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Résumé

Nous vivons dans un monde ot I'information est constamment mise & jour. Les logiques dotées
d’opérateurs dynamiques sont capables de raisonner sur les changements d’information multi-
agents. La logique épistémique dynamique est la logique du changement de connaissances. Par
exemple, dans la logique de 'annonce publique, une annonce restreint le domaine aux états
ou elle est vraie pour représenter les conséquences du changement de connaissances. Une
généralisation de la logique épistémique dynamique est ’extension avec quantification. Elle
comble un fossé intéressant entre la logique modale propositionnelle et la logique du premier
ordre en termes d’expressivité et de décidabilité. La logique des annonces publiques arbitraires
étend la logique des annonces publiques en ajoutant la quantification sur toutes les annonces.
Elle est plus expressive que les logiques modales et la logique des annonces publiques, mais
indécidable.

Dans cette thése, nous proposons de nouvelles versions de la logique d’annonce publique
arbitraire. Tout d’abord, nous pouvons restreindre la quantification de toutes les annonces a
des sous-ensembles de celles-ci. Plus précisément, les annonces concernées pourraient n’utiliser
qu’un sous-ensemble de toutes les variables propositionnelles ou impliquer une formule don-
née. Bien que ces variantes de la logique des annonces publiques arbitraires soient encore
indécidables, nous montrons qu’il existe une hiérarchie intéressante de ’expressivité relative
de ces variantes. Une autre approche est basée sur I'idée d’empaqueter des opérateurs ensem-
ble. Les opérateurs groupés représentent des notions plus complexes et restreignent également
la bexpressivité des langages. La notion de “connaissabilité” peut étre interprétée comme “il
existe un changement d’information possible aprés lequel 1'agent sait quelque chose”. Il est
naturel de la représenter par I’ensemble d’un opérateur dynamique quantifié et d’un opérateur
épistémique. Dans cette thése, nous proposons des logiques de connaissabilité utilisant de tels
opérateurs. Nous montrons que s’il n’y a pas de restriction sur les annonces, alors la logique
de connaissabilité est plus expressive que la logique d’annonce publique, mais indécidable. Si
nous ne quantifions que les annonces booléennes, alors la logique a la méme expressivité que la
logique modale propositionnelle. En plus de I’extension avec la quantification, dans cette thése,
nous combinons également la logique épistémique dynamique avec un systéme normatif. La
logique de mise & jour de fléches contient des modalités qui spécifient quelles relations doivent
étre préservées aprés la mise & jour par les conditions source et cible. Elle est congue pour
raisonner sur les changements de croyances multi-agents. Nous pouvons également 1'utiliser
pour représenter la notion de “norme” qui régule les comportements des agents de maniére
conséquente. Nous proposons une logique normative de mise & jour des fléches qui combine la
logique de mise & jour de fléches et la logique temporelle normative. Elle conclut également la
combinaison additive, multiplicative et séquentielle des normes. La logique normative de mise
a jour de fléches permet de distinguer les fagons statiques et dynamiques de considérer les
normes comme une logique épistémique dynamique. Nous montrons son expressivité relative
par rapport & d’autres logiques apparentées, sa décidabilité et sa complexité.

Mots-clés: logique dynamique, logique d’annonce publique arbitraire, connaissabilité, sys-
téme normatif, expressivité, décidabilité



Abstract

We live in a world where information is constantly being updated. Logics with dynamic
operators are capable of reasoning about multi-agent information change. Dynamic epistemic
logic is the logic of knowledge change. For example, in public announcement logic, an an-
nouncement restricts the domain to states where it is true to represent the consequences of
knowledge change. A generalization of dynamic epistemic logic is the extension with quantifi-
cation. It bridges an interesting gap between propositional modal logic and first-order logic in
expressivity and decidability. Arbitrary public announcement logic extends public announce-
ment logic by adding quantification over all announcements. It is more expressive than modal
logics and public announcement logic, but undecidable.

In this thesis, we propose some novel versions of arbitrary public announcement logic.
Firstly, we can restrict the quantification from over all announcements to over subsets of
them. To be specific, the announcements involved could use only a subset of all propositional
variables or implied or implying a given formula. Even though these variants of arbitrary
public announcement logic are still undecidable, we show there is an interesting hierarchy of
relative expressivity of them. Another approach is based on the idea of packing operators
together. Packed operators represent more complex notions and also restrict the expressivity
of languages. The notion of “knowability” can be interpreted as “there is a possible information
change after which the agent knows something”. It is natural to represent by the package of
a quantified dynamic operator and a epistemic operator. In this thesis, we propose logics of
knowability using such packed operators. We show that if there is no restriction on announce-
ments, then the logic of knowability is more expressive than public announcement logic, but
undecidable; if we only quantify over boolean announcements, then the logic has the same
expressivity as propositional modal logic.

Besides the extension with quantification, in this thesis, we also combine dynamic epistemic
logic with normative system. Arrow update logic contains modalities that specify which
relations should be preserved after updating by source and target conditions. It is designed
to reason about multi-agent belief change. We can also use it to represent the notion of
“norm” which regulates behaviors of agents in a consequential way. We propose normative
arrow update logic which combines arrow update logic and normative temporal logic. It also
concludes additive, multiplicative and sequential combination of norms. Normative arrow
update logic can distinguish between static and dynamic ways to consider norms as dynamic
epistemic logic. We show its relative expressivity with other related logics, its decidability,
and complexity.

Keywords: dynamic logic, arbitrary public announcement logic, knowability, normative sys-
tem, expressivity,decidability
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Introduction

1.1 Background

Epistemic logic provides a formal language and set of rules for reasoning about what someone
knows or believes. In epistemic logic, statements about knowledge and belief are represented
using special modal operators called epistemic operators, such as “it is known that” or “it
is believed that”. Modern epistemic logic originated in the 1950s and 1960s with a modal
approach. In [108], von Wright introduced the idea of using modal logic to analyze knowledge
and belief, and laid the groundwork for the development of epistemic logic. Hintikka’s seminal
book Knowledge and belief: An introduction to the logic of the two notions [52]| is widely
viewed as the starting point of modern epistemic logic. Hintikka introduced possible world
semantics (also known as Kripke semantics, see [60]|) of epistemic logic under multi-agent
scenarios. The Kripke models or relational models consist of a set of states, for each agent
a binary relation called accessibility relation between states, and a wvaluation of propositional
variables on each state. The properties of the accessibility relation, also called frame properties,
define different classes of Kripke models. The logic of knowledge is typically interpreted in
the class of equivalence (reflexive, transitive, and symmetric) models and the logic of belief is
interpreted in the class of S/ (transitive and symmetric) models. For an agent a and an actual
state, the accessible states are called epistemic alternatives of a. Intuitively, a considers all
epistemic alternatives possible but not distinguishable for him. In this sense, what a knows is
true for every epistemic alternative for him.

The possible world semantics of epistemic logic is the way we can determine whether
statements about knowledge are true or not. There are some properties of knowledge which
are always true on equivalence models and taken as axioms for reasoning about knowledge.
Let a be an agent and p be a proposition:

o Truthfulness: If a knows p, then p is true;
e Positive introspection: If a knows p, then a knows that a knows p;
e Negative introspection: If a does not know p, then a knows that a does not know p.

Those properties are widely accepted, but not undisputed. A classical problem is called
logical omniscience (named by Hintikka [52|) which says the agents are supposed to be perfect
reasoners who know every logical truth. There have been many attempts to solve this problem,
like introducing the notion of impossible worlds [53] and awareness [36]. In the thesis, we still



Chapter 1. Introduction

adopt the possible world semantics as the framework of epistemic logic. The formal definition
of epistemic logic is given in Chapter 2. We referto the textbook [23] for more details on modal
logic and textbooks [37, 100] for details on epistemic logic.

Epistemic logic gives a static perspective of interpreting epistemic scenarios at a certain
point. However, information is continuously updated and communicated by agents. The basic
epistemic logic is not able to model such changes and actions. One approach to modeling how
knowledge evolves is to combine epistemic logic and temporal logic (the modal logic of time)
in one logic (see [48, 37, 83]). Another approach we will survey is to extend epistemic logic
with update modalities which are interpreted by updating a relational model. This type of
logics is collectively known as dynamic epistemic logic (DEL) [104]. One way to distinguish
between these logics is to see which components of the model they each update.

Public announcement logic (PAL) [76, 45] has an update modality called public announce-
ment. After a truthful announcement is broadcast to all agents, the domain of the model
is restricted to the states on which that announcement is true. Relations accessing removed
states are also deleted. PAL is useful to formalize and solve epistemic problems involving
public communications, such as the Muddy Children Puzzle |76].

Arrow update logic (AUL) [57], as its name indicates, has an update modality that makes a
restriction on pairs in relations. Intuitively, when a pair in a relation of agent a is removed, it
means a can distinguish such pair of states by information he is informed about. Meanwhile,
the states are kept and there may be some relations with respect of other agents still linking
that pair of states. Under epistemic context, it means this pair of states is still indistinguishable
for those agents after a certain information-changing event. Arrow updates are more general
than public announcements as the changing information could be private among a group of
agents while the event is public. Unlike truthful public announcements, arrow updates could
convey false information. Arrow updates may not preserve equivalence models. Therefore, we
do not restrict the interpretation of AUL to equivalence models.

Action model logic (AML) [18] provides a generalization of information updates. Action
models are Kripke-model-like structures in which the domain is a set of actions and a precon-
dition is assigned to each action. The updated model in AML is the modal product of the
relational model and the action model. The domain of the updated model is a set of pairs in
form of (state, action) which means the action can be executed in the state. AML can model
private announcements with limited observations by other agents. Similarly, arrow update
model logic (AUML) [58] has arrow update models as a generalization of arrow updates.

1.2 Motivation and related work

From epistemic logic to dynamic epistemic logic, we have a dynamic perspective to reason
about knowledge. From PAL to AML, we can model more complex epistemic actions. In this
thesis, we focus more on another approach of generalizing DEL, namely by quantifying over
epistemic actions. Arbitrary public announcement logic (APAL) [16] extends PAL by adding
quantifiers over announcements. Quantifiers in APAL are still treated as modalities rather
than quantifiers in first-order logic. When one is wondering if it is possible that after an an-
nouncement, a given statement is true, he can formalize it as there is a truthful announcement
after which that statement is true.

Besides APAL, generalizing DEL with quantifiers over updates has been systematically
investigated in recent years. Arbitrary arrow update logic (AAUL) [105] extends AUL with
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quantifiers over information changing events involving arrow updates. Arbitrary action model
logic (AAML) [47] adds quantifiers over action models to AML. In Arbitrary arrow update
model logic (AAUML) [106] there are quantifiers over arrow update models.

Another approach is to investigate variants of APAL by restricting the range of quantifiers.
Firstly, note that quantifiers in APAL do not quantify over all announcements in the language
of APAL. To avoid circularity in the definition of the language of APAL, quantifiers can only
quantify over quantifier-free formulas. Semantically, it has also been shown that the truth of a
formula ¢ after an announcement with quantifiers does not imply that there is a quantifier-free
announcement after which ¢ is true [62].

Group announcement logic (GAL) [1] quantifies over announcements made simultaneously
by a group of agents. Coalition announcement logic (CAL) [5] quantifies over announcements
made jointly by the counterpart of a group of agents. The constraints of quantifier in GAL and
CAL are making to subsets of agents. Positive announcement logic (APAL™) [99] quantifies
over positive formulas in which epistemic operators are never bound by negations. Boolean
announcement logic (BAPAL) 98] quantifies over boolean (propositional) formulas.

Following a similar approach, we will propose several novel variants of APAL in Chapter
3. The first type of variant focuses on restricting propositional variables. Propositional vari-
ables are basic logical symbols for formal languages based on propositional logic. A set of
propositional variables may be countably infinite. We may define a quantifier as only quanti-
fying over announcements using a subset of propositional variables. To be specific, a subset
of propositional variables could be finite (since an announcement could only contain finitely
many variables), or only contain propositional variables that occur in the scope of the quan-
tifier(since intuitively variables not occurring in the scope is irrelevant). The second type of
variant contains quantifiers over formulas weaker or stronger than a given formula ¢. That is
to say, there are quantifiers over formulas implying ¢ or implied by . This type of variants
focuses on how informative an announcement could be. Besides the intuition of these novel
variants of APAL, we also have technical motivation to investigate them.

e Both APAL™ and BAPAL are incomparable in expressivity to APAL and more expres-
sive than PAL [99, 98]. Thus constraint on quantifiers does not lead to weakening the

expressivity. It should be interesting to compare expressivity between the variants we
propose and APAL.

e The satisfiability problem of APAL is known to be undecidable [16]. However, BAPAL
is shown to be decidable [98] and APAL™ is conjectured to be decidable. It is reasonable
to expect some of the novel variants are also decidable.

APAL is also related to the notion of “knowability”. Roughly speaking, knowability is about
what is knowable, or what can be known. Fitch’s paradox of knowability [39] is that if all
truths are knowable, then all truths are known. Suppose p is an unknown truth, then “p is an
unknown truth” is true. It follows that “p is an unknown truth” is knowable. When one knows
it, one knows that p is true, which makes the sentence false. Therefore, the contradiction
implies there is no unknown truth, that is to say, every truth is known. Fitch’s paradox
indicates that under the framework of epistemic and modal logic, it is hard to formalize
the notion of knowability. In [93]|, van Benthem suggested to use dynamic logic to interpret
knowability. According to this view, “a statement ¢ is knowable” means ¢ is known after some
announcement. It can be formalized by the language of APAL as “there is an announcement
after which ¢ is known”. Another approach of knowability logic is based on relation restricting

3
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update [109]. If we regard APAL as a logic of knowability, it may contain too many elements.
For example, [97] proposed a knowability logic based on APAL without public announcements.

In chapter 4 we will propose some logics of knowability with an operator as “knowability
operator”. Semantically, the truth condition of the knowability operator is identical to the
combination of an existential quantifier and an epistemic operator. That is to say, in this
logic of knowability, we also interpret “¢ is knowable” as there is an announcement after
which ¢ is known. The knowability operator will be useful to investigate the properties of
the knowabilility. Those logics of knowability are different by omitting quantifier, epistemic
operator and public announcements respectively. They can be viewed as variants of APAL as
well. The combined operator and distinction between these logics are not trivial, especially
technically. The expressivity, axiomatization and decidability can change a lot.

For the third and last topic in this thesis, we explore a broader field of update logic than
the epistemic context. Recall that in AUL, relations are updated by arrow updates. In general
relational models, we can treat a pair in relations as a transition as in temporal logic. An
arrow update (source, agent, target) can also be interpreted as an action by an agent. The
agent does an action that changes such relation pairs. Thus arrow updates on transitions can
be seen as restrictions on actions. In other words, arrow updates can be applied to characterize
what agents should do, could do, or are allowed to do. Such notions are called norms, rules,
or laws. The logics and systems reasoning about these notions are called normative systems or
deontic logic (see [42, 70| for an overview). We will take computation tree logic (CTL) [31] as
the framework of normative systems, in which sequential actions are taken on the branching
timelines. CTL has temporal modalities that can range over arbitrary modal depth, thus
statements like “¢ is always true” (¢ is true on every state of every path) or “p will eventually
be true” (there is a path on which ¢ is true at some point) can be formalized. As mentioned
before, temporal logic is used to model information change as well. It is dynamic in the
perspective of the flow of time, but static in terms of model updating. Normative temporal
logic (NTL) [3] is a logic of normative systems based on CTL. Norms in NTL are interpreted
as subsets of relations. Therefore, norms give constraints on actions.

In Chapter 5, we will investigate normative arrow update logic (NAUL) which was first
proposed in [63]. In NAUL norms are interpreted as arrow updates. The source in an arrow
update determines where norms should be applied; The target checks which transitions are
compliant for the objective group of agents. Such settings allow interaction between formulas
and norms (the source and target in an arrow update are formulas). More importantly, norms
are explicit. What actions are allowed is formally defined, and we can even combine norms to
compose more complex norms. For example, we can combine norms in an additive way so that
agents can choose between norms; we can also combine norms in a multiplicative way so that
agents must follow all of those norms; lastly, it is possible to combine norms in a sequential
way so that agents follow given norms in order of priority.

Some technical results of NAUL have been shown in [63], such the relative expressivity of
NAUL comparing to CTL and AUL and the complexity of the model checking problem. We
are interested in whether the satisfiability problem of NAUL is decidable and its complexity.

1.3 Contribution and Overview

In this thesis, we propose several novel variants of existing dynamic epistemic logics and
normative systems. In general, they can be viewed as extensions of DEL. Technically, we will

4



1.3. Contribution and Overview

focus on logical properties, expressivity, axiomatization, and decidability of these logics. The
structure and main contributions of the thesis are summarized as follows:

e Chapter 2: We introduce some formal definitions throughout this thesis. We also in-

troduce formal definitions of some background logics mentioned above, such as epistemic
logic, PAL, APAL, AUL, and CTL.

e Chapter 3: We propose several novel variants of APAL by restricting the range of
quantifiers. We first introduce the syntax and semantics of those logics, then we show
some valid formulas as logical properties of these logics. The main effort in this chapter
is to show relative expressivity results between these novel variants, PAL and APAL. We
give a map of the expressivity hierarchy of those logics. We also show axiomatization
and decidability results which are very similar to the case of APAL.

e Chapter 4: We introduce three different logics for knowability. They all have the
knowability operator, but quantifiers, public announcements, and epistemic operator
are omitted respectively. We define the languages and semantics of those logics. We
show some logical properties like validity. We show the relative expressivity of these
of logic. To be specific, the logic of knowability without quantifiers is more expressive
than PAL in the multi-agent case and equally expressive as PAL in the single-agent case.
We give an axiomatization of that logic, and show the system is sound and complete.
The logic of knowability without public announcements or epistemic operators is equally
expressive as propositional logic.

e Chapter 5: We introduce normative arrow update logic. We give the formal definition
of its language and semantics. The main contribution of this chapter is to show that the
satisfiability problem of NAUL is decidable, by a tableau method.

The material that forms the main body of this dissertation is based on collaborations with
various people: Chapter 3 is based on a joint paper with Hans van Ditmarsch, Louwe Kuijer
and Igor Sedlar [102]. Chapter 4 is based on a joint paper with Jie Fan, Hans van Ditmarsch
and Louwe Kuijer [65]. Chapter 5 is joint work with Hans van Ditmarsch and Louwe Kuijer.
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2

Preliminaries

In this chapter, we will introduce some concepts and notions of modal logic. We will also
introduce several existing logics formally.

2.1 Basic notions

2.1.1 Formal language

We study logic by formal language composed of symbols. For each specific logic, we set a
finite set A of agents and a countably infinite set P of propositional variables as signature. A
well-formed formula of a logic L is a string of symbols which can be identified by the syntactic
definition of L. We often use p, ¢q,r,... to denote propositional variables; a, b, ¢, ... to denote
agents; p,¥,, ... to denote formulas; and L, to denote the set of all well-formed formulas.
As our most basic logic, we use propositional modal logic.

Definition 1 (Language of propositional modal logic Ly,). Given P and A, the language of
propositional modal logic Lpry, is defined as:

pu=p || (pAe)|Oup

where p € P,a € A. We also use L, T, — 1,0 V1, < 1 as the abbreviation of p A =,

(e A=), 2(e A1), 2(mp A=), (e A=) A =(1h A @) respectively, and Ogp as the
abbreviation of —0O,—p.

Ly, is the most basic language in this thesis. Languages of the other logics can be viewed
as variants or expansions of Lyi,. Generally speaking, a logic is a set of well-formed formulas.
Semantically, it is the set of formulas that are always true; syntactically, it is the set of formulas
that can be proved. We will use ML as an example to give the formal definition of a logic in
both semantic and syntactical approaches.

2.1.2 Model

We use relational models also known as Kripke models [59] as the framework to determine the
truth value of formulas in this thesis.

Definition 2. A model M is a triple M = (S, R, V) where

7
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e S is a domain of states;
e R: A — S xS is a binary relation on 5}

e V:P — P(9) is a valuation function where P(S) is the power set of S.
Given a model M, we may refer to its domain relations and valuations as SM, Ré\/‘, yM
respectively. The class of all Kripke models is denoted by K. A model N is a submodel of
M, notation N' C M, if SN C sM, Rflv = RMn (SN x SN) for all a € A, and VN (p) =
VM(p) N SN. A pointed model (M, s) is a model M with a designated state s in S.

The class of all Kripke models is denoted by K. The class of equivalence models in which
R, is an equivalence relation for each a € A is denoted by S§5. We interpret formulas on
pointed models. Given a model M = (S, R, V), the semantics of a logic L defines if a formula
¢ € L is true on (M, s), written as M, s F .

Definition 3 (Semantics of propositional modal logic). Given M = (S,R,V), s € S, ¢ €
Ly, M, s E ¢ is defined as:

M,sEp iff  seV(p)

M, sE—p iff not M,skE ¢

M,skE= oA it M,sEgpand M,sE1

M, s E Ogp iff for all ¢t € S, sR,t implies M,tF ¢

If ¢ is not true on (M, s), we write M, s ¥ . If ¢ is true on (M, s), we also say (M, s)
satisfies . We say ¢ is satisfiable if there is some pointed model satisfying ¢. If ¢ is true on
all pointed models of M, we say ¢ is true on M or M satisfies o, written as M E . Given
a class of models C, we say ¢ is valid on C if ¢ is true on every model in C, written as F¢ ¢.

Given two pointed models (M, s) and N, t), and a logic L with language L1, M,s =,
(N, t) denotes: for all p € L, M,sE ¢ if and only if V|t E ¢.

If there is some ¢ € L such that M, s E ¢ while N, t ¥ ¢, then we say ¢ or L can distin-
guish (M, s) and (N, t). Apparently, if (M,s) = (N,t), then L cannot distinguish (M, s)
and (N, t). We determine the expressivity of a logic by how much it can distinguish between
models. We can compare the expressivity between logics in terms of their distinguishablity.

Definition 4. Let L and L’ be two logics that are interpreted over relational models.

e L is at least as expressive as L', notation L' < L if and only if for ¢ € L, there is a
1 € L1, such that ¢ is equivalent to 1;

e L and L' are equally expressive, if and only if L < L' and L' <X L;
e L is less expressive than L', notation L < L' if and only if L < L' but L' A L;
e L and L' are incomparable, notation L < L’ if and only if L A L' and L’ A L.

Bisimulation [90] is a well-known notion of structural similarity. We will use this notion
to show some expressivity results.

Definition 5 (Bisimulation). Let M and N be two models. A non-empty relation Z C
SM x SMis a bisimulation between M and N if for all Zst,a € A, p € P,

atom : s € VM(p) if and only if t € VNV (p);
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forth : if (s,s') € RM, then there is a ¢’ € SV such that (¢,) € RY and (s/,t) € Z;
back : if (t,#') € R, then there is a s’ € SM such that (s,s') € RM and (¢',t') € Z;

If there is a bisimulation Z between M and N, we write M < N. Two pointed models
(M, s) and (N, t) are bisimilar if there is a bisimulation Z between M and N containing (s, t),
written as (M, s) € (N, t). The following theorem shows if two pointed models are bisimilar,
then they satisfies the same formulas of ML. The proof is known from the literature [23].

Theorem 1. Let (M,s) and (N, t) be two pointed models. For all ¢ € Ly, if (M,s) €
(N, 1), then (M, s) =y (N, s).

The converse of Theorem 1 does not hold in general, but it holds in restricted cases such
as on image-finite models [23].

2.1.3 Axiomatization

An aziomatization is a syntactical characterization of a logic. It gives a set of formulas as
axioms and a set of rules by which the other formulas in the logic can be derived from axioms.
We also call an axiomatization a Hilbert-system or just system.

A derivation of a system X is a sequence of formulas ¢1, 9, . .., @, where for any i € [1,n],
; is either an axiom of X or the application of a rule of X on several ; with j < ¢. If there is
a derivation in X that contains ¢, then ¢ is a theorem or provable with respect to X, written
as Fx ¢. We use Th(X) to denote the set of theorems of X. The most basic system of modal
logic is K. It is the foundation of the other systems of modal logic.

Definition 6. The system K consists the axioms of TAUT and K and is closed under the the
rules of MP and NEC:

TAUT all substitution instances of propositional tautologies

K Oa(p = ) = (Oap — Tat)
MP from ¢ and ¢ — v infer ¥
NEC from ¢ infer Oy

A system containing K is called a normal modal system. K is the weakest normal system.
It means it has the least theorems. We may expand K by adding new axioms, such as:
Oap = Cayp
Uap — @
© = 0aCap
Ua® — Oalap

o > ™ 3 O

Cap = 000

There are some common normal modal systems:

K TAUT + MP + NEC + K

D K+D

T K+T

B T+B

S4 T +4

S5 T+B+4 (or S4+E)
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A system X is sound with respect to a class of models C if for any theorem ¢ € Th(X),
@ is valid on C, that is E¢ ¢. X is complete with respect to a class of models C if any valid
formula ¢ on C, Fx ¢.

Theorem 2. [59, 60] K is sound and complete with respect to all Kripke models. D, T, B, S4
and S5 are sound and complete with respect to serial, reflexive, symmetric, transitive and
equivalence class of models respectively.

2.1.4 Decision Problem

A problem is decision problem if it has a yes/no answer. Given a logic L, we are interested in
the following decision problem:

Satisfiability problem:

Input an Lp-formula ¢.

Output YES if and only if there is a pointed model (M, s) such that M,sFE ¢

A decision problem is decidable if it can be solved by computation. The concept of com-
putation is interpreted by mathematical models, such as Turing machine|89|. This is known
as Church’s Thesis [29]. One can refer to [64] for an overview of the theory of computation.
For decidable problems, the complezity determines how much time and space we need to solve
them. We classify problems into different complexity classes.

Definition 7. Let f and g be functions from N to N. If there are positive constants ¢ and k
such that for all n > k, f(n) < c-g(n), then we say f(n) = 0O(g(n))

e If a problem of input size n can be solved in O(f(n)) time, then it is in the complexity
class DTIME(¢(n)).

e If a problem of input size n can be solved in O(f(n)) time by a non-deterministic turing
machine, then it is in the complexity class NTIME(¢(n)).

e If a problem of input size n can be solved in O(f(n)) space, then it is in the complexity

class DSPACE(t(n)).

e If a problem of input size n can be solved in O(f(n)) space by a non-deterministic turing
machine, then it is in the complexity class NSPACE(t(n)).

10
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P = J DTIME(n¥)

k>0
NP = | J NTIME(n¥)
k>0
EXPTIME = | J DTIME(29(""))
k>0
NEXPTIME = | J NTIME(29(""))
k>0
PSPACE = | J DSPACE(n")
k>0
NPSPACE = | J NSPACE(n*)
k>0
EXPSPACE = |_J DSPACE(29""))
k>0
NEXPSPACE = | J NSPACE(29""))
k>0

The relation of fundamental complexity classes is as follows (see [74]):
P C NP C PSPACE C EXPTIME C EXPSPACE

Let C be a class of problems. A problem L is C-complete if every problem in C is polynomial
time reducible to L and L € C.

2.2 Logics as background knowledge

2.2.1 Epistemic logic

Epistemic logic (EL) reasons about knowledge under multi-agent scenarios. It works on equiv-
alence models. We use knowledge operators K, which stands for “a knows”. Through this
thesis, in the context of epistemic knowledge, we use K instead of O as the necessity modality.

Definition 8 (Language of epistemic logic Lgr,). Given P and A, the language of epistemic
logic Lgy, is defined as:

pu=p|-e|(pAe)| Kap
where p € P,a € A. We use Kagp as the abbreviation of =K ,—p.

For every agent a, K,p means “agent a knows ¢”’. We use ~, to denote equivalence
relations of agent a. An epistemic model is a tuple M = (S,~, V). The semantics of EL is
the same as Def. 3, except replacing O, by K,. For example, the clause of modality is defined
as follows:

M,sE Kyp iff forall te€S, s~,timplies M,tF ¢

11
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Intuitively, states here are possible states of worlds. Given an agent a at a state s, the
equivalence relation s ~, t ensures all successors of s are indistinguishable for a. Thus, a
knows ¢ if and only if ¢ is true on all states he considers possible.

S5 is the system of EL. T := K,p — ¢ can be interpreted as “if a knows ¢, then ¢
is true”; 4 := Kyp — K K,p means “if a knows ¢, then a knows that he knows ¢; E :=
- K,p — K, K,p means “if a does not know ¢, then he knows that he does not know ¢”. By
Theorem 2, we know that S5 is sound and complete with respect to the class of equivalence
models.

2.2.2 Public announcement logic

Public announcement logic (PAL) was developed by [75] and independently by [45]. PAL
adds public announcements to multi-agent epistemic logic. The information updating restricts
epistemic models to states where the announcement is true.

Definition 9 (Language of PAL Lpa1,). Given A and P, the language of public announcement
logic Lpar, is defined as:

pu=ploe|(@Ae)| Kap|lelp
where a € A and p € P. We use (¢)) ¢ to denote —[1)]—¢.

Formula [¢]p stands for “after announcing v, ¢ is true”. Formula (1) ¢ stands for “after
some truthful announcement of v, ¢ is true”.

Definition 10 (Semantics of PAL). Given M = (S,~, V), s € S, ¢ € Lpar, M,s FE @ is
defined as:

M,skE=p it seV(p)

M, sE—p it M,skFop

M,s = @AY it M,sEeand M,sE1

M,sE Kyp iff for all t €S, s~y t implies M,tF ¢

M, s E [Y]e iff M, sE ¢ implies My, s E ¢

where M|p = (S',~', V') is such that S" = [p]jm ={s € S| M,sE ¢}, ~, = ~a N ([e]m X
[£]a0), and V' (p) = V(p) N [e]m-

For the dual of [¢], M, s E () if and only if M, s E ¢ and M|p, s E 1.
Theorem 3 ([75]). PAL is as expressive as EL.
Definition 11. The axiomatization PAL is the extension of S5 with the following axioms:

AP [¢]

AN o] > (¢ = —[p]v)

AC Fo}(@be)H([w]wA[
(]

AS)

[x)

AK )
AA
Theorem 4 ([75]). The system PAL is sound and complete with respect to PAL.

12
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2.2.3 Arbitrary public announcement logic

Arbitrary public announcement logic (APAL), introduced by [16], quantifies over announce-
ments to interpret the notion of “knowable”.

Definition 12 (Language of arbitrary public annoucement logic Lapar,). Given A and P,

the language of arbitrary public announcement logic £apar, is defined as:
pu=plopleAe| Kap|lple| e

where a € A and p € P. We use (!) ¢ to denote —[!]—¢.

Formula [!]¢ can be read as “after any truthful announcement, it holds that ¢”. The dual
(1) ¢ is read as “there is some truthful announcement after which it holds that ¢”.
The formal definition of semantics is given as:

Definition 13 (Semantics of APAL). Given M = (S,~,V), s € S, ¢ € LpaL, M,sF ¢ is
defined as:

M,;sEp iff  seV(p)

M, sE —p it M,skFop

M,sE @AY iff  M,sEqpand M,sE

M,sE Kyp iff forall t €S, s~ t implies M,tF ¢
M, s = [Y]e iff M, sE ¢ implies My, s E ¢

M, s =[N iff  forall ¢ € Ly, M|, s E ¢

where M|p = (S',~/, V') is such that S’ = [p|m = {s € S| M,sE ¢}, ~, = ~a N ([e]m X
[elm), and V' (p) = V(p) N [l

Theorem 5 (|16]). Single-agent APAL and PAL are equally expressive. Mulit-agent APAL
18 more expressive than PAL.

The derivation rule involving the quantifier is formulated in terms of so-called necessity
forms [46]. Consider a new symbol f. The necessity forms are defined inductively as follows,
where ¢ is a formula in some logical language £ and a € A.

() ==11 (e = @) | Kap(8) | [0]3(8)

A necessity form contains a unique occurrence of the symbol §. If ¢ () is a necessity form and
¢ € L, then ¥(p) € L is the substitution of f by ¢ in ¥(f).

Definition 14. The axiomatization APAL is an expansion of PAL by adding the axiom
A! and rule R!. In the rule R!, the expressions x([¢)]¢) and x([!]¢) are instantiations of a
necessity form x(f).

Al g < [¢]¢ where ¢ € Lgg,
R!' From x([¢)]p) for all ¢ € Lgp infer x([!]¢)

APAL is an infinitary axiomatization.

The soundness and completeness of APAL was shown in [16]. An error in that complete-
ness proof was later corrected in [15]. Even later a simplified completeness proof was given
in [17]. The system in [17] contains an additional derivation rule “From ¢ infer [!]¢” that is
derivable in APAL.

13
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2.2.4 Arrow update logic

Arrow update logic (AUL) was developed by [57]. AUL propose a different approach to update
models other than PAL.

Definition 15 (Language of arrow update logic Layr,). Given A and P, the language of
arbitrary public announcement logic Ly, is defined as:

pu=plop| (@A) | Oup | [Ule

U= (p,a,9) | (p,a,9),U
where a € A and p € P.

Triple (p, a, ) is called an arrow specification where formula ¢ is called source condition, v
is call target condition, and a is a label for an agent. U is called arrow update. Correspondingly,
given an agent a and states si, sg, triple (s1, a, s2) is called a transition. (si1,a, s2) starts in s;
and ends in sz, and is also denoted by s1 Ly 5o,

A path in M is a (possibly finite) sequence s; FLy S9, 89 —25 3.+ - of transitions in M
where each transitions begins in the state where the previous transition ends. A single state
s is considered a degenerate path that contains no transitions. A path P’ extends a path P if
P is an initial segment of P’.

Let M = (S,R,V) be a Kripke model and U is an arrow update. A transition s; —— s9
satisfies U in M if there is an arrow specification (p,a,) in U such that M,s; F ¢ and
M, so E1b. A path is a sequence s1 — s —2 ... of transition in M. A path s1 s s9 25 . ..
satisfies U if every transition s; — s;41 satisfies U. A U-path is full in M if there is no
U-path in M that extends it.

Definition 16 (Semantics of AUL). Let M = (S,R,V) be a Kripke model, s € S and
v € Layr. M,sF ¢ is defined as:

M,sEDp iff s€V(p)

M7 sE - iff M, sE %)

M, sEpAY iff M,sE pand M,sE Y

M, s E Oup iff  forall t€S, sR,t implies M,tFE ¢

M, sE [Ule ifft  MxU;sEp
where M« U = (S, R U, V) and for every a € A,

RxU ={(s,5') € Ry | s~ s satisfies U}.
AUL" is a variant of AUL by adding an operator {U}* that looks through every full

U-paths.

Definition 17 (Language of AUL*). Given A and P, the language of arbitrary public an-
nouncement logic LAy« is defined as:
pu=plop|(pne)| Kap | [Ule [{U}p
U= (p,a,9) | (p,a,9),U
where a € A and p € P.

Definition 18 (Semantics of AUL*). We adopt the same definition and settings as for AUL,

and
M, sE{U}*e iff  for every U-path P starting in s and

every s’ € P we have M, s' F ¢,

14
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2.2.5 Computation tree logic

Computation tree logic (CTL) was first proposed by [31]. It reasons about time with possibly
different paths in the future. CTL uses branching-time time structure and has quantifiers over
paths.

Definition 19 (Language of CTL). Given P, the language of computation tree logic Ly, is
defined as:

pu=plop|(eAp) | AXp | AFp | E(eUp)
where p € P.

“A” and “E” are quantifiers over paths: “A” means “for all paths” and “E” means “there
exists a path”. “X, F, U” are temporal modalities: “X” means “the next state”, “F” means “in
the future”, and “U” means “until”. Therefore, AX ¢ means “for the next state of all paths, ¢
is true”, and AF¢p means “for all paths, ¢ will be true at some state”. E(pU) means “there
is a path such that ¢ is true until a state where 1) is true”. The Def. 19 is based on a minimal
set of operators. We may also use G as the dual of F. “G” means “always” or “globlly”. AGy
and EG¢ can be seen as an abbreviation of “EF -y and =AF—y. The semantics of CTL is
given as:

Definition 20 (Semantics of CTL). Let M = (S,R,V) be a Kripke model, s € S and
w € Lyt M, s E ¢ is defined as:

M,sEp iff seV(p)

M, sE —p ift M,skFop

M,sEpNY it M,sEqpand M,sFE

M,sE AXyp iff for all ¢ € S such that s——t, M,tE @
M,sE AF iff for every full path P staring in s there is some

8; € P such that M, s; E ¢
M, sE E(poU) iff  there is a -path P starting in s and s; € P such that
M, s; F1p and for any j < ¢ we have M, s; F ¢

2.2.6 Normative temporal logic

Normative temporal logic (NTL) was developed by [3]. NTL reasons about normative systems
which gives a set of norms to regulate behaviors of agents. Technically, it bases on CTL and
labels paths with parameters as norms.

Let X, be a set of normative systems, and 1 € X, is a normative system. Given a Kripke
model M = (S,R,V), let I : ¥,, = P(R) be a function that assigns each 7 to a subset of
R. If a pair (s1,s2) € I(n), we say s; — $o is a n-transition. A path s; — sg—> s3... is
a m-path if every transition s; — s;41 on it is in I(n). A n-path is full in M if there is no
n-path in M that extends it.

Definition 21 (Language of NTL). Given P and ¥,, the language of normative temporal

logic L1, is defined as:

pu=plop| (@A) | Oppe | Fye | Ey(eUep)

where n € ¥, and p € P. We use ¢y¢, Fyp and A, (pU) to denote the abbreviation of
-0y, 7Fy—p and —E, (eU)

15
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Definition 22 (Semantics of NTL). Let M = (S, R,V) be a Kripke model, s € S and
w € LnTr. M, s E ¢ is defined as:

M,sEp iff seV(p)

M, sE —p it M,skFop

M,sE @AY if  M,sE¢pand M,sE

M, sE Oy ifft  forall teS, s—tel(n)implies M,tE ¢
M, sE Fp iff for every full n-path P staring in s there is some

s; € P such that M, s; E ¢
M, sE E,(eU) iff there is a n-path P starting in s and s; € P such that
M, s; E1 and for any j < ¢ we have M, s; F ¢
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Almost APAL

3.1 Introduction

The modal logic of knowledge was originally proposed to give a relational semantics for the
perceived properties of knowledge, such as that what you know is true, and that you know
what you know, and to contrast this with the properties of other epistemic notions such as
belief [52]. Already in [52] the analysis of paradoxical phenomena that you cannot be informed
of factual ignorance while ‘losing’ that ignorance, so-called Moorean phenomena [71], played
an important role. On the heels of the logic of (single agent) knowledge came the multi-agent
logics of knowledge, wherein similar phenomena are not so paradoxical: there is no issue with
my knowledge of your ignorance. This led on the one hand to the development of group
epistemic notions such as common knowledge [13, 68| and distributed knowledge [51], topics
that we will bypass in this contribution. On the other hand this led to increased interest
in the analysis of multiple agents informing each other of their ignorance and knowledge,
often inspired by logic puzzles |72, 68]. This culminated in Plaza’s public announcement logic
(PAL) [76], wherein such informative actions became full members of the logical language
besides the knowledge modalities; parallel developments of dynamic but not epistemic logics
of information change are [107, 91].

The logic PAL contains a dynamic operator representing the consequences of information
change that is similarly observed by all agents, so-called public (and truthful) announcement.
We let [¢)]¢ stand for ‘after truthful public announcement of ¥, ¢ (is true). Every PAL formula
is equivalent to a formula without public announcements, so that PAL is as expressive as
epistemic logic EL [75].

From PAL there were various directions for further generalization. One could consider
public announcements in the presence of group epistemic operators such as common knowledge,
or non-public information change such as private or secret announcements to some agents while
other agents do not or only partially observe that. Both were simultaneously realized in action
model logic [18]; parallel, now lesser known, developments are [45].

A different direction of generalizing PAL is to consider quantifying over announcements.
Arbitrary public announcement logic APAL was proposed in [16] and contains a construct
[J¢ standing for ‘after any truthful public announcement, ¢ (is true)’, i.e., for all ¢, [1)]p.
In order to avoid circularity, the APAL quantifier is only over announcements not containing

This chapter is based on the paper “Almost APAL”, H. van Ditmarsch, M. Liu, L.B. Kuijer, I. Sedlar.
Journal of Logic and Computation, exac012, 2022. [102]
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[ modalities. There is an infinitary axiomatization for the logic [17]|, where an open ques-
tion remains whether there is a finitary axiomatization. APAL is undecidable [41], and the
complexity of model checking is PSPACE-complete [1]. There are versions of APAL with
finitary axiomatizations or decidable satisfiability problems [27, 98, 19], or that model aspects
of agency [1, 6, 44]. APAL is more expressive than PAL [16]. The relative expressivity of
versions of APAL is rather intricate, and most relevant in view of potential applications. For
example, group announcement logic GAL and APAL are incomparable in expressivity [44],
and in GAL we can formalize goal reachability in finite two-principal security protocols [1].

In this chapter we investigate some novel versions of APAL. If we quantify over announce-
ments only using atoms in subsets (Q C P we obtain the logic SAPAL, and if these subsets are
required to be finite we get FSAPAL. If we quantify over announcements only using atoms
occurring in the formula under the scope of the quantifier, we obtain the logic SCAPAL. If
we quantify over announcements implying a given formula 1 or implied by a given formula v
and if such ¢ may also contain quantifiers we obtain logic QIPAL and if they are not allowed
to contain quantifiers we obtain IPAL.

Note that there is a strong, but not well-known, relation between quantification over public
announcements and epistemic planning [24]. In the latter, we wish to satisfy some epistemic
goal ¢ by finding a sequence of actions, that could be public announcements, successively
transforming multi-agent models for the system until ultimately leading to a model satisfying
goal . In the former, we wish to satisfy (!)¢ (for ‘there is an announcement, or a sequence of
announcements, after which ¢’) by finding a sequence of announcements (successively trans-
forming multi-agent models) after which . In both, undecidability can only be tamed by
restricting what can be announced. The way to obtain decidability in epistemic planning is
often to restrict the number of actions [12, 25]. This goes beyond merely restricting the num-
ber of atoms. Such an action may have a precondition of certain modal depth. But therefore,
we no longer quantify over arbitrary modal depth as in the APAL versions considered here,
but over bounded modal depth.

The common factor in each of the APAL variants considered in this chapter is that they
restrict the domain of quantification to certain formulas that are considered relevant or per-
missible in some context. In APAL, [l]¢ means that ¢ holds after any truthful public an-
nouncement, including announcements that are completely irrelevant to the matter at hand.
While it may be fun to read about Sherlock Holmes determining the identity of the killer based
on, say, the weather in Berlin three days ago, such (seemingly) irrelevant announcements are
not very useful in practice. Each of the variants under consideration here tries to solve this
“irrelevant announcements” problem in some way.

For SAPAL and FSAPAL, whenever we use an arbitrary announcement operator, we need
to specify the relevant domain of discourse () C P for that operator. We then consider only
those announcements that are considered relevant by virtue of pertaining to this domain of
discourse. Think of an expert witness who is only allowed to opine on matters within their
area of expertise. For a more technical example, suppose that we want to allow users to query
a database in limited ways, while keeping a certain fact p secret. One way to do this is to
allow queries only about domain ). We can then verify that p remains unknown after the
answer to the query is given by checking that [Q](—=Kp A =K —p) holds.

More generally, when modelling dynamics of a multi-agent system it is often the case that
the vocabulary is finite. In particular, often only a finite number of atomic propositions are
considered relevant for each given subtask of a problem to solve, where this vocabulary might
vary between subtasks. In such cases, FSAPAL might be more suitable modelling tools than
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‘generic’ APAL. For example, consider distributed systems wherein agents may communicate
about their own local state value [61]. Similarly, in gossip protocols [56], the protocols wherein
agents merely exchange their secrets are less powerful than those wherein they are permitted
to exchange other information, such as who they previously communicated with. [50, 32|

In SCAPAL we also restrict announcements to some domain of discourse, but instead of
adding this domain as a parameter to the operator, we consider a propositional variable p to
be in the domain of discourse if it occurs inside the scope of the announcement operator. This
is not always a good idea; in the database query example above, the secret p should definitely
not be in the domain @ of queries. The assumption that variables are relevant because they
appear in the scope does make sense in a conversational context, however: if we are debating
the truth of ¢, then announcements regarding the truth of any variable that occurs in ¢ are
clearly relevant.

In IPAL, we do not restrict the domain of discourse, but instead limit (from below or
above) how informative the announcement must be. An announcement [¢)] eliminates all =)
states from consideration. As such, if x is implied by 1, and therefore holds at least on every
state where 1) holds, then [x] is at most as informative as [¢)]. Likewise, if £ implies ¢ then
[€] is at least as informative as [¢)]. Like SAPAL and FAPAL, this has applications in security
protocols, where communications by principals need to satisfy information goals towards other
principals as well as safety goals against eavesdroppers and other intruders |67, 77|. In such
protocols, we may wonder whether it is possible to be at least as informative as ¢ while not
giving eavesdropper e knowledge of p, represented by the formula (*)(=K.p A =K.=p), or
whether every communication at most as informative as ¢ is safe, represented by the formula
[@Z}T](_' ep AN 2 Kemp).

IPAL can also be useful in situations where disclosing certain information is required (by
law, by company policy or simply by social obligation), but disclosing more than the strict
requirement is possible. Or, of course, in situations where disclosing certain information is
forbidden.

For IPAL we were additionally motivated by the dynamic consequence relation based on
PAL proposed in [92], and how the IPAL quantification (that like the PAL announcement is
parametrized with a formula) can be seen as the condition for a substructural implication.
See Section 3.7 for more details.

In addition to these applications, we were also originally motivated by the search for
‘tameable’ versions of APAL. Ideally, a ‘tame’ version of APAL would be decidable. Or, if
not decidable, we could hope for a logic that is at least recursively enumerable (RE), and that
therefore admits a finitary axiomatization. The reason that APAL is so poorly behaved is that
its distinctive [!] operator is extremely powerful. The corresponding operators [@] and [C] in
FSAPAL and SCAPAL intuitively seem less powerful, suggesting that these logics might be
tameable. Unfortunately, this turns out not to be the case. A pretty minor modification to
the undecidability proof for APAL shows that FSAPAL and SCAPAL are undecidable, see
Section 4.6.2. Even so, we hoped that the smaller domain of quantification would allow for a
finitary axiomatization. While the domain of quantification for the arbitrary announcement
operators in FSAPAL and SCAPAL is still infinite, and naive introduction rules for [@] and
[C] are therefore infinitary, we had hoped to find introduction axioms for [@] and [C] using a
finite (but unbounded) subset of the domain. There, too, we were frustrated, however; while
we do present axiomatizations in Section 4.5 these use an infinitary introduction rule, similar
to the corresponding rule in APAL.

In fact, even the intuition that [@Q] and [C] are less powerful than [!] turns out to be only
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FSAPAL IPAL

S —

SCAPAL APAL

S —

PAL/EL

Figure 3.1: Expressivity hierarchy of logics presented in this work. An arrow means larger
expressivity. Assume transitivity. Absence of an arrow means incomparability.

partially true. The domain of quantification of [@)] and [C] is smaller than that of [!], and, as
a result, there are properties that can be expressed in APAL but not in FSAPAL or SCAPAL.
But the smaller domain of quantification can also be used to express things in FSAPAL and
SCAPAL that are unexpressible in APAL, see Section 3.4. So the expressive power of FSAPAL
and SCAPAL is incomparable to, as opposed to strictly lower than, that of APAL.

With regard to SAPAL and IPAL, since it is possible to embed APAL in either of these
logics, they are trivially at least as expressive as APAL, and their satisfiability problem is at
least as hard as that of APAL. In Section 3.4 we show that both are in fact strictly more
expressive than APAL.

So we did not strike gold in our search for tameable variants of APAL. Still, keeping in
mind the applications discussed above, we argue that these logics are interesting in their own
right. The expressivity results, which we consider the principal focus of our contribution,
give a thorough overview of how these various attempts to limit the arbitrary announcement
quantifier to some kind of relevant domain compare to each other. These results we consider
of interest and non-trivial, so perhaps we did strike silver. Furthermore, that FSAPAL and
SCAPAL are not tameable is a result in itself.

In Section 3.2 we introduce the syntax and semantics. In Section 3.3 we prove some
modal properties of these quantifiers. Section 3.4 determines the expressivity hierarchy for
the reported logics. It is shown in Fig. 3.1. Recall that < mean ‘strictly less expressive’ and =
‘incomparable’, then the results are that PAL is strictly less expressive than any of the logics
with quantifiers, and that SCAPAL < FSAPAL, APAL < SCAPAL, APAL < FSAPAL, IPAL
= SCAPAL, IPAL =< FSAPAL, and APAL < IPAL. Section 4.6.2 shows the undecidability
of satisfiability of our APAL versions, and Section 4.5 provides complete axiomatizations for
SAPAL and SCAPAL; these are similar to that for APAL. We conclude with Section 3.7
reinterpreting dynamic consequence in the IPAL setting.

3.2 Syntax and semantics: SAPAL, SCAPAL, QIPAL

Let a countably infinite set P and a finite set of A be given.
Definition 23 (Language). The logical language £ is defined inductively as:

pu=TIpl-¢l(@re) | Kapllele | e | Qe | [Cle | [#'e | [Tle
where p € P, a € A, and Q C P. By adding one of the quantifiers [1], [Q], [C], [@*]t

and [p']¢) to Lpar, we obtain, respectively, Lapar, Lsapar, and LscapaL, ﬁQu:ALi and
Lgrparr- Adding both [p*]¢ and [p!]y we obtain Lgrpar, and if the ¢ in [y and [¢!]y

is restricted to Lpar, we get Lrpar. If the @ in [Q]y are (always) finite we get LpsapArL-

20



3.2. Syntazx and semantics: SAPAL, SCAPAL, QIPAL

The meaning of all constructs will be explained after defining the semantics. The dual
modalities for [Q], [C], [¢*], and [p!] are, respectively, (Q), (), ('), and (¢'). Instead of
v € Lx we also say that ¢ is an X formula. For any language £, £|Q is the sublanguage only
containing atoms in Q C P. Given ¢ € L, P(y) denotes the set of atoms occurring in ¢. For
{p1,-..,Pn}]p we may write [p1 ...pple. The modal depth d(p) of a formula is the maximum
stack of epistemic modalities; it is defined as: d(L) = d(p) =0, d(p A ) = max{d(p),d(?))},
d(Kap) = d(p) + 1, d([el) = d([¢*]9) = d([¢"]¥) = d(p) +d(¥), and d([]p) = d([Clp) =
d([Qlp) = d(—p) = d(¢p).

We let T', ¥ and A denote finite sequences of formulas, where (I', A) denotes the concate-
nation of sequences (the parentheses are often omitted), and |I'| the length of a sequence.
By induction on the length of I' (and where ¢, are formulas) we define: [I'J¢ := ¢ when
IT| =0, and [, T := [¢][[]p when [, T| = n + 1; similarly, [[¥]y := ¢ when |T| = 0, and
(6, T 1= [$H][T ] when [9,T| =+ 1.

Definition 24 (Semantics). Given an epistemic model M = (S,~,V), s € S and ¢ € L we
inductively define M, s |= ¢ (¢ is true in state s of model M) as:

M,sk=p iff  seVip)

M;s E - it M,skEe

M,sE oA iff M,sEpand M,s =9

M, s = Kqp iff for all t € S, s ~g t implies M,t = ¢

[V]p iff  M,s 1 implies M|y, s | ¢

N iff  forany ¢ € Lpar : M,s = [Y]p

Qe i forany ¥ € LparQ : M,s = [l

Clp  iff  forany ¢ € Lpap|P(p) : M, s = [¢]p

badl iff  for any ¢ € Lpar implying x : M, s = [¢]e
Mo iff  for any ¢ € Lpar implied by x : M, s = [¢]p

where M|p = (S',~', V') is such that S" = [p]m ={s € S| M,s E ¢}, ~, = ~a N ([e]m X
[£]a0), and V'(p) = V(p) N []m-

In the dual existential reading of the semantics of the quantifiers, the ¢ in ‘there is a
Y € Lpar’ is the witness of the quantifier. In the semantics of the last two, ‘¢ implies x’
means =1 — y and ‘¢ is implied by x’ means = y — .

PAL and APAL Public announcement logic PAL and arbitrary public announcement logic
APAL were already introduced.

SAPAL and FSAPAL The logic with construct [@Q]p, for ‘after any announcement only
containing atoms in ) C P’, is called SAPAL, for APAL with quantification over formulas
restricted to subsets of variables. If those subsets are required to be finite we get FSAPAL.

SCAPAL The logic with construct [C]ep, for ‘after any announcement only containing atoms
occurring in ¢’, is called SCAPAL (where ¢ is the formula under the scope of the quantifier

[<)).
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QIPAL The logic with constructs [¢/*]¢ and [¢1]e is called QIPAL; where [¢)*]p stands for
‘after every announcement implying v, ¢ is true’, and [1)T]p stands for ‘after every announce-
ment implied by ¥, ¢ is true’. In QIPAL we can reason over restrictions of a given model M
that are submodels of M|, or over restrictions that contain M|y as a submodel.

We define bounded bisimulation and obtain some elementary invariance results for our
logics. They will be used much in the expressivity Section 3.4.

Definition 25 (Bounded bisimulation). Let M and N be epistemic models. For n € N we
define a sequence Z9 D ... D Z" of relations on SM x SN

A non-empty relation Z° is a 0-bisimulation if for all Z%st and p € P:

— atoms: s € VM(p) iff t € VN (p).

A non-empty relation Z"*! is an (n + 1)-bisimulation if for all Z"*!st, a € A:

— (n+1)-forth: if s ~M &', then there is a t' € SV s.t. t ~V ' and Z"s't'.

— (n+1)-back: if t ~ #/, then there is a s’ € SM s.t. s ~M &' and Z"s't.

If there exists a n-bisimulation Z™ between M and N we write M <" N. (We also combine
the notations £ and <" in the obvious way, writing £%@".)

Given pointed models (M, s) and (N,t) and a logic L with language Ly, recall that
(M, s) =1 (N,t) (for {(M,s) and (N,t) are modally equivalent’) denotes: for all ¢ € Ly,
M,s = ¢ iff Nt = ¢. Given @ C P and n € N, annotations =7 and E%) restrict the
evaluated formulas ¢ € L to those of modal depth d(¢) < n and (resp.) to ¢ € L1|Q.
APAL is invariant for bisimilarity, but not for restricted bisimilarity or bounded bisimilarity:
(M,s) € (N,t) implies (M, s) =apar (N,t), whereas (M,s) €™ (N,t) may not imply
(M, s) =%pa; (N,t), and (M, s) ©9 (NV,t) may not imply (M, s) EZPAL (N, t) [16, 99].
This is because the APAL modality [!] implicitly quantifies over formulas of arbitrarily large
modal depth and over infinitely many atoms. All logics we consider in this paper are invariant
for bisimilarity.

Lemma 1. For any L considered, (M, s) < (N, t) implies (M, s) =1 (N, 1).

Proof. For L = EL, PAL, this is known from the literature [23] for EL, and for PAL because
EL and PAL are equally expressive [76]. For the other logics, let us for example consider
SAPAL; the proof for all remaining logics is similar. By induction on the structure of ¢ we
show that

For all ¢ € Lsapar, and for all pointed models (M, s), (N, t):
(M, s) € (N, t) implies M, s = p iff Nt = .

All inductive cases are elementary except ‘public announcement’ and ‘quantifier’.

Case quantifier

M, s = [QY, iff M,s = [¢]y for all ¢ € Lpar|@Q, iff M, s = ¢ implies M|p, s = ¢ for
all o € Lpar|Q, iff (*) N,t = ¢ implies M|y, s | 9 for all ¢ € Lpa|Q, iff (¥*) Nt E ¢
implies Mg, t E 9 for all p € Lpar|Q, iff Nt |=[¢]y for all p € Lpar|Q, iff Nt = [Q]w.

(*): By bisimulation invariance of PAL, we obtain M, s = ¢ iff Nt | ¢.

(**): Let Z : (M, s) & (N, t). Define Z’ between M| and N|p as follows: Z'uv iff (Zuv
and M, u = ¢). By bisimulation invariance for ¢ € Lp 4y, it follows that also NV, v = ¢, so that
7' is indeed a relation between M|y and N|p. We now show that Z' : (M|p,s) € (Ne,t).
The clause atoms is obviously satisfied. Concerning forth for some agent a, take any pair
(v,v") such that Z'vv’ and let w in the domain of M|p be such that v ~, u. As u is in the
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domain of M|p, M,u = ¢. From Z'vv’ follows Zvv'. As v ~4 u in M|y, also v ~4 u in M.
From Zvv', v ~, u in M, and forth (for Z) it follows that there is «/ in the domain of N such
that Zuu' and v' ~, v/. From Zuu', M, u [ ¢, and bisimulation invariance for ¢ € Lpay, it
follows that N, v’ = ¢, i.e., v’ is also in the domain of N|p. From Zuu', M,u = ¢, and the
fact the u' is in the domain of M|y it follows that Z'uu/, as required. This proves forth. The
step back is shown similarly. Note that in particular Z’st. This therefore establishes that
Z": (Mlp,s) € (N]p,t), so that by definition (M|y,s) € (N|e,t). By induction for ¢ it
now follows that M|y, s = ¢ iff N|p,t =1, as desired.

Case public announcement

The case public announcement, wherein we show that M, s = [¢|y iff Nt = [¢]v, is
shown fairly similarly to the case quantifier, except that in step (%) we do not use bisimulation
invariance for ¢ € Lpay, but we use the inductive hypothesis for ¢ € Lsapar, and similarly
on two occasions in step (k). O

Corollary 1. Let ¢ € L, and M, s |= ¢. Then (M,s) & (N, t) implies (M|p, s) € (N]p,t).

EL is also invariant under bounded bisimulation, with bound equal to the formula’s modal
depth. As every PAL formula is equivalent to an EL formula with equal modal depth (this is
a special case of the translation introduced in [18]), it follows that PAL is similarly invariant.
As we use a virtually identical result in subsequent proofs, we give a full proof here.

Lemma 2. Let n € N and ¢ € Lpar, with d(p) = k < n, models (M,s) and (N,t), and
M, s |= ¢ be given. If (M,s) €™ (N,t), then (M|p,s) ©" % (N|p,t).

Proof. Let Z° D ... D Z" be such that Z° : (M, s) €% (N,t), ..., Z": (M,s) €™ (N,t). For
alli=0,...,n—k, let Zi, : D(M) — D(N) be defined as: Zfost iff Z**st and M, s = . As
d(p) < n, from n-bisimulation invariance for PAL and M, s = ¢ also follows that N,t = ¢.

By natural induction on n — k we show that Z" : (M,s) <" (N,t) implies Zg_k :
(M|ep,s) ©" % (N|g,t), from which the required follows.

Case n — k = 0. We show atoms. We have that ngt iff ZFst, where the latter follows
from Z¥ O Z™ and Z"st. Therefore, Zg (M|, s) €% (N|p,t).

Case n — k > 0. We show (n — k)-forth. Let s ~, s and M,s" |= ¢, i.e,, s ~, § in
Mlp. From Z" : (M,s) €™ (N,t) and s ~, s follows that there is a ¢ ~, t such that
zn=b o (M8 et (N,). Asn—k =n—d(e) >0, de) <n, sodlp) <n-—1.
From Z"~!: (M,s') €™ ! (N,t), M,s' |= ¢ and d(p) < n — 1 it follows by bisimulation
invariance that N, |= ¢. Therefore ' is in the domain of N|p. By induction, from Z"~1 :
(M,s'") &7 1 (N,t) it follows that Z];_k_l . (M|, s") "1 (N|gp,t'). Therefore, t'
satisfies the requirement for (n — k)-forth for relation Zg*k_

The clause (n — k)-back is shown similarly. O

lj\l;’oposition 1. (M,s) €9 (N,t) implies (M, s) E?APAL (N, t) and (M, s) E?CAPAL
(N, ).

Proof. The proof is by induction on formulas true in (M, s). The crucial case quantifier is
satisfied because (let R C Q): M,s = [R]y, iff M,s = [¢]¢ for all 1 € Lpar|R, iff for all
Y € Lpar|R, M,s | 1 implies M|y, s = ¢, iff (induction, Cor. 1) for all » € Lpar|R,
N,s = implies N[, s E o, iff (...) N, s E [R]p.

The proof for SCAPAL is similar. O
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3.3 Modal properties of the quantifiers

We continue by discussing some peculiarities of the semantics, where we focus on modal
properties of the quantifiers. We recall that APAL satisfies: [l — ¢ (T), [!]le = [['¢ (4),
(e — [ (CR), and ()¢ — (O (MK) [16, 99].

It may be useful to briefly consider the intuition behind these validities. The principle (T)
is valid in APAL because if ¢ is true after every announcement, then in particular it is true
after the uninformative announcement [T]. So [!]¢ implies [T]g, which is in turn equivalent
to . Validity of (4) is most easily seen in its dual form (!)(I)¢ — (!)¢; if (!)(!)¢ holds, then
there are two announcements ¢ and x that, if announced after each other, will make ¢ true.
The single announcement 1 A (1) x (informally: “1 is true, and now Y is true as well”) has the
same effect as announcing ¢ and x sequentially, so (!)¢ holds as well.

The properties (CR) and (MK) can be thought of as describing winning strategies when
two players make one announcement each, with player one trying to make ¢ true and player
two trying to make it false. Then (CR) states that if player one has a winning strategy when
they make the first announcement, then they also have a winning strategy when they make
the second announcement. Conversely, (MK) states that if player one can win when moving
second, they can also win when they go first. The validity of these properties in APAL follows
from the existence of a “most informative announcement” with respect to a given formula ¢,
that is available to either player. So player one has a winning strategy if and only if this
specific announcement makes ¢ true.

3.3.1 SAPAL and FSAPAL

The logic SAPAL generalizes APAL, as [P]yp is equivalent to [!J¢. We also considered FSAPAL
where @ C P in [Q]y is required to be finite.

Proposition 2. SAPAL-valid are [Qlp — ¢ (T) and [Q U R]¢ — [Q][R]¢ (4)

Proof. The validity of [@Q]¢ — ¢ follows from the validity of [T]p <> ¢. Just as for APAL,
[QUR]p — [Q][R] is valid because two announcements can be made into one announcement,
as in the PAL validity [¢][x]¢ <> [¢ A [¥]x]e, and because P(¢p A [p]x) C QU R if P(¢) C Q
and P(x) C R. O

The SAPAL versions of CR and MK, (Q)[R]y — [Q](R)¢ (CR) and [Q](R)p — (Q)[R]¢
(MK) are not valid in SAPAL, however.

Proposition 3. Neither (Q)[R]p — [Q](R)¢ nor [Q(R)e — (Q)[R]p is valid in SAPAL.

Proof. Let (M,0) be the two state pointed model shown below.

0(pq) 1(pq)
Since ¢ is false in both states, they are {q}-bisimilar. As such, no informative {q}-announcements
are possible in this model or any of its submodels, in the sense that any such announcement
holds either on all states or on no states.

As a result, we have M, 0 = (—p)[{q}]Ko—p but M,0 = [T|{q}K,—p, and hence M,0 }=

{rh{atKa—p = [{p}]{{q}) Ko—p. Similarly, we have M, 0 i [{q}]({p}) Ko—p — <{q}>[{p}]§aﬂp.
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01(pg) —— 11(pq) 01(pg) —— 11(pq)
b b »Ma b
0(p) —— 1(p) 00(pq) — 10(pg) 10(pg)

Figure 3.2: Model (N, 1) on the left, (M, 10) in the middle, (M|(p V ¢), 10) on the right.

Also note that all sets of variables in the above proof are finite, so CR and MK are not
valid in FSAPAL either.

3.3.2 SCAPAL

The SCAPAL quantifier does not distribute over conjunction: [Cle A [C]t) is not equivalent
o [C](¢ A ). This is easily demonstrated by an example.

Example 1. Consider model (M, 10) in Fig. 3.2 (pg: p is true and ¢ is false). Then:

M, 10 = [C]((HKap = KyKap) A q)
M> 10 ): [Q](Kap — KbKap)
M, 10 = [C]g

The first is false, because, as depicted:

M, 10 = (pV q)(Kap A ~KpKap), s

M,10 E (pV q)((Kep A ~KpKyp) V q) and therefore

M, 10 = (C)((Kap A - KpKap) V q), which is equivalent to
[

M., 10 F’é g}(( aP — KbKap) _'Q)'

The second is true because the only model restrictions containing 10 that we can obtain with
formulas involving p are {10,11} and {10,11,00,01}. The third is true because ¢ is false in
state 10.

Therefore, [CJp A [C]1 is not equivalent to [C](¢ A ).

Proposition 4. Valid in SCAPAL are: [Cle — ¢ (T), [C]e — [C][C]e (F), [C]{C)e — (C
VCle (MK) and (S)[Cle — [S(S)p (CR).

Proof. T and 4 are valid for the same reason as in SAPAL. For CR and MK we can now
(unlike for SAPAL) use the same method as in APAL, as in any state of a model we can
announce the value of all variables occurring in . A proof of CR is found in [99, Prop. 3.10]
(for the similar logic APAL™), which corrects the incorrect proof of CR for APAL in [16]). A
proof of MK is found in [16]. O

3.3.3 QIPAL and IPAL

We recall that in APAL the quantification is over ¢ € Lpar. Fairly complex counterexamples
demonstrate that [l|p — [¢] is invalid for certain ¢ € L£L4par containing quantifiers [62]. Now
in [¥]p, 1 € Lorpar may also contain quantifiers. This makes the relation to [!] unclear. In
Lipar, that ¢ must be in Lpa, and the relation is clearer.
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Proposition 5. Let Y € Lpar, x € Lrpar and pointed model (M, s) be given. The following
are equivalent:

1 M,s = (¥¥)x
2. there is a ¢ € Lpar, such that = ¢ — ¥ and M, s E (o)X,
3. there is a ¢ € Lpar, such that M = ¢ — 1 and M, s = (@)X,

4. there is a ¢ € Lpay, such that M, s = (o AN )x.
Proof.

1< 2 This is the semantics of the (/%) quantifier (in dual form).
2 =3 From [ ¢ — 1 it trivially follows that M = ¢ — .

3 =4 Suppose that there is a ¢ € Lp4r, such that M | ¢ — ¢ and M, s = (¢)x. Because
M E ¢ = 1, we have M = ¢ < (¢ A ), and therefore M|p = M|(p Ap). From
M., s E (p)x then follows that M, s = (o A)x.

4 = 2 Suppose that there is a ¢ € Lpay, such that M, s E (p A)x. Let ¢' = ¢ A9, and
note that ¢’ € Lpar. We have = ¢ — 1 and M, s = (¢)x. O

So we can think of (/%) as announcing ¢ A 1 for some ¢. It is important, however, that
the announcements of ¢ and 1) happen simultaneously. We cannot simply split (¢*) into an
arbitrary announcement (!) and the announcement (1), because the truth of 1) may be affected
by the announcement of ¢, and vice versa. Only under an additional constraint on % is such
separation possible.

The positive formulas L, ,; are the PAL-fragment p | =p | o A | oV ¢ | Ko | [2¢]e.
The truth of positive formulas (corresponding to the universal fragment in first-order logic) is
preserved after update [101].

Corollary 2. Let ) € L} ;. Then (¢¥)x implies (1) (1)x.

Proof. Let M,s = (¢*)x. From Prop. 5.4 we obtain that there is ¢ € Lpar such that
M,s = (p Ab)yx. As 1) is positive, in any states where 9 is true it remains true after the
update (¢ Av). An additional announcement of () therefore does not remove further states.

So M, s |= (¢ A1) implies M, s |= (¢ A ) ().
By the definition of the APAL quantifier, it follows that M, s = (I){(¢)x. O

Since every formula implies T and is implied by L, both [T+] and [_LT] quantify over every
formula in Lpar. We therefore have the following proposition.

Proposition 6. Let ¢ € Lipar. Then [T¥p and [LT]¢ are equivalent to [!]e.

Proof. Let model (M, s) and ¢ € Lgrpar be given. Then: M, s = [T¥p, iff M, s [= [¥)]p for
all Y € Lpar with E¢ — T, iff M, s = [¢]p for all Y € Lpar, iff M, s = [l]e.

Similarly, M, s = [LT]g, iff M, s = [¢b]p for allp € Lpag, with = L — 1, iff M, s |= [1b]p
for all v € Lpar, iff M,s = [!]e. O

Proposition 7. Valid in QIPAL are [1]p — ¢ (T) and also [T — [¢T)[xT)¢ and [yt —
[ cte (4)
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Proof. All proofs are as in Prop. 2 and 4. O

However, [*]¢ — ¢ (T) is invalid. This is because whenever M|t is a proper submodel of
a given model M, the trivial announcement is not allowed. For example, in any model where
p is true but a does not know this, we have [p*]K,p but not K,p. Also, [¢T]o — [x ][ e
and [1)*]p — [x¥][1)*]p are invalid, as the following example shows for the latter.

Example 2. Given is model M with two states s,t indistinguishable for a, and with p only
true in s.

We have M, s |= [(p A Kqup)¥] L, since p A Kup holds on neither state, so any announcement
implying pA K,p cannot hold on any state either. Yet we also have M, s1 = [TH[(pA Kap)Y] L,
with witnesses p for the first announcement and p A K,p for the second.

3.4 Expressivity

We now address the relative expressivity of APAL, FSAPAL and SCAPAL and IPAL, where
the proof that APAL is less expressive than IPAL is considerably more involved than the other
proofs.

3.4.1 APAL A FSAPAL and APAL A SCAPAL

We show that there is an APAL-formula that can distinguish two pointed models that cannot
be distinguished by any FSAPAL-formula. We use that APAL, unlike FSAPAL, quantifies
over arbitrarily many atoms. The proof is similar to the proof that APAL A PAL in [16].

Proposition 8. APAL £ FSAPAL and APAL 4 SCAPAL.

Proof. Consider APAL formula ()(K,p A K, K,p), and assume towards a contradiction that
1 is an equivalent FSAPAL formula. Let ¢ ¢ P(1)). Now consider models (M, 10) and (N, 1)
in Fig. 3.2, where the value of ¢ in states 0 and 1 of NV is irrelevant. These models are

P(1))-bisimilar. We now have that:

1. M, 10 ': <!>(Kap N _‘KbKap)
Observe that M|(p V q) = Kop A 7K Kgp. This model is shown in Fig. 3.2.

2. N1 EE () (Kap A —KpKqp)

3. M, 10 = iff N1 = o)
By Prop. 1, (M, 10) 2@ (A1) implies (M, 10) =o 5, (N, 1).

The third item contradicts the first two items. Therefore APAL A FSAPAL.
As Prop. 1 also applies to SCAPAL, this also proves that APAL A SCAPAL. O
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Figure 3.3: The models M3 and N3

3.4.2 SCAPAL # APAL and FSAPAL £ APAL

The proof is similar to that of the previous section, but more involved. We now show that the
assumption that there is an APAL formula ¢ equivalent to SCAPAL formula (C)(—g A Kop A
- Ky K,p) leads to a contradiction. Prior to that we present models and lemmas used in the
proof.

Consider models M,, and N, as follows, where n € N is odd. Model M,, = (S,~,V)
is such that (i) S = [0,2n — 1], (ii) for any i < n, 2i ~p (2¢ + 1) and, except for i = 0,
(20 — 1) ~g 2i and also (2n — 1) ~, 0, and (iii) for any ¢ < n, variable p is true in states 2,
variable ¢ is only true in state n and variable r is always false. Model N, is like model M,,
except that variable r is only true in n and variable ¢ is always false. Fig. 3.3 depicts M3 and
Nj.

Lemma 3. Let M C M,, N C N, i,5,k € N, withi € M and j € N be such that
(M, i) =% (N, j). Then for all x € Lpag, such that M,i |= x there is a X' € Lpar such that
N,j =X and (M|x,i) =~ (N|X',5). Furthermore, for all X' € Lpar, such that N',j = X'
there is a x € Lpag, such that M,i = x and (M|x, i) ~F (N|x, 5).

Proof. Without loss of generality, we can assume that M and A are connected. We begin by
showing that every state s of M is uniquely identifiable by some formula ¢s € Lpar. If the
g-state is reachable from s, then the identifying formula is based on the shortest path to the
g-state, and the agents along that path. For example, in M3 state 5 is the only state from
which the g-state, state 3, is reachable by taking a b-edge followed by an a-edge, but not by
only following an a-edge or only a b-edge. Hence, state 5 in M3 is uniquely identified by the
formula MyMyqg A = Myq A = Mpq. If the g-state is not reachable from s and M contains at
least two states, then there is a “leftmost” state in M, which can be uniquely identified by
the formula ¢ = Kup V Kp—p. The state s can then be uniquely identified by its distance
to this leftmost state. If M contains only one state, it can be identified trivially by T.

Because M is a finite model and each state can be uniquely identified by a formula, each
submodel of M is the extension of a disjunction of such formulas. Every state of NV is similarly
uniquely identifiable, so each submodel of A is also the extension of some formula.

In order for (M,i) and (N, j) to be k-bisimilar it is necessary and sufficient that (i) the
q and r state are not reachable in k steps from (M, i) and (N, j), respectively, (ii) there is a
leftmost (resp. rightmost) state reachable from (M, ) in less than & steps if and only if there
is a leftmost (resp. rightmost) state reachable from (N, j) in less than k steps. Condition (i) is
always preserved in submodels. In order to guarantee that (M|y,i) ~* (N]x/, ) it therefore
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suffices to preserve (ii), which can be done by taking x or x’ to be the formula such that x
holds on a state [ < k steps to the left/right of (M,4) if and only if x’ holds I steps to the
left /right of (N, 7).

O

In general, two k-bisimilar states need not be k-indistinguishable in APAL. This is because
the [!] operator quantifies over formulas of arbitrary depth. For submodels of M,, and N,
however, k-bisimilarity does imply k-indistinguishability.

Lemma 4. Let M C M,,, N C N, and i,j,k € N, withi € M and j € N. If (M,i) ~F
(N, 5), then (M,3) =X pa; (N, 5).

Proof. We show the equivalent formulation:

For all ¢ € Lapar,, M C My, NCN, and i,j,k € N with i € M and j € M: if
(M, i) ~* (N, 7) and d(p) < k, then M, i = @ iff N, j = .

The proof is by induction on the structure of ¢. The cases of interest are Kpp, [¢]p, and
[¢o. As k-bisimilarity is a symmetric relation, it suffices to show only one direction of the
equivalence.

Case K,p: Suppose d(K,p) < k. We have M,i | K, iff for all i' ~, i, M, E ¢.
As (M, i) ~F (N, j), for all j' ~, j there is some i’ ~, i such that (M,d') ~F=1 (N, /). As
d(K.p) <k, d(p) <k — 1. Therefore, by induction, N, j’ = ¢. And therefore N, j = Kyp.

Case [¢]¢: Suppose d([¢)]¢) < k, and M,i = [¢]e. Let d(¢)) = x and d(p) = y, then
x+y =d)+dlp) = d([¢]e) < k. By definition, M,i | [¢]¢ iff M,i = 1 implies
M, i = . From M, i =1, (M,i) ~F (N, j) and d(¢)) = 2 < k and induction we obtain
N,j = . From (M,i) ~* (NV,5), M,i =1, d(v)) = 2 < k — y, a part identical to that of
Lemma 2 except that where bisimulation invariance for PAL is used on ¢ € Lpa; we now
use induction on ¢ € Lapar, we obtain that (M|, i) ~¥ (N, 7). From that, M|y, i = ¢,
d(¢) = y and induction we obtain N|¢,j = ¢. Then, N,j [ ¢ implies N[, j | ¢ is by
definition NV, j = [¢]p.

Case [!]¢: Suppose towards a contradition that NV, j = [!]¢. Then there is some X' € Lpar,
such that NV, j = X' and N|x/,j = . By assumption (M,4) ~* (N, j), so the conditions of
Lemma 3 are satisfied. So there is a x € Lpar, such that M,i |= x and (M|x, i) =% (N]x, 7).
The induction hypothesis and the fact that N|x’,j [~ ¢ then imply that M|y,i = ¢. We
therefore have M, 7 [~ [x]e, contradicting M, i = [!]¢. From this contradiction, we conclude
that NV, j = [!]e. O

Proposition 9. SCAPAL A APAL.

Proof. Consider Lscapar, formula ¢ = (C)(—g A Kap A ~KpKgp). Let ¢ be the supposedly
equivalent £4p4y, formula. Take n > d(1)). We now show that:

1. My, 0 (C) (g A Kop A =KpK,p)
2. Ny 0 B (S)(mg A Kap A =Ky Kap)
3. My, 0 = iff N, 0 = o

These items are proved by the following arguments:
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1. The state n is distinguished by formula ¢. This allows us to distinguish each finite subset
of the domain, in the usual way, in Lg;, (note that there is no mirror symmetry along the
0—n ‘diameter’ of the circular models M,, and N;,). Thus there is a formula n € Lg|q
that distinguishes the set of states {0,1}. We now have that:

Mn,0 =7

Mau|n,0 f= =g A Kap A =Ky Kop
an 0 ): <77>(ﬂq A Kap A _‘KbKap)
My, 0 ): <g>(_‘q N Kap A _‘KbKap)

2. On the other hand, NV,,,0 [ (C)(=g A Kop A =Ky K,p). This is because we cannot use
that r is only true in n, as r &€ P(—qg A Kop A K K,p), and because (N, 0) ~P4 (0O, 0).
Clearly O,0 [~ (C) (=g A Kop A K K,p).

3. However, M,,,0 | ¢ iff N},,0 = 1. This follows from Lemma 4, as n > d(¢)) and
(M, 0) £4%) (N, 0). O

Proposition 10. FSAPAL A APAL.

Proof. As Prop. 9, but we now take FSAPAL formula (¢)(—¢ A K,p A 7K, K,p) instead of
SCAPAL formula (C)(—g A Kop A “KpK,p). O

As [!]p is equivalent to [Py we rather trivially have that APAL < SAPAL, so that with
Prop. 10 and its consequence SAPAL A APAL we immediately obtain:

Corollary 3. APAL < SAPAL.

3.4.3 SCAPAL < FSAPAL
We first show that SCAPAL < FSAPAL, and then show that SCAPAL < FSAPAL.

Proposition 11. SCAPAL < FSAPAL.

Proof. 1t is trivial that SCAPAL < FSAPAL, since |= [C]¢ <> [P(p)]e. Formally, we induc-
tively define a translation function f from SCAPAL to FSAPAL by

flp) = »p flevy) = flo)V i)  f(elv) = [flplf)
f(=p) = =f(p) f(Kap) = Kuf(p) f(Clp) = [P(e)lf(p)

In the final line we could equivalently have written f([C]y) = [P(f(¢))]f(¥), as f does not
affect the set of atoms that occur in a formula. We then have = ¢ <> f(¢) (which is shown
by induction), and therefore SCAPAL < FSAPAL. O

We now show SCAPAL < FSAPAL. In the proof we use models M_,, ,, and N_,, ,, similar
to M,, and N,, used in the previous subsection. They are depicted in Fig. 3.4 for n = 3,
compare to Fig. 3.3. (Imagine ‘cutting open’ M3 and N3 at the ¢ resp. r state, and remove
r as we can now use the distinguishing power of p on the edges of the chain.) Similarly to
Lemma 4, we first show a Lemma 5.

Lemma 5. Let M C M_,,,, N C N_,,, and 4,5,k € N, withi € M and j € N. If
(M, i) = (N, ), then (M, i) =Zcapar V7).
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Figure 3.4: The models M_3 3 and N_33

Proof. We show by formula induction that M, i |= ¢ iff N, j = ¢ for any ¢ € Lscapar, with
d(p) < k. Cases K, and [x]¢ are the same. The case quantifier [C|v is different and shown
as follows.

First, suppose that ¢ & P(¢). Then from (M,i) <P®) (N,j) and Lemma 1 it directly
follows that M, i = [Cly it N, j E [C].

Next, suppose that ¢ € P(¢); w.l.o.g. we may also assume that p € P(1). By assumption,
(M,3) <% (N, 7). Just as for Lemma 3, every M’ C M is definable in M by a formula in
Lpar|pg, and every N7 C N is definable in A by a formula in Lpar|pg. It follows that for
every X € Lpar|pg with M, i |= x there is a & € Lpar|pg such that (M|x,i) €F (N|E, 5),
and vice versa. Therefore, M,i = [Cly it N, j E [C]. O

Proposition 12. SCAPAL < FSAPAL.

Proof. We proceed as usual, however, with distinguishing FSAPAL formula (¢) (K,pA—KpK,p).
Let ¢ be the supposedly equivalent Lscapar formula. Take n > d(v)). Then:

1. M—n,nv 0 ): <Q>(Kap A _‘KbKap)
2. Nopn, 0= (@) (Kap A ~KpKop) (obvious)

3. M_pn,0 = iff Ny, 0= ¢ (use (M_y, 00, 0) €4 (N, ,,,0) & Lemma 5) -

3.4.4 Results for IPAL

Let us first present all our results for IPAL in relation to the other logics in the contribution,
with the exception of the proof that APAL < IPAL, our main result.

Proposition 13. APAL < IPAL.

Proof. This follows from Prop. 6 that [T+]p is equivalent to [!]e. O
We can also obtain strictness.

Proposition 14. APAL < IPAL.

Proof. The proof of this result is rather involved and presented in the next subsection. O

The relative expressivity between IPAL and FSAPAL /SCAPAL mirrors the results already
obtained between APAL and FSAPAL/SCAPAL.

Proposition 15. [PAL < FSAPAL and IPAL =< SCAPAL.
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Proof. FSAPAL A IPAL and SCAPAL A IPAL are shown as FSAPAL A APAL (Prop. 10)
and SCAPAL A APAL (Prop. 9), except that in the inductive case for the quantifier of the
proof of Lemma 4 we do not consider all witnesses 1 for the quantifier (!) but only those that
imply the given x in (x*) or that are implied by the given y in (x*).

From APAL < IPAL, APAL A FSAPAL and APAL £ SCAPAL (Prop. 8), we immediately
obtain IPAL A FSAPAL and IPAL A SCAPAL. O

3.4.5 APAL < IPAL

This section contains the proof of Proposition 14.
Let us start this proof by defining the sets of models that we will use. These models consist
of a base part

s1(p) s2(p,q)

t(p) —2— ta(p,q)

plus a number of branches of the form, for some [ € N

a a/b
b u1(p) u2(p) u;—2(p) L u—1(p)

The atom p holds in every state except w1, and the accessibility alternates between a and b,
so the final agent may be a or b depending on whether [ is even. We refer to the state ug as
the root of the branch.

The models that we will consider consist of a base part, where both s5 and t5 are a-attached
to any finite number of branches, possibly of different lengths. An example of such a model,
where s9 is attached to two branches of length 2 and 5, while t5 is attached to three branches
of length 2, 3 and 4, is shown in Figure 3.5. We say that two states in the model are on the
same side if one can be reached from the outher without using the a-edge between s; and t1,
and on the other side otherwise.

We then divide these types of models into two sets: a set 91 where there is at least one
length [ such that both so and ¢y are attached to at least one branch of length [, and a set 9
where there is no such shared length . We will first show that IPAL can uniformly distinguish
between these sets.

Lemma 6. Let M € M and N € M. Furthermore, let ¢ = [pM (1 — (THbs), where
1 = KpyKy—p and o = Kpy—qg AN Ko Kpq. Then M, s1 = @ and N, s1 - .

Proof. The key observation is that announcing any epistemic formula x implied by p can
remove access to a branch by removing the state uf) for that branch, but it cannot change the
length of a branch, or remove any of the states si, so,t1 and t9, since all other states satisfy
p, and therefore also .

Let x then be any epistemic formula implied by p such that M|x, s1 | IA(bIA(a—'p. Then at
least one branch on the top side of the model is retained. Because M € 9, there is no branch
on the bottom side of the model that has the same length. This implies that M|x, s2 and
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Figure 3.5: Typical model used in the proof that APAL < IPAL

M |x, t2 are distinguishable by a modal formula. As such, there is an epistemic announcement
¢ that removes sy while retaining s1,¢; and t2, so we have (M|x)[&, s1 = 2.

This suffices to show that M, s; = [p'] (1 — (T+)bs).

Regarding NV, since it is a member of 91 there is some [ such that the top and bottom sides
of N both have a branch of length I. Let x be the epistemic formula that retains a —p state
only if it is the root of a branch of length exactly I. Then we have Ny, s1 = 1. Yet in Ny,
the top and bottom side of the model are bisimilar, so there is no announcement that would
retain to while removing so. Hence N[y, s1 & (T+)ts.

This suffices to show that N, s1 & [p'] (1 — (THh9). O

Left to show is that there is no APAL formula that similarly distinguishes between 9t and
9. Unfortunately, this proof is significantly more complex than the other expressivity proofs
in this paper. It is therefore useful to first introduce a few auxiliary definitions and lemmas.

Definition 26. Let (X, z) be a submodel of a model of type 9t or M. We classify (X, z)
based on which worlds are retained, in the following way:

o [fx= uz and u% is not reachable from z in X, then (X, ) is a dead branch.

o If at least one state u% is reachable from x in X and on the same side, then this side
of (X, z) is a bouquet. If furthermore sg or ¢y is reachable on the same side, then the
bouquet has a stem of length 1. If s1 or so is also reachable on the same side, then the
bouquet has a stem of length 2.

o If 51, s9, t1 or ty is same-side reachable from (X, x) but no state u% is, then this side of
(X,x) is a dead stem. Two dead steams have the same form if they both retain their ¢
world or both remove it, and both retain their —¢ world or both remove it.
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Definition 27. Let (X, x) and (Y, y) be pointed submodels of models of type 9t or 91 and let
k € N. We say that (X, z) and (Y,y) are k-akin if one of the following three conditions holds
for both this side of the models and, if reachable, the other side:

e they are both dead branches,
e they are both bouquets with the same stem length and

— for every [ < k, if the bouquet in X has a branch of length [ then so does the one
in Y, and vice versa,

— if the bouquet in X has exactly m < (k + 1)? branches of different lengths greater
than k then so does the one in Y, and vice versa,

— if the top and bottom sides of X and Y are each bouquets with stem 2, then the
top and bottom side of X are bisimilar if and only if the top and bottom side of Y
are bisimilar,

e (X,z) and (Y,y) are both dead stems of the same form.

Definition 28. Let k& € N, and let (X,z) and (Y,y) be k-akin. The relation ~* is the
restriction of the following relation to the connected parts of the two models:

o (X,s;) ~F (V,s;) and (X, t;) =F (Y, t;) for i € {1,2},

e for every 0 <i < k— 1, if (X,u?) lies in a branch of length at most k, then (X, u/) ~*
(Y, uf/), where (Y, uz/) lies in the branch of Y at the same length at the same side!, and
vice versa,

o for every 0 < ¢ < k — 1, if (X, uf) lies in a branch of length greater than k, then

(X, uf) ~F (Y, uf ,) for every ug/ that lies in a branch of the same side of length greater
than k, and vice versa,

e for every i,7' >k, if (X, uz) and (Y, uz,/) are on the same side, then (X, uz) ~F (Y, uf,/)

We will use ~* as the invariant in our inductive proof. One important property of ~* is

that it is a k-bisimulation.

Lemma 7. If (X, ) ~k (v, y) then for every a- or b-successor x' of x there is an a- or
b-successor iy’ of y such that (X, 2") ~F=1 (Y,y'), and vice versa.

k

Lemma 8. The relation =" is a k-bisimulation.

The proofs are conceptually very simple, but still requires a lot of notation and different
cases, so we omit them.

We have now completed all the preliminary work, and can prove the result that we are
after.

Lemma 9. Let k € N, and let (X, z) =F (Y,y). Then for every ¢ of depth at most k, we have
X,xEoiff Yy E e
"Which must exist because (X, z) and (Y,y) are k-akin.
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Proof. By induction on formula construction. If ¢ is Boolean, then the lemma follows imme-
diately from the fact that ~* is a k-bisimulation.

Suppose then as induction hypothesis that the lemma holds for all ¢/ that are strict
subformulas of ¢. Assume towards a contradiction that ¢ distinguishes between (X, x) and
(Y,y). Since the conditions of the lemma are symmetric we can assume without loss of
generality that X,z = ¢ and Y,y = ¢.

A Boolean combination of formulas distinguishes between two states only if one of the
combined formulas does. If the main connective of ¢ is Boolean it therefore follows immediately
from the induction hypothesis that ¢ does not distinguish between (X, z) and (Y,y). This
leaves three cases for the main connective of ¢: K, [¢] and [!].

Suppose that ¢ = K. Then Y,y [~ K1, so there is an a-successor 3’ of y such that
Y,y £ 4. By (X, z) ~F (Y, y) there is an a-successor 2’ of z such that (X, z') ~*~! (Y,y'). By
the induction hypothesis, together with the fact that d(¢)) < k — 1, we then have X, 2’ [~ 1,
and therefore X,z £ Ky, contradicting our assumption that Ky distinguishes between
(X,z) and (Y, y).

Suppose that ¢ = [¢]x. Then X,z |= [¢]x, and therefore either X,z [~ ¥ or X|¢,z |= x.
In the first case, by the induction hypothesis we also have Y,y F~ ¢, which implies that
Y,y E [¢]x contradicting the assumption that [¢)]x distinguishes between the two pointed
models.

In the second case, compare the models X|¢ and Y|i. Because ® is, by the induction
hypothesis, invariant under ~*, for every branch in X|¢ that is cut off at a length at most k,
its counterpart in Y|¢ is cut off at the same length. The states s1, s2,t1 and to are similarly
retained in one model if and only if they are retained in the other. It follows that (X|t, z) ~*
(Y1, y). By the induction hypothesis the two models are therefore indistinguishable by x.
This contradicts the assumption that X,z = [¢]x and Y,y = [¢]x.

Finally, suppose that ¢ = [l]x. We assumed X,z = ¢ and Y,y [~ ¢, so there is some
epistemic formula 1) such that Y,y £ [¢]x. We will create an epistemic formula v’ such that
(X[, @) ~* (Y[, ).

First, note that the top and bottom side of X are bisimilar if and only if the top and bottom
side of Y are. If top and bottom are bisimilar, we can perform a bisimilarity contraction on
both models, obtaining a model where one side has been removed entirely. As such, we can
assume without loss of generality that if both sides of the model still exist, then they are
non-bisimilar. Because all models under consideration are finite this also implies that the top
and bottom sides are distinguishable by a modal formula.

As a result, every state can be uniquely identified by (1) whether it is on the top or bottom
side, (2) if it is in a branch, the length of that branch and (3) its position in the branch or
in the stem. By using a disjunction of characterizing formulas we can create a formula that
retains an arbitrary set of identifiable states.

We now create 1" as follows:

1. For each side, 1)’ holds on the stem states iff ) does.

2. For each side, if 1) removes a branch of length [ < k, or trims it to a length I’ < [, then
so does 1.

3. For each side, if ¢ cuts down a branch of length [ > k to I’ < k — 1, then v’ cuts down
a branch of length I” > k to I'.
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4. For each side, if 1 retains m < k? branches of length at least k — 1, then 1’ retains
exactly m such branches as well.

5. For each side, if v retains m > k? branches of length at least k — 1 then ¢’ retains
m’ > k? such branches.

6. If y ends up in a short branch in Y then z’s branch in X is cut to the same length.

Note that items 3-5 can be done because of the condition that X and Y contained either
the same number of (different length) long branches, or more than (k 4 1)? of them. Some
long branches may be “consumed” to provide the branches of length [ < k — 1. But 1 and 1/
consume the same number of branches, and at most £ — 1 of them. So X has enough long
branches to provide either the same number of long branches in X |¢ and Y|t or at least k2
of them.

By construction, the models X|¢’ and Y|¢ satisfy the conditions for being (k — 1)-akin.
Furthermore, z and y are in the same relative position, so (X|¢/,z) ~*~1 (Y|¢,y). By the
induction hypothesis we therefore have X|¢/,z = x iff Y|¢,y &= x. This contradicts our
assumption that X,z = [!]x and Y,y B~ [!]x.

In each case, we arrived at a contradiction. So ¢ does not distinguish between (X, z) and
(Y,y), completing the induction step and thereby the proof. O

We have now shown that there is an IPAL formula that distinguishes between 9t and
N (Lemma 6) and that there is no APAL formula that similarly distinguishes the two sets
(Lemma 9). This implies that there is no APAL formula that is equivalent to the distinguishing
IPAL formula. So we have IPALA APAL. Together with APAL < IPAL (Proposition 13), this
yields the result that that we were after, namely that APAL < IPAL (Proposition 14).

3.5 Decidability and undecidability of satisfiability

The satisfiability problem of APAL is decidable when there is only one agent, whereas it is
undecidable when there are at least two agents [41, 6]. The approach is by encoding/formal-
izing an undecidable tiling problem into APAL [22]. There are some decidable logics with
quantification over information change, for example Boolean arbitrary public announcement
logic [98]. It is therefore a relevant question whether the APAL versions considered in this
paper are decidable. It turns out that they are all undecidable (for more than one agent).
We prove this by referring to the undecidability proof in [6] and listing, for each of SAPAL,
SCAPAL and IPAL, the exact changes needed in that proof in order to show undecidability.
For all proof details and proof structure we refer to [6].

Proposition 16. The satisfiability problem for SAPAL, FSAPAL, SCAPAL and IPAL is
undectdable.

Proof. In [6] it is shown that, given a finite set C' of colours, there is an APAL formula ¢
that formalizes an undecidable tiling problem of tiles coloured with C'. We cannot determine
whether ¢ is satisfiable as this would solve the tiling problem. Therefore the satisfiability prob-
lem of APAL is undecidable. This formula ¢ has many constituents that describe properties
that need to be satisfied by the tiling, and APAL quantifiers occur in the formulas describing
such properties (see Example 3 below). For each of SAPAL, SCAPAL and IPAL there is a very
simple way to translate these £ 4 pay, formulas into equivalent Lsapar, LscApAL, respectively
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3.5. Decidability and undecidability of satisfiability

Lipar formulas. Furthermore, for SAPAL the translation only uses finite sets of variables, so
it is a translation to FSAPAL as well.

First, we note that the APAL undecidability proof in [6] only uses two agents and a finite set
CUA of atoms that is the union of a finite set C' of colours plus a set A = {u,d,l,7, 0, &, $, M}
Let us at least explain the intuitive meaning of these different atoms. The properties formalized
in the proof describe the requirements to tile an infinite grid where a square in the grid has
four sides w,d,l,r (for ‘up’, ‘down’, ‘left’ and ‘right’) and where each square is labeled with
one of O, &, O, d. The four sides of the tiles have colours from C and the colours of adjoining
tiles positioned on the grid have to match. No other atoms are required.

The required truth (value) preserving translations from L£4pay to Lx, where X is one of
SAPAL, SCAPAL and IPAL, are now as follows. We recall the above ¢ € L4pa; encoding
the tiling. Then:

e For SAPAL, replace each occurrence of [!] in ¢ by [C' U A].

e For SCAPAL, let Tcua := /\pecun(PV —p). Now replace each subformula of ¢ of shape
¢ by [C]( A Toua).?

e For IPAL, replace each occurrence of [!] in ¢ by [TY].

These translations are indeed adequate. For SAPAL it is sufficient to observe that the set of
atoms P considered is C'U A and that [!]¢ is equivalent to [P]y for the entire (finite) set of
atoms. The case SCAPAL is slightly more complex, as the witnesses of a constiuent of shape
[]¢ of the tiling formula ¢ may need more atoms than are occurring in the formula 1 (as
demonstrated below in Example 3). The translation simply forces any formula bound by a
quantifier to employ all atoms in the language by adding another conjunct that does not affect
the truth value as it is always true. Finally, Prop. 6 showed that [T+]¢ is equivalent to [!]¢.
Apart from these translations, no other adjustments to the proof in [6] are needed. O

Example 3. A constituent of the formula ¢ encoding the tiling of the plain is as follows,
where s and ¢ are the two agents used in the proof. It says that for any square of the infinite
grid labelled with a Q) there is some square below some square to the left of some square
above some square to the right of that square, that is n-bisimilar (that is, a square that is also
labelled with ©, but now the occurrence on the right-hand side of the formula below). See [6,
page 617].
Capal (V) = QO =[(Ks(r = (K (I = (Ks(u — K¢(d —
Kol = Ko(r = Ko(d — Ke(u = K9)))))

For SAPAL this ¢4pqi(9) is translated into:

Csapal (V) = O = [Ac](Ks(r = (Ke(l = (Ks(u = Ke(d —
Ko(l = Ke(r — Ks(d = K(u = K,9)))))))))

For SCAPAL, this ¢gpqi (V) is translated into the following. Here, it is relevant to observe that
in the proof in [6] the witness formula for this occurrence of [!] contains the atoms &, & and

2More properly, we should see this as an inductively defined translation t : Lapar, — Lscapar With only
non-trivial clause ¢([!]¢) := [C](t(¥) A Tcoua).
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# that do not occur in cgpei(©). Therefore, without the trivially true conjunct Tcua used
in the translation, this witness would not have been available. Merely replacing [!] by [C] in
Capal (V) would have resulted a formula with a different meaning.

Cseapal (V) 7= O = [CJ(Ks(r = (Ke(l = (Ks(u = Ke(d —
Ki(l = Ke(r = Ko(d = Ke(u — K,9)))))) A Teua)

For IPAL, capai(©) is translated into:

Cipat(V) = V = [TH(Ks(r — (Ke(l = (Ks(u — Ke(d —
Ks(l = Ke(r — Ks(d — Ke(u — Ks@)))))))))))

3.6 Axiomatization

In this section we report on axiomatizations of the logics under consideration. The known
axiomatization of APAL is infinitary (non-RE) [16, 17]. The infinitary axiomatizations of
SAPAL (and also of FSAPAL, as a special case) and SCAPAL are straightforward variations
of the axiomatization of APAL, and can similarly be proved sound and complete. It requires
merely checking very few and very local changes of the completeness proof, as we will see.
These axiomatizations we can confidently present as results. It seems the axiomatization of
QIPAL (and of IPAL, as a special case) is similarly a variation of that of APAL, but the
adjustments there are larger and require checking details in various parts of the completeness
proof. It seems then advisable to redo the entire proof, so that the concerned reader can check
the correctness of the argument. This is beyond the scope of our current investigation and
therefore, as they say, referred to further research. However, the value of such further research
may be limited, if the conjectured axiomatization is the only outcome. More adventurous
pursuits, such as the reported search for finitary (RE) axiomatizations for APAL variations,
may then be worthier.

Definition 29 (Axiomatizations SAPAL and SCAPAL). The axiomatization SAPAL of
SAPAL is as APAL (Def. 14) but where the axiom and rule involving the quantifier are
replaced by (where @ C P):

ARl [Qle — [¢]e where ¢ € Lpr|Q
R[Q] From x([¢)]p) for all ¥ € LE1|Q infer x([Q]e)

The axiomatization SCAPAL of SCAPAL is as APAL but where the axiom and rule involv-
ing the quantifier are replaced by:

AlC]  [Cle = [¥]e where ¢ € Lpr|P(e)

R[C]  From x([¢]e) for all v € Lpr|P(p) infer x([Clp)
Proposition 17. The axiomatizations SAPAL and SCAPAL are sound and complete.

Proof. 1t suffices to sketch the proof. The soundness of the axiomatizations SAPAL and
SCAPAL is evident as the axiom and the rule follow the semantics of, respectively, the [Q)]
and [C] quantifier. All remaining axioms and rules are standard from PAL. The completeness
proof proceeds exactly as in [17], with very minimal changes: the quantifier [!] only features in
the subinductive case [¢][!/]x and in the inductive case [!]i) of the proof of the Truth Lemma
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[17, pages 75-76]. Apart from changing the notation of the quantifier, it suffices to replace four
occurrences of the word ‘epistemic formulas’, i.e., ¥ € Lgr, by ‘epistemic formulas in Lg1|Q’
respectively ‘epistemic formulas in Lgp|P(¢).” This minimal change is sufficient because the
Truth Lemma for APAL is proved by a lexicographic complexity measure wherein [1]¢ is less
complex than [!]p for any 1) € Lgr,, for the simple reason that [1)] contains one less quantifier
than [!¢. Similarly, [¢]¢ is less complex than [Q]p and than [P(¢)]e for any ¢ € Lgr. No
other changes are required in the completeness proof. O

Let us now consider IPAL+. Given the semantics of the quantifier and Proposition 5.4 the
candidate axiom and rule are as follows:

All] (7] — [¢ An]p where ¢ € Lpr,
R[J] From x([¢) A njp) for all ¢ € Ly infer x([n*]p)

This still seems to be sufficient to demonstrate completeness, with, given the presence of an
additional formula 7, minor further adjustments of the proof for APAL.

We have not considered the case IPALT.

Now consider QIPAL. Instead of the changed axiom and rule above we would now need
two rules (and two similar rules for the other quantifier):

RA[] From 1 — n infer [n¥]¢ — [¢]¢ where ¢ € LEg,
RR[/] From y([¢]y) for all 1 € Lgr such that ¢ — 7, infer x([n*]¢)

It may be that completeness can still be obtained for this system, but this would require
more checks, for example we appear to need a slightly changed complexity measure in the
Size

completeness proof, such that 1 — n <z x([n*]p) [17, page 68]. At this stage it therefore
seems best to relegate all this to conjectures.

3.7 IPAL, substructural logics and dynamic consequence

3.7.1 Introduction

In this section we discuss the motivation for the (Q)IPAL |-quantifier, connecting it with the
implication connective of substructural logics [43, 73, 78, 85]. This connection is explored also
via a brief study of a dynamic consequence relation [92, 95| arising from the notion of IPAL
validity.

In a nutshell, our semantics of [p*]¢) is loosely inspired by the satisfaction clause for
implication in the relational semantics for substructural logic, according to which “¢ implies
1" is satisfied in a state iff combining that state with any state satisfying ¢ will result in a
state satisfying 1. Information update is one natural reading of “combining states” and “any
state satisfying ¢” translates in the information update setting into looking at updates with
any formula implying ¢. The dynamic consequence relation arising from the notion of TPAL
validity is not closed under most of the usual structural rules, nor under substitution, although
it satisfies a form of weakening even stronger than that satisfied by van Benthem’s dynamic
consequence arising from PAL. Details follow.

3.7.2 Substructural logics and implication

Substructural logics are logics weaker than classical Boolean logic. The name reflects the fact
that their Gentzen-style formulations are obtained, roughly speaking, by omitting some (or
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all) structural rules of Gentzen’s sequent calculus for intuitionistic logic, most prominently
weakening (i), contraction (c) and commutativity or “exchange” (e)

Lo, A =1
Lo, A=

A=y
Lo, A=

Lo x, A=
Lox, o, A=

(1) () (e)-

Other structural rules featuring in this contribution are strong weakening (si), left monotonicity
(Im), cautious monotonicity (cm) and reflexivity (r).

A=
Y A=

I'=o
v, I'=

' ITMA=w
Lo, A=

(si) (Im) (cm) (r)

Loo=¢

Substructural logics have general algebraic semantics [43] but — similarly as in modal
logic — models of a more concrete kind are better at facilitating fruitful interpretations.
Substructural logics also have general relational semantics |81, 82|, directly inspired by Kripke
semantics for modal logic. In order to understand the key aspects of this semantics, one needs
to take into account the role played by implication, namely, that implication internalizes
consequence in the sense that

Tey=v iff I'=sp—1.

Relational semantics for substructural logics treat implication as a binary modal operator, that
is, the relational models contain a ternary accessibility relation R between states (pieces of
information) z,y, z that is referred to in the satisfaction (denoted |=) condition for formulas
of the form ¢ — :

xrEe—1 iff forall y and z, Rryz and y = ¢ imply z | 9.

This is an obvious generalization of the standard Kripke satisfaction condition for formulas
of the form 0. General readings indicating the relation of the ternary semantics to various
notions of conditionality have been proposed in [21]. Another approach (that is, however,
not completely orthogonal to the former one) is to read R in terms of combining pieces of
information. Dunn and Restall point out that:

“perhaps the best reading [of Rxyz| is to say that the combination of the pieces of
information x and y (not necessarily the union) is a piece of information in 2” 35,
p. 67].

Restall adds that:

“a body of information warrants ¢ — ¢ if and only if whenever you update that
information with new information which warrants ¢, the resulting (perhaps new)
body of information warrants ¢” [79, p. 362] (notation adjusted).

On the informational reading, substructural implication clearly resembles an information
update operator; see also [10, 11| where it is observed that dynamic epistemic logic can be
seen as a two-sorted substructural logic, and that the product update is a special case of the
ternary accessibility relation. The question is, what kind of update operator does substructural
implication represent? Our semantics of [¢*]y modify PAL announcements so that the result
reflects the “non-determinism” of substructural implication — in evaluating ¢ — 1 at a given
state, there is no one “canonical” piece of information representing ¢ that is combined with the
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given state (think of the truth set of ¢ in the PAL satisfaction clause), but usually a number
of them is considered. In the semantics of [p+]¢ the role of these various pieces of information
is played by formulas implying ¢ (or, rather, by truth sets of formulas implying ).

The question is, how does this notion compare to substructural implication on the one
hand and to PAL announcements on the other. A study of dynamic consequence relations is
a particularly useful way of comparison.

3.7.3 Dynamic consequence

We now define a novel dynamic consequence relation =+,

Definition 30 (Dynamic consequence). Let ¥ be a finite (possibly empty) sequence of EL-
formulas and ¢ a EL-formula.

IPAL dynamic consequence Y=te iff E[De
PAL dynamic consequence Y=ty i [

Relation =V can be seen as a variant of =' which is van Benthem’s dynamic consequence
relation in its “local” version [92, 95].

We can see that, trivially, the (Q)IPAL |-quantifier internalizes =+ similarly as substruc-
tural implication internalizes =: we have T', =+ ¢ iff T =+ [p*]p. As shown below, =+
differs from =' by satisfying a stronger version of weakening, and it shares with =' a number
of other properties usually not present in substructural consequence relations (such as not be-
ing closed under substitution). This shows that, despite certain resemblances, one would need
to further modify the (Q)IPAL |-quantifier to mimic substructural implication in a PAL-like
setting, and vice versa.

Lemma 10. |= [/¥]p implies = [¥][x¥] .

Proof. This follows from Proposition 7 that [¢¥]¢ — [44][x*]e. O
We recall from Example 2 that [ [y — [x*][¢}]¢. Despite that, we still have that:

Lemma 11. |= [/V]p implies = [x*][14]p.

Proof. Assume = [¢*]¢. Now suppose towards a contradiction that = [x*][t)¥]¢. Let (M, s)
be such that M, s F~ [x*][¢*]¢. Then there is 1 implying x such that M|n,s = [¢*]e. This
contradicts assumption = [¢+]e. O

Proposition 18. IPAL dynamic consequence is closed under strong weakening (si).

Proof. Lemma 10 says in other words that 1) =% ¢ implies ¢y =V ¢, whereas Lemma 11 says
in other words that ¢ =% ¢ implies y1» =% ¢. We can show that, for arbitrary sequences,
I'A =t ¢ implies T, £, A =+ ¢, by an induction on the length of the sequences involved,
using the above sequent representations of Lemma 10 and Lemma 11. O

As observed by van Benthem, =' does not satisfy (si). For example, [~ K, p]-K,p is valid,
but [-~K,p|[p]-K.p is not valid. This is therefore a difference between =+ and =.

As a corollary to Proposition 18, =+ also satisfies the structural rules left monotonicity
(Im) and cautious monotonicity (cm). These are also satisfied by ="' [95].
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Finally note that = (as well as =' or any other conceivable dynamic consequence relation
involving public announcements) does not satisfy reflexivity (r). For example, it is elementary
that = [p‘]p (that is, p =% p), whereas on the other hand, just as elementary, = [(p A
-K.p)*|(p A ~Kyp). Just as PAL is not closed under substitution, also IPAL is not closed
under substitution. Hence, =¥ is not a consequence relation in the Tarskian sense.

3.8 Conclusions

In this chapter, we investigated some logics that are almost APAL but not quite: the logics
FSAPAL, SCAPAL and IPAL. They distinguish themselves by their widely varying relative
expressivity. On the other hand, their axiomatizations are very similar to that of APAL, and
they also have undecidable satisfiability problems. We have shown that the ITPAL quanti-
fier, motivated by the satisfaction clause for substurctural implication, yields a substructural
dynamic consequence relation differing from van Benthem’s dynamic consequence based on

PAL.
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4

Logics for knowability

4.1 Introduction

Intuitively, a proposition is known to you, if you know it; in contrast, a proposition is knowable
for you, if you can get to know it. The knowability paradox is that if all truths are knowable,
then all truths are actually known. The standard references for the knowability paradox
are [39] and |26]. However, following Salerno’s archival efforts the obligatory precursor to that
Church’s ‘anonymous’ referee report of what (much) later became [39]:

(...) there is always a true proposition which it is empirically impossible for a to
know at time t. For let k be a true proposition which is unknown to a at time t,
and let k' be the proposition that k is true but unknown to a at time t. Then k' is
true. But it would seem that if a knows k' at time t, then a must know k at time
t, and must also know that he does not know k at time t. (|30], reprinted in [84])

Fitch finally writes:

If there is some true proposition which nobody knows (or has known, or will know)
to be true, then there is some true proposition that nobody can know to be true.
[39, p.139]

Formally, ‘proposition ¢ is knowable’ later became ¢ K¢ [26], where < is some modal diamond,
representing a process, or time, or some alethic modality of truth. This modal diamond does
not yet occur in [39]. Let us sketch the paradox. The existence of unknown truths is semi-
formalized as “there is a proposition ¢ such that ¢ A =K¢”. That all truths are knowable is
semi-formalized as “for all propositions ¥, v — OGK1”. Fitch’s paradox is that the existence
of unknown truths is inconsistent with the requirement that all truths are knowable. This can
now be easily shown: let ¢ be ¢ A ="Ky, then we get (¢ A "K¢) = OK(p A =Kp). On the
assumption of ¢ A =K ¢, we therefore obtain OK(p A =K¢). Whatever the interpretation of
<, this will result in having to evaluate K (o A ~K¢). But this is inconsistent for knowledge,
as can be shown by very simple means: since knowing a conjunction entails knowing each of
the conjuncts, we obtain K¢ and K—Ky from this, and from the latter and that knowledge

This chapter is based on the paper “Logics for Knowability”, M. Liu, J. Fan, H. van Ditmarsch, and L.B.
Kuijjer. Logic and Logical Philosophy, 2022. [65]
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entails truth, ~K¢, and K¢ A =K is inconsistent.> This is of course Church’s argument
cited above. It is also inconsistent for belief, as was already observed by Hintikka [52].

Knowability is a subjective concept; it is possible that a proposition is knowable for an
agent but not for another. Take the proposition “it is raining but Alice does not know it”
as an example. This proposition is not knowable for Alice, as above. But the proposition is
knowable for another agent Bob, who may be aware of Alice’s ignorance. We are moving from
OCKyp to OKyp and OKpp.

Since Fitch’s 1963 publication, the topic of knowability has done the rounds of philosophical
communities, see e.g. [84, 88, 34|. The knowability paradox is relevant in verificationism and in
anti-realism. The verification principle requires a non-analytic, meaningful true sentence to be
empirically verifiable [14]|. Replace ‘empirically verifiable’ for ‘knowable’ (or recall ‘empirically
impossible for a to know’, cited above) and we are there. Anti-realism or non-realism is the
philosophy that denies the existence of an objective reality of entities. In other words, there
are no true unknowable propositions: a true proposition about the objective reality that has
no counterpart in a knowing subject would be such an unknowable proposition [33].

A dynamic view for knowability was subsequently proposed by van Benthem [93]. Ac-
cording to this dynamic view, knowable means ‘known after some announcement’, where
‘announcement’ is the truthfully public announcement of what is indeed known as PAL [76].
A logic extending public announcement logic with this notion of knowability was proposed in
the logic APAL [16].

Unlike PAL, APAL is undecidable, has an infinitary axiomatization, and even model check-
ing is already highly complex (PSPACE complete [1]). In [103] it was subsequently shown
that after all everything is knowable in the sense that in this logic, (!) K¢V (I) K= is valid; in
other words, everything is knowable to be true or false. But some kind of cheating is involved:
for example, p A 7 K,p is ‘knowable’ in this sense, because after Bob announcing this to Alice
it has become false: Alice now knows p, K,p, which entails =(p A =K,p).

In this investigation we will consider the combination (!) K as a primitive modality in the
logical language, and investigate the properties of various logics with this modality. Instead
of () K, or rather (!) K; for an agent 4, we will then write (!);, but this is mere syntactic
sugar: the point is that we are not allowed to use the (!) modality independently, but only
followed by K;. This technique of packing or bundling a knowledge modality with another
modality (or a quantifier) was pioneered in works by [66]. As one may see, this packing
can help us see the logical properties of knowability, such as McKinsey and Church-Rosser,
more clearly. As can be expected, this may affect the properties of the logic, for example its
expressivity, or complexity, or even the existence of an axiomatization. Such logics with a
primitive ‘knowability’ modality (!); will be called logics for knowability.* We will focus on
matters involving expressivity, axiomatization and decidability of such knowability logics. In
particular, we show that the logic that is like APAL but instead of the & modality has the
packed (!); modality also has a complete axiomatization, and we demonstrate various logical
properties of (!);. Moreover, as we will show, although the full knowability logic is undecidable
for at least three agents, two of its fragments are decidable, since both of them are equally
expressive as the classical propositional logic.

3Instead of using the two properties of knowledge in question, one can show in the monotone logic of
unknown truths [38] that the unknown truths ¢ A =K is not known.

4Although the method to pack two modalities into one is different from the usual modelling of the knowa-
bility paradox, the formalization of the paradox still requires two modalities, namely the novel knowability
modality as well as the knowledge modality (see Coro. 6 below).
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The remainder is organized as follows. After introducing the syntax and semantics of
knowability logics and other related logics (Section 4.2), we investigate the logical properties
of knowability and also a fragment of positive formulas in Section 4.3. Section 4.4 introduces
the bisimulation for a knowability logic LK and compares the relative expressivity of LK and
some related logics. Section 4.5 proposes an axiomatization of LK and shows its soundness.
Section 4.6 shows its completeness of LK, and explore the decidability of LK, which turns
out to be undecidable when there are at least three agents. We then propose two decidable
knowability logics, which are both equally expressive as the classical propositional logic PL,
and axiomatize them in Section 4.7. Finally we conclude with some future work in Section 4.8.

4.2 Syntax and Semantics

In what follows, we let P denote a denumerable set of propositional variables, and A a finite
set of agents.

Definition 31 (Languages). We consider various fragments of the following recursively defined
language L:
p u= ploel(@ne) | Kigl(p)e | Dol e

where p € P and i € A.

Without the construct (!)¢, we obtain the language LK of knowability logic; without the
construct K;p as well, we obtain the language LK™; without the construct ()¢ further, we
obtain the language LK=. Without the construct (!);¢, we obtain the language APAL of
arbitrary public announcement logic; without additionally the construct <, we obtain the
language PAL of public announcement logic; without additionally the construct ()¢, we
obtain the language EL; without even the construct K;p additionally, we obtain the language
PL of classical propositional logic.

Although we have different primitives (!); and (!), we could alternatively have defined (!);
by abbreviation as the ‘packing’ or ‘bundling’ of K; and (!), namely as (!);¢ := (!)Kj;¢p, such
that the inductive definition of LK could have been given as ¢ =:=p | ¢ | (¢ A p) | Kip |
(p)o | (NK;p. Instead, we will now after the presentation of the semantics have this as a
property of the complete language £. The main focus of our investigations is the logic LK.

YN

Intuitively, K;p, ()@, (1)ip, and ()¢ are read, respectively, “agent i knows that ¢”, “after
some truthful announcement of 1, it holds that ¢”, “¢ is knowable for agent ", “after some
truthful announcement, it holds that ¢”. Other connectives are defined as usual. In particular,
we abbreviate K;op, [1]¢, [I]ip, and [!]¢ as, respectively, ~K;—p, =(1)—p, =)=, and =O—p.

Moreover, var(p) is the set of propositional variables occurring in .

Definition 32 (Semantics). Given an epistemic model M = (S, {R; | i € A}, V) and a state
s € 5, the formulas of £ are interpreted recursively as follows:

M,sEp — seV(p)

M, s E - — M,sEyp

M,sEpANY <= M,skEpand M,skF ¢

M,sEK;p <<= Mtk pforallte R(s)

M,sE W)y <= M,skE¢and M|y, sk ¢

M,sE (I)ip <= for some formula ¢ € EL: M,sE (¢)K;
M, sE (e <= for some formula ¢ € EL: M, s E ()¢
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where M|y, = (S, {R] | i € A}, V') is such that §' = [p]m = {s € S| M,s F ¢},
Ri = Ri 0 ([plm x [l m), and VV(p) =V (p) O[]

A formula ¢ is valid, notation: F ¢, if for all models M and all states s in M, we have
M, s E p. Given any two states s,t in M and any formula ¢, we say that s and ¢ agree on ¢,
if M,sE @ iff M,tE .

Note that in the semantic definition of (!);p, the quantification is restricted to EL-formulas.
This is to avoid circularity of the definition. As EL is expressively equivalent to PAL, we can
also define the semantics of (!); as follows:

M,sE(l)ip <= for some formula ¢ € PAL: M, s E () K;

For convenience, we also give the semantics of [!]; as follows.

M,;sE[lli¢p <= for all formulas ¢ € EL : M, s E [{]K;p

From Definition 32 it follows that F () K;p — (1)ip, where v € EL. We can also use

its equivalent version [!];¢o — [¢]Ki¢ (where ¢ € EL), which means intuitively that if —¢p is
unknowable (—(!);—¢), then after any announcement —¢ is unknown ([¢p]=K;—p).

Proposition 19. For all p € L, E ()ip < (D K.
Proof. By definition of the semantics. O

Due to the presence of the knowability operators, in the completeness proof, we need to
use a method of induction with, on one hand, the size of formulas (as usual), and on the other
hand, the depth of knowability operators. These two notions are combined into the notion
of complexity. This notion and the next proposition will be also used in proving the proof
theoretical results in Prop. 27 and Sec. 4.5.2.

Definition 33 (Complexity). The complezity of a formula consists of two aspects: size and
(I)-depth, which are defined as follows.

The size of a formula ¢, notation: Size(p), is a positive natural number, defined recursively
as follows:

Size(p) =1

Size(—) = 1+ Size(p)

Size(p A1) = 1+ max{Size(p), Size(y))}
Size(K;p) = 3+ Size(p)

Size((Y)p) = Size(y) + 3 - Size(p)
Size((1ip) = 1+ Size(p)

The knowable-depth of a formula ¢, notation dk(y), is a natural number, defined recursively
as follows:

dk(p) = 0

dk(—p) = dk(p)

dk(p ANY) = maz{dk(p),dk()}
dk(Kip) = dk(p)

dk((Y)p) = dk(¥) + dk(p)
dk((Dip) = 1+dk(y)
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With the definitions of size and knowable-depth in hand, we define <2 as a binary relation
between formulas such that

@ <2 < either dk(p) < d(1)), or dk(p) = dk(¢)) and Size(p) < Size(¥).
If p <2 1), then we say that ¢ is less complex than ).

One may easily show by induction that dk(p) = 0 for all ¢ € EL. And also, it is easily
computed that Size([1)]¢) =4+ Size(¢) + 3 - Size(p).

Proposition 20. In (o) and (oo0), ¢ € EL.

@ < e v < (W) (¥)x <g () (eAXx)
@ < @AV |p <% (Y)p Y < (V) K
P <L eny v < @W)e Ki[]p <g (V) Kip
@ < Kip | (e < (¥)-e (W) <€ (W) x)e
(0) (WWKip <3 (Nip | (W)e <& W) eAx) | ) WKip <Z (x)(Dip (o0
V <Z (W | <€ (W

Proof. We take some of them as examples.
o (P K;p <2 (1);p: this is because dk((V) K@) = dk(p) < 1+ dk(p) = dk({1)ip).

o p <2 (¢)p: this is because dk(p) < dk(zp) + dk(p) = dk({(¢))p) and Size(p) = 1 <
Size() + 3 - Size(p) = Size((¥)p).

o K;[th]p <2 (¥)K;p: this is because dk(K;[y]p) = dk(v) + dk(p) = dk({(¢)K;p), and
Size(K;[Y)p) = 3+4+ Size(y))+3-Size(p) = T+ Size(v) +3- Size(p) < 9+ Size(v) +
3 - Size(p) = Size((Y)Kip).

o (¥)x)e < () (x)¢: thisis because dk(((¥)x)) = dk(v))+dk(x)+dk(p) = dk((¥)(x)¢),
and Size(((Y)x)p) = Size()) + 3 - Size(x) + 3 - Size(p) < Size(v)) + 3 - Size(x) +9 -

Size(p) = Size((¥)(X)®)-
0

Note that in the definition of Size(K;p), the number 3 is the least natural number to
provide K;[1]p <2 (¢)K;p. In contrast, in [17], Size(K;yp) is defined to be 1 + Size(p), in
other words, plus 1 rather than plus 3.

4.3 Logical properties of knowability

This section explores the logical properties of the knowability operator in the logic LK.

It has been shown in [103] that everything is knowable, in the sense that OK;pV O K~ is
valid. In LK this becomes (!);¢ V (!);=¢ and indeed this is also valid, by a very similar proof
(only the case quantifier is occasionally different). For clarity we give the entire proof.

Given a model M, the valuation of propositional variable p is constant on its domain S if
V(p) = S or V(p) = @, i.e., if any two states in S agree on the value of p.

Proposition 21 (|16, Lemma 3.2|). Let ¢ € LK, and let M be a model with constant values
for all variables occurring in ¢. Then M E ¢ or M E —.
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Proof. Suppose that each propositional variable occurring in ¢ has constant value on M. If
V(p) = S, that is, M E p < T, then M E ¢ < o(T/p); if V(p) = @, that is, M Ep < L,
then M E ¢ < ¢(L/p). We denote the result obtained by substituting T or L for all
propositional variables in ¢ in that way as 2. Obviously, M E ¢ + ¢?. Note that ¢?
contains no propositional variables.

We now show by induction on the structure of ¢ that F ¢ <+ T or E ¢? <+ L. Cases
atom, conjunction and negation are trivial. Further:

o FK, T+ TandF K;1L < L;

e E(MToT,E(MLe LE(LTw L, andk (L)L« 1;

e E(I);T + T and F (!I);L <> L (in particular, E T — (!); T follows from the correctness
of knowledge after the trivial announcement of T).

Therefore F ¢? <+ T or F ¢? <+ 1. Combining this with M E ¢ <> ¢©?, we derive that
MEp<& Tor ME @<+ L) that is, M E ¢ or M E -, respectively. O

Theorem 6 ([103, Thm. 1]). For all ¢ € LK, we have

F (e Vv (D

Proof. Given any model M and s in M, define §¢ as the characteristic formula of the restric-
tion of the valuation in s to var(y):

0Y = /\{p | p € var(p) and M, s E p} A /\{ﬂp | p € var(p) and M, s ¥ p}.
For all p € var(y), we obviously have
M,sEpor M,sE —p,

and therefore
M|se, 8 por Mlse,sE —p

and even
M|5;P = p or M|6;P E —-p.

Then by Prop. 21, we have
M|5f E @ or M|§<SP E .

Thus
M|se E Kip or M|se E Ki—g.

Since s € M|se, we have
M|se, s E Kip or Mlse,s E Ki—p.

Therefore,
M, sE (02)K;p or M, s E (§7)K;—p,

that is,
M, sE <'>z§0 V <'>Z_|g0

As M and s are arbitrary, we now conclude that
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Since (i V (1)i—p is equivalent to =(!);—¢ — (!);p, and since [!]; is the dual of (!);, we
immediately have

Corollary 4. For all p € LK, F [l — (D).

However, we recall that although every formula is knowable in the sense of Thm. 6, this
does not mean that every true formula is knowable (to be true), as the announcement may
‘flip’ the value of the formula in question. Fitch [39] showed that there is an unknowable truth,
for example ¥ (p A —K;p) — (1)i(p A—K;p). In fact, we have a stronger result: every unknown
truth is unknowable; in Salerno’s term in [84, p. 32|, this says that “Fitch-conjunctions are
unknowable.”

Proposition 22. E =(!);(p A = K;¢).

Proof. Suppose not, that is, there is a pointed model (M, s) such that M, s ¥ =(1);(¢ A= K;¢),
then M, s E (I);(9 A= K;p). This means that for some formula ¢ € EL such that M, s E v and
M|y, s E Ki(¢ A =K;p). The latter entails that M|y, s F K;p A K;— K. Since F Kjp — ¢,
we have M|y, s E K;p A = K;p: a contradiction. O

Consequently, we have F (¢ A = K;¢) = =(1)i(p A =K;p) A (o A =K;p), which says that if
it is an unknown truth that ¢, it is an unknowable truth that it is an unknown truth that ¢;
in short, every unknown truth is itself unknowable, see [39, Thm. 2| and [110, p. 154].

Corollary 5. (1);(¢ A ~K;p) is unsatisfiable. That is, there is no pointed model satisfying
(Dile A =Kip).

In comparison, (!);(p A —~K;p) is satisfiable, as one may easily check. This tells us that the
notion of knowability is a subjective concept: the proposition p A = K;p is unknowable for the
agent ¢ but knowable for another agent j, as mentioned in the introduction.

Also, as we mentioned in the introduction, the knowability paradox says that if all truths
are knowable, then all truths are actually known. This can be shown semantically as follows.

Corollary 6. If = ¢ — (1);p for all v, then E ¢ — Ko for all ¢.

Proof. Suppose that F ¢ — (1);¢ for all ¢. Then of course, F o A = K;0 — (1)i(p A =~ K;p) for
all p. By Prop. 22, we have F —(p A = K;¢p) for all ¢, and therefore F ¢ — K;p for all p. O

Proposition 23. F K;o — (1);¢
Proof. This is because F K;o — (T)K;p and F (T)K; — (1)ip. O

We continue our survey of the properties of the knowability operator with a number of
validities only involving that operator.

Theorem 7. & (1);(Nip — (i

Proof. Let M = (S,{R; | i € A},V) and s € S. First, suppose that M, s E (1);(!);p, then for
some 1) € EL: M, s E (1) K;(!);p. This means that M, s F 1 and M|y, s F K;(!);¢. Since R;
is an equivalence relation and equivalence relations are closed under public announcements,
R;|y is an equivalence relation as well. Thus M|y, s E (!);p, which entails that for some
x € EL: M|y, s E (x)Kip, which amounts to saying that M|y, s E x and (M|y)|y, s F K.
Summarizing the above results, we have that for some v, x € EL: M, s E ¢ and M|y, s E
x and (M]y)|y,s F Kip. As a sequence of two announcements is an announcement [104,
Prop. 4.17], it directly follows that M|y, s F Kip. From M, s E ()x and M|y, s F Kip
it now follows that M, s E (1);¢. O
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The following result indicates that (!); (and thus [!];) are monotone.

Proposition 24. IfE ¢ — 1), then E ()i — (D and E i — [']iv.

Proof. Straightforward from the semantics. O
Note that (!); is not regular. In other words, ¥ (1)io A ();iv — (1i(¢ A 1): one may
easily construct a pointed model (M, s) such that M, s E (1);p and M, s E (1);=p but M, s ¥

(Ni(p A —p).
The next result states that unknowable truths are themselves unknowable.

Corollary 7. E=();(p A = (1)ip).

Proof. By Prop. 23, |= Kip — (Dip, thus E o A =(l);op — © A 7 K;p. Then from Prop. 24, it
follows that F (1);(¢ A =(Dip) — (! > (¢ A —K;p). Finally, using Prop. 22, we conclude that
F=0ile A=(ip). O

Proposition 25. F (I);¢o — (1); K;p.

Proof. Let M = (S,R,V) and s € S. Suppose that M,s E (!);p, then for some ¢ € EL,
M,s E (Y)K;p. Since R; is an equivalence relation, F K;p — K;K;p, and thus M,s F
(VYK K;p. Therefore M, s E (1);K;p. O

Theorem 8. F (1);po — (1)i(1ip.

Proof. By Prop. 23, F K;o — (1)i¢. Then by Prop. 24, E ();K;o — (1)i(1)i¢. Now due to
Prop. 25, F ()i — (Ni(Die. O

Corollary 8. F (I);o < ()i(Dip, and thus E ();(Dip + D:iKip, E (0)iKip < ()ip, and
FKi(hip — ()iKip.

Corollary 9. E [!lie = (Di[l]ie and E [ — [i(1)ie. As a consequence, E [1];(1)ie — (Dip
and E (Di[llip — (Dip.

Proof. By Coro. 8, we have E [!];¢ <> [!]i[!i¢. By Coro. 4, we infer that E [!];[!li — (Di[']ip,
and therefore = ngo — (0i[l]ip; by Coro. 4 and Prop. 24, & [!];[!li¢ — [']i(!)ie, and therefore

We have shown that = [!];(1);¢ — (1)ip. However, [!];¢ — ¢ is not valid, since its equivalent
© — (1)ie is not valid. Prop. 22 demonstrated that some true propositions are not knowable,
for example ¢ = p A =K;p. This also shows that F (1);¢ <> ¢ does not hold for all ¢ € L1k,
though it does hold for all ¢ € Lpy, [16, Prop. 3.11.2].

Lemma 12. Let ¢ € LK, and let M be a model where all states agree on each propositional
variable occurring in . Then M E ¢ — [l];p.

Proof. Let s be any state in M, and M,s E ¢. Now consider any EL-formula % such that
M, s E 1. Let M’ be the disjoint union of M and M|,. The valuation of atoms in var(yp) is
also constant on M’. By Prop. 21, it follows that M’ E ¢ or M’ E —p. If M’ E =, then it
contradicts M, s F ¢. Thus M’ F ¢, and therefore M|y F ¢. That is to say, for any state ¢
such that sR;t in M|y, we have M|y, t F . By semantics, it follows that M|y, s F K;p, and
thus M|y, s E chp As 1) is arbitrary, by semantics we know that M, s & [!];. So far we have
shown that M, s F ¢ — [l];p. As s is arbitrary in M, M E ¢ — [!];¢. O
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In what follows, we show that the McKinsey property (MK) and the Church—Rosser prop-
erty (CR) hold for LK.

Theorem 9 (MK). E ['];(0)ie — (Nilllip

Proof. Let amodel M = (S,{R; |i € A},V) and a state s € S be given. Suppose that M, s F
[;(")s. Then by the semantics, for all ¢ € EL, we have M, s E [¢)] K;(!)ip. Consider 67 in the
proof of Thm. 6. It is obvious that M, s £ 67 and 67 € EL, thus M|se, s K;(")ip. Since all
states in M|se have constant values for variables in ¢, by Lemma 12 we have M|se F ¢ — [!];p
and its dual M|se F ()i — ¢, therefore M|se F ()i — [!];0. Note that all states in M]|ze
also have constant values for variables in (!);. Then by Prop. 21 we have M|se> F (!);p or
M|se F (i, As Mse, s F K; ()5, there is a state ¢t such that M|se,t E (1)ip, contradicting
M|se F =(Dip. Thus M|se F (1)ip. From that and M|z F ()i — [!];p already obtained
above, it follows that M|se F [!];0. Therefore, for any state s’ such that sR;s" in M|se we
have M|se, s F [!;0. By semantics, M|se, s F Ki[!]ip, and therefore M, s F (!);[!];. O

Theorem 10 (CR). E ();[llie = [i(1)ie

Proof. Let a model M = (S,{R; | i € A},V) and a state s € S be given. Suppose that
M, s E (1)ill]ip. By semantics, for some ¢ € EL: M,s & (¢)K;[!]ip. Then M,s E ¢ and
for any t in M|y such that sR;t, M|y, t E [!];0. Consider 6¢ in the proof of Thm. 6, it is an
EL-formula and thus (M|y)|s¢,t F Kip.

Let n € EL be arbitrary such that M, s E 7. The valuation of atoms in var(p) is constant
on (M|,)[se. By Prop. 21, we have (M|,)|se F ¢ or (M|,)]se F —p. Since ¢ € EL and
M, s E 1, we have also (M|y)|se F o or (M]y)]se F @, As (M|y)se,t F K;p, there must
be a t' such that (M|y)|se,t" F ¢ which contradicts (Mly)lse F —p. Thus we obtain that
(M]y)lse F . Consider the disjoint union M’ of (M|y)|se and (M|;)|se. Since M’ has
constant values for variables in ¢ as well, we conclude that M’ & ¢, and therefore (M|,)|se F
¢. Let s’ be any state such that sR;s" in (M];)[se. Now we know that (M],)|se,s" F . Then
(M]y)lse, s F Kip, and thus M|, s F (!);p. This follows that M|,, s F Ki()ip. As n € EL is
arbitrary, we conclude that M, s E [!];(1};p. O

As we have seen above, not every true formula is knowable. In contrast, every valid formula
is knowable, in symbol: F ¢ implies F (!);p, as easily shown. This then follows that E (I);T.
Besides, it may be worth noting that the knowability operators are not normal.

Proposition 26. # (1);(¢ — ¢) = (()ie — (i)
Proof. Consider the following model M:

s:p

i t:=p

e M,;sE ()i(p — pA—K;p): firstly, note that M,s F p — p A =K;p and M,t F p —
p A = K;p, thus M,sF K;(p — p A —-K;p). By Prop. 23, M,sE ();(p — p A = K;p).
o M,sE (1)ip: clearly, M, s E (p)K;p, thus M, s & (I);p.

o M,s¥ (1)i(p AN —K;p): this follows directly from Prop. 22.
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This refutes the claim that “knowable-in-principle, knowability, is closed under conse-
quence” in [9].

We conclude this section with the fragment of the positive formulas in LK. The fragment,
denoted LK™, is inductively defined as follows:

pu=p|pleAeleVe | K| [-ole|[Nie

In modal logic, the fragment of the language where negations do not bind (box-type)
epistemic modalities is known as the positive fragment [94, 101, 16]. It corresponds to the
universal fragment in first-order logic. It has the property that it preserves truth under
submodels. Intuitively, this is because a box modality says that something is true in all
accessible worlds, so if you go to a submodel it is still true in all remaining accessible worlds,
whatever remains. The result we present here is a generalization of a similar result in [16].
We should point out the surprising negation in the inductive clause [-¢]e. This has to do
with the semantics of public announcement. Note that we have that M, s E [—p]y, iff (by
the semantics of public announcement) M, s F —¢ implies M|, s F 9, iff (propositionally)
M, sk por M|, s E 1. In the last formulation the negation has disappeared! This aspect
will also play a role in the proof of the subsequent proposition.

We say that ¢ is successful, if after being announced, ¢ still holds; in symbol, F [¢]p. The
following result states that positive formulas are successful.

Proposition 27. For all ¢ € LK', we have F [p]p.

Proof. We show the following claim: For any M’ and M” with M” C M', s € SM” and
@ € LKT: If M’,sFE ¢, then M" sk .

The proof is by induction on the complexity of ¢. Recall that the notion of complexity is
given in Def. 33.

e ¢ is atomic: Since the valuation of atoms is local, it is trivial.
e Boolean cases: It is straightforward by induction hypothesis.

e o is K;: Suppose M, s E K, by semantics M, s’ £ ¢ for any s’ such that sRM's’.
Consider any t such that sRM"t. Since M” C M', we have sRM't. Thus M’,t k= ¢, and
then by inductive hypothesis M”,t & 1). By semantics again, it follows that M”, s E

K.

e ¢ is [-1]tbe. Suppose M’ s E [-i)1]ibe and M”, s E —)1. By induction hypothesis,
M’ s E —p1. By semantics, M'|_y,,s F 5. Note that M”|_,, C M'|_y,, then by
induction hypothesis M"|—y,, s E 12. By semantics M", s E [-)1]1s.

e ¢is|[!];1. Suppose M’ s E [!];1. Assume, for reductio, that M”, s ¥ [!];4). By semantics,
there is a y € EL such that M”,s £ x and M”|,,s ¥ Kip. As M"|, € M" C M/,
by induction hypothesis, we infer that M’, s ¥ Ko, that is, M’,s ¥ [T]Kpp. Then
M’ s ¥ [1];1, contrary to the supposition.

Given any ¢ € LK™, for any model M and s € SM: If M,s E ¢, then no matter what
submodel of M that ¢ defines, it follow that M|, s & ¢ by the above claim. By semantics it
means M, s F [¢]p. Since (M, s) is arbitrary, we conclude F [p]e. O
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4.4 Bisimulation and Expressivity

4.4.1 Bisimulation

In this part, we show that the notion of bisimilarity is tailored for the logic of knowability LK.
That is, LK is invariant under bisimulation.

Given pointed models (M, s) and (N, t) and a language L, (M, s) =1, (N, t) denotes: for
allpe L, M,s Epiff Nt .

Proposition 28. For all pointed models (M,s) and (M',s'), if (M,s) & (M',s), then
(M,S) =LK (M,, Sl).

Proof. Suppose that (M,s) € (M',s'), we show for all ¢ € LK: M,s E ¢ if and only if
M’ s E . The proof proceeds with induction on the structure of p. As it is known that
PAL is invariant for bisimulation, we need only present the case (!);1.

Assume that M, s F (1);9. Then there is an EL-formula x such that M,s F x and
My, s E Kjp. As (M, s) & (M, s') and x is an EL-formula, M’, s’ E x. Consider a relation
Z|x as the bisimulation Z between M and M’ restricted to M|, and M’|,. We can check
Z|x is also a bisimulation and (s,s’) € Z|x . Therefore, for any ¢ € M'|, such that s'R.t’,
there is a t € M|, such that sR;t and (M|,,t) & (M’|,,t"), which by induction hypothesis
implies that M|y, ¢ F ¢ if and only if M'|,,t' E 4. Since M|y, s E K3, for any t € M|, such
that sR;t: M|y, t F 1. Then by induction hypothesis, M|y, t' = 1, and hence M’|,,s" E K;1.
We have now shown M’, s’ E x and M’|,, s’ E K;3. It then follows that M’, s’ E (!);4). The
other direction is similar. O

Proposition 29. For all image-finite models M and N, for all s in M and t in N, if
(M, s) =k (N, t), then (M, s) & (N, t).

Proof. Let M and N be image-finite. Suppose that (M,s) = x (N,t). Since LK is an
extension of EL, it follows that (M, s) =g, (N, t). By the Hennessy-Milner theorem of EL
(see e.g. [23]), we have (M, s) & (N, t), as desired. O

4.4.2 Expressivity

In this part, we shall compare the expressive powers of our logic LK, PAL, and APAL. Tt
turns out that in the case of single-agent, the three logics are equally expressive; however, in
the case of multi-agent, LK is more expressive than PAL. First, we introduce the definition
of related concepts.

Proposition 30. In the single-agent case, LK and APAL are equally expressive. As a corol-
lary, LK and PAL are equally expressive on the single-agent case.

Proof. Recall that in the single-agent case, APAL is equally expressive as EL (thus PAL) [16,
Prop. 3.12]. Moreover, LK is an extension of EL. This entails that LK is at least as expressive
as APAL in single-agent case. Besides, as LK is a fragment of APAL due to the definability of
(1); in terms of (!) and K;, APAL is at least as expressive as LK. Therefore, in the single-agent
case, LK and APAL are equally expressive. O

The following result is shown as in the proof of |16, Prop. 3.13| via slight revisions. To
make the exposition self-contained, we prove it in the following.
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Proposition 31. LK is more expressive than PAL.

Proof. First, as LK is an extension of PAL with the knowability operators, PAL < LK. It
suffices to show that LK A PAL. We show that (!),(p A =K, Kap) is not equivalent to any
PAL-formula.

Suppose not, then as PAL is equally expressive as EL, the given knowability formula
is equivalent to an ElL-formula, say 1. Because v is finite, it contains only finite many
propositional variables. Let ¢ be a propositional variable not occurring in . Consider the
following models, where the left-hand side is M and the right-hand side is M’:

10: p, ¢ —a— 00 : =p, ~¢q

b b

0:—-p 11:p,q —a—01: —p,q

a

Since (M, 1) and (M’,10) are bisimilar for atoms other than ¢, we have that M,1 E 1
ifft M’;10 E ¢. However, M,1 ¥ (!),(p A =KpKap) but M’';10 E (1)o(p A “KpK,p). The
argument for the former is as follows: every announcement that makes a know that p at 1
(that is, M,1 F Kgp) must delete the state 0, and therefore K,—KpK,p is false at 1. To
see the latter, just notice that M’';10 E (p V ¢)(K.p N K,~K,K,p), which is equivalent to
M 10E (pV q)Ko(p A ~KpKgap), and therefore M’ 10 F (1), (p A 2K Kyp). O

We conjecture that LK is less expressive than APAL. In the concluding Section 4.8 we
will explain in some detail why this is a difficult problem.
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4.5 Axiomatization

4.5.1 Proof system and soundness

Definition 34. The system LK consists of the following axioms and is closed under the
following rules.
TAUT all instances of propositional tautologies

K Ki(p =) = (Kip = Kit)

T Kip— ¢

4 KW — K K;p

5 i — K-

IATOM ( >p — (¢ VAN p)

WEG  (¢)—p <> (v A =)o)

1CON  (P)(p A x) < (V) A{)x)

K (V) Kip < (Y N Ki[]p)

" (WY (x)e < ((V)x)e

Dual  (Dip > —[l]i~p

AKK Nie — [¢]Kip, where ¢ € EL
e o

MP ”

NECK Kgp(p

RM<'> &
X)e = ()Y

RKD n([¢]Kip) for all ¢ € EL

n([Yip)

A formula ¢ is a theorem of LK, or ¢ is provable in LK, notation - ¢, if ¢ is either an
instantiation of an axiom, or obtained by applying inferences to axioms. We use Thm for the
set of all theorems of LK.

Note that although our reduction axioms are different from the more familiar ones from
e.g. [104, 17|, we will show that they are provable from ours (see Prop. 35).

Also note that we include Dual as an axiom. This is because we are now using (!); rather
than [!]; as modal primitives. This is similar to some case in the minimal normal modal logic,
e.g. [23, Sec. 1.6, where the possibility operator ¢ instead of the necessity operator O is used
as a modal primitive and ¢y < —[-¢p is used as an axiom. The axiom Dual will be used
later, namely in the proofs of RE (Prop. 34), Prop. 39 and Prop. 40.

To see the intuition of AKK, we can use its dual form (also denoted AKK):

(VYK;p — (1)ip, where ¥ € EL.
Intuitively, this formula says that if ¢ is known after some announcement, then ¢ is knowable.
Proposition 32. LK is sound with respect to the class of all frames.

Proof. By the soundness of public announcement logic, it remains only to show the soundness
of Dual, AKK and RKb. The soundness of Dual is obtained from the semantics of (!); and [!];.
The soundness of AKK is straightforward by semantics of [!];. To show the soundness of RKb,
we show a stronger result:

(x)  For all (M, s), if M, s En([¢]Kp) for all ¢ € EL, then M, s = n([!];¢).
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The proof proceeds by induction on the structure of admissible forms.

e Base case f. Since ([} Kip) = [t Kip and #([!]i) = [ig, (¥) follows directly from the
semantics of [!];p.

e Inductive cases. We assume by induction hypothesis (IH) that (%) holds for n(t), we
show that (x) also holds for the cases x — n(4), K;n(f) and [x]n(§), as follows.

— Case x — n(f). Note that (x — n(#))([V]Kip) = x = n([¢]Kip) and (x —
n(#)([ie) = x — n([!lip). Our goal is to show that for all (M,s), if M,s F
x = n([Y] Kip) for all ¢ € EL, then M, s F x — n([!]i¢). For this, suppose that
M, sEx = n([]Kip) for all ¢ € EL and M, s x, then M, s £ n([1)] K;) for all
Y € EL. By (IH), we infer that M, s E n([!]ip), as desired.

— Case K;n(f). Note that (Kin(4))([¥]Kip) = Kin([¥]Kip) and (Kin(4))([ip) =
Kin(['i¢). Our goal is to show that for all (M,s), if M, s E K;n([¢]|Kip) for all
¢ € EL, then M, s E K;n([!]i). For this, suppose that M, s £ K;n([1)] Kip) for all
¢ € EL, and for any ¢ in M such that sR;t, then M.t E n([¢)] Kip) for all ¢ € EL.
By (IH), we derive that M, t E n([!]i¢). Therefore, M, s E K;n([!];¢), as desired.

— Case [x]n(f). Note that ([xIn(#))([¥1Kie) = In([)Kip) and (IxIn(t )) i) =
[XIn([!i¢). Our goal is to show that for all (M, s), if M, s F [x]n([¢]Kip) for all

¥ € EL, then M, s F [x]n([!]ip). For this, suppose that M, s & [x]n([¢ 1 K;¢) for all
1 € EL and M, s F x, then M|, s E n([¢)]K;p) for all » € EL. By (IH), we obtain
that M|y, s E n([!]ip). Therefore, M, s E [x]n([!]sp), as desired.

O

4.5.2 Proof theoretical results

In this subsection we present some proof theoretical results for LK. Almost all proofs are in
the Appendix, as they are rather lengthy.

In the first place, some common alternative derivation rules are derivable in the system
LK (where Lemma 13 is essential in showing Prop 34).

Proposition 33. The following rule is derivable in SLK :

=Y
Xl — [xl¥

Proof. We have the following derivation in SLK.

RM[]

(i) = assumption
(1) = — e (4)
(@i) (0 = ()~ (12),RM()
Ew) ()~ = (X)) EW)

v) Xl = XY iv), Def. []

Lemma 13. For all p, ¢ and x, if -1 <> x, then = () < (x)e.
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Proof. Assume that F 1) <> x, to show that F ()¢ <> (x)e.

The proof goes by induction on

the complexity of ¢ (recall that the notion of the complexity of a formula is given in Def. 33).

e Case p. We have the following derivation in LK.

(1)  (Y)p< (YAp)  'ATOM

(1) (x)p«> (xAp)  'ATOM

(791) (Y Ap) <> (x Ap) assumption
(iv)  (W)p < ()p (1)-(ii)

e Case —p. Recall that ¢ is less complex than —¢ (Prop. 20). By induction hypothesis

(IH), F () < (¥

e Case p1 A wa.

. We have the following derivation in LK.

(1) (P)mp < (A=) 'NEG

(@) (0 < (XA (X)) INEG

(#93) (P A=(P)p) < (x A=(x)w) assumption, TH
(i)  ()=p < (X))~ (4)-(i77)

Recall that both ¢; and @9 are less complex than ¢ A w2 (Prop. 20).

By induction hypothesis (IH), F ()1 <> (x)¢1 and F (¢)pa <> (x)@2. We have the
following derivation in LK.

(1) (D) (o1 Apa) & (V)1 A{Y)p2)  1CON
(i1) () (1 A p2) < (0@ A {X)p2) 'CON
(iid)  (P)p1 < (0@ IH
(iv) (P < (P2 IH
(v)  ((D)pr A)p2) = ()1 A QOw2)  (#1), ()
(vi)  (¥)(p1 A p2) < (X)(P1 A p2) (4), (i), (v)
e Case K;p. Recall that ¢ is less complex than K;p (Prop. 20). By induction hypothesis
(IH), = (¥)p <> (x)¢. We have the following derivation in LK.
()  (WEKipo WKW K
(i) (0K < (x A Ki[x]p) 'K
(1) (D)o © (0 IH
() (W)= < ()~ (13i), similar to the case =
() [le e e (1v), Def. []
(vi)  Ki[Yle < Kilx]e (v), NECK, K, MP
(vii) (6 AKi[i]o) © (XA Kalx]@) (vi), assumption
(viii) () Kip < (x)Ki (4), (i), (vit)

e Case (p1)p2. Recall that ¢; is less complex than (p1)¢2 (Prop. 20). By induction
hypothesis (IH), - (¢)p1 <> (x)p1. We have the following derivation in LK.
(i) (@) e1)e2 & ((Y)p1)pa N
(i) O (pne2 < ()2 !

(#0i)  ()e1 < () IH
(iv)  (D)pr)pa < ((X)p1)pa TH by (iii)
() W@Hene2 & Q0leee (i), (i), (iv)
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e Case (1);¢. Let ¥ be any EL-formula. Recall that (J)K;p is less complex than (!);¢

(Prop. 20), and thus —[V] K¢ is less expressive than (!);p. By induction hypothesis
(IH), B (¥)=[d]Kime < (x)-[0]Kimp. Then = = () =[] Kimp < ~(x)=[J]Ki~p. By
Def. [], F [¢][9] Ki—¢ <> [x][V] Ki—p. We denote this by (x). Then we have the following
derivation in LK.

(i) [Nimp = [V K~ A AKK

(i) [Y][i~e — ][] Kimp (i), RM[-](Prop. 33)

(i) [P)[ime = [XIW]Kimp  (id), (%)

(i) [@][i~e = X][lime  (dii), RKDb

(v) O 0ie = (@)D (iv)

(vi) (V)N = ) {N)ip similar to the proof of (v)
(vid) () (Dip < () (D (v), (vi)

O

Proposition 34. The following rule called RE (for ‘replacement of equivalents’) is derivable
n LK:

b x
e(p/¥) < v(p/x)

Proof. Assume that = ¢ <> x, we show - ¢(p/¥) <> ¢(p/x) by induction on the complex of
. Recall that the notion of complexity is given in Def. 33.

o8

e o =p. Then ¢(p/v) =1 and ¢(p/x) = x. By assumption, we have immediately that

= o(p/v) < w(p/X)-
¢ =q#p. Then o(p/y) = ©(p/x) = ¢. Tt is then clear that - o(p/1) < w(p/x).

¢ = 1. Then p(p/v) = —¥(p/v¥) and ¢(p/x) = ~I(p/x). Since I is less complex than
¢ (Prop. 20), by induction hypothesis (IH), - 9(p/v¢) <> 9(p/x). Then = =9(p/¢)) <

—(p/x)-

¢ = ¢1 A2 Then @(p/v¥) = p1(p/¥) A p2(p/¥) and @(p/x) = ¢1(p/X) A p2(p/X)-
Since both ¢; and @9 are less complex than ¢ (Prop. 20), by induction hypothesis (IH),

Fe1(p/v¥) <> p1(p/x) and F @a(p/9) <> w2(p/x). Then = p(p/v) <> w(p/x).

¢ = K;¥. Then ¢(p/v) = K;9(p/v) and ¢(p/x) = K;¥(p/x). Since ¥ is less complex
than ¢, by induction hypothesis (IH), - d(p/v) <> ¥(p/x). Then using NECK, K and MP,

we obtain that - ¢(p/v) <> ¢(p/x).

¢ = (p1)p2. Then @(p/1h) = (p1(p/¥))p2(p/¥) and ©(p/x) = (p1(p/x))2(p/X). Since
both ¢; and @9 are less complex than ¢ (Prop. 20), by induction hypothesis (IH),

F pi1(p/v) < ei1(p/x) and F p2(p/¢) < @a(p/x). From the former and Lemma 13,
it follows that = (p1(p/¥))p2(p/1) < (p1(p/X))p2(p/1); from the latter and RM(-), it
follows that = (p1(p/x))#2(p/¥) <+ (P1(p/X))¥2(p/x). Then = o(p/v)) < ©(p/X)-

¢ = (0. Then p(p/v) = (1):id(p/v) and ¢(p/x) = (1)id(p/x). Let n be any EL-
formula. By Prop. 20, (n)K;9 is less complex than ¢, so is [n]K;—¢. Then by induction
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hypothesis (IH), - [n]K;=9(p/v) < [n]Ki—9(p/x). We then have the following deriva-

tion in LK.
@) [M=9p/x) = EK~d(p/x) AKK
(i) [Ni~0(p/x) = | Ki~0(p/¢b)  (i),1H
(@) [Ni=9(p/x) = [Ni~d(p/) (47), RKb
()  =[li=d(p/v) = ~[i~d(p/x) (iid)
(v)  Ndp/¥) = (DI (p/X) (iv), Dual
(vi) (N (p/x) — (DO (p/Y) similar to the proof of (v)
(vii)  (1)id(p/¥) < (D:V(p/X) (v), (vi)

O

Recall that the axiomatization of public announcement logic, denoted PAL, is given in
e.g. [104, Sec. 4.8].

Proposition 35. PAL C LK.

Proof. We need only show the reduction axioms of PAL are derivable in LK.

p
& ) Def. [
& 2(pA=(p)p)  NEG
< —(pA=(pAp)) IATOM
< (p—p) TAUT
o]

< 2{p) Def. []
< (e A={p)~y) NEG
< (e Alely) Def. []
(= 7[plY) TAUT

[l (¥ A x)
& =(e)( AX) Def. [
< (e A=) (¥ AX)) INEG
< e A=) A {e)x)) ICON
< (e A(e)Y) V(e A={p)x)) TAUT
< (@)Y V{p)x) INEG
< ([plv A lelx) TAUT, Def. [
[p] Kin

< () Ky Def. []

< (e A () Ki) INEG

< (e A(pAKilplp)) K

< (o= o ANKi[ply) TAUT

< (¢ = Kilply) TAUT
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—(1p)=x  Def. []
Y)mx RM(-)
(0

11312
A AL
<
7

[elY]x Def. []
where the penultimate ‘«<»’ follows from - ()1 <> (¢ A [¢]Y)) and Lemma 13. The proof for
F (o) > (@ A [p]) is as follows.

()i
> <g0>—|—|w TAUT,RM<->
< (pA=(p)—¢) INEG
< (e A [ely) Def. []

Proposition 36. The following axiom is provable:
AKE (V) Kip — OK o, where ¢ € Lpayg,

Proof. Tt is known that for any P AL-formula 1), there is an EL-fomula 1)’ such that E 1) < 9.
By the completeness of PAL, we have Fpar, ¥ <> ¥'. By Prop. 35, PA C LK, thus Frg ¥ <
1)’. Then by AKK and RE, AKK* is derivable. O

Proposition 37. Let p € LK. F ¢ < (T)p

Proof. By induction on the complexity of LK-formulas ¢ (recall the notion of complexity of a
formula is given in Def. 33).

e Case p.
’ (i) (T)p« (T Ap) IATOM
(i) (TAp) <p TAUT
(i) (T)p<p (i), (i)

e Case —p. Recall that ¢ is less complex than —¢p, that is, ¢ <2 —¢ (Prop. 20). By
induction hypothesis (IH), - (T)p <> ¢.

(1) (T)=p << (TA=(T)p) INEG

(i) (T A=(T)p) <> ~(T)p TAUT
(111) (T)=p <> =(T)ep (4), ()
(i) (Tp < IH

(v) (T p e (i), (iv)

e Case ¢ A 9. Recall that both ¢ and 1 are less complex than ¢ A ¢ (Prop. 20). By
induction hypothesis (IH), F (T)p <> ¢ and F (T)y) <> 9.

(@) (MHeAy) < (TheA(T)p) coN
(i) (Me+p IH
(i) (T)eAY) < (pAY) (4)-(447)
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e Case K;p. Recall that ¢ is less complex than K;p (Prop. 20). By induction hypothesis
(IH), = (T)e < .

(1) (T EKip < (T AKi[T]yp) 'K

(ii) TAK[Tlp <+ Ki—~(T)—¢ TAUT, Def. []

(iii)  K;~(T)=p <> K;=~(T A=(T)p) INEG,RE

(iv)  Ki=(TA=(T)p) <> Ki(T)p TAUT, RE

(v) My e IH

(vi)  Ki(T)p ¢ Kip (v),RE

(vit) (T)Kip <> Kigp (1)-(iv), (vi)

e Case (1)p. Recall that v is less complex than (¢))¢ (Prop. 20). By induction hypothesis

(IH), = (T)Y < 9.

(@)  (TH)e e {(THi)e !
(1) (T)p < H
(1) (T)(P)p <> () (i), (ii),RE
e Case (1);p. Let ¢ be any EL-formula. Recall that (¢)K;¢ is less complex than (!);¢
(Prop. 20). By induction hypothesis (IH), F (T) () Kip < (¢) Kip.

) i = WK~ AKK

(ie)  [Y]Kimp & [T][Y]Ki~p IH

(@)  [Nime = [TIW]Ki~e  (4), (i7)
(i) [MNime = [T][ime (447), RKb
(v)  [TMime = [T][Y1Kime (i), RM[]
(vi)  [T]Mi~e = [YlKime (i), (v)
(vii)  [T][)ime = []ime (vi),RKb
(vitd)  [T][Y)ime < [Mime (iv), (vid)
(iz)  (T)(Dip < (Nip (viii), RE

Corollary 10. F [T]y <> ¢ for all ¢ € LK.

Proof. By Prop. 37, F (T)=¢ < —¢. Thus F =(T)-¢ <> ——p. By Def. [], we obtain
H{[Tle < . m
Proposition 38. If - ¢ — 1, then = [ip — [!]i¢).

Proof. Assume that - ¢ — 1, we have the following derivation in LK, where x is any EL-
formula:

(4) = - assumption, TAUT
(1)  Kip— K~y (i), NECK, K, MP

(i)  ()EKi~p = (x) K~ (), RM(-)

(iv)  O)Kimp — (Nime AKK

(v) K~ — (Dime (i4i), (iv)

(vi) =N = () Ki~y (v)

(vid) =K~ ¢ ~(x)-—K;—¢  TAUT,RM(:) A
(viid) _‘<X>Ki_‘l/)j—> [X] Kiv (vii), Def. [-], Def. K;
(i) [N = XK (vi), (viii), Def. [1];
(@) [ap = M (iz),RKb
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O

Recall that in Prop. 7 and Prop. 8 we show that F (1);(1)ip — (Dip and E (D — (D (D,
respectively. We can also give a syntactic proof of them.

Proposition 39. - (I);o — (1);(Dip
Proof. We have the following derivation in LK, where x is any EL-formula:
[] K—\<p—>[ |K;Ki—~p AKK

KK—M)O*)K—M'Q 4
[x ]KKw—>[ 1K~y (i), Prop. 33

—~
N D .
R N
S
~—

i) [ikime = Ko (), (idd)

) Mikime = Mim (iv), RKb
) [ime = [T]Kime ARK

vii)  [T]Ki—p ¢ K= Coro. 10

viii) [1i~e = Ki—p (vi), (vii)

.
=

Ji
Nilli~e — [V Kﬂcp (viii), Prop. 38
i[t)i— = [Nimep E z), (v)

D = (Niip ), RE, Dual

8
S ~—r

AN NN N N N N N N
S
S~—

8

!
[
[
{!

Proposition 40. F (1); (Do — (N

Proof. We have the following derivation in LK, where 1, x are any EL-formulas (thus (¢))x €
LparL)-

~
~—

(i i — K[! T
() ]l = W (i), Prop. 33
(@ii)  Mie - WAMINK-e  AKK
(iv) [ A WIx)King < [][x]Kime Prop. 35
(0)  [Ni~e = WK (112), (iv)
(i) [Nime = []fime (v), RKb
(vit)  [ime = [N (vi), (i2)
(vigd)  [imp = [Till]ime (vii), RKb
(iz)  (Di(hie = (D (viii), RE, Dual
O
We conclude this section with a derivable rule.
Proposition 41. The following rule is derivable in LK:
¥
(i
Proof. We have the following derivation in LK.

(i) o assumption

(Zl) Kip (i),NECK

(ii7) (T)K;e (it),Prop. 37

(i) (N (1), AKK

O
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For contrast, note that ¢ — (!);¢ is not derivable (see the remarks before Prop. 22).

4.6 Completeness and Decidability

4.6.1 Completeness

This section deals with a demonstration of the completeness of LK. The canonical model will
be based on a notion of maximal consistent theory, rather than the more familiar notion of
mazximal consistent set. The reason of defining consistency for a theory rather than any set of
formulas, is because we need the clousure condition under RKb, which is indispensable in the
completeness proof.

Definition 35 (MCT). A set I of formulas is said to be a theory, if besides containing Thm,
it is also closed under the rules MP and RKb. A theory I is said to be consistent, if L ¢ I'; T’
is said to be mazximal, if for all ¢, ¢ € T or —p € I'. T is a mazimal consistent theory (MCT),
if it is a theory which is consistent and maximal.

One may easily check that Thm is the smallest theory.
Define s + ¢ as {¢ | ¢ — 1 € s}. We omit the proof details of the following result.

Proposition 42. Let p € LK and s be a theory. Then
1. s+ ¢ is a theory, and sU{p} C s+ .
2. s+ ¢ is consistent iff ~p ¢ s.

Lindenbaum’s Lemma can be proven as [16, Lemma 4.12], with only corresponding changes
of the rule RKb. Thus we omit the proof details.

Lemma 14 (Lindenbaum’s Lemma). Every consistent theory can be extended to a MCT.

Definition 36 (Canonical Model). The canonical model for LK is M¢ = (S, {R¢ | i €
A}, V), where

e 5€is the set of all MCTs;
e Forallie A, sRtiff {p| Kipes} Ct;
o Vi(p)={se€ S pe s}

Using axioms T, 4 and 5, we can show that each R{ is an equivalence relation. Thus M*
is indeed a model.

The following proposition can be shown as in [17, Lemma 7]. Thus again, we omit the
proof details.

Proposition 43. Let s € S¢, ¢ € LK, and i € A such that K;1 ¢ s. Then there exists t € S¢
such that sRSt and ¢ ¢ t.

Lemma 15 (Truth Lemma). For all formulas ¢ € LK and all s € S¢, we have
M sEp < p€s.
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Proof. Tt is straightforward to show that <2 is a well-founded strict partial order between
formulas. Let ¢ € LK and s € S¢, we proceed with <2-induction on ¢, that is, with induction
on the complexity of .

e o =p. We have M® skEp <= s Vp )Dgf:> p E s.

e ¢ = . Recall that ¢ <2 - (Prop. 20). We have
ME sk <— M sEY
A Vs
— —Es.

e o =1 Ax. Recall that ¢ <2 1 A x and x <2 9 A x (Prop. 20). We have

MEsEyYANY <= M sEYand MC sk x
IH
< YeE€sand x€s
< YAYESs.

¢ = K. Recall that ¢ <2 K;¢ (Prop. 20). We have

M sEKip <= MCtEYforallt € RY(s)
Ly etforall t € R(s)

<g> Ky € s.

The equivalence (x) follows from the definition of R{ and Proposition 43.

¢ = (1)p. Recall that ¢ <2 ()p and p <2 ()p (Prop. 20). We have

MEsE (W)p — ME, sE 1 and M€ sEp

H
= Y E€sand p € s

— YApES
Ax, 'ATOM <¢>p € s.

e © = (1p)-x. Recall that o) <2 (¢)=x and ()x <2 (1)=x (Prop. 20). We have

ME sE (Y)y~x — ME s E 1 and M s ¥ ()x

MLR Y esand (Y)x ¢ s
<— Yesand ~(Y)x €s

Ax. WNEG
&= (Y)-x € s.

¢ = ()(x1 A x2). Recall that (¥)x1 <2 ()(x1 A x2) and (1h)x2 <3 (¥)(x1 A x2)
(Prop. 20). We have

M sE W) Axe) <= MSsE()xa and M s E (¥)x2

MR (¥yx1 € s and (P)x2 € s

= (Y >><2 €s
()

Ax. 'CON
ST (W) (x1Axe) €
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e o = (P)K;x. Recall that ¢ <2 ()K;x and K;[{]e <2 () K;x (Prop. 20). We have

MEsE(WW)Kix < M sk and M€ sk K]y
A Y € s and K;[Y]x € s

—  YAKY]xEs
Ax. KON (VYK € s.

e © = (P)(x)d. Recall that ((¢0)x)6 <2 (¥)(x)d (Prop. 20). We have

MEsE W) (x)0 = M sE((¥)x)6

a5 (W)X e s
= owies.

e = (¥)(ix. We have

MC, sk <Q,Z)><'>1X MC, sk ¢ and MC"IJH sk <‘>ZX

M¢, s E ) and M€y, s E (0)K;x for some 6 € EL
ME, s E (¢)(d)K;x for some § € EL

(V)(6) K x € s for some § € EL
[¥] [ﬂkﬁx ¢ s for some ¢ € EL
[]i—x ¢ s
() (1ix € s

ElE111]

—
N
~

Recall that ()(8)K;x <2 (){1)ix for any § € EL (Prop. 20), thus we can use the
induction hypothesis (IH) in the fourth step. In (#x), the left-to-right direction follows
from Axiom AKK and rule RM[-], and the other direction is because s is closed under the
rule RKb for the admissible form [¢]f. (1) and (2) hold due to the maximal consistency
of s.

e o= (1);1b. We have

M skE Dy <= M°sE (x)K;y for some x € EL
A (x) K1 € s for some x € EL
pON [X]K;—) ¢ s for some y € EL
& Mg
L mwes

Recall that (x)K;¢» <2 (1) for any x € EL (Prop. 20), thus we can use the induction
hypothesis (IH) in the second step. The equivalence (s#x) is due to Axiom AKK and the
fact that s is closed under the rule RKb for the possible form f. (a) and (b) hold because
of the maximal consistency of s.

O

With the Truth Lemma in mind, we obtain the completeness theorem as usual.
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Theorem 11 (Completeness Theorem). LK is sound and complete with respect to the class
of frames. That is, if E ©, then - .

Proof. The soundness is immediate. For the completeness, suppose ¥ ¢, i.e. ¢ ¢ Thm. Since
Thm is a theory, it is closed under MP, thus =—¢ ¢ Thm. By Prop. 42, Thm + {—¢} is a
consistent theory and —¢ € Thm+ {—¢}. By Lindenbaum’s Lemma (Lemma 14), there exists
t € 5S¢ with Thm + {—¢} C ¢, and thus —¢ € t, that is, ¢ ¢ ¢t. Due to the Truth Lemma
(Lemma 15), we obtain M€t ¥ ¢. Moreover, as remarked before, M€ is a model. Therefore
E . O

4.6.2 Decidability

Recall that the satisfiability problem of APAL is shown to be undecidable when there are
at least two agents [6, 41|. The approach is by reducing an undecidable tiling problem into
APAL [6]. Following the same approach, we may infer that LK is also undecidable when there
are at least three agents. We will sketch the main idea of the proof.

In [6] an APAL-formula ¢ is defined such that a certain finite set of tiles I" tiles the infinite
plain N x N, if and only if ¢ is satisfiable on a certain model M defined for two agents a and b.
We can transform ¢ into an LK-formula v by substituting all quantifiers O in ¢ for knowability
operators [!];, and we can change the model M into a model MUK that is the same as M
except that we add another agent ¢ that has the identity relation on the domain. Since for
any state ¢ in the model, ¢ has itself as the only i-successor, it follows for any subformula ¥ of

gOi
MEE B9 o K9

For example, a constituent of the formula ¢ is:

Capal(V) := Q0 =0(Ks(r = (K (I = (Ks(u — Ke(d —
Ks(l = Ke(r = Ks(d = Ke(u = K;9)))))))

It is transformed into:

k(D) = O 2 [[i(Ks(r — (Ke(l = (Ks(u — Ke(d —
Ko(l = Ke(r = Ks(d = Ke(u = K,9))))))))

and MLE t & (V) if and only if M, t F capa(Q).

This may sufficiently demonstrate that a detailed proof of the undecidability of the satisfi-
ability of LK would be nearly identical to the proof in [6]. Therefore, LK is undecidable for at
least three agents. Whether LK is decidable for only two agents needs further investigation.

In what follows, we will give two decidable knowability logics.

4.7 Decidable knowability logics

4.7.1 Logic LK™

We recall that the language of the logic LK™ was defined as the fragment
p = plogl(@ne)| e
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4.7. Decidable knowability logics

In this fragment we can no longer quantify over all epistemic formulas, but, for a similar
treatment of the quantifier, over all Booleans only. Its semantics are:

M,sE ()ip <= thereis a1 € PL such that M, s F 1 and for all ¢t € R;(s), M|y, t E ¢

This quantification is therefore like the one in so-called Boolean arbitrary public announcement
logic BAPAL [98]

M,sE ()¢ <<= thereis € Lpr, such that M,sF ¢ and M|y, s F ¢

As the semantics of the quantifier in LK™ are different, the properties of the quantifier (!);
that were observed in Section 4.3 now have to be shown again. It is straightforward that (!);¢
implies ().

It may be interesting and surprising to see that the knowability operators are dispensable
in classical propositional logic. That is to say, the addition of knowability operators does not
increase the expressive power of classical propositional logic.

Proposition 44. LK™ is equally expressive as PL.

Proof. As LK™ extends PL, LK™ is at least as expressive as PL. It suffices to prove that PL
is at least as expressive as LK™.

For this, let ¢ be a formula in the language of LK™. We prove that ¢ is equivalent to a
formula in PL. The proof is by induction on the number of (!); modalities in ¢.

If ¢ contains no (!); modality, then ¢ is already in PL, and we are done. Otherwise,
consider a subformula (!);1 of ¢ such that ¢ € PL.

We first show that F (1);¢) <> 1.

Let M = (S,R,V) and s € S be given.

Assume that M, s E (!);1. By definition, there is a x € PL such that M, s F x and for
all t € R;(s), M|y,t F 9. In particular, M|y, s F 1. Therefore, as 1 is Boolean and as the
valuation does not change after model restriction, we have M, s E 1.

Conversely, assume that M, s F 1. Consider the characteristic formula §¢ defined as in
the proof of Thm. 6. Then M, s E (5?, and also M]5¢, s E 1. As the valuation of the variables
in 1) is constant on M|6§” it follows from Prop. 21 that M|6§’ E 1, and therefore M‘ag”t E

for all t € R;(s). From that and M, s F 6 it follows by semantics that M, s E (1);1).

This proves E (1)1 <> 1. Now replace (1);4) by ¥ in ¢. Let the result be ¢'. Note that
EF o< ¢. As ¢ contains one less knowability modality than ¢, by induction hypothesis we
can conclude that ¢’ is equivalent to a Boolean formula ¢”. From F ¢ <> ¢/ and F ¢’ < ¢
it follows that F ¢ < ¢”. O

It may be instructive to present an example.

Example 4. We will show that the formula (!1);(!);(['lx(p — ¢) V [']x—r), read “it is knowable
for ¢ that it is knowable for j that either it is unknowable for k£ that p does not imply ¢ or it
is unknowable for k that r”, is equivalent to a Boolean formula. The proof is as follows.

!
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Chapter 4. Logics for knowability

In what follows, we show the properties of Church-Rosser and McKinsey hold for LK™.
For this, we define a translation from Lyk= to Lpy,.

Definition 37. Define t : Lix= — Lpy, as follows.

t(p) = p

t~p) = ~t(p)
tloA) = tle) ANt(y)
t((Nip) = tp).

Intuitively, ¢ removes every occurrence of (!); in the formulas of LK™,

It is straightforward to compute that ¢([!];¢) = ——t(¢). This translation helps us show
the properties of Church-Rosser and McKinsey holds for LK™, namely, (!);[!li — [!]i(!)i¢ and
Mi(Nie — (1illlig, respectively, are valid on the semantics of LK™. To see this, we first show
the following result.

Lemma 16. For all ¢ € L=, we have
E o< t(p).
Proof. By induction on ¢ € L x=.
e o =p € P. Since t(p) = p, we obviously have F p <> t(p).
e p = —). By induction hypothesis, E ¥ <> t(¢). Then E =) > t(—)).

e o =1 A x. By induction hypothesis, E 1 <> t(1)) and F x <> t(x). Then E (¢ A x) <
t¥ A X).
e © = (1);4. By induction hypothesis, F 1) <> t(¢)). Then E (1);4 <> (1);t(¢). Since t(¢)) €

Lpr, by the proof of Prop. 44, E (!);t(1) <> t(¢). This follows that F (!);1) <> t(z)).> As
t((1Nip) = t(v), we conclude that E (1);¢ <> t({!);1).

O
Theorem 12 (CR and MK). F ();[!]i¢ <> ['i(Die.
Proof. Note that ¢((1)[llip) = t([ip) = —=t(e) and ¢([li(ip) = ==t((N)ipp) = =t(p). Thus
t((il'lip) = t([Ni(Hiw). By Lemma 16, we have F (1)[!]i (( )illlip) and & [i(hip <
t([1:(")ip). Therefore, E (1);[!]ip « [.]1<.>Zg0. O

Now we add an axiomatization for LK™. In retrospect, Lemma 16 essentially gives us the
following reduction-like axiom (denoted Red):

Nip < .

Intuitively, Red removes all (!); operators from formulas in LK™ within finitely many steps.

We use LK™ to denote PL + Red, in which PL is the classical propositional calculus. In
what follows, we will show that LK™ is determined by the class of epistemic frames. For this,
we first need an important result.

®Note that Prop. 44 only shows that k= (!);x <+ x holds for every x € PL, but it does not show this statement
holds for any LK™ -formula. This is what we are doing here.
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4.7. Decidable knowability logics

Lemma 17. For all p € L1 g=, we have
F o < t(p).
Proof. By induction on ¢ € L=
e p=peP. Ast(p) =p, we have - p < t(p).

e » = —p. By induction hypothesis, - ¥ > ¢(¢), and thus - ¢ < —t(y), that is,
=) < t(—).

¢ = ¥ A x. By induction hypothesis, we have - ¢ <> ¢(1)) and + x <> t(x). Therefore,
= (P AX) < HP AX)-

¢ = (!1);%. By induction hypothesis, i 9 <> t(¢). By axiom Red, - (!);2) <> ¢. Moreover,
t((Nip) = t(v). Then we conclude that F (1);¢) <> t((1);).

O

Theorem 13. LK™ is sound and complete with respect to the class of all frames.

Proof. For the soundness, it remains only to show the validity of axiom Red. By Lemma 16,
E(Dip < t((Nip) and F ¢ <> t(p). As t({1);p) = t(p), we therefore obtain F (!);¢ < .

As for the completeness, suppose F ¢, then by Lemma 16, F t(y). Since t(¢) € Lpr, by
the completeness of PL, Fpr, t(¢). Since PL C LK™, then - ¢(¢). Now using Lemma 17, we
conclude that - ¢, as desired. O

Remark 1. With axiom Red in hand, we can even give a syntactic proof of CR and MK in
LK™ (without use of completeness), because we can derive that F (!);0 <> ¢ and F [!];¢ <> ¢.
Therefore, both (1);[!];¢ and [!];(!); are provably equivalent to . Therefore, - (1);[!];ip <

[i(Diep

4.7.2 Logic LK™

One may naturally ask whether the announcement operators increase the expressivity in LK™ .
Again, the answer is negative. Recall that when the announcement operators are added to
LK™, we obtain the language LK™. In other words, LK™ is defined recursively as follows.

e u= ploel(ene) [ {ee] D
Proposition 45. LK™ is equally expressive as PL.

Proof. As LK™ extends PL, LK™ is at least as expressive as PL. It suffices to show that PL
is at least as expressive as LK™.

For this, let ¢ be a formula in the language of LK™. We show that ¢ is equivalent to a
formula in PL. The proof is by induction on the number of (-) modalities in ¢.

If ¢ contains no (-) modality, then ¢ is a formula in the language of LK™. As we shown in
Prop. 44, ¢ is equivalent to a PL-formula. Otherwise, consider a subformula (X)) of ¢ such
that ¢, x € LK™. By Prop. 44 again, each of ¢ and x is equivalent to some PL-formula. Then
by using the reduction axioms concerning announcements and Boolean formulas, we can infer
that (x) is equivalent to a PL-formula, namely x A ¢. Now replace (x)¥ by x A ¢ in .
Let the result be ¢’. Note that F ¢ < ¢'. As ¢’ contains one less (-) modality than ¢, by
induction hypothesis we conclude that ¢’ is equivalent to a formula ¢” in PL. From F ¢ < ¢/
and F ¢’ < ¢”, it follows that F ¢ < ©”. O
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Chapter 4. Logics for knowability

Also, we give a concrete example to illustrate the result.

Example 5. We will show that the formula (1);(p)(1);{((0)i(g A7))(p — q), read “it is know-
able for i that after a truthful announcement of p, it is knowable for j that after a truthful
announcement of the fact that the conjunction of ¢ and r is knowable for i, p implies ¢”, is
equivalent to a Boolean formula, as follows.

Nip) (N (DilgAr))( — q)
< i) Dilanrp —q)
< Wi Mi((@Ar)A(p—q)
< D) (gAr) AN (P —q))
< DilpA@Ar)AN(p—q))
< pA(gAT)AN(p—q)
<~ pAgAT

Also, we can axiomatize LK™ over the class of all frames. Define LK~ as the smallest
extension of LK™ plus the following axiom Red’:

() < (P A).

In what follows, we show the properties of Church-Rosser and McKinsey also hold for
LK™. For this, we define a translation from L; k- to Lpr.

Definition 38. Define t': L} - — Lpy, as follows.

t'(p) = p

t'(—p) = ()
t'(pny) = t(p) At()
t'(e)y) = t(p) At ()
t'(Niw) = t'(p).

That is, t' extends ¢ for the fragment LK™ in Def. 37 with the extra case ().
Lemma 18. For all p € L} -, we have
Eo e t'(p).

Proof. By induction on ¢ € L x-. By Lemma 16, it suffices to show the case that ¢ = ().

By induction hypothesis, F ¢ + t/(¢)) and E x + t/(x). Thus E (¢)x < (' ()t (x)-
Since t'(x) € PL, E (¢'(¥))'(x) <> (t'(¢¥) At'(x)). As t'((¥)x) = t'(¢) At'(x), we conclude
that = (¢)x < '((1)x). O

Then as in Thm. 12, we can show that the properties of Church-Rosser and McKinsey
hold for LK.

Theorem 14 (CR and MK). E ();[!]ie <> [!i(Diep.

In what follows, we will also show that LK™ is determined by the class of all frames. For
this, we show

Lemma 19. For all p € LK, we have
o< t'(p).
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Proof. By induction on ¢ € LK™. The cases for ¢ € LK™ formulas is similar as in Lemma 17.
It remains only to prove the case that ¢ = (¢)x.

By induction hypothesis, 1 <> /(1)) and F x <> t/(x). Thus F (¥ A x) <> (£ () At (x))-
By axiom Red’ and definition of ¢, we derive that F ()x <> ¢/ ({(¥)x). O

Theorem 15. LK™ is sound and complete with respect to the class of all frames.

Proof. For the soundness, by Thm. 13, it suffices to show the validity of axiom Red’. By
Lemma 18, E (p)y) <> t'({p)1), E ¢ <> t'(p), and F ¢ <> /(). By definition of ¢/, t'({p)y) =
t'(p) At' (). Therefore, F (p)1) > (@ A1).

As for the completeness, suppose F ¢, then by Lemma 18, F t(¢). Since t(¢) € Lpr, by
the completeness of PL, Fpr, /(). Since PL C LK™, we have - t/(¢). Now using Lemma 19,
we conclude that F ¢, as desired. O

Similar to Remark 1, we can also give a syntactic proof of CR and MK in LK™ without
use of completeness.

As both LK™ and LK™ are equally expressive as PL, and PL is decidable, we have the
following decidability result.

Theorem 16. LK~ and LK~ are both decidable.

4.8 Conclusion and future work

We have proposed three knowability logics, namely LK, LK™ and LK™. We compared the
relative expressivity of the three logics and other related logics. It turns out that in the single-
agent case, LK is equally expressive as arbitrary public announcement logic APAL and public
announcement logic PAL, whereas in the multi-agent case, LK is more expressive than PAL.
In contrast, both LK™ and LK™ are equally expressive as classical propositional logic PL. We
axiomatized the three knowability logics and showed their soundness and completeness. We
showed that the properties of Church-Rosser (CR) and McKinsey (MK) holds for all three
knowability logics, both syntactically and semantically. LK is undecidable for at least three
agents; in contrast, LK™ and LK™ are both decidable for any number of agents.

We currently see three topics for future research.

Firstly, one may investigate whether LK is already undecidable for only two agents.

Secondly, we would wish to determine whether LK is less expressive than APAL. We have
a proof that LK < APAL on the class of reflexive models, but we have not yet managed to
modify this proof to work with S5 models. The issue with S5 models is that they provide
far less freedom to make certain states distinguishable while others are indistinguishable. For
example, if s; and s9 in an S5 model are distinguishable and t; and 9 are a-successors of s;
and so, respectively, and only of those states, then ¢; and ¢ cannot be indistinguishable. As
a consequence, potential S5 counterexamples to LK being as expressive as APAL need to be
for more complex than the counterexamples for reflexive models, and are therefore harder to
find. We do still conjecture that such counterexamples exist, and therefore that LK < APAL
on S5 models, but so far we have not managed to find them.

Finally, an remaining important open question is what the axiomatization is of the logic
with the language of LK but without public announcements, so that the semantics of the
quantifier is given directly (and equivalently). A similar open question remains for the logic
APAL but without the public announcement in the language (see also [99]) where this is
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discussed at some length). In such cases, we can no longer resort to the public announcement
in the axiom and in the derivation rule for the quantifier, and it is very unclear how to proceed

alternatively.
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5)

Normative arrow update logic

5.1 Introduction

Deontic logic is the study of rules, norms, obligations and permissions, through logical means
[80, 8, 28, 42, 55|, and this has also been extensive investigated in dynamic modal logics
[69, 20, 96, 54, 49]. In the field of deontic logic, there is a sub-field that studies rules or norms
by comparing the situation where a rule is not in effect, or not being followed, to the situation
where the rule/norm is obeyed. There is no universally accepted name for this sub-field, but
“social laws” [86, 87, 40] and “normative systems” |2, 4] are often used. We will use the term
normative systems, and refer to the behavioural restrictions under consideration as norms.

A logic of normative systems is concerned with what things agents are capable of doing, and
what they are allowed to do if a norm is enacted. It therefore requires a model of agency at its
core. Any model of agency will do, but the most commonly used choices are labeled transition
systems with a CTL-like logic of agency [31] and outcome function transition systems with
ATL-like logic [7]. Here, we will follow the CTL-style approach.This means that a model is
a labeled transition system, i.e., it contains a set S of states and a set {R(a) | a € A} of
accessibility relations, where R(a) C S x S. A transition (s1,s2) € R(a), is an action or an
agent that changes the state of the world from s; to ss.

In order to choose a course of action, we need to decide whether we should adopt a norm
and then check if an action is allowed by the norm. Whether an action a is allowed may
depend on a logical condition ¢ before the action takes place, so on the situation in sj, and
also may depend on a logical condition ¥ after the action took place, so on a condition satisfied
in so. We refer to s as the source of the action, to ¢ as a source condition, to s9 as the target,
and to 9 as a target condition. A source condition ¢ determines whether we should adopt a
norm and a target condition 1 checks which actions are allowed. For norms with both source
and target conditions one cannot reduce multiple source conditions to one (for example by
taking the disjunction), nor multiple target condition to one. A norm in our formalism will be
therefore represented by a list of clauses, each with a source condition and a target condition.
This is as in arrow update logic [57, 105]. The arrow eliminating updates in arrow update
logic now correspond to adherence to norms.

We will also introduce more complex ways to describe norms, so we will refer to such a
list of clauses as an atomic norm. We distinguish four ways to combine norms. If Ny and No
are norms, then

e — N is the negation of N1, and allows exactly those actions that are disallowed by Ny,
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e Ny + Ny is the additive combination of N7 and No, and allows exactly those actions that
are allowed by Ny or No,

e Nj x Ny is the multiplicative combination of N1 and Ns, and allows exactly those actions
that are allowed by both Ny and Ns.

e NjoN, is the sequential composition of N1 and N, and allows exactly those actions that
are allowed by N, in the transition system restricted to those actions that are allowed
by Nl.

We further distinguish static from dynamic applications of norms. A liveness condition such
as “if the norm N is obeyed, then ¢ is guaranteed to be true at every time in the future”
can be formalized in two ways, which we denote [N]Gp (dynamic) and Gn¢ (static). The
difference lies in whether the norm N is assumed to hold during the evaluation of ¢: when
evaluating [N]Ge, everything inside the scope of [N] is considered in the transition system
restricted to the actions allowed by N. When evaluating G, on the other hand, the “forever
in the future” operator GG is evaluated in the system restricted to N-allowed actions, but ¢ is
evaluated in the non-restricted system.

The dynamic operator [N] can be expressed using only the static operators, and the
combined norms can be expressed using only atomic norms. The combined and dynamic norms
affect the succinctness of the language, and thus the complexity of decision problems, they do
not affect its expressivity. The logic will be called NAUL, Normative Arrow Update Logic.
We will now formally define its syntax and semantics and then investigate the complexity of
satisfiability with a tableau method.

5.2 Language and Semantics

Let A be a finite set of agents and P a countably infinite set of propositional variables.
Recall that we have defined relational models, transitions and paths in Chapter 2. Now
we introduce the language of NAUL.

Definition 39. The formulas of Ly are given by

pu=p|-p|eVel|[Nle|Orve|Grne | Fny

N o= (3073790) | (907B790) |N7(907B790) |N7(907B790)
N:=N|-N|N+N|NxN|NoN

where p,€ P and B C A.

Remark 2. In NAUL we use only three temporal operators: [y, G and Fy. These temporal
operators include an implicit universal quantification over all paths, so we could have denoted
them in a more CTL-like fashion as AXy, AGy and AFy. Operators corresponding to the
other temporal operators from CTL can be defined in NAUL. For example, E(p1Unp2) can
be defined as =Gy, 4 T)x N P2-

In NAUL, the set of subformulas (SubF') or subnorms (SubN) of a formula ¢ (or a norm
N) includes all formulas or norms occur in ¢ (or N).

Strictly speaking a norm of type N is a list of clauses, but we abuse notation by identifying
it with the set of its clauses. Additionally, we use a number of abbreviations. We refer to

74



5.2. Language and Semantics

norms of type N as atomic norms and norms of type N simply as norms. Note that every
atomic norm is also a norm.

Definition 40. We use A, —, <>, A\, and {  in the usual way as abbreviations. Furthermore,
we use G and Fy as abbreviations for =G ny— and —Fy—. We write Op for D(T,B,T)v G p for
G(7,5,T) and Fp for F(1 g ). Finally, we use [J,G and F' for [J4, G4 and Fu.

The semantics of Lyapyr are given by the following two interdependent definitions.

Definition 41. Let M = (S, R, v) be a relational model and N a norm. A transition s1—— sy
satisfies N in M if one of the following is holds:

1. N is an atomic norm, there is a positive clause (¢, B,1) € N such that M, s | ¢,
a € B and M, sy |= 1. Furthermore, there is no negative clause (¢, B, %) € N such that
M751 ): w,ac B and M782 ):¢7

2. N is of the form —N; and s1 — so does not satisfy Ny,
3. N is of the form N; + Ny and s; — s satisfies N7 or Ny in M,
4. N is of the form Ny x Ny and s1 — so satisfies N7 and N in M,

5. N is of the form Njo Ny, $1 Ly 59 satisfies N7 in M and the transition s; — s satisfies
N2 in M * Nl.

A path s1-55 592y 4+ - - is an N-path in M if every transition s;— Si+1 in the path satisfies
N in M. An N-path is full in M if there is no N-path in M that extends it.

When the model M is clear from context, we say simply that a transition satisfies IV or
that a path is an N-path.

Definition 42. Let M = (S, R,v) be a transition system and s € S. The relation |= is given
as follows.

M,sE=p & sewv(p) forpeP,

M, s E - & M, s,

M,sE@i1Vps < M,skE e or M,s = ¢,

M, s EOnp & for every transition s — s’ that
satisfies N, we have M, s’ | ¢,

M, s = Gnyp < for every N-path P starting in s and

every ' € P we have M, s’ | ¢,

M,s = Fny < for every full N-path P starting in s there is
some s’ € P such that M, s = ¢,

M, s = [N]e & M=xN,skEp

where M x N = (S, R+ N,v) and, for every a € A,
Rx* N(a) = {(s,5') € R(a) | s = &' satisfies N}.

Recall that the single state s is a degenerate path with no transitions. So every transition
in s satisfies every norm N, so it is an N-path. As a result, M, s = Gy¢ implies M, s = ¢.
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5.3 Example: Self-driving Cars

We will give a simple example of NAUL. Suppose we have a racetrack where a number of
self-driving cars operate. We want to equip cars with norms that will guarantee that they
avoid

(a) collisions with each other and stationary objects;
(b) “deadlock” situations where no one can act.

Let coll be the proposition variable that represents “a collision happens”. Note that situations
where no one can act are represented by L.

For (a), we create a norm N, such that if no collision has occurred then it should pre-
vent collisions for every point in the future. N, is therefore successful if we have —coll —
[N.]JG—coll. The simplest way is to disallow any action, then N, is (L,.4, ). However,
we would like to let V. allow at least one action to avoid deadlock. Thus we take N, :=
(T, A,—=Fcoll). It is indeed successful as we have = —coll — [N ]JG—coll.

For (b), we interpret it as “there must be some available action that is not only possible
but also allowed”, and then we construct a N; such than [Ng]GOT holds. we should take
Ny := (T, A,-FOL). This gives us F =FOL — [Ng]GOT. In other words, as long as there
is an infinite path the norm N; forces agents to follow such a path.

For combining N, and Ny, N. x Ny allows agents to perform actions that result in a
situation where movement, while possible, is disallowed because it will lead to a collision. The
sequential combination solves this problem: the norm N, o Ny allows exactly those actions
that lead to neither collisions nor situations where agents cannot or are not allowed to act. In
other words, we have |= =F (coll VOL) — [N. o Ng|G(—coll ANOT).

The self-driving cars example is also useful for illustrating the difference between the static
operators Oy, G, and F on the one hand, and the dynamic operator [N] on the other. We
have M, s = Gy if ¢ holds after every sequence of action that starts in s and is allowed by
N. Importantly, during the evaluation of ¢ it is not assumed that everyone follows N. We
have M, s = [N]Gyp if, under the assumption that all agents follow N permanently from now
on, every sequence of actions leads to a ¢ state. In this case, during the evaluation of ¢, we
do assume that all agents follow N.

Sometimes we may require that N. not only avoids collisions, but also situations where
a single mistake could cause a collision. We cannot phrase this stronger success condition as
[Nc]p for any ¢. After all, the ¢ in [N]g is evaluated under the assumption that all agents
follow the norm N.—so no mistakes are made. This is where the static operator G, is useful.
Consider the formula Gy, (—coll AO=coll). The O in that formula is not evaluated under the
assumption that the agents follow N, so G, (—coll AO=coll) holds exactly if every sequence
of actions allowed by N, leads to a state where there is no collision and no single action can
cause a collision.

5.4 Expressivity

We will compare the expressivity of NAUL with other related logics. Firstly, NAUL and NTL
are obviously incomparable. The different ways to define norms make it impossible to compare
NTL and NAUL with each other. Therefore, we will focus on comparing NAUL with CTL
and AUL*. It has been shown NAUL is strictly more expressive than CTL and AUL* [63].
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B
<1 1 11
7

()= ()

p
Figure 5.1: The model M ¢7y. The states s; and ¢; satisfy p iff ¢ is odd.

Remark 3. CTL is usually interpreted over different models than AUL* and NAUL. In partic-
ular, CTL tends to use single-agent serial models. Strictly speaking, this makes it impossible
to compare the expressivity of NAUL to that of CTL. This problem can be solved by either
extending CTL to multi-agent non-serial models—which can be done in a straightforward
way—or by restricting AUL* and NAUL to single-agent serial models. The results presented
here hold regardless of which of these solutions we use.

5.4.1 CTL < NAUL

Recall that we have introduced the basic definition of CTL in Sec. 2.2.5. First, we show
that NAUL is at least as expressive as CTL. The operators =, V, AX and AF are also NAUL
operators, although AX and AF are denoted [J and F in NAUL. As such, it suffices to show
that EU can be defined in NAUL.

Lemma 20. NAUL is at least as expressive as CTL.

Proof. The operators =, V, AX and AF in CTL are also NAUL operators, although AX and
AF are denoted [0 and F' in NAUL. As such, it suffices to show that EU can be defined in
NAUL. We prove the following:

= E(eUy) ¢ =Gpa,1m)~¢

By semantics of NAUL M, s = =G, 4 1)~ if and only if there is a (¢, A, T) path from s
that contains a 1 state. Because such a path is a (p, .4, T) path, ¢ is true on every state
before the 9 state. As such, by semantics of CTL, M, s = E(eU%) > =G, 4 1)7%. This is
true for any M, s, so = E(oU) < =G, 4 1) O

Left to show is that CTL is not at least as expressive as NAUL. Consider the model M ¢y,
shown in Figure 5.1, and note that the NAUL formula [(p, A, =p), (—p, A, p)|G—q distinguishes
between Moy, s; and Mopr,t; for all ¢ € N. We show that there is no CTL formula that
similarly distinguishes s; from t;.

Lemma 21. Let ¢ be any CTL formula, and let n be the modal depth of v. Then ¢ does not
distinguish between M orr, s; and Mcorr,t; for i > n.

Proof. By induction. As base case, suppose n = 0. Then ¢ is a Boolean formula, so it cannot
distinguish between s; and t; for ¢ # 0. Assume as induction hypothesis that the lemma holds
for all n’ < n.

If a Boolean combination distinguishes between two states then so does at least one of the
combined formulas, so we can assume without loss of generality that the main connective of
pis AX, AF or EU.
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e Suppose @ = AX1). In order for ¢ to distinguish between s; and t;, 1 must distinguish
between t; and s; or s;—; and ¢;—;. This contradicts the induction hypothesis, since ¢
is of modal depth n — 1.

e Suppose ¢ = AF1). There are two possibilities. Firstly, v may hold on either s; or ¢;.
Then, by the induction hypothesis it holds on both s; and ;. As such, ¢ holds on both
s; and t;, and therefore does not distinguish between them.

The second possibility is that 1) holds on neither s; nor ¢;. Suppose ¢ does not hold on
Si, so there is some path s; — 1 — 29— --- that does not contain a 1) state. Then
the path t; — s; — 1 —> 29 — - - - also does not contain a 1 state. So ¢ does not
hold on ¢;. Analogously, if ¢ does not hold on ¢; then it does not hold on s;. This shows
that ¢ does not distinguish between s; and ¢;.

e Suppose ¢ = E(1p)1U1z). There are three possibilities. The first possibility is that o
holds on either of s; and ¢; and therefore—by the induction hypothesis—on both. Then
0 holds on both states, and therefore does not distinguish between them.

The second possibility is that both 1 and s hold on neither state. Then ¢ holds on
neither state, and therefore does not distinguish between them.

The final possibility is that 7 holds on neither state, but 7 holds on either and
therefore—by the induction hypothesis—both states. Suppose ¢ holds on s;. Then
there is some path s; — x1 — x9 — - -+ that satisfies ¥, until ¥o. This implies that
the path t;—— s; —> 1 —> o — - - - also satisfies 11 until 9, so ¢ holds on t; as well.
Analogously, this reasoning shows that if ¢ holds on ¢; then it also holds on s;. This
shows that ¢ does not distinguish between s; and ¢;.

In all cases, ¢ doesn’t distinguish s; from ¢;. This completes the induction step and thereby
the proof. O

Theorem 17. NAUL is strictly more expressive than CTL.

Proof. Lemma 20 shows that NAUL is at least as expressive as CTL. Lemma 21 shows that
there is no CTL formula equivalent to [(p, .4, —p), (—p, A, p)]|G—q, so CTL is not at least as
expressive as NAUL. O

5.4.2 AUL* < NAUL

The only difference between NAUL and AUL* is that NAUL has an Fy operator while AUL*
does not. NAUL is therefore trivially at least as expressive as AUL*. Left to show is that
AUL* is not at least as expressive as NAUL. In order to do so, we will use a sequence of models
M 11, which is shown in Figure 5.2. For reasons of brevity we will assume that AUL* does
not contain the [N] operator; we can safely do this because [N] can be seen as an abbreviation

in both NAUL and AUL*.

Lemma 22. Let ¢ be any AUL* formula, and let m be the modal depth of ¢. Then, for
every n > m and every n > 1i,j > m, ¢ does not distinguish between M, s; and M t;.
Furthermore, for every n >1i >0, ¢ does not distinguish between My, s; and M, t;.
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) p
O SO OO~
(=t (=)=

p
Figure 5.2: The model M'; ;.

Proof. The second claim in the lemma is trivial: for every i < n, the states s; and t; are
bisimilar and these logics respect bisimilarity. It remains to show that ¢ cannot distinguish
between s; and t; for 7,7 > m. We do this by induction. As base case, suppose m = 0.
For every i,j > 0, the states s; and t; agree on all propositional variables, so ¢ does not
distinguish between them.

Suppose then as induction hypothesis that m > 0 and that the lemma holds for all m’ < m.
If a Boolean combination of formulas distinguishes between two states then so does at least
one of the combined formulas, so we can assume without loss of generality that the main
connective of ¢ is Ly or Gy.

e Suppose ¢ = [nv. In order for ¢ to distinguish between s; and t; it is necessary for
either 1 or one of the formulas in NV to distinguish between s; and ¢;, or between s;_;
and t;_1. Each of the formulas in N as well as ¢ are of modal depth < m —1, so by the
induction hypothesis they cannot distinguish between these states. This implies that ¢
does not distinguish between s; and ¢;.

e Suppose ¢ = Gn1p. In order to distinguish between s; and t;, exactly one of the states
must have a path containing a —) state. There are two ways this could happen: either
there is some k such that exactly one of s; and t; satisfies ¢, or there is a k such that
s and t;, both satisfy =), but only one of them is reachable from s; or t; by an N-path.

The first option cannot occur; the induction hypothesis implies that 1) cannot distinguish
between s; and ¢y for any k. The second option also cannot occur. Such a reachability
difference would require some formula in N to distinguish between s; and t; with k <n
or between s; and ¢; with k,I > m — 1. The induction hypothesis implies that neither
distinction is possible.

In both cases, ¢ doesn’t distinguish s; from ¢;. This completes the induction step and thereby
the proof. O

Theorem 18. NAUL is strictly more expressive than AUL*.

Proof. NAUL is trivially at least as expressive as AUL*. From Lemma 22 it follows that there
is no AUL* formula equivalent to the NAUL formula F'p. O

5.5 Satisfiability Problem

Definition 43. The satisfiability problem for NAUL is defined as follows:
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e Input an NNF formula ¢.
e Output YES if and only if there is a pointed model (M, s) such that M, s FE ¢

In this section, we present a tableau method to show the satisfiability problem of NAUL
is decidable. We will use negation normal form (NNF) of formulas or norms. An NNF
formula only has negation on literals. An NNF norm only has negations on atomic norms
instead of clauses.

Definition 44 (Negation normal form (NNF)). Given a set of variables P and a finite set of
agents A.

ou=p|lploere|eVe|One | One | Gre | Gre | Fye | Fne | [N]e | (N) e
N = (p,a,0) | N, (¢, a,p)
N:=N|N|N+N|NxN|NoN
where p € P, a € A.

Theorem 19. Every NAUL-formula or norm can be transformed to an equivalent formula or
norm in NNF.

Proof. For NAUL-formulas, it can be shown easily by an induction. As for atomic norms,
since the order of clauses in an atomic norm does not matter, given an atomic NAUL-norm
N, and N'T as all positive clauses, N~ as all negative clauses of A/, clearly N is equivalent
to N + N~ which is an NNF norm. As for the negations of combined norms, we have the
following transformations:

e N=N
e Ni+ Ny =Ny x Ny
e Ny x Ny =N; +N,
e NjoN, =N+ NioN,
O

Given an NAUL-formula ¢ or NAUL-norm N, the time of transforming it into an NNF
formula ¢’ or NNF norm N’ and the size of 1) or N’ is polynomial in the size of ¢ or N.

5.5.1 Tableau method

We introduce some concepts related to tableau method.
Definition 45 (Term). There are two types of terms:

F-term (s;\;p) where s € S, A is a sequence of norms, ¢ is a formula. It means the model has
been updated by A\ and ¢ is true on s.

N-term (s1 M S9: A;n) where s1,s9 € S, A\, n are sequences of norms. It means the transition
s1 5 so satisfies 17 successively after the model is updated by A.
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5.5. Satisfiability Problem

Definition 46 (Tableau). A tableau T is a structure T'= (W, V, E, w) where W is an infinite
set, and V' is a finite set, E' is a binary relation on V. Given a set of terms L, 7 : V — P(L)
is a labelling map.

Let A,C4,---,C, be sets of terms. A tableau rule is represented as

A

Above the line, A is the antecedent; below the line, there are consequents. A tableau rule
is applicable on a node if the node has terms as an instance of the antecedent. If there are
multiple consequents after applying a rule, one need to choose one of them.

Definition 47 (Interpretability). Given a model M = (S, R,v), it interpret (noted as Fr) a
set of terms T if any term in T satisfies:

o MEr (s;A;¢) if and only if M x A, s E ¢.

e MEr (s1 PP n) if and only if s; s 59 satisfies 7 on M x A,
A set of terms T is interpretable if there exists a model M such that M interprets all terms
inT.
Definition 48. Given a tableau T, we define an order < on all terms of T" as

s;0;50) < (s; N5 00) if @ is a subformula of 1.

s+5% s \;m) <1 (s; N ) if 77 is a parameter of some operator in (.

(
(

o (s; X)) < (s+% s": N:m) if ¢ is in some clause of 7.
(s % s 0m) < (s V% &' A1) if i is a sub-norm of 7/;
(

o (55 s\ N') < (s+% /s N; N) if ) is an initial segment of \'.

Now we define the tableau rules for NAUL. We omit terms which remain the same after
applying a certain rule. Let € be the norm (T,.A4, T) after which nothing is updated.

Definition 49 (Tableau rules). € is the norm (T, .4, T) after which nothing is updated.
(s;A5p) (850, -p)
(s;6p)  (s56,p)

(53 X5 A1)
(830 0), (53 A59)

(8300 V)
(85 00) | {s509)

(530 Gnep)

(550 0),(s; M ONGNY)

(83 Fne)
(85 00) | (s M ONT), (850 ONENe)

(lit)

(N)

(V)

(@)

()
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(s; 0 Gne)
(55 00) | (550 ONGNY)

(&

(85 00), (s; 08 L) | (8500), (850 OnEFne)

(s; A [Ny (50 (V) )

. .
(Dynamic) (A Ns@) (5570, N5 o)

(530, On )
(5 00), (s ™ s A N) |+ | (5 A190), (5 3 8/s A N)

(s; 0 0N89), (s % s e; )
(85X 0) s (s 7% 85 A N) | {545 850 = NY)

(=N’ is the NNF of —N)

Suppose an atomic norm N = (¢1,a1,%1), -, (pn, an, ), for any i € [1,n]

. (s 5 s M N)
Atomic
( ) (83 A104), (85 Asai)
A ve
(Neg) (s = S5\ N) (—¢j, ) are transformed to NNF formulas)

(55 /\jEK1 —pj), (83 A; /\jeK2 =) |-
For any disjoint K7, Ko C [1,n] such that K1 U Ky = {i | (i, a,%;) € N'}
(s ¥ s/, A N1+ Ny)

(Add) m m
(8= 85X N1)) | (s = 834 N2))

(s+% s/ Ay Ny x No)

(Multi) - -
(s = 85 A V1)), (s = 3 A5 N2))

(s+% 5'; X\; Ny o Ny)
(s v /s X\, Ni; No)

(Seq)

s +% s's A, Ni; No)

(
(%) (s &' X; N1)

(lit), (A) and (V) are Boolean rules. (@), (F),(G), (F) handle temporal modalities. (G)
says if we have Gy at a word s, then we have ¢ as well as OnyGyp at s. (F') says if we have
F N at s, then whether we have ¢, or s has some N-successor (OnT is true) and Oy Fye.
(G) says if we have Gy at s, then whether we have ¢ or OnGyy at s. (F) says if we have
Fng at s, then we have ¢ at s and whether s has no N-successor or it has QNFNQO.

(©) says if we have Oy at s, then we can choose an agent a € A to “assume” that there
is a transition s v s’ satisfying N and we have ¢ at s’. Note that (<) is the only rule that
generates new states and whether a state can be actually generated will be examined later.
(0O) says if we have Oy¢ at s and transition s +» s exists, then whether we have ¢ at s’ or
s +% s' does not satisfy N. (Dynamic) handle dynamic operators. It says if we have [N]e (or
(N) ¢) at s updated by A, then we have ¢ at s updated by A then by N.
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The other rules handle norms. (Atomic) says if we have atomic norm A for s =5 s’ where
a; occurs in some clause (¢;, a;,1;) € N, then we have ¢; at s and v; at s'. (Neg) says if we
have N for s +% s, then given {i | (¢i,a,;) € N'} we choose some K1, Ky C [1,n] such that
Ki UKy = {i| (pi,a,¢i) € N} and A\jcg, ¢ is at s and J\;cg, 7 is at . As a result,
none of clause in A will be satisfied by s +% s’. (Add), (Multi) and (Seq) are standard with
respect to Def 41. (DN) says if s + s’ satisfies some norm Ny after updating by A, N1, then
it satisfies N7 after updating by A. A special case of (DN) is

(DN¥) (s+% s'; A\ N)
(s+% '€ \)
(DN*) says if transition s v s’ is updated by A, then it satisfies \.
Besides above tableau rules, we also need principles to delete inconsistent states, set an
order of applying rules, and avoid infinite consequents

Definition 50 (Tableau principles). Given an NNF formula ¢, we start from the root with
label (so;€; ). We have the following the principles of generating a tableau of ¢:

(Inc) If a node has inconsistent literals (as well as L), then mark it as “deleted”. If all
consequents are marked deleted, then mark the antecedent as deleted. In particular, if
one node have no consequent then mark it as deleted directly.

(Exh) We should apply rules to terms with respect to one state until no rule is applicable on
that state. When no rule is applicable on a state s, we mark s as “exhausted”. After
that, we can apply rules to terms with respect to its successors.

(Cyc) When a state s are marked as “exhausted’, one needs to check if there some exhausted
ancestor s* of s which has the same F-terms with s on some node t*. If so, we should
add (t,t*) € F and mark s as “exhausted” as well. If a state s is merged with some
ancestor, then all successors of s are also marked as “exhausted”, and we stop to explore
any term with respect to these successors further. In addition, let ~ C S x S be an
equivalent relation, and use s* ~ s to “merge” these two state to a reflexive state.

(Eveé) If all consequences of an antecedent ¢ are marked as deleted, then mark ¢ as “deleted”.
If Gy is in some term of a node ¢ with respect to a state s, and there is no reachable
state from s such that ¢ occurs in some term, then mark ¢ as “deleted”.

(EveF) If Fyp is in some term of a node ¢ with respect to a state s, and there exists a full
branch from s on which ¢ does not occur in any term of state on that branch, then
mark ¢t as "deleted”.

If there is no rule applicable any more, the procedure of generating the tableau terminate,
and the tableau is complete. If the root of a complete tableau 7' is not marked as “deleted”,
then we call a path from the root to a leaf node on T an open branch. If a complete tableau
has at least one open branch, then we call it an open tableau.

Proposition 46. For any NNF-formula @, the procedure of generate a tableau for o will
terminate.
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Example 6. Consider NAUL-formula
FO=p Ap NGt ap)(OpAO-p)

It says p is true, and for every full-path there is some state that has —p successor, and for
every state on a full (T,.4,p)-path it has both a p-successor and a —p-successor. Now we
check if there is an open tableau for it.

We start from ¢, with the label <so; & FOp AP NAGT 40 (OPA <>—|p)>. We use (A) rule
3 times

t1: (s0; € FO-p) , (s0;€p) , (505 € G 4, (Op A Op))

Then apply (F') to the first term we have two branches of ¢;, we choose one of them as:

ty = (s0; 60, (s0; € p) , (505 € G(T ap) (OP A O—p))

We explore the branch from t; to check whether it is open. For t2, we should apply (G) to
get a consequence

ts : (so; €O, (s0; 1), (s0: €6 Op) , (505 € O(T,4,0) G(T.ap) (OP A Op))
Now we apply (<) twice by choosing an arbitrary agent a and b,

t4 :(s0; € p), (503 € O(T 49 G(T45) (OP A O7p))
(50 % s1:6 (T, 4, T)), (5156 0), (50 2 52565 (T, 4, T)), (525 € —p)

We apply (Atomic), the consequent has trivial terms like (sp;€; T) which we omit. Thus
t5 :(05 € p), (503 € O(T,4p) G(T,4) (OP A Op))
b
(s0 > s156:€), (s1;6p), (s0 = 525 €6 €), (5256 7p)
Now (O) is applicable for ts,

b
t6 (505 € ), (513 € D), (525 € D), (S0 > S15€5€), (S0 > 523 €5 €)

(s1:6 G, 40O A O, (s0 > s156 (T, A,p)), (s0 L s;6 (T, A, p))

We can apply (Atomic) on (sg +> s1;€; (T,.A,p)), and the result is trivial. We also can apply
(Neg) on (s += s1;¢ (T, A, p)), and result only has duplicate terms as well.

b
t7 :(so; €:p), (s136:D), (525 € ), (s0 > s11€:€), (50 > s2:€:€), (5156 G (T 4 OP A OD)

Now sg should be marked as “exhausted”. We continue to explore s; and ss. Obviously, so
should be marked as “exhausted” immediately. As for s1, we apply (G)

b
ts :(so; €:p), (s13 € D), (525 € ), (s0 ¥ s11€5€), (s0 = s2;€5€)
(5156, 0p), (5156, Op), (516 0T, 40 G(T,4p)OP A Op)
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Notice s has the same F-terms on tg as sy on t3, so we will have a similar procedure as t3 to
ts with respect to sg. We omit details to save space. Let ¢, d be arbitrary agents, s3 s4 be two
states in .9, the following node t; is accessible from tg:
b
tr :(s0; € 1), (s1;€1), (325 € 7p), (50 7 51565 €), (50 = 825 €5 €)
(s356), (5456,p), (51 +% s3:6€), 51+ sus€5€)

(s3; 6, 0p), (8356, Op), (8356, O(T, 4G (T, Ap)OP A Op)

Now s; should be marked as exhausted. By (Cyc), s; has the same F-terms on ¢; as sg on tg.
Thus we add the pair (#;,t3) to E and mark s; as “exhausted”, and mark its successors s3 and
s4 as exhausted too. Now the procedure of generating the tableau of ¢ terminates. There is
F&=p on sg, and $—p is also on s, thus this branch meets (EveF). Therefore, it is an open
branch. The corresponding model M = (S, R, V) is

o 5= {[s0], [52]}
o R={[so] * [s0], [so] *> [s]}
o V(p) = {[so]}, V(=p) = {[s]}
where [s] = {s' € S| s ~ §'}.
)

[s0] : p

[s2] : —p
Example 7. Consider NAUL-formula
pAF=p NGT ap)(Op A Op)

It says p is true, every full path has a state —p is true, and for every state on a full (T, A, p)-
path it has both a p-successor and a —p-successor. It is unsatisfiable because it requires a
full path where p is true on each state, which contradicts F'—p. Therefore, there should be no
open tableau for it. We check it by tableau method.

We start from ¢, with the label

tr: (s03&p AFp AG T 4,)(OP A Op))
We apply (A) rule on ¢, multi times to a consequence t; as:
t1: (505 €p), (s0; 6 Fp) , (s0; 6 G(1,ap)(Op A Op))
Then we should apply (F) rule on , (sq; €; F'—p). We will have two branches to and t3 as:
ta : (5056 D), (s0;:€ ), (5056 G(T a9 (OP A Op))

and
ts : (s0;€p), (so; € OF ), (5056 OT), (5056 G (T 4 (Op A Op))
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As we can observe, ty will be marked as deleted by have both (sg;€;p) and (sg; €; —p). Thus
we can just explore t3. We should apply (G), then get a consequent t4 of ¢3 as:

ta: (s0; D), (s0; € OF ), (s056; OT), (s05€; Op A O=p) , (505 € O(T 4) G(T,4,0) (OP A OD))

Now we should apply (<) for Op and OG—p. There are branches for each agent in 4. We
choose an arbitrary a,b € A as an example:

ts : (so;€;p) , (so; € OF-p), (s0: 6 O(T a0 G(T,4p) (OP A D))
(s1;56p), <80 815 € (T,A,T)> , (825 €, 7p) <80 = 5956 (T, A T) >

By omitting trivial and duplicate terms, we should apply (0O). For (so; €; OF —p), it is obvious
that the only possible branch is:

te : (s05€:p) (50: € O(T, 49 G (1,49 (OP A Op)), (s1:€p) , (5156 F-p)
(s2; € ) , (s25€; Fp) <80 s 6;6> : <80 D sni6; €>
Now (0O) rule is still applicable. We omit some steps to give the only possible branch:

tr: (so;&p), (s1;6 D), (s136 F-p), (5156 G (T a0 (Op A O-p)),
(s2;€6 D) , (s256; Fp) <SO 5156 6> : <80 D sae 6>
Now we can mark sy as exhausted. For sy, by applying (F), it will be marked as exhausted
with the only F-term (so;€;—p). For sq, there is a similar procedure as t; to t7 with respect
to sg. Like the above example, we also omit detail. Let ¢, d be arbitrary agents, s3, s4 be two
states. t; is an accessible consequent of t7:
tr: (s0;6p), (51,6 ), (5156 Fp), (s2;67p) <80 st 6;6> : <30 S sare; 6>
d
(s3;€p), (s4;6 D), (545 € Fp) <81 = 53 6;6> : <31 = 8456 6>
(s3;6, F—p), (s3;6 G (T a,)(Op A Op))

Now s7 is exhausted. We notice that s; has the same F-terms on t; with sy on ¢7. By
(Cyc), we add (t;,t7) to E and mark s3, s4 as exhausted. The procedure of generating this
branch ends. Since F—p is on a F-term of sg, and —p does not occur on the full branch
50 = 50, therefore by (EveF) t7 should be marked deleted. Since a, b is arbitrary, all branches
of t4 will be marked as deleted similarly. As a result ¢, will be marked as deleted by (Inc). It
follows that there is no open branch for this formula.

5.5.2 Soundness and Completeness

Proposition 47 (Soundness). Given an NNF-formula ¢, if ¢ is satisfiable then there is an
open tableau rooted at (so;€;¢).

Proof. We show all tableau rules preserve interpretability. By Def 47, it is obvious that
interpretability implies satisfiability.

e (lit) and (A) preserve interpretability obviously. For (V), if one of its consequences is
interpretable, then so is the antecedent.
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(G): Suppose M Er (s; \; Gyp), then we have M x\, s F Gyp. By semantics, for every
N-path P starting from s and every s’ € P, M * A\, s’ E . Since s is on any N-path
starting from s, we have M % \, s £ ¢. For every s’ such that s v ¢ satisfying N, we
also have M * \, s’ E G . Thus by semantics, M x \, s F OyG N .

(F): Suppose M Er (s;\; Fyp), then we have M x A\, s E Fyo. By semantics, for every
full N-path P starting from s, there is some s’ € P such that M x \, s’ E . Since s in
every N-path starting from s, it is sufficient if M % A, s F ¢. Otherwise, we have there
is some N-successor s’ of s such that M x \,s’ E Fyo. In this case, M x \,s E Oy T
and M x A, s E OnFiyo.

(G): Suppose M FEr <s; A; GNcp>, then we have M x \,s F Gan. By semantics, there

exists some N-path P starting frqm s on which there is some s’ such that M x \, s’ E .
If Mx* X sE @, then M x\, s E Gy holds. Otherwise, there is some N-successor s of
s such that M x A\, s’ F Gnp. Thus we have M x X\, s E OnT and M x A\, s E OnG .

(F) Suppose M Ep <s; A; FN¢>, then we have M x \, s F FNcp. By semantics, there is

some N-path P on which for every s’ we have M x A\, s’ F . If P = {s}, then s has no
N-successor, that is, M x A\;s F OyL and M x A\, s E @; If P some state other than s,
then s has some N-successors, that is, M * \,s £ On T and there is N-successor s’ such
that M « A, s' E Eyg, thus M %\, s E Oy Eye.

(On): Suppose M Ep (s;A; Onp), then we have M x A, s E Ong. By semantics, there
is a transition s > s’ satisfying N and M x \, s’ E . Then we have M Er (s'; \; ) and

MEr <5r1>5’;)\;N> for some a € A.

(On): Suppose M Fr (s;A\;0Onp) and M Fp <s v sse )\>, then we have M x \, s E

One and s+ §' satisfies A on M. If s ¥ s’ satisfies N on M % \, then by semantics we
have M * X, s' E . Thus M Er (s'; ;). If s ¥ s' does not satisfy N on M x \, then

it satisfies —N on M * X\. Thus M Ep <s ENPUDY —N>.

(Dynamic): Suppose M Er (s;\;[N]p), then we have M x A, s F [N]p. By semantics,
Mx X% N,sE p. Thus M Er (s; A\, N;¢). The case M Er (N) ¢ is similar.

(Atomic): Suppose M Ep <s P )\;N>, then s % &' satisfies A" on M x \. It follows
that M % X\, s F ¢; and M x A, s’ E ;. Thus M Er (s; X;0:), (85 A5 4).

(Neg): Suppose M Erp <s =N U;)\;N>, then s = v satisfies N on M * X. It follows

that s + v satisfies no clause with respect to a in A'. Thus let K1 = {i | M x A\, v E
—p; for any (p;,a,v;) € N} and Ky = {i | M x \,v E —; for any (p;,a,1;) € N}
Therefore, we have K1 U Ko = {i | (¢;,ai, ;) € N}, and M Ep <v;/\;/\i€K1 —|<p¢> and
MET (v; X5 Nieg, ~i)-

(Add), (Multi), (Seq) is straightforward by the definition.
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e (DN): Suppose M Erp <3 Vs sl /\,Nl;N2>, then s v s satisfies No on M % A x N;. By

definition, if s s s’ is on M ok \ % Ny, then it satisfies Ny on M % X as well. Thus
MEr <8 — Sl;A;N1>.

e (Cyc) If there is a trace-back link between two nodes, then those two nodes have the same
terms with respect to some state. Thus interpretability is preserved by this trace-back
link as well. The other principles do not add consequences.

Suppose ¢ is satisfiable, then there is a pointed model M, s F ¢. Thus M Fr (s;€; ). Since
every tableau rule preserves interpretability, there is no inconsistent of literals. Let s be sg,
then there is an open tableau rooted at (sg;€; ). O

Proposition 48 (Completeness). Given an NNF-formula ¢, if there is an open tableau rooted
at (so; € ), then @ is satisfiable.

Proof. Suppose there is an open tableau T rooted at (so; A; ¢). Let T* be a full branch on T'.
We construct a model M = (S, R, v) where

o S={s]| (s: s} is in T*)
e R={s%5| <s£>s’;e;e> eT*}U{sS s|acAls]| > 1}
o v(s) ={p|{s;6p) €T}
where [s] = {s' € S| s~ ¢}
We show the following claims:
L. if (s;A;9)) is in T, then M A, s F 1.

2. if <31 s 593 \; N> is in 7%, then s1 +% s9 is in M * X and satisfies  on M x X (Note that

any sequence of norms 7 can be transformed into a norm N).

Make an induction on all terms by the order < in Def. 48 to show the above claims. For
Claim 2,

o If <Sl & SQ;A;N> € T where N' = (Solvalawl)"" a(@naanawn)) (S [Ln]v then by
(Atomic) rule (s1; ;i) , (s; A;10;) € T*. Then by IH, we have M x X, s1 F ¢, M\, s9 F
. Thus s; =% sy satisfies N on M x \.

o If <Sl = SQ;A;N> € T where N' = (Solvalawl)"" a(@naanawn)) (S [Ln]v then by

(Neg) rule, (s1;); Nick, —p;) € T* and (sg; \; Nick, —1p;) € T* for some disjoint Ky U
Ky = {i | (¢i,a,vi) € N'}. Thus, no ¢; and ¢; are satisfied simultaneously so that no
clause in N with respect to a is satisfied. Therefore, s; — s9 satisfies NV,

e The cases of (s1 — s2; A\; N1 + No) € T* and (s1 — s2;A; N1 X Na) € T* is straightfor-
ward by IH.
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It <31 &sz;A;NloN2> € T*, then by (Seq) rule, <51 &SQ;A,M;J\@ € T*. By
(DN) rule, we also have <31 N 895 A; N1> € T*. Thus by IH, s1 FS 89 is in M ok A
and satisfies N7 on M * . Since <31 N 32;/\,N1;N2> < <31 N s2: N\, N1; N1 o N2> <
<31 5 $9: A; Np o N2>, by IH, s1 + s9 is in (M=X)xNp and it satisfies No on (M*A)*Nj.

Therefore, s1 +s s is in M * X and satisfies N7 o Ny on M x \.

For Claim 1,

If (s;\;p) € T*, then by by the rule (lit), (s;e;p) € T*. Thus M,s F p, and then
M x A\, s E p. Similarly, if (s; A; —p) € T, then M x X\, s E —p

If (s;\;01 A o) € T, by rule (A) (s;A; 1) € T* and (s;A;¢2) € T*. By IH, M x X\, s E
w1 and M x A\, s F po. Thus M x A\, s E p1 A pgo. Similarly, if (s; \; 1 V ¢2) € T*, then
by IH M x X\, s E 1V pa.

If (s; X\; Ont) € T, then by rule (O ), we have (s'; \;¢) € T* and <s IO N> eT*

for some a € A. By IH, s +» s satisfies N in M % X\ and M * \,s’ £ ¢. Then by
semantics, we have M x \; s F Oy,

Suppose(s; \;Ont) € T*. For any N-successor s’ of s on M * A, if there is some
<s N s’;e;)\> € Tx, then for any such term with respect to any s’, by (Oy) rule,

(s'; \;0) € T* or <sri>s’;)\;—N> e T*. (s'5A¢) € T* then by IH M x X\, s E 1. If

s+ & X\; =N ) € T*, then by Claim 1, s + ¢ satisfies — N, that is to say, s rs s’ does
not satisfy N. Thus by semantics, M, s F On¢.

Suppose (s; \; Gy) € T*. Let P = s & 51 % 53+ £% 5,,1 be any N-path starting
from s. We show that (s'; \; ONGN) € T* and M=\, s' E 1) for any s’ € P by induction
on n+ 1. By (G) rule, (s;A;¢) € T* and (s; \;OnGnY) € T*. Since (s; A\;¢) € T,
by IH we have M x A\, s F 1. Assume (sp; \;OnGnY) € T* and M x A\, s, E ¢. By
(G) rule again, we have (s, 1;\;ONGNY) € T*. Since s, 2 s,.1 € R, we have
<sn = an+1;)\;N> € T*. Then by (Oy) rule, we have (wp41; ;). By IH, we have
M x X\, sp11 E 1. Thus for every s’ € P, we have M x \, s’ E 1. As P is arbitrary, by
semantics M *x X\, s E G n).

Suppose <s; A; G N¢> € T*. Towards contradiction, we assume for any s’ in any N-path
starting from s, M x A\, s’ ¥ ¢. By IH, it means (s’; \;v) ¢ T*. Hence, <s;)\; GN1/1>

must be marked as deleted. It is a contradiction. Thus there is some s’ in some N-path
starting from s such that M x A\, s’ E 1. By semantics, we have M x \, s E Gn1).

Suppose (s; \; Fyy) € T*. Towards contradiction, we assume there is an N-path P on
which for any ', M %\, s’ # 1. By IH, it means (s'\;1) ¢ T*. Therefore, there is a full
branch on which 1 is not in any label. It follows (s; \; Fxy9)) must be marked as deleted.
It is a contradiction. Hence, for any N-path starting from s there is some s’ such that
M x A\, s E 1. By semantics, M * \, s E F.
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o If <3; A;FN¢> € T*, then (s; \;9), (s; \;OnL) € T or (s;\;9), <s; A; ONFN’(/J> eT.

— If we choose the first branch, then assume there is an N-transition s + s’ € R, and
PR YPUDY N> € T*. By (Op) rule, (s';\; L) € T. However, this term must be
marked as deleted. It is a contradiction. Thus there is no N-transition of s,Athat

is to say, the singleton s is a full N-path. By semantics, we have M x A\, s F F.

— If we choose the second branch, then towards contradiction we suppose for any full
N-path P = 5% wy &3 wy - - #2 wy, 1 there is some w; € P(i € [1,n+1]) such that

M\, s; ¥ 1p. We show that <3; A; FN¢> ¢ T* by induction from s; to s. By IH we
have (s;; A\;¢) ¢ T*. It follows that <si;)\; FN¢> ¢ T* by (F) rule. Furthermore,
it follows that <si_1; A0 NFN¢> ¢ T*. Since s;_1 has N-successor s;, it follows
that <si_1;)\; FN¢> ¢ T*. Similarly, if <31;A;FN¢> ¢ T+, then<s;)\;FN¢> ¢ T+,

It is a contradiction. Thus there is a full N-path on which for every s’ we have

M« )\, s' E 4. By semantics, M * \, s E En.

o If (s; \;[N]yp) € T*, then by (Dynamic) rule, (s; A\, N;¢) € T*. By IH, M * (A\;N),s E
. It is equal to (M * X) = N, E ¢. If (s;\;(N)p) € T then similarly we have
(M )X)x N, sE .

O
Theorem 20. For any NNF formula @, ¢ is satisfiable if and only if there is an open tableau
rooted at (so, €, ¥).
5.5.3 EXPSPACE-membership
Theorem 21. The satisfiability problem of NAUL is in EXPSPACE.

Proof. Let ¢ be an NNF formula, and 7" be an open tableau for ¢. We show the following
claims:

1. The depth of T is at most exponential.
2. The width of T is at most double exponential.
3. The procedure can be done in double exponential amount of time.

Proof of 1:

Note that tableau rules does not decompose formulas strictly, thus the sizes of formulas
in the consequences may be larger than the sizes of formulas in the antecedents. However we
can give an upper bound of how many terms a single open branch in T has.

The agenda Ag(yp) of a formula ¢ is the smallest set containing €, SubF(p) as well as
SubN (¢) and satisfying the following conditions:

o If 1) € Ag(yp), then —p* € Ag(y);
o If Gy € Ag(yp), then ONGNY € Ag(y);
o If Gy € Ag(p), then OnG ey € Ag(p);
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5.5. Satisfiability Problem

o If Fiyy € Ag(yp), then ONT,OnNENY € Ag(p);
o If Fxyp € Ag(p), then Oy L, OnFntp € Ag(e);
o If N € Ag(y), then N™ € Ag(p).

Clearly, the cardinality of Ag(y) is polynomial in |¢|.

For any F-term (s; ;%) or N-term <3 RNPUDY N> occurring in T when s is marked as

exhausted, it can be shown that ¢, N € Ag(y) and all elements of A are in Ag(y) by examining
every rule. For (G), (F), (G) and (F), the formulas in consequences are all concluded in Ag(¢p)
by the conditions above. For the (Oy) rule, if Oyt € Ag(), then N € Ag(p) and N* € Ag(p)
as well. For the (Neg) rule, if N' € Ag(y), then for any formula ¢ occurring in some clause
of N we have i) € Ag(p). Thus —1p* € Ag(p) as well. The other rules are trivial as formulas
and norms in the consequences are all in Ag(yp).

Firstly, we could give an upper bound of how many states there are in one open branch.
We have shown the formulas of all F-terms are within Ag(¢). The norms in X of a term come
from dynamic operators [IN] or (V) in ¢. However the order of A is not arbitrary, it follows
the modal depth of dynamic operators in . Thus the possibility of A is up to subsets of
Ag(p) rather than higher power of Ag(y). Since two exhausted states get merged if they have
the same F-terms, we can get at most O(2/¢) x O(2/¢l) = O(2/#) many different exhausted
states, so at most exponential in the size of .

Secondly, we could give an upper bound of how many transitions are generated from one
state. Note that the (<) rule is the only rule that generates new transitions. The frequency
that (O ) rule is applied depends on, on one hand, how many < modality as well as F, G, F
are in . On the other hand, if we have to choose the second branch when applying (Ox) rule,
then there will be some new <, F, F or G modalities which do not occur in ®, but occurs in
negations of subformulas in N. In this case, the frequency of applying (<) rule with respect
to one On modality is up to the size of N which is bounded by the size of ¢. As the amount
of modalities is bounded by the size of ¢, one state has at most O(|¢|) x O(|p|) = O(|¢|?)
arrows, so at most polynomial in the size of .

Therefore, the upper bound of the amount of F-terms is in O(2l¥l) x O(2¥l) x O(2¥) =
O(2l¥l), and the upper bound of the amount of N-terms is in O(2!?l) x O(|p|?) x O(2¥!) x
021y = 0(2l%l), so the amount of terms is at most exponential in the size of ¢. One open
branch has at most exponential depth as well, as there are at most exponentially many ex-
hausted states with the same F-terms. This is because if a state is merged with some ancestor,
then we will stop exploring terms of it. Therefore, the frequency that each state can be merged
is no more than the number of paths starting from it. Since each exhausted state has poly-
nomial many arrows to other states, it can be merged at most exponentially many times. In

short, the depth of one open branch is in O(2!#1) x O(21¢l) x O(2¥) x O(2I¢l) = O(2¥!).

Proof of 2:

The rule leads to exponentially many branches is (Neg). Given an atomic norm N, [N is
bounded by |¢|. The cardinality of branches is in O(2/). As there are at most exponentially
many terms in one branch, the width of 7' is in O(2|‘/"2), so at most double exponential in the
size of .

Proof of 3:
The algorithm contains:
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e applying tableau rules,
e checking, marking and pruning the tableau by principles,
e transforming formulas with negation into NNF.

For each branch, as there are at most exponentially many terms in the size of ¢, all of three
procedures above can be done in an exponential amount of time. To be specific, applying rules
contains searching suitable premises and executing. The input of searching is the power set
of labels on some node, which is exponential in the size of ¢ and the executions of applying
rules are no more than the amount of terms; the input of checking inconsistency and states
with the same terms is exponential in the size of ¢ and can be done in exponential time; the
frequency of transforming NNF formulas is at most exponential and each transformation can
be done in polynomial time.
To sum up, as we can reuse the space for each open branch, the procedure is in EXPSPACE.
O

5.6 Conclusion

We have presented a logic named normative arrow update logic (NAUL). NAUL is based on
techniques and ideas from arrow update logic (AUL*) and normative temporal logic NTL. In
NAUL, we can combine norms in three ways: additive, multiplicative and sequential. We can
also distinguish static and dynamic ways to consider norms. We compare the expressivity
of NAUL with other relative logics. We have shown that NAUL is strictly more expressive
than CTL and AUL*. Furthermore, we have shown that the satisfiability problem of NAUL
is decidable via a tableau method and the complexity of this problem is in EXPSPACE.

For the further research, firstly, we conjecture the satisfiability problem of NAUL is
EXPSPACE-hard but have no proof yet. We also need to find an axiomatization of NAUL.
Secondly, we are interested in finding tractable fragments of NAUL. Finally, it may be inter-
esting to develop a variant of arbitrary arrow update logic (AAUL) [105] like NAUL. It would
have quantifier over norms and express “there is some norm that guarantees ¢”.
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6

Conclusion

In this thesis, we studied the extension of dynamic epistemic logic with quantification and
normative systems.

Dynamic epistemic logic is an umbrella term for a class of logics that reason about knowl-
edge and belief with information changing. The extension of dynamic epistemic logic with
quantification has been extensively studied since arbitrary public announcement logic (APAL).
In Chapter 3, we proposed several new variants by restricting the domain of quantifiers in

APAL:

e The logic with construct [Q]p as a variant of APAL with the quantification over formulas
restricted to subsets of variables (SAPAL). A special case of SAPAL is the subsets of
variables are finite (FSAPAL).

e The logic with construct [C]y as a variant of APAL with the quantification over formulas
that only contain variables occurring in the scope of the quantifier [C] (SCAPAL).

e The logic with construct [)T]p and [1)¥]p as a variant of APAL with the quantification
over formulas implying or implied by ¢ (QIPAL). A speical case of QIPAL is that
quantified formulas are quantifier-free (IPAL).

In Section 3.3 we investigated the modal properties of these logics. We have shown that
(CR) and (MK) are valid in SCAPAL but invalid in SCAPAL and FSAPAL (Prop. 2 and
Prop. 4). In Section 3.4, we compare the expressivity of these logics with APAL, epistemic
logic, and each other. We found an interesting expressivity hierarchy of these variants, APAL,
and epistemic logic (Fig. 3.1). To sum up, all these logics are more expressive than epistemic
logic. FSAPAL are more expressive than SCAPAL and both of them are incomparable with
APAL. IPAL is more expressive than APAL. We also showed that the satisfiability problem for
SAPAL, FSAPAL, SCAPAL and IPAL is undecidable by modifying the proof of the APAL case
slightly (Prop. 16). Lastly, we showed that the IPAL quantifier yields a substructural dynamic
consequence relation differing from the version in [92, 95| based on public announcement logic.

In Chapter 4, we focus on the notion of “knowability”. In APAL, “¢ is knowable (to an
agent a)” means “there is an announcement after which ¢ is known (by a)”. However, APAL
does not has an operator representing knowability. Thus, we proposed a logic for knowability
(LK) by packing the quantifier and modality together as the operator of knowability (!);.
We investigated some logcial properties of knowability by LK. For example, we showed that
(Dip <> (Di(Yip is valid. We also showed that (MK) and (CR) hold for LK (Theorem 14). The
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expressivity of LK is equal to PAL under the single-agent system, but LK is more expressive
than PAL under the multi-agent system. We also showed that APAL is at least as expressive
as LK and conjectured APAL is strictly more expressive than LK. We gave the axiomatization
of LK and showed its completeness and soundness (Theorem 11). For the satisfiability problem
of LK, by a modification of the proof in [6], we knew that it is undecidable for at least three
agents. We also proposed another two logics for knowability, namely without the construct
K;p (LK™) and without (¢) ¢ (LKT). We found that LK™ and LK™ are equally expressive
as PL. Therefore, these two logics are decidable but lack expressivity.

Both novel variants of APAL in Chapter 3 and logics of knowability in Chapter 4 are the
extension of dynamic epistemic logic with quantification and under the framework of public
announcement logic. In Chapter 5, we investigated normative arrow update logic (NAUL)
which uses arrow update logic as the framework of normative systems. NAUL follows a CTL-
like approach in which a model is a labeled transition system. A norm is interpreted as an arrow
update that has a source and a target condition. Intuitively, the source condition determines
whether the norm should be adopted and the target condition tells which actions are allowed.
Here action is depicted as a transition from the situation before to the situation after the
action. With these settings, we can combine norms in different ways. The complex norms
enable better formalization of multiple orders and orders for different agents. In NAUL, we
can distinguish the static and dynamic applications of norms by using dynamic and temporal
operators. Even though combined norms and dynamic operators can be expressed by atomic
norms and static operators, they affect the succinctness of the language and the complexity
of decision problems. It has been shown that NAUL is more expressive than CTL and AUL*.
The main contribution of Chapter 5 is to show NAUL is decidable by a tableau method. We
further showed the satisfiability problem for NAUL is in EXPSPACE.

The three themes in this thesis are a few case studies of the extension of dynamic epistemic
logic. In the future, we would like to continue to develop our research. Various questions and
directions could be further investigated. Firstly, there are some open questions in this thesis:

e It is unclear whether LK is less expressive than APAL. We have a proof on reflexive
models, but have not found a proof on S5 models. It is also worth investigating that
whether LK is already undecidable for only two agents.

e We conjecture the satisfiability problem of NAUL is EXPSPACE-hard but have no proof
yet. We also need to find an axiomatization of NAUL.

Secondly, we point out several related researches that could be done in the future:

e In Chapter 3, logics with restricted quantification are based on the framework of APAL.
Similarly, group announcement logic [1], coalition announcement logic [5], posivtive an-
nouncement logic [99], and boolean announcement logic [98| are all variants of APAL.
We may extend this approach to restricting quantifiers over other epistemic actions, such
as arbitrary action model logic [47], and arbitrary arrow update logic [106]. It would be
interesting to investigate the relative expressivity and decidability.

e Most results for dynamic epistemic logics with quantification over information change
are for individual knowledge or belief modalities, but not for group modalities such as
common knowledge and distributed knowledge.

e What is the axiomatization of the logic with the language of LK but without public
announcements? We need to find alternatives for axioms involving public announcement.
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Packing quantifiers with subsequent modalities may bring decidable variants of logics
with quantification over information change.

The framework of NAUL could be further improved. NAUL is a logic for multi-agent
systems, but it lacks interaction between agents and cannot be specifice about actions
by different agents. For example, it is hard to model “agent a does nothing” since other
agents may still change situations before and after a’s inaction.

It may be interesting to develop a variant of arbitrary arrow update logic (AAUL) [105]
like NAUL. It would have quantifiers over norms and express “there is some norm that
guarantees ¢’ but in a setting of more private information change.
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Résumé étendu

Contexte

La logique épistémique fournit un langage formel et un ensemble de régles pour raisonner sur
ce que quelqu’un sait ou croit. Dans la logique épistémique, les déclarations relatives a la
connaissance et a la croyance sont représentées a ’aide d’opérateurs modaux spéciaux appelés
opérateurs épistémiques, tels que “on sait que” or “on croit que”’. La logique épistémique
moderne a vu le jour dans les années 1950 et 1960 avec une approche modale. Dans [108],
von Wright a introduit 'idée d’utiliser la logique modale pour analyser la connaissance et
la croyance, et a fondé du développement de la logique épistémique. L’ouvrage fondateur
de Hintikka Knowledge and belief: An introduction to the logic of the two notions |52] est
largement considéré comme le point de départ de la logique épistémique moderne. Hintikka
a introduit la sémantique des mondes possibles (également connue sous le nom de sémantique
de Kripke, voir [60]) de la logique épistémique dans le cadre de scénarios multi-agents. Les
modeéles de Kripke ou modeéles relationnels consistent en un ensemble d’états, pour chaque
agent une relation binaire appelée relation d’accessibilité entre les états, et une évaluation
des variables propositionnelles sur chaque état. Les propriétés de la relation d’accessibilité,
également appelées propriétés de cadre, définissent différentes classes de modéles de Kripke. La
logique de la connaissance est typiquement interprétée dans la classe des modéles d’équivalence
(réflexifs, transitifs et symétriques) et la logique de la croyance est interprétée dans la classe
des modeles S4 (transitifs et symétriques). Pour un agent a et un état réel, les états accessibles
sont appelés alternatives épistémiques de a. Intuitivement, a considére toutes les alternatives
épistémiques possibles mais non distinguables pour lui. En ce sens, ce que a sait est vrai pour
chaque alternative épistémique pour lui.

La sémantique des mondes possibles de la logique épistémique est la fagon dont nous
pouvons déterminer si les déclarations sur la connaissance sont vraies ou non. Certaines
propriétés de la connaissance sont toujours vraies dans les modéles d’équivalence et sont con-
sidérées comme des axiomes pour le raisonnement sur la connaissance. Soit a un agent et p
une proposition:

e Véracité: Si a sait p, alors p est vrai;
e [Introspection positive: Si a sait p, alors a sait que a sait p;
e [Introspection negative: Si a ne sait pas p, alors a sait que a ne sait par p.

Ces propriétés sont largement acceptées, mais pas incontestées. Un probléme classique est celui
de l'omniscience logique (nommé par Hintikka [52]), selon lequel les agents sont censés étre des
raisonneurs parfaits qui connaissent toutes les vérités logiques. De nombreuses tentatives ont
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été faites pour résoudre ce probléme, comme 'introduction de la notion de mondes impossibles
[53] et la prise de conscience [36]. Dans la thése, nous adoptons toujours la sémantique des
mondes possibles comme cadre de la logique épistémique. La définition formelle de la logique
épistémique est donnée au chapitre 2. Nous renvoyons au manuel [23| pour plus de détails sur
la logique modale et aux manuels [37, 100| pour plus de détails sur la logique épistémique.

La logique épistémique donne une perspective statique de l'interprétation des scénarios
épistémiques 4 un moment donné. Cependant, les informations sont continuellement mises a
jour et communiquées par les agents. La logique épistémique de base n’est pas en mesure de
modéliser de tels changements et actions. Une approche de la modélisation de 1’évolution des
connaissances consiste & combiner la logique épistémique et la logique temporelle (la logique
modale du temps) en une seule logique [48, 37, 83|. Une autre approche que nous étudierons
consiste a étendre la logique épistémique avec des modalités de mise & jour qui sont interprétées
par la mise a jour d’un modéle relationnel. Ce type de logiques est collectivement connu sous
le nom de dynamic epistemic logic (DEL, logique épistémique dynamique) [104]. Une fagon de
distinguer ces logiques est de voir quels composants du modéle elles mettent & jour.

Public announcement logic (PAL, logique d’annonce publique) |76, 45] posséde une modalité
de mise & jour appelée annonce publique. Aprés la diffusion d’une annonce véridique a tous
les agents, le domaine du modéle est restreint aux états pour lesquels cette annonce est vraie.
Les relations accédant aux états supprimés sont également supprimées. PAL est utile pour
formaliser et résoudre des problémes épistémiques impliquant des communications publiques,
tels que I'énigme des enfants sales (Muddy Children Puzzle) [76].

Arrow update logic (AUL, logique de mise a jour des fléches) [57], comme son nom l'indique,
posséde une modalité de mise a jour qui impose une restriction sur les paires dans les relations.
Intuitivement, lorsqu’une paire dans une relation de I'agent a est supprimée, cela signifie que
a peut distinguer cette paire d’états par des informations dont il est informé. Entre-temps, les
états sont conservés et il peut y avoir des relations avec d’autres agents qui relient encore cette
paire d’états. Dans un contexte épistémique, cela signifie que cette paire d’états est toujours
indiscernable pour ces agents aprés un certain événement modifiant I'information. Les mises
a jour fléchées sont plus générales que les annonces publiques, car I'information changeante
peut étre privée au sein d’un groupe d’agents alors que I’événement est public. Contrairement
aux annonces publiques véridiques, les mises & jour de fléches peuvent transmettre de fausses
informations. Les mises a jour de fléches peuvent ne pas préserver les modéles d’équivalence.
Par conséquent, nous ne limitons pas l'interprétation de AUL aux modéles d’équivalence.

Action model logic (AML, logique des modéles d’action) [18] fournit une généralisation des
mises a jour de I'information. Modéles d’action sont des structures de type modéle de Kripke
dans lesquelles le domaine est un ensemble d’actions et une précondition est attribuée a chaque
action. Le modéle actualisé en AML est le produit modal du modéle relationnel et du modeéle
d’action. Le domaine du modéle actualisé est un ensemble de paires sous la forme de (état,
action), ce qui signifie que laction peut étre exécutée dans l'état. L’AML peut modéliser des
annonces privées avec des observations limitées par d’autres agents. De méme, arrow update
model logic (AUML, logique des modéles de mise a jour des fleches) [58] a modéles de mise a
jour des fleches comme généralisation des mises & jour des fleches.
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De la logique épistémique a la logique épistémique dynamique, nous disposons d’une perspec-
tive dynamique pour raisonner sur la connaissance. De PAL & AML, nous pouvons modéliser
des actions épistémiques plus complexes. Dans cette thése, nous nous concentrons davantage
sur une autre approche de la généralisation de la DEL, a savoir la quantification des actions
épistémiques. Arbitrary public announcement logic (APAL, logique des annonces publiques ar-
bitraires) [16] étend PAL en ajoutant des quantificateurs sur les annonces. Les quantificateurs
dans APAL sont toujours traités comme des modalités plutot que comme des quantificateurs
dans la logique du premier ordre. Lorsque 'on se demande s’il est possible qu’aprés une an-
nonce, un énoncé donné soit vrai, on peut le formaliser en disant qu’il existe une annonce
véridique apres laquelle cet énoncé est vrai.

Outre APAL, la généralisation de la DEL avec des quantificateurs sur les mises a jour
a été systématiquement étudiée ces derniéres années. Arbitrary arrow update logic (AAUL,
logique de mise a jour arbitraire des fleches) [105] étend AUL avec des quantificateurs sur les
événements de changement d’information impliquant des mises & jour de fleches. Arbitrary
action model logic (AAML, logique du modéle d’action arbitraire ) [47] ajoute & AML des
quantificateurs sur les modéles d’action. Dans Arbitrary arrow update model logic (AAUML,
logique arbitraire des modéles de mise a jour des fleches) [106], il y a des quantificateurs sur
les modéles de mise & jour des fléches.

Une autre approche consiste a étudier les variantes d’APAL en restreignant la gamme
des quantificateurs. Tout d’abord, il convient de noter que les quantificateurs dans APAL ne
quantifient pas toutes les annonces dans le langage d’APAL. Pour éviter toute circularité dans
la définition du langage APAL, les quantificateurs ne peuvent quantifier que des formules sans
quantificateur. Sémantiquement, il a également été montré que la vérité d’une formule ¢ aprés
une annonce avec quantificateurs n’implique pas qu’il existe une annonce sans quantificateurs
apres laquelle ¢ est vraie [62].

Group announcement logic (GAL, logique d’annonce de groupe) |1] quantifie les annonces
faites simultanément par un groupe d’agents. Coalition announcement logic (CAL, logique
d’annonce de la coalition) |5| quantifie les annonces faites conjointement par la contrepartie
d’'un groupe d’agents. Les contraintes du quantificateur dans GAL et CAL s’appliquent a
des sous-ensembles d’agents. Positive announcement logic (APAL™, logique des annmonces
positives) [99] quantifie les formules positives dans lesquelles les opérateurs épistémiques ne
sont jamais liés par des négations. Boolean announcement logic (BAPAL, logique d’annonce
booléenne) [98] quantifie les formules booléennes (propositionnelles).

En suivant une approche similaire, nous proposerons plusieurs nouvelles variantes d’APAL
dans le chapitre 3. Le premier type de variante se concentre sur la restriction des variables
propositionnelles. Les variables propositionnelles sont des symboles logiques de base pour les
langages formels basés sur la logique propositionnelle. Un ensemble de variables proposition-
nelles peut étre infini. Nous pouvons définir un quantificateur comme quantifiant uniquement
les annonces a l’aide d’un sous-ensemble de variables propositionnelles. Plus précisément,
un sous-ensemble de variables propositionnelles peut étre fini (puisqu'une annonce ne peut
contenir qu'un nombre fini de variables), ou ne contenir que des variables propositionnelles
qui apparaissent dans la portée du quantificateur (puisque, intuitivement, les variables qui
n’apparaissent pas dans la portée n’ont pas d’importance). Le deuxiéme type de variante con-
tient des quantificateurs sur des formules plus faibles ou plus fortes qu'une formule donnée .
En d’autres termes, il existe des quantificateurs sur des formules impliquant ¢ ou impliquées
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par ¢. Ce type de variantes se concentre sur le degré d’information d’une annonce. Outre
Iintuition de ces nouvelles variantes d’APAL, nous avons également une motivation technique
pour les étudier.

e APAL™ et BAPAL sont incomparables en termes d’expressivité & APAL et plus expres-
sifs que PAL [99, 98]. Ainsi, la contrainte sur les quantificateurs ne conduit pas a un
affaiblissement de 'expressivité. Il serait intéressant de comparer ’expressivité entre les
variantes que nous proposons et APAL.

e Le probléme de satisfiabilité de APAL est connu pour étre indécidable [16]. Cependant,
il a été démontré que BAPAL est décidable [98] et APAL™ est conjecturé comme étant
décidable. On peut raisonnablement s’attendre & ce que certaines des nouvelles variantes
soient également décidables.

L’APAL est également lié & la notion de “connaissabilité”. En gros, la connaissabilité concerne
ce qui est connaissable, ou ce qui peut étre connu. Le paradoxe de Fitch sur la connaissabilité
est que si toutes les vérités sont connaissables, alors toutes les vérités sont connues. Supposons
que p est une vérité inconnue, alors “p est une vérité inconnue” est vrai. Il s’ensuit que “p est
une vérité inconnue” est connaissable. Lorsqu’on le sait, on sait que p est vrai, ce qui rend la
phrase fausse. Par conséquent, la contradiction implique qu’il n’y a pas de vérité inconnue,
c’est-a-dire que toute vérité est connue. Le paradoxe de Fitch indique que dans le cadre de la
logique épistémique et modale, il est difficile de formaliser la notion de connaissabilité. Dans
[93], van Benthem a suggéré d’utiliser la logique dynamique pour interpréter la connaissabilité.
Selon ce point de vue, “un énoncé ¢ est connaissable” signifie que ¢ est connu aprés une
certaine annonce. Elle peut étre formalisée par le langage APAL comme “il y a une annonce
aprés laquelle ¢ est connu”. Une autre approche de la logique de la connaissabilité est basée
sur la mise & jour restrictive des relations. Si nous considérons APAL comme une logique de
connaissabilité, elle peut contenir trop d’éléments. Par exemple, [97] a proposé une logique de
connaissabilité basée sur APAL sans annonces publiques.

Dans le chapitre 4, nous proposerons quelques logiques de connaissabilité avec un opérateur
appelé “opérateur de connaissabilité”. Sémantiquement, la condition de vérité de l'opérateur
de connaissabilité est identique & la combinaison d’un quantificateur existentiel et d’un opéra-
teur épistémique. FEn d’autres termes, dans cette logique de la connaissabilité, nous inter-
prétons également “¢ est connaissable” comme il existe une annonce aprés laquelle ¢ est
connu. L’opérateur de connaissabilité sera utile pour étudier les propriétés de la connaissabil-
ité. Ces logiques de connaissabilité sont différentes en omettant respectivement le quantifica-
teur, 'opérateur épistémique et les annonces publiques. Elles peuvent également étre consid-
érées comme des variantes de APAL. L’opérateur combiné et la distinction entre ces logiques
ne sont pas triviaux, en particulier sur le plan technique. L’expressivité, 'axiomatisation et
la décidabilité peuvent changer considérablement.

Pour le troisiéme et dernier sujet de cette thése, nous explorons un champ plus large de
la logique de mise & jour que le contexte épistémique. Rappelons que dans AUL, les relations
sont mises a jour par des mises a jour de fléches. Dans les modéles relationnels généraux, nous
pouvons traiter une paire de relations comme un transition comme dans la logique temporelle.
Une mise a jour de fleche (source, agent, cible) peut également étre interprétée comme une
action par un agent. L’agent effectue une action qui modifie ces paires de relations. Ainsi,
les mises & jour de fleches sur les transitions peuvent étre considérées comme des restrictions
sur les actions. En d’autres termes, les mises a jour des fleches peuvent étre appliquées pour
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caractériser ce que les agents devraient faire, pourraient faire ou sont autorisés a faire. Ces
notions sont appelées normes, régles ou lois. Les logiques et les systémes qui raisonnent
sur ces notions sont appelés systémes normatifs ou logique déontique (voir [42, 70] pour une
vue d’ensemble). Nous prendrons la computation tree-like logic (CTL, logique des arbres de
calcul) [31] comme cadre des systémes normatifs, dans lesquels des actions séquentielles sont
entreprises sur les lignes temporelles ramifiées. La CTL posséde des modalités temporelles
qui peuvent s’étendre sur une profondeur modale arbitraire, ce qui permet de formaliser des
énonceés tels que “@ est toujours vra” (p est vrai a chaque état de chaque chemin) ou “p
sera éventuellement vrai” (il existe un chemin sur lequel ¢ est vrai & un moment donné).
Comme indiqué précédemment, la logique temporelle est également utilisée pour modéliser
le changement d’information. Elle est dynamique dans dynamique dans la perspective de
I’écoulement du temps, mais statique en termes de mise a jour du modéle. Normative temporal
logic (NTL, logique temporelle normative) [3] est une logique de systémes normatifs basée sur
la CTL. Dans NTL, les normes sont interprétées comme des sous-ensembles de relations. Par
conséquent, les normes donnent des contraintes sur les actions.

Dans le chapitre 5, nous étudierons normaitve arrow update logic (NAUL, logique normative
de mise a jour des fleches) qui a été proposée pour la premiére fois dans [63]. Dans NAUL,
les normes sont interprétées comme des mises a jour de fleches. La source d’une mise & jour
de fleche détermine ot les normes doivent étre appliquées ; la cible vérifie quelles transitions
sont conformes pour le groupe objectif d’agents. Ces paramétres permettent une interaction
entre les formules et les normes (la source et la cible d’une mise & jour de fléche sont des
formules). Plus important encore, les normes sont explicites. Les actions autorisées sont
formellement définies, et nous pouvons méme combiner des normes pour composer des normes
plus complexes. Par exemple, nous pouvons combiner des normes de maniére additive afin que
les agents puissent choisir entre les normes ; nous pouvons également combiner des normes
de maniére multiplicative afin que les agents doivent suivre toutes ces normes ; enfin, il est
possible de combiner des normes de maniére séquentielle afin que les agents suivent des normes
données dans 'ordre de priorité.

Certains résultats techniques de NAUL ont été montrés dans [63], comme l'expressivité
relative de NAUL par rapport & CTL et AUL et la complexité du probléme de vérification de
modéle. Nous nous intéressons a la question de savoir si le probléme de satisfiabilité de NAUL
est décidable et & sa complexité.

Contributions

Dans cette thése, nous proposons plusieurs nouvelles variantes de logiques épistémiques dy-
namiques et de systémes normatifs existants. En général, ils peuvent étre considérés comme
des extensions de DEL. Techniquement, nous nous concentrerons sur les propriétés logiques,
I’expressivité, 'axiomatisation et la décidabilité de ces logiques. La structure et les principales
contributions de la thése sont résumées ci-dessous :

e Chapitre 2: Nous introduisons certaines définitions formelles tout au long de cette
thése. Nous introduisons également des définitions formelles de certaines logiques de
base mentionnées ci-dessus, telles que la logique épistémique, PAL, APAL, AUL et CTL.

e Chapitre 3: Nous proposons plusieurs nouvelles variantes d’APAL en restreignant
I’éventail des quantificateurs. Nous introduisons d’abord la syntaxe et la sémantique
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Résumé étendu

de ces logiques, puis nous montrons quelques formules valides en tant que propriétés
logiques de ces logiques. L’effort principal de ce chapitre est de montrer les résul-
tats d’expressivité relative entre ces nouvelles variantes, PAL et APAL. Nous donnons
la hiérarchie d’expressivité de ces logiques. Nous montrons également des résultats
d’axiomatisation et de décidabilité qui sont trés similaires au cas d’APAL.

Chapitre 4: Nous introduisons trois logiques différentes pour la connaissabilité. Elles
possédent toutes l'opérateur de connaissabilité, mais les quantificateurs, les annonces
publiques et 'opérateur épistémique sont respectivement omis. Nous définissons les
langages et la sémantique de ces logiques. Nous montrons certaines propriétés logiques
comme la validité. Nous montrons ’expressivité relative de ces logiques. En particulier,
la logique de la connaissabilité sans quantificateurs est plus expressive que PAL dans le
cas multi-agent et tout aussi expressive que PAL dans le cas mono-agent. Nous proposons
une axiomatisation de cette logique et montrons que le systéme est sain et complet. La
logique de la connaissabilité sans annonces publiques ni opérateurs épistémiques est aussi
expressive que la logique propositionnelle.

Chapitre 5: Nous introduisons la logique normative de mise & jour des fléches. Nous
proposons la définition formelle de son langage et de sa sémantique. La principale
contribution de ce chapitre est de montrer que le probléme de satisfiabilité de NAUL est
décidable, par une méthode de tableau.

Le matériel qui constitue le corps principal de cette thése est basé sur des collaborations

avec différentes personnes : Le chapitre 3 est basé sur un travail joint avec Hans van Ditmarsch,
Louwe Kuijer et Igor Sedlar [102]|. Le chapitre 4 est basé sur un article travail joint Jie Fan,
Hans van Ditmarsch et Louwe Kuijer [65]. Le chapitre 5 est un travail joint avec Hans van
Ditmarsch et Louwe Kuijer.
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