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cui poter sempre tornare nei momenti difficili.

Titre: La gravité, sous l'éclairage des théories des champs effectives Mots clés: Théories effectives, Matrice S, Causalité, Gravité, Diffusion eikonale transplanckienne, Contraintes de positivité Résumé: Dans cette thèse, nous discutons de différents aspects de la gravité d'un point de vue basse énergie/longue distance, en exploitant le cadre des théories des champs effectives (EFT). Dans la première partie, nous étudions comment les principes fondamentaux, tels que la causalité, l'unitarité et l'invariance de Lorentz, isole l'espace des théories des champs effectives autorisées. En particulier, nous considérons une déformation populaire de la gravité, qui envisage une petite masse m pour le graviton : la gravité massive. Nous montrons que cette théorie n'admet pas de complétion ultraviolette cohérente avec les principes fondamentaux supposés, à moins que son échelle de coupure ne soit paramétriquement proche de la masse m, ce qui rend le domaine de validité de l'EFT pratiquement inutile en tant que théorie viable de la gravité. Comme outil technique pour construire toutes les amplitudes de diffusion nécessaires, nous exploitons les méthodes sur couche de masse, ce qui nous permet de contourner toutes les subtilités du calcul des amplitudes des particules massives de spin-2, via les diagrammes de Feynman traditionnels.

La deuxième partie de cette thèse est consacrée à l'étude de la diffusion eikonale transplanckienne, qui implique la diffusion à haute énergie de corps séparés par un grand paramètre d'impact. Nous interprétons cette limite au moyen d'une contraction du petit groupe SO(3) du moment total du centre de masse en ISO(2), correspondant à la limite de la terre plate.

L'émergence de la limite classique est comprise en termes de représentations de spin continu admises par ISO [START_REF] Bargmann | Group Theoretical Discussion of Relativistic Wave Equations[END_REF]. Nous étudions la résolvabilité des effets secondaires entrant dans l'angle de diffusion du processus, et trouvons que les effets de gravité quantique pure sont toujours plus petits que l'incertitude quantique intrinsèque, alors que les effets quantiques émergents de particules de type théorie quantique de champs peuvent être résolus. Motivés par cette observation, nous étudions la causalité en gravité au premier ordre post-Minkowskien dans un espace-temps plat, en nous concentrant sur les effets quantiques principaux dans une théorie de jauge. En particulier, nous opposons deux notions de causalité -"asymptotique" et "bulk" -dans une théorie de jauge où les deux sont respectées dans la limite classique, mais diffèrent du point de vue de la mécanique quantique. Nous constatons que la causalité asymptotique, c'est-à-dire la positivité du délai, est respectée jusqu'au pôle de Landau (s'il existe). D'autre part, les photons présentent un délai plus petit que les gravitons, ce qui représente une violation de la "causalité bulk" au niveau quantique. Nous avons interprété ces résultats, combinés au fait que la "causalité asymptotique" émerge des principes fondamentaux de la matrice S, comme une indication forte que la structure causale dans les théories gravitationnelles asymptotiquement plates est définie par le cône de lumière de Minkowski asymptotique.

Abstract: In this thesis, we discuss different aspects of gravity from a low energy/long distance perspective, by exploiting the framework of Effective Field Theories (EFTs). In the first part, we study how fundamental principles such as causality, unitarity and Lorentz invariance carve out the space of allowed Effective Field theories. In particular, we consider a common deformation of gravity which contemplates a small mass m for the graviton: massive gravity. We show that this theory does not admit a UV completion consistent with the fundamental principles we assume, unless its cutoff is parametrically close to the mass, making the validity range of the EFT practically useless as a viable theory of gravity. As a technical tool to construct all needed scattering amplitudes, we exploit on-shell methods, which allows us to bypass all subtleties of computing amplitudes of massive spin-2 particles via traditional Feynman diagrams.

The second part of this thesis is dedicated to the study of transplanckian eikonal scattering, which entails the high energy scattering of bodies separated by a large impact parameter. We understand this limit by means of a group contraction of the little group SO(3) of the total center of mass momentum to ISO(2), corresponding to the flat-earth limit. The emergence of the classical limit is understood in terms of the continuous-spin representations admitted by ISO [START_REF] Bargmann | Group Theoretical Discussion of Relativistic Wave Equations[END_REF]. We study the resolvability of subleading effects entering the scattering angle of the process, finding that pure quantum gravity effects are always smaller than the intrinsic quantum uncertainty, while quantum effects emerging from QFT-like particles can be resolved. Motivated by this observation, we study causality in gravity to the first post-Minkowskian order in flat spacetime, focusing on the leading quantum effects in a gauge theory. In particular, we contrast two notions of causality -"asymptotic" and "bulk" causality-in a gauge theory where both are respected in the classical limit, but differ quantum mechanically. We find that asymptotic causality, i.e. positivity of the time delay is respected up to the Landau pole (if any). On the other hand, photons display quantum-mechanically a smaller time delay than gravitons, representing a violation of bulk causality at the quantum level. We interpreted these results combined with the fact that "asymptotic causality" emerges from S-matrix fundamental principles as strong indication that the causal structure in asymptotically flat gravitational theories is set by the asymptotic Minkowski light-cone.

Introduction

In complexity, it is only simplicity that can be interesting.

-Steven Weinberg

The incredibly ambitious task of physics is to describe and understand natural phenomena at all scales, from the structure of the universe in its entirety to the smallest constituents of matter. This challenge would be a lost battle if all effects spanning over 60 orders of magnitude were inextricably intertwined and we would have to face them all at once. Luckily this is not the case, as approximate descriptions allow us to tackle a problem without full knowledge of events happening at very distant scales. We can predict the trajectory of a cherry falling from a tree without taking into account the fact that the universe is accelerating or that Quantum Chromodynamics is asymptotically free. This idea is naturally embedded in the paradigm of Effective Field Theories (EFTs), where underlying small distance effects are systematically neglected, i.e. encapsulated into local operators of decreasing importance for the accessible long-distance degrees of freedom.

Despite the fact that EFTs are by definition an agnostic tool, meaning there is in principle no selection of a particular high energy (ultraviolet) completion, they still provide a powerful and predictive framework to understand and approach physical phenomena. For instance, we can make assumptions on the overall properties of the ultraviolet (UV), without choosing its detailed structure, in good EFT spirit. It turns out, that assumptions such as Lorentz covariance, unitarity, causality and locality impose non-trivial constraints on low-energy descriptions, see Fig. 1. Said otherwise, all EFTs are not born equal, as not every choice of coefficients admits a completion consistent with some fundamental principles that we might want to keep in the high energy theory. These bounds on spaces of low energy theories are usually referred to as positivity constraints. Reversing the argument, measuring parameters that do not satisfy these constraints would imply that one or more of the assumptions should break down. What are those fundamental principle that we could impose on the UV theory? We will list them and explore some of their consequences in Part I.

In this thesis we will attempt to take advantage of this point of view to study one of the most fascinating of all effective theories: gravity. Gravity at large distance is extremely well described by General Relativity (GR), which is characterized by a strong coupling at the Planck mass, and its UV completion/short distance realization is still an active field of research. We will be interested in the interplay between different principles such as causality, unitarity and analyticity in the gravitational context, keeping in mind that deformations of gravity at large distance are also constrained by positivity constraints. During its over a century of life, the theory of General Relativity has provided predictions that have been consistently confirmed by observations. Probably the most impressive and relevant today is the detection of gravitational waves, which opened a new and exciting window to explore the universe. But why should the theory of gravity take exactly the form of the Einstein-Hilbert action? How disastrous could it be to slightly modify it? We will explicitly observe the power of positivity constraints by imposing them on deformations of gravity that contemplate a small graviton mass m, showing in Part II that such theories could not be consistent with positivity constraints unless their cutoff lies below O(10)m. In the context of massive gravity, where observations impose that m ∼ H 0 , with H 0 the Hubble constant, this means that the EFT in its common form can not be used reliably to describe distances shorter than 1/10 of the size of the universe! An alternative way to approach gravity with an EFT perspective is to assume GR to be the correct theory at long distances and study the effects that emerge when decreasing such distances. We will adopt this perspective in Part III. It is easy to show that in order to produce gravitational effects such as a deflection angle that could be measured in a "gravitational collider", it is necessary that the scattering takes place at transplanckian energies. That is because, despite the fact that gravity becomes weak at large distance, at such high energies it is the most important force and leading effect. In this regime perturbative tools (such as scattering amplitudes) break down, but impressive resummations of family of diagrams emerge providing a smooth limit to semi-classical transplanckian physics. This effect is understood in the framework of the eikonal approximation, and has the pleasant consequence of allowing us to extrapolate perturbative calculations carried out with quantum amplitudes to describe motion of astrophysical objects. This powerful fact is explored and interpreted in terms of group contractions in chapter 6.

Having the eikonal framework under control allows us to use it as a playground to tackle different questions. In particular, we will show that quantum corrections of "QFT-like" nature (for instance Standard Model effects) produce resolvable corrections, that contribute to physical observables such as the time delay. This fact will allow us to probe definitions of causality in gravity at loop level, showing that positivity of the time delay is a robust definition that Part I A walk through Quantum Field Theory Chapter 1

The fundamental principles Physics has been traditionally lead both by experimental results as well as theoretical predictions. The importance of taking seriously into account what Nature tells us directly through experiments cannot be understated, but another approach has fired the imagination of theorists throughout history: the idea that most of Universe's laws could be derived in an elegant and transparent way from a bunch of simple principles. The apotheosis of this approach most likely took place in the fifties, in the so-called S-matrix program, when the belief that fundamental principles could completely fix and constrain physical observables sparked fervent activity. Even though the idea of accessing all physics in such an axiomatic way was definitely too optimistic, this dream has seen an impressive resurgence in modern days. Today, we surely have more modest and realistic goals, but we still follow the philosophy of exploiting as much as possible fundamental principles of Nature in order to constrain features of theories or to become computationally more efficient. Nobody guarantees that those will be present and perfectly satisfied at all energies and length scales, but these principles have been so far guiding lighthouses to predict and understand a variety of physical phenomena. Furthermore, the encounter of any violation of one of the latter would force us to completely shift our expectations, which is a prospect equally as exciting.

There is an incredibly large existing literature covering the intricate web of consequences and relations between these notions: unitarity, Lorentz invariance, causality and locality, which are in fact deeply connected. Furthermore, the definitions themselves do not meet complete consensus and have evolved over time. With these facts in mind, we will venture first into the definitions of Lorentz invariance, locality, causality and unitarity, and derive a few consequences which will be crucial in the following Chapters. This review has no claim of being complete or rigorous, but it is a personal attempt at making sense of certain important results, by clearly stating all assumptions needed. The modern on-shell approach takes pride in never referring to the traditional Lagrangian formulation of QFT, where states are described by fields, and we will stick to this perspective as much as possible, but as some of these principles (in particular locality and causality) are naturally formulated in position space, we will be tolerant with ourselves and occasionally discuss properties in terms of time-ordered correlation functions when needed.

At the end of the day, we are of course interested in predicting physical observables, which can be extracted from the S-matrix. Schematically, the S-matrix is given by the projection of CHAPTER 1. THE FUNDAMENTAL PRINCIPLES incoming and outgoing states

S αβ = out α|β in , S = dα|α in out α| , (1.1) 
which are asymptotic states that have been evolved with a Møller operator |α in/out = Ω(t → ±∞)|α , which controls the overlap between asymptotic and interacting states. The operator S then is simply given by Ω(t → +∞) † Ω(t → -∞). We will see that imposing the principles of Lorentz covariance, unitarity, locality and causality fixes an incredible amount of properties of the S-matrix. It tells us what the asymptotic states are, what is its analytic structure, its growth at infinity, and often even what its explicit form for a given theory.

It is often convenient to reorganize the matrix elements into connected parts as

S αβ = k S c α k β k + S c αβ , (1.2) 
where the sum runs over all subsets of α and β. From this point of view, we can think of building matrix elements recursively from lower points matrix elements. The fully connected part of the S-matrix is usually rewritten as

S c αβ = i(2π) 4 δ 4 p (α) -p (β) M αβ , (1.3) 
where M αβ is the scattering amplitude. Alternatively, we can obtain the same result by redefining the operator S = 1 + iT , with β|T |α = (2π) 4 δ 4 ( p (α)p (β) ) β|M|α and M αβ is just the matrix element of the operator T with the total momentum preserving delta function stripped off.

We are ready to introduce the definitions we will consider in the following

• Poincaré covariance: Particles are given by irreducible representations of the Poincaré group, which is the group capturing the isometries of Minkowski spacetime.

• Unitarity: The operator S is unitarity

SS † = S † S = I . (1.4) 
• Locality: States can be localized simultaneously in position and momentum space by means of wavepackets given by functions with compact support.

• Micro-Causality: The commutator between two spacelike separated local operators vanishes

[O(x), O(y)] = 0 , if (xy) 2 < 0 .

(

1.5)

There is no general consensus on the exact definition of locality. The cluster decomposition principle (the fact that interactions vanish at long distance) can be considered as a weak form of locality, or a local Lagrangian with only polynomials of derivatives would be an alternative definition 1 . We choose the condition on localization through wavepackets, that will be relevant and become clear in the discussion in section 1.5.

In the following sections, we will derive a number of consequences from those principles, that will be crucial to become computationally more efficient as well as explore the parameter space of different effective theories. We will always work in the signature convention (+, -, -, -).

Covariance of the S-matrix

Our starting point is the fact that in the first part of this thesis we will only be concerned with scattering on Minkowski spacetime ds 2 = η µν dx µ dx ν , whose isometries are given by the Poincaré group ISO [START_REF] Eden | The analytic S-matrix[END_REF][START_REF] Weinberg | The Quantum theory of fields[END_REF], composed of 10 generators: 4 translations P µ , 3 boosts K i and 3 rotations J i . Following Wigner's classification [START_REF] Bargmann | Group Theoretical Discussion of Relativistic Wave Equations[END_REF], one particle states are the simplest isolated building blocks given by irreducible representations of the Poincaré group. They are naturally labeled by the Casimirs of the related algebra, which are P 2 and W 2 , respectively the mass and the spin of the particle, where W µ = 1 2 µνρσ J νρ P σ is the Pauli-Lubanski vector. Those labels are invariant under Lorentz transformations (a boost should not change the rest mass of an electron!), as they commute with every generator by definition of Casimir operators. The properties of one-particle states under the action of the group are best studied in a particular choice of reference frame, where transformations are most transparent. In particular, it turns out to be important to identify the subgroup of Poincaré that keeps the momentum invariant, which is usually referred to as the Little Group. Indeed, knowledge of transformations under this subgroup are sufficient to reconstruct how the one particle state transforms under the full Poincaré group.

For massive states, we choose the rest frame of the particle, where pµ = (m, 0, 0, 0). In this frame, W 2 = -m 2 J 2 , and the momentum is invariant under the group of rotations SO(3) ∼ SU [START_REF] Bargmann | Group Theoretical Discussion of Relativistic Wave Equations[END_REF]. Unitary representations of SU (2) are then constructed in the usual way by labeling states as |p, σ m 2 ,S , where P 2 |p, σ m 2 ,S = m 2 |p, σ m 2 ,S , J 2 |p, σ m 2 ,S = S(S + 1)|p, σ m 2 ,S , P µ |p, σ m 2 ,S = pµ |p, σ m 2 ,S , J 3 |p, σ m 2 ,S = σ|p, σ m 2 ,S ,

and σ is the projection of the spin on the z axis, that we will referred to as polarization. The combinations (J 1 ±iJ 2 ) are used as raising and lowering operators acting on σ = [-S, +S], which can take 2S + 1 different values.

For the massless states we can choose the frame in which the momentum takes the form p = (κ, 0, 0, κ). The Casimir invariant becomes W 2 |p, σ = -κ 2 (J 1 -K 2 ) 2 + (J 2 + K 1 ) 2 |p, σ , and the group that keeps the momentum p invariant is ISO [START_REF] Bargmann | Group Theoretical Discussion of Relativistic Wave Equations[END_REF]. ISO( 2) is a non-compact group, and as such is has infinite dimensional (or continuous) irreducible representations. As we have not observed any continuous massless spin in nature, we restrict to the case with W 2 = 0, where both raising and lowering operators annihilate all states, and the only non-trivial part of the little group becomes SO(2) ∼ U (1) of rotations around the axis parallel to the momentum. The one-particle state is then given by |p, σ where, because of CPT, σ = ±S takes two possible values, and is the helicity of the particle. Continuous spins (or angular momentum) are instead very much present in classical physics, and we will encounter the contraction SO(3) → ISO(2) in Chapter 6 in the limit of large angular momentum in the context of eikonal transplanckian scattering. Now we are ready to boost the state to one of generic momentum, which can be achieved in different ways, requiring to make a particular choice. All possible Lorentz transformations that send the reference momentum to a given momentum p, i.e. Λ p : p → p, are precisely related by a little group transformation, which is 3D-rotation for massive particles or a rotation in the xy plane for massless particles. We define the one-particle state in a generic frame as |p, σ m 2 ,S ≡ U (Λ p )|p, σ m 2 ,S .

(1.7)

In practice, in this thesis we will always work by using the so-called helicity basis, for which Λ p = R(φ, θ, -φ)B 3 (η), where R(α, β, γ) = e -iαJ 3 e -iβJ 2 e -iγJ 3 is a combination of rotations around the y and z-axis, and B 3 (η) is a boost in the z-direction. A very useful fact about this construction, is that Lorentz transformations of this state are completely fixed by representations of the little group as

U (Λ)|p, σ m 2 ,S = σ |Λp, σ m 2 ,S C σσ (W ) , (1.8) 
where W (Λ, p) = Λ -1 Λp ΛΛ p , is an element of the little group. The ensemble of all one-particle states form a Hilbert space, and we choose the relativistic normalization p , σ |p, σ = (2π) 4 2p 0 δ 4 (pp )δ σσ , (

where we kept some indices implicit for clarity. Now that we have exploited Lorentz symmetry to define what a particle is, we can simply construct the Fock space of states by taking tensor products of one particle states

|α = |p 1 , σ 1 ⊗ |p 2 , σ 2 ... ⊗ |p n , σ n , α|α = δ(α -α ) , (1.10) 
which requires a combinatorial 1/n! coefficient when dealing with identical particles.

As the transformation of asymptotic states under a Lorentz transformation is known, we immediately learn how the full S-matrix transforms (1.11) where |β = i |Λp i , σ i , and |α = j |Λp j σ j . This important expression sets some powerful constraints on the form of the S-matrix itself. Some practical examples will be discussed in section 2.

out β|α in = out U (Λ)β|U (Λ)α in = nout i=0 C σ i σ i (W (Λ)) *   n in j=0 C σ j σ j (W (Λ))   out β |α in ,

Amplitude factorization and multi-particle production

In this section we will review some analytic properties of scattering amplitudes mostly dictated by unitarity. In particular, we are interested in the regimes where the amplitudes develops some 1.2. AMPLITUDE FACTORIZATION AND MULTI-PARTICLE PRODUCTION 11 non-analyticities (poles and branch cuts) and what their interpretation is. For simplicity, we will discuss the 2 → 2 amplitudes with scalar external states, but all these results can be extended to spinning states as well as n-points functions. The first ingredient that we will use is an immediate consequence of unitarity and of (1.1) and is completeness of states 1 = S † S = dα|α in in α| = dα|α out out α| , (1.12) where the measure is explicitly given by

dα|α α| ≡ |0 0| + ∞ nα 1 (2π) 3nα nα i=0 d 3 p (i) 2p 0 (i) a (i) |p (i) , a (i) p (i) , a (i) | .
(1. [START_REF] Meiman | The causality principle and the asymptotic behavior of the scattering amplitude[END_REF] In terms of the connected part defined in (1.3) 2 , unitarity takes the form

1 i 34|M -M † |12 = 34|M • M † |12 , (1.14) 
which can be rewritten as

2ImM(12 → 34) = dµ 12|M|µ µ|M † |34 , (1.15) 
where in the last equality we inserted a complete set of asymptotic states (1.12) 3 .

In the following, we consider the contribution to the imaginary part due to insertions of one and two particle states. Indeed, depending on the energy of the process, different production thresholds can be reached and different states included in the sum start contributing. We also use the fact that 4-point amplitudes are functions of two kinematic variables given by the Mandelstam variables

s = (p 1 + p 2 ) 2 , t = (p 1 -p 3 ) 2 , u = (p 1 -p 4 ) 2 , s + t + u = 4m 2 , (1.16) 
where p 3 and p 4 are taken outgoing.

One particle factorization

First we consider one stable particle of rest mass M 2 in the spectrum, and we study the resulting effect from this one-particle state on the left hand side of (1.19). Notice that in principle unitarity is a property of the amplitude in the physical region of the scattering, which is s > 4m 2 and t < 0, while here we work below the 4m 2 threshold in order to distinguish the effect of the particle M from two particles production. Assuming unitarity in the 0 < s < 4m 2 is usually referred to as "extended unitarity", and we will use it to simply show the factorization property 2 Notice that for 2 → 2 scattering the operator T defined as S = 1 + iT corresponds to the connected part, a property not satisfied for higher points. 3 Real analyticity M(s * , t) = (M(s, t)) * , allows us to translate imaginary parts into discontinuities, hence (1.19) becomes a statement about non-analyticity such as poles and branch cuts. One way to show real analyticity is via the Schwarz reflection principle, which gives an analytic continuation of a function defined on the upper plane and with real value on the real axis (which is the case for -t < s < 4m 2 ).

of the 2 → 2 amplitude. However, the result is completely general, can be proven without this assumption and holds also for higher point amplitudes and spinning external states. A full proof can be found in terms of correlation functions in chap.10 of [START_REF] Weinberg | The Quantum theory of fields[END_REF], or for an on-shell approach a factorization proof of the 3 → 3 scattering is presented in "The Analytic S-matrix" [START_REF] Eden | The analytic S-matrix[END_REF] (or [START_REF] Conde | Physics from the s-matrix: Scattering amplitudes without lagrangians[END_REF] for a modern version).

Inserting one particle state with its Lorentz invariant measure in (1. [START_REF] Xu | Helicity Amplitudes for Multiple Bremsstrahlung in Massless Nonabelian Gauge Theories[END_REF]) we obtain ImM(12 → 34) = πδ(p 2 12 -M 2 ) σ M(12 → p σ )M * (p σ → 34) + (OT) (1.17) where p 12 = p 1 + p 2 and (OT) captures contributions from all other states included in the sum. Notice the appearance of the delta function δ(p 2 12 -M 2 ), meaning that when the invariant quantity p 12 hits the rest mass of the stable particle, the term considered above diverges and becomes the relevant one. An obvious solution is given by the identity 1 x+i = P V 1 xiπδ(x) and we can conclude 4lim

p 2 α →M 2 M(α → β) = - σ M(α → p σ ) 1 p 2 α -M 2 M * (p σ → β) (1.18) 
i.e. the amplitude factorizes on lower point amplitudes, and the singularity is given by a simple pole. This is an extremely strong requirement, because knowing lower point functions allows us to fix higher point ones in some particular kinematics points where the amplitude blows up. As already stated, the argument just presented above is by no means a full proof, but it holds very generally for spinning particles and n-points functions.

2-particle production threshold

Now that we have understood the factorization properties of scattering amplitudes when hitting the mass of a stable particle in the spectrum, we can turn to two particles production. Let us assume that our spectrum is composed by only one state of mass m. In order to access a n-particles state, it is necessary that the initial state satisfies s > (nm) 2 , due to momentum conservation. Hence, in the kinematic region 4m 2 < s < 9m 2 , the right hand side of (1.14) reduces to only 2 → 2 transitions and we obtain 2ImM(12 → 34) = = 1 2

d 3 k (2π) 3 2E k d 3 q (2π) 3 2E q (2π) 4 d 4 (p 1 + p 2 -q -k)M(12 → kq)M * (kq → 34) = √ s -4m 2 (2π) 2 16
√ s d 2 Ω M(12 → kq)M * (kq → 34) (1. [START_REF] Xu | Helicity Amplitudes for Multiple Bremsstrahlung in Massless Nonabelian Gauge Theories[END_REF] where the combinatorial factor 1/2 comes from the assumption of identical particles, and in the second line we solved explicitly the kinematic integrations in the center of mass frame.

From (1.19), we conclude that the amplitude develops a discontinuity of square root type when hitting threshold of 2-particle production at s = 4m 2 . Below this scale, it is a real-valued analytic function. On the other hand, in the limit of vanishing mass, the imaginary part becomes regular, hence leading to a log-type divergence. This analysis can be repeated in the regime 9m 2 < s < 16m 2 , by considering three-particles states, etc.

We have therefore shown that unitarity strongly constrains the presence of poles and branch cuts for real values of s. In particular, when hitting the rest mass of a stable state, the amplitude factorizes in lower point amplitudes, while branch cuts related to multi-particle production appear above thresholds.

Partial waves

So far, we have studied the superposition of external states constructed as tensor product of one-particle states

|p 1 S 1 λ 1 , α 1 ⊗ |p 2 S 2 λ 2 , α 2 ≡ |p 1 S 1 λ 1 , α 1 ; p 2 S 2 λ 2 , α 2 .
(1.20)

It is important to notice that those states are not irreducible representations of Poincaré, but they can be projected on a different basis of definite angular momentum. The resulting expansion of the S-matrix is in so-called partial waves S . One of the most interesting properties of this basis is that it maximally diagonalizes the 2 → 2 S-matrix, both in and its projection on a reference axis (helicity), and it has a simple and transparent unitarity bound for distinct particles

|S (s)| ≤ 1 . (1.21)
In this section we review how to obtain from scratch the partial wave expansion for distinct particles of any mass and spin, reproducing the classic results of [START_REF] Jacob | On the General Theory of Collisions for Particles with Spin[END_REF]. The extension to identical particles is straightforward.

Let us consider irrep of the Poincaré group which are labelled by the 4-momentum p with p 0 > 0, by the total angular momentum J 2 = ( + 1) and its projection λ along the direction of motion, and possibly by some other internal collective label α = {q, m, λ i . . .} such as the conserved charges, the particle type and its mass, the helicities λ i of the constituents etc, that is needed to specify the irreps uniquely:

|p λ, α , p λ , α |p λ , α = (2π) 4 δ 4 (p -p )δ δ λλ δ αα . (1.22)
We have chosen the relativistic normalization and δ αα represents the product of Kronecker deltas δ qq δ mm δ λ i λ i . . . for the internal labels. The resolution of the identity

I = α λ=- d 4 p (2π) 4 θ(p 0 )θ(p 2 )|p λ; α p λ; α| , (1.23) 
allows to reconstruct any state from its projection on the irreps.

In order to determine the decomposition of a two-particle state in irreps, let's consider first the case of particles i and j moving along the z-axis in their c.o.m. frame, p i = (ω i , 0, 0, p z i > 0) and p j = (ω j , 0, 0, -p z i ): by invariance under translations and rotations around the z-axis, the state has definite momentum p i + p j = (ω i + ω j , 0) and definite helicity λ iλ j , therefore the projection over an irrep is actually fixed

p λ, α|p i S i λ i , α i ; p j S j λ j , α j c.o.m. θ=φ=0 = (2π) 4 δ 4 (p -pij )δ λλ ij δ α ᾱij C (p 2 i , α) (1.24)
up to some some weight factor C (p 2 i , α) that is going to be fixed by a normalization condition, and where we introduced the notation

pij = p i + p j , λ ij = λ i -λ j , ᾱij = α i ∪ α j = {q i , q j , m i , m j , λ i , λ j , . . .} . (1.25) 
We will shortly see that the Clebsch-Gordon coefficients C (p 2 i , α) do not depend on the quantum numbers α, so we drop already the explicit index to declutter a bit the notation. We also used that all the invariant scalar products are just functions of the c.o.m. tree-momentum squared

|p z i | = p 2 i = p 2 c. i = p 2 c
. j , which can be written in a covariant form as

p 2 c. i = p 2 c. j = 1 4s ij s ij -(m i + m j ) 2 (s ij -(m i -m j ) 2 ) s ij = (p i + p j ) 2 .
(1.26)

The overlap (1.24) corresponds, via (1.23), to the decomposition over infinite partial waves5 

|p i S i λ i , α i ; p j S j λ j , α j c.o.m. θ=φ=0 = ≥|λ ij | C (p 2 i ) |p ij λ ij , ᾱij (1.27) 
From this expression we can now obtain the irrep decomposition for a generic state by suitable boosts and rotations. For instance, to get from the θ = φ = 0 configuration to a generic one (but still in the c.o.m.), we can apply a rotation R(φ, θ, -φ), where we define R(α, β, γ) = e -iαJ 3 e -iβJ 2 e -iγJ 3 . Recalling that in the c.o.m. frame pij = Rp ij behaves just like any other internal index transparent to rotations, and reminding the definition of the Wigner-d matrix (oblivious of trivial internal indices, and chosen real)

λ|e -iθJ 2 |λ ≡ δ d λλ (θ) (1.28) we get R(φ, θ, -φ)|p ij λ ij , ᾱij c.o.m. θ=φ=0 = |λ|≤ e -i(λ-λ ij )φ d λλ ij (θ) |p ij λ, ᾱij (1.29) 
which in turn gives

R(φ, θ, -φ)|p i S i λ i , α i ; p j S j λ j , α j c.o.m. θ=φ=0 = λ C (p 2 i )e -i(λ-λ ij )φ d λλ ij (θ) |p ij λ, ᾱij . (1.30)
The summation domain ≥ |λ ij | , |λ| ≤ is left understood hereafter. Notice, however, that the left-hand side of (1.30) is the tensor product of the rotated one-particle states only up to an overall e -2iλ j φ -phase. Therefore, the decomposition would actually read

e 2iλ j φ |p i S i λ i , α i ; p j S j λ j , α j c.o.m. = λ C (p 2 i )e -i(λ-λ ij )φ d λλ ij (θ) |p ij λ, ᾱij . (1.31)
However, as it is customary in the literature since [START_REF] Jacob | On the General Theory of Collisions for Particles with Spin[END_REF], we actually absorb that e 2iλ j φ -factor in the definition of the two-particle scattering state.

The first of the d-matrix orthogonality conditions

1 -1 dcos θ d λ λ (θ)d λ λ (θ) = 2 2 + 1 δ , (1.32) 
(2 + 1) 2 d λ λ (θ)d λ λ (θ ) = δ(cos θ -cos θ ) (1.33)
allows to invert the relation between the 2-particle states and the irreps

|p ij λ, ᾱij = (2 + 1)/2 C (p 2 i ) 1 -1 dcos θ 2π 0 dφ 2π e -i(λ ij -λ)φ d λλ ij (θ) e i2λ j φ |p i S i λ i , α i ; p j S j λ j , α j c.o.m.
(1.34) where the left-hand side "knows" about the λ i via its internal parameter ᾱij .

Finally, we can determine the weight factor C (p 2 i ) by matching the normalization induced by the one-particle tensor product, that in spherical coordinates reads

p 3 S 3 λ 3 , α 3 ;p 4 S 4 λ 4 , α 4 |p 1 S 1 λ 1 , α 1 ; p 2 S 2 λ 2 , α 2 c.o.m. = (1.35) = (2π) 4 δ 4 (p 12 -p34 )16π 2 s |p 1 ||p 3 | δ(cos θ -cos θ )δ(φ -φ )δ λ 1 λ 3 δ λ 2 λ 4 δ ᾱ12 ᾱ34 ,
with the normalization implied by (1.22) for the irrep on the left-hand side of (1.34), yielding

C (p 2 i ) = 4π(2 + 1) √ s ij |p i | . (1.36)
This is determined only up to a phase that we reabsorb in the definition of the states. Moreover, it is actually independent on ᾱij , as predicted.

We are now ready to compute the scattering amplitude, whose projection on states of given angular momentum is

p34 λ , β = λ 3,4 |S -1|p 12 λ , α = λ 1,2 ≡ (2π) 4 δ 4 (p 34 -p12 )iδ δ λλ M λ 3 λ 4 λ 1 λ 2 (s) , (1.37) 
where the coefficients M λ 3 λ 4 λ 1 λ 2 (s) are referred to as partial waves. By projecting an incoming state (1.27) into a rotated one (1.29), we are able to rewrite the scattering amplitude on the basis of partial waves (and its inverse relation)

Distinct Particles :                    M λ 3 λ 4 λ 1 λ 2 (p i ) = N 2 e i(λ 12 -λ 34 )φ (2 + 1)d λ 12 λ 34 (θ)M λ 3 λ 4 λ 1 λ 2 (s) M λ 3 λ 4 λ 1 λ 2 (s) = N -1 1 -1 dcos θ d λ 12 λ 34 (θ)M λ 3 λ 4 λ 1 λ 2 (p i ) φ=0 S λ 3 λ 4 λ 1 λ 2 (s) = N -1 2π 0 dφ 2π 1 -1 dcos θ d λ 12 λ 34 (θ) e -i(λ 12 -λ 34 )φ S λ 3 λ 4 λ 1 λ 2 (p i ) (1.38)
where the normalization is N = 8π

s |p 1 ||p 3 | .
As in the following sections we are going to use numerous times the partial waves expansion for the scattering of identical scalars (λ i = 0) of mass m in the center of mass frame, let us state it here explicitly

Identical Particles : M(p i ) = 16π √ s √ s -4m 2 (2 + 1)P (cos θ)f (s) , (1.39) 
where P (cos θ) are Legendre polynomials, cos θ = 1 + 2t s-4m 2 and we replaced the kinematic variable p in the center of mass frame (1.26). The additional factor 2 with respect to (1.38) is again a combinatorial coefficient due to scattering of identical particles.

We conclude this discussion on partial waves by looking at the constraints from unitarity that apply on f (s). By imposing S † S = 1, we obtain |S | ≤ 1, which means that partial waves of the S-matrix can be written in full generality as

S (s) λ 3 λ 4 λ 1 λ 2 = e 2iδ λ 3 λ 4 λ 1 λ 2 . (1.40)
Going back to the case of identical scalars, this immediately implies Imδ > 0 and, with the fact that S (s) = 1 + if (s), leads to an upper and a lower bound on Imf (s)

6 |f (s)| 2 ≤ 2Imf (s) ≤ 4 .
(1.41)

Analyticity

In section 1.2, we have identified the analytic structure of the 2 → 2 scattering of identical scalars in its physical region (s > 4m 2 , t < 0, s + t + u = 4m 2 ), where non-analyticities are given by simple poles corresponding to one-particle states included in the spectrum of the theory, and branch cuts related to multiparticle production which becomes kinematically available at different thresholds. However, we could imagine to analytically continue our amplitude to complex values of one of the Mandelstam variables. Knowledge of the analytic structure in the complex plane, and its falloff at infinity (which will be discussed in section 1.5), will allow us to draw integration contours in the complex plane in section 3.1. As many of the results discussed in this review, the problem of analyticity of the S-matrix was also mostly tackled in the 50s, with a multitude of results often heavily relying on theorems of two-variables complex analysis. The main element in this section is causality, to the point that often "micro-causality" and "analyticity" are used almost interchangeably. As we defined causality in position space, we rely on the LSZ procedure to establish a first region of analyticity in momentum space

δ 4 p i M(p i ) = i d 4 x i e ip i •x i p 2 i -m 2 i 0|T φ(x 1 )...φ(x n )|0 = i d 4 x i e ip i •x i p 2 i -m 2 i 0|Rφ(x 1 )...φ(x n )|0 , (1.42) 
where we can replace the time-ordered correlator with the retarded one [START_REF] Lehmann | On the formulation of quantized field theories[END_REF], which often is characterized by nicer analytic properties. This section has no aim to completely reproduce these results, but as an illustrative example we limit ourself to correlation functions with two insertions of scalar operators (2-pt functions in momentum space). This allows one to completely avoid all subtleties of having two kinematic variables, while still retaining the main ideas. The ingredients we need are: micro-causality as defined in section 1, completeness of states and a mass gap. The mass gap condition basically states that no massless particles are present in the spectrum of the theory, avoiding issues related to IR divergences etc. Despite numerous subtleties, analyticity properties are expected to hold also for theories including massless particles (as suggested for instance from explicit exploration of perturbative amplitudes), but have not been derived rigorously yet.

The retarded and advanced correlators have support respectively on regions R and A of Fig. 1.1 and are given by

0|Rφ(x 1 )φ(x 2 )|0 = θ(x 0 1 -x 0 2 ) 0|[φ(x 1 ), φ(x 2 )]|0 , 0|Aφ(x 1 )φ(x 2 )|0 = θ(x 0 2 -x 0 1 ) 0|[φ(x 2 ), φ(x 1 )]|0 , (1.43) 
where micro-causality ensures that the commutator vanishes outside the light-cone of the particle in x 2 . A useful observation is that the relation

0|Rφ(x 1 )φ(x 2 )|0 -0|Aφ(x 1 )φ(x 2 )|0 = 0|[φ(x 1 ), φ(x 2 )]|0 , (1.44) 
CHAPTER 1. THE FUNDAMENTAL PRINCIPLES holds everywhere. The retarded correlation in momentum space is given by

G R (k) = d 4 xe ik•x 0|Rφ(x)φ(0)|0 , (1.45) 
where the integrand has support only on V + = {x| x 2 ≥ 0, x 0 > 0} and we used translation invariance. By separating

k µ = k µ Re + ik µ Im , we observe that the integral is convergent if k µ Re ∈ R 4 and k µ Im ∈ V + = {k| k 2 ≥ 0, k 0 > 0}.
The same exercise for the advanced correlator leads to convergence for k µ Re ∈ R 4 and k µ Im ∈ V -. The difference between the retarded and the advanced propagators is then rewritten by inserting a complete set of asymptotic states

G R (k) -G A (k) = d 4 xe ik•x 0|[φ(x 1 ), φ(x 2 )]|0 = dα d 4 xe ik•x [ 0|φ(x 1 )|α α|φ(x 2 )|0 -0|φ(x 2 )|α α|φ(x 1 )|0 ] = 0 for k 2 < µ 2 (1.46)
where the last equality holds when µ is the mass of the lightest state, which is massive due to our gapped assumption. Hence G R (k) = G A (k) as long as k 2 < µ 2 , and therefore convergence is ensured for any complex momentum k µ below this threshold. Analyticity is extended to the whole plane, by means of the edge-of-the-wedge theorem, which states that two analytic functions on two separate domains that coincide on an edge, are the analytic continuation of each other 7 .

When considering four insertions of fields, there are obviously many more possible intersections of the different light-cones, and the problem becomes much more laborious [START_REF] Bros | Some rigorous analyticity properties of the four-point function in momentum space[END_REF], but a similar procedure allows to identify the so called "primitive domain", which can be extended again by some analytic continuation technics. This domain is then intersected with the on-shell conditions, leading to analyticity in the whole plane of s, and in the "Lehman ellipse" [START_REF] Lehmann | Analytic properties of scattering amplitudes as functions of momentum transfer[END_REF], a region in t, which shrinks with the size of s, reducing to the segment -1 < cos θ < 1 as 1/s 2 . Within this ellipse the partial waves expansion discussed in section 1.3 converges uniformly and absolutely, a fact that we will use repeatedly in the following. This limitation of the shrinking ellipse was circumvented by Martin [START_REF] Martin | Extension of the axiomatic analyticity domain of scattering amplitudes by unitarity. 1[END_REF], who added some extra conditions from unitarity, proving that the amplitude is analytic for all s and |t| < 4m 2 (again for equal masses), hence achieving a region of analyticity at t > 0 even as s → ∞. Details of these procedures are reviewed in [START_REF] Sommer | Present State of Rigorous Analytic Properties of Scattering Amplitudes[END_REF] and references therein.

Polynomial boundedness

Polynomial boundedness is a property of amplitudes, which schematically states that there exists

N such that M(p i ) < |s ij | N , as |s ij | → ∞ (1.47)
where s ij is some Lorentz invariant combination of external momenta. This behavior will be contrasted with what we will refer to as sub-exponential growth, i.e.

M(p

i ) < e |s ij | α , for α < 1 and |s ij | → ∞ . (1.48)
In axiomatic Quantum Field Theory, the fact that amplitudes are given by tempered distributions is taken as an axiom, implying that polynomial boundedness is automatically built in. As this property is taken as an input in most cases, it is non trivial to recover it from the fundamental principles that we have chosen. The author is not aware of a full proof of polynomial boundedness from fundamental principles, so in this first part of this section we will sketch some arguments, leaving a complete and sharp derivation for future work.

Similarly to the discussion on analyticity, we restrict to two point functions, where we impose that the correlation function between two distinct time-like separated points is well-defined, without the need of introducing any extra smearing, i.e. the locality condition we chose8 . We will be able to restrict the asymptotic behavior to sub exponential growth in the physical regions, by requiring this form of locality in position space.

We start by considering the Källen-Lehman9 representation of a 2pt neutral scalar correlator

0|φ(x)φ(y)|0 = ∞ 0 dµρ(µ)W µ (x -y) , (1.49) 
where W µ (x-y) is the 2pt correlation function of a freely propagating scalar field, and ρ(µ) is the spectral density. One can study the behavior of the integrand as µ → ∞. When the spacetime points are space-like separated, we can approximate the asymptotic behavior of W µ (xy) as

W µ (x -y) ∼ 2 √ µ 1/2 (4π|x -y|) 3/2 e -√ µ|x-y| , (x -y) 2 > 0, √ µ|x -y| 1 , (1.50) 
therefore it is clear that the spectral density's growth has to be slower than e √ µ to ensure convergence of the integral, such that the computed quantity at two space-like separated points is meaningful. Theories that satisfy this property for all correlation functions, are called strictly localizable in what is referred to as Jaffe's classification [START_REF] Jaffe | HIGH-ENERGY BEHAVIOR OF LOCAL QUANTUM FIELDS[END_REF][START_REF] Jaffe | [END_REF][START_REF] Meiman | The causality principle and the asymptotic behavior of the scattering amplitude[END_REF].

If the behavior of correlation functions in momentum space is shown to be sub-exponential in the whole upper plane, we can improve our estimate and prove a polynomial behavior by further imposing unitarity. Let us expand the scattering amplitude of massive identical scalar particles in partial waves (1.39) and select the imaginary part

ImM(s, t) = 8π s 1/2 |p| ∞ =0 (2 + 1)Imf (s)P (cos θ) < e λ|s| α , α < 1/2, |s| → ∞ . (1.51)
We remind that unitarity constrains Imf (s) to be positive and bounded from above (1.41). We select t = t 0 > 0 10 , for which Legendre polynomials are positive functions, thus the inequality (1.51) should hold for every . By exploiting the following property of Legendre polynomials at t > 0

P (x) ≥ ϕ 0 π x + x 2 -1 cos ϕ 0 ∼ ϕ 0 π e 2 cos ϕ 0 √ t/s , 0 < ϕ 0 < π , x ≥ 1 , (1.52)
where the second equality is an approximation for large and s, we recover an inequality on the imaginary part of partial waves

Imf (s) ≤ K 1 e λ|s| α -K 2 s -1/2 , (1.53) 
where the particular values of K 1 and K 2 are not important here. Hence for > s α+1/2 λ K 2 , partial waves are exponentially suppressed and can be neglected in the sum of (1.51). As only a finite number of partial waves contributes to the amplitude, and the imaginary part of f (s) is bounded by unitarity (1.41), the imaginary part of M(s, t) must grow polynomially. Applying similar arguments to the real part by noticing that the norm of partial waves is also bounded from above (1.41), allows us to conclude that the whole amplitude is bounded by a polynomial behavior in the physical region. Furthermore, the above argument goes through even assuming only analyticity in the Lehmann ellipse as opposed to analyticity à la Martin [START_REF] Martin | Analyticity properties and bounds of the scattering amplitudes[END_REF].

This argument covers the behavior for real center of mass energy s, but it can be extended to the whole upper plane by means of the Phragmén-Lindelöf principle, which states that an analytic function defined in the upper plane is bounded by its value on the boundary, which is given by the real axis 11 . Thus, we conclude that polynomial boundedness applies also in the whole upper plane. In summary, unitarity and analyticity strongly constrains any wild behavior of the amplitude, and acts as substitute of polynomial boundedness, when the latter is not assumed in the first place.

Whether you like to consider polynomial boundedness a fundamental property of QFTs or you have been convinced (or not) by the above argument, we will take it as granted from now on and use it as an ingredient to prove one of the most useful and predictive results of the S-matrix program: the Froissart-Martin bound [START_REF] Froissart | Asymptotic behavior and subtractions in the Mandelstam representation[END_REF][START_REF] Jin | Number of Subtractions in Fixed-Transfer Dispersion Relations[END_REF].

Chapter 2

On-shell methods

Traditionally, amplitudes in QFT have been computed using Feynman diagrams. This incredible tool, which relies on the Lagrangian formalism, has revolutionized our understanding of interactions between particles. Despite its undoubted predictive power, calculations quickly become extremely challenging. Even at tree level, the number of diagrams needed in order to compute an amplitude grows enormously as soon as the number of external legs increases. On-shell methods provide an alternative to the traditional method, by exploiting some consequences of fundamental principles that we have explored in the previous sections. In particular, covariance of the S-matrix and its factorization properties are a powerful tool to constrain scattering amplitudes. A useful way to exploit covariance is to build objects that have transparent transformations under little group. Those objects then become "Lego" pieces that can be combined in order to construct scattering amplitudes which satisfy the correct properties fixed by Lorentz covariance. These building blocks are constructed in the spinor-helicity formalism, which has been formulated and used already since the 80ies in the massless context [START_REF] Causmaecker | Multiple Bremsstrahlung in Gauge Theories at High-Energies. 1. General Formalism for Quantum Electrodynamics[END_REF][START_REF] Kleiss | Spinor Techniques for Calculating p anti-p -> W+-/ Z0 + Jets[END_REF][START_REF] Xu | Helicity Amplitudes for Multiple Bremsstrahlung in Massless Nonabelian Gauge Theories[END_REF][START_REF] Gunion | Improved Analytic Techniques for Tree Graph Calculations and the G g q anti-q Lepton anti-Lepton Subprocess[END_REF] (for a beautifully written and pedagogical review see [START_REF] Cheung | TASI Lectures on Scattering Amplitudes[END_REF]). A convenient massive version was formulated more recently in 2017 in [START_REF] Arkani-Hamed | Scattering Amplitudes for All Masses and Spins[END_REF]. We will construct amplitudes for the illuminating example of both massless and massive Yang-Mills theory, where all the features of the subjacent non-abelian symmetry emerge from consistency conditions, and discuss a few examples of gravitational amplitudes.

The Spinor Helicity Formalism

As mentioned, we want to construct objects with transparent transformations under little group transformation. Let us start with the massless case, where the little group is given by a U (1) rotation. The momentum can be conveniently expressed as a 2 × 2 matrix by the contraction

p α α = p µ σ µ α α = p 0 + p 3 p 1 -ip 2 p 1 + ip 2 p 0 -p 3 , (2.1) 
where σ µ α α = (1, σ) is a 4-vector of Pauli matrices. This matrix is characterized by a vanishing determinant det(p) = p µ p µ = 0 due to the zero mass considered, hence it has maximum rank 1, and in full generality can be rewritten as the product of two two-components objects

p α α = λ α λ α .
(2.

2)

The transformation which keeps the momentum invariant, which is the definition of little group, is indeed a U (1) phase

λ α → e iθ λ α , λ α → e -iθ λ α , (2.3) 
with θ real. The λ and λ are usually referred as "holomorphic" and "anti-holomorphic" spinors, and for real momenta, they are related by

λ α = ± (λ * ) α , (2.4) 
which is a consequence of the fact that the momentum p α α becomes a Hermitian matrix. The opposite signs appearing in the relation are related to incoming/outgoing states. Amplitudes are functions of Mandelstam variables, which can be recovered by contracting spinors by means of the fully anti-symmetric tensor αβ . This is a good moment to introduce the angle and square bracket notation as

[ij] = α β λi α λj β , ij = αβ λ iα λ jβ , 2p i • p j = ij [ji] , (2.5) 
where in the last line we expressed the contraction of momenta in terms of angle and square brackets. Notice that all contractions are antisymmetric, i.e. ij =ji and

[ij] = -[ji].
Before turning to the massive version of this formalism, let us mention the fact that, as those are two-components objects, any combination of three distinct spinors must be linearly dependent. This fact is reflected in a useful identity called the Schouten identity

ij λ k + ki λ j + jk λ i = 0 . (2.6)
In order to relate these new variables with some more familiar objects, let us express polarization 4-vectors in terms of spinors

+ (p) α α = η α λ α √ 2 ηλ , -(p i ) α α = λ α η α √ 2[ηλ] . (2.7) 
The orthogonality property • p = 0 is ensured by the antisymmetry of spinors λλ = 0, and the reference spinor η introduced here plays the role of gauge parameter, as it parametrizes the freedom of defining polarization vectors up to a gauge transformation → + αp. The use of massless spinors often exposes some beautiful underlying simplicity of scattering amplitudes, that are often hidden when summing Feynman diagrams. In general, massless amplitudes tend to be more constrained and easier to construct than massive ones1 . Despite the fact that results will necessarily become a bit messier, we follow the same approach as in the massless case and define the contraction of the momentum with the Pauli matrices, as p α β = p µ σ µ α β . As opposed to the massless case, the matrix p α β has rank 2, and therefore can be decomposed in a sum of rank 1 matrices [START_REF] Arkani-Hamed | Scattering Amplitudes for All Masses and Spins[END_REF] 

p α β = χ J α χ βJ p 2 = m 2 → det χ • det χ = m 2 (2.8)
where J = 1, 2 is the SU (2) index, upon which the little group generators will act and we impose det χ = m and det χ = m2 , where we remind that χ and χ are 2 × 2 matrices. The spinors χ I α and χI β live respectively in the ( 1 2 , 0) and (0, 1 2 ) representations of the SU (2) × SU (2) double cover of the Lorentz group, which acts on the indices α and β. In addition, spinors χ I α and χI β transform under the little group as

χ I α → W I J χ J α χI β → (W -1 ) I J χJ β (2.9)
where W is a representation of SU (2) little group acting on the spinor vector space. The mass condition (2.8) imposes the following spinor properties

χ J α χ β J = -δ β α m, χ α,J χ β,J = δ β α m, χJ α χ β J = -δ β αm, χ α,J χ β,J = δ β αm.
(2.10) Furthermore, in complete analogy with the massless case, spinors satisfy the Schouten identity

(χ αJ χ I α )χ K β + (χ αK χ J α )χ I β + (χ αI χ K α )χ J β = 0. (2.11)
To avoid excessive cluttering of the notation, the SU (2) indices are often left implicit, and equivalently to the massless case, we adopt an angle/square bracket notation

[ij] = α β λJ i α λK j β , ij = αβ λ J iα λ K jβ . (2.12) 
The bold notation is used to differentiate the massive from the massless contractions.

Massive polarization tensors capturing particles of spin-S can also be expressed in terms of massive spinors as

(I 1 I 2 ...I 2S ) µ 1 µ 2 ...µ S = 1 ( √ 2m) S (χ I 1 α σ µ 1 α β χI 2 β )(χ I 3 α σ µ 2 α β χI 4 β )...(χ I 2S-1 α σ µ S α β χI 2S β ). (2.13)
where the indices I 1 , ..., I 2S are fully symmetrized. Notice that the number of SU (2) indices needed to describe a spin-1 polarization vector is two, as the symmetric tensor {I, J}, (I, J = 1, 2) contains three different states, i.e. three different polarizations. This is naturally extended to spin-S states which are described by tensors with 2S SU (2) indices, i.e. 2S + 1 distinct states as we learnt in section 1.1.

A Few Massless Applications

In standard QFT courses, the first amplitudes computed by students often involve scalar particles, as spinning states come with an additional layer of complications: polarization tensors, gauge invariance, etc... It turns out that building amplitudes on-shell is actually more constraining and in a sense "easier" when including spinning states, because of Lorentz covariance (1.11). There are countless examples that could be discussed in this section, but let us present some of the author's favorite: 4pt amplitudes in Yang-Mills and gravity.

The strategy is the following: we know from section 1.2 that 2 → 2 scattering factorizes in product of 3pt amplitudes on poles, thus computing the latter allows us to fix the amplitude in a few kinematic points. If this will be enough or not will depend on the theory. In particular, theories whose higher point amplitudes can completely be computed from lower points are called on-shell constructible [START_REF] Britto | New recursion relations for tree amplitudes of gluons[END_REF][START_REF] Britto | Direct proof of tree-level recursion relation in Yang-Mills theory[END_REF]. For those special classes of theories, 3pt functions contain all the physical information and behave as building blocks to construct all other amplitudes. It turns out that pure Yang-Mills and Einstein gravity fall into this category, so it will not be necessary to worry about further analytic terms (contact terms) which in principle are also allowed by unitarity.

From Lorentz covariance, we know that applying a little group transformation (2.3) on the j-th leg of the amplitude, the latter should transform as

M(1 h 1 ...j h j ...n hn ) → e -2iθh j M(1 h 1 ...j h j ...n hn ) , (2.14) 
where h j is the helicity of the j-th state. Furthermore, the mass dimension of an n-pt amplitude in 4 space-time dimensions is (n -4). With these inputs we can write down the interactions of three spin-1 particles

M(1 - a 2 - b 3 + c ) = f abc 12 3 13 32 , M(1 + a 2 + b 3 - c ) = f abc [12] 3 [13][32] , (2.15) 
which are fixed up to an overall coefficient, having the interpretation of the coupling constant, that could be matched to a particular choice of normalization in a Lagrangian when needed.

For simplicity we set it to 1. These expressions require some further explanation. First of all, they satisfy the correct little group transformations, consistent with the helicities of the external states. Why we did not include three point functions of states with identical helicities? Those combinations would be of the form 12 23 31 , which has a higher mass dimension, and would be consistent only by introducing an extra mass scale in the denominator (corresponding to the higher order operator F3 ), which we will not consider here 3 . Notice that both expressions contain only angle or square brackets, this is a general feature of 3pt functions, resulting from momentum conservation 4 . The last important observation is the fact that we introduced an antisymmetric structure f abc depending on a color index. This is necessary in order to satisfy the right symmetry under exchange of external states, which should be even as we are scattering bosons (the kinematic structure is antisymmetric because of the antisymmetry of spinorial contractions). This implies that the 3pt function of photon self-interaction must exactly vanish, as they do not have any additional degree of freedom that can reinstate the correct symmetry.

We are now ready to move up to 4pt scattering. Let us take the example of M(1 - a 2 - b 3 + c 4 + d ) at tree-level. Lorentz covariance once again fixes the overall behavior to 12 2 [34] 2 , while the fact that 4pt amplitudes have vanishing mass dimension forces us to introduce a denominator with mass dimension 4. As we allow only for simple poles in each channel, we obtain the following Ansatz (2.17)

5 M(1 - a 2 - b 3 + c 4 + d ) = 12
Notice that in the s-channel residue there is obviously only one contribution in the sum over helicities as the (+ + +) and (---) vanish exactly. On the other hand, it seems that in the other residues both helicities of the internal state P contribute. This is a bit too quick though, because when taking the limit

s ij = ij [ij] → 0, either ij or [ij]
must be zero, making one of the terms in the sum vanish as well. We can now easily construct an amplitude with the correct t and u residues as which is nothing but the Jacobi identity. The fact that the tensor f abc is the structure constant of a Lie group emerges without ever mentioning non-abelian symmetries, just as a result of imposing fundamental principle, which is incredibly suggestive and fascinating.

M(1 - a 2 - b 3 + c 4 + d ) = -12 2 [34]
Even though this example is surely beautiful, computing 4pt functions in pure Yang-Mills is definitely a feasible task even in the traditional Feynman diagrams approach. This become not true anymore when we turn our attention towards gravity. Indeed, linearizing the Eistein-Hilbert action, extracting all Feynman rules and computing gravitational scattering amplitudes is an enormous chore involving hundreds of terms. Gravitational amplitudes are probably the most impressive example, where all the power and simplicity of the on-shell approach emerges. Following the same procedure as the spin-1 case, we can immediately write down the relevant 3pt functions for the self-interaction of gravitons

M(1 --2 --3 ++ ) = - 1 m Pl 12 3 13 32 2 , M(1 ++ 2 ++ 3 --) = - 1 m Pl [12] 3 [13][32] 2 . (2.20)
In this case, we are forced to add a mass scale m Pl which is the Planck mass to achieve the correct mass dimension. Notice that for spin-2 scattering the correct symmetry under exchange of external states is trivially satisfied, so there is no need of introducing any antisymmetric structure. In complete analogy to the Yang-Mills case, we can compute residues in the three channels, and in a few lines of calculation we recover

M(1 --2 --3 ++ 4 ++ ) = 1 m 2 Pl 12 4 [34] 4 stu . (2.21)
It is hard to overstate the amount of work we avoided by choosing this method over a traditional Lagrangian approach.

Massive Yang-Mills

In this section, we will explore the massive counterpart of pure Yang-Mills, showing that often it is not necessary to introduce spinors in order to build amplitudes on-shell. It is well known, that scattering self-interacting spin-1 states leads to amplitudes that grow with energy, thus reaching perturbative unitarity violation at a given threshold. This is the standard behavior of effective field theories, that are characterized by a finite range of applicability. In this example we will impose an additional criteria to fix our amplitudes: require the largest possible validity range, or the highest possible strong coupling scale.

We start by constructing the 3-point amplitude which is a function of the external polarizations. Each polarization of a spin-1 state comes with one Lorentz index, therefore it is not possible to construct a 0-derivative 3-point amplitude, as there is an odd total number of indices. The first possible combination comes with one momentum insertion, i.e. one derivative, which is composed by the following structure

M(1 a ,2 b , 3 c ) = c 1 f abc [( 1 • 2 )( 3 • p 2 ) + ( 3 • 1 )( 2 • p 1 ) + ( 2 • 3 )( 1 • p 3 )] = c 1 f abc 1 2 ( 1 • 2 )( 3 • (p 2 -p 1 )) + ( 3 • 1 )( 2 • p 1 ) -( 2 • 3 )( 1 • p 2 ) , (2.22) 
where in the second line we rewrote the expression by means of momentum conservation and orthogonality of the polarization vectors. The reason for this choice will become clearer in the following, but let us just mention that even though this way of rewriting the 3pt amplitude is completely equivalent to the previous, when connected to form the 4-point amplitude will lead to different contact terms. Notice that, equivalently to the massless case, the extra color degree of freedom, and the relative coefficient between the tensor structures are fixed by Bose symmetry. The 4pt amplitude is constructed by summing the contributions from the factorization channels as well as possible analytic contact terms. Indeed, in section 1.2 we observed that unitarity imposes strong constraints on the non-analyiticities of the scattering amplitude (poles and branch-cuts), but it has no saying in its analytic parts, which are always allowed. Those contributions were not needed in the massless discussion because the theories we encountered were on-shell constructible, however in the massive case they become important. Thus, the 4pt amplitude must take the following form

M(1 a , 2 b , 3 c , 4 d ) = - h,e M(1 a , 2 b , P h se )M(3 c , 4 d , P -h se ) s -m 2 + M(1 a , 3 c , P h te )M(2 b , 4 d , P -h te ) t -m 2 + M(1 a , 4 d , P h ue )M(2 b , 3 c , P -h ue ) u -m 2 + C(1 a , 2 b , 3 c , 4 d ) .
(2.23)

The terms coming from gluing 3pt functions are easily computed by imposing the identity

h h µ (p) h ν (p) * = -(η µν - pµpν m 2
) on the polarizations of the internal state P i6 . By direct inspection in the center of mass frame, we observe that the amplitude M(1 0 a , 2 0 b , 3 0 c , 4 0 d ) has the highest growth in energy O(s 2 ), which is expected, as longitudinal polarizations contain momentum insertions themselves. The only contact terms with the right symmetry properties and same energy growth as the contributions derived from the gluing of the 3pt functions are

C(1 a , 2 b , 3 c , 4 d ) = c 2 ( 1 • 2 )( 3 • 4 ) + c 3 ( 1 • 3 )( 2 • 4 ) + c 4 ( 1 • 4 )( 3 • 2 ) .
(2.24)

The O(s 2 ) contribution is cancelled by fixing the coefficients of the contact terms as

c 2 = c 1 e f ade f bce + f ace f bde , c 3 = c 1 e f abe f cde -f ade f bce , c 4 = -c 1 e f abe f cde + f ace f bde . (2.25)
The strategy now is to move the next highest behavior which is O(s 3/2 ) coming from M(1 1 a , 2 0 b , 3 0 c , 4 0 d ), which vanishes if and only if the Jacobi identity (2.19) is satisfied.

We showed that both the Jacobi identity as well as the relation between cubic and quartic self-interaction of massive Yang-Mills can be recovered by the simple requirement of a softer high energy behavior combined with Lorentz covariance and unitarity, even in the massive case! In Chapter 4, we will apply the same approach to the scattering of massive spin-2 particles, avoiding completely computations of Feynman diagrams and simplifying our lives enormously. In particular, requiring the highest possible strong coupling will allow us to fully reconstruct all relevant amplitudes for dRGT massive gravity.

Chapter 3 Positivity

The Wilsonian perspective of Nature has always been mostly shared by physicists throughout history. It relies on the idea of "zooming out" of a physical system, whose short distance properties become irrelevant when observed on larger scales. From this point of view, whatever properties make an apple an apple and a black hole a black hole become completely unimportant when the object in question is observed from far away: both resemble and behave like a point particle. This effect is possible only when a very large scale separation is present, in particular the characteristic scale of the object (the size of the apple, or the size of the horizon of the black hole) U V must be much smaller the distance from the observer L IR . As the observer approaches the observed state, they will start measuring some deviations from the point-like description naturally weighted by the ratio U V /L IR multiplied by some coefficients. The latter encode all the details of the short distance physics, and are referred to as Wilson coefficients.

The Wilsonian perspective is exploited in all its glory in the framework of Effective Field Theories (EFTs), where the high energy/short distance physics is approached in a way which is as agnostic as possible. Exploring the phase space of those coefficients is therefore hugely important in order to gain insight in the UV theory. This can be surely achieved experimentally, but in this section we will review a different approach that relies heavily on the properties explored in chapter 1: positivity constraints.

The basic idea is to relate the low energy description to the high energy one by building Cauchy contours in the complex plane of kinematic Lorentz invariants, whose analytic structure is constrained by fundamental principles in the way discussed in previous section. We are obviously assuming that our physical assumptions of unitarity, causality and locality are valid at all scales. The fascinating interplay between UV and IR physics results in non trivial constraints on the EFT coefficients entering in the scattering amplitudes.

We will proceed in the following way: first we draw the aformentioned contours, which give rise to the celebrated n-substracted dispersion relations. We will then derive the Froissart bound, which will fix the number of subtractions needed for standard gapped QFTs, and review some recent (and not so recent) applications of positivity bounds on EFTs, including the moments problem. We conclude this section by discussing a few features of the gravitational scenario. s′ ]
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The complex s plane and the Cauchy contour considered in (3.1). Unitarity dictates the presence of the branch cuts (orange) related to multi-particle production both in the s and u-channel. The light blue pole indicates possible further poles introduced by the kernel K n or dynamical poles fixed by factorization.

Dispersion relations

In this section we focus on 2 → 2 scattering of identical scalars of rest mass m in gapped theories 1 . We fix the variable t and study the amplitude as a function of the center of mass energy s. In fact, we have already determined a lot of the properties that characterized the complex plane in sections 1.2, 1.4 and 1.5: the amplitude is an analytic function, whose only discontinuities lie on the real axis and are given by simple poles for every stable one-particle state, and branch cuts related to multi-particle production. Those branch cuts for the external states considered in this section are represented in orange on Fig. 3.1, the right hand side starting at 2-states production in the s-channel, while the left hand being the equivalent in the u-channel. Furthermore, asymptotically the amplitude grows polynomially, the upper plane is analytic and we used the presence of the gap between branch cuts to analytically continue it to the lower plane. Notice that crossing symmetry of the scalar amplitude takes the form M(s

+ i , t) = M(u -i , t) = M(-s -t + 4m 2 , t).
We convolute the amplitude with a generic kernel K n (s , t, s) and compute the contour shown on Fig. 3.1 (which does not encircle any non-analyticity of M or K n ) and we consider the limit where the large arc is pushed to infinity. We choose the kernel in such a way that it can introduce some poles included in the small arc a n (s, t) (the blue dot), but no further non-analyticity in the complex upper plane. Then, by applying Cauchy theorem, the whole integration contour C is trivially equal to zero

1 iπ C M(s , t)K n (s , t, s)ds = 0 . (3.1)
The surprising aspect of this mathematically obvious result is that it relates the low energy physics which contributes to the small arc a n (s, t), which is known and can be parametrized by an EFT, to effects entering at arbitrary high energy and contributing to the remaining part of the integrated contour.

We impose the following conditions on the function K

• lim s →∞ K n (s , t, s) ∼ 1 (s ) n+3 • K n (-s -t + 4m 2 , t, s) = -K n (s , t, s)
The first condition is necessary in order to ensure convergence of the arc at infinity, in particular we choose n such that the arc vanishes and we are left only with contributions from the small arc and integrals over the branch cuts. The reason why we impose the second condition, which is pretty much K n being odd under crossing symmetry, is for the moment still unclear, but it will bring the integration to a nice form where we will be able to use physical results from the previous sections2 . In this work we will only consider K n being a polynomial, but in principle it could be any other function satisfying the above conditions. We further divide the remaining contour in a small arc a n (s, t) and the two contribution just above the left and right branch cuts. Let us first focus on the latter

- 1 iπ ∞ s M(s + i , t)K n (s + i , t, s)ds + -s-t+4m 2 -∞ M(s + i , t)K n (s + i , t, s)ds = - 1 iπ ∞ s M(s + i , t)K n (s , t, s) + M(s -i , t)K n (-s -t + 4m 2 + i , t, s) ds = - 1 iπ ∞ s Disc s M(s , t)K n (s , t, s)ds (3.2)
where we used crossing properties of M and K n and defined Disc s M(s, t) = M(s + i , t) -M(si , t). The chosen properties of the kernel, allow us to take advantage of the power of unitarity. Indeed, by exploiting real analyticity (analogously to section 1.2), we can relate the branch cut discontinuity to the imaginary part of the amplitude

Disc s M(s, t) = M(s, t) -M(s * , t) = M(s, t) -M(s, t) * = 2i ImM(s, t) = i 34|M † M|12 . (3.
3) Notice that in the limit t → 0, the last expression becomes related to the cross section σ of the process, as predicted by the optical theorem. By inserting everything in the full integration we finally obtain

a n (s, t) = 1 π ∞ s 34|M † M|12 K n (s , t, s)ds , a n (s) = 2 π ∞ s √ s s -4m 2 σ(s ) K n (s , 0, s)ds , (3.4a) 
(3.4b)
where in the second line we defined a n (s) ≡ a n (s, 0) and used the optical theorem ImM(s, 0) = √ s √ s -4m 2 σ(s). If on the integration domain the kernel is positive, then the whole integrand of the dispersive form of a n (s) is clearly positive and this sets some strict constraints on the coefficients of a n . This is all neat, but if we do not know precisely what is the value of n that makes this integral convergent, we will not be able to extract any meaningful physical information from (3.4). Luckily, also this time, some important results from the fifties will come to our rescue. This missing piece (at least in the standard gapped case) is given by the Froissart-Martin bound.

The Froissart-Martin bound

In section 3.1, we have constructed dispersion relations, whose dispersive UV contribution is given by an averaged cross-section. In this section, we will bound the averaged cross-section

σ(s) = 1 (s -4m 2 ) s 4m 2 ds (s -4m 2 )σ(s ) (3.5)
in the limit of large s proving the famous Froissart-Martin bound [START_REF] Froissart | Asymptotic behavior and subtractions in the Mandelstam representation[END_REF][START_REF] Jin | Number of Subtractions in Fixed-Transfer Dispersion Relations[END_REF]. We rewrite the crosssection in terms of the imaginary part, expand the right hand side of the equation in partial waves and separate the sum into low and high spins

σ(s) = 4π (s -4m 2 ) L =0 (2 + 1) s 4m 2 ds √ s |p| s -4m 2 s Imf (s ) + ∞ =L+2 (2 + 1) s 4m 2 ds √ s |p| s -4m 2 s Imf (s ) = 8π (s -4m 2 ) L =0 (2 + 1) s 4m 2 ds Imf (s ) + ∞ =L+2 (2 + 1) s 4m 2 ds Imf (s ) , (3.6) 
where the sum runs over even values of as we are scattering identical particles for simplicity. The idea is to bound both terms with arguments relying on the results of previous sections and then choose L in order to optimize the bound. The sum over low spins is simply bounded by unitarity (1.41), and can be approximated as

8π (s -4m 2 ) L =0 (2 + 1) s 4m 2 ds Imf (s ) ≤ 16π (s -4m 2 ) L =0 (2 + 1) s 4m 2 ds = 8π(L + 2)(L + 1) . (3.7)
In order to bound the high spins' contribution, we exploit polynomial boundedness, discussed in section 1.5. Thus, it exists N such that

M(s, t) s N = 0 , |s| → ∞ (3.8)
where t is taken in the region of proven analyticity. By repeating the same argument as section 1.5 and replacing sub-exponential behavior with polynomial one ∼ s N , we immediately obtain that all partial waves with N s/m log s/s 0 are exponentially suppressed. We simply optimize the bound on σ(s) by choosing L * ∼ N s/m log s/s 0 and finally obtain the following upper bound on the averaged cross-section

σ(s) N 2 s m 2 log 2 s/s 0 . (3.9)
This is the Froissart-Martin bound, which can be improved by fixing also the numerical overall coefficients as in [START_REF] Yndurain | Absolute bound on cross-sections at all energies and without unknown constants[END_REF].

Similar arguments [START_REF] Jin | Number of Subtractions in Fixed-Transfer Dispersion Relations[END_REF] can be applied directly to the amplitude, where we can conclude that M(s, t) s 2 , hence showing that picking n = 0 for the kernel appearing in (3.4) (which corresponds to K 0 ∼ 1/s 3 as s → ∞) the right hand side of dispersion relations will converge. Furthermore, coefficients scaling as s 2 in the IR arc will be trivially computed through Cauchy integration as they become simple poles. Once again, notice that this proof is valid only in the presence of a mass gap, which allows us to safely access t > 0 and show that the high spins contributions are exponentially suppressed. In section 3.5, we will comment on recent results bounding the Regge limit (s → ∞ and t fixed) in gravitational scattering, hence making dispersion relations a viable tool also to bound gravitational EFTs.

The ABC of positivity

Armed with our master formulas (3.4), and the knowledge of the minimum number of subtractions needed for convergence from the Froissart-Martin bound, we are finally ready to explore some consequences on effective field theories. Despite the fact that the understanding of dispersion relations was developed over the last 50 years, the idea to exploit them to constrain EFTs was formulated in modern language in a beautiful paper [START_REF] Adams | Causality, Analyticity and an IR Obstruction to UV Completion[END_REF] in 2006, and has seen a growing interest in the last decade, both in terms of applications to particular theories, as well as improving and optimizing the way those constraints are computed. Let us start with a simple example of an EFT for a massive Goldstone boson including a higher order quartic coupling of the form (∂φ) 4 . The resulting 4pt amplitude takes the form

M(s, t) = α Λ 4 (s 2 + t 2 + u 2 ) , (3.10) 
and by choosing the kernel K 0 = 1/(s ) 3 in (3.4) and restricting to the forward limit t → 0, we can easily compute the arc a 0 (s) by means of the residue theorem. Its dispersive representation then becomes

2α Λ 4 = 2 π ∞ s √ s √ s -4m 2 (s ) 3 σ(s )ds ≥ 0 , (3.11) 
where the positivity of the UV representation is a consequence of the positivity of the cross section σ(s ) integrated against a positive kernel. We can conclude then

α ≥ 0 . (3.12)
Therefore, negativity of the Wilson coefficient α would lead to violation of one of the principles of unitarity, locality, causality and Lorentz invariance, that were instrumental to fix the behavior of the amplitude on the s plane. Notice that the solution α = 0, corresponding to the free theory, is allowed by this bound. In general, the forward behavior of a scalar amplitude at tree-level can be expanded as M(s, 0) = c m s m . It turns out that upper bounds on coefficients can also be obtained choosing a suitable kernel K n . For instance, picking

K n-2 (s , 0, s) = 1 s [s/s ] n (1 -s/s ), we immediately obtain the inequality c n > s c n+1 , (3.13) 
meaning that Wilson coefficients of increasing dimension must be increasingly more irrelevant. This is an intuitive and appreciable property of an Effective Field Theory, but here it emerges as a consistency condition derived from fundamental principles. We will come back to the question of optimization of the kernel K n in order to bound a given set of Wilson coefficients in section 3.4.

Connection with superluminal propagation

Now, let us go back to the simplest example of (3.10), and find another argument for its positivity, as discussed in the original paper [START_REF] Adams | Causality, Analyticity and an IR Obstruction to UV Completion[END_REF]. We consider propagation of the scalar field on a nontrivial background φ = π 0 + π satisfying ∂ µ π 0 = C µ , where C µ is constant. Then the equations of motion for π become

η µν + 4 α Λ 4 C µ C ν + ... ∂ µ ∂ ν π = 0 , k µ k µ + α Λ 4 (C • k) 2 = 0 , (3.14) 
where in the second line we Fourier transform the first expression to k-space. As (C • k) 2 ≥ 0, the speed of propagation is corrected by the higher order term and in particular superluminal propagation is avoided as long as α ≥ 0. Some small amount of superluminality (propagation outside of the light-cone) can actually build up producing large time advances, which for an observer moving in a different frame could result in some closed time-like curves. In particular, it is possible to devise a background of a finite-sized bubble of ∂ µ π = C µ condensate, then a signal propagating with α < 0 would be sent from point A to point B, continuing its path with the speed of light after reaching the boundaries of the bubble (see left image of Fig. 3.2). By highly boosting the background, the bubble will stretch and the order of events will dramatically change (right image of Fig. 3.2), resulting in closed time-like curves, and hence a clear violation of causality. The exact connection between constraints from dispersion relations and superluminal propagation is still not fully understood and it is subject of active research, see for instance [START_REF] Arkani-Hamed | The EFT-Hedron[END_REF][START_REF] Gonzalez | Causal effective field theories[END_REF][START_REF] De Rham | Causality Constraints on Gravitational Effective Field Theories[END_REF]. One appealing feature of the superluminal approach is that by construction it is never plagued by IR divergences, contrarily to positivity constraints (as we will see in section 3.5).

In chapter 7, we will be dealing with time delays/advances produced in gravitational scenarios, where this argument becomes very subtle, as on a curved background light-cones themselves are deformed, and quantum corrections modify propagation of both gravitons and other particles. Which is the correct causality condition we should impose? What about its connection with positivity constraints?

The theory of moments

A natural question that emerges from the previous discussion is: how stringent can these bounds become? The question of optimizing the kernel K n in order to bound a given set of Wilson coefficients entering in 2 → 2 scattering is a mathematical problem that finds answer in the theory of moments [START_REF] Bellazzini | Positive Moments for Scattering Amplitudes[END_REF]. Let us start by rewriting the arc a n (s) (3.4) in the forward limit as

a n (s) = 1 s n+3 1 0 dµ(x)p(x) , where x ≡ s s , dµ(x) = dx π ImM(s/x) ≥ 0 (3.15)
where we consider a kernel of the form K = p(s/s ) s 2 s n+2 . It is convenient to define 1D moments as

µ n = 1 0 x n dµ(x) (3.16)
As dµ is a positive measure, the goal is to find the most general polynomial f (x) that is positive on the integration domain [0, 1] implying positivity of a n . This turns out to be

p(x) = 4 i=1 d i 1D (x)q i (x) 2 , d 1D = {1, x, 1 -x, x(1 -x)} , (3.17) 
where q i (x) = c j j=0 α ij x j are generic polynomials and d 1D contains all combination of polynomials that define the integration domain, i.e. x ≥ 0 and 1x ≥ 0. This is a very general result of algebraic geometry that we will use again when including a second variable.

In any practical situation we would deal only with a finite number of arcs, effectively truncating the tower of Wilson coefficients. Indeed, by considering polynomials p(x) up to order N we truncate the sums at c 1 = N/2 , c 2 = c 3 = (N -1)/2 and c 4 = (N -2)/2 . Thus, each element of d 1D generates a set of constraints, for instance by taking d 1 1D = 1 we obtain

1 0 dµ(x)q 1 (x) 2 = c 1 i c 1 j α 1i α 1j µ i+j = α • H 0 N • α > 0 , (3.18) 
where we define Hankel matrices H N ij = µ i+j+ , with i, j = 0, .., N -/2. As (3.18) must be satisfied for every α, we recover that H 0 N must be positive definite. Similar arguments for the other elements of d 1D lead to the complete set of constraints

H 0 N 0 , H 1 N 0 , H 0 N -1 -sH 1 N 0 , H 1 N -1 -sH 2 N 0 . (3.19)
Notice that the third inequality for N = 2 leads precisely to (3.13) and in general the last two expressions connect different moments generating inequalities between Wilson coefficients of different dimensions. This feature is directly correlated with the integration domain being compact (both emerge from the polynomial 1x). These constraints lead to optimal bounds (the 1D moment problem on a compact domain is fully solved) and have a beautiful geometrical interpretation in terms of the so-called "EFThedron" [START_REF] Arkani-Hamed | The EFT-Hedron[END_REF].

The non-forward moments problem

Now, let us consider arcs with a t-dependance (3.4a) by expanding the UV representation in partial waves

a n (s, t) = 32 ∞ ŝ ds K n √ s |p| (2 + 1)ImM (s )P (1 + 2t s -4m 2 ) . (3.20)
The idea here is to expand both sides of this expression at small values of t and find explicit expressions of Wilson coefficients in terms of the 2D moments [START_REF] Bellazzini | The Ir-Side of Positivity Bounds[END_REF][START_REF] Chiang | Into the Efthedron and UV Constraints from IR Consistency[END_REF] µ n,m = 8

J 1 + 4J 2 1 0 dµ(x, J)x n J 2m ≥ 0 dµ(x, J) = dx π ImM J 2 (s/x) (3.21) 
where we replaced J 2 = ( + 1). We approximate the sum over J as an integral by requiring the polynomials to be positive in the whole positive domain J 2 ∈ R + , instead than only on the relevant integers. In this case, the domain is unbounded from above, hence the new set of monomial that defines the space becomes

d 2D = d 1D ∪ {J 2 , xJ 2 , (1 -x)J 2 }.
We apply now the same procedure as in (3.18) to recover some addition conditions on the 2D moments. Unfortunately, there are multiple limitations of this method when compared to the 1D moment problems, which are mainly due to the following reasons:

• As opposed to 1D moments, there is no full solution to the 2D problem with a finite set of arcs, and bounds on µ n,m would keep improving by considering more and more arcs. This means that, unless an infinite number of moments is considered, the bounds will never be optimal.

• By approximating the sum in J 2 to a continuous, we are actually considering only a subset of all the positive polynomials, leading again to non-optimal bounds.

• In the 1D problem, arcs of different n were connected by conditions such as µ n > sµ n+1 stemming from the compactness of the integrated domain. This is not the case in 2D where the hierarchy between µ n,m and µ n,m+1 is unknown. This issue can be partially circumvented by exploiting crossing symmetry relations in the IR: indeed, a given Wilson coefficient c i can be captured by more than one arc with different number of subtractions. This would imply that c i admits two different representations in terms of moments, hence leading to further relations between 2D moments. Those relations are referred to as null constraints [START_REF] Caron-Huot | Sharp Boundaries for the Swampland[END_REF], and we will encounter some explicit examples in chapter 5.

Despite the fact that it is possible to achieve optimal bounds by relying on numerical methods (such as the one that we will briefly introduce in 3.5), 2D moments allow to simply obtain constraining bounds in a fully analytical fashion. We will implement them in chapter 5 in the context of massive gravity, showing that the scale separation between the mass and the cutoff of the theory must be parametrically of O [START_REF] Sommer | Present State of Rigorous Analytic Properties of Scattering Amplitudes[END_REF], effectively ruling out massive gravity as the theory that describes our universe.

Positivity in gravity

General Relativity (GR) is undoubtedly a wonderfully predictive theory, with a natural strong coupling scale located at the Planck mass m Pl . As every theory with a finite range, general relativity is an effective theory, arguably the most fascinating one, as the understanding of its UV completion has piqued the curiosity and the collective effort of a large part of the community of high energy physics in the last 100 years. It is therefore only natural to wonder if the machinery that we covered in the previous sections would apply to gravity, giving us an opportunity to explore the phase-space of possible modifications of the latter.

The first ingredient that we would miss from previous discussions and that was used numerous times is the mass gap, as the graviton is a massless particle. For instance, analyticity in gapless theories is a delicate topic, and is usually assumed to hold, even in absence of rigorous arguments. Recently, a massless equivalent of the Froissart-Martin bound was derived for D > 4 [START_REF] Häring | Gravitational Regge bounds[END_REF], by imposing the intuitive fact that gravity at large distance is simply given by Newtonian physics and it is well understood (there will be plenty of occasions to discuss this fact in chapter 6). This type of argument allows to constrain the high spins' contribution to the sum (3.6), concluding that M(s, t) < s 2 , for t < 0. Hence, as long as we are in the physical regime and assuming that this argument can safely be generalized to 4D, we can apply the same number of subtractions as in the gapped scenario discussed previously.

Apart from those important points, the real challenge of positivity bounds applied to gravity comes from an explicit inspection of tree-level amplitudes involving graviton exchanges. We have already computed one example in (2.21), and it turns out that the pole structure is the same for any spin of the external particles

∝ 1 m 2 Pl 1 stu . (3.22) 
This expression contains the infamous "t-pole", which results in a divergent contribution to the first arc n = 0 in the forward limit 3 . This means that for this particular arc it is not possible to safely consider the limit t → 0 and exploit the positivity properties of the total cross-section or implement 2D moments as discussed in section 3.44 . On the other hand, this divergent term does not contribute to higher arcs a n (s) with n > 0, which have a well defined forward limit and lead to positivity of coefficients for instance of R 4 [START_REF] Bellazzini | Quantum Gravity Constraints from Unitarity and Analyticity[END_REF]. We could be satisfied with this result, but in an effective field theory the more relevant contributions are those with less insertions of derivatives (3.13), hence terms such as R 3 will be the relevant deformation from the Einstein-Hilbert action. Despite the fact that R 3 contributes to helicity flipping configurations as opposed to helicity preserving of the Einstein-Hilbert term, it can be easily shown that the former enters in the same arc as the minimal coupling contribution of (3.22) (see for instance [START_REF] Camanho | Causality Constraints on Corrections to the Graviton Three-Point Coupling[END_REF] and section 7.1). For this reason learning to deal with the problematic "t-pole" has captured a lot of attention in recent years (see e.g. [START_REF] Adams | Causality, Analyticity and an IR Obstruction to UV Completion[END_REF][START_REF] Caron-Huot | Sharp Boundaries for the Swampland[END_REF][START_REF] Bellazzini | Quantum Gravity Constraints from Unitarity and Analyticity[END_REF][START_REF] Camanho | Causality Constraints on Corrections to the Graviton Three-Point Coupling[END_REF][START_REF] Bern | Gravitational Effective Field Theory Islands, Low-Spin Dominance, and the Four-Graviton Amplitude[END_REF][START_REF] Caron-Huot | AdS Bulk Locality from Sharp CFT Bounds[END_REF][START_REF] Arkani-Hamed | Causality, Unitarity, and the Weak Gravity Conjecture[END_REF][START_REF] Caron-Huot | Causality Constraints on Corrections to Einstein Gravity[END_REF][START_REF] Caron-Huot | Graviton Partial Waves and Causality in Higher Dimensions[END_REF][START_REF] Chiang | Non)-Projective Bounds on Gravitational Eft[END_REF][START_REF] Bellazzini | Classical vs Quantum Eikonal Scattering and its Causal Structure[END_REF][START_REF] Henriksson | Bounding Violations of the Weak Gravity Conjecture[END_REF]).

One possible solution to deal with this problem was proposed in [START_REF] Caron-Huot | Sharp Boundaries for the Swampland[END_REF][START_REF] Caron-Huot | Causality Constraints on Corrections to Einstein Gravity[END_REF], and requires to smear both sides of (3.20) with a functional ψ(q)

Λ 0 dqψ(q)a n (s, -q 2 ) , (3.23) 
where t = -q 2 and integrate over the physical region of t. Once again, the goal is to find a functional ψ(q) that makes the UV representation of (3.23) positive by knowing that ImM ≥ 05 . This process can be optimized by using the numerical tool of semi-positive programming (SDPB) and can be successfully implemented in D > 4 [START_REF] Caron-Huot | Sharp Boundaries for the Swampland[END_REF], where schematically the "t-pole" contribution leads to some allowed negativity scaling as (Λ/m Pl ) m of the Wilson coefficients entering in the n = 0 arc (such as R 3 ). Notice that in the decoupling limit of gravity m Pl → ∞ we recover standard positivity discussed in section 3.3.

Unfortunately, this procedure has severe limitations in D = 4, where in the choice of the functional ψ(q) there is tension between positivity of the integrand and its convergence at t = 0 (where the graviton pole is located). This issue is dealt with by introducing an IR cutoff to regulate the divergence leading to a bound of g 3 Λ 4 R 3 of the form

g 3 - Λ 4 m 4 Pl log Λ/m IR , (3.24) 
where m IR is the infrared cutoff. We will see in section 6.2.2, that m IR can be related to the distance travelled by an object from the source to the detector, within the wordline formalism.

Even though it is possible to numerically evaluate the precise coefficient entering in this expression, the presence of the logarithmic divergence makes this bound basically not applicable in practice, and the question of how to recover sharp bounds in D = 4 is still unsettled, even if some attempts have been made (see for instance [START_REF] Bellazzini | Positivity of Amplitudes, Weak Gravity Conjecture, and Modified Gravity[END_REF]). Constructing IR safe observables that could be used in positivity constraints is an exciting and challenging quest for the future.

In chapter 7 we will clarify the connection between (3.24) and the time delay arguments of section 3.3, by studying the large limit of dispersion relations.

Part II Constructing and Bounding Massive Gravity

Chapter 4

On-shell Massive gravity

Attempts to modify gravity at large distances have a long history. Perhaps the most appealing example is the class of theories where the spin-2 carrier of the gravitational force -the graviton -has a tiny mass m [START_REF] Fierz | On Relativistic Wave Equations for Particles of Arbitrary Spin in an Electromagnetic Field[END_REF]. One of the commonly referred to motivation to modify gravity in the infrared is to provide possible models of dark energy [START_REF] De Rham | Massive Gravity[END_REF]. Indeed, beyond the Hubble radius gravity would become a finite-range force, providing possible mechanisms of acceleration. As we require gravity to behave consistently with General Relativity at shorter scales, m cannot be much larger than the inverse Hubble length [START_REF] De Rham | Graviton Mass Bounds[END_REF]. Furthermore, from a theoretical standpoint, it is definitely instructive to study how a small deformation from General Relativity ends up having dramatic effects on the theory itself by messing up with the UV, as we will discuss in section 5. Construction of consistent and phenomenologically viable theories of this kind encounters many practical difficulties. One of them is the rapid growth of graviton scattering amplitudes for energies E m. As a result, any known effective field theory (EFT) of a massive graviton hits the strong coupling at E ∼ Λ s , breaking the perturbative expansion at a macroscopic distance scale Λ -1 s . Moreover, if the cutoff of the theory satisfies Λ Λ s (admitting a weakly coupled UV completion), severely limits the possible validity range of massive gravity theories.

From the phenomenological point of view it is beneficial to postpone the onset of strong coupling as much as possible, thus extending the predictive power of the EFT. This can be achieved by choosing the interactions of the graviton so as to make the scattering amplitudes softer. 1 For the 2 → 2 graviton self-scattering amplitude one can arrange for

M λ 3 λ 4 λ 1 λ 2 (s, t) ≡ 3 λ 3 4 λ 4 |M|1 λ 1 2 λ 2 ∼ (E/Λ 3 ) 6 [50]
, where Λ 3 = (m 2 m Pl ) 1/3 and λ i labels the polarization of the massive graviton i. The concrete, non-linear, ghost-free realization of this scenario is the dRGT gravity [START_REF] De Rham | Massive Gravity[END_REF][START_REF] De Rham | Generalization of the Fierz-Pauli Action[END_REF][START_REF] De Rham | Resummation of Massive Gravity[END_REF][START_REF] Hinterbichler | Theoretical Aspects of Massive Gravity[END_REF]. This is an EFT of a single massive spin-2 particle with the strong coupling scale given by Λ 3 , also when n-point graviton amplitudes with n > 4 are taken into account.

The original off-shell formulation of dRGT gravity, is given by the effective Lagrangian [START_REF] De Rham | Generalization of the Fierz-Pauli Action[END_REF][START_REF] De Rham | Resummation of Massive Gravity[END_REF] 

S = d 4 x √ -g m 2 Pl 2 R - m 2 Pl m 2 8 V (g, h) (4.1)
where

V (g, h) = V 2 + V 3 + V 4 is expressed in terms of an auxiliary metric g µν ≡ η µν + h µν as V 2 = b 1 h 2 + b 2 h 2 , V 3 = c 1 h 3 + c 2 h 2 h + c 3 h 3 , V 4 = d 1 h 4 + d 2 h 3 h + d 3 h 2 2 + d 4 h 2 h 2 + d 5 h 5 ,
with h ≡ h µν g µν , h2 ≡ g µν h νρ g ρσ h σµ , etc. The coefficients depend on c 3 and d 5 , after imposing the ghost-free conditions

b 1 = 1 = -b 2 , c 1 = 2c 3 + 1/2 , c 2 = -3c 3 -1/2 , d 1 = -6d 5 + 3c 3 /2 + 5/16 , d 2 = 8d 5 -3c 3 /2 -1/4 , d 3 = 3d 5 -3c 3 /4 -1/16 , d 4 = -6d 5 + 3c 3 /4 .
Computing amplitudes through Feynman diagrams from this action is a feasible but extremely tedious task.

In this chapter we show how to compute on-shell 2 → 2 amplitudes in dRGT gravity coupled to matter, where the latter stands for massless or massive spin-0, spin-1/2, or spin-1 particles. We will then exploit those results to discuss how the phase-space of this theory is constrained from positivity arguments in section 5.

We build the corresponding EFT directly at the level of on-shell amplitudes in the Minkowski background, without passing through fields and Lagrangians, by closely following the philosophy used to construct amplitudes in massive Yang-Mills in section 2.3. This is a great simplification when massive spin-2 particles are involved: one deals only with the 5 physical polarizations, while unphysical degrees of freedom (in the standard approach carried by the metric field) are never introduced into the picture. Consequently, calculation of amplitudes in this framework is much simpler than obtaining them through the Feynman rules from a Lagrangian.

Our philosophy closely follows the one in Refs. [START_REF] Bonifacio | Bounds on Amplitudes in Effective Theories with Massive Spinning Particles[END_REF][START_REF] Bonifacio | Constraints on a gravitational Higgs mechanism[END_REF], where the on-shell amplitude formalism was applied to self-scattering of massive gravitons. Here we focus on the gravitational Compton scattering:

M λ 2 λ 4 X ≡ 3 X 4 λ 4 |M|1 X 2 λ 2 .
We first build the on-shell 3-point amplitudes describing the minimal coupling of the massive graviton to a matter particle X. They have the same form as the ones predicted by Einsten's general relativity (GR), up to an overall multiplicative factor c X . For m > 0, that factor (which can be interpreted as the coupling strength between gravity and matter) is allowed to deviate from the GR value c X = 1. In other words, the equivalence principle is not assumed at the outset when the graviton has a mass. Two more ingredients are necessary to calculate tree level Compton amplitudes. One is the 3-graviton amplitude, which is taken to be exactly the one predicted by the dRGT gravity. The other is a set of 4-point contact terms, which can be organized into a systematic EFT expansion in E/m. The final result depends on several free parameters: the coupling strength between gravity and matter, the Wilson coefficients of the contact terms, and one more parameter characterizing the 3-graviton amplitude in dRGT. We will take advantage of this parameter space to regulate the UV properties of the Compton amplitudes 2 .

The Compton amplitudes calculated at tree level display a number of interesting properties. For a generic point in the parameter space they grow with energy as M X ∼ (E/Λ 3 ) 6 for any spin of the matter particle X, which is the same behavior as for graviton self-scattering amplitudes. Thus, they become strongly coupled around the same scale Λ 3 . A priori, it is not necessary to adjust any parameters of this EFT so as to regulate the UV properties of M X . It is interesting to observe, however, that in certain regions of the parameter space the behavior is considerably softer:

M X ∼ E 4 /m 2 m 2
Pl or even M X ∼ E 3 /mm 2 Pl . This is possible for any mass and spin of the matter particle provided its coupling strength to the massive graviton has precisely the value predicted by GR, c X = 1. That is to say, the equivalence principle in massive gravity can be restored simply be demanding a certain high-energy behavior of the gravitational Compton scattering amplitudes.

The chapter is organized as follows. In section 4.1 we review the on-shell formulation of graviton self-interactions in dRGT gravity, and we take that opportunity to introduce our notation and conventions. The main results are contained in section 4.2 where we construct the leading interactions of the massive graviton with matter and calculate the Compton scattering amplitudes. We write down the precise constraints on the parameter of the theory that lead to Compton amplitudes softer than O(E 6 ).

dRGT on shell

In this section we review the calculation of 4pt scattering of incoming massive gravitons M(s,

t) ≡ M h 1 h 2 h 3 h 4 (s, t) ≡ M(1 h 1 2 h 2 3 h 3 4 h 4 )
in the dRGT gravity, where h i indicates the choice of polarization, when necessary [START_REF] Bonifacio | Bounds on Amplitudes in Effective Theories with Massive Spinning Particles[END_REF][START_REF] Cheung | Positive Signs in Massive Gravity[END_REF][START_REF] Bellazzini | Beyond Positivity Bounds and the Fate of Massive Gravity[END_REF]. Notice that absence of subscripts on external legs always refers to gravitons, while matter legs will be specified with a subscript X = s, f, v. Much as Ref. [START_REF] Bonifacio | Bounds on Amplitudes in Effective Theories with Massive Spinning Particles[END_REF], we work in the on-shell amplitude framework, without introducing the graviton field or Lagrangian. Instead, we first write down the most general 4-graviton amplitude consistent with Poincaré invariance, unitarity, and locality. This general form is constrained by requiring the UV behavior of the amplitudes to be as soft as possible. In the case of massive gravitons the best possible situation is M ∼ O(E 6 ) [START_REF] Arkani-Hamed | Effective field theory for massive gravitons and gravity in theory space[END_REF], which defines the dRGT gravity. This method not only simplifies the calculations, but also avoids all the subtleties of working with higher-spin Lagrangians.

To be specific, the amplitude with four gravitons takes the form

M(s, t) = - h M(12p h s )M(34p h s ) s -m 2 + M(13p h t )M(24p h t ) t -m 2 + M(14p h u )M(23p h u ) u -m 2 + C(1234), (4.1) 
where 1 . . . 4 label the external gravitons, m is the graviton mass, p s ≡ p 1 + p 2 , p t ≡ p 1 + p 3 , p u ≡ p 1 + p 4 , the Mandelstam invariants are i ≡ p 2 i for i = s, t, u, and the sum goes over polarizations of the intermediate graviton. By default all particles in the amplitudes are incoming; if a particle is outgoing, the corresponding entry is marked by a hat. The first line contains the pole terms, schematically represented in Fig. 4.1. Their form is fixed by unitarity, which requires that the residue of each pole is given by the product of on-shell 3-graviton amplitudes (see section 1.2). Note that for massive particles the poles are separated, in the sense that a residue in one channel does not contain a pole in another channel [START_REF] Arkani-Hamed | Scattering Amplitudes for All Masses and Spins[END_REF], unlike what happens for massless graviton scattering as we encountered in (2.21). The last term denotes 4-graviton contact terms, which are regular functions of s, t, u without poles or other singularities, therefore they are not connected to 3-point amplitudes by unitarity. As encountered in section 2.3, contact terms can be adjusted so as to soften the behavior of the amplitude for E m, where E ∼ √ s is the characteristic s-channel t-channel u-channel energy scale of the scattering process. In other words, the contact terms are chosen so as to maximize the validity range of the EFT of massive gravitons.

Polarization tensors

As discussed in section 2.1, for spin S particles the appropriate little group representation is obtained by multiplying S massive spinors and symmetrizing their little group indices. In particular, massive graviton amplitudes should contain 4 spinors χ J or χJ for each external graviton. We introduce traceless symmetric Lorentz tensors constructed out of 4 spinors:

[ µν (p)] JKLM = 1 2m 2 (χ J σ µ χK )(χ L σ ν χM ), [¯ µν (p)] JKLM = 1 2m 2 (χ J σ µ χK )(χ L σ ν χM ), (4.2 
) where full symmetrization of the little group indices is implicit. These are nothing but the usual polarization tensors [START_REF] Guevara | Scattering of Spinning Black Holes from Exponentiated Soft Factors[END_REF]. We find it more convenient to build our amplitudes using polarization tensors instead of spinors3 . In the helicity basis, the scalar polarization corresponds to 0 µν ≡ [ µν (p)] 1122 , the vector ones to + µν ≡ [ µν (p)] 1112 and - µν ≡ [ µν (p)] 1222 , and the tensor ones to

++ µν ≡ [ µν (p)] 1111 and -- µν ≡ [ µν (p)] 2222 4
. Summing a product of the polarization tensors over the little group indices one obtains the numerator of the massive graviton propagator:

N p µν,αβ ≡ JKLM [ µν (p)] JKLM [¯ αβ (p)] JKLM = 1 2 (Π µα Π νβ + Π µβ Π να ) - 1 3 Π µν Π αβ , (4.3) 
where

Π µν = η µν - pµpν m 2 .
In this chapter we find it convenient to work instead in the basis of linear polarizations, which are linear combinations of helicity eigenstates given by

S µν (p) = 0 µν (p) , (4.4) 
V µν (p) = 1 √ 2 ( - µν (p) -+ µν (p)) , V µν (p) = i √ 2 ( - µν (p) + + µν (p)) , (4.5) 
T µν (p) = 1 √ 2 ( ++ µν (p) + -- µν (p)) , T µν (p) = i √ 2 ( -- µν (p) -++ µν (p)) . (4.6) 
N-points graviton amplitudes can be written down in terms of Lorentz-invariant contractions i and p i , i = 1 . . . N , where each i appears exactly once. This automatically ensures the correct little group transformation properties. The operation of crossing an incoming graviton into an outgoing one amounts simply to replacing the corresponding polarization tensor with its conjugate for helicity polarizations: λ i (p) → ¯ λ i (-p), while for linear polarizations:

h i (-p) = (-1) h i h i (p)
, where we define (-1) h ≡ 1 for h = S, T, T and (-1) h ≡ -1 for h = V, V . Furthermore, working with polarization tensors makes power counting transparent. Indeed, the scalar polarization of a massive graviton can be represented by µν i ∼ p µ i p ν i /m 2 , thus in the UV each i implicitly carries two powers of energy E. Each additional momentum insertion adds another power of energy. This power counting will allow us to build the ingredients of (4.1) -the 3-point amplitude and the 4-point contact terms -in a controlled expansion in E/m.

3-graviton amplitude and pole terms

In dRGT gravity the on-shell 3-graviton amplitude can be parametrized as

M(123) = a 0 m 2 m Pl 1 2 3 - 1 2m Pl [ p 23 1 p 23 2 3 -2 p 23 1 3 2 p 13 + cyclic] , (4.7) 
where p jk ≡ p jp k , and we abbreviate the Lorentz contractions:

j k ≡ µν j µν k , j k l ≡ µν j νρ k µρ l , p j l p k ≡ p µ j µν l p ν k .
Cyclic stands for 4 other terms obtained by cyclic permutations of the first 2 terms in the square bracket, so that the amplitude is Bose symmetric. The coefficient a 0 of the first term is a free parameter in this framework, related to the commonly used parameter c 3 in the dRGT Lagrangian by a 0 = 3(1 -4c 3 ). The second term has exactly the same form as in ordinary GR, which allows us to identify m Pl = (8πG) -1/2 ≈ 2.4 × 10 18 GeV.

Given (4.7), we can rewrite the 4-graviton amplitude in (4.1) as

M(s, t) = - M µν (12)N ps µν,αβ M αβ (34) s -m 2 - M µν (13)N pt µν,αβ M αβ (24) t -m 2 - M µν (14)N pu µν,αβ M αβ (23) u -m 2 + C(1234), (4.8) 
where M µν (jk) is defined by the decomposition of the 3-graviton amplitude: M(jkl) ≡ M µν (jk) µν l . At this point the 4-point amplitude is determined up to contact terms, which will be constrained by requiring a specific high-energy behavior.

Let us comment on how (4.7) can be derived. The brute force way would be to take the cubic graviton terms in the dRGT Lagrangian (4.1) and calculate the 3-point on-shell amplitude using the Feynman rules. A more intuitive way is the following. One can systematically build the 3graviton amplitude as an expansion in the number of momentum insertions. At zero momentum insertion, 1 2 3 is the unique Lorentz-invariant contraction of 3 polarization tensors. For scalar polarizations i ∼ E 2 /m 2 for E m, thus the zero-momentum piece leads to the 4-point amplitude growing in the UV as M SSSS ∼ E 6 × E 6 /E 2 = E 10 . For two momentum insertions there are two possible structures: a 2 p 23 1 p 23 2 3 + b 2 p 23 1 3 2 p 13 , together with their cyclic permutations. For generic a 2 and b 2 , the 4-point amplitude with all scalar polarizations would grow as M SSSS ∼ E 8 × E 8 /E 2 = E 14 , much faster than that mediated by the zero-momentuminsertions term. However, a softer behavior is obtained if the p/m terms in the numerator N µν,αβ annihilate M (jk), and thus do not contribute to the amplitude, in the exact same fashion as used for massive Yang Mills in section 2.3. This choice is equivalent to requiring that the two-momentum-insertion terms are invariant under the transformation µν j → µν j + p µ j ξ ν + ξ µ p ν j for arbitrary ξ. This fixes b 2 = -2a 2 . Finally, we set a 2 = -1/2m 2 Pl so as to recover the standard GR normalization in the massless limit. One could continue the EFT expansion of the 3-graviton amplitudes by adding terms with four and six momentum insertions. The former can be reduced to those with zero and two insertions by using momentum conservation and on-shell conditions [START_REF] Bonifacio | Bounds on Amplitudes in Effective Theories with Massive Spinning Particles[END_REF]. The latter would lead to amplitudes with transverse polarizations growing as O(E 10 ), and corresponds to deforming the dRGT gravity Lagrangian by a cubic term constructed out of the Weyl tensor [START_REF] Ruhdorfer | Effective Field Theory of Gravity to All Orders[END_REF]. In this paper we restrict to the usual dRGT cubic graviton interactions described on-shell by (4.7).

UV behavior and contact terms

We focus now on the high energy behavior of the four-graviton amplitude in (4.8). As mentioned earlier, different graviton polarizations come with a different energy dependence for E m: the h = S component is O(E 2 ), the h = V, V components are O(E), while the transverse h = T, T polarizations are O(1). Consequently, in the absence of the contact terms C(1234) in (4.8), the worst possible UV behavior of different polarization amplitudes is estimated as

M SSSS ∼ O(E 10 ) , M V SSS ∼ O(E 9 ) , M V V SS ∼ O(E 8 ), M T V SS , M V V V S ∼ O(E 7 ) .
The goal is to reduce the UV behavior down to O(E 6 ) or better for all these amplitudes. To this end, we introduce a basis of independent contact terms with zero and two momentum insertions:

C (0) 1 = { 1 , 2 }{ 3 , 4 } + (x), C (0) 2 = 1 2 3 4 + (x), C (2) 1 = s { 1 , 2 }{ 3 , 4 } + (x), C (2) 
2 = p s { 1 , 2 }{ 3 , 4 }p s + (x), C (2) 3 = p s 1 3 2 4 p s + p s 2 3 1 4 p s + p s 1 4 2 3 p s + p s 2 4 1 3 p s + (x), C (2) 4 = s [ 1 3 2 4 + 1 4 2 3 ] + (x), C (2) 5 = p s 1 2 p s 3 4 + 1 2 p s 3 4 p s + (x), C (2) 6 = p s 1 3 p s 2 4 + p s 2 3 p s 1 4 + p s 1 4 p s 2 3 + p s 2 4 p s 1 3 + (x), (4.9)
where (x) stands for t-and u-channel crossed terms:

(2 ↔ 3) + (2 ↔ 4), and { j , k } ≡ ( µν j νρ k + µν k νρ j )/2.
There is no need to consider expressions with more than two momentum insertions, as they would lead to amplitudes growing faster than O(E 10 ). The contact terms can be parametrized as

C(1234) = 1 m 2 Pl m 2 2 i=1 w (0) i C (0) i + 6 i=1 w (2) i C (2) i , (4.10) 
and the Wilson coefficients w

(n) i are chosen so as to reduce the UV behavior down to O(E 6 ). This is achieved for the choice

w (2) 1 = -4, w (2) 
2 = 8, w

3 = -4, w (2) 
= a 2 0 -1 6 , w (2) 4 
a 0 (2a 0 + 1) 6 , w

= 2, w

(0) 2 = 7 2 - a 0 (2a 0 + 1) 3 - 1 2 d 0 , w (0) 1 = d 0 . (4.11)
This leaves two unconstrained parameters: a 0 from the 3-graviton amplitude (4.7), and d 0 parametrizing a preferred direction in the space of the contact terms in (4.9). They are related to the commonly used parameters c 3 and d 5 in the dRGT Lagrangian [START_REF] Hinterbichler | Theoretical Aspects of Massive Gravity[END_REF] via the map

a 0 = 3(1 -4c 3 ), d 0 = (3 + 24c 3 + 96d 5 ). (4.
12)

The 4-graviton amplitude in (4.8) with the Wilson coefficients adjusted as in (4.11) is the same as the one calculated directly (and more laboriously) from the dRGT Lagrangian. In particular, the M SSSS , M V V SS , M V V V V , and M T SSS amplitudes grow as (E/Λ 3 ) 6 in the UV, where

Λ 3 ≡ (m 2 m Pl ) 1/3 . (4.13)
Here Λ 3 is the strong coupling scale where the graviton scattering amplitudes become nonperturbative.

Matter coupling in dRGT

In this section we study interactions of the massive graviton with matter

M X (s, t) ≡ M X,h 2 h 3 (s, t) ≡ M(1 X 2 h 2 3 X 4 h 4 )
, that is with particles X of spin 0, 1/2 or 1. Again, all external states are taken as incoming. The strategy will be similar to the one employed for graviton self-interactions discussed in section 4.1. We first write down the on-shell 3-point amplitudes M(1 X 2 X 3) involving two matter particles and one graviton. We focus on the amplitudes with the minimal number of momentum insertions, which are closely related to the minimal gravitational interactions of matter in GR. Then we construct the 4-point amplitude describing Compton scattering of matter on massive gravitons. Unitarity dictates that it must have the form

M X (s, t) = - M(1 X ps 2)M(3 x p s 4) s -M 2 - M(1 X 3 X pt )M(24p t ) t -m 2 - M(1 X pu 4)M(2p u 3 X ) u -M 2 + C X (1 X 23 X 4), (4.1) 
where hats denote outgoing particles, and eventual summation over polarizations of the intermediate particles p i is implicit. The pole terms are schematically represented in Fig. 4.2. Note that the t-channel depends also on the 3-graviton amplitude, which is assumed to be the one in (4.7). Given the 3-point amplitudes, Compton scattering is determined up to the contact terms C X . For the latter we assume the most general form in a systematic expansion in the number of momentum insertions. Finally, we study the Compton amplitudes for E m, M . Massive gravity is an EFT, which is also reflected in Compton amplitudes growing for m E Λ, and eventually hitting strong coupling at a finite energy scale. We discuss the possibility of adjusting the contact terms so as to soften the UV behavior and thus postpone the onset of strong coupling in the matter sector.

3-point amplitudes

We assume the following 3-point amplitudes for massless spin 0 scalars, spin 1/2 fermions, and spin 1 photons interacting with gravity: Fermion :

Scalar : M(1 s 2 s 3) = - c s 2m Pl p 12 3 p 12 , s-channel t-channel u-channel
M(1 - f 2 + f 3) = c f 2m Pl j 12 3 p 12 , j 12 ≡ (λ 1 σ µ λ2 ), Photon : M(1 - v 2 + v 3) = - c γ 2m Pl j 12 3 j 12 (4.2)
where λ i and λi , i = 1, 2, are the helicity spinors associated with the massless four-momenta p i , 3 is the polarization tensor of the massive graviton, and p ij ≡ p ip j . For scalars, the above is the unique on-shell 3-point interaction with a spin-2 particle. For fermions and photons we could also consider non-minimal amplitudes where both matter particles have the same helicity, which however require more momentum insertions and are ignored in this discussion. The overall normalization c X , X = s, f, γ, encodes the strength of gravitational interactions of the particle X. In GR, where the graviton is massless, internal consistency enforces the equivalence principle, that is c X = 1 for any form of matter [START_REF] Weinberg | Photons and Gravitons in S-Matrix Theory: Derivation of Charge Conservation and Equality of Gravitational and Inertial Mass[END_REF]. In massive gravity c X are a priori free parameters, as there is no symmetry or unitarity arguments to fix them. In particular, there could be a distinct value of c X for different matter particles: electrons, quark, photons... For massive scalars, the 3-point amplitude remains exactly the same as in (4.2). On the other hand, for spin-1/2 fermions and spin-1 vectors it has to be modified to reflect the different little group transformation properties of massive particles. For example for spin-1/2 it takes the form

Massive fermion : M(1 f 2 f 3 G ) = c f 2m Pl (χ 1 σ µ χ2 + χ 2 σ µ χ1 ) µν 3 p ν 12 . (4.3) 
In our analysis below we take matter to be massless, M = 0, and only briefly comment on what changes for M > 0.

Compton scattering

The next step is to calculate the Compton amplitudes. The procedure is very similar for scalars, fermions, and photons. Below we discuss the massless scalar case in some gory detail, while for fermions and photons we only present the final results. We are interested in the all incoming 4-point amplitude M s ≡ M(1 s 2 h 2 3 s 4 h 3 ), which we calculate using (4.2) with M = 0. The residues of the pole terms are given by

R s ≡ -M(1 s ps 2)M(3 s p s 4) = - 4c 2 s m 2 Pl p 1 2 p 1 p 3 4 p 3 , R u ≡ -M(1 s pu 4)M(2p u 3 s ) = - 4c 2 s m 2 Pl p 1 4 p 1 p 3 2 p 3 , R t ≡ -M(1 s 3 s pt )M(24p t ) = c s 2m 2 Pl p µ 13 p ν 13 N pt µν,αβ M αβ (24), (4.4) 
where N is given in (4.3), and M αβ (24) is defined via the 3-graviton amplitude in (4.7): M(ijk) ≡ αβ k M αβ (ij). Simple power counting shows that, for E m, the residues behave as R i ∼ E 8 when both gravitons have scalar polarizations. Their contributions to the scattering amplitude is M s,SS ∼ (E/Λ 3 ) 6 , Λ 3 = (m 2 m Pl ) 1/3 , which is the same high-energy behavior as for graviton selfscattering in dRGT. Consequently, Compton scattering becomes non-perturbative at the dRGT strong coupling scale, and a priori there is no need to fiddle with the contact terms C s (1 s 23 s 4) in (4.1) so as to increase the validity range of the EFT. Nevertheless, in the spirit of EFT we are interested in the completely general expression for the Compton amplitude, and for this reason we construct C s (1 s 23 s 4) order by order in the EFT expansion. We consider contact terms that do not worsen the UV properties, that is with up to two momentum insertions, contributing O(E 6 ) or softer to the amplitude. Up to this order, one basis of independent contact terms with correct little group transformations and Bose symmetry is

O (0) 1 = m 2 2 4 , O (2) 
1 = t 2 4 , O (2) 
2 = p t 2 4 p t , O (2) 
3 = ( p s 2 4 p s + p u 2 4 p u ) . (4.5)

The general contact terms spanned by this basis,

C s (1 s 23 s 4) = 1 m 2 Pl c (0) 1 O (0) 1 + 3 k=1 c (2) k O (2) k , (4.6) 
are included in the amplitude in (4.1). We now study the UV properties of the Compton amplitude as a function of the dRGT parameter a 0 , the scalar coupling strength c s , and the four Wilson coefficients c (n) k . For a generic point in this parameter space, the Compton amplitude with both gravitons having scalar polarizations grows as O(E 6 ) for E m:

M s,SS (s, t) = c s (a 0 -2) -12c (2) 
1 -6c

(2)

2 + 2c (2) 3 72m 4 m 2 Pl t 3 + 12c 2 s -4c s -4c (2) 3 72m 4 m 2 Pl (s 3 + u 3 ) + O(E 4 ). (4.7)
It is clear that we can arrange the parameters so as to soften the UV behavior. For example, we can get rid of the O(E 6 ) piece by fixing 2 Wilson coefficients as c

(2)

2 = c 2 s + a 0 -4 6 c s -2c (2) 1 , c (2) 
3 = 3c 2 sc s . In this restricted parameter space, the hardest Compton amplitude contains one scalar and one vector graviton polarization:

M s,V ( ) S (s, t) = ± (c s -c 2 s ) 4 √ 3 √ stu(u -s) + O(E 3 ). (4.8)
This amplitude cannot be softened by adjusting the Wilson coefficients, but it can be softened by fixing the coupling strength c s between the scalars and the graviton! Indeed, for c s = 1 the O(E 5 ) piece vanishes. This happens thanks to a cancellation between the s/u channels (which depend only on the scalar-graviton 3-point amplitude) and the t channel (which also depends on the 3-graviton amplitude). Note that c s = 1 is exactly the value predicted by GR, where it is required by virtue of the equivalence principle. In a way, massive gravity also discovers the equivalence principle, provided we require that the Compton scattering is not harder than O(E 4 ) in the UV. This is reminiscent of what happens in the theory of a self-interacting massive spin-1 particle, where the Yang-Mills structure is discovered when we require that scattering amplitudes do not grow faster than O(E 2 ).

Once the O(E 6 ) and O(E 5 ) pieces are dealt with, the hardest amplitudes in the UV are the ones with two scalar or two vector polarizations:

M s,SS (s, t) = - a 0 + 2c (0) 1 -2c (2) 1 12m 2 m 2 Pl t 2 + a 0 -1 12m 2 m 2 Pl (s 2 + u 2 ) + O(E 2 ) M s,V V (s, t) = a 0 -6c (2) 1 48m 2 m 2 Pl t 2 + O(E 2 ). (4.9) 
Those can be further softened by adjusting the Wilson coefficients c

(2)

2 , c (0) 
1 and the free parameter a 0 in the 3-graviton amplitude in (4.7). For the latter, the required value is a 0 = 1 (c 3 = 1/6, in the standard conventions). The complete set of parameters leading to the Compton amplitudes behaving as

M s ∼ O(E n ) is E 5 : c (2) 2 = c 2 s + a 0 -4 6 c s -2c (2) 1 , c (2) 
3 = 3c 2 s -c s , E 4 : c s = 1 , c (2) 2 
= a 0 + 2 6 -2c (2) 1 , c (2) 
3 = 2 , E 3 : c s = 1 , a 0 = 1 , c (0) 1 = - 1 3 , c (2) 1 
= 1 6 , c (2) 2 
= 1 6 , c (2) 
3 = 2 . (4.10)
At this point we have shot all the bullets. One can verify that for the parameters fixed as in the last line of (4.10) one has M s,V ( ) S ∼ O(E 3 ). Consequently, Compton scattering become non-perturbative at the scale Λ c ∼ (m 2 Pl m) 1/3 , which is far below the Planck scale, but well above the strong coupling scale Λ 3 of the pure graviton sector of dRGT. Compton amplitudes with other helicity configurations grow as O(E 2 ) away from the forward limit, which is the same UV behavior as in GR.

For Compton scattering of fermions or photons the story is the same. We skip the derivation and go directly to the results. For two incoming fermions with opposite helicity, to calculate M f (1 - f 23 + f 4) we use the 3-point amplitudes in (4.2) and (4.7), as well as the contact terms

C f ((1 - f 23 + f 4) = 1 m 2 Pl 3 k=1 c (1) k O (1) 
k spanned by the basis

O (1) 1 = (λ 1 σ µ λ3 )p ν t ( µρ 2 νρ 4 + µρ 4 νρ 2 ) , O (1) 2 
= (λ 1 σ µ λ3 )p ν 13 ( µρ 2 νρ 4 + µρ 4 νρ 2 ) , O (1) 3 = i µναβ (λ 1 σ µ λ3 )p ν 24 [ 2 • 4 ] αβ . (4.11)
The parameter space consists of c f , a 0 and the 3 Wilson coefficients c

k . Much as for scalars, for generic parameters the amplitude for scattering of fermions on the scalar graviton polarization grows like O(E 6 ) in the UV. Although the number of Wilson coefficients is one smaller than in the scalar case, it remains possible to soften the Compton amplitudes all the way down to O(E 3 ). The parameter settings leading to the growth not faster than O(E n ) for n = 5, 4, 3 are given by

E 5 : c (1) 2 = c f -2c 2 f 4 ; E 4 : c f = 1, c (1) 
1 = 0, c (1) 2 
= - 1 4 , c (1) 
3 = -

1 4 ; E 3 : c f = 1, a 0 = 1, c (1) 
1 = 0, c (1) 2 
= - 1 4 , c (1) 3 
= - 1 4 . (4.12)
Again, demanding Compton amplitudes to be O(E 4 ) or better leads to the equivalence principle, c f = 1, while further softening of the UV behavior occurs for the special value of the dRGT parameter a 0 = 1. This pattern is repeated for the amplitude with two incoming photons of opposite helicity and 2 massive gravitons. In this case there is a single contact term at the leading order:

O A = (λ 1 σ µ λ3 )(λ 1 σ ν λ3 ) µρ 2 νρ 4 , (4.13) 
and the parameter space consists of c γ , a 0 , and the Wilson coefficient c A . The parameter settings leading to Compton amplitudes behaving as O(E n ) for n = 5, 4, 3 are given by

E 5 : c A = c γ (c γ -1)
2 ;

E 4 : c γ = 1, c A = 0; E 3 : c γ = 1, a 0 = 1, c A = 0. (4.14)
Once again c γ = 1 and a 0 = 1 emerges as the special point where the Compton amplitudes are O(E 3 ) or softer. For massless fermions and photons we also have same-helicity Compton amplitudes, e.g. M(1 - f 23 - f 4). In this case there is no pole contribution, given our assumption of minimal coupling in (4.2), however there can be a contribution from the contact term:

m m 2 Pl (λ 1 λ 3 ) 2 4
for fermions and 1

m 2 Pl (λ 1 λ 3 ) 2 2 4 for photons. These lead to M(1 - f 23 - f 4) (M(1 - v 23 - v 4)) growing as O(E 5 ) (O(E 6
)) for fermions (photons). The Wilson coefficients of these contact terms should be set to zero if we require O(E 4 ) or better behavior of Compton amplitudes.

The picture does not change if we consider matter particles with non-zero mass M . For massive spin 1/2 and spin 1 particles the contact terms have to be modified compared to (4.11) and (4.13) in order to reflect the correct little group transformation properties, and a larger set of contact terms needs to be considered. Nevertheless, in all cases the qualitative features of Compton scattering on gravitons do not differ from the massless case for E m, M . It is of course intuitively expected that the UV properties of scattering amplitudes are insensitive to the masses of matter particles.

In conclusion, despite the fact that the amplitudes grow with energy as M X ∼ (E/Λ 3 ) 6 , there exist special points of parameter space leading to softer UV behavior. In particular, selecting c X = 1 and a 0 = 1, we raise the strong coupling scale of the Compton amplitude to Λ c = (mm 2 Pl ) 1/3 . This feature is universal for all types of matter: spin-0 scalars, spin-1/2 fermions, spin-1 vectors, and independent of whether these particles are massive or massless. Recall that in GR c X = 1 is required by the absence of unphysical poles in tree-level Compton amplitudes [START_REF] Benincasa | Consistency Conditions on the S-Matrix of Massless Particles[END_REF][START_REF] Mcgady | Higher-spin massless S-matrices in four-dimensions[END_REF]. In massive gravity there is no such consistency condition, and thus any value of c X is allowed from the EFT point of view. We find it intriguing that the softness of the Compton amplitudes is intimately connected to the equivalence principle. And despite the fact that recent results concluded that massive gravity is not a viable theory to describe our universe (see section 5), it is an interesting structural property of self-interacting massive spin-2 particle coupled to matter.

Chapter 5 Massive gravity is not positive

In chapter 4, we constructed the amplitudes in dRGT gravity coupled to matter, by exploiting Lorentz covariance, amplitudes factorization and requiring the highest possible strong coupling scale. However, we have not yet imposed any further condition stemming from causality, analyticity and dispersion relations, as discussed in section 3. This is the objective of this chapter: armed with the amplitudes computed in chapter 4, we are ready to impose positivity constraints on the theory.

Our goal is to understand whether this EFT can be used to describe physics at parametrically larger scales. In particular, as we expect m ∼ H 0 , we would like dRGT to be consistent at distances much shorter than the Hubble radius H -1 0 , as relevant for any practical and cosmological application. Positivity has already been employed in this context [START_REF] Cheung | Positive Signs in Massive Gravity[END_REF][START_REF] Bellazzini | Beyond Positivity Bounds and the Fate of Massive Gravity[END_REF][START_REF] De Rham | Positivity Bounds for Massive Spin-1 and Spin-2 Fields[END_REF] by investigating arcs in the forward limit, with the result that the two free parameters of dRGT massive gravity, c 3 and d 5 , must live in a certain finite compact region. Furthermore, it can be shown [START_REF] De Rham | Graviton Mass Bounds[END_REF][START_REF] Bellazzini | Beyond Positivity Bounds and the Fate of Massive Gravity[END_REF] that the ultimate energy-cutoff Λ of the theory is smaller than Λ (m 3 m Pl ) 1/4 . We review these results and generalize positivity bounds in the forward limit to matter couplings in section 5.1.

In section 5.2 we extend massive gravity positivity bounds to regimes of large momentum transfer, |t| m 2 . The positivity bounds emerging from this analysis lead to a much stronger condition on the validity regime of dRGT. We find that the cutoff of massive gravity is parametrically close to its mass, and tied to it by the linear relation,

Λ O(10) m , (5.1) 
independently of all the other parameters in the theory. Thus, compared to massless Einstein gravity, which is expected to span and be consistent over 60 order of magnitudes, the range of validity of an EFT of a massive spin-2 is confined to only one order of magnitude.

Constraining the dRGT gravity at t = 0

The theory dRGT gravity lends itself very well to be subjected to positivity bounds: not only it naturally contains a mass gap, but it is also characterized by amplitudes with a steep behavior in energy, hence captured by arcs (remember that by the Froissart bound (3.9), at least two subtractions are needed to ensure convergence at infinity). For this reasons positivity constraints have already been applied to massive gravity [START_REF] Cheung | Positive Signs in Massive Gravity[END_REF][START_REF] Bellazzini | Beyond Positivity Bounds and the Fate of Massive Gravity[END_REF][START_REF] De Rham | Positivity Bounds for Massive Spin-1 and Spin-2 Fields[END_REF], providing some stringent constraints to the parameters space (c 3 , d 5 ) of dRGT gravity. All those constraints have been recovered by considering the forward limit of dispersion relations encountered in section 3 and extending those to include finite t effects is plagued by one main difficulty: crossing symmetry at finite t for massive states is extremely complicated and leads to an intricate web of crossing related amplitudes, which appear when taking into account the u-channel branch-cut. In this section we review the results in the forward limit and extend them to matter-gravity couplings. We return to the question of including constraints at finite momentum transferred in section 5.2.

Gravity sector and the shrinking island

The analytic structure of the 4pt self-scattering of massive gravitons in the t → 0 limit is given by two dynamical poles located at m 2 and 3m 2 and branch-cuts on the right starting at 4m 2 and on the left starting at 0. We work with linear polarizations h = S, V, V , T, T as defined in chapter 4.1.1. In order to exploit the nice properties of elastic channels we consider 2 → 2 scattering, that can be easily recovered from the relation

(-p) = (-1) h (p) implying that M h 3 h 4 h 1 h 2 (s, t) ≡ 3 λ 3 4 λ 4 |M|1 λ 1 2 λ 2 is simply related to the all incoming amplitude M h 1 h 2 h 3 h 4 (s, t).

Finally, we declutter the notation by defining elastic amplitudes as

M h 1 h 2 (s, t) ≡ M h 1 h 2 h 1 h 2 (s, t).

We consider the following contour

A h 1 h 2 ≡ C ds 2πi M h 1 h 2 (s) (s -2m 2 ) 3 , (5.2) 
where we defined the forward limit as M h 1 h 2 (s) ≡ M h 1 h 2 (s, 0), and we chose the kernel appropriately to obtain a nice looking UV representation. This arc can be computed as a sum of residues

A h 1 h 2 = s i =0,2m 2 ,3m 2 
Res s i M h 1 h 2 (s) (s -2m 2 ) 3 = -Res s=∞ M h 1 h 2 (s) (s -2m 2 ) 3 , (5.3) 
where the residue at infinity is computed in the EFT (amplitudes in the forward limit grow as s 2 )1 . Hence, it can be easily extracted from the expansion

M h 1 h 2 (s) = Σ h 1 h 2 s 2 + O(s 0 ) for s m 2 giving A h 1 h 2 = Σ h 1 h 2 .
The UV representation of (5.2) is easily obtained by noticing that the forward amplitude for linear polarizations is crossing symmetric

M h 1 h 2 (s) = M h 1 h 2 (u = 4m 2 -s), leading to A h 1 h 2 = 2 π ∞ 4m 2 ds Im M h 1 h 2 (s) (s -2m 2 ) 3 > 0 , (5.4) 
where as usual unitarity implies Im M > 0 for elastic scattering, and the condition

Σ λ 1 λ 2 > 0 , (5.5) 
immediately follows. This inequality carves the phase-space of allowed coefficients (c 3 , d 5 ). As (5.5) holds for any states h i , whether helicity eigenstates or combinations thereof, we search for the optimal set of constraints by considering scattering of linear combinations of linear polarizations

1 (p 1 ) = h 1 α h 1 h 1 (p 1 ) , 2 (p 2 ) = h 2 β h 2 h 2 (p 2 ) .
(5.6)

Figure 5.1 -The (c 3 , d 5 ) parameter space of dRGT massive gravity. Forward-only positivity bounds from (5.5) carve the region inside the closed black line [START_REF] Cheung | Positive Signs in Massive Gravity[END_REF]. In the |t| m 2 limit, each elastic helicity reduces the parameter space to a line (corresponding to the vanishing of (5.34) in blue, (5.35) in green, and (5.36) in orange). In this limit, the lines do not intersect, and the theory is ruled out.

The elastic amplitude constructed in terms of these polarization tensors takes the form

M(s) ≡ λ 1 ...λ 4 α h 1 α * h 3 β h 2 β * h 4 M h 3 h 4 h 1 h 2 (s) = h 1 ...h 4 (-1) h 1 +h 3 α h 3 α * h 1 β h 2 β * h 4 M h 1 h 4 h 3 h 2 (4m 2 -s) , (5.7) 
where the second equality explicits the relation by crossing s ↔ u and we remind that (-1) h ≡ 1 for h = S, T, T , and (-1) h ≡ -1 for h = V, V . For simplicity, we can choose the coefficients such that the amplitude M(s) is still crossing symmetric and its UV representation keeps the form (5.4). This condition is achieved if α h is real for h = S, T, T and α h is purely imaginary for h = V, V . The analogous condition holds for β h . Notice that by scattering generic superpositions of polarizations, we effectively obtain constraints also from inelastic combinations that appear in (5.7).

We thus expand

M(s) = Σ(c 3 , d 5 , α h 1 , β h 2 )s 2 + O(s)
and minimize Σ over α h 1 , β h 2 subject to the conditions discussed. The (c 3 , d 5 ) pairs for which the minimum is negative or zero are excluded. The resulting constraints on the dRGT parameter space are shown as a black line in Fig. 5.1, where the exterior of the island is excluded by these standard positivity bounds as shown in [START_REF] Cheung | Positive Signs in Massive Gravity[END_REF]. In particular, the parameter c 3 characterizing the 3-graviton amplitude, cf. (4.7), is limited to the interval -0.06 c 3 0.31 .

(5.8)

The bounds recovered in the previous section can be improved by the following simple observation: the regime of validity of our EFT extends above the branch cuts of multi-particle production. Said otherwise, we can explicitly compute the contribution from part of the discontinuity (5.4) up to a given energy E, safely away from the physical cutoff E Λ. This procedure is referred to as beyond-positivity and was proposed in Ref. [START_REF] De Rham | Graviton Mass Bounds[END_REF][START_REF] Bellazzini | Beyond Positivity Bounds and the Fate of Massive Gravity[END_REF], setting stronger constraints on the residues

Σ h 1 h 2 > 1 2π E 2 4m 2 ds 1 (s -2m 2 ) 3 fn dΠ n | f n |M|1 h 1 2 h 2 | 2 (5.9)
where dΠ n is n-bodies Lorentz invariant phase-space. In the sum we can include any state in spectrum, each of which gives a positive contribution, hence improving the bound. Of course, the closer we consider E to Λ the larger the source of error will be, as higher order effects due to heavier UV states kick in. The right hand side of (5.9) is estimated, leading to an inequality of the form

F (c 3 , d 5 ) m Pl m Λ Λ 3 12 δ 6 , (5.10) 
where δ ≡ E Λ parametrizes the error in the estimate and can be chosen according to how conservative the bound should be, and F (c 3 , d 5 ) is a complicated expressions that can be found in Ref. [START_REF] Bellazzini | Beyond Positivity Bounds and the Fate of Massive Gravity[END_REF]. Eq. (5.10) can be interpreted as an upper bound on the physical cutoff Λ that can be optimized by marginalizing over the coefficients (c 3 , d 5 ) included in the island of Fig. 5.1. Alternatively, for growing choices of Λ/Λ 3 , the island of allowed parameters shrinks, until being erased at the maximum allowed cutoff.

Even if we are not interested in the exact coefficients, it is immediately clear that the cutoff has to lie below the scale

Λ Λ 4 ≡ (m 3 m Pl ) 1/4 . (5.11) 
For realistic graviton masses Λ 4 is many orders of magnitude lower than Λ 3 in (4.13), implying that the appearance of new physics must take place in a weakly coupled UV completion. For example, for m = 10 -32 eV, Λ -1 4 ≈ 3 × 10 7 km is an astronomical distance scale.

Bounding matter-gravity couplings

Positivity also constrains the parameters describing the interactions of the massive graviton with matter. This time the relevant object is the elastic Compton scattering amplitude in the forward limit computed in section 4.2.2:

M h X (s) ≡ 3 X 4 h |M|1 X 2 h t=0
, where X = s, f, v stands for scalar, fermion, or vector matter particles. We modify the arc (5.2) to arrange for this kinematic configuration as

A h = C ds 2πi M h X (s) (s -m 2 -M 2 ) 3 .
(5.12)

Analogously to (5.3), we compute the arc by expanding M h X (s) = Σ h X s 2 + O(s 0 ), and conclude that the coefficients Σ h X have to be strictly positive. We start with the positivity bounds on the massive graviton couplings to scalars, X = s. The general EFT parameter space, where non-forward Compton amplitudes grow as O(E 6 ) in the UV, consists of the graviton-scalar coupling strength c s , and the Wilson coefficients of the graviton-scalar contact terms c

(0) 1 , c (2) 
i , i = 1 . . . 3. Constraints are explored by considering matter scattering on a general combination of graviton polarizations: 2 (p 2 ) = h α h h (p 2 ). Moreover, Compton amplitudes depend also on the parameter c 3 characterizing the 3-graviton amplitude in dRGT.

We find the residue

Σ X = 1 m 2 m 2 Pl c s |α T | 2 + |α T | 2 + c s (7 -12c 3 ) -c (2) 3 4 |α V | 2 + |α V | 2 (5.13) + c 2 s + 6(1 -2c 3 )c s -c (2) 3 3 |α S | 2 .
(5.14)

The positivity bounds deduced from (5.13) are

E 6 : c s > 0, c (2) 
3 < c s (7 -12c 3 ), c (2) 
3 < c 2 s + 6(1 -2c 3 )c s .

(5.15)

We obtain a sharp result for the scalar coupling to massive gravitons: the overall coefficient c s of the 3-point amplitude in (4.2) has to be strictly positive. Fortunately, the GR value c s = 1 is consistent with positivity. Other Wilson coefficients in the scalar-graviton sector are not subject to positivity bounds. This is because

O (2) 1 , O (2) 
2 , and the O(s 2 ) contribution of O (0) 1 vanish in the forward limit.

Positivity bounds become simpler in the parameter region where the Compton amplitudes are softer for m E Λ. Softening the amplitude down to O(E 5 ) requires setting c

(2) 3 = 3c 2 sc s , cf. (4.10). Then (5.15) reduces to:

E 5 : c s > 0 , c 3 < 1 12 (8 -3c s ) , c 3 < 1 12 (7 -2c s ) . (5.16) 
Given the lower bound c 3 -0.06 in (5.8), (5.16) yields an upper bound c s 2.9.

To go further, softening Compton amplitudes down to O(E 4 ) is possible only for c s = 1. Then the first inequality in (5. [START_REF] Jin | Number of Subtractions in Fixed-Transfer Dispersion Relations[END_REF]) is moot, while the remaining two reduce to a single one

E 4 : c 3 < 5 12 .
(5.17) This is in fact weaker than the positivity bound on c 3 in (5.8) arising from graviton self-scattering. Softening the Compton amplitudes even further requires setting c 3 = 1/6, in which case (5.17) is moot. Thus, in the parameter region where the Compton amplitudes behave as O(E 3 ) for m E Λ, positivity of the forward Compton amplitudes is automatically fulfilled. For spin 1/2 and 1 matter particle the derivation of the positivity bounds is analogous. We only quote the final results for different levels of the EFT where the Compton amplitude behaves as O(E n ), n = 6, 5, 4, 3. For spin-1/2 fermions we find

E 6 : c f > 0 , -c 2 f + (7 -12c 3 )c f + 4c (1) 2 > 0, 6(1 -2c 3 )c f + 4c (1) 2 > 0 , E 5 : c f > 0 , c 3 < 1 12 (8 -3c f ) , c 3 < 1 12 (7 -2c f ) , E 4 : c 3 < 5 12 , (5.18) 
while for spin-1 matter we find

E 6 : c γ > 0 , -2c 2 γ + (7 -12c 3 )c γ > 2c A , -c 2 γ + 6(1 -2c 3 )c γ > 2c A , E 5 : c γ > 0 , c 3 < 1 12 (8 -3c γ ) -5 , c 3 < 1 12 (7 -2c γ ) , E 4 : c 3 < 5 12 .
(5. [START_REF] Xu | Helicity Amplitudes for Multiple Bremsstrahlung in Massless Nonabelian Gauge Theories[END_REF] In all cases, positivity is automatically fulfilled in the parameter region where Compton amplitudes grow as O(E 3 ) for m E Λ.

One thing that is striking about the positivity bounds is that they are universal for all matter particles, irrespectively of their mass and spin. In all cases they fix the sign of the gravity-matter coupling strength c X , and they become moot when the Compton amplitudes are softened to O(E 4 ). Furthermore, in our basis, they are sensitive to only a single contact term. Finally, for some values of c X and the relevant contact terms, they may imply new constraints on the dRGT parameter c 3 , in addition to those imposed by forward graviton self-scattering discussed in section 5.1.1.

For completeness, let us discuss beyond-positivity bounds in the context of couplings of a massive spin-2 particle to matter [START_REF] Bellazzini | Softness and amplitudes' positivity for spinning particles[END_REF][START_REF] Bellazzini | Beyond Positivity Bounds and the Fate of Massive Gravity[END_REF]. In the case at hand, the coefficient Σ h X of the s 2 term in the UV expansion of the forward Compton scattering amplitude calculated in the EFT must satisfy

Σ h X > 1 2π E 2 2m 2 +2M 2 ds (s -m 2 -M 2 ) 3 fn dΠ n | f n |M|1 X 2 h | 2 (5.20)
where again the sum is over all possible n-body final states, and dΠ n denotes the n-body phase space element. Above, | f n |M|1 X 2 h | are the elastic and inelastic amplitudes in the full theory, which however can be approximated by the corresponding EFT expressions for E below the EFT cutoff Λ. If the right-hand side is large, the condition on Σ h X is much stronger than mere positivity.

In the following we consider Compton scattering on a definite linear polarization state of the graviton. We focus here on scattering of massless photons, just because the number of parameters is the smallest in this case and the formulas are concise; however the discussion is similar for scalars and fermions. The relevant parameter space consists of the graviton mass m, the dRGT parameter c 3 , the photon-gravity coupling strength c γ , and the Wilson coefficient c A of the leading 2-graviton-2-photon contact term. For scattering on the scalar polarization, the left-hand side of (5.20) is

Σ S v = 1 3m 2 m 2 Pl [c γ (6 -12c 3 -c γ ) -2c A ] .
(5.21)

For the right-hand side we restrict to 2-body final states. Then the leading low-energy contribution to the integral comes from

| 3 v 4 S |M|1 v 2 S | 2
, which grows as s 3 for m E Λ. We can thus estimate the upper bound on the right-hand side:

r.h.s < (2c A + c γ -c 2 γ ) 2 Λ 8 34560π 2 m 8 m 4 Pl .
(5.22)

The beyond-positivity bound thus read

c γ (6 -12c 3 -c γ ) -2c A > (2c A + c γ -c 2 γ ) 2 11520π 2 Λ 8 Λ 8 4 , (5.23) 
where Λ 4 = (m 3 m Pl ) 1/4 . This condition can be satisfied in only two ways. For generic c A and c γ , we need Λ Λ 4 . This corresponds to Λ -1 being an astronomical distance scale, which restricts the usefulness of this EFT as a theory of gravity. The other way is to set

2c A + c γ -c 2 γ = 0.
This is of course exactly the first condition in (4.14) required to soften M v from O(E 6 ) down to O(E 5 ). Thus, the beyond-positivity bounds provide another rationale for restricting the EFT parameter space, so as to arrive at softer Compton amplitudes! This softening is necessary if our matter-gravity interactions are to emerge from a local, causal, and Poincaré invariant UV completion above a reasonably high cutoff scale.

Similarly, the beyond-positivity bound on Σ V ( ) v can be satisfied either for Λ Λ 3 = (m 2 m Pl ) 1/3 , or by setting c γ = 1 so as to avoid a large contribution of | 3 v 4 V ( ) |M|1 v 2 S | 2 on the right-hand side of (5.20). Once the Compton amplitudes are softened down to O(E 4 ), the beyond-positivity bounds become equivalent in practice to the standard positivity bounds.

Non-forward positivity and the Swampland

In this section we revisit positivity constraints including finite t effects. The improvements from the forward limit approach are achieved by exploiting the following two facts: positivity of α|M † M|α > 0 is a very rich expression, as it holds whatever superposition α considered, whether of helicity states or partial weaves. In particular, it implies that non-elastic configurations are bounded by elastic ones, as immediately recovered by considering states such as (sin θ|α + cos θ|β ), for a generic angle θ. The second observation is that in the regime m 2 |t| Λ 2 s (relevant for the integration on the UV representation) crossing takes a simple form, as the graviton mass becomes essentially negligible and crossing is approximated by its massless counterpart. We explore these facts and apply them to dRGT gravity to recover the parametric bound (5.1) in sections 5.2.1 and 5.2.2. We consider possible higher order deformations to dRGT gravity in section 5.2.3 reaching the same conclusion. In this section, we find it convenient to work with helicity eigenstates, denoted by λ i = (0, +, -, ++, --), see section 4.1.1.

Positivity once again

In order to impose positivity constraints on dRGT at finite t, we consider the usual assumptions of unitarity, causality/analyticity, crossing symmetry, polynomial boundedness and EFT scales separation, as already discussed at length in chapter 1, accompanied with the next few observations. Unitarity of the S-matrix, when evaluated on any complete set of states, is ultimately responsible for positivity. In practical applications only truncated sets of states can be considered (e.g. finite number of partial waves, states of definite helicity, etc. . . ), and each of these sets accesses different partial information. To efficiently probe the theory at finite momentum exchange, we work with generic initial |1 λ 1 2 λ 2 and final |3 λ 3 4 λ 4 2-particle states of arbitrary momentum and helicity λ i . Here |3 λ 3 4 λ 4 ≡ R(θ)|1 λ 3 2 λ 4 is defined by a rotation R(θ) = exp(-iJ 2 θ) of an initial state with given helicity. Positivity of |M(|1 λ 1 2 λ 2 + e iα |3 λ 3 4 λ 4 )| 2 for all α, implies,

2 3 λ 3 4 λ 4 |M † M|1 λ 1 2 λ 2 ≤ 1 λ 1 2 λ 2 |M † M|1 λ 1 2 λ 2 + 3 λ 3 4 λ 4 |M † M|3 λ 3 4 λ 4 .
(5.24)

This has a simple, but powerful, physical interpretation: inelastic M † M matrix elements must be smaller than elastic ones. By unitarity the same statement holds for (M-M † )/i. When reduced to equal helicities (λ 1 , λ 2 ) = (λ 3 , λ 4 ), (5.24) implies that M † M in non-forward scattering must be smaller than in forward one (generalising [START_REF] Bellazzini | The Ir-Side of Positivity Bounds[END_REF][START_REF] Camanho | Causality Constraints on Corrections to the Graviton Three-Point Coupling[END_REF][START_REF] Guerrieri | Where is M-theory in the Space of Scattering Amplitudes?[END_REF] to all helicities). When limited to the forward limit, instead, it implies that scattering of inelastic helicity must be suppressed w.r.t. the elastic one. Since much of our understanding of dispersion relations relies on elastic scattering, (5.24) provides an intuitive way of readily extending previous results to inelastic scattering. The second observation is related to crossing symmetry. This is a simple relation between amplitudes as functions of momenta, and holds in generic reference frames. In the forward or massless limit, it involves exchanging any two legs of an amplitude. At finite momentum exchange and mass, however, an additional boost must be performed to bring back the amplitude into the c.o.m frame. In a crossing transformation that takes one particle in the in/out state into an anti-particle of the out/in state, the resulting Wigner rotations generically mix all helicities,

M λ 3 λ 4 λ 1 λ 2 (s, t) = S λ i =-S X λ 1 λ 2 λ 3 λ 4 λ 1 λ 2 λ 3 λ 4 (s, t)M λ 3 λ 4 λ 1 λ 2 (u, t) , (5.25) 
with S the spin of the particle, and X the crossing matrix-writable in terms of a string of Wigner-d matrices [START_REF] Cohen-Tannoudji | Kinematical Singularities, Crossing Matrix and Kinematical Constraints for Two-Body Helicity Amplitudes[END_REF][START_REF] De Rham | UV Complete Me: Positivity Bounds for Particles with Spin[END_REF][START_REF] Hebbar | Spinning S-Matrix Bootstrap in 4D[END_REF][START_REF] Davighi | Natural Selection Rules: New Positivity Bounds for Massive Spinning Particles[END_REF].

We exploit the fact that for large center of mass energy m 2 , -t s, the structure of X greatly simplifies,

X λ 1 λ 2 λ 3 λ 4 λ 1 λ 2 λ 3 λ 4 (s, t) ∝ i |t|m s |λ i -λ i | , (5.26) 
providing a |t|m/s suppression for any helicity change from the original configuration. So, for elastic helicity, (5.25) becomes,

M λ 1 λ 2 (u, t) = Mλ 1 λ 2 (s, t) + c λ 1 λ 2 λ 1 λ 2 λ 3 λ 4 |t|m s + O tm 2 su M λ 3 λ 4 λ 1 λ 2 (s, t) , (5.27) 
where λ ≡ -λ and in the first term of the second line we sum over the 8 inelastic amplitudes λ 1 λ 2 λ 3 λ 4 with only one ±1 helicity change w.r.t λ 1 λ 2 λ 1 λ 2 . Moreover, c ≤ √ 6 for spin-2 particles.

Notice that some of the inelastic amplitudes on the r.h.s. of (5.27) are further suppressed by powers of t due to angular momentum conservation close to the forward limit. Now the goal is to show for what values of the ratio m/Λ the assumptions of causality and unitarity are compatible with each other, in the context of dRGT. Because of the simple analytic structure and the behavior under crossing, we focus on elastic-helicity amplitudes. We introduce the integral,

A λ 1 λ 2 (t) = 1 2 C ds 2πi M λ 1 λ 2 (s, t) + Mλ 1 λ 2 (s, t) (s -2m 2 + t/2) 3 , (5.28) 
along a contour C in s ∈ C running around the origin at 4m2 |s| Λ 2 , so that it avoids the amplitude poles while remaining within the region of validity of the EFT, as shown in Fig. 5.2. Because the theory is weakly coupled all the way to the cutoff (see section 5.1.1), we assume that it is possible to neglect the effects of IR loops; these can systematically be taken into account; see Refs. [START_REF] Arkani-Hamed | The EFT-Hedron[END_REF][START_REF] Bellazzini | The Ir-Side of Positivity Bounds[END_REF][START_REF] Bellazzini | Positive Moments for Scattering Amplitudes[END_REF][START_REF] Riembau | Full Unitarity and the Moments of Scattering Amplitudes[END_REF][START_REF] Chala | Positivity bounds in the standard model effective field theory beyond tree level[END_REF][START_REF] Li | Positivity bounds at one-loop level: the Higgs sector[END_REF]. Then, A λ 1 λ 2 can be calculated explicitly in terms of the free parameters of the EFT: c 3 and d 5 in the case of dRGT 2 .

Because of analyticity, C can be deformed to run along the branch cuts and a big circle at infinity, which vanishes due to the Froissart bound. Hermitian analyticity puts A λ 1 λ 2 in the form of a dispersive integral of (M -M † )/i, and by crossing symmetry it can be rewritten as a single integral over the physical values of the Mandelstam variable s.

The EFT scale separation, allows us to work at m 2 |t| M 2 , so that crossing symmetry within the integral in |s| ≥ M 2 takes the simple approximate form (5.27). Using unitarity we rewrite (M -M † )/i to obtain the following UV representation for A λ 1 λ 2 ,

A λ 1 λ 2 (t) = ∞ M 2 ds 4π 1 (s -2m 2 + t/2) 3 × 3 λ 1 4 λ 2 |M † M|1 λ 1 2 λ 2 + 3 λ 1 4 λ2 |M † M|2 λ2 1 λ 1 + cλ 1 λ 2 λ 1 λ 2 λ 3 λ 4 |t|m M 2 + O tm 2 M 4 E λ 1 λ 2 λ 3 λ 4 (5.29) with cλ 1 λ 2 λ 1 λ 2 λ 3 λ 4 ≡ (c λ 1 λ 2 λ 1 λ 2 λ 3 λ 4 +c λ 1 λ2 λ 1 λ 2 λ 3 λ 4
)/2. The contribution in the last line reflects the departures from elastic crossing in (5.27), for s ≥ M 2 . From unitarity (5.24), these inelastic effects must be bounded by elastic ones, that can themselves be written in terms of the A λ 1 λ 2 using (5.29),

E λ 1 λ 2 λ 3 λ 4 ≤ A λ 1 λ 2 (0) + A λ 3 λ 4 (0) , (5.30) 
up to corrections of O( |t|m/M 2 ) or O(t/M 2 ). Since the r.h.s. of this expression is computable within the EFT using the IR representation (5.28), (5.29) can be used to formulate positivity bounds with complete control of terms of order |t|m/M 2 . By keeping higher order terms in the iteration of (5.29), this control can be easily extended to all orders. The positivity bounds follow directly from the UV representation of A λ 1 λ 2 in (5.29). In the forward limit t → 0, |3 λ 4 λ → |1 λ 2 λ so that A λ 1 λ 2 (t → 0) is a sum of squares, implying,

A λ 1 λ 2 (0) ≥ 0 , (5.31) 
with the equal sign obtained only in the free theory. For t = 0 instead, we use the fact that the matrix elements of M † M are smaller than those at t = 0, see (5.24), and obtain,

|A λ 1 λ 2 (t)| A λ 1 λ 2 (0) ≤ 1 + O |t|m M 2 (5.32)
where the term O( |t|m/M 2 ) on the r.h.s. is bounded by the sum of the 8 known IR terms,

( |t|m/M 2 )c λ 1 λ 2 λ 1 λ 2 λ 3 λ 4 (A λ 1 λ 2 (0)+A λ 3 λ 4 (0))/A λ 1 λ 2 (0).
In what follows we will take |t|m/M 2 small enough so that these terms can be neglected.

We remark that in the general case of scattering identical massless particles of arbitrary spin, we can write the exact inequality,

|A λ 1 λ 2 (t)| A λ 1 λ 2 (0) ≤ 1 + t/2M 2 -3 (m = 0) , (5.33) 
similarly to the massless scalar case of Ref. [START_REF] Bellazzini | The Ir-Side of Positivity Bounds[END_REF].

The problem of finding all positivity constraints for massive spin-2 particles is very complex, since crossing symmetry mixes hundreds of different amplitudes with each other, producing a nested network of positivity relations. These can in principle be solved with the methods of e.g. [START_REF] Arkani-Hamed | The EFT-Hedron[END_REF][START_REF] Bellazzini | The Ir-Side of Positivity Bounds[END_REF][START_REF] Chiang | Into the Efthedron and UV Constraints from IR Consistency[END_REF][START_REF] Caron-Huot | Sharp Boundaries for the Swampland[END_REF][START_REF] Bellazzini | Positive Moments for Scattering Amplitudes[END_REF][START_REF] Caron-Huot | Extremal Effective Field Theories[END_REF][START_REF] Tolley | New Positivity Bounds from Full Crossing Symmetry[END_REF], but the advantage of working at leading order in |t|m/M 2 is captured by the simplicity of (5.32), which singles out 6 independent inequalities for the elastic helicities

1 λ 1 2 λ 2 = 1 0 2 0 , 1 0 2 + , 1 + 2 + , 1 ++ 2 ++ , 1 ++ 2 0 , 1 ++ 2 + (
where we denote helicities by 0, +, and ++, with other elastic configurations related to these ones by accidental parity, time-reversal and crossing in dRGT). The inequalities in (5.32), via the IR representation (5.28), will be sufficient to constrain the parameter space of dRGT in the next section.

Positivity in dRGT

Scattering amplitudes in dRGT massive gravity are suppressed by m 2 in the forward limit and, for some helicities, grow rapidly at large |t|. For |t| m 2 this behaviour is incompatible with (5.32), for |t|/Λ 2 small enough.

Of the six elastic-helicity configurations at our disposal, the strongest bounds will come from λ 1 λ 2 = 00, 0+, ++. Computing the arcs from our results in chapter 4, we obtain

A 00 ----→ m 2 |t| t 6Λ 6 3 1 -4c 3 + 36c 2 3 + 64d 5 (5.34) A 0+ ----→ m 2 |t| t 96Λ 6 3 1 + 24c 3 + 144c 2 3 + 384d 5 (5.35) A ++ ----→ m 2 |t| 9t 64Λ 6 3 (1 -4c 3 ) 2 ,
(5.36)

while amplitudes involving the transverse polarisations do not grow with |t|. This has to be contrasted with the values in the forward limit,

A 00 --→ t=0 2m 2 9Λ 6 3 7 -6c 3 -18c 2 3 + 48d 5
(5.37) (5.39)

A 0+ --→ t=0 m 2 48Λ 6 3 91 -312c 3 + 432c 2 3 + 384d 5 (5.38)
Now, an EFT with a large range of validity can, by definition, be used at energies much larger than the particle mass, m 2 |t| Λ 2 . In this limit, the bounds from applying (5.32) to (5.34-5.39), would converge to three lines in the (c 3 , d 5 ) plane, corresponding to the vanishing of (5.34), (5.35) and (5.36). These three lines have no common intersection, as illustrated in Fig. 5. 1. This implies that in dRGT massive gravity, the cutoff of the theory cannot be arbitrarily large compared to the mass. To quantify this, we run a bootstrap algorithm for the ratio m 2 /Λ 2 , assuming only the existence of a range |t| Λ 2 for which dRGT is a valid description of massive spin-2 scattering. For each value of m 2 /Λ 2 , we determine the set of points (c 3 , d 5 ) that are compatible with the finite-t bound in (5.32); if the set is not empty then we lower m 2 /Λ 2 and repeat; if the set is empty, the value is inconsistent with the assumptions i)-vi) and is discarded. This algorithm is made explicit in Fig. 5.3.

In this way, we find that the cutoff scales linearly with the mass, and is limited to being parametrically close to it,

Λ ≤ 30 m × 0.1 -t/Λ 2 1/2 .
(5.40)

We have presented the bound in this way to highlight the fact that it becomes stronger as the theory is evaluated at larger energies |t|/Λ 2 , closer and closer to the cutoff, while still being described by dRGT. Since m 2 /Λ 2 and |t|/Λ 2 are both small, the error to (5.32) is also small, and therefore the bound from (5.40) is accurate enough.

Beyond dRGT: Higher Derivative Massive Gravity

In the previous section we have assumed that dRGT accurately describes massive spin-2 scattering within the EFT. In general, there might be higher derivative interactions, beyond those of dRGT, that also contribute to the scattering amplitudes via terms with more powers of the energy. These enter A λ 1 λ 2 (t) as higher powers in t. As long as these terms are suppressed by powers of Λ, and are controlled by coefficients ∼ O(1) w.r.t dRGT, our arguments are modified only by higher powers of the small ratio |t|/Λ 2 . In this section, we relax this assumption, and study the possibility that above some intermediate scale E * , with m E * < Λ, dRGT transitions into a different theory, controlled by the most general higher-derivative EFT. Such a theory cannot be dominated by just a few higher-derivative operators with large coefficients, otherwise we could apply the same arguments as in section 5.2.2 to

A λ 1 λ 2 (E 2 * |t| Λ 2
) and exclude it, since a low order polynomial in t/E 2 * would quickly exceed 1 in (5.32). What we have in mind here is the most general theory of several or infinitely many higher derivative terms with large coefficients, arranged such that their contributions to A λ 1 λ 2 resum to a small function of t/Λ.

Can such a theory exist?

To answer this question we provide an alternative derivation of the bound that led to the non-intersecting lines in the left panel of Fig. 5.3 (for which we used |t| m 2 in section 5.2.2). In this derivation we will not assume that A λ 1 λ 2 is at most linear in t, as in dRGT, but allow for arbitrary powers of t with arbitrary coefficients. On the other hand, in this derivation, we will not provide a quantitative bound on Λ/m and work at zeroth order in m, keeping Λ 3 fixed (this is known as decoupling limit, in which the transverse polarizations decouple).

At this order, besides the simplification of crossing symmetry discussed in iii), the EFT amplitudes also simplify because the theory effectively reduces to that of a massless shift-symmetric scalar, a photon, and a graviton. At high energy we are thus able to write all-orders Ansätze, the relevant ones being,

3 0 4 0 |M|1 0 2 0 = H(s, t),
(5.41)

3 + 4 -|M|1 + 2 -= 32 2 [14] 2 G +-(s, t), (5.42 
)

3 0 4 + |M|1 0 2 + = 41 2 [12] 2 G 0+ (s, t), (5.43) 
where we have factored out little group scalings, and H and G λ 1 λ 2 are functions that contain only dynamical singularities. Moreover, within the decoupling limit and within the EFT range of validity, they are also analytic functions, since none of the 3-pt functions between one neutral Goldstone boson and the gauge boson give rise to on-shell poles. Crossing symmetry implies that

G 0+ (s, t) = G 0+ (u, t), G +-(s, t) = G +-(t, s), while H is fully s -t -u crossing symmetric.
Therefore, their most general tree-level low-energy expressions are,

H(s, t) = h 0 (s 2 + t 2 + u 2 )/2 + h 1 stu + . . . (5.44) G +-(s, t) = f 0 + f 1 (s + t) + f 2 (s 2 + t 2 ) + . . . (5.45) G 0+ (s, t) = g 0 + g 1 t + g 2 (s 2 + u 2 ) + g 2 su + . . . (5.46) 
Refs. [START_REF] Caron-Huot | Sharp Boundaries for the Swampland[END_REF][START_REF] Bellazzini | Positive Moments for Scattering Amplitudes[END_REF][START_REF] Caron-Huot | Extremal Effective Field Theories[END_REF][START_REF] Tolley | New Positivity Bounds from Full Crossing Symmetry[END_REF] have derived bounds for all the coefficients in the most general EFT for scalars. These can be readily applied to the ratios h i /h 0 , constraining them from above and below in appropriate units of Λ, independently of the value of all the other coefficients. Similarly, Ref. [START_REF] Henriksson | Bounding Violations of the Weak Gravity Conjecture[END_REF][START_REF] Henriksson | Rigorous Bounds on Light-By-Light Scattering[END_REF][START_REF] Häring | Bounds on photon scattering[END_REF] derived two-sided bounds for spin-1 particles, which can be read in terms of f i /f 0 .

We perform a similar analysis, for amplitudes involving both spin-1 and spin-0 particles. We exploit the fact that, again because of crossing symmetry, the form factors in Eqs. (5.41-5.43) also control other amplitudes, namely, 3 -4 + |M|1 0 2 0 = 41 2 [13] 2 G 0+ (t, s) and 3 + 4 + |M|1 + 2 + = 34 2 [12] 2 G +-(u, t). This allows us to study inelastic channels to find lower and upper bounds on the g i 's.

Contrarily to section 5.2.2, here we exploit the expansion of dispersion relations at t ≈ 0, order by order in t. There are many implementations of this idea, that differ by how they extract information from the UV integrals: using positive geometry [START_REF] Arkani-Hamed | The EFT-Hedron[END_REF], semidefinite optimization e.g. [START_REF] Caron-Huot | Sharp Boundaries for the Swampland[END_REF][START_REF] Caron-Huot | Extremal Effective Field Theories[END_REF][START_REF] Albert | Bootstrapping Pions at Large N[END_REF][START_REF] Fernandez | Cornering Large-N c QCD with Positivity Bounds[END_REF], or moment theory [START_REF] Bellazzini | The Ir-Side of Positivity Bounds[END_REF][START_REF] Chiang | Into the Efthedron and UV Constraints from IR Consistency[END_REF][START_REF] Bellazzini | Positive Moments for Scattering Amplitudes[END_REF]. Here we use the latter, reviewed in section 3.4, which allows to easily derive analytic bounds.

We define s-channel dispersion relations for amplitudes stripped from their little group scal-

ings [L.G.] n Ãλ 3 λ 4 λ 1 λ 2 (t) = 1 2iπ C ds s n+3 M λ 3 λ 4 λ 1 λ 2 (s, t) [L.G.] , (5.47) 
where [L.G.] is 32 2 [14] 2 /s 2 for (+-→ +-) and 41 2 [12] 2 /s 2 for (0+ → 0+), . . . , while it's 1 for (00 → 00). We first focus on elastic scattering n Ãλ

1 λ 2 λ 1 λ 2 (t) ≡ Ãn λ 1 λ 2 (t).
The direct evaluation of (5.47) provides an IR representation in terms of the Wilson coefficients defined in Eqs. (5.44-5.46), e.g.

Ãn 00 (t) =    h 0 -h 1 t + h 2 t 2 + . . . n = 0 2 3 h 2 t + . . . n = 1 1 3 h 2 + . . . n = 2 (5.48) 
etc., while Ã0 0+ (t) = g 0 + tg 1 + . . ., Ã0 -+ (t) + Ã0 ++ (t) = 2f 0 + f 1 t + . . ., and Ã0 -+ (t) -Ã0 ++ (t) = f 1 t + . . ., and so on.

The Ãn λ 1 λ 2 admit also a UV representation, from deforming the contour along the branch cuts. Further expanding in partial waves, the Ãn 00 and Ãn 0+ take the form,

8(2 + 1) ∞ M 2 dsK n λ 1 λ 2 (s, t)P (0,2|λ 12 |) -|λ 12 | (1 + 2t s ) (5.49) 
where P (a,b) (x) are Jacobi polynomials and the kernels K n λ 1 λ 2 are given by,

K n 00 = 1 s n+3 + (-1) n 1 (s + t) n+3 ImM 00
(5.50)

K n 0+ = 1 s n+1 + (-1) n 1 (s + t) n+1 ImM 0+ s 2 .
(5.51)

A similar but longer expression holds for Ã0 -+ ± Ã0 ++ . Analogously to section 3.4, we expand in powers of t, define J 2 ≡ ( + 1) and use P 0,2λ

-λ (1 + ) = 1 + J 2 -λ(1 + λ)) + O( 2 )
. Thus, we can write (5.49) in terms of moments,

µ λ i λ j n,m = J ∞ M 2 ds s n+3 J 2m ImM J 2 λ i λ j (s) ≥ 0 (5.52)
of the 2-dimensional positive measures ImM J 2 λ i λ j (s) 3 . Matching powers of t between the IR and UV representations Eqs. (5.48, 5.49) we can write Wilson coefficients in terms of moments,

h 0 = 2µ 00 0,0 , h 1 = 3µ 00 1,0 -2µ 00 1,1 , (5.53) 
g 0 = 2µ +0 0,0 , g 1 = -5µ +0 1,0 + 2µ +0 1,1 , (5.54 
)

f 0 = µ -+ 0,0 + µ ++ 0,0 , f 1 = µ -+ 1,0 -µ ++ 1,0 . (5.55) 
Considering Ãn λ 1 λ 2 with n > 0 reveals that Wilson coefficients admit more than one representation in terms of moments -a consequence of crossing symmetry. For instance, h 2 appears in n = 0 as well as in n = 2 of (5.48), while f 1 appears in both Ã0 -+ ± Ã0 ++ . This leads to sum rules among moments, or null constraints [START_REF] Caron-Huot | Extremal Effective Field Theories[END_REF][START_REF] Tolley | New Positivity Bounds from Full Crossing Symmetry[END_REF]. For our purpose it will be enough to use the simplest ones, 8µ 00 2,1 = µ 00 2,2 , (5.56)

7µ -+ 1,0 = µ -+ 1,1 + µ ++ 1,1 ,
which connect moments in J 2 to moments in 1/s. All positivity relations satisfied by moments can be obtained by integrating positive polynomials in J 2 and 1/s, see e.g. [START_REF] Bellazzini | The Ir-Side of Positivity Bounds[END_REF][START_REF] Chiang | Into the Efthedron and UV Constraints from IR Consistency[END_REF]. From positive monomials, it follows that all moments are positive, which directly leads to g 0 , h 0 , f 0 ≥ 0. Instead, from the polynomial (1 -Λ 2 /s) (positive because the measure is supported for s ≥ Λ 2 ), we find that moments in 1/s are monotonically decreasing, µ

λ i λ j n,m ≥ Λ 2 µ λ i λ j n+1,m .
(5.57)

Finally, from the positive quadratic polynomial (a + bJ 2 /s) 2 , we find positive definiteness of the Hankel matrix, det µ

λ i λ j 0,0 µ λ i λ j 1,1 µ λ i λ j 1,1 µ λ i λ j 2,2
> 0 .

(5.58)

These positive relations, possibly supplemented by null constraints (5.56), lead to lower and upper bounds for all coefficients in units of the lowest ones. Indeed, the conditions (5.57) and (5.58) for 00-scattering combined with (5.56) give µ 00 1,1 Λ 2 ≤ 8µ 0,0 0,0 , and therefore Λ 2 h 1 /h 0 ≤ 3Λ 2 µ 00 1,0 /2µ 00 0,0 ≤ 3/2 and Λ 2 h 1 /h 0 ≥ -Λ 2 µ 00 1,1 /µ 00 0,0 ≥ -8, implying an upper and lower bound on h 1 . Likewise, it is easy to prove an upper and lower bound for f 1 and a lower bound for g 1 . In summary

-8h 0 ≤ h 1 Λ 2 ≤ 3 2 h 0 , (5.59) 
-f 0 ≤ f 1 Λ 2 ≤ f 0 , (5.60) - 5 2 g 0 ≤ g 1 Λ 2 , (5.61) 
Although not optimised, these relations are conservative.

3 These are defined by

M λ3λ4 λ1λ2 = 8π (2 + 1)d λ12λ34 (θ)M λ3λ4 λ1λ2 (s), with M J 2 λiλj (s) ≡ M (J) λiλj λiλj (s) and J = J 8 √ 1 + 4J 2 = 8(2 + 1) with ≥ |λ i -λ j |.
We expand in partial waves for identical massive particles and take the massless limit afterwards -this removes factors of 2 from our expressions.

For the upper bound of g 1 we must instead consider inelastic channels M -+ 00 and M 00 -+ . As discussed above, these are controlled by the same function G 0+ in (5.46), and lead to another representation of g 1 ,

g 1 = 1 2 1 Ã-+ 00 + 1 Ã00 -+ t=0 = - 1 4 J J 2 ∞ M 2 ds s 4 √ J 2 -2 J (ImM -+ 00 ) J 2 + (ImM 00 -+ ) J 2 + (ImM +0 0+ ) J 2 + (ImM 0+ +0 ) J 2 (5.62)
where (ImM

λ 3 λ 4 λ 1 λ 2 ) J 2 ≡ λ 3 λ 4 |(M † M) |λ 1 λ 2 /2
. Now, a bound on g 1 emerges from inequalities between elastic and inelastic partial waves implied by unitarity. Positivity of the norm for the partial waves amplitudes M(|00 + | -+ ) and M(| + 0 + |0+ ), analogous to (5.24), with (J 2 -2) 1/2 /J ≤ 1, puts (5.62) in the form,

g 1 ≤ J J 2 4 ∞ M 2 ds s 4 ImM J 2 00 + ImM J 2 -+ + 2ImM J 2 +0 .
Using (5.54) and observing that J in (5.62) runs over a restricted set of J-values w.r.t. (5.52), gives,

6µ +0 1,1 ≤ 20µ +0 1,0 + µ 00 1,1 + µ -+ 1,1 . (5.63) 
This upper bound, together with (5.53), (5.54), (5.55), the null constraints (5.56), and the constraints (5.57) and (5.58), implies

- 5 2 g 0 ≤ g 1 Λ 2 ≤ 1 3 (10g 0 + 4h 0 + 7f 0 ) . (5.64)
and holds regardless of higher derivative terms, which are similarly bounded.

In a theory that reduces to dRGT at low energies, and departs from it only by higher derivative terms, the most relevant terms h 0,1 , f 0,1 and g 0,1 must match with dRGT, i.e.

-h 1 t = Eq. (5.34), g 1 t = Eq. (5.35), 3 2 f 1 t = Eq. (5.36) .

(5.65)

The coefficients h 0 , g 0 , and f 0 are mass-suppressed and thus vanish at the order O(m 0 ) that we assume in this section. Therefore, combining these explicit expressions with the bounds in Eqs. (5.59-5.60) and (5.64) leads to exactly the same situation as in Fig. 5.3, but this time, independently of all higher derivative terms.

In the decoupling limit discussed here, transverse modes are decoupled and, moreover, they have no impact on bounds. Beyond this limit, at finite m, they can be included back in the analysis by extending the EFT analytic structure of the form factors to include their poles. Extra poles are best addressed via the functional approach of [START_REF] Caron-Huot | Sharp Boundaries for the Swampland[END_REF][START_REF] Caron-Huot | Causality Constraints on Corrections to Einstein Gravity[END_REF][START_REF] Hong | Causality bounds on scalar-tensor EFTs[END_REF], and produce relative corrections O(m 2 /Λ 2 log Λ 2 /m 2 ), as estimated in the eikonal limit of the functionals (see chapter 7).

In conclusion, massive gravity cannot have a parametric separation of scales Λ/m, independently of how it is modified at high energy.

The fate of Massive Gravity

The EFT of massless gravitons is a priori consistent from the smallest energy scale in the universe H 0 ∼ 10 -42 GeV, to the largest one m Pl ∼ 10 18 GeV, i.e. over about 60 orders of magnitude. The results presented in this chapter show that consistency of the EFT of a massive graviton is instead confined into a narrow energy window, spanning from the graviton mass by at most one order of magnitude. This constitutes an improvement of 15 orders of magnitude w.r.t. previous bounds [START_REF] Cheung | Positive Signs in Massive Gravity[END_REF][START_REF] Bellazzini | Beyond Positivity Bounds and the Fate of Massive Gravity[END_REF][START_REF] De Rham | Positivity Bounds for Massive Spin-1 and Spin-2 Fields[END_REF].

We devised new and simple positivity bounds based on an approximate crossing symmetry that is valid in weakly coupled EFTs with a hierarchy between mass m and cutoff Λ. The simple relations we obtain can be employed within dispersion relations (based on unitarity and causality) to study complex problems, such as massive higher-spin scattering. They lead to (5.32), which bounds the energy growth of elastic-helicity amplitudes to lie within a certain envelop. With this, we found that massive gravity can not sustain a parametrically large mass hierarchy, see (5.40) and Fig. 5.3, as it would fail our positivity bounds. This conclusion is robust w.r.t. the inclusion of arbitrary number of higher derivative terms, as well as higher order corrections to our version of simplified crossing symmetry.

Our results exclude massive gravity with just the graviton and nothing else in the spectrum below O(10)m. They do not exclude theories with no parametrically large separation of scales, such as KK gravitons that arise from the compactification of extra dimensions 4 , or theories that do not fulfill our assumptions. Moreover, the quantitative bound in (5.40) becomes inaccurate if one pushes it to the regime m 2 ∼ t ∼ Λ 2 , where it seems to become stronger. In the context of gravity, however, more stringent bounds would be incompatible with the inherently flat-space formulation of the dispersive approach, as curvature corrections can no longer be neglected for Λ ∼ m ∼ H 0 . The extension of positivity bounds to theories in non-flat backgrounds is very interesting [START_REF] Baumann | Signs of Analyticity in Single-Field Inflation[END_REF][START_REF] Grall | Positivity Bounds without Boosts[END_REF], albeit rather subtle [START_REF] Creminelli | Positivity Bounds on Effective Field Theories with Spontaneously Broken Lorentz Invariance[END_REF].

Part III

Exploring gravity at long distance Chapter 6

The eikonal approximation Consider the high energy scattering of two bodies (particles, strings, planets, black holes,...), propagating one towards the other from infinity, but separated by a large impact parameter, i.e. large distance in the plane transverse to the scattering. The interaction is gravitational, and as the pull of gravity becomes weak at large distance for D ≥ 4, trajectories are approximately straight lines, resulting in a small scattering angle θ ∼ t/s 1. At such transplanckian energies, gravity dominates over other effects (despite naively being the weakest force). Furthermore, as long as the impact parameter is large enough, strongly coupled effects such as black hole production can be neglected, and the analysis remains under perturbative control. This is the scenario described by the eikonal approximation.

The eikonal framework is an excellent playground to not only make physical predictions that are relevant for modern physics and new generations of gravitational waves detectors, but also to explore new physical phenomena and hopefully learn some theoretical facts about Nature. It has a long history that started in non-relativistic quantum mechanics inspired by the geometric optics limit, see e.g. [START_REF] Landau | Course of theoretical physics vol 3 quantum mechanics[END_REF], and is relevant in various physical contexts, such as QED or QCD. One of most interesting applications in modern times was the study of transplanckian scattering of massless particles in a beautiful series of works [START_REF] Amati | Classical and Quantum Gravity Effects from Planckian Energy Superstring Collisions[END_REF][START_REF] Amati | Superstring Collisions at Planckian Energies[END_REF][START_REF] Amati | Higher Order Gravitational Deflection and Soft Bremsstrahlung in Planckian Energy Superstring Collisions[END_REF][START_REF] Amati | Planckian Scattering Beyond the Semiclassical Approximation[END_REF][START_REF] Hooft | Graviton Dominance in Ultrahigh-Energy Scattering[END_REF][START_REF] Verlinde | Scattering at Planckian Energies[END_REF][START_REF] Kabat | Eikonal Quantum Gravity and Planckian Scattering[END_REF], where one of the original motivations was to construct explicitly a unitary S-matrix to address the black hole information paradox1 . Despite the original goal being beyond reach, the eikonal has recently found a new life with the detection of gravitational waves (GWs) that has sparked a fervent activity in the application of such method to study the scattering of massive compact objects such as black holes or neutron stars, see e.g. Refs. [START_REF] Bern | Black Hole Binary Dynamics from the Double Copy and Effective Theory[END_REF][START_REF] Kälin | Post-Minkowskian Effective Field Theory for Conservative Binary Dynamics[END_REF][START_REF] Mogull | Classical Black Hole Scattering from a Worldline Quantum Field Theory[END_REF][START_REF] Cheung | Tidal Effects in the Post-Minkowskian Expansion[END_REF][START_REF] Herrmann | Radiative classical gravitational observables at O(G 3 ) from scattering amplitudes[END_REF][START_REF] Vecchia | The eikonal approach to gravitational scattering and radiation at O(G 3 )[END_REF][START_REF] Brandhuber | Classical Gravitational Scattering from a Gauge-Invariant Double Copy[END_REF][START_REF] Bjerrum-Bohr | Classical gravity from loop amplitudes[END_REF][START_REF] Buonanno | Snowmass White Paper: Gravitational Waves and Scattering Amplitudes[END_REF][START_REF] Bastianelli | Light Bending from Eikonal in Worldline Quantum Field Theory[END_REF], and references therein for an incomplete list of works on this subject.

One of the most exciting features of the eikonal approximation is that it remains valid even when the center of mass energy becomes enormous, and even transplanckian. Transplanckian scattering -reached for extremely boosted particles relative to one another or just for very massive (e.g. astrophysical) bodies-is characterised by a large gravitational coupling, and the perturbative approximation scheme with a finite number of Feynman's diagrams is no longer viable. In spite of the worrisome task of resumming an infinity of diagrams, one small parameter is still present: the scattering angle θ. Hence, families of diagrams can be classified by their suppression in the ratio t/s. In particular, the leading contribution comes from the so-called This chapter is devoted to understand this fascinating exponentiation in more details: what is its validity? Does it take place also for subleading effects? How does the inclusion of spinning states modifies it? How are observables such as scattering angles and time delay extracted from the phase-shift?

The chapter is organized as follows: section 6.1 is dedicated to derive the eikonal amplitude, first by reviewing the diagrammatic exponentiation of ladder and cross-ladder contributions at leading order and then by studying the large angular momentum limit of partial waves decomposition. The latter allows us to take into account also subleading and spinning effects. In the following, we discuss the main features of transplanckian scattering by studying the resolvability of subleading effects appearing in the gravitational problem. We conclude the chapter by extracting observables from the eikonal amplitude.

Proving the eikonal ampitude

The 1PM eikonal as a resummation

As mentioned in the previous section, one way to think about the eikonal approximation is as a resummation of particular classes of diagrams needed when the gravitational coupling becomes large. This property has been observed at leading order already in the 90s, by considering sums of ladder and cross-ladder diagrams. Unfortunately, extension of the diagrammatic resummation to subleading orders is technically very difficult, and we will discuss a different approach in section 6.1.2.

Following [START_REF] Kabat | Eikonal Quantum Gravity and Planckian Scattering[END_REF], we review how the exponentiation takes place for external massless scalar states by considering the limit where all exchanged momenta are soft compared to the incoming ones. Concretely, we take the loop momentum k µ to scale as the total exchanged momentum q µ . Thus, we neglect all higher orders of k µ and q µ appearing both in numerators as well as in propagators. The tree-level contribution in the t/s 1 limit is given by the exchange of a graviton in the t-channel, which is simply given by M 0 (s, q2 ) = -8πGs 2 q 2 = -8πα g s q 2 , (

where we defined the effective gravitational coupling 2 α g ≡ Gs . (6.3) The symmetric distribution of the loop momentum k allows to simply recover the emergence of the delta functions of (6.4).

+ + 1 2 [ + ] + 1 2 [ ] k k k k
The following term in the ladder appears at one loop. By rewriting the one loop ladder and cross-ladder diagrams as shown in Fig. 6.1 and applying the approximation discussed above, the total contribution becomes

M 1 (s, q 2 ) = i(8πα g s) 2 d 4 k (2π) 4 1 k 2 + i 1 (k -q) 2 + i × 1 2 1 (-2p 1 • k + i ) 1 (2p 2 • k + i ) + 1 (-2p 1 • k + i ) 1 (-2p 2 • k + i ) + 1 (2p 1 • k + i ) 1 (2p 2 • k + i ) + 1 (2p 1 • k + i ) 1 (-2p 2 • k + i ) = i 2 (8πα g s) 2 d 4 k (2π) 2 1 k 2 + i 1 (k -q) 2 + i δ(2p 1 • k)δ(2p 2 • k) , (6.4) 
where in the last equality we used the identity 1 x+i = P V 1 xiπδ(x), and notice that all principal values cancel. We pick the explicit kinematics p µ 1 = (E, 0, 0, E) , p µ 2 = (E, 0, 0, -E) , q µ = p µ 1p µ 3 ∼ |q|(0, cos φ q , sin φ q , 0) , k µ = (k 0 , |k| sin θ cos φ, |k| sin θ sin φ, |k| cos θ) .

(6.5)

The approximate expression for the transferred momentum q µ is recovered by noticing that q • (p 1 + p 2 ) = 2q 0 E = 0 and q • p 1 = -q z E = q 2 /2, meaning that the z component is subleading in the eikonal expansion, and as such is neglected here. In this kinematics, the product of delta functions is given by

δ(2p 1 • k)δ(2p 2 • k) = 1 2s|k| δ(k 0 )δ(cos θ) (6.6)
and by solving the trivial integrations, we obtain

M 1 (s, q 2 ) = i 2 (8πα g s) 2 2s |k| d|k|dφ (2π) 2 1 |k| 2 1 |k| 2 -|q| 2 + 2|q||k| cos (φ -φ q ) = i 2 (8πα g s) 2 2s d 2 k (2π) 2 1 k 2 1 (k -q) 2 = 1 8s (M 0 ⊗ M 0 ) (s, q 2 = -q 2 ) , (6.7) 
which is a 2D-convolution of the tree-level result of (6.2).

The argument is repeated for higher number of loops in the ladder and cross-ladder family, naturally generalizing to the recursive expression

M n (s, q 2 ) = 1 n i 2s d 2 k (2π) 2 M n-1 (s, k 2 ) 1 (k -q) 2 , (6.8) 
where the prefactor n is a combinatorial coefficient taking into account all ways the n-th loop can be connected to (n -1)-th ladder diagram. The total eikonal S-matrix element for massless scalars at leading order is given by summing over all ladder and cross-ladder diagrams

S eik (s, q 2 ) = I + iM eik (s, q 2 ) = ∞ n=0 i n n! M n = ∞ n=0 i n (2s) n 1 n! [⊗ n M 0 ] , (6.9) 
and it is natural to Fourier transform this expression to impact parameter space, where all convolutions become simple products

S eik (s, b) = d 2 q (2π) 2 e -ib•q S eik (s, q 2 = -q 2 ) = ∞ n=0 1 (2s) n i n n! [M 0 (s, b)] n = e 2iδ(s,b) , δ(s, b) = 1 4s d 2 q (2π) 2 e -ib•q M 0 (s, q 2 = -q 2 ) = -α g log |b|/b IR , (6.10) 
where we identified the leading phase-shift δ(s, b), which is the main character of our story in this chapter. What we computed is just the leading contribution, where the resummation is achievable diagrammatically. Extensions of this approach to include subleading effects is extremely non trivial and it is usually checked only up a given order to verify that the expansion is consistent with the exponentiation. For this reason, in section 6.1.2 we will take a different route, by exploiting the partial waves expansion of amplitudes which is a non-perturbative consequence of unitarity and Lorentz invariance, as discussed in section 1.3.

Eikonal as SU (2) → ISO(2) Contraction

The classical intuition of a scattering problem at large distance and large center of mass energy tells us that we expect to recover the eikonal exponentiation (6.1) in the limit of large total angular momentum and small deflection angle. It is then natural to work in a basis of definite angular momentum, that is projecting the amplitudes on partial waves, and systematically studying the limit → ∞ , θ → 0 , (

where the combination θ is fixed, meaning only function of the center of mass energy and other constants of the problem. In particular, at leading order θ ∼ α g , defined in (6.3).

As usual, we build two-particle states by taking the tensor product of irreps of Poincaré in the c.o.m. frame. For future convenience, we choose a net angle θ with the z-axis equally split between the incoming and outgoing state. States are labeled by momentum p i , spin S i , helicity λ i (spin projection along p i ) and other quantum numbers, collectively denominated α i

|1 λ 1 2 λ 2 ≡ R(φ, - θ 2 , -φ)|p 1 S 1 λ 1 , α 1 ; p 2 S 2 λ 2 , α 2 c.o.m. θ=φ=0 , (6.12 
)

|3 λ 3 4 λ 4 ≡ R(φ, θ 2 , -φ)|p 3 S 3 λ 3 , α 3 ; p 4 S 4 λ 4 , α 4 c.o.m. θ=φ=0 , (6.13) 
while the S-matrix is related to the (helicity) scattering amplitude of a 2 → 2 process by

3 λ 3 4 λ 4 |S -I|1 λ 1 2 λ 2 = (2π) 4 δ 4 (p 1 + p 2 -p 3 -p 4 ) i M λ 3 λ 4 λ 1 λ 2 (p i ) . (6.14)
The 2-particle states are decomposed on Poincaré irreps of definite angular momentum, leading to the partial waves decomposition of (1.38).

Notice that rotations of the scattering plane by an angle φ change the scattering matrix by an overall phase,

M λ 3 λ 4 λ 1 λ 2 (p i ) = e i(λ 12 -λ 34 )φ M λ 3 λ 4 λ 1 λ 2 (p i ) φ=0 , (6.15) 
something we will repeatedly use by going back and forth from momentum to impact parameter space.

In the following we often express the partial wave S-matrix (1.38) via matrix exponentiation

S λ 3 λ 4 λ 1 λ 2 (s) = e 2iδ (s) λ 3 λ 4 λ 1 λ 2 (6.16)
of the scattering phase matrix δ (s), of matrix elements (δ ) j i = (δ ) λ 3 λ 4 λ 1 λ 2 where the collective indices take values i = (λ 1 , λ 2 ) and j = (λ 3 , λ 4 ). The phase matrix, and in particular its large impact parameter expression, plays an important role in extracting physical observables, as we will review in section 6. 

p 1 p 3 = p 2 cos θ , 1 -cos θ 2 = sin 2 θ 2 = q 2 4p 2 , q ≡ p 3 -p 1 . (6.17) 
This kinematics is not necessarily elastic, as the states can still change spin S, helicity λ, internal quantum numbers etc. Now that all notation is set up, we are ready to apply the eikonal limit (6.11) to the S-matrix expressed in partial waves (1.38). We are interested in showing that the scaling limit (6.11) has a nice geometric implementation: it is captured by the group contraction

SU (2) → ISO(2)
where the the isometries of a large sphere, SU (2) ∼ SO(3), are well approximated by the isometries ISO(2) of a tangent 2D euclidean plane, Fig. 6.2.

The goal is to study the limit (6.11) of the partial wave decomposition of the matrix elements (1.38), and we first focus on how this limit acts on the Wigner-d matrix, by exploiting group theory arguments. Let us recall that the Wigner-d matrix in the partial wave decomposition are the matrix elements d λ λ (θ) ≡ λ |e -iθJ 2 | λ , where an unitary irrep of the rotation operator R(0, θ, 0) = exp(-iθJ 2 ) acts on states of definite angular momentum, with a rotation around the y-axis. We remind that the generators of the algebra of rotations SU (2) satisfy the following commutation relations and acts on states | λ as where J 2 = ( + 1) is the Caisimir operator, and the tower contains 2 + 1 states within the irrep, which are are eigenstates of J 3 with λ, λ = -, . . . , .

SU (2) : [J 3 , J ± ] = ±J ± , [J + , J -] = 2J 3 , (J ± ≡ J 1 ± iJ 2 ) , (6.18) 
J 3 | λ = λ| λ , J ± | λ = J 2 -λ(λ ± 1)| λ ± 1 , (6.19) 
When the total angular momentum becomes large, and in particular much larger than the helicity of the scattered particles λ/ 1, the SU (2) algebra (6.18) contracts to

ISO(2) : [j 3 , j ± ] = ±j ± , [j + , j -] = 0 , (6.20) 
j 3 |λ = λ|λ , j ± |λ = |λ ± 1 , (6.21) 
where we defined j ± ≡ J ± / ( + 1) and j 3 ≡ J 3 . The resulting algebra, where the raising and lowering operators commute, and are both charged under j 3 rotations around the z-axis, is ISO(2), i.e. the isometries of the 2D euclidean plane. As anticipated, this is unsurprising, because at large angular momentum we recover the flat-earth limit, where the isometries of a sphere reduce to those of a plane. As ISO(2) is non-compact, there exist non-trivial infinite dimensional irreducible representations with λ ∈ Z or λ ∈ Z + 1/2. Given that the generator J 2 = ( + 1)(j +j -)/2i appears explicitly inside the Wigner d-matrix, it is convenient to work in a basis built by states which are simultaneously eigenstates of j + and j -(as they commute). The so-called continuous-spin basis |ϕ perfectly serves this purpose as it satisfies In summary, in the large limit, the | λ states can be decomposed in a suitable basis of ISO(2) irreps for which J 2 matrix elements are diagonal. This procedure allows us to recover the Wigner d-matrix d (θ) in the large angular momentum limit

j ± |ϕ = |ϕ e ∓iϕ , ( 6 
d λ λ (θ) θ→0 ---→ →∞ 2π 0 dϕ 2π e i(λ -λ)ϕ e iθJ sin ϕ = J λ-λ (J θ) , J ≡ ( + 1) , (6.24) 
which is just an integral representation of the Bessel J ν (x) function3 [START_REF] Abramowitz | Handbook of mathematical functions with formulas, graphs, and mathematical tables[END_REF]. Notice that this is a highly oscillating integral, whose matrix elements would average to zero, except for the region where θ ∼ α g is finite. We will see later that for large α g the integral develops a saddle point which will be important to extract observables in the eikonal and transplanckian regime. In the following we exploit this form of the Wigner-d matrix, in order to recover the eikonal amplitude.

Impact Parameter Eikonal

All the ingredients to recover (6.1) have now been introduced. The large angular momentum limit of the Wigner-d matrix discussed in (6.24) is explicitly inserted in the scattering matrix decomposed in partial waves (1.38). Furthermore, we define the impact parameter

b ≡ J |p| = ( + 1) |p| , M (b) 
λ 3 λ 4 λ 1 λ 2 (s) ≡ M λ 3 λ 4 λ 1 λ 2 (s, b) , (6.25) 
where b becomes a continuous parameter in the large limit. We change variables in the partial waves decomposition to θ(|q|) = |q|/|p| 1 + O(q/p) 2 , and as the integral is dominated by the region |q| |p| we can safely extend the upper boundary of the integral to infinity. Lastly, we absorbed in the amplitude the helicity-dependent phase appearing in (6.24), by rotating it by an azimuthal angle according to (6.15). The partial wave decomposition then becomes

M λ 3 λ 4 λ 1 λ 2 (s, b) ---→ b→∞ 1 8π 1 |p| √ s ∞ 0 d|q||q| 2π 0 dϕ 2π e ib|q| sin ϕ M λ 3 λ 4 λ 1 λ 2 (|q| |p|) φ=ϕ . (6.26) 
Finally, let's recall that the amplitude in (6.26) refers to p 1 and p 3 forming respectively an angle ±θ/2 w.r.t. the z-axis. The two vectors lie in a plane rotated by φ = ϕ w.r.t the xz-plane, implying that q = (q 1 , q 2 , 0) = |q|(cos ϕ, sin ϕ, 0) is contained in the xy plane. We define a 2Dvector q = |q|(cos ϕ, sin ϕ) (in non-italic font) in the xy-plane. We can thus interpret b|q| sin ϕ as a scalar product bq with a 2D impact parameter vector b = b(0, 1) forming an angle π/2ϕ with q. This leads us to the following definition of eikonal or impact parameter transform

M λ 3 λ 4 λ 1 λ 2 (p, b) ≡ 1 4|p| √ s d 2 q (2π) 2 e ibq M λ 3 λ 4 λ 1 λ 2 (p, q) q=(q,0) q 2 p 2 . ( 6.27) 
Up to normalization, this is just the Fourier transform that maps 2D-momentum q-space to 2D impact parameter b-space.

Because of (6.15) and the invariance of the 2D scalar product under 2D rotations, the large -limit of the partial wave transform and the eikonal transform are unitarily equivalent4 

M(p, b) = U M(s, b)U † , (6.28) 
M λ 3 λ 4 λ 1 λ 2 (p, b) b=b(cos ϕ,sin ϕ) = e i(λ 12 -λ 34 )(ϕ-π/2) M λ 3 λ 4 λ 1 λ 2 (s, b) , (6.29) 
whenever |b| is set equal to J /|p|, given the definition (6.25) M (b) (s) ≡ M(s, b). The unitary transformation U5 just inserts little-group phases in the off-diagonal terms, without changing the eigenvalues which control the physical scattering angles and the time delays. An equivalent expression in terms of the partial wave S-matrix (6.16) and in an index-free notation via matrix exponentiation is

e 2iδ(s,b) -I = i 4|p| √ s d 2 q (2π
) 2 e ibq M(p, q) q=(q,0)

q 2 p 2 (6.30)
where the matrix δ(s, b) is related to δ (b) (s) by the same unitary transformation (6.28) that connects the amplitude function of b to the one function of b, and I has matrix elements δ λ 3 λ 1 δ λ 4 λ 2 .

Momentum-space Eikonal

We discuss in this section the eikonal scattering amplitude in momentum space, that is the inverse relation of (6.27) or (6. 

M λ 3 λ 4 λ 1 λ 2 (p i ) φ=0 = 4π √ s |p| (2 + 1)d λ 12 λ 34 (θ)M λ 3 λ 4 λ 1 λ 2 (s) . (6.31) 
A first observation is that the Wigner-d returns δ λ 12 λ 34 as θ → 0, unless simultaneously → ∞. Therefore, the non-trivial θ-dependence for θ 1 in (6.31) comes again from the region of summation where θ is finite. In that region we can use the limit (6.24) d λ λ (θ) → J λ-λ (J θ) and approximate the series with an integral over the impact parameter b defined in (6.25), namely

M λ 3 λ 4 λ 1 λ 2 (p i ) φ=0 -→ 4|p| √ s ∞ 0 dbb 2π 0 dϕe i(λ 12 -λ 34 )ϕ e i| q|| b| sin ϕ M λ 3 λ 4 λ 1 λ 2 (s, b) , (6.32) 
where we have also made the approximation θ(|q|) = |q|/|p| 1 + O(q/p) 26 . Finally, using (6.29) in (6.32) and recalling that M(p, b) is 2π-periodic (λ 12λ 34 is integer), we arrive at the momentum-space eikonal amplitude

       M λ 3 λ 4 λ 1 λ 2 (p, q) eik φ=0 = 4|p| √ s d 2 b e -iqb M λ 3 λ 4 λ 1 λ 2 (s, b) , M λ 3 λ 4 λ 1 λ 2 (p, q) eik φ=0 = -i4|p| √ s d 2 b e -iqb e 2iδ(s,b) -I λ 3 λ 4 λ 1 λ 2 . (6.33)
We have used the subscript "eik" to remind the regime of small |q| and large b that holds on each side respectively.

The (6.33) refers to scattering in the φ = 0 plane where q = |q|(1, 0, 0). The generic φ = 0 case is given by the same expression, but with general q = |q|(cos φ, sin φ, 0) = (q, 0), resulting in the usual helicity factor

M λ 3 λ 4 λ 1 λ 2 (p, q) eik = e i(λ 12 -λ 34 )φ M λ 3 λ 4 λ 1 λ 2 (p, q) eik φ=0 , (6.34) 
consistently with (6.29). In summary, the momentum-space eikonal amplitude is in fact the 2D inverse-Fourier transform of the impact-parameter eikonal amplitude.

The All-Order Eikonal Amplitude

It is interesting to see what are the leading corrections to the eikonal amplitudes (6.27) and (6.33) that we have obtained using the large angular momentum limit of d (θ), see (6.24). The Wigner-d matrix can be expressed as well in terms of (Jacobi) polynomials in cos θ as

d λλ (θ) = N ,λ,λ sin θ 2 |λ-λ | cos θ 2 |λ+λ | P (|λ-λ |,|λ+λ |) -L (cos θ) (6.35)
where N ,λ,λ = ( +L )!( -L )! ( +L)!( -L)! , with L = max{|λ|, |λ |} and L = min{|λ|, |λ |}. Eq. (6.35) admits a large-expansion in terms of Bessel functions. This limit is uniform in the whole interval for θ ∈ [0, π) 7 and has a known error from the truncation [START_REF] Szego | Orthogonal polynomials[END_REF][START_REF] Frenzen | A uniform asymptotic expansion of the Jacobi polynomials with error bounds[END_REF][START_REF] Hoffmann | Uniform analytic approximation of Wigner rotation matrices[END_REF], leading to

d λ λ (θ) = N λ ,λ, θ sin θ 1/2 J λ-λ (( + 1 2 )θ) + √ θO(1/ 3/2 ) , (6.36) 
with a known prefactor N λ ,λ, → 1 for λ, λ / → 0. The (6.36) shows that the limit of the Wigner d-matrix recovered in section 6.1.2 is indeed accurate, up to a relative order O(θ 2 ) in the large-limit. This implies that the results we derived so far with the eikonal expansion based on the limit → ∞ are valid in transplanckian scattering up to O(θ 2 ), which is 2PM order, included 8 . Since (6.36) does not require small angle, we can in fact extend the eikonal amplitude to all orders in θ, in the large-limit. 9 This can be done directly by plugging the uniform limit (6.36) into the partial wave expansion (1.38) that gives

M λ 3 λ 4 λ 1 λ 2 (s, b) = 1 8π 1 |p| √ s ∞ 0 d|q||q| θ(|q|) sin θ(|q|) 1/2 J λ 34 -λ 12 (b|p|θ(|q|))M λ 3 λ 4 λ 1 λ 2 (p, q) φ=0 (6.37) 7 
The interval of uniform convergence is open at θ = π: a priori this would matter only for identical particles when one has a singularity associated to backward scattering. However, even in that case, it's enough to just split the interval into two parts, and then use d λ λ (πθ) = (-1) +λ d λ -λ (θ) to extend the convergence to θ = π included. 8 Note that finite-corrections can be made O(

√ θ/ 3/2 ) ∼ θ 2 /(Gs) 3/2 ∼ λ Pl /b × λ s /b
1 just by the replacement ( + 1) → + 1/2. 9 An alternative approach, equivalent only in the semiclassical regime, would be using the largeexpansion of the Bessel functions in (6.36) (see e.g. 9.2.1 of [START_REF] Abramowitz | Handbook of mathematical functions with formulas, graphs, and mathematical tables[END_REF]), which gives

d λ λ (θ) ---→ θ 1 2 √ (2 +1)π sin θ cos(( + 1/2)θ -(λ -λ ) π 2 -π
up to an error O(1/(bp) 3/2 ), where we have made the change of variables corresponding to (6.17 to match the partial wave amplitude. This can be interpreted as a 2D Fourier transform after the suitable change of variables

Q(|q|) = |p|θ(|q|) (or |q|(Q) = 2|p| sin Q/2|p|
), with a Jacobian given by |q|d|q| = |p| sin Q |p| dQ, where again θ(|q|) is defined in (6.17). After the change of variables, (6.37) takes the form

M λ 3 λ 4 λ 1 λ 2 (s, b) = 1 8π √ s ∞ 0 dQ Q |p| sin Q |p| 1/2 J λ 34 -λ 12 (b Q)M λ 3 λ 4 λ 1 λ 2 (p, q(Q)) φ=0 (6.39)
where q(Q) = |q|(Q)(cos φ, sin φ, 0) and which, recalling the Bessel integral form and the relation (6.29) that relates b to b, leads us to the all-orders eikonal amplitude (in θ)

M λ 3 λ 4 λ 1 λ 2 (p, b) = 1 4|p| √ s d 2 Q (2π) 2 e ibQ M λ 3 λ 4 λ 1 λ 2 (p, Q) (6.40) M λ 3 λ 4 λ 1 λ 2 (p, Q) ≡ |p| Q sin Q |p| 1/2 M λ 3 λ 4 λ 1 λ 2 (p, q(Q))
at a generic angle in the xy plane. The (6.27) matches up to O(θ 2 ) the (6.40). The eikonal amplitude in impact parameter space is recovered by applying ∞ 0 dbbJ λ 34 -λ 12 (b Q ) to both sides of (6.39) and using the orthogonality of the Bessel functions (7.14). The resulting expression is

M λ 3 λ 4 λ 1 λ 2 (p, q) φ=0 = 8π|p| √ s θ sin θ 1/2 ∞ 0 dbbJ λ 34 -λ 12 (b|p|θ)M λ 3 λ 4 λ 1 λ 2 (s, b) , (6.41) 
where we reintroduced θ = Q /|p|. The relative error decays in the semiclassical limit as |p| → ∞.

Using the Bessel-integral representation (6.24), and defining M(s, b) as in (6.29), it leads to a generalized all-order eikonal transform in momentum space

       M λ 3 λ 4 λ 1 λ 2 (p, q) q=(q,0) = 4|p| √ sN (θ) d 2 b e e -ibeq M λ 3 λ 4 λ 1 λ 2 (s, b(b e )) , M λ 3 λ 4 λ 1 λ 2 (p, q) q=(q,0) = -i4|p| √ sN (θ) d 2 b e e -ibeq e 2iδ(s,b(be)) -I λ 3 λ 4 λ 1 λ 2 . (6.42)
where

N (θ) = θ sin θ 1/2 sin θ/2 θ/2 2 = 1 + O(θ 4 ) , b = sin θ/2 θ/2 b e (6.43)
with the normalization N (θ) becoming important only from the 4PM-order onward. The (6.42) is expressed in terms of the partial wave scattering phase δ by construction (hence enjoying all its properties, Imδ ≥ 0, . . .) and, as we will see later, it delivers indeed the expected relation (6.68) between δ and the scattering angle θ and time delay T . It is however slightly different than the 2D Fourier transform of [START_REF] Vecchia | The eikonal approach to gravitational scattering and radiation at O(G 3 )[END_REF][START_REF] Ciafaloni | Rescattering Corrections and Self-Consistent Metric in Planckian Scattering[END_REF] which, to our understanding, is a convenient definition of a suitable phase δ made to match to the correct scattering angle.

Notice that so far no assumptions on the details on the theory were made and the only approximation used is the large partial wave limit. The reader might wonder, where is gravity? In fact, when applying the results of these sections to particular theories, one must be consistent and check that the phase-shift is dominated by the contributions at large b. For instance, a theory of only contact terms would lead to delta functions localized at b = 0, thus lying outside of the regime of validity of the eikonal. In particular, the chosen theory must include non-analyticities in q, that will be picked by the Fourier transform and the easiest way to achieve it is by including a massless mediator, such as a graviton or a photon. We will discuss the features of gravity in the next section.

Transplanckian scattering and semiclassical limit

In this section we focus back to the gravitational scenario. At the end of the day, our goal is to extract physical information about the 2 bodies process described in the introduction of this chapter from an amplitude calculation. We have understood how the classical continuous angular momentum emerges from partial waves thanks to the little group contraction SU (2) → ISO(2). But when describing the interaction between say two stars, we are also localizing our states in position space, which is achieved only by means of wavepackets. In what regime are we allowed to localize them enough so that quantum relative uncertainties on the position and deflection angle can be made small? We show below that in order to achieve this notion of semi-classicality, the scattering needs to take place at transplanckian energies.

Before moving forward, it is wise to dedicate some time to discuss all the relevant scales and regimes in more details. There are four length scales in this problem. Two are kinematical -the Compton wavelength λ s ≡ 1/ √ s 10 and the impact parameter b-whereas the other two are dynamical: the Planck length λ Pl and the effective Schwarzschild radius R s , namely 11

R s ≡ 2G √ s , λ Pl = √ G = 1 m Pl √ 8π , (6.44) 
where m Pl is as usual the reduced Planck mass and G the Newton constant. The R s and λ Pl mark the onset of classical strong non-linearities (e.g. black hole formation) and strong quantum-gravity (QG) effects, respectively. The impact parameter measures the orbital angular momentum b|p|, where p is the c.o.m. 3-momentum 12 .

Other dynamical length scales, collectively denoted by λ hereafter, may appear in the problem representing e.g. the size of the (astrophysical) body, the compositeness-scale of particles, the Compton wavelength of virtual particles, the string length, etc.

We remind that the problem is characterized by the strength α g of the gravitational interactions

α g ≡ R s (p 1 • p 2 ) 2 s|p| ∼ R s √ s ∝ Gs . (6.45)
as encountered already in the discussion of section 6.1.1. The gravitational coupling controls two 10 For massless particles, we consider the Compton wavelength of the combined system of two states. 11 Reintroducing while keeping c = 1, the planck length is λ Pl = √ G and m 2 Pl = 2 /(8π λ 2 Pl ). 12 It can be expressed in terms of Mandelstam invariants as

p 2 = [s -(m 1 + m 2 ) 2 ][s -(m 1 -m 2 ) 2 ]/4s. regimes: subplanckian Gs 1 =⇒ α g 1 R s λ Pl λ s transplanckian Gs 1 =⇒ α g 1 λ s λ Pl R s . (6.46) 
In subplanckian scattering, the bodies need full fledge quantum description because the Compton wavelength λ s is larger than the classical R s ; yet the gravitational interactions are still very weak, so that they can be systematically taken into account by deforming the free (quantum) theory, e.g. in the Born approximation scheme. If other interactions are also weak, textbook QFT perturbative calculations in terms of a finite number of Feynman's diagrams are enough to achieve any desired accuracy.

Transplanckian scattering -reached for extremely boosted particles relative to one another or just for very massive (e.g. astrophysical) bodies-is characterized instead by a large coupling α g 1, and the perturbative approximation scheme is no longer viable. However, in transplanckian scattering, one can adopt an EFT expansion thanks to the large hierarchy of length scales

λ s b λ Pl b R s b 1 (6.47)
as long as the impact parameter b is taken much larger than the Schwarzschild radius. In other words, there is another expansion parameter, R s /b 1, which is nothing but the classical scattering angle itself 13 once expressed in terms of the conjugate variable q, namely

θ |q| |p| ∼ R s b 1 . (6.48)
The exchanged momentum must therefore be very small to allow the EFT expansion to work in the large coupling regime. As long as is taken large and the angle is small, one can control the theory in all energy range, from the subplanckian (small coupling) to the transplanckian (large coupling) regime. Indeed, in the derivation of the eikonal amplitude from partial waves expansion, we never specified the regime of α g . This intersection between the eikonal and transplanckian regime is the reason why we can in practice perform calculations order by order in the subplanckian regime and then extrapolate the result beyond the regime of validity of the perturbative expansion and describe motion of astrophysical objects. It is very convenient that this is the case! It is however only for transplackian energies that eikonal scattering is also semi-classical. We can talk of semi-classical trajectory whenever we can simultaneously assign the impact parameter b and the resulting deflection angle θ, i.e. if the outcome of the scattering experiment is approximately deterministic because of small quantum uncertainties:

∆θ/θ 1 & ∆b/b 1 . (6.49)
The quantum uncertainties can be related as

∆θ θ ∼ ∆q pθ 1 ∆b 1 pθ ∼ 1 ∆b/b 1 θ (6.50)
13 Explicitly, θ q/p ∼ F b/p ∼ α g /pb ∼ R s /b where F is the force.

so the semiclassical limit requires θ 1. Moreover, in the eikonal scaling, θ ∼ α g and therefore classicality requires tranplanckian scattering α g 1 (that is δ 1) namely

∆θ θ ∆b b ∼ 1 α g 1 .
(6.51)

The intersection between semiclassical limit and eikonal scattering allows us to describe transplanckian eikonal scattering in terms of trajectories in spacetime. Notice also that being transplanckian implies

1 Gs ∼ λ s R s 1 , (6.52)
which is equivalent to

λ 2 Pl R 2 s 1 . (6.53)
In classical transplanckian scattering, R s and λ Pl are hierarchical hence the latter matters the least in the EFT.

Let us now take the leading order deflection angle θ ∼ R s /b and imagine including possible subleading corrections δθ. We consider the following type of modifications: δθ ∼ (R s /b) n , δθ ∼ ( λ Pl /b) 2n and δθ ∼ α n (λ/b) k , where α represents some other coupling in the theory, e.g. α = α em the fine structure constant of QED. Tidal corrections (L /b) k fit in the α n (λ/b) kclassification with λ = L and α some analog of e.g. the love number.

The first type (R s /b) n are classical GR corrections, sometimes referred to as Post-Minkowskian (PM) corrections. The second one ( λ Pl /b) 2n are purely quantum gravity (QG) corrections. The last type of modifications α n (λ/b) k may be "quantum" corrections whenever controlled by a coupling such as α = α em (for this we dub them "gauge", but the coupling can certainly be a Yukawa squared or else), but they can also be classical whenever due to finite-size -tidal-corrections. To summarise (6.54) where k = 0 for n > 0 corresponds to powers of log b/λ factors (typically arising from light particles loops).

14 δθ θ ∼      (R s /b) n PM, ( λ Pl /b) 2n QG, α n (λ/b) k Gauge/Tidal
It is relevant at this point to ask which corrections are resolvable: whether their effect is larger than quantum uncertainty.

∆θ/θ δθ/θ 1 ∆b 1 p δθ ∼ 1 ∆b/b 1 θ 1 δθ/θ ∼            1 ∆b/b 1 αg ( Rs b ) n PM, 1 ∆b/b 1 ( Rs b ) 2 λ P l b 2n-2 QG, 1 ∆b/b 1 αgα n ( λ b ) k Gauge/Tidal (6.55)
where we used θ ∼ α g and (

λ 2 Pl /b) 2 α g ∼ (R s /b) 2 .
Let us comment on the different scenarios. For α g large enough, the PM higher-order corrections lead to resolvable effects 15∆θ/θ δθ/θ 1 . (6.56)

These are the corrections considered for instance in [START_REF] Bern | Black Hole Binary Dynamics from the Double Copy and Effective Theory[END_REF][START_REF] Kälin | Post-Minkowskian Effective Field Theory for Conservative Binary Dynamics[END_REF][START_REF] Mogull | Classical Black Hole Scattering from a Worldline Quantum Field Theory[END_REF][START_REF] Cheung | Tidal Effects in the Post-Minkowskian Expansion[END_REF][START_REF] Herrmann | Radiative classical gravitational observables at O(G 3 ) from scattering amplitudes[END_REF][START_REF] Vecchia | The eikonal approach to gravitational scattering and radiation at O(G 3 )[END_REF][START_REF] Brandhuber | Classical Gravitational Scattering from a Gauge-Invariant Double Copy[END_REF][START_REF] Bjerrum-Bohr | Classical gravity from loop amplitudes[END_REF].

On the other hand, QG corrections controlled by λ Pl /b, the second equation in (6.55), are always smaller than the quantum uncertainty, as the eikonal limit requires R s /b 1, while being transplanckian (semi-classical) imposes that λ P l /b is even smaller. Therefore, one important lesson is that in eikonal scattering Quantum gravity corrections are never resolvable.

This implies that δθ/θ = O( λ Pl /b) 2n corrections for scattering e.g. massless scalars in [START_REF] Amati | Higher Order Gravitational Deflection and Soft Bremsstrahlung in Planckian Energy Superstring Collisions[END_REF], or the quantum gravity corrections to bending of light [START_REF] Bjerrum-Bohr | Bending of Light in Quantum Gravity[END_REF][START_REF] Bai | More on the Bending of Light in Quantum Gravity[END_REF], do not actually correspond to any physical effect such as e.g. the alleged violations of the equivalence principle. They just fall behind the intrinsic quantum fuzziness wall. Those corrections, however, are needed to correctly extract the resolvable 3PM corrections, as originally stressed and done in [START_REF] Amati | Higher Order Gravitational Deflection and Soft Bremsstrahlung in Planckian Energy Superstring Collisions[END_REF]. Of course, mixed corrections scaling as (λ P l /b) n (R s /b) k are also not resolvable.

This does not mean, however, that all quantum effects are necessarily negligible relative to the classical ones. For instance, from the third line of (6.55) we understand that there exists again a large enough α g such that quantum effects due to gauge interactions δθ/θ = α n (λ/b) k are in fact resolvable in the eikonal-transplanckian limit. In particular there is a regime in which such effects are even larger than the PM ones. We end this section with the second lesson: Quantum (non-gravity) corrections may be resolvable and even leading over PM.

We conclude this section mentioning that the eikonal regime exists and it is relevant for instance also in QED without gravity. In the scattering of two particles of charge Z i , the condition of kinetic energy to dominate over the potential energy leads to ω αZ 1 Z 2 /b and, analogously to the gravitational case, the eikonal regime in QED is also characterized by large total angular momentum taking the form ∼ α em Z 1 Z 2 /θ. Contrarily to the gravitational case, however, the classical limit θ 1 is reached only for very large Z i , corresponding necessarily to non-elementary objects such as heavy nuclei 16 , charged black holes, etc.

Comment on the → 0 limit

Since R s controls the classical non-linear gravitational effects, and because it is much larger than the quantum gravity scale λ Pl and the Compton wavelength λ s , the transplanckian regime is usually conflated with the classical limit → 0.

This identification of transplanckian scattering with classical physics is, however, too quick and sometimes misleading. Only the leading term needs to be classical, while subleading effects do not need to be classical in origin too. There could be indeed other length scales in the problem λ, e.g. other particles Compton wavelengths, which are not necessarily small relatively to R s or even to b as one lowers it:

λ R s b vs R s λ b vs R s b λ . (6.57)
Only the leftmost inequalities allow to consistently neglect λ/b corrections relative to R s /b, see Figure 6.3 for an illustration.

Let us discuss a simple example of this effect, that we will study in details in chapter 7. We consider a photon scattering against a massless scalar spectator at large distance. As the photon is charged there will be contributions from loops of electrons of mass m e modifying the coupling to gravity. In particular, in the regime where b 1/m e = λ, the electrons can be integrated out generating a correction to the scattering angle that scales as α em /4πm 2 e b 2 , where α em /4π = g 2 /16π 2 is the electromagnetic coupling. This effect competes with "classical" R s /b effects, which enter only at 3PM for scattering against a massless scalar spectator (see section 7.2.3). Is this quantum correction, that would be naively set to zero by the → 0 limit, always smaller than the "classical" 3PM effect?

α em 4πm 2 e b 2 ? ≤ R s b 2 ⇔ α em 4πm 2 e ? ≤ R 2 s (6.
58)

The answer to this question is: it depends on the kinematical regime we consider. Indeed, there are large ranges of energies and impact parameters where the quantum effect is in fact larger than the classical one. Of course, this regime is never realized for astrophysical objects, however it can be realized in a huge range of values of R s when scattering SM particles or small black holes.

Another example is when λ = λ string in string theory, where subleading effects in the eikonal limit were studied in [START_REF] Amati | Classical and Quantum Gravity Effects from Planckian Energy Superstring Collisions[END_REF][START_REF] Amati | Superstring Collisions at Planckian Energies[END_REF] for the regime R s λ string b, in [START_REF] Amati | Higher Order Gravitational Deflection and Soft Bremsstrahlung in Planckian Energy Superstring Collisions[END_REF] for λ string R s b, and in [START_REF] Amati | Classical and Quantum Gravity Effects from Planckian Energy Superstring Collisions[END_REF][START_REF] Amati | Can Space-Time Be Probed Below the String Size?[END_REF] for R s < b < λ string . We collectively refer to this bulk of papers as the ACV reference. For more recent results see also appendix E of Ref. [START_REF] Camanho | Causality Constraints on Corrections to the Graviton Three-Point Coupling[END_REF] and [START_REF] D'appollonio | Regge behavior saves String Theory from causality violations[END_REF], again in the non-trivial regime R s < b < λ string . Needless to say, to address the b λ case, one needs to incorporate new propagating degrees of freedom that appear from b λ downward.

We remark that it is possible to extend the eikonal regime below λ for strings and particles because the degrees of freedom running in loops carry at most momenta of planckian order (past which the integrals converge), which is still far from being enough to compete with the orbital contribution, i.e. b|p| m Pl λ, for s m 2 Pl . This is generically not the case instead for astrophysical bodies where the constituents that become visible at λ = L are themselves transplanckian and carry an O(1) fraction of the total angular momentum; in this case the eikonal approximation breaks down.

We insist on the fact that the relative hierarchy between those scales completely depends on the problem studied. A system involving the sun, for instance, is dominated by finite size λ = L effects, as its radius L is much larger than its Schwarzschild radius and any other λ. In this case the classical limit emerges as the leading effect in the → 0 scaling, see e.g. [START_REF] Kosower | Amplitudes, Observables, and Classical Scattering[END_REF]. On the other hand, for small black holes, say λ Pl R s 1/TeV, the relevant corrections would actually come from SM couplings where the SM particles have λ > R s . In fact, even tidal corrections that one would ascribe to classical physics may well be quantum in origin, as e.g. the size of a neutron star is controlled by its fully quantum equation of state, not to mention the stability of matter, atoms and nuclei. Quantum vs classical is actually a false dichotomy: what really matters whenever dealing with the dimensionful parameter are -of course-dimensionless ratios that can be large or small, and whether the effects are resolvable or not.

Indeed, the customary approach to select the relevant scales in the two-body problem is looking at the -scaling of scattering amplitudes, which assigns what is "classical" and what is "quantum". We think that a more appropriate terminology to take into account a larger number of scales is actually "resolvable" and "non-resolvable" effects.

Practical computation of the phase-shift

In this section we review how the phase shift is computed in practice. The main object that we want to compute is the scattering phase, which is a function of dimensionless quantities given by ratios of the scales of the problem introduced in this section, namely

δ = δ α g , R s b , λ 2 Pl b 2 , α, λ b . (6.59)
The leading term proportional just to α g is called 1PM, while classical GR contributions scaling as (R s /b) n and extracted from (n -1)-gravitational loops amplitudes are referred to as nPM. Insertions of G that give rise instead to λ 2 Pl /b 2 -factors are dubbed QG corrections, and we do not count them as genuine PM corrections, avoiding to put everything in the same basket. We recall that α represents other couplings in the theory such as e.g. the electromagnetic fine structure constant, and λ any other new length scale in the problem (e.g. the electron Compton wavelength or body finite size).

A closer inspection reveals the following structure

δ(s, b) = α g m,n,p,q β mnpq R s b m λ P l b 2n α p λ b q = δ 0 (s, b) + δ 1 (s, b) + ... , (6.60) 
where α g appears just as an overall prefactor, and δ i (s, b) contains all contributions scaling as G i+1 , that is given by the sum over the β mnpq with m + 2n = i + 1. The m = n = p = q = 0 corresponds to the logarithmic leading eikonal ∝ α g log b. Just to clarify the notation, the contributions to δ containing no ( λ Pl /b)-factor are called

(n + 1)PM + pGauge ←-(R s /b) n α p (λ/b) q (6.61)
without specifiying the λ/b-order that can change (as one varies b across the scale λ), from an analytic contribution (λ/b) q (i.e. from local higher dimensional operators) to a non-analytic dependence such as log 2 λ/b due to light or mass particles running in loops.

The important observation at this point is that the dependence on the gravitational strength α g is analytic, linear, and that the eikonal expansion holds for any value of α g (provided is large). We are thus allowed to expand both sides of (6.27) in the subplanckian eikonal regime, and extract the β mnpq from a perturbative calculation along the lines of [START_REF] Amati | Higher Order Gravitational Deflection and Soft Bremsstrahlung in Planckian Energy Superstring Collisions[END_REF].

Explicitly, the phase matrix at the first two orders in G is thus given by

           δ 0 (s, b) = 1 8|p|
√ s d 2 q (2π) 2 e ibq M 0 (p, q) q=(q,0)

q 2 p 2 , δ 1 (s, b) + iδ 0 (s, b) 2 = 1 8|p|
√ s d 2 q (2π) 2 e ibq M 1 (p, q) q=(q,0)

q 2 p 2 . (6.62)
where we drop the helicity indices for notational simplicity. The δ 2 0 is intended as a product of matrices in helicity space. The amplitude M i (p, q) includes all contributions scaling with G i+1 or containing i gravitational loops.

We recall that by explicit resummation of ladder and cross-ladder diagrams in section 6.1.1 we found that the eikonal phase at lowest order in all couplings is just δ lead 0 (s, b) = -α g log b/b IR , where b IR is an IR cutoff specific to four dimensions, whose interpretation is discussed below. In fact, to reach the same result it was sufficient to compute the Fourier transform only of the tree-level graviton exchange and exploit our understanding of the eikonal approximation to extrapolate it to the transplanckian regime!

The IR-divergent Coulomb Phase via Wordline Eikonal

In this short section we discuss one particular type of infrared (IR) divergence that arises already in the leading eikonal amplitude: the divergent Coulomb phase. We would like to provide a simple physical understanding of this IR effect.

Given a scattering amplitude, one can define an associated potential by matching to the amplitude that it would produce,

V (x) = N d 3 q (2π) 3 e -iqx M(s, q) , (6.63) 
up to a normalization factor N that we don't need in the following. Inverting this relation and expressing M in the eikonal limit (6.30) one gets

e 2iδ(s,b) -I = i 4|p| √ sN ∞ -∞ dzV (x) x=(z,b) (6.64)
which reproduces the textbook result in potential scattering theory [START_REF] Landau | Course of theoretical physics vol 3 quantum mechanics[END_REF]. The interpretation of this result is straightforward now: the leading eikonal amplitude in impact parameter space is just the wordline integral of the potential over the straightline geodesic.

This formula allows an immediate interpretation of the IR divergence for the time-delay coming from the 1/|x| = 1/ √ z 2 + b 2 -potential, which itself originates from the 3D Fouriertransform of amplitudes with a 1/q 2 -pole of the massless graviton exchanged in t-channel. At the lowest order in G and integrating over a finite travelled distance L from the source to the detector,

δ(s, b) ∝ - 1 4|p| √ sN log b/L + . . . (6.65)
The IR divergence arises because the time-delay (see section 6.3) is accumulated -logarithmicallyover the travelled distance L. Since the source and the detector are always at some finite distance, we can choose L as small as the largest length scale we want to include in the scattering. For instance, if we want to probe heavy physics at the mass scale Λ (no new massless modes), then it's enough to choose L a couple of orders of magnitude larger than 1/Λ. The precise hierarchy is not crucial, because it would impact the accuracy of the results only logarithmically.

Other IR divergences than Coulomb's can arise to higher orders. In a purely gravitational theory there are soft divergences only [START_REF] Weinberg | Infrared Photons and Gravitons[END_REF][START_REF] Akhoury | Collinear and Soft Divergences in Perturbative Quantum Gravity[END_REF], which cancel once including the emission of real gravitational radiation, e.g. using the eikonal-operator approach [START_REF] Ciafaloni | Infrared Features of Gravitational Scattering and Radiation in the Eikonal Approach[END_REF][START_REF] Vecchia | Classical Gravitational Observables from the Eikonal Operator[END_REF]. On the other hand, when also light matter fields are present, collinear divergences can be present too. For example, we will see in chapter 7.2.2 how to deal with Sudakov (soft and collinear) IR divergences in the context of gravitational eikonal scattering at 1PM-1gauge order. A general treatment is however lacking at the moment, and it represents one of the limitations to export sharp and IR-safe positivity bounds in the context of gravity.

Scattering Angle and Time Delay

The scattering phase δ(s, b) is the master function from which we can extract other physical observables. Its partial derivatives, for instance, are directly connected to the time-delay and scattering angle, as we show in this section. We first review how the observables emerge in the scattering spinless particles in section 6.3.1, and then expand on [START_REF] Arkani-Hamed | The EFT-Hedron[END_REF][START_REF] Bellazzini | Gravitational Causality and the Self-Stress of Photons[END_REF][START_REF] Maiani | Unstable systems in relativistic quantum field theory[END_REF] by adding the spin dependence as well in section 6.3.2.

Observables without Spin

We consider a linear superposition of partial waves | √ s α in(out) for an incoming (outgoing) 2-particle system in the c.o.m. frame of a given energy √ s, total angular momentum and other internal quantum numbers α

|f in/out = d √ s ,α f ,α ( √ s)| √ s, , α in/out . (6.66) The wavepacket f ,α ( √ s) is normalized to α d √ s|f ,α ( √ s)| 2 = 1
and is sharply peaked around some particular center of mass energy √ s, some and some α. For instance, we could pick |f in/out as the the partial waves expansion of the usual tensor product of two one-particle states with an additional particular choice of distribution around the center of mass energy.

An outgoing 2-particle state differs at late time from an early-time incoming 2-particle state by the action of the little-group associated to the vanishing 3-momentum of the c.o.m. frame -i.e. 3D rotations-or the action of time-translations which give rise to an overall phase, hence the same ray and physical observables. Restricting to the non-trivial polar rotations, there should thus exist an angle θ (the scattering angle) and a time T (the time delay) for which the time-delayed and angle-rotated outgoing elastic state e iT H+iθJ 2 |f out has the maximal overlap with the ingoing state |f in in the semiclassical limit α g 1 where the phase is large. This overlap becomes

| out f |e -iT H-iθJ 2 |f in | = | α d √ s|f ,α ( √ s)| 2 Exp i(2δ ( √ s) -T √ s) P (cos θ)| , ---→ l→∞ | α d √ s d dϕ|f ,α ( √ s)| 2 Exp i(2δ ( √ s) -T √ s -θ cos ϕ) | (6. 67 
)
where P (cos θ) are the Legendre polynomial 17 . The phase-shift δ ( √ s) has actually a real and imaginary part, the latter being entirely associated to particle production such as the emission of gravitons, photons or other states. The production of gravitons in the eikonal regime starts at 3PM. We have approximated the large behavior of the Legendre polynomials by the Bessel function J 0 ( θ), which can be expressed in its integral form (6.24). The resulting integral in the limit (6.11) with α g 1 (hence large δ ) is clearly controlled by two saddle points: the time delay and the semi-classical deflection angle

T = 2 ∂Reδ ∂ √ s , θ = 2| ∂Reδ ∂ | = 2 |p| ∂Reδ(s, b) ∂|b| . (6.68) 
Notice that these expressions are valid at any order in θ, as using the all order limit of the Wigner-d matrix (6.36) for λ = 0 does not modify the position of the saddle point.

Observables with Spin

The same argument can be extended to the spinning case, where the partial waves | √ s λ, α in(out) include total angular momentum of projection λ. The other internal quantum numbers are collectively called α = {λ i , λ j , . . .}, and include the helicities λ i of the single particles of which the state is made of. Let's specifically focus on linear superpositions

|f in(out) = d √ s λαβ f β ,λ ( √ s)V α β | √ s λ, α in(out) , (V † S V ) β α = e 2iδ ,α δ β α , (6.69) 
with wave-packets

f β ,λ ( √ s) normalized to λβ d √ s|f β ,λ ( √ s)| 2 = 1
, and sharply peaked around some particular , λ, α and √ s, while V is the unitary transformation acting on the internal indices that diagonalizes the partial-wave S-matrix S β α = out λ, β| λ, α in . This procedure allows us to identify the saddle points of the integration for each eigenvalue δ ,α ( √ s), keeping the interpretation of large oscillating phases that is lost when working with exponentiated matrices.

Following the spinless procedure, we study the overlap between the incoming and the timedelayed and angle-rotated outgoing elastic state

| out f |e -iT H-iθJ 2 |f in | = | λα d √ s|f α ,λ ( √ s)| 2 Exp i(2δ ,α -T √ s) d λλ (θ)| . (6.70)
For sharply-peaked wave-packets, and for large and √ s, the overlap is controlled again by the stationary points of the semiclassical scattering phase which defines the (eigen-) scattering angles and time delays

T α = 2 ∂Reδ ,α ∂ √ s , θ α = 2| ∂Reδ ,α ∂ | , (6.71) 
where we have used (6.36) and the Bessel integral representation (6.24). The (6.71) gives a scattering angle and time delay for any eigen-scattering phase labeled by α, generalizing the familiar results of [START_REF] Brandhuber | Classical Gravitational Scattering from a Gauge-Invariant Double Copy[END_REF][START_REF] Kol | The Radial Action from Probe Amplitudes to All Orders[END_REF][START_REF] Damgaard | On an Exponential Representation of the Gravitational S-Matrix[END_REF] to the case of generic spin and inelasticity. For example scattering of photons gives rise to two time-delays depending on the external helicity configuration. In summary, the observables in the spinning case are similiar to the scalar scenario, by simply replacing the scattering phase with its eigenvalues 18 , δ -→ δ diag . Equivalently to the spinless case, the saddle points (6.71) are valid at all orders in θ.

The causality condition on the time-delay

T ≥ 0 , (6.72) 
usually referred to as "asymptotic causality" is roughly the statement that interactions can only slow you down. We will actually prove (6.72), via analyticity and unitarity, and probe its robustness at loop level in section 7.1.

18 While we focused on the most natural observables, the eigen-angles, one may be interested in less invariant information, such as the change of the scattering plane in certain spin configurations, etc. This can be extracted by a simple change of basis, from the helicity-amplitude basis to a basis of spin pointing in certain directions. It would be perhaps interesting to make this change of basis explicit and make contact with e.g. [START_REF] Bautista | From Scattering in Black Hole Backgrounds to Higher-Spin Amplitudes: Part I[END_REF].

Chapter 7

Causality in Gravity

Causality is a cornerstone of relativistic quantum field theory (QFT), with one of its most profound implications being the existence of anti-particles. Furthermore, causality has important implications for properties of scattering amplitudes in flat space, such as analyticity in the complex plane of Mandelstam variables (see section 1.4). In combination with unitarity, causality enforces non-trivial consistency conditions on effective field theories (EFTs) that emerge at lowenergy from underlying causal and unitary QFTs, often in the form of "positivity constraints", as encountered multiple times in this thesis.

The notion of causality in the presence of gravity is certainly more subtle because the spacetime metric that defines the causal structure is itself subject to quantum fluctuations. Moreover, quantum fluctuations give rise to different light-cones for the various species of particles. A fundamental step in understanding the role of causality in gravity has been taken in [START_REF] Camanho | Causality Constraints on Corrections to the Graviton Three-Point Coupling[END_REF], where the properties of 3-point vertices involving at least one graviton have been linked to the tree level classical corrections of the time delay that particles experience in eikonal scattering. Requiring positive time delay over all range of impact parameters provides thus non-trivial causality constraints on the 3-point functions.

In this chapter we are interested in gravitational causality beyond the classical limit and study the first non-trivial quantum effects. The question that we have in mind is the following: what notion of causality is respected -quantum-mechanically-once gravity generates spacetime backgrounds? When quantum loops are taken into account, is the theory causal with respect to a lightcone defined by graviton propagation (bulk causality), or rather with respect to the asymptotic Minkowski metric (asymptotic causality) in the vacuum?

In chapter 6 we showed that quantum effects (from QFT-like particles) can be resolvable and may even represent the leading corrections in transplanckian scattering. This fact opens the possibility to study the role of quantum fluctuations in the context of dynamical gravity in the controlled setting of the eikonal expansion.

We tackle these questions from two different angles. First, assuming analyticity and unitarity of scattering amplitudes, we investigate their causal structure in the eikonal regime including QFT corrections, significantly extending the results of [START_REF] Camanho | Causality Constraints on Corrections to the Graviton Three-Point Coupling[END_REF] along the lines of [START_REF] Caron-Huot | Sharp Boundaries for the Swampland[END_REF][START_REF] Caron-Huot | Causality Constraints on Corrections to Einstein Gravity[END_REF][START_REF] Bellazzini | Positive Moments for Scattering Amplitudes[END_REF][START_REF] Bellazzini | Gravitational Causality and the Self-Stress of Photons[END_REF]. As we are neglecting spooky quantum-gravity corrections ∼ ( λ Pl /b) 2 , analyticity of amplitudes is a rather conservative assumption. In particular, focusing on the instructive (and phenomenologically interesting) graviton-scalar scattering, we prove an infinite tower of non-linear positivity constraints on the EFT, and positivity of the time delay, that is "asymptotic causality", is just the simplest of these positivity bounds. This result shows the implication Micro-causality ⇒ Asymptotic Causality up to non-resolvable λ Pl /b corrections for gravitational scattering (see section 6.2). The imprint of causality on infrared observables constrains higher energy derivatives of the scattering phase as well but, in the eikonal limit, the bounds requires also taking the rigid limit of fixed and weak gravitational background.
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The second approach is to explore an explicit example of quantum corrections (such as those produced within the Standard Model) that generate measurable effects on the propagation. The idea is to test the robustness of the two causality definitions we consider (bulk-causality vs asymptotic causality), in theories and regimes where we expect everything to be causal and consistent. In particular, we study perturbatively the propagation of photons around flat spacetime by exploiting the machinery of eikonal scattering. Some spectator source generates a non-trivial phase shift, hence a time delay or advance, for photons that are sent through such space. We focus on the gauge 1-loop corrections o(g 2 /16π 2 ) to the time delay, and consider as well 1-loop gravitational corrections at second post-Minkowskian order o(g 2 /m 4 Pl ), showing that the latter does not generate any resolvable effect. These results, combined with the known 2PM and 3PM results, complete the picture of the "classical" and "quantum" subleading effects on the motion of a photon in the eikonal limit.

The causal response of photons in the eikonal regime is extracted by calculating the selfstress (energy-momentum tensor) of photon pairs at one loop, see for instance Fig. 7.1. The time delay is then obtained as illustrated in chapter 6. We find no asymptotic-causality violation for impact parameters larger than the length scale associated to the Landau pole (below which our calculations no longer apply) in spinorial and scalar QED. Loops of spin-1 W -bosons do not generate a Landau pole and give in fact no asymptotic-causality violation because of Sudakov infrared (IR) divergences which exponentiate and suppress the form factor at large momentum transfer. Instead, and despite being classically valid, we find that bulk causality is not respected quantum mechanically, within our setup.

This chapter is organized as follows. In section 7.1 we study causality constraints in the form of positivity bounds for the EFT of scalar-graviton scattering. In section 7.2 we calculate the energy-momentum tensor at one and two loops in the Standard Model and study its properties, including the connection between the gravitational form factors, β-functions, and IR divergences. In section 7.2.4, we calculate the phase shift by taking the eikonal limit of the amplitudes in the relevant kinematic configuration and computing its Fourier transform to impact parameter space. Different limits of the integration are studied analytically at large and small impact parameter. Section 7.3 is devoted to studying the implications of the results on the two notions of causality.

Analyticity, Time Delay and Eikonal arcs

In this section we study the causal structure of eikonal amplitudes. At the operational level we are working with scattering amplitudes so that we trade causality for suitable regions of analyticity in the external momenta or Mandelstam invariants. This can either be an assumption or it can be justified by micro-causality (which holds also in fixed curved spacetimes [START_REF] Dubovsky | Microcausality in Curved Space-Time[END_REF]) together with angular momentum selection rules that fix the little-group scaling and the kinematical singularities associated.

We assume these analyticity properties apply as well to eikonal gravitational scattering because we are systematically neglecting all quantum gravity O( λ Pl /b) n -effects in this regime, while retaining instead PM and QFT effects. This is closely related to QFT on a fixed background except that we include radiation effects from gravity being dynamical, i.e. with the graviton being a state that can be produced in the scattering and put on-shell, and as such entering in the imaginary part of the elastic amplitudes.

As case of study, we focus on the instructive graviton-scalar scattering 1 h 2 S → 3 h 4 S which i) retains a rather simple but non-trivial kinematic structure allowing to isolate the dynamical singularities from the kinematical ones, and ii) it provides rather neat and interesting causality bounds with potential implication on modified-gravity theories, see also [START_REF] Hong | Causality bounds on scalar-tensor EFTs[END_REF][START_REF] Serra | Causality Constraints on Black Holes Beyond Gr[END_REF].

Our analysis below shows the emergence of a rich structure of causality bounds in the eikonal regime, in the form of non-linear positivity constraints. These results largely extends the early on results of [START_REF] Adams | Causality, Analyticity and an IR Obstruction to UV Completion[END_REF][START_REF] Camanho | Causality Constraints on Corrections to the Graviton Three-Point Coupling[END_REF], with implications and techniques similar to those studied recently in e.g. [START_REF] Arkani-Hamed | The EFT-Hedron[END_REF][START_REF] Bern | Gravitational Effective Field Theory Islands, Low-Spin Dominance, and the Four-Graviton Amplitude[END_REF][START_REF] Caron-Huot | Causality Constraints on Corrections to Einstein Gravity[END_REF][START_REF] Bellazzini | Positive Moments for Scattering Amplitudes[END_REF]. We essentially parallel [START_REF] Caron-Huot | Causality Constraints on Corrections to Einstein Gravity[END_REF] in proving positivity of the time-delay matrix, here for particles with different spins and masses, and with moreover potential phenomenological implications in cosmology.

Graviton-Scalar dispersion relation

The gravitational graviton-scalar amplitude can be written exposing the little-group dependence which, in the all-incoming momenta convention, takes the following form

M(1 λ 1 , 2 , 3 λ 3 , 4) = 3k 2 1] 4 F +-(s, t) [13] 4 F ++ (s, t) 13 4 F --(s, t) 1k 2 3] 4 F +-(u, t) λ 1 λ 3 ≡ M λ 1 λ 3 (s, t) ≡ M -λ 3 λ 1 (s, t) , (7.1) 
with lower index helicities (λ 1 , λ 3 ) = (±2, ∓2) being helicity-preserving scattering, and (λ 1 , λ 3 ) = (±2, ±2) helicity-flipping. We have introduced the formal notation By Bose symmetry, crossing, and neutrality of the scalar and graviton, it follows that 1 . The tree-level values are proportional to

M -λ 3 λ 1 (s, t) = M(1 λ 1 2 -→ 3 -λ 3 4) = M(1 λ 1 , 2 , 3 λ 3 , 4) = M λ 1 λ 3 (s, t). s′ ] m 2 m 2 -t s x s
F +-(s, t) = F -+ (u, t), F ++ (s, t) = F ++ (u, t), and F --(s, t) = F --(u, t)
F +-(s, t) tree ∝ G t(u -m 2 )(s -m 2 ) , F ++ (s, t) tree ∝ Gm 4 t(u -m 2 )(s -m 2 ) , (7.2) 
and F ++ (s, t) tree = F --(s, t) tree . The form factors F ij (s, t) are free of any kinematical singularity (not controlled by factorization channels or multi-particle production) in both s and t, in agreement with [START_REF] Gross | Low-Energy Theorem for Graviton Scattering[END_REF], and ready-to-use for unsubtracted dispersive relations thanks to the superconvergence [START_REF] Gross | Low-Energy Theorem for Graviton Scattering[END_REF][START_REF] Abarbanel | Low-Energy Theorems, Dispersion Relations and Superconvergence Sum Rules for Compton Scattering[END_REF], as provided by the little group factors.

We could work directly with the form factors in the following, but for the purpose of studying causality constraints in the eikonal limit it is actually more convenient to deal directly with the eikonal amplitude. In fact, since the little-group factors are

3k 2 1] 4 = 1k 2 3] 4 = (su -m 4 ) 2 , [13] 4 = t 2 e 4iφ , 13 4 = t 2 e -4iφ , (7.3) 
the analytic properties of form factors and amplitude are actually the same (at φ = 0) in the complex s-plane at fixed (and negative) t. Hence, we can run the familiar dispersive arguments directly on the amplitude matrix elements. We define thus the following "arcs" as the contour integral over two half circles in the upper and lower s -plane centered at the su crossing symmetric point s

× (t) ≡ m 2 -t/2 a (n) λ 1 λ 3 (s, t) ≡ ds 2πi M λ 1 λ 3 (s , t) [(s -u )/2] 2n+3 , (7.4) 
and with radius ss × (t) > t/2 2 . We have u = u(s ) = 2m 2st. We can deform their contour along the real axis as shown in Fig. 7.2 a (n)

λ 1 λ 3 (s, t) = 2 2πi ∞ s ds DiscM λ 1 λ 3 (s , t) (s -s × (t)) 2n+3 , (7.5) 
where we recall that s > s × + t 2 . We have used crossing symmetry to integrate only over a single physical region, 12 → 34, and defined DiscM λ 1 λ 3 (s, t) ≡ M λ 1 λ 3 (s + i , t) -M λ 1 λ 3 (si , t). By hermitian analyticity the discontinuity is nothing but the matrix element

3 λ 3 4|M -M † |1 λ 1 2 = i 3 λ 3 4|M † M|1 λ 1 2 (7.6)
so that the optical theorem in the forward elastic limit implies that both DiscM +-(s, t → 0) and DiscM -+ (s, t → 0) are positive3 , hence the positivity bounds

a (n) +-(s, t → 0) > 0 , a (n) 
-+ (s, t → 0) > 0 . (7.7) 
These two bounds hold as long as the dispersive integrals are convergent (n ≥ 0, due to the Regge bound [START_REF] Häring | Gravitational Regge bounds[END_REF]), and the forward limit exists (n ≥ 1, due to the t-channel pole). For example, the n = 1 bounds imply F +-(0, 0) > 0 whenever IR loops are negligible. This corresponds to a tree-level bound on contact operators in scalar-tensor theories. For instance, at the 8th order in derivatives there are 3 independent operators in a shift-symmetric and paritypreserving scalar-tensor theory [START_REF] Ruhdorfer | Effective Field Theory of Gravity to All Orders[END_REF], but only one enters in F +-(0, 0), that can be choosen e.g. to be

δL 8 = ξ/Λ 6 (∇ µ ∇ ν φR µανβ ) 2 . (7.8) 
Therefore, the n = 1 tree-level bound is ξ > 0. This operator is also physically relevant for neutron stars physics, as it is directly related to Love numbers, see [START_REF] Cheung | Tidal Effects in the Post-Minkowskian Expansion[END_REF]. In this example, the IR loops are negligible as long as Λ m Pl and the insertions of other operators such as e.g. ξ(∂φ) 2 (∇∇φ) 2 /Λ 6 into loops are not enhanced, i.e. ξ/ξ 16π 2 . Of course, IR loops in an EFT are calculable and they can always be included systematically if needed, the sharp statement being (7.7). Notice, moreover, that the s-derivative of the forward arcs in (7.5) is negative definite, ∂ s a (n) (s, t = 0) < 0, so that IR loops make the arcs larger as s is taken smaller.

More general positivity conditions can be extracted by exploiting the partial wave expansion (1.38) with φ = 0 that makes the unitarity condition block-diagonal in , that is 4
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λ 1 λ 3 (s > s × + t 2 , t) = 2π √ s |p| (2 + 1)d λ 1 ,-λ 3 (θ(t, s)) λ 3 |M † M| λ 1 (7.9) 
where cos θ(t, s) = 1 + 2ts/(sm 2 ) 2 . This exposes the fact that the arcs are integrals over the sum of positive-definite "imaginary part" matrices I λ 1 λ 3 (s) modulated by some Wigner-d function which is the only source of controlled negativity, away from the forward limit a (n)

λ 1 λ 3 (s, t) = 2 √ s |p| ≥2 (2 + 1) ∞ s ds (s -s × (t)) 2n+3 d λ 1 ,-λ 3 (θ(t, s ))I λ 1 λ 3 (s ) , n ≥ 0 (7.10) I λ 1 λ 3 (s ) = 2 λ 1 |M † M| λ 3 0 . (7.11)

The Positive Eikonal-Arcs

So far we have been very general, with (7.10) and (7.11) holding even away from the eikonal limit. Let's restrict now to the eikonal regime by projecting both sides of (7.10) with the Wigner-d matrix and taking the limits → ∞, |p| → ∞.

Therefore, we act on both sides of (7.10) with ∞ 0 dq 2 d λ 1 ,-λ 3 (θ(q, s)), after renaming → . As repeatedly done in the previous sections, we approximate the Wigner-d in the large limit with a Bessel function (6.24) (hence restricting to up to 2PM corrections, included). The integral is then dominated by the region at θ(q, s)

1, but as s > s, this localizes as well the Wigner-d appearing in (7.10) around small values of θ(q, s ). The small angle limit of the Wigner-d deviates from the trivial result only for large , implying that we can effectively replace also the second Wigner-d by a Bessel function. We replace the sum on with an integral on b , obtaining5 

ds 2πi M λ 1 λ 3 (p, b) (s -m 2 ) 2n+2 = 1 π ∞ s ds (s -m 2 ) 2n+2 (7.12) ∞ 0 db b ∞ 0 dqqJ -λ 3 -λ 1 (bq)J -λ 3 -λ 1 (b q) I λ 1 λ 3 (b , s ) , (7.13) 
where the two semi-circular contours are centered at s = m 2 and have radius s-m 2 . The matrix

I λ 1 λ 3 (s, b) ≡ c 2 e 2iλ 13 (ϕ-π/2) I (b) λ 1 λ 3 (s) 0 is positive definite because it differs from I (b)
just by an unitary transformation and an irrelevant positive factor c 2 > 0.

Using the orthogonality condition

∞ 0 dqqJ ν (qa)J ν (qb) = δ(a -b)/a (7.14) 
among Bessel functions we trivialize the integrals on the r.h.s. except for the one in s which is over a manifestly positive-definite matrix, thus implying the positivity of the "eikonal arcs" of finite radius:

a (n) λ 1 λ 3 (s, b) ≡ ds 2πi M λ 1 λ 3 (p , b) (s -m 2 ) 2n+2 0 (7.15) 
where we remind that M λ 1 λ 3 (p, b) is the eikonal transform (6.27). More explicitly, this means

a (n) +-> 0 , a (n) 
-+ > 0 , a

+-a

(n) -+ -a (n) ++ a (n) --> 0 , (7.16) 
where we leave implicit the b and s dependence.

In the limit where the scalar is very massive, it is convenient to change integration variable to s = m 2 + 2mω, with (7.15) becoming a statement about arcs in the graviton's frequency ω, around the origin ω = 0 and radius 2mω

dω 2πi M λ 1 λ 3 (ω, b) ω 2n+2 0. (7.17) 
These arcs are calculable in the EFT in terms of Wilson coefficients and therefore the inequalities (7.16) and (7.17) provide positivity bounds on the EFT parameters. Whenever the IR branch cuts can be neglected, these arcs are very simple to calculate, as they are given by the (2n + 1) ω-derivative of the eikonal amplitude. For instance, for n = 0 neglecting the IR branch cuts, we have thus proven the positivity of the time-delay matrix

T λ 1 λ 3 (ω, b) ≡ 2 ∂ ∂ω δ λ 1 λ 3 (s, b) ω=0 0 (7.18)
hence of its eigenvalues, since α g ∝ ω while any higher derivative operator or any iteration of the eikonal exponentiation can only increase the powers in ω, and as such it can be discarded in the expression above that selects the value of the derivative at ω = 0. As discussed in section 6.2.2, the leading time-delay is IR divergent, which can be interpreted as the distance traveled by the state within the worldline formalism. Thus, we have shown that analyticity and standard properties of amplitudes in flat spacetime directly imply positivity of the time delay in the eikonal limit, i.e. asymptotic causality. From (7.17) it follows that higher values of n constrain further higher odd ω-derivatives of the eikonal amplitude

∂ 2n+1 ∂ω 2n+1 M λ 1 λ 3 (ω, b) ω=0 0 , (7.19) 
neglecting the IR branch cuts.

Including the IR branch cuts means working instead with the fully accurate arcs (7.15) or (7.17) at finite radius. Similarly to the analysis in [START_REF] Bellazzini | Positive Moments for Scattering Amplitudes[END_REF], the finite radius of the eikonal arcs regulates the IR soft divergences that appear to higher PM or gauge order, and that (partly) controls the running corrections to the Wilson coefficients. For example, the two loop correction O(G 2 α) (2PM-1gauge corrections) to the eikonal phase in the probe limit are expected to give rise to δ = α glog b/b IR + c 2 α(R s /b) (log ω + log -ω) with c some number to be determined. Since s-or ω-derivatives of arcs are negative definite, we anticipate that c < 0. These log corrections change the arc as a (0) (ω, b) = 2R s (-log b/b IR + cα(R s /b) log ω), which is perfectly finite as long as ω is non-vanishing.

Notice, moreover, that in pure gravity (no gauge corrections) there is actually no IR log until 3PM. Furthermore, to consistently go to 3PM and higher orders one should extend (7.12) by using the all-order expression (6.36) rather than its approximation (6.24).

The connection to higher even derivatives of the time-delay matrix is no longer as direct as in (7.18), because (7.15) and (7.17) are given in terms of iM(ω, b) = e 2iδ -I rather than in terms of δ itself6 . For example, the ω 3 -term in M(ω, b) can arise from a higher derivative operator or just from three iterations of δ 0 in the eikonal exponentiation. Let's discuss this in an explicit example below.

Example R 4 µνρσ An immediate application of the positivity of (7.19) is on the higher derivative terms such as

S ⊃ 1 16πG d 4 x √ -g -R + β 1 (R µναβ R µναβ ) 2 + β 3 (R µναβ αβ γδ R γδµν ) 2 . ( 7.20) 
The contribution to the time delay has been computed in [START_REF] Huber | Eikonal Phase Matrix, Deflection Angle and Time Delay in Effective Field Theories of Gravity[END_REF] and is given by

∆δ λ 1 λ 3 (s, b) = 315π 16 G 2 m 2 ω 3 b   β b 4 β 16b 4 + β 16b 4 - β b 4   (7.21) 
where b ± = (b 1 ± ib 2 )/2, β = 4(β 1β 3 ) and β = 4(β 1 + β 3 ). Notice that this contribution to the time delay scales with ω 2 compared to the linear dependence of the leading effect. However, the third iteration in the eikonal exponentiation of δ 0 produces a contribution to M ∼ (Gmω) 3 log 3 b/b IR , and therefore the positivity of the first eigenvalue of ∂ 3 M(ω = 0, b)/∂ω 3 translates into the condition that β can't be too negative, parametrically β/b 6 -R s /b (up to log's), where b can be lowered up to reaching b ∼ 1/Λ, i.e. the scale of new dynamics UV-completing the (Riemann) 4 operators. In the limit R s Λ → 0, one thus get positivity of β. Analogous arguments constrain β not to be too negative, and demand positivity only in the limit R s Λ → 0, namely

β ≥ 0 β ≥ 0 up to O(Λ/m Pl × m/m Pl ) corrections. (7.22)
That is, positivity of β and β is recovered in the "weak and rigid limit" Λ/m Pl × m/m Pl → 0, essentially QFT on a fixed and nearly flat background for m → ∞ and m Pl → ∞, keeping fixed their ratio and Λ. These results are in agreement with the positivity bounds [START_REF] Bellazzini | Quantum Gravity Constraints from Unitarity and Analyticity[END_REF] obtained away from the eikonal and rigid limit.

The Photon Self-Stress and its Phase-Shift

After having discussed the consequences of causality and unitarity in the eikonal limit, we turn our attention to probe different causality definitions by explicitly studying the time-delay of a photon including loop corrections.

In this section we calculate the matrix element of a symmetric and conserved energy-momentum tensor T µν in flat spacetime (see Fig. 7.3)

0|T µν (x)|k k = e -i(k+k )•x 0|T µν (0)|k k , T µν = T νµ ∂ µ T µν = 0 (7.23)
between a pair of (identical) incoming massless spin-1 particle states, both taken on-shell,

k 2 = k 2 = 0 , • k = • k = 0 , (7.24) 
where the dot • indicates Lorentz contraction with the Minkowski metric, and k 2 ≡ k • k. The and are polarization vectors associated, up to a gauge choice, to k and k respectively 7 . In analogy with low-energy quantum electrodynamics, we refer hereafter to these states as "photons," although our analysis goes beyond real world QED to any massless spin-1 minimally coupled to gravity. By crossing symmetry, (7.23) determines as well the k |T µν (x)|k matrix element by the replacement → * and k → -k in (7.25), which flips the helicity. k 2 = 0 and q 2 > 4m 2 X (1-3 crossed triangle diagrams omitted for simplicity). Curly lines are graviton legs, wiggle lines represent photons, charged particles of spin 0, 1/2 and 1 in the loop are represented by X = φ, ψ, W respectively, and dotted lines put legs that they cut on-shell.

γ 1 γ 3 q X k k′ γ 1 γ 3 q X k k′
After Fourier transforming (7.23) and factoring out a (2π) 4 δ 4 (k + k + q) from momentum conservation, the matrix element can be written as the sum of three conserved and gaugeinvariant tensor structures multiplied by scalar form factors

F i (t), for i = 1, 2, 3, 0|T µν (0)|k k N = 0|T µν (0)|k k tree N F 1 (t) + P µν (q) 2( • k)( • k ) -q 2 ( • ) F 2 (t) + p µ p ν 2( • k)( • k ) -q 2 ( • ) F 3 (t) (7.25) 
where we have defined

p ≡ k -k , q = -(k + k ) , t = q 2 = 2k • k , P µν (q) = q µ q ν -η µν q 2 (7.26)
and N = 4|k 0 k 0 | is the relativistic normalization factor, introduced for later convenience. The basis of tensor structures is chosen to isolate first the classical term

0|T µν (0)|k k tree N = k [µ α] k [ν β] + k [ν α] k [µ β] η αβ - 1 2 η µν k [α β] k [α β] (7.27) 
associated to the free-photon T (γ) µν , then the identically conserved terms P µν (q) associated to the so-called improvement terms, and finally the projector p µ p ν which is orthogonal to q µ , and hence conserved, via the on-shell condition. Their physical meaning is made manifest by the dependence on the helicities h and h

0|T µν (0)|k h k h N (7.28) = 1 2 k σ µ k] k σ ν k]F 1 (t) -kk 2 (P µν (q)F 2 (t) + p µ p ν F 3 (t)) -[kk ] 2 (P µν (q)F 2 (t) + p µ p ν F 3 (t)) 1 2 kσ µ k ] kσ ν k ]F 1 (t)
where the diagonal entries correspond to h = -h = ± (here referred to as helicity-preserving, in reference to the crossed process), while the off-diagonal entries correspond to h = h = ± (helicity-flipping). Here, σ ν are the Pauli matrices, and the square and angle brackets are the standard spinor helicity variables (see chapter 2.1). One can recognize the three covariant littlegroup structures. By inserting a complete base of states in the form factor, it is easy to see that helicity-preserving scattering has spin projection 2. Indeed, F 1 parametrizes the helicitypreserving scattering against an off-shell graviton -equivalently on-shell massive spin-2-. On the other hand, helicity-flipping scattering has zero spin projection along the direction of motion, meaning that there could be overlap with J = 0, 1, 2, but as there is no spin-1 state and only one spin-0 state because of the conservation equation ∂ µ T µν = 0, only the spin-0 or the spin-2 state found in T µν |0 , can have such a vanishing spin projection. Therefore there are two remaining tensor structures that control the overlap between the helicity-flipping photon pair and T µν , parametrized by F 2 and F 3 .

From the normalization lim k →k k h |T µν (0)|k h = k µ k ν /k 0 associated to the particle 4momentum P µ |k = d 3 x T 0µ (x)|k = k µ |k , the helicity-preserving entries of (7.28) are fixed at zero-momentum transfer

F 1 (t → 0) = 1 . (7.29) 
Once coupled to gravity, this corresponds to the universal helicity-preserving low-energy coupling of gravity set by the reduced Planck mass m Pl = (8πG) -1/2 , where G is the Newton constant.

Self-Stress at One Loop

The energy-momentum tensor we consider is defined operationally as the covariant source of a weak gravitational field. At tree-level F 1 = 1 and F 2,3 = 0 for all values of t, corresponding to the photon matrix elements of the free T (γ)

µν . At 1-loop, radiative corrections modify these values via loops of charged states coupled to the photons, and in the following we reconstruct the radiative self-stress matrix elements from tree-level amplitudes using on-shell methods.

One simple and efficient way to extract the form factors F i is calculating first their discontinuities in the complex t-plane across the real line for t > 4m 2 , as shown in the loop diagrams in Fig. 7.3, where m is the mass of any given charged state running in the loop. Then one computes the real parts by a simple dispersive integral, see (7.33). It turns out, in fact, that the gravitational phase shift and the associated light-bending and time delays can be extracted directly from the discontinuity alone (see for example Eqs. (7.63), (7.64) combined with (7.66)).

The discontinuity at one loop can be calculated by either explicit evaluation of the (nonanalytic part of the) triangle and bubble diagrams in Fig. 7.3 (with no cuts), or equivalently by convoluting tree-level amplitudes via the Cutkosky rule. We follow the latter approach and have found it convenient to build first an auxiliary 2-to-2 scattering amplitude 1 γ 3 γ → 2 S 4 S for photons into some spectators S taken to be a real massless scalar minimally coupled to gravity. The discontinuity of the energy-momentum tensor in the Mandelstam variable s 13 ≡ (k 1 +k 3 ) 2 = t for s 13 > 4m 2 is promptly obtained from the auxiliary amplitude multiplied by

s 13 m 2 Pl 8πGk (µ 2 k ν) 4 Disc 0|T µν (0)|k h 1 1 k h 3 3 N = Disc s 13 M(1 γ 3 γ → 2 S 4 S ) (7.30) 
by factoring out k

(µ 2 k ν)
4 . This is effectively the same as considering the s 13 -channel discontinuity of 2-to-1 amplitudes associated to pairs of photons producing an off-shell graviton. The righthand side of (7.30) can be calculated at one loop via the Cutkosky rule

Disc M(1 γ 3 γ → 2 S 4 S ) = i dΠ 56 M(1 γ 3 γ → 5 X 6 X )M(5 X 6 X → 2 S 4 S ) (7.31) 
using the tree-level amplitudes M(1 γ 3 γ → 5 X 6 X ) and M(5 X 6 X → 2 S 4 S ) where (5 X , 6 X ) is any pair of charged particles/antiparticles of spin J X = 0, 1/2 or 1 in the Standard Model (hereafter dubbed φ, ψ and W respectively), dΠ 56 is their Lorentz invariant two-body phase space, and

M(1 - γ 3 + γ 5 X 6 X ) M(1 - γ 3 - γ 5 X 6 X ) M(5 X 6 X 2 S 4 S ) φ g 2 1(k 5 -k 6 )3] 2 2(s 15 -m 2 )(s 16 -m 2 ) 2g 2 m 2 13 2 (s 15 -m 2 )(s 16 -m 2 ) (s25-m 2 )(s45-m 2 ) m 2 Pl s 24 ψ g 2 1(k 6 -k 5 )3] (s 15 -m 2 )(s 16 -m 2 )
( 15 [START_REF] Camanho | Causality Constraints on Corrections to the Graviton Three-Point Coupling[END_REF]+ 16 [START_REF] Bellazzini | Quantum Gravity Constraints from Unitarity and Analyticity[END_REF])

2g 2 m 13 2 65 (s 15 -m 2 )(s 16 -m 2 ) s 25 -s 45 4m 2 Pl s 24 ( 6(k 2 -k 4 )5]+ 5(k 2 -k 4 )6]) W 2g 2 (s 15 -m 2 )(s 16 -m 2 ) ( 15 [36]+ 16 [35]) 2 2g 2 13 2 65 2 (s 15 -m 2 )(s 16 -m 2 ) -1 4m 2 Pl s 24 ( 6(k 2 -k 4 )5]+ 5(k 2 -k 4 )6]) 2
Table 7.1 -Amplitudes relevant in the determination of Disc F i , where g is the gauge coupling (in the normalization of unit charge). Each row corresponds respectively to X = φ, ψ, W . Other photon helicities are recovered by replacing holomorphic with anti-holomorphic configurations (and vice-versa).

Notice, that all amplitudes are given in terms of incoming states, and in order to be used in (7.31) all legs on the r.h.s of the arrows should be flipped by the map p → -p, and |p I → -|p I , |p] I → |p] I for massive legs. In this case, the overall effect of the flipping is just the lowering of the SU (2) indices on the massive legs, and no effect on the scalar legs.

X Disc F 1 (t m 2 ) Disc F 2 (t m 2 ) Disc F 3 (t m 2 ) φ iα 6 i5α 12 δ(t) -iα 12 δ(t) ψ 2iα 3 iα 6 δ(t) iα 6 δ(t) W -iα 2 (7-4 log t m 2 ) -i3α 4 δ(t) -iα 4 δ(t) 
Table 7.2 -Limiting behavior of Disc F i in the kinematical region t < 0 and |t|/m 2 → ∞. The Dirac's delta functions signal that the concerned discontinuities vanish pointwise in the massless limit but not under integration.

the sum over the helicities of internal particles is left understood. All the relevant amplitudes are summarized in Table 7.1, and the diagrams contributing to the discontinuity are shown in Fig.

For X = φ, ψ, the 4-point functions M(1 γ 3 γ → 5 X 6 X ) are the pair production amplitudes in standard (scalar and spinorial) QED. They can either be obtained by Feynman diagrams, or recovered from standard on-shell techniques. With the latter approach, unitarity dictates the factorization of the 4-point amplitude into 3-point amplitudes which are completely fixed by little group scaling and dimensional analysis (for reviews see e.g. [START_REF] Cheung | TASI Lectures on Scattering Amplitudes[END_REF][START_REF] Elvang | Scattering Amplitudes[END_REF]).

The case of the massive vector X = W is slightly more delicate because the high energy limits involve extra 3-point vertices relative to the one of massless Yang-Mills, reflecting the presence of the eaten Goldstone bosons. The minimal cubic coupling we consider is thus fixed by its high energy behavior, requiring that the vertices match massless Yang-Mills for the transverse polarizations, and minimally coupled massless scalars for the longitudinal polarizations. This is simply the on-shell amplitude description of the Higgs mechanism [START_REF] Arkani-Hamed | Scattering Amplitudes for All Masses and Spins[END_REF], i.e. the Goldstone equivalence theorem. The last column of Table 7.1 is the production of the neutral spectator through the gravitational interaction. All X are taken to couple minimally to gravity.

Comparing the tensor structures in (7.25) or (7.28) with the expressions we find for (7.30) using (7.31) and the amplitudes in Table 7.1, we extract the form factor discontinuities Disc F i . For convenience, we list here Disc F 1 for the three massive spinning particles φ, ψ, W running in

F 1 (t) F 2 (t) F 3 (t) X m 2 |t| m 2 |t| m 2 |t| m 2 |t| m 2 |t| m 2 |t| φ 1+ αt 180πm 2 1+ α 72π (19-6 log -t m 2 ) 13α 720πm 2 -5α 24πt -α 720πm 2 α 24πt ψ 1+ 11αt 360πm 2 1+ α π ( 35 36 -1 3 log -t m 2 ) α 180πm 2 -α 12πt α 360πm 2 -α 12πt W 1+ 7αt 20πm 2 1-α 4π ( 125 6 -7 log -t m 2 +2 log 2 -t m 2 ) -7α 240πm 2 3α 8πt -α 240πm 2 α 8πt
Table 7.3 -Large and small m limits of the form factors F i . The EFT parameter α 3 in (7.34) is given by

α 3 = -F 3 (|t| m 2 ).
the loop, while the discontinuities of the other form factors are reported in appendix 7.A

Disc F 1 (t) φ = iα 6t 2 t t -10m 2 1 - 4m 2 t + 24m 4 tanh -1 1 - 4m 2 t θ(t -4m 2 ) (7.32) Disc F 1 (t) ψ = 2iα 3t 2 1 - 4m 2 t 5m 2 + t t -6m 2 2m 2 + t tanh -1 1 - 4m 2 t θ(t -4m 2 ) Disc F 1 (t) W = -iα 2t 2 1 - 4m 2 t t 10m 2 + 7t -8 m 2 + t 3m 2 + t tanh -1 1 - 4m 2 t θ(t -4m 2 )
where θ(x) is the Heaviside unit-step function and α = g 2 /4π is the fine structure constant. The t m 2 limits of these expressions will be very useful in the following discussion and therefore are listed in Table 7.2.

While Disc F 2,3 (t/m 2 → ∞) vanish pointwise, as expected for the h = h = + helicities of the photons that forbid any non-trivial products of 4-point amplitudes with exactly massless particles which enter in the unitarity cut, they actually return Dirac δ-functions, see Table 7.2. A similar effect has been pointed out in [START_REF] Korner | Two loop O(G(f )M(H**2)) radiative corrections to the Higgs decay width H -> gamma gamma for large Higgs boson masses[END_REF] in the context of the Higgs boson coupling to photons.

Notice that the behavior of the massive spin-1 particle differs from the other contributions by the presence of a log 2 t/m which will be identified as the contribution of soft divergences in section 7.2.2.

The discontinuities can thus be integrated with the dispersion relations

F 1 (t) = 1 + t 2πi ∞ 4m 2 dt t Disc F 1 (t ) t -t -i0 + , F 2,3 (t) = 1 2πi ∞ 4m 2 dt Disc F 2,3 (t ) t -t -i0 + , (7.33) 
determining F i everywhere in the complex cut t-plane. The subtraction constant for F 1 has been fixed by the normalization condition (7.29), so that helicity-preserving low-energy photons scatter gravitationally with strength 1/m Pl . The full expressions of F i (t) are summarized in appendix 7.A, while the important limits are collected in Table 7.3 for convenience. The earliest calculation of F i in QED was performed in [START_REF] Berends | Quantum Electrodynamical Corrections to Graviton-Matter Vertices[END_REF].

One particularly interesting limit of (7.25) is at large masses of the particles running in the loop. This limit is equivalent to integrating out such particles and can be matched to effective

irrelevant contributions 8 L = - 1 4 F µν F µν + α 1 RF µν F µν + α 2 R µν F µα F ν α + α 3 R µναβ F µν F αβ + . . . , (7.34) 
of which we only display the off-shell 3-point vertices. Notice that only α 3 contributes to the on-shell 3-point function γγgraviton, and the α 1,2 correct instead low-energy on-shell 4-point amplitudes only, as visible by using the equations of motion. We remark that the form factor F 3 reduces to the Wilson coefficient of F µν F αβ R µναβ i.e. α 3 = -F 3 (t m 2 ), which give rise to onshell helicity-violating 3-point vertex γγ-graviton, at low energy. The electron and scalar Wilson coefficients for α 3 nicely agree with the results present in the literature, see e.g. [START_REF] Berends | Quantum Electrodynamical Corrections to Graviton-Matter Vertices[END_REF][START_REF] Drummond | Qed Vacuum Polarization in a Background Gravitational Field and Its Effect on the Velocity of Photons[END_REF][START_REF] Cheung | Infrared Consistency and the Weak Gravity Conjecture[END_REF] and references therein. The effective Wilson contribution to α 3 from massive vectors is new to the best of our knowledge.

Extracting the β-function from F 1 (t)

We explore below the UV side associated to the running coupling and expose its connection to the F 1 form factor. By putting the theory on a curved spacetime 9

S = d 4 x |g| - 1 4g 2 (µ) F µν F µν - m 2 Pl 2 R + . . . (7.35) 
we can as well establish an important connection between the β-function and the F 1 form factor which is directly connected to the asymptotic time delay at short impact parameter, as we will show in section 7.2.4. Expanding the action (7.35) to first order in the metric perturbations around Minkowski spacetime and Fourier-transforming the photon field (with a slight abuse of notation) µ (k) = d 4 xe ikx A µ (x) we get S ⊃ -

d 4 q (2π) 4 d 4 k (2π) 4 d 4 k (2π) 4 (2π) 4 δ 4 (q + k + k )h µν (q) 1 2g 2 (µ)
0|T µν (0)|k k tree N + . . . (7.36) The same running coupling g = g(µ) in front of the photon kinetic term is found as well in the F 1 form factor. That is, the counter-term needed to renormalize the photon kinetic term also enters in the F 1 form factor. Therefore, in the limit q 2 m 2 , rather then defining g(µ) as the coupling of an off-shell A µ to charged currents, as e.g. measured in the Coulomb potential at a floating renormalization scale -q 2 = µ 2 (i.e. in a scattering process mediated by a virtual photon), we can equally think of it as the coupling of two incoming helicity-preserving on-shell photons scattering on an off-shell graviton with

-t = µ 2 d d log µ 1 g 2 (µ) = d d log µ F 1 (t = -µ 2 ) m µ ,g=1 =⇒ β = - g 2 d d log µ F 1 (t = -µ 2 ) m µ . (7.37) 
In the right-most expression in (7.37) we have restored to a canonically normalized kinetic term -1/4F 2 µν in the lagrangian density. The formula in (7.37) links directly the sign of the log(-t) in the helicity-preserving form factor F 1 to the sign of the β-function 10 . Moreover, from the 8 It is actually possible to match as well the form factor contributions in the massless limit but to a non-local 1-loop effective action, using the covariant effective action approach of e.g. [START_REF] Barvinsky | The Generalized Schwinger-Dewitt Technique in Gauge Theories and Quantum Gravity[END_REF][START_REF] Barvinsky | The Basis of Nonlocal Curvature Invariants in Quantum Gravity Theory[END_REF]. 9 The gauge coupling g = g(µ) should not be confused with the metric determinant in the volume element |g|d 4 x. 10 Trading the log µ 2 dependence for the log q 2 breaks down, however, if extra log q 2 /m 2 factors survive in the q 2 m 2 limit, which signals the presence of IR divergences. They do not arise at one loop of spin-0 and spin-1/2 charged states, but are instead present for spin-1 particles for which, therefore, (7.37) and (7.38) no longer apply. We study IR divergences in section 7.2.2. dispersion relations (7.33) the log(-t) arises, in the case of spinorial and scalar QED, by the constant limit of the discontinuity Disc F 1 (t → ∞), hence .38) This nice expression connects directly the β-function in spinorial and scalar QED to the discontinuity of the helicity-preserving gravitational form factor F 1 , i.e. to on-shell-only gravitational scattering amplitudes. From the first two rows of the first column of Table 7.2 one indeed reproduces .39) This connection between the energy-momentum tensor, scattering data, and the β-functions is somewhat reminiscent of the methods presented in [START_REF] Caron-Huot | Renormalization Group Coefficients and the S-Matrix[END_REF].

β φ, ψ = lim t/m 2 →∞ g π Disc F 1 (t) φ,ψ 2i . ( 7 
β φ = 1 3 g 3 16π 2 , β ψ = 4 3 g 3 16π 2 . ( 7 

IR-Divergences and Sudakov Double-Logarithms

The presence of a finite -but still large-log 2 factor in the high energy limit of the helicitypreserving form factor F 1 generated at one loop by massive charged spin-1 W bosons

0|T µν (0)|1 - γ 3 + γ (1-loop) 0|T µν (0)|1 - γ 3 + γ tree ------→ t/m 2 W →∞ 1 - α 4π 125 6 -7 log -t m 2 W + 2 log 2 -t m 2 W (7.40)
can be understood as the IR divergences that we would encounter if the W mass were vanishing. It arises in a way that is completely analogous to the presence of large double-logarithms in the matrix elements of electroweak currents, see e.g. [START_REF] Ciafaloni | Sudakov Enhancement of Electroweak Corrections[END_REF][START_REF] Fadin | Resummation of Double Logarithms in Electroweak High-Energy Processes[END_REF][START_REF] Ciafaloni | Anomalous Sudakov Form Factors[END_REF], which are usually called electroweak Sudakov double-logarithms in analogy to the original QED Sudakov factors that are associated to the vanishing photon mass. We deal with these Sudakov factors in the self-energy by taking a renormalization group approach to resum the leading double-log factors. We first regulate the most IR-singular class of diagrams by cutting them with a floating mass m W → m = µ, which should be taken not too far from the kinematical variables so that perturbation theory is reliable, and then we evolve the form factor down with the resulting RG equation that we can thus write as an evolution in the mass, namely

∂ 0|T µν (0)|1 - γ 3 + γ ∂ log(m 2 /(-t)) = -4 α 4π log m 2 -t 0|T µν (0)|1 - γ 3 + γ . (7.41) 
Integrating this RG equation from µ = µ 0 down to the W mass µ = m W we get the exponentiation of the Sudakov double-logs in the form factor We remark that, while we have obtained the evolution equation (7.41) within perturbation theory, it holds in fact non-perturbatively as shown in [START_REF] Fadin | Resummation of Double Logarithms in Electroweak High-Energy Processes[END_REF]. The evolution equation of [START_REF] Fadin | Resummation of Double Logarithms in Electroweak High-Energy Processes[END_REF] is indeed nicely matched by our perturbative derivation, (7.41).

F 1 (t) F 1 (µ 2 0 )Exp -2 α 4π log 2 m 2 W -t -log 2 µ 2 0 -t ( 
Notice that the same exponentiation of the IR Sudakov logs takes place for the helicityflipping matrix elements F 2,3 , but starting at two-loop order O(α 2 ). It can be obtained by adapting again the results of e.g. [START_REF] Fadin | Resummation of Double Logarithms in Electroweak High-Energy Processes[END_REF], something that we leave to future investigations, limiting the present work to 1-loop accuracy in α (as opposed to the two loops contribution explored in section 7.2.3 at O(αG 2 )) .

While the exponential suppression we find is analogous to the vanishing of exclusive processes in ordinary QED, here the W mass is finite and this makes the resummed form factor and the associated exclusive amplitudes actually finite. Moreover, the finiteness of the mass and charge of the W boson allows one to distinguish states with different numbers of W particles in them, contrarily to the case of photon emissions which can always escape detections if sufficiently soft. For these reasons, we keep working in the following with the exclusive 2-photon matrix elements of T µν , which is thus IR finite since charged particles are consistently excluded in the final or initial state, rather than with inclusive cross-sections. Moreover, the effect of the exponential suppression is relevant only for (α/2π) log 2 -t/m 2 W 1, and it is therefore not important to the phase shift (7.67) in the region 1/m 2 W exp(-2π/α) b 2 1/m 2 W , i.e. for impact parameters that can still be taken exponentially smaller than 1/m 2 W at weak coupling. In the following sections we consistently include the impact of the exponentiation in the regime b 2 m 2 W exp(-2π/α). It would nevertheless be interesting to study in a future work the inclusive case where the double-log contributions would cancel out so as to become sensitive again to the single logs and possibly to the sign of the beta-function, like it is the case for spinorial and scalar QED when not embedded in Yang-Mills theory.

2-Loops: O(α λ 2

Pl /b 2 ) vs O(αR s /b) relative corrections

So far, we have only considered effects at first post-Minkowskian order, which means working in a regime where the Compton wavelength λ ≡ 1/m of the particles entering in the matter loops of Fig. 7.3 is much larger than the Schwarzschild radius of the scattered particles. In this section we study a scenario where the two scales are comparable, and effects scaling as R s /b as well as interference αR s /b are not negligible, meaning we look for corrections that can appear at G 2 . Of course, we are only interested in contributions in R s /b as they are the only ones leading to resolvable effects, as opposed to quantum gravity λ 2 Pl /b 2 relative corrections that are never resolvable in the eikonal transplanckian regime. Once again, we focus on the case of scattering a neutral and massless scalar off photons.

We anticipate that in this massless case, in fact, only a non-resolvable contribution turns out to be produced (not only in the purely gravitational case but also at two loops including the α-corrections). From this point of view, there is a sharp difference in nature between the massless and massive scenario at G 2 , as in the latter larger resolvable effects are instead expected to appear.

In the following, we proceed with the original approach of ACV, e.g. [START_REF] Amati | Higher Order Gravitational Deflection and Soft Bremsstrahlung in Planckian Energy Superstring Collisions[END_REF], focusing on the s-channel cut which allows one to extract the imaginary part of δ 1 (s, b) and then reconstruct the real part via a dispersion relation. We choose this perspective first to review and clarify the (7.45). In this picture, the grey blobs represent effective vertices of order α. Recall that with in-coming momenta p µ 1 + p µ 3 = q µ , and

(d) (e) (f) (g) (h) 
s = (p 1 + p 2 ) 2 .
method (which was also used to compute the real part of δ 2 (s, b) in [START_REF] Vecchia | The eikonal approach to gravitational scattering and radiation at O(G 3 )[END_REF]), and with the goal of extracting the gauge contribution at 2PM.

The starting point is the expansion of the exponential form of the S-matrix (6.62), where we select the G 2 -contributions and take the imaginary part in the s-channel

Im s M 1 (s, b) = 2s δ 0 (s, b) 2 + Im s δ 1 (s, b) = Im s M 1 (s, b) 2-cut + Im s M 1 (s, b) 3-cut . (7.44) 
Considering the 2PM with one insertion of α is equivalent generically to a two loop calculation, whose s-cuts can be organized in two-and three-particle cuts.

At large b λ, the gauge contributions reduce to EFT corrections to the photon-graviton vertices: therefore all G 2 -contribution actually appears at one loop, and the only diagram contributing to the imaginary part in the s-channel is the box, obtained by gluing two on-shell amplitudes (7.61). This is not the case at small b, where G 2 is obtained at 2 loops, and as such contributes to the s-channel discontinuity also with 3-particle cuts.

We first analyse the two-particle cut, following and extending the argument of [START_REF] Ciafaloni | Rescattering Corrections and Self-Consistent Metric in Planckian Scattering[END_REF] to spinning states and loop corrections to the stress energy tensor. The cut is diagrammatically represented in Fig. 7.4 and it is explicitly given by

Im s M 1 (s, t) λ 1 λ 3 2-cut = 1 2 dk 4 (2π) 2 M 0 (s, k 2 ) λ 1 λ M 0 ((s, q -k) 2 ) λλ 3 δ + ((p 1 -k) 2 )δ + ((p 2 + k) 2 ) = 1 4s |k|d|k|dφ (2π) 2 M 0 (s, k 2 ) λ 1 λ M 0 (s, (q -k) 2 ) λλ 3 , (7.45) 
where the delta functions were solved explicitly in the center of mass frame of two incoming particles pointing in the z-direction as δ + ((p

1 -k) 2 )δ + ((p 2 + k) 2 ) = 1 2s|k| δ(k 0 )δ(cos θ -|k| 2E )
, and cos θ is the projection of the loop momentum k onto p 1 . Since we are interested in the eikonal limit, the momentum exchanged by gravitons in the loop is small as selected by the saddle point at large b (as further confirmed by [START_REF] Giddings | The Gravitational S-Matrix: Erice Lectures[END_REF][START_REF] Giddings | High Energy Scattering in Gravity and Supergravity[END_REF]), which means that we can directly use M 0 ∼ M eik 0 of Eq. (7.61) in the limit of soft transferred momentum. As we want to compute δ 1 at O(α), we can neglect the cross product α 2 . Furthermore, we shift the loop momentum in such a way that all gauge contribution is contained in M 0 (s, k 2 ) (which amounts to multiply by 2 all terms proportional to α) and M 0 (s, (qk) 2 ) = 8πα g s/(q -Q) 2 is simply the diagonal tree level gravitational term. The integral in φ is performed by a change of variable z = e iφ , where the integration over the unit circle is then given by the residue lying inside the contour,

Im s M 1 (s, t) λ 1 λ 3 2-cut = -1 4s |k|d|k| 2π M 0 (s, k 2 ) λ 1 λ 3 8πα g s |q| 2 + |k| 2 + O(α 2 ) = 1 4s |k|dkdφ (2π) 2 M 0 (s, k 2 ) λ 1 λ M 0 (s, (q -k) 2 ) λλ 3 + O(α 2 ) , (7.46) 
where |k| = |k| and |q| = |q| are 2D vectors with angle φ between them (we reintroduce a fictitious angle, to explicitly see the emergence of the convolution). The 4D cut box at O(α) in the soft limit of the loop momentum becomes a 2D convolution 11 that factorized in b-space. We recover that the contribution of the two particle cut at G 2 and α is therefore

Im s M 1 (s, b) λ 1 λ 3 2-cut = 2s δ 0 (s, b) 2 λ 1 λ 3 , (7.47) 
where δ 2 0 is intended as a product of matrices in helicity space and the left hand side is the Fourier transform of the 2-particle of cut. The immediate consequence of (7.47) and (7.44) is that Im s δ 1 (s, b) = 0 at large b λ, as there is no 3-particle cut contribution. On the other hand, let us anticipate that δ 1 (s, b) develops an imaginary part at smaller impact parameters. This feature is completely equivalent to the 3PM term in pure gravity, where the effect of gravitational radiation appears due to the presence of a 3 particle cut of the H-diagram [START_REF] Amati | Higher Order Gravitational Deflection and Soft Bremsstrahlung in Planckian Energy Superstring Collisions[END_REF], while here we encounter emission of SM particles already at G 2 , as we shall analyse in a moment.

Still within the b

λ regime, what can we say about the real part of δ 1 (s, b)? One of the main features of the amplitude that can be exploited in order to reconstruct its real expression is crossing symmetry, which manifests itself simply as symmetry under s ↔ u exchange as we are scattering a photon off a scalar spectator. As we have computed M 1 already in the eikonal limit t s, the properties of crossing symmetry are clearly lost, but it is still possible to reconstruct the real part by writing a basis of structures s ↔ u symmetric, expanding them in the eikonal limit, and matching their imaginary part to the result previously computed in b-space. In practice, as δ 0 is linear in s, we can select structures growing slower or equal to s 3 . Furthermore, as we expect to produce a polynomial in s in the imaginary part, we can safely restrict to log type discontinuities.

We consider therefore the two following structures

s 3 log (-s) + u 3 log (-u) ∼ s 3 -iπ + 3t s log s + O(s) = X , s 2 log (-s) + u 2 log (-u) ∼ s 2 (-iπ + 2 log s) + O(s) = Y . (7.48) 
Notice that including higher powers of log s n would lead to logarithms of s in the imaginary part of M 1 , which is excluded by (7.47). We expect M 1 to be given by a linear combination of the two structures M 1 = α(t)X + β(t)Y , but β(t) = 0, as Im s M 1 does not contain any s 2 contribution. By computing the Fourier transform and matching α(t) to (7.47), we can extract which we remind is valid also at order α in the large b regime. The scaling of this contribution is δ 1 ∼ α g ( λ Pl /b) 2 , which parallels the massless scalar result of ACV [START_REF] Amati | Higher Order Gravitational Deflection and Soft Bremsstrahlung in Planckian Energy Superstring Collisions[END_REF] here extended to photonscalar scattering: no resolvable contribution is present at O(G 2 ), that is no genuine αR s /b relative correction is found at this order for a massless neutral scalar scattering off a photon.

δ 1 (s, b) = 3 log s πs ∇ 2 b δ 0 (s, b) 2 , (7.49) 
Obviously when more scales such as masses are involved in the problem the task of building a complete basis becomes much more involved. In [START_REF] Vecchia | The eikonal approach to gravitational scattering and radiation at O(G 3 )[END_REF], the basis was extracted by fully computing the two loop contribution in N = 8, which turns out to be complete also for the GR scenario. Another approach to recover δ 1 is to compute the two particle cut without applying the small t limit and then reconstruct the real part by using s ↔ u dispersion relations. This task is easier when all external states are massive (and t is small), as the s and u channel cuts are well separated, while extra care is needed when particles are massless and there is an overlap between the branch cuts. We leave this explicit approach to future work.

Is it surprising that only irrelevant non-resolvable QG corrections ∼ α λ 2 Pl /b 2 are found at O(G 2 ) in the b λ limit? At this one loop order (see Fig. 7.4) every amplitude can be decomposed in a basis of massless scalar amplitudes, which by direct inspection contains only logarithms. To be contrasted with the expected contribution at 2PM, which scales as Rs b = 2G √ s b , thus containing a square root type of discontinuity. The result is not surprising as it is consistent with this scaling argument.

Let us now move to the study of the case b λ. As explained in the previous paragraphs, in this regime δ 1 develops an imaginary part that we can extract by looking at the 3-particle cut of the amplitude. For simplicity, the charged particles in the loop are treated as effectively massless. The integrand of this computation is recovered by gluing two on-shell tree-level 5-point amplitudes M 5 λ i with one external photon. Considering all momenta incoming we have

Im s M 1 (s, t) λ 1 λ 3 3-cut = 1 2 d d k 1 (2π) d d d k 2 (2π) d d d k 3 (2π) d δ -(d) p 1 + p 2 + k 1 + k 2 + k 3
where C j and Cj are some polynomial functions of ε and y. Notice that g1 , g2 and g3 are essentially equal to g 1 , g 2 and g 3 , and that g4 is related to g 3 via crossing. Hence, in the end we have seven MIs to compute. One can realise that the integrals g and g are dimensionless scalar functions and depends non-trivially only on the dimensionally regularisation parameter ε and the variable

y ≡ p1 • p2 |p 1 ||p 2 | = 2s -q 2 -1 . (7.54)
Using the approach of Refs. [START_REF] Kotikov | Differential equations method: New technique for massive Feynman diagrams calculation[END_REF][START_REF] Kotikov | Differential equation method: The Calculation of N point Feynman diagrams[END_REF][START_REF] Bern | Dimensionally regulated one loop integrals[END_REF][START_REF] Gehrmann | Differential equations for two loop four point functions[END_REF][START_REF] Henn | Multiloop integrals in dimensional regularization made simple[END_REF][START_REF] Caron-Huot | Iterative structure of finite loop integrals[END_REF], we can solve these MIs by writing a suitable differential equation. These equations have been written in a canonical form using the package Fuchsia [START_REF] Gituliar | Fuchsia and master integrals for splitting functions from differential equations in QCD[END_REF][START_REF] Gituliar | Fuchsia: a tool for reducing differential equations for Feynman master integrals to epsilon form[END_REF]. In particular, the planar and non planar MIs satisfy respectively the following differential equations

d g(ε, y) = ε [A +1 d log(y + 1) + A -1 d log(y -1)] g(ε, y) , (7.55) 
d g(ε, y) = ε Ã+1 d log(y + 1) + Ã-1 d log(y -1) g(ε, y) , (7.56) 
where A ±1 and ñ1 are constant matrices whose explicit expressions are written in appendix Appendix 7.B. Expanding the integrals in ε

g i (ε, y) = n ε n g (n) i (y) , gi (ε, y) = n ε n g(n) i (y) , (7.57) 
one can easily solve the previous differential equations order per order in ε.

In order to fix a unique solution, we just need to know the value of the MIs for a certain value of y, e.g. y = 1. To this end, we can first solve the differential eqs. (7.55) and (7.56) around y = 1 by essentially exponentiating the matrices A -1 and Ã-1 . Then, following Refs. [START_REF] Caron-Huot | Iterative structure of finite loop integrals[END_REF][START_REF] Henn | Lectures on differential equations for Feynman integrals[END_REF], we can use the fact that our basis of MIs is UV finite, hence study the behaviour of this solution for ε < 0 and require its regularity. With this manipulation, we find some non-trivial relations between the various MIs in y = 1. In particular, we find that g 3 (y = 1) = 0 and that it is enough to compute the values of g 1 , g 4 and g5 in y = 1 to uniquely fix all the boundary conditions for eqs. (7.55) and (7.56). These integrals are either easy to compute or known in the literature, see e.g. [START_REF] Smirnov | Analytical result for dimensionally regularized massless on shell double box[END_REF][START_REF] Tausk | Nonplanar massless two loop Feynman diagrams with four on-shell legs[END_REF].

Regardless of this, one can realise that all the MIs are just (poly)logarithmic function of y. Therefore, the scaling of Im s M 1 (s, b) λ 1 λ 3 is fixed by the polynomial in front of g and g in (7.53), i.e.

Im s M 1 (s, t) λ 1 λ 3 3-cut ∼ G 2 αq 4 y n ∼ α g Gα s n-1 (q 2 ) n-2 , (7.58) 
where n is an integer number smaller than 4. From this simple scaling reasoning, we can then see that no PM classical contribution proportional to 2G √ sq ∼ R s /b is actually generated. We find no resolvable effect at this order, for the case of scattering of a photon off a massless neutral scalar, thus in the following we restrict to the 1PM order corrected by α computed in section 7.2.1.

Computing the Phase Shift

Now that the form factors F i (t) have been determined, we proceed to computing various quantities of interest. We study the 4-point function (diagrammatically shown in Fig. 7.1) in the eikonal limit s t, where the center of mass energy is much larger than the exchanged momentum, corresponding to the response of photons to the gravitational field generated by the spectator fields.

In this section we present the leading quantum corrections in the gauge coupling to the phase shift in the eikonal regime, as detailed in chapter 6. We have argued in section 7.2.3 that no "classical" PM correction contribute to the phase-shift at order O(G 2 ) and O(αG 2 ). Indeed, the first resolvable gravitational correction will appear only at 3PM Reδ 2 ∼ Gs(R s /b) 2 . The 1-loop gauge contribution scales instead as Gs(α/4π) log 2 (m X b) for b < 1/m X and Gs(α/4π)/(m X b) 2 for b > 1/m X , see (7.76) and (7.70), which can be much larger than 1 and dominate over the gravitational δ 2 for a suitable range of s and b we restrict to.

We present the eikonal limit of the 4-point amplitude, which will be used in the evaluation of the time delay, following [START_REF] Camanho | Causality Constraints on Corrections to the Graviton Three-Point Coupling[END_REF][START_REF] Huber | Eikonal Phase Matrix, Deflection Angle and Time Delay in Effective Field Theories of Gravity[END_REF]. For simplicity, we detail the construction for a scalar spectator, but we have checked that in the eikonal limit, the same result is obtained by scattering against spin-1 and spin-2 spectators minimally coupled to gravity. In other words, the spin of the spectator is irrelevant in the computation of the time delay at this order, as long as it is characterized only by a minimal gravitational interaction.

When contracted with the scalar 3-point function, the full amplitude takes the form 

M(1 γ 3 γ → 2 S 4 S ) =   -8πG 3k
F 3 (t) -8πG 1k 2 3] 2 s 13 F 1 (t)   ,
where we recall that the diagonal entries correspond to the helicity preserving amplitudes with h = -h = ± while the off-diagonal entries correspond to the helicity-flipping h = h = ±. This amplitude is evaluated on the following massless kinematic configuration

k µ 1 = (ω, -p + q/2) , k µ 3 = -(ω, -p -q/2) , k µ 2 = (ω, p -q/2) , k µ 4 = -(ω, p + q/2) , (7.59) 
where q is the exchanged momenta, ω = p 2 + q 2 /4, and in the following we fix the direction of p = pẑ, where ẑ is the unit vector in the z-direction. The Mandelstam variables in this configuration are given by s = s 12 = 4ω 2 , t = s 13 =q 2 , u = s 14 = -4 p 2 . (7.60)

By momentum conservation, the product p • q is zero, implying that the momentum transfer q lies in the xy-plane. With an abuse of notation, we will refer to q as a two-dimensional vector with components q = (q 1 , q 2 ). We are interested in the eikonal approximation ω | q |, where the amplitude (7.59) in the kinematic configuration (7.59) is given by

M eik (t) = 8πGs 2 q 2 F 1 (t) -4q 2 + F 3 (t) -4q 2 -F 3 (t) F 1 (t) , (7.61) 
where q + = 1 √ 2 (q 1 + iq 2 ) and q -= 1 √ 2 (q 1iq 2 ), and we dropped the contribution from F 2 (t) which is analytic in t, hence giving rise, once Fourier transformed to impact parameter space b, only to local terms such as δ(b) or derivatives thereof.

iq 2 i q 2 2 + 4m 2 Γ [ q 1
Figure 7.7 -Integral contour Γ in the upper complex q 1 -plane for Fi . There are two contributions:

one from the graviton pole, and the second from the discontinuity above threshold |t| > 4m 2 .

The phase shift is obtained by Fourier transforming the 4-point amplitude in the eikonal limit (7.61) to impact parameter space, as shown in (6.62)

δ(s, b) = 1 4s d 2 q (2π) 2 e i b• q M eik (t = -q 2 ) , (7.62) 
where b ≡ | b|. The eigenvalues of this matrix are given by

δ ± (s, b) = 2πGs F1 (b 2 ) ± 16b 2 F 3 (b 2 ) , (7.63) 
where we have defined

Fi (b 2 ) = d 2 q (2π) 2 F i (-q 2 )
q 2 e i b• q , (7.64)

for i = 1, 3, and F 3 ≡ ∂ F3 /∂b 2 . The integrand in (7.64) is discontinuous at the graviton pole or above threshold, i.e. when q 1 = ±iq 2 or t =q 2 > 4m 2 . We can then compute Eq. (7.64) by applying the Cauchy theorem. The integration contour of q 1 can be deformed in its complex plane so to express the integral in terms of the discontinuities computed in Table 7.2, see Fig. 7.7. Without loss of generality, we can fix b = (b, 0) because of rotation invariance. After performing the rotation q 1 = iQ 1 and changing the order of integration, Eq. (7.64) takes the form

Fi (b 2 ) = - F i (0) 2π log b/b IR + 2i (2π) 2 +∞ 2m dQ 1 √ Q 2 1 -4m 2 0 dq 2 Disc F i (Q 2 1 -q 2 2 ) Q 2 1 -q 2 2 e -Q 1 b , (7.65)
where b IR is an infrared cutoff. The b IR has no physical impact as long as one considers wavepackets with b < b IR . The integral in (7.65) can be further simplified by changing variables

Q 1 = √ t cosh θ, q 2 = √ t sinh θ, in terms of which it becomes Fi (b 2 ) = - F i (0) 2π log b/b IR + i (2π) 2 +∞ 4m 2 dt Disc F i (t) t K 0 b √ t , (7.66) 
where K 0 is the modified Bessel function of the second kind. Combining (7.66) with (7.63), we obtain the final expression for the phase shift

δ ± (s, b) = 2πGs - 1 2π F 1 (0) log b b IR ∓ 8 b 2 F 3 (0) + i (2π) 2 +∞ 4m 2 dt t Disc F 1 (t)K 0 b √ t ± 4 t Disc F 3 (t)K 2 b √ t , (7.67) 
which makes manifest that the phase shift δ(s, b) depends just on the t → 0 graviton pole and the t-channel discontinuities of the self-energy form factors, i.e. on-shell data. Before discussing the whole 1-loop calculation, we focus on the tree-level contribution, which corresponds to F 1 (t) = 1 and F 2 (t) = F 3 (t) = 0. In this case, (7.63) and (7.66) return the tree-level contribution to the phase shift as

δ 0 (s, b) = -Gs log b/b IR . (7.68)
Since the IR cutoff b IR is the largest length scale that we consider, (7.68) always leads to a positive contribution to the phase shift (see discussion in section 6.2.2). Furthermore, we can extract from δ 0 (s, b) the leading time-delay as discussed in chapter 6.3 as

T 0 = -8Gω log b/b IR , (7.69) 
which is the famous Shapiro time-delay T Sh ≡ T 0 . At 1-loop, there are additional contributions coming from F i (0) and the discontinuity, see Table 7.3. In the following two sections, we study (7.66) analytically in two opposite regimes in parameter space: b 1/m and b 1/m, while the full solution is solved numerically and displayed in Fig. 7.8 and Fig. 7.9.

The Large b Limit

In the scenario b 1/m, we can use the asymptotic behavior of the Bessel function K

0 (b √ t) ∼ e -b √ t / √
bt 1/2 which shows that the contribution from the integral over the discontinuity is exponentially suppressed. Therefore, the only contribution comes from the graviton pole, and the phase shift is given by

δ ± (s, b 1/m) = δ 0 (s, b) ± 8GsF 3 (0) b 2 , ( 7.70) 
where F 3 (0) is summarized in Table 7.3 for different spins of the particle in the loop. This is the result one would obtain by working in the EFT where the massive states have been integrated out, and it reproduces the correction from the effective term F µν F αβ R µναβ computed first in [START_REF] Camanho | Causality Constraints on Corrections to the Graviton Three-Point Coupling[END_REF] and discussed at the end of section 7.2.1 around (7.34). Notice that the only contribution from F 1 (t) comes from the tree-level amplitude, as all corrections vanish when evaluated on the pole.

The Small b Limit for Scalar-and Fermion-loops

We can write the integral in (7.66) in terms of a dimensionless variable y

= b √ t Fi (b 2 ) = - F i (0) 2π log b/b IR + i 2π 2 +∞ 2mb dy y Disc F i (y 2 /b 2 ) K 0 (y) . (7.71) 
Let us first focus on the helicity preserving contribution F 1 (t) to the phase shift in (7.63). In the small bm regime, the integrand Disc F 1 (y 2 /b 2 ), which is actually a function of the dimensionless ratio y 2 /b 2 m 2 , receives contribution mostly from the Disc F i (t → ∞) region, so that we can directly use The vector case is characterized by the presence of soft logs that can be resummed and therefore needs a different treatment (see sec. 7.2.2).

Disc F 1 (t m 2 ) 2iπβ X g , (7.72 

For b

1/m, we can cut the integral at some y = 2ȳ O(1), obtaining then

F1 (b 2 1/m 2 ) - 1 2π log b/b IR - β X 2πg log 2 (bm/ȳ) . (7.73)
Notice that the sign of the quantum corrections is always negative for any value of b and ȳ. This will play a major role in the discussion about causality in section 7.3.

For the helicity flipping contribution, by using the dispersive representation of F 3 (0) (see eq. ( 7.33)) we can write

F 3 (b 2 ) = i 8π 2 b 4 +∞ 2mb dy Disc F 3 (y 2 /b 2 m 2 ) yK 2 (y) - 2 y , (7.74) 
which gets the most important contribution from the region t m 2 where the discontinuity converges to a delta function, Disc F 3 (t m 2 ) = iακ X δ(t) for some constant κ X (see Table 7.2). Therefore, we get

F 3 (b 2 ) - ακ X 16π 2 b 2 lim y→0 K 2 (y) - 2 y 2 = ακ X 32π 2 b 2 . (7.75)
The full phase shift is then given by

δ ± (s, b 1/m) = δ 0 (s, b) - Gsβ X g log 2 bm/ȳ ± α Gsκ X π , (7.76) 
where κ φ = -1/12 for a scalar in the loop and κ ψ = 1/6 for a fermion. In particular, for small enough impact parameter, the log correction proportional to the β-function will dominate over the constant contribution of F 3 (t), as shown numerically in Fig. 7.8. Notice, that the change in behavior of the F 3 (t) contribution at small impact parameter, from 1/(mb) 2 to a constant in b, is crucial in the causality discussion. If that was not the case, we would observe causality violation even for the asymptotic definition (see section 7.3.1). This is avoided thanks to the onset of new physics associated to the particles of mass m before such a violation would become resolvable. We discuss the consequences in section 7.3.

The inclusion of more species is straightforward, with log 2 bm term in (7.76) being just replaced by the appropriate masses and rescaled by the squared charges q 2 i , e.g. adding charged spin-1/2 fermions results in β ψ log 2 bm ψ → β ψ i q 2 i log 2 bm i , and analogously for charged bosons. In this way, and for b smaller than the top-quark scale 1/m t , one can easily include the full Standard Model contribution.
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.8 -Quantum corrections to the phase shift as function of bm for the scalar case (as discussed, the spinorial case has similar features, so it is not shown here). There are two contributions coming from the form factors F 3 (t), relevant at large impact parameters (7.70), and F 1 (t), which dominates as small bm (7.76). The full numerical solutions (7.63) is shown as solid lines, and their limiting behaviors as dashed lines. We have taken ȳ = 0.27 to make the approximation close to the exact answer on the scales shown in the plot. Dotted blue lines for large bm show the EFT result ∼ 1/b 2 which, if allowed to continue to small bm, would eventually give a negative total phase shift and thus time delay. On the other hand, the small bm behavior scaling as log bm 2 leads to a positive total time delay all the way to the Landau pole. See discussion in section 7.3.1.

The Small b Limit for Vector-loops

The small b region for vector-loops is in principle more delicate because of the IR Sudakov double-logs. However, in the region of small impact parameter where the resummation of the double-logs is not yet important, i.e. for exp(-2π/α) b 2 m 2 1, we can still work with just the fixed-order 1-loop expressions for the form factors.

Let's focus first on the contribution from Disc F 1 in (7.66) and (7.67) by considering the integral

I(b 2 ) ≡ i (2π) 2 +∞ 4m 2 dt Disc F 1 (t) t K 0 b √ t (7.77)
which can be more easily determined, up to some integration constants, by integrating its second derivative I (b 2 )

I (b 2 ) = i (2π) 2 2b 4 +∞ 2mb dy yK 2 (y) Disc F 1 y 2 /b 2 , (7.78) 
where we have changed variable y = b √ t. For small bm, we can cut the integral at some y = √ e ȳ O(1) and approximate the Bessel function as K 2 (y) ∼ 2/y. After performing the integral in (7.78) and integrating back, we get

I(e - √ 2π/α b 2 m 2 1) αγ + α 48π 2 137 -4π 2 log (bm/ȳ) (7.79) - β W 2πg log 2 (bm/ȳ) + α 3π 2 log 3 (bm/ȳ) , Figure 7 
.9 -Quantum corrections to the phase shift as function of bm for the vector-loop case, i.e. QED embedded in a non-abelian gauge theory. Dotted lines for large bm show the EFT result which, if allowed to continue to small bm, would eventually give a negative total phase shift and thus time delay. For bm small, the form factors are exponentially suppressed by Sudakov resummation in the region bm exp(-π/2α), as discussed under (7.43), but this effect is not displayed here (see Fig. 7.10). The vertical blue line represents, for α = 1/100, the value of bm below which Sudakov resummation can no longer be neglected. For larger values of the impact parameter, exp(-π/2α) bm 1, the fixed-order 1-loop approximation is instead accurate without resummation. In this region, F 1 (t) gives the leading contribution to the phase shift (7.80) and it is plotted as a solid red line which interpolates the blue dots representing the exact numerical solution. We have taken ȳ 1.12 and γ 0.12 in (7.79).

where γ is an integration constant and we recall β W = -7g 3 /16π 2 = -7gα/4π. The values of γ and ȳ can be estimated by fitting the numeric solution of I(b 2 ) for small values of b, see Fig. 7.9.

The contribution from Disc F 3 to δ ± is more easily calculated from (7.63) following the same steps of the previous subsection, see (7.75), where we can use the asymptotic expression Disc F 3 (t m 2 ) = iακ X δ(t) with κ W = -1/4. Therefore, for exp(-2π/α) b 2 m 2 1 the phase shift can be approximated by

δ(s, b) δ 0 (s, b) + 2πGsI(b 2 ) ± α Gsκ W π (7.80)
where I(b) is approximated by (7.79). Actually, the last term in (7.80) can safely be dropped because it is very much subleading to the second term.

For even smaller impact parameter, bm Exp(-π/2α), the IR Sudakov double-logs become large and require a resummation as performed in section 7.2.2. In this regime, we can numerically compute the contribution of F 1 (t) to the phase shift by exponentiating the the double-logs, that is by taking

F 1loop 1 (t) → F Sudakov 1 (t) = e F 1loop 1
(t)-1 under the integral in (7.64) . This expression for F Sudakov 1 (t) is a very good approximation of the exact form factor in the two asymptotic regions of bm. Moreover, the contribution from F 3 is always subleading in this region at small α.

By computing the integral numerically for different values of the gauge coupling, we find that for bm Exp(-π/2α) the phase shift approaches a positive constant (see Fig. 7.10), and it never turns negative. The constant depends on the value of the gauge coupling, as it can be estimated by computing the contribution to the integral (7.64) for b 2 m 2 Exp(-2π/α), so that we can drop the b-dependence in the exponential without spoiling the convergence of the integral even in the region q 2 m 2 e √ 2π/α . Making the (crude) approximation F Sudakov 1 (t) ∼ e -α/2π log 2 (-t/m 2 ) for q 2 m 2 , and F Sudakov 1 1 for q 2 m 2 , the (7.64) reduces to a gaussian integral

F1 (b 2 ) 1 2π ∞ 0 d log | q| m e -2α/π log 2 (| q|/m) + 1 2 m 2 b -2 IR dq 2 q 2 (7.81) = 1 √ 32α + 1 4π log m 2 b 2 IR ,
where we have cut off the IR divergence at q = 1/b IR (and of course b IR m ≥ 1). Therefore, the phase shift at exponentially small impact parameter with respect to the W 's Compton wavelength

1/m is δ(s, bm e - √ π/2α ) 2πGs 1 √ 32α + 1 4π log m 2 b 2 IR , (7.82) 
which matches the numerics in Fig. 7.10 pretty well at small α, and shows that neither δ nor the time delay turn negative.

Discussing Causality

In this section we discuss the results of this chapter in relation to two notions of causality: asymptotic causality and bulk causality. Despite the fact that are both seemingly justified at the classical level, we show that in fact only one is respected in the quantum theory. The time-delay is extracted from the phase-shift computed in section 7.2.4 by applying equation (6.68).

Asymptotic Causality

The condition of "asymptotic causality" states that the time delay experienced by any particle in the eikonal transplankian regime, should be positive

T ≥ 0 (7.83)
for all b < b IR , whenever resolvable and calculable within the range of validity of the theory. In section 7.1, we have showed that "asymptotic causality" in a scalar-tensor theory, i.e. positive definiteness of the time-delay matrix for graviton-scalar scattering, is a direct consequence of analyticity and unitarity exploited in the eikonal regime. Moreover, other positivity bounds on higher derivative EFT coefficients follow as well in the rigid limit of QFT coupled to gravity, see (7.22) for bounds on (Riemann) 4 operators.

Since analyticity follows from micro-causality, see e.g [START_REF] Weinberg | The Quantum theory of fields[END_REF][START_REF] Sommer | Present State of Rigorous Analytic Properties of Scattering Amplitudes[END_REF][START_REF] Dubovsky | Microcausality in Curved Space-Time[END_REF] and section 1.4, we have basically shown the implication Micro -Causality =⇒ Asymptotic Causality in the context of gravitational physics. In other words, QFT can tolerate non-vanishing correlators at spacelike separation as long as the commutator of observables vanishes there, and this in turn implies that asymptotic causality -positive time-delay-must be respected. This is a condition on the global causal structure of the theory, extracted unambiguously from the eikonal amplitude.

The violation of asymptotic causality would imply that signals sent via massless particles through the bulk of a spacetime perturbed by some spectator field (which could be the graviton itself), would be recorded by a detector at earlier times than if sent instead through an unperturbed empty Minkowski spacetime, provided the impact parameter is chosen small enough. Notice that any violation of causality would be associated to small regions of spacetime, far from the IR cutoff, b b IR , and it is relative to the flat Minkowski causal structure that is obtained by removing the massless spectator field, e.g. by sending the center of mass energy to zero.

Turning the asymptotic causality condition around, forbidding its violation can be used to determine the validity range of the theory, that is putting bounds on the cutoff and/or couplings. For instance, [START_REF] Camanho | Causality Constraints on Corrections to the Graviton Three-Point Coupling[END_REF] put bounds on the cutoff associated to certain EFTs under the assumption that the higher-dimensional operators are generated at tree level so that the resolution of apparent causality violation should also be resolved at tree level, as it happens in string theory that provides infinitely many higher spin states exchanged at tree-level [START_REF] Camanho | Causality Constraints on Corrections to the Graviton Three-Point Coupling[END_REF][START_REF] D'appollonio | Regge behavior saves String Theory from causality violations[END_REF] to fix the issue with causality. Tree-level causality bounds are obtained along similar reasoning in e.g. [START_REF] Hinterbichler | Massive Spin-2 Scattering and Asymptotic Superluminality[END_REF][START_REF] Bonifacio | Massive and Massless Spin-2 Scattering and Asymptotic Superluminality[END_REF][START_REF] Afkhami-Jeddi | A Bound on Massive Higher Spin Particles[END_REF][START_REF] Kaplan | A Species or Weak-Gravity Bound for Large N Gauge Theories Coupled to Gravity[END_REF] and several other works. In this chapter we are instead interested in probing the notion of asymptotic causality quantum mechanically, and within QFT.

The results of the previous sections show that this asymptotic notion of causality is in fact respected at one loop in gauge theories that are perturbatively renormalizable (before turning on gravity) at all scales. The reason lies in the change of behavior of the contribution to the phase shift of F 3 (t), which transitions from the unbounded 1/b 2 in the EFT regime, where charged particles are integrated out, to a constant (see Fig. 7.8 and Eq. (7.76)), without ever becoming of the size of the leading effect. Moreover, while the F 1 (t) contribution to the time delay

T (F 1 ) = -[4Eβ/(8πgm 2 
Pl )] log 2 bm from (7.76) and (6.68) does become indefinitely more negative as the impact parameter is decreased, the condition T ≥ 0 in fact remains always satisfied as long as the impact parameter b is taken larger than the strong coupling scale b L of the Landau pole (if any) 12 b > b L = 1 m e -g/β , for g/β > 0 . (7.84)

Here β > 0 is the β-function of the gauge coupling g of any spin-0 and spin-1/2 charged particles running in the loop.

As for the quantum corrections generated by spin-1 particles, they satisfy automatically the causality condition T ≥ 0 for any b < b IR since the Sudakov IR double-logs suppress exponentially the form factor at the same scale where quantum corrections would otherwise start dominating over the minimal gravitational contribution, see Fig. 7.10. This is nicely consistent with the fact that the non-abelian gauge theories associated to charged spin-1 particles have negative β-functions and are therefore asymptotically free in the UV, needing a priori no UV completion before meeting the Planck length 1/m Pl .

In other words, no asymptotic-causality violation is therefore detectable, even at the quantum level, at any length scale within the range of validity of our perturbative calculations. Moreover, because of the connection we have established between the sign of the β-function and the sign of the leading quantum corrections to the phase shift δ(s, b) at small impact parameter, demanding that T ≥ 0 correctly infers the existence of new dynamics at or before the scale of the Landau pole 13 Λ L = 1/b L , if any. That is, in scalar and spinorial QED either new physics in the form of strong coupling or weakly coupled particles must appear at b > max{b L , 1/m Pl }, while for QED embedded in a non-abelian gauge theory with negative β-function the only consistency threshold associated to asymptotic causality is set by the Planck length.

Our finding shows that asymptotic causality is therefore able to diagnose the presence of a cutoff not only when the theory has strongly irrelevant operators like in [START_REF] Camanho | Causality Constraints on Corrections to the Graviton Three-Point Coupling[END_REF], but even when the cutoff is exponentially large because it is associated with marginally-irrelevant deformations such as the gauge coupling in QED.

Bulk and Infrared Causality

Let's turn now to another notion of causality which stems from the idea to race against gravitons through a spacetime perturbed by some spectator field. Basically, the graviton would set the relevant light-cone to define causality. The bulk (or local) causality condition is the statement that any massless particle would lose the race to the graviton by an amount that is resolvable and calculable within the range of validity of the theory. That is, sending a massless particle and a graviton with the same energy simultaneously through the bulk of a weakly perturbed spacetime, a detector at future null infinity would always record the graviton first and then the other particle.

Sending photons for definiteness, bulk causality implies T γ -T g ≥ 0 , (7.85)

12 Notice that we have also taken mb IR 1 while respecting b L b IR m 2 1, that is b IR < 1/m Exp(g/β) which is exponentially larger than 1/m, hence a valid choice for the IR cutoff, for perturbative couplings. Larger values of b IR are certainly valid, but there is no choice for which a violation of T > 0 can be found in the domain b L < b < b IR . 13 We are tacitly considering the case where the scale of the Landau pole of the U (1) gauge theory at hand is smaller than the Planck mass. For theories with α too small, the Landau pole would be found beyond the Planck mass and the bound would trivialize to b > 1/m Pl , where gravity becomes already strongly coupled.

where T g = 2∂δ 0 (s, b)/∂E is the time delay experienced by gravitons at the order we consider, which is the classic Shapiro time delay T g = T Sh (1 + O(1/m 4 Pl )). At the classical level the difference in the time delay vanishes, i.e. massless particles travel along the same geodesic, classically, for large impact parameter. The difference in (7.85) removes the universal term which is also present in the photon time delay as a manifestation of the classical equivalence principle. Therefore, bulk causality (7.85) is genuinely sensitive to quantum corrections generated by charged states running in the loop.

As a matter of fact, the quantum corrections we calculated in the previous sections violate the bulk-causality condition quantum mechanically, within the range of validity of perturbation theory. Indeed, at small impact parameter for loops of spin-1/2 (X = ψ) and spin-0 (X = φ) particles, b 1/m, the difference in time delays is

(T γ -T Sh ) X - Eβ X 2πgm 2 Pl log 2 bm/ȳ , (7.86) 
and it is negative even for impact parameters much larger than the Landau pole length-scale b L , see Fig. 7.8. For spin-1 particles running in the loop (X = W ), the leading contribution for b 2 m 2 Exp(-2π/α) is given by (7.82) and therefore

(T γ -T Sh ) W E m 2 Pl 1 2π log(bm) + 1 √ 32α , (7.87) 
which is also negative in this regime of small impact parameter. Note that these differences are independent of the IR cut-off b IR .

All in all, bulk causality is violated at one loop14 : although light that scatters against spectator particles is always slower than free gravitons in Minkowski spacetime (asymptotic causality), it can win the race against gravitons that also bounce off the same spectators. We interpret this result as evidence against bulk causality, whereas asymptotic causality is respected at one loop.

We remark also that our analysis is entirely performed within perturbation theory of a renormalizable gauge theory minimally coupled to gravity, i.e. with small coupling g, large impact parameter b > max{b L , 1/m Pl } but possibly b 1/m, where m is the mass of charged states, taking δ 1 and small scattering angle θ 2 1, in the transplankian eikonal regime to the leading post-Minkowskian order.

We conclude this section by comparing bulk causality to "infrared causality", proposed in [START_REF] Chen | A Cautionary Case of Casual Causality[END_REF], which demands positivity w.r.t. Shapiro time delay T γ -T Sh ≥ 0. In fact, infrared and bulk causality are essentially the same condition since T g T Sh within the 1PM approximation. Notice that for b 1/m e , removing the EFT=QED contribution to T as prescribed in [START_REF] Chen | A Cautionary Case of Casual Causality[END_REF] corresponds to pushing to infinity the Landau pole by either trivializing the gauge theory with a vanishing gauge coupling, or to go outside this regime with m e → ∞, where IR and bulk causality are again the same. Therefore, "infrared causality" is also violated quantum mechanically in full QED with dynamical charged states of mass m e , by a resolvable amount as soon as b 1/m e .

It is presently unclear what the physical consequences of bulk causality violation would be. It appears that no fundamental principle is violated by having two particle species that travel across a shockwave slower than in Minkowski space, despite one species being relatively faster than the other one. On a practical side, however, and taking it at face value, our finding teaches us that bulk causality should not be used to constrain EFT coefficients, as is instead sometime advocated in the literature, see e.g. [START_REF] De Rham | Causality in Curved Spacetimes: the Speed of Light and Gravity[END_REF].

In summary, propagation outside a local light-cone defined by the graviton can take place within a gauge theory coupled to gravity, as long as the propagation still gives T ≥ 0.

Appendices

7.A Explicit Form Factors at One Loop

In this appendix we summarize the full results of the loop calculations for Disc F i (t) and the full form factors F i (t) integrated by the dispersion relations (7.33). In the following, we set τ = 1 -4m 2 /t for brevity.

In the case of fermion loops, we find perfect agreement with the results of [START_REF] Berends | Quantum Electrodynamical Corrections to Graviton-Matter Vertices[END_REF][START_REF] Milton | Quantum Electrodynamic Corrections to the Gravitational Interaction of the Photon[END_REF]. Comparing our results with Ref. [START_REF] Coriano | Gravity and the Neutral Currents: Effective Interactions from the Trace Anomaly[END_REF][START_REF] Armillis | Trace Anomaly, Massless Scalars and the Gravitational Coupling of QCD[END_REF] that discuss spin-1 and Higgs contributions we find excellent but not perfect agreement. A small discrepancy is found for the F 1 form factor: rather than [5m 

= 7 2 iα 1 - 4m 2 W s 13 .
It is quite remarkable that the contribution of tens of diagrams in [START_REF] Coriano | Gravity and the Neutral Currents: Effective Interactions from the Trace Anomaly[END_REF] is reproduced in the present work by integrating the discontinuity of just one or two diagrams.

Electron loops (X

= ψ) Disc F 1 (t) = 2iα 3t 2 √ τ 5m 2 + t t -6m 2 2m 2 + t tanh -1 √ τ θ(t -4m 2 ) (7.88a) Disc F 2 (t) =i 2αm 2 t 3 t √ τ -4m 2 tanh -1 √ τ θ(t -4m 2 ) (7.88b) Disc F 3 (t) =i 2αm 2 t 3 -3t √ τ + 2 2m 2 + t tanh -1 √ τ θ(t -4m 2 ) . (7.88c) F 1 (t) =1 + α π - 13τ 12 + 3 16 log 2 1 - 2 √ τ + 1 + 37 18 + τ -4 4 τ coth -1 √ τ 2 + 5τ -9 6 √ τ coth -1 √ τ (7.88d) F 2 (t) = α π (τ -1) 192m 2 36τ -3 log 2 1 - 2 √ τ + 1 -32 - √ τ (τ -1) 2 8m 2 coth -1 √ τ (7.88e) - (τ -2)τ (τ -1) 16m 2 coth -1 √ τ 2 F 3 (t) = α π (τ -1)   - 7τ 16m 2 + 3 log 2 1 -2 √ τ +1 64m 2 + 11 24m 2   (7.88f) + 3 √ τ (τ -1) 2 coth -1 √ τ 8m 2 + (τ -4)τ (τ -1) coth -1 √ τ 2 16m 2
Scalar loops (X = φ)

Disc F 1 (t) = iα 6t 2 t t -10m 2 √ τ + 24m 4 tanh -1 √ τ θ(t -4m 2 ) (7.89a) Disc F 2 (t) = iα t 3 m 2 -t √ τ + 2 2m 2 + t tanh -1 √ τ θ(t -4m 2 ) (7.89b) - 4iαm 2 ξ φ tanh -1 √ τ 3t 2 θ(t -4m 2 ) Disc F 3 (t) = iαm 2 t 3 3t √ τ -2 2m 2 + t tanh -1 √ τ θ(t -4m 2 ) (7.89c) F 1 (t) =1 + α 8πt - 1 4 t log 2 √ τ -1 √ τ + 1 + t - 16m 4 t coth -1 √ τ 2 (7.89d) - 4 3 √ τ t -10m 2 coth -1 √ τ - 52m 2 3 + 19t 9 
F 2 (t) = - 5α 24πt 1 + τ (4ξ φ -9)t -12m 2 5t coth -1 √ τ 2 + 1 20 (9 -4ξ φ ) log 2 √ τ -1 √ τ + 1 (7.89e) + 36m 2 5t - 24m 2 √ τ 5t coth -1 √ τ - 4ξ φ 5 F 3 (t) = α 24πt 1 + 48m 4 t 2 + 24m 2 t -9 coth -1 √ τ 2 + 84m 2 t (7.89f) + 9 4 log 2 √ τ -1 √ τ + 1 - 72m 2 √ τ t coth -1 √ τ Vector loops (X = W ) Disc F 1 (t) = -iα 2t 2 t √ τ 10m 2 + 7t -8 m 2 + t 3m 2 + t tanh -1 √ τ θ(t -4m 2 ) (7.90a) Disc F 2 (t) = - iαm 2 t 3 3t √ τ + 2 t -6m 2 tanh -1 √ τ θ(t -4m 2 ) (7.90b) Disc F 3 (t) = - 3iαm 2 t 3 -3t √ τ + 2 2m 2 + t tanh -1 √ τ θ(t -4m 2 ) (7.90c) F 1 (t) =1 - α 2πt 35 16 t log 2 √ τ -1 √ τ + 1 + 12m 4 t + 16m 2 - 19t 4 coth -1 √ τ 2 (7.90d) - √ τ 10m 2 + 7t coth -1 √ τ + 13m 2 + 125t 12 
F 2 (t) = - α 8πt - τ 12m 2 + t t coth -1 √ τ 2 + 36m 2 t + 1 4 log 2 √ τ -1 √ τ + 1 (7.90e) - 24m 2 √ τ t coth -1 √ τ -3 F 3 (t) = - α πt - 6m 4 t 2 - 3m 2 t + 9 8 coth -1 √ τ 2 - 84m 2 + t 8t (7.90f) - 9 32 log 2 √ τ -1 √ τ + 1 + 9m 2 √ τ t coth -1 √ τ

7.B Two-loop master integrals

In this brief appendix we shall give the explicit expression of the two-loop scalar MIs sketched in Fig. 7.6, section 7.2.3. Let us start with the planar MIs. Using the external momenta defined in (7.51) and calling the loop momenta 1 and 2 , we introduce the following propagators

ρ 1 = 2 1 , ρ 2 = 1 + p2 - q 2 2 , ρ 3 = ( 1 + p1 + p2 ) 2 , ρ 4 = 1 + p2 + q 2 2 , ρ 5 = 2 2 , ρ 6 = 2 + p2 - q 2 2 , ρ 7 = ( 1 + p1 + p2 ) 2 , ρ 8 = 2 + p2 + q 2 2 , ρ 9 = ( 1 -2 ) 2 , (7.91) 
where we left implicit the +i0 + Feynman prescription. Then, all the MIs take the following form

G i 1 ,i 2 ,i 3 ,i 4 ,i 5 ,i 6 ,i 7 ,i 8 ,i 9 ≡ d d 1 (2π) d d d 2 (2π) d 1 ρ i 1 1 ρ i 2 2 ρ i 3 3 ρ i 4 4 ρ i 5 5 ρ i 6 6 ρ i 7 7 ρ i 8 8 ρ 9 i 9 . ( 7 

.92)

In the above equation we underlined the propagators that are cut as depicted in Fig. 7.6. These propagators are to be replaced with on-shell delta functions [START_REF] Herrmann | Radiative classical gravitational observables at O(G 3 ) from scattering amplitudes[END_REF][START_REF] Vecchia | The eikonal approach to gravitational scattering and radiation at O(G 3 )[END_REF][START_REF] Riva | Radiated momentum in the post-Minkowskian worldline approach via reverse unitarity[END_REF], e.g

1 ρ 7 → δ - + (ρ 7 ) . (7.93) 
Higher power of a cut propagators means derivative of the delta functions. Given these definitions, the planar MIs g are explicitly

g 1 = 1 (-q 2 )
-18ε 3 + 27ε 2 -13ε + 2 4(y + 1)ε 3 G 1,0,0,0,0,0,1,0,1 , g 2 = (-q 2 ) 1 -1 2ε G 1,0,0,0,0,1,1,1,1 , g 3 = (-q 2 ) 1y 2 G 1,0,0,1,0,1,1,0,1 , g 4 = -(-q 2 ) 3 1 + y 4 G 1,1,0,1,0,1,1,1,1 , g 5 = -72g 1 y + 1 -18g 2 ε 2 + 5ε + 2 (y + 1) (2ε 2 + 3ε + 1) + 18g 3 y + 1 -3g 4 4y + 1 ε + 7 y + 1 -(-q 2 ) 4 3(y + 1)(ε + 1) 8 (2ε 2 + ε) G 2,1,0,1,0,1,1,1,1 . For the non planar MIs, we introduce the following basis of propagators -(-q 2 ) 3 2(ε -1) 5y 2 (4ε + 1) -7y(3ε + 1) + 10ε + 5 15yε(4ε + 1) G1,1,1,0,0,1,1,1,1 + (-q 4 )( (7y -10) y 2 -1 (ε 2 -1) 30yε (8ε 

ρ1 = 2 1 , ρ2 = 1 + p2 - q 2 2 , ρ3 = ( 1 -q) 2 , ρ4 = 2 2 , ρ5 = 2 + p2 - q 2 2 , ρ6 = ( 2 -q) 2 , ρ7 = 1 -p1 - q 2 2 , ρ8 = ( 1 -2 ) 2 , ρ9 = 1 -2 + p1 + q 2 , ( 7 

Conclusion

In this thesis, we have explored some aspects of gravity through the lenses of Effective Field Theories. We have discussed how fundamental principles provide a powerful guiding lighthouse to describe Nature, and we have exploited them to efficiently compute scattering amplitudes without relying on an underlying Lagrangian description. Moreover, requiring principles such as unitarity and causality to be valid also at the short distance, allowed us to discriminate between Effective Field Theories that admit a causal/unitary UV completion and those that do not, and thus lie in a region of theory space that would force us to give up one of our beloved principles at short distance. We have then applied these ideas to study different aspects of gravity from an Effective Field Theory perspective. Indeed, we have approached the problem always from a low energy/long distance point of view, first by considering some IR deformations of Einstein's gravity by adding a small mass to the graviton, and then by studying transplanckian eikonal scattering and its connection to causality at large impact parameter.

In chapter II, we found that fundamental principles strongly constrain deformations of Einstein's gravity. Alternative theories of gravity have a long history, and their properties and phenomenology has been studied in depth over the last 50 years. In particular, the deformation including a small graviton mass has attracted a lot of attention for its applications for instance to cosmology. We applied positivity constraints to dRGT gravity, showing that the cutoff of the EFT must lie within one order of magnitude from the mass of the graviton Λ < O(10), basically ruling out massive gravity as a gravitation theory to describe our universe. Viceversa, if a graviton mass m = 0 would be experimentally measured, it would immediately imply the breaking of one of the fundamental principles we assumed, meaning a huge shift in the way we understand and describe Nature.

This finding applies both to its standard form as well as the inclusion of higher order deformations that do not modify the conclusion. This improvement of 15 order of magnitudes from previous bounds was achieved by exploiting the fact that unitarity implies that non-forward arcs must be bounded by forward ones. Furthermore, by considering arcs at t m 2 , crossing reduces from a complicated web relating all amplitudes to the simple massless case, resulting in a clean and powerful bound (5.32).

In the future, sharper and optimized bounds could be obtained by considering the regime m ∼ Λ, where our approximation breaks down, as scale separation is instrumental for the argument (our bound stems from the regime m 2 |t| Λ 2 ). That would be relevant for instance for generic spin-2 resonances, such as glueballs in gauge theories and QCD. Moreover, 129 this simplified approach lends itself well to be extended to finite t constraints on the parameter phase-space of higher spin theories.

As gravity is still not fully understood, it is interesting to study it in the transplanckian regime, where it becomes the most important force. Even at transplanckian energies, we can approach gravity from a long distance point of view by exploiting the eikonal regime, and apply some EFT reasoning. In chapter III, we provided a simple and intuitive formulation of the eikonal resummation by studying the large angular momentum limit of the partial waves expansion. The eikonal regime is relevant in various areas of physics, and allows one to access the high-energy non-perturbative regime at long distance. With the emergent interest in gravitational waves physics, and the description of the motion of astrophysical objects through the technology of scattering amplitudes, the importance of reliably extrapolating transplanckian observables can not be understated. We found that the exponentiation takes place at all order in θ, implying that Post-Minkowskian corrections computed perturbatively can be safely extrapolated to the transplanckian regime, for instance to predict motion of astrophysical objects. These results extend in principle the validity of approximation beyond the small angle regime. What is the radius of convergence of this expansion? Can we use the all-order expression to approach the region of black hole formation? These remain, at the moment, open and interesting questions.

In the analysis of the eikonal resummation we also included spinning external states, resulting in the exponentiation of the phase matrix. This fact can be naturally exploited to study the eikonal in the context of large classical spins. Indeed, it is known that from scattering of spinning states it is possible to extract dynamics of astrophysical spinning bodies, such as Kerr black holes or spinning neutron stars. Observables related to classical spins should be extracted with a saddle point analysis along the lines of 6.3.2 from the eikonal for large spins. In particular, to achieve a well-defined classical limit of the external states, it is important to consider coherent spin states as external legs.

Still in the context of the eikonal framework, we studied the resolvability of subleading contributions of different nature to the phase-shift, showing that "classical" Post-Minkowskian corrections as well as tidal or quantum effects from QFT-like particles can be resolvable in the transplanckian regime. On the other hand, quantum gravity contributions controlled by the Planck length are always smaller than the size of the wavepacket that localizes the states. Therefore, we will never be able to detect any quantum gravity effect from transplanckian eikonal scattering, no matter how precise our measurements are.

We were interested in the question of resolvability of QFT corrections mostly to address properties of causality in a gravitational context. Causality is a fundamental concept in classical as well as in quantum physics in flat spacetime, and it is at the core of relativistic QFT. Its implications -its precise incarnation-are however presently not fully understood in dynamical gravity, once quantum matter effects are taken into account or even when spacetime is itself subject to quantum fluctuations. In chapter 7 we exploited fundamental properties of the Smatrix to approach this question by investigating the causal features of the eikonal amplitude including QFT corrections. By introducing certain "eikonal arcs" in complex energy space at fix impact parameters, we have shown that the time delay and odd higher derivatives of the eikonal amplitude satisfy infinitely many non-linear constraints, which can be used to bound EFT coefficients. On the lines of [START_REF] Caron-Huot | Causality Constraints on Corrections to Einstein Gravity[END_REF], we connected analytic properties of the S-matrix to the notion of "asymptotic causality" for generic masses and spins, showing that positivity of the timedelay emerges from fundamental properties of the S-matrix, such as analyticity (micro-causality), unitarity, etc.

In an explicit example of this strategy, we have reproduced the known positivity bounds for (Riemann) 4 /m 2 Pl Λ 4 type of operators, in the rigid limit Λ/m Pl ×m/m Pl → 0, where m is the mass of one of the scattered particles. A possible future direction is to explore these new causality bounds more systematically, away from eikonal and rigid limits, using (7.10). Furthermore, this method allows us to target Wilson coefficients relevant for tidal deformations such as (7.8), which become important when scattering finite size bodies (bodies with a size larger than their Schwarzschild radius). It is known that those coefficients capture for instance the equation of state of neutron stars. Can positivity constraints on their tidal deformations teach us something about their internal structure? It is for sure a fascinating prospective.

A likely obstacle to these dreams is the presence of IR divergences appearing in positivity constraints in the gravitational setting. As discussed in section 3.5, Wilson coefficients such as R 3 which enter in the first arc, are bounded up to IR divergent logs (the same conclusion is obtained by requiring positivity of the time-delay, whose leading Shapiro delay is also log-divergent). In the same way, leading tidal effects avoid sharp quantitative bounds by allowing some log-type negativity. Finding positivity constraints on IR finite observables would greatly improve the phenomenological applicability of them.

Lastly, in this thesis we have studied causality in gravity to the first post-Minkowskian order in flat spacetime, focusing on the leading quantum effects in a gauge theory. We have in particular contrasted two notions of causality -"asymptotic" and "bulk" causality-in a gauge theory where both are respected in the classical limit, but differ quantum mechanically.

We have found that asymptotic causality, i.e. positivity of the time delay relative to a photon travelling in unperturbed flat spacetime, is respected up to the scale of the Laudau pole (if any), where the perturbative regime breaks down and our calculation is no longer valid. Conversely, the presence of the Landau pole can be correctly inferred by demanding asymptotic causality in a gravitational scattering. For theories with a negative β-function, we find that asymptotic causality holds up to the Planck length.

The fate of bulk causality, that is the notion that photons should travel locally not faster than gravitons in the bulk of the same dynamical spacetime, is different. Bulk causality implies that the difference between photon and graviton time delays should be non-negative, which is respected classically. We have found instead that quantum-mechanically photons display in the UV a smaller time delay than gravitons, representing a violation of bulk causality at the quantum level.

We interpreted these results combined with the fact that "asymptotic causality" emerges from S-matrix fundamental principles, as strong indications that the causal structure in asymptotically flat gravitational theories is set by the asymptotic Minkowski light-cone.

If there is one thing that I have learnt working on this thesis, is that Quantum Field Theory is an incredibly rich and partially still unexplored framework. As emphasized in this thesis, this framework allows us to study long distance gravity in new ways, that in practice had been out of reach in traditional GR, while also providing a wonderful playground to explore theoretical questions and improve our understanding of Nature.

Chapter 9

Synthèse en français L'objectif ambitieux de la physique est de décrire et de comprendre les phénomènes naturels à toutes les échelles, depuis la structure de l'univers dans son intégralité jusqu'aux plus petits constituants de la matière. Ce serait une bataille perdue d'avance si tous les effets couvrant plus de 60 ordres de grandeur étaient inextricablement liés, et que nous devions les considérer tous en même temps. Heureusement, ce n'est pas le cas, car les descriptions approximatives nous permettent d'aborder un problème sans avoir une connaissance complète des phénomènes qui se produisent à des échelles très éloignées. Nous pouvons prédire la trajectoire d'une cerise tombant d'un arbre sans tenir compte du fait que l'expansion de l'univers s'accélère, ou que la chromodynamique quantique est asymptotiquement libre. Cette idée est naturellement intégrée dans le paradigme des théories effectives des champs (EFT), où les effets sous-jacents à petite distance sont systématiquement négligés, c'est-à-dire encapsulés dans des opérateurs locaux d'importance décroissante pour les degrés de liberté accessibles à longue distance.

Bien que les EFT soient par définition un outil agnostique, c'est-à-dire qu'il n'y a en principe pas de sélection d'une complétion particulière à haute énergie (ultraviolet), elles fournissent néanmoins un cadre puissant et prédictif pour comprendre et aborder les phénomènes physiques. Par exemple, nous pouvons faire des hypothèses sur les propriétés globales dans l'ultraviolet (UV), sans choisir sa structure détaillée, dans l'esprit de l'EFT. Il s'avère que des hypothèses telles que la covariance de Lorentz, l'unitarité, la causalité et la localité imposent des contraintes non triviales sur les descriptions à basse énergie, voir Fig. 9.1. Autrement dit, toutes les EFT ne sont pas nées égales, car tous les choix de coefficients n'admettent pas une complétion cohérente avec certains principes fondamentaux que nous pourrions vouloir conserver dans la théorie de haute énergie. Ces limites sur l'espace des théories de basse énergie sont généralement appelées contraintes de positivité. Si l'on inverse l'argument, la mesure de paramètres qui ne satisfont pas ces contraintes impliquerait qu'une ou plusieurs des hypothèses sont violées dans la théorie UV. Quels sont ces principes fondamentaux que nous pourrions imposer à la théorie UV? Nous les énumérons et explorons certaines de leurs conséquences dans la partie I.

Les principes fondamentaux offrent non seulement un moyen intéressant de délimiter l'espace des théories de basse énergie compatibles avec une certaine classe de complétions UV, mais ils contraignent aussi fortement la structure des amplitudes elles-mêmes. Cette perspective "sur couche" devient un outil puissant pour construire des amplitudes sans dépendre de la machinerie laborieuse des Lagrangiens et des champs, souvent remplis de degrés de liberté non physiques. Dans cette thèse, nous tentons de tirer parti des points de vue susmentionnés pour étudier l'une des théories effectives les plus fascinantes : la gravité. À grande distance, elle est extrêmement bien décrite par la Relativité Générale (RG), qui est caractérisée par un couplage fort à la masse de Planck, et sa complétion UV, i.e. sa réalisation à courte distance, est encore un domaine de recherche actif. Nous nous intéressons à l'interaction entre différents principes tels que la causalité, l'unitarité et l'analyticité dans le contexte gravitationnel, en gardant à l'esprit que les déformations de la gravité à grande distance sont également soumises à des contraintes de positivité.

Depuis plus d'un siècle, la théorie de la relativité générale a fourni des prédictions qui ont été constamment confirmées par les observations. La plus impressionnante et pertinente aujourd'hui est probablement la détection des ondes gravitationnelles, qui a ouvert une nouvelle fenêtre passionnante pour explorer l'univers. Mais pourquoi la théorie de la gravité devrait-elle prendre exactement la forme de l'action d'Einstein-Hilbert ? À quel point pourrait-il être désastreux de la modifier légèrement ? Nous considérons une déformation de la gravité qui envisage une masse minuscule pour le graviton. Nous construisons les amplitudes 2 → 2 pertinentes en exploitant des méthodes "sur couche", retrouvant la gravité dRGT, qui est une EFT caractérisée par deux paramè tres libres (c 3 , d 5 ) et une échelle de couplage forte se situant à Λ 3 = (m 2 m Pl ) 1/3 . Nous considérons également le couplage du graviton massif à la matière, en montrant que l?ajustement des paramè tres qui permet le plus grand domaine de validité de l'EFT Λ c = (mm 2 Pl ) 1/3 est celui qui satisfait le principe d'équivalence.

Nous observons explicitement la puissance des contraintes de positivité en les imposant aux déformations de la gravité qui envisagent une petite masse pour le graviton m, montrant dans la partie II que de telles théories ne pourraient pas être cohérentes avec les contraintes de positivité, à moins que leur coupure UV ne soit inférieur à O(10)m. Dans le contexte de la gravité massive, où les observations imposent que m ∼ H 0 , avec H 0 la constante de Hubble, cela signifie que l'EFT dans sa forme commune ne peut pas être utilisée de manière fiable pour décrire des distances inférieures à 1/10 de la taille de l'univers ! Inversement, si une masse de graviton m = 0 était mesurée expérimentalement, cela impliquerait immédiatement la rupture de l'un des principes fondamentaux que nous avons supposés, ce qui signifierait un énorme changement dans la faon dont nous comprenons et décrivons la nature.

Cette conclusion s'applique aussi bien à la forme standard de DRGT qu'à l'inclusion de déformations d'ordre supérieur qui ne modifient pas la conclusion. Cette amélioration de 15 ordres de grandeurs par rapport aux limites précédentes a été obtenue en exploitant le fait que l'unitarité implique que les arcs à t = 0 doivent être limités par des arcs à t = 0. De plus, en considérant des arcs à |t| m 2 , le croisement se réduit à un réseau compliqué reliant toutes les amplitudes au cas simple sans masse, résultant en une borne propre et puissante.

A l'avenir, des limites plus précises et optimisées pourraient être obtenues en considérant le régime m ∼ Λ, où notre approximation n'est plus valide, puisque la séparation d'échelle est essentielle pour l'argument (notre limite provient du régime m 2 |t| Λ 2 ). Cela serait pertinent par exemple pour les résonances génériques de spin-2, telles que les boules de glue dans les théories de jauge et la QCD. De plus, cette approche simplifiée se prête bien à être étendue aux contraintes de t fini sur l'espace des phases des paramètres des théories de spin supérieur.

Une autre façon d'aborder la gravité dans une perspective EFT consiste à supposer que la RG est la théorie correcte à longue distance, et à étudier les effets qui apparaissent lorsque l'on diminue ces distances. Nous adoptons cette perspective dans la partie III. Il est facile de montrer que, pour produire des effets gravitationnels tels qu'un angle de déviation qui pourrait être mesuré dans un "collisionneur gravitationnel", il est nécessaire que la diffusion ait lieu à des énergies transplanckiennes. En effet, malgré le fait que la gravité devienne faible à grande distance, elle est la force la plus importante et l'effet principal à de telles énergies. Dans ce régime, les outils perturbatifs (tels que les amplitudes de diffusion) s'effondrent, mais des résommations impressionnants de familles de diagrammes émergent, fournissant une limite lisse à la physique transplanckienne semi-classique. Dans le chapitre III, nous donnons une formulation simple et intuitive de la resommation eikonale, en étudiant la limite des grands moments angulaires de l'expansion des ondes partielles, qui est interprétée en termes de contractions du groupe SO(3) → ISO [START_REF] Bargmann | Group Theoretical Discussion of Relativistic Wave Equations[END_REF]. Le régime eikonal est pertinent dans divers domaines de la physique et permet d'accéder au régime non-perturbatif à haute énergie et à longue distance. Avec l'intérêt émergent pour la physique des ondes gravitationnelles, et la description du mouvement des objets astrophysiques à travers la technologie des amplitudes de diffusion, l'importance de l'extrapolation fiable des observables transplanckiennes ne peut pas être sous-estimée.

Nous trouvons que l'exponentiation a lieu à tous les ordres en θ, ce qui implique que les corrections post-minkowskiennes calculées de manière perturbative peuvent être extrapolées en toute sécurité au régime transplanckien, par exemple pour prédire le mouvement d'objets astrophysiques. Ces résultats étendent en principe la validité de l'approximation au-delà du régime des petits angles. Quel est le rayon de convergence de cette expansion ? Pouvons-nous utiliser l'expression d'ordre général pour approcher la région de formation des trous noirs ? Ces questions restent pour l'instant ouvertes et intéressantes. Dans l'analyse de la resommation eikonale, nous incluons également les états externes avec des spins, ce qui entraîne l'exponentiation de la matrice de phase. Ce fait peut être naturellement exploité pour étudier le cadre eikonal dans le contexte des grands spins classiques. En effet, on sait qu'à partir de la diffusion d'états de rotation, il est possible d'extraire la dynamique de corps astrophysiques en rotation, tels que les trous noirs de Kerr ou les étoiles à neutrons en rotation. Les observables liées aux spins classiques devraient être extraites par une analyse des points de selle semblable à celle du 6.3.2 de l'eikonal pour les grands spins. En particulier, pour obtenir une limite classique bien définie des états externes, il est important de considérer les états de spin cohérents comme lignes externes.

Toujours dans le contexte du cadre eikonal, nous étudions la résolvabilité des contributions secondaires, de nature différente à la matrice de phase, en montrant que les corrections postminkowskiennes "classiques", ainsi que les effets de marée ou les effets quantiques des particules de type QFT, peuvent être résolus dans le régime transplanckien. D'autre part, les contributions de la gravité quantique contrôlées par la longueur de Planck sont toujours plus petites que la taille du paquet d'ondes qui localise les états. Par conséquent, nous ne pourrons jamais détecter d'effet de gravité quantique à partir de la diffusion eikonale transplanckienne, quelle que soit la précision de nos mesures.

Le contrôle du cadre eikonal nous permet de l'utiliser comme terrain de jeu pour aborder différentes questions. En particulier, nous montrons que les corrections quantiques de nature "QFT-like" (par exemple les effets du modèle standard) produisent des corrections résolvables, qui contribuent à des observables physiques telles que le délai. Ce fait nous permet de sonder les définitions de la causalité en gravité au niveau d'effets de boucles, en nous concentrant sur les effets quantiques principaux dans une théorie de jauge. En particulier, nous opposons deux notions de causalité, la causalité "asymptotique" et la causalité "globale", dans une théorie de jauge où les deux sont respectées dans la limite classique, mais diffèrentes du point de vue de la mécanique quantique.

Nous trouvons que la causalité asymptotique, c'est-à-dire la positivité du délai par rapport à un photon voyageant dans un espace-temps plat non perturbé, est respectée jusqu'à l'échelle du pôle de Laudau (s'il existe), où le régime perturbatif s'effondre et où notre calcul n'est plus valide. Inversement, la présence du pôle de Landau peut être correctement déduite en exigeant la causalité asymptotique dans une diffusion gravitationnelle. Pour les théories avec une fonction β négative, nous trouvons que la causalité asymptotique est valable jusqu'à la longueur de Planck.

Le sort de la causalité globale, c'est-à-dire la notion selon laquelle les photons ne doivent pas voyager localement plus vite que les gravitons dans le même espace-temps dynamique, est différent. La causalité globale implique que la différence entre les délais des photons et des gravitons soit non négative, ce qui est respecté classiquement. Or, nous avons constaté qu'en mécanique quantique, les photons affichent dans l'UV un retard temporel inférieur à celui des gravitons, ce qui représente une violation de la causalité globale au niveau quantique.

Nous interprétons ces résultats, combinés au fait que la "causalité asymptotique" émerge des principes fondamentaux de la matrice S, comme des indications fortes que la structure causale, dans les théories gravitationnelles asymptotiquement plates, est fixée par le cône de lumière asymptotique de Minkowski.

En résumé, dans cette thèse, nous explorons certains aspects de la gravité d'un point de vue basse énergie/grande distance. Notre approche est double : d'une part, nous déterminons la cohérence des déformations infrarouge de la gravité d'Einstein avec les contraintes émergeant de principes tels que la causalité et l'unitarité, en nous concentrant en particulier sur la gravité massive. D'autre part, nous étudions la diffusion transplanckienne dans le régime eikonal et ses liens avec la causalité dans la gravité.
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 111 Figure 1.1 -Space-time regions for the state in x 1 with respect to the light-cone of the state in x 2 , that we locate at the origin. The retarded and advanced correlators have support respectively on regions R (in orange) and A (in green).
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 32 Figure 3.2 -Left: Bubble of non-trivial background at rest. Right: Bubble of non-trivial background in a boosted frame.
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 41 Figure 4.1 -Schematic representation of the pole terms in the 4-graviton amplitude in (4.1).
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 42 Figure 4.2 -Schematic representation of the pole terms in the Compton amplitude in (4.1).
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 52 Figure 5.2 -Analytic structure of elastic-helicity amplitudes: IR poles and subtraction points are schematically represented by orange dots, and are well within the contour C. UV branch cuts are explicitly displayed, whereas IR ones are omitted.

Figure 5 . 3 -

 53 Figure 5.3 -A close-up of the Fig. 5.1, for finite values of |t|/m 2 (we have used the exact amplitudes, rather than the ones expanded at large |t|/m reported in the main text). Different shadings correspond to the allowed parameter space for different values of Λ/m, represented at fixed |t|/Λ 2 = 0.1. As the ratio between the cutoff and the mass increases, the parameter space shrinks and eventually disappears, hence providing (5.40).

  ladder and cross-ladder diagrams, which is known to exponentiate in b-space, schematically e 2iδ(s,b) = Exp + . . . = I+ + + + . . . (6.1) where δ(s, b) is the so-called phase-shift, an extremely important object, since physical observables are extracted from it.
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 61 Figure 6.1 -Diagrammatic contributions up to one loop to the leading eikonal resummation.The symmetric distribution of the loop momentum k allows to simply recover the emergence of the delta functions of (6.4).

3 .

 3 In order to simplify the notation we restrict hereafter to the case of m 1 = m 3 and m 2 = m 4 . In this case, initial and final c.o.m. 3-momenta are equal, |p 1 | = |p 3 | ≡ |p|, and
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 62 Figure 6.2 -Schematic representation of the group contraction SO(3) → ISO(2) in the limit of large angular momentum: from the isometries of a sphere to those of its tangent plane.

. 22 )

 22 where ϕ is an angle. The continuous-spin basis and the |λ basis are connected via a Fourier series

  30). Let's work with the partial wave amplitude (1.38) specialized to m 1 = m 3 and m 2 = m 4 (hence |p 1 | = |p 3 | = |p|) and φ = 0

  ), and we have redefined the relation between b and M(s, b) ≡ M (b) (s) , b ≡ ( + 1/2)/|p| (6.38)
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 63 Figure 6.3 -Scale lengths of the system. Bottom: tidal relative corrections (L /b) n are largest and dominate the modifications to the leading eikonal. Top: the most important corrections to leading eikonal arise from higher-derivative operators generated by particles of Compton wavelength λ = 1/m e that are running in loops, as long as αλ 2 R s and b λ. For b λ resummation to all orders in λ/b is needed, corresponding to work with a new EFT where new degress of freedom are propagating. A typical example of δθ/θ, to first order in the coupling constant, is ∼ α log 2 λ/b in in this regime.
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 71 Figure 7.1 -Type of diagram contributing to the eikonal scattering and the resulting time delay via the form factors F i . Curly lines are graviton legs, wiggle lines represent photons, dashed lines are the spectators, and F i are the form factors defined in (7.25) associated to the photon energy-momentum tensor.
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 72 Figure 7.2 -Thick blue lines represent the contour integral defining the arc (7.4). Lighter blue lines correspond to the contour deformation giving rise to the UV representation (7.5). Orange lines on the real axis represent s and u channel branch-cuts.
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 73 Figure 7.3 -Diagrams contributing to the 1-loop discontinuity of the 3-point function with k 2 =

p 1 p 3 p 2 p 4 p 1 -k p 2 + k 1 Figure 7 . 4 -

 412174 Figure 7.4 -Pictorial representation of the R.H.S. of(7.45). In this picture, the grey blobs represent effective vertices of order α. Recall that with in-coming momenta p µ 1 + p µ 3 = q µ , and s = (p 1 + p 2 ) 2 .
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 175 Figure 7.5 -Topologies arising from the contraction M 5 λ 1 M * 5 λ 3 . One must add the symmetric contributions w.r.t. the cut for (d), (e) and (f).

  ) see Eq.(7.38), which nicely links the contribution to the time delay of the form factors to the β-function. This approximation is valid for scalars β φ =
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 710 Figure 7.10 -Quantum corrections to the phase shift in the vector case with IR Sudakov doublelogs resummation as a function of bm, choosing for simplicity b IR = 1/m. The dots reproduce the full numerical solution for α = 1/10 (blue), α = 1/100 (red), and α = 1/200 (black). The solid lines for Exp(-π/2α) < bm < 1 are the analytic approximation based on(7.79). If extrapolated to the region bm < Exp(-π/2α), the phase shift would turn negative as displayed by the thin dotted lines. In such a regime of small bm the (7.79) is however no longer valid. After resumming the IR Sudakov double-logs we find indeed a positive constant phase shift in the region bm < Exp(-π/2α), and no causality violation.
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 94 This planar MIs satisfy the differential equation written in(7.55) where A ±1 are explicitly
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These definitions are not independent, for instance it is shown in[START_REF] Weinberg | The Quantum theory of fields[END_REF] that combining quantum mechanics, cluster decomposition and Lorentz invariance implies quantum fields and a local Lagrangian.

The product of these 3-pt functions is real, as they could contain phases due the polarization tensor of the exchanged particle, that always cancel between M and M † .

For ease of notation, whenever the 3-momentum of the particles is the same as the c.o.m. 3-momentum we omit the subscript c. unless needed otherwise.

Explicitly: Imf = Re(1e 2iδ ) ≤ 2 and |S | 2 = 1 -2Imf + |f | 2 < 1

Notice that in the massless case, there is no path to relate the upper to the lower plane, as the unitarity branch cut covers the whole real axis.

This locality condition basically requires convergence of the spectral density integral using only test functions of compact support. By "locality" we mean the ability to localize a state simultaneously in momentum and position space by using wavepackets, with a convergent integral allowing us to move from a space to the other.

To prove the Källen-Lehman representation we need completeness of states (unitarity) and invariance under the Poincaré symmetry.

The reader might be worried that polynomial boundedness is necessary to achieve convergence of partial waves (and analyticity) for t > 0, making this argument circular. However, according to[START_REF] Martin | Analyticity properties and bounds of the scattering amplitudes[END_REF], sub-exponentiality of the amplitude is sufficient to prove analyticity within the Lehmann ellipse.

Which is ironic, given that most of the properties that we explored and shown in the previous sections are rigorously proven only in the presence of a mass gap.

Without imposing this choice the little group can be enlarged from SU (2) to GL(2), whose physical interpretation is not clear.

Another naive possibility would be[START_REF] Meiman | The causality principle and the asymptotic behavior of the scattering amplitude[END_REF][32]/[START_REF] Jaffe | [END_REF] 3 , which would be generated only by non-local interactions, as it corresponds to an operator with derivatives in the denominator.

[START_REF] Conde | Physics from the s-matrix: Scattering amplitudes without lagrangians[END_REF] In particular, p 2 1 = (p 2 + p 3 ) 2 = 23[START_REF] Britto | New recursion relations for tree amplitudes of gluons[END_REF] = 0 etc, implying that either 12 = 23 = 31 = 0 or equivalently for square

brackets.[START_REF] Jacob | On the General Theory of Collisions for Particles with Spin[END_REF] Once again we are considering minimally coupled scattering, as the Ansatz would become more involved by introducing additional scales.

Notice that by choosing the second version of the 3pt function in(2.22), the contraction with p µ p ν will identically vanish, leading to a softer behavior. If we did not take this approach, we would have to consider a basis of contact terms with higher number of momentum insertions.

Giving up any of these assumptions adds layers of complications: for instance scattering spinning states can generate additional kinematic singularities (classified in[START_REF] Cohen-Tannoudji | Kinematical Singularities, Crossing Matrix and Kinematical Constraints for Two-Body Helicity Amplitudes[END_REF]). We will encounter and take them into account in chapters 5 and 7.

In general, the kernel K n can be always split into an even and an odd part under crossing, which can be useful in certain cases.

Naively, it looks that the same issue would appear with any massless force carrier, such as QED. Yet, contrarily to gravity, the t-channel pole appears as s/t (versus s 2 /t in gravity), thus it does not enter in a 0 (s) and it is not problematic.

We will not discuss it here, but this can also happen when adding contributions from light loops, which enter directly in the IR arcs, often capturing the RG running of Wilson coefficients[START_REF] Bellazzini | The Ir-Side of Positivity Bounds[END_REF].

Another interesting ingredient that is used in this approach is the construction of "improved arcs". Indeed, arcs at finite t contain an infinite tower of Wilson coefficients appearing with any power of t. Those can be eliminated by considering a suitable combination of arcs and their t-derivates, so that only a finite number of Wilson coefficients enters in the l.h.s. of(3.23). Obviously this procedure leads to a different kernel in the dispersive side.

Notice that we use the term soft in the opposite sense as e.g. in Ref.[START_REF] Bellazzini | Softness and amplitudes' positivity for spinning particles[END_REF]. In this chapter, for amplitudes growing as M ∼ E n for m E Λ, softer means a smaller power n.

In this chapter, UV behavior or UV properties always refer to energies m E Λ, that is above all particles' masses but within the validity range of the EFT. We will be concerned with the true UV properties of the amplitudes, that is for E → ∞, in chapter 5.

See Refs.[START_REF] Christensen | Constructive standard model[END_REF][START_REF] Durieux | The electroweak effective field theory from on-shell amplitudes[END_REF][START_REF] Aoude | The Rise of SMEFT On-shell Amplitudes[END_REF][START_REF] Bachu | On-Shell Electroweak Sector and the Higgs Mechanism[END_REF] for amplitudes of massive EFTs constructed out of χ J and χJ instead.

Symmetrization over little group indices takes the form 1/ √ r[ µν (p)] (IJKL) , where r is the number of permutations of IJKL.

Notice that as the arcs (5.2) receive contribution purely from poles, thus they do not have any dependance on the size of the arc itself.

A λ1λ2 is independent of the subtraction points, since in the dRGT EFT, (M λ1λ2 (s, t)+Mλ 1λ2 (s, t)) ∼ s 2 , as opposed to s

, meaning that A λ1λ2 can be computed as the s → ∞ residue of the EFT amplitudes themselves.

Even though this would mean a compactification scale of the order of 1/H 0 , which we would be definitely be able to probe.

Transplanckian eikonal scattering has found applications even within particle phenomenology at colliders, see[START_REF] Giudice | Transplanckian Collisions at the Lhc and Beyond[END_REF].

For scattering of massive states, the gravitational coupling takes the form α g ≡ 2G (p1•p2) 2 √ s|p|

The function J 2 (x) should not be confused for the SU (2) generator J 2 . We recall that λλ is integer, and any 2π-periodic integration range in (6.24) is equivalent.

The expi(λ 12λ 34 )ϕ-factor is expected to show up for a ϕ-rotated scattering plane via(6.15). The origin of the extra -π/2-factor in (6.29) can also be understood as following. From the momentum-

Of matrix elements U λ k λ l λiλj = δ λ k λi δ λ l λj e iλij (ϕ-π/2)

Notice that J λ-λ (0) = δ λ12λ34 smoothly connectes to d λ12λ34 (0) = δ λ12λ34 , even in the small-region, at small θ.

) + O(1/ θ), and then derive along the lines of[START_REF] Kol | The Radial Action from Probe Amplitudes to All Orders[END_REF][START_REF] Bautista | From Scattering in Black Hole Backgrounds to Higher-Spin Amplitudes: Part I[END_REF] an all-order radial action for the semiclassical scattering of all masses and spins.

We are implicily assuming that there are no other other long range interactions among the two bodies, it is simple to amend this simplifying assumption.

An amusing observation is the fact that given explicit kinematic parameters, there exists a maximum PM-order n ∼ log α g / log(b/R s ) which makes sense to calculate, beyond which quantum uncertainty takes over.

The calculation of the Lamb shift due to nuclei with Z i 1, see e.g.[START_REF] Weinberg | The Quantum theory of fields[END_REF], is the QED bounded-orbit analog of the quantum corrections to the gravitational unbounded orbits we calculate in the next sections.

We have also replaced ↔ d , but the statement is actually fully accurate thanks to the Poisson summation formula[START_REF] Kol | The Radial Action from Probe Amplitudes to All Orders[END_REF][START_REF] Berry | Semiclassical Approximations in Wave Mechanics[END_REF][START_REF] Morse | Methods of Theoretical Physics[END_REF] which gives a deflection angle Θ(θ) ≡ 2πn ± θ = 2∂Reδ ,α /∂( + 1/2) which differs by the net observed angle θ by an irrelevant 2πn, where n is the number of orbital winding between particles. Since the θ in this section is defined only up to 2πn, we are allow to conflate θ with Θ, which is effectively like just retaining the first winding mode.

This would restricts further to two independent form factors if one were to demand time-reversal or parity.

In the physical region, the s and u-branch cuts are superposed when m 2 < |s| < m 2t, so we choose the arc large enough to avoid that region.

We adopt the following notation for simplicity:M -+ ≡ M -2,+2 , a (n) +-≡ a (n) +2,-2 etc.

We have resorted to a lighter notation where inessential labels, such as the 4-momentum are suppressed. We have also removed the trivial 4-momentum conservation delta-function.

We used (6.26) and (6.29), and that √ s|p| = (sm 2 )/2.

Positivity of the even derivatives of time-delay matrix, as opposed to the odd-derivatives of M(s, b), was used in[START_REF] Huber | Eikonal Phase Matrix, Deflection Angle and Time Delay in Effective Field Theories of Gravity[END_REF] to argue for positivity bounds, but a derivation of this claim was not presented.

The little-group index that labels the helicity of the particles is sometime left understood to avoid clutter of notation, but displayed whenever relevant.

This property is observed also in the scattering of two heavy scalars, where the linearized delta functions can be trivially solved, see[START_REF] Herrmann | Radiative classical gravitational observables at O(G 3 ) from scattering amplitudes[END_REF] 

A word of caution: one could try to restore it by adding more degrees of freedom that, however, should be relatively light, with a mass M that is at best 1-loop factor away from the charged states we considered, in order not to decouple again their contribution to δ at the rate 1/b 2 M 2 .

Nous nous intéressons à la question de la résolvabilité des corrections en QFT principalement pour aborder les propriétés de la causalité dans un contexte gravitationnel. La causalité est un concept fondamental en physique classique, comme en physique quantique, dans un espace-temps plat, et elle est au coeur de la QFT relativiste. Ses implications -son incarnation précise -ne sont cependant pas encore totalement comprises dans la gravité dynamique, une fois que les effets quantiques de la matiè re sont pris en compte, ou même lorsque l'espace-temps est lui-même sujet à des fluctuations quantiques. Dans le chapitre 7, nous exploitons les propriétés fondamentales de la matrice S pour aborder cette question, en étudiant les caractéristiques causales de l'amplitude eikonale, y compris les corrections en QFT. En introduisant certains "arcs eikonaux", dans l'espace complexe de l'énergie à des paramètres d'impact fixes, nous montrons que le délai et les dérivées supérieures impaires de l'amplitude eikonale satisfont une infinité de contraintes non linéaires, qui peuvent être utilisées pour limiter les coefficients de l'EFT. Nous relions les propriétés analytiques de la matrice S à la notion de "causalité asymptotique" pour des masses et des spins génériques, en montrant que la positivité du délai émerge des propriétés fondamentales de la matrice S, telles que l'analyticité (micro-causalité), l'unitarité, etc.Dans un exemple explicite de cette stratégie, nous reproduisons les limites de positivité connues pour les opérateurs de type (Riemann) 4 /m 2 Pl Λ 4 , dans la limite rigide Λ/m Pl × m/m Pl → 0, où m est la masse d'une des particules diffusées. Une future direction possible est d'explorer ces nouvelles bornes de causalité plus systématiquement, en dehors des limites eikonales et rigides. En outre, cette méthode nous permet de cibler les coefficients de Wilson pertinents pour les déformations de marée, qui deviennent importantes lors de la diffusion de corps de taille finie (corps dont la taille est supérieure à leur rayon de Schwarzschild). On sait que ces coefficients capturent par exemple l'équation d'état des étoiles à neutrons. Les contraintes de positivité sur leurs déformations de marée peuvent-elles nous apprendre quelque chose sur leur structure interne ? Il s'agit là d'une perspective fascinante.
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space eikonal expression (6.62) it follows that the net exchanged momentum q = 2∂ b δ(s, b) is aligned to b which thus lie in the scattering plane, while the total angular-momentum vector (in c.o.m. frame) J = J p 1 ∧ p 3 /p 2 is transverse to the scattering plane and needs a J 3 -rotation by -π/2 to make it aligned to b. Equivalently, b is actually the 2D projection of the 3D vector b = J ∧ p/|p| 2 with p = (p 1 + p 3 )/2(cos θ/2), with cos θ given by (6.17) and the normalization fixed by (6.25). This explains why the 1 limit and eikonal amplitude are related by the little-group rotation (6.29). 

where, to keep track of possible divergence terms, we work in d = 4 -2ε dimensions. We have also introduced the shorthand notation δ -(n) (x) ≡ (2π) n δ(x) for convenience. The product of the two five-point amplitudes can be organise in terms of the six planar and one non-planar topologies represented respectively in Fig. 7.5 (a) -(f) and Fig. 7.5 (g). To solve the two-loop integral given in eq. (7.50), we follow a procedure similar to the one employed in [START_REF] Herrmann | Radiative classical gravitational observables at O(G 3 ) from scattering amplitudes[END_REF][START_REF] Vecchia | The eikonal approach to gravitational scattering and radiation at O(G 3 )[END_REF][START_REF] Parra-Martinez | Extremal black hole scattering at O(G 3 ): graviton dominance, eikonal exponentiation, and differential equations[END_REF]. First of all, we parametrize the external kinematic as

As a consequence, one can see that

Notice that w.r.t. Refs. [START_REF] Herrmann | Radiative classical gravitational observables at O(G 3 ) from scattering amplitudes[END_REF][START_REF] Vecchia | The eikonal approach to gravitational scattering and radiation at O(G 3 )[END_REF][START_REF] Parra-Martinez | Extremal black hole scattering at O(G 3 ): graviton dominance, eikonal exponentiation, and differential equations[END_REF] we do not expand the integrand in small q 2 . Then, making use of reverse unitarity [START_REF] Anastasiou | Higgs boson production at hadron colliders in NNLO QCD[END_REF][START_REF] Anastasiou | NLO Higgs boson rapidity distributions at hadron colliders[END_REF][START_REF] Anastasiou | Dilepton rapidity distribution in the Drell-Yan process at NNLO in QCD[END_REF][START_REF] Anastasiou | Soft expansion of double-real-virtual corrections to Higgs production at N 3 LO[END_REF], we can apply Integration-by-Parts (IBP) identities [START_REF] Tkachov | A Theorem on Analytical Calculability of Four Loop Renormalization Group Functions[END_REF][START_REF] Chetyrkin | Integration by Parts: The Algorithm to Calculate beta Functions in 4 Loops[END_REF][START_REF] Smirnov | Analytic tools for Feynman integrals[END_REF] with the help of the LiteRed package [START_REF] Lee | Presenting LiteRed: a tool for the Loop InTEgrals REDuction[END_REF][START_REF] Lee | LiteRed 1.4: a powerful tool for reduction of multiloop integrals[END_REF] and rewrite eq. ( 7.50) as a combination of two-loop scalar Master Integrals (MIs) sketched in Fig. 7.6. In particular, the sum of the planar topologies can be written entirely in terms of five MIs depicted in Fig. 7.6 (a) -(e) that we can call g = {g 1 , g 2 , g 3 , g 4 , g 5 }. The non planar topology can be reduced to a combination of six master integrals depicted in Fig. 7.6(a) -(c) and (f) -(h), from now on called g = {g 1 , g2 , g3 , g4 , g5 , g6 }. Their explicit expression is written in appendix 7.B. Schematically we have
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