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This thesis is focused on the mechanical properties of three-dimensional auxetic mechanical metamaterials. In Chapter 1, I will give a general introduction to the mechanical metamaterials and auxetics, i.e., metamaterials with negative Poisson's ratio. In Chapter 2, a 3D partially auxetic metamaterial has been proposed and investigated. In Chapter 3, based on the results in Chapter 2 and the structural optimization design method, a strain-dependent 3D auxetic metamaterial is studied. In Chapter 4, based on the results in Chapters 2 and 3, a new 3D auxetic with auxeticity in three main directions and multistep behaviors has been investigated. In Chapter 5, a straight beam element is used to replace the curved beam element which is widely used in Chapters 2, 3, and 4, and a 3D auxetic with superior mechanical properties is proposed. The elastically-stable continuous phase transition of Poisson's ratio was also studied. The conclusions and the perspectives of this thesis are demonstrated in Chapter 6.

1.2/ GENERAL INTRODUCTION TO MECHANICAL METAMATERIALS 1.2.1/ DEFINITION OF MECHANICAL METAMATERIALS

Metamaterials are rationally designed composites aiming at effective material parameters that go beyond those of the ingredient materials [START_REF] Kadic | 3D metamaterials[END_REF]. One of the most fundamental and widely studied areas in materials is mechanics. Mechanical properties of materials are of crucial importance for real-life applications [START_REF] Surjadi | Mechanical metamaterials and their engineering applications[END_REF]. Here, in this chapter I will introduce rationally designed artificial materials which enable mechanical properties that are inaccessible in ordinary materials [START_REF] Frenzel | Three-dimensional mechanical metamaterials with a twist[END_REF], such as a negative Poisson's ratio. a Metamaterials with compression-twisting behavior [START_REF] Frenzel | Three-dimensional mechanical metamaterials with a twist[END_REF]. b Auxetic foam [START_REF] Lakes | Foam structures with a negative Poisson's ratio[END_REF]. c 3D pixel metamaterials with multi-stable and negative stiffness [START_REF] Pan | 3D pixel mechanical metamaterials[END_REF]. d) Lightweight and ultrastrong metamaterials [START_REF] Zhang | Lightweight, flawtolerant, and ultrastrong nanoarchitected carbon[END_REF]. e Locally resonant sonic materials [START_REF] Liu | Locally resonant sonic materials[END_REF]. f Multi-step deformation mechanical metamaterials [START_REF] Meng | Multi-step deformation mechanical metamaterials[END_REF]. g Metamaterials with strain rate-dependent response [START_REF] Janbaz | Strain ratedependent mechanical metamaterials[END_REF]. h Materials with tunable negative thermal expansion [START_REF] Wang | Lightweight mechanical metamaterials with tunable negative thermal expansion[END_REF]. i Pentamode metamaterials with ultra-large bulk modulus to shear ratio [START_REF] Kadic | On the practicability of pentamode mechanical metamaterials[END_REF]. j Microlattice shows ultralow density and excellent recoverability [START_REF] Schaedler | Ultralight metallic microlattices[END_REF]. k multi-scale hierarchical lattice architectures [START_REF] Zheng | Multiscale metallic metamaterials[END_REF]. l A core-shell "unfeelability" cloak based on pentamode metamaterials [START_REF] Zhang | A mechanically driven form of kirigami as a route to 3D mesostructures in micro/nanomembranes[END_REF]. m Tensegrity metamaterials with delocalized deformations [START_REF] Bauer | Tensegrity metamaterials: Toward failure-resistant engineering systems through delocalized deformation[END_REF]. n Hybrid metallic meta-implants consisting of both auxetic and conventional architectures [START_REF] Kolken | Rationally designed meta-implants: a combination of auxetic and conventional meta-biomaterials[END_REF]. o Origami-inspired 3D metamaterials [START_REF] Li | Fluidic origami: a plant-inspired adaptive structure with shape morphing and stiffness tuning[END_REF]. p transformable mechanical metamaterials [START_REF] Hu | Engineering zero modes in transformable mechanical metamaterials[END_REF]. q Static non-reciprocity in mechanical metamaterials [START_REF] Coulais | Static non-reciprocity in mechanical metamaterials[END_REF].

1.2.2/ CLASSIFICATION OF MECHANICAL METAMATERIALS

In the past few decades, a lot of mechanical metamaterials with counter-intuitive mechanical properties have been proposed and investigated, as demonstrated in Fig. 1.1. For instance, Frenzel et al. proposed a chiral mechanical metamaterial that exhibits a twisting motion under uniaxial mechanical loading [START_REF] Frenzel | Three-dimensional mechanical metamaterials with a twist[END_REF]. Lakes et al. fabricated a foam that shows auxeticity [START_REF] Lakes | Foam structures with a negative Poisson's ratio[END_REF]. Fei et al. designed a 3D pixel mechanical metamaterials with multi-stable and negative stiffness [START_REF] Pan | 3D pixel mechanical metamaterials[END_REF]. Zhang et al. investigated lightweight and ultra-strong nanoarchitectured carbon [START_REF] Zhang | Lightweight, flawtolerant, and ultrastrong nanoarchitected carbon[END_REF]. Liu et al. studied sonic materials based on the locally resonant principle [START_REF] Liu | Locally resonant sonic materials[END_REF]. Meng et al. shows metamaterials with multi-stress platform behaviors [START_REF] Meng | Multi-step deformation mechanical metamaterials[END_REF].

Janbaz et al. proposed a bi-beam that consists of two beams with different viscoelasticity to design metamaterials with strain-rate-dependent mechanical response [START_REF] Janbaz | Strain ratedependent mechanical metamaterials[END_REF]. Wang et al. illustrated tunable negative thermal expansion in lightweight mechanical metamaterials [START_REF] Wang | Lightweight mechanical metamaterials with tunable negative thermal expansion[END_REF]. Kadic et al. used two-photon lithography technology to fabricate a pentamode metamaterial with ultra-large bulk modulus compared to the shear modulus ratio [START_REF] Kadic | On the practicability of pentamode mechanical metamaterials[END_REF].

Schaedler et al. exhibited an ultra-low density and excellent recoverability, hollow metallic micro-lattice [START_REF] Schaedler | Ultralight metallic microlattices[END_REF]. Zheng et al. proposed multi-scale hierarchical lattice architectures [START_REF] Zheng | Multiscale metallic metamaterials[END_REF].

Coulais et al. proposed static non-reciprocity, i.e., unidirectional behavior, in mechanical metamaterials [START_REF] Coulais | Static non-reciprocity in mechanical metamaterials[END_REF]. Jens et al. fabricated tensegrity metamaterials that show delocalized deformations under large compression strains [START_REF] Bauer | Tensegrity metamaterials: Toward failure-resistant engineering systems through delocalized deformation[END_REF]. Hu et al. proposed a 3D metamaterial with engineered zero modes, and experimentally demonstrated its transformable static and dynamic properties [START_REF] Hu | Engineering zero modes in transformable mechanical metamaterials[END_REF]. Zhang et al. used pentamode metamaterials to design a core-shell "unfeelability" cloak that can be employed to elastically hide mechanical objects along its lines [START_REF] Zhang | A mechanically driven form of kirigami as a route to 3D mesostructures in micro/nanomembranes[END_REF].

In this subsection, I just highlighted some examples of mechanical metamaterials with novel mechanical properties, many other kinds of mechanical metamaterials can be found in the literature [START_REF] Kadic | 3D metamaterials[END_REF][START_REF] Surjadi | Mechanical metamaterials and their engineering applications[END_REF].

1.3/ GENERAL INTRODUCTION TO AUXETICS

Among the most popular mechanical metamaterials are auxetics, i.e., metamaterials with negative Poisson's ratio. They have been widely investigated over the past fifty years because of their unique lateral deformations. In this section, I will give a general introduction to Poisson's effect and to the theoretical limitations of Poisson's Ratio in traditional materials. [START_REF] Greaves | Poisson's ratio and modern materials[END_REF]. b Non-auxetic i) and auxetic i) behavior during tensile and compressive loading (dashed lines indicate the original shape of the materials) [START_REF] Novak | Auxetic cellular materials-a review[END_REF]. c Poisson's ratio ν is plotted as a function of the ratio of the bulk to the shear modulus B/G, for a wide range of isotropic classes of materials [START_REF] Greaves | Poisson's ratio and modern materials[END_REF].

1.3.1/ DEFINITION OF POISSON'S RATIO

Poisson's ratio ν is defined as the ratio between the longitudinal expansion strain ε l and the transverse contraction strain ε t of material during tension loading (in the case of compression loading an analogous definition holds) [START_REF] Fung | Foundations of solid mechanics prentice-hall[END_REF], as shown by equation 1.1. Poisson originally came up with this definition, hence the term Poisson's ratio [START_REF] Greaves | Poisson's ratio and modern materials[END_REF].

ν = -ε t /ε l (1.1)
Generally, materials and structures show a positive Poisson's ratio, which indicates they will become thinner when stretched and wider when compressed, as illustrated in Fig. 1.2b(i). On the contrary, materials with negative Poisson's ratio exhibit stretchingexpansion and compression-shrinkage behaviors. Evans et al. first introduced the term "auxetic materials" to describe materials with negative Poisson's ratio [START_REF] Evans | Molecular network design[END_REF].

1.3.2/ THEORETICAL LIMITATIONS OF POISSON'S RATIO

For isotropic materials, Poisson's ratio should also satisfy the following equation 1.2

ν = 3B/G -2 6B/G + 2 (1.2)
where B and G are the isothermal bulk modulus and the shear modulus, respectively [START_REF] Love | A treatise on the mathematical theory of elasticity[END_REF].

For isotropic materials, both modulii are positive and the theoretical range of Poisson's ratio is limited to [-1, 0.5], as can be seen by considering the range B/G ∈ [0, ∞] in the previous equation. The relationship between Poisson's ratio ν and the ratio of the bulk and shear modulus B/G is illustrated in Fig. 1.2c. The particular values of Poisson's ratio 0 and -1 correspond to the liquid with shear modulus G = 0 and to the materials with bulk modulus B = 0 [START_REF] Greaves | Poisson's ratio and modern materials[END_REF], respectively. For most usual solids such as metals, polymers, and ceramics, 0.25 < ν < 0.35. Glasses and minerals are more compressible and for those ν → 0. Liquids and rubbers have Poisson's ratios close to 0.5, and since they are dense, they are incompressible materials whose volumes hardly change under pressure. For gases, ν = 0.

1.4/ CHARACTERISTICS OF AUXETICITY

In this section, I introduce the characteristics and the potential applications allowed by the auxeticity of materials [START_REF] Novak | Auxetic cellular materials-a review[END_REF][START_REF] Huang | Negative Poisson's ratio in modern functional materials[END_REF][START_REF] Carneiro | Auxetic materials-a review[END_REF][START_REF] Wang | Progress in auxetic mechanical metamaterials: structures, characteristics, manufacturing methods, and applications[END_REF][START_REF] Schievano | Elastic properties of 2D auxetic honeycomb structures-a review[END_REF][START_REF] Saxena | Three decades of auxetics researchmaterials with negative Poisson's ratio: a review[END_REF][START_REF] Mir | Review of mechanics and applications of auxetic structures[END_REF][START_REF] Luo | Design, manufacturing and applications of auxetic tubular structures: A review[END_REF][START_REF] Tahir | Auxetic materials for personal protection: A review[END_REF].

1.4.1/ CHARACTERISTICS INTRODUCED BY AUXETICITY

Due to their counter-intuitive transverse deformation mode, negative Poisson's ratio mechanical metamaterials have advantages in the following aspects. ties between the auxetic foam and the non-auxetic foam [START_REF] Fan | Novel method for preparing a high-performance auxetic foam directly from polymer resin by a one-pot co2 foaming process[END_REF]. b Variable permeability [START_REF] Grima | Auxetic metamaterials[END_REF]. c Conventional honeycomb showing saddled curvature and re-entrant auxetic honeycomb showing domed curvature [START_REF] Duncan | Review of auxetic materials for sports applications: Expanding options in comfort and protection[END_REF]. d Indentation resistance: deformation profile of non-auxetic material and auxetic material [START_REF] Wallbanks | On the design workflow of auxetic metamaterials for structural applications[END_REF][START_REF] Bodaghi | 4D printed tunable mechanical metamaterials with shape memory operations[END_REF].

1. Energy absorption and impact resistance. Energy absorption is a common advantage of most porous materials. More importantly, auxetic structures and materials have superior energy absorption and impact resistance [START_REF] Wang | Progress in auxetic mechanical metamaterials: structures, characteristics, manufacturing methods, and applications[END_REF]. For example, Fan et al. implies that both the energy absorption (EA) and the specific energy absorption (SEA) of the auxetic foam are about 5 times better than those of the non-auxetic foam [START_REF] Fan | Novel method for preparing a high-performance auxetic foam directly from polymer resin by a one-pot co2 foaming process[END_REF], as shown in Fig. 1.3a. This advantage leads to potential applications in shock absorption and vibration isolation [START_REF] Jiang | Low-velocity impact response of multilayer orthogonal structural composite with auxetic effect[END_REF][START_REF] Imbalzano | A numerical study of auxetic composite panels under blast loadings[END_REF]. [START_REF] Alderson | An auxetic filter: a tuneable filter displaying enhanced size selectivity or defouling properties[END_REF]. The permeability of auxetics is variable, especially under stretching loading, as illustrated in Fig. 1.3b. In auxetic foams, the variation of the structure dimensions reflects the change in the dimensions of each individual unit cell. In other words, a pore can be opened and closed during the stretching or compression process [START_REF] Grima | Auxetic metamaterials[END_REF]. Based on these characteristics, auxetic materials could be used for intelligent filters.

Variable permeability

Synclastic behavior.

Non-auxetic materials adopt a saddle shape when they are subjected to a bending moment. However, for auxetics, a dome-shaped double curvature is formed when the same load is applied, as shown in Fig. 1.3c. This behavior is called synclasticity [START_REF] Evans | The design of doubly curved sandwich panels with honeycomb cores[END_REF]. This property makes auxetics good candidates for sports and medical safety devices.

4. Indentation resistance. Auxetic structures exhibit improved indentation resistance due to their compression and contraction deformation features. When an indentation occurs in an auxetics, a local contraction results, which is contrary to the behavior of conventional materials, as shown in Fig. 1.3d. The enhanced indentation resistance also can be validated by the theory of elasticity. Generally, material indentation resistance is combined with the hardness H of materials. The hardness H, Young's modulus E and Poisson's ratio ν of a material satisfy the following equation

H ∝ E (1 -ν 2 ) γ (1.3)
where γ is a constant that assumes the value 1 or 2/3 in the case of uniform pressure distribution or Hertzian indentation, respectively [START_REF] Liu | Literature review: materials with negative Poisson's ratios and potential applications to aerospace and defence[END_REF]. For 3D isotropic materials, equation 1.3 implies that the hardness of the material tends to infinity when Poisson's ratio decreases to -1 [START_REF] Critchley | A review of the manufacture, mechanical properties and potential applications of auxetic foams[END_REF].

Shear resistance.

In the classical theory of elasticity of 3D isotropic materials, the elastic performance of the body can be determined via the choice of 2 among 4 constants, i.e., the Poisson's ratio ν, Young's modulus E, the shear modulus G and the bulk modulus B. The relation between constants can be described by equations 1.4 and 1.5 [START_REF] Shanley | Mechanics of materials[END_REF] 

G = 3B(1 -2ν) 2(1 + ν) (1.4) G = E 2(1 + ν) (1.5)
In fact, equation 1.2 and equation 1.4 are identical but with different modalities. It can be easily observed that the value of the shear modulus and the associated shear resistance increase when Poisson's ratio decreases [START_REF] Carneiro | Auxetic materials-a review[END_REF]. b Stretchable capacitive strain sensor uses auxetic layer to improve gauge factor [START_REF] Lee | Auxetic elastomers: mechanically programmable meta-elastomers with an unusual Poisson's ratio overcome the gauge limit of a capacitive type strain sensor[END_REF]. c Auxetic esophagus stent [START_REF] Bhullar | Design and fabrication of stent with negative Poisson's ratio[END_REF]. d Smart belt [START_REF] Jiang | characteristics and applications of auxetic foams: A state-of-the-art review[END_REF]. e 3D printed different types of nails using brass and stainless steel materials [START_REF] Ren | Auxetic nail: Design and experimental study[END_REF]. f Schematic of a sports helmet with auxetic foam [START_REF] Foster | Application of auxetic foam in sports helmets[END_REF]. g Auxetic medical bandage [START_REF] Alderson | Expanding materials and applications: exploiting auxetic textiles[END_REF][START_REF] Pibo | Knitted structures with negative Poisson's ratio[END_REF]. h Auxetic piezoelectric sensor [START_REF] Smith | Optimizing electromechanical coupling in piezocomposites using polymers with negative poisson's ratio[END_REF][START_REF] Alderson | A triumph of lateral thought[END_REF].

1.4.2/ POTENTIAL APPLICATIONS OF AUXETICS

Based on the unique performances of auxetics discussed in the previous subsection, a lot of potential engineering applications of auxetics have been proposed and studied. For example, Airoldi et al. innovatively proposed that chiral networks were utilized to fill and support soft wing skins for designing morphing airfoils [START_REF] Bettini | Composite chiral structures for morphing airfoils: Numerical analyses and development of a manufacturing process[END_REF] which offers the possibility to enhance flight stability, efficiency, and safety, as shown in Fig. 1.4a. Lee et al. used an auxetic layer to design a stretchable capacitive strain sensor [START_REF] Lee | Auxetic elastomers: mechanically programmable meta-elastomers with an unusual Poisson's ratio overcome the gauge limit of a capacitive type strain sensor[END_REF], as shown in Fig. 1.4b.

Bhullar et al. proposed an auxetic esophagus stent [START_REF] Bhullar | Design and fabrication of stent with negative Poisson's ratio[END_REF], as shown in Fig. 1.4c. Jiang et al. considered a smart belt utilizing the unique stress-induced shape change of auxetic foam materials [START_REF] Jiang | characteristics and applications of auxetic foams: A state-of-the-art review[END_REF], as shown in Fig. 1.4d. Ren et al. fabricated auxetic nails using brass and stainless steel materials [START_REF] Ren | Auxetic nail: Design and experimental study[END_REF]. Leon et al. discussed the application of auxetic foams to sports helmets [START_REF] Foster | Application of auxetic foam in sports helmets[END_REF], as demonstrated in Fig. 1.4f. Ma et al. used the variable permeability of auxetics to design a smart medical bandage to deliver a drug [START_REF] Alderson | Expanding materials and applications: exploiting auxetic textiles[END_REF][START_REF] Pibo | Knitted structures with negative Poisson's ratio[END_REF], as

AUXETICITY IN NATURAL MATERIALS

shown in Fig. 1.4g. A piezoelectric sensor with an auxetic matrix was proposed that can follow the deformation of the piezoelectric rods [START_REF] Smith | Optimizing electromechanical coupling in piezocomposites using polymers with negative poisson's ratio[END_REF][START_REF] Alderson | A triumph of lateral thought[END_REF], making the sensor more sensitive to the variation of pressure, as shown in Fig. 1.4h.

1.5/ AUXETICITY IN NATURAL MATERIALS

.5: Auxetics in molecular and bio-materials. a Auxetic rigid-sphere body-centered cubic structure [START_REF] Baughman | Negative Poisson's ratios as a common feature of cubic metals[END_REF]. b Auxetic and ferroelastic borophene [START_REF] Kou | Auxetic and ferroelastic borophane: a novel 2D material with negative Possion's ratio and switchable dirac transport channels[END_REF]. c Negative Poisson's ratio in rippled graphene [START_REF] Grima | Tailoring graphene to achieve negative poisson's ratio properties[END_REF][START_REF] Qin | Negative Poisson's ratio in rippled graphene[END_REF]. d Bone with auxeticity [START_REF] Williams | Properties and an anisotropic model of cancellous bone from the proximal tibial epiphysis[END_REF]. e The auxeticity of animal skin [START_REF] Veronda | Mechanical characterization of skin-finite deformations[END_REF][START_REF] Lees | Poisson's ratio in skin[END_REF]. f Auxetic nuclei [START_REF] Wang | Auxetic nuclei[END_REF].

Unlike other mechanical metamaterials, auxeticity also can be observed in natural materials, i.e., in certain natural molecular and biomaterials, as shown in Fig. 1.5.

1.5.1/ AUXETICITY IN MOLECULAR MATERIALS

In molecular materials, Ray et al. declared that 69% of the cubic elemental metals have a negative Poisson's ratio when stretched along the [1 1 0] direction [START_REF] Baughman | Negative Poisson's ratios as a common feature of cubic metals[END_REF], as shown in Fig. [START_REF] Williams | Properties and an anisotropic model of cancellous bone from the proximal tibial epiphysis[END_REF]. Auxeticity also be uncovered in some animal skin, such as the skin of cat [START_REF] Veronda | Mechanical characterization of skin-finite deformations[END_REF] and cow [START_REF] Lees | Poisson's ratio in skin[END_REF]. Moreover, the observation of mouse embryonic stem cells (ESCs) by Wang et al. shows that their nuclei have a negative Poisson's ratio during the transformation transition [START_REF] Wang | Auxetic nuclei[END_REF], as demonstrated in Fig. 1.5f.

1.6/ DEVELOPMENT OF ARTIFICIAL AUXETICS

Although negative Poisson's ratio materials can be found in nature, they are rare and their mechanical properties hardly meet the requirements for engineering applications. In the past 40 years, many artificial structures and materials with auxeticity have been proposed

and investigated. Research on artificial auxetics is mainly based on four aspects, i.e., the design of auxetic structures, the optimization of auxetic structures, multifunctionality, and the applications of auxetics, which are discussed one by one in this section. chirality that characterizes a structure that can not be superimposed on its mirror image [START_REF] Kelvin | The molecular tactics of a crystal[END_REF]. First different types of chiral structures in two-dimensional space [START_REF] Prall | Properties of a chiral honeycomb with a Poisson's ratio of-1[END_REF][START_REF] Alderson | Elastic constants of 3-, 4-and 6-connected chiral and anti-chiral honeycombs subject to uniaxial in-plane loading[END_REF] were proposed and then extended to three-dimensional space [START_REF] Fu | A novel category of 3D chiral material with negative poisson's ratio[END_REF]. It is worth noting that three-dimensional chiral structures can also be used to achieve the compression-twist behavior [START_REF] Frenzel | Three-dimensional mechanical metamaterials with a twist[END_REF], as shown in Fig. 1.6d. [START_REF] Prall | Properties of a chiral honeycomb with a Poisson's ratio of-1[END_REF][START_REF] Alderson | Elastic constants of 3-, 4-and 6-connected chiral and anti-chiral honeycombs subject to uniaxial in-plane loading[END_REF]. c 3D Chiral structures [START_REF] Fu | A novel category of 3D chiral material with negative poisson's ratio[END_REF]. d Compression-twist 3D chiral structure [START_REF] Frenzel | Three-dimensional mechanical metamaterials with a twist[END_REF]. e-g 2D re-entrant Structures [START_REF] Masters | Models for the elastic deformation of honeycombs[END_REF][START_REF] Robert | An isotropic three-dimensional structure with Poisson's ratio=-1[END_REF][START_REF] Qiao | Impact resistance of uniform and functionally graded auxetic double arrowhead honeycombs[END_REF][START_REF] Saxena | Three decades of auxetics researchmaterials with negative Poisson's ratio: a review[END_REF]. h 3D re-entrant Structures [START_REF] Wang | Mechanical properties of 3D reentrant auxetic cellular structures[END_REF]. i-j 2D rotating rigid structures [START_REF] Grima | Auxetic behavior from rotating squares[END_REF][START_REF] Grima | Auxetic metamaterials[END_REF][START_REF] Dmitriev | Auxetic behavior of crystals from rotational degrees of freedom[END_REF]. k Bistable kirigami-based auxetic metamaterials with square and triangular rotating units [START_REF] Rafsanjani | Bistable auxetic mechanical metamaterials inspired by ancient geometric motifs[END_REF]. l 2D perforation structures [START_REF] Mizzi | Auxetic metamaterials exhibiting giant negative Poisson's ratios[END_REF]. m Auxetic foam [START_REF] Zhang | Auxetic foam-based contact-mode triboelectric nanogenerator with highly sensitive self-powered strain sensing capabilities to monitor human body movement[END_REF]. n Negative Poisson's ratio behavior induced by an elastic instability [START_REF] Bertoldi | Negative Poisson's ratio behavior induced by an elastic instability[END_REF]. o 3D porous auxetic structures [START_REF] Shen | Simple cubic three-dimensional auxetic metamaterials[END_REF]. [START_REF] Wang | Progress in auxetic mechanical metamaterials: structures, characteristics, manufacturing methods, and applications[END_REF]. Research on 2D re-entrant honeycombs started with analytical calculations of various deformation mechanisms caused by flexing the cell walls [START_REF] Robert | An isotropic three-dimensional structure with Poisson's ratio=-1[END_REF]. During the stretching loading, bending and pulling are applied on the re-entrant edges simultaneously, leading to an extension of the volume of the unit cell in both the axial direction and the transversal directions [START_REF] Carneiro | Auxetic materials-a review[END_REF].

Fig. 1.6i-j illustrate 2D and rotating rigid structures [START_REF] Grima | Auxetic behavior from rotating squares[END_REF][START_REF] Grima | Auxetic metamaterials[END_REF][START_REF] Dmitriev | Auxetic behavior of crystals from rotational degrees of freedom[END_REF]. This type of auxetics is made up of rigid geometries connected with their partner by hinges at their corners.

Under the stretching process, the rigid geometries will rotate around the hinges and further produce expansion in both axial and transversal directions, which is principally responsible for auxetic behavior. Rotating rigid structures with different square, rectangle, parallelogram, and triangle rigid geometries have been proposed and investigated [START_REF] Grima | Auxetic behavior from rotating triangles[END_REF][START_REF] Grima | Auxetic behaviour from rotating semi-rigid units[END_REF][START_REF] Attard | Auxetic behaviour from rotating rhombi[END_REF][START_REF] Grima | Auxetic behaviour from rotating rigid units[END_REF]. Recently, some novel auxetic structures on the ground of rotating rigid structures were designed and fabricated at the micro-scale [START_REF] Dudek | Micro-scale mechanical metamaterial with a controllable transition in the Poisson's ratio and band gap formation[END_REF][START_REF] Dudek | Micro-scale auxetic hierarchical mechanical metamaterials for shape morphing[END_REF].

Origami and Kirigami also provide inspiration to the design of auxetics structures [START_REF] Surjadi | Mechanical metamaterials and their engineering applications[END_REF][START_REF] Wei | Geometric mechanics of periodic pleated origami[END_REF].

In the origami-based auxetics, the fold lines are taken as hinges and their length and position show a determining role of the auxeticity. Ahmad et al. proposed bistable kirigamibased auxetic metamaterials with square and triangular rotating units [START_REF] Rafsanjani | Bistable auxetic mechanical metamaterials inspired by ancient geometric motifs[END_REF], as shown in Fig. 1.6k.

Sheets including certain shape perforations (see Fig. 1.6f) can also generate auxeticity [START_REF] Mizzi | Auxetic metamaterials exhibiting giant negative Poisson's ratios[END_REF]. The root reason for that behavior is that the perforations act as flexible hinges, similar to the principle of rotating rigid structures. Hence, the auxetic behavior of perforation structures highly relies on the shape, size, and orientation of the perforations.

Auxetic foam is another important auxetics and the first artificial auxetic open cell foam that was reported by Lakes in 1987 and fabricated using a combination of volumetric compression and thermoforming [START_REF] Lakes | Foam structures with a negative Poisson's ratio[END_REF]. The hot-compression method has been used to realize the transformation of conventional open-cell foams into foams with re-entrant voids to introduce auxeticity of the foam, as shown in Fig. 1.6m. Hence, the mechanism of the auxetic foam is similar to that of 2D and 3D re-entrant auxetics. During the recent decades, increasing numbers of auxetic foams have been developed at different scales [START_REF] Jiang | characteristics and applications of auxetic foams: A state-of-the-art review[END_REF].

In addition to the above mechanisms, there are some other auxetics that have also been reported. For example, Bertoldi et al. introduced elastic instability to obtain tunable negative Poisson's ratio behavior in materials [START_REF] Bertoldi | Negative Poisson's ratio behavior induced by an elastic instability[END_REF][START_REF] Babaee | 3D soft metamaterials with negative Poisson's ratio[END_REF]. Besides, some composite auxetics have been investigated numerically or experimentally [START_REF] Po Źniak | Planar auxeticity from elliptic inclusions[END_REF][START_REF] Wang | Fabrication and mechanical properties of cfrp composite three-dimensional double-arrow-head auxetic structures[END_REF][START_REF] Xue | Enhanced compressive mechanical properties of aluminum based auxetic lattice structures filled with polymers[END_REF].

1.6.2/ STRUCTURAL OPTIMIZATION DESIGN

Structural optimization is a good way to improve the properties of structures and materials [START_REF] Wang | Achieving the theoretical limit of strength in shell-based carbon nanolattices[END_REF]. In recent years, the structural optimization method also has been used to improve the effective mechanical performance of some typical auxetic structures, as shown in Fig.

1.7.

Based on the double arrowhead re-entrant auxetics, Yang et al. proposed a double-U auxetic structure that shows enhanced mechanical behavior and energy absorption [START_REF] Yang | Mechanical properties of 3D double-U auxetic structures[END_REF].

Moreover, for further enhanced energy absorption capacity of the re-entrant honeycomb, e Multi-level hierarchical rotating squares structure [START_REF] Wu | Mechanical properties of anti-tetrachiral auxetic stents[END_REF][START_REF] Gatt | Hierarchical auxetic mechanical metamaterials[END_REF].

a novel re-entrant circular honeycomb configuration with double circular arc cell walls was proposed. The experimental results show that more formed plastic angles can dissipate extra energy during the crushing process [START_REF] Qi | Quasi-static crushing behavior of novel re-entrant circular auxetic honeycombs[END_REF]. In addition, the multi-level principle has been utilized to design multi-level hierarchical rotating square structures with a layered auxetic pattern [START_REF] Wu | Mechanical properties of anti-tetrachiral auxetic stents[END_REF][START_REF] Gatt | Hierarchical auxetic mechanical metamaterials[END_REF]. More work on the structural optimization design of auxetics can be found in related papers [START_REF] Gao | Novel 3D auxetic lattice structures developed based on the rotating rigid mechanism[END_REF][START_REF] Gao | Composite tree-like reentrant structure with high stiffness and controllable elastic anisotropy[END_REF][START_REF] Chen | Re-entrant auxetic lattices with enhanced stiffness: A numerical study[END_REF][START_REF] Li | Novel auxetic structures with enhanced mechanical properties[END_REF].

1.6.3/ MULTI-FUNCTIONALITY

.8: Some examples of multifunctional auxetics. a Double-negative mechanical metamaterials displaying simultaneous negative stiffness and negative Poisson's ratio [START_REF] Hewage | Doublenegative mechanical metamaterials displaying simultaneous negative stiffness and negative Poisson's ratio properties[END_REF]. b Multi-material 3D double-V metastructures with tailorable Poisson's ratio and thermal expansion [START_REF] Yang | Multi-material 3D double-V metastructures with tailorable poisson's ratio and thermal expansion[END_REF].

CHAPTER 1. INTRODUCTION AND STATE-OF-THE-ART

The multi-functionality of materials and structures can broaden their fields of application, thanks to their different functions that can meet the requirements of various engineering fields. To this end, some multifunctional auxetics have been presented. For instance, based on a multi-body system, double-negative mechanical metamaterial display simultaneous negative stiffness, and negative Poisson's ratio properties were proposed, meaning that the metamaterial can display a reversal in the direction of deformation for both the axial and transverse dimensions at the same time, corresponding to negative stiffness and Poisson's ratio, respectively [START_REF] Hewage | Doublenegative mechanical metamaterials displaying simultaneous negative stiffness and negative Poisson's ratio properties[END_REF]. In addition, on the ground of multi-materials systems, 3D

double-V hierarchical lattices with tailorable Poisson's ratio and thermal expansion were designed and fabricated using an interlocking assembly strategy [START_REF] Yang | Multi-material 3D double-V metastructures with tailorable poisson's ratio and thermal expansion[END_REF].

1.6.4/ APPLICATIONS

Due to the unique deformation features and mechanical performance of auxetics, they have potential applications in many engineering fields. At present, the application of negative Poisson's ratio materials has involved artificial prosthesis [START_REF] Scarpa | Auxetic materials for bioprostheses [in the spotlight[END_REF], textile materials, smart sensors [START_REF] Xu | Making negative Poisson's ratio microstructures by soft lithography[END_REF][START_REF] Zhang | Auxetic foam-based contact-mode triboelectric nanogenerator with highly sensitive self-powered strain sensing capabilities to monitor human body movement[END_REF][START_REF] Li | Auxetic piezoelectric energy harvesters for increased electric power output[END_REF], smart filters [START_REF] Alderson | An auxetic filter: a tuneable filter displaying enhanced size selectivity or defouling properties[END_REF][START_REF] Warmuth | Fabrication and characterisation of a fully auxetic 3D lattice structure via selective electron beam melting[END_REF], molecular filters [START_REF] Grima | Do zeolites have negative Poisson's ratios?[END_REF], protective pads [START_REF] Wang | Analytical parametric analysis of the contact problem of human buttocks and negative Poisson's ratio foam cushions[END_REF], shape morphing [START_REF] Dudek | Micro-scale auxetic hierarchical mechanical metamaterials for shape morphing[END_REF], shock absorption [START_REF] Ma | A nonlinear auxetic structural vibration damper with metal rubber particles[END_REF], sound insulation [START_REF] Bertoldi | Negative Poisson's ratio behavior induced by an elastic instability[END_REF], and many other fields. More examples can be found in subsection 1.3.2 and in Fig. 1.4.

1.7/ CHALLENGES AND OPPORTUNITIES FOR ARTIFICIAL AUXET-ICS

Despite more than 40 years of research, there are still many challenges and opportunities in artificial negative Poisson's ratio mechanical metamaterials [START_REF] Tahir | Auxetic materials for personal protection: A review[END_REF][START_REF] Luo | Design, manufacturing and applications of auxetic tubular structures: A review[END_REF][START_REF] Mir | Review of mechanics and applications of auxetic structures[END_REF][START_REF] Saxena | Three decades of auxetics researchmaterials with negative Poisson's ratio: a review[END_REF]. This section discusses the main challenges and the corresponding opportunities one by one.

1.7.1/ THERE ARE RELATIVELY FEW 3D AUXETIC STRUCTURES

Compared with 2D auxetics, 3D auxetic structures exhibit auxeticity in all principal directions, which means they no longer behave as a conventional material in any main directions. This leads to a number of advantages. For instance, due to the compression-1.7. CHALLENGES AND OPPORTUNITIES FOR ARTIFICIAL AUXETICS contraction behavior in three directions, they are more suitable for relatively spaceconstrained environments. Moreover, auxeticity can increase indentation resistance by drawing materials toward the point of impact from three directions rather than two [START_REF] Alderson | A triumph of lateral thought[END_REF].

However, most of the existing 3D auxetic structures are extensions of the corresponding 2D structures. Unfortunately, not all 2D auxetic structures can be extended to 3D [START_REF] Farrugia | The push drill mechanism as a novel method to create 3D mechanical metamaterial structures[END_REF].

Hence, more novel 3D auxetic structures are expected.

1.7.2/ LOWER EFFECTIVE MODULUS

The auxeticity of the materials introduces a lot of advanced performance, as discussed in subsection 1.3.1. However, many bending-dominant mode structures have been used

to obtain special auxetic properties. This is an indication that strength and stiffness are sacrificed so that the load capacity and the impact resistance of auxetic structures are relatively low compared with equivalent monolithic structures [START_REF] Wang | Progress in auxetic mechanical metamaterials: structures, characteristics, manufacturing methods, and applications[END_REF]. Improving the mechanical load-bearing capacity is necessary to realize the structural-functional integration of auxetics.

1.7.3/ EFFECTIVENESS LIMITED TO SMALL DEFORMATIONS

Similarly to other mechanical metamaterials, the behavior of auxetics mainly depends on their structural geometry rather than the original material. This feature makes it difficult to obtain negative Poisson's ratios under large deformations, because the geometry changes, especially for three-dimensional structures. This disadvantage can limit the functional application of auxetics, for instance, limiting their effective range as sensors [START_REF] Wang | 3D auxetic metamaterials with elastically-stable continuous phase transition[END_REF].

1.7.4/ FABRICATION

Traditional fabrication techniques (laser/water cutting) and assembly methods are used to fabricate 2D or 3D auxetics [START_REF] Wang | Fabrication and mechanical properties of cfrp composite three-dimensional double-arrow-head auxetic structures[END_REF][START_REF] Wang | Interlocking assembled 3D auxetic cellular structures[END_REF]. However, due to their complex geometries, the fabrication of auxetics strongly relies on the development of 3D printing technology.

Currently, the types of printable base materials limit the more functional applications of auxetics [START_REF] Wegener | 3D laser micro-and nanoprinting: 10 years of progress[END_REF][START_REF] Baigarina | Construction 3D printing: a critical review and future research directions[END_REF][START_REF] Su | 3Dprinted micro/nano-scaled mechanical metamaterials: Fundamentals, technologies, progress, applications, and challenges[END_REF]. Moreover, the anisotropy of the materials caused by 3D printing
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is not taken into consideration. In addition, synchronous 3D printing of variable modulus components -i.e., rigid and flexible parts, -is still a problem that needs to be solved.

Another point is that the high manufacturing cost greatly limits the mass production and applications of auxetics [START_REF] Wang | 3D auxetic metamaterials with elastically-stable continuous phase transition[END_REF].

1.8/ THE OBJECTIVES OF THIS THESIS

Based on the above, some 3D auxetic mechanical metamaterials with advanced mechanical performances are desired, especially in the case of large compressive deformations.

In this thesis, I first proposed a novel 3D partially auxetic metamaterial. Then the directional instability has been used to enhance the mechanical behaviors of the previous structures. More importantly, according to this partially auxetic metamaterial, a new configuration that shows auxeticity in three main directions has been investigated. This new structure with multi-step performance, that is, shows varying Poisson's ratio and effective

Young's modulus in different compressive strains. Finally, the new auxetic has been further optimized to obtain enhanced auxeticity. And the elastically stable continuous phase transition of the Poisson's ratio is presented.

PARTIALLY AUXETIC METAMATERIALS

2.1/ MOTIVATIONS

As discussed in Chapter 1, three-dimensional auxetics with advanced performance are desirable. In this chapter, I am proposing a partially auxetic metamaterial that is inspired by the shape of latitude and longitude lines. That unit cell is also the basic structure of the research in this thesis. Herein, I set the distances between A and B (along the z-axis) as 2b, between C and D (along the x-axis) as 2a, and between E and F (along the y-axis) as 2c, as illustrated in Fig. 2.1b. To make the structure more general, what needs to be emphasized here is that the size relationship between a, b, and c is arbitrary, in other words, there is no doubtless relationship between the shape of the elliptic ring ADBC and the counterpart of the elliptic ring ECFD.

To quantitatively describe the shape of elliptic ring ADBC and elliptic ring ECFD, I define m = a/b and n = a/c as the form factor (which is related to ellipticity) of the elliptic rings ADBC and ECFD respectively. It means that when m is larger than 1, the major axis of the elliptic ring ADBC is on the x-axis and the minor axis is on the z-axis. In contrast, under the circumstances of m being less than 1, the major axis and minor axis of the elliptic ring ADBC exchange positions and lie in the z-axis and x-axis. In particular, the ring ADBC is a standard circle ring structure when m is equal to 1. Similarly, there is an identical relationship between the shape of the elliptic ring ECFD and the parameter n. As a matter of fact, it is worth noting that parameters m and n are two independent variables. To verify the effectiveness of the design proposed in the previous section, some specimens for the auxetic materials were manufactured using Selective Laser Sintering (SLS) Then the Poisson's ratio of the samples can be calculated as ν zy = -ε y /ε z , and their effective compression modulus E z = σ z /ε z = (F z /S z )/ε z can be obtained, where S z and F z represent the lateral area of the specimens and the compressive load applied in the z-direction, respectively.

2.3/ METHODS

2.3.1/ EXPERIMENTAL SETUP

2.3.2/ NUMERICAL SIMULATIONS

Numerical simulations are conducted with the finite element (FE) method using commercial FE software ABAQUS/Standard (version 6.14) to study the mechanical performance of the proposed structures and analyze the influence of geometric parameters. CATIA (version P3 V5R20) has been used to establish the geometric model of the proposed structure, and then import it into ABAQUS/Standard. The finite element model consists of the bottom platen, specimen, and top platen, as depicted in Fig. 2.3a. The unit cell is built with the same size as that of the samples in experiments, which was meshed with the element C3D8R (an 8-node linear brick, reduced integration). Through mesh convergence analysis, as shown in Fig. 2.3b, the global element size (ES) of the unit structure was determined as 0.6mm to generate accurate enough results. The platen is simulated using a discrete rigid element with a reference point at the volume center. During the simulation, general contact was defined between the platen and the samples, where the normal behavior was defined as 'Hard' and the friction coefficient of tangential behavior was set as 0.1. Moreover, the reference point of the top platen is subjected to a displacement load that is directed along the z-direction, and the other five degrees of freedom of the reference point are fixed. However, all degrees of freedom of the reference point of the bottom platen are fixed. In order to simulate the actual experimental process, the Due to the experimental setup and the details of the numerical simulations of section 2 and section 3 being identical, these details will not be repeated in the next section. For any point G on arc AD, the distance from G to the center O of the elliptic ring ADBC is R, where R = a 2 b 2 /(a 2 sin 2 θ + b 2 cos 2 θ) and (0 ≤ θ ≤ 2π) is the angle between OG and OD. Let φ m = (m 2 sin 2 θ + cos 2 θ), φ n = (n 2 sin 2 θ + cos 2 θ), φ m ⩾ 0, φ n ⩾ 0, to simplify writing, so that R can be simplified to R = a/φ m in elliptic ring ADBC and R = a/φ n in elliptic ring ECFD. Herein, the principle of superposition is employed to solve for the displacement of each point when subjected to z-axis compression.

2.3.3.2/ DEFORMATION OF BEAMS AB AND CD

First, the deformation of AB and CD under the action of F AB is discussed. When the concentrated force F AB is loaded to point A, the bending moment M at point G can be obtained, and

M(θ) = F AB a 2 (1 - cosθ φ m - ϕ 1 ϕ 2 ), (2.1) 
where

ϕ 1 = π 2 0 (φ m -cosθ)dθ, ϕ 2 = π 2 0 φ m dθ.
According to the unit load method, the deformation of AB under the concentrated force F AB can be obtained,

∆ F AB AB = 2∆ F AB AD = 2 π 2 0 M (θ) M1 (θ) EI Rdθ= F AB a 3 mEI Φ 3 , (2.2) 
where ∆ F AB AB and ∆ F AB AD are the deformations along the z-directions of AB and AD under the concentrated force F AB , M1 (θ) = a -R cos θ = a (1cos θ/φ m ) is the bending moment on the arc AD which is caused by the unit force in the F N direction, I = qt 3 /12 is the moment of inertia of the elliptic ring's cross section about its neutral axis, E is the Young's modulus of the elliptic ring's raw material, and

Φ 3 = π 2 0 1 -cos θ φ m -Φ 1 Φ 2 (φ m -cos θ)dθ.
In the same way, the deformation of CD under the concentrated force F AB can be derived,

∆ F AB CD = 2∆ F AD AD ′ = = F AB a 3 mEI Φ 4 , (2.3) 
where ∆ F AB CD and ∆ F AB AD ′ are the displacements along the x-direction of CD and AD under the concentrated force F AB , M2 (θ) = R sin θ = a φ m sin θ is the bending moment on arc AD which is caused by the applied unit force whose direction is perpendicular to the F N direction, and

Φ 4 = π 2 0 1 -cos θ φ m -Φ 1 Φ 2 sin θdθ.
Then, the deformation of AB and CD under the action of F CD merely will be discussed.

As described previously, the displacements of AB and CD under concentrated force F CD can be identified,

∆ F CD AB = F CD a 3 mEI π 2 0 sin θ φ m - 1 Φ 2 (φ m -cos θ) dθ = F CD a 3 mEI Φ 5 , (2.4) 
∆ F CD CD = F CD a 3 mEI π 2 0 sin θ φ m - 1 Φ 2 sin θdθ = F CD a 3 mEI Φ 6 , (2.5) 
where

Φ 5 = π 2 0 sin θ φ m -1 Φ 2 (φ m -cos θ) dθ, Φ 6 = π 2 0 sin θ φ m -1 Φ 2 sin θdθ.

2.3.3.3/ DEFORMATION OF BEAMS CD AND EF

The deformation of CD and EF subjected to the action of F CD ′ merely is discussed in this subsection. The displacements of CD and EF under concentrated force F CD ′ can be identified,

∆ F CD ′ CD = F CD ′ a 3 nEI π 2 0 sin θ φ n - 1 Φ 7 sin θdθ= F CD ′ a 3 nEI Φ 8 , (2.6) 
∆ F CD ′ EF = F CD a 3 nEI π 2 0 sin θ φ n - 1 Φ 7 (φ n -cos θ) dθ = F CD ′ a 3 nEI Φ 9 , (2.7) 
where To sum up, based on the superposition principle, the total displacement of CD in the elliptic ring ADBC is derived as

Φ 7 = π 2 0 φ n dθ, Φ 8 = π 2 0 sin θ φ n -1 Φ 7 sin θdθ, Φ 9 = π 2 0 sin θ φ n -1 Φ 7 (φ n -cos θ) dθ.
∆ v CD = ∆ F AB CD -∆ F CD CD = F AB a 3 mEI Φ 4 - F CD a 3 mEI Φ 6 . (2.8)
And the total displacement of CD in the elliptic ring ECFD is

∆ l CD = ∆ F CD ′ CD = F CD ′ a 3 nEI Φ 8 .
(2.9)

Based on the deformation compatibility condition, the displacement of CD in the elliptic ring ADBC and in the elliptic ring ECFD are equal, I thus have ∆ l CD = ∆ v CD and F CD = F CD ′ , so the relationship between F AB and F CD can be obtained,

F CD = nΦ 4 nΦ 6 + mΦ 8 F AB .
(2.10)

Consequently, the total deformation of AB, CD, and EF is deduced as

∆ AB = ∆ F AB AB -∆ F CD AB = F AB a 3 mEI Φ 3 - nΦ 4 Φ 5 nΦ 6 + mΦ 8 , (2.11) 
∆ CD = F AB a 3 Φ 4 Φ 8 EI (nΦ 6 + mΦ 8 ) , (2.12 
)

∆ EF = F AB a 3 Φ 4 Φ 9 EI (nΦ 6 + mΦ 8 )
.

(2.13)

And then, the strain along the x-, the y-and the z-directions is calculated as

ε x = ∆ CD 2a = F AB a 2 nΦ 4 Φ 8 2EI (nΦ 6 + mΦ 8 ) , (2.14) 
ε y = ∆ EF 2c = F AB a 2 nΦ 4 Φ 9 2EI (nΦ 6 + mΦ 8 ) , (2.15 
)

ε z = ∆ AB 2b = F AB a 2 2EI Φ 3 - nΦ 4 Φ 5 nΦ 6 + mΦ 8 . (2.16) 
The equivalent Poisson's ratio is obtained as

ν zy = - ε y ε z = - nΦ 4 Φ 9 [Φ 3 (nΦ 6 + mΦ 8 ) -nΦ 4 Φ 5 ]
.

(2.17)

The equivalent elastic modulus in the z-directions is

E z = F AB S ε z = EI (nΦ 6 + mΦ 8 ) 2a 2 (a + r) a n + r [Φ 3 (nΦ 6 + mΦ 8 ) -nΦ 4 Φ 5 ] , (2.18) 
where S = 4 (a + r) (c + r) is the projected area of the cell structure along the z-direction, and r is the minimum connection distance between two unit structures for manufacture, as demonstrated in Fig. It can be seen from equation 2.17 that the equivalent Poisson's ratio of the structure is only related to the form factor of the elliptic rings, m and n. However, the derivation of equation 2.17 is based on the theory of the thin-walled torus and assumes small elastic deformations. Therefore, it is necessary to explore the influence of the ring wall thickness and of the structure size (a/t) on the equivalent elastic parameters and the experimental test accuracy. It is clear that the size of the whole unit structure merely depends on the parameter a under the circumstance that the values of m and n are fixed. Here, I fixed the values of m and n to 1, which means that both ring ADBC and ring ECFD are standard ring structures in the system, and the wall thickness for all rings is t = 2 mm, the width of counterparts is q = 3 mm, the size of the structure in the x-direction a are 9 mm, 12 mm, and 15 mm, recorded as S1-S3 respectively.

The test results of equivalent elastic parameters are demonstrated in Fig. 2.5 and Fig. The compression deformation process of experimental and finite element simulation is illustrated in Fig. 2.5. It can be noted that parameter a has only a slight effect on the accuracy of the test results for Poisson's ratio and that the finite element calculation results

show the same pattern. On the contrary, the error between experimental and theoretical results of the equivalent elastic modulus depends significantly on parameter a, which is mainly caused by the following two reasons. On the one hand, the density of the porous CHAPTER 2. PARTIALLY AUXETIC METAMATERIALS material is too large and causes an increase in the elastic modulus, which corresponds to the case where the value of a/t is small. On the other hand, the material is more affected by thermal deformation when manufactured by Selective Laser Sintering (SLS) 3D

printing technology under the circumstance of a/t being too large.

In general, the curves obtained by theoretical calculations, numerical simulations, and experimental testing are in good agreement. Therefore, the theoretical model and FE analysis in this article were verified via the experiment. Of course, there are some errors in the theoretical calculations, numerical results, and experimental data. Through the convergence analysis in Fig. 2.3, I believe that the results obtained by the finite element calculation are true. For the theoretical model, the influence of shear and torsion of the ellipse ring have been neglected. Moreover, the theoretical model does not consider the influence of boundary effects. This is the main reason for the error between theoretical results and simulation results. Besides, many factors, such as random effects, manufacturing error, instrument accuracy, manual measuring error, the difference in boundary conditions between the experiment and simulation, etc. may lead to deviations in the mechanical properties of a real structure. Therefore, these may be the reason for the differences between the experimental and simulated results. It can also be seen from the analysis of the experimental results that when the values of t and q are unchanged, the value of structure size a has a significant effect on equivalent modulus test accuracy, and the theoretical, experimental, and simulation results match best at a = 12mm. Hence, for the consideration of test accuracy and ease of manufacturing of the specimens, the influence of other parameters on the equivalent elastic parameters of the structure will be discussed on the basis of the dimension of the structure in the x-direction is fixed at

a = 12mm.

2.4.2/ AUXETIC BEHAVIOR OF DER UNDER LARGE LEVELS OF COMPRESSION

One weakness of most existing three-dimensional negative Poisson's ratio metamaterials is that they exhibit negative Poisson's ratio characteristics under small strains merely, which greatly limits the scope of engineering applications of 3D negative Poisson's ratio materials. Therefore, the development and research of materials and structures that still have negative Poisson's ratio behaviors under large strains are urgently needed. In this section, taking sample S2 as an example, the auxetic behavior of DER under large levels It can be seen from Fig. 2.7a that the experimental ε z versus ε y curve (in green) keeps increasing linearly until ε z exceeds 16%. However, deformation in the y-direction in-creases sharply with the increase of deformation in the z-direction when the strain in the z-direction is higher than 16%, this is mainly due to the lateral instability of the structure as shown in Fig. 2.7b. When the structure is laterally unstable, the deformation mode of the structure changes from compression-dominated to bending-dominated, so the strain in the y-direction increases sharply. Particularly, the deformation process of different specimens in the uniaxial compression experiment in the z-direction is shown in Fig. 2.10a. It should be pointed out at this point that the shrinkage effect can be easily observed in the y-direction when the strain ε z reaches 4%, of particular note, the shrinkage effect is more significant as n increases.

What needs to be emphasized is that for specimen S6 with n = 2.5, the global instability of the structure occurred when the strain reaches 4%. However, the simulated deformation of the counterparts illustrated in Fig. 2.10b does not show the global or local instability of the structure. Global instability of the structure mentioned above is a typical effect related to symmetry breaking in various systems under large loads [START_REF] Pozniak | Computer simulations of auxetic foams in two dimensions[END_REF][START_REF] Po Źniak | Planar auxeticity from elliptic inclusions[END_REF], and the reason why this phenomenon is not observed in the simulation results may be that the boundary conditions of the experiment and the simulation are not exactly the same. Moreover, the finite element simulation results show that when the structure is under compressive load, there is only quite a slight stress concentration at the intersection of two orthometric elliptic rings, which shows that the structure may have better fracture resistance and fatigue characteristics. It is easy to see that m and n have a crucial effect on Poisson's ratio of DER, and the previous series of experimental results also prove this conclusion. However, the influence of m and n on ν zy is not linear or monotonous but coupled with each other. As can be noted, the maximum value of Poisson's ratio ν zy can be dramatically reached -10 in the situation where m and n close to 0.005 and 0.7, respectively. However, when n is close to 0, no matter how much the value of m is, Poisson's ratio ν zy is close to 0. The reason for this is that as n approaches 0 means the size of the elliptic ring in the y-direction c approaches infinity. According to equations 2.15 and 2.17, the strain in the y-direction approaches 0, so that ν zy is close to 0 under these circumstances. On the other hand, Poisson's ratio ν zy also approaches 0 in the case of n approaches infinity, because in this situation the structure is not deformed in the y-direction when undergoes static compression in the z-direction. All in all, from the results and the analysis it is indicated that Poisson's ratio of the proposed structure can be adjusted by adjusting the values of m and n.

2.4.4/ THEORETICAL RESULTS

2.5/ CONCLUSIONS

In this chapter, the latitude-and-longitude-inspired double-elliptic-ring structure with tunable Poisson's ratio and Young's modulus via tailoring the geometry parameters was Currently, there are two popular methods to improve the effective Young's modulus of bending-dominated auxetics. The first one is utilizing advanced raw materials, such as metals [START_REF] Box | Hard auxetic metamaterials[END_REF] or carbon-reinforced composites [START_REF] Wang | Fabrication and mechanical properties of cfrp composite three-dimensional double-arrow-head auxetic structures[END_REF], to fabricate the auxetics. The other one is adding some compression-dominated inclusion to the auxetics [START_REF] Li | Novel auxetic structures with enhanced mechanical properties[END_REF][START_REF] Chen | Re-entrant auxetic lattices with enhanced stiffness: A numerical study[END_REF]. Both mentioned methods certainly can enhance the effective Young's modulus of auxetics. From the mechanical point of view, I prefer using the latter method. In this chapter, I want to use the auxetic behavior of the materials to introduce the directional instability of the compression-dominated inclusion, and the latter will further enhance the auxeticity of the original metamaterials. For a compression-dominated beam under a compression load (see Fig. 3.1a), the instability directions will be determined by two factors, i.e., the boundary conditions and the shape of the cross sections. In fact, the boundary conditions of the compression-dominated inclusion are fixed. As we can see in Fig. 3.1b, for a circular cross-section, the instability direction of the beam is random.

For the square section, the instability direction has 4 possibilities. It is worth noting that for rectangular sections, the possibility of instability direction reduces to 2. Therefore, it is possible to use the auxeticity of auxetics to drive the directional instability of rectangular (rectangular-like) cross-section beams. 

3.3/ EXPERIMENTAL VERIFICATION

3.3.1/ FABRICATION

The DER and EDER auxetic metamaterials considered in this work are manufactured using an additive manufacturing method, i.e., Selective Laser Sintering (SLS), which is suitable for fabricating complex geometrical structures. The raw material was white spherical polyamide 3300 (PA3300) with a power melting point of 145 0 . The speed of the 3D printer was set to 20mm/h, and the layer thickness was 100µm. The reasons for using PA3300 are that it does not need any holder during the printing process to ensure the accuracy of manufacturing, in addition to its high-temperature resistance, good toughness, and high strength. These advantages of PA3000 can significantly improve structural designability.

A total of 2 sets of DERs (marked as DER1) and EDERs (marked as EDER1) were 

3.3.2/ EXPERIMENTAL RESULTS

The nominal strain ε z versus the nominal stress σ z and nominal strain ε y curves of the uniaxial compressive response of DER1 and EDER1 are shown in Fig. 3.4e and f, respectively. For DER1, uniform and single deformation patterns were observed during the overall compression test, and the experimental (in blue) and simulation (in grey) results

showed the same rule. It should be noted that the obvious fluctuation of the experimental ε z versus ε y curve in the region of small ε z can be explained by experimental error, such as a slight disturbance of the HD camera and/or some other environmental impacts.

By contrast, the deformation pattern of EDER1 is non monotonic, and the universal compressive response can be divided into 2 steps. In step-1, the deformation is dominated by the compression of all parts of EDER1, and the deformation in this step is similar to the counterpart of DER1. When ε z reaches critical strain ε c (which is defined as the point where the strain of EDER1 in the y-direction ε y exceeds the equivalent of DER1), the deformation pattern of EDER1 changes from step-1 to step-2. In step-2, the instability of the ES of EDER1 occurred, and the following factors need to be emphasized. First, the instability of ES is directional. Owing to the negative Poisson's ratio effect of DER, the instability of ES is induced in a fixed direction, that is, from outside to inside along the Third, the directional instability of the ES will enhance the negative Poisson's ratio effect of the EDER. In other words, there is a strong coupling relationship between the instability of the ES and the auxetic effect of the DER. Specifically, the negative Poisson's ratio effect of the DER will give rise to the directional instability of ES, and the instability of the ES will enhance the negative Poisson's ratio effect of the DER. The experimental (in red) and simulation (in green) results illustrated in Fig. 3.4e and f validated this conclusion. As a significant remark, in this step, the slope of the ε z versus ε y curve will increase as ε z increases because the instability of ES is layer by layer. Finally, the auxetic effect of the EDER can be further enhanced by improving the elastic stage of the raw material. In Fig. 3.4f, the simulation results (in green) of the finite-element model with elastoplastic properties (the same properties as the PA3000 raw material) matched very well with the results obtained by the experiment (in red). The results (in magenta) of the finiteelement model with pure elastic properties show an improved negative Poisson's ratio effect compared to the elastoplastic model. These comparisons identify that the straindependent negative Poisson's ratio of the EDER is caused by the characteristics of the structure, not the plasticity of the raw material. In this chapter, I focus on investigating the elastic mechanical behaviors of EDERs, and the plasticity of the raw material will be ignored in the following simulation studies.

By comparing the mechanical properties of DER1 and EDER1, some conclusions can be drawn. On the one hand, EDER1 has a greater equivalent elastic modulus than DER1, 17.966 MPa for the former and 2.67 MPa for the latter. It is worth noting that the relative density of the considered structures is different, and their specific stiffness will be discussed in the following subsection. On the other hand, the auxeticity of EDER1 is more distinguished than that of DER1, especially in step-2. The deformation process of DER1 and EDER1 was obtained via different methods illustrated in Fig. 3.5a-e.The deformation laws of DER1 and EDER1 are the same when the strain in the z-direction is small (ε z = 0˜0.02). However, the auxeticity property of the EDER is significantly stronger than that of the DER when the strain ε z (ε z = 0.003˜0.05) exceeds the critical value ε c = 0.026. In summary, EDERs have better mechanical properties (higher equivalent elastic modulus and stronger auxeticity) than DERs.

3.4/ THEORETICAL ANALYSIS

The results obtained in the experimental section reveal that the mechanical properties of the DER are significantly improved by adding an ES. In fact, EDER with multi-ES can be designed to achieve a high performance of mechanical properties, as demonstrated in Fig. 3.6a. Without loss of generality, a mechanical model of EDER with multi-ES (assuming that the size of the N-th enhancement ring is much larger than its thickness) under the circumstances of uniaxial compression in the z-direction is derived in this section.

Bending deformation is considered only in this section and shear/torsion effects have been ignored for the following reasons. On the one hand, all elliptic rings (elliptic rings in DER and ES) are thin-walled structures which can be explained by the thickness of all elliptic rings being much smaller than their axial length. On the other hand, small elastic deformations are considered only in this work. During compression loading applied along the z-direction, the macroscopic Poisson's ratio of the DER structure as a function of the geometrical parameters is presented in equation 2.17. The effective Young's modulus of DER is presented in equation 2.18.

Due to an ES or multi-ES added in the z-direction in the DER, Young's modulus of EDER can be obtained as

E EDER z = E DER z + E ES z = E z + E ES z , (3.2) 
where E ES z is the effective Young's modulus of the ES or multi-ES.

In the situation of uniaxial compression in the z-direction, the loading condition of the i-th elliptic ring of multi-ES is illustrated in Fig. 3.6b. All connectors between elliptic rings have been considered rigid bodies. F (i-1)i represents the compression loading of the (i -1)-th elliptic ring on the i-th elliptic ring, and F (i+1)i represents the support force of the (i+1)-th elliptic ring on the i-th elliptic ring. Overall, the equivalent compression loading of the i-th elliptic ring in the z-direction is

F Ni = F (i-1)i -F (i+1)i . (3.3) 
Considering the symmetry of the structure in the x-and z-directions, the equivalent internal force conditions of the i-th elliptic ring are shown in Fig. 3.6c with M 0 being the unknown moment. Combined with the angular displacement at point D i equal to zero, the unknown moment M 0 can be deduced based on Mohr's theorem and the canonical equation. On arc ⌢ A i D i , the distance from any point G i to the center of the elliptic ring

R i = a i 2 b i 2 a i 2 sin 2 θ+b i 2 cos 2 θ
, where a i and b i are the axis lengths in the x-and z-directions of the i-th elliptic ring. For simplicity, two dimensionless parameters are defined

m i = a i b i , φ 2 m i =m i 2 sin 2 θ + cos 2 θ φ m i > 0. Therefore, R i can be expressed as R i = a i φ m i
, and the arc length of the elliptic ring is

S i = 2π 0 a i 2 sin 2 (θ) + b i 2 cos 2 (θ)dθ = a i m i φ m i dθ.
Then the distribution of the moment M i on the i-th elliptic ring under the action of an external force can be determined.

M i (θ) = F Ni a i 2 1 - cos θ φ m i - Φ 10 Φ 11 , (3.4) 
where

Φ 10 = π 2 0 φ m i -cos θ dθΦ 11 = π 2 0 φ m i dθ.
Therefore, the strain energy of the i-th elliptic ring A i B i C i D i can be obtained as

V i ε = a i 3 F 2 Ni 2m i EI π 2 0 1 - cos θ φ m i - Φ 10 Φ 11 2 φ m i dθ= a i 3 F 2 Ni 2m i EI Φ 12 , (3.5) 
where

Φ 12 = π 2 0 1 -cos θ φ m i -Φ 10 Φ 11 2 φ m i dθ.
Based on Castigliano's second theorem, the relationship between F Ni and the deformation of ring A i B i C i D i in the z-direction can be readily gained as

∆ A i B i = ∂V i ε ∂F Ni = a i 3 F Ni m i EI Φ 12 . (3.6)
That is

F Ni = m i EI a i 3 Φ 12 ∆ A i B i . (3.7)
Consequently, the compression loading along the z-direction of the multi-ES F N versus the corresponding displacement can be written as

F N = N i=1 F Ni = n i=1 m i EI a i 3 Φ 12 ∆ A i B i = EI Φ 12 N i=1 m i ∆ A i B i a i 3 . (3.8) 
From the deformation compatibility condition viewpoint, each elliptic ring in multi-ES has the same displacement in the z-direction because all connectors have been considered

rigid bodies, that is,

∆ AB = ∆ A 1 B 1 = ∆ A 2 B 2 = • • • = ∆ A i B i = • • • = ∆ A N B N . (3.9) 
Hence, Equation 3.8 can be simplified as

F N = EI N i=1 m i a i 3 Φ 12 ∆ AB . (3.10) 
Young's modulus of multi-ES is

E ES z = F N S ∆ AB 2b = aEI N i=1 m i a 3 i mΦ 12 a + t 2 + r a n + t 2 + r , (3.11) 
where S = 4 (a + r) (c + r) is the projected area of the proposed structure along the zdirection. As a result, the effective Young's modulus of EDER can be readily obtained by the above equations, that is

E EDER z = EI a + t 2 + r a n + t 2 + r                 (nΦ 6 + mΦ 8 ) 2a 2 [Φ 3 (nΦ 6 + mΦ 8 ) -nΦ 4 Φ 5 ] + a N i=1 m i a 3 i mΦ 12                 . (3.12)
For the presented EDER structure, another vital parameter is the critical strain which implies the transformation of the EDER deformation mode from step-1 to step-2. Unfortunately, the critical strain is untoward to determine analytically due to the following key factors. First, owing to the instability of the EDER structure in the y-direction occurring gradually from outside to inside, the strain in the corresponding direction varies in different regions, which will be discussed in detail in the following subsection. Moreover, there is a strong coupling relationship between the auxetic effect of DER and the instability of ES, and this coupling relationship is difficult to determine from a quantitative viewpoint.

Herein, the effect of a 1 on the critical strain ε c with m, n, b 1 , t, q and the number of unit cells (fixed with 5 × 10 × 5) in three principal directions fixed is discussed. The mechanical properties and boundary conditions of the multi-ES have a significant influence on the value of the critical strain, which is beyond any doubt. In this section, the multi-ES is considered an equivalent beam with the same mechanical properties. The Young's modulus, length, width, and thickness of the equivalent beam are E, l * =2b 1 , w * and t * =q respectively, as shown in Fig. 3.6d. The width of the equivalent beam w * is unknown.

The compression loading along the z-direction of the equivalent beam F * N versus the corresponding displacement ∆ * can be written as

F * N = EA * l * ∆ * , (3.13) 
where A * = w * t * is the projected area of the equivalent beam, ∆ * =∆ AB , and F N = F * N . Because multi-ES and equivalent beams have identical mechanical properties, the width of the equivalent beam can be deduced via combining Equations 3.10 and 3.13

w * = l * I N i=1 m i a 3 i t * Φ 12 . (3.14) 
Boundary conditions are another leading cause of equivalent beam instability. The connection of the equivalent beam and connector is shown in Fig. 3.6e, and it is implied that the boundary conditions of the equivalent beam principle depend on the constraint of the connector on its end. In the case where the material properties and geometric parameters of the connector are determined, the relative constraint of the connector on the equivalent beam primary rests with the value of w * /q. However, it is difficult to analytically determine the critical strain ε c . Instead, systematic numerical simulations of the proposed 3D EDER partial auxetic structure with various ratios w * /q are used to extract ε c , as demonstrated in Fig. 3.7. Consequently, the semiempirical formula of w * /q versus ε c is acquired via fitting the simulation results:

ε c = 1.048( w * q ) 2 -0.29( w * q ) + 0.0461. (3.15)
As shown in Fig. 3.7, ε c decreases rapidly as the value of w * /q increases. The major cause for this pattern is that as w * /q increases, the relative constraint of the connector to the equivalent beam decreases. That is, the end of the equivalent beam becomes more flexible or free under this circumstance. As a result, instability of the equivalent beam occurs at smaller strains. This law is exactly consistent with Timoshenko's work regarding the theory of elastic stability [START_REF] Timoshenko | Theory of elastic stability[END_REF]. Relative density is an extremely significant parameter of porous materials and has been defined as the volume fraction of solid material volume to the bulk volume of the structure.

The relative density of the considered structure in this chapter can be obtained as

ρ DER = q t (C ADBC + C CFDE ) + 6qr -2qt 8(a + t 2 + r) b + t 2 + r c + t 2 + r , (3.16 
) Furthermore, specific stiffness is another vital property for the structural design of cellular materials, especially in the aerospace industry. It is defined as the ratio of the structural elastic modulus to its density, and the specific stiffness of the DERs and EDERs can be written as

ρ EDER = q t (C ADBC + C CFDE ) + 6qr -2qt + 2q (b -t -b 1 ) + C ES t 8(a + t 2 + r) b + t 2 + r c + t 2 + r , (3.17 
Θ DER = E DER z ρρ DER , Θ EDER = E EDER z ρρ EDER , (3.18) 
where ρ is the density of PA3300 raw material. 3.8b, it can be seen that the specific stiffness of EDERs monotonously increases with the decrease of a 1 when b 1 is fixed, and the impact of a 1 on Θ EDER will be more significant as a 1 decreases. By comparison, the influence of b 1 on Θ EDER is quite inappreciable when a 1 is fixed, especially when a 1 is relatively small. Owing to the aforementioned characteristics, EDERs have many advantages in structural and functional applications.

For instance, the sensitivity of Θ EDER to a 1 can provide a way to increase the specific stiffness of EDERs to meet the requirements of structural applications for mechanical properties. Meanwhile, the porosity of EDERs can be adjusted at a fixed value of specific stiffness due to the insensitivity of Θ EDER to b 1 , this property of EDERs makes it suitable for different functional applications.

Obviously, it can be seen that the results from finite element analysis are consistent with those from theoretical prediction and experimental tests. Hence, the finite-elements model was validated via a theoretical model and experiment although there were errors among them. In fact, the simulation results are a reality in the case that it is convergent.

Compared with the theoretical model, bending deformation is considered only in the theoretical prediction, and shear/torsion effects have been ignored, which is the leading cause of the errors between the simulation results and the theoretical model. Similarly, a few factors, such as random effects, manual measuring error, and manufacturing defects of specimens, contribute to the deviation simulation and experiment. In particular, it is worth noting that the test accuracy of EDER1 (11%) was higher than that of DER1 (32%). This phenomenon can be explained by selective laser sintering (SLS) 3D printing manufacturing errors. For this technology, the higher the relative density of the specimens is, the higher the manufacturing accuracy, thanks to the influence of thermal deformation is smaller in this situation. In summary, it can be concluded that the finite element simula-tions established in this chapter are able to accurately reproduce the experimental results.

Therefore, finite-element models will be employed for the following discussions. From the study in the previous subsection, it can be seen that the microscopic instability of ES occurs layer by layer from the outside to the central region along the y-direction.

Therefore, the strain in the y-direction ε y is different in different regions. From a quantitative viewpoint, a parameter ξ is introduced and defined as the ratio of ε y(EL) and ε y(AP) , that is,

ξ= ε y(EL) ε y(AP) , (3.19) 
where ε y(AP) and ε y(EL) are strains of points A and P and points E and L in the y-direction, respectively. The dependence of ξ on nominal strain ε z is demonstrated in Fig. 3.10b. For DER1 (in blue), ξ does not depend on ε z and is a constant of approximately 0.90. The explanation for ξ = 0.9 is boundary effects. Nevertheless, for EDER1 (in red) and EDER4 (in green), ξ depends on nominal strain ε z and increases as ε z increase. It can be seen from Fig. 3.9b that ES has a slight decrease in the auxeticity of EDERs in the case where ε z is small, this is the leading cause of the ξ of EDERs being mildly less than that of DERs in the initial compression stage. Owing to the occurrence of layer-by-layer microscopic instability of ES, the ξ of EDERs increases as ε z increases. As complementary remarks, the ε z of the initial microscopic instability of ES is smaller than the critical strain ε c due to the strain in the y-direction is different in different regions.

The deformation process of microstructures located in the central region of EDER4 is illustrated in Fig. 3.10c. From the stress nephogram of these microstructures, it is interesting to note that the initial microscopic instability of ES occurred in the microstructures located at point B. As significant remarks, EDER1 and EDER4 have different deformation mechanisms in the y-direction. For EDER1, the microscopic instability of the microstructure located at point A will promote that of the ES located at points B, C, and E. Consequently, there is a push-like deformation mechanism between these microstructures. Nevertheless, for EDER4, the pull-like deformation mechanism occurs between the microstructure located at points A and B, and the deformation mechanism between the microstructure located at points B and C is a push-like mechanism due to the microscopic instability of ES has occurred the earliest in the microstructures located at point B.

The results obtained in this part indicate that the order of localized microscopic instability of EDER cellular mechanical metamaterial under quasi-static compression can be highly programmed. In contrast to well-known homogeneous localized deformation in solids, EDERs with gradient/variational ES structures have the potential to reliably transmit information and energy due to their different localized deformation mechanisms in different regions [START_REF] Zhang | Programmable and robust static topological solitons in mechanical metamaterials[END_REF].

3.5.3.2/ MACROSCOPIC INSTABILITY

Macroscopic instability is a typical effect in various systems under a large load. The main feature of macroscopic instability is that the wavelength is much larger than the scale of the microstructures. Besides, the periodicity of the cellular structures will be changed via macroscopic instability, and the altered patterns are dependent on the sizes of the models. Moreover, macroscopic instability occurs before microscopic instability along the loading path when the relative density of cellular structures exceeds a critical value [START_REF] He | Buckling and pattern transformation of modified periodic lattice structures[END_REF].

Various elements influence the macroscopic instability of cellular structures, such as initial porosity, the section of frames, and the distribution of holes and inclusions [START_REF] He | Buckling and pattern transformation of modified periodic lattice structures[END_REF]. Herein, the influence of the width of elliptic rings q on macroscopic instability is considered. I set EDERs with q = 3 mm and q = 5 mm as EDER5 and EDER6, respectively. The other parameters of EDER5 and EDER6 are the same as EDER1, as shown in Fig. 3.3.

The macroscopic instability of these structures is reported in Fig. 3.11, and it can be seen that the critical strain value of macroscopic instability occurrence will increase as q increases. For instance, this value increases from 0.032 to 0.068 when q increases from 3 to 5. As minor remarks, the critical strain value of macroscopic instability occurrence of EDR1 in the experiment and simulations shows a slight difference, and the explanation for this is that the boundary conditions in the experiment and simulations are not exactly the same. As a final remark, macroscopic instability can be exhaustively eliminated by increasing the elastoplasticity of the raw material of cellular structures.

3.5.4/ SIZE EFFECT

In many practical engineering applications, the size of the structure is limited. In the case of a small number of unit cells, the boundary effects have a vital impact on the mechanical properties of the structure, which is also called the size effect. In this part, the influence of the number of unit cells on the negative Poisson's ratio effect is discussed. Herein, taking EDER1 (with 5 × 10 × 5, 5 × 10 × 7, 5 × 8 × 5, 5 × 6 × 5 unit cells in x-, y-and z-directions) as an example, numerical simulation was employed to evaluate the influence of the size on the structural negative Poisson's ratio effect, as shown in Fig. 3.12.

Firstly, the negative Poisson's ratio effect of EDER1 increases with the decrease of the number of unit cells in the y-direction, as demonstrated in the green and magenta curves in Fig. 3.12. This phenomenon is caused by the microscopic instability of ES that occurs layer-by-layer from the outside to the central region along the shrinking direction, as discussed in the previous subsection. In other words, the decrease in the number of the unit cells in the y-direction means that the ES located at the marked point will be instability under a smaller compressive strain, which will cause a more significant contraction in this direction. Moreover, it can be clearly seen that the auxeticity of EDER1 will increase as the number of unit cells in the z-direction increases, as illustrated in the red curve in Fig. 3.12. The explanation for this characteristic is that the boundary effects will be slight when the structure with more unit cells in the z-direction. As a final remark, the size of the structure in the y-and z-directions, as well as their ratio, have a greater impact on the auxeticity of the structure due to these factors have a vital impact on the macroscopic and microscopic instability of the structure. This conclusion provides a new way to adjust the mechanical properties of EDERs to meet the requirements of different engineering applications. 

3.6/ CONCLUSIONS

In this chapter, I reported how strain-dependent 3D auxetic metamaterials, which consist of a double-elliptic-ring (DER) structure and an enhanced structure (i.e., an elliptic ring structure along the loading direction), can be realized via auxeticity introduced directionalinstability of the enhanced structure. My experimental and simulation results show the importance of the geometrical design, including the shape of the enhanced structure and the width of the elliptic ring section, in the effectiveness of the strain-dependent control of their auxeticity. I also find that the strain value in the y-direction is different in different regions due to the microscopic instability of ES occurring layer by layer from the outside to the central region along the y-direction. substructure that exhibits non-auxeticity in the x-direction but auxeticity in the y-direction when either compression or stretching is applied along the z-direction, as depicted in Fig. 4.1a. This partially-auxetic substructure consists of two different elliptical rings located in perpendicular planes. The presented results demonstrated that the auxeticity of the substructure only depends on the geometry parameters m and n, which are used to describe the shape of the elliptical ring in the xy-plane and the xz-plane, respectively. Parameters m and n are independent of each other. An important property of this substructure is that shrinkage in the y-direction is larger than expansion in the x-direction for some values of geometry parameters m and n, that is, for δy > δx, as shown with a red dotted line in Fig. 4.1a.

4.2.2/ NEW DESIGN FOR AUXETICS IN THREE DIRECTIONS

Based on this inherent property, four substructures can be arranged alternatively in the xand y-directions to obtain a repeatable unit cell exhibiting auxeticity in all three orthogonal directions, as illustrated in Fig. 4.1b. The corresponding primitive unit cell is depicted in Fig. 4.1c. It is worth noting that the mechanical properties of the proposed metamaterial are identical in the x-and y-directions because of symmetry. Furthermore, another significant geometry parameter is the distance between the outer surfaces of two adjacent elliptical rings in the xz-plane, t c . Parameter t c has a crucial influence on the tunable effective elastic constants obtained at different compression steps and will be discussed further in the discussion section.

4.2.3/ EFFECTIVE ELASTIC CONSTANTS

In order to explore thoroughly the influence of the shape of each elliptical ring, described by parameters m and n, on effective elastic constants, a theoretical model was built based 

4.3/ METHODS

4.3.1/ ANALYTICAL MODEL

To obtain the effective mechanical properties of the proposed metamaterial, the theoretical model is built based on the force method in beam theory. The following assumptions should be highlighted. First of all, I use the unit cell shown in Fig. 4.1c as the representative volume element of the metamaterial, and periodic boundary conditions are applied in all three principal directions. Secondly, the situation that the structure is under small compressive/stretch deformation in the z direction is taken into consideration. Then, all joints in the structure are assumed to be rigid. Moreover, the axial and shear deformations have been neglected so I assume that all members in the proposed structure are Euler beams and they are deformed by bending only [START_REF] Yang | Mechanical properties of 3D double-U auxetic structures[END_REF].

Herein, I assume that a stretch (or a compressive) pre-displacement is applied in the z direction on the representative volume element. As I declared in the previous section, it is clear that the mechanical properties of the structure in the x and y directions are identical.

Due to the symmetry of the structure in all three principal directions, the loading and corresponding boundary conditions of a 1/8 representative volume element are considered and analyzed, as shown in Fig. 4.2a. For the considered 1/8 unit cell, it is clear that the degrees of freedom of plane BEF in the x direction, plane AEH in the y direction, and plane ABCD in the z direction are fixed. However, the other three faces parallel to them are free in the corresponding directions. Furthermore, I can decompose the 1/8 representative volume element at each joint and obtain the force conditions of each beam [START_REF] Gao | Novel 3D auxetic lattice structures developed based on the rotating rigid mechanism[END_REF],

as illustrated in Fig. 4.2b-i.

For each member of the 1/8 representative volume element, the effective loading and boundary conditions are identical, as shown in Fig. 4.2b-ii. I assume that

F 1i = F 2i = 1 N, M i = 1 N • m for i = m
, n so that I can obtain the following parameters [START_REF] Yang | Mechanical properties of 3D double-U auxetic structures[END_REF] by the force method in the theory of beams,

                                                     δ F 1i F 1i = a 3 EI π/2 0 1 i - sin θ √ i 2 sin 2 θ+cos 2 θ 2 1 √ i 2 sin 2 θ+cos 2 θ dθ, δ F 1i F 2i = -a 3 EI π/2 0 1 i - sin θ √ i 2 sin 2 θ+cos 2 θ cos θ i 2 sin 2 θ+cos 2 θ dθ, δ F 2i F 2i = a 3 EI π/2 0 cos 2 θ √ i 2 sin 2 θ+cos 2 θ 3 dθ, δ M i M i = a EI π/2 0 1 √ i 2 sin 2 θ+cos 2 θ dθ, δ F 2i M i = a 2 EI π/2 0 cos θ i 2 sin 2 θ+cos 2 θ dθ, δ F 1i M i = -a 2 EI π/2 0 1 i - sin θ √ i 2 sin 2 θ+cos 2 θ 1 √ i 2 sin 2 θ+cos 2 θ dθ, (4.1)
where δ jk = δ k j means the displacement component in j direction introduced by the unit force in k direction, and E and I = bt 3 24 represents Young's modulus of the raw materials and moment of inertia of the beam, respectively.

For the beam AB, I can use the following equations to calculate its displacement in Similarly, for the beam AD,

F AB1 , F AB2 and M AB directions respectively,                   δ F AB2 F AB1 δ F AB2 F AB2 δ F AB2 M AB δ F AB1 F AB1 δ F AB1 F AB2 δ F AB1 M AB δ M AB F AB1 δ M AB F AB2 δ M AB M AB                                     F AB1 F AB2 M AB                   =                   u A v B 0                   . (4.2)
                  δ F AD2 F AD1 δ F AD2 F AD2 δ F AD2 M AD δ F AD1 F AD1 δ F AD1 F AD2 δ F AD1 M AD δ M AD F AD1 δ M AD F AD2 δ M AD M AD                                     F AD1 F AD2 M AD                   =                   u D -u A v D 0                   . (4.3)
For the beam BC,

                  δ F BC2 F BC1 δ F BC2 F BC2 δ F BC2 M BC δ F BC1 F BC1 δ F BC1 F BC2 δ F BC1 M BC δ M BC F BC1 δ M BC F BC2 δ M BC M BC                                     F BC1 F BC2 M BC                   =                   u C v C -v B 0                   . (4.4)
For the beam CD,

                  δ F CD2 F CD1 δ F CD2 F CD2 δ F CD2 M CD δ F CD1 F CD1 δ F CD1 F CD2 δ F CD1 M CD δ M CD F CD1 δ M CD F CD2 δ M CD M CD                                     F CD1 F CD2 M CD                   =                   u D -u C v C -v D 0                   . (4.5)
For the beam AE,

                  δ F AE2 F AE1 δ F AE2 F AE2 δ F AE2 M AE δ F AE1 F AE1 δ F AE1 F AE2 δ F AE1 M AE δ M AE F AE1 δ M AE F AE2 δ M AE M AE                                     F AE1 F AE2 M AE                   =                   u A w E 0                   . (4.6)
For the beam BF,

                  δ F BF1 F BF1 δ F BF1 F BF2 δ F BF1 M BF δ F BF2 F BF1 δ F BF2 F BF2 δ F BF2 M BF δ M BF F BF1 δ M BF F BF2 δ M BF M BF                                     F BF1 F BF2 M BF                   =                   v F -v B w F 0                   , (4.7) 
ditions at each endpoint can be acquired,

                                 u D = u G = u H , v C = v F = v G , w E = w F = w G = w H , u A = u G -u C , v B = v G -v D .
(4.10)

During the quasi-static loading, the force equilibrium conditions are always suitable for each endpoint. Based on the force balance at point A in x direction, I have,

F AB2 + F AE2 -F AD2 = 0. (4.11)
The force equilibrium is also satisfied at point B in y direction,

F AB1 -F BC1 -F BF1 = 0. (4.12)
Due to all degrees of freedom of plane CFG in the y direction being free, the total force along the y direction in this surface should be 0, that is,

F BF1 + F BC1 + F CD1 = 0. (4.13)
Similarly, I have the same force conditions of plane DGH in the x direction,

F AE2 + F AD2 + F CD2 = 0. (4.14)
Moreover, the relationship between effective stress and effective strain in the z direction is

2(F AE1 + F BF2 ) = σ z (a + a m + t) 2 . (4.15)
So, the effective strain of the structure in the x and the z direction can be calculated as

           ϵ x = u D a+ a m +t , ϵ z = w E a+ a n + t 2 . (4.16)
Finally, the effective elastic constants, i.e., the effective Poisson's ratio and normalized Young's modulus, of the proposed metamaterial can be obtained,

         ν zx = -ϵ x ϵ z , Êz = σ z Eϵ z .
(4.17 

4.3.4/ SIMULATIONS

The numerical calculations of this work have been done in the commercial multi-physics software COMSOL 6.0. The solid mechanics section is employed for all related simulations. Periodic boundary conditions are applied for three principal directions. For the static compression simulations, the periodicity is set as u dst = iu src , v dst = jv src , w dst = kw src . If the plane is perpendicular in the x direction, i = -1 and j = k = 1. For the plane is perpendicular in the y or z directions has similar rules, i.e., j = -1,

i = k = 1 or k = -1, i = j = 1
respectively. For the simulations of the dispersion behaviors, the Floquet periodicity is applied on all boundaries. And the first Brillouin zone of the unit cell is shown in Fig. 4 of reference [START_REF] Setyawan | High-throughput electronic band structure calculations: Challenges and tools[END_REF]. For elliptical rings in the xz and yz planes, the contact pair is defined between their outer surface and their neighbor in the z directions. The augmented Lagrangian method and equations have been used to describe the contact properties. Then the entire structure is meshed by free tetrahedral elements with a predefined finer size and meshes of the same size and shape are used at periodic boundaries. Finally, the stationary and eigenfrequency-prestressed modules are utilized for the compression and dispersion simulations respectively.

Due to the experimental setup and the details of the fabrication process of Chapter 4 and Chapter 5 being identical, these details will not be repeated in the next chapter. equal to 30% in experiments and to 26% in simulations. I believe that this contact is the key element that enhances the elastic constants and marks the separation between steps.

As a matter of fact, after the contact, the effective curvatures of the curved beams in the xz-and yz-planes increase, which enhances the force transmission in the z-direction.

The curvature of the curved beam in the xy-plane, however, remains unchanged during contact. Hence, the contact alters the shape of the curved beams in the vertical direction but does not modify the configuration of the curved beam in the horizontal direction. More specifically, the effective value of n decreases whereas m remains unchanged. As a result, both the effective Poisson's ratio and Young's modulus are enhanced, in good agreement with the prediction of the theoretical model in Fig. 4.1d and e. Another essential point is that the whole system remains elastically stable during the entire compression process, i.e., during both step-1 and step-2, without any instability of the structure or of postbuckling of the raw material.

Actually, there are some differences between experimental and numerical results. For instance, in both experimental ε x (ε z ) and σ z (ε z ) curves, short plateaus can be observed.

In contrast, they do not appear in the simulation results, since the elastoplasticity of the raw material is ignored in the computational model. Therefore, simulation results merely show the geometric nonlinearity of the structure, but experimental results further include the geometric and material nonlinearity of the structure and of the parent material. Additionally, the experimental samples are composed of a limited number of unit cells, so the influence of boundaries should be taken into consideration. In contrast, the simulation model assumes periodic boundary conditions in all three principal directions. This difference in boundary conditions is a source of discrepancy between experimental and numerical results. Anyway, the predictions of the theoretical model and the experimental and simulation results all imply the same trends for the mechanical behaviors of the designed metamaterials.

4.4.2/ POTENTIAL APPLICATION IN THE DESIGN OF STRUCTURES WITH TUN-ABLE BAND GAP

As discussed in the previous subsection, the proposed metamaterial shows different elastic constants depending on the compression strain, as if it were two different materials.

Here, I want to highlight a potential application to tunable phononic band gap structures.

It may not be immediately apparent, but a varying Poisson's ratio causes a modulation of the volume and hence of the relative density of porous structures and materials since the overall mass is conserved. This effect is especially strong under large compressive or stretching strain. Furthermore, Young's modulus also varies a lot with the applied strain, as I discussed above. As a result, both the relative density and the modulus, but also all effective elastic constants of the metamaterial vary with the applied strain. As a matter of fact, the dispersion of acoustic and elastic waves is highly dependent on the density and the modulus of materials [START_REF] Ma | Acoustic metamaterials: From local resonances to broad horizons[END_REF][START_REF] Cummer | Controlling sound with acoustic metamaterials[END_REF][START_REF] Christensen | Vibrant times for mechanical metamaterials[END_REF].

Herein, based on the principle of local resonances [START_REF] Liu | Locally resonant sonic materials[END_REF], physically concentrated masses are added at the nodes connecting elliptical rings in the z-direction, as shown in Fig. 4.4ai. The essential property of the physically concentrated masses is that they change the dynamic properties of the metamaterial without changing its static properties. This type of mass can be fabricated with the same raw material as the structure, implying that limited challenges are added to the manufacturing process. If a pre-displacement of 30 µm is applied in the z-direction, the structure deforms from step-1 (in Fig. The results demonstrated in this subsection suggest potential applications of the studied metamaterials in dynamics. First, elastic wave dispersion relies on both the added physical concentrated masses and on the mechanical properties of the original structure (the structure studied in the last subsection), implying a high degree of design flexibility. Second, after fabrication variable dispersion properties are obtained only via external compression excitation. This feature decreases the requirements on the operating environment needed to obtain adjustable dispersion behavior. Finally, during the compression process, the metamaterial does not occupy any additional space thanks to its auxeticity.

Hence this type of metamaterial could be used in micro/nanosystems or in space-limited devices. the shear banding in metallic materials, and the propagation of cracks in ceramics. The aforementioned localized deformations limit applications to small strain scenarios. From the mechanical point of view, the occurrence of the initial peak or of the first negative stiffness event in a strain-stress curve implies unstable deformation. Specifically, for periodically porous structures, the localized deformation of the random layer is an indication of a systemic level instability or failure [START_REF] Bauer | Tensegrity metamaterials: Toward failure-resistant engineering systems through delocalized deformation[END_REF].

To obtain reusable 3D auxetics, I fabricated the designed metamaterial with thermoplastic urethane (TPU) using the selective laser sintering (SLS) 3D printing technology at the centimeter scale, as shown in Fig. 4.5a. For TPU, Young's modulus is 27 MPa, Poisson's ratio is 0.45, density is 1200 kg/m 3 , and the elongation of the raw material is 500%.

A cycle of five compressive tests with 60% compression strain was employed to evaluate the reusable mechanical response of the metamaterial. After the compressive tests, the loss of the metamaterial is limited, as Fig. 4.5b shows. The responses and deformations are reported in Fig. 4.5c-h. To describe the effective properties precisely, the slope of the curves is averaged between 0 -40% and 40 -60% compression strain to compute the effective properties for each step, as reported in Figs. [START_REF] Lakes | Foam structures with a negative Poisson's ratio[END_REF].5d and f. Although the curves show slight nonlinearity, the initial peak or the first negative stiffness event is never observed. The effective Poisson's ratio changes from -0.08 to -0.13 between step-1 and step-2, whereas Young's modulus concurrently changes from 0.20 MPa to 1.62 MPa.

The metamaterial exhibits stable auxeticity and positive stiffness under large compression deformation. This result can be explained based on the delocalization of deformations inside the metamaterial that occurs thanks to its smooth geometry. The multi-step behavior averts the occurrence of localized deformations or the instability of the curved beam, a property that matte geometries lack. Significantly, the variations of the effective Poisson's ratio and modulus with TPU show less nonlinearity than their counterparts with the photopolymer of the previous subsection. This highlights the importance of the choice of raw material. Another important point is that the critical strain separating step-1 and step-2 depends on the length of the connector between each curved beam in the z-direction,

i.e., on the parameter t c . Adjustment of this parameter leads to the design flexibility of the multi-step behavior.

Re-usability of the metamaterial is rarely reported for auxetics but is important for functional materials. It here highly relies on the superelastic behavior of the raw material TPU.

As Figs. [START_REF] Lakes | Foam structures with a negative Poisson's ratio[END_REF].5c and d show, the auxeticity of the metamaterial remains identical during the 5 cycles. In contrast, Young's modulus in step-1 of the first cycle is slightly larger than for the subsequent cycles, as shown in Figs. [START_REF] Lakes | Foam structures with a negative Poisson's ratio[END_REF].5e and f. I think some initial stress, generated during the fabricating process, is eliminated by the first compression cycle so that the next 4 cycles show a nearly identical effective Young's modulus. The analogous scenario is not observed for auxeticity, since the effective Poisson's ratio of the metamaterial is independent of the properties of the raw material. The re-usability of the metamaterial under large compression makes it potentially attractive for applications in some functional fields.

4.5/ CONCLUSIONS

In this chapter, I have introduced a 3D auxetic mechanical metamaterial with multi-step mechanical properties under variable applied strain. The metamaterial has a weaker auxeticity and modulus in step-1 but stronger counterparts in step-2. This concept has been demonstrated using a single constituent material structure. Both instabilities of the elements and the post-buckling of the materials are prevented. In addition, the transformation between the two steps solely depends on the applied compressive strain. The proposed structure could be used to design periodic structures with tunable phononic band gaps. Finally, the delocalization of deformations and the re-usability under large compression strain were investigated. This study may spur the development of metamaterial with tunable static mechanical properties and multi-functional applications. 

PHASE TRANSITION

5.2/ STRAIGHT BEAM-BASED AUXETICS DESIGN

The straight beam-based substructure shows identical deformation features to the curved beam-based substructure, that is for some specific parameters, contraction in the ydirection is larger than expansion in the x-direction, that is ∆y > ∆x, as shown in Fig. 5.2a. The repeatable structural element used in order to create the considered structure corresponds to a truss lattice consisting of four partially auxetic substructures that are connected to each other at their vertices, as Fig. 5.2b shows. This specific design results in a novel 3D mechanical metamaterial exhibiting auxetic behavior in all three principal directions, the same as the principle of the structure I showed in Fig. 4.1b. However, it is important to note that the actual unit cell of the system, presented in Fig. 5.2c, is a bit different than the aforementioned repeatable cell. The repeatable cell has a weaker boundary effect than the periodic unit cell when the number of elements is limited, so the former was used in experiments instead of the latter. An example of the entire structure considered in this work is presented in Fig. 5.2d and its details are demonstrated in Fig.

5.2e.

In this Chapter, in order to assess the mechanical properties of the system I primarily 

h = a/ cos θ h , l v = a/ cos θ v , b h = b v = t/2, t h = t v = t.
Based on the periodicity and symmetry of the structure, endpoints that were co-planar before deformation remain co-planar after deformation, so I can get the following relation-

ship, that is,                  u D = u G = u H , v C = v F = v G , w E = w F = w G = w H . (5.1) 
In addition, due to the similarity of triangle AEB and triangle CDG, the displacements of endpoints A, C, and G in the x-direction should satisfy the following relationship,

u A = u G -u C . (5.2)
Similarly, the displacements of endpoints B, D, and G in the y-direction with the following relationship

v B = v G -u D . (5.3) 
According to the theory of structural mechanics, the displacement of each endpoint is be zero,

F N BF cos θ v -F S BF sin θ v + F N BC cos θ h -F S BC sin θ h + F N CD sin θ h + F S CD cos θ h = 0. (5.8)
Analogously, the x-axial resultant force on the front boundary of the unit cell also should be zero, i.e.

F N AE cos θ v -F S AE sin θ v + F N AD sin θ h + F S AD cos θ h + F N CD cos θ h -F S CD sin θ h = 0.
(5.9)

Here, I assume that the structure is subjected to displacement loads in the z-direction, i.e.

w E is known. By combining equations 5.1-5.9, the displacements of each endpoint of the studied structure in the three principal directions can be obtained.

Therefore, the effective strain in the x-and z-directions and the effective Poisson's ratio of the structure can be calculated

                 ε x = u D /(l h sin θ h + l h cos θ h + 2b v ), ε z = w E /(l v sin θ v + b h ), ν zx = -ε x /ε z .
(5.10)

The relationship between the equivalent stress in the z-directions σ z and w E can be expressed as

2(F N AE sin θ v + F S AE cos θ v + F N BF sin θ v + F S BF cos θ v ) = σ z (l h sin θ h + l h cos θ h + 2b v ) 2 . (5.11)
The expression of σ z can be obtained by equation 5.11. Then, the equivalent of Young's modulus of the structure is

E z = σ z ε z .
(5.12)

5.4/ EFFECTIVE ELASTIC PROPERTIES

In this section, the mechanical behaviors of the considered system are analyzed for different configurations of the structure corresponding to angles θ h and θ v assuming values in the range between 20 • and 60 In addition, I emphasize that in a vast majority of known mechanical metamaterials, a change in one of the fundamental mechanical properties leads to a concurrent change in other mechanical properties. However, this is not the case in the present work as Fig. 5.4

shows: the change of sign of Poisson's ratio is not accompanied by a change in Young's modulus.

Regarding the results summarized in Fig. 5.4, I emphasize the following points. The geometric parameters of the metamaterial have a significant effect on its equivalent elastic constants. However, the effective Poisson's ratio depends only on angles θ h and θ v , while the equivalent elastic Young's modulus depends also on all other parameters of the structure. This fact illustrates the independence with the size of the response of auxetic mechanical metamaterials. Moreover, when θ h and θ v vary in the range of [20 x-axis), for which the partially auxetic structure has no deformability in the y-direction, that is, ∆y = 0, as shown in Fig. 5.2b. Poisson's ratio, in this case, is equal to zero.

The second case is when θ h is close to 90 • , for which the strain of the partially auxetic structure in the y-direction tends to 0, which leads to the strain of the metamaterial in the x and y directions to go to 0, i.e. Poisson's ratio is also 0. To sum up, the effect of the geometric parameters of the metamaterial on the effective Poisson's ratio is nonmonotonic. Furthermore, it is seen in Fig. 5.4a that when θ h < 45 • , the metamaterials is auxetic, that is, the critical condition for ∆y > ∆x in Fig. 5.2b is that θ h < 45 • . In contrast, the metamaterial has a positive Poisson's ratio when θ h > 45 • . Although both θ h and θ v have obvious effects on the equivalent Poisson's ratio of the metamaterial, only θ h has a decisive effect on its properties, that is, only θ h affects whether the metamaterial has tension-expansion or tension-shrinkage behavior. Hence, the deformation characteristics of the metamaterial change drastically around θ h = 45 • (i.e. the sign of the Poisson's ratio flips), whereas the change in its elastic modulus remains smooth. In other words, the elastic modulus of the metamaterial does not change markedly with the variation of its deformation characteristics, at the mechanical phase transition.

At this point, I note that material post-buckling or structural instability is a widely used mechanism for the design of metamaterials with phase transitions [START_REF] Bertoldi | Negative Poisson's ratio behavior induced by an elastic instability[END_REF][START_REF] Babaee | 3D soft metamaterials with negative Poisson's ratio[END_REF]. However, this mechanism has insurmountable drawbacks. Traditionally, both the instability of the structure and the buckling of the material indicate the failure of the system. As a result, the phase transition for metamaterials based on this mechanism is discontinuous and elastically unstable in the critical state.

In the remaining part of this work, the above results are used to examine under large The effective Poisson's ratio is usually used to quantitatively evaluate the auxeticity of metamaterials. However, this quantity characterizes the deformation of the shape of the material relative to its original shape, hence it does not faithfully describe the deformation characteristics of the material, especially in the case of large deformations. For example, according to the definition of Poisson's ratio, the critical strain for the phase transition (compared to the initial shape, as shown in Fig. 5.5a) of model A is about 5%, that is, model A is a positive Poisson's ratio material before the compressive strain reaches 5%, and it becomes a negative Poisson's ratio material after the compressive strain exceeds 5%. In fact, the critical strain for the phase transition of model A is about 3%, at which point the slope of the curve changes sign. As a result, I will consider instead the tangent Poisson's ratio to evaluate the deformation characteristics of auxetic metamaterials. This differential quantity is defined as the deformation size of the material at any step relative to the previous step. For both experiment and simulation, I obtain the value of the tangent Poisson's ratio via an approximation of the derivative of the compressive strain as a function of the transverse strain. Specifically, 5 data points between i and i + ∆i are used to evaluate the tangent Poisson's ratio at the compressive strain of i + 1 2 ∆i, as shown in the inset of Fig. 5.5a. In this chapter, the value of ∆i is 0.5%.

The tangent Poisson's ratio for model A is shown as a function of the compressive strain in Fig. 5.5b. Model A has a compressive-expansion behavior when the compressive strain is less than 3%, but is auxetic when the compressive strain is larger than 3%. The experimental and simulation results are shown in Fig. 5.5e and f. Since the lateral deformation is relatively small, the deformation in both the x and the y directions is magnified in panel f by a factor of 8. In the simulation results (shown by the magenta beams in Fig. 5.5f), it can be seen that when the compressive strain is 0.02, model A exhibits an obviously positive Poisson's ratio effect. Moreover, it is still expanded in the transverse direction relative to the original shape (i.e. the compressive strain of 0%) when the compressive strain reaches 0.04, that is, positive Poisson's ratio behavior. However, relative to the shape at a compressive strain of 2%, it exhibits a negative tangent Poisson's ratio due to the absolute deformation of model A in both the x and y directions becoming smaller. This is because model A undergoes a phase transition when the compressive strain reaches 3%, i.e. from a positive tangent Poisson's ratio material to a negative tangent Poisson's ratio material, as shown in Fig. 5.5b.

The strain-stress and strain-tangent modulus curves for model A are shown in Fig. 5.5c and d, respectively. It is important to note here that the tangent modulus for model A does not change significantly during the entire compression process and hence at the phase transition, remains within the range [0.18 MPa, 0.28 MPa]. Since the simulation results do not take into account the elastoplasticity of the original material custom IP-S resin, the slight change in the tangent modulus of model A is introduced by the geometric nonlinearity. The aforementioned properties are the primary beauty of the mechanical metamaterials defined in this work. In metamaterials based on curved beams [START_REF] Bertoldi | Negative Poisson's ratio behavior induced by an elastic instability[END_REF][START_REF] Babaee | 3D soft metamaterials with negative Poisson's ratio[END_REF], the mechanical properties of auxetics decline sharply at the phase transition since the latter is introduced by structural instability or material elastic buckling. In such cases, although the phase transition broadens the functional applications of auxetics, the decrease in load-carrying capacity limits the structural applications of auxetics. In contrast, thanks to the absence of instability or material buckling at the phase transition, the mechanical properties of model A do not decrease significantly although they drop slightly. It can be inferred that the value of θ h decreases as the compressive strain increases. The phase transition occurs when the value of θ h crosses 45 • , at which the tangent Young's modulus does not change noticeably, as predicted by the model. It is concluded that the fundamental reason why model A has a phase transition is the geometric adaptation of the metamaterial during the compression process, that is the compression changes the feature size and thus affects the deformation characteristics. The mechanical metamaterial undergoes a phase transition without losing its mechanical properties, which enables it to simultaneously meet the high requirements of modern industry for material multifunctional and structuring applications. In principle, the characteristic properties of mechanical metamaterials mainly depend on the shape of their unit cell. This is the main advantage of mechanical metamaterials but at the same time a potential source of problems. Because the structure will eventually be destroyed at large deformations, auxeticity is only retained over a limited range of applied strain, especially for three-dimensional auxetics. This disadvantage can limit the functional application of auxetics, for instance limiting their effective range as sensors.

5.5.2/ LARGE STRAIN AUXETICITY

Therefore, this section mainly focuses on maintaining a regular negative Poisson's ratio under large compressive strain.

The mechanical response of model B under larger compressive strain is summarized in 

√ a 2 + b 2 + 2 √ a 2 + c 2 -5t)t 2 ρ,
where N is the number of unit cells and ρ = 1.11 g/cm 3 is the density of the raw material IP-S. Herein, the specific energy absorption and energy absorption efficiency of both models A and B have been calculated, as shown in Fig. 5.7c-d. It can be seen that models A and B have different specific energy absorptions, 0.47 kJ/kg and 1.5 kJ/kg, respectively. More importantly, models A and B have relatively low densities, 0.01238 g/cm 3 and 0.0441 g/cm 3 , respectively. For these low-density auxetic metamaterials, the metamaterial exhibits excellent energy absorption capacity, which is introduced for two main reasons. On the one hand, the raw material of the metamaterials, i.e. custom IP-S resin, has outstanding specific mechanical properties (higher elastic modulus and lower density). On the other hand, the studied metamaterial with brilliant structural efficiency due to the deformation mode of the metamaterial being tension/compression-dominated, while the counterpart of most other auxetics is bending-dominated. Moreover, the lowdensity property also broadens the effective strain range of the metamaterials, especially for model A, which is still not fully dense when the compressive strain exceeds 0.7. In addition, they all have higher energy absorption efficiencies of 0.78 and 0.72, respectively.

Above all, the low density (light mass), the regular failure mode, high specific energy absorption, and energy absorption efficiency indicate that auxetic metamaterials have potential applications in the field of energy absorption, especially for advanced sports equipment and aerospace applications. show that the metamaterial has elementary auxeticity for small compressive strains but superior auxeticity for large strains. More importantly, the effective Young's modulus exhibits a parallel trend, i.e., it becomes stronger with increasing compressive strain. Then by adding some physically concentrated masses at the connectors, a structure with a tunable phononic band structure was proposed, whose performance was validated by numerical simulations. Moreover, the multi-step behaviors of this structure introduce delocalized deformations even the compression strain reaches 60%. I fabricated this structure with TPU and obtained good recoverability and reusability after 5 cycles.

Finally, in Chapter 5, I replaced the curved beam elements used in Chapters 2 to 4 with straight beam elements. I hence obtained a new three-dimensional metamaterial with advanced mechanical properties. Simultaneously, the elastically stable continuous phase transition of Poisson's ratio was studied. The key beauty of this phase transition is that I realized that the lateral deformation performance changes from expansive behavior to shrinkage behavior during the compression process but avoids the instability of the unit cell and the post-buckling of the raw material. In other words, in the process of changing the function of the material, the state of the material remains elastically stable.

Last but not least, I would like to remark that this thesis has focused on both the auxeticity and the effective Young's modulus of auxetic metamaterials at the same time, as well as on their tunable properties.

6.2/ PERSPECTIVES

In the future, I would like to do some further investigation on the following aspects.

6.2.1/ STATIC MECHANICAL PROPERTIES

First, fabricate the proposed metamaterials with conductive materials, and explore the variation of conductivity with compressive strain during compression and its engineering applications.

Second, prepare a mechanical metamaterial with adjustable Poisson's ratio, Young's modulus, and band gap based on the simulation results in Chapter 4, and verify it experimentally.

Third, establish a theoretical model of the proposed 3D auxetics under large deformation from a mechanical point of view to provide predictions for exploring its tunable mechanical properties.

Fourth, as I discussed in subsection 5. A simple mass-spring toy model is first introduced for illustration in Fig. 6.2a. Under resonant external stimuli, the spring-mass system oscillates around its equilibrium position The function of the converters is to provide a frequency-dependent transformation of the direction of motion between the main system and the subsystems. The mechanical properties in this model depend on both the direction and the frequency spectrum of the external excitation. For example, when the source is located at the top (source 1) and the bottom is clamped, the amplitude of the restoring force is highly dependent on frequency, thanks to the influence of the resonances of the subsystems (Fig. 6.2bi). In contrast, when the source is located at the bottom (source 2) and the top is clamped, the rigid mass M is motionless and resonances are not excited. In this case, no frequency-dependent behavior is expected (Fig. 6.2bii)

. and generates a periodic restoring force. Obviously, the amplitude of the restoring force is highly dependent on both the frequencies of the external stimuli and on the inherent properties of the mass-spring system (i.e., the mass and the spring constants). Herein, based on the principle of local resonance [START_REF] Liu | Locally resonant sonic materials[END_REF], I propose the effective mass-spring model for non-reciprocal and non-Newtonian metamaterials depicted in Fig. 6.2b. This effective model includes four parts: the main system, converters, subsystems, and clipping boundaries. The main system consists of a large mass M and of a spring K. The converters provide a frequency-dependent transformation of the direction of motion between the main system and the subsystems. In fact, the design of the converters is an essential and flexible task influencing the whole effective model due to the primary and exclusive connection that exists between the main effective mass M and the subsystems. Importantly, the subsystems are not directly connected to the spring K but are only connected to the mass M, implying that the spring is not able to induce any motion or vibration of the subsystems. The details of the converter will be discussed in the next section. The subsystems are composed of N pairs of masses M 1 , M 2 ...M N and springs K 1 , K 2 ...K N .

Herein two situations are taken into consideration. The first situation, termed source 1, is that the external stimuli come from the top of the structure whereas the bottom remains fixed (see left panel of Fig. 6.2b). On the one hand, if the source does not contain resonant frequencies (i.e. if the frequency spectrum of the source does not overlap with the resonant frequencies of the subsystems), the force amplitude of the whole system depends on the spring K and the subsystems move as a single rigid body along the source direction, as depicted for the deformed subsystem (M 1 , K 1 ). On the other hand, if the spectrum of the external source contains resonant frequencies of the subsystems, it induces the resonance of one or more of them. In the latter case, the resonant subsystems undergo rigid motion along the direction of the source and simultaneously elastic vibrations along another direction, as depicted for the deformed subsystem (M 3 , K 3 ). The details of the transformation of the direction between the external source and the subsystems will be discussed in the following section. The elastic vibrations of the subsystem can cause it to touch the fixed boundary, which significantly influences the mechanical response of the entire system. In theory, the amplitude of the reaction force of the whole system changes continuously as a function of the spectrum of the source, exciting the N resonant frequencies ( f 1 , f 2 , f 3 ... f N ) depicted in Fig. 6.2bi. It is clear that the amplitude of the reactions at the resonant frequencies is significantly larger than off-resonance and is the origin of the non-Newtonian behavior. Moreover, it is worth emphasizing that the enhancement of the force amplitude at the resonant frequencies depends on two decisive factors, namely the resonance of the subsystems and the influence of the fixed boundaries, which will be further discussed later with a specific example.

The second situation that is considered, termed source 2, is that the external stimuli come from the bottom of the structure whereas the top remains fixed (see right panel of Fig. 6.2b). In this case, if I assume that the main beam M is an ideally rigid body, then regardless of the frequency spectrum of the source, the mechanical response of the entire system is constant, since source 2 is not able to induce the resonance of the subsystems, as depicted in Fig. 6.2bii. Importantly, the resonance of the spring K is ignored under this setting.

As a whole, the mechanical response of the structure acutely depends on both the frequency spectrum and the direction of application of the external stimuli, which is the essence of the present model of non-reciprocal and non-Newtonian mechanical metamaterials. Rationally designed artificial porous structures and materials can achieve counter-intuitive mechanical properties, i.e., mechanical metamaterials, that are inaccessible to ordinary materials. Among the most popular mechanical metamaterials, auxetics have been widely investigated in the past few decades due to their unique lateral deformation. In this thesis, I focus on the investigation of the effective elastic constants (effective Poisson's ratio and Young's modulus) of 3D auxetics. In the first chapter, I introduce the concepts of mechanical metamaterials and the development of artificial auxetics. In the second chapter, based on the inspiration of the longitude and latitude, a 3D structure with partial auxeticity is proposed and studied. In the third chapter, directional instability is introduced and used to enhance the auxeticity of the structure investigated in the previous chapter. Then, in the fourth chapter, the structure proposed in Chapter 2 is utilized to design a new 3D structure that shows full auxeticity in the three main directions and a multi-step mechanical behavior. Specifically, this metamaterial has elementary auxeticity for small compressive strains but superior auxeticity for large strains. More importantly, the effective Young's modulus exhibits a parallel trend, i.e., it becomes larger with increasing compressive strain. In the last chapter, the curved beams in the structure are replaced by straight beams, and 3D auxetics with even better mechanical properties are obtained. Moreover, the elastically-stable continuous phase transition of the Poisson's ratio is reported. Plus précisément, ce métamatériau possède une auxéticité élémentaire pour les petites déformations compressives mais une auxéticité supérieure pour les grandes déformations. De façon plus importante encore, le module d'Young effectif présente une tendance similaire, devenant plus fort quand la contrainte de compression augmente. Dans le dernier chapitre, les poutres courbes de la structure sont remplacées par des poutres droites, et des auxétiques 3D avec des propriétés mécaniques encore meilleures sont obtenus. De plus, une transition de phase continue et élastiquement stable du coefficient de Poisson est rapportée.
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Figure 1 . 1 :

 11 Figure 1.1: Some examples of mechanical metamaterials. a Metamaterials with compression-twisting behavior [3]. b Auxetic foam[START_REF] Lakes | Foam structures with a negative Poisson's ratio[END_REF]. c 3D pixel metamaterials with multi-stable and negative stiffness[START_REF] Pan | 3D pixel mechanical metamaterials[END_REF]. d) Lightweight and ultrastrong metamaterials[START_REF] Zhang | Lightweight, flawtolerant, and ultrastrong nanoarchitected carbon[END_REF]. e Locally resonant sonic materials[START_REF] Liu | Locally resonant sonic materials[END_REF]. f Multi-step deformation mechanical metamaterials[START_REF] Meng | Multi-step deformation mechanical metamaterials[END_REF]. g Metamaterials with strain rate-dependent response[START_REF] Janbaz | Strain ratedependent mechanical metamaterials[END_REF]. h Materials with tunable negative thermal expansion[START_REF] Wang | Lightweight mechanical metamaterials with tunable negative thermal expansion[END_REF]. i Pentamode metamaterials with ultra-large bulk modulus to shear ratio[START_REF] Kadic | On the practicability of pentamode mechanical metamaterials[END_REF]. j Microlattice shows ultralow density and excellent recoverability[START_REF] Schaedler | Ultralight metallic microlattices[END_REF]. k multi-scale hierarchical lattice architectures[START_REF] Zheng | Multiscale metallic metamaterials[END_REF]. l A core-shell "unfeelability" cloak based on pentamode metamaterials[START_REF] Zhang | A mechanically driven form of kirigami as a route to 3D mesostructures in micro/nanomembranes[END_REF]. m Tensegrity metamaterials with delocalized deformations[START_REF] Bauer | Tensegrity metamaterials: Toward failure-resistant engineering systems through delocalized deformation[END_REF]. n Hybrid metallic meta-implants consisting of both auxetic and conventional architectures[START_REF] Kolken | Rationally designed meta-implants: a combination of auxetic and conventional meta-biomaterials[END_REF]. o Origami-inspired 3D metamaterials[START_REF] Li | Fluidic origami: a plant-inspired adaptive structure with shape morphing and stiffness tuning[END_REF]. p transformable mechanical metamaterials[START_REF] Hu | Engineering zero modes in transformable mechanical metamaterials[END_REF]. q Static non-reciprocity in mechanical metamaterials[START_REF] Coulais | Static non-reciprocity in mechanical metamaterials[END_REF].

Figure 1 . 2 :

 12 Figure 1.2: Definition and theoretical limitations of Poisson's ratio. a A picture of French scientist Poisson[START_REF] Greaves | Poisson's ratio and modern materials[END_REF]. b Non-auxetic i) and auxetic i) behavior during tensile and compressive loading (dashed lines indicate the original shape of the materials)[START_REF] Novak | Auxetic cellular materials-a review[END_REF]. c Poisson's ratio ν is plotted as a function of the ratio of the bulk to the shear modulus B/G, for a wide range of isotropic classes of materials[START_REF] Greaves | Poisson's ratio and modern materials[END_REF].

Figure 1 . 3 :

 13 Figure 1.3: The advantages introduced by the auxeticity of materials. a Comparison of compression properties between the auxetic foam and the non-auxetic foam[START_REF] Fan | Novel method for preparing a high-performance auxetic foam directly from polymer resin by a one-pot co2 foaming process[END_REF]. b Variable permeability[START_REF] Grima | Auxetic metamaterials[END_REF]. c Conventional honeycomb showing saddled curvature and re-entrant auxetic honeycomb showing domed curvature[START_REF] Duncan | Review of auxetic materials for sports applications: Expanding options in comfort and protection[END_REF]. d Indentation resistance: deformation profile of non-auxetic material and auxetic material[START_REF] Wallbanks | On the design workflow of auxetic metamaterials for structural applications[END_REF][START_REF] Bodaghi | 4D printed tunable mechanical metamaterials with shape memory operations[END_REF].
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 14 Figure 1.4: Potential engineering applications of auxetics. a Morphing airfoil with chiral auxetic cores [45].b Stretchable capacitive strain sensor uses auxetic layer to improve gauge factor[START_REF] Lee | Auxetic elastomers: mechanically programmable meta-elastomers with an unusual Poisson's ratio overcome the gauge limit of a capacitive type strain sensor[END_REF]. c Auxetic esophagus stent[START_REF] Bhullar | Design and fabrication of stent with negative Poisson's ratio[END_REF]. d Smart belt[START_REF] Jiang | characteristics and applications of auxetic foams: A state-of-the-art review[END_REF]. e 3D printed different types of nails using brass and stainless steel materials[START_REF] Ren | Auxetic nail: Design and experimental study[END_REF]. f Schematic of a sports helmet with auxetic foam[START_REF] Foster | Application of auxetic foam in sports helmets[END_REF]. g Auxetic medical bandage[START_REF] Alderson | Expanding materials and applications: exploiting auxetic textiles[END_REF][START_REF] Pibo | Knitted structures with negative Poisson's ratio[END_REF]. h Auxetic piezoelectric sensor[START_REF] Smith | Optimizing electromechanical coupling in piezocomposites using polymers with negative poisson's ratio[END_REF][START_REF] Alderson | A triumph of lateral thought[END_REF].
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 6 .1/ STRUCTURE DESIGN Designing a new structure (and the corresponding new mechanism) to obtain the auxeticity of materials is efficient and popular. Based on this method, plenty of new structures have been proposed and some typical auxetic structures are shown in Fig. 1.6.

Fig. 1 .

 1 Fig. 1.6a-d demonstrate 2D and 3D auxetic chiral structures. Chiral structures consist of interconnected straight ligaments and central nodes and are based on the concept of

Fig. 1 .

 1 Fig. 1.6e-h demonstrate 2D and 3D re-entrant structures. The main characteristics of reentrant structures are that periodic connected hexagonal units have two negative angles

Figure 1 . 6 :

 16 Figure 1.6: Typical artificial negative Poisson's ratio structure. a-b 2D chiral structures[START_REF] Prall | Properties of a chiral honeycomb with a Poisson's ratio of-1[END_REF][START_REF] Alderson | Elastic constants of 3-, 4-and 6-connected chiral and anti-chiral honeycombs subject to uniaxial in-plane loading[END_REF]. c 3D Chiral structures[START_REF] Fu | A novel category of 3D chiral material with negative poisson's ratio[END_REF]. d Compression-twist 3D chiral structure[START_REF] Frenzel | Three-dimensional mechanical metamaterials with a twist[END_REF]. e-g 2D re-entrant Structures[START_REF] Masters | Models for the elastic deformation of honeycombs[END_REF][START_REF] Robert | An isotropic three-dimensional structure with Poisson's ratio=-1[END_REF][START_REF] Qiao | Impact resistance of uniform and functionally graded auxetic double arrowhead honeycombs[END_REF][START_REF] Saxena | Three decades of auxetics researchmaterials with negative Poisson's ratio: a review[END_REF]. h 3D re-entrant Structures[START_REF] Wang | Mechanical properties of 3D reentrant auxetic cellular structures[END_REF]. i-j 2D rotating rigid structures[START_REF] Grima | Auxetic behavior from rotating squares[END_REF][START_REF] Grima | Auxetic metamaterials[END_REF][START_REF] Dmitriev | Auxetic behavior of crystals from rotational degrees of freedom[END_REF]. k Bistable kirigami-based auxetic metamaterials with square and triangular rotating units[START_REF] Rafsanjani | Bistable auxetic mechanical metamaterials inspired by ancient geometric motifs[END_REF]. l 2D perforation structures[START_REF] Mizzi | Auxetic metamaterials exhibiting giant negative Poisson's ratios[END_REF]. m Auxetic foam[START_REF] Zhang | Auxetic foam-based contact-mode triboelectric nanogenerator with highly sensitive self-powered strain sensing capabilities to monitor human body movement[END_REF]. n Negative Poisson's ratio behavior induced by an elastic instability[START_REF] Bertoldi | Negative Poisson's ratio behavior induced by an elastic instability[END_REF]. o 3D porous auxetic structures[START_REF] Shen | Simple cubic three-dimensional auxetic metamaterials[END_REF].

Figure 1 . 7 :

 17 Figure 1.7: Structural optimization design of auxetics. a-b Based on the double arrow re-entrant auxetics, a novel 3D double-U auxetic was proposed [89].c-dThe optimization design of re-entrant honeycomb[START_REF] Qi | Quasi-static crushing behavior of novel re-entrant circular auxetic honeycombs[END_REF]. e Multi-level hierarchical rotating squares structure[START_REF] Wu | Mechanical properties of anti-tetrachiral auxetic stents[END_REF][START_REF] Gatt | Hierarchical auxetic mechanical metamaterials[END_REF].
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 2 DESIGN INSPIRATION Latitude and longitude lines are used to determine the position and direction on the earth, as shown in Fig. 2.1a. Their special geometric structure attracted my attention, and being inspired by it, a novel double elliptic ring (DER) 3D auxetic structure is proposed and demonstrated in Fig. 2.1b. The unit cell of the DER consists of two orthogonal elliptic rings, the longitude-liked elliptic ring ADBC and the equator-liked elliptic ring ECFD, which are connected in point C and point D. I stipulate that the elliptic ring ADBC and the elliptic ring ECFD lie in the xz plane and xy plane respectively. It is clear that when elliptic ring ADBC is compressed (or stretched) at point A and point B in the z-axis direction, the distance between C and D expands (or shrinks) along the x-axis. The expansion of CD must cause the shrinkage (or the expansion) of EF along the y-axis, thereby achieving the negative Poisson's ratio effect of the unit system. Hence, a novel DERs 3D auxetic metamaterial can be obtained by orderly arranging the proposed unit structure, as demonstrated in Fig. 2.1c.

Figure 2 . 1 :

 21 Figure 2.1: Design inspiration of the partially auxetic metamaterials. a Earth longitude and latitude diagram. b Longitude-and-latitude-inspired DERs unit cell. c Dense-arranged DERs 3D auxetic metamaterials.

Figure 2 . 2 :

 22 Figure 2.2: a Experimental scheme. b Sample under test. c Experimental data are processed by the image tracking method.

  general static analysis was chosen to simulate the uniaxial compression tests on the proposed structures. The same method of marking displacement reference points proposed in the experimental section is used in the FE model, the variations of platen reaction force and the displacement of nodes 1, 2, 3, 4, 6, 7, 8, 9 in y-and z-directions are output to calculate effective compression modulus and Poisson's ratio.

Figure 2 . 3 :

 23 Figure 2.3: Details of numerical simulations. a Finite element model for compression tests. b Convergence study of the finite element model.

  For the DER cell structure, I set the thickness and width of elliptic ring ADBC and elliptic ring ECFD as t and q respectively, and the cell structure is a thin-walled structure due to t is much smaller than a, b and c. Under uniaxial stretch or compression along the z-direction, considering the symmetry of the cell structure, small elastic deformations are considered merely which means that shear and torsion effects have been ignored. Herein, I analyze the compression of the unit structure by the concentrated force F AB which acts on point A in the z-direction. The equivalent load analysis for elliptic ring ADBC and elliptic ring ECFD is shown in Fig. 2.4a and b, where F CD and F ′ CD hold the same value but opposite directions. Due to the symmetry of the structure, I only consider the force distribution of a quarter arc AD, as shown in Fig. 2.4c, in which point A is fixed and point D undergoes one axial force F N and one bending moment M 0 merely. It is easy to get F N = F AB /2 according to equilibrium conditions.

Figure 2 . 4 :

 24 Figure 2.4: a Force analysis of elliptic ring ADBC. b Force analysis of elliptic ring ECFD. c Schematic diagram of axial force and a bending moment of arc AD. d Connection between unit cells.
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 334 TOTAL DEFORMATION OF BEAMS AB, CD, AND EF UNDER UNIAXIAL COM-PRESSION ALONG THE Z-DIRECTION

2. 4 /Figure 2 . 5 :

 425 Figure 2.5: The changing process of equivalent elastic parameters during the z-directions compression at different values of a. a Specimen (scale bar 6cm) ε z versus ε y and versus σ z curves with S1. b Specimen ε z versus ε y and versus σ z curves with S2. c Specimen ε z versus ε y and versus σ z curves with S3.
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 6 It is apparent that the Poisson's ratio of the structure does not change with the size of the structure (it is scale-invariant) but only depends on the shape of the structure (i.e., on the values of m and n). However, the equivalent modulus of the structure decreases rapidly with an increase in the size of the unit structure. According to equation 2.18, the equivalent elastic modulus E z is proportional to 1/a 4 so that the equivalent elastic modulus of the structure decreases obviously with a.
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 26 Figure 2.6: Poisson's ratios and effective compression modulus of S1-S3 under small deformations. a Poisson's ratios ν zy . b Effective compression modulus E Z .

Figure 2 . 7 :

 27 Figure 2.7: Auxetic behaviors of DER under large levels of compression in the z-direction. a Nominal strain ε z versus ε y curve compressed in the z-direction. b Experimental deformation process of sample S4. c Corresponding simulation deformation process of sample S4. d Simulation deformation process of S4 with 9 × 9 × 7 unit cells.

  Corresponding numerical simulation results show the same tendency of deformation of sample S2 with the ε z versus ε y curve (in blue) and deformation process are demonstrated in Fig.2.7a and c respectively. The critical value of strain in the z-direction of the structural deformation mode transition in the experimental and simulation results is slightly different, ε z = 16% for experimental and ε z = 14% for numerical, probably because the boundary conditions in the experiment and numerical simulation are not absolutely the same, such as the tangential friction coefficient between the sample and the platen in the experiment is difficult to accurately determine. What should be emphasized herein is that the lateral instability of the structure is the overall deformation of the structure, not the local deformation or destruction of the structure. Therefore, the instability can be avoided by adjusting the slenderness ratio of the structure. To verify this conclusion, a numerical investigation was conducted to evaluate the influence of the repetitions of unit cells (same as the unit cell geometric parameters in S2) on the structural properties. A FEM model with 9 × 9 × 7 repetition unit cells in the x-, y-, and z-directions was prepared. The corresponding ε z versus ε y curve (in red) and deformation process are plotted in Fig.2.7a and d respectively. It can be seen that ε z versus ε y curve (in red) keeps increasing linearly until ε z exceeds 23% in this situation, which indicates that the DER still has regular negative Poisson's ratio effect when the compression strain is higher than 23%.The reason why DER has a negative Poisson's ratio effect under large deformations is that the structure is dominated by the lateral compression and axial tensile deformation of the curved beam, which is significantly better than other auxetic structures for which the main deformation mode is the axial compression or the tension of a straight beam or a straight rod. Negative Poisson's ratio effect in the case of large levels of compression makes the proposed DER structure have promising applications in the field of indentation resistance and energy absorption.

Figure 2 . 8 :

 28 Figure 2.8: The changing process of equivalent elastic parameters during the z-and y-directions compression at different values of n. a Specimen (scale bar 6cm), ε z versus ε y and versus σ z curves, ε y versus ε z and versus σ y with S4. b Specimen, ε z versus ε y and versus σ z curves, ε y versus ε z and versus σ y with S5. c Specimen, ε z versus ε y and versus σ z curves, ε y versus ε z and versus σ y with S6.
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 29 Figure 2.9: Poisson's ratios and effective compression modulus of S4-S6 under small deformations. a Poisson's ratios ν zy . b Effective compression modulus E z . c Poisson's ratios ν yz . d Effective compression modulus E y .

Figure 2 .

 2 Figure 2.10: a Deformation in the z-direction of the specimens with different n in different strains. b Static simulation results: the deformation of the structure with the z-direction compression at ε z = 4%

Figure 2 . 11 :

 211 Figure 2.11: Contour map with the dependence of Poisson's ratios ν zy on m and n.

  designed and studied. The compressive properties of the structure were studied by three methods: theory, experiment, and simulation, and the equivalent Poisson's ratio and equivalent elastic modulus of the structure were obtained. The effects of changes in the value of form factor m and n of DER on the equivalent elastic parameters in the y-and z-directions of the structure were discussed, and the following conclusions are obtained: (a) When the structure is subjected to uniaxial compression in the y-or z-directions, it has a negative Poisson's ratio effect in the z-or y-direction. The Poisson's ratio of the structure can be adjusted by changing the values of m and n. (b) The proposed DER can maintain a constant negative Poisson's ratio effect under large compression deformations. (c) The compression performance of DER in the y-and z-directions are completely opposite in the situation of the values of m and n are not the same, this behavior is consistent with Maxwell's law of anisotropic materials. (d) If the values of m and n are the same, the Poisson's ratio of the structure is insensitiveto the variation of parameters m and n and is always close to -0.7. However, with the increase of m and n, the elastic modulus of the structure increases significantly. From this, the elastic modulus of the structure can be enhanced without changing the negative Poisson's ratio effect of the structure.

3 STRAIN

 3 in subsection 1.6.2 in Chapter 1, most auxetics use bending-dominated deformations structure to obtain auxeticity, which means the effective Young's modulus of that auxetics is limited when compared with traditional compression-dominated lattices.

Figure 3 . 1 :

 31 Figure 3.1: a Compression-dominated beam under compression. b Possibilities for different cross-sections and corresponding directions of instability.
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 2 STRUCTURAL OPTIMIZATION DESIGNIn Chapter 2, a double elliptic ring (DER) structure with a positive Poisson's ratio (PR) in the x-directions and a negative PR in the y-direction in the situation of uniaxial compression in the z-direction was proposed, as demonstrated in Fig.3.2a. To improve the mechanical properties of the DER, an enhanced double elliptic ring (EDER) structure is proposed in this chapter. The EDER is composed of a DER, an enhanced structure (ES), and a connector. The enhanced structure is also an elliptic ring that lies in the xz plane, and the dimensions (the dimensions of the neutral surfaces) of this structure in the xand z-directions are 2a 1 and 2b 1 , respectively. Moreover, the ES has the same thickness and width as the DER, and they are connected to each other through connectors, as shown in Fig.3.2b. As a complementary remark, a and a 1 must satisfy the relationship t < a 1 < (at) due to geometric compatibility, and b and b 1 satisfy a similar relationship t < b 1 < (bt). In addition, the length of the connector is l c = btb 1 , and the cross-section is a square with side length q. Finally, a 3D partial auxetic metamaterial with enhanced mechanical properties can be obtained by the orderly arrangement of the EDERs, as demonstrated in Fig.3.2c.

Figure 3 . 2 :

 32 Figure 3.2: a A double-elliptic-ring (DER) structure with positive Poisson's ratio (PR) in some directions and negative PR in other directions (proposed in Chapter 2). b An enhanced double-elliptic-ring (EDER) structure with improved mechanical properties is proposed. c Dense-arranged EDER 3D partial auxetic metamaterials and their views in three principle directions.
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 33 Figure 3.3: Geometrical parameters of the sample.

Figure 3 . 4 :

 34 Figure 3.4: a Photo of DER1 (q = 4mm). b Photo of EDER1 (q = 4mm, a 1 = 5mm). c Three-point bending test nominal strain versus nominal stress curves of PA3000 raw material. d The relative position between marked dots and specimens. e experimental and simulation results of nominal strain ε z versus nominal stress σ z of DER1 and EDER1. f Experimental and simulation results of nominal strain ε z versus nominal strain ε y of DER1 and EDER1.

Figure 3 . 5 :

 35 Figure 3.5: The deformation process of DER1 (q = 4mm) and EDER1 (q = 4mm, a 1 = 5mm) in the situation of uniaxial compression in the z-directions. a Experimental deformation process of DER1. b Experimental deformation process of EDER1. c simulation results of the deformation process with elastoplastic properties of DER1. d Simulation results of the deformation process with elastoplastic properties of EDER1. e Simulation results of the deformation process with pure elastic properties of EDER1. f Simulation results (with pure elastic properties) of a unit cell located at point A of EDER1. g Simulation results of a unit cell located at point E of EDER1 with pure elastic properties. Note: the same color in the stress nephogram in f and g indicates different values.
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 36 Figure 3.6: a EDER with multi-ES. b External loading conditions of the i-th elliptic ring in the z-direction. c Equivalent internal force conditions of the i-th elliptic ring. d Equivalent beam model with ES mechanical properties in the z-direction. e Boundary conditions of the equivalent beam model.

Figure 3 . 7 :

 37 Figure 3.7: Dependence of the critical strain ε c on the thickness ratio w * /q.

Figure 3 . 8 :

 38 Figure 3.8: a Specific stiffness of DER1 (q = 4 mm) and EDER1 (q = 4 mm, a 1 = 5 mm) obtained via theoretical, experimental and FEM simulations. b Contour map for the dependence of specific stiffness of EDERs Θ EDER on a 1 ∈ [410] and b 1 ∈ [4 10], the other parameters are a = 11 mm, m = 1, n = 1.5, q = 4 mm, and t = 2 mm.

  ) where C ADBC , C CFDE , and C ES represent the perimeter of elliptic ring ADBC, CFDE, and ES respectively.

  The specific stiffnesses of DER1 and EDER1 are obtained via theoretical, experimental, and FEM simulation methods, as demonstrated in Fig.3.8a, which shows that the results acquired by these methods match quite well. Compared with DER1, the specific stiffness of EDER1 is significantly enhanced. Specifically, the experimental results of the specific stiffness of EDER1 are 130.230 cm, which is approximately 4.68 times that of DER1. The analytical prediction of the specific stiffness of EDERs is validated by experimental tests and FEM simulation. Based on Equation 3.18, the dependences of the specific stiffness of EDERs Θ EDER on a 1 ∈ [410] and b 1 ∈ [4 10] are shown in Fig. 3.8b, and the other parameters are set to a = 11 mm, m = 1, n = 1.5, q = 4 mm and t = 2 mm. From Fig.
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 523933 Figure3.9: a Nominal strain ε z versus nominal strain ε y curves of DER1 (q = 4 mm), EDER1 (q = 4 mm, a 1 = 5 mm), EDER2 (q = 4 mm, a 1 = 6 mm), and EDER3 (q = 4 mm, a 1 = 7 mm). b The dependence of Poisson's ratio of considered structures in this subsection ν zy on nominal strain ε z .

Figure 3 .

 3 Figure 3.10: a EDER4 (q = 4 mm, a 1 = 5 mm) with a gradient ES structure. b The dependence of ξ on nominal strain ε z . c The deformation process of microstructures of EDER4.

Figure 3 .

 3 Figure 3.11: a Macroscopic instability of EDER1 in the experiment. b The counterpart of EDER1 in the simulation, and the equivalent of EDER5 c and EDER6 d in the simulations.

Figure 3 . 12 :

 312 Figure 3.12: The influence of unit cells (N x × N y × N z ) for negative Poisson's ratio effect.

Figure 4 . 1 :

 41 Figure 4.1: Structure design and effective properties. a The primitive motif substructure shows auxeticity in the y-and z-directions but non-auxeticity in the x-direction. It is worth noting that for some specific geometrical parameters, i.e., m and n, the contraction in the y-direction surpasses the expansion in the x-direction when compression is applied in the z-direction, that is δy > δx. b The repeatable unit cell with auxeticity in three principal directions is obtained by alternatively arranging the partially-auxetic substructure in the x-and y-directions. c The primitive unit cell is used for phononic band structure computations. I use the repeatable unit cell for experiments, rather than the primitive unit cell because the former can diminish boundary effects when the number of unit cells composing the sample is limited. d-e The trend in the effective Poisson's ratio and the normalized effective modulus of the metamaterial is shown as a function of the change in m and n, with other parameters set as a = 75 µm, t = 10 µm, b = 16 µm and t c = 0.5 µm. f The SEM images show the sample composed of 3 × 3 × 5 unit cells fabricated with two-photon lithography. Here m = n = 1.97 with other parameters fixed. Sub-panel(i) is an oblique view of the sample, whereas sub-panels (ii) and (iii) show zoomed-in details of the sample.

Figure 4 . 2 :

 42 Figure 4.2: Force analysis of mechanical metamaterials under loading in the z-direction and periodic boundary conditions. a Force analysis of 1/8 representative volume element of the proposed metamaterial. b Force analysis of each beam.

1 /

 1 FABRICATION OF MICROSCALE SAMPLESA commercial 3D printer (Photonic Professional GT+, Nanoscribe GmbH) based on the principle of two-photon lithography 3D direct laser writing technologies was utilized to prepare the considered micro scales metamaterial, as shown in Fig.4.1f. The parent material for these samples is the customized commercial negative tone IP-S resin from the same company and matches the 3D printer well. The basic mechanical performance of this raw resin material, i.e., Young's modulus, Poisson's ratio, and density is E = 4GPa, ν = 0.43, and ρ = 1.00 g/cm 3 , respectively. In addition, the slicing distance and the hatching distance are prescribed as 1 µm and 0.5 µm. A drop of IP-S resin was deposited on an ITO-coated soda lime glass substrate with dimensions 25 mm × 25 mm × 0.7 mm and photo-polymerized with a femtosecond laser operating at λ = 780 nm and a 25Xobjective. The sample with 3 × 3 × 5 unit cells in the main directions, and each repeatable unit cell (see Fig.4.1b) has been printed one by one layer by layer from the bottom to the top. After printing, the samples were developed for 30 min in Propylene glycol methyl ether acetate (PGMEA) solution to remove the unexposed photoresist and rinsed for 5 min in Isopropyl alcohol (IPA) to clear the developer. A laser power of 90 mW and a galvanometric scan speed of 100 mm/s were used for the whole fabrication process.4.3.2.2/ FABRICATION OF MACROSCALE SAMPLESThe samples at the centimeter scale (see 4.5a) are fabricated by a commercial 3D printing company (Mohou Ltd) with a selective laser sintering 3D printing craft. Thermoplastic urethane (TPU) with white color has been used as the raw material. The Young's modulus, Poisson's ratio, density, and the elongation of the raw material TPU are 27 MPa, 0.45, 1.2 g/cm 3 and 500%, respectively.

4. 3

 3 .3/ MECHANICAL TEST 4.3.3.1/ MECHANICAL TEST OF MICROSCALE SAMPLES To evaluate the static mechanical behaviors of the proposed metamaterial, quasi-static uniaxially compressive experiments have been done. For the micro scale samples, the compression speed was set as 1µm/s, and an optical objective with 20 times magnification and 1 frame per second is utilized to capture the corresponding deformation process. Then, the image tracking functions from MATLAB software were employed to process and extract the data of lateral deformations. 4.3.3.2/ MECHANICAL TEST OF MACROSCALE SAMPLES The compressive experiments of the centimeter scale samples are implemented in the INSTRON 5569 machine with 1 mm/s compressive speed. At the same time, commercial Digital Image Correlation (DIC) equipment is used to record the course. And after that, the pictures are managed by matched software, and a nephogram representing the displacement in the x direction is output directly, as shown in Fig. 4.5g.

4. 4 / DISCUSSIONS 4 . 4 . 1 /

 4441 MULTI-STEP PROPERTIES AND TUNABLE ELASTIC CONSTANTSTo further investigate the effective mechanical response of the metamaterial under large compressive deformation, the two-photon lithography 3D printing (see the previous Methods section) technology with IP-S resin is employed to fabricate the experimental samples, as illustrated in Fig. 4.1f. The corresponding geometry parameters of the samples are shown in the captions of Fig. 4.1d-f. This subsection focuses on the multi-step behavior and the tunable mechanical properties of the designed and fabricated metamaterials. Experimental and numerical results are presented in Fig. 4.3. The experimental effective elastic constants, i.e., lateral strain ε x and compression stress σ z versus compressive strain ε z , are shown in Fig. 4.3a-d.Herein, I resolve the whole compression process into two main steps, called step-1 and step-2. As can be seen in Fig.4.3, the lateral strain ε x and the compressive stress σ z exhibit completely different trends in either step. In order to ascribe effective elastic constants of the metamaterial to each step, I use the slope of the lateral strain and of the compressive stress versus compressive strain. With this definition, the effective elastic constants for each step are reported in Fig.4.3b and d. It is clear that both the effective Poisson's ratio ν and Young's modulus E z are enhanced when the compression process jumps from step-1 to step-2. ν = -0.12 and E z = 1.2 MPa for the first step, and ν = -0.3 and E z = 2.6 MPa for the second step. Significantly, the numerical results obtained with FEM confirm the variations of the elastic constants, as Fig.4.3h shows. To reveal the nature of variations of the elastic constants in either step, experimental and numerical compressive deformations are reported in Fig.4.3e and f, respectively. It is worth noting that the outer surface of the curved beams which are in the xz-and yz-planes contact the counterparts of their neighbors in the z-direction if the compression strain reaches a critical value,

Figure 4 . 3 :

 43 Figure 4.3: Multi-step behaviors and tunable elastic constants during the compression along the z-direction. a Normalized strain ε x versus normalized strain ε z . b Effective Poisson's ratio for step-1 and step-2. c Normalized stress σ z versus normalized strain ε z . d Effective Young's modulus for both steps. e Experimental compression deformation (the scale bar length is 100 µm). f The numerical compressive deformation process of the conventional unit cell under periodic boundary conditions (PBC) is applied in all three main directions. g Normalized strain ε x and normalized stress σ z versus ε z obtained by the finite element method (FEM).

Figure 4 . 4 :

 44 Figure 4.4: Potential application to the design of structures with a tunable phononic band gap. ai A physical concentrated mass is added at the connecting node of the curved beams. The geometry parameters are set as a = 79.5 µm, t = 1 µm, b = 16 µm, t c = 0.5 µm, and m = n = 1.87. aii The structure undergoes a predisplacement of 20 µm in step-1. aiii The structure undergoes a pre-displacement of 30 µm in step-2. b The phononic band structure for elastic waves propagating in the z-direction is shown for step-1 (α, β, and γ correspond to the structure subjected to a pre-displacement of 0 µm, 10 µm and 20 µm, respectively). c The phononic band structure for elastic waves propagating in the z-direction is shown for a pre-displacement 30 µm, i.e., for step-2. d The frequency range of the first band gap is plotted as a function of the predisplacement.

  4.4aii) to step-2 (in Fig.4.4aiii). At the transition between the steps, the outer surfaces of the curved beams in the z-direction contact with their neighbors as discussed previously.The phononic band structure for elastic waves propagating along the z-direction is shown in Fig.4.4b. As apparent in Fig.4.4bα, the first band gap of the structure appears in the range between 255 kHz and 285 kHz. It does not shift very significantly with the predisplacement within step-1, as exemplified by panels Fig.4.4bβ and γ. The first band gap however shifts to the range between 885 kHz and 955 kHz when a pre-displacement of 30 µm is applied to the structure along the z-direction, i.e. by more than a factor three, as shown in Fig.4.4c. To prove that the band gap shift from Fig.4.4b to c is introduced by the multi-step behavior of the metamaterial rather than by the pre-stress of each curved beam, the evolution of the phononic band structure under different pre-displacements is compared in Fig.4.4d. Obviously, within step-1 the frequency range of the first band gap does not change significantly with the pre-displacement. The observed change is attributed mainly to the pre-stress of each curved beam. In step-2, however, the variation of the first band gap is introduced by the contact between curved beams. As a note, it exceeds the mere change of effective velocity at low frequency implied by the static measurement of Young's modulus reported in Fig.4.3.
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 43 DELOCALIZATION OF DEFORMATIONS AND RE-USABILITY OF THE META-MATERIAL Structures and materials hardly keep constant mechanical properties and thus remain reusable after undergoing cycles of large deformations. This is usually due to two essential elements, elastoplasticity and the failure mode of the materials. Localized deformations of structures and materials lead to downright failure. Examples are the collapse of lightweight porous structures (or the post-bulking or the instability of their elements),

Figure 4 . 5 :

 45 Figure 4.5: Delocalization of deformations and re-usability under large compressive strain. a The original metamaterial composed of 4 × 7 unit cells was fabricated by TPU. The geometry parameters are set as a = 9 mm, t = 2 mm, b = 3 mm, t c = 1 mm, and m = n = 1.59. b The metamaterial after five compression tests. c Normalized strain ε x versus normalized strain ε z . d Effective Poisson's ratio. e Normalized stress σ z versus normalized strain ε z . f Effective Young's modulus. g-h Deformation of the metamaterial under different compressive strains. The length of the scale bar is 20 mm. The pictures in panel g are output from a commercial Digital Image Correlation (DIC) software and the nephogram indicates the displacement along the x-direction.

  4, I studied the mechanical properties of 3D negative Poisson's ratio metamaterials based on curved beam elements. However, straight beams have advantages over curved beams in terms of force transmission, as shown in Fig. 5.1. So I was curious what will happen if the curved beam unit in the auxetic structure proposed above is replaced by a straight beam unit, as shown in Fig. 5.1. As discussed in this chapter, interesting properties resembling phase transitions occur in this case.

Figure 5 . 1 :

 51 Figure 5.1: a Curved and Straight beams. b Configuration obtained after replacing all curved beams with straight beams.

Figure 5 . 2 :

 52 Figure 5.2: Straight beam-based auxetics. a Straight beam-based substructure shows identical deformation features to the curved beam-based substructure, that is for some specific parameters, contraction in the y-direction is larger than expansion in the x-direction, that is ∆y > ∆x. The green dotted line outlines the pre-deformed shape in the xy plane when the substructure is compressed in the z-direction. b Repeatable cell obtained by alternately arranging the substructure along the x and y-directions. c Unit cell with negative Poisson's ratio effect in all three principal directions. d SEM images of the considered 3D mechanical metamaterial fabricated by two-photon lithography with the custom IP-S resin. e A close-up view was taken from d.
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 53 Figure 5.3: Force Analysis of representative volume elements of the metamaterial. a The periodic unit cell is subjected to tensile displacement in the z principal direction. b Effective boundary conditions of a 1/8 unit cell under periodic boundary conditions, displacements and degrees of freedom of endpoints in three principal directions, and schematic diagrams of axial and shear forces for each individual beam. Note that the bending moments of each individual beam are not shown in this figure.
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 54 Figure 5.4: Variation of mechanical properties with structural parameters θ h and θ v in the range [20 • , 60 • ]. a Poisson's Ratio and b Young's modulus of the structure is plotted. It should be noted that Young's modulus does not change significantly at the critical point (figured by the black dotted line in the figure) where the sign of Poisson's ratio changes. Other geometric parameters are fixed for all configurations and are set to a = 60 µm, t = 6 µm and E = 4.5 GPa.

  mechanical deformation the two different configurations of the considered system referred to as model A and model B. Both structures correspond to different initial values of angles θ h and θ v that make it possible to explore the origin of the aforementioned changes in the value of Poisson's ratio. 5.5/ DISCUSSION 5.5.1/ PHASE TRANSITION WITH CONSTANT YOUNG'S MODULUS AND SIGN CHANGE OF THE POISSON'S RATIO In solid-state physics, phase transitions can influence material functionality and alter their properties. In mechanical metamaterials, structural-phase transitions can be achieved through the instability or buckling of certain structural elements. However, these fast transitions in one mechanical parameter typically affect significantly the remaining parameters, hence limiting their applications. Based on the above, the main objective of this part is to evaluate the phase transition of the auxetic metamaterials. The mechanical response of experimental and simulation results of model A is shown in Fig. 5.5. Normalized strain in the z-direction versus normalized strain in the x-direction is plotted in Fig. 5.5a. Positive values of ε x indicate shrinkage (grey area) of the metamaterial, whereas negative values indicate expansion (white area). In short, model A first expands and then contracts in the x-direction during the compression process, i.e. undergoing a phase transition.

Figure 5 . 5 :

 55 Figure 5.5: Mechanical properties of model A when it compressed in the z direction. a Normalized strain in the x direction versus normalized strain in the z direction. b Tangent Poisson's ratio ν zx versus normalized strain in the z direction. c Normalized stress versus normalized strain in the z direction. d Tangent Young's modulus versus normalized strain in the z direction. In Figures a-d, the gray area represents the lateral expansion of the metamaterial, and the white area represents its lateral contraction. e Experimental compression deformation; the scale bar length is 100 µm. f The deformation process of the central unit cell is obtained by finite element analysis. Displacements in the x and the y directions are magnified by a factor of 8. Arrows indicate the direction of motion and the sign represents the positive or negative value of the tangent Poisson's ratio.

Figure 5 . 6 :

 56 Figure 5.6: Mechanical properties of model B as a function of the applied compressive strain in the z direction. a Normalized strain in the x direction versus normalized strain in the z direction. b Tangent Poisson's ratio ν zx versus normalized strain in the z direction. c Normalized stress versus normalized strain in the z direction. d Tangent Young's modulus versus normalized strain in the z direction. e Experimental compression deformation process. The scale bar is 100 µm. f Numerical simulation by finite element analysis of the deformation process of model B in the x, y plane. g-i Theoretical variations of the equivalent Poisson's ratio, equivalent Young's modulus, and θ ′ h , θ ′ v in the range [15 • 30 • ] for θ h = θ v . θ ′ h and θ ′ v represent the values of θ h and θ v after deformation. Other parameters are fixed as a = 60 µm, t = 6 µm, E = 4.5 GPa.Note that the upper and lower limits of the gray areas correspond to the cases of t = 5.5 µm and t = 6.5 µm, respectively.
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 56 Fig. 5.6. From Fig. 5.6a-b, it can be seen that model B retains a regular negative Poisson's ratio for compressive strain in excess of 0.2. Simulations show that the tangent Poisson's ratio of model B is -0.16, and the experiment yields a value of -0.14. The experimental results are obtained in the x, z plane, and the simulation results are for the x, y plane during the compression process; they are shown in Fig. 5.6e and e, respectively. Both results clearly show that model B has an almost constant negative Poisson's ratio for compressive strain up to 0.2, that is, Poisson's ratio of model B does not change with the deformation of the unit cell structure. This behavior is seldom seen in negative Poisson's ratio metamaterials, especially 3D auxetic metamaterials. The stress and tangent modulus curves versus compressive strain are shown in Fig. 5.6c and d, respectively. The simulation results show that the tangent modulus of model B changes only slightly in the process of large deformation, and always remains around 0.4 MPa. However, although experimental and simulation results follow the same trends, experimental results show slight fluctuations, the reasons for which are explained later. It can be concluded that the equivalent elastic constants (Poisson's ratio and Young's modulus) of model B remain unchanged under large deformation. In other words, the mechanical properties of model B do not change with the deformation of its unit cell structure, i.e. the metamaterial retains an almost constant negative Poisson's ratio under a wide range of applied strain.
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 57 Figure 5.7: Evaluation of specific energy absorption and energy absorption efficiency of models A and B. a-b Normalized compressive strain versus stress curves of models A and B under large deformation. For all curves, the number of peaks is equal to the number of layers of the metamaterials. c-d Specific energy absorption (SEA) and energy absorption efficiency (EAE) of models A and B, respectively. e Experimental results of deformation rules of models A and B during the large compression process. (The scale bar in experimental results is µ = 100 µm)
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 54 THE DIVERSITY BETWEEN THE STRAIGHT BEAM-BASED AUXETICS AND THE CURVED BEAM-BASED AUXETICS 5.5.4.1/ SIMILARITY In fact, the mechanism of the auxetic behavior of the straight beam-based auxetics and the curved beam-based auxetics is identical, which is beyond any doubt. This fact leads to the Poisson's ratio of both structures having a wide change range, especially since the value of the effective Poisson's ratio can vary from positive to negative with different geometry parameters. In other words, both of them can realize the elastic-stable continuous phase transition of Poisson's ratio.5.5.4.2/ DIVERSITYMore importantly, the variation of the mechanism of the deformation also introduces a lot of diversity between the straight beam-based auxetics and the curved beam-based auxetics. For example, the multi-step behavior of the auxetics which showed in Chapter 4 can not be observed in the straight beam-based auxetics. In addition, the failure mode of these auxetics also is individual. Due to the disappearance of multi-step behavior, the instability of the elements of the straight beam-based auxetics will be observed during the compression process, that is, localized deformation. These differences make curved beam-based auxetics more suitable for functional applications, and straight beam-based auxetics more suitable for structural applications.5.6/ CONCLUSIONSIn this chapter, I have designed a novel three-dimensional negative Poisson's ratio mechanical metamaterial based on straight beam elements that are elastically stable under large compressive deformations. By changing the feature size of the auxetic metamaterial, two different functional metamaterials are proposed. The first metamaterial displays a phase transition for Poisson's ratio that does not sacrifice the mechanical properties during the phase transition. The second metamaterial retains its auxetic behavior regularly over a wide range of applied strains. In addition, both metamaterials have high specific energy absorption and energy absorption efficiency. These superior properties make the auxetic metamaterials potential candidates for both functional and structural applications.GENERAL CONCLUSIONS ANDPERSPECTIVES 6.1/ GENERAL CONCLUSIONS In this thesis, I have investigated the mechanical properties, and more specifically the effective Poisson's ratio and Young's modulus, of three-dimensional auxetic structures under small compression deformation from the theoretical side and large compressive deformation from both the numerical and the experimental sides. First, in Chapter 1, I gave a general introduction to the concept of mechanical metamaterials and introduced the development of auxetic metamaterials. Their classification, advantages, applications, challenges, and opportunities were discussed. Second, in Chapter 2, inspired by the shape of the longitude and latitude of the Earth, I proposed a three-dimensional metamaterial with a partial negative Poisson's ratio effect in two principal directions and a positive Poisson's ratio effect in the remaining direction. Through the discussion of the influence of geometric parameters, the effectiveness of auxeticity was verified by theoretical analysis, numerical simulations, and experiential tests. Third, in Chapter 3, I proposed to use the directional instability of the equivalent beam to simultaneously improve the auxeticity and the specific stiffness of the metamaterial discussed in Chapter 2, and I obtained a three-dimensional metamaterial with superior mechanical properties. In addition, due to the instability of the enhanced structure occurring layer by layer from the boundary side to the central region, the effective Poisson's ratio of the new structure depends on the location of the surface. In other words, the structures at different positions on the same surface have varying negative Poisson's ratio effects. Fourth, in Chapter 4, based on the research results of Chapters 2 and 3, I proposed a multi-step negative Poisson's ratio mechanical metamaterial. The experimental results

5 . 4 ,

 54 the curved beam-based 3D auxetic metamaterial and the straight beam-based 3D auxetic metamaterial has different advantages. Here, I want to combine these two structures to obtain a new 3D auxetic metamaterial that shows the advantages of both curved beam-based and straight beam-based 3D auxetic metamaterial simultaneously, as shown in Fig. 6.1.

Figure 6 . 1 :

 61 Figure 6.1: Mixed 3D auxetic metamaterial based on the combination of the curved beam-based and straight beam-based 3D auxetic metamaterial. a Mixed substructure. b Repeatable unit cell. c Unit cell.

Figure 6 . 2 :

 62 Figure 6.2: Toy model of the metamaterial. a For a simple mass-spring model, the response function is frequency dependent under time-harmonic excitation. Resonance is observed atf ζ = K ζ /M ζ /2π, ζ = α, β.The amplitude of the restoring force is highly dependent on both the frequencies of the external stimuli and the inherent properties of the mass-spring system. b The effective mass-spring model of the non-reciprocal and non-Newtonian metamaterial includes four parts: the main system is composed of a large mass M and a spring K, of converters (in dark blue), of N resonant subsystems (M i , K i ), i = 1 • • • N (in light blue), and of N clipping boundaries. The function of the converters is to provide a frequency-dependent transformation of the direction of motion between the main system and the subsystems. The mechanical properties in this model depend on both the direction and the frequency spectrum of the external excitation. For example, when the source is located at the top (source 1) and the bottom is clamped, the amplitude of the restoring force is highly dependent on frequency, thanks to the influence of the resonances of the subsystems (Fig.6.2bi). In contrast, when the source is located at the bottom (source 2) and the top is clamped, the rigid mass M is motionless and resonances are not excited. In this case, no frequency-dependent behavior is expected (Fig.6.2bii)
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  1.5.2/ AUXETICITY IN BIOMATERIALS In biomaterials, the experimental results of Williams et al. show the negative Poisson's ratio in the cancellous bone near the epiphysis

  [START_REF] Zheng | Multiscale metallic metamaterials[END_REF] , ε 46 , ε 79 , ε 17 , ε 28 , ε 39 can be gained. To reduce test errors, the average of ε 13 , ε 46 , ε 79 was taken as the value of the lateral nominal ε y , while the average of ε 17 , ε 28 , ε 39 was taken as the value of the longitudinal nominal ε z .

	center of the sample, as shown in Fig. 2.2b. During compression, the entire compression
	test process was recorded by the Nikon d3300 camera (Nikon Imaging Instruments Sales
	Co., Ltd., Japan) as a video, as shown in Fig.2.2a. Then the video was trimmed into
	a series of pictures that reflect the entire compression process, and image processing
	technology was used to get the center of each marked point motion trajectory, as shown
	via green lines in Fig.2.2c. Marked points during the test are labeled with numbers as
	shown by the red numbers in Fig. 2.2c. Here, I set the distance between marker point
	1 and marker point 3 as d13, in the same way, d46, d79, d17, d28, and d39 are used to
	demonstrate the distance between relevant marked points as shown in Fig.2.2c. Based
	on the motion trajectory of the center of each marked point, the variations of d13, d46,
	d79, d17, d28, and d39 during the entire compression process can be obtained. Hence,
	the corresponding nominal strain ε
	with PA12 polyamide (Beijing Easy Speed Puri Technology Co., Ltd., China) as the raw
	material. The EOSINT P760 3D printer (Beijing Easy Speed Puri Technology Co., Ltd.,
	China) was used to manufacture the specimens, which have 5 repeating unit structures
	in the x-, y-, and z-directions. Sample photos are shown in the following section.
	A uniaxial compression test was implemented on the proposed auxetic material samples
	using the INSTRON 5569 electronic universal testing machine (Instron Test Equipment
	Trading Co., Ltd., USA). The load step was controlled by displacement with the loading
	speed being 0.3 mm/min, and a lubricant is applied between platens and specimens to
	reduce boundary effects. Before the compression test, 9 black dots were marked at the

  • ; 60 • ], the variations of Poisson's ratio are regular, i.e. the effective Poisson's ratio of the metamaterial increases with θ h , and increases or decreases with θ v ). In practice, this effect is irregular or non-linear. Here, I can consider two limiting cases, one when θ h approaches 0 (in this case the four beams in the xy plane tend to coincide and align parallel to the

  Les structures et les matériaux poreux artificiels conçus de manière rationnelle, définissant des métamatériaux mécaniques, peuvent présenter des propriétés mécaniques contre-intuitives qui sont inaccessibles aux matériaux ordinaires. Parmi eux, les métamatériaux auxétiques ont été largement étudiés au cours des dernières décennies en raison de leur mode de déformation latérale unique. Dans cette thèse, nous nous concentrons sur l'étude des constantes élastiques effectives (coefficient de Poisson effectif et module d'Young) des métamatériaux auxétiques 3D. Dans le premier chapitre, nous introduisons les concepts des métamatériaux mécaniques et le développement des auxétiques artificiels.Dans le deuxième chapitre, inspiré par la longitude et la latitude sur une sphère, une structure 3D présentant une auxéticité partielle est proposée et étudiée. Dans le troisième chapitre, l'instabilité directionnelle est introduite et utilisée pour améliorer l'auxéticité de la structure étudiée dans le chapitre qui précède. Ensuite, dans le quatrième chapitre, la structure proposée au chapitre 2 est utilisée pour concevoir une nouvelle structure 3D qui présente une auxéticité complète dans les trois directions principales et un comportement mécanique qui se divise en plusieurs étapes.
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where

for i = m and

for i = n.

The physical meaning of the third row of each matrix is that the rotational angle at each endpoint is 0.

Based on the periodicity and symmetry of the structure, the displacement-matching con-decomposed along three principal directions, and the axial force of each beam can be calculated as follows,

(5.4)

On account of the first-order shear deformation beam theory and using the coordinate transformation method [START_REF] Gao | Novel 3D auxetic lattice structures developed based on the rotating rigid mechanism[END_REF], the shear force of each beam can be calculated as follows,

where E and G are Young's modulus and shear modulus of the raw material, respectively.

Under quasi-static loading, each endpoint always satisfies the force equilibrium condition.

Considering the x-axial force balance of point A, the following equation can be obtained