
HAL Id: tel-04205233
https://theses.hal.science/tel-04205233

Submitted on 12 Sep 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Leveraging textual embeddings for unsupervised
learning

Stanislas Morbieu

To cite this version:
Stanislas Morbieu. Leveraging textual embeddings for unsupervised learning. Data Structures and
Algorithms [cs.DS]. Université Paris Cité, 2020. English. �NNT : 2020UNIP5191�. �tel-04205233�

https://theses.hal.science/tel-04205233
https://hal.archives-ouvertes.fr

Doctoral School of Computer Science, Telecommunication and
Electronics (EDITE) Paris

Leveraging Textual Embeddings for
Unsupervised Learning

by

Stanislas Morbieu

This dissertation is submitted for the degree of
Doctor of Computer Science

at Université de Paris

Committee:

Pr. Mohamed Nadif Université de Paris, Supervisor

Dr. François Role Université de Paris, Co-supervisor

Dr. Ahlame Chouakria Université de Grenoble Alpes

Pr. Mohamed Quafafou Aix Marseille Université

Pr. Nadia Ghazzali Université du Québec à Trois-Rivières

Pr. Pierre-François Marteau Université de Bretagne Sud

Mr François-Xavier Bois Kernix

ii

École doctorale Informatique, Télécommunications et Électronique
(EDITE) de Paris

Exploiter les Plongements Textuels
pour l’Apprentissage Non Supervisé

par

Stanislas Morbieu

Thèse présentée en vue de l’obtention du titre de
Docteur en Informatique

à Université de Paris

Jury composé de :

Directeur de thèse : Mr. Mohamed Nadif (Professeur, Université de Paris)
Co-encadrant : Mr François Role (MCF, Université de Paris)
Rapporteur : Mme Ahlame Chouakria (MCF, HDR, Université de Grenoble Alpes)
Rapporteur : Mr Mohamed Quafafou (Professeur, Aix Marseille Université)
Examinateur : Mme Nadia Ghazzali (Professeur, Université du Québec à Trois-Rivières)
Examinateur : Mr Pierre-François Marteau (Professeur, Université Bretagne Sud)
Invité : Mr François-Xavier Bois (Kernix)

iv

Résumé

Les données textuelles sont omniprésentes et constituent un vivier d’information ex-

ploitable pour de nombreuses entreprises. En particulier, le web fournit une source

quasiment inépuisable de données textuelles qui peuvent être utilisées à profit pour

des systèmes de recommandation, de veille commerciale ou technologique, de recherche

d’information, etc. Les récentes avancées en traitement du langage naturel ont permit

de capturer le sens des mots dans leur contexte afin d’améliorer les systèmes de tra-

duction automatique, de résumé de textes, ou encore le regroupement de documents

suivant des catégories prédéfinies.

La majorité de ces applications reposent cependant souvent sur une intervention

humaine non négligeable pour annoter des corpus : Cette annotation consiste, par

exemple dans le cadre de la classification supervisée, à fournir aux algorithmes des

exemples d’affectation de catégories à des documents. L’algorithme apprend donc à

reproduire le jugement humain afin de l’appliquer pour de nouveaux documents.

L’objet de cette thèse est de tirer profit de ces dernières avancées qui capturent

l’information sémantique du texte pour l’appliquer dans un cadre non supervisé. Les

contributions de cette thèse s’articulent autour de trois axes principaux.

Dans un premier temps, nous proposons une méthode pour transférer l’information

capturée par un réseau neuronal pour de la classification croisée de documents et de

mots. La classification croisée consiste à partitionner simultanément les deux dimen-

sions d’une matrice de données, formant ainsi à la fois des groupes de documents

similaires et des groupes de mots cohérents. Ceci facilite l’interprétation d’un grand

corpus de documents puisqu’on peut caractériser des groupes de documents par des

groupes de mots, résumant ainsi une grande volumétrie de texte. Plus précisément

nous entraînons l’algorithme Paragraph Vectors sur un jeu de données augmenté en

faisant varier les différents hyperparamètres, classifions les documents à partir des

différentes représentations vectorielles obtenues et appliquons un algorithme de con-

sensus sur les différentes partitions. Une classification croisée contrainte de la matrice

de co-occurrences entre les termes et les documents est ensuite appliquée pour con-

server le partitionnement consensus obtenu. Cette méthode se révèle significativement

v

meilleure en qualité de partitionnement des documents sur des corpus de documents

variés et procure l’avantage de l’interprétation offerte par la classification croisée.

Dans un second temps, nous présentons une méthode pour évaluer des algorithmes

de classification croisée en exploitant des représentation vectorielles de mots appelées

word embeddings. Les word embeddings sont des vecteurs construits grâce à de gros

volumes de textes, dont une caractéristique majeure est que deux mots sémantiquement

proches ont des word embeddings proches selon une distance cosinus. Notre méthode

permet de mesurer l’adéquation entre la partition des documents et la partition des

mots, offrant ainsi de manière totalement non supervisée un indice à l’utilisateur de la

qualité de la classification croisée.

Dans un troisième temps, nous nous intéressons à la recommandation de petites an-

nonces. Nous proposons un système qui permet de recommander des petites annonces

similaires lorsqu’on en consulte une. Les descriptions des petites annonces sont sou-

vent courtes, syntaxiquement incorrectes, et l’utilisation de synonymes font qu’il est

difficile pour des systèmes traditionnels de mesurer fidèlement la similarité sémantique.

De plus, la fréquence de renouvellement élevé des petites annonces encore valides (pro-

duit non vendu) implique des choix permettant de répondre à la contrainte du faible

temps de calcul. Notre méthode, simple à implémenter, répond à ce cas d’usage et

s’appuie de nouveau sur les word embeddings. L’utilisation de ceux-ci présente certains

avantages mais impliquent également quelques difficultés : la création de tels vecteurs

nécessite de choisir les valeurs de certains paramètres, et la différence entre le corpus

sur lequel les word embeddings ont été construit en amont et celui sur lequel ils sont

utilisés fait émerger le problème de « mots en dehors du vocabulaire », qui n’ont pas

de représentation vectorielle. Nous présentons, pour palier ces problèmes, une analyse

de l’impact des différents paramètres sur les word embeddings ainsi qu’une étude des

méthodes permettant de traiter le problème de « mots en dehors du vocabulaire ».

vi

Abstract

Textual data is ubiquitous and is a useful information pool for many companies. In

particular, the web provides an almost inexhaustible source of textual data that can

be used for recommendation systems, business or technological watch, information

retrieval, etc. Recent advances in natural language processing have made possible to

capture the meaning of words in their context in order to improve automatic translation

systems, text summary, or even the classification of documents according to predefined

categories.

However, the majority of these applications often rely on a significant human inter-

vention to annotate corpora: This annotation consists, for example in the context of

supervised classification, in providing algorithms with examples of assigning categories

to documents. The algorithm therefore learns to reproduce human judgment in order

to apply it for new documents.

The object of this thesis is to take advantage of these latest advances which capture

the semantic of the text and use it in an unsupervised framework. The contributions

of this thesis revolve around three main axes.

First, we propose a method to transfer the information captured by a neural net-

work for co-clustering of documents and words. Co-clustering consists in partitioning

the two dimensions of a data matrix simultaneously, thus forming both groups of sim-

ilar documents and groups of coherent words. This facilitates the interpretation of a

large corpus of documents since it is possible to characterize groups of documents by

groups of words, thus summarizing a large corpus of text. More precisely, we train the

Paragraph Vectors algorithm on an augmented dataset by varying the different hyper-

parameters, classify the documents from the different vector representations and apply

a consensus algorithm on the different partitions. A constrained co-clustering of the

co-occurrence matrix between terms and documents is then applied to maintain the

consensus partitioning. This method is found to result in significantly better quality

of document partitioning on various document corpora and provides the advantage of

the interpretation offered by the co-clustering.

Secondly, we present a method for evaluating co-clustering algorithms by exploiting

vii

vector representations of words called word embeddings. Word embeddings are vectors

constructed using large volumes of text, one major characteristic of which is that two

semantically close words have word embeddings close by a cosine distance. Our method

makes it possible to measure the matching between the partition of the documents and

the partition of the words, thus offering in a totally unsupervised setting a measure of

the quality of the co-clustering.

Thirdly, we are interested in recommending classified ads. We present a system that

allows to recommend similar classified ads when consulting one. The descriptions of

classified ads are often short, syntactically incorrect, and the use of synonyms makes it

difficult for traditional systems to accurately measure semantic similarity. In addition,

the high renewal rate of classified ads that are still valid (product not sold) implies

choices that make it possible to have low computation time. Our method, simple to

implement, responds to this use case and is again based on word embeddings. The

use of these has advantages but also involves some difficulties: the creation of such

vectors requires choosing the values of some parameters, and the difference between

the corpus on which the word embeddings were built upstream. and the one on which

they are used raises the problem of out-of-vocabulary words, which have no vector

representation. To overcome these problems, we present an analysis of the impact

of the different parameters on word embeddings as well as a study of the methods

allowing to deal with the problem of out-of-vocabulary words.

viii

Remerciements

Je voudrais témoigner toute ma gratitude aux nombreuses personnes qui ont con-

tribué à la réalisation de cette thèse. J’aimerais tout d’abord remercier mon directeur

de thèse, Pr. Mohamed Nadif, qui m’a donné l’envie et l’opportunité de réaliser cette

thèse au LIPADE. Ses conseils ont été très précieux ; sa disponibilité, son soutien et

son implication m’ont stimulé et permis de mener à terme ce projet de thèse. Je tiens

tout autant à remercier mon co-encadrant, Dr. François Role, qui m’a accompagné

quotidiennement durant ces années. Sa rigueur et sa curiosité des aspects techniques

ont contribué à enrichir ma réflexion et à persévérer pour réaliser de nombreuses ex-

périmentations.

Je tiens à remercier François-Xavier Bois et Dr. Joseph Pellegrino pour la confiance

qu’ils m’ont accordée, avoir encadré mon travail en entreprise, et m’avoir permis de

réaliser la première thèse CIFRE au sein de Kernix.

Je remercie les rapporteurs de cette thèse, Dr. Ahlame Chouakria et Pr. Mohamed

Quafafou pour leur lecture et l’intérêt qu’ils ont porté à mon travail. Je remercie

également les autres membres du jury, Pr. Nadia Ghazzali ainsi que Pr. Pierre-

François Marteau qui ont accepté de juger ce travail. Les échanges que j’ai eu avec eux

sur mon travail me permettent d’envisager d’autres perspectives très intéressantes.

Nombreux sont ceux qui m’ont accompagné à l’université et à l’entreprise : je

remercie Mohamad, Emira, Rafika et Mickael pour les bons moments passés ensembles

et les discussions stimulantes au LIPADE. À Kernix, merci à tous mes collègues du data

lab qui ont rendu ces années si particulières : Joseph, Imen, Jana, Aurélie, Charlotte,

Mikael, Cristian, Eelaman, Matthieu, Éloïse, Mohamed, Guillaume et Mohammed.

Toujours à Kernix, je remercie Pierre-Emmanuel et Géraldine qui ont contribué au

système de recommandations de petites annonces présenté dans cette thèse. À tous

mes autres collègues, qui comme Pierre-Edouard, ont montré leur curiosité pour mon

travail, merci encore.

À mes amis de toujours, ma famille et à Emna, je tiens à vous remercier chaleureuse-

ment pour vos encouragements et d’avoir fait de cette période un moment si excep-

tionnel.

ix

Contents

Résumé v

Abstract vi

Remerciements ix

List of Figures xiii

List of Tables xvi

Introduction 1

Motivation . 1

Contributions . 4

Overview . 5

1 Textual embeddings 7

1.1 Vector Representation of Words . 7

1.1.1 From Words to Word Embeddings 8

1.1.2 Word Embeddings Models . 10

1.1.3 Characteristics and Evaluation 19

1.1.4 Conclusion . 25

1.2 Vector Representation of Documents . 25

1.2.1 Vector Space Model . 26

1.2.2 Latent Semantic Analysis . 26

1.2.3 Latent Dirichlet Allocation . 27

1.3 Combined Word and Document Levels Textual Embeddings 27

1.3.1 Methods Leveraging Word Embeddings 27

1.3.2 ELMo . 28

1.3.3 GPT . 28

1.3.4 BERT . 29

x

1.4 Conclusion . 30

2 Co-clustering in Text Mining 31

2.1 Co-clustering . 31

2.1.1 Methods for Co-clustering . 32

2.1.2 General Notations . 34

2.2 CoclustMod: a Modularity-based, Block-diagonal Co-clustering Algo-

rithm . 34

2.2.1 Bipartite Graph Modularity (BGM) 35

2.3 CoclustInfo: an Information-theoretic Co-clustering Algorithm 36

2.4 Visualization and Interpretability . 39

2.4.1 Reorganized and Summary Matrices 39

2.4.2 Representative Terms . 39

2.5 Conclusion . 41

3 Transfer learning for co-clustering 43

3.1 Motivation . 44

3.1.1 Problems to Tackle . 44

3.1.2 Related Work . 45

3.2 Method . 46

3.2.1 Transfer Learning for Text Clustering 46

3.2.2 Text Co-clustering . 49

3.2.3 Transfer Learning Using a Constrained Text Co-clustering Al-

gorithm . 49

3.3 Experiments . 51

3.3.1 Datasets . 51

3.3.2 Evaluation Metrics . 52

3.3.3 Leverage Transfer Learning to Cluster Documents 52

3.3.4 Co-clustering with Constraints 53

3.4 Results and Discussion . 54

3.4.1 Dataset Augmentation . 54

3.4.2 Consensus Clustering . 56

3.4.3 Constrained Co-clustering . 63

3.5 Conclusion . 63

4 Unsupervised Evaluation of Text Co-clustering Algorithms Using

Neural Word Embeddings 65

4.1 Evaluating Term Clusters . 67

4.2 Measuring the Good Fit between Term and Document Clusters 69

xi

4.3 FDTC as an Aid to Noise Identification and Performance Improvement 71

4.4 Conclusion . 72

5 Handling Out-of-Vocabulary Words 74

5.1 Handling Out-of-Vocabulary Words . 75

5.2 Task-independent and Word-centric Evaluation Methods 77

5.2.1 Static Point of View : Measuring the Similarities Between Words

and Substitutes Embeddings . 77

5.2.2 Dynamic Point of View: Compared Behavior on Similarity and

Analogy Tasks . 78

5.3 Evaluating Two Common Substitution Methods 79

5.3.1 Static Point of View . 79

5.3.2 Dynamic Point of View . 80

5.4 Conclusion . 82

6 A Scalable Recommender System for Classified Ads 84

6.1 Vector Representation of Short Texts . 85

6.1.1 Typology of Short Texts . 85

6.1.2 Characteristics of Short Texts . 88

6.1.3 Semantic Similarity Measure Between Documents 90

6.2 Hyper-parameter Tuning and Post-processing 93

6.2.1 Influence of the Number of Occurrences 93

6.3 Fast Retrieval of the Nearest Classified Ads 99

6.3.1 Approximated Nearest Neighbors 99

6.3.2 Locality Sensitive Hashing . 100

6.3.3 Annoy . 100

6.4 Software Architecture . 101

6.4.1 Requirements and Platform Design 102

6.4.2 Services . 103

6.4.3 Semantic Plugin . 104

6.5 Conclusion . 107

Conclusion and Perspectives 108

Publications 110

Bibliography 111

xii

List of Figures

1.1 Context window of a focus word. 8

1.2 Feedforward Neural Net Language Model architecture. 15

1.3 Continuous Bag of Words architecture. 16

1.4 Skip-gram architecture. 17

1.5 Paragraph vector architecture. 28

2.1 Left: original data. Middle: data reorganized according to row clusters.

Right: data reorganized according to row and column clusters. 32

2.2 Left: diagonal co-clustering. Right: non-diagonal co-clustering. 33

2.3 Typical matrix obtained when using CoclustInfo to co-cluster a dataset.

This matrix i s to be compared to the kind matrices obtained when using

lock-diagonal algorithms . 37

2.4 Three reorganized matrices for the CSTR dataset obtained with three

different algorithms. 39

2.5 CoclustInfo – heatmap showing the final γkl values obtained for each

row cluster k and each column cluster l. This may help to spot the

interesting pairs of row and column clusters. 40

2.6 CoclustMod – displaying the top terms of each cluster. 40

2.7 CoclustMod – graph representations of two term clusters. We can visu-

ally detect that the cluster on the right is dense, and more thematically

focused (aerodynamics) than the cluster on the left which is about more

general notions (information, knowledge and science in general). 41

3.1 Augmented dataset. 47

3.2 Left: original data. Middle: data reorganized according to row clusters.

Right: data reorganized according to row and column clusters. 50

3.3 Transfer learning for text co-clustering. 50

3.4 Reorganised matrix for ConstrainedCoclustInfo applied on 5ng dataset. 55

xiii

3.5 Evaluation scores for Paragraph Vectors. NMI, ARI and accuray values

vary and depend on the hyper-parameter values. 56

3.6 Reorganized matrix given by CoclustInfo applied on the matrix HHT .

The random initial partitions of rows and columns are set to be equal. 58

4.1 Document co-clustering algorithms create document clusters and term

clusters. Since co-clustering is a two-dimensional technique, it is neces-

sary not only to assess both term and document clusters in a separate

way, but also their potential to form useful co-clusters (pairs associating

a document cluster and a term cluster describing the document cluster).

To date, most studies only report on the quality of the found document

clusters. 67

4.2 Visualization of the similarity matrix S for Mod on the Classic3 dataset

(left). The largest similarity values are on the diagonal, reflecting the co-

cluster diagonal structure found by the Mod algorithm and exhibited by

the document-term matrix where the lines and columns are reorganized

according to the labels assigned by the algorithm (right). 71

4.3 Boxplots of the values of S corresponding to the best match between

document and term clusters. 72

4.4 (a) Heatmap visualization of the similarity matrix S between document

clusters (rows) and term clusters (columns) for Info on Ng5 with 5

document clusters and 5 term clusters. A noisy term cluster can be

spotted (fourth column from the left). (b) Info on Ng5 with 5 document

clusters and 8 term clusters. 73

5.1 Cosine similarity between original and substitute embeddings for Word2vec

(left) and FastText (right). 79

5.2 Difference between the cosine similarity scores obtained with the original

embeddings and the scores obtained with the substitutes, for Word2vec

(left) and FastText (right). 80

5.3 Analogy tasks. 83

6.1 Microblogging messages on Twitter. 86

6.2 Snippets results on Google search engine. 87

6.3 Conversation on the reddit discussion forum. 87

6.4 Methodology used to compare LSI, word2vec centroid and Word Mover’s

Distance. 91

6.5 Clustering with two clusters of the Word2vec models using K-means. . . 95

6.6 Clustering with two clusters of the Word2vec models using ClustOfVar. 95

xiv

6.7 Clustering with three clusters of the Word2vec models using Spherical

K-means. 96

6.8 Clustering with 4 clusters of the Word2vec models using Spherical K-

means. 96

6.9 Frequency of the words in the corpus in function of their contribution

to the main principal component. The values are in bins for clarity of

the figure. The mean and the standard error of the bin is plotted. . . . 97

6.10 Vectorization of a textual document in streaming. 105

6.11 Similarity plugin lifecycle. 106

xv

List of Tables

2.1 Example of contingency table and associated joint distribution. 37

2.2 NMI values. 41

2.3 Accuracy values. 42

2.4 ARI values. 42

3.1 Illustrative example of the construction of H for r = 3 partitions of 7

documents into g = 3 clusters. 47

3.2 Characteristics of Datasets. 52

3.3 NMI values. 54

3.4 Top words for each co-cluster formed by ConstrainedCoclustInfo on 5ng

dataset with 5 document clusters and 6 word clusters. Terms for dense

co-clusters are in bold. 55

3.5 Difference between the scores of evaluation measures for the clustering

when the vectorization is done on an augmented dataset and not. 56

3.6 NMI values for spherical k-means on PV-DBOW vectors: For each data

set, top 3 values are highlighted. 57

3.7 NMI values for spherical k-means on PV-DM vectors: For each data

set, top 3 values are highlighted. 58

3.8 ARI values for spherical k-means on PV-DBOW vectors: For each data

set, top 3 values are highlighted. 59

3.9 ARI values for spherical k-means on PV-DM vectors: For each data set,

top 3 values are highlighted. 60

3.10 Accuracy values for spherical k-means on PV-DBOW vectors: For each

data set, top 3 values are highlighted. 61

3.11 Accuracy values for spherical k-means on PV-DM vectors: For each

data set, top 3 values are highlighted. 62

3.12 Average NMI found by consensus algorithms. 63

5.1 Similarity tasks. 81

xvi

5.2 Similarity scores when the vectors of each pair are taken from the same

embedding: either original or substitute. 81

5.3 Similarity scores when, for a each pair, the two vectors are originals and

substitutes. 81

6.1 Normalized Mutual Information. 93

6.2 Words contributing the most to the main principal component. 98

6.3 Words contributing the most to the second principal component. 98

6.4 Words contributing the most to the third principal component. 98

6.5 Words contributing the most to the 4th principal component. 98

6.6 Words contributing the most to the 5th principal component. 99

6.7 Words contributing the most to the 6th principal component. 99

6.8 Query time for the approximated nearest neighbors search with Annoy:

for each document vector, 100 nearest neighbors are retrieved. 10 trees

are used here. The number of nodes to inspect during searching is

the default value: the number of trees times the number of neighbors

(10 × 100 = 1000). 101

6.9 Query time for the exact nearest neighbors search: for each document

vector, 100 nearest neighbors are retrieved. 101

xvii

xviii

Introduction

Motivation

With the growing number of digital resources, textual data has become ubiquitous.

For instance, a lot of information is distributed and made available over various pages

across the web. This abundance of unstructured data makes it difficult to fully exploit

the richness of the content.

Computational power of computers are of great importance to scale the handling of

the vast amount of texts we encounter every day. Information extraction can automate

and speed-up fastidious tasks by putting events on a calendar and trigger alarms auto-

matically in advance, taking the travelling time into account; search engines can return

relevant results against a query to avoid reading unrelated documents; automatic sum-

marization enables insights at a glance, etc. To tackle all these opportunities, texts

have first to be stored in an efficient way and then to be processed with adapted

methods.

Textual data is usually stored as strings of characters and humans can get the

meaning of it by splitting it in sequences of words. Both the sense of each word

individually and the combination of them are used to understand the semantics. This

enables us to compare two texts and measure intuitively a level of semantic similarity.

But, for a computer to process texts in order to make such semantic comparisons,

the strings of characters representation is not usable directly. We need to embed the

texts into a representation that can be manipulated. A vector representation is of

great interest since we can define similarity measures: For instance the inverse of the

distance between two vectors can be used as a similarity score between two numerical

vectors. Defining a suitable embedding method to transform a string of characters

into a vector of real values allows to use operations on vectors to reflect the human

notion of semantics.

Traditional methods to embed textual data rely on the representation of a doc-

ument by a bag of words: a document is represented by a vector of dimensionality

equal to the number of words in the whole vocabulary. Each word is assigned to a

1

dimension of the vector and the value for a dimension is the number of occurrences

of the word in the document. A collection of documents is therefore represented by a

matrix where each row is the vector representation of a document and each column is a

vector representing a word. This so called Vector Space Model (VSM) is at the basis of

many algorithms to represent and use textual data. For instance, one can weight this

matrix to reduce the weights of the most frequent words in the collection of documents

through a weighting scheme named Term Frequency - Inverse Document Frequency

(TF-IDF). This whole process, named text vectorization, is a necessary step to use

task specific algorithms such as classification, clustering, co-clustering, topic modeling

etc: The vectors are easier to handle than raw text since one can manipulate them

with mathematical operations.

Although these traditional vectorization methods have proved their practical ability

to tackle several tasks involving textual data, we have seen a resurgence of works on

textual representations in recent years. New neural network based methods have made

breakthroughs in the natural language processing (NLP) field. Some big companies

such as Google and Facebook and famous laboratories are competing for constantly

new state of the art textual representation models in NLP: ELMo, FastText and BERT

for instance are the most recent models which draw attention of the NLP community.

They are trained on tremendous amount of textual data in an unsupervised manner

to capture the semantics of the text.

The semantic information encoded into these embedding models is exploited in

a downstream task of interest. The process of capturing information on a big data

set and using the information on another data set is called transfer learning. It also

designates the act of training for a specific task (the task of embedding the text in this

case) and use captured information for another task (the final downstream task). The

above cited models are proven to be particularly good at transfer learning.

These new embedding models are mainly exploited through supervised settings for

tasks such as classification on which they work astonishingly well. Their use in unsu-

pervised settings is however not well covered in the scientific literature since it is not

trivial to correctly leverage the information contained in the embeddings: For super-

vised tasks, the task specific model can use parameterized non linear transformations

which have to be learned. In the unsupervised setting however, the parameters have

to be discovered by human supervision, requiring thus a considerable amount of time

and energy which costs too much to be practical.

The aim of this thesis is to contribute to the adoption of the new textual embedding

methods on several unsupervised tasks:

– Transfer learning for clustering of documents;

– Evaluation of text co-clustering;

2

– Semantic similarity based retrieval of short texts for recommendation engines.

Transfer Learning for Clustering of Documents

Clustering techniques play an increasingly important role since they allow users to

identify interesting groups of objects from among huge amounts of data. For example,

when dealing with textual data, clustering techniques allow to divide a set of documents

into groups so that documents assigned to the same group are more similar to each

other than to documents assigned to other groups. In information retrieval, the use

of clustering relies on the assumption that if a document is relevant to a query, then

other documents in the same cluster can also be relevant. This hypothesis can be used

at different stages in the information retrieval process, the two most notable being:

cluster-based retrieval to speed up search, and search result clustering to help users

navigate and understand what is in the search results.

Transfer learning for clustering of documents have practical benefits, particularly

in the case of an evolving database of documents. Let’s consider two examples:

– Classified ads are published continuously and at some time, some of them might

no longer be relevant because the object is sold out.

– News articles are relevant only in a given timeframe. The user who wants to

keep up with the actuality needs only fresh articles of the preceding days.

In these cases, we only need to cluster a part of the documents, those which are

not outdated. We can however gain from semantic knowledge learned on the outdated

documents: the meanings of most of the words often don’t change with the context. In

this framework, clustering on a given dataset (the documents of interest) but learning

from an extended dataset might be relevant.

Evaluation of Text Co-clustering

Co-clustering is an extension of one-sided clustering, and consists in simultaneously

clustering the rows and columns of a data matrix. When applied to a document-

term matrix, the goal is to identify document-term co-clusters, that is the association

between a document cluster and a term cluster containing terms that can serve as good

labels for describing the document cluster. Many algorithms for text co-clustering

have been proposed over the years. However, whatever the technique used, most

studies evaluate the performance of co-clustering algorithms on the quality of the

obtained document clusters alone, just like for standard one-sided clustering. This is

not satisfactory since co-clustering is at its heart a method for creating co-clusters of

words and documents. A first improvement is to consider the quality of the obtained

term clusters in addition to that of the document clusters. However, to really do

3

justice to the two-dimensional nature of co-cluster analysis, it is not enough to assess

the quality of the word and document clusters in isolation of each other: measures

are needed to evaluate the quality of the matching between the document and term

clusters and their potential to form useful co-clusters.

Also, given the extreme difficulty in obtaining labels for both documents and words,

it is highly desirable that such measures be unsupervised, meaning measures that do

not need prior knowledge about the ground-truth classes.

Semantic Similarity Based Retrieval of Short Texts for

Recommendation Engines

Short texts are ubiquitous, encountered on microblogs, discussion forums, multimedia

sharing sites, product reviews, image captions, personal status messages, classified ads,

snippets results of search engines, etc. But because of their main characteristics, they

are difficult to handle with traditional document vector representations.

Since they contain few words, they lead to a sparsity issue: if a document is

represented as a one hot vector in the vocabulary space, the vector is often more

sparse for a short document than a longer one. Thus two short documents about the

same topic have little chance to use the same words and a similarity measure between

the two document vectors gives a value close to zero. Longer documents have a higher

probability to use common words if there are about the same topic.

Although it is not directly related to the length of the content, it appears that

short texts often contain more mistakes than longer ones. Abbreviations and typos are

common due to the facility to create and share texts without quality restriction. Press

articles and official documents are indeed often longer than user generated content and

contain less typos.

Taking these characteristics into account, a similarity measure which capture the

intention of the writers and translate the human notion of semantics is of major im-

portance. Also given the high renewal rate of these types of content, fast computing

time is required.

Contributions

The main contributions of this thesis are:

– an end to end unsupervised framework to explore a set of textual documents with

co-clustering by leveraging transfer learning and local co-occurrences of words;

– a method to evaluate text co-clustering algorithms by assessing the good fit

between document and term clusters;

4

– a highly scalable method to compute semantic similarity between short texts by

leveraging word embeddings along with hints on how to select word embeddings

hyper-parameters and deal with the out-of-vocabulary words problem.

The works drove to software contributions:

– an open source and publicly available Python package for co-clustering;

– a highly scalable processing pipeline to compute similarity scores between short

texts along with a platform which serves as a backbone to recommender engines

at Kernix.

Overview

– Chapter 1 reviews the major textual embeddings methods. It presents first the

embeddings at the word and sub-word levels, then at the phrase and document

levels, and last the new emerging methods which treat both word and document

levels jointly.

– Chapter 2 presents co-clustering and its importance in text mining. More

specifically, it shows how co-clustering is adapted in the case of sparse and high

dimensional data such as textual data. It provides practical illustrations of visu-

alizations that enable the exploration and interpretation of large textual datasets.

– Chapter 3 is devoted to leveraging document embeddings for transfer learning

in the context of clustering and co-clustering.

– Chapter 4 is about unsupervised evaluation of text co-clustering algorithms

using neural word embeddings. More specifically, it presents how to measure

the good fit between term and document clusters in an unsupervised fashion by

leveraging publicly available word embeddings matrices. Moreover, it explains

how to improve text co-clustering by noise identification.

– Chapter 5 discusses a major challenge of word embeddings: The data on which

the word embeddings have been trained differs from the data on which they are

used, so the so-called out-of-vocabulary problem appears: many words encoun-

tered in the downstream task may be missing in the word embeddings vocabulary.

It exposes evaluation methods of out-of-vocabulary word embeddings substitu-

tion.

– Chapter 6 demonstrates the advantages word embeddings offer for an applica-

tion to a scalable recommender system for classified ads. It shows how a simple

semantic similarity measure between documents derived from word embeddings

5

can be implemented. Processing textual data at scale in streaming is at the core

of the platform presented here. It also illustrates how this generic platform is

used for a diversity of recommender projects at Kernix.

6

Chapter 1

Textual embeddings

Textual data is usually stored as strings of characters and humans can get the meaning

of it by splitting it in sequences of words. Both the sense of each word individually

and the combination of them are used to understand the semantics. This enables us

to compare two texts and measure intuitively a level of semantic similarity. But, for

a computer to process texts in order to make such semantic comparisons, the strings

of characters representation is not usable directly. We need to embed the texts into a

representation that can be manipulated. A vector representation is of great interest

since we can define similarity measures which operate on vectors. Defining a suitable

embedding method to transform a string of characters into a vector of real values

allows to use operations on vectors to reflect the human notion of semantic.

The outline of this chapter is as follows: First we present how to transform words

as vectors. Then we present how to vectorize documents. Then, we present methods

that combine the word and document representations.

1.1 Vector Representation of Words

Representing words as vectors facilitates their handling. Indeed, cosine can be used

as a way to translate semantic similarity between words; algebraic operations on vec-

tors allow to extract syntactic and semantic regularities (Mikolov et al., 2013d; Levy

et al., 2014); topics are discovered by studying the dimensions; composing vectors like

summing and averaging can be used to represent documents (Zhu et al., 2016).

This section presents how to represent words as vectors. A special case of vec-

tor representation of words, named word embeddings, is introduced by emphasizing

its specificity and advantages over the other representations. The main word embed-

dings models are then presented. Last, their characteristics are discussed along with

evaluation methods.

7

1.1.1 From Words to Word Embeddings

This section introduces word embeddings by presenting the data on which the models

are based, then by presenting vectors derived from it which are high dimensional, then

by presenting the value of low dimensional vectors and last by presenting the added

value of word embeddings.

1.1.1.1 Underlying Data

In the Vector Space Model (Salton et al., 1975), a document is represented as a vector

in a space where each dimension corresponds to a word. The value for a dimension

is the number of occurrences of the word in the document. This (document × word)

matrix can be transposed, thus providing a vector representation for a word.

The resulting (word × document) matrix is in fact a special case of a (word ×
context) matrix were the context is a document. Instead of a document, the context

can be a paragraph, a sentence or a phrase. It can also be a window of surrounding

words (Lund and Burgess, 1996) (Figure 1.1). Sahlgren (2006) provides a comprehen-

sive study of various contexts.

I am visiting Place_Stanislas in Nancy .

focus word

context words

Figure 1.1: Context window of a focus word.

The idea to represent a word by its context follows the distributional hypothesis in

linguistics (Harris, 1954) which states that words that occur in similar contexts tend

to have similar meaning.

The number of occurrences is not the only way to weight the (word × context)

matrix: Hyperspace Analogue to Language (Lund and Burgess, 1996) provides a dif-

ferent word-space implementation where the weights depend on the distance between

the words.

1.1.1.2 High Dimensional Vectors

High dimensional vectors are derived from the data by weighting the values of the

(word × context) matrix. Two families of weighting schemes are mainly used: Term

Frequency - Inverse Document Frequency (TF-IDF) and those derived from Pointwise

Mutual Information.

8

The (document × word) matrix is often weighted in information retrieval with TF-

IDF. Each entry of the weighted matrix is usually composed of two components (Salton

and Yang, 1973):

fij = TFij × DFi

where:

– TF is a function of the frequency of term i in document j, so that words which

occur less are less discriminant and have a smaller weight.

– DF is a function of the number of documents term i occurs in, so that words

which occur in many documents have a smaller weight and thus are less discrim-

inant. The most common version is the inverse document frequency: IDF =

log D
dfi

with D the number of documents and dfi the number of documents term

i occurs in.

In practice, only the TF component is used for the (word × document) matrix in word

similarity.

Pointwise Mutual Information (PMI) measures the strength of association between

two words. It is used either directly as a similarity measure between two words or

indirectly as a weighting scheme for the (word × context) matrix. For this last case,

a word has a vector representation.

PMI is first presented and then an often used derivative, Positive Pointwise Mutual

Information (PPMI). A comparative study of variants of PMI can be found in (Role

and Nadif, 2011).

Pointwise Mutual Information (PMI) is given by:

PMI(w, c) = log
P (w, c)

P (w) × P (c)

where:

– P (w, c) is the joint probability of the word w and the context word c.

– P (w) and P (c) are the marginal probabilities of w and c respectively.

For pairs (w, c) that were never observed, PMI(w, c) = log 0 = −∞ so PMI is in

practice often replaced with positive PMI (PPMI), which replaces negative values with

0, yielding:

PPMI(w, c) = max(PMI(w, c), 0)

Other weighting schemes exist, leading to several Vector Space Models of Semantics

surveyed in (Turney and Pantel, 2010). For example, Rohde et al. (2006) takes the

square root of co-occurrence counts before applying Singular Value Decomposition to

reduce the dimensionality.

9

1.1.1.3 Dense Low Dimensional Vectors

In the previous section, the vectors representing the words are high dimensional lead-

ing to scalability issues since the computations involving them are expensive and the

memory usage is important. Moreover, in a geometric perspective, distances between

vectors become relatively uniform in high dimensional spaces. This phenomenon is

known as the curse of dimensionality.

Several approaches are taken to tackle the curse of dimensionality by representing

the data in a space with a number of dimensions nearer its intrinsic dimensionality.

Traditional Word Embeddings. Schütze (1993) apply truncated Singular Value

Decomposition as a dimensionality reduction on the (word × document) matrix of

occurrences in the same manner as in Latent Semantic Analysis (Deerwester et al.,

1990). Hellinger Principal Component Analysis on the word co-occurrence matrix is

applied in (Lebret and Collobert, 2014).

Neural Word Embeddings. Word embeddings are coined by Bengio et al. (2003)

where each word is represented as a continuous real vector with a number of features

much smaller than the size of the vocabulary. It has been popularized by Mikolov

et al. (2013a) along with the implementation word2vec1 which scales well.

Word embeddings are often associated with the neuronal approach where the un-

derlying data matrix is not explicit. The link between the neuronal models and a

factorization of the (word × context) matrix is shown in (Levy and Goldberg, 2014).

The key points are that the vectors should be dense, real-valued and low dimensional

to tackle the curse of dimensionality. They also should scale well in order to train the

models on a big amount of data to generalize better. This last requirement leads to

consider approaches where the (word × context) matrix is not built beforehand.

1.1.2 Word Embeddings Models

Word embeddings models can be divided in different ways. An often used categoriza-

tion is to separate the count from the predict methods (Baroni et al., 2014). This

distinction does not hold since models are based on the same underlying data and

predict methods can be casted as count methods (Levy and Goldberg, 2014).

Here we choose to separate the models into:

– methods that operate on the global data at once, suffering thus often from mem-

ory issues when dealing with big data;

1https://code.google.com/archive/p/word2vec

10

– methods that operate on shallow windows in an incremental manner, thus avoid-

ing memory scalability issues;

– methods that handle data in streaming, thus avoiding heavy updates when the

vocabulary changes;

– methods that emphasize on disambiguation by providing topical information and

multiple word meaning;

– methods that allow to project words from different languages into a shared em-

bedding space.

This categorization is not perfect since it is fuzzy: global matrix factorization can be

computed in a relatively scalable manner (Řehůřek and Sojka, 2010), shallow window-

based methods can be casted as global factorization methods (Levy and Goldberg,

2014), and topical information can be extracted from models which are not specifically

designed to handle multiple meaning.

This categorization is however meaningful since the first three categories are dis-

tinguished by how the data is fed into the model when building it, and the scalability

level they are associated with. The last two categories are orthogonal to the others

and are thus in distinct sections.

1.1.2.1 Methods Handling a Global Matrix

This section presents methods that need to construct first a global matrix as described

in section 1.1.1.1 before actually building the word embeddings model.

Latent Semantic Analysis. Latent Semantic Analysis, named also Latent Seman-

tic Indexing in the context of information retrieval (Deerwester et al., 1990), is designed

to provide a similarity measure between documents. A (document × word) matrix is

built with the values given by the number of occurrences of the words in the docu-

ments. Then a dimensionality reduction of the columns is done through Truncated

Singular Value Decomposition. The similarity measure is given by the cosine of the

vectors representing the documents (i.e. the rows of the reduced matrix).

Similarly, Schütze (1993) builds vectors to represent the words by applying the

dimensionality reduction on the transpose of the (document × word) matrix. Řehůřek

(2011) presents detailed explanations on considerations when implementing Singular

Value Decomposition: batch implementation, small batches, parallelization, online

training with multiple or single pass, approximations. Řehůřek and Sojka (2010)

provide a scalable online implementation.

Word Embeddings through Hellinger PCA. Since co-occurence statistics are

discrete distributions, Hellinger distance, which is more appropriate than the Euclidean

11

distance over a discrete distribution space, is used in (Lebret and Collobert, 2014).

For two discrete probability distributions P = (p1, . . . , pk) and Q = (q1, . . . , qk), the

Hellinger distance is defined by:

H(P, Q) = − 1√
2

√

√

√

√

k
∑

i=1

(
√

pi − √
qi)2

The authors perform a principal component analysis (PCA) of the word co-occurrence

probability matrix that minimize the reconstruction error according to the Hellinger

distance.

GloVe. GloVe (Pennington et al., 2014b) is a model which aims to encode the infor-

mation contained in the ratio of the co-occurrence probabilities of two words as vector

differences. The objective is to minimize the cost function:

J =

V
∑

i=1

V
∑

j=1

f(Xij)(wT
i w̃j + bi + b̃j − log Xij)2

where:

– V is the size of the vocabulary;

– wi and w̃j are the vectors of the focus word and a context word respectively

(Figure 1.1);

– bi and b̃j are scalar biases for the focus and context words respectively;

– Xij represents how often word i appears in context of word j;

– f is a weighting function that assigns relatively lower weight to rare and frequent

co-occurrences, defined by:

f(x) =

(

x
xmax

)α

if x ≤ xmax

1 otherwise

where α is a parameter and xmax is a cutoff parameter.

The optimization is done with AdaGrad (Duchi et al., 2011) by training only on

the nonzero elements in the co-occurrence matrix.

Singular Value Decomposition of a Pointwise Mutual Information Weighted

Matrix. Levy and Goldberg (2014) apply a spectral dimensionality reduction over

a shifted Positive Pointwise Mutual Information (PPMI) weighted matrix.

The dimensionality reduction is done through Singular Value Decomposition, dis-

cussed previously in 1.1.2.1. The PPMI matrix is discussed in 1.1.1.2.

12

Eigenwords. Word embeddings based on Canonical Correlation Analysis (CCA)

are presented in (Dhillon et al., 2015). CCA computes the directions of maximal

correlation between a pair of matrices and is scale invariant. It captures multi-view

information: the left and the right contexts. The first method presented consists in

computing the CCA of two matrices C and W where:

– W ∈ R
n×v is the matrix where each row represents the position of the focus

word in the corpus of size n, and each column represents the focus word in the

vocabulary of size v. The value wij in the matrix is 1 if the jth word in the

dictionary is at the position i in the corpus.

– C = [LR] ∈ R
n×2vh where L ∈ R

n×vh and R ∈ R
n×vh, h being the context

size. Each row of L represents the position of the focus word. Each column of

L represents the left context word: a column for each pair (position in the left

context, position in the vocabulary). lcwkj = 1 if the jth focus word co-occurs

with the context word w, w being in the position k in the left context. R is the

same as L but for the right context.

The authors present also a two step CCA to have better sample complexity for

rare words: it consists in computing CCA between R and L in a first step. In the

second step, the resulting projections are concatenated in a matrix and CCA is applied

between the resulting matrix and W . The optimization involved in CCA can be solved

by Singular Value Decomposition. See 1.1.2.1 for implementation considerations.

WordRank. WordRank (Ji et al., 2015) views word embeddings generation as a

ranking problem. The objective is to minimize:

J(U, V) =
∑

w∈W

∑

c∈Ωw

rw,c · ρ

(

rank(w, c) + β

α

)

where:

– rw,c = f(xw,c) with f defined as in GloVe (see 1.1.2.1) quantify the association

between the word w and the context word c;

– α > 0 and β > 0 are hyperparameters;

– U = {uw}w∈W is the set of embeddings of words and V = {vc}c∈C is the set of

embeddings of context words;

– W is the vocabulary;

– Ωw denotes the set of contexts that co-occurred with a given word w;

– ρ is a monotonically increasing and concave ranking loss function that measures

goodness of a rank;

– rank is a convex upper bound on the rank:

rank(w, c) =
∑

c′∈C\{c}

l(uw · (vc − vc′))

13

where l is a loss function for binary classification such as the hinge loss l(x) =

max(0, 1 − x) or the logistic loss l(x) = log2(1 + 2−x).

The authors provide an implementation2 which rely on Message Passing Interface

(MPI) to handle large corpus since the computation is expensive.

1.1.2.2 Shallow Window-based Methods

Models that operate on a global matrix require to construct the (word × context)

matrix beforehand. In this section, the models that operate directly on the windows

of words are presented.

Feedforward Neural Net Language Model and Recurrent Neural Net Language

Model are reviewed for their impact on the raise of the word embedding field but as

discussed after, word2vec models or FastText are more scalable and lead to better

quality word embeddings.

Feedforward Neural Net Language Model. Feedforward Neural Net Language

Model is presented in (Bengio et al., 2003) and is the seminal work on word embeddings.

The architecture (Figure 1.2) consists of four layers: input, projection, hidden and

output layers. The context consists of n words preceding the focus word. The input is

a one hot vector for each context word: a vector filled with zeros and with a one at the

position given by the index of the context word in the vocabulary. The context words

are projected on the projection layer which is a n × d matrix, d being the embedding

size. The third layer is the hidden layer of size 500 to 1000 and the output layer has

the same size as the vocabulary. The objective is to maximize:

L =
1

T

∑

i

log f(wt, wi−1, . . . , wi−n; θ) + R(θ)

where:

– θ is the set of parameters to find;

– R(θ) is a regularization term;

– f is the function defined by the network;

– T is the number of tokens in the corpus;

– wi is the word representing the i-th token in the corpus;

– n is the number of words in the context window.

The computational complexity is given in 1.1.3.1. The computation between the

projection and the hidden layer is expensive since the values in the projection layer

are dense.

2https://github.com/shihaoji/wordrank
3Source: (Bengio et al., 2003)

14

Figure 1.2: Feedforward Neural Net Language Model architecture. 3

Recurrent Neural Net Language Model. Recurrent Neural Net Language Model

is presented in (Kombrink et al., 2011). It overcomes the limitations of the Feedforward

Neural Net Language Model by not having a projection layer nor a context size to

specify. The recurrent term comes from the fact that the hidden layer is connected to

itself. The computational complexity is given in 1.1.3.1.

This model is not presented in detail here since it has been superseded by simpler

models as state of the art neuronal word embeddings models presented in the following

section.

Word2vec. Word2vec is the name of the implementation of two models described

in (Mikolov et al., 2013a) and (Mikolov et al., 2013c): Continuous Bag of Words

(CBoW) and Skip-gram. The name is also used for the family of these models, with

the two architectures and the different training strategies.

Continuous Bag of Words (CBoW) is introduced in (Mikolov et al., 2013a). The

principle consists in trying to predict the focus word with its context. The architecture

(Figure 1.3) consists in a fully connected neural network with one hidden layer. The

input is a one hot vector for each context word: a vector filled with zeros and with

15

a one at the position given by the index of the context word in the vocabulary. The

input size is thus the dimensionality of the vocabulary. The output is a vector for

the focus word, with the same size as the input vectors since the training is done

by comparing the output of the network with the one hot vector of the focus word.

The activation values of output layer neurons are converted to probabilities using the

softmax function: yj = Pr(wordj |wordcontext) = eactivation(j)

∑|V |

k=1
eactivation(k)

is the jth value of

the output, |V | being the size of the vocabulary. The hidden layer is where the word

embeddings are materialized and its size is the one of the word embeddings.

h1

h2

h3

hn

Word
embeddings

matrix

Context
embeddings

matrix

Vector for word 2 V
e

c
to

r fo
r w

o
rd

 j
Hidden layer

. . .

0

1

0

1

. . .

0

. . .
. . .

. . .

0

0

0

1

. . .

0

. . .
. . .

. . .

visiting

Nancy Place_Stanislas
Vector for word i

Input Output

Figure 1.3: Continuous Bag of Words architecture.

The CBoW objective is to find the set of parameters θ that maximize the probability

of predicting the focus words given their contexts:

argmax
θ

∏

w∈T

∏

c∈C(w)

p(w|c; θ) (1.1)

where p corresponds to the softmax function, and C(w) is the context words of the

word w in the text T . A focus word is presented at the output of the neural network

as a one hot vector and compared with the output of the network when providing the

context vectors as input. The weights are updated with stochastic gradient descent

and backpropagation. Details of the training process of this model are given in (Rong,

2014).

Skip-gram is also introduced in (Mikolov et al., 2013a). The architecture (Fig-

ure 1.4) is the reverse of the CBoW, the input being the focus word and the output

being the context words. The skip-gram objective is to find the set of parameters θ

that maximize the corpus probability:

argmax
θ

∏

w∈T ext

∏

c∈C(w)

p(c|w; θ) (1.2)

To follow the neural networks language models literature, p(c|w; θ) is modeled as

16

h1

h2

h3

hn

Context
embeddings

matrix

Word
embeddings

matrix

V
e

c
to

r fo
r w

o
rd

 j

Hidden layer

. . .

0

0

0

1

. . .

0

. . .
. . .

. . .

0

0

0

1

. . .

0

. . .
. . .

. . .

Place_Stanislas visiting
Vector for word i

Input Output

Figure 1.4: Skip-gram architecture.

a softmax. The objective is then:

argmax
θ

∑

(w,c)∈D

(log evc·vw − log
∑

c′

evc′ ·vw) (1.3)

with D the set of all word and context pairs extracted from the text, vw and vc are

vector representations of the word w and the context word c respectively, and c′ is a

word selected in the whole context vocabulary.

Computing log
∑

c′ evc′ ·vw suffering from scaling issues, hierarchical softmax is used

instead of softmax which results in an approximation. The training is the same as

with CBoW except that the input is the focus word and the output is a context word.

Mikolov et al. (2013c) proposed negative sampling to speed up skip-gram training

resulting in an other objective. The architecture is the same as for the skip-gram

model. The objective, of skip-gram with negative sampling is:

argmax
θ

∑

(w,c)∈D

log σ(vc · vw) +
∑

(w,c)∈D′

log σ(−vc · vw) (1.4)

where σ is the sigmoid function:

σ(x) =
1

1 + e−x

This model is explained in detail in (Goldberg and Levy, 2014). The objective is

shown to be the same as a weighted logistic principal component analysis in (Landgraf

and Bellay, 2017) and an information-theoretic interpretation is given in (Melamud

and Goldberger, 2017). The main idea of negative sampling is to train binary logistic

regressions for a true pair (focus word and context word) by maximizing the probability

that context words appear, while minimizing the probability that noise words (random

words) appear. The optimization is done with stochastic gradient descent. Instead of

using stochastic gradient descent, Riemannian optimization framework is applied in

(Fonarev et al., 2017) to optimize the objective.

17

FastText. FastText (Bojanowski et al., 2016) is essentially an extension of the

word2vec models which treats each word as a compositon of character n-grams. So the

vector for a word is made of the sum of its character n-grams. It generates better word

embeddings than word2vec for rare words since even if words are rare their character n-

grams are still shared with other words. A word embedding being a composition of its

character n-grams embeddings, FastText can construct a vector for out-of-vocabulary

words. The advantages on syntactic tasks and the scalability drawbacks are discussed

after.

1.1.2.3 Streaming Word Embeddings

Peng et al. (2017) propose an incremental learning method of hierarchical softmax and

provide thus an extension of word2vec models.

May et al. (2017) and Kaji and Kobayashi (2017) propose models based on Skip-

gram with negative sampling that handle the training corpus in streaming. They differ

on how they maintain an approximate vocabulary and how they estimate the negative

sampling distribution.

1.1.2.4 Multi-sense Word Embeddings

Multi-sense word embeddings models are designed to handle the fact that a word can

have different senses, also known as polysemy. It is noteworthy that the models relying

on multiple prototypes have scalability issues since it is required to store a vector per

sense. Therefore and since this field knows a proliferation of models, only the most

recent ones are briefly presented. The reader interested in this field is invited to follow

the state of the art given in the following articles.

Horn (2017) proposes an extension of the CBoW word2vec model with negative

sampling called context encoders (ConEc). An implementation is available4. It is

designed to handle polysemy and also out-of-vocabulary problems. Shi et al. (2017)

proposes a model which learn jointly word embeddings and a topic model. Each word

has a vector representation for each topic.

1.1.2.5 Cross-lingual Word Embeddings

An extensive survey of cross-lingual word embeddings is available in (Ruder, 2017).

Most of the methods consists in training a monolingual embedding model either on a

created corpus in the case of pseudo-cross-lingual methods, or on two corpora before

creating a mapping in the case of monolingual mapping methods. The other methods

consist in training the models either on parallel on different corpora in order to optimize

4https://github.com/cod3licious/conec

18

a combination of monolingual and cross-lingual losses in the case of joint optimization

methods, or on a parallel corpus in the case of cross-lingual training models.

These models will not be further discussed here since they rely on a preprocessing

step in the case of pseudo-cross-lingual methods, or on a postprocessing step in the

case of monolingual mapping methods, or are specific to multilingual data in the case

of joint optimization and cross-lingual training models.

1.1.3 Characteristics and Evaluation

Models can be evaluated on two major criteria: the quality of the representation and

how they can handle massive data sets. First we will discuss the scalability aspect

and then the quality of the produced word embeddings. Last, parameter tuning is

discussed because it has a great influence on the quality of a trained model and also

have a practical scalability impact since parameter tuning can be time consuming.

1.1.3.1 Scalability

Handling massive data sets leads to consider the memory usage and the processing

time. The memory usage should be kept under the available memory and mainly

depends on the algorithm itself since the algorithm either should work on the whole

data or on a part of it. The time to process the data depends on the computational

complexity of the algorithm and also on the implementation since parallelization can

lead to drastic improvements.

Word embeddings models have previously been distinguished in function of their

handling of the data:

– handling global data at once;

– operating on shallow windows in an incremental manner;

– handling data in streaming.

Methods have been developed to approximate the factorization of the global matrix

in order to process it in small batches that fit in memory or in an incremental manner

(Řehůřek, 2011) but handling shallow windows of words without computing the whole

matrix avoids the storage of the matrix in a slower memory (hard disk or solid state

drive).

FastText needs to store character n-grams embeddings so it requires more space

than word2vec models. Methods that produce multiple word embeddings for a word

in order to represent its different meanings require more space since a vector is stored

for each sense.

On-line window-based methods scale like O(C) where C is the size of the corpus.

The complexity of the GloVe model is in the worst case O(V 2) where V is the size

19

of the vocabulary but Pennington et al. (2014b) shows that it scales like O(C0.8) in

practice. Řehůřek (2011) gives complexities of several implementations of Singular

Value Decomposition which is the ground of several word embeddings methods that

work on the (word × context) matrix.

Constant factors have a great impact on the training time. Thus, the computa-

tional complexity is often given as the number of parameters to estimate. Mikolov et al.

(2013a) give the computational complexity per each training example Q for the follow-

ing models: Continuous Bag of Words and Skip-gram implemented in word2vec and

the two language models Feedforward Neural Net (Bengio et al., 2003) and Recurrent

Neural Net (Kombrink et al., 2011).

The Continuous Bag of Words model has a computational complexity per each

training example given by the formula:

Q = N × D + D × log2(V)

where:

– N is the context length;

– D is the dimensionality of the word representation;

– V is the size of the vocabulary.

The term log2(V) is given by the hierarchical softmax where the vocabulary is

represented as a Huffman binary tree. The hierarchical softmax is an approximation

of the softmax that reduces the complexity by avoiding the expensive normalization

over all words. Instead, the value for each word is given at the leaves of a tree and

the probability of observing a word is decomposed into a sequence of probabilities:

following the path from the root to the leaf (i.e. the word).

The Skip-gram model has a computational complexity per each training example

given by the formula:

Q = K × (D + D × log2(V))

where:

– K is the maximum distance of the words (see the following note);

– D is the dimensionality of the word representation;

– V is the size of the vocabulary.

For each training word named the focus word, a number R is selected between 1

and K. Then R words are selected in the history and R words in the future of the

word (in the context window). The selected R + R words are given as correct output

labels with the focus word as input.

The Feedforward Neural Net Language Model model has a computational complex-

ity per each training example given by the formula:

Q = N × D + N × D × H + H × V

20

where:

– N is the number of previous words: the context length;

– D is the dimensionality of the word representation;

– H is the size of the hidden layer;

– V is the size of the vocabulary.

V can be reduced to log2(V) if using hierarchical softmax. Thus, most of the

complexity comes from the term N × D × H. Since H is typically 500 to 1000 units,

this model have a greater complexity than the two word2vec models.

The Recurrent Neural Net Language Model model has a computational complexity

per each training example given by the formula:

Q = H × H + H × V

where:

– H is the size of the hidden layer;

– V is the size of the vocabulary.

V can also be reduced to log2(V) if using hierarchical softmax. Thus, most of the

complexity comes from the term H × H. Since H is typically 500 to 1000 units, this

model have a greater complexity than the two word2vec models.

Implementations of methods that use linear algebra can rely on a set of basic linear

algebra subprograms (BLAS) (Blackford et al., 2002) that are conceived to implement

efficiently operations on vectors and matrices. Those methods are used implicitly when

using higher level libraries such as NumPy and SciPy (van der Walt et al., 2011) which

rely on a shared BLAS library. The choice of the implementation should however be

taken with care in order to gain an order of magnitude in speed. It is noteworthy that

some Gensim (Řehůřek and Sojka, 2010) implementations rely on Cython (Behnel

et al., 2011) to speed up the computation, and since it is optional, forgetting to install

it tears down the performances.

Software libraries such as Tensorflow (Abadi et al., 2015), that were primarily

designed for neural networks, leverage graphical processing unit (GPU) in order to

parallelize computation and improve drastically the computational time compared to

processing in the central processing unit (CPU).

1.1.3.2 Quality

The ability to train models on huge amount of data allows to increase the quality of

the embeddings. This section provides an overview of the methods to evaluate the

quality of the models.

21

Perplexity. Perplexity is a way of evaluating language models, i.e. a probability

distribution over texts. Word embeddings models derived from language modeling can

thus be evaluated with this measure. However, not all word embeddings models are

language models. Therefore, perplexity is not a universal quality measure. Moreover,

as stated in (Chang et al., 2009b) for topic models, perplexity disagrees with human

judgments.

Word Similarity Task. The word similarity task consists in retrieving words that

are similar to a given word. The words are ranked according to a similarity measure

between two word embeddings. Then, Spearman correlation coefficient between the

ranked list given by the model and the one given by human judgment is used as the

evaluation metric.

The word similarity is often evaluated using cosine similarity. This is possible when

each word has only one vector representation.

For evaluating models for which a word has several vector representations, Shi et al.

(2017) proposes two similarity measures:

– AvgSimC is the averaged similarity between two words over the assignments of

topics:

AvgSimC(wi, wj) =
∑

zi

∑

zj

p(zi|wi, cwi
)p(zj |wj , cwj

) × cos(Uwi,zi
, Uwj ,zj

)

where:

– wi is the word i;

– U(wi, zi) is the embedding vector of wi under the topic zi;

– p(z|w, cw, d) is the posterior topic distribution;

– d is a document.

– MaxSimC measures the similarity between the most probable vectors of each

word (i.e. with the higher probability for the word and the context to belong to

the same topic):

MaxSimC(wi, wj) = cos(Uwi,zi
, Uwj ,zj

)

where:

z = argmax
z

p(z|w, c)

Stanford’s Contextual Word Similarity (SCWS) data set is published and presented

in (Huang et al., 2012). It includes 2003 word pairs and their context sentences. The

ground truth similarity score was labeled by humans between 0 and 10, according to

the semantic meaning of the words in their given contexts.

Faruqui et al. (2016) present problems of the word similarity task:

22

– This task is subjective since word similarity and relatedness are distinct concepts

often confused.

– Some models are task specific so evaluation on word similarity can penalize them.

– There is no standardized splits between train and test sets so there is possibility

for overfitting.

– This task has low correlation with extrinsic evaluation.

– Statistical significance is omitted.

– Some pairs of words with similar frequency are found to be closer in the vector

space but should be further according to their word meaning.

– The polysemy is often not well handled in word semantic tasks.

Word Analogy Task. The word analogy task consists in answering queries of the

form a:b;c:? where ? must be semantically or syntactically related to c in the same

way as b is related to a.

Two types of tasks are to be distinguished: the semantic tests and the syntactic

tests. An example of semantic query is king:queen;man:? where ? is expected to be

"woman". An example of syntactic query is see:saw;return:? where ? is expected to

be "returned".

The models behave differently on these two different tests: FastText is better

than word2vec for the syntactic tests since it takes advantage of character sequence

information but has no advantage on the semantic tests. Skip-gram is better than

CBoW on semantic tests but it is the reverse for the syntactic tests.

In order to answer a query, Mikolov et al. (2013d) propose to search the word which

normalized to unit norm embedding is closer in the sense of the cosine similarity to

xb − xa + xc where xa, xb and xc are the normalized to unit norm embeddings of the

words a, b and c respectively:

w∗ = argmax
xw

xw.y

||xw||||y||

with y = xb − xa + xc.

Levy et al. (2014) propose to use two objectives:

– 3COSADD which is the objective defined by Mikolov et al. (2013d):

argmax
xw

cos(xw, xb − xa + xc)

– 3COSMUL:

argmax
xw

cos(xw, xb)cos(xw, xc)

cos(xw, xa) + ǫ

where ǫ = 0.001 is used to prevent division by zero. As it requires that all

similarities be non-negative, cosine similarities are transformed to [0, 1] using
x+1

2 .

23

The limitations presented in 1.1.3.2 are applicable also for the word analogy task

since Levy et al. (2014) show that the analogy task is equivalent to computing a linear

combination of word similarities. Hartmann et al. (2017) show that word analogies

results differ from the task-specific evaluations presented hereafter.

Compositional Approaches for Representing Relations between Words. The

word analogy task relies on extracting information concerning the relation existing be-

tween two words in a word-pair. Examples of semantic relations between words are:

synonymy, antonymy, meronymy and hypernymy.

Hakami and Bollegala (2017) go further by comparing compositional operators

in order to capture different types of relations. The compositional operators take

as input two word embeddings and produce a vector representing the relation. The

concatenation of the two vectors, element-wise multiplication between them, difference

and addition are considered as compositional operators by the authors. Note that the

last three operators are element-wise operators and assume thus that the dimensions of

the word representation space are linearly independent. The authors thus considered

cross-dimensional operators but did not obtain significant improvement in performance

and explain this by the correlation coefficients between two distinct dimensions being

close to zero indicating uncorrelated dimensions.

Downstream Tasks. Nayak et al. (2016) present an ensemble of tasks to evaluate

word embeddings: part-of-speech tagging and chunking to evaluate syntactic prop-

erties; named entity recognition, sentiment classification and question classification,

to evaluate the semantic properties; and phrase-level natural language inference to

evaluate the encoding of lexical relation information.

Interpretability. An interpretability task for word embeddings is presented in (Mur-

phy et al., 2012b) and is derived from a task used to evaluate topic models in (Chang

et al., 2009b). The task consists in taking for each dimension 5 words which have the

5 highest values in the dimension. An intruder word is added to this set and humans

should detect the intruder. The intruder is taken to have the value in the second half

of the ranked values for the dimension and also in the top 10th percentile of another di-

mension. Human judgments are collected through Amazon Turk Task5. Precision (the

fraction of retrieved results that are relevant to the query) is used as the evaluation

metric.

5http://mturk.amazon.com

24

1.1.3.3 Parameter Tuning

The number of parameters is a characteristic that distinguishes the word embeddings

models: a model with less parameters, or parameters that have less influence on the

quality of the trained model, is easier to tune and is thus often preferred. Indeed, Levy

et al. (2015) show that much of the performance gains of word embeddings are due to

hyper parameters optimization.

The word embedding models that produce multiple vector representations per word

like in (Huang et al., 2012), require to set the number of topics and thus require to

have expert knowledge of the corpus used to train the model. A fixed number of topics

makes these models not usable in a streaming scenario since the number of topics can

evolve.

Setting the parameters consists also in a tradeoff. In terms of quality, smaller

windows capture more syntactic information, larger ones more semantic and relational

information. For FastText, the minimum and maximum n-gram sizes has a direct

bearing on the training time and also on the quality. For word2vec, as noted in (Peng

et al., 2017), it is empirically shown that hierarchical softmax performs better for

infrequent words while negative sampling performs better for frequent words.

1.1.4 Conclusion

In this section, the use of word embeddings was motivated by presenting their strengths

compared to the other vector representations of words: tackling the curse of dimen-

sionality.

Moreover, models of word embeddings were presented with a focus on the ones that

handle windows of words when training, in order to scale when training on a big corpus,

and thus capture better the semantic of the words. Implementation considerations are

briefly presented to avoid scalability issues.

While word embeddings capture information on the semantics which is of great

interest, some tasks need to encode semantic information at a higher level, namely at

phrase, sentence or document level. The following section is about those higher levels.

1.2 Vector Representation of Documents

A document is represented as a string of characters, but in order to apply common

machine learning algorithm, it is more convenient to transform the strings into vectors.

25

1.2.1 Vector Space Model

To represent a document by a vector, we commonly split each document into a list

of tokens and build a vocabulary of tokens over all documents of the collection. We

can then represent a collection of documents as a two dimensional array: each column

represents a word (unique token) and each row represents a document. The value of

the cell corresponding to a document d and a word w is the given by the number of

occurrences of w in d.

Alternatively, the value can be 0 or 1 if the word is absent or present respectively

in the document. The array of word frequencies can also be weighted according to

several weighting schemes. The most famous weighting schemes are known as the

TF-IDF family: Each entry of the weighted matrix is usually composed of two com-

ponents (Salton and Yang, 1973):

fij = TFij × DFi

where:

– TF is a function of the frequency of term i in document j, so that words which

occur less are less discriminant and have a smaller weight.

– DF is a function of the number of documents term i occurs in, so that words

which occur in many documents have a smaller weight and thus are less discrim-

inant. The most common version is the inverse document frequency: IDF =

log D
dfi

with D the number of documents and dfi the number of documents term

i occurs in.

1.2.2 Latent Semantic Analysis

Latent Semantic Analysis (LSA), named also Latent Semantic Indexing in the context

of information retrieval (Deerwester et al., 1990), is designed to provide a similarity

measure between documents.

A (document × word) matrix is built with the values given by the number of occur-

rences of the words in the documents. Then a dimensionality reduction of the columns

is done through Truncated Singular Value Decomposition. The similarity measure is

given by the cosine of the vectors representing the documents (i.e. the rows of the re-

duced matrix). Řehůřek (2011) presents detailed explanations on considerations when

implementing Singular Value Decomposition: batch implementation, small batches,

parallelization, online training with multiple or single pass, approximations. Řehůřek

and Sojka (2010) provide a scalable online implementation.

26

LSA is a dimensionality reduction of a (document × word) matrix and is to contrast

with the following method that uses a different approach.

1.2.3 Latent Dirichlet Allocation

Latent Dirichlet Allocation (LDA) (Blei et al., 2003) is a generative topic model that

provides vector representations of documents. It assumes that for each word we want

to generate: a topic is selected from a multinomial distribution and a word is generated

from that topic which is a distribution over words.

Other probability topic models exist but are not discussed here since LDA is the

most cited one and constitutes a comparison element for most topic models.

1.3 Combined Word and Document Levels Textual

Embeddings

While the above methods represent documents as semantic vectors, they do not exploit

local co-occurrences. This section is about textual embeddings that leverage the local

co-occurrences for documents, including phrases, sentences and paragraphs. They

combine word level and document level representations.

1.3.1 Methods Leveraging Word Embeddings

The previously cited methods do not rely on external knowledge. Here, we discuss the

transfer of external knowledge through the use of word embeddings.

1.3.1.1 Aggregation of Word Embeddings

The most evident method to create a vector representation of a document is to aggre-

gate the vector representations of the words it contains. The aggregation can be done

with several aggregation functions.

An example of aggregation function is the element-wise sum of the word vectors,

giving a document vector with the same dimensionality as the word vectors. This

method is compared to Latent Semantic Analysis for a clustering task in 6.1.3.2.

Boom et al. (2015) and, Kenter and de Rijke (2015) use word embeddings and

generate several more complicated new features for the documents. It is noteworthy

that they use supervised learning to evaluate their methods so they benefit from new

generated features.

27

1.3.1.2 Paragraph Vector

Paragraph vector (Le and Mikolov, 2014) is an extension of Word2vec where additional

input fields are used to represent the document id as a one hot vector (Figure 1.5).

They allow to have a vector representation of the document when the document id is

projected on the hidden layer.

Figure 1.5: Paragraph vector architecture. 6

1.3.2 ELMo

ELMo (Peters et al., 2018) assigns an embedding for a word depending on the context:

each token is assigned a representation that is a function of the entire input sentence.

It is a bi-directional LSTM language model which builds the embedding of a token

from both the previous tokens and the next ones: A forward language model models

the probability of a token given the previous ones. A backward language model is sim-

ilar to a forward language model except it runs over the sequence in reverse, predicting

the previous token given the future context. The bi-directional language model com-

bines both a forward and a backward language models. The bi-directional language

model used in ELMo shares some weights between the two directions. To compute

the contextualized embedding, ELMo groups together the hidden states by learning

a linear function of the internal network states. This weighted average is trained on

a specific downstream task. ELMo is thus trained in a semi-supervised setting which

requires task-specific architectures where pre-trained representations are included as

additional features.

1.3.3 GPT

GPT (Radford, 2018) is a semi-supervised approach for language understanding tasks

using a combination of unsupervised pre-training and supervised fine-tuning: The first
6Source: (Le and Mikolov, 2014)

28

stage learns a high-capacity language model on a large corpus of text, and the second

stage adapts the model to a discriminative task with labeled data. It aims to capture

higher-level semantics than word-level information.

The language model of the first phase is a multi-layer transformer decoder: it is

composed by a multi-headed self-attention operation over the input context tokens,

followed by position-wise feedforward layers and a softmax layer to produce an output

distribution over target tokens. The use of the transformers architecture leverages

long-term dependencies in the text.

To train on the discriminative task, the output of the last feedforward layer is fed

into a linear layer with a softmax to predict the target label. All pre-trained parameters

are updated with this new task specific objective. This architecture works for instance

for text classification. For some tasks, since the model of the first phase is trained on

contiguous sequences of text, some modifications are proposed by the authors to apply

to the textual entailment, similarity, question answering and commonsense reasoning

tasks.

GPT-2 (Radford et al., 2019) is a model which shares almost the same architecture

than the OpenAI GPT model with a few modifications such as the layers normaliza-

tions and a modified initialization. Also the dataset on which it is trained is broader.

The authors showed that when trained on this bigger dataset, the model is able to

have good results in a zero-shot setting for several NLP tasks: language modeling,

reading comprehension, summarization, translation and question answering. It is to

note however that all these tasks rely on predicting the following word of a sequence

which is at the heart of the training objective.

1.3.4 BERT

BERT (Devlin et al., 2018) improves the fine-tuning based approach (used for instance

in GPT) by using a masked language model. The masked language model randomly

masks some of the tokens from the input, and the objective is to predict the original

word based on the context (words on the left and on the right of the masked token).

A second task on which BERT is pre-trained is the next sentence prediction. For

training, two sentences A and B are fed as input, and half of the time, B is the

actual next sentence that follows A, and half of the time, B is a random sentence

from the corpus. To feed the inputs with two sentences, they are packed together

into a single sequence. The two sentences are differentiated in two ways: they are

separated by a special token, and a learned embedding is added to every token, which

indicates if the token belongs to the first or the second sentence of the pair. Thus,

the input embeddings are the sum of three token embeddings: an embedding for the

word, an embedding which indicates the sentence (called segment embedding) and an

29

embedding for the position of the token in the sequence. This task is trained to output

a probability of sentence B to follow sentence A.

The two previously presented tasks constitute the pre-training phase of BERT.

The second phase is fine-tuning. Several supervised tasks are used to fine-tune the

model. Depending on the task, the correct inputs and outputs are chosen either from

the token level part of BERT (the masked language model) or the sentence pair part

(next sentence prediction model). All parameters are fine-tuned end-to-end.

XLNet (Yang et al., 2019) integrates ideas from Tranformer-XL (Dai et al., 2019)

into the pre-training phase of BERT to improve its ability to leverage longer depen-

dencies. RoBERTa (Liu et al., 2019) improves the pre-training of BERT by care-

fully selecting the hyper-parameters values. DistilBERT (Sanh et al., 2019) leverages

knowledge distillation to produce a more compact model which is of great value to run

on mobile devices since it requires less storage space and it runs faster at inference

time. Knowledge distillation is a compression technique in which the compact model

is trained to reproduce the behaviour of the larger model, BERT in this case.

1.4 Conclusion

In this chapter, we presented an overview of textual representations. Some of them

have become mainstream, entering full text search engines of databases like the bag of

words approach of the Vector Space Model used in MongoDB or Elasticsearch. Some

of the most modern ones like BERT are announced to make breaking changes in the

Search Engine Optimization (SEO) world with its use inside Google search engine.

These representations are used as input to other algorithms for task specific use

cases. One of such task is co-clustering, which is the topic of the following chapter.

30

Chapter 2

Co-clustering in Text Mining
Part of this chapter is an adaptation of the paper: François Role, Stanislas Morbieu, and

Mohamed Nadif. "CoClust: A Python Package for Co-clustering". Journal of Statistical

Software vol.88, no.7, 2019.

This chapter is about co-clustering, an ensemble of methods which aim to group

together similar objects into clusters and also similar features into feature clusters.

For text-mining, they are very handy since they condense information and provide

interpretability. We first give some background on text co-clustering, and then focus

on the two text co-clustering that are used in the following chapters, namely Coclust-

Mod Ailem et al. (2016) referred to as Mod and CoclustInfo Govaert and Nadif (2013)

referred to as Info, both implemented in the Coclust library (Role et al., 2019).

2.1 Co-clustering

In the era of data science, clustering various kinds of objects (documents, genes, cus-

tomers) has become a key activity and many high quality packaged implementations

are provided for this purpose by many popular packages such as the base package

stats for R (R Core Team, 2018), skmeans (Hornik et al., 2012a), kernlab (Karatzoglou

et al., 2004), NbClust (Charrad et al., 2014), CLUTO (Karypis, 2003), scikit-learn (Pe-

dregosa et al., 2011), SciPy (including the scipy.cluster module) (Jones et al., 2001–),

nltk (with the nltk.cluster module) (Bird et al., 2009), Weka (Hall et al., 2009), etc.

A natural extension of standard cluster analysis is co-clustering where objects and

features are simultaneously grouped into meaningful blocks called co-clusters or bi-

clusters, thus making large datasets easier to handle and interpret. In fact, since the

seminal work of Hartigan (1972), co-clustering has found applications in many areas

such as bio-informatics (Cheng and Church, 2000; Madeira and Oliveira, 2004; Van

Mechelen et al., 2004; Tanay et al., 2005; Cho and Dhillon, 2008; Gupta and Aggar-

wal, 2010; Hanczar and Nadif, 2010, 2011, 2012, 2013), web mining (Xu et al., 2010;

31

Charrad et al., 2009; George and Merugu, 2005; Deodhar and Ghosh, 2010) and text

mining (Dhillon, 2001; Dhillon et al., 2003b) and various co-clustering algorithms have

been proposed over the years (recent surveys can be found in Freitas et al. 2012; Eren

et al. 2013; Henriques et al. 2015).

Figure 2.1: Left: original data. Middle: data reorganized according to row clusters.

Right: data reorganized according to row and column clusters.

A large number of implementations of co-clustering algorithms1 have been de-

veloped for gene expression data, such as biclust (Kaiser and Leisch, 2008), BicAT

(Barkow et al., 2006) and bibench (Eren et al., 2013). In addition, there also exist

algorithms designed to efficiently handle co-occurrence matrices such, for example, as

document-term matrices used in text mining applications. The already mentioned Co-

Clust package provides implementations of such algorithms and these implementations

have been used in our experiments.

2.1.1 Methods for Co-clustering

Depending on the method used, algorithms for co-clustering co-occurrence matrices

can broadly be divided into several categories:

Spectral methods: Spectral co-clustering methods treat the input data matrix as a

bipartite graph between documents and words, and approximate the normalized

cut of this graph using a real relaxation. Currently scikit-learn supports two

spectral co-clustering algorithms: (1) the well-known “spectral co-clustering”

(Dhillon, 2001) and (2) the “spectral biclustering” (Kluger et al., 2003) which is

also available in the biclust R package.

Model-based methods: With respect to probabilistic co-clustering methods, two

model-based co-clustering methods are implemented in the blockcluster (Singh

Bhatia et al., 2017) and blockmodels (Leger, 2016) R packages. The first relies

1Also known as biclustering.

32

on the latent block models (LBM), especially Gaussian, Bernoulli and Poisson

LBMs. The derived algorithms are of type expectation-maximization; for details

see for instance Govaert and Nadif (2003, 2005b, 2006, 2008); Nadif and Govaert

(2010). The second relies on the stochastic block model and the latent block

model without or with covariates. Both models have been extended to valued

networks with optional covariates on the edges.

Matrix factorization based methods: Matrix factorization based methods are also

used in the clustering and co-clustering fields. However while packages exist for

document clustering based on non-negative matrix factorization (e.g., the NMF

R package, Gaujoux and Seoighe 2010, which includes different NMF methods)

leading to clustering (see for instance Ding et al. 2006; Ding and Li 2007), there

is unfortunately no package on non negative matrix trifactorization factorization

for co-clustering.

Information-theoretic based methods: Information-theoretic based methods are

used to co-cluster two-way contingency tables. In this approach, a joint proba-

bility distribution is first derived from the two-way contingency matrix. The loss

function to minimize is then the loss in mutual information between this joint

probability distribution and a distribution defined on a reduced contingency ta-

ble obtained by collapsing the rows and the columns according to the partitions

yielded by the co-clustering program. Notable algorithms in this area include

those in Dhillon et al. (2003b); Govaert and Nadif (2013).

Modularity-based methods: The use of bipartite graph-modularity as a criterion

to co-cluster matrices has been pioneered by Labiod and Nadif (2011) and since

further investigated in Ailem et al. (2015, 2016). This method allows to co-

cluster binary or contingency matrices by maximizing an adapted version of the

modularity measure traditionally used for networks.

Figure 2.2: Left: diagonal co-clustering. Right: non-diagonal co-clustering.

33

The CoClust package provides implementations for several of these methods, in-

cluding the two algorithms that we use in our experiments, namely CoclustMod and

CoclustInfo. Before presenting these algorithms in more detail, we clarify the notations

used in the following sections.

2.1.2 General Notations

We consider the partition of the sets I of n objects and the set J of d attributes into

g non overlapping clusters, where g may be greater or equal to 2. Let us define a

n × g indicator matrix z = (zik) and a d × g indicator matrix w = (wjk). The kth

row cluster is defined by the set of rows i such that zik = 1. In the same manner,

the kth column cluster is defined by the set of rows j such that wjk = 1. X is the

matrix used as input to all the methods described in this chapter; X can be of any

kind provided it is a matrix with non-negative entries (e.g., a graph adjacency matrix,

or a document-term matrix, depending on the application domain). Xz and Xw

are the matrix X compressed according to the row clusters and the column clusters

respectively: Xz = XT Z and Xw = XW .

2.2 CoclustMod: a Modularity-based,

Block-diagonal Co-clustering Algorithm

CoClustMod is a modularity-based algorithm that seeks an optimal block-diagonal

clustering, meaning that objects and features have the same number of clusters and

that, after proper permutation of the rows and columns, the algorithm produces as

result a block-diagonal matrix (see Figure 2.1). In the context of document-term

matrices, this co-clustering model has the advantage of directly producing interpretable

descriptions of the resulting document clusters.

A notable block-diagonal co-clustering algorithm is the bipartite spectral graph

partitioning algorithm described in Dhillon (2001). Inspired by previous work on

spectral graph clustering, this algorithm finds the optimal minimum cut partitions in

a bipartite document-term graph by computing the second left and right singular vector

of the normalized document-term matrix, thus using a real relaxation of the discrete

optimization problem. In contrast, the CoclustMod algorithm tries to maximize a

measure of the concentration of edges within co-clusters compared with the random

distribution of edges between all nodes regardless of the co-clusters. This criterion

is an adaptation to the bipartite case of the standard “graph modularity”. Before

describing CoclustMod in more detail, it is therefore useful to review this notion of

“bipartite graph modularity”.

34

2.2.1 Bipartite Graph Modularity (BGM)

In this section we first review the standard graph modularity measure, and show how

to adapt it so that it can be used in the co-clustering context.

Modularity is a quality criterion often used for detecting communities in graphs,

which has received considerable attention in several disciplines since the seminal work

by Newman and Girvan (2004). Intuitively, modularity compares the number of edges

inside a cluster of nodes with the expected number if the edges in the graph were

placed at random.2

Given the graph G = (V, E), let X be a binary, symmetric adjacency matrix with

(i, i′) as entry; and xii′ = 1 if there is an edge between the nodes i and i′. If there is

no edge between nodes i and i′, xii′ is equal to zero. Finding a partition of the set

of nodes V into homogeneous subsets leads to the resolution of the following integer

linear program: maxc Q(X, c) where Q(X, c) is the modularity measure:

Q(X, c) =
1

2|E|

n
∑

i,i′=1

(xii′ − xi.xi′.

2|E|)cii′ . (2.1)

In this formula, c is a binary matrix defined by cii′ =
∑g

k=1 zikzi′k, meaning that cii′

is 1 when nodes i and i′ are in the same group and 0 otherwise. In addition, |E| is the

number of edges and xi. =
∑

i′ xii′ is the degree of i.

Let now δ = (δii′) be the (n × n) data matrix defined by ∀i, i′, δii′ = xi.xi′.

2|E| .

Expression 2.1 then becomes Q(X, c) = 1
2|E| Trace[(X − δ)c]. In summary, we seek a

binary matrix c which is defined as zz⊤ and models a partition in a relational space,

thus having the properties of an equivalence relation:

cii = 1, ∀i reflexivity

cii′ − ci′i = 0, ∀(i, i′) symmetry

cii′ + ci′i′′ − cii′′ ≤ 1, ∀(i, i′, i′′) transitivity

xii′ ∈ {0, 1}, ∀(i, i′) binarity

In a bipartite context, the basic idea is to model the simultaneous row and column

partitions using a relation c defined on I × J . Noting that c = zw⊤ and the general

term can be expressed as follows: cij = 1 if object i is in the same block as attribute

j and cij = 0 otherwise. Then cij =
∑g

k=1 zikwjk. Now, given a rectangular matrix

X defined on I × J , modularity can be reformulated as follows in the co-clustering

context:

Q(X, c) =
1

x..

n
∑

i=1

d
∑

j=1

g
∑

k=1

(xij − xi.x.j

x..

)zikwjk, (2.2)

2The standard null model used in the literature also assumes that the nodes keep the degree they

have in the original network.

35

Algorithm 1 CoclustMod.

Input: binary or contingency data X, number of clusters g.

Output: partition matrices z and w.

1. Initialization of w.

repeat

2. Compute Xw.

3. Compute z maximizing Q(Xw, z) by zik = 1 if k = argmax1≤ℓ≤g

(

xw

iℓ − xi.x
w

.ℓ

x..

)

and zik = 0 otherwise; ∀i = 1, . . . , n.

4. Compute Xz.

5. Compute w maximizing Q(Xz, w)

by wjk = 1 if k = argmax1≤ℓ≤g

(

xz

ℓj − xz

ℓ.x.j

x..

)

and wjk = 0; ∀j = 1, . . . , d.

6. Compute Q(X, zw⊤).

until no change of Q(X, zw⊤).

where x.. =
∑

i,j xij = |E| is the total weight of edges and xi. =
∑

j xij (the degree

of i in the binary case and the sum of the weights in the contingency and continuous

cases) and x.j =
∑

i xij (the degree of j in the binary case and the sum of the weights

in the contingency and continuous cases). This modularity measure can also take the

following form:

Q(X, c) =
1

x..

Trace[(X − δ)⊤zw⊤] = Q(X, zw⊤). (2.3)

Using the fact that Q(X, c) can be rewritten as Q(Xw, z) or Q(Xz, w), CoclustMod

maximizes the modularity by alternatively maximizing Q(Xw, z) and Q(Xz, w) as

shown in Algorithm 1.

2.3 CoclustInfo: an Information-theoretic

Co-clustering Algorithm

In our experiments, we also use, CoclustInfo, a text co-clustering algorithm provided

by the CoClust package. CoclustInfo takes an information-theoretic approach and

uses mutual information to define its criterion (Govaert and Nadif, 2013, Chapter 4).

In contrats to CoclustMod, this algorithm does not seek to discover a block-diagonal

structure: the requested number of row clusters can be different from the requested

number of column clusters. A representative example of the kind of matrix obtained

when using CoclustInfo is shown in Figure 2.3.

We now describe the working of the algorithm. Given two variables I and J taking

values in the sets I = {1, . . . , i, . . . , n} of rows and J = {1, . . . , j, . . . , d} of columns

respectively.

36

Figure 2.3: Typical matrix obtained when using CoclustInfo to co-cluster a dataset.

This matrix i s to be compared to the kind matrices obtained when using lock-diagonal

algorithms .

Table 2.1: Example of contingency table and associated joint distribution.

1 2 3 4 5

1 5 4 6 1 0 16

2 6 5 4 0 1 16

3 1 0 1 7 5 14

4 1 1 0 6 5 13

5 4 5 3 4 5 21

6 5 4 4 3 4 20

22 19 18 21 20 100

1 2 3 4 5

1 0.05 0.04 0.06 0.01 0.00 0.16

2 0.06 0.05 0.04 0.00 0.01 0.16

3 0.01 0.00 0.01 0.07 0.05 0.14

4 0.01 0.01 0.00 0.06 0.05 0.13

5 0.04 0.05 0.03 0.04 0.05 0.21

6 0.05 0.04 0.04 0.03 0.04 0.20

0.22 0.19 0.18 0.21 0.20 1.00

Let X be a contingency table (a document×term matrix in our case), the associated

joint distribution is defined by PIJ = (pij) = (
xij

N
) where N =

∑n

i=1

∑d

j=1 xij . We

consider a partition z of the set of rows I into g clusters A1, . . . , Ag and a partition w

of the set of columns J into m clusters B1, . . . , Bm. The partition z will be represented

by the vector of labels (z1, . . . , zi, . . . , zn) where zi ∈ {1, . . . , g}, or by the classification

matrix {zik; i = 1, . . . , n; k = 1, . . . , g} where zik = 1 if i belongs to cluster k and 0

otherwise. A similar notation will be used for the partition w, which will be represented

by the vector (w1, . . . , wj , . . . , wd) where wj ∈ {1, . . . , m} or the classification matrix

{wjℓ; j = 1, . . . , d; ℓ = 1, . . . , m} of size d × m. Note that zikwjℓ = 1 if the couple (i, j)

belongs to the co-cluster (k, ℓ) defined by the cartesian product Ak × Bℓ.

An aggregated g × m two-way contingency table yzw := {yzw

kℓ ; k = 1, . . . , g; ℓ =

1, . . . , m} for two categorical random variables with values from the sets K = {1, . . . , g}
and L = {1, . . . , m} can be obtained from the initial table by computing the sum of the

rows and columns according to z and w by yzw

kℓ =
∑

i,j [zikwjℓ]xij ∀k ∈ K and ∀ℓ ∈ L.

The first distribution that can be associated to z and w is P zw

KL = (pzw

kℓ) defined on

37

Algorithm 2 CoclustInfo.

Input: X, g, m.

Initialization: z, w, γkℓ =
pzw

kℓ

pz

k.
pw

.ℓ

.

repeat

repeat

Step 1. zik = 1 if k = argmax1≤k′≤g

∑

ℓ pw

iℓ log γk′ℓ and zik = 0 otherwise ∀i.

Step 2. γkℓ =
pzw

kℓ

pz

k.
pw

.ℓ

.

until convergence

repeat

Step 3. wjℓ = 1 if ℓ = argmax1≤ℓ′≤m

∑

k pz

kj log γkℓ′ and wjℓ = 0 otherwise

∀j.

Step 4. γkℓ =
pzw

kℓ

pz

k.
pw

.ℓ

.

until convergence

until convergence

return z and w.

K × L by

pzw

kℓ =
yzw

kℓ

N
=

∑

i,j

[zikwjℓ]pij ∀(k, ℓ) ∈ K × L.

It will be remarked that the row margins
∑

ℓ pzw

kℓ of this new distribution are respec-

tively equal to
∑

i zikpi. and consequently do not depend on the partition w (Govaert

and Nadif, 2018). They will be denoted pz

k.. Similarly, the column margins
∑

k pzw

kℓ

are equal to
∑

j wjℓp.j and will be denoted pw

.ℓ . Denoting by

qzw

ij = pi.p.j

∑

k,ℓ

zikwjℓ

pzw

kℓ

pz

k.p
w

.ℓ

∀(i, j) ∈ I × J

and using the properties
∑

i,j qzw

ij = 1, qz

i. = pi. and qw

.j = p.j ∀i, j, (Dhillon et al.,

2003a; Govaert and Nadif, 2018) we can associate with the partitions z and w a second

distribution Qzw

IJ := {qzw

ij ; i ∈ I; j ∈ J} defined on I × J with the same margins as

the initial distribution PIJ . Thereby, the co-clustering problem can be viewed as an

approximation of the distribution PIJ by a co-clustering distribution termed Qzw

IJ , by

minimizing the difference between the measure of information between the original

distribution and the aggregated distribution

I(PIJ) − I(Qzw

IJ) = KL(PIJ ||Qzw

IJ).

These different steps are summarized in the pseudo-code shown in Algorithm 2.

38

2.4 Visualization and Interpretability

Co-clustering, at its heart, compress the information into co-clusters. One can there-

fore describe a cluster of documents by clusters of terms. Visualization enables to

understand the structure of a dataset in a glimpse.

2.4.1 Reorganized and Summary Matrices

As presented previously in Figure 2.1, in the case of diagonal co-clustering, a cluster

of documents is described by a cluster of terms. In the case of non-diagonal co-

clustering, observing the patterns in the reorganized matrix (Figure 2.4) leads to a

characterization of document clusters by potentially several clusters of terms.

Figure 2.4: Three reorganized matrices for the CSTR dataset obtained with three

different algorithms.

Hovering a particular cell of the reorganized matrix in the visualization presented

in (Morbieu et al., 2018) shows the term corresponding to the column, so hovering

a high density zone give hints to the content of the documents in the corresponding

cluster.

The CoclustInfo algorithm provides also a summary matrix given by the γkl values

(Figure 2.5). This summary matrix allows to view in a glimpse the associations between

clusters of terms and clusters of documents (a high value indicates a high association).

2.4.2 Representative Terms

Since a set of few words is easier to interpret than a set of documents, taking the

associations between clusters of documents and clusters of words given by the summary

matrix, and combine them with a summary of the words in the co-cluster enables simple

analysis of the clusters of documents. Each co-cluster can be represented by its top

terms, i.e. the words appearing the most in the co-cluster (Figure 2.6).

Another visualization of the terms in a co-cluster is illustrated by Figure 2.7. The

n most frequent terms in a given term cluster are extracted along with the k most

39

0 1 2

0

1

2

0.5

1.0

1.5

2.0

2.5

3.0

Figure 2.5: CoclustInfo – heatmap showing the final γkl values obtained for each row

cluster k and each column cluster l. This may help to spot the interesting pairs of row

and column clusters.

0 200 400 600 800 1000 1200 1400

number of occurences

book

study

scientific

science

systems

retrieval

research

libraries

system

library

Cluster 1 (1688 terms)

0 100 200 300 400 500 600 700

number of occurences

hormone

children

cell

treatment

blood

growth

normal

cases

cells

patients

Cluster 2 (1398 terms)

0 200 400 600 800 1000 1200 1400

number of occurences

supersonic

wing

method

heat

shock

theory

mach

layer

pressure

boundary

Cluster 3 (1217 terms)

 Top 10 terms

Figure 2.6: CoclustMod – displaying the top terms of each cluster.

similar (in terms of cosine similarity) neighbors of each of these most frequent terms.

The shape of the displayed graph using a force layout provides insights of the content:

40

a dense graph is the result of a thematically focused cluster.

classi✁cation

journals

books

de
erm

✁nd
date

means

plication

ases

impact

matter
s

chains

retrospective

informatio

glish

urnal

ivate
l

boolean

compare

demands

sources

earlier
implies

society

dent

signals

ses

readers

our

complex

context

kennedy

s

implicationsalphabetical

eria

medicine

resource

linguistic

feasible

discrimination

erage

emic

mpound

estion

ptable
decision

approach

cit

l

mpossible

nformal

understood

graduate

e minal

american

communities

textbook

e

endeavor

rns

ations

s

ticles

policies

mphasis

agencies

lines

ciological

verview
behavior

purposes

manpower

operates

e

ts
bliographical

p
tents

ment

s

nterest

conception

profession

nversiond ents

collection

behaviora

valuation

uction

representations

ates
implementation

atures

productive

ollect

luations

ciples
methodology

references

vocabulary

automatic

advantages

nary

tivities

ment

ide

knowledge

p

univ
institute

p

ty

ortant

ages

bes

y

technological

stan

d

eers

g

b

h

low
load

applicablese

nose

ak

span

nasa

skin

langley

xhaust

tra

exit

e

interferencecompressive masspr

locations

roughnessurbance

bluntness

magnetic

raction

momentum

smallthick

axial

n

yaw

atmosphere

series

ompressible

order

edges

y

g

g ack

satelliteregion

nel

ationary

afterbodies
turbulence

good
ropy

revolution

�ight

tion

ation

oe�cients

separation

n transitional
ch

ble

vorticity

rocket
os losses

shocks

asp

ssumptions

stress

rogers
dictions

rbits

rust

g

plates

ad

Figure 2.7: CoclustMod – graph representations of two term clusters. We can visually

detect that the cluster on the right is dense, and more thematically focused (aerody-

namics) than the cluster on the left which is about more general notions (information,

knowledge and science in general).

Table 2.2: NMI values.

Dataset CoclustInfo CoclustMod CoclustSpec- Spectral- Spectral-

Mod Biclustering Coclustering

CLASSIC3 0.934±0.001 0.918±0.003 0.914±0.000 0.729±0.059 0.912±0.001

CSTR 0.684±0.024 0.620±0.043 0.781±0.000 0.444±0.038 0.701±0.012

WEBACE 0.612±0.010 0.595±0.013 0.568±0.010 0.442±0.003 0.524±0.005

CLASSIC4 0.632±0.045 0.712±0.027 0.508±0.020 0.383±0.030 0.530±0.094

REVIEWS 0.593±0.023 0.530±0.032 0.341±0.019 0.291±0.001 0.424±0.003

SPORTS 0.564±0.033 0.547±0.026 0.544±0.010 0.395±0.047 0.435±0.009

RCV1 0.495±0.021 0.469±0.034 0.012±0.003 0.304±0.025 0.012±0.002

NG20 0.565±0.010 0.508±0.012 0.474±0.012 0.075±0.022 0.389±0.006

2.5 Conclusion

Co-clustering is an important technique in the era of so-called big data since it allows

to compress large, high dimensional matrices.

The two co-clustering algorithms presented in this chapter achieve state-of-the-art

performance on many standard text datasets of various balance and sparsity, as shown

by experimental results (see Tables 2.2, 2.3 and 2.4).

41

Table 2.3: Accuracy values.

Dataset CoclustInfo CoclustMod CoclustSpec- Spectral- Spectral-

Mod Biclustering Coclustering

CLASSIC3 0.987±0.000 0.983±0.001 0.979±0.000 0.884±0.041 0.979±0.000

CSTR 0.814±0.044 0.803±0.044 0.897±0.000 0.560±0.019 0.823±0.007

WEBACE 0.510±0.021 0.583±0.023 0.501±0.020 0.305±0.007 0.389±0.010

CLASSIC4 0.774±0.075 0.888±0.018 0.596±0.011 0.628±0.032 0.629±0.078

REVIEWS 0.716±0.025 0.686±0.035 0.477±0.006 0.462±0.000 0.504±0.001

SPORTS 0.573±0.046 0.674±0.027 0.638±0.028 0.476±0.021 0.550±0.013

RCV1 0.715±0.024 0.710±0.042 0.301±0.000 0.515±0.023 0.301±0.000

NG20 0.492±0.023 0.394±0.021 0.283±0.020 0.078±0.005 0.210±0.005

Table 2.4: ARI values.

Dataset CoclustInfo CoclustMod CoclustSpec- Spectral- Spectral-

Mod Biclustering Coclustering

CLASSIC3 0.961±0.001 0.948±0.002 0.941±0.000 0.713±0.082 0.940±0.001

CSTR 0.686±0.055 0.642±0.059 0.809±0.000 0.299±0.035 0.721±0.003

WEBACE 0.434±0.039 0.550±0.031 0.334±0.037 0.213±0.013 0.344±0.011

CLASSIC4 0.529±0.101 0.703±0.040 0.299±0.055 0.296±0.044 0.309±0.142

REVIEWS 0.618±0.042 0.529±0.053 0.184±0.022 0.156±0.000 0.320±0.005

SPORTS 0.460±0.053 0.516±0.029 0.390±0.012 0.228±0.033 0.317±0.027

RCV1 0.501±0.029 0.484±0.043 -0.000±0.000 0.238±0.028 -0.000±0.000

NG20 0.380±0.017 0.285±0.019 0.196±0.019 0.008±0.004 0.125±0.008

However, a limitation of these algorithms is that they exclusively rely on the Vector

Space Model to represent the documents, i.e. documents are described by the number

of occurrences of terms in the documents. They therefore do not leverage local co-

occurrences of terms. The following chapter aims to fill this gap by exploiting local

co-occurrences of terms in sliding windows to better exploit the semantics of texts.

42

Chapter 3

Transfer learning for

co-clustering

Contents

Motivation . 1

Contributions . 4

Overview . 5

Text clustering aims to group documents into clusters such that similar content lay

in the same cluster. Most text clustering algorithms use the standard Vector Space

Model (VSM) (Salton et al., 1975) for document representation: a document corpus is

represented as a matrix where each row vector represents a document, each column a

term, and each cell of the matrix is the number of occurrences of the term in the doc-

ument. However, the recent years have seen the emergence of new, neural-based ways

of representing words and documents that go beyond the above-mentioned VSM-based

representations. In particular, neural word embeddings are today widely used as input

to text classifiers in the supervised machine learning setting. Representations of larger

units of text (sentences, documents) can also be derived using techniques as simple

as averaging pretrained word embeddings. While such a simple approach can perform

surprisingly well (Ionescu and Butnaru, 2019), better results can even be obtained

by using neural networks to directly learn sentence or document level representations

using a variety of approaches ranging from unsupervised learning to supervised learn-

ing in combination with downstream tasks (Kiros et al., 2015; Le and Mikolov, 2014;

Socher et al., 2013; Conneau et al., 2017; Hill et al., 2016; Lin et al., 2017). As already

said, these new neural-based representations of text units have been put to good use

in the supervised learning field where text embeddings are today routinely used as ini-

43

tial input to neural text classifiers, leading to significant performance improvements.

The question which then naturally arises is what performance gains could be attained

if, similarly to what happens in supervised text mining, such neural-based document

models were to be used as input to unsupervised tasks such as text clustering or even

text co-clustering?

3.1 Motivation

There are many problems to solve when using pre-trained embeddings in the unsuper-

vised learning field.

3.1.1 Problems to Tackle

First, as with many other neural techniques, the training of word or document embed-

dings is plagued with the problem of hyperparameters setting. Even in the supervised

setting where using pre-trained embeddings has been shown to improve results on

classification tasks, using such embeddings requires attention since the many hyper-

parameters which values greatly impact the quality of the results. This problem is

even more acute in the unsupervised field since, in contrast to supervised tasks which

can at least leverage cross-validation to set hyper-parameters, this is not possible for

unsupervised tasks such as clustering or co-clustering. To deal with this problem, we

propose to combine the use of pre-trained document embeddings with a form of con-

sensus clustering; see for instance (Vega-Pons and Ruiz-Shulcloper, 2011), and show

in the experimental section that this combination provides a significant improvement

over state-of-the-art results on several well-known datasets.

The text co-clustering technique also poses specific problems when it comes to

using text embeddings. The goal of co-clustering is to form meaningful co-clusters

of words and documents. Therefore, we can’t directly use the document embedding

vectors since this would only allow to form co-clusters of document and embedding

dimensions. In this case, we propose to take a kind of sequential transfer learning

approach: First, document embeddings are learned that serve as input to a document

clustering program. The so obtained document cluster indicators are then used to

constrain a co-clustering algorithm.

Finally, another issue to settle for setting up our experiments is choosing among

the many above-mentioned neural-based document-level representations. In this study

we favor document models learned without labels, in order to remain in the unsuper-

vised learning since we target downstream tasks (clustering and co-clustering) whose

advantage is precisely not to rely on the availability of domain-specific labels. In our

experiments, we specifically rely on the fully unsupervised Paragraph Vectors (Le and

44

Mikolov, 2014) algorithm, which learns representations that have been shown to per-

form significantly better on document similarity tasks compared to those obtained

using traditional document modelling techniques such as LSA or LDA (Dai et al.,

2015).

However this good performance level can only be achieved with some specific hyper-

parameter values. As other neural learning algorithms, Paragraph Vectors is highly

sensitive to hyperparameter tuning. For instance when training Paragraph Vectors

with several hyperparameter values and clustering a part of the 20 Newsgroups dataset

(namely 5ng), we at first obtained Normalized Mutual Information (NMI) (Strehl and

Ghosh, 2002) scores in ranging from 0.396 to 0.899. In the course of this study, we

discovered that this drawback could be turned into an advantage. Actually, each com-

bination of hyperparameters can be seen as casting a different light on the dataset at

hand: combining the results provided by each combination can yield better results.

In practical terms, we propose a consensus-based clustering technique which takes the

several clustering obtained with the different values of hyperparameters and creates a

new partitioning of the documents.

3.1.2 Related Work

One of the most notable examples of using use neural networks for clustering and co-

clustering is Deep Embedded Clustering (DEC) (Xie et al., 2016), which simultaneously

learns feature representations and cluster assignments. It is initialized with a stacked

autoencoder, then the decoder is discarded so the encoder maps the data space to the

feature space. K-means is run in the feature space to obtain initial centroids for the

clustering part. The clustering part consists in two alternating steps:

– a soft assignment between the embedded points and the cluster centroids;

– the update of the deep mapping by minimizing the Kullback-Leibler divergence

between the soft assignment and an auxiliary target distribution.

Another work in this field, is Deep Co-Clustering (DeepCC) (Xu et al., 2019), which

uses neural networks for co-clustering. It utilizes a deep autoencoder for dimension

reduction, and employs a variant of Gaussian Mixture Model to infer the cluster as-

signments. DeepCC jointly optimizes the parameters of the deep autoencoder and the

mixture model in an end-to-end fashion on both the instance and the feature spaces.

The above-mentioned systems are complex deep models, with the associated learn-

ing cost and without real improvements. In fact, the experiments we carried out have

clearly shown that DEC at best equals the best standard VSM-based clustering al-

gorithms while DeepCC is even most of the case less effective than these traditional

techniques. In contrast, using a far more shallow model such as Paragraph Vectors,

we found that one can achieve results that clearly exceed state-of-the art results on a

45

variety of well-known datasets.

Some work apply consensus clustering in the context of document clustering. Gon-

zalez and Turmo (2008) make the distinction between the “major” and “minor” ensem-

ble strategies for non-parametric document clustering: Whereas the “minor” strategy

uses a small number of different clustering algorithms, the “major” strategy is based

on the repetition of a randomly initialized single clustering algorithm. Our method

is therefore more in line with the “major” strategy since a single clustering algorithm

is used. But since the representation algorithm we choose is parametric, instead of

varying the initialization randomly we initialize the representation algorithm with dif-

ferent parameters. Shinnou and Sasaki (2007) generate multiple clustering results by

random initialization of Non-negative Matrix Factorization on the VSM representa-

tion weighted by Tf-Idf. Greene and Cunningham (2006) discuss prototype reduction

to speed-up the consensus process : Prototype reduction produces a minimal set of

objects or prototypes to represent the data, while ensuring that a clustering algorithm

applied to this set will perform approximately as well as on the original dataset. The

prototypes can be produced by two ways: prototype selection and prototype extrac-

tion. Prototype selection seeks to identify a subset of representative objects from the

original data, while prototype extraction techniques involve the creation of an entirely

new set of objects. We do not employ these methods in our work but we suggest

that they may also be applied in conjunction with ours. The previously mentioned

works use the VSM based representation of documents whereas our method uses neural

document embeddings.

3.2 Method

Our method first leverages transfer learning through a clustering step, and then a co-

clustering is constrained to keep the document partitions obtained by the clustering

step.

3.2.1 Transfer Learning for Text Clustering

The proposed transfer-based clustering is performed in two steps: the embedding step

which leverages transfer learning through an augmented dataset, and the clustering

itself which clusters only the documents of the dataset of study, directly using the

embeddings produced in the previous step.

46

3.2.1.1 Learning Document Embedding

In this phase, we use a kind of latent feature learning approach where documents

are projected into a low-dimensional space computed from the features of both the

documents of interest (the documents we want to cluster) and additional documents

from a similar domain (Figure 3.1).

documents
of insterest

additional
documents

training

document
clustering

document embeddings

clusters of
documents

Figure 3.1: Augmented dataset.

We use Paragraph Vector to embed documents into low dimensional real valued

dense vectors.

3.2.1.2 Clustering Document Embeddings

We cluster document embeddings corresponding to the dataset of our study. This is

done with a directional clustering algorithm: Spherical k-means (Dhillon and Modha,

2001). Spherical k-means is indeed suited to cluster document vectors with cosine

similarity (vectors in the same cluster have a high cosine similarity).

Table 3.1: Illustrative example of the construction of H for r = 3 partitions of 7

documents into g = 3 clusters.

z
(1)

z
(2)

z
(3)

d1 1 2 1

d2 1 2 1

d3 1 2 2

d4 2 3 2

d5 2 3 3

d6 3 1 3

d7 3 1 3

⇔

Z
(1)

Z
(2)

Z
(3)

d1 1 0 0 0 1 0 1 0 0

d2 1 0 0 0 1 0 1 0 0

d3 1 0 0 0 1 0 0 1 0

d4 0 1 0 0 0 1 0 1 0

d5 0 1 0 0 0 1 0 0 1

d6 0 0 1 1 0 0 0 0 1

d7 0 0 1 1 0 0 0 0 1

3.2.1.3 Hyper-parameter Setting

Paragraph Vector has several hyper-parameters. The most sensitive are the number of

dimensions, the number of epochs and the window size. A grid search over commonly

used values in supervised settings is used as a starting point. We then have either to

select a single combination of hyper-parameters or to aggregate the results.

47

For a supervised task, it would be possible to select the hyper-parameters by choos-

ing the setting which results in the highest value of an evaluation metric on a validation

set. We however cannot do this in an unsupervised setting. One possible solution is to

select them based on the internal criterion of the clustering algorithm. But, since the

input data of the clustering algorithm is not the same in each setting (the document

vectors depend on the hyper-parameters), we cannot do this. We therefore choose to

aggregate the results using consensus clustering.

3.2.1.4 Consensus Clustering

A possible solution to aggregate the results is to combine the vectors before the cluster-

ing. As it requires to transform the embeddings, it is hard to keep the good properties

of the original embeddings that allow to cluster them well. We therefore prefer to ap-

ply an ensemble clustering afterwards: Each combination of hyper-parameters values

leads to one clustering and all clustering results are combined into a single clustering.

The great challenge in clustering ensemble is the definition of an appropriate consen-

sus function. Many approaches exist (Vega-Pons and Ruiz-Shulcloper, 2011), and we

chose to use the graph and hypergraph based methods (Strehl and Ghosh, 2002) which

are among the most popular.

Let X be a data matrix of size n × d where I is the set of n rows (objects),

and J the set of d columns (features). Given a set S of partitions into g clusters,

consensus clustering aims to find a new partition C∗ which maximizes the average of

the Normalized Mutual Information (NMI) between C∗ and each partition in S:

C∗ = argmax
C

∑

L∈S

1

|S|NMI(C, L)

where NMI(C, L) is estimated by:

NMI(C, L) =

∑

k,ℓ

Nk,ℓ

n
log

Nk,ℓ

NkN̂ℓ
√

(
∑

k
Nk

n
log Nk

n
)(

∑

ℓ
N̂ℓ

n
log N̂ℓ

n
)
,

where Nk denotes the number of objects contained in the cluster Lk (1 ≤ k ≤ g), N̂ℓ

is the number of objects belonging to the cluster Cℓ (1 ≤ ℓ ≤ g), Nk,ℓ denotes the

number of objects that are in the intersection between cluster Lk and cluster Cℓ. Note

that the new partition C∗ is not necessarily in the set S of initial partitions.

Several algorithms such as Cluster-based Similarity Partitioning Algorithm (CSPA),

HyperGraph Partitioning Algorithm (HGPA) and Meta-CLustering Algorithm (MCLA)

find an approximation of the best consensus clustering (Strehl and Ghosh, 2002).

To do so, an hypergraph is constructed as illustrated in Table 3.1: Given a set of

vectors of labels z(1) . . . z(r) corresponding to r clustering results, binary membership

48

indicator matrices Z(1) . . . Z(r) are contructed. Then, the matrix H is constructed as

the concatenated block matrix H = (Z(1) . . . Z(r)). H defines the adjacency matrix of

a hypergraph which is used to produce an approximation of C∗:

– CSPA creates a similarity matrix 1
r
HHT and apply a similarity-based clustering

algorithm on it;

– HGPA approximates the maximum mutual information objective with a con-

strained minimum cut objective on the hypergraph;

– MCLA collapses groups of clusters into meta-clusters which are consolidated.

We propose another method for consensus clustering, similar to CSPA: we use

CoclustInfo (Algorithm 2) to cluster the matrix HHT . The resulting partition of the

rows is taken as consensus clustering. Experiments (see table XII, in the discussion

section) have shown that this new method outperforms CSPA, HGPA, and MCLA.

3.2.2 Text Co-clustering

Although clustering has been successfully used in a wide range of application domains,

clustering approaches may sometimes be challenged by the characteristics, i.e, high

dimensionality and sparsity, exhibited by some datasets, such as document × term

matrices arising in text mining. When we are considering such datasets, co-clustering

which, in contrast to clustering, groups objects and features simultaneously, turns out

to be more effective (Dhillon et al., 2003a; Govaert and Nadif, 2005a, 2013; Ailem

et al., 2016; Salah and Nadif, 2017). The basic idea of co-clustering consists in making

permutations of objects and attributes in order to draw a correspondence structure on

I × J making the data easier to handle and interpret.

An information-theoretic based co-clustering, CoclustInfo (Govaert and Nadif, 2018)

(Algorithm 2) has been shown in Chapter 2 to handle documents-terms matrices and

to result in high quality co-clustering.

3.2.3 Transfer Learning Using a Constrained Text

Co-clustering Algorithm

Co-clustering makes the interpretation of clustering easier than one-sided clustering:

on a document-term occurrence matrix it forms clusters of documents characterized

by clusters of terms. Figure 3.2 shows an example of diagonal co-clustering where

each cluster of documents is characterized by a cluster of terms. This section presents

how to summarize the data through co-clustering but keeping the clustering of the

documents obtained as discussed in the previous section.

49

Figure 3.2: Left: original data. Middle: data reorganized according to row clusters.

Right: data reorganized according to row and column clusters.

3.2.3.1 Framework

Document clustering is obtained with a clustering of document vectors trained on an

extended dataset (Figure 3.1). This high quality document clustering, which leverages

local co-occurrences in sliding windows, is kept as the clustering of the documents for

a constrained co-clustering algorithm (Figure 3.3). The constrained co-clustering is

documents
of insterest

additional
documents

document
clustering

constrained
co-clustering

clusters of
documents

co-clusters

Figure 3.3: Transfer learning for text co-clustering.

applied on the document-term occurrence matrix corresponding to the documents to

cluster, enabling thus the observation of the patterns of documents-terms co-clusters.

The partitions of the terms make the interpretation possible in contrast to applying

a co-clustering on the document embeddings which would not bring the same inter-

pretability since it would cluster the dimensions of the embeddings, which are not

associated with understandable labels.

3.2.3.2 Constrained Information-theoretic Co-clustering

The given number of row and column clusters can differ which lets the user a choice

over the level of summarization it seeks.

We choose CoclustInfo as the ground for a constrained co-clustering, named Con-

strainedCoclustInfo (Algorithm 3). The main difference is the partition of the docu-

ments z which is given as additional input and is not updated.

50

Algorithm 3 ConstrainedCoclustInfo

Input: X, g, m, z.

Initialization: w, γkℓ =
pzw

kℓ

pz

k.
pw

.ℓ

.

repeat

Step 1. wjℓ = 1 if ℓ = argmax1≤ℓ′≤m

∑

k pz

kj log γkℓ′ and wjℓ = 0 otherwise ∀j.

Step 2. γkℓ =
pzw

kℓ

pz

k.
pw

.ℓ

.

until convergence

return w.

3.3 Experiments

Paragraph Vector is a shallow neural network with one hidden layer. It have two dif-

ferent architectures: Distributed Bag of Words (PV-DBOW) and Distributed Memory

(PV-DM). PV-DM is trained to predict a focus word from context words and the id

of the paragraph whereas PV-DBOW is trained to predict words randomly sampled

from the paragraph from the id of the paragraph.

3.3.1 Datasets

For our experiments, we use four datasets1 (Cardoso-Cachopo, 2007) of different size

and balance2:

– R8 a subset of single topic articles from the Reuters newswire3.

– WebKB a collection of webpages collected by the World Wide Knowledge Base

project of the CMU text learning group4.

– 20ng the 20 Newsgroups dataset5.

– 5ng a subset of five classes (rec.motorcycles, rec.sport.baseball, comp.graphics,

sci.space and talk.politics- mideast) from the 20 Newsgroups dataset.

3.3.1.1 Characteristics

Summary statistics of the datasets are given in Table 3.2. We use the test and train sets

as given by Cardoso-Cachopo (2007) for the documents to cluster and the additional

ones respectively.

1http://ana.cachopo.org/datasets-for-single-label-text-categorization
2The balance is the ratio of the number of documents in the smallest class to the number of

documents in the largest class.
3http://www.daviddlewis.com/resources/testcollections/reuters21578/
4http://www.cs.cmu.edu/afs/cs.cmu.edu/project/theo-20/www/data/
5http://qwone.com/~jason/20Newsgroups/

51

Table 3.2: Characteristics of Datasets.

Documents for Documents for

Dataset training clustering Classes Balance

r8 7674 2189 8 0.013

webkb 4199 1396 4 0.307

5ng 4890 1954 5 0.943

20ng 18821 7528 20 0.628

3.3.1.2 Pre-processing

The following pre-processing is applied for all the datasets:

– Non letter characters (punctuation, numbers, etc.) are transformed to spaces;

– All letters are turned to lowercase;

– Only words longer than two characters are kept;

– Stopwords from the 524 SMART list are removed;

– Stemming is done with Porter’s Stemmer.

3.3.2 Evaluation Metrics

In order to evaluate the clustering results, we use the following evaluation metrics:

– Normalized Mutual Information (NMI) (Strehl and Ghosh, 2002)

– Adjusted Rand Index score (ARI) (Steinley, 2004)

– Accuracy (Acc)

The scores are computed against the ground truth labels given by the classes.

3.3.3 Leverage Transfer Learning to Cluster Documents

In order to cluster documents, we conduct experiments on several datasets. First,

we set hyper-parameters of Paragraph Vector with a grid search. Then we avoid the

selection of hyper-parameters by a consensus clustering step. We evaluate our method

on a generalization task.

3.3.3.1 Hyper-parameter Settings

We search through a grid of hyper-parameters in ranges that are known to be effective

for supervised tasks. Paragraph Vector is trained on a train set for each value of hyper-

parameters and datasets. A spherical k-means is applied on the generated document

vectors on a test set.

For the grid search, we choose the window size in the range from 2 to 5, the number

of dimensions between 100 and 300 and the number of epochs in [5, 10, 30, 50].

52

3.3.3.2 Document Clustering

We use Spherical k-means on the document embeddings. For each embeddings matrix

(i.e. a combination of hyper-parameters), we run 100 clustering with random initial-

ization and take the clustering maximizing the internal criterion of the algorithm.

3.3.3.3 Consensus Clustering

From the results given by clustering the vectors for each combination of hyper-parameters,

we create a single consensus clustering using the methods CSPA, HGPA and MCLA

of (Strehl and Ghosh, 2002) relying also on (Karypis and Kumar, 1998; Karypis et al.,

1999), and our proposed method which applies CoclustInfo on HHT . The implemen-

tation used for CSPA, HGPA and MCLA is provided by (Giecold et al., 2016). Each

method gives an approximation of the best consensus clustering, i.e. a clustering that

maximizes the average NMI with the input clustering results. The best approximation

is selected as our consensus clustering.

3.3.3.4 Generalization from a Subset of Documents

To measure the benefits of our approach, we compare the results found by our method

with both clustering and co-clustering algorithms on the rows of the document-term

matrix corresponding to the test set. When using the Tf-idf weighting, the weights are

computed on the whole matrix, thus can theoretically benefit from a kind of transfer

learning.

We apply CoclustInfo and CoclustMod algorithms from the Coclust package (Role

et al., 2019), and Spherical k-means on both the document-word co-occurrence matrix

(Tf) and the same matrix weighted by Tf-idf. DEC and DeepCC are also considered

for the comparison.

3.3.4 Co-clustering with Constraints

For the co-clustering, we fix the document clusters according to the labels of the

documents found by the consensus clustering. ConstrainedCoclustInfo is applied with

100 random initializations and the best co-clustering according to the internal criterion

is kept as final co-clustering. We set the number of term clusters to be one more than

the number of document clusters for better interpretability. This way, the algorithm

groups general terms which appear in most of the documents, independently of their

class, into a single noisy term cluster.

53

3.4 Results and Discussion

Clustering quality results in terms of NMI are reported in Table 3.3. One should

remember that these results are given for clustering on a subset of the datasets tradi-

tionally used as test sets for the supervised task of classification, and not on the whole

datasets as clustering are often evaluated, resulting hence in different values than those

found in (Role et al., 2019), for instance.

In this context, our method performs better on all four datasets: slightly better

than CoclustInfo applied on the document-term co-occurrence matrix (Tf) and Spher-

ical k-means applied on the Tf-Idf matrix for the Reuters8 (r8) dataset, and by a large

margin on the other datasets.

One can also see that the co-clustering algorithms applied on document-term ma-

trices do not benefit from the information contained in the additional documents: the

inverse document frequency weighting (Tf-idf) is computed on the whole dataset (the

documents to cluster and the additional ones) but higher values of NMI are found for

the term-frequency (Tf) alternatives. This is in fact coherent with the inner working

of the co-clustering algorithms which are supposed to be applied on contingency tables

(noted Tf in our experiments).

Table 3.3: NMI values.

Datasets

Algorithm Vectors r8 webkb 5ng 20ng

Consensus PV-DBOW 0.590 0.449 0.865 0.660

Consensus PV-DM 0.425 0.340 0.716 0.389

Spherical k-means
Tf-Idf 0.549 0.364 0.782 0.514

Tf 0.425 0.260 0.070 0.170

CoclustInfo
Tf-Idf 0.351 0.127 0.345 0.216

Tf 0.383 0.188 0.327 0.217

CoclustMod
Tf-Idf 0.315 0.319 0.215 0.273

Tf 0.543 0.328 0.472 0.390

DEC 0.409 0.312 0.173 0.234

DeepCC 0.256 0.210 0.323 - 6

3.4.1 Dataset Augmentation

This section shows the value of using an extended dataset to train the document

vectors on.

For each dataset, we randomly sampled 300 documents where 100 constitute the

set on which the clustering is done. On one hand clustering is done on the document

vectors trained on the whole 300 documents (a), and on the other hand the clustering

6We were unable to run DeepCC on this dataset due to the memory consumption. Our configu-

ration has 64GB RAM.

54

Figure 3.4: Reorganised matrix for ConstrainedCoclustInfo applied on 5ng dataset.

Table 3.4: Top words for each co-cluster formed by ConstrainedCoclustInfo on 5ng

dataset with 5 document clusters and 6 word clusters. Terms for dense co-clusters are

in bold.

1 2 3 4 5 6

1
plai, netcom gamma, surfac bit, file ran, state sale, tek that, you

shark, scott scienc, design graphic, imag unit, di charl, green for, and

2
hit, sport cost, design type, standard arm, law bmw, ride for, that

clutch, duke gov, mile mirror, mail polic, state dod, bike you, and

3
pitcher, hit star, schedul sgi, data todai, jewish robinson, sabr edu, you

player, game marin, toronto info, mail nation, histori andrew, hei that, and

4
jack, clark shuttl, mission imag, access forc, law demon, tank you, for

gari, scott hst, space rai, system govern, right weight, bnr that, and

5
lost, offens air, scienc view, set armenian, arab demon, dog not, you

defens, throw earth, cso mit, standard israel, muslim front, att that, and

is done on the document vectors trained on the 100 documents to cluster (b). Quality

measures (NMI, ARI and accuracy) are computed on both (a) and (b). This experi-

ment is run 30 times. The difference between the measure evaluated on (a) and on (b)

are reported in Table 3.5 along with the p-values corresponding to a Student’s t-test

where the alternative hypothesis is "True difference in means is greater than 0".

The clustering is run with 100 initializations, and only the best as regards the

internal criterion of the clustering algorithm is kept.

The number of epochs for the case (b) is set to be on par with case (a) such that

both process the same number of documents in total (number of documents in the

training set times the number of epochs).

Number of epochs are set to 30 for case (a). PV-DBOW is used as the document

vectorization algorithm with a window of 2 and 300 as the number of dimensions.

55

Table 3.5: Difference between the scores of evaluation measures for the clustering when

the vectorization is done on an augmented dataset and not.

Datasets Acc diff. (p-value) ARI diff. (p-value) NMI diff. (p-value)

20ng 0.0597 (6.6e-12) 0.0754 (4.3e-13) 0.0401 (5.7e-09)

5ng 0.137 (2.7e-07) 0.187 (2.0e-08) 0.207 (8.1e-13)

r8 0.0293 (4.1e-02) -0.0035 (5.8e-01) 0.0222 (6.2e-02)

webkb 0.0607 (2.7e-03) 0.0910 (3.5e-04) 0.0959 (1.6e-04)

One can see that case (a) consistently results (except for Reuters 8 in terms of ARI)

and significantly (except for Reuters 8 in terms of ARI and NMI) in better evaluation

scores than case (b). Paragraph Vectors is thus able to leverage transfer learning from

additional documents for a clustering task.

3.4.2 Consensus Clustering

Consensus clustering is an essential step since the hyper-parameter values greatly im-

pact the clustering quality. Figure 3.5 shows the distribution of the quality measure

scores reported in Tables 3.6 to 3.11 when changing the hyper-parameter values. One

can see that no hyper-parameter configuration lead to the highest scores, even increas-

ing the number of epochs do not reliably increases the scores as it is the case for the

r8 dataset.

dataset: 20ng dataset: 5ng dataset: r8 dataset: webkb

m
e
a
s
u
re

: a
c
c

m
e
a
s
u
re

: a
ri

m
e
a
s
u
re

: n
m

i

dbow dm dbow dm dbow dm dbow dm

0.25

0.50

0.75

0.00

0.25

0.50

0.75

0.25

0.50

0.75

algorithm

v
a

lu
e

epochs

5

10

30

50

Figure 3.5: Evaluation scores for Paragraph Vectors. NMI, ARI and accuray values

vary and depend on the hyper-parameter values.

56

Table 3.6: NMI values for spherical k-means on PV-DBOW vectors: For each data

set, top 3 values are highlighted.

dataset 20ng 5ng r8 webkb

window size dims epochs

2 300 5 0.371 0.478 0.454 0.287

10 0.522 0.673 0.645 0.351

30 0.625 0.719 0.552 0.445

50 0.648 0.864 0.560 0.456

500 5 0.368 0.455 0.443 0.291

10 0.516 0.665 0.647 0.352

30 0.636 0.710 0.557 0.439

50 0.645 0.858 0.568 0.457

3 300 5 0.373 0.480 0.451 0.282

10 0.530 0.684 0.642 0.351

30 0.628 0.729 0.554 0.445

50 0.653 0.863 0.574 0.445

500 5 0.360 0.471 0.428 0.301

10 0.519 0.676 0.632 0.352

30 0.626 0.858 0.557 0.449

50 0.628 0.862 0.575 0.448

4 300 5 0.369 0.478 0.479 0.287

10 0.519 0.671 0.642 0.348

30 0.630 0.816 0.564 0.439

50 0.634 0.855 0.566 0.451

500 5 0.367 0.468 0.443 0.293

10 0.504 0.669 0.668 0.348

30 0.617 0.726 0.598 0.456

50 0.657 0.867 0.569 0.449

5 300 5 0.370 0.467 0.467 0.285

10 0.524 0.676 0.642 0.345

30 0.632 0.731 0.603 0.448

50 0.648 0.859 0.571 0.435

500 5 0.362 0.487 0.476 0.289

10 0.514 0.664 0.632 0.337

30 0.627 0.867 0.556 0.446

50 0.637 0.859 0.567 0.441

This is also the case when the training is not done on an extended dataset: For

instance when training PV-DBOW and clustering the full 5ng dataset, we obtained

NMI values in range from 0.396 to 0.899 whereas consensus clustering leads to 0.865.

Therefore, consensus clustering is of major importance whether combined with the use

of an extended dataset for training or not.

The reported results in Table 3.3 for consensus clustering are the best clustering

solution found by CSPA, HGPA, MCLA and CoclustInfo on HHT according to the

maximization objective of the average NMI with the input clustering outcomes.

Average NMI found by the different methods for consensus clustering are given in

Table 3.12.

57

Table 3.7: NMI values for spherical k-means on PV-DM vectors: For each data set,

top 3 values are highlighted.

dataset 20ng 5ng r8 webkb

window size dims epochs

2 300 5 0.107 0.134 0.291 0.276

10 0.231 0.382 0.366 0.335

30 0.420 0.727 0.440 0.379

50 0.477 0.752 0.463 0.384

500 5 0.117 0.149 0.306 0.274

10 0.230 0.376 0.382 0.301

30 0.419 0.630 0.447 0.337

50 0.479 0.764 0.460 0.380

3 300 5 0.105 0.121 0.275 0.275

10 0.227 0.328 0.375 0.281

30 0.388 0.554 0.416 0.344

50 0.452 0.616 0.417 0.369

500 5 0.109 0.067 0.257 0.278

10 0.217 0.332 0.360 0.291

30 0.385 0.599 0.408 0.343

50 0.421 0.636 0.408 0.351

4 300 5 0.105 0.084 0.271 0.227

10 0.191 0.288 0.310 0.273

30 0.360 0.674 0.360 0.334

50 0.406 0.606 0.383 0.344

500 5 0.105 0.046 0.261 0.227

10 0.211 0.312 0.333 0.259

30 0.367 0.593 0.347 0.309

50 0.420 0.586 0.350 0.347

5 300 5 0.098 0.050 0.263 0.241

10 0.186 0.241 0.302 0.238

30 0.335 0.642 0.321 0.291

50 0.405 0.516 0.335 0.310

500 5 0.102 0.048 0.243 0.203

10 0.191 0.297 0.300 0.239

30 0.337 0.532 0.315 0.322

50 0.380 0.691 0.343 0.322

(a) WebKB (b) Reuters 8 (c) 5ng (d) 20ng

Figure 3.6: Reorganized matrix given by CoclustInfo applied on the matrix HHT .

The random initial partitions of rows and columns are set to be equal.

58

Table 3.8: ARI values for spherical k-means on PV-DBOW vectors: For each data set,

top 3 values are highlighted.

dataset 20ng 5ng r8 webkb

window size dims epochs

2 300 5 0.174 0.327 0.284 0.296

10 0.332 0.593 0.577 0.384

30 0.453 0.642 0.378 0.427

50 0.508 0.893 0.382 0.425

500 5 0.174 0.312 0.329 0.296

10 0.318 0.581 0.626 0.384

30 0.486 0.652 0.377 0.421

50 0.496 0.886 0.402 0.424

3 300 5 0.178 0.334 0.334 0.286

10 0.338 0.607 0.565 0.380

30 0.454 0.644 0.372 0.421

50 0.519 0.890 0.403 0.423

500 5 0.164 0.333 0.280 0.300

10 0.312 0.597 0.559 0.385

30 0.469 0.880 0.418 0.434

50 0.469 0.890 0.369 0.410

4 300 5 0.170 0.329 0.315 0.284

10 0.318 0.589 0.566 0.380

30 0.476 0.810 0.422 0.424

50 0.478 0.885 0.399 0.425

500 5 0.170 0.323 0.316 0.296

10 0.302 0.586 0.644 0.378

30 0.450 0.652 0.459 0.428

50 0.512 0.896 0.384 0.419

5 300 5 0.178 0.322 0.301 0.294

10 0.328 0.594 0.565 0.375

30 0.479 0.647 0.417 0.434

50 0.489 0.889 0.397 0.420

500 5 0.163 0.337 0.369 0.293

10 0.326 0.580 0.595 0.370

30 0.475 0.892 0.417 0.426

50 0.486 0.887 0.395 0.416

59

Table 3.9: ARI values for spherical k-means on PV-DM vectors: For each data set,

top 3 values are highlighted.

dataset 20ng 5ng r8 webkb

window size dims epochs

2 300 5 0.032 0.062 0.125 0.246

10 0.099 0.281 0.171 0.357

30 0.255 0.756 0.260 0.371

50 0.297 0.776 0.289 0.418

500 5 0.037 0.068 0.147 0.275

10 0.098 0.272 0.205 0.332

30 0.258 0.582 0.315 0.355

50 0.300 0.791 0.303 0.388

3 300 5 0.029 0.060 0.116 0.287

10 0.092 0.247 0.226 0.309

30 0.200 0.476 0.251 0.347

50 0.262 0.564 0.225 0.398

500 5 0.035 0.032 0.116 0.291

10 0.087 0.239 0.196 0.276

30 0.211 0.554 0.250 0.367

50 0.245 0.594 0.220 0.382

4 300 5 0.030 0.067 0.127 0.236

10 0.072 0.210 0.135 0.282

30 0.182 0.695 0.208 0.331

50 0.214 0.558 0.200 0.382

500 5 0.032 0.023 0.115 0.234

10 0.085 0.228 0.155 0.235

30 0.168 0.545 0.200 0.325

50 0.244 0.533 0.196 0.386

5 300 5 0.031 0.032 0.129 0.230

10 0.067 0.159 0.133 0.223

30 0.161 0.672 0.195 0.279

50 0.217 0.435 0.182 0.356

500 5 0.030 0.028 0.093 0.206

10 0.070 0.234 0.132 0.223

30 0.160 0.477 0.173 0.303

50 0.197 0.722 0.174 0.328

60

Table 3.10: Accuracy values for spherical k-means on PV-DBOW vectors: For each

data set, top 3 values are highlighted.

dataset 20ng 5ng r8 webkb

window size dims epochs

2 300 5 0.317 0.628 0.440 0.638

10 0.483 0.696 0.637 0.673

30 0.566 0.705 0.488 0.713

50 0.656 0.955 0.499 0.706

500 5 0.327 0.604 0.500 0.639

10 0.463 0.686 0.652 0.676

30 0.628 0.724 0.501 0.706

50 0.628 0.952 0.508 0.705

3 300 5 0.330 0.636 0.516 0.630

10 0.499 0.702 0.632 0.666

30 0.579 0.704 0.487 0.705

50 0.659 0.954 0.524 0.708

500 5 0.306 0.628 0.417 0.644

10 0.450 0.696 0.624 0.678

30 0.596 0.950 0.546 0.716

50 0.591 0.954 0.458 0.696

4 300 5 0.332 0.630 0.460 0.636

10 0.469 0.691 0.637 0.671

30 0.605 0.912 0.543 0.708

50 0.596 0.952 0.510 0.711

500 5 0.328 0.624 0.492 0.643

10 0.442 0.690 0.673 0.664

30 0.579 0.716 0.576 0.707

50 0.652 0.957 0.492 0.703

5 300 5 0.327 0.618 0.457 0.635

10 0.481 0.698 0.628 0.665

30 0.616 0.701 0.537 0.718

50 0.610 0.954 0.506 0.708

500 5 0.329 0.643 0.576 0.636

10 0.467 0.688 0.637 0.663

30 0.616 0.955 0.545 0.708

50 0.626 0.953 0.505 0.698

61

Table 3.11: Accuracy values for spherical k-means on PV-DM vectors: For each data

set, top 3 values are highlighted.

dataset 20ng 5ng r8 webkb

window size dims epochs

2 300 5 0.135 0.340 0.293 0.579

10 0.246 0.479 0.335 0.671

30 0.427 0.896 0.399 0.668

50 0.469 0.904 0.421 0.693

500 5 0.145 0.311 0.338 0.617

10 0.250 0.472 0.353 0.629

30 0.421 0.671 0.468 0.627

50 0.482 0.911 0.447 0.681

3 300 5 0.132 0.316 0.343 0.632

10 0.261 0.505 0.415 0.616

30 0.390 0.663 0.423 0.657

50 0.451 0.674 0.366 0.667

500 5 0.145 0.298 0.304 0.630

10 0.247 0.514 0.398 0.591

30 0.393 0.663 0.418 0.665

50 0.413 0.715 0.374 0.658

4 300 5 0.148 0.318 0.338 0.592

10 0.224 0.452 0.345 0.603

30 0.387 0.866 0.417 0.648

50 0.381 0.676 0.373 0.655

500 5 0.138 0.276 0.289 0.590

10 0.256 0.459 0.365 0.554

30 0.372 0.665 0.407 0.606

50 0.454 0.654 0.386 0.673

5 300 5 0.144 0.283 0.351 0.583

10 0.216 0.383 0.349 0.561

30 0.342 0.856 0.436 0.613

50 0.417 0.659 0.376 0.645

500 5 0.138 0.275 0.263 0.553

10 0.227 0.531 0.364 0.561

30 0.336 0.646 0.413 0.645

50 0.395 0.880 0.356 0.622

62

Table 3.12: Average NMI found by consensus algorithms.

dataset 20ng 5ng r8 webkb

vectors algorithm

PV-DBOW CSPA 0.445 0.541 0.441 0.388

CoclustInfo 0.652 0.815 0.691 0.512

HGPA 0.006 0.229 0.018 0.001

MCLA 0.452 0.546 0.432 0.396

PV-DM CSPA 0.199 0.146 0.241 0.351

CoclustInfo 0.426 0.459 0.427 0.504

HGPA 0.008 0.048 0.003 0.001

MCLA 0.226 0.151 0.257 0.358

We found that HGPA consistently failed to find a solution near the optimal consen-

sus: Average NMI consistently turned out to be near 0. CSPA, MCLA and CoclustInfo

on HHT give way better results: CoclustInfo found better average NMI than both

MCLA and CSPA which give similar results in our experiments.

Figure 3.6 gives the reorganized HHT matrix according to the labels returned by

CoclustInfo on HHT . The documents where all intermediate clustering (when varying

the hyperparameter values of Paragraph Vectors) agree is characterized by red blocks

with no other points on the same rows or columns.

3.4.3 Constrained Co-clustering

Constraining the co-clustering to respect the document cluster assignments given by

consensus clustering on PV-DBOW vectors improves the quality of the document

partition over unconstrained co-clustering. The co-clusters are also coherent as one

can see on Figure 3.4 and Table 3.4: For instance, the third term cluster (with the

following stems in the co-cluster: "bit", "file", "graphic" and "imag") characterizes well

the first document cluster which corresponds to the class "comp.graphics". One can

also notice the last term cluster which contains general words explaining the high

density for the last block of columns on Figure 3.4.

3.5 Conclusion

We proposed a framework to transfer semantic information of an augmented dataset

into a co-clustering of a documents-terms matrix. It leverages the semantics learned

from local term co-occurrences in sliding windows to provide a high quality clustering

of documents. It also simplify the analysis of the clustering through a characterization

of the document clusters by clusters of terms.

More specifically, we demonstrated the benefit of Paragraph Vector for a clus-

tering task: It allows to capture information from a large corpus of documents and

63

encode it into document vectors. Such document vectors, when clustered with Spher-

ical k-means, often result in better clustering quality but highly depend on the hyper-

parameters. We showed that consensus clustering created from the clustering obtained

with different settings of Paragraph Vector hyper-parameters, consistently leads to high

quality document clustering. We presented an information theoretic constrained co-

clustering algorithm which provides co-clusters of documents and terms from an initial

fixed clustering of the documents. In our framework, it leverages the high quality of

the document clustering provided by a consensus clustering over Paragraph Vector

document embeddings.

64

Chapter 4

Unsupervised Evaluation of

Text Co-clustering Algorithms

Using Neural Word

Embeddings
This chapter is an adaptation of the paper: François Role, Stanislas Morbieu and Mohamed

Nadif. Unsupervised Evaluation of Text Co-clustering Algorithms Using Neural Word Em-

beddings. In Proceedings of the 27th ACM International Conference on Information and

Knowledge Management. ACM CIKM, 2018.

Contents

1.1 Vector Representation of Words 7

1.1.1 From Words to Word Embeddings 8

1.1.1.1 Underlying Data 8

1.1.1.2 High Dimensional Vectors 8

1.1.1.3 Dense Low Dimensional Vectors 10

1.1.2 Word Embeddings Models 10

1.1.2.1 Methods Handling a Global Matrix 11

1.1.2.2 Shallow Window-based Methods 14

1.1.2.3 Streaming Word Embeddings 18

1.1.2.4 Multi-sense Word Embeddings 18

1.1.2.5 Cross-lingual Word Embeddings 18

1.1.3 Characteristics and Evaluation 19

1.1.3.1 Scalability . 19

1.1.3.2 Quality . 21

1.1.3.3 Parameter Tuning 25

1.1.4 Conclusion . 25

65

1.2 Vector Representation of Documents 25

1.2.1 Vector Space Model . 26

1.2.2 Latent Semantic Analysis 26

1.2.3 Latent Dirichlet Allocation 27

1.3 Combined Word and Document Levels Textual Embed-

dings . 27

1.3.1 Methods Leveraging Word Embeddings 27

1.3.1.1 Aggregation of Word Embeddings 27

1.3.1.2 Paragraph Vector 28

1.3.2 ELMo . 28

1.3.3 GPT . 28

1.3.4 BERT . 29

1.4 Conclusion . 30

The previous chapter showed how neural document embeddings can improve the

clustering of texts. Also, word embeddings provide semantic similarity measures be-

tween words. Considering the ability of neural text embeddings to provide semantic

relations between words and between documents, it may be of practical interest to

evaluate traditional co-clustering algorithms with large pretrained textual embeddings.

This is the matter of this current chapter.

Word embeddings trained on large amount of texts have been evaluated and com-

pared to human judgment on several semantic similarity tasks. Given their high qual-

ity, they can thus be used to evaluate the coherence of clusters of terms produced by

co-clustering algorithms. Since co-clustering algorithms are most often only evaluated

on the document clustering task, evaluating them on such term cluster tasks constitute

a first improvement.

However, to really do justice to the two-dimensional nature of co-cluster analysis,

it is not enough to assess the quality of the word and document clusters in isolation of

each other: measures are needed to evaluate the quality of the matching between the

document and term clusters and their potential to form useful co-clusters (Figure 4.1).

Also, given the extreme difficulty in obtaining labels for both document and words, it

is highly desirable that such measures be "unsupervised", meaning measures that do

not need prior knowledge about the ground-truth classes.

To achieve these goals we propose to leverage large, public-domain word embedding

matrices such as Word2vec (Mikolov et al., 2013b), GloVe (Pennington et al., 2014a)

and FastText (Bojanowski et al., 2017b) which capture the semantics of large sets

of words in the form of continuous, low-dimensional representations. These freely-

available word embeddings are used to build representations allowing to assess not

only how cohesive term clusters are but also to what extend the produced word and

66

d1

d2

d3

Document clusters

t1

t2

t3

Term clusters

?

?

?

document cluster evaluation term cluster evaluation

? fit between document and term clusters

Figure 4.1: Document co-clustering algorithms create document clusters and term

clusters. Since co-clustering is a two-dimensional technique, it is necessary not only

to assess both term and document clusters in a separate way, but also their potential

to form useful co-clusters (pairs associating a document cluster and a term cluster

describing the document cluster). To date, most studies only report on the quality of

the found document clusters.

document clusters fit well together and have a potential to form interesting co-clusters.

In this chapter, we therefore first show how it is possible to treat term clusters

on a par with document clusters as regards evaluation. We then really address the

two-dimensional nature of co-cluster analysis by measuring the good fit between term

clusters and document clusters and their potential to form useful co-clusters. This

is the motivation for a measure we call FDTC (Fit between Document and Term

Clusters), which has the advantage of being "unsupervised" in the sense that it can be

computed in the absence of ground-truth labels. We then show on several real-world

datasets how it can help get better insights into the quality of the obtained results and

that studying this interaction could even assist in identifying noise in the data so as

to achieve better co-clustering performance.

4.1 Evaluating Term Clusters

To validate the results produced by a particular co-clustering algorithm, most stud-

ies rely on standard external measures devoted to assessing the quality of document

clusters. Such measures include clustering accuracy (Acc1) , Normalized Mutual Infor-

mation (NMI) (Strehl and Ghosh, 2002) and the Adjusted Rand Index (ARI) (Hubert

and Arabie, 1985). In addition to being exclusively focused on the document side,

1Acc = 1

n
max[

∑

Ck,Lℓ
T (Ck, Lℓ)]where Ck is an obtained cluster k, Lℓ is the true ℓthclass and n

is the total number of entities. T (Ck, Lℓ) is the number of entities which belong to class ℓ and are

assigned to cluster k.

67

these measures also have the drawback of requiring the availability of ground-truth

labels.

So, the necessity of evaluating the quality of term clusters in addition to that of

document clusters has so far somewhat been neglected by the co-clustering community.

The problem of assessing the semantic coherence of a set of terms has been addressed

by the topic models community. For example, in (Newman et al., 2009), the following

procedure has been proposed for evaluating the quality of a given topic:

1. Select the ten words that score highest on this topic.

2. Form all the 55 possible word pairs from these top-ten words.

3. Compute the PMI score of each pair

4. compute the median of all the PMIs and consider it as the value quantifying the

semantic coherence of the topic.

The PMI scores are computed using word-pair co-occurrence statistics from large ex-

ternal data sources such as Wikipedia. Another technique proposed for assessing terms

in a topic is the word intrusion task (Chang et al., 2009a), which has then be used

for word embeddings (Murphy et al., 2012a). It also relies on a very small number of

words (five words and an intruder word per topic) and requires human evaluators.

As concerns the evaluation of word clusters, we propose an alternative solution

which differs from the above mentioned ones in several respects. First, although PMI

has relatively good agreement with human scoring, it should be kept in mind that it

was primarily used by text mining researchers to find collocations between words, what

linguists call first-order co-occurrence. Since the goal is to assess to what extent words

in a cluster are more similar to each other than to words in different clusters, we propose

to measure the similarity between two words as the cosine similarity between the

embedding vector representations of these words. Second, restricting the evaluation to

a very limited number of words (about ten or so) is problematic from a statistical point

of view when handling datasets with a large vocabulary. In contrast, the evaluation

measures presented in this chapter are computed from the entire set of words in a

cluster and not from small samples.

To be able to evaluate the quality of the term clusters T1, . . . , Tk produced by a

given co-clustering algorithm, we propose to use a large, freely-available word embed-

dings matrix E. For each possible pair (Ti, Tj), 1 ≤ i, j ≤ k we retrieve an embedding

from E for each word in Ti

⋃

Tj . After normalizing the embedding vectors we are

then able to compute the cosine similarity between every pair (tk, tl), tk ∈ Ti, tl ∈ Tj .

Based on these similarity values we can produce a matrix St of size k × k where stij

is the average cosine similarity between a term t ∈ Ti and a term u ∈ Tj . This

matrix provides insights into how cohesive and separated term clusters are and can

serve as a basis for the computation of various internal measures that do not require

68

the knowledge of the ground-truth classes. One can take inspiration from measures

used in the clustering field. For example, the measure below, which is the ratio be-

tween the weighted mean intra-cluster similarity and the weighted mean inter-cluster

similarity, is reminiscent of the BetaCV measure with the difference that we are using

similarity and not distance, and most importantly that we are dealing with words (not

documents) represented by their embeddings:

1

2

∑

k

1
|{(ta,tb)|ta∈Tk,tb∈Tk,a<b}|

∑

ta∈Tk

∑

tb∈Tk

cos(va, vb)

∑

k

∑

l<k

1
|{(ta,tb)|ta∈Tk,tb∈Tl}|

∑

ta∈Tk

∑

tb∈Tl

cos(va, vb)

where ta and tb are terms, va and vb are the normalized embedding vectors of terms

ta and tb resp. The larger the ratio, the better the quality.

4.2 Measuring the Good Fit between Term and

Document Clusters

Measuring the quality of document clusters, or of even word clusters, in a separate way,

is not enough to judge the quality of the results produced by a co-clustering algorithm.

An improvement in the evaluation process is to assess if the produced document and

term clusters fit well together. To do so, we leverage large, public domain embedding

matrices to compute comparable, centroid representations of both kinds of clusters.

An embedding for a document is computed as the mean of the embeddings of the

words occurring in it. Then, a document (resp. word) cluster is represented by the

centroid of the document (resp. word) embeddings of its members. The centroids of

the document clusters are stored in the centroid matrix Cd and the centroids of the

term clusters are stored in the centroid matrix Ct. One can then form the matrix

S = CtC
T
d (Algorithm 4) which gives the similarities between all pairs of term clusters

and document clusters.2

This matrix provides insights about the compatibility level between the found term

clusters and document clusters (Figure 4.4). A global measure can also be derived

by first creating a cost matrix C = (cij) where cij = 1 − sij . We then can solve

the assignment problem by assigning document clusters to term clusters in a way

that minimizes the total cost using the Hungarian algorithm. Having thus found the

matching M (set of pairwise nonadjacent edges) between document clusters and term

clusters that results in the lowest cost, we can compute the mean value of the edges in

M, which can be in [−1, 1], and normalize it to be between 0 to 1. The so computed

2Note that the values in S can be negative since the underlying embedding vectors have mixed-sign

components.

69

value is a measure we call FDTC (Fit between Document and Term Clusters), which

gives an indication of the level of fit between the k document clusters and l term

clusters found by a co-clustering algorithm:

FDTC =
1

2

1 +
∑

(d,t)∈M

sd,t

min(k, l)

where k and l are the number of term clusters and document clusters resp.

Algorithm 4

input: set of k term TC1, . . . , TCk and l document clusters DC1, . . . , DCl pro-

duced by a co-clustering algoritm ; matrix E of word embeddings of size m × r;

output: matrix S of size k × l where sij is the average cosine similarity between

term cluster i and document cluster j;

initialization:

- Initialize a zero-valued term centroid matrix Ct of size k × r ;

- Initialize a zero-valued document centroid matrix Cd of size l × r ;

for each term cluster TCi do

- V = ∅;

for each term t ∈ TCi do

- Search the embedding matrix E to retrieve the embedding vector et for t;

- Add et to V ;

end for

- Compute and normalize the centroid of all vectors in V and store it as the i-th

row of the centroid matrix Ct;

end for

for each document cluster DCi do

- V = ∅;

for each term t occurring in a document ∈ DCi do

- Search the embedding matrix E to retrieve the embedding vector et for t;

- Add et to V ;

end for

- Compute and normalize the centroid of all vectors in V and store it as the i-th

row of the centroid matrix Cd;

end for

- return S = CtC
T
d ;

Figure 4.2 shows that the similarity values in the S matrix allow to discover the

same co-clusters (pairs consisting of a document cluster and a term cluster) as those

70

directly found by a diagonal algorithm such as the Mod co-clustering algorithm. When

analyzing the Classic3 dataset using Mod, and forming the S similarity matrix it can

be seen that the pattern of values in S allow to identify the same diagonal co-cluster

structure as that retrieved by Mod.

Figure 4.2: Visualization of the similarity matrix S for Mod on the Classic3 dataset

(left). The largest similarity values are on the diagonal, reflecting the co-cluster diago-

nal structure found by the Mod algorithm and exhibited by the document-term matrix

where the lines and columns are reorganized according to the labels assigned by the

algorithm (right).

It is also possible to use descriptive statistics methods to complement the general

performance information provided by FDTC. For example this can be done by looking

at the S matrix and producing boxplots giving indication on the degree of dispersion

of the values of S corresponding to the best match M. From the example in Figure 4.3,

it can be seen that, for NG20, Info seems to produce more cohesive pairs of document

clusters and term clusters than Mod. The long tails however show the great variability

of the cohesion between term and document clusters for Info on NG20. Mod produces

in contrast less variability since associating pairs of document and term clusters is

inherent of diagonal co-clustering. For the other datasets, with a smaller number of

classes which are also more separated, the diagonal co-clustering algorithm (Mod) finds

more cohesive pairs.

4.3 FDTC as an Aid to Noise Identification and

Performance Improvement

The similarity S matrix between document clusters and term clusters can be used to

spot noise words in a dataset. We first analyze the Ng5 dataset using Info, keep-

ing the best result over 100 runs, which results in an NMI value of 0.5. The matrix

S = CtC
T
d giving the similarities between all pairs of term and document clusters is

then computed, as shown in Figure 4.4 (a). The pattern of values found in the fourth

71

Figure 4.3: Boxplots of the values of S corresponding to the best match between

document and term clusters.

column (fourth term cluster) makes it stand out as a column (term cluster) having very

large values with all rows (document clusters) suggesting that is is a cluster consisting

of noisy, very general words. To confirm this intuition we visually inspect the con-

tents of the cluster which indeed mainly consists of dates, adverbs, and general mean-

ing, words such as: "1993apr8" "1993apr9", "1993mar31", "1st", "20", "2000", "2024,

"enough", "overall", "see", "seeing", "seeking", "seem", "seemed", "seemingly", "seems",

"seen", "sees", etc. Removing the words in this cluster and relaunching the algorithm

allows to reach a NMI of 0.6, which is a significant gain, compared to the initial value

of 0.5, confirming the value of the information contained in the S matrix. Similarly,

removing the terms in the three dark columns (term clusters) in Figure 4.4 (b) results

in increases of the same order for the NMI, ARI and Acc values, which confirms the

ability of the proposed measures to help spot uninteresting clusters.

4.4 Conclusion

We have presented several novel co-clustering evaluation measures which, compared

to standard, document oriented ones, better account for the two-dimensional nature

of word-document matrices, which is the first contribution of the chapter.

In addition to allowing a fairer evaluation of co-clustering results, these measures

also have the advantage of not relying on gold standard labels. In this respect they

may be of great use for practitioners working on real-world datasets.

Paths for future research include refining the computation of centroids by using

more advanced weighting schemes and using other textual embeddings, in particular

those which provide embeddings for both words and documents. We also plan to

72

Figure 4.4: (a) Heatmap visualization of the similarity matrix S between document

clusters (rows) and term clusters (columns) for Info on Ng5 with 5 document clusters

and 5 term clusters. A noisy term cluster can be spotted (fourth column from the

left). (b) Info on Ng5 with 5 document clusters and 8 term clusters.

more fully investigate the hints provided by the measures (e.g. noise detection) for

improving the co-clustering results. Another possible work is to use the FDTC measure

as a criterion for a new co-clustering algorithm.

73

Chapter 5

Handling Out-of-Vocabulary

Words

Contents

2.1 Co-clustering . 31

2.1.1 Methods for Co-clustering 32

2.1.2 General Notations . 34

2.2 CoclustMod: a Modularity-based, Block-diagonal Co-

clustering Algorithm . 34

2.2.1 Bipartite Graph Modularity (BGM) 35

2.3 CoclustInfo: an Information-theoretic Co-clustering Al-

gorithm . 36

2.4 Visualization and Interpretability 39

2.4.1 Reorganized and Summary Matrices 39

2.4.2 Representative Terms . 39

2.5 Conclusion . 41

In the previous chapter, public word embeddings trained on general texts are used

to evaluate text co-clustering. A major issue is however the gap that may reside

between the vocabulary used on the dataset of study and the one of the word embed-

dings used for evaluation. Substitution methods are developed to replace unknown

word vectors. The topic of this chapter is to evaluate such substitution methods.

Word embedding vectors trained on large amount of publicly available texts com-

monly serve as input to learning models in numerous domains having each their own

particular terminology. Hence, since the data on which the word embeddings have been

trained differs from the data on which they are used the so-called "out-of-vocabulary

problem" appears: many words encountered in the downstream task may be miss-

74

ing in the word embeddings vocabulary. These missing words, commonly known as

out-of-vocabulary words (OOVs) may very adversely impact the learning process.

For instance, no less than 61% of words in the 20 Newsgroups data set 1 are not

found in the well known Word2vec (Mikolov et al., 2013c) model trained on the Google

News corpus.

Many practitioners are daily faced with this problem across a large spectrum of

applications (text classification, part-of-speech tagging, item recommendation, etc.)

and it may harm a system’s performance as stated in (Dhingra et al., 2017): "Here we

show that seemingly minor choices made on (1) the use of pre-trained word embeddings,

and (2) the representation of out-of-vocabulary tokens at test time, can turn out to

have a larger impact than architectural choices on the final performance."

In spite of this, there doesn’t seem to be any systematic study of the methods used

to tackle this problem and how these methods perform. The available information is

sketchy and usually spread across papers where the authors briefly mention the often

ad-hoc solutions they resorted to. In fact, OOVs are either simply ignored, which is

a drastic measure 2, or most often substituted with some kind of replacement vectors

built using methods whose quality is not precisely known since it is indirectly measured

using downstream tasks that differ from one paper to another.

The main goal of this chapter is therefore to propose generic task-independent

evaluation methods allowing to assess to what extent the used replacement vectors are

good substitutes for the original ones.

To do this, we propose to compare the substitute and corresponding original vectors

from two points of view. On the one hand, we measure how similar in content substitute

word vectors are to the original vectors they replace, which is what we call the "word-

centric" or "static" point of view. On the other hand, we measure how substitutes

behave on word embeddings evaluation tasks, namely similarity and analogy tasks,

compared to their corresponding pre-trained word embeddings, which is what we call

the "dynamic" point of view.

The outline of the chapter is as follows. After reviewing the methods to create

substitute word embeddings for OOVs, we propose new methods to evaluate them,

and then experiment to study the quality of the substitutes.

5.1 Handling Out-of-Vocabulary Words

Among the popular methods to create substitute vectors for OOVs, we have

1http://qwone.com/~jason/20Newsgroups/
2Rare words have either poor embeddings in trained word embeddings models, or no embeddings

at all: A minimum frequency threshold is indeed often set when selecting the vocabulary for training

the word embeddings, as in (Chen et al., 2016) and (Shen et al., 2017).

75

– METH1 initializing the unknown embeddings with zeros or random values.

– METH2 directly averaging a sentence’s word vectors. This is the most com-

monly used method, and we use it as a baseline in our evaluation tasks. For

a given out-of-vocabulary word w, we generate a substitute word embedding as

follows: Let C(w) be the context of w, i.e. the set of words surrounding w in

the text. We compute the embedding of w as the centroid of the embeddings of

the words in C:

Subsitute(w) =
1

|C(w)|
∑

c∈C(w)

Ec (5.1)

where |C(w)| is the number of words in the context of w and Ec is the embedding

of the word c.

– METH3 computing subword embeddings (character-level (Ling et al., 2015) or

n-gram (Bojanowski et al., 2017a) models) and assembling them to create substi-

tute vectors. The best-known example of this approach is FastText (Bojanowski

et al., 2017a). For a given pair of target and context words (wt, wc), FastText

aims to minimize:

log(1 + e−s(wt,wc)) +
∑

n∈Nt,c

log(1 + es(wt,n))

where Nt,c is a set of negative examples sampled from the vocabulary and

s(w, c) =
∑

g∈Gw

zT
g vc

where Gw is the set of n-grams appearing in w including the word itself, zg is a

vector representation of the n-gram g and vc is the vector representation of the

center word c.

A substitute vector for a word is given by the sum of its n-gram vectors.

– METH4 relying on auxiliary data (terminologies, thesauri, lexical database such

as WordNet, etc.)(Prokhorov et al., 2017; Pilehvar and Collier, 2017). For exam-

ple, in statistical machine translation, a possible solution, is to find paraphrases

of OOV words for which the translations are available, and then aggregate the

translations of the found paraphrases (Razmara et al., 2013; Chu and Kurohashi,

2016).

The first of the above-mentioned method (METH1) is usually too simplistic to

give good results while the last method (METH4) may turn out to be effective but

heavily depend on the availability of external resources. In the rest of the chapter we

focus on the most generic methods, namely METH2 and METH3 and use these two

methods to demonstrate the possibility of using task-independent evaluation methods.

76

5.2 Task-independent and Word-centric Evaluation

Methods

The main idea is to use as much as possible the same standard methods and datasets

that one would use for evaluating "normal" word embeddings. More specifically, we

concentrate on the intrinsic and direct quality of the substitute vectors instead of de-

pending on various and constantly changing downstream tasks. Of course, the methods

used for evaluating original word vectors can not be used as they are: adjustments are

needed, which is the topic of this section.

We propose to measure the quality of a substitute vector along two lines:

– A static point of view: we measure how similar in content generated word vectors

are to their originals, how close they are in the embedding space from their known

embeddings.

– A dynamic point of view: we measure to what extent they behave like the original

on standard similarity and analogy tasks based on common, widely available test

datasets.

To evaluate the method that creates a vector for an OOV, we have to compare the

substitute with the original vector. For FastText, the substitute embedding of a word

is created from the n-grams composing it, so a bias exists when the model is trained on

the corpus containing the word we consider as OOV for our experiments. To alleviate

this bias, when training the word embeddings, we replace the words used in our tasks

by other tokens so that an update for the word does not update the weights of its

composing n-grams. The new token is generated by a hash function, so FastText has

enough subwords to work with for the given token and also, an update on a token does

not impact the embedding of another.

5.2.1 Static Point of View : Measuring the Similarities

Between Words and Substitutes Embeddings

5.2.1.1 Word Embeddings and Substitutes

To measure how generated word vectors are close in the embedding space from their

known embeddings, we randomly select a set of words and compute for each word the

cosine of the two word vectors (original embedding and substitute). For high values,

one can consider that word embeddings can be replaced by substitutes.

5.2.1.2 Pair of Word Embeddings and Pair of Substitutes

We also have to check whether a pair of similar words are found to be similar in the

substitutes space. We therefore compute the difference between the similarity score

77

on the word embeddings and the one on the substitutes for a set of pairs of words.

5.2.2 Dynamic Point of View: Compared Behavior on

Similarity and Analogy Tasks

Similarity and analogy tasks are often used to evaluate word embeddings: human

judgments scores are compared to computations on word embeddings.

5.2.2.1 Similarity Tasks

For similarity tasks, a similarity score is associated to each pair of words by humans,

and by computation on word embeddings. Spearman’s rank correlation coefficient

between the two ranking is then computed.

Human judgment. Similarity tasks measure different levels of similarity or relat-

edness. We use the following evaluation tasks: wordsim (Finkelstein et al., 2001),

mturk (Halawi et al., 2012), rg (Rubenstein and Goodenough, 1965) and mc (Miller

and Charles, 1991).

Word Embeddings. Cosine is used as a similarity score between two word em-

beddings. Since we want to evaluate the computation of embeddings for OOVs, we

consider scores obtained with word embeddings for comparison.

Substitutes. We take the substitute embeddings instead of the word embeddings

and compare the scores obtained to the scores obtained with word embeddings, and

also to the human judgment. The first comparison measures the difference between

substitutes and the word embeddings, and the second comparison allows to measure

how well they behave on the task word embeddings are used for in the first place.

Word Embeddings and Substitutes. In general, OOVs are rare, so we consider a

mix of word embeddings and substitutes to check if some unknown word embeddings

can be replaced by substitutes.

5.2.2.2 Analogy Tasks

For analogy tasks, three words are given and a fourth word is to be found by analogy, for

instance in "king - man + woman = ?", "queen" is to be found. The proportion of good

answers is then computed as a final score. Since the probability to find the substitute

for an OOV as the top ranked embedding is low, we compute for each question its rank

instead, and report summary statistics. For each question w1 − w2 + w3 = w4, we take

78

the original embedding for w1, w2 and w3, and compute the rank of the distances of

Substitute(w4) from Ew1 − Ew2 + Ew3 in relation to distances of all embeddings (all

the originals and the substitutes for the OOVs) from Ew1
− Ew2

+ Ew3
.

5.3 Evaluating Two Common Substitution

Methods

In this section, we use text8 3 as training corpora, and also as the corpora on which

the substitutes are computed. For training, we use the default parameters of FastText,

and the Gensim (Řehůřek and Sojka, 2010) implementation of Word2vec. The context

window size to compute the centroids for the substitutes is set to 2.

5.3.1 Static Point of View

5.3.1.1 Word Embeddings and Substitutes

To assess to what extent substitutes are near their corresponding original word em-

beddings, we randomly select 1000 words from the model trained on the corpus and

compute cosine distances between the two vectors (original and substitute). The statis-

tics are given in Figure 5.1. One can see that for Word2vec, computing the centroids

with the input embeddings results in higher similarity values than taking the out-

put embeddings. In the second case, the vectors are found to be very different (low

value of similarity). For FastText, both centroids and subwords methods result in high

similarity values, the centroid method resulting in greater similarity.

Figure 5.1: Cosine similarity between original and substitute embeddings for Word2vec

(left) and FastText (right).

3http://mattmahoney.net/dc/textdata

79

5.3.1.2 Pair of Word Embeddings and Pair of Substitutes

To assess whether two similar (resp. dissimilar) words in the original embeddings are

similar (resp. dissimilar) in the substitute embeddings, we compute the differences

between their similarity scores in the two embeddings (Figure 5.2). Taking the input

embeddings for Word2vec is found to be better than taking the output embeddings.

Hence on the two static tasks, it is more appropriate to take the input embeddings.

For FastText, the subwords method results in lower differences, and is therefore better

than taking the centroids. It is in contrast with the results found in the previous

section.

Figure 5.2: Difference between the cosine similarity scores obtained with the original

embeddings and the scores obtained with the substitutes, for Word2vec (left) and

FastText (right).

5.3.2 Dynamic Point of View

In the following, "w2v" refers to Word2vec and "ft" to FastText. "wc" refers to substi-

tutes as defined in (5.1) when using the centroids of the center word embeddings, and

"cc" when using the context word embeddings instead. "ngrams" refers to substitutes

as obtained with FastText, as the sum of the embeddings of the n-grams composing

the word.

5.3.2.1 Similarity Tasks

The averages of Spearman’s rank scores computed between two rankings are given in

Tables 5.1, 5.2 and 5.3.

Table 5.1 is given as reference since it gives the scores between the rankings given

by the embeddings (Word2vec and FastText) and the human judgement. Table 5.2

gives the scores when taking the substitutes for the first ranking, for both words of

the pairs. Taking the input embeddings centroids for Word2vec consistently results in

more similar ranking as the originals than taking the output embeddings. Compared

80

to human judgment taking the output performs better (better on two datasets and

slightly worse on two others). These results correspond to the situation where two

OOVs are compared. For FastText, the results highly depend on the evaluation dataset.

Table 5.3 gives the scores when taking for the first ranking, the substitute for one word

and the original embedding for the other word of the pair. In this case, taking the input

embeddings centroids as substitutes consistently gives more similar ranking with both

original embeddings and human judgment. For FastText, it is the subwords method.

Table 5.1: Similarity tasks.

ranking 1 ranking 2 wordsim mturk mc rg

w2v human 0.6313 0.5084 0.5507 0.4766

ft human 0.6954 0.6099 0.6175 0.6200

Table 5.2: Similarity scores when the vectors of each pair are taken from the same

embedding: either original or substitute.

ranking 1 ranking 2 wordsim mturk mc rg

w2v_wc human 0.3501 0.1941 0.3658 0.2654

w2v_cc human 0.3936 0.2236 0.3562 0.2562

w2v_wc w2v 0.6551 0.4879 0.7018 0.6479

w2v_cc w2v 0.6212 0.4705 0.6155 0.5615

ft_ngrams human 0.3280 0.4036 0.5000 0.4628

ft_wc human 0.3393 0.2554 0.4760 0.4243

ft_ngrams ft 0.4701 0.4962 0.5452 0.5779

ft_wc ft 0.5332 0.4506 0.7810 0.5430

Table 5.3: Similarity scores when, for a each pair, the two vectors are originals and

substitutes.

ranking 1 ranking 2 wordsim mturk mc rg

w2v_wc / w2v human 0.3678 0.2904 0.2488 0.3740

w2v_cc / w2v human 0.2652 0.2623 0.1640 0.0992

w2v_wc / w2v w2v 0.6009 0.5443 0.6654 0.5996

w2v_cc / w2v w2v 0.4855 0.4033 0.5167 0.1142

ft_wc / ft human 0.3568 0.3535 0.4613 0.4717

ft_ngrams / ft human 0.4346 0.4673 0.5100 0.5089

ft_wc / ft ft 0.5919 0.6209 0.6275 0.7108

ft_ngrams / ft ft 0.6628 0.6977 0.8251 0.7613

5.3.2.2 Analogy Tasks

In Figure 5.3 are reported the ranks for the Google analogy test set (Mikolov et al.,

2013a). There are 14 disparate sets of questions (capital-common-countries (1), capital-

world (2), currency (3), city-in-state (4), family (5), gram-adjective-to-adverb (6),

81

gram-opposite (7), gram-comparative (8), gram-superlative (9), gram-present-participle

(10), gram-nationality-adjective (11), gram-past-tense (12), gram-plural (13), gram-

plural-verbs (14)) with very different results. For instance, on the first analogy task,

the input word embeddings centroids have a lower average of ranks than the output

embeddings centroids method but at a higher variance. On the second task, the ranks

are low for Word2vec substitutes: Substitute(w4) are found near the computation of

Ew1
− Ew2

+ Ew3
, particularly with the input embeddings centroids method.

5.4 Conclusion

To the best of our knowledge, this is the first work with a focus on the quality of word

vectors meant to serve as substitutes for OOvs. More specifically, we have presented a

set of standardized task-independent, word-centric methods to comparatively evaluate

the quality of substitute vectors produced using different methods.

Although experimental results are still preliminary, they already give several in-

sights on how some well-known substitution methods behave and compare to each

other.

We plan to include more evaluation datasets for future work, and vary the hyper-

parameters both for training the word embeddings and the substitutes; for instance

by changing the size of the context window.

82

Figure 5.3: Analogy tasks.

83

Chapter 6

A Scalable Recommender

System for Classified Ads

Contents

3.1 Motivation . 44

3.1.1 Problems to Tackle . 44

3.1.2 Related Work . 45

3.2 Method . 46

3.2.1 Transfer Learning for Text Clustering 46

3.2.1.1 Learning Document Embedding 47

3.2.1.2 Clustering Document Embeddings 47

3.2.1.3 Hyper-parameter Setting 47

3.2.1.4 Consensus Clustering 48

3.2.2 Text Co-clustering . 49

3.2.3 Transfer Learning Using a Constrained Text Co-clustering

Algorithm . 49

3.2.3.1 Framework . 50

3.2.3.2 Constrained Information-theoretic Co-clustering . 50

3.3 Experiments . 51

3.3.1 Datasets . 51

3.3.1.1 Characteristics . 51

3.3.1.2 Pre-processing . 52

3.3.2 Evaluation Metrics . 52

3.3.3 Leverage Transfer Learning to Cluster Documents 52

3.3.3.1 Hyper-parameter Settings 52

3.3.3.2 Document Clustering 53

3.3.3.3 Consensus Clustering 53

3.3.3.4 Generalization from a Subset of Documents 53

84

3.3.4 Co-clustering with Constraints 53

3.4 Results and Discussion . 54

3.4.1 Dataset Augmentation . 54

3.4.2 Consensus Clustering . 56

3.4.3 Constrained Co-clustering 63

3.5 Conclusion . 63

This chapter covers a use-case where semantic knowledge embedded into word

embeddings have been used at Kernix: http://site-annonce.fr, a website created

by eRows, collects continuously ads from several partners of eRows, such as eBay or

LeBonCoin. Around 200 ads per seconds are collected and the database therefore

changes frequently. We built a recommender system for this website: for each item,

the platform should return a list of recommended ads. The recommender system is

based on semantic similarity. The platform is used as the basis of some other projects

at Kernix which involve similarity requests between documents, and in particular short

ones. It has been used for instance for a recommander system of scientific articles for

a pharmaceutical company and a system for monitoring culinary trends for a small

domestic appliance company.

The outline of the chapter is as follows: First we present how each document is

processed and transformed into a semantic vector, by leveraging word embeddings.

Then we discuss an important matter as regards our short text vectorization method,

namely how to tune the hyper-parameters for the word embeddings training. Then

we discuss how for a given target document we retrieve the most similar ones. Last,

technical details about the platform are given.

6.1 Vector Representation of Short Texts

Short texts are nowadays encountered in many applications and dealing with them

exposes us to several challenges. This section first presents an overview of short texts

sources and their typology. The key differences between short texts and longer ones

are then highlighted through several examples. Classical representations of textual

documents are explained. The limitations of these representations used for common

text mining tasks are exposed in this section when using them on short texts. Similarity

measures which are an underlying component common to several methods are last

studied.

6.1.1 Typology of Short Texts

In this section, the short texts are described according to three axis:

85

Figure 6.1: Microblogging messages on Twitter.

– data sources: the sources where short texts are encountered;

– business perspective applications: the final applications where short texts

are encountered;

– tasks: the machine learning or data mining tasks where short texts are given as

input.

6.1.1.1 Data Sources

Short texts are ubiquitous, encountered on microblogs (Figure 6.1), discussion forums

(Figure 6.3), multimedia sharing sites, product reviews, image captions, personal sta-

tus messages, classified ads, snippets results of search engines (Figure 6.2), etc.

Some media impose a maximum number of characters. For instance, on Twitter,

the limit is now 280 characters and was only 140 characters when it was launched.

Snippet results sizes are also limited by the search engines. For other sources, even if

the size is not limited, one can observe a small size in practice (Figure 6.3).

Huge amount of those short texts are posted by individuals, in social media, thus

even though the data has the same type, individual styles make texts qualitatively

different from each others in the same collection.

86

Figure 6.2: Snippets results on Google search engine.

Figure 6.3: Conversation on the reddit discussion forum.

87

6.1.1.2 Business Perspective Applications

Here is a non exhaustive list of applications where short texts are encountered:

– brand sentiment analysis evolution;

– job recommendations and labor market analytics in online recruitment domain

(Zhu et al., 2016);

– music playlist recommendation (Wang et al., 2016);

– item recommendation (Almahairi et al., 2015; He et al., 2017);

– dialog models extraction from call centers conversations.

6.1.1.3 Tasks

Short texts are involved in the same tasks as texts in general:

– clustering (Yin and Wang, 2014): given a set of documents, we aim to group

documents into clusters so that similar documents are in the same clusters and

dissimilar ones are in different clusters;

– classification (Song et al., 2014; Zhu et al., 2016): given a list of classes and some

examples of document assignations to classes, we aim to classify new documents

to the classes;

– topic modeling (Li et al., 2016; Qiang et al., 2016; Sridhar, 2015; Yang et al.,

2016; Yan et al., 2013; Zuo et al., 2016): given a set of documents, topic modeling

aims to create topics as a distribution of words and assign probabilities of topics

to each document;

– information extraction aims to extract information such as the date and the

place of an event from documents;

– sentiment analysis (Mostafa, 2013): each document is classified into positive,

negative or neutral classes;

– recommender systems (Almahairi et al., 2015; He et al., 2017; Wang et al.,

2016): for a given item or user, a recommender system provides a recommenda-

tion of a new item to the user;

– information retrieval (search engines): for a given query, a list of matching

documents is retrieved.

6.1.2 Characteristics of Short Texts

In this section, characteristics of short texts are presented along two axis:

– the characteristics which are a consequence of the limited length;

– the quality (e.g. misspelling) which is not a consequence of the size of the texts

but is often observed in short texts sources.

88

6.1.2.1 Short Texts versus Long Texts

Short texts differ from long ones by two major aspects: the sparsity and the frequencies

of the words.

Sparsity. A short text contains a few words leading to a sparsity issue: if a document

is represented as a one hot vector in the vocabulary space, the vector is often more

sparse for a short document than a longer one. Thus two short documents about the

same topic have little chance to use the same words and a similarity measure between

the two document vectors gives a value close to zero. Longer documents have a higher

probability to use common words if there are about the same topic. This sparsity issue

lead us to use word embeddings as it provides more information than the presence of

the token.

Word Weights. Short texts often contain very few occurrences of words: in general

a word appears only once in it. Thus the TF value for the TF-IDF weighting scheme

has little meaning.

6.1.2.2 Quality of Short Texts

The quality of texts can be expressed in three ways:

– the informativeness of the content;

– the originality (e.g. the diversity of the vocabulary used);

– the correctness (grammar or spelling).

Informativeness. The nature of the medium have a great impact on the quality of

the content. For instance, not all messages in an instant messaging system are useful

(i.e. contain exploitable information). To consider this, Naveed et al. (2011) discuss

a static quality measure named interestingness which indicates if a content can be of

interest as a result to a query. Their score is independent of the query.

Short texts suffer from the lack of information in some documents: for long docu-

ments, the uninformative text is only a part of the whole document whereas in short

ones, usually in conversations, it appears in distinct messages.

Originality. Another important aspect is the type of text we are dealing with.

Finegan-Dollak et al. (2016) study for example the behavior of clustering algorithms

on different data sets: captions of photos, cartoon captions and crossword clues. It is

important to note that the data sets differ from the creativity point of view: for cross-

word clues, the authors try to be original and the caption of a photography should be

89

descriptive. Creative texts on the same subject usually try to not use the same words

and this aspect is more important for shorter texts.

Correctness. The most obvious quality aspect of texts is the correctness: spelling or

grammar mistakes. Although it is not directly related to the length of the content, it

appears that short texts often contain more mistakes than longer ones. Abbreviations

and typos are common due to the facility to create and share texts without quality

restriction. Press articles and official documents are indeed often longer than user

generated content and contain less typos.

6.1.3 Semantic Similarity Measure Between Documents

Semantic similarity measure is at the heart of many tasks such as clustering, classifi-

cation and recommendation. In this section, we first present how to define semantic

similarity measures between documents and then study the behavior of such semantic

similarity measures for a clustering task. The clustering task is only used as a proxy

to measure the quality of the similarity measures.

6.1.3.1 Similarity Measure

This section discusses the use of document vectors and sets of word vectors in order

to provide a semantic similarity measure of two documents.

Comparing Two Vectors. In order to compare two vectors, an often used method is

to compute the cosine similarity between the two vectors. This measure is particularly

important in the case of high dimensional and sparse vectors (in the Vector Space

Model (Salton et al., 1975) for instance). It is also used in the case of Latent Semantic

Indexing (LSI) and when comparing word embeddings even if it is less important for

those cases. The idea behind this is to capture the orientation of the vector instead of

its size as with the euclidean distance. Cosine similarity is the commonly used metric

since experiments have shown in a number of tasks with several vector representations

that it performs better than euclidean distance.

Comparing Two Sets of Vectors. An other way of comparing documents is to

use directly the word embeddings instead of creating a document vector. A document

can be represented as a set of word embeddings. The Word Mover’s Distance (Kusner

et al., 2015) is an instance of such a method. It considers the minimal flow to go from

a set of points to the other.

This method is compared, for a clustering task, to Latent Semantic Analysis and to

the cosine similarity between the average of word vectors of two documents in 6.1.3.2.

90

6.1.3.2 Clustering

The study presented here provides a justification of the interest in word embeddings

for the similarity of short texts in an unsupervised context. Three previously cited

methods, namely Word Mover’s Distance, LSI and the cosine similarity between the

centroid of the word vectors of two documents are compared.

First the data sets are presented, then the methodology used is presented and last

the results are discussed.

Data Sets. The two data sets used for this study are:

– 20 Newsgroups dataset (Ng 20)1: each document is a mail in a newsgroup. The

20 Newsgroups dataset contains 11314 documents in 20 classes.

– Web snippets2: each document is a web snippet, i.e. the text that represents

each result of a web search. The web snippets dataset contains 10060 documents

of small size (less than 40 words).

Methodology. The methods are compared on a clustering task: grouping docu-

ments into semantic clusters. An overview of the methodology is given by the figure

6.4. The figure shows also the retrieval task in the analysis part (Part III): given a

document, retrieve the most semantically related documents. This task is useful to

see how the methods behave on some queries but since the data sets don’t contain

information concerning the ground truth for the retrieval task, it is not shown here.

Figure 6.4: Methodology used to compare LSI, word2vec centroid and Word Mover’s

Distance.

The Ng 20 data set is preprocessed to remove meaningless words called stopwords.

The headers, footers and quotes are removed since they give too much information

about the relationship between mails. After this processing step, some documents are

empty so they are not considered in our study. The Web snippets are already bag of

words so no preprocessing is done.

1http://qwone.com/~jason/20Newsgroups/
2http://acube.di.unipi.it/tmn-dataset/

91

Since we want to evaluate the methods providing a similarity measure between two

documents, we are using a clustering task that takes as input the values of the similarity

measures between all pairs of documents. The clustering task is unsupervised since

the category labels are only used for evaluation.

The spectral clustering is used since it takes the similarity values as input. It

expects as an input a matrix where the values are positives, so we add one to all

entries of the similarity matrices (because similarities are by definition lying on the

[-1,1] interval). The number of clusters is given by the ground truth.

The Normalized Mutual Information (NMI) (Strehl and Ghosh, 2003) evaluates

the quality of the clustering by comparing the result of the clustering algorithm with

the ground truth category labels. NMI is estimated by:

NMI =

∑

k,ℓ

Nk,ℓ

n
log

nNk,ℓ

NkN̂ℓ
√

(
∑

k
Nk

n
log Nk

n
)(

∑

ℓ
N̂ℓ

n
log N̂ℓ

n
)
,

where Nk denotes the number of objects contained in the cluster Ck(1 ≤ k ≤ g), N̂ℓ

is the number of objects belonging to the class Lℓ(1 ≤ ℓ ≤ g), and Nk,ℓ denotes the

number of objects that are in the intersection between cluster Ck and class Lℓ. The

larger the NMI, the better the quality of clustering.

Results. The results of this study are informative both in terms of scalability con-

siderations and in terms of quality.

Word Mover’s Distance (WMD) is computationally very expensive. The size of the

document have a great impact: the best average time complexity of solving the WMD

optimization problem scales O(p3 log p), where p denotes the number of unique words

in the documents.

This method is time consuming: it takes about 8 minutes on a laptop (4 cores and

16 GB of RAM) to compute the distances between one document of the 20 Newsgroups

dataset and all the others. When using the efficient algorithm called "prefetch and

prune" which uses a relaxation of the distance computation problem to prune docu-

ments that are not in the top nearest neighbors, so the computation of the true WMD

is not done for these documents, this time drops only by a factor two when querying

for 20 top documents, so this method is still very slow.

For these sizes of data sets, both LSI and the word embeddings centroid methods

are very fast.

The Normalized Mutual Information results are given in Table 6.1. It shows that

LSI is the best method for long texts corresponding to the 20 Newsgroups dataset.

The intuition is that long texts contain more words that co-occur, so a method like

LSI have enough information to compute the similarity between documents.

92

For the Web snippets dataset, WMD and the Centroid method entail both better

clustering than LSI. This corresponds to the lack of co-occurence in small texts. It is

noteworthy that WMD is worse than the Centroid method.

Table 6.1: Normalized Mutual Information.

LSI word2vec centroid WMD

Ng 20 0.40 0.31 too long to process

Web snippets 0.25 0.46 0.39

6.2 Hyper-parameter Tuning and Post-processing

It has been shown in the previous section that using the mean of the word embeddings

as a document embedding method has practical advantages when handling short text,

both in terms of quality and scalability.

The above study was done on datasets using common words, so the use of large

public word embeddings matrices trained on general texts was possible. These public

word embeddings are already fine tuned to score high on semantic tasks at the word

level. When handling more specific words, we are confronted to out-of-vocabulary

words when using these public embeddings. One way to deal with it is to handle

out-of-vocabulary words with substitution methods (Chapter 5). These is however not

possible when the drift is too important since too many out-of-vocabulary words are

present. This section gives therefore indications on what parameters are important

when training word embeddings.

6.2.1 Influence of the Number of Occurrences

In this section, the impact of the number of occurrences on the word embeddings

models are presented by two ways: the values of preprocessing parameters modify the

values of the word similarities and the number of occurrences is related to the main

principal component of the embeddings matrix.

6.2.1.1 Preprocessing Parameters Influence on the Word Similarities

First we describe how the models are constructed, then how the analysis of them is

done.

Construction of the Models. The corpus consists of the titles of research papers

provided by the computer science library DBLP3.

3http://dblp.uni-trier.de/

93

The tokenization is done by lowering the text, splitting on spaces, and stripping

dots, colons and commas. The stemming is done using Porter Stemmer (Porter, 1980)4.

As some terms in computer science are meaningless if they are not grouped together

like "unsupervised learning", bigrams are constructed as in (Mikolov et al., 2013a)5.

The default values of Gensim word2vec implementation are taken for the following

parameters:

– training algorithm: CBoW;

– initial learning rate: 0.025;

– the threshold for configuring which higher-frequency words are randomly down-

sampled is 10−3;

– hierarchical softmax is not used, negative sampling is used instead: 5 "noise

words" are drawn;

– the number of iterations over the corpus is 5.

The following parameters are studied, and a model is constructed for each combi-

nation of their given values:

– number of training documents (nTitles): 500 000, 1 000 000, 2 000 000, 5 000 000;

– size of the word embeddings (vecSize) (i.e. dimension of the word vectors): 100,

200, 500, 1 000, 5 000;

– window size (windowSize): 2, 4, 6;

– minimum total words frequency (minCount): 10, 20, 200, 2 000.

Analysis. For each model, a random sample of pairs of words is taken and the cosine

similarities of the words forming the pairs are computed.

We observe that the models with high minimum words frequency have a mean lower

than the others. The models contains however not the same words since they are not

trained on the same amount of the corpus and some processing is done to prune low

frequency words. In the following, models are compared on the same features.

We have m models and a common vocabulary of size n. Here m = 240 and n = 245.

Each model can be characterized by the similarity values taken by the pairs of

words. So, a m × n2 matrix S is constructed. As n × n is large, only a sample of the

columns is retained (3 000 here).

In order to observe which parameters have the greater influence on the similarity

between words, a clustering is done and compared to the clusters induced by the same

values of a parameter. For instance, there are 4 clusters of 60 models each, induced

by the minCount parameter.

If we cluster the models with 2 clusters using K-means (Figure 6.5) we observe that

the clustering match well the clusters induced by the minimum total words frequency

4Gensim implementation is used.
5The implementation is in the models.phrases module of gensim.

94

Figure 6.5: Clustering with two clusters of the Word2vec models using K-means.

(minCount parameter). This is shown in the top right corner of the figure where the

models with a minCount value equal to 10 and 20 are in a different cluster than the

models with a minCount value equal to 200 and 2000. To get a perfect match, the

algorithm ClustOfVar (Chavent et al., 2012) (Figure 6.6) is used.

Figure 6.6: Clustering with two clusters of the Word2vec models using ClustOfVar.

When using a clustering with 3 clusters, we can further divide the models (Fig-

ure 6.7) into a cluster of models with minCount value equal to 10 and 20, and a cluster

with minCount equal to 200 and a third cluster with minCount equal to 2000. The

perfect match is obtained using Spherical k-means (Hornik et al., 2012b).

We are unable to get a match for the 4 values of minCount but we can observe

(Figure 6.8) when clustering with 4 clusters that only the minCount value and the

nTitle parameter have an impact on the clustering. Note that the number of titles has

an impact on the frequency of the words since the frequency can only increase when

95

Figure 6.7: Clustering with three clusters of the Word2vec models using Spherical

K-means.

nTitle increase.

Figure 6.8: Clustering with 4 clusters of the Word2vec models using Spherical K-

means.

This study shows that the frequency of the words have a great impact on the values

of the similarities of words given by a model.

6.2.1.2 Relations Between the Main Principal Components and the

Number of Occurrences

In this section, we take only one model. In order to make the analysis easier, the

model is trained on a well known corpus: text86.

6http://mattmahoney.net/dc/textdata.html

96

When applying the Principal Component Analysis on the word embeddings ma-

trix, we observe a relation between the main principal component and the number

of occurrences: Figure 6.9 shows the relation between the contribution of a word to

the principal component and its frequency in the corpus. This shows again that the

frequency of the words plays a central role in a word embedding model.

0

1000

2000

0 20000 40000 60000

Words ordered by their contribution to the first component

W
o

rd
 f

re
q

u
e

n
c
y

Figure 6.9: Frequency of the words in the corpus in function of their contribution to

the main principal component. The values are in bins for clarity of the figure. The

mean and the standard error of the bin is plotted.

When looking at the words contributing the most to the main principal component

(Table 6.2), we can observe a mixture of topics (actress, molecules, storage). On

the contrary, the second principal component is clearly about politics (Table 6.3). The

third principal component is about geopolitics (Table 6.4), the fifth is about computers

(Table 6.6) and the sixth is about writing (Table 6.7). The fourth is mostly about sport

(Table 6.5). The main principal component appears clearly noisier than the others and

this noise is to link with the observation on the frequency of the words contributing

the most to the main principal component.

6.2.1.3 Conclusion and Perspectives

We provided hints on the parameters which impact the most the word embeddings: the

word frequency plays the major role. The minCount parameter of Word2vec should

therefore be handled with care.

97

Table 6.2: Words contributing the most

to the main principal component.

Word Contribution Frequency

function 0.11 3330

actress 0.11 2031

born 0.10 5246

can 0.10 25519

molecules 0.09 849

properties 0.09 1613

processes 0.09 1007

cells 0.09 1619

earl 0.09 714

components 0.08 849

frequency 0.08 1128

maria 0.08 611

protein 0.08 764

storage 0.08 925

proteins 0.08 639

Table 6.3: Words contributing the most

to the second principal component.

Word Contribution Frequency

government 0.16 11323

jews 0.14 2620

governments 0.12 1067

policies 0.12 990

religious 0.12 3588

policy 0.12 2278

authority 0.11 2009

independence 0.11 2478

opposition 0.11 1425

political 0.11 6970

leaders 0.11 1430

authorities 0.11 816

citizens 0.11 1194

economic 0.10 4435

reform 0.10 1256

Table 6.4: Words contributing the most

to the third principal component.

Word Contribution Frequency

km 0.20 4574

airlines 0.14 616

ships 0.13 1352

airport 0.13 1233

rail 0.12 822

bay 0.12 1213

troops 0.12 1724

kilometers 0.12 580

railway 0.12 966

coast 0.12 2013

river 0.12 3984

border 0.11 1531

canal 0.11 606

writings 0.11 1169

pacific 0.11 1406

Table 6.5: Words contributing the most

to the 4th principal component.

Word Contribution Frequency

him 0.15 10629

languages 0.15 5087

hit 0.14 1676

shot 0.13 1335

ball 0.13 2124

me 0.11 2256

album 0.11 2932

you 0.11 6690

got 0.11 911

season 0.11 2741

dialects 0.11 913

her 0.11 11536

your 0.11 2189

kill 0.11 809

indo 0.11 763

Another approach to take this into account is given by Raunak (2017) and Mu et al.

(2017): They improve pre-trained word vectors through post-processing algorithms.

Thus, noise can be removed from word embeddings. In particular, they eliminate the

common mean vector and a few top dominating directions from the word vectors.

For our purpose, we try some values of the minCount parameter and selected the

98

value giving the most coherent results on our task: the nearest neighbors retrieval of

documents.

Table 6.6: Words contributing the most

to the 5th principal component.

Word Contribution Frequency

ibm 0.17 1063

software 0.17 3773

corporation 0.16 1104

edition 0.15 1990

digital 0.14 1905

programming 0.13 1989

goddess 0.13 617

intel 0.13 665

microsoft 0.13 1539

communications 0.13 1084

inc 0.12 761

website 0.12 2102

gnu 0.12 627

institute 0.12 1742

program 0.12 3403

Table 6.7: Words contributing the most

to the 6th principal component.

Word Contribution Frequency

songs 0.19 1605

alphabet 0.18 1088

texts 0.17 1108

testament 0.17 1024

bible 0.16 1627

text 0.16 3098

letters 0.16 2049

stories 0.15 2128

written 0.15 4916

spoken 0.14 1306

languages 0.14 5087

song 0.14 2809

dialects 0.14 913

books 0.13 3992

poems 0.13 618

6.3 Fast Retrieval of the Nearest Classified Ads

In order to inject the semantic similarity relation in a graph, it is useful to only inject

the most important relations in order to keep the graph sparse. Only the highest

values of similarity are of interest to state that a document is similar to another. A

low value of similarity is useless. This leads us to consider algorithms that retrieve

only the most similar documents of a considered one: nearest neighbors algorithms.

6.3.1 Approximated Nearest Neighbors

Exhaustive nearest neighbors search is expensive regardless of its implementation:

– with scikit-learn (Pedregosa et al., 2011): the matrix of the similarities between

documents is a (document × document) matrix that should stay in memory;

– with gensim (Řehůřek and Sojka, 2010): the out-of-core aspect can resolve the

memory problem but calculating the values of similarity for all pairs of documents

is too slow.

Since the complexity is quadratic in function of the number of documents, the

exact method of nearest neighbors is unusable for large data sets. An approximated

method is needed.

99

6.3.2 Locality Sensitive Hashing

Locality Sensitive Hashing (Indyk and Motwani, 1998) and methods using the same

principle (Bawa et al., 2005) allow to retrieve the most similar vectors of a considered

one.

One drawback is the fact that sometimes, no results are returned since there is no

vectors in the same bucket. In order to have enough vectors in the same bucket, a

study on the parameters is required. Instead, other approaches are considered.

6.3.3 Annoy

Annoy7 is an approximated nearest neighbors method that is retained for now for

several practical reasons:

– It is easy to install and to use.

– It is fast and precise compared to the other methods with available implementa-

tions8 9.

6.3.3.1 Algorithm

The Annoy algorithm works as follows:

At training time:

– a binary tree is constructed by dividing at each node of the tree the space in two:

– sample two points in the space (the subspace if not at the root of the tree);

– divide the space in two by the hyperplane equidistant of the two selected

points;

– repeat the last two steps for the two subspaces while there is enough points

(around 100) in the subspace.

– Repeat the last step in order to produce several trees;

At query time:

– Consider all the vectors that are in the same leaf of the trees;

– Remove duplicated vectors (since there is multiple trees, vectors can appear

multiple times);

– Order the considered vectors by exhaustive nearest neighbors search.

Another important thing is to construct a priority queue of the most promising

nodes: the nodes are sorted by the maximum distance into the "wrong" side and

7https://github.com/spotify/annoy
8https://rare-technologies.com/performance-shootout-of-nearest-neighbours-contestants
9https://rare-technologies.com/performance-shootout-of-nearest-neighbours-querying

100

explored in this order. It is useful in order to consider vectors that are close to a split

but in the other side of the space than the query vector.

6.3.3.2 Scalability Study

Two parameters drive the use of Annoy: the number of trees to construct and the

number of nodes to explore when querying:

– The number of trees affects the build time and the index size. A larger value

will give more accurate results, but larger indexes.

– The number of nodes to explore when querying affects the search performance.

A larger value will give more accurate results, but will take longer time to return.

Table 6.8: Query time for the approximated nearest neighbors search with Annoy: for

each document vector, 100 nearest neighbors are retrieved. 10 trees are used here.

The number of nodes to inspect during searching is the default value: the number of

trees times the number of neighbors (10 × 100 = 1000).

Number of vectors Time

135 160 54s

135 160 000 11min 21s

Table 6.8 shows the almost linear time for the approximated nearest neighbors with

Annoy. It is to compare with table 6.9 which shows the quadratic query time for the

exact nearest neighbors method (gensim (Řehůřek and Sojka, 2010) is used for the

implementation). We can note for instance that for 135 160 document vectors in the

data set, the approximated method is 104 times faster.

Table 6.9: Query time for the exact nearest neighbors search: for each document

vector, 100 nearest neighbors are retrieved.

Number of vectors Time

10 137 12s

16 895 32s

33 790 2min 15s

67 580 9min 19s

135 160 1h 34min

6.4 Software Architecture

This section describes the software architecture used for the recommender system for

classified ads.

First we present the requirements of the platform to fulfill the needs required by

the specific use-case, but also the requirements which guide the design of a reusable

101

platform for other projets. Then several services which compose the overall platform

are presented. Last, details are given on the plugin where the text processing is done.

6.4.1 Requirements and Platform Design

Two types of requirements are guiding the design of the platform: a specific use-case at

hand and the need for reusable components for other projects developped at Kernix.

6.4.1.1 Recommending Classified Ads at Scale

Classified ads are created continuously by users and their time to live are short: we can

consider that an ad is not relevant any more after about three days since its release,

because the item could already be sold. The database is thus always rolling. Second,

the way we get the ads is something we cannot always control. For instance, about

200 requests per second are received to create or update an ad.

The high frequency of updates drives us to design a system that can first handle

requests asynchronously, in order not to drop some updates when the frequency is too

high for the platform, and second, to process each ad independently from others. The

second point makes the parallelism easier to do since it is parallelism on the data:

a cluster of computers or processes can handle only a bunch of requests and we can

therefore easily scale the number of computers or processes when the load is more

intensive. Also, it is drastically easier to design an algorithm that follows the removal

or addition of new data and do not drift. For the above mentioned reason, we decided

to design both the main part of the algorithm and the platform as an asynchronously

streaming engine.

The nature of the content, small specialized texts written by any user and with

lots of typos, drives us to leverage transfer learning through word embeddings.

6.4.1.2 A Scalable Platform

Kernix being a small company which should deal with always specific use-cases, the

platform should be versatile enough to handle a large panel of use-cases without major

modification in order to drop the cost of both development and maintenance.

We choose a kind of micro services architecture were several parts can be activated

or deactivated easily. Two levels of customization for the developer are provided: a

separation of concerns through specific containers and plugins.

Each service lives in a distinct container: it is the object of the following section.

And the main container, orchestrating almost all the processing, is made of several

plugins. One of the plugin, called the "semantic plugin" is responsible of handling the

text. It is the object of the last section.

102

6.4.2 Services

The application is containerized with Docker and the containers are orchestrated with

Docker compose. Services are associated with containers. One of the container named

app contains the core of the application.

6.4.2.1 App Container

The app container is the main entry point of the application and contains the javascript

code. It wraps a web server running on Node.js with Express framework. The web

server is launched by PM2.

PM2. PM2 is a process manager. It is used to distribute the workload across several

processes. It uses the cluster mode of Node.js which assigns REST calls in a round-

robin fashion to the different processes (i.e. the first request is send to the first

subprocess, the second request to the second subprocess, etc.). Thus, the application

uses more effectively the CPUs to handle requests at scale. Most often, its use is

transparent since a request is handled completely by only one process. However, care

should be taken when using cron jobs: When using cron jobs inside the application,

the task is run for all the processes.

6.4.2.2 Databases and Broker Containers

Several databases are synchronized and used for their respective strengths, and each

has its own container. A data broker has also its own container.

MongoDB. MongoDB is at the core of the platform. Each entity stored in the plat-

form is stored in MongoDB. An entity of the platform is either a node or a relationship

between two nodes.

Neo4j. Neo4j is used as an additional database. It allows fast graph traversals

queries and offers a convenient way to manipulate data with a graph structure (i.e. with

relations between entities). Although it is not really used for the classified ads use-case,

it is convenient for other applications. For instance, graph traversals can be combined

with the semantic relations to build some rules provided by expert knowledge.

Reddis. Reddis is an in-memory database used as a cache.

Elasticsearch. Elasticsearch provides fast and convenient queries for textual data.

103

Data broker. RabbitMq is the data broker used to communicate between the app

container and a plugin specific container for which the code can be written in another

language such as Python.

6.4.2.3 Plugins Specific Containers

For some plugins, other containers are used to handle some processing outside the app

container. This is used for instance by the "com.dbsengine.semantic" plugin in order

to process textual data with Python.

6.4.3 Semantic Plugin

The "semantic plugin" allows to retrieve the most similar text documents of a given

one. In order to do this:

– a document is represented as a vector;

– the similarity between two documents is given by the cosine similarity of their

vector representations.

6.4.3.1 Vectorization

A document is processed by a pipeline described in Figure 6.10 where some alternatives

can be selected at each step:

– The string is tokenized, the default behavior is to split on spaces.

– Tokens are transformed: multiple actions are possible, such as lowering the text

or stemming.

– Tokens are filtered: multiple actions are possible, such as removing stopwords

or names (named entity recognition is used to remove names for some use-cases

such as characters in a movie synopsis).

– Tokens are weighted according to their TfIdf score, their number of occurrences

or simply by their presence or absence (binary).

– The final step of vectorization involves either Latent Semantic Indexing (trun-

cated Singular Value Decomposition) or averaging the word embeddings.

The final step has been discussed previously: given the type of text given as input

(specialized or not, short or longer, diverse or not, with or without spelling errors), and

the available physical resources (number of CPUs or memory) or constraints (number

of documents, renewal rate, etc.), one of the two possibilities can be chosen or they

can also be combined to send different similarity measures in the graph database. The

different similarity measures can be selected by expert knowledge at the application

level, or combined with other information either on the nodes or between nodes (other

similarity measures depending on other characteristics).

104

Figure 6.10: Vectorization of a textual document in streaming.

6.4.3.2 Storage

Three storage systems are used:

– a document store (MongoDB) which stores the whole document (i.e. several

fields, one being the the textual data);

– a graph database (Neo4j) which does not store the textual data (this database

is used to navigate through relationships);

– a "similarity model" which stores a vector for each document, and allows fast

similarity searches.

6.4.3.3 Similarity Model

The "similarity model" is responsible of storing the vectors and executing retrieval

queries of nearest neighbors.

Two kinds of similarity models exist: the brute force algorithm and the Annoy one:

– The brute force algorithm is usable only if the number of vectors is not too much

since it needs time to compute the similarity scores for all the pairs of vectors.

– The Annoy algorithm is an approximate nearest neighbors algorithm, so it scales

well but at the cost of a potential decrease of accuracy (sometimes the most

similar vectors are not retrieved first).

There are two states:

– the "semantic model" is not trained: no retrieval can be done.

– the "semantic model" is trained: for a given input vector, most similar vectors

105

Figure 6.11: Similarity plugin lifecycle.

from the database on which the model has been trained can be retrieved. If some

documents are added since the last training, they cannot be retrieved as most

similar.

The "semantic model" is controlled by REST requests to the web server (Express

on Node.js) and these requests are transmitted to the "semantic container" (running

in Python) through a message queue (with RabbitMq). Three requests are exposed

(Figure 6.11): save, train and rebuild.

At each save request, a textual document is stored in the databases. When the

semantic model is trained, the vectors are computed for all the documents in the

databases. The rebuild method train the (approximated) nearest neighbors model

and retrieves the most similar documents of each document in the databases, and

stores a relationship in the graph database. At each new save request, the input

document is transformed as vector and stored in the databases, and the similarity

relationships between the input document and the previous most similar documents

which are already in the databases are stored in the graph database.

106

6.5 Conclusion

Short texts are ubiquitous and come from many sources, especially on the web. Pro-

cessing them at scale while capturing their semantics is of a major importance but

specific challenges are encountered: their length makes the classical vector representa-

tions very sparse and the quality of their content (typos, spelling mistakes, etc.), while

not being directly related to their length, makes it even harder.

This chapter presented a study to assess the power of a simple semantic similarity

measure leveraging word embeddings in the context of short texts. This method is

highly scalable which enables its use in recommender engines of classified ads without

the need to use a costly cluster of computers.

Hints are provided to set hyper-parameters for word embeddings training in a

totally unsupervised manner.

The software architecture for a recommender system which stores relations in a

graph database is shared. The platform enables fast development of new specific use

cases where domain knowledge can easily be taken into account through rules on how

to combine the characteristics of the entities and the relations between them, one being

the semantic relatedness of short texts.

107

Conclusion and Perspectives

The recent years have seen the emergence of neuronal text embeddings. These new

approaches to represent texts as real valued vectors are trained on huge amounts of

texts, mainly without the need to label data. However, some hyper-parameters are

commonly set with the help of supervised tasks. Through this thesis, we proposed to

use neuronal text embeddings for unsupervised tasks. More specifically, we used them

to build a semantic similarity measure for short texts, and also for text co-clustering

following two lines:

– the evaluation of text co-clustering;

– the transfer of semantic information learned from local co-occurrences of terms

to improve text co-clustering.

Text co-clustering is an extension of one-sided clustering which aims to form

document-term co-clusters, i.e. the association between a group of documents and

a group of terms that describes well the group of documents. The groups of docu-

ments are built so that all documents of the same group share the same topics.

Along the way, hints on hyper-parameters influence and how to deal with out-of-

vocabulary words, i.e. words for which no vectors are found in the word embeddings,

are given.

The main contributions and key results of this thesis can be summarized as follows:

– Chapter 1 presents the major textual embeddings methods. A typology of word

vectorization methods is highlighted with an emphasis on scalability considera-

tions.

– Chapter 2 exposes a publicly available open source implementation of several

co-clustering algorithms which are adapted to textual data. The algorithm im-

plementations come along with visualization utilities to explore co-clustering re-

sults in the Coclust Python package. Extensive experimental results on several

datasets are presented.

108

– Chapter 3 proposes a transfer learning framework for text co-clustering. Se-

mantics learned from local co-occurrences of terms on an extended dataset are

leveraged to build high quality clusters of documents. Consensus clustering is

used to tackle the setting of hyper-parameters for the document embeddings. Co-

clustering is constrained to use the high quality partition of documents and build

meaningful document-term co-clusters that respect the semantic relationships of

documents.

– Chapter 4 presents text co-clustering evaluation methods leveraging large public

word embeddings to assess the good fit between documents and terms in co-

clusters.

– Chapter 5 presents methods to evaluate out-of-vocabulary word embeddings sub-

stitution methods. Since the data on which the word embeddings are trained

differs from the data on which they are used, the so called out-of-vocabulary

words problem arises: Some words might appear in the dataset of study which

are absent in the dataset where the word embeddings are trained. We propose

to evaluate the substitution methods which build an embedding for an out-of-

vocabulary word.

– Chapter 6 is focussed on short text similarity. A simple semantic similarity

method is proposed. Its behavior on short texts is exposed through an exper-

iment in an unsupervised setting. The semantic similarity measure is built on

top of word embeddings which makes it process the texts in streaming, allowing

thus to scale with huge amount of data. A software architecture based on micro

services enables its use for several use cases where semantic relationships between

textual entities are needed.

The studies presented in this thesis motivate further investigations that may in-

clude:

– Using transformers architectures to assign an embedding for a word depending

on the context.

– Use the criterion of the proposed evaluation method for text co-clustering in

order to define an objective function for a new co-clustering algorithm.

109

Publications

Published Articles

1. François Role, Stanislas Morbieu, and Mohamed Nadif. CoClust: A Python

Package for Co-clustering. In Journal of Statistical Software. 2019.

2. Stanislas Morbieu, François Role, and Mohamed Nadif. Méthodes d’évaluation

pour la substitution de vecteurs de mots. In Société Francophone de Classifica-

tion. 2019.

3. François Role, Stanislas Morbieu and Mohamed Nadif. Unsupervised Evaluation

of Text Co-clustering Algorithms Using Neural Word Embeddings. In Proceed-

ings of the 27th ACM International Conference on Information and Knowledge

Management. ACM, 2018.

4. Stanislas Morbieu, François Role and Mohamed Nadif. Le package CoClust :

Interface graphique. In Société Francophone de Classification. 2018.

5. François Role, Stanislas Morbieu, and Mohamed Nadif. Co-clustering pour la

fouille de textes : le package CoClust. In EGC TextMine. 2017.

Submitted Articles

1. Stanislas Morbieu, François Role, and Mohamed Nadif. Neural Embedding-

based Transfer Learning for Text Clustering and Co-clustering.

110

Bibliography

M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado,

A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow, A. Harp, G. Irving, M. Is-

ard, Y. Jia, R. Jozefowicz, L. Kaiser, M. Kudlur, J. Levenberg, D. Mané, R. Monga,

S. Moore, D. Murray, C. Olah, M. Schuster, J. Shlens, B. Steiner, I. Sutskever,

K. Talwar, P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viégas, O. Vinyals, P. War-

den, M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng. TensorFlow: Large-scale

machine learning on heterogeneous systems, 2015. Software available from tensor-

flow.org.

M. Ailem, F. Role, and M. Nadif. Co-clustering document-term matrices by direct

maximization of graph modularity. In CIKM 2015, pages 1807–1810, 2015.

M. Ailem, F. Role, and M. Nadif. Graph modularity maximization as an effective

method for co-clustering text data. Knowledge-Based Systems, 109:160–173, 2016.

A. Almahairi, K. Kastner, K. Cho, and A. Courville. Learning distributed repre-

sentations from reviews for collaborative filtering. In Proceedings of the 9th ACM

Conference on Recommender Systems, RecSys ’15, pages 147–154, New York, NY,

USA, 2015. ACM.

S. Barkow, S. Bleuler, A. Prelić, P. Zimmermann, and E. Zitzler. BicAT: A biclustering

analysis toolbox. Bioinformatics, 22(10):1282–1283, 2006.

M. Baroni, G. Dinu, and G. Kruszewski. Don’t count, predict! A systematic compar-

ison of context-counting vs. context-predicting semantic vectors. In Proceedings of

the 52nd Annual Meeting of the Association for Computational Linguistics (Volume

1: Long Papers), pages 238–247, Baltimore, Maryland, June 2014. Association for

Computational Linguistics.

M. Bawa, T. Condie, and P. Ganesan. Lsh forest: Self-tuning indexes for similarity

search. In Proceedings of the 14th International Conference on World Wide Web,

WWW ’05, pages 651–660, New York, NY, USA, 2005. ACM.

111

S. Behnel, R. Bradshaw, C. Citro, L. Dalcin, D. Seljebotn, and K. Smith. Cython: The

best of both worlds. Computing in Science Engineering, 13(2):31 –39, march-april

2011.

Y. Bengio, R. Ducharme, P. Vincent, and C. Janvin. A neural probabilistic language

model. J. Mach. Learn. Res., 3:1137–1155, March 2003.

S. Bird, E. Klein, and E. Loper. Natural Language Processing with Python. O’Reilly

Media, 2009.

L. S. Blackford, A. Petitet, R. Pozo, K. Remington, R. C. Whaley, J. Demmel, J. Don-

garra, I. Duff, S. Hammarling, G. Henry, et al. An updated set of basic linear algebra

subprograms (blas). ACM Trans. Math. Softw., 28(2):135–151, June 2002.

D. M. Blei, A. Y. Ng, and M. I. Jordan. Latent dirichlet allocation. J. Mach. Learn.

Res., 3:993–1022, March 2003.

P. Bojanowski, E. Grave, A. Joulin, and T. Mikolov. Enriching word vectors with

subword information. arXiv preprint arXiv:1607.04606, 2016.

P. Bojanowski, E. Grave, A. Joulin, and T. Mikolov. Enriching word vectors with

subword information. Transactions of the Association for Computational Linguistics,

5:135–146, 2017a.

P. Bojanowski, E. Grave, A. Joulin, and T. Mikolov. Enriching word vectors with

subword information. Transactions of the Association for Computational Linguistics,

5:135–146, 2017b.

C. D. Boom, S. V. Canneyt, S. Bohez, T. Demeester, and B. Dhoedt. Learning

semantic similarity for very short texts. CoRR, abs/1512.00765, 2015.

A. Cardoso-Cachopo. Improving Methods for Single-label Text Categorization. PdD

Thesis, Instituto Superior Tecnico, Universidade Tecnica de Lisboa, 2007.

J. Chang, J. Boyd-Graber, S. Gerrish, C. Wang, and D. M. Blei. Reading tea leaves:

How humans interpret topic models. NIPS’09, pages 288–296, 2009a.

J. Chang, S. Gerrish, C. Wang, J. L. Boyd-graber, and D. M. Blei. Reading tea

leaves: How humans interpret topic models. In Y. Bengio, D. Schuurmans, J. D.

Lafferty, C. K. I. Williams, and A. Culotta, editors, Advances in Neural Information

Processing Systems 22, pages 288–296. Curran Associates, Inc., 2009b.

M. Charrad, Y. Lechevallier, M. B. Ahmed, and G. Saporta. Block clustering for

web pages categorization. In Intelligent Data Engineering and Automated Learning

(IDEAL 2009), pages 260–267. Springer-Verlag, 2009.

112

M. Charrad, N. Ghazzali, V. Boiteau, and A. Niknafs. NbClust: An R package for

determining the relevant number of clusters in a data set. Journal of Statistical

Software, 61(1):1–36, 2014.

M. Chavent, V. Kuentz-Simonet, B. Liquet, and J. Saracco. Clustofvar: An r package

for the clustering of variables. Journal of Statistical Software, Articles, 50(13):1–16,

2012.

D. Chen, J. Bolton, and C. D. Manning. A thorough examination of the cnn/daily mail

reading comprehension task. In Association for Computational Linguistics (ACL),

2016.

Y. Cheng and G. M. Church. Biclustering of expression data. In ISMB2000 – The 8th

International Conference on Intelligent Systems for Molecular Biology, volume 8,

pages 93–103, 2000.

H. Cho and I. S. Dhillon. Coclustering of human cancer microarrays using minimum

sum-squared residue coclustering. IEEE/ACM Transactions on Computational Bi-

ology and Bioinformatics, 5(3):385–400, 2008.

C. Chu and S. Kurohashi. Paraphrasing out-of-vocabulary words with word embed-

dings and semantic lexicons for low resource statistical machine translation. In

LREC, 2016.

A. Conneau, D. Kiela, H. Schwenk, L. Barrault, and A. Bordes. Supervised learn-

ing of universal sentence representations from natural language inference data. In

Proceedings of the 2017 Conference on Empirical Methods in Natural Language Pro-

cessing, pages 670–680, Copenhagen, Denmark, September 2017. Association for

Computational Linguistics.

A. M. Dai, C. Olah, and Q. V. Le. Document embedding with paragraph vectors. In

NIPS Deep Learning Workshop, 2015.

Z. Dai, Z. Yang, Y. Yang, J. G. Carbonell, Q. V. Le, and R. Salakhutdinov.

Transformer-xl: Attentive language models beyond a fixed-length context. CoRR,

abs/1901.02860, 2019.

S. Deerwester, S. T. Dumais, G. W. Furnas, T. K. Landauer, and R. Harshman. In-

dexing by latent semantic analysis. Journal of the American Society for Information

Science, 41(6):391–407, 1990.

M. Deodhar and J. Ghosh. Scoal: A framework for simultaneous co-clustering and

learning from complex data. ACM Transactions on Knowledge Discovery from Data,

4(3):11, 2010.

113

J. Devlin, M. Chang, K. Lee, and K. Toutanova. BERT: pre-training of deep bidirec-

tional transformers for language understanding. CoRR, abs/1810.04805, 2018.

I. S. Dhillon and D. S. Modha. Concept decompositions for large sparse text data

using clustering. Machine Learning, 42(1):143–175, Jan 2001.

I. S. Dhillon, S. Mallela, and D. S. Modha. Information-theoretic co-clustering. In

Proceedings of the ninth ACM SIGKDD international conference on Knowledge dis-

covery and data mining, pages 89–98. ACM, 2003a.

I. S. Dhillon, S. Mallela, and D. S. Modha. Information-theoretic co-clustering. In

SIGKDD, pages 89–98. ACM, 2003b.

I. Dhillon. Co-clustering documents and words using bipartite spectral graph parti-

tioning. In Proceedings of the Seventh ACM SIGKDD International Conference on

Knowledge Discovery and Data Mining, KDD’01, pages 269–274, 2001.

P. S. Dhillon, D. P. Foster, and L. H. Ungar. Eigenwords: Spectral word embeddings.

Journal of Machine Learning Research, 16:3035–3078, 2015.

B. Dhingra, H. Liu, R. Salakhutdinov, and W. W. Cohen. A comparative study of

word embeddings for reading comprehension. CoRR, abs/1703.00993, 2017.

C. Ding, T. Li, W. Peng, and H. Park. Orthogonal non-negative matrix tri-factorization

for clustering. In KDD’06 – Proceedings of the 12th ACM SIGKDD International

Conference on Knowledge Discovery and Data Mining, pages 126–135, 2006.

C. Ding and T. Li. Adaptive dimension reduction using discriminant analysis and

k-means clustering. In Proceedings of the 24th international conference on Machine

learning, pages 521–528. ACM, 2007.

J. Duchi, E. Hazan, and Y. Singer. Adaptive subgradient methods for online learning

and stochastic optimization. J. Mach. Learn. Res., 12:2121–2159, July 2011.

K. Eren, M. Deveci, O. Küçüktunç, and Ü. V. Çatalyürek. A comparative analysis of

biclustering algorithms for gene expression data. Briefings in Bioinformatics, 14(3):

279–292, 2013.

M. Faruqui, Y. Tsvetkov, P. Rastogi, and C. Dyer. Problems with evaluation of word

embeddings using word similarity tasks. In Proc. of the 1st Workshop on Evaluating

Vector Space Representations for NLP, 2016.

C. Finegan-Dollak, R. Coke, R. Zhang, X. Ye, and D. R. Radev. Effects of creativity

and cluster tightness on short text clustering performance. In ACL, 2016.

114

L. Finkelstein, E. Gabrilovich, Y. Matias, E. Rivlin, Z. Solan, G. Wolfman, and E. Rup-

pin. Placing search in context: The concept revisited. In WWW ’01, WWW ’01,

pages 406–414, 2001.

A. Fonarev, O. Hrinchuk, G. Gusev, P. Serdyukov, and I. V. Oseledets. Riemannian

optimization for skip-gram negative sampling. CoRR, abs/1704.08059, 2017.

A. Freitas, W. Ayadi, M. Elloumi, L. J. Oliveira, and J.-K. Hao. Survey on bicluster-

ing of gene expression data. In M. Elloumi and A. Y. Zomaya, editors, Biological

Knowledge Discovery Handbook, pages 591–608. 2012.

R. Gaujoux and C. Seoighe. A flexible R package for nonnegative matrix factorization.

BMC Bioinformatics, 11(1):1, 2010.

T. George and S. Merugu. A scalable collaborative filtering framework based on co-

clustering. In ICDM’05, pages 625–628. IEEE Computer Society, 2005.

G. Giecold, E. Marco, S. P. Garcia, L. Trippa, and G.-C. Yuan. Robust lineage

reconstruction from high-dimensional single-cell data. Nucleic acids research, 44

(14):e122–e122, 2016.

Y. Goldberg and O. Levy. word2vec explained: deriving mikolov et al.’s negative-

sampling word-embedding method. CoRR, abs/1402.3722, 2014.

E. Gonzalez and J. Turmo. Comparing non-parametric ensemble methods for docu-

ment clustering. In International Conference on Application of Natural Language to

Information Systems, pages 245–256. Springer, 2008.

G. Govaert and M. Nadif. An EM algorithm for the block mixture model. IEEE

Transactions on Pattern Analysis and machine intelligence, 27(4):643–647, 2005a.

G. Govaert and M. Nadif. Block clustering with bernoulli mixture models: Comparison

of different approaches. Computational Statistics & Data Analysis, 52(6):3233–3245,

2008.

G. Govaert and M. Nadif. Fuzzy clustering to estimate the parameters of block mixture

models. Soft Computing, 10(5):415–422, 2006.

G. Govaert and M. Nadif. Clustering with block mixture models. Pattern Recognition,

36(2):463–473, 2003.

G. Govaert and M. Nadif. Mutual information, phi-squared and model-based co-

clustering for contingency tables. Advances in Data Analysis and Classification, 12

(3):455–488, 2018.

115

G. Govaert and M. Nadif. An EM algorithm for the block mixture model. IEEE

Transactions on Pattern Analysis and Machine Intelligence, 27(4):643–647, 2005b.

G. Govaert and M. Nadif. Co-Clustering. John Wiley & Sons, 2013.

D. Greene and P. Cunningham. Efficient ensemble methods for document clustering.

Technical report, Department of Computer Science, Trinity College Dublin, 2006.

N. Gupta and S. Aggarwal. Mib: Using mutual information for biclustering gene

expression data. Pattern Recognition, 43(8):2692–2697, 2010.

H. Hakami and D. Bollegala. Compositional Approaches for Representing Relations

Between Words: A Comparative Study. ArXiv e-prints, September 2017.

G. Halawi, G. Dror, E. Gabrilovich, and Y. Koren. Large-scale learning of word

relatedness with constraints. In Proceedings of the 18th ACM SIGKDD International

Conference on Knowledge Discovery and Data Mining, KDD ’12, pages 1406–1414,

New York, NY, USA, 2012. ACM.

M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and I. H. Witten. The

Weka data mining software: An update. ACM SIGKDD Explorations Newsletter,

11(1):10–18, 2009.

B. Hanczar and M. Nadif. Using the bagging approach for biclustering of gene expres-

sion data. Neurocomputing, 74(10):1595–1605, 2011.

B. Hanczar and M. Nadif. Ensemble methods for biclustering tasks. Pattern Recogni-

tion, 45(11):3938–3949, 2012.

B. Hanczar and M. Nadif. Bagging for biclustering: Application to microarray data.

In Joint European Conference on Machine Learning and Knowledge Discovery in

Databases, pages 490–505. Springer, 2010.

B. Hanczar and M. Nadif. Precision-recall space to correct external indices for biclus-

tering. In International Conference on Machine Learning, pages 136–144, 2013.

Z. Harris. Distributional structure. Word, 10:146–162, 1954.

J. A. Hartigan. Direct clustering of a data matrix. Journal of the American Statistical

Association, 67(337):123–129, 1972.

N. Hartmann, E. Fonseca, C. Shulby, M. Treviso, J. Rodrigues, and S. Aluisio. Por-

tuguese Word Embeddings: Evaluating on Word Analogies and Natural Language

Tasks, 2017. arXiv:1708.06025v1.

116

J. He, H. H. Zhuo, and J. Law. Distributed-representation based hybrid recommender

system with short item descriptions. CoRR, abs/1703.04854, 2017.

R. Henriques, C. Antunes, and S. C. Madeira. A structured view on pattern mining-

based biclustering. Pattern Recognition, 48(12):3941–3958, 2015.

F. Hill, K. Cho, and A. Korhonen. Learning distributed representations of sentences

from unlabelled data. In Proceedings of the 2016 Conference of the North Amer-

ican Chapter of the Association for Computational Linguistics: Human Language

Technologies, pages 1367–1377, San Diego, California, June 2016. Association for

Computational Linguistics.

F. Horn. Context encoders as a simple but powerful extension of word2vec. arXiv

preprint arXiv:1706.02496, 2017.

K. Hornik, I. Feinerer, M. Kober, and C. Buchta. Spherical k-means clustering. Journal

of Statistical Software, 50(10):1–22, 2012a.

K. Hornik, I. Feinerer, M. Kober, and C. Buchta. Spherical k-means clustering. Journal

of Statistical Software, 50(10):1–22, 2012b.

E. H. Huang, R. Socher, C. D. Manning, and A. Y. Ng. Improving word representa-

tions via global context and multiple word prototypes. In Proceedings of the 50th

Annual Meeting of the Association for Computational Linguistics: Long Papers -

Volume 1, ACL ’12, pages 873–882, Stroudsburg, PA, USA, 2012. Association for

Computational Linguistics.

L. Hubert and P. Arabie. Comparing partitions. Journal of classification, 2(1):193–218,

1985.

P. Indyk and R. Motwani. Approximate nearest neighbors: Towards removing the

curse of dimensionality. In Proceedings of the Thirtieth Annual ACM Symposium on

Theory of Computing, STOC ’98, pages 604–613, New York, NY, USA, 1998. ACM.

R. T. Ionescu and A. Butnaru. Vector of locally-aggregated word embeddings

(VLAWE): A novel document-level representation. In Proceedings of the 2019 Con-

ference of the North American Chapter of the Association for Computational Lin-

guistics: Human Language Technologies, Volume 1 (Long and Short Papers), pages

363–369, Minneapolis, Minnesota, June 2019. Association for Computational Lin-

guistics.

S. Ji, H. Yun, P. Yanardag, S. Matsushima, and S. V. N. Vishwanathan. Wordrank:

Learning word embeddings via robust ranking. CoRR, abs/1506.02761, 2015.

117

E. Jones, T. Oliphant, and P. Peterson. SciPy: Open source scientific tools for Python,

2001–. [Online; accessed 2016-06-08].

S. Kaiser and F. Leisch. A toolbox for bicluster analysis in R. In P. Brito, editor,

Compstat 2008 – Proceedings in Computational Statistics, volume II. Physica Verlag,

Heidelberg, Germany, 2008.

N. Kaji and H. Kobayashi. Incremental Skip-gram Model with Negative Sampling.

ArXiv e-prints, April 2017.

A. Karatzoglou, A. Smola, K. Hornik, and A. Zeileis. kernlab – an S4 package for

kernel methods in R. Journal of Statistical Software, 11(9):1–20, 2004.

G. Karypis. Cluto: A clustering toolkit. Technical Report 02-017, Department of

Computer Science, University of Minnesota, 2003.

G. Karypis and V. Kumar. A fast and high quality multilevel scheme for partitioning

irregular graphs. SIAM Journal on scientific Computing, 20(1):359–392, 1998.

G. Karypis, R. Aggarwal, V. Kumar, and S. Shekhar. Multilevel hypergraph partition-

ing: applications in vlsi domain. IEEE Transactions on Very Large Scale Integration

(VLSI) Systems, 7(1):69–79, 1999.

T. Kenter and M. de Rijke. Short text similarity with word embeddings. In Proceed-

ings of the 24th ACM International on Conference on Information and Knowledge

Management, CIKM ’15, pages 1411–1420, New York, NY, USA, 2015. ACM.

R. Kiros, Y. Zhu, R. R. Salakhutdinov, R. Zemel, R. Urtasun, A. Torralba, and S. Fi-

dler. Skip-thought vectors. In Advances in neural information processing systems,

pages 3294–3302, 2015.

Y. Kluger, R. Basri, J. T. Chang, and M. Gerstein. Spectral biclustering of microarray

cancer data: Co-clustering genes and conditions. Genome Research, 13:703–716,

2003.

S. Kombrink, T. Mikolov, M. Karafiát, and L. Burget. Recurrent neural network based

language modeling in meeting recognition. In INTERSPEECH 2011, 12th Annual

Conference of the International Speech Communication Association, Florence, Italy,

August 27-31, 2011, pages 2877–2880, 2011.

M. J. Kusner, Y. Sun, N. I. Kolkin, K. Q. Weinberger, et al. From word embeddings

to document distances. In ICML, volume 15, pages 957–966, 2015.

118

L. Labiod and M. Nadif. Co-clustering for binary and categorical data with maximum

modularity. In 11th IEEE International Conference on Data Mining, ICDM 2011,

Vancouver, BC, Canada, December 11-14, 2011, pages 1140–1145, 2011.

A. J. Landgraf and J. Bellay. word2vec Skip-Gram with Negative Sampling is a

Weighted Logistic PCA. ArXiv e-prints, May 2017.

Q. V. Le and T. Mikolov. Distributed representations of sentences and documents.

CoRR, abs/1405.4053, 2014.

R. Lebret and R. Collobert. Word embeddings through hellinger pca. In Proceedings

of the 14th Conference of the European Chapter of the Association for Computa-

tional Linguistics (EACL), pages 482–490. Association for Computational Linguis-

tics, 2014.

J. B. Leger. Blockmodels: A R-package for estimating in latent block model and

stochastic block model, with various probability functions, with or without covari-

ates. arXiv:1602.07587 [stat.CO], 2016.

O. Levy and Y. Goldberg. Neural word embedding as implicit matrix factorization. In

Proceedings of the 27th International Conference on Neural Information Processing

Systems, NIPS’14, pages 2177–2185, Cambridge, MA, USA, 2014. MIT Press.

O. Levy, Y. Goldberg, and I. Ramat-Gan. Linguistic regularities in sparse and explicit

word representations. In CoNLL, pages 171–180, 2014.

O. Levy, Y. Goldberg, and I. Dagan. Improving distributional similarity with lessons

learned from word embeddings. TACL, 3:211–225, 2015.

C. Li, H. Wang, Z. Zhang, A. Sun, and Z. Ma. Topic modeling for short texts with aux-

iliary word embeddings. In Proceedings of the 39th International ACM SIGIR Con-

ference on Research and Development in Information Retrieval, SIGIR ’16, pages

165–174, New York, NY, USA, 2016. ACM.

Z. Lin, M. Feng, C. N. dos Santos, M. Yu, B. Xiang, B. Zhou, and Y. Bengio. A

structured self-attentive sentence embedding. ArXiv, abs/1703.03130, 2017.

W. Ling, C. Dyer, A. W. Black, I. Trancoso, R. Fermandez, S. Amir, L. Marujo, and

T. Luis. Finding function in form: Compositional character models for open vo-

cabulary word representation. In Proceedings of the 2015 Conference on Empirical

Methods in Natural Language Processing, pages 1520–1530. Association for Compu-

tational Linguistics, 2015.

119

Y. Liu, M. Ott, N. Goyal, J. Du, M. Joshi, D. Chen, O. Levy, M. Lewis, L. Zettlemoyer,

and V. Stoyanov. Roberta: A robustly optimized BERT pretraining approach.

CoRR, abs/1907.11692, 2019.

K. Lund and C. Burgess. Producing high-dimensional semantic spaces from lexical co-

occurrence. Behavior Research Methods, Instruments, & Computers, 28(2):203–208,

1996.

S. C. Madeira and A. L. Oliveira. Biclustering algorithms for biological data analysis:

A survey. IEEE/ACM Transactions on Computational Biology and Bioinformatics,

1(1):24–45, 2004.

C. May, K. Duh, B. Van Durme, and A. Lall. Streaming Word Embeddings with the

Space-Saving Algorithm. ArXiv e-prints, April 2017.

O. Melamud and J. Goldberger. Information-theory interpretation of the skip-gram

negative-sampling objective function. 2017.

T. Mikolov, K. Chen, G. Corrado, and J. Dean. Efficient estimation of word represen-

tations in vector space. CoRR, abs/1301.3781, 2013a.

T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean. Distributed represen-

tations of words and phrases and their compositionality. In NIPS, pages 3111–3119,

2013b.

T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean. Distributed repre-

sentations of words and phrases and their compositionality. In C. J. C. Burges,

L. Bottou, M. Welling, Z. Ghahramani, and K. Q. Weinberger, editors, Advances

in Neural Information Processing Systems 26, pages 3111–3119. Curran Associates,

Inc., 2013c.

T. Mikolov, W.-t. Yih, and G. Zweig. Linguistic regularities in continuous space word

representations. In Hlt-naacl, volume 13, pages 746–751, 2013d.

G. A. Miller and W. G. Charles. Contextual correlates of semantic similarity. Language

& Cognitive Processes, 6(1):1–28, 1991.

S. Morbieu, F. Role, and M. Nadif. Le package coclust : Interface graphique. 2018.

M. M. Mostafa. More than words: Social networks’ text mining for consumer brand

sentiments. Expert Systems with Applications, 40(10):4241–4251, 2013.

J. Mu, S. Bhat, and P. Viswanath. All-but-the-top: Simple and effective postprocessing

for word representations. CoRR, abs/1702.01417, 2017.

120

B. Murphy, P. P. Talukdar, and T. M. Mitchell. Learning effective and interpretable

semantic models using non-negative sparse embedding. pages 1933–1950, 2012a.

B. Murphy, P. P. Talukdar, and T. M. Mitchell. Learning effective and interpretable

semantic models using non-negative sparse embedding. In M. Kay and C. Boitet,

editors, COLING, pages 1933–1950. Indian Institute of Technology Bombay, 2012b.

M. Nadif and G. Govaert. Model-based co-clustering for continuous data. In Ninth

International Conference on Machine Learning and Applications (ICMLA), pages

175–180, 2010.

N. Naveed, T. Gottron, J. Kunegis, and A. C. Alhadi. Searching microblogs: Coping

with sparsity and document quality. In Proceedings of the 20th ACM International

Conference on Information and Knowledge Management, CIKM ’11, pages 183–188,

New York, NY, USA, 2011. ACM.

N. Nayak, G. Angeli, and C. D. Manning. Evaluating word embeddings using a rep-

resentative suite of practical tasks. ACL 2016, page 19, 2016.

D. Newman, S. Karimi, and L. Cavedon. External evaluation of topic models. In in

Australasian Doc. Comp. Symp., 2009. Citeseer, 2009.

M. E. J. Newman and M. Girvan. Finding and evaluating community structure in

networks. Physical Review E, 69(2):026113, 2004.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blon-

del, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Courna-

peau, M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn: Machine learning in

Python. Journal of Machine Learning Research, 12:2825–2830, 2011.

H. Peng, J. Li, Y. Song, and Y. Liu. Incrementally learning the hierarchical softmax

function for neural language models. In Proceedings of the Thirty-First AAAI Con-

ference on Artificial Intelligence, February 4-9, 2017, San Francisco, California,

USA., pages 3267–3273, 2017.

J. Pennington, R. Socher, and C. Manning. Glove: Global vectors for word represen-

tation. In EMNLP, pages 1532–1543, 2014a.

J. Pennington, R. Socher, and C. D. Manning. Glove: Global vectors for word repre-

sentation. In Empirical Methods in Natural Language Processing (EMNLP), pages

1532–1543, 2014b.

M. Peters, M. Neumann, M. Iyyer, M. Gardner, C. Clark, K. Lee, and L. Zettlemoyer.

Deep contextualized word representations. In Proceedings of the 2018 Conference

121

of the North American Chapter of the Association for Computational Linguistics:

Human Language Technologies, Volume 1 (Long Papers), pages 2227–2237, New

Orleans, Louisiana, June 2018. Association for Computational Linguistics.

M. T. Pilehvar and N. H. Collier. Inducing embeddings for rare and unseen words by

leveraging lexical resources. Association for Computational Linguistics, 2017.

M. Porter. An algorithm for suffix stripping. Program, 14(3):130–137, 1980.

V. Prokhorov, M. T. Pilehvar, D. Kartsaklis, P. Lió, and N. Collier. Learning rare word

representations using semantic bridging. arXiv preprint arXiv:1707.07554, 2017.

J. Qiang, P. Chen, T. Wang, and X. Wu. Topic modeling over short texts by incorpo-

rating word embeddings. CoRR, abs/1609.08496, 2016.

A. Radford. Improving language understanding by generative pre-training. 2018.

A. Radford, J. Wu, R. Child, D. Luan, D. Amodei, and I. Sutskever. Language models

are unsupervised multitask learners. 2019.

V. Raunak. Effective Dimensionality Reduction for Word Embeddings. ArXiv e-prints,

August 2017.

M. Razmara, M. Siahbani, R. Haffari, and A. Sarkar. Graph propagation for para-

phrasing out-of-vocabulary words in statistical machine translation. In Proceedings

of the 51st Annual Meeting of the Association for Computational Linguistics (Vol-

ume 1: Long Papers), volume 1, pages 1105–1115, 2013.

R Core Team. R: A Language and Environment for Statistical Computing. R Founda-

tion for Statistical Computing, Vienna, Austria, 2018.

R. Řehůřek. Scalability of semantic analysis in natural language processing, 2011.

R. Řehůřek and P. Sojka. Software Framework for Topic Modelling with Large Cor-

pora. In Proceedings of the LREC 2010 Workshop on New Challenges for NLP

Frameworks, pages 45–50, Valletta, Malta, May 2010. ELRA. http://is.muni.cz/

publication/884893/en.

D. L. T. Rohde, L. M. Gonnerman, and D. C. Plaut. An improved model of semantic

similarity based on lexical co-occurence. COMMUNICATIONS OF THE ACM, 8:

627–633, 2006.

F. Role and M. Nadif. Handling the impact of low frequency events on co-occurrence

based measures of word similarity - a case study of pointwise mutual information.

In Proceedings of the International Conference on Knowledge Discovery and Infor-

mation Retrieval (IC3K 2011), pages 218–223, 2011.

122

F. Role, S. Morbieu, and M. Nadif. Coclust: A python package for co-clustering.

Journal of Statistical Software, Articles, 88(7):1–29, 2019.

X. Rong. word2vec parameter learning explained. CoRR, abs/1411.2738, 2014.

H. Rubenstein and J. B. Goodenough. Contextual correlates of synonymy. Commun.

ACM, 8(10):627–633, October 1965.

S. Ruder. A survey of cross-lingual embedding models. ArXiv e-prints, June 2017.

M. Sahlgren. The Word-Space Model: Using distributional analysis to represent syntag-

matic and paradigmatic relations between words in high-dimensional vector spaces.

PhD thesis, Institutionen för lingvistik, 2006.

A. Salah and M. Nadif. Model-based von mises-fisher co-clustering with a conscience.

In Proceedings of the 2017 SIAM International Conference on Data Mining, pages

246–254. SIAM, 2017.

G. Salton, A. Wong, and C. S. Yang. A vector space model for automatic indexing.

Commun. ACM, 18(11):613–620, November 1975.

G. Salton and C.-S. Yang. On the specification of term values in automatic indexing.

Journal of documentation, 29(4):351–372, 1973.

V. Sanh, L. Debut, J. Chaumond, and T. Wolf. Distilbert, a distilled version of bert:

smaller, faster, cheaper and lighter. arXiv preprint arXiv:1910.01108, 2019.

H. Schütze. Word space. In Advances in Neural Information Processing Systems 5,

pages 895–902. Morgan Kaufmann, 1993.

Y. Shen, P.-S. Huang, J. Gao, and W. Chen. Reasonet: Learning to stop reading in

machine comprehension. In ACM SIGKDD, pages 1047–1055, 2017.

B. Shi, W. Lam, S. Jameel, S. Schockaert, and K. P. Lai. Jointly Learning Word

Embeddings and Latent Topics. ArXiv e-prints, June 2017.

H. Shinnou and M. Sasaki. Ensemble document clustering using weighted hypergraph

generated by nmf. In Proceedings of the 45th Annual Meeting of the Association for

Computational Linguistics Companion Volume Proceedings of the Demo and Poster

Sessions, pages 77–80, 2007.

P. Singh Bhatia, S. Iovleff, and G. Govaert. blockcluster: An R package for model-

based co-clustering, 2017.

123

R. Socher, A. Perelygin, J. Wu, J. Chuang, C. D. Manning, A. Ng, and C. Potts.

Recursive deep models for semantic compositionality over a sentiment treebank.

In Proceedings of the 2013 Conference on Empirical Methods in Natural Language

Processing, pages 1631–1642, Seattle, Washington, USA, October 2013. Association

for Computational Linguistics.

G. Song, Y. Ye, X. Du, X. Huang, and S. Bie. Short text classification: A survey.

Journal of Multimedia, 9(5):635–643, 2014.

V. K. R. Sridhar. Unsupervised topic modeling for short texts using distributed rep-

resentations of words. In Proceedings of NAACL-HLT, pages 192–200, 2015.

D. Steinley. Properties of the hubert-arable adjusted rand index. Psychological meth-

ods, 9(3):386, 2004.

A. Strehl and J. Ghosh. Cluster ensembles — a knowledge reuse framework for com-

bining multiple partitions. The Journal of Machine Learning Research, 3:583–617,

2003.

A. Strehl and J. Ghosh. Cluster ensembles—a knowledge reuse framework for com-

bining multiple partitions. Journal of machine learning research, 3:583–617, 2002.

A. Tanay, R. Sharan, and R. Shamir. Biclustering algorithms: A survey. In S. Aluru,

editor, Handbook of Computational Molecular Biology. Chapman and Hall/CRC,

2005.

P. D. Turney and P. Pantel. From frequency to meaning: Vector space models of

semantics. J. Artif. Int. Res., 37(1):141–188, January 2010.

S. van der Walt, S. C. Colbert, and G. Varoquaux. The numpy array: a structure for

efficient numerical computation. CoRR, abs/1102.1523, 2011.

I. Van Mechelen, H.-H. Bock, and P. De Boeck. Two-mode clustering methods: A

structured overview. Statistical Methods in Medical Research, 13(5):363–394, 2004.

S. Vega-Pons and J. Ruiz-Shulcloper. A survey of clustering ensemble algorithms.

International Journal of Pattern Recognition and Artificial Intelligence, 25(03):337–

372, 2011.

D. Wang, S. Deng, S. Liu, and G. Xu. Improving music recommendation using dis-

tributed representation. In Proceedings of the 25th International Conference Com-

panion on World Wide Web, WWW ’16 Companion, pages 125–126, Republic and

Canton of Geneva, Switzerland, 2016. International World Wide Web Conferences

Steering Committee.

124

J. Xie, R. Girshick, and A. Farhadi. Unsupervised deep embedding for clustering

analysis. In International conference on machine learning, pages 478–487, 2016.

D. Xu, W. Cheng, B. Zong, J. Ni, D. Song, W. Yu, Y. Chen, H. Chen, and X. Zhang.

Deep co-clustering. In Proceedings of the 2019 SIAM International Conference on

Data Mining, pages 414–422. SIAM, 2019.

G. Xu, Y. Zong, P. Dolog, and Y. Zhang. Co-clustering analysis of weblogs using bipar-

tite spectral projection approach. In Knowledge-Based and Intelligent Information

and Engineering Systems, pages 398–407. Springer-Verlag, 2010.

X. Yan, J. Guo, Y. Lan, and X. Cheng. A biterm topic model for short texts. In

Proceedings of the 22nd international conference on World Wide Web, pages 1445–

1456. ACM, 2013.

X. Yang, S. Ying, W. Yu, R. Zhang, and Z. Zhang. Enhancing topic modeling on short

texts with crowdsourcing. In R. J. Durrant and K.-E. Kim, editors, Proceedings

of The 8th Asian Conference on Machine Learning, volume 63 of Proceedings of

Machine Learning Research, pages 33–48, The University of Waikato, Hamilton,

New Zealand, 16–18 Nov 2016. PMLR.

Z. Yang, Z. Dai, Y. Yang, J. Carbonell, R. Salakhutdinov, and Q. V. Le. Xlnet:

Generalized autoregressive pretraining for language understanding. arXiv preprint

arXiv:1906.08237, 2019.

J. Yin and J. Wang. A dirichlet multinomial mixture model-based approach for short

text clustering. In Proceedings of the 20th ACM SIGKDD International Conference

on Knowledge Discovery and Data Mining, KDD ’14, pages 233–242, New York,

NY, USA, 2014. ACM.

Y. Zhu, F. Javed, and O. Ozturk. Semantic similarity strategies for job title classifi-

cation. CoRR, abs/1609.06268, 2016.

Y. Zuo, J. Wu, H. Zhang, H. Lin, F. Wang, K. Xu, and H. Xiong. Topic modeling of

short texts: A pseudo-document view. In Proceedings of the 22nd ACM SIGKDD

International Conference on Knowledge Discovery and Data Mining, pages 2105–

2114. ACM, 2016.

125

