C).

Finally, we obtained various coarse-grained models that are consistent with each other and
that allow capturing contact properties of various bacteria, from 2 kb to 4 Mb scale. In other
words, we are able to rationalize from first principles contact properties between bacterial chro-
mosomal loci as measured from Hi-C methods.

References
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Chapter 1

Intention and Organization of this
Thesis

Bacterial genomes face similar constraints as their eukaryotic counterparts. The genetic mate-
rial must be tightly folded to fit into the limited space of the cell. The (E. coli) chromosome
is about 1000 times longer than the confinement of the bacterial cell. Cell-imaging technology
has revealed that the bacterial genome exists in an extremely precise spatial ordering within the
nucleoid (Robinow, 1956) as opposed to the “bowl of spaghetti” configuration assumed in the
past. Moreover, this compaction should ensure that cell processes like replication, segregation,
and transcription/translation of the genetic material are possible.

The sequencing of the bacterial DNA was deciphered years ago. However, it is more and
more evident that pure knowledge about the linear ordering of DNA base pairs is not enough
to understand its functioning. Instead, a fundamental understanding of the 3D organization of
the genome and the physical principles governing its structure is the first vital step for fully
understanding this biomolecule.

FIGURE 1.1: "Illustration of the Genome Folding Problem". From cartoonist
John Chase. Copied from (Iyer, Kenward, and Arya, 2011).

How do bacteria fold their genetic materials in the three-dimensional (3D) architecture?
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In order to address this question, computational modeling coupled with high-throughput chro-
mosome conformation capture techniques (Hi-C) and high-resolution microscopy is used. Hi-
C methods investigate spatial genome folding by determining the relative contact frequency
between pairs of genomic loci and generating interaction frequency maps. Moreover, high-
resolution (live) cell imaging is pivotal for quantifying and validating many findings about
spatial genome organization. However, despite considerable advances in elucidating the nature
of the nucleoid structure and the role of different players in this organization, our knowledge
of it still needs to be improved. This is a field in which computational/analytical modeling
approaches may guide our intuition. Disregarding molecular details, coarse-grained models
are particularly suited to provide an overall picture of biological systems’ major driving forces
and underlying organizational principles. For this purpose, one might choose a “multi-scale”
approach, where each coarse-grained level emerges from the previous, more detailed one.

1.1 Aim and Structure of the thesis

In this context, the work presented in this thesis is inspired by a range of experimental observa-
tions for bacterial chromosomes. Even though these organisms display different dynamics and
organizational complexity, all bacterial chromosomes studied here follow a common pattern,
suggesting a similar general mechanism behind it.

This thesis aims to develop a polymer physics model to study the 3D conformation of
bacterial chromosomes (P. aeruginosa, C. crescentus, and E. coli ) at different length scales.
We do not aim to explain the specific patterns in the contact map like other theoretical studies
but instead investigate the possibility of capturing the main features of the internal structure
of bacterial chromosomes using a branched double-folded ring polymer model inspired by the
topological organization of negative supercoiled DNA, which adopts tree-like structure. In
the model, the branches represent plectonemes. Their length is the only free parameter in
our model, which was adjusted to reproduce as well as possible contact probabilities between
chromosomal loci as obtained from Hi-C experimental data. Our model can provide theoretical
insights to guide future experimental approaches that try to obtain information about the shape
of the prokaryotic genome.

In chapter 2, the basic biology of bacterial DNA is discussed in the first place. The second
part of this chapter introduces the mathematical principles of calculating the free energy of
DNA supercoiling. We examine how the radius and the pitch of the plectoneme scale with
supercoiling density.

Two major experimental methods probing the 3D organization of genome are presented
and confronted to each other in chapter 3. Additionally, previous models and computational
methods used to study bacterial chromosome architecture are addressed. These methods differ
in their approach, the assumptions they make, and the adopted implementations.

Since our work is of an interdisciplinary nature, chapter 4 provides an introduction to basic
concepts of polymer physics. Exponents describing the properties of polymers are introduced
and will come in handy in the other chapters. Finally, the physics of ring polymer chains in
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different systems is explained, and a short overview of the principles underlying universality
and coarse-graining is given.

In chapter 5, our elastic lattice double-folded ring polymer model is presented in the first
part. The second major part of this chapter introduces the mathematical principles of Monte
Carlo simulations and presents the algorithm for generating double-folded ring polymer con-
formations. Eventually, the conformational properties of the double-folded ring polymers in
various physical systems are investigated. The observed static properties are in good agree-
ment with exact results, simulations, and predictions from Flory theory for different known
polymer systems. For example, rings adopt compact configurations in the melt state and ex-
hibit territorial behaviors. A part of the results of this chapter has been published in Phys. Rev.
E (Ghobadpour et al., 2021).

After establishing a physical framework for bacterial chromosome conformation, in chap-
ter 6, we proceed with extracting simulation parameters to model bacterial DNA. These pa-
rameters are the lattice constant, the amount of DNA contained in each tree node, the system’s
density to mimic the bacteria condition, and the average plectonemes length. Next, the contact
probabilities derived from Hi-C matrices of different bacterial DNA are then investigated. Two
scales of organization of chromosomes are observed in different bacteria. These features are
observed for all bacterial chromosomes irrespective of the cell type, the details of the Hi-C
interaction frequencies, and even the details of the Hi-C methods (since the data were obtained
from different labs). Eventually, the role that branch lengths can play in shaping the spatial or-
ganization of bacterial DNA is elucidated, taking into account the competing interplay between
secondary and tertiary structure contact.

Last but not least, chapter 7 presents a concise summary of the results obtained, closing
with a discussion of future challenges.
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Chapter 2

Introduction to the Biology of
Bacterial DNA

Deoxyribonucleic acid, or ”DNA” for short, is one of the most important chemical compounds
of living organisms responsible for storing genetic information. Although the DNA molecule
was extracted from the cell for the first time in 1869 by Friedrich Miescher, its biological
importance was only understood years later. Miescher thought that DNA’s role in the cell is
phosphorus storage. However, after near a century of scientific effort led to the discovery of
the nature and role of the DNA molecule.

2.1 Molecular Structure of DNA

DNA is a heteropolymer of 4 elementary building blocks called nucleotides. The nucleotide
is a compound of 20 atoms, grouped into three main structures: a phosphate group PO�

4 , a
five-carbon sugar ring (ribose or deoxyribose), and a nitrogen base (Adenine(A), Guanine(G),
Cytosine(C) and Thymine(T)), which form a single-stranded DNA (ssDNA) (Calladine and
Drew, 1997) (Fig.2.1). The backbone of this strand is made of the succession of a cova-
lent bond between the sugar of one nucleotide and the phosphate group of the adjacent one
(Fig.2.1(A)) with a directionality quoted 50 ! 30 called conventional direction. Two ssDNA
are coupled via hydrogen bonds between the bases, which always pair in a way that A with T
via two hydrogen bonds and C with G via three hydrogen bonds forming a rather flat complex
called base pair, bp. In order for the bases to be able to pair, the strands are run in opposite
directions (Fig.2.1(B,C)). These two single strands are twisted together, and the backbones are
separated by two helically-shaped grooves of different widths, the major groove and the minor
groove (Fig. 2.1(C)). These grooves provide access to base pairs, which are essential in the
DNA-proteins interactions and also DNA-DNA interactions.

2.2 Three Major Forms of DNA

Double-helix can adopt different shapes depending on pH and physicochemical conditions (
e.g., changing the temperature and salt concentrations). B-form is the most common form of
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FIGURE 2.1: DNA Structure. (A) Formation of a nucleotide by removal of
water. (B) Schematic view of the DNA backbone and the base pairing interac-
tions. (C) 3D-Helical structure of B-DNA. (D) Schematic representation of the
six degrees of freedom between successive base pairs. (E) Different forms of
DNA. A, B, and Z forms. The image is copied from (http://en.wikipedia.org).

DNA under normal physiological conditions. It is a right-handed double helix whose param-
eters were discovered by the X-ray diffraction experiments at high humidity (92%) (Franklin
and Gosling, 1953; Wilkins, Stokes, and Wilson, 1953). The phosphates in a base-pair are
20 A� apart (the diameter of the dsDNA), the thickness of one base is 3.4 A�, two successive
base-pair are rotated by a twist angle of around 36�, i.e., the helical pitch is about 10.5bp. This
molecule is stable and stiff in water at room temperature and neutral pH and has a persistence
length of around 50 nm (⇠ 150 bp).

The A-form of DNA can be observed at lower relative humidity (75%) than the B-form,
which means that it is rarely present in normal physiological conditions (Franklin and Gosling,
1953; Ussery, 2002). The A-DNA is a right-handed helix that is a bit wider than B-DNA (and
also Z-DNA), with a diameter of 23A�, since the base-pairs stack a bit off-center in the A-form
DNA compared to B-form which the base pairs stack nearly on top of each other. The rise
between consecutive base-pairs (2.56 A�) is shorter than the one in B-DNA, and they are not
perpendicular to the helix-axis. Moreover, looking down at the helix, there is a hole in the
A-form DNA (Fig. 2.1(E)). The minor groove is shallow, while the major groove is thin and
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deep.
The other structure of DNA is known as Z-form, which is a left-handed double helix, with

the local twist-angle approximately �30� opposite to the Watson–Crick helix. Its rise and pitch
are the largest of all the forms of DNA (3.7A�, and 12 bp per helical turn respectively) (Ussery,
2002). Its backbone is not a smooth helix but is irregular and zigzag in shape, therefore its
name. Moreover, Z-DNA has no major groove. (Fig. 2.1(E)). The formation of Z-DNA in vitro
was initially tested under very high concentrations of NaCl. The lowest energy-level ground
state of DNA in a physiological solution is B-DNA, and the Z conformation is a higher energy
state and is favored by DNA supercoiling.

One feature of the helices is how base pairs are stacked on top of each other. Due to the
stiffness of the base pairs, we can describe them as rigid bodies like solid rectangular blocks
and describe the state of the dsDNA by the relative orientation (twist, tilt, roll) and translation
(shift, slide, rise) between two neighboring base pairs (Figure. 2.1(D)). The real DNA helices
can be characterized by only three degrees of freedom, twist angle, roll, and slide at the first
approximation. The local twist angle is a rotation about the axis perpendicular to the plane of
the base-pair, that runs along (or nearly along) the line joining the center of two consecutive
base pairs. The role refers to a rotation around the longest axis in a base pair. The slide
describes a translation in the direction of the longest axis of the base pair. The values of the
parameters that correspond to three forms of the DNA are summarized in Figure. 2.1(E). The
schematic representation of the A, B, and Z forms of DNA are depicted in Fig. 2.1(E).

2.3 Bacterial Genome

The bacterial genome usually consists of one single DNA molecule, which is significantly
shorter in length compared to eukaryotes, typically about a few million base pairs against bil-
lions of base pairs. Most bacterial genomes are circular, and their size varies over two orders
of magnitudes, from almost 100 kb to 15 Mb, with the majority between 1 Mb and 6 Mb. The
distribution of the chromosome length is displayed in Fig. 2.3. For a long time, it was thought
that the bacterial chromosome, which tends to stain uniformly with basic dyes, was unstruc-
tured. It took until the 1930s that light microscopy using DNA dyes with acid-treated cells
clearly showed that the bacterial chromosome was concentrated in distinct entities with soft, ir-
regular edges (Fig.2.2 (A),(B)). Now we know that prokaryotic cells, unlike eukaryotes, lack a
nucleus as a compartment enclosed by a membrane. They organize their genetic material into a
specific region (Sherratt, 2003) of the cytoplasm called the nucleoid (composed of DNA, RNA,
and proteins) (Fig.2.2 (C)). Early in the 1970s, Pettijohn and colleagues developed a tech-
nique for lysing E. coligently and obtaining nucleoids for direct electron microscopy imaging,
which could provide an image of the bacterial chromosome as a collection of plectonemic loops
(Fig.2.2 (D)).

Protein-coding regions are, on average, 88% of the bacterial genome with a typical range
of 85�90%, and can reach up to 97% (Land et al., 2015; Kirchberger, Schmidt, and Ochman,
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FIGURE 2.2: (A) Bacillus subtilis nucleoid. (B) The nucleoid of E. coli in
the growing phase. Panel b shows the same section as in panel a, except the
ribosome-free spaces, were colored. The image is copied from (Robinow and
Kellenberger, 1994). (Ca) Nucleoid of B.subtilis cells growing in rich me-
dia colored red (stained with 40 , 6-diamidino-2-phenylindole (DAPI); (Cb)
ribosomes colored green; (Cc) overlay of the two images. (D) An isolated
E. coli nucleoid spread on an electron microscope grid, stained with uranyl
acetate, and visualized by transmission electron microscopy. A bacterial cell
like E. coli is usually around 0.5� 3µm in length, whereas the length of the
nucleoid in this panel is approximately 20µm. In memory of Dr Ruth Kavenoff
1944�1999. The image is copied from (Wang, Montero Llopis, and Rudner,

2013).

FIGURE 2.3: . Distribution of the chromosome length in bacterial kingdom.

2020). It means that almost all of the bacterial genome has a function, in contrast to most eu-
karyotic genomes, where the amount of coding DNA is much smaller (e.g., the human genome
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contains somewhere between 1�2% coding DNA). As a result, the bacterial genome displays
a high gene density ( i.e., the proportion of a genome composed of genes), and there is a strong
link between the genome size and gene number (Kuo, Moran, and Ochman, 2009). Given the
small volume of cells compared to the size of chromosomes, they must be packed inside the
cells in a way that simultaneously meets the requirements of DNA replication, chromosome
segregation, and gene transcription. Hence, the bacterial nucleoid is organized at different
length scales with the help of DNA enzymes and many proteins. Over several decades, details
of which have been investigated using various in vivo, in vitro, and in silico approaches. For
instance, a multidisciplinary approach involving high-throughput techniques like chromosomal
conformation capture (3C) (reviewed in detail in Sec.3.1) combined with powerful imaging ap-
proaches like super-resolution microscopy techniques (reviewed in detail in Sec.3.2) has helped
us to understand the multi-scale hierarchical structural organization of bacterial chromatin sim-
ilar to that of eukaryotic chromatin. A schematic of the hierarchical organization of bacterial
genomes is given in Figure 2.4.

FIGURE 2.4: Schematic of hierarchical organization in bacteria. (A) dsDNA
is the basic component of all chromosomes. (B) Nucleoid-associated proteins
contribute to modulating the local structure of DNA structure. (C) Supercoiling
is generated by topoisomerases’ activities. Most DNA in bacteria forms plec-
tonemes since it is negatively supercoiled. Moreover, bridging proteins and
SMCs form loop-like structures. (D) Chromosomal Interaction Domains, CID,
are the regions of the genome where loci interact more frequently than they
do with other loci from different domains.(E) On a larger scale, the circular
bacterial genome is organized in macro-domains. (F) The cytosol and cell bor-
der contain the bacterial chromosome, also known as the nucleoid. Modified

from (Dame and Tark-Dame, 2016; Birnie and Dekker, 2021)

At the smallest scale, nucleoid-associated proteins contribute to modulating the local struc-
ture of DNA and in the regulation of specific genes ( Fig. 2.4(B) and reviewed in Sec.2.4). At a
larger scale, supercoiling is generated by transcription, replication, and topoisomerases’ activ-
ities (Fig. 2.4(C) and reviewed in Sec.2.5). Also, at this scale, bridging proteins and structural
maintenance of chromosomes (SMC) complexes form loop-like structures (Sec.2.4.4). One
of the characteristics of the nucleoid is that supercoils are arranged into several topological
domains. A topological domain forms because of a supercoiling-diffusion barrier. In other
words, a single cut in one domain will only relax that domain and not the others (Postow et
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al., 2004). Several independent investigations have shown that the topological domains have
different sizes from 10�400 kb (Lagomarsino, Espéli, and Junier, 2015) (Sec.2.5.3).

Moreover, the recent development of HiC techniques (Sec.3.1) has revealed that the bacte-
rial chromosome is segmented into a succession of tens of kb-long highly self-interacting re-
gions named “chromosome interaction domains” (CID) (Fig. 2.4(D)). They appear as squares
along the main diagonal in Hi-C matrices. These are the regions of the genome where loci
interact more frequently than they do with other loci from different domains. CIDs ranged in
length from 30 to 400 kb (Le et al., 2013). CIDs are, at first sight, equivalent to topologically
associating domains (TADs) observed in eukaryotic cells. Another characteristic of CIDs is
the presence of a boundary between CIDs that prevents physical interactions between genomic
regions of two neighboring CIDs. Boundaries of CIDs seem to correlate with the expression of
highly expressed genes. Inhibition of transcription (like treating cells with rifampicin, which
inhibits RNA polymerase) disrupts CID boundaries. In particular, moving a locus with highly
expressed genes into a poorly expressed genome region generates a new CID boundary(Le et
al., 2013). Further studies are needed to determine the nature of CID boundaries unambigu-
ously.

On even larger scales, the DNA is compartmentalized into large spatially distinct domains
called macrodomains, which are on the order of ⇠ 1�Mb (Fig. 2.4(E)). For instance, it has
been shown that the E. coli genomes can be divided into four macrodomains (Ori, Ter, left,
and Right) plus two non-structured domains (Valens et al., 2004). Even at this scale, loci
within a given macrodomain recombined at higher frequencies with other loci in the same
macrodomain.

2.4 Condensation and Organization of DNA by Nucleoid-Associated
Proteins (NAPs)

2.4.1 Nucleoid-Associated Proteins

Histones modulate the local structure of the DNA in eukaryotic cells. However, in bacteria,
small proteins cause them to fold into a more compact structure. At the kilo-base (kb) scale,
these small essential proteins condense DNA by bending (Fis, HU), wrapping (IHF, Dps), and
bridging (H-NS) relatively distant DNA strands to reduce the persistence length. These groups
of proteins are called histone-like proteins or nucleoid-associated proteins (NAPs).

Although the presence of NAPs is a universal feature among bacteria, there is a significant
variation in NAPs in different bacteria. Even their cellular abundance in one specific bacte-
ria (like E. coli) depends on growth phase, growth condition, and environmental changes in
general (Dillon and Dorman, 2010; Hołówka and Zakrzewska-Czerwińska, 2020). Figure. 2.5
shows the evolution of NAPs concentrations in E. coli bacteria across the different growth
phases.

The DNA binding activities of NAPs induce topological and structural changes in the chro-
mosomal DNA to ensure proper compaction inside the cell. In addition to their architectural
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FIGURE 2.5: Evolution of four NAPs concentrations across the different
growth phases in E. coli. A typical bacterial growth curve is shown in black.
Dashed lines indicate phase–log phase and stationary phase transitions. The

image is copied from (Dillon and Dorman, 2010).

rules, NAPs are also involved in cellular processes such as transcription, replication, and DNA
recombinations (Swinger and Rice, 2004; Chodavarapu et al., 2008; Dillon and Dorman, 2010;
Browning, Grainger, and Busby, 2010; Dorman, 2014).

There are at least 12 NAPs identified in E. coli (Verma, Qian, and Adhya, 2019). Here,
a brief review of the most extensively studied ones is presented. Based on their topological
effect on DNA, these proteins are categorized into two groups: DNA-bridging proteins and
DNA-bending proteins. Their binding properties are summarized in Fig. 2.6.

2.4.2 DNA bridging proteins

The Heat-stable Nucleoid Structuring protein (H-NS)
The heat-stable nucleoid structuring protein is conserved among Gram-negative bacteria. Atomic
force microscopic images of H-NS-DNA complexes show that H-NS binding makes bridges
between adjacent DNA duplexes (Fig. 2.6) (Dame, Wyman, and Goosen, 2000; Luijsterburg
et al., 2006). Bridging relatively distant DNA segments have a significant impact on the general
organization and compactness of the nucleoid.

2.4.3 DNA bending proteins

The Heat-Unstable protein (HU)
HU is a non-sequence-specific DNA binding protein that regulates DNA flexibility. This pro-
tein prefers to bind into distorted regions, such as bends (Dillon and Dorman, 2010). HU plays
its role in DNA flexibility by bending the duplex. At low protein concentrations, HU reduces
the stiffness of DNA over short distances. However, at high concentrations, it stiffens DNA.
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DNA flexibility caused by HU facilitates DNA loop formation, which affects chromosome ar-
chitecture.

The Integration Host Factor (IHF)
IHF is structurally almost identical to HU but behaves differently from HU in many aspects (Rice
et al., 1996; Verma, Qian, and Adhya, 2019). Unlike HU, it preferentially binds to a specific
DNA sequence and condenses DNA by inducing by > 160circ bend angle (Rice et al., 1996;
Verma, Qian, and Adhya, 2019).

The Factor of Inversion Stimulation (FIS)
FIS has a homodimer structure, and like IHF, it induces DNA bending at cognate sites. FIS has
an ellipsoidal structure and is made of two helix-turn-helix motifs involved in DNA binding.
The two helix-turn-helix motifs bind successive major grooves and have the distance 25Acirc,
which is shorter than the pitch of a B-DNA (about 8Acirc), So FIS must force a bend into
DNA to bind stably (Skoko et al., 2006; Verma, Qian, and Adhya, 2019). Although FIS is
often considered as a sequence-specific DNA binding protein, it binds to a random sequence
DNA as well, which this non-specific binding of FIS can contribute to DNA condensation and
organization shoed by Magnetic tweezers experiments (Skoko et al., 2006)

2.4.4 Structural Maintenance of Chromosomes (SMC) complexes

As in eukaryotes, bacterial cells partition their genetic material via chromosome condensation.
Structural maintenance of chromosomes (SMC) acts as a condensin since they can bridge and
extrude DNA loops. SMC complexes are large V-shaped homo-dimeric molecules. They have
a higher molecular weight than other NAPs (⇡ 150�200kDa) (Luijsterburg et al., 2006). They
are found in almost all organisms: mammals, nematodes, plants, and prokaryotes(Cobbe and
Heck, 2004).

Many bacteria contain three SMC complexes: Smc-ScpAB, MukBEF, and MksBEF, de-
fined as bacterial condensins which play a central role in chromosome organization and seg-
regation (Lioy, Junier, and Boccard, 2021). Smc-ScpAB condensins are the most conserved
complex and are found in the vast majority of bacteria. It works together with the ParABS sys-
tem and is essential for chromosome segregation. Some g�proteobacteria like E. coli have the
second family, MukBEF. Mutational inactivation of this complex results in chromosome disor-
ganization and decondensation. MksBEF is another condensin occasionally found in bacterial
genomes.

2.5 Condensation and Organization of DNA by Supercoiling

The structure of the bacterial genome is partially achieved by significant supercoiling. DNA
supercoiling is a fundamental, inescapable property of DNA due to DNA machinery that tran-
scribes and replicates the DNA. Activities of topoisomerases, nucleoid-associated proteins



2.5. Condensation and Organization of DNA by Supercoiling 13

FIGURE 2.6: Upper row: Schematic representation of DNA folding proper-
ties of bacterial nucleoid proteins (NAPs). Gray lines depict DNA, and blue
spheres show NAPs. (A) DNA bending. For instance, HU causes flexible
bends (varying between 10 � 180�, whereas IHF introduces sharp bending
(> 160circ). FIS can bend DNA between 60� 75�. (B) Straightening or stiff-
ening of DNA (e.g., H-NS spreads along DNA, making it stiff. (C) Bridging
relatively distant DNA strands, like H-NS. (D) DNA bunching or bundling
(e.g., HU bindings brings several parallel DNA segments together). (E) NAPs
bound together and wrap DNA. Lower row: SFM images of NAPs and a model
of their roles in the compaction of DNA. The image is copied and modified

from (Verma, Qian, and Adhya, 2019; Luijsterburg et al., 2006)

(NAPs), and transcription are three main factors in generating and maintaining supercoiling
in bacterial DNA. In this section, this property of DNA is reviewed in detail.
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2.5.1 DNA Supercoiling

The two strands of DNA are held together via hydrogen bonds between base pairs (two bonds
between A and T and three bonds between C and G). For B-DNA, the two strands once in-
tertwined each 10.5 base pair to form a right-handed helix. Any mechanical manipulation
which leads to overwinds/underwinds of the helix generates torsional strain that can be re-
lieved by distorting the shape of DNA, or in other words, DNA writhes upon itself. These
overwinds/underwinds of the helix are referred to as DNA supercoiling. The closed circular
form of DNA or linear form with fixed ends ( whose ends are not allowed to rotate) is topo-
logically constrained. In other words, the number of times the two strands wind around each
other is topologically invariant, known as linking number Lk. This topological parameter is
always an integer and related to two geometrical properties: the twist Tw and the writhe Wr.
The twist is the number of helical turns in the DNA molecule, and the writhe is the number
of self-crossing of the dsDNA centerline (Mirkin, 2001). Unlike Lk, which is an integer num-
ber, Wr can be any value. Upon White-Fuller-Calugarenau theorem (Fuller, 1978) the linking
number of DNA at any time t is the sum of the twist and writhe:

Lk(t) = Tw(t)+Wr(t). (2.1)

The characteristic feature of the topologically-closed DNA, Lk, cannot be altered by any defor-
mation of the DNA strands as long as it does not involve cutting one or both strands. However,
twist and writhe can be interconvertible due to changes in ambient conditions, temperature,
and during DNA functioning as long as Eq.2.1 is satisfied. In an overwound DNA, the excess
in twist can be converted into positive writhe, and for the underwound molecule, the deficit in
turns can be converted into negative writhe (Fig. 2.8). The orientation of the crossing the center
line of the helix distinguishes between positive and negative writhe (Figure. 2.7).

FIGURE 2.7: Positive and negative signs of writhe. In a (�) crossing, the
overlying direction arrow must be turned clockwise to align with the underly-

ing arrow. In a (+) crossing, this turn is counterclockwise.

The linking number of N base-pairs long circular DNA in the relaxed form is defined as
Lk0. It can be calculated by

Lk0 = Tw0 =
N
g
, (2.2)

where g is the number of base pairs per helical turn (Fig. 2.8). If the linking number of a
DNA molecule is different from the relaxed one, Lk0, DNA is said to be supercoiled. In other
words, linking difference DLk = Lk�Lk0 measures DNA supercoiling. When DLk < 0, DNA
is underwound compared to relaxed DNA and is called negatively supercoiled. While DLk > 0,
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DNA is overwound compared to relaxed DNA and is called positive supercoiled (Fig.2.8). A
valuable characteristic of supercoiled DNA that is independent of the size of DNA molecules
is the superhelical density s , which estimates the number of supercoils per helical turn,

s =
Lk�Lk0

Lk0
. (2.3)

When the DNA is supercoiled, the entire double helix is stressed. This stress can either
cause a change in the number of base pairs per helical turn in closed circular DNA or leads to
spatial deformation of the helix axes. In other words, the change in Lk can be decomposed into
a twist (local) and a writhe (nonlocal) contribution:

DLk = DTw+Wr. (2.4)

DTw represents the change in the twist, and Wr represents the number of writhes in the
system (Fig. 2.8).

In general, bacterial DNA is negatively supercoiled (underwound), which can lead to the
formation of plectonemes and solenoids through writhe changes. Fuller (Fuller, 1971), by the-
oretical analysis of the shape of the supercoiled DNA, illustrated that interwound superhelix
is more favorable from the energetic point of view over a solenoid shape. Years Later, Volo-
godskii (Vologodskii et al., 1992) provided numerical evidence for it. The electron microscope
images of isolated supercoiled DNA revealed the presence of plectonemes.(Fig. 2.9) (Delius
and Worcel, 1974; Kavenoff and Bowen, 1976).

FIGURE 2.8: (A) A relaxed closed circular DNA. (B) A decrease in Lk induces
negative supercoiling in DNA. Writhe can adopt a geometrical structure called

plectoneme. The image is modified from (Verma, Qian, and Adhya, 2019).
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Relaxed � = � 0.016

� = � 0.033 � = � 0.062

FIGURE 2.9: The electron microscope images of supercoiled DNA with length
7kb at different supercoiling densities, s . The superhelices are very long, thin,
and branched. Clearly, DNA adopts plectonemic form even at very low values

of supercoiling. It was modified from (Boles, White, and Cozzarelli, 1990).

2.5.2 DNA Topoisomerases

DNA topoisomerases are essential proteins that play vital roles in regulating supercoiling.
Topoisomerases are present in all domains of life and are highly conserved (Forterre et al.,
2007). There are some functionality overlaps between DNA topoisomerases (e.g., interconvert-
ing the topological states of DNA). However, depending on whether they introduce transient
breaks into ssDNA or dsDNA breaks, they are divided into two major groups, type I or type II
respectively. Topoisomerase mechanisms and their effect on DNA topology are summarized in
Figure 2.10.

The type I topoisomerases are further subdivided into type IA, IB, and IC according to
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FIGURE 2.10: (A) Mechanisms of DNA topoisomerases. The topoisomerases
bind to DNA and cut the sugar-phosphate backbone of either one (type I) or
both (type II) of the DNA strands. The type I topoisomerases are further sub-
divided to type IA, IB and IC. Type IA opens a break (gate) through the for-
mation of a transient covalent bond to the 50 DNA phosphate and allows the
other segment to pass through its cleavage (strand passage mechanism). Type
IB and IC open a gate through the formation of a transient covalent bond to the
30 DNA phosphate and rotate the free end around the intact strand (controlled-
rotation mechanism). Type II topoisomerases are further subdivided into type
IIA and IIB. They change the DNA topology by forming a transient covalent
bond to the 50 DNA phosphate of both strands and function via a strand-passage
mechanism. (B) Schematic of the topological manipulations in DNA by topoi-
somerases, relaxation of positively and negatively supercoiled DNA, and de-
catenation. The requirement of ATP or ssDNA for activity is indicated by a red
or blue circle, respectively. The image is copied from (McKie, Neuman, and

Maxwell, 2021).

mechanistic, sequence, and structural similarities. Type IA enzymes cleave the DNA back-
bone and generate a covalent linkage to the 50-phosphate in an Mg2+- dependent and ATP-
independent manner, while type IB and IC topoisomerases form a covalent linkage to the
30-phosphate, independently of both ATP and Mg2+. Type IA topoisomerases change DNA
topology using an enzyme-bridged strand passage mechanism (McKie, Neuman, and Maxwell,
2021). In this mechanism, ssDNA is transiently cleaved to allow passage of the other strand
through the break. This mechanism removes one supercoil and strictly changes the linking
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number (Lk) in steps of +1. As a result, Type IA enzymes can relax negatively supercoiled
DNA (But not positively supercoiled). However, type IB enzymes leave the broken strand free
to rotate around the intact strand (Champoux, 2001; Bates AD, 2005; Bush, Evans-Roberts,
and Maxwell, 2015).

The type II topoisomerases are subcategorized as type IIA and IIB. They are structurally
different, even though both catalyze dsDNA breaks through cleavage of the DNA backbone,
generating a covalent linkage to the 50-phosphate on both duplex strands in an AT P/Mg2+

dependent manner.
The main bacterial topoisomerases in E.coli are Topo I and III (Type I), and DNA gyrase

and TopoIV (Type II) (Champoux, 2001). Although there are some functionality overlaps
between these DNA topoisomerases, each has its particular role in topological manipulations.

Topo I was the first topoisomerase discovered (Wang, 1971) and was initially named w
protein. It is found in eukaryotes and prokaryotes. Eukaryotic topo I topoisomerase are type IB
enzymes and can relax both positive and negative supercoiled DNA. Bacterial topoI are type IA
and can relax only negatively supercoiled. They are evolutionarily and mechanistically distinct
from the Eukaryotic enzymes.

Topo III is highly conserved across evolutionary lineages. It is found in prokaryotes, eu-
karyotes, and archaea. Topo III is Mg2+- dependent. This enzyme is a type IA topoisomerase
that relaxes DNA; however, this does not appear to be its primary function in E. coli. It has
been shown that it is involved in the segregation of chromosomes during replication (Bush,
Evans-Roberts, and Maxwell, 2015).

Topo IV is a bacterial type IIA enzyme and is an ATP-dependent enzyme. It is capable of
relaxing both positive and negative supercoils. Topo VI also has significant decatenate activity
in a Mg2+/AT P-dependent manner (McKie, Neuman, and Maxwell, 2021). E.coli topo IV is a
heterotetramer consists of two subunits, encoded by the parC and parE genes.

DNA gyrase; Bacteria also have a unique type IIA topoisomerase called DNA gyrase. All
bacteria contain DNA gyrase, but it is absent in higher eukaryotes. This enzyme is the only
topoisomerase (among other types II topoisomerases) that can introduce negative supercoils
into DNA at the expense of ATP, resulting in the global generation of negative supercoils in
the bacterial chromosome at all times. DNA gyrase is a heterotetramer with two GyrA and
two GyrB subunits. It is argued that the balance between Topo I and DNA gyrase’s opposing
activities maintains a steady-state level of average negative supercoiling in E.coli.

2.5.3 Dynamic properties of DNA supercoiling

DNA supercoiling not only can change in response to environmental changes (i.e., during the
lifecycle of the bacterium (Krogh, Møller-Jensen, and Kaleta, 2018), environmental changes
such as pH (Martis B et al., 2019)) but also different regions of the chromosomes experience
different supercoiling levels (Guo et al., 2021; Visser et al., 2022). As reviewed in Sec. 2.5.2,
topoisomerases play a crucial role in regulating supercoiling in bacteria. Moreover, NAPs such
as H-NS are expected to prevent supercoiling (Junier and Rivoire, 2016). They prevent super-
helical stress from relaxing at their fixed points and hence play a topological role in shaping the
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topological domains with different SC levels. In vivo and in vitro studies have shown that the
E. coli chromosome is divided into approximately 400 supercoiled domains with an average
size of 10 kbp (Postow et al., 2004; Deng, Stein, and Higgins, 2005). These domains appear
topologically separated, meaning supercoils cannot move between adjacent domains (Deng,
Stein, and Higgins, 2005). Another factor in local SC level variations is the transcription pro-
cess of DNA to RNA (Fig.2.11). When an RNA polymerase (RNAP) transcribes a gene, strand
separation leads to positive supercoiling through overwinding the DNA molecule ahead of the
advancing protein machinery and negative supercoil formation behind (Liu and Wang, 1987).
Moreover, during DNA replication, the strands are separated, which leads to the formation of
positively supercoiled ahead of the replication fork, and the daughter strands form precatenanes
behind the replication fork (Fig.2.11).

Genomic variations of the supercoiling of the E. coli chromosome is shown in Figure 2.12.
Since supercoiling also regulates the transcription, there is a dynamic interaction between the
transcription levels of neighboring genes (Meyer and Beslon, 2014; Grohens, Meyer, and
Beslon, 2022).

FIGURE 2.11: DNA metabolism has topological consequences. i. The repli-
cation process, separating the strands, leads to the formation of positively su-
percoiled ahead of the replication fork and the formation of precatenane be-
hind. ii. Transcription process, separation of the strands leads to positive
supercoiling through overwinding the DNA molecule ahead of the advanc-
ing protein machinery and negative supercoil formation behind. The image

is copied from (McKie, Neuman, and Maxwell, 2021).

2.5.4 DNA supercoiling detection

Different approaches can be used to measure the level of supercoiling in DNA. Historically, one
of the first methods to measure DNA supercoiling was centrifugation. This method is based
on the differential migration of DNA molecules with different compaction through a sucrose
density gradient (Mirkin, 2001; Corless and Gilbert, 2017). More compact molecules have a
higher sedimentation rate than relaxed counterparts in a manner proportional to the level of
supercoiling/compaction (Fig. 2.13 (A)).
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FIGURE 2.12: Large-scale supercoiling features of the E.coli chromosome.
Left: Circular map at 1 kb resolution. Blue/red tracks indicate more nega-
tive/positive supercoiling than average (s =�0.06). Shaded grey arcs indicate
the positions of macro-domain regions. Right: corresponding heat map. The

image is copied from (Visser et al., 2022).

This method was very laborious, so it has been largely superseded by the less complex
agarose gel electrophoresis method. The electrophoresis approach is also based on the elec-
trophoretic mobility of DNA molecules. Supercoiled DNA migrates faster than relaxed ones
through an agarose gel in a way that molecules with different DLk form separate bands in
the electrophoretic pattern. The band of higher mobility corresponds to compact supercoiled
molecules, whereas the lower-mobility band comprises nicked-circular (open-circular) molecules
(Fig. 2.13 (B1)).

The resolution of the agarose gel is not enough to differentiate topoisomers with different
levels of DNA supercoiling, and they co-migrate as a single band. Therefore, agarose gel elec-
trophoresis must be run in the presence of an intercalator agent, usually chloroquine Fig. 2.13
(B2)). An intercalator can insert itself between the stacked DNA base pairs and causes a local
unwinding of the DNA helix of 26� per each molecule between adjacent base pairs (Fig. 2.13
(C)). As a result, chloroquine unwinds the double helix and releases negative supercoils, which
leads to changing the DNA molecules’ migration rates (Mirkin, 2001; Bates AD, 2005; Corless
and Gilbert, 2017).

A (2D) agarose gel electrophoresis technique is applied to study supercoiled templates that
might simultaneously include positive and negative topoisomers. In this approach, the gel is
run in the usual way, so separation and co-migration of both positively and negatively super-
coiled DNA will occur. Electrophoresis is then performed in the presence of chloroquine in
the perpendicular direction (90� rotation of gel). This method yields more detailed information
about the supercoiling density of circular DNA (Fig. 2.13 (d));

In addition to using centrifugation and electrophoresis methods, there are other methods
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FIGURE 2.13: DNA Supercoiling Measurements. (A) The centrifugation
method. Based on the migration rate of highly supercoiled/compact molecules,
differentiate DNA supercoil level. The image is copied from (Corless and
Gilbert, 2017). (B) Effect of an intercalator on electrophoresis. (B1) shows
an agarose gel of increasing negative supercoiling, and (B2) shows the same
samples electrophoresed in the presence of an intercalator. The relaxed sam-
ple (R) has positive writhe and higher mobility in (B2). Sample 3 is nega-
tively supercoiled since in B2 has reduced negative writhe and migrates more
slowly. Samples 3� 5 appear identical in (B1); however, they are resolved
from each other in (B2). Sample 1 has the same mobility in both but is nega-
tively writhed in (B1) and positively writhed in (B2). oc: open-circular DNA.
The image is copied from (Bates AD, 2005). (C) The effect of intercalator on
an initially negatively supercoiled DNA. It causes a reduction in the twist and
a concomitant increase in writhe. The image is copied from (Bates AD, 2005)
(D) Schematic of two-dimensional agarose gel electrophoresis. Positively su-
percoiled molecules migrate as the arc between (+)SC and the relaxed band.
Negatively supercoiled molecules move as the arc between relaxed and (�)SC.
The image is copied from (Gibson, Oviatt, and Osheroff, 2020). (E) An exam-
ple of separation of DNA topoisomers by two-dimensional gel electrophoresis.
1� 4 have positive supercoiling, and the rest are negatively supercoiled. The

image is copied from (Higgins and Vologodskii, 2015).
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like psoralen-based methods (Mirkin, 2001; Corless and Gilbert, 2017) to measure the plas-
mids’ supercoiling density. Topology of DNA molecules can study with recently developed
methods like fluorescent evaluation of DNA supercoiling (FEDS) (Duprey and Groisman,
2020), recombination assays (Rovinskiy et al., 2019). It can also be analyzed by single-
molecule methods such as transmission electron microscopy (Viguera et al., 2000), atomic
force microscopy (López et al., 2012) and magnetic tweezers (Charvin, Bensimon, and Cro-
quette, 2003). However, detailed information about the supercoiled molecule’s shape and the
local supercoiled level is still missing. (Mirkin, 2001; Bates AD, 2005; Higgins and Volo-
godskii, 2015; Corless and Gilbert, 2017; Cebrián et al., 2021). Future works must go beyond
image limitations and technical capacities to provide detailed insight into DNA supercoiling in
vivo.

2.6 Free-Energy of DNA supercoiling

Getting precise knowledge of the plectonemes inside the cell is almost impossible. In this
context, we use a thermodynamics approach to estimate the feature of the plectoneme. The
plectonemic superhelix consists of two right helices that are interwound and the presence of
small loops located at the tips of the plectonemes are neglected in the calculations. Moreover,
sequence effects are also neglected at this level of modeling (Marko and Siggia, 1994; Marko
and Siggia, 1995b; Marko, 2015; Barde, Destainville, and Manghi, 2018).

The equation for the right-handed helical curve can be written as (White and Bauer, 1986)
(Fig. 2.14):

~r(s) = (Rcosq ,Rsinq , pq), (2.5)

where R is the radius of the helix and 2p p is the pitch.
The total supercoil free energy is obtained as the sum of bending energy, twist elastic

energy, entropic and electrostatic contributions (Marko and Siggia, 1994; Marko and Siggia,
1995b; Marko, 2015; Barde, Destainville, and Manghi, 2018):

bF = bEb +bEt +Ds+w(R)+w(p p) (2.6)

The bending energy is:

Eb =
lp

2

Z L

0
k2ds (2.7)

where lp is the bending persistence length and k is the curvature of the curve. By applying the
curvature definition (eq. 2.40), we get:
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FIGURE 2.14: Left: Schematic of plectoneme, which is constructed of two
ribbons, each of them representing dsDNA. The curvilinear abscissa along the
molecular axes is denoted by s. The position~r(s) is defined in the cylindrical
coordinates. Right: a different point of view of the same plectoneme. The

image is copied from (Barde, Destainville, and Manghi, 2018).

Eb =
lpL
2

(
R

R2 + p2 )
2 (2.8)

The twist elastic energy is defined as (Marko, 2015):

Et =
C
2L

Q2 (2.9)

where C is the torsional persistence length and Q= 2pTw is the net twist angle along the double
helix (DNA twisting). By substituting equations 2.3, 2.4, and writhe definition (eq. 2.45):

Et =
C
2L

(2p(DLk�Wr))2 (2.10)

=
2p2C

L
(sLk0 +

L
2p

p
R2 + p2 )

2 (2.11)

=
2p2C

L
(s L

nl0
+

L
2p

p
R2 + p2 )

2 (2.12)

=
CL
2
(sw0 +

p
R2 + p2 )

2 (2.13)

where w0 =
2p
nl0

, n = 10.5 bp per ds-DNA helix turn and l0 = 34 nm the ds-DNA rise per base
pair.

The entropic cost of bringing the filament close to itself is given by Eq. 2.14. This term
prevents the collapsing of the plectoneme into a line.

Ds =
L

(lpR2)1/3 +
L

(lp p2)1/3 (2.14)

The electrostatic contribution is (Marko, 2015):

w(R)+w(p p) (2.15)

w(x) = lBn2K0(2x/lD) (2.16)
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lB = e2

ekBT = 0.7 nm is the Bjerrum length (the distance at which the electrostatic interaction
is comparable in magnitude to the thermal energy scale, kBT ), lD = 0.8nm, n = 8.4nm�1

and K0(x) is a modified Bessel function that decays exponentially for large x and diverges
logarithmically for small x (Marko and Siggia, 1995b). As the electrostatic term is very small
compared to other terms, we neglect it in our calculation.

Hence, the total free energy per length is obtained by:

f =
bF
L

=
lp

2
(

R
R2 + p2 )

2 +
C
2
(sw0 +

p
(R2 + p2)

)2 +
1

(lpR2)1/3 +
1

(lp p2)1/3 . (2.17)

The free energy depends on two parameters R and p (correspondingly curvature k and torsion
t of the curve, for more detail, see 2.8). By minimizing the free energy, we can determine the
equilibrium values of R and p. Fig.2.15 shows this free energy as a function of supercoiling
density |s |.

By minimization of the free energy with respect to R and p, we get:

∂p f =�2lp
R2 p

(R2 + p2)3 +C(sw0 +
p

(R2 + p2)
)(

R2 � p2

(R2 + p2)2 ) = 0 (2.18)

(2.19)

∂R f =�lp
R(R2 � p2)

(R2 + p2)3 +C(sw0 +
p

(R2 + p2)
)⇥ (

�2Rp
(R2 + p2)2 )�

2
3

1
(lpR5)1/3 = 0 (2.20)

Figure 2.16 shows the result for C = 110 nm, lp = 50 nm, w0 = 2p/nl0 = 176 rad/nm,
(n = 10.5 bp per ds-DNA helix turn and l0 = 34 nm the ds-DNA rise per base pair). The
equations are solved numerically, and the same graph as reference (Barde, Destainville, and
Manghi, 2018) was reproduced. The order of magnitude of R and p are quite realistic compared
with experimental and numerical results (Barde, Destainville, and Manghi, 2018).
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2.7 Appendix A: Frenet-Serret frame

FIGURE 2.17: A curve in space. At any point r(s), there is a tangent vector,~t,
a normal vector~n, and the binormal vector~b. I need to indicate s and r in it.

The local Frenet-Serret frame can be used to study a curve~r(s) parameterized by the arc
length along the curve s, 0  s  L. This frame is unique, i.e., for every curve, the frame is
uniquely defined (Kamien, 2002). It consists of three vectors that can describe the curve, the
tangent vector~t, the normal vector~n, and the binormal vector~b.

Tangent vector, The unit tangent vector at a point s on the curve:

~t =
~dr
ds

/k
~dr
ds

k, (2.21)

Normal vector,

~n =
~dt
ds

/k
~dt
ds

k, (2.22)

The magnitude of the rate of variation of the unit tangent vector is the curvature k of the
curve.

k = k
~dt
ds

k, (2.23)

Binormal vector,

~b =~t ⇥~n, (2.24)

The binormal vector is a unit vector perpendicular to both~t and~n.
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Moving on the curve r(s) along s, the normal vector can change its direction if

1) The normal vector rotates together with the tangent vector to stay perpendicular to the
curve. In this case, the curve stays in the same flat plane.

2) By rotating around the tangent vector. This case corresponds to the rotation of the
plane of the curve.

~dn
ds

= a~t + t~b, (2.25)

Here, t is defined as the torsion of the curve, and it is measured as the rate of the variation
of the binormal.

To calculate a , since the derivative of any unit vector is perpendicular to itself, differen-
tiating~t ·~n = 0 ends up in:

~dt
ds

·~n+~t ·
~dn
ds

= 0, (2.26)

by substituting equations 2.22 and 2.25 in equation 2.26, we get a = �k . In order to
complete the analysis of the curve, we calculate:

~db
ds

=
d
ds

(~t ⇥~n) =
dt
ds

⇥~n+~t ⇥
~dn
ds

(2.27)

= k~n⇥~n�k~t ⇥~t + t~t ⇥~b (2.28)

= t~t ⇥~b. (2.29)

By applying the rule:

~a⇥ (~b⇥~c) =~b(~a.~c)�~c(~a.~b). (2.30)

equation 2.29, will be:

~db
ds

= t~t ⇥~b = t~t ⇥ (~t ⇥~n) (2.31)

= t[~t(~t.~n)�~n(~t.~t)] (2.32)

=�t~n (2.33)

We can summarize the Frenet-Serret equations for a curve in three dimensions as (Kamien,
2002):

d
ds

2

64
~t
~n
~b

3

75=

2

64
0 k 0
�k 0 t
0 �t 0

3

75

2

64
~t
~n
~b

3

75. (2.34)
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2.8 Appendix B: Solenoidal Helix

The plectonemic superhelix consists of two right helices that are interwound. The equa-
tion for the right-handed helical curve can be written as (White and Bauer, 1986) (Fig. 2.14):

~r(s) = (Rcosq ,Rsinq , pq), (2.35)

where R is the radius of the helix and 2p p is the pitch. The arc length in 1 radian of the
superhelix is l =

p
R2 + p2, therefore the arc length is

ds = ldq =
p

R2 + p2dq , (2.36)

where 0  s  L.

The unit tangent vector is:

~t =
~dr
ds

=
~dr
dq

~dq
ds

=
1
l
(�Rsinq ,Rcosq , p) (2.37)

By applying eq.2.22 and eq.2.23, the curvature of the curve will be:

~dt
ds

=
~dt
dq

~dq
ds

= (2.38)

1
l2 (�Rcosq ,�Rsinq ,0) (2.39)

k = k
~dt
ds

k= R
R2 + p2 (2.40)

Hence the normal vector ~n = (�cosq ,�sinq ,0) has no component in the z direction
and remains always horizontal.

The binormal vector is obtained from equation 2.24:

~b =
1
l
(psinq ,�pcosq ,R), (2.41)

So the Frenet equation:

~db
ds

=
1
l2 (pcosq , psinq ,0) (2.42)

Hence:

t =
p

R2 + p2 . (2.43)
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So torsion and curvature are constant along the superhelix.

The total torsion of the curve of length L ( which is indeed the twist of the curve) is
defined as (White and Bauer, 1986):

Tw =
1

2p

Z L

0
t(s)ds =

L
2p

p
R2 + p2 , (2.44)

The factor 1
2p is used for normalization and helps to express the twist in the number of

turns instead of radians.

Since the linking number is topologically invariant, the linking number does not change
when the plectonemes are formed, this means (White and Bauer, 1986; Boles, White, and
Cozzarelli, 1990; Marko, 2015; Barde, Destainville, and Manghi, 2018)[ref: Calugareanu-
Fuller-White theorem] that DLk = 0 , hence:

Wr =�Tw =� L
2p

p
R2 + p2 . (2.45)
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Chapter 3

Investigating 3D Organization of
Chromosome

To answer one of the fundamental questions in biological studies on how the spatial con-
formation of the DNA affects its functions like gene regulation, gene expression, DNA
transcription, and replication (Oluwadare, Highsmith, and Cheng, 2019), we first need
to understand chromosome conformation. Powerful experimental methods, including
microscopy-based techniques such as DNA Fluorescence in situ Hybridization (DNA
FISH) and chromosome conformation capture methods, such as Hi-C, have opened up
new possibilities for understanding chromosome architecture. Even though experimental
research has come a long way, there is still not enough information to fully comprehend
the structure and function of the genome. Computational models are a crucial com-
plement to interpret experimental data and provide quantitative comprehension of how
chromosomes fold, move, and interact. The following sections present a brief review of
selected experimental approaches and studies developed over the recent years to model
the 3D chromosome architecture.

3.1 Chromosome conformation capture experiments

3.1.1 Captured conformations of chromosomes

Chromosome conformation capture (3C)-based techniques study the 3D architecture of
the genome by connecting genomic position with the spatial organization. The 3C assay
was first developed by Dekker et al. in 2002 (Dekker et al., 2002) and measured the con-
tact frequency between two specific genomic sites (or loci) in a cell population (one vs.
one). Several 3C derivative techniques have been developed to overcome the limitation
of 3C. Later improvements consisted of counting a single loci’s contact with several other
loci on the chromosome, 4C (Lomvardas et al., 2006; Simonis et al., 2006; Würtele and
Chartrand, 2006; Zhao et al., 2006). These one-to-all approaches help capture genome-
wide interactions made by a single locus (Sati and Cavalli, 2017). Since 3C and 4C
methods study interactions of a single preselected locus, they are insufficient to capture
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general principles of chromosome organization. The 5C technique allows the acquire-
ment of the contact information of multiple genomic loci in a large genomic region, many
vs. many, (Dostie et al., 2006). Finally, Hi-C, an all-to-all assay (Lieberman-Aiden et al.,
2009a), which combines the 3C technique with a high throughput sequencing method,
can detect the contacts between all loci genome-wide. Today, Hi-C is the most widely
used and well-known technique. During the last decade, an enormous amount of data
were generated using the Hi-C methods. It has revolutionized chromosome studies by
measuring the number of interactions between chromosome fragments. The Hi-C data is
commonly summarized in the form of a genome-wide contact frequency matrix (Berkum
et al., 2010). The principle steps in (3C) and methods derived from it are outlined in Fig-
ure 3.1.

FIGURE 3.1: Schematic of the Hi-C Workflow. This figure was obtained from
(https://www.activemotif.com/blog-hi-c)

3.1.2 Hi-C method

In a typical Hi-C experiment, the protocol (as depicted in Figure 3.1) involves the fol-
lowing steps (Lieberman-Aiden et al., 2009a). First, to freeze contacts in place, a pop-
ulation of cells is cross-linked with formaldehyde and lysed. Therefore, the covalent
links between adjacent chromatin segments are formed. Second, DNA is digested with
a restriction enzyme. The restriction enzyme is able to break whole chromosomes at
specific restriction sites (nuclease) and produce restriction fragments with a 50 overhang.
Then the 50 overhang in each restriction fragment pair is joined via the ligation proce-
dure. As a result, small DNA rings are made of two restriction fragments. This step also
removes the restriction sites and adds biotin tags in place for use in the next step. Fourth,
the DNA solution is purified, and the resulting DNA samples contain ligated fragments
marked with biotin at the junction. In the last step, the ligated fragments are amplified by
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PCR and sequenced using paired-end high-throughput sequencing, yielding a collection
of "reads". A complex bioinformatics treatment is required to map the reads onto a ref-
erence genome and identify interacting restriction fragments and their frequency count.
This last step has many caveats and is known to be prone to error.

3.1.3 Contact Matrix

Once the Hi-C library has been obtained, raw data of read-pairs is mapped onto a location
on the genome to obtain a count map with elements ni j via bioinformatic methods. ni j

is the number of contact events between two genomic fragments i and j. Fragments,
also known as genomic loci or bins, are the regions in which the chromosome has been
partitioned. The size of the genomic loci is defined by the number of base pairs in
it (range from 1kb to 1Mb). Then the interaction frequencies (also known as contact
frequencies), ci j between any pairs (i, j) of loci are assessed by normalizing the counts’
map. The loci-to-loci interactions along the DNA are summarized in a two-dimensional
matrix (also referred to as a contact matrix or contact map), where rows and columns
represent the number of fragments into which the DNA was divided. Heatmaps are
usually used to visually represent the contact matrix where the intensity displays the
interaction frequency. The size of the fragments defines the resolution (e.g., 1kbp) of
the contact map. Normalizing count maps into genome-wide maps of relative contact
probability matrices requires the elimination of systematic biases.

The resolution of a Hi-C dataset has increased in the last decade by roughly 1-fold every
three years. The best resolution available to date is 1 to 5kb. However, the resolution
is limited by multiple factors, and the repeatability and reliability of Hi-C experiments
and their bioinformatics steps come under scrutiny. Artifacts can emerge from various
sources, including protocol efficiency (e.g., ligation and fill-in efficiency), PCR amplifi-
cation of the purified reads, the size of the cross-link between formaldehyde, and varying
lengths of DNA.

3.1.4 Normalization

In Hi-C experiments, the contact frequencies between two genomic loci are roughly pro-
portional to the reads counts obtained between two regions after sequencing. Raw con-
tact frequencies contain several systematic biases, like uneven distribution of restriction
fragment sizes, the distance between restriction sites, mappability of individual reads and
sequencing platforms (e.g., differences in GC content) (Yaffe and Tanay, 2011).

In the Hi-C method, an enormous number of cells are used to analyze the contact fre-
quencies between all loci (e.g., at least 25 million for eukaryotes cells (Lieberman-Aiden
et al., 2009a; Berkum et al., 2010)) since a population of cells has significantly larger
sequence reads compared to a single cell. Only read pairs in which both reads were
uniquely aligned to the genome are considered and interpreted as the interaction count.
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In other words, higher read counts mean higher interaction frequencies. However, the
systematic biases affect the Hi-C read counts, which means some fragments will be in-
volved in fewer interactions than expected. In contrast, others will be overrepresented
in the final bank. Therefore, estimating and smoothing out all the biases is essential to
provide a cleaner view of the interaction frequencies and ensure accurate analysis (An
example of Hi-C data before and after normalization is shown in Fig.3.2). Theoretically,
the normalization factor in transforming counts into contact probabilities should be the
total number of cells in the experimental samples. As a result, the contact probability is
defined as ci j = ni j/N, where ni j is the number of cells that have contact between loci i
and j. In practice, it is not the case since N is unknown.

In parallel with the development of experimental methods, several algorithms and soft-
ware packages have been developed to normalize Hi-C data. Historically, normalization
is conducted by dividing each ni j by the average over all genomic loci pairs with the
same genomic contour distance, ci j = ni j/hni ji (Lieberman-Aiden et al., 2009a). How-
ever, there is no stringent justification for this normalization method. All the proposed
normalization methods can be categorized into two groups: explicit factor correction
algorithms and matrix balancing methods. (Ay and Noble, 2015; Servant et al., 2018).

Explicit-factor normalization methods

These methods need a priori information about the sources and factors involved in Hi-
C systematic biases. Yaffe and Tanay (Yaffe and Tanay, 2011; Ay and Noble, 2015;
Servant et al., 2018) proposed a probabilistic model for the analysis of the contact maps
to estimate the probability of observing a contact between two loci given these biases.
The downside to this method is the relatively high computational cost. However, the
HiCNorm. (Hu et al., 2012) method, based on regression models (Poisson or Negative
Binomial regression), was later proposed that was significantly faster.

Matrix balancing methods

These methods collectively correct all factors that affect experimental visibility without
taking any specific biases into consideration. Theoretically, this method should be able
to correct all variances in the contact maps. The critical assumption in these types of
methods is that each locus in the genome would be "equally visible" in the absence of
any biases. The normalization is transformed to a matrix balancing where the goal is
to find a decomposition of the raw contact matrix C =~bT N~b. Where b is a (column)
vector of the bias terms and N is a normalized contact map (all rows have equal sums,
Âi Nt i j = k).

Imakaev et al. (Imakaev et al., 2012) proposed ICE, Iterative correction and eigenvector
decomposition method. In this method, the systematic biases between two loci i and j are
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represented as the product of their individual biases, Ni j = bib jCi j. The maximum like-
lihood solution for the individual biases is obtained by applying an iterative correction
procedure.

Cournac et al. (Cournac et al., 2012; Lyu, Liu, and Wu, 2020), proposed SCN, Sequen-
tial component normalization method, which is very similar to ICE. In this method, all
columns and rows are successively scaled to one by using the euclidian norm. The pro-
cess is repeated sequentially until the matrix becomes symmetric again, with each row
and each column normalized to one.

(a) (b)

FIGURE 3.2: Hi-C matrixes for Caulobacter crescentus bacteria before (a) and
after (b) normalization. The raw data is from (Le et al., 2013).

3.2 Microscopy-Based Techniques

Although our study uses and highlights Hi-C data, it is noteworthy to examine the com-
plementary microscopy-based methods used to study the DNA configurations. An op-
tical microscope (light microscope) uses visible light to detect the structural details in
the cell. However, the diffraction barrier limits the spatial resolutions to approximately
half the wavelength under observation. Super-resolution microscopy (SMR) approaches
have been proposed to circumvent the diffraction limit of light microscopy, which can
achieve spatial resolutions smaller than 10 nm (Miriklis et al., 2021).

Earlier techniques to study chromosome conformation are cytogenetic techniques like
fluorescence in situ hybridization (FISH). Fish employs complementary fluorescently-
labeled DNA probes to detect a specific region and labeled locus on the chromosome.
FISH has been widely used to measure the spatial distance between two regions and pro-
vide direct visualization of the conformation of the chromosome. For instance, studying
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E.coli by FISH revealed two so-called macro-domain near the origin and terminus of
replication, called Ori and Ter, respectively (Le and Laub, 2014).

Unfortunately, such studies are challenging due to the need for photobleaching. Photo-
bleaching causes the fading of the dye or a fluorophore molecule, which makes it unable
to fluoresce. Moreover, fluorescent imaging requires the bacteria to be fixed and perme-
abilized, which may alter the chromosome conformation. Another limitation is that cell
fixation hinders the study of the internal dynamics of the chromosome (Wu et al., 2019).
These limitations were partially overcome by the developments of fluorescent repressor-
operator systems (FROS). In one derivation of this method, using ParB/parS systems
derived from plasmid and chromosome partitioning systems yields to visualization of
specific loci. ParB proteins bind to parS site, initiate the polymerization, and spread ad-
ditional ParB proteins into DNA. So by inserting a single parS site into specific loci, the
expression of a fluorescently-tagged ParB makes the loci visible under the microscope.
An image of E.coli is shown in Fig.3.3.

One restriction of this method is that only 2 � 3 loci may be detected at once. One
common method to visualize the global organization of bacterial chromosomes in vivo
is imaging cells stained with dyes (e.g., DAPI) that non-specifically bind to DNA. An
image of E.coli is shown in Fig.3.3

FIGURE 3.3: Fluorescent images of E. coli. Top: Fluorescently-tagged ParB
reveals the presence of 2�3 loci, making them visible under the microscope.
Bottom: Images of cells stained with DNA-binding dyes (e.g., DAPI), which
bind non-specifically to DNA. The lower images showcase E. coli subjected
to different antibiotics, illustrating alterations in the global DNA structure in

response to environmental conditions.

DAPI stainng also uses fixed cells; hence this technique also precludes analyses of living
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cells. New methods involve fluorescently-tagged proteins that bind throughout the chro-
mosome (like RNA polymerase subunits and nucleoid-associated proteins). The distri-
bution of these proteins provides a reasonable chromosome proxy and leads to important
new insights (Le and Laub, 2014).

Although microscopy-based methods have played a significant role in shedding light on
how bacterial genomic DNA is packed, it is challenging to answer fundamental questions
regarding the (sub)structure and dynamics, the interplay between structure and function
(Brocken, Tark-Dame, and Dame, 2018) using this method.

In conclusion, a truly ingenious, integrative approach combining high-resolution imag-
ing and Hi-C technologies with computational modeling for identifying 3D genome or-
ganization is needed. To this end, computational modeling can leverage the wealth of
experimental Hi-C or microscopy data on chromatin folding to hint to specific folding
motifs of interest.

3.3 From experimental data to chromosome folding

Understanding the organizational principles of chromosomes is a very attractive field
for biologists, physicists, and computational researchers. Over the last couple of years,
several models and computational methods have been developed to construct chromo-
some architecture using experimental data. These methods differ in their approach, the
assumptions they make, and the adopted implementations. Here, some of these methods
are reviewed based on how they model chromosomes.

3.3.1 Approaches

Since the chromosome is a polymer, preexisting theoretical and computational works in
the field of statistical physics of polymers are uniquely suited to study chromosomes.
These physical models can provide predictive mechanistic insights into the chromo-
some structures at a quantitive level (Bottom-up approaches) (Rosa and Zimmer, 2014).
Bottom-up or direct models look at the entire system and try to distill insights from
the larger view by testing whether certain known or hypothesized physical or biologi-
cal principles can lead to ensembles that agree with experimental data. In other words,
the highest priority is deriving universal behavior by applying physics laws and physical
analysis. As a result, these models use a minimum set of assumptions and parameters
and have strong predictive power.

Another approach, data-driven or inverse methods, uses large sets of experimental data
directly to reconstruct chromosomal configurations in silico that are consistent with the
input data. These models can then be used to study other observables of the genomic
architecture. Both approaches have notable different assumptions, implementations, and
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numerical or mathematical tools, while the distinction between bottom-up and data-
driven models is not entirely black and white. According to the number of parameters
used in either model, a useful distinction can be drawn between them. Bottom-up models
typically use several parameters (a handful of parameters), and data-driven approaches
typically use thousands or more values from large datasets, often genome-wide ones.
Here we review a selection of these models and methods that have tried reproducing
essential features of bacterial chromosomes.

3.3.2 Data-driven methods

As described in the previous section, experimental data are used directly in this approach
to produce a detailed spatial configuration of the chromosome in silico that are as consis-
tent as possible with those experimental data. The most common form of experimental
data to reconstruct the 3D organization of DNA are chromosome contact maps resulting
from 3C methods.

Most data-driven approaches directly or indirectly adopt polymer descriptions of DNA,
a chain of interacting monomers. Therefore, the bonds between adjacent monomers
describe the connectivity of the polymer, e.g., harmonic or fixed bonds. In addition,
excluded volume interactions between each pair of monomers are needed to model self-
avoiding polymers, e.g., hard or soft repulsion due to collisions. The chain’s stiffness can
also be manipulated by controlling the angle between linearly connected monomers. Fi-
nally, on top of these fundamental polymer topologies and interactions, a set of pairwise
interactions between monomers (these restraints are assumed based on some assump-
tions) is added and then tuned to get results that are as consistent as possible with the
experimental data. Once a customized polymer model is at hand, Monte Carlo or Molec-
ular Dynamics simulations are used to sample different configurations.

Some of these methods attempt to generate a single-cell 3D structure by imposing a fixed
relationship between the interaction frequency and the average spatial distance between
pairs of genomic loci. Another group of these methods adopts a more flexible approach,
assuming a range of constraints to reconstruct an ensemble of structures that match ex-
perimental Hi-C data. In both cases, a step-wise approach is employed, utilizing various
assumptions and optimization methods to reconstruct the 3D chromosome structure. The
following section briefly reviews the two most important categories, Distance-Based re-
straints, and Probability-Based methods.

I. Distance-Based restraints

This group of data-driven methods have two steps: first, translate the interaction fre-
quencies into spatial distances, and second, apply non-linear optimization techniques
to get the 3D chromosome structure from spatial distances. What distinguishes these
methods from each other is the method used to convert experimental data to distances
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and the optimization technique used to derive 3D structures from locus distances. The
fundamental assumption is that the equilibrium distance between two loci is related to
contact probabilities via di j µ c�a

i j , where a is the best scale parameter, conversion fac-
tor (Oluwadare, Highsmith, and Cheng, 2019). The commonly used conversion factor
is 1, which means that the distances are inversely proportional to the interaction fre-
quencies, di j =

1
ci j

(Lieberman-Aiden et al., 2009a), however, there is no fundamental
reason to support this assumption. The correlation between interaction frequencies and
distances may vary from one Hi-C data to the other and also from one organism to the
other. The other important caveat in interpreting Hi-C data is that the contact matrix does
not represent the contact of chromosomes in one cell but represents the average contact
frequency in the population of cells. The so generated interaction datasets do not contain
absolute interaction frequencies. Thus, only some of the Hi-C matrix’s contact proba-
bilities may represent the true contact between the fragments in the 3D space. A short
review of three distance-based restraint methods is presented in the following.

I.1. Reconstruction of Caulobacter crescentus from 5C data

One of the first computational methods to model the 3D architecture of the bacterial
genome was proposed by Umbarger and colleagues (Umbarger et al., 2011). They ap-
plied the same method which has been used in their group for modelling the 3D con-
formation of the a�globin genomic domain in the human chromosome 16 (Alber et al.,
2007; Baù et al., 2011). Restriction fragments are represented by points and harmonic
interactions are introduced between all pairs of loci (i, j), to reconstruct the equilibrium
chromosome conformation from the 5C data, (Fig. 3.4 i, ii),

H(~ri j) = k(~ri j �di j)
2, (3.1)

Where~ri j is the distance between the two fragments i and j, the spring constant, k, was
set at the square of the corresponding normalized contact frequency, and di j is the equi-
librium (expected) distance derived from the contact frequency at which these fragments
contacted.

To obtain spatial distances between fragments, they first converted the interaction fre-
quencies into Z-scores (the number of standard deviations by which the value of a raw
score is above or below the mean). High Z-scores correspond to high interacting pairs,
while low Z-scores correspond to little or no interaction. The Z-scores were then com-
bined with the information from fluorescence microscopy, the measured distances be-
tween loci at different genomic separations (Viollier et al., 2004). Eventually, Z-scores
were converted to spatial distances using a calibration curve (fifth-order polynomial).
Additional restraints were then introduced between pairs with very high or very low
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contact frequencies to prevent them from moving too close to or too far away from each
other.

Furthermore, they applied another constraint: all of the fragments lie within a box
slightly larger than the Caulobacter cell size (Fig. 3.4(iii)). Optimization was performed
by initializing the randomly 3D coordinates of all points, then altering these positions to
derive the structures with the lowest objective function scores (sum of all the individual
restraints) (Alber et al., 2007; Baù et al., 2011; Umbarger et al., 2011). This initia-
tion and optimization process was repeated thousands of times to create an ensemble of
structures. Then the structures were combined and grouped based on their coordinates,
producing clusters of configurations with highest structural similarity. In the configu-
rations, circular genome was elongated and twisted ⇠ 1.5 times around its longest axes
(Fig. 3.4(iv)).

FIGURE 3.4: Distance-Based restraints methods, Harmonic restraints. Restric-
tion fragments were represented as a point connected by springs. (i) Contact
frequencies were converted into spatial distances between fragments. (ii) the
position of all points were randomly initialized in space, (iii) a structure that
minimally violates the equilibrium (averaged) lengths derived via optimization
procedure. (iv.a) To generate an ensemble of structures, initialization and op-
timization procedure was repeated thousands of times. (iv, b) these structures
were superimposed and grouped into clusters based on their structural similar-

ity. Figure is copied from (Umbarger et al., 2011)

I.2. Reconstruction of E.coli at various replication stages

Another similar approach proposed by Wasim and colleagues, as described in the refer-
ence (Wasim, Gupta, and Mondal, 2021), aims to reconstruct the three-dimensional (3D)
architecture of E.coli using ensemble average Hi-C interactions at different cell cycles.
The authors considered three scenarios with different levels of DNA replication:

Non-replicated single chromosome (G = 1): In this case, the amount of DNA in the cell
is equal to the length of a single non-replicated chromosome, which is approximately 4.6
Mbp (megabase pairs). The value of G represents the ratio of the amount of DNA in the
cell to the length of the DNA in a non-replicated chromosome.
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Partially replicated single chromosome (G = 1.8): Here, the amount of DNA in the cell
is 1.8 times the length of a non-replicated chromosome.

Partially replicated pair of chromosomes (G = 3.6): In this scenario, the total amount of
DNA in the cell is 3.6 times the length of a non-replicated chromosome.

They modeled DNA as bead-on-spring polymers with resolution 5 kbp (with diameter
s ⇠ 50 nm), at the same resolution of Hi-C map, subject to sphero-cylindrical confine-
ment with the same size of E.coli. Adjacent beads were connected via a very strong
harmonic potential with s as the equilibrium length, and non-adjacent beads interacted
via a purely repulsive potential, ⇠ 1

r12 . Moreover, Hi-C contacts were modeled as har-
monic springs via eq. 3.1, where the equilibrium distances were inversely proportional to
the interaction frequencies, di j =

s
ci j

. To consider the fact that the very weak interaction
frequencies will yield • distances, they modeled the spring constant as a gaussian,

ki j = k0e�
(Di j�s)

w (3.2)

k0 and w are the parameters that give the best fit to experimental data. They made two
assumptions as simplifications in the proposed approach. The first assumption states that
there are no Hi-C interactions between two different replication forks and two indepen-
dent replicated chromosomes. However, in actual biological systems, it is possible for
interactions to occur between these regions. Disregarding such interactions may over-
look important spatial relationships and potential influences on the 3D organization of
the genome. The second assumption assumes that the interactions between two beads in
a replication fork are equivalent to those between the backbone beads to which the fork
beads have been mapped. This assumption simplifies the analysis by considering only
the interactions of the backbone beads. However, it neglects the potential differences
in interactions between the beads within the replication fork and the backbone beads.
These differences could play a role in shaping the overall 3D structure of the genome.

The energy-minimized conformations were subjected first to long molecular dynamics
followed by stochastic dynamics (SD). Then equally interval snapshots from the SD tra-
jectories were extracted and subjected in another SD as the initial conformations to reach
equilibrium and obtain an ensemble of conformations. Finally, the bead distances were
used to calculate a simulated Hi-C contact matrix, and then it was filtered to compare
with the experimental Hi-C matrix.

The scaling behavior of the contact probability in the reconstructed chromosome configu-
rations proposed by Wasim and colleagues deviates from that expected for a fractal glob-
ule. They observed that the contact probability scales approximately as, P(s)⇠ s�0.55 in
the range of 10 kb to 1 Mb, whereas a fractal globule is predicted to exhibit a scaling be-
havior of ⇠ s�1.1. However, the authors did not provide explicit reasons for the deviation
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in the scaling behavior of contact probabilities, but they argued that their configurations
are knots-free, supporting the notion of a fractal nature for their structures.

I.3. Reconstruction high-resolution 3D models of Caulobacter crescentus

Yildirim and Feig proposed a multi-scale modeling protocol to reconstruct the three-
dimensional (3D) architecture of Caulobacter crescentus, as depicted in Figure 3.5, in
their study (Yildirim and Feig, 2018). Their approach involved modeling the bacterial
DNA at the plectonemic level, representing it as a hyper-branched polymer chain.

In their model, the DNA was represented by central ring beads connected by branch
beads, with each ring bead and its associated branch beads representing a micro-domain.
The central ring segments represented double-stranded DNA, which connected each
micro-domain, while the segments between the branch beads represented supercoiled
DNA. The topology of the branches was fixed, but they allowed for movement and re-
connection of the branches using a Hamiltonian-based approach.

To impose constraints on the system, the authors applied harmonic potentials to restrict
the angles, bonds, and degree of branching of all the segments. These potentials were
chosen based on reasonable discussions to ensure biophysical plausibility. Additionally,
the polymer chains were confined within a small sphere to compact the conformations.

To guide their Monte Carlo simulations and energy minimization procedure, the authors
utilized distance-based restraints derived from Hi-C interaction frequencies. These re-
straints were obtained using a procedure similar to the one introduced by Umbarger and
colleagues (Umbarger et al., 2011). However, you mentioned that there are no clear
reasons supporting Umbarger’s idea.

After the initial modeling of the plectonemic segments, Yildirim and Feig proceeded to
wrap higher resolution beads around each of these segments using Langevin dynamics
simulations. This allowed them to model a higher resolution coarse-grained representa-
tion of the chromosomal DNA, with each bead representing a segment of 15 base pairs
(bp). At this higher resolution level, the total energy of the chain included contributions
from stretching, bending, torsional, and electrostatic interactions. These energy terms
were taken into account to capture the relevant physical forces acting on the DNA chain.

Rather than applying rigid forces to enforce the distance restraints, the authors utilized
weak forces. This approach was based on the assumption that while the overall topology
of chromosome structures might be similar across different cells, the local structural
organization can vary. By applying weak forces, they aimed to generate an ensemble of
structures that captured the variability in local structural arrangements. To achieve this,
the authors reweighted the configurations obtained from their simulations. They aimed
to create an ensemble of structures that not only had an average contact distribution
matching the Hi-C scores but also maximally matched the distribution of contacts across
the configurations.
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By combining the coarse-grained modeling, weak forces for distance restraints, and
reweighting of configurations, Yildirim and Feig sought to create a model that repre-
sented the chromosomal DNA’s 3D architecture in Caulobacter crescentus while incor-
porating the experimental information from Hi-C data.

FIGURE 3.5: Multi-scale modeling procedure based on Hi-C data. (A) plec-
tonemic and CG configurations. (B) reweighting the configurations. Figure is

copied from (Yildirim and Feig, 2018)

II. Probability-Based Methods

These methods uses a probabilistic approach to model 3D chromosome structure. Inter-
action frequencies can be considered as average since the Hi-C data are derived from cell
populations. Hence, assuming an ensemble of structures underlies a contact map is com-
mon. These methods do not assume Hi-C score-distance relation. One of this method is
Maximum Entropy Method (MaxEnt).

The central assumption in MaxEnt methods is that the experimental Hi-C maps have
sufficient information to drive the distribution of chromosome conformations. These
methods do not assume Hi-C score-distance relation. "This approach infers the least-
structured distribution of chromosome conformations that fits Hi–C experiments, cap-
turing population heterogeneity at the single-cell level". Specifically, the approach is
based on seeking the statistical weights P(s) with the largest Shannon entropy under
experimental constraints,

S =�Â
s

P(s)ln P(s), (3.3)
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where s is the set of all chromosome configurations within the cellular confinement (Mes-
selink et al., 2021).

In order to apply the MaxEnt method to experimental Hi–C data, they employ polymer
representation of the chromosome under two constraints: First, the contact frequency
between any two genomic regions i and j from the model and experiment should match.
Secondly, the distribution should be normalized. The first one introduced Lagrange mul-
tiplier li j for each experimental constraint and l0 to ensure normalization. Usually, for
Hi-C data on a bacterial chromosome, there are 105 experimental constraints (param-
eters) to fit. Then apply the inverse Monte Carlo algorithm iteratively to find all the
Lagrange multipliers. MaxEnt models can reproduce essential features of the experi-
mental Hi–C map, including the fine structure of the CIDs and the secondary diagonal.
However, the model can not truly capture the organizational features of the DNA and the
physical laws behind the 3D architecture of DNA.

3.3.3 Challenges

One significant difficulty in developing spatial models of chromosomes is that Hi-C maps
generally represent the population-average map of contact probabilities and do not rep-
resent information from a single cell in vivo conformations. Thus, Hi-C technologies
mainly provide a qualitative picture. The so generated interaction datasets do not con-
tain absolute interaction frequencies. A noticeable feature of Hi-C maps is that almost all
genomic locus may be found in contact with each other; as a result, there are almost no
regions of zero contact probability in the map (Imakaev, Fudenberg, and Mirny, 2015).

3.4 Bottom-Up approaches

As discussed in Section 3.3.1, bottom-up models employ a minimal set of physical as-
sumptions and parameters to develop polymer models of DNA. These models can be
categorized based on the level of complexity considered in chromosome folding and its
interactions with proteins.

In the case where the complexity of chromosome folding and interactions with all pro-
teins are taken into account, these models can study bacterial chromosomes at a subge-
nomic length scale with high resolution. By incorporating detailed information about
protein binding and sequence effects, these models aim to capture the intricacies of chro-
mosomal organization and its functional implications. On the other hand, if the micro-
scopical details such as protein binding and sequence effects are coarse-grained, these
models have the ability to simulate bacterial chromosomes at the full genomic length
but with lower resolution. By simplifying these details, these studies can explore larger
genomic scales and provide insights into the overall behavior of bacterial chromosomes.
Some notable examples of the bottom-up models of bacterial chromosomes are briefly
reviewed in the following.
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3.4.1 Polymer models of chromosome organization

In the study of polymer chains, the radius of gyration and end-to-end distance are two
important measures that characterize the chain’s conformation. The scaling behavior of
these measures ,R ⇠ Nn , with respect to the chain length (number of monomers) can
provide insights into the overall architecture of the polymer chain. In the literature,
two types of globules, equilibrium globules and fractal globules, have been proposed to
explain the architecture of chromosomes.

Equilibrium globule

When a polymer chain experiences confinement within a small volume or exhibits stronger
self-attraction compared to its surrounding solution, it undergoes a coil-globule transi-
tion. This transition leads to the formation of an equilibrium globule, which is a "dis-
ordered dense packing of coil" that minimizes contacts with its surroundings. In the
equilibrium globule, the behavior of sub-chains can be described by a random walk-like
scaling relationship for the end-to-end distance.

For sub-chains within the equilibrium globule, the scaling of the end-to-end distance
(R(s)) can be approximated as:

R(s)⇠
(

s1/2 s  N2/3

constant otherwise
(3.4)

This means that for sub-chains with a size (s) smaller than or equal to N2/3, where N is
the total chain length, the end-to-end distance scales as s1/2, resembling a random walk
behavior. However, for larger sub-chains, the end-to-end distance remains relatively
constant. Similarly, the contact probability of sub-chains within the equilibrium globule
scales as:

pc(s)⇠
(

s�3/2 s  N2/3

constant otherwise
(3.5)

Several theoretical and simulation studies (Mirny, 2011; Imakaev et al., 2015; Imakaev,
Fudenberg, and Mirny, 2015), have raised questions about its relevance as a model for
DNA packing. It has been shown that the equilibrium globule state is highly entan-
gled and abundant with polymer knots, which may not accurately reflect the behavior
of chromosomal DNA. Additionally, the process of forming an equilibrium globule is
time-consuming, with an equilibrium time scaling as N3, making it less likely to be a
biologically relevant model for DNA packing in cells.
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Fractal (or Crumpled) globule

FIGURE 3.6: The crumpled globule model. The formation of crumples hap-
pens at all length scales. The construction of crumpled globules can occur by
fast switching the monomers’ interactions from repulsion to attraction (e.g.,
changing solvent quality). This picture can also be viewed as a chain of blobs
made of smaller blobs and so on. Figure is copied from (Grosberg, Nechaev,

and Shakhnovich, 1988; Rosa and Zimmer, 2014)

The fractal globule is a proposed globular form of polymer structure that was introduced
by Grosberg in 1988. In their work, Grosberg and his colleagues (Grosberg, Nechaev,
and Shakhnovich, 1988; Grosberg et al., 1993) argued that chromosomal DNA likely
adopts a long-lived, unentangled, unknotted, and out-of-equilibrium state known as a
crumpled globule, which arises due to topological constraints. These constraints play a
crucial role in shaping the organization of the polymer.

The construction of crumpled globules can occur by fast switching of monomers’ inter-
actions from repulsion to attraction.. Furthermore, polymer crumples form in all length
scales since this collapse is due to self-attraction and topological constraints. In other
words, the polymer can be viewed as a recursive coiling of mass that appears like a col-
lapsed globule at any length scale (larger than the entanglement length Ne) within the
globule. (Fig. 3.6). Importantly, pair segments belonging to different crumples exhibit
minimal interaction with each other, maintaining a relatively unentangled and unknotted
configuration.

The Rouse relaxation time for this system is tR ⇠ L2/DR, where L is the chromosome
length, and DR is the diffusion coefficient, based on the Stokes-Einstein relation:

DR =
kBT

(6prh)
. (3.6)
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where kB is Boltzmann’s constant, T is the temperature (approximately 293 K for room
temperature), r is the segment radius (approximately 1 nm), and h is the viscosity of
water (approximately 10�3 Pa s). By substituting L = 30 mm, The estimated collapse
time is approximately 100 days.This duration is much longer than the cell cycle, imply-
ing that within the timeframe of a cell cycle, the crumpled globule picture of DNA does
not have sufficient time to develop knots.

Years later, Rosa and Everaers (Rosa and Everaers, 2008) provided computational evi-
dence that supported the "topological origin" idea for the observed structure and dynam-
ics of eukaryotic chromosomes. In their study, they modeled interphase chromosomes as
tightly compacted and well-separated polymers. They estimated that achieving "proper
mixing" within chromosomes would take hundreds of years due to the presence of topo-
logical constraints (Rosa and Everaers, 2008).

They argued that the physics underlying the organization of chromosome territories,
where long chromosomes occupy distinct regions, is analogous to the segregation of un-
entangled ring polymers in a melted state. In this scenario, unknotted and non-catenated
ring polymers form distinct territories and cannot interpenetrate each other due to their
construction. Similarly, in very long polymers like chromosomes, topological constraints
play the same role. Importantly, Rosa and Everaers’ model was able to reproduce the 3D
structure and dynamics observed in experimental chromosome data (Fig. 3.7). This com-
putational validation further supports the notion that the topological constraints imposed
on chromosomes contribute to their organization and behavior within the nucleus.

In a nutshell, the original theory of the fractal globule suggests the following: (i) A chain
without ends, such as a ring, remains in the fractal globule state indefinitely. This implies
that the chain does not exhibit entanglement or knotting.

(ii) The lifetime of a fractal globule is determined by the time it takes for the polymer
ends to thread through the entire globule, enabling the formation of knots. The threading
process takes approximately N3 time, where N is the length of the polymer.

In support of the fractal globule model, Lieberman-Aiden et al. (Lieberman-Aiden et al.,
2009a) argued that the scaling law observed in Hi-C experiments for human chromo-
somes in the genomic range of 0.5 to 7 Mbp are consistent with the predictions of the
fractal globule model, with a scaling exponent of approximately s�1.

In addition, Leonid Mirny (Mirny, 2011) performed simulations to confront the two dif-
ferent types of globules. The results are shown in Figure 3.8, highlighting how different
the two states (equilibrium and fractal) look in terms of knotting and separation of re-
gions of the polymer. The end-to-end vector of the fractal (crumpled) globule subchain
scales with the length of the subchain as:

R(s)⇠ s1/3 (3.7)
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FIGURE 3.7: Topological model of the eukaryotic chromosomes. (A) Ini-
tial and final configurations of three different chromosomes: human Chr4,
Drosophila Chr2L, and yeast Chr6. The bead-spring model is used to model
each chromosome (each bead represents 3kb). (B)(Average square spatial dis-
tances) and (C) (mean square displacement) proves that their model could re-
produce the 3D structure and dynamics of experimental chromosome data. Fig-

ure is copied from (Rosa and Everaers, 2008; Rosa and Zimmer, 2014)

and the contact probability of the subchain scales as:

Pc(s)⇠ s�1 (3.8)

Model bacterial DNA as a charged polymer

Another model which pays special attention to the role of physical interactions in the
compaction of the genomic DNA of a prokaryotic cell is to consider DNA as a charged
polymer based on the fact that DNA is highly charged with linear charge �2e per base
pairs. On the other hand, cytoplasm behaves like a polyelectrolyte since it contains K+

or Na+ cations as counter-ions, also a large number of divalent metal ions like Mg2+ or
Ca+2. In the long charged polymers, part of the counter-ions is trapped in the volume
of the macromolecular coil. In contrast, the other part escapes to the remainder of the
volume, so DNA retains a non-zero charge even in the salt solution. This DNA-DNA
electrostatic repulsion tends to oppose DNA compaction.
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FIGURE 3.8: Top: simulated examples of conformation of fractal (A,C) and
equilibrium globules (B,D). The fractal globule show territorial organization.
Bottom: (A) end-to-end distance, and (B) the probability of contact as a func-
tion of genomic distance s, for equilibrium globule (blue) and fractal globule

(green). Figure is copied from (Mirny, 2011)

To overcome this repulsion, the author (Joyeux, 2015) suggested that since the solution
contains macromolecules with like-charges, two proteins or a protein and a DNA repul-
sion are stronger than two DNA sites. Therefore, compacting the DNA in a separate cell
region is energetically favourable, leading to the segregative phase separation (Zimmer-
man and Murphy, 1996; Shin, Cherstvy, and Metzler, 2014; Joyeux, 2015).

To test this idea, the author (Joyeux, 2015) modelled DNA as a ring polymer with 1440
beads representing 21600 bp (each bead represents 15 DNA bp), with bending, stretch-
ing, and electrostatic energy enclosed in a sphere with a radius of 120 nm at a concen-
tration close to the physiological ones. Then proteins are induced by 3000 additional
beads that interact with other proteins and DNA through repulsive electrostatic interac-
tions. The dynamics of the system composed of the DNA chain and the protein beads
are investigated by integrating overdamped Langevin equations. Figure3.9 shows that
the repulsion between all the beads leads to substantial compaction of DNA, despite the
repulsion between neighbouring segments and the sterical hindrance of protein bead.

3.4.2 Other polymer models

Bottlebrush Model

One of the polymer models to reconstruct the chromosome architecture from Hi-C data
was a semi-flexible polymer containing a central backbone and an array of plectonemes
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FIGURE 3.9: Top: Snapshot of a conformation of the equilibrated DNA chain
enclosed in the confining sphere in the presence of the negatively charged pro-
tein beads. Bottom: the same snapshots with the proteins have been removed

before and after equilibrium. Figure is copied from (Joyeux, 2015)

attached to it, resembling a bottlebrush (Fig.3.10) (Le et al., 2013). Plectoneme Free Re-
gions (PFRs) were introduced at specific regions on the backbone, as shown in Fig.3.10(C).
They are located at the location of the highly expressed genes to the emergence of CIDs
based on the assumption that highly expressed genes unwind the DNA duplex and cre-
ate the PFRs (i.e., PFRs prevent the diffusion of supercoils and separate CIDs). The
polymer was confined to the cell volume. Then, an ensemble of equilibrated polymers
was obtained by applying Brownian Dynamics simulations. In total, five fitting param-
eters were applied to characterize the structure of the chromosome: plectoneme length,
gap length between adjacent plectonemes, the diameter of plectonemes, the flexibility
of plectonemes, and contact radius (Fig.3.10). The goal was to select values of all five
parameters to best fit the scaling of the contact probability P(s) observed by Hi-C data
and to reproduce other features of the Hi-C data, like interactions between chromosomal
arms and the presence of CIDs. The configurations with almost ⇠ 300 plectonemes with
length ⇠ 15 kb and separated by less than 300 bp gave the best agreement with wild-type
experimental Hi-C data.

To examine the role of gene expression, They performed the simulations by removing
PFRs, which produced domain-free contact maps similar to swarmer cells treated with
rifampicin—the antibiotic effect as an inhibitor of the transcription elongation (Le et al.,
2013).
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FIGURE 3.10: Schematic of the Bottlebrush model of the Bacterial DNA. Five
parameters describing the polymer model. Figure is copied from (Le et al.,

2013)

Lattice Models of Bacterial Nucleoids

This model is an idealized model of bacterial nucleoids developed by Goodsell and col-
leagues (Goodsell, Autin, and Olson, 2018). In their model, a single DNA is divided into
equal-length unbranched hairpin loops representing plectonemes, connected by equal-
length segments. The central connecting segments make a ring on the lattice, and the
plectonemes are generated by adding a random walk rooted at specific locations on the
central ring, representing the helix axis of the plectonemes (Fig.3.11). To form the local
DNA double-helical strands, the plectoneme’s lattice points are divided into two points
and are rotated to generate the desired supercoiling density. The DNA chains are con-
fined in an ideal spherical or capsular shape depending on the bacterial cell, i.e., sphere
for Mycoplasma, and capsule-shaped volume for E.coli nucleoid. Finally, lattice con-
figurations are relaxed to produce the non-lattice coarse-grain configurations with 10 bp
bead resolution (Fig.3.11). The length of the plectonemes, plectoneme’s separations, and
DNA persistence length are chosen to give the best agreement with experimental data.
The model is idealized by considering the plectonemes as equal lengths of unbranched
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superhelical hairpins spaced equally around the circular genome. Secondly, the equilib-
rium of the configurations is under suspicion.

FIGURE 3.11: Schematic of lattice model of Bacterial Nucleoids.Top: sum-
mary of the method on how to grow the chain. Bottom, right: One configu-
ration of E.coli nucleoid, left: Distance map at 10 kbp resolution. Figure is

copied from (Goodsell, Autin, and Olson, 2018)

3.4.3 Role of topological constraint, confinement, molecular crowders in
the organization of bacterial DNA

Another polymer approach based on confinement and topological constraints could pro-
vide insights into understanding bacterial chromosome folding and genome architecture.
In the following, several models based on topological constraints of bacterial DNA are
reviewed. These articles mainly did not provide any direct comparison with experimental
data but investigated some DNA properties from a polymer physics point of view.

Crowding effects on chromosome organization

The simulation of ring polymers with uncharged molecular crowders in cylindrical con-
finement shows that the interaction between the polymer and the molecular crowds
causes a decrease in the radius of gyration Rg of the ring polymer as the density of
the mutually repulsive crowding molecules (modeled by repulsive Weeks-Chandler po-
tential) is increased (Shin, Cherstvy, and Metzler, 2014). In particular, it was shown that
the component of Rg along the longitudinal direction of the cylinder decreases ⇡ 8%
when the volume fraction f of the crowders is increased from f = 0 to f = 0.3, while
the component of Rg along the radial axis of the cylinder remains largely unchanged.
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These investigations and others involving various crowders proved that the crowding en-
vironment causes the DNA molecule to condense in the nucleoid region inside the cell
(McGuffee and Elcock, 2010). These studies (Jung et al., 2012; Jeon, Jung, and Ha,
2017) give essential insights into the role of molecular crowders in the organization of
the DNA polymer but completely neglect the role of either DNA-binding proteins or
chain crossing.

Entropy-driven spatial organization of highly confined polymers

The authors investigated the role of entropy as the driving force for chromosome seg-
regation (Jun and Mulder, 2006; Jun and Wright, 2010). They explored several aspects
of the spatial organization and segregation of strongly confined entropic polymers using
computer simulations and scaling arguments.

To study the role of chain topology in the tendency of demixing of chains, they put two
chains with three different topologies (linear, ring, and randomly branched polymer) in
the same rod-shaped confinement and the same volume fraction (⇡ 10%). By applying
Monte Carlo simulations, they showed that increasing the topological complexity of the
chains corresponds to stronger repulsion between them so that the branched polymers
have a higher tendency to demix more than the other two cases (branched polymer >
ring polymer > linear chain).

Then they proposed a simple coarse-grained polymer model of a bacterial chromosome
during replications in rod-shaped confinement mimicking the nucleoid. By applying
Monte Carlo simulations, they could capture the main features of the experimental ob-
servation of the reorganization of DNA during replication (Jun and Mulder, 2006). At the
early stage, two replicated daughters are highly entangled and strongly confined within
the cell. From a polymer physics point of view, overlapping chains have fewer confor-
mational degrees of freedom, or less conformational entropy, than the ones that are com-
pletely separated. As a result, the combination of entanglement and confinement leads a
strong entropic force to the chromosome, repels them, and ends in the segregation of the
chromosomes.

To investigate the effect of the shape of the confinement on the tendency of demixing,
they confined two chains in a three-dimensional box of a given size and shape. They
kept their volume constant (same confinement free energy) (Jun and Wright, 2010).
They summarised their results in a phase diagram to show the segregatability of two
confined chains. They observed that the longer boxes have more tendency to demix and
the stronger the linear ordering of the confined chain ( Fig.3.12).
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FIGURE 3.12: A phase diagram explaining ‘segregatability’ of two confined
chains in a three dimensional box. It shows how two long chains will segregate
or mix according on their degree of confinement and their concentration within
a box. Regime I describes polymers in dilute solution without any confinement.

Figure is copied from (Jun and Wright, 2010)

3.5 Summary

In this chapter, two major experimental methods probing the 3D organization of the
genome are presented and confronted with each other.

The chapter has also far presented a short review of some quantitative models that inves-
tigated the 3D architecture of bacterial chromosomes. We also discussed the main mo-
tivations and limitations (optimization of multi-parameters in the bottom-up approaches
or taking all the contact map data in data-driven models) of these models.

Data-driven methods can reproduce essential features of the experimental Hi–C maps
by taking into account rich experimental data; however, biologically interpreting the pa-
rameters is not relatively easy. Moreover, tuning many different sets of parameters can
give the best agreement with experimental contact maps; however, regularizing these
approaches has been frequently called into question. On the other hand, bottom-up ap-
proaches despite their simplification can account for quantitive properties such as scaling
laws of average contact frequencies with genomic distance. This group of models inves-
tigates whether certain known or hypothesized physical or biological principles can lead
to understanding the experimental data and try to drive universal behavior by applying
physics laws. As a result, these models use a minimum set of assumptions and parame-
ters and have strong predictive power. Although the line between the bottom-up approach
and data-driven methods is not as sharp as black and white, some data-driven models can
be considered extensions of polymer models.
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Chapter 4

Theoretical Background

4.1 Introduction

From the viewpoint of polymer physics, a plectonemic conformation of a circular DNA
corresponds to the situation of the double-folding of a ring chain. In order to appreci-
ate the large-scale behavior of supercoiled DNA, I thus first remind the differences in
the equilibrium properties between ring and linear polymers, more specifically in the
melt case. Namely, the equilibrium statistics and dynamics of ring polymers are funda-
mentally different from those of their linear counterparts (In our article, we have also
investigated the dynamics of double-folded rings vs. linear chains (Ghobadpour et al.,
2021)). To predict the equilibrium properties of a ring polymer in a melt situation (e.g.,
in the presence of many other rings), a convenient approach consists in viewing the ring
as moving among an array of fixed obstacles (Khokhlov and Nechaev, 1985; Rubin-
stein, 1986; Grosberg, 2014; Smrek and Grosberg, 2015) (Fig.4.1(c)). In this picture,
the ring adopts three strategies to maximize its entropy: double-folding, branching, and
swelling. Firstly, and most importantly, the ring adopts a double-folded conformation to
reduce the importance of the topological constraints imposes on each other since double-
folding minimizes the threadable surface. Secondly, double-folded rings make branches
so that to increase their entropy. Thirdly, they swell due to partially screened excluded
volume interactions. This swelling leads to asymptotically compact conformations char-
acterized by an exponent n = 1/d in d  4 dimensions. These strategies are exactly
those at play in supercoiled DNA (Marko and Siggia, 1995a; Dorman, 2006; Mondal et
al., 2011; Lepage, Képès, and Junier, 2015; Lepage and Junier, 2019) (Fig.4.1(b)) – note
also that viral RNA behave like double-folded branched polymers (Kelly, Grosberg, and
Bruinsma, 2016) (Fig.4.1(a)). Moreover, as explained in Sec.3.4.1, a long, unknotted,
and non-concatenated ring polymer in the melt state, hence also adopting these strate-
gies, appears to provide a natural explanation for the territorial behavior of eukaryotic
chromosomes during interphase (Gutin, Grosberg, and Shakhnovich, 1993; Rosa and
Everaers, 2008; Lieberman-Aiden et al., 2009b). As a result, understanding the behavior
of self-avoiding randomly branched polymers, or trees should provide us with a gen-
eral understanding of the principles governing the cellular organization of DNA, from
bacteria to eukaryotes.
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FIGURE 4.1: (a) A viral RNA has a branched secondary structure. (b) Bac-
terial negatively supercoiled DNA has a plectonemic structure that can be
mapped on the branched trees. (c) A ring polymer in an array of obstacles
resembles a branched polymer. This figure is copied from (Everaers et al.,

2017).

The known results about these aspects are reviewed in this chapter according to the fol-
lowing structure. First, linear polymer chains are reviewed in Sec.4.2. Then in Sec.4.3,
relevant observables and the related exponents for randomly branched polymers are in-
troduced. Also, the theoretical background is briefly summarized at the end.

4.2 Linear polymer chains

4.2.1 Ideal chain

An ideal chain (i.e., a random phantom walk) is the simplest model to describe the prop-
erties of a flexible polymer chain. In this model, the motion of neighboring monomers
along the chain is not correlated (except by the chain connectivity), and monomers do not
physically interact so that the polymer chain behaves like a random walk in 3D space.
Therefore, this model is reasonable for studying a fully-flexible chain where at a first
approximation, interactions between monomers are screened. However, it is unrealistic
in most cases since monomers allow to overlap in space. The configuration of such an
ideal chain is described by the simplest polymer model, a freely joint chain (FJC). The
polymer is approximated as a series of N monomers, with each bond vector independent
of the rest.

In general, polymer size is described as the root-mean-square end-to-end distance hR2(N)i1/2

where R is the distance from one end of the polymer chain to the other in 3D space.
hR2(N)i1/2 is the square root of the average of this distance squared. Squaring the dis-
tance eliminates any negative values so that hR2(N)i1/2 � 0. Averaging can be taken over
a single chain over time as it explores conformational space or over many such chains
simultaneously. In this manner, the average account for the fluctuations observed for
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polymer chains with a single parameter. Therefore, the average size of the chain in the
FJC model is given by

hR2(N)i1/2 = lkNk
1/2 (4.1)

N is the number of Kuhn segments, lk is the Kuhn length, which is the bond length
and measures the chain’s bending rigidity. It is a measure of the segment length over
which the chain’s direction is relatively independent. Hence, the total length is L =

lk Nk – lk thus represents the minimum length between two points on a polymer that are
uncorrelated. Expressed as a function of the chain’s contour lengths L, will end to:

hR2(L)i1/2 =
p

lkL. (4.2)

It is also common to characterize the average chain size by the radius of gyration where
the square radius of gyration of a polymer conformation is defined as the average square
distance between monomers (~ri) and the center of mass (~rc):

R2
g =

1
N

N

Â
i=1

(~ri �~rc)
2, (4.3)

By substituting the definition of the position vector of the center of mass, one can rewrite
the following:

R2
g =

1
2N2

N

Â
i=1

N

Â
j=1

(~ri �~r j)
2. (4.4)

Simple calculation for the ideal chain will get:

hR2
g(L)i=

lk L
6

=
1
6
hR2(L)i. (4.5)

The probability of contact between two monomers (loci) with (genomic) distance s for
the ideal chain is (Appendix 4.5):

P(s)⇠ s�3/2. (4.6)

For example, a naive representation of the E. coli genome as an ideal chain, using lk =
300 bp (the Kuhn length is equal to two times the persistence length (150 bp for E. coli)
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of semi-flexible chains) would lead to the following size:

hR2(N)i1/2 =
p

lk L =
p

300 ·4.6 ·106bp ⇡ 12µm, (4.7)

This is much greater than the size of the bacterium cell (⇡ 3µm for the long axis).

4.2.2 Real chains

In ideal chains, monomers are assumed to be point particles, and the interactions between
them are entirely ignored. However, these interactions can significantly affect the confor-
mations and dynamics of the chain. In reality, monomers occupy non-zero volume; there-
fore, excluded volume interactions exist. The interaction between pairs of monomers
depends on the favorability of the direct interaction between monomer–monomer or be-
tween the monomer and other surrounding solvent molecules. When the interactions
between the monomer and solvent are highly favorable, the monomers will stay away
from one another, and the chain will swell (good solvent). Monomers will prefer to
be close to one other in the presence of highly unfavorable solvent-monomer interac-
tions, and the chain will collapse (poor solvent). Interestingly, the polymer adopts ideal
chain conformations if the interaction between the monomer and solvent is "just right"
(De Gennes, 1979). This occurs when there is no effective energetic difference between
monomer–monomer, and monomer–solvent interactions (q solvent). The Flory theory
of polymer conformations and the scaling behavior of the real chains in good solvents
will be investigated in the following section.

4.2.3 Flory theory of real polymer chains

Paul J. Flory ( Nobel Prize Chemistry, 1974) could successfully address the problem of
the conformations of real polymer chains, now known as the Flory theory of polymer
chains. Flory used a mean-field approach to treat the question of equilibrium conforma-
tion of real chains to avoid the need to count every pairwise energetic contribution.

For a polymer in a good solvent, the overall spatial size of a chain reflects a balance
between excluded volume, which tends to expand the chain size, and a restoring force
due to loss of conformational entropy due to swelling (Flory, 1953).

F = Fel(N,R)+Finter(N,R) , (4.8)

In this view, the entropic contribution is the energy for stretching a polymer of linear
contour length L at its ends:

Fel

b
⇠ R2

lKL
, (4.9)
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For linear chains in a good solvent, the excluded volume interaction represents the two-
body repulsion between polymer segments, which dominates in good solvent:

Finter(N,R)
b

⇠ v2
N2

R3 , (4.10)

Where n2 is the two-body interaction coefficient, n > 0 corresponds to excluded-volume
repulsion, n < 0 corresponds to attraction, and n = 0 corresponds to balancing the effect
of the hardcore repulsion and the attraction between monomers, so the chain adopt an
ideal conformation, (q -solvent).

The optimum end-to-end distance can be determined from the minimum of free energy
with respect to R:

∂RF (N,R) = b (�3v2
N2

R4 +2
R

Nl2
k
) = 0 (4.11)

whose solution reads:

R5 =
3v2l2

k N3

2
(4.12)

so that:
R ⇠ N3/5 (4.13)

According to Flory, a real polymer chain in a good solvent is expected to scale as n = 0.6.
More sophisticated computations based on perturbation, renormalization group theory,
and numerical simulations (de Gennes, 1972; Madras and Slade, 1996; Le Guillou and
Zinn-Justin, 1980) led to a value of n ⇠= 0.588, which indicates that the Flory theory,
although simple, provides a reasonable description of the real chain behavior.

Suppose the real polymer chain picture is applied to E.coli bacteria, R ⇠ N3/5, the chain
size will be even larger than the ideal chain picture, R ⇠ N1/2 (⇡ 100µm vs. ⇡ 12µm).
Hence it is unlikely that this is the polymer model to explain the configuration of bacterial
DNA.

4.3 Randomly branching trees

A polymer chain with a branch structure free of loops is called a tree. An additional
metric that characterized the embedded graphs is introduced by a ring polymer’s (tight)
wrapping of a tree (Rosa and Everaers, 2019). In analogy to protein or RNA struc-
tures, such conformations can be discussed in terms of primary, secondary, and tertiary
structures (Rosa and Everaers, 2019). The primary structure is simply defined through
the connectivity of the ring monomers. The secondary structure arises from the double
folding and can be specified through the mapping of the ring onto a graph with the con-
nectivity of the primitive tree. The tertiary structure describes embedding the rings and
trees into the three-dimensional space. In the following, the corresponding observables
(sections 4.3.1� 4.3.3) that are used to study the statistics of randomly branching trees
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are reviewed. Next, a brief summary of scaling arguments for interacting tree systems
is presented in section 4.3.4 ( A part of this review is copied from our published pa-
per (Ghobadpour et al., 2021)). Finally, the probability distributions of the observables
are discussed in Sec.4.7 and 4.6

4.3.1 Secondary (tree) structure

Two standard measures of the tree connectivity are the mean contour distance, hLi, be-
tween tree nodes, and the average weight of branches, hNbri.

For one tree conformation, L is defined as:

L(N) =
1
N

N�1

Â
i=1

N

Â
j>i

L(i, j) (4.14)

Where the tree contour distance L(i, j) is the length of the linear path on the tree connect-
ing i and j. L(i, j) only depends on the tree connectivity and is completely independent
of the spatial embedding of the tree. The mean behavior of the tree contour distance can
be written as (Everaers et al., 2017)

hL(N)i ⌘
N

Â
l=0

l pN(l), (4.15)

where pN(l) is the probability of finding two nodes at a particular tree contour distance
l, with

pN(l = 1) =
N

N(N +1)/2
=

2
N +1

. (4.16)

The ensemble average of the length of paths on the tree depends on the weight, N,
through the power law relation

hL(N)i ⇠ Nr . (4.17)

Alternatively, a tree can be viewed as an ensemble of sub-trees which generated by cut-
ting the tree at a randomly chosen segment. Removing the segment divides the tree into
two tree-like parts with lengths n < N/2 and N �1�n (Everaers et al., 2017). By defin-
ing the sub-tree with a shorter length (or weight, as the weight is defined as the number
of monomers in the sub-tree ) as a "branch", the average branch weight is defined as

hNbr(N)i ⌘ 2
(N�1)/2

Â
n=0

npN(n), (4.18)
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where pN(n) is the probability of splitting the tree with branch size n (Everaers et al.,
2017). The expectation value for the average branch weight is scaled as

hNbr(N)i ⇠ Ne , (4.19)

where e = r is expected to hold in general (Janse van Rensburg and Madras, 1992). The
central quantity is the length of the shortest path on the tree or tree contour distance,
L, between two monomers, i and j, along the ring. For short ring contour distances,
n= |i� j|, one simply expects hL(n)i ⇠ n. However, beyond the typical distance between
branch points, the ring does not follow a linear path on the tree but wraps side branches.
For n ⌧ N, Eq. (4.17) suggests hL(n)i ⇠ nr . Due to the ring closure hL(n)i ⌘ hL(N�n)i
reaches its maximum for n = N/2 before reducing to zero at the total ring size, hL(N)i ⌘
0. The simplest functional form accounting for this constraint is (Rosa and Everaers,
2019)

hL(n)iN ⇠
⇣

n
⇣

1� n
N

⌘⌘r
. (4.20)

4.3.2 Tertiary (spatial) structure

The simplest measure of the tertiary structure is given by the tree gyration radius:

hR2
g(N)i ⇠ N2n , (4.21)

as a function of the chain length. For a more detailed understanding, it is useful to
consider the mean-square spatial distance between nodes,

hR2(L)i ⇠ L2npath , (4.22)

as a function of their contour distance on the tree, where n = r npath. Combining Eqs. (4.22)
and (4.20) suggests (Rosa and Everaers, 2019)

hR2(n)iN ⇠
⇣

n
⇣

1� n
N

⌘⌘2n
(4.23)

for the mean-square spatial distance of monomers as a function of their distance, n =

|i� j|, along the ring.

4.3.3 Secondary structure contacts, tertiary structure contacts, and total
contacts

The total contact probability hpc(n)i between pair of ring monomers at ring contour dis-
tance n is the sum of the secondary and the tertiary contact probabilities. The secondary
structure contact is considered as a pair of monomers neighbors on the tree (i.e., Li j  lk)
but not along the ring (i.e., | j� i| > 1) – lk is the Kuhn length or lattice constant. The
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probability of secondary structure contacts (described in detail in Sec4.7) as a function
of the contour distance along the ring, n, scales as (Rosa and Everaers, 2019)

hp2c(n)iN ⇠ n�(2�e) , (4.24)

or
hp2c(n)iN ⇠

⇣
n
⇣

1� n
N

⌘⌘�(2�e)
. (4.25)

A pair of monomers neighbors in space (i.e., |~ri j|  lk) but neither on the tree (i.e.,
Li j > lk) nor along the ring (i.e., | j� i|> 1) is considered as a tertiary structure contact.

By taking into account the ring closure constraint, the total contact probability scales as:

hpc(n)iN ⇠
⇣

n
⇣

1� n
N

⌘⌘�gr
, (4.26)

Where the novel exponent gr = n(d+qr)) (described in detail in Sec4.6) introduced and
discussed in detail in (Rosa and Everaers, 2019).

4.3.4 Flory theory of interacting tree systems

Exact values for the exponents are known only for a very small number of cases. For
ideal non-interacting trees, the exponents r ideal = e ideal = n ideal

path = 1/2 and n ideal =

1/4 (Zimm and Stockmayer, 1949; De Gennes, 1968). For interacting trees, the only
known exact result (Parisi and Sourlas, 1981) is the value n = 1/2 for self-avoiding trees
in d = 3.

Flory theories (Isaacson and Lubensky, 1980; Daoud and Joanny, 1981; Gutin, Gros-
berg, and Shakhnovich, 1993; Grosberg, 2014; Everaers et al., 2017) of interacting tree
systems are formulated as a balance of an entropic elastic term and an interaction en-
ergy (Flory, 1953)

F = Fel(N,R)+Finter(N,R) , (4.27)

In the present case, the elastic free energy takes the form (Gutin, Grosberg, and Shakhnovich,
1993)

Fel

b
⇠ R2

lKL
+

L2

Nl2
K
, (4.28)

The first term of Eq. (4.28) is the usual elastic energy contribution for stretching a poly-
mer of linear contour length L at its ends. The second term penalizes deviations from the
ideal branching statistics, which lead to longer paths and hence spatially more extended
trees (Gutin, Grosberg, and Shakhnovich, 1993). In annealed trees, the interactions have
the ability to alter both the branching statistics and the spatial conformations. As the con-
tour distances increase, resulting in greater spatial separations between monomers that
repel each other, it becomes necessary to minimize the Flory energy with respect to both
variables, R and L, simultaneously. Optimizing L for a given size, R ⇠ Nn , yields (Gutin,
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TABLE 4.1: Summary of scaling exponents for the double-folded ideal lin-
ear chain, double-folded self-avoiding linear chain, double-folded ideal tree,

double-folded self-avoiding ring and double-folded ring in the melt state.

Exponents ideal linear S.A linear Ideal trees S.A trees 3D melt of trees

n 1/2 3/5 1/4 1/2 1/3
r 1 1 1/2 2/3 5/9
e � � 1/2 2/3 5/9

‘ (2� e) � � 3/2 4/3 13/9
gr = n(d +qr) 0 0 0.75 1.41�1.43 1.09�1.10

Grosberg, and Shakhnovich, 1993; Everaers et al., 2017):

r =
1+2n

3
, (4.29)

npath =
3n

1+2n
, (4.30)

independently of the type of volume interactions causing the swelling in the first place.
Plausibly, a fully extended system (i.e., n = 1) is predicted not to branch (i.e., r = 1)
and to have a fully stretched stem (i.e., npath = n = 1). For the radius of ideal randomly
branched polymers for which n = 1/4, one recovers r = 1/2 and a Gaussian path statis-
tics, i.e., npath = 1/2.

The work in (Everaers et al., 2017) reviews the predictions of the Flory theory for ran-
domly branching polymers for a wide range of conditions characterized by different ex-
pressions for the interaction energy in Eq. (4.27). For self-avoiding trees, the interaction
part is described in Eq.4.10. In this case, Flory theory predicts (Gutin, Grosberg, and
Shakhnovich, 1993)

n =
7

3d +4
for1  d  8 , (4.31)

in excellent agreement with the exact results (Rosa and Everaers, 2016b). In the melt
case, all terms of the virial expansion of the partially screened excluded volume interac-
tions become relevant, and the trees are expected to be compact (Everaers et al., 2017):

n =
1
d

for1  d  4 . (4.32)

A summary of scaling exponents is given in Table 4.1.

While Flory theory describes the average behavior of the tree observables mentioned
above, the corresponding non-Gaussian distribution functions are usually of the Redner-
des Cloizeaux (RdC) form of a power law multiplied with a stretched exponential which
will be explained in detail in the following sections.



66 Chapter 4. Theoretical Background

4.3.5 Melt of branching polymers and blobs

FIGURE 4.2: Schematic representation of mean-square internal distances
< R(n) > verses n in various concentration. Within the length-scale x the
polymers are not aware of the existence of the external perturbations and show

self-avoiding statistics.

De Gennes pioneered the blob-scaling approach in polymer physics (De Gennes, 1979).
It is a very useful concept for understanding how external perturbations, like interaction
with other chains and confinement, influence chain statistics and conformations. In this
picture, the chain is viewed as a succession of blobs containing in average g monomers
and having an average size x . The ring polymer, like any polymer chain, exhibits self-
similar fractal behavior when it is not confined by boundaries (Rubinstein, 2003). This
behavior can be described by the scaling relationship R ⇠ ann , where R represents the
size of the polymer chain and n is the number of monomers. Consequently, this scaling
approach can be applied to any subsection of the chain as well.

For a subsection of the chain, the relationship between the size (x ) and the number of
monomers in the blob (g) can be approximated as follows:

x ' agn ) g ' (x/a)1/n , (4.33)

Here, a represents the size of a monomer (assuming a = 1 for simplicity), and the Flory
exponent n = 1/2 characterizes the self-avoiding rings in three dimensions. The chain
density (concentration), r , is defined as r = N/V . Thus:

r ' g
x d , (4.34)
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Hence,

g ' r
1

1�dn , (4.35)

and

x ' r
n

1�dn . (4.36)

As Eq. (4.35 and 4.36) show, the blobs are density-dependent, and the blob size g shrinks
as the concentration increases. Figure 4.2 show the schematic of the behavior mean-
square internal distances < R(n)> verses n in various concentrations. Within the length-
scale x , the polymer demonstrates self-avoiding statistics and remains unaffected by
external perturbations. It is worth noting that the value of x is independent of the chain
length. In Section 5.9.4, we conducted a thorough investigation of the blob and analyzed
the influence of concentration on chain statistics within our model.

4.4 Conformation of branched polymer

Daoud and Joanny (Daoud and Joanny, 1981) proposed a calculation to determine the
number of branches in the ideal trees as n3. This calculation involves the use of two
parameters, branching probability, L, tree length, Nt , as well as the partition function ZNt

( L2 referred to as the activity of the branch points in their original work). The expression
for n3 is given by:

hn3i=
LNt

ZNt

∂ZNt

∂ (2lNt)
, (4.37)

The partition function ZNt is defined by

ZNt =
I1(2lNt)

lNt
(4.38)

and involves the modified Bessel function of the first kind, denoted as I1. The top panel
of Fig.4.3 illustrates the relationship between the number of branches and tree length for
various branching probabilities. The figure demonstrates that as the branching probabil-
ity increases, the number of branches also increases, holding the tree length constant.

The number of linear segments in the tree is given by 2hn3i+1. Consequently, the length
of the linear sections in the tree will automatically be:

hllini=
Nt �1

2hn3i+1
(4.39)
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The results are depicted in the bottom panel of Fig.4.3. In Chapter 5, we will further
explore these relationships in our model.
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FIGURE 4.3: The relationship between the number of branches and branch-
ing probability in ideal trees. In the top panel, we illustrate how the number
of branches, denoted as hn3i, relates to tree length across different branching
probabilities. The bottom panel displays the average length of linear segments
within the tree, denoted as hllini, as a function of the tree length. This measure-
ment include both branch lengths and the lengths between branch points. The

graph represents ideal trees with varying branching probabilities.

4.5 Appendix A: Probability Distribution of end-to-end Dis-
tances

To develop an expression for the probability distribution of end-to-end distances of a
polymer chain, let’s start from a simple random walk in space and then generalize the
results to 3D dimension.

In 1D random walk, the probability of arriving a distance x from the origin after N steps
of unit size is given by:

p(N,x) =
1

2N
N!

n�! n+!
(4.40)
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where n+/� are the number of steps in positive/negative directions. By applying Stir-
ling’s approximation, N!⇡

p
2pN(N/e)Nand considering x⌧N, the probability p(N,x)dx

will be,

p(N,x) =
1p

2pN
exp(

�x2

2N
) (4.41)

hx2i=
Z •

•
x2P(N,x)dx = N (4.42)

p(N,x) =
1p

2phx2i
exp(

�x2

2hx2i) (4.43)

Polymer chains in real space can explore all three dimensions. Since the three dimen-
sions are completely uncorrelated or independent, the probability P(N,R) in 3D space is
just the product of P(N,Rx)P(N,Ry)P(N,Rz)dx dy dz, and hR2i= l2

k N. Hence,

p(N,R) = (
3

2pl2
k N

)3/2 exp(
�3R2

2l2
k N

). (4.44)

4.6 Appendix B: End-to-end distance distributions for ring
sections

The mean-square internal distance and the contact probability law can be derived from
the end-to-end distance distribution, p(~r|n), for ring sections of length n as:

hR2(n)i=
Z •

0
|~r|2 p(~r|n)d~r (4.45)

hpc(n)i=
Z lk

0
p(~r|n)d~r. (4.46)

The end-to-end distance distributions is expected to have the form

p(~r|n) = 1

hR2(n)id/2 q(~x), (4.47)

with ~x = ~rp
hR2(n)i

. This equation indicates that
p
hR2(n)i is the only relevant length

scale. For the limit of x ! 0, the power law behavior of the form q(~x) ⇠ qq is expected
to be held. However for the far apart end points (x � 1), the distribution is predicted to
decay via q(~x)⇠ xg ⇥ exp ((�Kx)t).
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This non-Gaussian distribution is well described by the one dimensional Redner-des
Cloizeaux (RdC) distribution (Rosa and Everaers, 2017; Rosa and Everaers, 2019):

q(~x) =C(q , t)|x|q exp(�(K(q , t)|x|)t), (4.48)

which is a power law multiplied with a stretched exponential and the characteristic ex-
ponents q and t control the small and large behavior of the distribution.

The constants C and K are not arbitrary and are determined by applying the condi-
tions that 1) the end-to-end distance distribution is normalized to one, (

R
q(~x)dx = 1),

and 2) the second moment was chosen as the scaling length (
R
|x|2q(~x)dx = 1) (Rosa

and Everaers, 2019). By substituting Eq.4.48 and Eq.4.47 in Eq.4.26 and considering
hR2(n)i ⇠ N2n , the scaling exponent of the total contact will be given by

gr = n(d +qr). (4.49)

Rosa and Everaers proposed a coherent framework to analyze the distribution functions
for various quantities characterizing tree conformations and connectivities and relat-
ing the RdC exponents to the Flory exponents for interacting trees (Rosa and Everaers,
2017). A summary of scaling exponents gr for different systems is given in table 4.1.

4.7 Appendix C: Tree contour distance distributions

The mean tree contour distance and the secondary structure contact law can be derived
from the tree contour distance distribution, p(L|n), for ring sections of length n as:

hL(n)i=
Z L

0
L p(L|n)dL (4.50)

hp2c(n)i=
Z lk

0
p(L|n)dL (4.51)

where the tree contour distance distribution, p(L|n), is non-Gaussian and is well de-
scribed by the one dimensional Redner-des Cloizeaux (RdC) distribution (Rosa and
Everaers, 2017; Rosa and Everaers, 2019):

p(L|n) = 1
hL(n)iq(

L
hL(n)i), (4.52)

where
q(~x) =C(qL, tL)|x|qLexp(�(K(qL, tL)|x|)tL). (4.53)

The characteristic exponents q and t control the small and large behavior of the distribu-
tion.
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The constants C and K, are determined by applying the conditions that 1) the tree contour
distance distribution is normalized by one, (

R
P(L|n)dL = 1), and 2) the first moment is

the scaling length (
R

LP(L|n)dL = hLi) (Rosa and Everaers, 2019).
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Chapter 5

Model and method

Since chromosomes are complex entities involving many molecular actors, simplifica-
tion is the essential first step to developing a physical model. In this regard, polymer
models have emerged as a minimalist but nontrivial physical model of chromosomes
since they still retain essential features such as chain connectivity and excluded volume
interactions between chain segments. This chapter describes and discusses the polymer
model I have developed to model the bacterial chromosome. The first section describes
the coarse-grained model and the mapping on a lattice. The second part moves on to
describe in detail how to simulate the folding of this model using an elastic approach
for branching polymer model (5.2). Then our Monte Carlo simulations are reviewed in
detail in sections 5.3-5.5. In order to validate our model, we studied several known sys-
tems (sections 5.6 and 5.7) and showed that the static properties of our model are in very
good agreement with theoretical and numerical works (section 5.9). Finally, we briefly
conclude in section 5.10. Note that a part of this chapter has been published in Phys.
Rev. E (Ghobadpour et al., 2021).

5.1 A coarse-grained branching lattice tree model of super-
coild DNA

In general, bacterial DNA is negatively supercoiled (underwound), which leads to the for-
mation of plectonemes through writhe changes. Experiments, simulations, and even gen-
eral statistical mechanical arguments show that plectonemic supercoils behave as flexible
branched polymers (Marko and Siggia, 1995b; Trun NJ, 1998) (Fig. 5.1(a)). Therefore,
when studying supercoiled DNA, they are viewed as randomly branched polymers at the
first step (Fig. 5.1(b)). Given the circular nature of the bacterial DNA, we consider rings
tightly wrapped around the trees (double-folding chain) (Fig. 5.1(b)).

We then discretize the ring chain and use a lattice approach to simulate its dynam-
ics (Fig.5.1(c,d)). The procedure is achieved by dividing the space into cells where
the centers of these cells form an FCC lattice. The DNA conformation and its dynamics



74 Chapter 5. Model and method

are discretized by moving all the bp residing in a cell to the center. The lattice con-
stant and the number of base pairs per site is the model parameters that depend on the
coarse-graining level.

Fig. 5.1(c) shows the 2D representation of the FCC lattice. We chose a face-centered cu-
bic (FCC) lattice to optimize the calculations as it is more spherical, and thus it converges
faster to continuum results. It is well known that the scaling properties do not depend on
the lattice details and only depend on the lattice dimension (De Gennes, 1979; Kardar,
2007) (the Ising model is an excellent example as numerous studies extensively prove
that scaling behavior is independent of the lattice details (Kardar, 2007)). Similarly, our
simulation results are not affected by choice of the lattice.

FIGURE 5.1: (a) A schematic of supercoiled DNA. (b) Plectonemic supercoils
behave as flexible branched polymers. Given the circular nature of the bacterial
DNA, we consider rings tightly wrapped around the trees. (c) and (d) We plug
the ring onto the FCC lattice and discretize it. The lattice is a 2d representation

of the FCC lattice.

5.2 Using an elastic approach to simulate the dynamics of the
tree

We model the circular bacterial chromosome as an elastic lattice double-folded ring poly-
mer. Our Model is based on Rubinstein repton model (Obukhov, Rubinstein, and Duke,
1994). As illustrated in the schematic graph in Fig.5.2 (A), tree nodes are located on
lattice sites, and the ring is (tightly) wrapped around the tree (Fig.5.2 (B)). Lattice bonds
represent tree segments that can only be occupied by two oppositely oriented bonds be-
tween underlying ring monomers. The ring polymer consists of nm monomers, where
consecutive monomers are either on adjacent or the same lattice tree nodes. The bond
between two consecutive monomers on the same tree node is a unit of “stored length”.
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Stored lengths add elasticity to the system, and their local redistribution is responsible
for the dynamics. (Schram, Barkema, and Schiessel, 2013). Hence the total number of
tree nodes Nt can fluctuate around the equilibrium value N0. I considered having on av-
eraged 2.6 monomers on each tree node , which means N0 = nm/2.6, (For further details
on the rationale behind choosing the value of 2.6, please refer to Appendix 5.12).

The functionality of the tree nodes is restricted to the values f = 1 (a leaf or branch tip),
f = 2 (linear chain section), and f � 3 (branch point) (Fig.5.2(A)). The number of ring
monomers belonging to the same tree node is equal to f +a , where f is the functionality
of the lattice tree node, and a is the number of “stored lengths”. Eventually, the total
number of monomers represents the number of bp of DNA we are studying, and the
degrees of freedom are the positions of the ring monomers.
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(a) (b)

(c) (d)FIGURE 5.2: A schematic of a branched tree on a trigonal lattice. The func-
tionality of the tree nodes is restricted to the values f = 1 (a leaf or branch tip),
f = 2 (linear chain section), and f � 3 (branch point). (b) A corresponding
(tightly wrapped) double-folded ring polymer. Small loops represent bonds of
zero length, where adjacent monomers along the ring occupy identical lattice

sites.

We can summarise the imposed rules as follows:

• Lattice: tree nodes are placed on the FCC lattice sites. We choose the FCC lattice
because it is isotropic and it has the maximum number of nearest neighbors.

• Ring monomers and tree nodes: tree nodes are made of ring monomers. The
number of ring monomers belonging to the same tree node equals f +a , where f
is the functionality of the lattice tree node and a is the number of "stored length"
on that node. We chose the average number of monomers on each tree node to be
2.6.

• Double-folding: our model preserves the double folds of tree bonds. Each ex-
tended bond of the tree nodes is paired with exactly one extended bond pointing in
the opposite direction.

• Connectivity: bonded monomers can occupy either the same site (a repton or loop
of stored length) or nearest neighbor sites (an extended bond).
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• Order: Ring monomers remain ordered even if several connected monomers oc-
cupy the same site

The double-folded branching tree conformation (C) is described by a set of tree node
positions, {RI}, on the FCC lattice sites. While satisfying the double-folding constraint,
the conformations are sampled from the canonical ensemble with a Hamiltonian that
specifies intrachromosomal interactions and the branching probability.

5.3 Energy functions

The hamiltonian for the double-folded branching tree model has four contributions: pair-
wise nearest-neighbor interactions, non-bonded tree node interactions, harmonic interac-
tion acting as a restraint to control the tree contour length, and branching potential. For
the sake of simplicity, our model does not include bending energy.

H (C) = H
n.n(C)+H

int(C)+H
c.l(C)+H

br(C) (5.1)

The contribution to the Hamiltonian due to pairwise nearest-neighbor interactions is

H
n.n(C) = b�1

Nt�1

Â
I=1

Nt

Â
J=I+1

d (|RI �RJ|�a), (5.2)

where d (x� a) is the Dirac delta function which is zero everywhere except at a, where
it is infinite and we used to tune the excluded-volume effects of DNA.

The contribution to the Hamiltonian due to interactions between non-bonded tree nodes
is

H
int(C) = nk Â

l

Xl(Xl �1)
2

, (5.3)

where Xl is the total number of tree nodes inside the elementary cell centered at the
lattice site l, and nk tunes the free energy penalty for overlapping pairs of tree nodes in
the coarse-grained resolution. For our model, we employ a large free energy penalty,
nk = 30kBT , to avoid any overlapping between pairs of tree nodes.

The contribution to the Hamiltonian to control the contour length of DNA is a quadratic
potential associated with the total number of tree nodes

H
c.l(C) =

k
2
(Nt �N0)

2, (5.4)

where Nt is the total number of tree nodes (i.e. the total length of the tree) in the con-
formation. This term controls the tree contour length so that it fluctuates around the
minimum length, N0, which is the contour length of the tree that perfectly matches the
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chromosome data given the resolution a. k controls the size of fluctuations, and we use
k = kBT .

Lastly, the branching probability is controlled via a chemical potential of the form:

H
br = µbrNf=1, (5.5)

Where Nf=1 is the total number of branch tips, f = 1, in the tree, and µ is the chemical
potential to control the branching probability. For µ = 0, the tree is randomly branched.

5.4 Monte Carlo simulations

All simulations are carried out on a 3D FCC lattice with either periodic boundary condi-
tions or fixed boundaries depending on the resolution of the model. In the dilute systems,
we adapt a large box, so the average density of monomers per site is less than one per-
cent; in the dense (melt) condition, a high lattice density, r = 85%�90% was used.

A Markov chain Monte Carlo algorithm was employed to sample the conformations
from the canonical ensemble with the defined Hamiltonian. Trial move from the initial
configuration for the final one, Ci ! Cf , is accepted via Metropolis criterion, and if the
new conformation respects the conformational rules (introduced in Sec. 5.2),

acci! f = min(1,
Ptri( f ! i)
Ptri(i ! f )

P(Cf )

P(Ci)
). (5.6)

Here, Ptri(i ! f ) = Ptri( f ! i) represents the proposal transition probability from state i
to state j. In the context of the Metropolis method, this probability is equivalent to the
reverse move probability from state j to i.

The tree configurations are observed with a probability,

P(C) =
w(C)

Z
, (5.7)

Where w(C) is the statistical (Boltzmann) weight of the tree conformation C,

w(C) = e�bH (C). (5.8)

and Z is the partition function of the system found by summing over all possible config-
urations of Nt tree nodes on the FCC lattice,

Z = Â
C

e�bH (C). (5.9)

Simply, by substituting equation 5.8 in 5.6, the acceptance probability is a function of
the energy difference, DE = H (Cf )�H (Ci),
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acci! f = min(1,e�bDE) (5.10)

5.5 Double-folding preserving moves

All the moves in our elastic lattice polymer model have the constraint of preserving
the double-folding structure. They are divided into three groups: tree node move, one
monomer move, and pair monomer move. In the following, these moves are explained
in detail.

5.5.1 Tree node move

This move consists of trying to move a randomly selected tree node to a randomly chosen
site out of twelve possible nearest neighbors. This move preserves the tree structure i.e.,
and it does not change the underlying monomer ring connectivity. The move is only
accepted if the new conformation respects the double-folding constraint. The potential
energy difference caused by the move is:

DE = H
int(Cf )�H

int(Ci) (5.11)

Examples of these MC moves for the present model are represented in Fig.5.3.

F

FIGURE 5.3: Two examples of tree node move. The move consists of trying
to move a randomly selected tree node to a randomly chosen site out of twelve

possible nearest neighbors under a double-folding preserving constraint.

5.5.2 One monomer move

This move involves making a monomer hop into a nearest neighbor lattice site. All
allowed hopping moves for tightly folded rings can be classified in terms of two different
move types:
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The Repton move: A unit of stored length hops one unit along the tree without chang-
ing its structure or the system’s energy, but the local redistribution of stored length is
responsible for the dynamics. An example of a repton move is shown in Fig. 5.4(a).

The Hairpin move: There is at least one connected loop of stored length (in a site)
on each side of a monomer; both loops can unfold and result in an extended bond (cre-
ation). Naturally, the inverse move removes an extended bond pair and thus shortens
or removes a side branch from the tree structure (annihilation). The possible energy
difference caused by the move is:

DE = DH
int +DH

br +DH
c.l (5.12)

DH
br is the energy change due to branching. It can hence be equal to ±µ (creation/deletion

of a side branch) or 0 (corresponds to adding/deleting a segment to/from the end of the
branch tip). DH

c.l is responsible for controlling the total contour length of the tree. An
example of the hairpin move is shown in Fig. 5.4(b).

 

(a1)

(a2) (b2)

(b1)

FIGURE 5.4: One monomer move is hopping a randomly selected monomer
into the nearest neighbor lattice site. (a) The Repton move; This move is re-
sponsible for the local redistribution of stored lengths. (b) The Hairpin moves;
This move is responsible for the creation or annihilation of side branches. The
top row shows the tree structure, and the bottom row shows the underlying

double-folded ring.

5.5.3 Pair monomer move

In the double-folded ring model, each extended bond is paired with another bond point-
ing in the opposite direction. In this move, one of these paired bonds is randomly se-
lected; since two tree nodes belong to these paired bonds (two endpoints of the bonds),
one of them is also randomly selected, resulting in the paired monomers. The move is
accepted under the condition of preserving the double-folded structure. Paired moves
are classified in terms of two different move types:

The transversal move: The bond vectors adjacent to the selected pair monomers are of
the form (~w,0) and (0,�~w); this move results in a new position with the new vectors
(~u,~v), and (�~v,�~u), with ~w =~u+~v (Fig. 5.5(a)).

This move introduces elasticity into the system by making the chain length fluctuate.
Therefore, the possible energy difference caused by the move is:
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DE = DH
int +DH

c.l (5.13)

The slip-link move: The result of this move is slipping a branch point along the back-
bone. An example of this move is shown in Fig. 5.5(b). The bond vectors of the paired
monomers are in the form:

"
(0,~v)
(�~v,~u)

#
(5.14)

Then, this move will change the bond vector as:
"
(0,~v) $ (~u,~w)
(�~v,~u) $ (�~w,0)

#
(5.15)

where, ~w =~v�~u.

This move mimics the plectoneme’s motion by letting a side branch slip along the back-
bone. The possible energy difference caused by this move is:

DE = DH
br (5.16)

 

(b1)

(a2)

(a1)

(b2)
⃗w

� ⃗w �u �v� �u � �v �v � �v
�u �u

⃗w � ⃗w

FIGURE 5.5: Examples of pair monomer moves. (a) Transversal move; This
move makes the chains’ length fluctuate, introducing elasticity into the system.
(b) Slip-link move; Letting a side branch slip along the backbone mimics the
plectoneme’s motion. The paired monomers and their bonds are colored green.

5.6 Studied systems

The simulations were carried out for chain lengths varying between 216 to 1200 monomers
for different systems like ideal double-folded rings, self-avoiding double-folded rings,
and rings in the melt state. We studied the effect of the strength of excluded volume
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interactions, the average length of branches, chain lengths, concentration, and confine-
ment on the conformational statistics of the systems. The box size was set large enough
to avoid self-interaction of the chain due to the periodic boundary condition (except for
the simulation in which we studied the effect of confinement and concentration).

5.7 Initialization and equilibration

Our model’s initialization and equilibration procedure are explained in detail in (Ghobad-
pour et al., 2021). Here, we give a brief review of it.

To monitor the state of equilibration of the polymer systems, the radius of gyration is
the structural property that has been investigated. The systems have reached equilib-
rium when this quantity no longer changes. All reported quantities are taken from the
simulation regime where the polymers are fully equilibrated.

Figure5.6 shows the radius of gyration vs MC time counted in sweeps for different trees –
one sweep corresponds to a number of trials such that the probability for a monomer to be
considered is fixed with respect to the number of monomers. To validate the equilibrium
values of the radius of gyration, we ran the simulations from two totally different initial
conditions. The left column shows the equilibration of compact, highly branched initial
configurations, which swell as the simulation progresses with time. The right column
shows the equilibration of more open, initially unbranched double-folded rings, where
average ring size decreases as branches appear. The horizontal lines show the average
values after equilibrium. In particular, this figure confirms that the simulation results do
not depend on the initial conformations of the ring polymer chains.

5.8 Qualitative insights

Figure 5.7 illustrates configurations of our lattice model for double-folded ring polymers
as they emerge from our simulations after the systems have reached equilibrium. Ring
monomers are shown as small spheres which are displaced from their actual position
by a small random offset. This representation reveals (i) multiple occupancies of lattice
sites and (ii) double-folding.

Specifically, we show a sample configuration of (a) an ideal randomly branched double-
folded ring, (b) a self-avoiding randomly branched double-folded ring, and (c) a ran-
domly branched double-folded ring in the melt state with 216 monomers as well as (d)
a view of a corresponding melt configuration (unfolded from the simulation box) for 12
double-folded rings. The gray tubes show the longest paths along the trees. For the ideal
case, there is no restriction on the number of monomers on each site. Rings in the melt
state and, in particular, isolated self-avoiding rings appear swollen relative to the ideal
case. At least qualitatively, this is the expected (Everaers et al., 2017) consequence of
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FIGURE 5.6: Equilibration of the polymer model for 4 different chain lengths
for three different systems: (a) ideal double-folded rings, (b) self-avoiding
double-folded rings, and (c) double-folded rings in the melt state. Comparison
between initially branched, compact double-folded chains (left column), and
initially double-folded chains with no branches (right column). The horizontal
lines show the average values after the equilibrium. For better visualization,
the time direction is reversed in the right column. In all three systems, at large
times both initial states (from the left and right) reach the same equilibrium
values. It proves that the polymer model results are independent of starting

condition.

excluded volume interactions and the partial screening in melts. The structure is quite
anisotropic in the self-avoiding case, and the longest path is aligned along the longest
axis. In the melt case, the structure is more compact and spherically symmetric, and the
mass is almost equally distributed between the branches.
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(a) (c)

(d )

(b)

FIGURE 5.7: Equilibrated simulation snapshots of (randomly selected) con-
figurations of the double-folded rings with N = 216. Successive segments are
represented with an HSV cyclic color map. (a) a single double-folded ideal
ring; (b) a single double-folded self-avoiding ring; (c) a single double-folded
ring in the melt state. The gray tubes show the longest paths of the trees. All
the trees have the same bond scale. The size of the ring in the melt is larger than
the ideal tree and smaller than the self-avoiding tree. (d) Sample configuration
of the melt with 12 double-folded rings. Each ring is represented by a different
color. The snapshots were produced using Blender 2.8 Hess, 2010. 3D views
of these configurations are available in our published article, supplementary

materials, videos S1, S2, and S3 (Ghobadpour et al., 2021).

5.9 Conformational statistics

To analyze the secondary and tertiary structure of our double-folded ring polymers, we
have calculated the tree contour distance L(i, j) and square spatial distance R2(i, j) be-
tween all pairs of ring monomers i and j. Moreover we have calculated the secondary
structure contacts, p2c(i, j), tertiary structure contacts p3c(i, j), and total contacts, pc(i, j)
for all pairs of monomers.

The tree contour distance L(i, j) is defined as the length of the shortest path on the tree
connecting i and j. The secondary structure contact, p2c(i, j), is equal to 1 if i and j are
neighbors along the tree and not along the ring (|i� j| > 1); otherwise, it is equal to 0.
L(i, j) and p2c(i, j) only depend on the tree connectivity and are completely independent
of the spatial embedding of the double-folded ring polymer.

Conversely, the calculation of the spatial distance, R2(i, j), is straightforward given the
monomer positions and completely independent of the secondary structure. The tertiary
structure contacts p3c(i, j) is equal to 1 if i and j are neighbors in space but neither on
the tree nor along the ring; otherwise, it is equal to 0. Total contact, pc(i, j), is the sum
of p2c(i, j) and p3c(i, j). A schematic of the definition of the structure contacts in our
lattice model is shown in Fig. 5.8.
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FIGURE 5.8: Schematic of the definition of the secondary and tertiary struc-
ture contacts. Red: Examples of pairs that are neighbors along the ring. Green:
Secondary structure contact p2c, two monomers are neighbors along the tree
and not along the ring. Blue: Tertiary structure contact p3c, pair of ring
monomers are neighbors in space but neither on the tree nor along the ring.
The total contact of a pair of monomers is the sum of secondary and tertiary

structure contacts.

In the following subsections, results of averaged L(n) and R2(n) over monomer pairs
with identical ring contour distance, n = |i� j|, are shown in panels (a1) and (b1) of
Figs. 5.9-5.17, and the finite ring size effects are effectively dealt with by expressing
observables as a function of ne f f = n(1 � n/N) in panels (a2) and (b2) of the same
figures. This representation makes a meaningful comparison with the expected power
law relations hL(n)i ⇠ nr and hR2(n)i ⇠ n2n (Introduced in Sec.4.3.1).

In addition, we have extracted effective exponents by calculating the derivatives using
the logarithm of neighboring data points, (DloghL(neff)i

Dlogneff
) and (DloghR2(neff)i

Dlogneff
) (Ghobadpour

et al., 2021). The results are shown in the inset of the corresponding figures’ panels (a2)

and (b2). The horizontal lines show the expected exponents corresponding to the known
exact value or the predictions of Flory theory for the systems under investigation in the
asymptotic limit of infinite ring size.

Moreover, values of the p2c(n), p3c(n), and pc(n) between all possible pairs of monomers
as a function of ne f f = n(1�n/N) are shown in panels (a), (b), and (c) in second Figures
in the following sections. The scaling arguments allow refining the values of exponents,
hp2c(n)i ⇠ n�(2�e), and hpc(n)i ⇠ n�gr beyond the average regime (Rosa and Everaers,
2019). The value of these effective exponents has shown in the insets of the panels by
dashed lines.
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5.9.1 Maximum tree node functionality effect

The functionality of tree nodes depends on the number of emerging tree segments, f = 1
( a leaf of a branch tip), f = 2 (linear chain section), and f � 2 (branch point). The
maximum tree node functionality for the trees on the FCC lattice is fmax = 12 since each
lattice site has 12 nearest neighbors.

The number of branch points and branch tips are related via (Rosa and Everaers, 2016a):

Nf=1 = 2+
•

Â
f=3

( f �2)Nf (5.17)

For trees with maximum functionality 3, this equation simplifies as Nf=1 = 2+Nf=3.

Figures 5.9, and 5.10 show the results for the isolated self-avoiding chains with N = 1200
monomers with different maximum functionalities. For fmax = 2 which corresponds to
the double-folded linear chains, hR2(n)i ⇠ n1.2, and hL(n)i ⇠ n1 are expected to be held
(Fig. 5.9). For all other systems fmax � 3, we expected to see the behavior of isolated
self-avoiding trees, hR2(n)i ⇠ n1 and hL(n)i ⇠ n2/3, independent of the maximum func-
tionality of the system (Fig. 5.9).

All the contact probabilities are shown in Fig.5.10. The secondary structure contacts the
pairs of monomers for a linear chain ( fmax = 2) is constant (Fig.5.10 (a)). For all other
cases, the data map on top of each other and show the expected behavior of isolated
self-avoiding trees. Hence, for simplicity, all results in this thesis are derived from the
maximum functionality fmax = 3.
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FIGURE 5.9: Conformational statistics of double-folded rings with length
1200 for five systems with different maximum functionalities (described in the
legend). Data are shown for ring contour distances up to N/2. Column (a)
plots the squared internal distances as a function of n, hR2(n) ⇠ n2n . Column
(b) are the average values of the tree contour distances between all possible
pairs of monomers, hL(n) ⇠ nr . The exponents for the isolated self-avoiding
trees are n = 1/2 and r = 2/3, and for the linear chains ( fmax = 2), they are
n = 5/6 and r = 1. In panels (a2) and (b2), data are plotted as a function of
ne f f , which effectively reduces finite size effects. (a2) and (b2) insets show the
local slopes of the data in panels (a2) and (b2), respectively. These effective
exponents appear to converge to the theoretical exponents (dashed horizontal
lines). The expected exponents reported in Table 4.1.Error bars are the same

size or smaller than the symbols.
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FIGURE 5.10: Contact probabilities of double-folded rings with length 1200
for five systems with different maximum functionalities (described in the leg-
end). Data are shown for ring contour distances up to N/2. (a) hp2c(n) ⇠
n�(2�e), average probability of the secondary structure contacts. (b) the ter-
tiary structure contact. (c) hpc(n) ⇠ n�gr , the total contact probabilities as a
function of ne f f which effectively reduces finite size effects. The insets show
the local slopes of the data in corresponding panels. The straight lines show
the expected exponents reported in Table 4.1. Error bars are the same size or

smaller than the symbols.
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5.9.2 Effect of excluded-volume interaction
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FIGURE 5.11: Conformational statistics of double-folded rings with length
1200 for eight systems with different excluded-volume interaction strengths,
nk. All other terms of the energy functions are zero, µ = 0, and k = 0. Column
(a) plots the squared internal distance as a function of n. Column (b) plots
the tree contour distances’ average value between all possible monomers pairs.
The exact exponents for the ideal case, nk = 0, are n = 1/4 and r = 1/2.
For the self-avoiding case, nk >> 0, the exact scaling exponent is n = 1/2,
and Flory theory predicts r = 2/3. By increasing the interaction strengths,
the expected behavior that the data should migrate from an ideal case to an
effectively self-avoiding case is well supported by our data. Notations and

symbols are as in Fig. 5.9.

As mentioned in Sec.5.3, we can manipulate the free energy penalty for overlapping
pairs of tree nodes via the parameter nk. Figure 5.11 and 5.12 show the results for
the chains with N = 1200 monomers with different interaction strengths, n . nk = 0
corresponds to the ideal case where there are no interactions between tree nodes, and
nk � 0 corresponds to effectively self-avoiding systems. Mean-square internal distances,
hR2(n)i ⇠ n2n , and tree contour distances, hL(n)i ⇠ nr , have the exponents n = 1/4 and
r = 1/2 for the isolated ideal trees, and n = 1/2 and r = 2/3 for the isolated self-
avoiding trees, respectively. The systems with weak excluded-volume interactions have
in-between exponents depending on how strong the interactions are. Moreover, contact
probabilities, hp2c(n) ⇠ n�(2�e) and hpc(n) ⇠ ngr , have exponents e = 1/2 , gr ⇠ 0.75
and e = 2/3, gr ⇠ 1.43 for isolated ideal trees and self-avoiding trees, respectively. Data
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in Figure 5.11 and 5.12 show how the trees gradually change from the ideal case (no
interaction) to the hard excluded volume case.
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FIGURE 5.12: Contact probabilities of double-folded rings with length 1200
for eight systems with different excluded-volume interaction strengths, nk. All
other terms of the energy functions are zero, µ = 0, and k = 0. (a) the average
value of secondary structure contacts, (b) tertiary structure contacts, and (c)
total contacts between all possible monomers pairs. The expectation behavior
hp2c(n)⇠ n�1.5 and hpc(n)⇠ n�0.75 for the ideal case, and hp2c(n)⇠ n�1.33 and
hpc(n)⇠ n�1.41 for self-avoiding trees are supported by our numerical results.
Moreover, the transition from ideal behavior to self-avoiding one by changing
the interaction strengths is clear in our data. Notations and symbols are as in

Fig. 5.10.
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5.9.3 Branching probability effect

As mentioned in section 5.3, the asymptotic branching probability, l , is controlled via
the chemical potential for the branch points µ , in the energy term H

br = µNf=1. Nf=1

is the number of 1�functional nodes in the tree (the number of branch points and the
number of branch tips are related via Nf=3 = Nf=1 � 2). µ = 0 corresponds to a ran-
domly branching chain. By increasing µ , the branching probability decreases; hence
the average length of branches increases. Therefore, the chain is effectively linear for
µ >> 0. Figs. 5.13 and 5.14 show that this is well supported by our data.

l is defined as

l = lim
N!•

hNf=3(N)i
N

(5.18)

where, hNf=3(N)i is the average number of branched points and N is the chain contour
length. l for different value of µ are listed in table 5.1.
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FIGURE 5.13: The effect of the branching probability on the conformational
statistics of the double-folded self-avoiding trees with length 1200. The other
terms of the energy functions are fixed, nk = 20, and k = 0. By increasing the
Hamiltonian chemical potential for the branch points, µ , the expected behavior
that the data should migrate from randomly branching trees to effectively linear
chains is well supported by our results. In other words, the scaling exponents
gradually change from n = 1 and r = 2/3 to n = 1.2 and r = 1 by decreasing
the chemical potential for the branch points. Notations and symbols are as in

Fig. 5.9.
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TABLE 5.1: Branch statistics for the double-folded self-avoiding trees with
length 1200 with different chemical potential for branch points, µ . hllin(N)i:
The average length of linear segments in the tree, in the unit of lattice constant;
hn f=3(N)i: the average number of branch points; This includes both the branch
lengths and the lengths between branch points. l : branching probability. All

measurements are performed after reaching equilibrium.

µ [kBT ] hllini hn f=3(N)i l

0 1.50±0.00 158.75±0.39 0.319
2.0 2.40±0.01 92.5±0.33 0.195
4.0 5.05±0.04 41.64±0.26 0.089
6.0 13.29±0.22 16.10±0.18 0.035
8.0 38.03±1.14 5.45±0.10 0.011
10.0 128.03±5.03 1.5±0.06 0.003
12.0 198.17±7.05 0.77±0.04 0.001

The Relationship Between Branching Probability and Number of Branch Points

As discussed in Section 4.4 of Chapter 4, Daoud and Joanny established a relationship
between the number of branch points in a tree and the branching probability. This rela-
tionship is illustrated in Figure 4.3. In order to gain a deeper understanding of our model,
we compare the theoretical predictions of the Daoud theory (lines) with simulation re-
sults (star symbols) for ideal trees (nk = 0), with different chain lengths and various
chemical potentials (µ). The results, shown in Fig. 5.15, demonstrate a good agreement
between the model and the simulation, except for a slight deviation in the branch lengths
hllini for very small chain lengths. This deviation is likely due to the fact that the chains
are not in the branched regime.

Subsequently, we attempted to derive a connection between the chemical potential µ in
our model and the branching probability l in the theory. The relation is depicted in
Figure 5.16, and the best fit of the data is given by the equation:

l =
1

2+ e�b µ/2 . (5.19)

By knowing this relation, we can tune the chemicasl potential in our model for the spe-
cific observables of average branch length.
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FIGURE 5.14: The average branch length effect on the contact probabilities of
the double-folded self-avoiding trees with length 1200. The other terms of the
energy functions are fixed, nk = 20, and k = 0. By increasing the Hamiltonian
chemical potential for the branch points, µ , the average length of branches in-
creases, eventually for large enough µ , the chains are effectively linear without
side branches. The expected behavior for migrating the chains from randomly
branching trees to effectively linear chains is well supported by our data. In
other words, the scaling exponents gradually change from hp2c(n)⇠ n�1.33 and
hpc(n)⇠ n�1.41 to hp2c(n)⇠ n0.0 and hpc(n)⇠ n0.0 by decreasing the branch-

ing probability. Notations and symbols are as in Fig. 5.10.
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FIGURE 5.15: The figure compares the predictions of the Daoud theory (lines)
and simulation results (star symbols) for ideal trees with varying branching
probabilities. The model shows good agreement with the theory’s predictions.

FIGURE 5.16: The relationship between branching probability l and chemical
potential µ .
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TABLE 5.2: Blob sizes in different concentrations for the chains with 1200
monomers. r: Lattice density which is the ratio of the number of occupied
sites to the total number of sites. Blobs containing in average g monomers and
having an average size x . The blobs are density-dependent, and the blob size

g shrinks as the concentration increases.

r g x

10% 93.53 9.67
30% 10.64 3.26
60% 2.89 1.70
80% 1.53 1.24
93% 1.16 1.08

5.9.4 Concentration effect

We can generalize our study to the systems of the polymer chains in the melt state,
describing the behavior of the chromosomes. To this aim, we applied our model to study
the systems with 1200 length at different concentrations. We have controlled lattice
density in each system by changing the number of polymers in them (Np = 1,3,6,9,12)
while maintaining a fixed box size under periodic boundary conditions, and keeping
all other parameters fixed. The chains in our study are randomly branched rings,( µ =

0.0kbT ) and exhibit hard excluded volume interactions with nk = 20kbT . The results are
shown in Figs. 5.17-5.18.

Another point regarding the study of the concentration effect is that we did not control
the total number of tree nodes in our systems (denoted as k = 0 in equation 5.4). In-
stead, we allowed the total number of tree nodes in each system to change according
to the concentration variation. Consequently, the average number of monomers in each
system is not constant due to the increase in concentration. This variation in the average
number of monomers resulted in change in the average bond length between monomers.
Specifically, in the absence of reptons with a bond length of zero (hbi = 1), increasing
the number of reptons caused a decrease in the average bond length (hbi decreased from
0.83 to 0.60, moving from a more dilute to a denser system). To facilitate a more ac-
curate comparison between the systems, I multiplied the ring contour distance n by this
average bond length hbi in Figs. 5.17-5.18.

The results illustrate by increasing the density in the system. We have a smooth crossover
from a dilute condition to a melt case. The melt case shows the expected territorial
behavior, n = 1/3.
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FIGURE 5.17: Concentration effect on the conformational statistics of the
double-folded self-avoiding trees with length 1200. All the parameters of the
energy functions are fixed,nk = 30 kBT , µ = 0, k= 0. By increasing the number
of chains (Np = 1,3,6,9,12) in the simulation box, the result illustrates the
crossover from isolated self-avoiding behavior to the self-avoiding tree in the
melt state. In other words, the scaling exponents gradually change from n =
1.0 and r = 2/3 to n = 1/3 and r = 5/9 by increasing the density in the

system. Notations and symbols are as in Fig. 5.13.

Blobs and Flory exponent

To make the quantitive sense of the effect of concentrations on chain statistics (See
Sec.4.3.5), we have considered the mean-square internal distances < R2(l)> as a func-
tion of an effective ring contour distance, ne f f = n(1�n/N) in different concentrations
for the chains with 1200 monomers. The chains in our study are randomly branched
rings,( µ = 0.0kbT ) and exhibit hard excluded volume interactions with nk = 20kbT .
To modify the concentration while maintaining a fixed box size under periodic bound-
ary conditions, we increased the number of polymer chains in the systems. The dilute
systems consisted of a single isolated chain (r = 10%), while the most densely packed
systems contained 12 chains of equal lengths (r = 93%).

The results are shown in Fig. 5.19. We rescaled the internal distances < R2(n)> by the
length of each blob x 2 and ring contour distances, n, by the number of monomers in each
blob, g, (See Sec.4.3.5). g and x for the chains in different concentrations are reported
in Table 5.2. The results show the crossover from a dilute system to the melt case.
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FIGURE 5.18: The concentration effect on the contact probabilities of the
double-folded self-avoiding trees with length 1200. All the parameters of the
energy functions are fixed,nk = 30 kBT , µ = 0, k= 0. By increasing the number
of chains from 1 to 12, the expected behavior that the data should move from a
self-avoiding isolated tree to an effectively self-avoiding tree in the melt state
is well supported by our data. In other words, the scaling exponents gradu-
ally change from hp2c(n)⇠ n�1.41 and hpc(n)⇠ n�1.44 to hp2c(n)⇠ n�1.33 and

hpc(n)⇠ n�1.09. Notations and symbols are as in Fig. 5.13..
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FIGURE 5.19: Mean-square internal distances, < R2(l)>, verses the effective
ring contour distance, le f f = l(1� l/N). We rescaled the internal distances <
R2(l)> by the length of each blob, x 2, and rescaled the ring contour distances,
le f f , by the number of monomers in each blob, g. This rescaling allows better
exploration of the crossover from dilute to melt regimes. g and x for each chain

lengths and different concentrations are reported in Table 5.2.
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5.10 Summary and conclusion

In this chapter, we introduced our elastic lattice model for tightly double-folded ring
polymers to explore the statistical properties of different systems (Sec.5.1 and 5.2). Then
introduces the mathematical principles of our Monte Carlo simulations. The energy func-
tion has two parameters: 1) the chemical potential for the branch points, µ , in the energy
term H

br, which controls the asymptotic branching probability, l ; 2) parameter nk ma-
nipulates the free energy penalty for overlapping pairs of tree nodes in the interaction
part of the hamiltonian, H

int . By changing these parameters, we can explore cross-over
between different systems (Sec.5.3-5.5). In this chapter, we demonstrated how manip-
ulating these two parameters allows us to investigate a wide range of systems, ranging
from linear to highly branched structures, and from ideal chains to self-avoiding trees.
By varying the branching probability and the chemical potential, we were able to explore
and understand the behavior of different systems in a comprehensive manner.

Specifically, we performed Monte Carlo simulations and studied systems belonging to
different universality classes: ideal double-folded rings without excluded volume inter-
actions, self-avoiding double-folded rings, and double-folded rings in the melt state. The
observed static properties are in good agreement with the exact results and predictions of
Flory theory for polymer chains. For example, (double-folded) rings adopt compact con-
figurations in the melt state and exhibit territorial behavior. In particular, we published
our model, and in that article, we showed that the emergent dynamics are in excellent
agreement with a recent scaling theory. We illustrated the qualitative differences with
the familiar reptation dynamics of linear chains (Ghobadpour et al., 2021).

Moreover, we have illustrated how the chemical potential µ in our hamiltonian can be
adjusted to control the branching probability and achieve chains with specific branch
lengths. By tuning the value of µ , we have the ability to modulate the degree of branching
in the system. This capability provides us with a powerful tool to design trees with
specific branch lengths.

In the next chapter, we apply our coarse-grained model to study bacterial DNA, which
is known to adopt tree-like plectonemic structures due to negative DNA supercoiling.
To accurately capture the contact properties between chromosomal loci, as determined
by high-throughput chromosome conformation capture methods (Hi-C), we fine-tune
the average length parameter in our model. This allows us to closely reproduce the
experimental observations and gain insights into the structural organization of bacterial
DNA at the chromosomal level.
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5.11 Appendix A: Chain length effect

The simulations were carried out for chain lengths varying between 64 to 1000 monomers
for the double-folded self-avoiding rings to study the chain length effect. Results for
averaging L(n) and R2(n) for the system under investigation over monomer pairs with
identical ring contour distance,n = |i� j|, are shown in panels (a1), (b1) of Fig. 5.20.
As expected, the results are ring size independent at small scales and reach a plateau
on approaching the maximal ring contour distance of n = N/2. Then as mentioned
in the Sec.5.9, data were plotted as a function of an effective ring contour distance,
ne f f = n(1 � n/N) to reduce the finite ring size effects sufficiently for a meaningful
comparison with the expected power law relations.
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FIGURE 5.20: Conformational statistics of randomly branched self-avoiding
double-folded rings for four different chain lengths (described in the legend).
Data are shown for ring contour distances up to N/2. Column (a) are the
average values of the tree contour distances between all possible pairs of
monomers, hL(n)i ⇠ nr . Column (b) plots the squared internal distances as
a function of n, hR(n)2i ⇠ n2n . The exact exponents for the ideal case are
r = 1/2 and n = 1/4. In panels (a2) and (b2) data are plotted as a function
of ne f f , which effectively reduces finite size effects. The straight dashed lines
correspond to the expectation scaling exponents. (a2) and (b2) insets show the
local slopes of the data in panels (a2) and (b2), respectively. These effective
exponents appear to converge to the theoretical exponents (dashed horizontal

lines). Error bars are the same size or smaller than the symbols.
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5.12 Appendix B: Relation between ring contour length and
tree contour length

In our elastic lattice polymer model, rings are tightly wrapped around the trees. The ring
contour length, nm, is related to tree contour length Nt via

nm = Nt ⇥hai, (5.20)

where hai is the average number of monomers in each tree node. hai can be at least 2
to have double-folded bonds in each tree node. The term H

c.l in the energy function
controls the tree contour length to fluctuate around the desired length, N0. Fig.5.21
confirms that increasing the ring contour length at fixed N0 does not affect the statistics
. To compare these systems, we multiplied the ring contour distances by the average
bonds, hbi, in the system, (increasing the number of reptons caused a decrease in the
average bond length).

The details of the systems are reported in Table.5.3. In order to study the supercoiled
DNA, in the following chapter, we used hai= 2.6.

FIGURE 5.21: Statistical results for the systems with different ring contour
lengths but the same tree contour length. It illustrates that increasing the ring

contour length at fixed N0 does not affect the statistics.
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TABLE 5.3: A summary of the results for five studied systems in Fig.5.21
with different ring contour distances at the same tree contour length. hai:
the average number of monomers in each tree node; Nt : tree contour distance
fluctuates around the desired contour length (in this case study, N0=300); hbi:
average bond length, by increasing the ring contour length at fixed tree con-
tour length, the number of "stored length" on the tree nodes increases, and the

average bond length decreases.

hai Nt hbi

2.0 295.37±0.06 0.98
2.3 299.75±0.07 0.86
2.6 300.93±0.06 0.77
3.0 301.87±0.06 0.67
4.0 303.31±0.07 0.50
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Chapter 6

Coarse-grained models of
supercoiled DNA at multiple scales

Coarse-graining approaches aim at reducing the number of degrees of freedom in a
system for the sake of efficiency, so simulations of the coarse-grained systems require
far less computing power than simulations of the fine-grained primary system. Con-
sequently, both the simulation time and the size of the system can be substantially de-
creased. Thus coarse-grained models are helpful in their own right to study large-scale
phenomena (Kremer and Müller-Plathe, 2002). However, sufficient details need to be
preserved for the sake of accuracy.

As far as bacterial DNA is concerned, the in vivo internal structure of the bacterial
chromosome remains unknown, with many potential molecular actors that may affect
it. Inspired by the topological organization of negative supercoiled DNA, which adopts
tree-like spatial conformations, I have investigated the possibility of capturing the main
features of the internal structure of bacterial chromosomes using a double-folded ring
polymer model presented in Sec.5. In this coarse-grained model of bacterial DNA, the
branches represent plectonemes, while the actual size of these plectonemes in vivo is still
uncertain. As a consequence, the mean size of the branches in the model is a parameter
(the unique one, actually), and I investigate whether it is possible to capture the contact
properties between loci as measured using Hi-C methods by testing different values of
this parameter.

The chapter structure is as follows: In Sec.6.1, the values of the simulation parameters al-
lowing the coarse-grained lattice double-folded ring chain to map onto supercoiled DNA
are derived. A review of an additional coarse-graining procedure for tackling the prob-
lem of large-scale properties is presented in Sec.6.2. The conformational properties of
bacterial DNA in three dimensions based on the observed contact probabilities extracted
from Hi-C experimental data are analyzed in Sec.6.3. In Sec.6.3.2, the impact of the av-
erage branch lengths on the DNA conformational statistics is elucidated. In Sec.??, the
possibility of tuning the average branch length parameter µ in order to reproduce as well
as possible contact properties between chromosomal loci as obtained from Hi-C data
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is investigated. Eventually, the results for different bacteria are summarized in Sec.6.4
before drawing some conclusions.

6.1 Simulation parameters

In order to build the double-folded ring polymer model to study chromosome conforma-
tion, the simulation parameters need to be determined. These parameters are the lattice
constant, the amount of DNA contained in each tree node, and the system’s density to
mimic bacterial conditions. In the following, the procedures to get these parameters
starting from a physical description of plectonemic DNA resulting from supercoiling
constraints, are described. Note that to build the model, a constant and uniform value of
the supercoiling density, s = �0.04, is considered. The latter is a typical value of the
“free” supercoiling (i.e., once the NAPs contribution is removed, see section 2.5.3 ) that
has been reported in vivo (Bliska and Cozzarelli, 1987).

Lattice constant

Figure 6.1 shows a schematic mapping of a plectoneme with radius R and pitch p (i.e.,
the length of the superhelix is given by 2p p) onto a lattice tree. The coarse-grained
resolution is parametrized by the lattice constant, a, and the number of base pairs per
tree node, mt . The supercoiling density s =�0.04 leads to 2R = 13 nm, and 2p p = 92
nm (detailed calculation can be found in Section 2.6). Since the radius is the small-
est length scale, it defines the highest resolution of the double-folding coarse-grained
representation of a plectoneme (later on, I will further use lower-resolution models by
coarse-graining the resulting tree-like chain itself). In the following, I denote by a0 this
highest resolution so that a0 = 2R = 13 nm. Importantly, in vivo DNA is bound by
various protein complexes (e.g., transcription machinery) but also by NAPs (HU, IHF,
H-NS,...). The effective diameter of the plectonemes bound by these proteins is thus
expected to be more significant. In fact, previous experimental results have reported a
higher-order chromatin-fiber-like structure whose diameter is on the order of 40nm (Kim
et al., 2004), in accord with the extra layer of proteins bound all over the plectonemes
(Fig.6.2 (left)). Therefore, we eventually consider as the highest resolution this width of
the fiber, so that the lattice constant is given by a0 = 40 nm (Fig.6.2 (right)).

Number of base pairs per tree node

In the most general case, the number ma of base pairs in each tree node given a mesh
size a is given by:

ma =
2
R la

0 ds
b

, (6.1)
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FIGURE 6.1: Schematic of mapping a plectoneme with radius R and pitch 2p p
on a lattice tree. The plectoneme conformation is discretized by moving all the

bp residing in a sphere to the center.

FIGURE 6.2: Left: The DNA and its binding proteins (HU, IHF, H-NS, ...)
form a nucleosome-like structure, folded into a fiber with 40 nm width. Image
is copied from (Kim et al., 2004). Right: Schematic mapping the 40 nm fiber
on the lattice and moving all the bp residing in a sphere to the center, the

plectoneme conformation is discretized.

where b = 0.34 nm is the distance between base pairs along the double-helix and la
is the contour length of DNA along a demi super-helix in the resolution a. ds in the
integral indicates the curvilinear abscissa along the DNA double-helix, and the factor
2 reflects the fact that there are two demi-super-helices in a super-helix. Noticing that
ds =

p
R2 + p2dq where q is the polar angle of the cylinder coordinate, such that la =p

R2 + p2a/p, Hence:

ma =
2a
p

R2 + p2

bp
. (6.2)

Which is equal to ' 257 bp at the highest resolution.

The number of tree nodes Nt , to simulate a DNA with length LDNA, (during slow growth,
E. coli typically has one chromosome, LDNA ⇡ 4.6⇥106 bp) is
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TABLE 6.1: Summary of simulation parameters for the model with the highest
resolution in order to study a supercoiled bacterial DNA via a double-folded
self-avoiding lattice tree. LDNA: Length of the DNA in the unit of bp; a: FCC
lattice unit length; mt : number of base pairs on each tree node in the unit of bp;
Nt : number of tree nodes required to simulate a DNA with length LDNA; nm:
number of monomers correspond to Nt tree nodes; hai= 2.6: average number
of monomers in each tree node; tmax: relaxation time to reach equilibrium in
the unit of Monte Carlo sweep [MCs], which scales as N2+r

t , where r = 5/9
for the tree in the melt state. For a DNA with supercoiled density, s = �0.04,
the radius is equal to 13 nm, and the pitch is equal to 2p p= 92nm. Considering
the proteins that bind to DNA, we eventually have a plectoneme diameter equal

to a0 = 2R = 40 nm.

Parameters Formula Ecoli 200 kbp

LDNA [bp] LDNA 4.6⇥106 200 kbp
a [nm] a0 40 40

mt [bp] 2a0
0.34⇥p

p
R2 + p2 257 257

Nt
LDNA

mt
1.8⇥104 780

Nm hai⇥Nt 5.4⇥104 1800
t[MCsweep] (Nt)2.55 1.1⇥1012 2⇥108

Nt =
LDNA

ma
= LDNA ⇥

bp
2a

p
R2 + p2

. (6.3)

In this context, the number of monomers, Nm, to build up the ring, which is tightly
wrapped around the tree, is expected to be given by:

Nm = hai⇥Nt (6.4)

Where hai, the average number of monomers per node, is chosen i) to be not too large to
avoid time-consuming simulations and ii) to have typically more than 2 monomers per
node in order to handle properly the Monte-Carlo moves, in particular the creation of new
branches (see Sec.5.2 in chapter5). In this manuscript, I discuss the case where hai =
2.6. Simulation parameters for the model with the highest resolution are summarized in
Table 6.1.

Density

In order to carry out the simulations under the bacterial DNA conditions, the ring poly-
mers are compacted within a rod-shaped geometry representing the nucleoid. Therefore,
the parameters that govern the nucleoid’s DNA concentration must be determined.
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Considering a nucleoid as a cylinder of length Ln capped by two semi-spheres of radius
Rn = 400 nm, the volume of the nucleoid is given by:

VNucleoid =
4
3

pR3
n +pR2

n(Ln �2Rn) (6.5)

Remarkably, the length Ln has been shown to follow the length of the cell L according to
Ln ' 0.51⇥L1.18 (Junier, Boccard, and Espéli, 2014) Fig.6.3 (B). The cell lengths range
from ⇠ 2µm at birth to ⇠ 4.6µm at the division. In the following, we use L ⇠ 2.4µm so
that the nucleoid volume VNucleoid ⇠ 7.8⇥108 nm3.

Next, from the perspective of the model, the volume of the primitive unit cell in an
FCC lattice is defined by v f cell =

p
2a3

2 (Fig.6.4), where a is the lattice constant (nearest
neighbor distances). Therefore the total number of primitive unit FCC cells to fill the
whole volume of the nucleoid will be:

Nf cells =
VNucleoidp

2a3

2

, (6.6)

By substituting the above value of Nucleoid and using a = 40 nm (highest-resolution
model), we obtain:

Nf cells ⇠ 17500. (6.7)

800 nm

,L = 2 � 4.6�m
L̄ = 2.4 �m

Ln = 0.51 � L̄1.18 = 1.43�m

A

FIGURE 6.3: (A) Bacterial cell and nucleoid dimensions. (B) Nucleoid length
as a function of the cell length of the E.coli chromosome. Graph copied

from??.

During slow growth conditions, E. coli typically has one chromosome, LDNA ⇡ 4.6⇥106

bp. Since the number of base pairs per tree node at the highest resolution is around 257
bp, the number of tree nodes to model the whole DNA is equal to Nt =

LDNA
257 ' 18000.

Therefore, the occupation number, which is the ratio of the number of occupied lattice
sites (tree nodes) to the total number of sites in the simulation, is Nt

Nf cells
⇠ 1. Based

on this calculation, trees must be simulated in the melt state to mimic the bacterial
condition.
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FIGURE 6.4: Left: conventional FCC unit cell. Right: primitive FCC unit
cell. Volume of the primitive unit cell is Vcell =

b3

4 =
p

2a3

2 .

6.2 Coarse-graining further the tree-like models: an effort to
capture large-scale structuring properties of bacterial chromo-
somes

The simulation of large-size systems is computationally expensive. Given our simulation
method and computational power, we can simulate systems consisting of 100 kb DNA
in up to one day. The computational cost increases substantially with an increase in the
DNA length in the system due to the required computational power for the equilibration
step. Therefore, additional coarse-graining methods are required to study chromosomes
at full genomic lengths (e.g., E.coli DNA with length ⇠ 4.6 Mbp).

Specifically, in our highest-resolution model, each tree node contains 257 bp DNA. The
number of required tree nodes to model the whole E. coli is therefore ⇠ Nt = 18000.
In the melt case, the relaxation time for a polymer chain is trelax = N2+r

t , where r =

5/9 is the exponent describing the scaling behavior of the mean tree contour distances
(Sec.4.3.1 and Sec. IV.C in (Ghobadpour et al., 2021)) in the melt state. As a result, the
relaxation time associated with the whole E. coli chromosome is given by:

trelax[MCsweep] = 180002.55 ⇠ 7⇥1010 (6.8)

One MC sweep is equivalent to one MC trial for every tree node in the system ( 1 MC
sweep = 18000 trials to study E.coli at full genomic length). The average CPU wall
clock time for one MC sweep in this system is around ⇠ 0.018 second on a 3.3 GHz
CPU. Achieving equilibrium for the whole E. coli DNA would occur after ⇠ 3.9 years.
In other words, coarse-graining further the bacterial DNA is a crucial step in studying
the large-scale structure of an entire bacterial chromosome.
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6.2.1 Coarse graining method

(A)

N_b tree nodes    one soft super node   

(B)

FIGURE 6.5: Schematic of the process of coarse-graining by replacing some
tree nodes with one super node. (A) A configuration of the double-folded
lattice tree with 90 tree nodes (highest-resolution model). (B) A coarse-grained
tree with far fewer super nodes. Contrary to the highest-resolution model, the
super nodes have weak excluded volume interaction as they can overlap with

each other.

Coarse-graining methods vary substantially (Kremer and Müller-Plathe, 2002). No “stan-
dard” coarse-graining procedure is known to provide a zoomed-out description of a sys-
tem. One way of achieving a coarse-grained mapping of our system into a less detailed
level consists in grouping tree nodes into super nodes as illustrated in Fig.6.5. More
specifically, the additional coarse-graining consists of the following steps:

1. Defining the level of coarse-graining. Let remind that at the highest resolution,
the lattice size a = 40 nm. I then consider two additional levels corresponding to
double (a = 80 nm) and quadruple (a = 160 nm) the lattice size, respectively.

2. Computing the amount of DNA per coarse-grained super-node, reminding that at
the highest resolution, we have 257 bp per node. To this end, we multiply 257 by
the average number of nodes found in a super-node.

3. Estimating the Hamiltonian parameters for the model to reproduce the statistical
properties of the model at the immediately lower resolution.

Defining super nodes To compute the number of nodes per super-node, we use the
curve of the root-mean-square of spatial distances as a function of the tree node distance
nt between any pair of nodes (Fig.6.6 (a))– the tree distance between a pair of tree nodes
is defined as the shortest path along the tree. For a given new coarse-grained value
anew of the lattice site, the number of nodes in a super-node is then given by the value
of nt such as the root-mean-square of the spatial distances is equal to anew, leading to
the curve Figure6.6 (b). As a result, for a = 80 nm and a = 160 nm, one super node
respectively contains 3.5 and 12.5 tree nodes of the highest-resolution model. Given
these numbers, which were computed using a 200 kb long DNA, the chain size of the
whole chromosome for a = 160 nm would be around ⇠ 1440, and the time to reach
equilibrium would decrease from ⇠ 3.9years to ⇠ 28 days. Note that since the system
is in the melt state and the trees adopt territories at all length scales, these results are
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independent of the average branch lengths as soon as these are much larger than the
coarse-grained unit (Figure6.6).

Model
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FIGURE 6.6: Defining super nodes for 200 kb long chains, with different
average branch lengths as well as for a linear DNA with length 200 kb (i.e., for
which f = 2). (a) The root-mean-square of spatial distances in the unit of lattice
constant a0 = 40 nm between all pairs of tree nodes (i, j), up to nt = |i� j|= 15;
(b) Average amount of DNA as a function of lattice size. The results for the

three levels of coarse-graining are summarized in the bottom table.

Estimating Hamiltonian parameters. A good coarse-grained model preserves just
enough information to reproduce certain aspects of the system under the corresponding
conditions. In other words, the coarse-grained model should reproduce the statistical
properties of the referred system.
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The total number of tree nodes and the average branch lengths were reduced by 3.5/12.5
for the second/third level of coarse-graining (see above), so the corresponding parame-
ters, µ (will be derived in Sec.??), and N0 can be directly implemented in the Hamilto-
nian definition. µ is the Hamiltonian chemical potential to control the branching proba-
bility, and N0 is the equilibrium tree contour length of the DNA. Next, the nk (strength of
the interaction potential) parameter should be adjusted until the statistical properties of
the higher-resolution model are reproduced satisfactorily. However, since the DNA is in
the melt state, and the density is homogenous, DNA can be modeled in the second and
third level with hard excluded volume interaction.

6.3 From Hi-C data to contact probability

Measurements based on the Hi-C method provide data in the form of pairwise interac-
tion frequencies between specific genetic loci. Since our coarse-grained model does not
include specific structuring, such as the formation of CIDs, we confront our modeling
data to experimental data by comparing the average interaction frequencies as a function
of the genomic distance separating loci, also known as the probability of contact and
usually referred to as P(s) where s is the genomic distance. In Fig. 6.7, I show the results
for wildtype P. aeruginosa bacteria with logarithmically spaced bins, starting at 2kb and
increasing by a factor 1.12: (2 kb, int(2 kb⇥1.12), int(2 kb⇥1.122),...); Then, for each
bin, the number of observed Hi-C interaction frequencies at that distance is averaged.
Finally, P(s) is normalized such that the integral of P(s) over the range of distances is
one – note that Hi-C frequencies are not absolute frequencies but measured with respect
to an unknown factor.

6.3.1 A ubiquitous two-regime scenario for the bacterial P(s)

P(s) for P. aeruginosa, E. coli, and C. crescentus at different conditions and growth
phases are plotted in Fig.6.8. P. aeruginosa and E. coli Hi-C data have 1-kb resolution
and C. crescentus Hi-C data have 10-kb resolution.

The results reveal that all bacterial chromosomes have similar internal organization, in-
dependent of the bacterial type and length. They display a slow decrease in contact
probability P(s) ⇠ s�0.5 from 1kb to 100kb, followed by a rapid fall-off P(s) ⇠ s�1.1 at
⇠ 100kb. These features are observed for all these three bacterial chromosomes irrespec-
tive of the cell type, the details of the Hi-C interaction frequencies, and even the details
of Hi-C methods since the data were obtained from different labs. This feature suggests
that a 100-kb is a fundamental scale of chromosome structuring in these bacteria, as
noticed in the first reported Hi-C matrix obtained in C. crescentus (Le et al., 2013).
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FIGURE 6.7: Contact probability as a function of genomic distances is ob-
tained by averaging normalized Hi-C interaction frequency matrices, left: An
example of a wild-type HiC matrix for P. aeruginosa. Right: Contact proba-
bility as a function of genomic distances. To compare experiments here and

below, all P(s) plots are normalized to integrate into one.

The two regimes observed in P(s) suggest that the chromosome is organized differently
above and below 100 kb. Above 100 kb, the decay with an exponent �1.1 is reminiscent
of the crumpled globule picture where the melt state rings adopt compact configurations
and exhibit territorial behavior (Sec.??) (Rosa and Everaers, 2014). Below 100 kb region,
one needs to invoke a different mechanism since loci interact much more frequently with
each other as indicated by the exponent -0.5 (Fig.6.8).

To understand the bacterial chromosome organization within a 100kb region, I com-
pared the contact probability behavior observed with the randomly branched tree (where
branches are of size one) and a linear chain without any branch. The linear chain dis-
plays a plateau, P(s) = Cte (Fig.6.9). In contrast, as expected, the randomly branched
tree exhibits territorial regions and behaves as P(s)⇠ s�1.1. The results for P(s)⇠ s�0.5

thus indicate a behavior in-between these two distinct polymer states (Fig.6.9). The idea,
then, is to investigate whether there exists an intermediate average branch size (between
1 and the length of the chain) such that the model can capture the two regimes of the
bacterial contact probability.

6.3.2 Effect of the average plectoneme length

To quantitatively test the assumption that the average plectoneme length is the length
scale where the crossover between two regimes in P(s) takes place, I performed simula-
tions with L= 50�100�200 kb long DNA molecules with different plectoneme lengths,
hllini. The average branch length in the model is adjusted by changing the value of the
chemical potential, µ , in the Hamiltonian, which controls the branching probability. The
results are displayed in Fig. 6.10. The gray curve represents P(s) for P. aeruginosa as a
reference, while the black curve corresponds to the simulation results for highly branched
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FIGURE 6.8: Contact probability as a function of genomic distance for three
different bacterial chromosomes. The results show that the contact probability
behavior is highly consistent among bacterial cell types. The three bacteria
display a ⇠ s�0.5-like decay for loci separated by fewer than ⇠ 100kb and a

⇠ s�1.1-like decay for loci separated by more than 100kb.

chains with an average branch length of hllini ⇠ 650 bp, also for reference. In addition,
the data are plotted as a function of an effective genomic distance se f f = s(1� s

L), in-
troduced in Sec.4.3.1 to reduce the finite ring size effects so that to have a meaningful
comparison with experimental data. Fig.6.10 reveals that increasing the average branch
length leads to a later drop in P(s), which indeed occurs at the average branch length,
i.e., the average plectoneme length.

I also extracted the effective exponents by calculating the derivatives using the logarithm
of successive data points, (Dlog hP(seff)i

Dlog seff
). Results are shown in the insets of the panels in

Fig. 6.10. The horizontal lines show the observed scaling exponents in the experimental
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FIGURE 6.9: Left: DNA contact probability P(s), below 100kb, plotted for
randomly branched trees and linear chains. DNA’s observed exponent falls
between a linear state, where the contact probability is independent of the ge-
nomic distances, and the randomly branched tree, where regions are spatially
segregated. Right: Equilibrated simulation snapshots of (randomly selected)
configurations of the DNA with L = 100 kb on each state. Successive seg-

ments are represented with an HSV cyclic color map.

data. The effective exponents appear to converge to the experimental exponent �0.5 by
increasing the branch length.

Next, we conducted rescaling of the results for the 200 kb long chains with different
branch lengths. This was achieved by dividing the genomic distances by their respec-
tive branch lengths. Furthermore, we rescaled the experimental data for P. aeruginosa
using 100 kb lengths, which is likely the length scale associated with plectonemes. The
rescaled data was then presented in Figure 6.11. To enhance the clarity of the rescaled
results, we normalized all the data points relative to the contact probabilities at the length
scale equivalent to the branch length. Additionally, following the methodology employed
in this study, we plotted the slopes of the data points in inset graphs. The slope was cal-
culated by determining the derivatives using the logarithm of neighboring data points.
This approach provides a visual representation of the rate of change within the data. As
shown in Figure 6.11, a crossover in the behavior of the data is observed, with the ex-
ponent shifting from �0.5 to �1.1. This transition signifies the relationship between
branch length and the observed drop in contact probabilities.

Based on these findings, we can confidently conclude that the decrease at 100 kb is likely
correlated with the average branch lengths.

Based on the findings presented in Figure 6.11, it is strongly indicative that the average
branch size in our model should ideally be set to 100;kb in order to accurately reproduce
the observed transition in P(s). Consequently, I conducted an extensive search to iden-
tify the optimal model parameters that would correspond to this specific average branch
length, denoted by µ . Figure 6.12 effectively illustrates how an increase in the chemical
potential µ (accompanied by decreasing in branching probability) results in the longer
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FIGURE 6.10: The effect of average branch lengths on P(s) for DNA with
LDNA = 50�100�200 kb lengths. P(s) for Pseudomonas bacteria are shown
in gray as the reference data. Moreover, the data are plotted as a function
of an effective genomic distance se f f = s(1� s

L ), which effectively reduces
finite-size effects. The insets show the local slopes of the data in correspond-
ing panels. Increasing the average branch length migrates the position of the
crossover between two regimes in P(s). In other words, the average branch

length is the scale where the drop in P(s) takes place.

branch lengths. Notably, it discloses that setting µ to 10.5;kBT and 8;kBT at the second
and third levels of coarse-graining aligns with an average branch length of 100;kb.

However, it is important to note that the first level of coarse-graining, which involves
DNA lengths of L = 50� 100� 200;kb, fails to capture the two regimes evident in the
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FIGURE 6.11: Rescaling of results for 200 kb long chains with varying branch
lengths. Additionally, experimental data for P. aeruginosa is rescaled to 100 kb
lengths, likely corresponding to the length scale associated with plectonemes.
The insets depict local slopes of the data, which appear to converge with dashed
horizontal lines representing experimental exponents. As evident in the graph,
a notable decrease in P(s) occurs at the average plectoneme length, strongly in-
dicating that our model’s average branch size must be set to 100;kb to faithfully

reprduce the observed regime change in P(s).

contact probabilities. Detailed simulation results and corresponding parameters for the
first level of coarse-graining are concisely summarized in Table 6.3.
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FIGURE 6.12: The quest for the optimal µ value, corresponding to the ex-
pected average branch length of 100kb, aimed at reproducing the observed
scaling patterns in P(s) as derived from the Hi-C matrix of bacterial genomes.
For modeling the entire genome using the third level of the coarse-grained
model, the parameter governing branching probability is set to µ = 8.0;kBT ,
while for the second level CG model, µ = 10.5;kBT is selected. However, it’s
noteworthy that the first-level CG model falls short in capturing the crossover

behavior in P(s).
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TABLE 6.2: Hi-C datasets.

C. crescentus from Laub group (Le et al., 2013)

Swarmer cells +
20µg/ml novobiocin for 30 min

At 0,10,30,45,60,75 min post-synchronization

P. aeruginosa lacking MukBESF from Boccard lab (Lioy et al., 2020)

E. coli from Koszul lab (Lioy et al., 2018)

B. subtilis from Runder lab (Wang et al., 2015)

6.4 Integrating the multiple scales: explaining Hi-C data of
various bacteria in various conditions

In this section, I study other bacteria in various conditions and show that my modeling
framework can systematically capture the probability of contact and predict the length
of plectonemes. The list of Hi-C data investigated is summarized in Table 6.2.

P. aeruginosa As a first result, I summarize the results found above for P. aeruginosa
in Fig. 6.13 where I chose the value of the parameters at each coarse-graining level to
acquire an average plectoneme length equal to 100 kb. Again, note that to make a clear
comparison with experimental data, the data are sketched as a function of se f f to reduce
finite-size effects effectively. Comparing the modeling results with the experimental ones
(gray), one can see the excellent agreement in reproducing the experimental data’s local
(to some extent) and global behavior.

C. crescentus Hi-C data were recorded at 0, 10, 30, 45, 60, and 75 minutes post-
synchronization (Le et al., 2013). The probabilities of contact remain identical, confirm-
ing again that a 100 kb length scale is fundamental in this bacterium (Le et al., 2013).
Fig.6.14 (b) then shows an excellent agreement between experimental (in gray) and sim-
ulated (in purple) P(s) for the third coarse-graining level, using an average branch length
hlbi ⇠ 100 kb.

Next, C. crescentus bacteria were treated with 50µg/ml novobiocin for 30 min before
drugs were washed away with plain media and then subjected to Hi-C analysis (Le et al.,
2013) – novobiocin inhibits DNA gyrase and strongly reduces transcription elongation.
The contact probability as a function of genomic distance for untreated wild-type swarm-
ers versus novobiocin-treated samples is illustrated in Fig. 6.15 (a). As Fig. 6.15 (a)
reveals, this drug modestly increases the interactions in the 200�800 kb relative to the
untreated wild type (Le et al., 2013). To model the effect of novobiocin, we increased
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FIGURE 6.13: Contact probability for the two levels systematic coarse-
grained models compared with observed P(s) in Pseudomonas bacteria (gray,
as in Fig. 6.8 (a)). Systematic coarse-graining procedures result in reproduc-
ing the whole experimental data behavior. The inset displays the local slopes
of the data. The effective exponent appears to converge to the experimental

exponents (dashed horizontal lines).

the branch length from 100 kb to 350 kb. As shown in Fig. 6.15 (b), the model could
reproduce the observed experimental behavior very well.

E. coli Results for E. coli are shown in Fig.6.16 using the three coarse-graining levels
with, again, an average branch length hlbi ⇠ 100 kb. I found the same behavior, where the
systematic coarse-graining procedures reproduce the whole experimental data behavior,
therefore confirming the ubiquitous behavior P(s)⇠ s�0.5 followed by P(s)⇠ s�1.1.

B. subtilis I finally applied the same procedure to investigate the situation in B. subtilis.
The behavior of this bacteria is shown in Fig.6.17. In contrast to the observed property in
the three other bacteria, the first regime extends to longer distances, with a crossover to
the second regime occurring at a larger scale. Our coarse-grained double-folded model
with hlbi= 100 kb branch length does not reproduce the experimental contact probabil-
ities between pair loci in B. subtilis bacteria. A model with longer branches (approxi-
mately 500 kb in length) is required to accurately depict the behavior of this particular
bacteria. The difference with the other bacteria suggests a different mechanism for the
local folding of this bacterium.
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FIGURE 6.14: P(s) of Caulobacter cells at various cell cycle stages. (a) Hi-C
was performed at 0, 10, 30, 45, 60, and 75 minutes post-synchronization by Le
et. al. (Le et al., 2013). Plots of chromosomal contact probability as a function
of the genomic distance between restriction sites were reproduced. (b) results
for cells at various cell cycle stages (grey) from panel (a) are compared to sim-
ulated contact probability data (purple). The simulated model is the third-level
CG double-folded branch model with average branch length hlbi ⇠ 100 kb, re-
producing the experimentally observed pair-wise contact probabilities. Panel
(b) data are plotted as a function of se f f , effectively reducing finite-size effects.
Inset in panel (b) displays the local slopes of the data. The effective exponent
appears to converge to the experimental exponents (dashed horizontal lines).

Error bars are the same size or smaller than the symbols.
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FIGURE 6.15: Polymer model of the chromosome upon gyrase inhibition by
novobiocin. Top: Effect of novobiocin treatment on Hi-C data. (a) Comparison
of contact probability between wild-type and gyrase inhibition data. (b) Com-
parison of contact probability between gyrase inhibition experimental data and
the models. Gyrase inhibition models were modifications of a wild-type model
with increased average branch lengths into hlbi ⇠ 350 kb. The model could
correctly reproduce the behavior of experimental data. Notation and symbols

are as in Fig.6.14.
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FIGURE 6.16: Contact probability for the two levels systematic coarse-
grained models compared with observed P(s) in E.coli bacteria (gray, the same
data as in Fig. 6.8 (b)). Systematic coarse-graining procedures reproduce the
whole experimental data behavior. The inset displays the local slopes of the
data. The effective exponent appears to converge to the experimental expo-

nents (dashed horizontal lines).
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FIGURE 6.17: Top: Contact probability as a function of genomic distance for
Bacillus subtilis bacterial chromosome. Bottom: The simulated CG double-
folded branch model with average branch length hlbi ⇠ 100 kb can not re-
produce the experimentally observed pair-wise contact probabilities, and the
mechanism behind it is still unknown to us. Panel (b) data are plotted as a
function of se f f , effectively reducing finite-size effects. The inset displays the

local slopes of the data.
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6.5 Conclusion

In this chapter, we have elucidated the simulation parameters of a single coarse-grained
lattice double-folded ring chain to model the DNA as a first step before addressing the
bacterial DNA universal behavior. These simulation parameters are the lattice constant,
the amount of DNA contained in each tree node, and the system’s density to mimic
the bacterial condition. By mapping a plectoneme and its binding proteins onto the FCC
lattice, we found that for our model, the lattice constant is 40 nm, the amount of DNA that
each tree node represent is 257bp and the actual density to mimic the bacteria condition
in vivo is the melt state.

The wide range of time and length scales challenge our modeling approach. Therefore,
we have investigated a recurring theme in the development of polymer models and simu-
lations, which is the idea of coarse-graining, which, however, implies simplification: On
the one hand, the underlying complexity of bacterial systems has to be reduced for the
sake of efficiency. On the other hand, sufficient details need to be preserved for the sake
of accuracy. To this aim, the number of tree nodes in the volume of the spheres with a
radius equal to 2a0 = 80 nm and 4a0 = 160 nm, which corresponds to the second and
third level of coarse-graining, respectively, were investigated. The result suggests the
3.5/12.5-to-1 mapping. In other words, 3.5/12.5 lattice tree nodes can be represented
by one super node in the second/third coarse-grained models (Fig.6.6).

By investigating the contact probability as a function of genomic distances and exam-
ining the scaling behavior in P(s), we gain further insights into the 3D organization of
the DNA inside the nucleoid. Contact probability is obtained by averaging normalized
Hi-C interaction frequency matrices and summarizing the results in a plot as P(s) vs.
genomic contour length. The results reveal that all bacterial chromosomes have similar
internal organization. They display a slow decrease in contact probability P(s) ⇠ s�0.5

from 1kb to 100kb, followed by a rapid fall-off P(s)⇠ s�1.1 at ⇠ 100kb. These features
are observed for all bacterial chromosomes, except that of B. subtilis, irrespective of the
environmental conditions, the details of the Hi-C interaction frequencies, and even the
details of Hi-C methods since the data were obtained from different labs. This feature
suggests that 100-kb is a fundamental length scale of bacterial chromosomes (Fig.6.8).

Since branch length might be the key to the ubiquitous P(s) behavior, I have investigated
the branch length effect on the contact probability. Coarse-grained lattice double-folded
ring polymer models were applied, which consist of nm = 507,1012,2024 monomers
with different average branch lengths to quantitively analyze the drop in P(s) behavior.
Upon increasing the average branch lengths, the drop in P(s) migrates towards longer
length scales. Our results confirm that regions separated by more than hlbi occupy dis-
tinct spatial positions since they rarely interact, and they show the exponent P(s)⇠ s�1.1.
However, loci within any hlbi region interact with each other frequently and have the ex-
ponent P(s)⇠ s�0.5, (Fig.6.10).
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By exhaustively testing the value of the chemical potential, µ , in the Hamiltonian, which
controls the branching probability, I aimed to find the chemical potential corresponding
to the observed branch length 100 kb. This massive search suggests that µ = 8 kBT and
µ = 10.5 kBT can reproduce as well as the contact properties between chromosomal
loci as obtained from Hi-C data by applying the second and third levels coarse-grained
models, respectively (Fig.6.12).

As a result, I obtained various coarse-grained models that are consistent with each other
and allow the capture of various bacteria’s contact properties from 10 kb to 1 Mb scale.
In other words, we are able to rationalize from first principles contact properties be-
tween bacterial chromosomal loci as measured from high-throughput conformation cap-
ture (Hi-C) methods (Fig.6.13-6.14-6.16).

Moreover, the effect of novobiocin is modeled by taking into account the average longer
branches. Novobiocin inhibits DNA gyrase and strongly reduces transcription elonga-
tion. (Fig.6.15). Finally, the source of the different behavior from Bacillus subtilis raises
two questions, 1) whether our approach is appropriate for this bacterium? and 2) is the
nature of the local folding in this bacterium different?

In a nutshell, our double-folded ring polymer model is a very simple model based on
a polymer physics background and without any unphysical assumption or extra restric-
tions, taking into account only the connectivity of the monomers on the tree and the ring
topology in the dense systems. Our model stresses the impact of the branch lengths in
the 3D conformations of the bacterial chromosomes, which might be deliberately ex-
ploited by nature (due to selective pressure) to drive proper biological functioning. Our
model can provide theoretical insights to guide future experimental approaches that try
to obtain information about the shape of the prokaryotic genome.
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6.6 Appendix A: Simulation parameters for the DNA polymer
models
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TABLE 6.3: Simulation parameters for the polymer models of DNA with
length 50 kb and 100 kb. Hamiltonian chemical potential; hlb(N)i: The av-
erage length of branches in the unit kb; l : branching probability. L: DNA
length in the unit kb, nm: Number of monomers per chain; np= Total number
of chains per simulated system; Lbox: Size of the simulations box in the unit
of nm. Note: An FCC lattice contains 4lxlylz sites; r: Lattice density which is
the ratio of the number of occupied sites to the total number of sites; Nsample:
Number of independent MC samples; Ttot : Simulation run time in Monte Carlo

sweep [MCs]. All measurements are performed after reaching equilibrium.

µ [kBT ] hlbi [kb] hNf=3(Nt)i l ⇠

L = 50 kb, nm = 507 np = 4 Lbox = (280,280,504)nm
r = 86%, A = 2.6 Nsample = 800 Ttot = 2⇥108

0 0.65±0.01 62.3±0.1 0.3190±0.0007
2.0 0.89±0.01 38.5±0.1 0.1976±0.0007
4.0 1.56±0.02 18.48±0.09 0.0951±0.0005
6.0 3.56±0.05 6.96±0.06 0.0358±0.0003
7.0 5.9±0.1 4.03±0.06 0.0207±0.0003
8.0 10.6±0.3 2.12±0.04 0.0109±0.0002
9.0 17.5±0.5 0.98±0.03 0.0051±0.0002

10.0 24.0±0.5 0.42±0.02 0.0022±0.0001
10.5 25.1±0.5 0.27±0.02 0.0014±0.0001
11.0 26.7±0.5 0.16±0.01 0.0008±0.0001

Nt = 100 kb, nm = 1012 np = 4 Lbox = (336,336,672)nm
r = 90%, A = 2.6 Nsample = 800 Ttot = 2⇥108

0.0 0.64±0.01 126.4±0.2 0.3251±0.0005
2.0 0.89±0.01 77.7±0.2 0.2000±0.0005
4.0 1.56±0.02 37.6±0.1 0.0975±0.0004
6.0 3.46±0.04 15.1±0.1 0.0390±0.0003
7.0 5.41±0.08 9.14±0.09 0.0243±0.0002
8.0 9.1±0.2 5.14±0.06 0.0133±0.0002
9.0 16.3±0.4 2.70±0.05 0.0069±0.0001

10.0 27.4±0.8 1.45±0.04 0.0037±0.0001
10.5 44±2 0.92±0.07 0.0024±0.0002
12.0 51±1 0.22±0.02 0.00056±0.00005
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TABLE 6.4: Free parameter search for the polymer model of DNA with 200
kb length. Notation and symbols are as in Tab.6.3.

µ [kBT ] hlbi [kb] hNf=3(Nt)i l ⇠

Nt = 200 kb, nm = 2024 np = 1 Lbox = (280,280,504)nm
r = 87%, A = 2.6 Nsample = 200 Ttot = 6⇥108

0.0 0.65±0.07 253.6±0.5 0.3258±0.0006
2.0 0.87±0.02 157.9±0.5 0.2030±0.0007
4.0 1.51±0.03 77.0±0.4 0.0991±0.0006
6.0 3.32±0.06 31.7±0.3 0.0408±0.0004
7.0 5.25±0.09 19.4±0.2 0.0250±0.0003
8.0 8.6±0.3 11.6±0.2 0.0150±0.0003
9.0 15.3±0.5 6.5±0.2 0.0084±0.0002

10.0 26±1 3.7±0.1 0.0047±0.0001
10.5 37±2 2.8±0.1 0.0036±0.0001
11.0 56±3 1.70±0.08 0.0021±0.0001
12.0 79±4 1.04±0.07 0.00134±0.00009
14.0 122±4 0.33±0.04 0.00042±0.00005
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Chapter 7

Conclusions and Outlook

7.1 A short summary of the results

To answer one of the fundamental questions in biological studies on how the spatial
conformation of the DNA affects its functions like gene expression, DNA replication,
and segregation, we first need to understand chromosome conformation. Even though
experimental research has come a long way, there is still not enough information to
fully comprehend the structure and function of the genome. Computational models are a
crucial complement to interpreting experimental data and providing quantitative compre-
hension of how chromosomes fold, move, and interact. At the end of the day, a genuinely
integrative approach combining experimental data, such as high-resolution microscopy
and Hi-C techniques, with computational/analytical modeling and polymer theory can
deepen our current understanding of the spatial genome organization in bacterial cells.

The work presented in this thesis is inspired by a range of experimental observations
for bacterial chromosomes. This thesis aims to develop a polymer physics model to
study the 3D conformation of bacterial chromosomes (P. aeruginosa, C. crescentus, and
E. coli ) at different length scales. We do not aim to explain the specific patterns in
the contact map like other theoretical studies but instead investigate the possibility of
capturing the main features of the internal structure of bacterial chromosomes using our
branched double-folded ring polymer model inspired by the topological organization of
negative supercoiled DNA, which adopts tree-like structure.

Stage I: A lattice model for the dynamics of randomly branching double-folded ring
polymers.

First, I introduced an elastic lattice model for tightly double-folded ring polymers, which
allows for the spontaneous creation and deletion of side branches coupled to a diffusive
mass transport, which is local both in space and on the connectivity graph of the tree.
I performed Monte Carlo simulations and explored the statistical properties of different
systems.
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The energy function of the system has two parameters: 1) the chemical potential for the
branch points, µ , in the energy term H

br, which controls the asymptotic branching prob-
ability, l ; 2) parameter nk reflects the free energy penalty for overlapping pairs of tree
nodes in the interaction part of the hamiltonian, H

int . By changing these parameters,
we can explore cross-over between different systems.

In particular, I studied systems belonging to three different universality classes: ideal
double-folded rings without excluded volume interactions, self-avoiding double-folded
rings, and double-folded rings in the melt state. The observed static properties are in
very good agreement with exact results, simulations, and predictions from Flory theory
for randomly branching polymers. For example, rings adopt compact configurations in
the melt state and exhibit territorial behaviors.

Stage II: Coarse-grained models of supercoiled DNA at multiple scales

Second, I built a coarse-grained model of bacterial DNA, which is known to adopt tree-
like plectonemic structures due to negative DNA supercoiling. To this aim, first, we have
elucidated the simulation parameters of a single coarse-grained lattice double-folded ring
chain to model the bacterial DNA. These simulation parameters are the lattice constant,
the amount of DNA contained in each tree node, and the system’s density to mimic
the bacterial condition. By mapping a plectoneme and its binding proteins onto the FCC
lattice, we found that for our model, the lattice constant is 40 nm, the amount of DNA that
each tree node represent is 257 bp and the actual density to mimic the bacteria condition
in vivo is the melt state.

The wide range of time and length scales challenge our capacity to simulate the model.
Therefore, we have investigated a recurring theme in the development of polymer models
and simulations, which is the idea of coarse-graining, which, however, implies simpli-
fication: On the one hand, the underlying complexity of bacterial systems has to be
reduced for the sake of efficiency. On the other hand, sufficient details need to be pre-
served for the sake of accuracy. To this aim, the number of tree nodes in the volume
of the spheres with a radius equal to 2a0 = 80 nm and 4a0 = 160 nm, which corre-
sponds to the second and third level of coarse-graining, respectively, were investigated.
The result suggests the 3.5/12.5-to-1 mapping. In other words, 3.5/12.5 lattice tree
nodes (900 bp/3200 bp) can be represented by one super node in the second/third coarse-
grained models.

By investigating the contact probability as a function of genomic distances and examin-
ing the scaling behavior in P(s), we gained further insights into the 3D organization of
the DNA inside the nucleoid. Contact probability was obtained by averaging normalized
Hi-C interaction frequency matrices and summarizing the results in a plot as P(s) vs.
genomic contour length. The results reveal that all bacterial chromosomes have similar
internal organization. They display a slow decrease in contact probability P(s) ⇠ s�0.5

from 1kb to 100kb, followed by a rapid fall-off P(s)⇠ s�1.1 at ⇠ 100kb. These features
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are observed for all bacterial chromosomes, except that of B. subtilis, irrespective of the
environmental conditions, the details of the Hi-C interaction frequencies, and even the
details of Hi-C methods since the data were obtained from different labs. This feature
suggests that 100-kb is a fundamental length scale of bacterial chromosomes.

In our model, the branches represent plectonemes. By exhaustively testing the value of
the chemical potential, µ , in the Hamiltonian, which controls the branching probability, I
aimed to find the chemical potential corresponding to the observed branch length 100 kb.
An exhaustive search suggests that µ = 8 kBT and µ = 10.5 kBT can reproduce the
contact properties between chromosomal loci as obtained from Hi-C data by applying
the second and third levels coarse-grained models, respectively.

As a result, I obtained various coarse-grained models that are consistent with each other
and allow the capture of various bacteria’s contact properties from 10 kb to 1 Mb scale.
In other words, we were able to rationalize from first principles contact properties be-
tween bacterial chromosomal loci as measured from high-throughput conformation cap-
ture (Hi-C) methods. Our model stresses the impact of the branch lengths in the 3D
conformations of the bacterial chromosomes and suggests that 100-kb length scale re-
gions are the fundamental unit of chromosome structure in many organisms.

In a nutshell, our approach offers a robust framework not to reflect the "true" in vivo
structures but to understand the basic physical principles underlying bacterial chromo-
some organization. Its advantage is that it does not depend on the bacteria type, mi-
croscopic details of the chromosome and nucleoid condition, or even on specific DNA-
protein interactions. In contrast to other modeling approaches, the model is not based
on unphysical assumptions and restraints. It only takes into account the connectivity of
the chromosome and thus accounts for the topological complexity (including topologi-
cal constraints) of its three-dimensional fold. Thus, our model is based on the idea that
nature experiences entropy, excluded volume, and specific chromosome topologies as a
driving force to create the right physical conditions for chromosome packaging.

Last but not least, our coarse-grained model provides theoretical insights to guide future
experimental approaches that try to obtain information about the shape of the prokaryotic
genome.

7.2 Future Challenges

One may raise the question about reproducing bacterial chromosomes’ specific internal
structural properties, such as the biophysics of chromosome interaction domains (CIDs)
in Hi-C data. While many models and mechanisms have been proposed to understand
CIDs and their boundaries, no consensus mechanistic view has emerged so far. Conse-
quently, we are interested in investigating the presence of CIDs in our model by fixing
the position of the branch points on the DNA backbone.
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Besides elucidating the statistical properties of the DNA, we are interested in investigat-
ing the possibility of rationalizing the folding dynamics at several Mbp for time scales
equivalent to those of the bacterial cell cycle (i.e. the hour). To this aim, one of the major
concerns is the implementation of replication in our model.

An additional step toward a better understanding of the processes that govern chromo-
some structure is the impact of sequence effects on the structural properties of bacterial
chromosomes by using our model.

In the future, we will study how excluded volume effects, specific polymer topologies,
and geometrical confinement in our model could drive the segregation of replicated chro-
mosomes during cell division. It is worth the effort to take NAPs and SMCs into ac-
count. They are expected to influence both the level of supercoiling as well as the length
of branches, which, in turn, modifies the complexity of chain topology and, thus, the
strength of segregation due to entropic forces.
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Appendix A

A Side-Study: Simulating DNA
using the WLC model

Self-avoiding supercoiled worm-like chain (ssWLC) model can be used to study several
kilobase pairs (kb) to tens kb long double-stranded DNA molecules. I have tested and
benchmarked Molecular Dynamics, and Monte Carlo simulation techniques for super-
coiled WLC developed in Prof. Everaers’ and Dr. Junier’s groups.

This model includes supercoiling constraints and self-avoiding properties. In this con-
text, the bending and torsional energies are defined as:

bEb(q) = kb(1� cosq)⇠=
kb

2
q 2

bEt(f) = kt
f 2

2

(A.1)

Where the bending angle, qi, and twist angle, fi, can be described explicitly as a function
of the local frames attached to the beads (Carrivain, Barbi, and Victor, 2014) (Fig. A.2).
Using~vi =~ti ⇥~ui :

cosfi =
~ui�1.~ui +~vi�1.~vi

1+~ti�1.~ti

sinfi =
~vi�1.~ui +~ui�1.~vi

1+~ti�1.~ti
cosqi =~ti�1.~ti

(A.2)

kb and kt are dimensionless rigidity constants related to bending persistence length (`p)

and twisting persistence length (C) respectively. Calculating kt is straightforward as
kt =

`p
lb

,where lb is the unit of distance, i.e bond length (Lepage and Junier, 2017). In
order to calculate kb we need to solve the equations below (Auhl et al., 2003):

< cosq >=

R p
0 cosqsinqe�bEb(q)dq
R p

0 sinqe�bEb(q)dq
= coth(kb)�

1
kb
,

< cosq >=
2`p � lb
2`p + lb

.

(A.3)
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FIGURE A.1: Interaction potential between non-bonded and bonded beads
in Kremer-Grest model. Nnn-bonded beads interact via WCA potential, and

connected beads interact via both WCA and FENE potential.

In order to benchmark and compare the MD and MC method together, four properties
of the DNA molecule were monitored while slowly decreasing |s |: Twist, Write, the
radius of gyration, and shape anisotropy (The parameters of the simulation of the DNA
molecule are given in Table A.1).

Twist (Tw) and Writhe (Wr) can be written as:

Tw =
1

2p

N

Â
i=1

fi (A.4)

Wr = 2
N

Â
i=2

Â
j<i

Wi j

4p
(A.5)

where Wi j
4p is the Gauss integral along the segments i, j (Klenin and Langowski, 2000).

The radius of gyration (R2
g) and shape anisotropy (k2) are given by:

R2
g = l 2

x +l 2
y +l 2

z (A.6)

k2 =
3
2

l 4
x +l 4

y +l 4
z

(l 2
x +l 2

y +l 2
z )

2 �
1
2

(A.7)

where l 2
x  l 2

y  l 2
z are the diagonal elements of the gyration tensor. Shape anisotropy

is bounded between zero(all points are spherically symmetric) and one(all points lie on
a line).
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FIGURE A.2: Schematic of the ssWLC. The DNA double-helix is coarse-
grained into a polymer of discrete beads. Each bead i is associated with a
frame of ui,vi, and ti unit vectors. (A) Cylinder model used in MC simulation
(picture from (Lepage and Junier, 2017)), (B)Bead-spring model used in MD

simulation.

A.0.1 Molecular dynamics simulation

The molecular dynamics (MD) simulation of a self-avoiding supercoiled Worm-Like
Chain can be achieved using the Kremer-Grest polymer (bead-spring) chain (Fig. A.2
(B)) (Grest and Kremer, 1986). The method is develped in Excluded volume interactions
between beads are set in place using the Weeks-Chandler-Anderson (WCA) potential,
and the bond lengths are regulated with a finitely extensible nonlinear elastic (FENE)
potential. FENE + WCA potential guarantees that the chain beads only oscillate within
a specific distance (Fig. A.1).

VWCA(ri j) = 4e

"✓
lb
ri j

◆12

�
✓

lb
ri j

◆6

+
1
4

#
(A.8)

VFENE(ri j) =�0.5kR2ln


1�
⇣ri j

R

⌘2
�

(A.9)

where e is in units of energy, łb in units of distance (bond length), R = 1.5⇥ lb, and
k = 30e/l2

b .

A stochastic isothermal MD is implemented, which means integrating the particle’s equa-
tion of motion using Langevin’s equation (Grønbech-Jensen and Farago, 2013):

~̇r = ~v (A.10)

m~̇v = ~f �a~v+~b (t) (A.11)
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Entity Parameter Typical value Definition

DNA parameters for
[NaCl] = 100 mM

re 2 nm radius of cylinders

lb 3.57 nm bond length n⇥a(10.5bp)
`p 50 nm bending persistence length
C 86 nm twisting persistence length
kt 24.08 twisting rigidity constant
kb 14.50 bending rigidity constant
N 476 ⇡ 5 kb number of DNA cylinders

MD simulation Parame-
ters

t 19.12 10�12s time units t = lb
q

m0
kBT

dt 0.01t simulation time step
Ttot 19.12 10�6 (µ s) each simulation time

nsample 20 number of independent simulation
samples

MC simulation Parame-
ters

M1 106 number of sweeps for quickest simula-
tion (4.76 106 MCstep)

M6 3.2 107 number of sweeps for slowest simula-
tion (1.5232 108 MCstep)

nsample 20 number of independent simulation
samples

TABLE A.1: Set of parameters used to WLC model to study DNA.

where b (t) is a thermal white noise and a is a friction coefficient. b (t) has a Gaussian
distribution and mean zero. a is connected to the thermal noise through the fluctuation-
dissipation theorem,

D
~b (t)

E
= 0 (A.12)

D
~b (t)~b (t 0)

E
= 2akBT d (t � t 0). (A.13)

The results for simulating the negatively supercoiled DNA molecule composed of N =

1547 cylinders ⇡ 60 kb is presented in Fig. A.3. In order to validate the values, we ran
the simulations from two strictly different initial conditions, circular chains, and double-
folded linear chains. The data confirms that both initial conditions nicely map on top of
each other. In other words, it confirms that the simulation results do not depend on the
initial conformations of the ring polymer chains.
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FIGURE A.3: Radius of gyration (R2
g), shape anisotropy (k2), Twist (Tw),

and Writhe (Wr) measured as a function of |s | for a ssWLC model with two
different initial configurations. 20 independent simulations with N = 1547
cylinders ⇡ 60 kb were initialized in circular chains and double-folded linear

chains configurations.

A.0.2 Monte-Carlo Simulation

In the Monte-Carlo simulation of the ssWLC (Vologodskii and Cozzarelli, 1994), the
chain is divided into cylinders (Fig. A.2 (A)). The length of each cylinder is fixed (lb =
n⇥ a) and they are impenetrable. The energy of any conformation of the chain can be
calculated by:

bE(C) = bEb(q)+bEt(f) (A.14)

where Eb(q) and Et(f) are defined by equations in (A.1). The Monte-Carlo simulation
is evolved through the following MC move (Lepage and Junier, 2017; Lepage and Junier,
2019):
i) Two cylinders are selected for the crankshaft move(Fig. A.4),
ii) Check if the move does not violate collision and crossing rules,
iii) Accept the move using the Metropolis algorithm.
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FIGURE A.4: Crankshaft move: Pick a random block of cylinders [i, j]. Rotate
the block around the axis connecting the ends of the block by a random angle.

(picture from (Lepage and Junier, 2017))

Now, in order to apply Monte-Carlo simulation to study negatively supercoiled DNA
molecules, the protocol is as follows:
1) Begin with a circular chain with initial s = 0,
2) Evolve the system with N MC moves (explained above),
3) Decrease s by a ds (usually 0.005),
4) Repeat steps (2) and (3) iteratively until desired s is obtained.

We ran 20 different simulations with N = 476 cylinders ⇡ 5 kb with six different su-
percoiling rates (ds to N ratios). Fig. A.5 shows the data obtained from these different
simulation runs. Interestingly, the rings’ radii are sensitive to the supercoiling rates and
equilibrate into two distinct values. The underlying cause for such behavior is under
investigation. In this MC simulation, it is important to change s slowly to achieve the
desired density. By changing it rapidly, the configurations get trapped in local minima
states and do not screen all conformations in the phase space.

A.0.3 Caparison of MD and MC simulations (IN PROGRESS)

Four properties of the negatively supercoiled DNA molecule are calculated for both the
MC and MD simulations. As you can see in Fig. A.6 small deviations are visible between
the results from the two simulation methods. We are investigating this deviation and
searching for the answer to the following questions.

1- Are the simulations healthy? Assuming that the two simulation methods are equi-
librated, we are trying to check separately if the simulation parameters for these two
methods can produce good physics. To find the answer to this question, we used the MD
method to simulate a linear WLC. There is an exact solution for the mean square internal
distances of a linear WLC as a function of the contour length (Rubinstein and Colby,
2003). We can compare the simulation results to the theory.

2- Are the systems equilibrated? We are calculating and measuring the number of steps
required by the MD and MC systems to reach equilibrium. We are repeating the simula-
tion in different environments (different thermostats) for the MD method.
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FIGURE A.5: radius of gyration (R2
g), shape anisotropy (k2), Twist (Tw) and

Writhe (Wr) as a function of |s | for different supercoiling rates from 20 differ-
ent Monte-Carlo simulation runs with N = 476 cylinders ⇡ 5 kb
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FIGURE A.6: Radius of gyration (R2
g), shape anisotropy (k2), Twist (Tw) and

Writhe (Wr) as a function of |s | for Molecular Dynamics and Monte-Carlo
simulations with N = 476 cylinders ⇡ 5 kb.
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Supercoiled DNA, crumpled interphase chromosomes, and topologically constrained ring polymers often
adopt treelike, double-folded, randomly branching configurations. Here we study an elastic lattice model for
tightly double-folded ring polymers, which allows for the spontaneous creation and deletion of side branches
coupled to a diffusive mass transport, which is local both in space and on the connectivity graph of the tree. We
use Monte Carlo simulations to study systems falling into three different universality classes: ideal double-folded
rings without excluded volume interactions, self-avoiding double-folded rings, and double-folded rings in the
melt state. The observed static properties are in good agreement with exact results, simulations, and predictions of
Flory theory for randomly branching polymers. For example, in the melt state rings adopt compact configurations
and exhibit territorial behavior. In particular, we show that the emergent dynamics is in excellent agreement with
a recent scaling theory and illustrate the qualitative differences with the familiar reptation dynamics of linear
chains.
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I. INTRODUCTION

The behavior of melts of nonconcatenated ring polymers
has caught the interest of physicists over many years [1–12]
and appears to provide a natural explanation for the terri-
torial chromosomal arrangement in eukaryotic cells during
interphase [13–15]. With their microscopic topological state
permanently quenched, the equilibrium statistics and dy-
namics of nonconcatenated ring polymers is fundamentally
different from the behavior of their linear counterparts. A
powerful approximation is available through the analogy with
ring polymers in an array of fixed obstacles [1,3,7,8]. In this
view, crumpling can be understood by the successive appli-
cation of three different strategies for entropy maximization:
double folding, branching, and swelling. Firstly, and most
importantly, the rings adopt double-folded configurations to
minimize the threadable surface, as this reduces the impor-
tance of the topological constraints they impose on each other.
Secondly, double-folded rings can increase their entropy by
branching. Thirdly, there is a certain amount of swelling due
to partially screened excluded volume interactions leading
to asymptotically compact conformations characterized by
the scaling exponent of the radius of gyration, ν = 1/d for
d 6 4 dimensions. Double-folding, branching, and swelling
due to excluded volume interactions also occur in plectone-
mic configurations of supercoiled circular DNA [16–20].

*ralf.everaers@ens-lyon.fr

Similarly, viral RNA may effectively behave like branched
polymers [21–23]. From a more general perspective, the map-
ping of (double-folded) ring polymers to randomly branched
polymers or trees suggests analogies to phenomena such as
gelation [24], percolation [25], and the critical behavior of
magnetic systems [26–29]. This may explain, why polymer
physics [24,30–32] is often concerned with exponents, which
characterize the essence of the behavior of all members of a
universality class and are independent of microscopic details
differentiating particular experimental polymers as well as
lattice and off-lattice models from each other.

Recent numerical work on the static properties of self-
avoiding trees and lattice tree melts [33–35] has shown that
the behavior of randomly branching chains under different
solvent conditions is in excellent qualitative agreement with
a suitably generalized Flory theory [13,36]. A multiscale ap-
proach to the construction of ring melts based on this analogy
faithfully captures many aspects of the conformational statis-
tics of properly equilibrated systems [11,12]. However, Monte
Carlo algorithms optimized for rapidly equilibrating the static
structure of randomly branching chains [37,38] [Fig. 1(c)]
generate an artificial dynamics.

To generate a physically more realistic dynamics, Monte
Carlo simulations [39–41] need to obey the same conservation
laws [42] as the modeled target systems. In the present case,
this requires a scheme where the mass transport is local both
in space and on the connectivity graph of the tree.

Below we present Monte Carlo simulations of a suitable
elastic lattice polymer model which accounts for double fold-
ing [4,43], the local accumulation of contour length on the
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(c) (d)

FIG. 1. (a) Branched tree on a trigonal lattice and (b) a corre-
sponding (tightly wrapped) double-folded ring polymer. Small loops
represent bonds of zero length, where adjacent monomers along
the ring occupy identical lattice sites. (c) Example of a nonlocal
“amoeba” Monte Carlo move [37,38] altering the tree structure. The
dashed brown line shows the location of a branch prior to the MC
move, and the solid brown line shows an arbitrary location where
the branch could be reattached to the tree. (d) Examples of local
MC moves for the present model of double-folded ring polymers.
Dots represent monomers, and black lines represent an allowed
conformation of the double-folded chain. The allowed (forbidden)
moves are indicated by the green (red) color. R: the Repton move.
H: the Hairpin move. F: Forbidden move that does not preserve the
double-folded structure.

primitive tree [4,40,44–46], as well as excluded volume inter-
actions [44–46].

The manuscript is structured as follows: In Sec. II we intro-
duce relevant observables and the related exponents. Also, we
briefly summarize the theoretical background. The model and
the simulations are described in Sec. III. In Sec. IV we present
and discuss our results. After some first qualitative insights in
Sec. IV A, we validate that the static properties of our model
are in good agreement with theoretical and numerical work
on trees (Sec. IV B). The next step, Sec. IV C, focuses on
comparison of the single ring dynamics with the predictions
of a recent scaling theory [3,8]. Furthermore, we compare
the dynamics of double-folded rings to the motion of linear
chains in the tube model [47] (Sec. IV D). Finally, we briefly
conclude in Sec. V.

II. THEORETICAL BACKGROUND

A double-folded ring polymer can be mapped on a
randomly branched primitive tree [1,3,4,7,8,11,48,49]. In
analogy to protein or RNA structures, such conformations
can be discussed in terms of a primary, a secondary, and a
tertiary structure [50]. The primary structure is simply de-
fined through the connectivity of the ring monomers. The
secondary structure arises from the double folding and can be

specified through the mapping of the ring onto a graph with
the connectivity of the primitive tree. The tertiary structure
describes the embedding of the rings and trees into (three-
dimensional) space. We define corresponding observables in
Secs. II A and II B. Sections II C and II D briefly summarize
scaling arguments for the effect of excluded volume interac-
tions and the dynamics of randomly branched double-folded
ring polymers.

A. Secondary structure

Two standard measures of the tree connectivity are the
mean contour distance L between tree nodes and the average
weight of branches Nbr, separated from the tree by severing
a randomly chosen link. Both depend on the weight N of the
rings through power law relations

〈L(N )〉 ∼ Nρ, (1)

〈Nbr (N )〉 ∼ Nε, (2)

where ε = ρ is expected to hold in general [38]. The (tight)
wrapping of a tree by a ring polymer introduces an additional
metric on the embedded graph [50]. The central quantity is
the length of the shortest path on the tree or tree contour
distance, L, between two monomers i and j along the ring. For
short ring contour distances, n = |i − j|, one simply expects
〈L(n)〉 ∼ n. However, beyond the typical distance between
branch points, the ring does not follow a linear path on the
tree but wraps side branches. For n % N , Eq. (1) suggests
〈L(n)〉 ∼ nρ . Due to the ring closure 〈L(n)〉 ≡ 〈L(N − n)〉
reaches its maximum for n = N/2 before reducing to zero at
the total ring size, 〈L(N )〉 ≡ 0. The simplest functional form
accounting for this constraint is [50]

〈L(n)〉N ∼
[
n
(

1 − n
N

)]ρ

. (3)

B. Tertiary structure

The simplest measures of the tertiary structure are the
overall tree gyration radii,

〈
R2

g(N )
〉
∼ N2ν, (4)

as a function of the chain length. For a more detailed un-
derstanding, it is useful to consider the mean-square spatial
distance between nodes,

〈R2(L)〉 ∼ L2νpath , (5)

as a function of their contour distance on the tree, where ν =
ρ νpath. Combining Eqs. (5) and (3) suggests [50]

〈R2(n)〉N ∼
[
n
(

1 − n
N

)]2ν

(6)

for the mean-square spatial distance of monomers as a func-
tion of their distance, n = |i − j|, along the ring.

C. Flory theory

Exact values for the exponents are known only for a very
small number of cases. For ideal noninteracting trees, the ex-
ponents ρ ideal = εideal = ν ideal

path = 1/2 and ν ideal = 1/4 [51,52].
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For interacting trees, the only known exact result [26] is the
value ν = 1/2 for self-avoiding trees in d = 3.

Flory theories [7,13,36,53,54] of interacting tree systems
are formulated as a balance of an entropic elastic term and an
interaction energy [55]

F = Fel (N, R) + Finter (N, R). (7)

In the present case, the elastic free energy takes the form [13]

Fel

kBT
∼ R2

lK L
+ L2

Nl2
K

. (8)

The first term of Eq. (8) is the usual elastic energy contribution
for stretching a polymer of linear contour length L at its
ends [13]. The second term penalizes deviations from the ideal
branching statistics, which lead to longer paths and hence
spatially more extended trees. Optimizing L for annealed trees
for a given asymptotic, R ∼ Nν , yields [13,36]

ρ = 1 + 2ν

3
, (9)

νpath = 3ν

1 + 2ν
, (10)

independently of the type of volume interactions causing the
swelling in the first place. Plausibly, a fully extended sys-
tem, ν = 1, is predicted not to branch, ρ = 1, and to have
a fully stretched stem, νpath = ν = 1. For the radius of ideal
randomly branched polymers, ν = 1/4, one recovers ρ = 1/2
and Gaussian path statistics, νpath = 1/2.

Reference [36] reviews the predictions of the Flory theory
for randomly branching polymers for a a wide range of condi-
tions characterized by different expressions for the interaction
energy in Eq. (7). For self-avoiding trees, Finter (N,R)

kBT ∼ v2
N2

Rd

represents the two-body repulsion between segments, which
dominates in good solvent. In this case, Flory theory pre-
dicts [13]

ν = 7
3d + 4

1 6 d 6 8, (11)

in qualitatively excellent and almost quantitative agreement
with the exact results [33]. In dense melts, all terms of the
virial expansion of the partially screened excluded volume
interactions become relevant and the trees are expected to be
compact [36]:

ν = 1
d

1 6 d 6 4. (12)

While Flory theory describes the average behavior of the
tree observables mentioned above, we note for completeness
that the corresponding non-Gaussian distribution functions
are typically of the Redner–des Cloizeaux (RdC) form of a
power law multiplied with a stretched exponential. Most of
the additional exponents characterizing the tails of the dis-
tributions can be related to each other and the standard tree
exponents [35,50].

D. Dynamics

In the following we summarize the arguments for the dy-
namics of randomly branched double-folded ring polymers
from Refs. [3,4,8]. Consider the division of a tree into its trunk
(the longest path on the tree) and the branches hanging off this

trunk. The trunk has a length of L ∼ aNρ , where a is the lat-
tice constant and the number of branches is proportional to L.
The slowest relaxation process is the transport of mass along
the trunk, while the intrabranch dynamics is irrelevant and
may be neglected [3,4]. The elementary step of the dynam-
ics is the reptonlike exchange of mass between neighboring
branches along the trunk [56]. Each elementary event changes
the average projected position of the monomers along the
trunk by an amount δsCM ∼ a/N . The number of such events
by an elementary unit of time τ0 is proportional to the number
of branches. As a consequence, 〈δs2

CM (τ0)〉 ∼ (a/N )2Nρ , cor-
responding to a diffusion constant for the curvilinear motion
along the trunk of D||(N ) ∼ 〈δs2

CM (τ0)〉/τ0 ∼ (a2/τ0)Nρ−2.
To completely relax the internal tree structure, the tree CM
has to diffuse over the entire trunk length. As a consequence,

τmax(N ) ∼
(aNρ )2

(a2/τ0)Nρ−2
∼ τ0Nρ+2, (13)

or, using Eq. (9), τmax(N ) ∼ τ0N (7+2ν)/3. As this corresponds
to a mean-square spatial displacement of 〈δR2

CM (τmax)〉 ∼
〈R2

g(N )〉 ∼ a2N2ν , the long-time CM and monomer diffusion
are given by

g1,3(t ' τmax(N )) ∼ DCM (N ) t (14)

with

DCM (N ) ∼ a2

τ0
N2ν−ρ−2 (15)

or DCM (N ) ∼ a2

τ0
N (4ν−7)/3.

Furthermore, one can invert Eq. (13) to obtain the mass,

n(t ) ∼
( t
τ0

) 1
ρ+2

, (16)

of rings (or ring sections) which are equilibrated after a
given time, τ0 < t < τmax. During a corresponding time in-
terval, monomers move over a spatial distance of the order of
a2n(t )2ν :

g1(τ0 < t < τmax) ∼ a2
( t
τ0

) 2ν
ρ+2

, (17)

which is independent of the total ring length. Similarly, one
can estimate the CM motion by noting that each of the n(t )/N
equilibrated ring sections independently moves over a dis-
tance of the order of a2n(t )2ν . As a consequence,

g3(τ0 < t < τmax) ∼ g1(t )
n(t )
N

∼ 1
N

a2
( t
τ0

) 2ν+1
ρ+2

. (18)

III. MODEL AND METHOD

Monte Carlo simulations [39–41] can be expected to
generate physically realistic results if they obey the same
conservation laws [42] as the modeled target systems. As an
illustration in the present context, consider first an algorithm
on the tree level, which removes or adds segments with a
probability governed by a chemical potential. While this al-
lows control of the average tree weight, such an algorithm
is clearly inappropriate to simulate (double-folded) ring poly-
mers of fixed weight. This difficulty is partially overcome by
the amoeba algorithm of Seitz and Klein [37], which attempts
to move one-functional tree “leaves” to random locations on
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the tree [Fig. 1(c)]. Since this operation conserves the tree
weight, the algorithm can be meaningfully employed to study
static aspects of the ring polymer and the chromosome folding
problem [11,14,34,49]. The same holds true for a variant of
the same idea by Janse van Rensburg and Madras [38], which
achieves a much higher efficiency in dilute systems by cutting
and relocating entire branches. Similarly, one could envision a
(probably highly efficient) variant of the connectivity altering
double-bridging scheme [57] for tree melts, where neighbor-
ing trees swap entire branches of equal weight without moving
them in space. Such moves can be expected to have a much
higher acceptance probability in dense systems, since they
preserve the uniform monomer density. However, none of
these algorithms can be used to simulate the configurational
dynamics of double-folded ring polymers. Instead we require
a scheme where the mass transport is local in space and on
the connectivity graph of the tree.

In the following, we first review the elastic lattice polymer
model [40,43–46], which is a simple and efficient Monte
Carlo algorithm for studying the dynamics of entangled linear
chains (Sec. III A). In Sec. III B we describe the generaliza-
tion to randomly branching double-folded ring polymers [4].
Sections III C and III D provide more details on the systems
studied and on how we initialized and equilibrated our runs.

A. Elastic lattice polymer models

The dynamics of topologically constrained linear polymers
can be efficiently studied in Monte Carlo (MC) simula-
tions of the coarse-grained elastic lattice polymer model
[40,43–46]. In this model the continuum dynamics of a poly-
mer melt is replaced by a lattice version. The mapping is
achieved by dividing the space into cells where the centers of
these cells form a regular lattice. By moving all the monomers
residing in a cell to the center, the polymer conformation
and its dynamics are discretized. The maximum number of
monomers per site is a free parameter of the model that
depends on the coarse graining, e.g., it can be calculated by
considering the volume of the monomers and the cell volume.
The projection of real space onto a lattice will also limit the
dynamics to nearest-neighbor hops of the monomers. As a
result of the coarse graining, the only allowed bond lengths
between neighboring monomers can be 0 or 1, 0 for monomers
that are in the same cell, and 1 for monomers residing in
neighboring cells. This also means that any MC move should
only be accepted if it preserves this constraint.

In order to guarantee the constraints of excluded volume
and noncrossing of strands, without the loss of general-
ity, a minor restraint is introduced to the occupancy of the
cells [4]. Multiple occupancy on a lattice site is allowed
only for monomers that are directly connected to each other
by monomers on the same site, i.e., they form a polymer
strand of variable length (a subchain of chemically bonded
monomers), where the length of such a strand is limited by
the cell size. This also guarantees that monomers belonging to
different polymers can never occupy the same site. With this
constraint the implementation of excluded volume interaction
and noncrossability becomes operationally trivial while fully
maintaining a repton [56]-like dynamics along the primitive
chain [47].

When the elastic lattice polymer model is used to sim-
ulate ring polymers [46,49], the algorithm conserves the
microscopic topological state of the starting configuration.
In particular, melts of long, nonconcatenated rings exhibit
compact and characteristically crumpled conformations.

B. Generalization to randomly branching
double-folded ring polymers

When the algorithm is generalized to double-folded poly-
mers [4], lattice bonds represent tree segments which can
only be occupied by two oppositely oriented bonds between
ring monomers [Fig. 1(b)]. Tree nodes are located on lattice
sites. Their functionality depends on the number of emerging
tree segments, f = 1 (a leaf or branch tip), f = 2 (linear
chain section), and f > 3 (branch point). As in the elastic
lattice polymer model and in contrast to standard tree mod-
els [33,37,38] (which can be wrapped a posteriori with ring
polymers [50]), the degrees of freedom are the positions of
the ring monomers. The local redistribution of stored length
is responsible for the dynamics. In contrast to the elastic lat-
tice polymer model, the connectivity graph for the connected
lattice sites is a dynamically branching object. In particular,
new side branches are created when a monomer from inside an
accumulation of stored length moves to a neighboring lattice
side. Conversely, side branches vanish when the last monomer
reintegrates into the main branch and retracts the two re-
maining extended ring bonds representing the tree segment
[Fig. 1(d)]. Specifically, we impose the following rules:

Lattice: Ring monomers are placed on the sites of a peri-
odic FCC lattice. We choose the FCC lattice because it
is isotropic and it has the maximum number of nearest
neighbors.

Connectivity: Bonded monomers can occupy either the
same site (a repton or loop of stored length) or nearest
neighbor sites (an extended bond).

Order: Ring monomers remain ordered even if several
connected monomers occupy the same site [56].

Double-folding: Each extended bond of the polymer is
paired with exactly one extended bond pointing in the
opposite direction [Fig. 1(b)].

Ring monomers and tree nodes: The number of ring
monomers belonging to the same tree node is equal to
f + α, where f is the functionality of the lattice tree
node and α is the number of loops of stored length on
that node.

Excluded volume interaction: Different tree nodes are not
allowed to occupy the same lattice site.

Dynamics: We employ a simple Metropolis scheme [58]
which consists of trying to move a randomly selected
monomer to a randomly chosen site out of the twelve
possible nearest neighbors. The move is only accepted if
the new conformation respects the conformational rules
above.

A two-dimensional (hexagonal) representation of a double-
folded polymer chain conformation produced using the model
is shown in Fig. 1(d). The green (red) color indicates the
allowed (forbidden) moves according to the conformational
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TABLE I. System parameters for the double-folded ideal rings (Ideal), double-folded self-avoiding rings (S.A.T), and double-folded rings
in the melt state (Melt). N : Number of monomers per chain; np: Total number of chains per simulated system; Lbox: Size of the simulation
box. Note: An FCC lattice of size L contains L3

2 sites; Site occupation number: The average number of monomers in an occupied lattice site;
ρ: Lattice density which is the ratio of the number of occupied sites to the total number of sites; Nsample: Number of independent MC samples;
Ttot: simulation run time in Monte Carlo sweep [MCs]; CPU time: The CPU wall clock time for Nsample samples on a single core; Nind: The
number of independent configurations (see Sec. IV C); τmax: Configuration relaxation time measured after reaching equilibrium calculated
using, τmax = Ttot

2Nind
. Radius of gyration 〈R2

g〉, MSID 〈R2(N/2)〉, and average value of contour distance 〈LN 〉 are defined in the text. All times
are measured in Monte Carlo sweep [MCs], all distances are in units of lattice constants, and all measurements are performed after reaching
equilibrium.

Site Nsample Ttot CPU time Nind τmax

N np Lbox occupation ρ [×102] [×104] [days] [×104] [×104] 〈R2
g〉 〈R2(N/2)〉 〈L(N )〉

Ideal

64 1 8 2.7(7) 9.1(1) × 10−2 16 103 ∼0.4 ∼102 ∼0.8 2.13 ± 0.01 5.74 ± 0.13 4.38 ± 0.03
216 1 12 3.4(7) 7.2(6) × 10−2 16 104 ∼5 ∼38 ∼21 4.27 ± 0.03 11.13 ± 0.26 8.51 ± 0.06
512 1 16 3.9(8) 6.3(4) × 10−2 16 104 ∼16.5 ∼3.6 ∼2.2 × 102 7.13 ± 0.06 18.56 ± 0.44 13.59 ± 0.1
1000 1 20 4.3(2) 5.8(6) × 10−2 6.4 105 ∼74 ∼2.4 ∼1.3 × 103 10.52 ± 0.14 27.37 ± 1.02 19.18 ± 0.23

S.A.T

64 1 20 2.3(6) 6.7(8) × 10−3 16 103 ∼0.2 ∼81 ∼0.9 3.53 ± 0.02 10.25 ± 0.21 4.84 ± 0.04
216 1 32 2.3(5) 5.6(1) × 10−3 16 104 ∼4.5 ∼27 ∼29 11.76 ± 0.08 34.61 ± 0.72 10.96 ± 0.09
512 1 80 2.3(4) 8.5(5) × 10−4 16 104 ∼17.5 ∼2.6 ∼3 × 102 28.65 ± 0.20 85.01 ± 1.78 19.77 ± 0.17
1000 1 100 2.3(5) 8.5(2) × 10−4 6.4 105 ∼30.7 ∼1.8 ∼1.7 × 103 55.95 ± 0.62 166.42 ± 5.55 30.64 ± 0.35

Melt

64 12 8 3.1(5) 9.5(3) × 10−1 16 103 ∼4.5 ∼2 × 103 ∼0.4 2.08 ± 0.01 5.82 ± 0.03 3.63 ± 0.04
216 12 12 3.1(8) 9.4(4) × 10−1 8 104 ∼76 ∼3.4 × 102 ∼14.1 5.72 ± 0.01 15.99 ± 0.13 8.03 ± 0.06
512 12 16 3.1(8) 9.4(4) × 10−1 6.4 104 ∼165 ∼22 ∼1.6 × 102 11.33 ± 0.03 31.33 ± 0.30 13.69 ± 0.18
1000 12 20 3.1(8) 9.4(3) × 10−1 2.56 105 ∼749 ∼15 ∼9.7 × 102 18.89 ± 0.14 52.04 ± 1.15 20.46 ± 0.42

constraints. All allowed hopping moves for tightly folded
rings can be classified in terms of two different move types:

The Repton move: A unit of stored length hops one unit
along the tree without changing its structure [indicated
with the green letter (R) in Fig. 1(d)].

The Hairpin move: If there is at least one connected loop
of stored length (in a site) on each side of a monomer,
both loops can unfold and result in an extended bond
(creation). Naturally, the inverse move removes an ex-
tended bond pair and thus shortens or removes a side
branch from the tree structure (annihilation). In fact,
branched structures are introduced by the formation of
hairpins [green letter (H) in Fig. 1(d)].

An example of a rejected move is also shown in Fig. 1(d).
The red move (F) will lead to a forbidden conformation be-
cause it does not preserve the double-folded structure. For an
impression of the dynamics of the appearance and disappear-
ance of branches due to Hairpin moves, we refer the reader
to the opening sequences of the Supplemental Material, video
S4 [59].

C. Studied systems

The simulations were carried out for chain lengths varying
between 64 to 1000 for three systems: ideal double-folded
rings, self-avoiding double-folded rings, and rings in the melt
state. The self-avoiding case and the rings in the melt state
have excluded volume interactions. For the ideal case, there

is no restriction on the number of tree nodes on any site
of the lattice (no excluded volume interaction). In the melt
state a high lattice density, ρ = 0.95, was used. Since poly-
mer chains diffuse very slowly in compact systems, we have
performed long simulation runs to have a large number of
independent samples. For the self-avoiding double-folded ring
simulations the size of the box was set large enough to avoid
self-interaction of the chain as a result of the periodic bound-
ary condition. A summary of the simulation parameters and
data is given in Table I.

D. Initialization and equilibration

Initial configurations are produced through a growth pro-
cess. First, double-folded rings are seeded as trimers which are
located on a common lattice site. Then the process comprises
two operations:

(i) The diffusion of the monomers, in agreement with
the previously stated dynamic rules. If branching is allowed
during the growth process, highly branched compact chain
configurations appear on the lattice. However, if branching is
not allowed during growth, the Hairpin move is restricted to
the chain ends. As a result, a double-folded ring configuration
will be built which resembles a self-avoiding random walk in
space.

(ii) The occasional addition of new monomers. A new
monomer is introduced to a chain by selecting a random
monomer on the chain and inserting the new one between the
selected monomer and the next neighbor along the chain, on
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FIG. 2. Equilibration monitored using the mean-square radius
of gyration as a function of time. Comparison between initially
branched, compact double-folded chains (left column), and initially
double-folded chains with no branches (right column) for three
different systems: (a) ideal double-folded rings, (b) self-avoiding
double-folded rings, and (c) double-folded rings in the melt state.
The horizontal lines represent the average values after the chains
have reached equilibrium. For better visualization, the time direction
is reversed in the right column. In all three systems, at large times
both initial states (from left and right) reach the same equilibrium
values (reported in Table I).

the same site. In other words, we add a loop of stored length.
The insertion of a loop is attempted with low probability, 0.01,
to assure a good balance between growth and equilibration.
The addition of new monomers is halted once all chains have
the desired length. This process results in unknotted and non-
concatenated rings.

The radius of gyration is the structural property that has
been investigated to monitor the state of equilibration of the
polymer systems. The mean-square gyration radius 〈R2

g〉 is
the average squared distance of any point in the ring polymer
chain from its center of mass. The systems have reached equi-
librium when this quantity no longer changes. All reported
quantities are taken from the simulation regime where the
polymers are fully equilibrated.

Figure 2 shows the radius of gyration vs MC time (one MC
sweep is equivalent to one MC trial for every monomer in the
system) for different rings. In order to validate the equilibrium
values of radius of gyration, we ran the simulations from two
totally different initial conditions. The left column in Fig. 2
shows equilibration of compact initial configurations, which
swell as the simulation progresses with time. The right col-
umn shows equilibration of more open, initially unbranched
double-folded rings, where average ring size decreases as
branches appear. The horizontal lines represent the average
values after the chains have reached equilibrium (values are

FIG. 3. Equilibrated simulation snapshots of (randomly selected)
configurations of the double-folded rings with N = 216. Successive
segments are represented with a HSV cyclic color map. (a) A single
double-folded ideal ring; (b) a single double-folded self-avoiding
ring; (c) a single double-folded ring in the melt state. The gray tubes
show the longest paths of the trees. All the trees have the same bond
scale. The size of the ring in the melt is larger than the ideal tree
and smaller than the self-avoiding tree. (d) Sample configuration of
the melt with 12 double-folded rings. Each ring is represented with a
different color. The snapshots were produced using Blender 2.8 [60].
3D views of these configurations are available in the Supplemental
Materials, videos S1, S2, and S3 [59].

reported in Table I). In particular, Fig. 2 confirms that the
simulation results do not depend on the initial conformations
of the ring polymer chains.

IV. RESULTS AND DISCUSSIONS

After some first qualitative insights in Sec. IV A, we
present a quantitative analysis of the conformational statistics
and dynamics of our randomly branching, double-folded ring
polymers and compare our observations to available exact
results and predictions of the scaling theories presented in
Secs. IV B and IV C. We close by comparing the dynamics
of double-folded rings to the motion of linear chains in the
tube model [47] (Sec. IV D).

A. Qualitative insights

Figure 3 illustrates configurations of our lattice model for
double-folded ring polymers as they emerge from our sim-
ulations after the systems have reached equilibrium. Ring
monomers are shown as small spheres which are displaced
from their actual position by a small random offset. This rep-
resentation reveals (i) multiple occupancy of lattice sites and
(ii) Double-folding. Specifically, we show a sample configu-
ration of (a) an ideal double-folded ring, (b) a self-avoiding
double-folded ring, and (c) a double-folded ring in the melt
state with 216 monomers, as well as (d) a view of a corre-
sponding melt configuration (unfolded from the simulation
box) for 12 double-folded rings. The gray tubes show the
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longest paths along the trees. Three-dimensional (3D) views
of these configurations are available in the Supplemental Ma-
terial, videos S1, S2, and S3 [59]. For the ideal case there
is no restriction on the number of monomers on each site.
Rings in the melt state and, in particular, isolated self-avoiding
rings appear swollen relative to the ideal case. At least qual-
itatively, this is the expected [36] consequence of excluded
volume interactions and the partial screening in melts. In the
self-avoiding case, the structure is quite anisotropic and the
longest path is aligned along the longest axis. In the melt case,
the structure is more compact and spherically symmetric, and
the mass is almost equally distributed between the branches.

A sequence of snapshots of the time evolution of a (ran-
domly selected) self-avoiding double-folded ring with N =
216 monomers at logarithmic time intervals (indicated on
the top left) is available in the Supplemental Material, video
S4 [59]. The gray tube shows the longest path along the tree at
T = 0, where T is set to zero after reaching equilibrium. As
a result of the local mass transport (both in space and along
the tree), three distinct dynamical regimes can be observed.
(i) At short timescales (T . 102[MCs]), at the beginning of
the video, the relaxation is dominated by the small intra-
branch dynamics and the spontaneous formation and deletion
of short side-branches in the tree structure. (ii) At intermediate
timescales, longer side-branches appear and disappear but the
core trunk remains stable. (iii) Near the end of the video
(T & 106[MCs]), the entire tree diffuses in space.

Finally, the Supplemental Material video S5 [59] follows
the motion of the same ring over even longer times to illustrate
that its internal structure completely relaxes on timescales
over which the ring diffuses over a distance corresponding to
its own size.

B. Conformational statistics

To analyze the secondary and tertiary structure of our
double-folded ring polymers as discussed in Secs. II A
and II B, we have calculated the tree contour distance L(i, j)
and square spatial distance R2(i, j) between all pairs of ring
monomers i and j.

The tree contour distance L(i, j) is defined as the length
of the shortest path on the tree connecting i and j. L(i, j)
only depends on the tree connectivity and is completely in-
dependent of the spatial embedding of the double-folded ring
polymer (details in the Appendix). Conversely, the calculation
of the spatial distance, R2(i, j), is straightforward given the
monomer positions and completely independent of the sec-
ondary structure.

Nevertheless, L(i, j) and R2(i, j) are closely related, since
the configurational statistics of the shortest path between two
monomers on the tree is expected to follow a typical power-
law relation, 〈R2(L)〉 ∼ L2νpath , for linear chains [Eq. (5)].
For ideal chains, νpath = 1/2 so that 〈R2(Li j )〉 ∼ Li j . Ex-
cluded volume interactions cause a characteristic swelling
with νpath > 1/2. To allow for a direct comparison, the various
panels in Figs. 4–7 with our results for the secondary and
tertiary structure always show corresponding data for these
two quantities side by side.

Results for averaging L(n) and R2(n) for the three systems
under investigation over monomer pairs with identical ring
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FIG. 4. Conformational statistics of ideal double-folded rings for
four different chain lengths (described in the legend). Data are shown
for ring contour distances up to N/2. Column (a) are the average
values of the tree contour distances between all possible pairs of
monomers, 〈L(n)〉 ∼ nρ . Column (b) plots the squared internal dis-
tances as a function of n, 〈R(n)2〉 ∼ n2ν . The exact exponents for
the ideal case are ρ = 1/2 and ν = 1/4. In panels (a2) and (b2)
data are plotted as a function of neff , which effectively reduces finite
size effects. The straight dashed lines correspond to the expectation
scaling exponents. (a2) and (b2) insets show the local slopes of the
data in panels (a2) and (b2), respectively. These effective exponents
appear to converge to the theoretical exponents (dashed horizontal
lines). Error bars are the same size or smaller than the symbols.

contour distance, n = |i − j|, are shown in panels (a1) and
(b1) of Figs. 4–6. As expected, the results are ring size inde-
pendent at small scales and reach a plateau on approaching the
maximal ring contour distance of n = N/2.

Panels (a2) and (b2) in Figs. 4–6 show the same data
plotted as a function of an effective ring contour distance,
neff = n(1 − n/N ), introduced in Sec. II B. This represen-
tation reduces the finite ring size effects sufficiently for a
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FIG. 5. Conformational statistics of self-avoiding double-folded
rings. Column (a) plots the average value of the tree contour dis-
tances between all possible pairs of monomers. Flory theory predicts
〈L(n)〉 ∼ n2/3. Column (b) plots the squared internal distance as a
function of n. The exact scaling exponent is 〈R(n)2〉 ∼ n1. Notation
and symbols are as in Fig. 4.
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FIG. 6. Conformational statistics of double-folded annealed
trees in the melt state. Column (a) plots the average value of the
tree contour distances between all possible pairs of monomers. Flory
theory predicts, 〈L(n)〉 ∼ n5/9. Column (b) plots the squared internal
distance as a function of n. Flory theory predicts, 〈R(n)2〉 ∼ n2/3.
Notations and symbols are as in Fig. 4.

meaningful comparison with the expected power law relations
〈L(n)〉 ∼ nρ and 〈R2(n)〉 ∼ n2ν . The dashed lines have slopes
corresponding to the exact value or the predictions of Flory
theory for these exponents in the asymptotic limit of infinite
ring size. In addition, we have extracted effective exponents
by calculating the derivatives using the logarithm of neigh-

FIG. 7. Conformational statistics of double-folded rings. Left
column: average tree contour distance 〈L〉 as a function of the
chain length N . Straight lines correspond to the large-N behavior,
〈L(N )〉 ∼ Nρ . Right column: ring mean-square gyration radius 〈R2

g〉
as a function of the chain length. Straight lines correspond to the
large-N behavior, 〈R(N )2〉 ∼ N2ν . Insets show the local slopes of the
data. These effective exponents appear to converge to the theoretical
exponents (dashed horizontal lines). Error bars are the same size or
smaller than the symbols.

boring data points, ( ' log〈L(neff )〉
' log neff

) and ( ' log〈R2(neff )〉
' log neff

). Our results
are shown in the inset of panels (a2) and (b2) of Figs. 4–6.
The horizontal lines show again the expected exponents in the
asymptotic limit of infinite ring size.

As a complement, we have analyzed the average tree con-
tour distance 〈L(N )〉 and the mean-square gyration radius
〈R2

g(N )〉 as a function of the chain length (Fig. 7), where the
averages of the tree contour and spatial distances is calculated
over all monomer pairs irrespective of their distance along
the ring. A summary of these values for the studied systems
is provided in Table I. Again, we have calculated the local
exponents based on the slopes of the data points. The results
are shown in the inset of panels of Fig. 7.

Like in comparable simulations of lattice trees [33,34],
none of our systems has truly reached the asymptotic regime.
Nevertheless, the observed values and trends (which represent
crossovers between numerous regimes for linear or branched
structures without or with full or partially screened excluded
volume interactions [36]) are in good agreement with the
theoretical expectations.

C. Dynamics

Having obtained a brief characterization of conformational
and structural properties of the double-folded rings, we can
now turn our attention to their dynamics. Polymer dynamics
is usually analyzed by monitoring the mean-square displace-
ments (MSD) of individual monomers and of the chain centers
of mass (CM) with time (as mentioned in Sec. II D). Fig-
ures 8–10 show our results for

(i) The total monomer mean-square displacement,

g1(t ) = 〈|ri(t ) − ri(0)|2〉,

(ii) The monomer mean-square displacement relative to
the chain’s center of mass,

g2(t ) = 〈|ri(t ) − ri(0) − rCM (t ) + rCM (0)|2〉,

(iii) The mean-square displacement of the chain center of
mass,

g3(t ) = 〈|rCM (t ) − rCM (0)|2〉,

for single ideal and self-avoiding double-folded ring polymers
as well as for double-folded ring polymers in the melt state.

Panels (a) in Figs. 8–10 shows a comparison of g1(t ), g2(t ),
and g3(t ) for one chain length (N = 216). In all three systems
we see that g1(t ) is dominated by g2(t ) at early MC times and
by g3(t ) at large times. Up to τ0 ≈ 10 MC sweeps (MCs) the
monomer and CM motion follow a trivial diffusive dynamics.
The characteristic dynamics of double-folded rings discussed
in Sec. II D sets in beyond τ0 and extends up to a maximal time
τmax, where the internal monomer motion reaches a plateau,
g2(t ) = 2〈R2

g〉, while g3(t ) crosses over to free diffusion.
Panels (b) and (c) in Figs. 8–10 show data for the monomer

motion g2(t ) and g1(t ) for different chain lengths, N . In all
cases, the monomer MSD in the early and the tree regime
are independent of N before crossing over to a ring-size-
dependent free diffusion regime. In particular, the data in
the tree regime follow an effective power law close to the
prediction t

2ν
(ρ+2) [Eq. (17)], indicated by dashed lines. The
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FIG. 8. MSDs for ideal double-folded rings. Panel (a) shows g1,
g2, and g3 for the ring with 216 monomers. The horizontal line
corresponds to 2 × 〈R2

g〉. Panels (b), (c), and (d) plot g2(t ), g1(t ),
and N × g3(t ) vs time in the unit of MCs, respectively. In panel
(b) the horizontal lines correspond to 2 × 〈R2

g〉. In panels (c) and
(d) the dashed lines have slopes corresponding to the prediction of
the theory, g1(t ) ∼ t

2ν
(ρ+2) and g3(t ) ∼ t

2ν+1
(ρ+2) . (c, d) Insets show the

local slopes of the data. The effective exponents appear to converge
to the theoretical exponents (dashed horizontal lines). Panels (e) and
(f) show rescaled g1(t ) and g3(t ) with the mean-square gyration radii
vs the rescaled time with the diffusion relaxation times.

crossovers between the three regimes are nicely revealed by
the effective exponents, ( ' log (g1(t ))

'(t ) ), shown in the insets of
panels (c). While there are finite ring size effects, they essen-
tially concern the width of the tree regime. The agreement
with the expected exponents in the tree regime is excellent.

Panels (d) in Figs. 8–10 show the rescaled dynamics of the
center of mass g3(t ), multiplied by the ring size N , to com-
pensate for the expected ring size dependence in the early and
in the tree regime, Eq. (18). In both regimes data for different
rings sizes collapse indeed on a universal scaling curve. In
the tree regime, the data follow an effective power law close
to the prediction t

2ν+1
(ρ+2) [Eq. (18)], indicated by dashed lines.

Again, the various regimes can be clearly identified when
considering the effective exponents, ( ' log (g3(t ))

'(t ) ), shown in the
insets of panels (c). Interestingly, the effective exponent for
the dynamics of self-avoiding double-folded rings initially
drops close to the value expected in the ideal case before
increasing to a value in good agreement with the theoretical
prediction.

Panels (e) and (f) in Figs. 8–10 explore the crossover of the
monomer and the CM MSD from the tree to the free diffusion
regime. For this purpose we rescale g1(t ) and g3(t ) with the
mean-square gyration radii, 〈R2

g(N )〉, of the corresponding
rings. To rescale the time axis, we empirically defined a
“diffusion relaxation time” as the time when the mean-square

FIG. 9. MSDs for self-avoiding double-folded rings. Notation
and symbols are as in Fig. 8.

displacement of the center of mass has moved a distance equal
to the radius of gyration, g3(τmax) = 〈R2

g〉. The operation leads
to a perfect data collapse for all but the earliest times before
the rings enter the tree regime.

The scaling theory predicts that the maximal relaxation
time should vary as τmax ∼ N2+ρ with the ring size, Eq. (13).
Besides the “diffusion relaxation time” defined above, we
have also tested this relation for the correlation time of the
mean-square gyration radius, 〈R2

g(N )〉, which characterizes
the tertiary structure of our double-folded rings. We have

FIG. 10. MSDs for double-folded rings in the melt state. Nota-
tion and symbols are as in Fig. 8.
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tot

FIG. 11. Relaxation time in units of MCs vs N (chain length).
Diffusion relaxation time (triangles) is calculated where g3(τmax) and
〈R2

g〉 are equal. Configurational relaxation time (circles) is calculated
using τmax = Ttot

2Nind
, where Nind is number of independent samples.

The black solid lines indicate the theoretically predicted slopes,
τmax ∼ N2+ρ , while the dashed lines are the best fit. Insets show the
local slopes of the data. These effective exponents appear to converge
to the theoretical exponents (dashed horizontal lines).

inferred this configurational relaxation time via the equa-
tion τmax = Ttot

2Nind
[61] from the number, Nind, of independent

samples we have obtained for the observable as estimated
from a block averaging procedure [62]. Our results for the
three investigated classes of double-folded ring polymers are
plotted in Fig. 11. In all three cases, the configurational re-
laxation times are smaller than the diffusion relaxation times,
but both estimates of τmax scale in the same way. The corre-
sponding effective exponents shown in the inset are somewhat
larger than expected. While our values are compatible with an

approach to the asymptotically expected exponent, a quantita-
tive analysis probably requires data for larger systems.

D. Dynamics of double-folded rings vs linear chains

As summarized in Sec. IV C, the scaling theory [3,4,8] of
the dynamics of randomly branching double-folded ring poly-
mers focuses on the mass transport along the longest linear
path on the tree. Given the similarities to the tube model for
linear chains [e.g., Eq. (13) for the maximal relaxation time,
τmax(N ) ∼ Nρ+2, applies in both cases], one could be tempted
to think of the ring motion as a generalized form of reptation
along their longest paths.

To test this analogy, we have visualized the equilibrium
dynamics of the longest path of a randomly selected self-
avoiding double-folded ring (Supplemental Material, video
S6 [59]) and of a randomly selected double-folded ring in
the melt state (Supplemental Material, video S7 [59]). Note
that in these movies time progresses exponentially to cover
the large gap between the timescales relevant to motion on
the monomer and on the ring scale, respectively. Furthermore,
we show fading images of previous conformations to simplify
comparisons with the current conformation.

At early times, the behavior is very similar to contour
length fluctuations for linear chains in the tube model: the
bulk of the longest path remains unchanged, while the path
ends fluctuate. But after a while much more drastic changes
appear, where the longest path appears to jump in space.
For a linear chain such a jump of the primitive chain would
necessarily require a corresponding transport of mass. For our
rings the movie insets show that the jumps in the position
of the longest path are not accompanied by major changes
in the ring configurations. Instead, the jumps are due to the
continuous redistribution of mass between the side branches,
which at some point cause a substantially different path to
outgrow the original longest path.

There are qualitative differences between the two types
of ring systems. In the self-avoiding case, during relaxation,
short side branches relax first. This manifests itself at the ends
of the backbone whose center portion remains unchanged. At
later times, longer side branches relax and randomly one or
two side branches start to grow. Beyond the relaxation time
the backbone changes as a whole as a result of modified
branching. In the melt case, the structure is more compact
and spherically symmetric. The mass is almost equally dis-
tributed between the branches. Hence, a small change in the
side branches may immediately lead to a completely new path
for the longest backbone. This can be observed by comparing
videos S6 and S7 [59]. A quantitative study [35] pursued the
statistics of the branch weight distributions in the melt state,
but a study of the dynamics of the distribution of side branches
is still required.

Since it is not possible to follow the temporal evolution of
a particular path on an internally rearranging tree, it is easier
to focus on pairs of monomers (i∗, j∗), which at some time,
t = 0, are located on opposite ends of the longest path on the
primitive tree. Typically these monomers are also relatively
remote along the ring contour, their contour distances fol-
lowing a broad distribution of around |i∗ − j∗| = N/2. In the
movie insets we used bigger spheres to mark two such pairs of
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FIG. 12. Tree contour distances between monomers (i∗, j∗)
flanking the longest path on the tree at an arbitrarily chosen time
t = 0 after equilibration. Left-hand side column: Rescaled probabil-
ity distributions of the longest path length, Lmax = L(i∗, j∗, t = 0).
Middle column: Rescaled time evolution of 〈L(i∗, j∗, t )〉. Right-hand
side column: Rescaled probability distributions of the tree contour
distance, L(i∗, j∗, t = 10τmax), between (i∗, j∗) after all memory of
the initial state at t = 0 is lost. Top row: Self-avoiding double-folded
rings. Bottom row: Double-folded rings in the melt state.

monomers which flank the longest path at the beginning and
the end of the visualized sequences.

Figure 12 presents a quantitative analysis of the tree con-
tour distance L(i∗, j∗, t ) between these monomers rescaled
by the average tree contour distance 〈L(N )〉 reported in
Table I. The panels on the left-hand side shows the distribution
of the tree contour distances at t = 0, i.e., for L(i∗, j∗, t =
0) ≡ Lmax(t = 0). Results for different ring sizes superpose,
indicating that both the average and width of the distribution
scale with 〈L(N )〉 ∼ Nρ . In contrast, for linear chains contour
length fluctuations,

√
〈δL2

pp〉 ∼
√

N , become asymptotically
negligible compared to the average length, 〈Lpp〉 ∼ N , of the
primitive paths [31]. The central panels in Fig. 12 show the
decay of 〈L(i∗, j∗, t )〉 from a value of (2.44 ± 0.03 to 1.15 ±
0.01) × 〈L(N )〉 for self-avoiding rings and (2.77 ± 0.01 to
1.33 ± 0.01) × 〈L(N )〉 for rings in the melt over a timescale
of the order of the “diffusion relaxation time,” τmax. Again,
the suitably rescaled data for different ring sizes exhibit a rea-
sonable collapse. The true extent of the (tree) “contour length
fluctuations” is better represented by the distribution functions
of L(i∗, j∗, t = 10τmax) shown in the panels on the right-hand
side of Fig. 12. While the monomers (i∗, j∗) located at op-
posite ends of the longest path on the tree at t = 0 have a
finite chance to form secondary structure contacts [50] with
L(i∗, j∗, t ) ≡ 0 at later times, a corresponding deep retraction
of one end of a linear chain to the opposite end of the tube is
exponentially rare [31].

We conclude that randomly branching double-folded ring
polymers move quite differently from reptating linear chains.
In particular, the dynamics of rings of all sizes is dominated
by the analog of contour length fluctuations occurring simul-
taneously between all pairs of monomers of the rings.

V. SUMMARY AND CONCLUSION

Supercoiled DNA, crumpled interphase chromosomes,
and topologically constrained ring polymers often adopt
treelike, double-folded, randomly branching configurations.

To explore the statistical and dynamical properties of such
objects, we have performed Monte Carlo simulations of a suit-
able elastic lattice polymer model which accounts for double
folding [4,43], the local accumulation of contour length on
the primitive tree [4,40,44–46], as well as excluded volume
interactions [44–46]. In particular, we have studied single
ideal double-folded rings, single self-avoiding double-folded
rings, and double-folded rings in the melt state.

In our simulations, side branches of the primitive tree char-
acterizing the double-folded rings are spontaneously created
and deleted as a consequence of the local monomer motion.
Since the diffusive mass transport is local both in space and
on the connectivity graph of the tree, we expect our systems to
fall into the same universality class as the experimental target
systems.

The observed static properties are in good agreement
with exact results and predictions of Flory theory for ran-
domly branching polymers. For example, in the melt state
rings adopt compact configurations and exhibit territorial
behavior. In particular, the model reproduces results from
previous simulations of double-folded ring polymers [50],
which were wrapped a posteriori around randomly branching
polymers generated in corresponding simulations on the tree
level [33–35] in an attempt to devise a numerically efficient
multiscale approach to the simulation of nonconcatenated ring
polymer melts and interphase nuclei [11,12].

The present approach offers the advantage that the dynam-
ics of the ring degrees of freedom can be followed together
with the evolution of the tree structure. This is a key feature for
the simulation of copolymer [63] models of crumpled [14,15]
or supercoiled [17,19,20] interphase chromosomes. Here we
have used this information to show that the diffusion of the
monomers and the rings’ center of mass are in excellent
agreement with the predictions of a recent scaling theory [8].
Furthermore, we have explored a possible analogy between
the motion of randomly branching double-folded ring poly-
mers and reptating linear chains. While there exist formal
similarities on the scaling level, we conclude that the dynam-
ics of rings is rather dominated by the analog of contour length
fluctuations, which constantly modify the distances between
all monomers on the tree over a wide range.
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APPENDIX: CALCULATING TREE CONTOUR
DISTANCES FOR TIGHTLY DOUBLE-FOLDED RINGS

1. Bridge bonds and tree contour distances

An example of a tree is illustrated in Fig. 13(a). The tree
connectivity can be mapped on a circle as in Fig. 13(b), where
consecutive monomers are represented with numbers. The
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FIG. 13. (a) An example of a tree with side branches. (b) Ring
connectivity of the example tree (a) mapped on a circle together with
bridge bonds (dashed lines) that are formed during the “burning”
process. (c) Illustration of the distance between monomers 9 and 4
following the bridge bonds along the way (green: clockwise, and
pink: counterclockwise).

tree contour distance between two monomers of a double-
folded ring can be calculated by following the ring contour
while ignoring all the double-folded side branches along the
way. Bridge bonds (represented with dashed lines) between
monomers on each tree site can be defined to mark the location
of possible side branches. The tree contour distance between
any pair of monomers can be calculated by counting the num-
ber of steps taken on the circle and using the bridge bonds
as shortcuts (shortcuts do not add to the number of steps).
Obviously, the choice of direction (clockwise or counterclock-
wise) should result in the same contour length. For example,
the tree contour distance between monomers 9 and 4 in
Fig. 13(c) is 2.

2. Bridge bonds from spatial colocalization

In systems with excluded volume interactions, the identi-
fication of the bridge bonds is straightforward as they simply
connect monomers which are colocalized in space (Fig. 13).
However, as illustrated in Fig. 14, this method fails in the ideal
case, where incorrectly identified extra bridges [red dashed
line in Fig. 14(b) lead to lattice animal-like connectivity
graphs containing falsely identified loops.

3. Bridge bonds from an analysis of the local connectivity

We used a “pinching” variant of the “burning” algo-
rithm [25,33,64] that takes advantage of the local connectivity
information. As the algorithm operates by iteratively remov-
ing (pinching off) branch tips, it avoids the false identification
of loops. The protocol to find the bridges layer by layer is as
follows:

(a) (b)

FIG. 14. (a) An example of the ideal double-folded ring. (b) Cor-
responding bridges. If all monomers on a site have bridges defined
between them, it leads to an extra wrong bridge (red dashed line).

FIG. 15. An example of branch tip detection in an ideal double-
folded ring. (a) and (c1): Examples of side branches in the ideal case.
Ambiguous branch tips and their corresponding bonds are shown
in blue. The tree structure is the same, but different interpretations
of branch tips are possible. (b) Bridge bonds corresponding to in-
terpretation (a). Removal of the first layer of tips in (c1) results in
the formation of bridge bonds (d1) and the tree structure (c2). The
removal of the second layer results in the completion of the bridge
bond detection displayed in (d2).

(A) Make a list of all the tree branch tips. A branch tip
is defined as a monomer with attached bonds pointing in
opposite directions, ignoring neighbor loops (with zero-length
bonds). For example, in Fig. 13(a) monomers 1, 9, and 6 (5 is
a loop) are branch tips.

(B) Randomly select a branch tip and remove it from the
ring. For example, if the branch tip 9 is randomly selected,
monomer 9 is removed and a bridge is defined between
monomers 8 and 10.

(C) Repeat steps (A) and (B) until the branch tip list is
exhausted.

(D) Steps (A)–(C) result in the removal of one “layer” of
side branches. Repeat these steps (remove layer by layer) until
all the branch tips are removed and all the bridge bonds are
found.

We verified that the pinching algorithm reproduces the
results from the spatial colocalization for double-folded rings
with excluded volume interactions.

4. Ambiguities in the tree structure for ideal double-folded rings

The tree connectivity is not uniquely defined for the ideal
double-folded rings. There is an intrinsic ambiguity in how
side branches and the underlying tree structure is defined. An
example is given in Figs. 15(a) and 15(c1), where branch tips
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under consideration and their attached bonds are colored blue.
They both have the same tree structure, but the number of
branch tips is open for interpretation:

(1) Figure 15(a): Branch tips are 1, 3 (pointing up), 5
(pointing up), and 7. During the burning of the first layer,
all the branch tips are removed, which results in the bridging
bonds shown in Fig. 15(b).

(2) Figure 15(c1): Branch tips are 1, 7, and 4 (pointing
down from the tree node {3, 5}). Figure 15(d1) shows the

bridges corresponding to the burning of the first layer. In
the next layer of burning, Fig. 15(c2), the bridge between
monomers 2 and 6 is formed, Fig. 15(d2).

(1) and (2) are random outcomes of step (B) that result in
different bridging bonds and therefore different tree contour
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